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Preface

The continued use of successive editions of this book by a large number of readers 

is a testament to the book having core strength in explaining the principles of fl uid 

mechanics. At the suggestions of the publisher, Tata McGraw-Hill, and peer groups, 

the authors agreed to pen a third edition. The authors of the fi rst two editions, S K 

Som and G Biswas, are glad to be joined by Prof. S Chakraborty in the authorship 

of this edition.

 This edition of the book is rearranged and rejuvenated in such a way that each 

chapter introduces the topic and then familiarises the readers with all the associated 

principles and applications in a systematic manner. This edition also provides 

the reader with a good foundation to understand fl uid mechanics and apply that 

knowledge in the proliferating world of engineering science ranging from micro-

nano-world to the regime of spacecrafts. The book provides overall exposure to the 

subject, highlighting its importance in creative learning of science and engineering. 

The book appropriately covers all prerequisites of higher level courses in Aerospace 

Engineering, Civil Engineering, Chemical Engineering, Mechanical Engineering, 

Metallurgy and Materials Engineering, Biological Engineering and Applied 

Mathematics, and it will be especially useful for students of these subjects.

This new edition has the following salient features: 

∑ Introduction to fundamental concepts through elementary principles of con-

tinuum mechanics

∑ A lucid treatment of fundamental interfacial phenomena in fl uid mechanics

∑ Thoroughly revised treatment of fundamental equations of conservation 

which includes both differential and integral approach based on control mass 

system and control volume formulation

∑ Expanded coverage of Fluid Kinematics with detailed description (both ana-

lytical and physical) of irrotational fl ows, circulation, velocity potential and 

vortex fl ows

∑ Momentum conservation theorem in a non-inertial frame of reference, en-

compassing both rectilinear acceleration and rotational motion, has been 

derived and discussed in detail using suitable illustrative examples 

∑ Complete derivation of the Navier Stokes equation in a concise and lucid 

manner

∑ Enhanced coverage of Boundary Layer, Turbulent Flows, Unsteady and 

Compressible Flows

∑ Inclusion of chapter-end summary

∑ Comprehensive selection of solved examples and exercise problems, espe-

cially chosen to explain the nuances of basic principles
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1.1  A BROAD PERSPECTIVE OF FLUID MECHANICS

Fluid mechanics deals with the behaviour of liquids and gases in rest or in motion.

Numerous intriguing questions can be answered using fundamental concepts of fluid

mechanics. Some such questions are the following:

∑ How does a rocket go up?

∑ How should one design the shape of a car to minimise the wind resistances

against its motion?

∑ How does the roughness of a solid body influence its resistance against

relative motion with a fluid?

∑ How do insects fly?

∑ How does blood flow through arteries and veins?

∑ How are nutrients supplied from the ground up into the tall branches of a tree,

against gravity?

∑ How does the human heart act like a pump?

∑ What are the factors that influence sports ball (such as golf ball or cricket ball)

dynamics?

∑ How should one design model airplanes so that results on their testing may

be utilised to predict the performance of real prototype aircrafts?

∑ How are ocean currents formed?

Such a list of questions goes on and on, but one aspect looks obvious–the me-

chanics of fluids is very interesting, interdisciplinary in appeal, and practical. Scien-

tists and engineers often need to develop a fundamental understanding of this sub-

ject, in order to address and tackle challenging problems in real-life design and analy-

sis. The aim of this introductory text is, accordingly, to provide a foundation of the

basic principles of fluid mechanics and its applications.

1.2  DEFINITION OF A FLUID

A fluid is a substance that deforms continuously when subjected to a tangential or

shear stress, however small the shear stress may be. As such, this continuous

deformation under the application of shear stress constitutes a flow. For example (Fig.

1
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2 Introduction to Fluid Mechanics and Fluid Machines

1.1), if a shear stress t is applied at any location in a fluid, the element 011¢ which is

initially at rest, will move to 022¢, then to 033¢ and to 044¢ and so on. In other words, the

tangential stress in a fluid body depends on the velocity of deformation, and vanishes

as this velocity approaches zero.

Fig. 1.1 Shear stress on a fluid body

1.3  DISTINCTION BETWEEN A SOLID AND A FLUID

The molecules of a solid are more closely packed as compared to that of a fluid. This

may be attributed to the fact that attractive forces between the molecules of a solid are

much larger than those of a fluid.

A deformable solid body undergoes either a definite (say, a) angular deformation

(Fig. 1.2) or breaks completely when shear stress is applied on it. The amount of

deformation (denoted by the angle a) is proportional to the magnitude of applied

stress up to some limiting condition.

t

a Solid

A B

a

Fig. 1.2 Deformation of a solid body

If this were an element of fluid, there would have been no fixed a even for an

infinitesimally small shear stress. Instead, a continuous deformation would have

persisted as long as the shear stress was applied. It can be simply said, in other

words, that while solids can resist tangential stress under static conditions, fluids can

do it only under dynamic situation. For fluids, therefore, the rate of deformation rather

than the absolute deformation is a more interesting parameter by itself, since a fluid

will any way go on deforming more and more as time progresses, if subjected to a

shear stress.
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In the subsequent section, we will first consider different approaches for analysing

the mechanics of fluids, keeping in view the characteristic physical scales that the

analyser is interested to address.

1.4  MACROSCOPIC AND MICROSCOPIC POINTS OF VIEW:
THE CONCEPT OF A CONTINUUM

The most fundamental approach for analysing the mechanical behaviour of a fluidic

system may be a ‘deterministic’ molecular approach in which the dynamics of indi-

vidual molecules is investigated by writing their respective equations of motion.

While this is fundamentally appealing and may be suitable for certain cases, several

practical constraints also seem to be inevitable. In order to appreciate the underlying

consequences, consider the molar volume of a gas at normal temperature and pres-

sure, which, by Avogadro’s hypothesis, contains 6.023 ¥ 1023 number of molecules.

To describe motion of each of these molecules, three translational velocity compo-

nents (along three mutually perpendicular coordinate directions) and three rotational

components (along the same coordinate directions as above) need to be specified.

Therefore, one has to deal with 6 ¥ 6.023 ¥ 1023 number of equations of motion, even

for an elementary molar volume, which is an extremely demanding computational task

even today, in spite of the advent of high-speed supercomputers. Hence, from a

practical point of view, there must be certain approaches that can reduce the number

of variables to a figure that can be handled conveniently for practical computations.

In particular, there are two specific approaches that can be introduced in this

context. In one approach, we deal with ‘statistically averaged’ behaviour of many

molecules constituting the matter under investigation. This is exactly the approach

followed in kinetic theories of matter and statistical mechanics, which in general is

termed as the ‘microscopic’ point of view, since the primary focus of attention is on

the averaged behaviour of individual microscopic constituents of matter.

The second approach reduces the number of variables even further, by consider-

ing the gross effect of many molecules that can be captured by direct measuring

instruments and can be perceived by our senses. Such an approach is the so-called

‘macroscopic’ approach. For a clearer distinction between macroscopic and micro-

scopic approaches, we can refer to a very simple example as follows: When we con-

ceive the term ‘pressure’ of a gas (we will deal with this term more formally later) in the

microscopic point of view, it originates out of the rate of change of momentum of

molecules as a consequence of a collision. On the other hand, from a macroscopic

point of view, we describe the same quantity in terms of time-averaged force over a

given area, which can be measured by a pressure gauge.

Though the macroscopic approach provides us with a more practical method of

analysis, one should not presume that it can give the correct solution in all situations.

In order to assess the underlying implications, let us consider certain aggregations of

molecules, such as a set of widely spaced molecules for a gas and a set of closely

spaced molecules for a liquid. If we consider a very small elementary volume within

the medium, then numerous molecules may come into it or move out of it during some
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specified interval of time. For someone interested in calculating density of the medium,

it may apparently be sufficient to calculate the number of molecules (n) in that

elementary volume, and compute a ‘locally averaged’ density based on that

information. However, the number of molecules residing over that elemental volume

at any instant is rather uncertain. Now, if that elemental volume is too small, then the

number of molecules residing in that volume may be very few, and hence, even an

uncertainty in a few number of molecules residing in that volume may result in serious

uncertainties of the computed density based on that information. On the other hand,

if that elemental volume is sufficiently large (say, the characteristic linear dimension

of the volume is significantly large in comparison to the mean free path of the

molecules, the later being nothing but the distance traversed by a molecule between

two successive collisions), then the number of molecules contained in that volume

may be large enough, so that it hardly matters whether there is an uncertainty over a

few number of molecules contained in that volume. Therefore, for each situation,

there is a limiting volume, above which we can treat the substance as being a

continuous medium without any significant uncertainty in prediction of the averaged

behaviour of the molecules constituting the medium (However, the chosen elemental

volume should not be too large either, in which case we shall not be able to capture

the local variation of properties). Such a medium is known as a continuum

(continuous medium), which basically implies that variation of properties within the

medium is smooth enough (i.e., randomness due to uncertainties in molecular

behaviour is virtually ruled out) so that differential calculus can be used to analyse

the averaged physical behaviour of the medium mathematically, without showing any

additional concern on the behaviour of individual molecules. Therefore, validity of

continuum assumption is a basic prerequisite to the validity of the macroscopic point

of view. In essence, the macroscopic point of view gives a direct approach of analysis

if (i) there is a large number of molecules and (ii) the dimensions under

consideration are extremely large as compared to the dimensions in atomic/

molecular scale (typically, the ‘mean free path’). This approach, however, fails,

when the mean free path approaches the characteristic linear dimension (the so-called

‘length scale’) of the system, such as for the flow of rarefied gases at low pressure

(i.e., high vacuum). The microscopic approach turns out to be essential for addressing

such specific situations. It can be noted here that in the present text, we will present

the subject matter primarily from a macroscopic point of view.

In the context of the use of the microscopic description of matter, it may be

instructive to look into some specific contexts in which employment of such

approaches may become inevitable. To give the issue a technological perspective,

one may refer to micro electromechanical systems (or MEMS)-based appliances,

which find their applications in a wide variety of emerging technologies, ranging from

microactuators, microsensors, microreactors to thermo-mechanical data storage

systems. In such devices the flow physics may be faceted by the fact that the classical

continuum hypothesis may cease to work as the distance traversed by molecules

between successive collisions (i.e., the mean free path, l) becomes comparable with

the characteristic length scale of the system (L) over which characteristic changes in

the flow are expected to occur. The ratio of these two quantities, known as the
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Knudsen number (Kn = l/L), is an indicator of the degree of rarefaction of the system,

which determines the extent of deviation from a possible continuum behaviour. For 0

< Kn < 0.01, the flow domain can be treated as a continuum (see Fig. 1.3), in which the

continuum equations with the classical boundary conditions of no relative slip

between the fluid and the solid boundary remains applicable (This is known as no-

slip boundary condition, which we will discuss in detail in Subsection 1.6.4.1). On the

other extreme, when Kn > 10, the flow becomes free molecular in nature, because of

negligible molecular collisions. The range of Kn spanning from 0.01 to 0.1 is known as

the slip flow regime, over which the no-slip boundary condition becomes invalid,

although continuum conservation equations can still be used for characterising the

bulk flow. However, over the Kn range of 0.1 to 10 (the so-called transitional regime),

the continuum hypothesis progressively ceases to work altogether, thereby

necessitating a shift of paradigm from the continuum-based analysis to particle-

based analysis (following microscopic point of view) for this range of Kn and beyond.

Kn = 0.01 0.1 10

Continuum flow Slip flow Free molecular flow
Transition
regime

Fig. 1.3 Flow regimes for gases

In the subsequent discussions, we will consider that the range of  Kn is such that

the continuum hypothesis is valid. Accordingly, we will first develop a formalism to

describe the state of stress in a fluid medium considering the macroscopic viewpoint.

1.5   CONCEPTS OF PRESSURE AND STRESS IN A FLUID

As discussed earlier, a fluid is basically a substance that undergoes continuous

deformation when subjected to a shear (tangential), no matter how small the shear

stress is. The fluid moves and deforms continuously as long as the shear stress is

applied. Therefore, fluid at rest must be in a state of zero shear stress, a state often

called ‘hydrostatic state of stress’. It has to be noted here that the hydrostatic state

of stress basically originates out of the physical quantity known as pressure (p),

which acts equally from all directions, and is inherently compressive in sense.

At this juncture, it is important to distinguish between two frequently confused

terms, namely, pressure and stress. Towards that, we first develop the basic concept

of stress at a point in a fluid. Consider an arbitrary volume of a fluid, which can be

subjected to basically two types of forces, namely, (i) surface forces (i.e., forces that

act at surfaces and are proportional to the surface area) and (ii) body forces (i.e.,

forces acting throughout the volume of the fluid). Typical examples of surface forces

and body forces in a fluid are forces due to pressure and gravity, respectively. Fur-
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ther, assume that the fluid volume element occupies a surface area S. Forces acting on

surface of this element may be due to interactions from surrounding fluid elements or

a solid boundary in contact. Let ‘A ’ be any closed surface within the volume, as

depicted in Fig. 1.4. Also, let dA  be an infinitesimal area segment of the surface,

Ad
n̂

A

S

Fig. 1.4 Definition of an infinitesimally small area element

having a unit outward normal vector n̂ . Assume Fd  as the force exerted by the

positive side (i.e., exterior of dA  in the direction of n̂ ) on the negative (inner) side of

the infinitesimal area dA . Note that Fd  depends on the location of the area dA ,

magnitude of the area dA  and orientation of the area dA  (specified by the vector n̂ ).

Based on this information, we can define a quantity called traction vector as

0

n

A

F dF
T Lt

A dAd

d

dÆ
= = . Physically, 

n
T  is the force per unit area outward at a point on

an elemental surface with outward direction normal n̂ ; the force being exerted by the

material located on the positive side of the area by that located on the negative side

of the area.

Let 
n
jT  be the j th component of the vector 

n
T  (note that j = 1 means component

along x, j = 2 means component along y, and j = 3 means component along z, in a

Cartesian indexing system). Further, we define a notation
i

ij jTt ∫ , only for special

cases in which the directions i and j correspond to directions conforming the

Cartesian coordinate axes. This is known as the Cartesian index notation and the

components ijt  are known as the Cartesian stress tensor components. Here ijt

represents the j th component of the traction vector on a plane whose outward normal

is parallel to the ith direction. Note that each of the indices i and j may vary between

1 to 3. Some alternative notations are also followed in many texts, such as 11xs t= ,

22ys t= , 33zs t= , 12xyt t= , 21yxt t= , 13xzt t= , 31zxt t= , 23yzt t= , 32zyt t= .

For an illustration of the notation presented above, one may refer to Fig. 1.5, in which
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the ijt  components are shown for the top, bottom and the two side faces for a

rectangular-parallelepiped shaped element. Referring to Fig. 1.6, for the right-side

face, outward normal vector is directed along x, and hence the index i = 1 for all ijt ’s

acting on that face. The other index j signifies the direction of action of the stress

component. For instance, j = 1 means that it acts along the x direction, j = 2 means it

acts along the y direction, and j = 3 means it acts along the z direction. One can easily

observe that t11 acts normal to the surface under consideration (right face), and is

therefore termed as a ‘normal component of stress’, whereas t12 and t13, for example,

act tangential to the surface under consideration, and are therefore termed as ‘shear

components of stress’. On the left-side face, the positive senses of action of these

components are assumed to be opposite to that for the right face, since outward

normal vector for the left face is directed along the negative x direction. More

precisely, we develop our sign convention such that we take positive sense of tij in

the positive j direction, in case the outward normal vector for the surface is oriented

along the positive i direction. Accordingly, we take positive sense of tij in the

negative j direction, in case the outward normal vector for the surface is oriented

along the negative i direction. For example, one can see that a positive sense of t11 is

directed along the negative x1, direction on the left face of the parallelepiped depicted

in Fig. 1.5, since that face itself has an outward normal directed along the negative x1

direction. For the same reason, the positive sense of t12 is directed along the negative

x2 direction of the same face and similarly for t13.

y

x

z

t22

t21
t12

t13

t11

t23

t22

t21

t12

t11

t13 t23

Fig. 1.5 Components of the stress tensor demonstrated in a cuboid

*
Next, we will try to utilise the concept developed so far to express traction vector on

an arbitrarily oriented surface in terms of the stress components. For that purpose,

consider a infinitesimal tetrahedral fluid element formed by three surfaces dS1, dS2,

and dS3, such that dS1 is parallel to the yz plane, dS2 is parallel to the xz plane and dS3

*
This portion may be omitted without loss of continuity



8 Introduction to Fluid Mechanics and Fluid Machines

is parallel to the x-y plane, and a surface dS (surface ABC) whose outward unit normal

vector is n̂  (refer to Fig. 1.6). Let 
n

T  be the traction vector on the surface dS. Also, let

h be the perpendicular distance from the vertex O to the surface dS. It is apparent that

dS1 is nothing but the projection of dS on the y-z plane. Now, the angle between dS1

and dS (say, q) is basically the angle between the directions of their respective

normals, i.e., angle between unit vectors î and n̂ (where 1 2 3
ˆˆ ˆn̂ n i n j n k= + + , in terms

of its components, i.e., ni represents the component of vector n̂  along the ith direc-

tion). Therefore, from the definition of dot product of two vectors we have,

ˆ ˆˆ ˆ. cosi n i n q= . Now, since ˆ ˆ 1i n= = , we have 1
ˆ ˆcos .i n nq = = (using the compo-

nents of the vector n̂ ). Thus, 1 1cosdS dS dSnq= = . Similarly, 2 2dS dSn= , and

3 3dS dSn= . Also, volume of the element is given by 
1

3
dV h dS= ¥ ¥  (recall formula

for volume of a tetrahedron). With this information, let us now try and apply Newton’s

2nd law of motion on the fluid element for motion along the x direction. For that

purpose, we first identify forces on each of the surfaces along the x direction. For the

surface dS1, the outward normal vector is along the negative x direction, and therefore

the corresponding force is 11 1dSt-  (we are neglecting a small variation in t11 between

the point O and any other point on the surface dS, which is perfectly legitimate as h

Æ 0). Similarly, the force on dS2 along the x direction is 21 2dSt-  (the minus sign

originates out of the fact that outward normal to dS2 is directed along the negative

 

B

y

dS3

A

C

z

x

dS1

dS2

O

 Fig. 1.6 A tetrahedral element of fluid

y direction) and the force acting on dS3 along the x direction is 31 3dSt-  (the minus

sign originates out of the fact that outward normal to dS3 is directed along the
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negative z direction). Also, the force acting on dS along the x direction is 1
n

T dS .

Therefore, the net force acting on the element along x direction is given by

xF =Â  Net surface force along x + Net body force along x

= ( )11 1 21 2 31 3 1 1

1

3

ndS dS dS T dS b h dSt t t Ê ˆ- - - + + ¥ ¥Á ˜Ë ¯
(1.1)

where b1 is the body force per unit volume. Now, if r be the density of the element

of mass dm, then 
1

3
dm h dSr= ¥ ¥ ¥ . Also, as per Newton’s 2nd law of motion,

1( )xF dm a=Â , where a1 is acceleration of the element along x . Substituting

1 1dS dSn= , 2 2dS dSn= , 3 3dS dSn= , we have

( )11 1 21 2 31 3 1 1 1
3 3

n h h
n n n T b at t t r- - - + + = (1.2)

Finally, since hÆ0 (we need to evaluate traction vector at a point O, and therefore

we need to shrink the tetrahedron to virtually a single point in the limiting sense), we

have

3

1 11 1 21 2 31 3 1

1

n
j j

j

T n n n nt t t t
=

= + + = Â (1.3)

Identically, for any general coordinate direction i (i = 1, 2 or 3)

3

1

n
i ji j

j

T nt
=

= Â (1.4)

The above result is an outcome of the so-called Cauchy’s theorem relating trac-

tion vector components acting on a plane having unit normal vector n̂  to Cartesian

stress components ijt . The above expression may also be conveniently written in

an equivalent matrix form as

=

1 11 12 13 1

2 21 22 23 2

31 32 33 33

ˆ( )
( )n

n

n

n

unitstresstraction normalcomponentsvector vector n
T

T n

T n

nT

t t t

t t t

t t t

È ˘ È ˘ È ˘Í ˙ Í ˙ Í ˙=Í ˙ Í ˙ Í ˙Í ˙ Í ˙ Í ˙Î ˚ Î ˚Í ˙Î ˚ 1442443

(1.5)

We can, therefore, see that the Cartesian components of stress tensor, altogether,

map a vector n̂  into another vector 
n

T . Therefore, from a fundamental mathemati-

cal definition which states that the linear transformation that maps a vector into a

vector is nothing but a second order tensor, we can conclude that stress is a
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second order tensor quantity. At this stage, it may not be too comfortable to pro-

ceed deeper into the mathematics of tensor, and we would neither make any effort of

that kind here. However, it is very easy to appreciate from our previous discussions

that tensor is a quantity much more general than a vector.

For the stress tensor, there are actually nine components (since i e[1,3] and j

e[1,3], out of which six are independent. This may be attributed to the fact that from

angular momentum conservation, ji ijt t= . This may be illustrated as follows:

Let us consider a two-dimensional fluid element, as shown in Fig 1.7

C

dx

dy

tII

x2

x1

tIP

tPI

tPP

tII

tPI

tPP

tIP

 Fig. 1.7 

For rotation of the fluid element with respect to its centroid, net moment of all

forces about C may be expressed as c cM I q=Â && , where Ic is the moment of inertia

of the element with respect to its centroidal axis, and q&&  is its angular acceleration.

Thus ( ) ( ) ( )( )2 2
12 21dy dx dx dy k dxdy dx dyt t r q- = + &&

where k is a constant, r is the fluid density. In the limit as , 0dx dy Æ , the above

yields

12 21t t=

This, interestingly, is true even if the fluid element has angular acceleration. To

generalize,

ji ijt t=

The only restriction to the applicability of this equation is that there is no body

couple acting on the fluid element.



Introduction and Fundamental Concepts 11

At this stage, it may be imperative to demarcate a second order tensor such as

stress from a vector such as force. Importantly, a second order tensor component tij,

for its specification, requires two indices i and j, the first index i specifying the

direction normal of the face on which it is acting, and the second index j specifying the

direction of action of the stress component itself. Therefore, unlike force, stress at a

point is not unique, and is strongly dependent on orientation of the chosen area

based on which it is calculated. A vector (such as force, for example) is the special

case of a tensor; in fact it is a tensor of order one, since it requires only one index (say,

i) to specify its ith component. Scalar, in that sense, is a tensor of order zero.

Next, let us formally investigate the nature of the quantity pressure. For that

purpose, let us refer to Fig. 1.8, in which a differentially small fluid element in the form

of a triangular prism is supposed to be in static condition. Since it is not in motion, it

is not under the action of any tangential (shear) force exerted by the surrounding fluid

elements (we have already learnt that fluid cannot resist even an infinitesimally small

shear without being deformed, and therefore a static fluid element must be subjected

to a zero-shear condition), and forces exerted by the surrounding fluid elements

(surface forces) are only normal to the respective surfaces under consideration. Such

forces are always compressive in nature (usually expressed in terms of force per unit

area). For the situation shown in Fig. 1.8, let us assume that p1, p2, and p3 are the

pressures acting on the three surfaces. Let bi be the component of body force (per

 

y

q

q

dz

dl

x

p2

dx

dy

z

P1

p3

 Fig. 1.8 A triangular wedge-shaped fluid element in equilibrium

unit volume) along the ith direction. Now, for equilibrium of the element,

0xF =Â

1 3 cos (1/ 2) ( sin ) 0xp dydz p dldz dl dy dzbq q- + = (1.6)
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Now, since cosdy dl q= , we have

1 3 (1 / 2)( sin ) 0xp p dl bq- + = (1.7)

Finally, since dlÆ0, we have

p1 = p3 (1.8)

Also, for equilibrium,

0yF =Â

2 3 sin (1/ 2) ( sin ) 0yp dxdz p dldz dl dy dzbq q- + = (1.9)

Since sindx dl q= , we have

2 3 (1/ 2)( cos ) 0yp p dl bq- + = (1.10)

As dl Æ 0, we have

2 3p p= (1.11)

Therefore, 1 2 3p p p= = , i.e., pressure acts equally from all possible directions, no

matter whether any body force is acting or not.

We may extend our previous discussions to the case of a general fluid element in

motion, for which the traction vector on any surface should clearly have two

separate contributions; the first one is pressure, which would have been present

even if the fluid element was non-deforming, and a second type of contribution that

is related to the deformation behaviour of the fluid element. Solids are, in general,

not pressure-sensitive as such, and the corresponding stresses are dependent on the

nature of deformation alone. However, there is an even more subtle difference

between these two. For fluids, the net amount of deformation is not so vital as the rate

of deformation. This is because, fluids under shear are any way continuously

deforming, and the deformation is more as we allow more and more time. Therefore,

resistance towards deformation is better characterised by the rate of deformation,

rather than the deformation itself. Thus, unlike for the case of solids in which stresses

are mostly related to strain alone (except for certain solids with partial fluid-like

characteristics, namely, the so-called ‘visco-elastic’ solids), in fluids stresses are

predominantly related to the rate of strain (or, rate of deformation). In fact, in fluids,

the force necessary to produce deformation approaches zero as the rate of

deformation is reduced.

Such clear demarcations between fluids (liquids and gases, in totality) and solids,

however may encounter serious concerns in some borderline cases. For example,

some apparently solid substance such as asphalt or lead resist shear stress for short

periods but actually deform slowly and exhibit definite fluid behaviour for long

periods. Other substances such as colloid and slurry mixtures or even metals at semi-

solid (mushy) state can resist small shear stresses but ‘yield’ at larger shear stresses

and begin to flow as fluids do. Such cases demand a more general description of

material deformation, in a specialised field of science known as rheology of

substances. For most engineering problems, however, a more or less clear decision
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about fluid or solid states can be made in terms of constitutive behaviour of the

substance (i.e., stress response of the material as a function of internal deformation

and/or rate of internal deformation). For example, within proportional limit, elastic

solids have stress linearly proportional to strain and analogously, Newtonian fluids

(such as water; we will define Newtonian fluids more formally later) have shear stress

linearly proportional to the rate of shear strain.

1.6   FLUID PROPERTIES

Certain characteristics of a continuous fluid are independent of the motion of the

fluid. These characteristics are called basic properties of the fluid. We shall discuss a

few such basic properties here.

1.6.1 Specific Volume ( v ) and Density (rrrrr )

Specific volume of a substance is formally defined as

v lim
V V

V

md d

d

dÆ ¢
=  (1.12)

where Vd is the volume of a small elemental mass dm, and Vd ¢  is the smallest volume

for which the system can be considered as a continuum. If Vd  is substantially less

than dV ¢, it falls in the domain of ‘microscopic uncertainty’ (as discussed earlier), in

which the whole continuum assumption fails altogether. Therefore, Vd Æ 0 (in place

of Vd Æ Vd ¢ ) would be a wrong limiting assumption, and should never be used

casually in such formal definitions. As easily understandable, specific volume is the

inverse of a term more familiar to you, namely the density ( v = 1/r). For two-phase

mixtures of simple compressible substances, specific volume of a mixture can simply be

obtained as a weighted average of specific volume of individual constituent phases,

and therefore, in thermodynamics, specific volume is a more popular terminology used

in preference over density. In mechanics of fluids, on the other hand, the concept of

density is more commonly used, which can formally be defined as

lim
V V

m

Vd d

d
r

dÆ ¢
=  (1.13)

with symbols having usual meaning in which they were used to define specific volume.

Regarding the choice of the elemental volume ( Vd ) for calculating the ‘local’

properties, certain important points need to be carefully noted. Such infinitesimal

elements must be chosen small enough to be considered uniform (i.e., any spatial

variations in properties inside the volume element itself are negligible); and at the

same time are large enough in size to contain a statistically large number of molecules.

Materials obeying this ‘hypothesis’ are said to behave as a continuum, as mentioned

earlier. Thus, the continuum hypothesis for estimation of local variations in properties

works well provided all the dimensions of the system are large compared to the

molecular size. In Fig. 1.9, is shown an optimal range of elementary volume that

ensures capturing the local density variations and at the same time is not too small to

depict fluctuations originating out of molecular scale uncertainties.
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Molecular fluctuations
System size variations

Local value of
the density

L1 L2 L3 L

r

Fig. 1.9 Density variations as function of the length scale of the chosen

elemental volume

1.6.2 Specific Weight ( g )

Specific weight is the weight of fluid per unit volume. Specific weight is given by

gg r=

where g is the gravitational acceleration. Just as weight must be clearly distinguished

from mass, so must the specific weight be distinguished from density. In SI units,

g will be expressed in N/m3.

1.6.3 Specific Gravity (s)

For liquids, it is the ratio of density of a liquid at actual conditions to the density of

pure water at 101 kN/m3 and at 4°C. The specific gravity of a gas is the ratio of its

density to that of either hydrogen or air at some specified temperature or pressure.

However, there is no general standard, so the conditions must be stated while

referring to the specific gravity of a gas.

1.6.4 Viscosity

1.6.4.1 The No-slip Boundary Condition

Consider a flat plate of large width being kept in a ‘free stream’ flow, so that the fluid

just before encountering with the plate is having a uniform velocity of U (see Fig.

1.10). However, as the first set of fluid molecules comes in contact with the plate,

 

U
Edge of boundary layer

x

y

U

Outer layer

Inner layer (Boundary layer)

 Fig. 1.10 Free stream flow of a viscous fluid over a flat plate
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these molecules tend to stick to the solid. In other words, it is commonly expected

that there should be no relative tangential velocity component between the fluid

and the solid boundary at their contact points. This conceptual paradigm is known

as ‘no-slip’ boundary condition, which has been successfully employed in explain-

ing the experimentally observed fluid dynamics over most length scales addressing

common engineering problems. However, the physical origin of the no-slip boundary

condition over a solid boundary has not been established with certainty, and has

been a matter of strong debate in the research community for long. One theory argues

that the molecules of a fluid next to a solid surface are adsorbed onto the surface for

a short period of time, and are then desorbed and ejected into the fluid. This process

slows down the fluid and renders the tangential component of the fluid velocity equal

to the corresponding component of the boundary velocity.

*
The above consideration remains valid only if the fluid adjacent to the solid wall is

in thermodynamic equilibrium. The achievement of thermodynamic equilibrium, in

turn, requires an infinitely large number of collisions between the fluid molecules

and the solid surface, which may not be possible for a ‘rarified’ or a less dense

medium. This may result in a ‘slip’ between the fluid and the solid boundary in small

channels where the mean free path may be of comparable order as that of the chan-

nel dimension. This phenomenon may be more aggravated by the presence of

strong local gradients of temperature and/or density, because of which the mol-

ecules tending to ‘slip’ on the walls experience a net driving force. Such phenomena

are usually termed as ‘thermophoresis’ and ‘diffusophoresis’, respectively.

Slip in liquids is something much less intuitive. Due to sufficient intermolecular

forces of attraction between the molecules of the solid surface and a dense medium

such as the liquid, it is expected that the liquid molecules would remain stationary

relative to the solid boundary at their points of contact. Only at very high shear

rates (typically realisable only in extremely narrow confinements of size, roughly a

few molecular diameters), the straining may be sufficient enough in moving the fluid

molecules adhering to the solid by overcoming the van der Waals forces of attrac-

tion. Another theory argues that the no-slip boundary condition arises due to

microscopic boundary roughness, since fluid elements may get locally trapped

within the surface asperities. If the fluid is a liquid then it may not be possible for the

molecules to escape from that trapping, because of an otherwise compact molecular

packing. Following this argument, it may be conjectured that a molecularly smooth

boundary would allow the liquid to slip, because of the non-existence of the surface

asperity barriers.

The phenomenon of ‘true’ slip, mentioned above, is not very common in most

practical liquid flows. Rather, an ‘apparent’ slip phenomenon may be a more prob-

able feature, especially if the fluid is flowing through a very narrow confinement.

Recent studies have demonstrated that the intuitive assumption of ‘no slip at the

boundary’ can fail greatly not only when the solid surfaces are sufficiently smooth,

*This portion may be omitted without loss of continuity
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but also when they are sufficiently rough. Towards this, research investigations

have attempted to resolve the apparent anomaly of ‘reduced’ fluid friction in the

presence of ‘rough’ surface elements under specific conditions. These studies have

conjectured that while the microscopic roughness of the solid surface impedes the

motion of the adhering fluid a thin layer of vapour formed on the surface roughness

elements tends to augment the level of slippage. This thin layer of vapour (typically,

of nanometer length scale) may be spontaneously formed on hydrophobic surfaces

(i.e., surfaces which have a phobia of water and therefore do not easily get wet),

because of complicated thermodynamic interactions that are mostly triggered on

account of the narrowness of the confinement (such interactions, therefore, are

existent only in case of very narrow channels but not in large pipes or other con-

duits). This vapour layer, in effect, acts like a shield, preventing the liquid from

being directly exposed to the irregularities of the channel surface. In such cases, the

liquid is not likely to feel the presence of the wall directly and may smoothly sail over

the intervening vapour layers, instead of being in direct contact with the wall rough-

ness elements. Utilising this concept, researchers may potentially develop engi-

neered rough surfaces with triggered hydrophobic interactions and consequent

inception of friction-reducing vapour phases. Narrow confinements capable of mim-

icking the selective and rapid fluidic transport attainable in biological cellular chan-

nels but designed on the basis of such newly discovered surface roughness-hydro-

phobicity coupling would open up a wide range of new applications, such as

transdermal rapid drug delivery systems, selective chemical sensing and mixing in

nano-scales and several other new biological applications.

It is now clear from the above physical description that the existence of a thin

vapour layer (of a few nm thickness) adhering the solid substrate leads to an occur-

rence of the so-called ‘apparent slip’ behaviour. This is illustrated in Fig. 1.11.

Usually, the vapour layer is too thin to be resolved in experimental details, and

therefore the velocity profile (i.e., the locus of the tip of the velocity vectors at any

section) in the liquid layer (shown in the magnified near-wall image) provides the

only experimentally observable continuum picture. That profile, when extrapolated

(in practice, tangent to the profile at the liquid interface is only extrapolated) to the

wall, signifies a slip velocity, uslip, which is different from zero. However, when this

profile continues to be extended by a length of ls further away from the wall in its

normal direction, it will show a zero velocity. The length ls is typically known as the

slip length. From simple trigonometry, it follows that

interface

slip s

u
u l

y

∂
=

∂
 (1.14)

where 
interface

u

y

∂
∂

 represents the interfacial slope of the liquid velocity profile. Thus,

the no-slip boundary condition is a special case of this conjecture, with ls = 0
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y
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Fig. 1.11 A mechanism of apparent slip

Despite interesting exceptions, the no-slip boundary condition has been con-

firmed in overwhelming majority of applications, and is the standard choice in main-

stream fluid dynamics. Accordingly, throughout this book we shall follow the no-slip

boundary condition for our analysis. However, we shall keep in mind that it is a mere

paradigm rather than a ritual, and may be easily violated in certain applications that

are not so familiar with the classical engineering community but are emerging in the

present day technological scenario.

1.6.4.2 Viscous Effects and Newtonian Fluids

Following the no-slip boundary condition, let us revisit the description of flow over a

flat plate as an example, as depicted in Fig 1.10. The first layer of fluid molecules

adhering to the plate feels the presence of the wall directly, and tends to stick to the

same with zero relative velocity. However, the layer of fluid molecules located imme-

diately above the wall adhering layer does not directly feel the presence of the wall.
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Nevertheless, it feels the effect of the wall implicitly by virtue of some fluid property

that enables the effect of the momentum disturbance imposed by the wall to propa-

gate from the wall adjacent layer to the further outer layers. This fluid property is

known as viscosity. As we move further and further away from the wall, the effect of

the wall is less prominently felt. Thus, the free stream effect becomes more and more

successful in forcing an outer fluid layer to move at a faster pace than another layer

that is located somewhat closer to the wall. In this way, one may reach a distance from

the solid boundary at which the free stream condition is virtually reached (this dis-

tance is quite short for reasonably high-speed flow, as we shall demonstrate in one of

our later chapters), and no further gradient of velocity occurs beyond that location.

This implicitly means that fluid located in the far-stream beyond this point does not

feel the presence of the wall at all! As one progress further along the axis of the plate

and considers another section, similar effects are felt. Only, the effect of the wall now

penetrates deeper into the bulk, simply because the effect of the wall is now being felt

more strongly because of the presence of preceding slow-moving upstream sections.

In this way, the zone of influence of viscous effects ‘grows’ progressively as we

march along the axis of the plate. One may conceptually think of an imaginary demar-

cating boundary between the ‘active’ and ‘inactive’ zones of influence of the momen-

tum disturbance effect induced by the walls (see Fig. 1.10). This demarcating bound-

ary is known as the ‘edge’ of a boundary layer. Thus, the boundary layer is simply an

imaginary layer adjacent to the walls within which the viscous effects are important

and outside which the viscous effects are not significant.

To proceed further, let us consider a thin fluid element of width Dy which is originally

rectangular, as shown in Fig. 1.12, located within the zone of viscous influence. The

upper edge of the element has a velocity of Du relative to the lower edge (this additional

velocity of the upper edge is because of its location being further away from the wall so

that it feels the effect of the wall less prominently than that of the lower edge).

yD

x

y

A B

D D¢

A

C C¢
A

θD θD

u=0

u=D

uD D t

u

Fig. 1.12 Angular deformation of a rectangular fluid element under

unidirectional flow

Therefore, in a small time interval of D t, the upper layer displaces by an incremental

amount of DuD t, as relative to the lower one. This distorts the original rectangular

element to a parallelogram shape (ABC¢D¢), with an angular strain. The extent of this

angular strain is measured by the shear angle Dq, which from trigonometry can be
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expressed as tan
u t

y
q

D D
D =

D
. Since Dt is chosen as small, Dq is also small, which

implies that tan q qD ª D . The rate of angular deformation (or, equivalently the rate of

shear strain), g& , may be then estimated as 
lim 0t t

q
g

D Æ

D
=

D
&  =

lim 0y

u du

y dyD Æ

D
=

D
. This

estimation is strictly valid only when the fluid has a unidirectional motion (i.e., the

fluid has only one velocity component that is directed along the x  direction). Thus,

for fluid flows with more than one velocity component, the expression of g&  will be

more involved (which will be derived in a subsequent chapter).

Notwithstanding the underlying kinematic details, we may say that the shear

stress (txy, or simply in a generic notation t ) in the fluid will be some function of the

rate of shear deformation (we already mentioned that one important characteristic of

a fluid is that its shear stress is related to the rate of shear deformation), g&. In general ,

this relationship (known as constitutive behaviour, since it originates from the con-

stitution or internal molecular structure of the concerned fluid) may be somewhat

complicated and involved. However, fortunately, for many common engineering flu-

ids (including air and water), this relationship is linear, i.e.,

t a g&

or

t mg= & (1.15)

The proportionality factor m in the above equation is known as the coefficient of

viscosity or simply viscosity, and the above constitutive relationship is known as

Newton’s law of viscosity. Fluids obeying this law are known as Newtonian fluids.

Physically, the quantity of viscosity is an indicator of the resistance in the fluid

against the relative motion between adjacent layers. Viscosity has a dimension of

[M] [L–1] [T –1] (which is evident by dividing the dimension of shear stress with that

of the shear rate or velocity gradient). Its SI unit is kg-m–1s–1 or equivalently, Pa-s. In

CGS units, it is expressed in the unit of Poise (1 Pa-s = 10 Poise), in the honour of the

legendary scientist Poiseuille who had pioneering contributions towards the funda-

mental understanding of viscous flows.

It is interesting in many cases to compare the viscous forces with other forces

acting in the system, by expressing their relative strengths in terms of pertinent

dimensionless numbers. One such important and widely used dimensionless number,

for example, is the Reynolds number (Re), which may be an indicator of the ratio of

inertia force to viscous force. For a fluid element with a length scale of l and velocity

scale u, the inertia force (mass × acceleration) may be expressed as 
23 ul

l
r . Viscous

force on the same element, estimated through Newton’s law of viscosity, may be

expressed as (shear stress × area), or in terms of the pertinent scales: ( ) 2u l
l

m . The

ratio of inertia to viscous forces thus scales as 
ulr

m . Here l is a characteristic length

(or length scale) corresponding to the chosen physical problem (it is simply a repre-

sentative linear dimension of the system over which characteristic changes in proper-

ties or velocity occur). As an example, for flow over a flat plate the appropriate length



20 Introduction to Fluid Mechanics and Fluid Machines

scale may be the axial length of the plate, whereas for flow through a pipe the appro-

priate length scale may be its diameter. It is also important to note here that the

Reynolds number is merely a collection of physical parameters and remains defined

as non-zero even when the inertia force acting on the fluid is zero (i.e., the fluid

elements are non-accelerating). In that case, the inertia force in the Reynolds number

interpretation may be interpreted as an equivalent hypothetical inertia force acting on

the fluid element to accelerate the same from zero velocity to the velocity under

concern (u).

Closely related to the term viscosity is another property known as kinematic

viscosity (n), which is the ratio of viscosity to the density of a fluid (
mn r= ).

Kinematic viscosity has an SI unit of m2-s–1, and a CGS unit of cm2-s–1. The CGS unit

is also known as Stokes, in honour of the famous mathematician Stokes, who contrib-

uted immensely in the early development of viscous flows. The kinematic viscosity is

considered as a kinematic quantity, since its unit does not contain any unit of mass.

Physically, the kinematic viscosity represents the relative ability of a fluid to diffuse

a disturbance in momentum as compared to its ability of sustaining the original mo-

mentum. This interpretation stems from the fact that mass is a measure of inertia,

which in turn is proportional to the density of the fluid (that appears in the denomina-

tor of the expression of kinematic viscosity). In other words, kinematic viscosity may

also be qualified as momentum diffusivity. In that sense, the shear stress (which is

shear force per unit area) is also considered as momentum flux.

Although the detailed molecular picture of viscosity is somewhat involved, an

elementary consideration of the same may be presented in the purview of this funda-

mental text. Interestingly, the scenario is grossly different for liquids and gases. In

liquids, viscosity primarily originates because of intermolecular forces of attraction.

Accordingly, if the temperature of a liquid is increased then its viscosity usually

decreases. This may be attributed to the fact that a higher temperature implies a more

vigorous random motion with respect to their mean position, thereby weakening the

effective intermolecular attraction. For gases, the intermolecular force of attraction

may not be dominating in most cases (primarily because of a lesser molecular den-

sity), and the viscosity originates mainly because of the transfer and exchange of

molecular momentum. In order to appreciate the underlying implications from both

qualitative and quantitative aspects, let us consider two adjacent layers of ideal gas

molecules that are separated by one mean free path (l) distance. The lower layer

moves to the right with an average translational speed of u, whereas the upper layer

moves in the same direction with an average translational speed of u + D u. When a

molecule from the upper layer joins the lower layer by virtue of its thermal energy, it

shares some of its excess energy with the upper layer by virtue of a collision with one

of the molecules belonging to the upper layer. In other words, the slower moving

layer tends to move faster. On the other hand, a molecule joining the upper layer from

the lower one tends to slow the upper layer down. This is known as exchange or

transfer of molecular momentum, which tends to resist a relative motion between

adjacent fluid layers and therefore is physically responsible behind the viscous

behaviour of gases. Since the exchange of molecular momentum becomes more vigor-

ous at elevated temperatures (because of higher levels of thermal agitation of the
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individual molecules), the viscosity of gases commonly increases with increase in

temperature. Fig. 1.13 shows the typical variation of viscosity with temperature for

some commonly used liquids and gases.
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22 Introduction to Fluid Mechanics and Fluid Machines

*Consider the above example of layered motion of molecules of an ideal gas. Be-

cause of a thermal agitation, molecules in each layer posses a transverse mean

velocity as given by 
8

m

RT
v

p
=  in addition to the axial velocity (u), where R is the

gas constant (refer to any text book detailing the kinetic theory of gases for its

derivation). Assuming a fraction a ( 1
6

ª ) of this velocity to be accountable for the

transverse migration of a molecule from one layer to another, we may express the net

exchange of molecular momentum because of a momentum exchange between adja-

cent layers as nv t Am uD D D , where n is the number density of the gas molecules

(i.e., the number of molecules per unit volume), D t is the elapsed time interval, DA  is

the area perpendicular to the direction of the transverse migration (y), mv va= , and

m is the mass of each molecule. Expressing Du in terms of the local velocity gradient

as 
u

u
y

l
∂

D =
∂

, the rate of exchange of molecular momentum per unit area per unit

time (which is nothing but the shear stress or momentum flux for ideal gases, in

complete absence of any inter molecular forces of attraction) may be ascertained as

u
v

y
r l

∂
∂

, where r = nm. Utilising the analogy of this form with Newton’s law of

viscosity, it follows that for ideal gases m = rvl. Thus, one may express the

Reynolds number as, Re
ul ul

RT

r r

m garl p

= = .

Further, the effects of compressibility of the medium may be expressed in terms of

a dimensionless number, known as Mach number (Ma), interpreted as the ratio of

velocity of flow relative to the velocity of propagation of a disturbance have

through the medium. Thus, 
u

Ma
a

= , where a is the sonic speed through the me-

dium; the speed at which a disturbance wave propagates. Higher the Ma, more

compressible is the flow medium (for more details, see Section 1.6.5). Since

a RTg=  for an ideal gas, it follows that 
u u

Ma
a RTg

= = .

Thus we get,

8

Re

Ma
Kna

pg
= (1.16)

where Kn
l

l
= .

Hence, stronger the compressibility effects (i.e., higher the Mach number) and

lower the Reynolds number, greater will be the Knudsen number (which implies

more significant rarefaction effects with a possible deviation from continuum).

*This portion may be omitted without loss of continuity
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The viscosity variation of real gases with temperature may be well described by

the Sutherland formula as

3
2

0
0

0

T C T

T C T
m m

+ Ê ˆ
= Á ˜Ë ¯+

(1.17)

where m = viscosity in (Pa-s) at input temperature T , m0 = reference viscosity in (Pa-

s) at reference temperature T0 , T = input temperature in Kelvin, T0 = reference

temperature in Kelvin, and C = Sutherland’s constant for the gaseous material in

question. The above formula is valid for temperatures between 0 < T < 555 K, with an

error due to pressure being less than 10% below 3.45 MPa. Sutherland’s constant

and the reference temperature for some gases are mentioned in Table 1.1.

Table 1.1 Viscosity variation data with temperature for comman gases (see

www.complore.com/viscosity-gases)

Gas C [K] T0 [K] m0 [10–6 Pa s]

Air 120 291.15 18.27

Nitrogen 111 300.55 17.81

Oxygen 127 292.25 20.18

Carbon dioxide 240 293.15 14.8

Carbon monoxide 118 288.15 17.2

Hydrogen 72 293.85 8.76

Ammonia 370 293.15 9.82

Sulphur dioxide 416 293.65 12.54

Importantly, the law of viscosity variation cannot be used for liquids. For many

liquids, the temperature dependence of viscosity can be represented reasonably

well by the Arrhenius equation:

( )exp BA
T

m = (1.18)

where T is the absolute temperature. If the viscosity of a liquid is known at two

different temperatures, this information can be used to evaluate the parameters A

and B, which then permits the calculation of the viscosity at any other temperature.

1.6.4.3 Non-Newtonian Behaviour

An important class of fluids exists that differs from the Newtonian fluids in a sense

that the constitutive relationship between the shear stress and the shear deformation

rate is more complicated than a simple linear one through the origin, i.e., shear stress

is zero when shear rate is zero. Such fluids are called non-Newtonian or rheological

fluids (rheology is a branch of science that deals with the constitutive behaviour of

fluids). It needs to be mentioned here that the knowledge of non-Newtonian fluid
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mechanics is still in an early stage and many aspects of the same are yet to be

fundamentally resolved. Although non-Newtonian fluids do not have the property of

viscosity (since viscosity is defined through the Newton’s law of viscosity only),

their characteristics may be cast in a Newtonian form by introducing an apparent

viscosity, which is the ratio of the local shear stress to the shear rate at that point. The

apparent viscosity is not a true property for non-Newtonian fluids, since its value

depends upon the flow field, or shear rate.

*Purely viscous non-Newtonian fluids are those in which the shear stress is a function

only of the shear rate but in a more complicated manner than that described by the

Newton’s law. Figure 1.14 illustrates the characteristics of purely viscous time-indepen-

dent fluids. In Fig. 1.14, (a) and (b) are fluids where the shear stress depends only on the

shear rate but in a non-linear way. Fluid (a) is called pseudoplastic (or shear thinning);

and fluid (b) is called dilatant (or shear thickening). Curve (c) is one which has an initial

yield stress after which it acts as a Newtonian fluid, called Bingham plastic; and curve

(d) is called Hershel-Buckley, also has a yield stress after which it becomes

pseudoplastic. Curve (e) depicts a Newtonian fluid. The reason for which the apparent

viscosity of a pseudoplastic fluid decreases with increase in the shear rate may be

qualitatively attributed to a breakdown of loosely bonded aggregates by the shearing

effect of flow. Examples of such fluid include aqueous or non-aqueous suspensions of

polymers, etc. On the other hand, the increment of apparent viscosity with increases in

the shear rate for dilatant fluids may be due to the shift of a closely packed particulate

system to a more open arrangement under shear, which may entrap some of the liquid.

Examples include aqueous suspensions of magnetite, galena, and ferro-silicons. The

limiting case of a ‘plastic’ fluid is one that requires a finite yield stress before beginning

to flow. Such fluids are known as Bingham plastic fluids such as sewage sludge, mud,

clay, etc. A typical example is toothpaste, which does not flow out of a tube until a finite

shear stress is applied by squeezing.

(d)

(c)

(a)

(e)

(b)

t y,x

o g

Fig. 1.14 Flow curves for viscous, time-dependent fluids: (a) Pseudoplastic,

(b) Dilatant, (c) Bingham plastic, (d) Hershel-Buckley, and (e) Newtonian.

*This portion may be omitted without loss of continuity
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 Figure 1.15 shows flow curves for two common classes of purely viscous time

dependent non-Newtonian fluids. It is seen that such fluids have a hysteresis loop

or memory whose shape depends upon the time-dependent rate at which the shear

stress is applied. Curve (a) illustrates a pseudoplastic time-dependent fluid and

curve (b) a dilatant time-dependent

fluid. Examples shown in Fig. 1.15 (a)

and 1.15 (b) are called thixotropic and

rheopectic fluids, respectively.

Apparent viscosity of a thixotropic

fluid decreases with time under

constant shear. Classical example is

water suspension in bentonitic clay,

which is a typical drilling fluid used in

the petroleum industry. Fluids for

which the apparent viscosity increases

with increase in time for a given shear

rate are called rheopectic fluids.

Examples of rheopectic fluids include

gypsum pastes and printers inks.

Example 1.1

A fluid has a solute viscosity of 0.048 Pas and a specific gravity of 0.913. For the flow

of such a fluid over a flat solid surface, the velocity at a point 75 mm away from the

surface is 1.125 m/s. Calculate the shear stresses at the solid boundary, at points

25 mm, 50 mm, and 75 mm away from the boundary surface. Assume (i) a linear

velocity distribution and (ii) a parabolic velocity distribution with the vertex at the

point 75 mm away from the surface where the velocity is 1.125 m/s.

Solution

Consider a two-dimensional Cartesian coordinate system with the velocity of fluid V

as abscisa and the normal distance Y  from the surface as the ordinate with the origin

O at the solid surface (Fig. 1.16)
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 Fig. 1.16  Velocity distribution in the flow of lucid as described in Example 1.1.
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Fig. 1.15 Flow curves for viscous,

time-dependent fluids:

(a) Thixotropic and

(b) Rheopectic
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According to the no-slip condition at the solid surface.

V = 0 at y = 0

Again, V  = 1.125 m/s at y = 0.075 m (given in the problem)

(i) For a linear velocity distribution, the relation between V  and y is V  = 
1125

0 075

.

.
y = 15y

Hence
d

d

V

y
 = 15 s–1

According to Eq. (1.1), shear stress t = m dV/dy

= 0.048 ¥ 15

= 0.72 Pa (N/m2)

In this case, shear stress is uniform throughout.

(ii) The equation of the parabolic velocity distribution is considered to be given by

V = A + By + Cy2

where the constants A, B and C are to be determined from the boundary conditions

given in the problem as

V = 0 at y = 0 (No-slip at the plate surface)

V = 1.125 at y = 0.075

d

d

V

y
 = 0 at y = 0.075 (the condition for the vertex of the parabola)

Substitution of the boundary conditions in the expression of velocity profile we

get

A = 0

1.125 = 0.075 B + (0.075)
2
 C

O = B + 0.15 C

which give B = 30, C = – 200

Therefore the expression of velocity profile becomes

V = 30y – 200y2

Hence,
d

d

V

y
 = 30 – 400y (1.19)

Tabulation of results with the help of Eq. (1.19) is shown below:

y V dV/dy t = 0.048 (dV/dy)

(m) (m/s) (s–1) (Pa)

0 0 30 1.44

0.025 0.625 20 0.96

0.050 0.880 10 0.48

0.075 1.125 0 0
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It is observed that the shear stress decreases as the velocity gradient decreases with

the distance y from the plate and becomes zero where the velocity gradient is zero.

Example 1.2

A cylinder of 0.12 m radius rotates concentrically inside a fixed hollow cylinder of 0.13

m radius. Both the cylinders are 0.3 m long. Determine the viscosity of the liquid

which fills the space between the cylinders if a torque of 0.88 Nm is required to

maintain an angular velocity of 2p rad/s.

Solution

The torque applied = The resisting torque by the fluid

= (Shear stress) ¥ (Surface area) ¥ (Torque arm)

Hence, at any radial location r from the axis of rotation.

0.88 = t (2 p r ¥ 0.3)r

t =
0 467

2

.

r

Now, according to Eq. (1.1),

d

d

V

y
 =

t

m
 = 

2

0.467

rm

Rearranging the above expression and substituting – dr for dy (the minus sign indi-

cates that r, the radial distance, decreases as V  increases), we obtain

inner

outer

d

V

V

VÚ  =

0.12

2
0.13

0.467 dr

rm
-Ú

Hence V inner – V outer =

0.12

0.13

0.467 1

rm
È ˘
Í ˙Î ˚

The velocity of the inner cylinder,

V inner = 2 p ¥ 0.12 = 0.754 m/s

Hence, (0.754 – 0) =
0.467 1 1

0.12 0.13m

Ê ˆ
-Á ˜Ë ¯

From which m = 0.397 Pa s

Example 1.3

The velocity profile in laminar flow through a round pipe is expressed as

u = 2U (1 – r2/r2
0)

where U is the average velocity, r is the radial distance from the centre line of the pipe,

and r0 is the pipe radius. Draw the dimensionless shear stress profile t /t0 against
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r/r0, where t0 is the wall shear stress. Find the value of t0, when fuel oil having an

absolute viscosity m = 4 ¥ 10
–2

 N
–s

/m
2
 flows with an average velocity of 4 m/s in a pipe

of diameter 150 mm.

Solution

The given velocity profile is

u = 2U(1 – r2
/r2

0)

d

d

u

r
 =

2
0

4 U r

r
-

Shear stress at any radial location r can be written as

t  = – m 
d

d

u

r

Hence,
0

t

t
 =

0

d /d

(d /d )r r

u r

u r =
 = 

0

r

r

Figure 1.17 shows the shear stress

distribution

Wall shear stress t0 =

0

d

d
r r

u

r
m

=

Ê ˆ
- Á ˜Ë ¯

=
0

4U

r
m

Ê ˆ
Á ˜Ë ¯

= (4 ¥ 10–2) 
4 4

0.075

¥Ê ˆ
Á ˜Ë ¯

= 8.533 N/m2

The shear stress distibution in the pipe flow problem is depicted in Fig. 1.17.

1.6.5 Compressibility

Compressibility of any substance is the measure of its change in volume under the

action of external forces, namely, the normal compressive forces. The normal com-

pressive stress of any fluid element at rest is known as hydrostatic pressure p and

arises as a result of innumerable molecular collisions in the entire fluid. The degree of

compressibility of a substance is characterised by the bulk modulus of elasticity E

defined as

lim
V V

p
E

V VD ÆD ¢

-D
=

D
(1.20)

where VD  and Dp are the changes in the volume and pressure respectively, V  is the

initial volume, and VD ¢  is the smallest possible volume over which continuum

1.0

0.5
(

/
)

t
t 0

( / )r r0

0
0 0.5

45 º

1.0

Fig. 1.17 Shear stress distribution in

the pipe flow problem of

Example 1.3
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hypothesis remains valid. The negative sign in Eq. (1.20) indicates that an increase in

pressure is associated with a decrease in volume. For a given mass of a substance, the

change in its volume and density satisfies the relation

V

V

r

r

D D
= - (1.21)

With the help of Eq. (1.20), E can be expressed in differential form as

dp
E

d
r

r
= (1.22)

Values of E for liquids are very high as compared with those of gases (except at very

high pressures). Therefore, liquids are usually termed as incompressible fluids

though, in fact, no substance is theoretically incompressible with a value of E as •.

For example, the bulk modulus of elasticity for water and air at atmospheric pressure

are approximately 2 ¥ 106 kN/m2 and 101 kN/m2 respectively. It indicates that air is

about 20,000 times more compressible than liquid water. Hence liquid water can be

treated as incompressible. Another characteristic parameter, known as com-

pressibility K, is usually defined for gases. It is the reciprocal of E as

K =
1 d

d p

r

r
 = – 

1 d

d p

n

n

Ê ˆ
Á ˜Ë ¯

(1.23)

K is often expressed in terms of specific volume n . For any gaseous substance, a

change in pressure is generally associated with a change in volume and a change in

temperature simultaneously. A functional relationship between the pressure, volume

and temperature at any equilibrium state is known as thermodynamic equation of

state for the gas. For an ideal gas, the thermodynamic equation of state is given by

p = rRT (1.24)

where T is the temperature in absolute thermodynamic or gas temperature scale

(which are, in fact, identical), and R is known as the characteristic gas constant, the

value of which depends upon a particular gas. However, this equation is also valid for

real gases which are thermodynamically far from their liquid phase. For air, the value

of R is 287 J/kg K. The relationship between the pressure p and the volume V  for any

process undergone by a gas depends upon the nature of the process. A general

relationship is usually expressed in the form of

x
pV  = constant (1.25)

For a constant temperature (isothermal) process of an ideal gas,  x = 1. If there is no

heat transfer to or from the gas, the process is known as adiabatic. A frictionless

adiabatic process is called an isentropic process and x equals to the ratio of specific

heat at constant pressure to that at constant volume. The Eq. (1.25) can be written in

a differential form as

d

d

V

p
 =

V

x p
- (1.26)

Using the relation (1.26), Eqs (1.22) and (1.23) yield

E = xp (1.27a)
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or K =
1

x p
(1.27b)

Therefore, the compressibility K, or bulk modulus of elasticity E for gases de-

pends on the nature of the process through which the pressure and volume change.

For an isothermal process of an ideal gas (x = 1), E = p or K = 1/p. The value of E for

air quoted earlier is the isothermal bulk modulus of elasticity at normal atmospheric

pressure and hence the value equals to the normal atmospheric pressure.

1.6.6 Distinction between an Incompressible and a Compressible
Fluid

In order to know whether it is necessary to take into account the compressibility of

gases in fluid flow problems, we have to consider whether the change in pressure

brought about by the fluid motion causes large change in volume or density.

From Bernoulli’s equation (to be discussed in a subsequent chapter), p + 
1

2
 rV 2 =

constant (V  being the velocity of flow), and therefore the change in pressure, Dp, in

a flow field, is of the order of 
1

2
 rV 2

 (dynamic head). Invoking this relationship into

Eq. (1.22) we get,

r

r

D
 ª

21

2

V

E

r
(1.28)

Now, we can say that if (Dr/r) is very small, the flow of gases can be treated as

incompressible with a good degree of approximation. According to Laplace’s equa-

tion, the velocity of sound is given by a = /E r . Hence,

r

r

D
 ª

2

2

1 1

2 2

V

a
ª  Ma2 (1.29)

where Ma is the ratio of the velocity of flow to the acoustic velocity in the flowing

medium at the condition and is known as Mach number.

From the aforesaid argument, it is concluded that the compressibility of gas in a

flow can be neglected if Dr/r is considerably less than unity, i.e., 
1

2
 Ma2

= 1. In other words, if the flow velocity is small as compared to the local acoustic

velocity, compressibility of gases can be neglected. Considering a maximum relative

change in density of five per cent as the criterion of an incompressible flow, the upper

limit of Mach number becomes approximately 0.33. In case of air at standard pressure

and temperature, the acoustic velocity is about 335.28 m/s. Hence a Mach number of

0.33 corresponds to a velocity of about 110 m/s. Therefore flow of air up to a velocity

of 110 m/s under standard condition can be considered as incompressible flow.
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Example 1.4

If we neglect the temperature effect, an empirical pressure-density relation for water is

p/pa = 3001 ¥ (r/ra)
7 – 3000, where subscript a refers to atmospheric conditions.

Determine the isothermal bulk modulus of elasticity and compressibility of water at 1,

10 and 100 atmospheric pressure.

Solution

Pressure-density relationship is given as

a

p

p
 = 3001 ¥ 

7

a

r

r

Ê ˆ
Á ˜Ë ¯

 – 3000 (1.30)

1 d

da

p

p r
 = 7 ¥ 3001 

6

7
a

r

r

Hence
d

d

p

r
 = 7 ¥ 3001 pa 

6

7
a

r

r

d

d

p
r

r
 = 7 ¥ 3001 pa 

7

a

r

r

Ê ˆ
Á ˜Ë ¯

According to Eq. (1.22),

E =
d

d

p
r

r
 = 7 ¥ 3001 pa 

7

a

r

r

Ê ˆ
Á ˜Ë ¯

(1.31)

Substituting the value of 

7

a

r

r

Ê ˆ
Á ˜Ë ¯

 from Eq. (1.30) to Eq. (1.31), we get

E =
7 3001

3000
3001

a
a

p
p

p

¥ È ˘
◊ +Í ˙

Î ˚

= 7pa 3000
a

p

p

È ˘
+Í ˙

Î ˚
Therefore,

(E)1 atm pressure = 7 ¥ 3001 pa

= 2.128 ¥ 106 kN/m2

(The atmospheric pressure pa is taken as that at the sea level and equals to 1.0132 ¥
105 N/m2)

(E)10 atm pressure = 7 ¥ 3010 pa

= 2.135 ¥ 106 kN/m2

(E)100 atm pressure = 7 ¥ 3100 pa



32 Introduction to Fluid Mechanics and Fluid Machines

= 2.198 ¥ 10
6
 kN/m

2

Respective compressibilities are

(K)1 atm pressure =
1

1 atm pres( )E sure

 = 0.47 ¥ 10–6 m3/kN

(K)10 atm pressure =
1

10( )E  atm pressure

 = 0.468 ¥ 10–6 m2/kN

(K)100 atm pressure =
1

100( )E  atm pressure

 = 0.455 ¥ 10–6 m3/kN

It is found from the above example that the bulk modulus of elasticity or

compressibility of water is almost independent of pressure.

Example 1.5

A cylinder contains 0.35 m3 of air at 50 °C and 276 kN/m2 absolute. The air is

compressed to 0.071 m3. (a) Assuming isothermal conditions, what is the pressure at

the new volume and what is the isothermal bulk modulus of elasticity at the new state.

(b) Assuming isentropic conditions, what is the pressure and what is the isentropic

bulk modulus of elasticity? (Take the ratio of specific heats of air g = 1.4)

Solution

(a) For isothermal conditions,

p1V 1 = p2V 2

Then, (2.76 ¥ 105)0.35 = (p2).071

which gives,

p2 = 13.6 ¥ 10
5
 N/m

2

= 1.36 MN/m2

The isothermal bulk modulus of elasticity at any state of an ideal gas equals

to its pressure at that state. Hence E = p2 = 1.36 MN/m2.

(b) For isentropic conditions

P1 V 1
1.4 = P2 V 2

1.4

Then, (2.76 ¥ 10
5
) (0.35)

1.4
 = (p2) (.071)

1.4

From which, p2 = 25.8 ¥ 105 N/m2

= 2.58 MN/m2

The isentropic bulk modulus of elasticity

E = g p = 1.40 ¥ 25.8 ¥ 105 N/m2

= 3.61 MN/m
2
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1.6.7 Interfacial Phenomenon and Surface Tension

1.6.7.1 The Molecular Origin

Consider an interface between two fluid phases (say, phase 1 is liquid and phase 2 is

gas, for example). Molecules located in the bulk of the liquid have identical

interactions with all the neighbouring molecules (mostly through van der Waals

attractive interactions for organic liquids and through hydrogen bonds for polar

liquids like water). However, molecules on the interface have liquid molecules on one

side and gas molecules on the other. Because of the distinctive compactness of

molecules in these two phases, the interfacial molecules may have a net attractive

‘pull’ towards the liquid. If the interfacial molecules do not possess sufficient energy

to overcome this net attraction and remain at the interface, they would ultimately get

dissolved in the liquid and get lost! However, when an interface is formed, this does

not occur. This implies that the interface has sufficient energy to overcome any net

driving force on its molecules and allow them to be located on the interface. This

energy is qualitatively known as interfacial energy or surface energy.

The interfacial phenomenon elucidated above is quite generic in nature, and takes

place for an interface formed by any two distinctive phases (such as between a solid

and a liquid phase, or even between two liquid phases such as oil and water). For

example, let us consider a solid-liquid interface. Molecules in the liquid (say, water)

are attracted towards the interface by van der Waals forces. However, these

molecules usually do not stick to the wall because of Brownian motion. At the same

time, impurities contained in the liquid, such as dust particles or biological polymers

(such as proteins) may adhere permanently to the solid surface since they may

experience stronger attractions to the solid. This can be attributed to the fact that the

size of polymer molecules is typically much larger than that of the water molecules,

giving rise to more number of contacts for the polymer with the solid and hence a

strengthened van der Waals interaction.

The description of the physics in the smaller scale may get too involved, and one

may be interested to represent a gross manifestation of the underlying interactions

rather than presenting a detailed molecular picture. This gross representation is

achieved by introducing a macroscopic physical property known as surface tension

(s ), which may also be interpreted as the interfacial energy per unit area (which is

equivalently force per unit length). Thus, the SI unit of surface tension is J-m
-2

 or N-

m
-1

. Typical surface tension values of some common fluids at standard temperature

are given in Table 1.2. The force-interpretation of surface tension may be visualised

by a very simple experiment. Take a solid frame and a solid tube that can roll on this

frame. If we form a liquid film of soap between the frame and the tube by plunging one

side of the structure in a soap-water solution, we see that the tube immediately starts

to move towards the region where there is the liquid film. This is because of the fact

that the surface tension of the liquid film exerts a net force on its free boundary. Thus,

additional work needs to be done to overcome this force and stretch the film to a

desired extent.
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Table 1.2. Surface tension data for some representative fluids (see http://

web.mit.edu/hml/ncfmf/04STFM.pdf)

Fluid combination Surface tension (in mN-m–1)

Water/air 73

Salt water/oil 75

Ether/air 17

Alcohol/air 23

Carbon tetrachloride/air 27

Mercury/air 480

It is due to surface tension that a curved liquid interface in equilibrium results in

a greater pressure at the concave side of the surface than that at its convex side.

Consider an elemental curved liquid surface (Fig. 1.18) separating the bulk of

liquid in its concave side and a gaseous substance or another immiscible liquid on

the convex side. The surface is assumed to be curved on both the sides with radii of

curvature as r1 and r2 and with the length of the surfaces subtending angles of dq1

and dq2, respectively, at the centre of curvature as shown in Fig. 1.18. Let the surface

be subjected to the uniform pressure pi and po at its concave and convex sides

respectively acting perpendicular to the elemental surface. The surface tension

forces across the boundary lines of the surface appear to be the external forces

acting on the surface. Considering the equilibrium of this small elemental surface, a

force balance in the direction perpendicular to the surface results.

r1

s q2 2r d

dq1/2 dq1/2

s q2 2r d

dq1

s q2 2r d

s q1 1r d

r1

r2

dq1

dq2

s q2 2r d

s q1 1r d

n dA

Fig. 1.18 State of stress and force balance on a curved liquid interface in

equilibrium with surrounding due to surface tension
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dqÊ ˆ
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sin 1 1

2 2

d dq qÊ ˆ ªÁ ˜Ë ¯ , sin 2 2

2 2

d dq qÊ ˆ ªÁ ˜Ë ¯
Hence, from the above equation of force balance we can write

1 2r r

s s
+  = (pi – po)

or Dp =
1 2r r

s s
+ (1.32)

where Dp = pi – po

and s is the surface tension of the liquid in contact with the specified fluid at its

convex side. Equation (1.32) is also known as Young–Laplace equation. If the liquid

surface coexists with another immiscible fluid, usually gas, on both the sides, the

surface tension force appears on both the concave and convex interfaces and the net

surface tension force on the surface will be twice as that described by Eq. (1.32).

Hence the equation for pressure difference in this case becomes

Dp =
1 2

2
r r

s sÊ ˆ
+Á ˜Ë ¯

(1.33)

Special Cases For a spherical liquid drop, Eq. (1.32) is applicable with r1 = r2 = r

(the radius of the drop) to determine the difference between the pressure inside and

outside the drop as

Dp = 2s/r (1.34)

The excess pressure in a cylindrical liquid jet over the pressure of the

surrounding atmosphere can be found from Eq. (1.32) with r1 fi μ and r2 = r (the

radius of the jet) as
Dp = s/r (1.35)

In case of the spherical bubble, the Eq. (1.33) is applicable with r1 = r2 = r (radius

of the bubble), which gives

Dp = 4s/r (1.36)

Alternatively, Eq. (1.32) may also be derived from work energy principle, as follows.

Consider a small section of an arbitrarily curved surface, as shown in Fig. 1.19.

r
1 x

x + dx

dx

r2

y
y + dy

Fig.1.19 Geometry of a stretching surface element
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The section taken is small enough so that R1 and R2 are approximately constants

within the chosen section. If the elemental surface is displaced by a small amount

outwards, the net change in its area will be ( )( )A x dx y dy xy xdy ydxD = + + - = + .

The work done in forming this additional surface is ( )lvW xdy ydxsD = + , where

lvs  represents the liquid vapour surface tension coefficient. If the interfacial

pressure difference is Dp, it acts on an area dxdy and is associated with a

displacement of dz. The corresponding work is equivalent to W pdxdydzD = D .

Equating the two expressions for work, it follows that

( )lvpdxdydz xdy ydxsD = + (1.37)

Further, from the geometry of the figure (similar triangles), it follows that

1 1

x dx x

r dz r

+
=

+
, or equivalently 

1

xdz
dx

r
= . Similarly, 

2

ydz
dy

r
= . Utilising these in Eq.

(1.37), we get an expression identical to Eq. (1.32).

Interfacial equilibrium accounted by surface tension may also be analysed from

energy minimisation principle as applied to an interface of any arbitrary shape. For

simplicity in illustration, we consider a droplet of the shape of a part of sphere, in

equilibrium, as shown in Fig. 1.20. The droplet tends to minimise its net surface

Liquid ( )l

Vapour ( )v

Solid ( )S

q

ssl

ssv

slv

 Fig.1.20 Equilibrium of a three-phase contact line

energy in an effort to come to an equilibrium shape. The minimisation of the droplet

surface energy under the constraints of a fixed droplet volume " is as good as

minimising the following function:

ij ij

i j

E A s l
π

= - "Â (1.38)

where and l is a Lagrange multiplier to enforce a constant volume constraint. Here

A ij is the interfacial area that demarcates the phases i and j, with the corresponding

surface energy being designated as ijs . In this chapter, the subscripts l, s and v will

be employed to represent the liquid, solid and vapour phases, respectively. It can

also be noted that if A ls is increased by some amount, A sv is decreased by the same
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amount. From the geometry of the above figure, one may write: 2 2sinslA Rp q=

( )22 1 coslvA Rp q= - , 3 2 3 cos3
cos

3 4 12
R

q
p q

Ê ˆ" = - +Á ˜Ë ¯ .

Thus, for a spherical droplet

( ) ( )2 2 2 3 2 3 cos3
sin 2 1 cos cos

3 4 12
ls sv lv

f
g

E R R R
q

p q s s s p q l p q

Ï ¸
Ô ÔÔ ÔÊ ˆ= - + - - - +Ì ˝Á ˜Ë ¯Ô Ô
Ô ÔÓ ˛

1444444442444444443

1444442444443

(1.39)

where k is the volume of the droplet. For minimisation of E, one must have 0
E

q

∂
=

∂

and 0
E

R

∂
=

∂
, which implies

f g f g

R Rq q

∂ ∂ ∂ ∂
=

∂ ∂ ∂ ∂
(1.40)

Performing the necessary algebra and simplifying, it follows from Eqs. (1.39)

and (1.40) that

cos sv sl

lv

s s
q

s

-
= (1.41)

When 0 £ q £ 90º, the liquid is termed as partially wetting, or equivalently, the

solid substrate is characterised as hydrophilic (the word ‘hydro’ is somewhat

specific to water, whereas the terminology ‘wetting’ is more applicable for any

general liquid). When q > 90º, the liquid is non-wetting and the substrate is termed

as hydrophobic. The case q = 0, a very special one, represents a theoretically

complete wetting. Eq. (1.41), also known as ‘Young’s Law’, and can be interpreted

as a balance between the horizontal components of all the forces that act on the

three-phase contact line (refer to Fig. 1.20). The vertical component of this resultant

force, on the other hand, is balanced by the normal stress in the rigid solid substrate.

Further, substituting the value of cosq from Eq. (1.41), one may calculate a value of

the parameter l, as

2 lv

f

g R

sql

q

∂
∂= =

∂
∂

(1.42)

Physically, the Lagrange multiplier (l) may be interpreted as the differential

pressure, Dp, across the two sides (liquid and vapour sides in this specific example)

of the droplet.

It is important to note here that Equations (1.32) and (1.41) are the two necessary

conditions for equilibrium but not sufficient, since in addition, the second variation
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of E must also be positive for a minimisation of the same. In fact, in the presence of

complex surfaces, certain morphologies may, indeed, result in unstable droplets,

even though the necessary conditions of equilibrium are satisfied.

*The celebrated Young’s equation, as described by Eq. (1.32), is somewhat

restricted in nature in a strict sense, since it neglects the bulk internal forces within

the droplet that might generate due to gravity, electric field, etc. In an effort to

generalize the underlying mathematical description, one may note that, for

equilibrium of a spherical droplet

 ( ), 0dE R q = (1.43)

which implies

 0
E E

dR d
R

q
q

∂ ∂
+ =

∂ ∂
(1.44)

Further, since 3 2 3 cos3
cos

3 4 12
R

q
p qÊ ˆ" = - +Á ˜Ë ¯ , the condition of 0d" =  implies

that

( )1 0dR Rf dq q- = (1.45)

where

( )
2

1

2cos cot
2 2

2 cot
f

q q

q
q

-
=

+
(1.46)

Substituting Eq. (1.46) in Eq. (1.44), one finally gets

 ( )1 0
E E

Rf
R

q
q

∂ ∂
+ =

∂ ∂
(1.47)

Incorporating the effects of gravitational potential energy in the expression E,

for illustration, one can write

( ) ( ) ( )2 2 4 6

contribution from interfacial terms
contribution from gravity

2
2 1 cos sin 3 cos sin

3 2
lv ls svE R R g

p q
ps q p q s s r q Ê ˆÈ ˘= - + - + + Á ˜Î ˚ Ë ¯1444444442444444443

1444442444443

(1.48)

Utilising the above expression for E in Eq. (1.47), one can arrive at a more gen-

eralized form of Young’s equation incorporating gravity effects as

2 cos cos 2
13cos 0

12 4

sv sl

lv lv

gR

q
qs s r

q
s s

È ˘-Í ˙-
- - - =Í ˙

Í ˙
Î ˚

 (1.49)

From Eq. (1.49), following two important observations may be carefully noted:

(i) With gravity effects, q depends on R, unlike the case without gravity.

*This portion may be omitted without loss of continuity
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(ii) If 
2

lv

gRr

s
 is small, gravity effects can safely be neglected. This ratio is known

as the Bond number (Bo), which essentially compares the square of the system

length scale (R) with the square of a characteristic length scale, ls, that depicts the

relative contributions of surface tension and gravity influences, as 
lv

sl
g

s

r
= . For

Bo £ 10–3, gravity effects can safely be neglected, as appropriate to many of prob-

lems involving tiny droplets.

1.6.7.2 Capillary Rise

As a simple demonstration of Young’s equation, we may take up the example of

capillary rise or capillary depression phenomenon. Consider a traditional mer-

cury barometer that consists of a vertical glass tube about 1 cm in diameter partially

filled with mercury, and with a vacuum (called Toricelli’s vacuum) in the unfilled

volume. One may observe that the mercury level at the centre of the tube is higher

than at the edges, making the upper surface of the mercury dome-shaped (Fig. 1.21).

The capillary rise phenomenon may be mathematically analysed following a

simplistic approach, by assuming the meniscus as hemispherical (which is

approximately the case if the capillary tube is very narrow). The pressure differential

across the meniscus (see Fig. 1.21) can then be ascertained by the Young–Laplace

equation with R1 = R2 =R, as 
2

p
R

s
D =  (where lvs s= ). Also, if h is the height of

the capillary rise, then the pressure difference between the inner and outer

(atmospheric) side of the meniscus is given by p h grD = . Equating these two and

noting that cos
rR

q
= (see Fig. 1.21), where r is the radius of the capillary, it

follows that

2 cos
h

gr

s q

r
= . (1.50)

Since 1h
r

a , an ultra-narrow radius may ensure a large capillary rise against

the gravity, despite the fact that no external pumping effort is deployed. This

remarkable phenomenon is one of the key affects observed in fluid mechanics of

small-scale systems, allowing a very efficient capillary transport with the aid of

surface tension forces alone. This kind of physical principle also plays a key role in

transmitting water from the ground level to the upper extremities of trees through

microcapillaries, a phenomenon known as ascent of sap.
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R

r
q

Fig.1.21 Demonstration of the capillary rise phenomenon

***** Marangoni Effect Surface tension is not a constant in general, as it depends on

the temperature and/or concentration of chemical species at the surface.

Temperature dependence of surface tension influences many practical processes,

including the fusion welding of materials. Typically, many metals have an increasing

surface tension with a decreasing temperature. Thus, if a material is bombarded with

a high energy beam, the molten region that is created surrounding the central point

of heating is subjected to distinctive surface tension forces at different locations. To

understand the underlying physical consequences, we consider two different fluid

elements in the top layer of the molten pool. The fluid element with a higher

temperature (close to the heat source) has less surface tension than that with a lower

temperature (away from the heat source). In an effort to minimise the surface energy,

the fluid element with lower surface tension stretches itself towards the fluid element

with a higher surface tension, thereby inducing a radially outward fluid flow (see the

schematic depicted in Fig. 1.22). This is an example of temperature-gradient induced

surface tension driven flow, or Marangoni flow.

Heat

 Fig. 1.22 Schematic of Marangoni flow in a weldpool

*
This portion may be omitted without loss of continuity
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Surface tension may also be strongly influenced by the solutal concentration at

an interface. Surfactants, also known as tensides, are wetting agents that lower the

surface tension of a liquid, allowing easier spreading, and lower the interfacial

tension between two liquids. The term surfactant is a blend of ‘surface acting

agent’. Surfactants are usually organic compounds that are amphipathic, meaning

they contain both hydrophobic groups (their ‘tails’) and hydrophilic groups (their

‘heads’). Therefore, they are soluble in both organic solvents and water. The most

common biological example of surfactant is that coating the surfaces of the alveoli,

the small air sacs of the lungs that serve as the site of gas exchange. Surfactants

reduce the surface tension of water by absorbing at the liquid-gas interface. They

also reduce the interfacial tension between oil and water by absorbing at the liquid-

liquid interface. Many surfactants can also assemble in the bulk solution into

aggregates. Some of these aggregates are known as micelles. Thermodynamics of

the surfactant systems are of great importance, theoretically and practically. This

is because surfactant systems represent systems between ordered and disordered

states of matter. Surfactant solutions may contain an ordered phase (micelles) and

a disordered phase (free surfactant molecules and/or ions in the solution).

Example 1.6

Analyse the shape of the water-air interface near a plane wall, as shown in Fig. 1.23,

assuming that the slope is small, 1/R ª d2 h/dx2 (where R is the radius of curvature

of the interface) and the pressure difference across the interface is balanced by the

product of specific weight and interface height as Dp = rgh. Boundary conditions:

area wetting contact angle q = q0 at x = 0, and q = 90° as x Æ •. What is the height

h at the wall?

x = 0

h ( )x

x

p
1

q0

p
2

Fig. 1.23 Water-air interface near a plane wall

Solution

The curved interface is plane in the other direction. Hence the pressure difference

across the interface can be written according to Eq. (1.32) as

Dp = p1 – p2 = 
1

R
s

Ê ˆ
Á ˜Ë ¯ (1.51)
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From the given data

1

R
 =

2

2

d

dx

h

and Dp = r g h

Substituting the values of 1/R and Dp in Eq. (1.51), we get

2

2

d

dx

h
 – 

gr
h

s
 = 0 (1.52)

The solution of h from the above Eq. (1.52) is,

h =

g

Ae Be

g
x x

r r

s s
-

+ (1.53)

where A and B are parametric constants. The value of A and B are found out using
he boundary conditions as follows:

at x = 0, 
d

dx

h
 = – cot q0

and at x Æ •
d

dx

h
 = 0

which give,

A =
g

s

r
 cot q0

B = 0

Hence Eq. (1.53) becomes

h =
g

s

r
 cot q0 e

x
g

s

r
-

which defines the shape of the interface

(h)x = 0 =
g

s

r
 cot q0

Example 1.7

Two coaxial glass tubes forming an annulus with a small gap are immersed in water

in a trough. The inner and outer radii of the annulus are ri and r0, respectively. What

is the capillary rise of water in the annulus if s is the surface tension of water in

contact with air?

Solution

The area wetting contact angle for air-water interface in a glass tube is 0° (Fig.

1.24). Therefore, equating the weight of water column in the annulus with the total

surface tension force, we get,
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W  = Ti + To (1.54)

Again, Ti = s (2p ri)

To = s (2p ro)

and W  = p(r2
o – r2

i)hrg

Substitution of these values of Ti, To and W  in Eq. (1.54) gives,

p (r2
o – r2

i)hrg = 2ps (ro + ri)

from which

h =
2s

r g r ro i( )-

h

To To
Ti Ti

ro

ri

Fig. 1.24 Capillary rise of water in the annulus of two coaxial glass tubes

Example 1.8

What is the pressure within a 1 mm diameter spherical droplet of water relative to

the atmospheric pressure outside? Assume s for pure water to be 0.073 N/m.

Solution Equation (1.34) is used to determine the pressure difference Dp (= p2 –

p1; refer to Fig. 1.25) as

Dp = 2s/R

or Dp = 2 ¥ 7.3 ¥ 10–2/(0.5 ¥ 10–3) = 292 N/m2

p1 p2

s

Fig. 1.25 Surface tension force on a spherical water droplet
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Example 1.9

A spherical water drop of 1 mm in diameter splits up in air into 64 smaller drops of

equal size. Find the work required in splitting up the drop. The surface tension coef-

ficient of water in air = 0.073 N/m.

Solution

An increase in the surface area out of a given mass takes place when a bigger drop

splits up into a number of smaller drops, and the work required is given by the

product of surface tension coefficient and the increase in surface area.

Let d be the diameter of the smaller drops.

From conservation of mass

64 ¥ p ¥ 
3

6

d
 = p ¥ 

3(0.001)

6

which gives d =
0.001

4
 = 0.25 ¥ 10–3 m

Initial surface area (due to the single drop)

= p ¥ (0.001)2

= p ¥ 10
–6

 m
2

Final surface area (due to 64 smaller drops)

= 64 ¥ p (0.25 ¥ 10–3)2

= 4p ¥ 10
–6

 m
2

Hence, the increase in surface area

= (4 – 1)p ¥ 10–6

= 3 p ¥ 10
–6

 m
2

Therefore, the required work

= 0.073 ¥ 3p ¥ 10–6 J

= 0.69 ¥ 10
–6

 J

1.6.8 Vapour Pressure

All liquids have a tendency to evaporate when exposed to a gaseous atmosphere.

The rate of evaporation depends upon the molecular energy of the liquid, which in

turn depends upon the type of liquid and its temperature. The vapour molecules

exert a partial pressure in the space above the liquid, known as vapour pressure.

If the space above the liquid is confined (Fig. 1.26) and the liquid is maintained at

constant temperature, after  sufficient time, the confined space above the liquid

will contain vapour molecules to the extent that some of them will be forced to

enter the liquid. Eventually an equilibrium condition will evolve when the rate at

which the number of vapour molecules striking back the liquid surface and con-

densing is just equal to the rate at which they leave from the surface. The space

above the liquid then becomes saturated with vapour. The vapour pressure of a
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given liquid is a function of temperature only and is equal to the saturation pres-

sure for boiling corresponding to that temperature. Hence, the vapour pressure

increases with the increase in temperature. Therefore, the phenomenon of boiling

of a liquid is closely related to the vapour pressure. In fact, when the vapour

pressure of a liquid becomes equal to the total pressure impressed on its surface,

the liquid starts boiling. This concludes that boiling can be achieved either by

raising the temperature of the liquid, so that its vapour pressure is elevated to the

ambient pressure, or by lowering the pressure of the ambience (surrounding gas)

to the liquid’s vapour pressure at the existing temperature.

 
Liquid

Saturated vapour

 Fig. 1.26 To and fro movement of liquid molecules from an interface in a

confined space as a closed surrounding

SUMMARY

∑ A fluid is a substance that deforms continuously when subjected to even an

infinitesimal shear stress. Solids can resist tangential stress at static condi-

tions undergoing a definite deformation while a fluid can do it only at dy-

namic conditions undergoing a continuous deformation as long as the shear

stress is applied.

∑ The concept of a continuum assumes a continuous distribution of mass

within the matter or system with no empty space. In the continuum approach,

properties of a system can be expressed as continuous functions of space

and time. A dimensionless parameter known as the Knudsen num-

ber, Kn Ll= , where l is the mean free path and L is the characteristic

length, aptly describes the degree of departure from a continuum. The con-

cept of a continuum usually holds good when 0.01Kn < .

∑ Stress at a point is essentially a surface traction force per unit area that sen-

sitively depends on the orientation of the area chosen to calculate the stress.

Unlike force, it requires two indices for its specification, one for the direc-

tion normal of the chosen area and the other for the direction of action of the

force itself. The state of stress for non-deforming fluids (fluids at rest) may

be solely represented by a normal inward force per unit area, which acts

equally from all directions. This quantity is called pressure.
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∑ Viscosity is a property of a fluid by virtue of which it offers resistance to

flow. The shear stress at a point in a moving fluid is directly proportional to

the rate of shear strain. For one-dimensional flow, ( )du dyt m= . The con-

stant of proportionality m is known as the coefficient of viscosity of simple

the viscosity. The relationship is known as the Newton’s law of viscosity and

the fluids which obey this law are known as Newtonian fluids.

∑ The relationship between the shear stress and the rate of shear strain is

known as the constitutive equation. The fluids whose constitutive equations

are not linear through origin (i.e., do not obey Newton’s law of viscosity) are

known as non-Newtonian fluids. For a Newtonian fluid, viscosity is a func-

tion of temperature only. With an increase in temperature, the viscosity of a

liquid decreases, while that of a gas increases. For a non-Newtonian fluid,

the apparent viscosity depends not only on temperature but also on the de-

formation rate of the fluid. Kinematic viscosity, n, is defined as m/r, where r
is the density.

∑ Compressibility of a substance is the measure of its change in volume or

density under the action of external forces. It is usually characterised by the

bulk modulus of elasticity

lim
V V

p
E

V VD ÆD ¢

-D
=

D

where VD ¢  is the smallest possible volume over which the continuum

hypothesis remains valid.

∑ A fluid is said to be incompressible when the change in its density due to the

change in pressure brought about by the fluid motion is negligibly small.

When the flow velocity is equal to or less then 0.33 times of the local acous-

tic speed, the relative change in density of the fluid, due to flow, becomes

equal to or less than 5 per cent respectively, and hence the flow is considered

to be incompressible.

∑ The force of attraction between the molecules of a fluid is known as cohe-

sion, while that between the molecules of a fluid and of a solid is known as

cohesion. The interplay of these two intermolecular forces explains the phe-

nomena of surface tension and capillary rise or depression. A free surface of

the liquid is always under stretched condition implying the existence of a

tensile force on the surface. The magnitude of this force per unit length of an

imaginary line drawn along the liquid surface is known as the surface ten-

sion coefficient of simply, the surface tension.

∑ It is due to surface tension that a curved liquid interface, in equilibrium,

results in a greater pressure at the concave side than that at its convex side.

The pressure difference Dp is given by
1 2

1 1
p

r r
s

Ê ˆ
D = +Á ˜Ë ¯

.

∑ A liquid wets a solid surface and results in a capillary rise when the forces of

cohesion between the liquid molecules are lower than the forces of adhesion

between the molecules of the liquid and the solid in contact. Non-wettability
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of solid surfaces and capillary depression are exhibited by the liquids for

which forces of cohesion are more than the forces of adhesion. The capillary

rise (or depression) in a tube of radius r may be estimated by the expression,

2 cos
h

gr

s q

r
= , where q is the area wetted contact angle.

EXERCISES

1.1 Choose the correct answer:

(i) A fluid is a substance that

(a) always expands until it fills any container

(b) is practically incompressible

(c) cannot withstand any shear force

(d) cannot remain at rest under the action of any shear force

(e) obeys Newton’s law of viscosity

(f) None of the above

(ii) Newton’s law of viscosity relates to

(a) pressure, velocity and viscosity

(b) shear stress and rate of angular deformation in a fluid

(c) shear stress, temperature, viscosity and velocity

(d) pressure, viscosity and rate of angular deformation

(e) None of the above

(iii) The bulk modulus of elasticity

(a) is independent of temperature

(b) increases with the pressure

(c) has the dimensions of 1/P

(d) is larger when the fluid is more compressible

(e) is independent of pressure and viscosity

(iv) The phenomenon of capillary rise or depression

(a) is observed only in vertical tubes

(b) depends solely upon the surface tension of the liquid

(c) depends upon the surface tension of the liquid, material of the tube

and the surrounding gas in contact of the liquid

(d) depends upon the pressure difference between the liquid and the

environment

(e) is influenced by the viscosity of the liquid

1.2 One measure as to a gas is in continuum, is the size of its mean free path.

According to the kinetic theory of gas, the mean free path is given by

l = 1.26 m/r (RT)
1/2

What will be the density of air when its mean free path is 10 mm. The tem-

perature is 20 °C, m = 1.8 ¥ 10
–5

 kg/ms, R = 287 J/kg K.

Ans. (0.782 ¥ 10
–5

 kg/m
3
)



48 Introduction to Fluid Mechanics and Fluid Machines

1.3 A shaft 80 mm in diameter is being pushed through a bearing sleeve 80.2

mm in diameter and 0.3 m long. The clearance, assumed uniform, is flooded

with lubricating oil of viscosity 0.1 kg/ms and specific gravity 0.9. (a) If the

shaft moves axially at 0.8 m/s, estimate the resistance force exerted by the

oil on the shaft, and (b) If the shaft is axially fixed and rotated at 1800 rpm,

estimate the resisting torque exerted by the oil and the power required to

rotate the shaft.

Ans. (60.32N, 22.74 Nm, 4.29 kW)

1.4 A body weighing 1000 N slides down at a uniform speed of 1 m/s along a

lubricated inclined plane making a 30° angle with the horizontal. The viscos-

ity of lubricant is 0.1 kg/ms and contact area of the body is 0.25 m2. Deter-

mine the lubricant thickness assuming linear velocity distribution.

Ans. (0.05 mm)

1.5 A uniform film of oil 0.13 mm thick separates two discs, each of 200 mm

diameter, mounted coaxially. Ignoring the edge effects, calculate the torque

necessary to rotate one disc relative to other at a speed of 7 rev/s, if the oil

has a viscosity of 0.14 Pas.

Ans. (7.43 Nm)

1.6 A piston 79.6 mm diameter and 210 mm long works in a cylinder 80 mm

diameter. If the annular space is filled with a lubricating oil having a viscos-

ity of 0.065 kg/ms, calculate the speed with which the piston will move

through the cylinder when an axial load of 85.6 N is applied. Neglect the

inertia of the piston.

Ans. (5.01 m/s)

1.7 (a) Find the change in volume of 1.00 m3 of water at 26.7 °C when subjected

to a pressure increase of 2 MN/m2 (The bulk modulus of elasticity of water

a t

26.7 °C is 2.24 ¥ 109 N/m2). Ans. (0.89 ¥ 10–3 m3)

(b) From the following test data, determine the bulk modulus of elasticity of

water: at 3.5 MN/m2, the volume was 1.000 m3 and at 24 MN/m2, the vol-

ume was 0.990 m3.

Ans. (2.05 ¥ 109 N/m2)

1.8 A pressure vessel has an internal volume of 0.5 m3 at atmospheric pressure.

It is desired to test the vessel at 300 bar by pumping water into it. The esti-

mated variation in the change of the empty volume of the container due to

pressurisation to 300 bar is 6 per cent. Calculate the mass of water to be

pumped into the vessel to attain the desired pressure level. Given the bulk

modulus of elasticity of water as 2 ¥ 109 N/m2 and at atmospheric pressure,

P = 1000 kg/m3.

Ans. (538 kg)

1.9 Find an expression for the isothermal bulk modulus of elasticity for a gas

which obeys van der Waals law of state according to the equation

P = r RT 
1

1-
-

F
HG

I
KJb

a

RTr

r
,

where a and b are constants.



Introduction and Fundamental Concepts 49

1.10 An atomiser forms water droplets with a diameter of 5 ¥ 10–5 m. What is the

pressure within the droplets at 20 °C, if the pressure outside the droplets is

101 kN/m2? Assume the surface tension of water at 20 °C is 0.0718 N/m.

Ans. (106.74 kN/m2)

1.11 A spherical soap bubble of diameter d1 coalesces with another bubble of

diameter d2 to form a single bubble of diameter d3 containing the same

amount of air. Assuming an isothermal process, derive an analytical expres-

sion for d3 as a function of d1, d2, the ambient pressure p0 and the surface

tension of soap solution s. If d1 = 20 mm, d2 = 40 mm p0 = 101 kN/m2 and s
= 0.09 N/m, determine d3.

Ans. (P0 + 8s/d3)d3
3 = (P0 + 8s/d1)d

3
1 + (P0 + 8s/d2)d3

2 ; d3 = 41.60 mm)

1.12 By how much does the pressure in a cylindrical jet of water 4 mm in diam-

eter exceed the pressure of the surrounding atmosphere if the surface ten-

sion of water is 0.0718 N/m?

Ans. (35.9 N/m2)

1.13 Calculate the capillary depression of mercury at 20 °C (contact angle q =

140°) to be expected in a 2.5 mm diameter tube. The surface tension of

mercury at 20 °C is 0.4541 N/m.

Ans. (4.2 mm)



2.1   INTRODUCTION

In this chapter, we shall be describing situations involving fluids under rest/rigid

body motion. These two apparently unconnected situations fall in the same

paradigm of mathematical analysis, since in both cases, there is no relative

deformation between the adjacent fluid layers. Thus, in this chapter, we consider

that fluid is under zero shear and only normal component of stress, manifested in

terms of negative of the thermodynamic pressure, acts on the fluid.

2.2   FUNDAMENTAL EQUATION OF FLUIDS AT REST

Referring to Fig. 2.1, let Tn be the traction vector acting on a plane having the unit

normal vector n̂  . Let 
n

iT  be the ith component of the traction vector T n
 (note that i

= 1 means component along x, i = 2 means component along y, and i = 3 means

component along z in a Cartesian indexing system). In special cases when the

direction n̂  coincides with any of the coordinate directions ( j), the notations 
j

iT

and jit  may be used equivalently. The later ones are also known to constitute the

stress tensor components (see Chapter 1). Note that each of the indices i and j may

vary between 1 and 3.

x

n̂

dA

q

y

z

nT
r

Fig. 2.1 

2

FLUIDS UNDER

REST/RIGID BODY MOTION
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For any arbitrary orientation n̂, the traction vector at a point may be expressed in

terms of the stress tensor components, by utilising Cauchy’s theorem, as follows

(see Chapter 1 for detailed derivation):

3 3

1 1

n
i ji j ij j

j j

T n nt t
= =

= =Â Â  (since, from angular momentum conservation, ij ijt t= )

where, 1 2 3
ˆˆ ˆn̂ n i n j n k= + +  and 1 1 2 2 3 3 ˆ.ij j i i i in n n n nt t t t t= + + =

r

 (defining it
r

 as

1 2 3
ˆˆ ˆ

i i i ii j kt t t t= + +
r

)

The net surface force acting on the fluid element along the ith direction is given

by

( )surface,i ˆ.n
i i

CS
F T dA n dAt= =Ú Ú

r

 (2.1)

Now, using the divergence theorem ( ˆ. .
CS CV

F ndA Fd= — "Ú Ú
r r

), the area integrals

appearing in Eq. (2.1) may be converted into volume integrals, to yield

surface,i . i
CV

F dt= — "Ú
r

ij

CV
j

d
x

t∂
= "

∂Ú (2.2)

It is important to note here that in a fluid at rest, there are only normal

components of stress on a surface that are independent of the orientation of the

surface. In other words, the stress tensor is isotropic or spherically symmetrical.

Because the stress in a static fluid is isotropic, it must be of the form

ij ijpt d= -  (2.3)

where p is the thermodynamic pressure (which acts equally from all directions; see

Chapter 1), which may be related to density and temperature by an equation of state

and ijd  is the Kronecker delta, and is given by

1 if 

     = 0 if 

ij i j

i j

d = =

π

A negative sign is introduced in Eq. (2.3) because of the fact that the normal

components of stress are regarded as positive if they indicate tension, whereas

pressure by definition is compressive in nature.

Thus, Eq. (2.2) can be written as

surface,i CV
i

p
F d

x

∂
= - "

∂Ú  (2.4)

The net surface force acting on the fluid element is

surface
CV

F pd= -— "Ú  (2.5)
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Let bodyF  be the resultant force on the fluid and b
r

 be the body force per unit

mass. Thus, one may write,

body
CV

F b dr= "Ú
r

 (2.6)

where d"  is an element of volume whose mass is dr " .

For equilibrium of the fluid element, we have

( )body surface 0
CV

F F b p dr+ = - — " =Ú
r

 (2.7)

Equation (2.7) is valid for any arbitrary choice of " , and hence

0b pr - — =
r

or p br— =
r

 (2.8)

Equation (2.8) is the fundamental equation of a fluid at rest. If gravity is

considered to be the only external body force acting on the fluid, the vector form of

Eq. (2.8) can be expressed in its scalar components with respect to a Cartesian

coordinate system (Fig. 2.1) as

0
p

x

∂
=

∂
 (2.8a)

0
p

y

∂
=

∂
 (2.8b)

z

p
b g

z
r r

∂
= = -

∂
 (2.8c)

where bz, the external body force per unit mass in the positive direction of z

(vertically upward), equals the negative value of g, the acceleration due to gravity.

From Eqs. (2.8a) to (2.8c), it can be concluded that the pressure p is a function of z

only. Therefore, Eq. (2.8c) can be written as

dp
g

dz
r= -  (2.9)

The explicit functional relationship of hydrostatic pressure p with z can be

obtained by integrating the Eq. (2.9). However, this integration is not possible unless

the variation of r with p and z is known.

Constant Density Solution

For a constant density (r) fluid, Eq. (2.9) can be integrated as

p gz Cr= - +  (2.10)

where C is the integration constant.

If we consider an expanse of fluid with a free surface, where the pressure is

defined as 0p p=  (Fig. 2.2), Eq. (2.10) can be written as

( )0 0 1p p g z z ghr r- = - =  (2.11)
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Therefore, Eq. (2.11) gives the expression of hydrostatic pressure p at a point

whose vertical depression from the free surface is h. Thus, the difference in pressure

between two points in a constant density fluid at rest can be expressed in terms of

the vertical distance between the points. This result is known as Toricelli’s principle

which is the basis for differential pressure measuring devices. The pressure 0p p=
at free surface is the local atmospheric pressure. Therefore, it can be stated from Eq.

(2.11), that the pressure at any point in an expanse of a stagnant fluid with a free

surface exceeds that of the local atmospheric by an amount ghr , where h is the

vertical depth of the point from the free surface.

x

y

z

z1

zo

Free surface p = po

p = p + gho r

pgh

p p =- o 0

h

Fig. 2.2 Pressure variation in an incompressible fluid at rest with a free surface

Variable Density Solution (Pressure Variation in a Compressible Fluid)

The pressure variation in a compressible fluid at rest depends on how the fluid

density changes with height z and pressure p.

Constant Temperature Solution (Isothermal Fluid)

The equation of state for a compressible system generally relates its density to its

pressure and temperature. If the fluid is a perfect gas at rest at constant temperature,

it can be written from Eq. (1.24) as

p

r
 = 0

0

p

r
(2.12)

where p0 and r0 are the pressure and density at some reference horizontal plane.

With the help of Eq. (2.12), Eq. (2.9) becomes

dp

p
 = – 

0

0p

r
g dz (2.13)

p = p0 exp 
0

0
0

( )
g

z z
p

rÈ ˘
- -Í ˙

Î ˚
(2.14)



54 Introduction to Fluid Mechanics and Fluid Machines

where z and z0 are the vertical coordinates of the plane concerned for pressure p and

the reference plane respectively from any fixed datum.

Non-isothermal Fluid

The temperature of the atmosphere up to a certain altitude is frequently assumed to

decrease linearly with the altitude z as given by

T = T0 – a  z (2.15)

where T0 is the absolute temperature at sea level and the constant a is known as

lapse rate. For the standard atmosphere, a = 6.5 K/km and T0 = 288 K. With the

help of Eq. (1.24) and (2.15), Eq. (2.9) can be written as

dp

p
 =

( )0

dg z

R T za

-
-

(2.16)

Integration of Eq. (2.16) yields

ln 
0

p

p
 = 0

0

ln
T zg

R T

a

a

-

Hence,
0

p

p
 =

/

0

1

g R
z

T

a
aÊ ˆ

-Á ˜Ë ¯
(2.17)

The altitude z in Eq. (2.17) is measured from the sea level where the pressure is

p0. Experimental evidence of the temperature variation with altitude in different

layers of the atmosphere is shown in Fig. 2.3.
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Fig. 2.3 Temperature variation in atmosphere
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Example 2.1

What is the intensity of pressure in the ocean at a depth of 1500 m, assuming (a) salt

water is incompressible with a specific weight of 10050 N/m3 and (b) salt water is

compressible and weighs 10050 N/m3 at the free surface? E (bulk modulus of elas-

ticity of salt water) = 2070 MN/m2 (constant).

Solution

(a) For an incompressible f luid, the intensity of pressure at a depth, according to Eq.

(2.11), is

p (pressure in gauge) = rgh = 10050 (1500) N/m2 = 15.08 MN/m2 gauge

(b) The change in pressure with the depth of liquid h from free surface can be

written according to Eq. (2.19) as

d

d

p

h
 = rg (2.18)

Again from the definition of bulk modulus of elasticity E (Eq. (1.20)),

dp = E 
dr

r
(2.19)

Integrating equation (2.19), for a constant value of E, we get

p = E ln r + C (2.20)

The integration constant C can be found out by considering p = p0 and r = r0 at

the free surface.

Therefore, Eq. (2.20) becomes

p – p0 = E ln 
0

r

r

Ê ˆ
Á ˜Ë ¯

(2.21)

Substitution of dp from Eq. (2.18) into Eq. (2.19) yields

dh =
E d

g

r

r2

After integration

h = 1

E
C

g r
- +

The constant C1 is found out from the condition that, r = r0 at h = 0 (free sur-

face)

Hence, h =
0

1 1E

g r r

Ê ˆ
-Á ˜Ë ¯

from which
0

r

r
 =

0

E

E h gr-
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Substituting this value of r/r0 in Eq. (2.21), we have

p – p0 = E ln 
0–

E

E h gr

Ê ˆ
Á ˜Ë ¯

Therefore,

p (in gauge) = 2.07 ¥ 109 ln 

9

9

2.07 10

2.07 10 – (10050)(1500)

È ˘¥
Í ˙

¥Î ˚
 N/m2 gauge

= 15.13 MN/m2 gauge

2.3   UNITS AND SCALES OF PRESSURE MEASUREMENT

The unit of pressure is N/m
2
 and is known as Pascal. Pressure is usually expressed

with reference to either absolute zero pressure (a complete vacuum) or local atmo-

spheric pressure. Absolute pressure is the pressure expressed as a difference be-

tween its value and the absolute zero pressure. When a pressure is expressed as a

diference between its value and the local atmospheric pressure, it is known as gauge

pressure (Fig. 2.4).

Therefore,

pabs = p – 0 = p (2.22a)

pgauge = p – patm (2.22b)

If the pressure p is less than the local atmospheric pressure, the gauge pressure

pgauge, defined by the Eq. (2.22b), becomes negative and is called vacuum pressure.

Gauge pressure

Vacuum pressure

Absolute pressure

Absolute zero

(complete vacuum)

Absolute

pressure

Local

atmospheric

pressure

Fig. 2.4 The scale of pressure

At sea level, the international standard atmosphere has been chosen as

patm = 101.32 kN/m
2
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2.4   BAROMETER

It is already established that there is a simple relation (Eq. 2.16) between the height

of a column of liquid and the pressure at its base. The direct proportionality between

gauge pressure and the height h for a fluid of constant density enables the pressure

to be simply visualised in terms of the vertical height, h = p/rg. The height h is

termed as pressure head corresponding to pres-

sure p. For a liquid without a free surface in a

closed pipe, the pressure head p/rg at a point

corresponds to the vertical height above the

point to which a free surface would rise, if a

small tube of sufficient length and open to at-

mosphere is connected to the pipe (Fig. 2.5).

Such a tube is called a piezometer tube, and

the height h is the measure of the gauge pres-

sure of the fluid in the pipe. If such a piezom-

eter tube of sufficient length were closed at the

top and the space above the liquid surface were

a perfect vacuum, the height of the column

would then correspond to the absolute pressure

of the liquid at the base. This principle is used

in the well-known mercury barometer to deter-

mine the local atmospheric pressure. Mercury

is employed because its density is sufficiently

high for a relative short column to be obtained,

and also because it has very small vapour pres-

sure at normal temperature. A perfect vacuum

at the top of the tube (Fig. 2.6) is never pos-

sible; even if no air is present, the space would

be occupied by the mercury vapour and the

pressure would equal to the vapour pressure of

mercury at its existing temperature. This al-

most vacuum condition above the mercury in

the barometer is known as Torricellian va-

cuum. The pressure at A  is equal to that at B

(Fig. 2.6) which is the atmospheric pressure

patm since A  and B lie on the same horizontal

plane. Therefore, we can write

pB = patm = p
v
 + r g h (2.23)

The vapour pressure of mercury p
v
, can normally be neglected in comparison to

patm. At 20 °C, p
v
 is only 0.16 patm, where patm = 1.0132 ¥ 105 Pa at sea level. Then

we get from Eq. (2.23)

h = patm/rg =

5 2

3

1.0132 10 N/m

(13560 kg/m ) (9.81 N/kg)

¥
 = 0.752 m of Hg

h p g= /r

Fig. 2.5 A piezometer tube

p
v

hA

B

Torricellian

vacuum

Fig. 2.6 A barometer
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For accurate work, small corrections are necessary to allow for the variation of r
with temperature, the thermal expansion of the scale (usually made of brass), and

surface tension effects. If water was used instead of mercury, the corresponding

height of the column would be about 10.4 m provided that a perfect vacuum could

be achieved above the water. However, the vapour pressure of water at ordinary

temperature is appreciable and so the actual height at, say, 15 °C would be about

180 mm less than this value. Moreover, with a tube smaller in diameter than about

15 mm, surface tension effects become significant.

Example 2.2

For a gauge reading at A  of – 17200 Pa (Fig. 2.7), determine: (a) The elevation of the

liquids in the open piezometer columns E, F, G, and (b) The deflection of mercury

in the U-tube gauge. The elevations EL of the interfaces, as shown in Fig. 2.7, are

measured from a fixed reference datum.

D
h1

C

El.6.0

El. 4.0

Spgr: 1.600

Sp gr: 13.57

El.8.0

Water

Spgr = 0.700

Liquid I

Liquid II

Air

El.11.6

E1.15.0

El.20.0 A E

L

N

M

Q

R

F G

h
K

H

Fig. 2.7 Piezometer tubes connected to a tank containing different liquids

Solution

(a) Since the specific weight of air (= 12 N/m
3
) is very small compared to that of the

liquids, the pressure at elevation 15.0 may be considered to be –17200 Pa gauge by

neglecting the weight of air above it without introducing any significant error in the

calculations.
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For column E: Since the pressure at H is below the atmospheric pressure, the

elevation of liquid in the piezometer E will be below H, and assume this elevation is

L as shown in Fig. 2.7.

From the principle of hydrostatics, pK = pL

Then patm – 17200 + (0.700 ¥ 9.81 ¥ 103)h = patm

(where patm is the atmospheric pressure)

or h = 2.5 m

Hence the elevation at L is 15 – 2.5 = 12.5 m

For column F: Pressure at EL11.6 = Pressure at EL15.0 + Pressure of the liquid

I

= – 17200 + (0.7 ¥ 9.81 ¥ 103) (15 – 11.6)

= 6148 Pa gauge

which must equal the pressure at M.

The height of the water column corresponding to this pressure is 
6148

9810
 = 0.63 m,

and therefore the water column in the piezometer F will rise 0.63 m above M .

Hence the elevation at N  is (11.6 + 0.63) = 12.23 m

For column G : Pressure at

EL8.0 = Pressure at EL11.6 + Pressure of 3.6 m of water

= 6148 + 9.81 ¥ 3.6 ¥ 10
3
 = 41464 Pa

which must be the pressure at R and equals to a column of

41464

1.6 9810¥
 = 2.64 m of liquid II

Therefore, the liquid column in piezometer G will rise 2.64 m above R and eleva-

tion at Q is (8.0 + 2.64) = 10.64 m.

(b) For the U-tube gauge,

Pressure at D = Pressure at C

9810 ¥ 13.57 h1 = Pressure at EL11.6 + Pressure of 7.6 m of water

or 13.57 h1 = 0.63 + 7.6

from which h1 = 0.61 m

2.5   MANOMETERS

Manometers are devices in which columns of a suitable liquid are used to measure

the difference in pressure between two points or between a certain point and the

atmosphere. For measuring very small gauge pressures of liquids, simple piezom-

eter tube (Fig. 2.5) may be adequate, but for larger gauge pressures, some modifica-

tions of the tube are necessary and this modified tube is known as a manometer. A

common type manometer is like a transparent ‘U-tube’ as shown in Fig. 2.8(a). One

of its ends is connected to a pipe or a container having a fluid (A ) whose pressure is

to be measured while the other end is open to the atmosphere. The lower part of the

U-tube contains a liquid immiscible with the fluid A  and is of greater density than
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that of A . This fluid is called manometric fluid. The pressures at the two points P

and Q (Fig. 2.8(a)) in a horizontal plane within the continuous expanse of the same

fluid (liquid B in this case) must be equal. Then equating the pressures at P and Q in

terms of the heights of the fluids above those points, with the aid of the fundamental

equation of hydrostatics (Eq. 2.11), we have

p1 + rA  g (y + x) = patm + rB g x

Hence, p1 – patm = (rB – rA) g x – rA  g y (2.24)

where p1 is the absolute pressure of the fluid A  in the pipe or container at its centre

line, and patm is the local atmospheric pressure. When the pressure of the fluid in the

container is lower than the atmospheric pressure, the liquid levels in the manometer

would be adjusted as shown in Fig. 2.8(b). Hence it becomes,

p1

p p1 > atm

patm

P Q

B

y

A

x

Fig. 2.8(a) A simple manometer to measure gauge pressure

p1+

p p1 < atm

patm

P Q

B

y

A

x

Fig. 2.8(b) A simple manometer measuring vacuum pressure
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p1 + rA  g y + rB g x = patm

patm – p1 = (rA  y + rB x)g (2.25)

In the similar fashion, a manometer is frequently used to measure the pressure

difference, in course of flow, across a restriction in a horizontal pipe (Fig. 2.9).

p p1 > 2

P

y

x

Q

p1

rw

rm

p2

A B

Fig. 2.9 A manometer measuring pressure differential

It is very important that the axis of each connecting tube at A  and B to be perpen-

dicular to the direction of flow and also for the edges of the connections to be

smooth. Applying the principle of hydrostatics at P and Q we have,

p1 + (y + x)rwg = p2 + y rwg + x rmg

p1 – p2 = (rm – rw)gx (2.26)

where, rm
 
is the density of manometric fluid and rw is the density of the working

fluid flowing through the pipe. Sometimes it is desired to express this difference of

pressure in terms of the difference of heads (height of the working fluid at

equilibrium).

Thus, h1 – h2 =
1 2 – 1m

w w

p p
x

g

r

r r

- Ê ˆ
= Á ˜Ë ¯

(2.27)

Example 2.3

A typical differential manometer is attached to two sections A  and B in a horizontal

pipe through which water is flowing at a steady rate (Fig. 2.10). The deflection of

mercury in the manometer is 0.6 m with the level nearer A  being the lower one as

shown in the figure. Calculate the difference in pressure between Sections A  and B.

Take the densities of water and mercury as 1000 kg/m
3
 and 13570 kg/m

3
,

respectively.
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Water
Mercury

0.6 m
G C

A B

D

E F

z

Fig. 2.10 A differential manometer measuring pressure drop between two

sections in the flow of water through a pipe

Solution

pC (Pressure at C) = pD (Pressure at D) (2.28)

Again pC = pG (Pressure at G) = pA  – rw g z (2.29)

and pD = pE (Pressure at E) + Pressure of the column ED of
mercury

= pF (Pressure at F) + rm g (0.6)

= pB – (z + 0.6) rw  g + 0.6 rm g (2.30)

With the help of Eq. (2.29) and (2.30), the Eq. (2.28) can be written as

pA  – rw gz = pB – (z + 0.6) rw g + 0.6 rmg

or pA  – pB = 0.6g (rm – rw) = 0.6 ¥ 9.81 (13.57 – 1) ¥ 103 Pa

= 74 kPa

2.5.1 Inclined Tube Manometer

To obtain a reasonable value of x [Eq. (2.27)] for accurate measurement of small

pressure differences by a ordinary U-tube manometer, it is essential that the ratio

rm/rw should be close to unity. If the working fluid is a gas, this is not possible.

Moreover, it may not be always possible to have a manometric liquid of density very

close to that of the working liquid and giving at the same time a well defined menis-

cus at the interface. For this purpose, an inclined tube manometer is used. For exam-

ple, if the transparent tube of a manometer instead of being vertical is set at an angle

q to the horizontal (Fig. 2.11), then a pressure difference corresponding to a vertical

difference of levels x gives a movement of the meniscus s = x/sin q along the slope

(Fig. 2.11).

If q is small, a considerable magnification of the movement of the meniscus may

be achieved. Angles less than 5°, however, are not usually satisfactory, because it

becomes difficult to determine the exact position of the meniscus. One limb is usu-

ally made very much greater in cross section than the other. When a pressure differ-

ence is applied across the manometer, the movement of the liquid surface in the

wider limb is practically negligible compared to that occurring in the narrower limb.

If the level of the surface in the wider limb is assumed constant, the displacement of

the meniscus in the narrower limb needs only to be measured, and therefore only

this limb is required to be transparent.
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s
x

Fig. 2.11 An inclined tube manometer

Example 2.4

An inclined tube manometer measures the gauge pressure ps of a system S (Fig.

2.12). The reservoir and tube diameters of the manometer are 50 mm and 5 mm

respectively. The inclination angle of the tube is 30°. What will be the percentage

error in measuring pS if the reservoir deflection is neglected.

R

S

ps

psb
c D

R sin

q = 30°
ch

b
q

Fig. 2.12 An inclined tube manometer measuring gauge pressure of a system

Solution

Let, with the application of pressure pS, the level of gauge fluid in the reservoir

lowers down from bb to cc

Now, pressure at c = Pressure at D

or pS = rg ◊ g (R sin q + h) (2.31)

where rg is the density of the gauge fluid. From continuity of the fluid in both the

limbs,

A  ◊ h = a ◊ R

or h =
a R

A
(2.32)
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where A  and a are the cross-sectional areas of the reservoir and the tube respec-

tively.

Substituting for h from Eq. (2.32) in Eq. (2.31)

pS = rgg R sin q 
1

1
sin

a

A q

Ê ˆ
+Á ˜Ë ¯

(2.33)

Let the pressure pS be measured as pS¢ from the gauge reading R only (neglecting

the reservoir deflection h).

Then pS¢ = rg g R sin q (2.34)

The percentage error  in measuring pS as pS¢ can now be calculated with the help

of Eqs. (2.33) and (2.34) as

e =
( – ) 100 1

100

1 sin

S S

S

p p

Ap

a
q

¥¢
= ¥

Ê ˆ+Ë ¯

=
2

1
100 1.96%

50 1
1

5 2

¥ =
È ˘Ê ˆ+Í ˙Ë ¯Î ˚

2.5.2 Inverted Tube Manometer

For the measurement of small pressure

differences in liquids, an inverted U-

tube manometer as shown in Fig. 2.13

is often used.

Here rm < rw, and the line PQ is

taken at the level of the higher menis-

cus to equate the pressures at P and Q

from the principle of hydrostatics. If

may be written that

p1
* – p2

* = (rw – rm) g x (2.35)

where p* represents the piezometric

pressure p + rgz (z being the vertical

height of the point concerned from any

reference datum). In case of a horizontal pipe (z1 = z2), the difference in piezometric

pressure becomes equal to the difference in the static pressure. If (rw – rm) is suffi-

ciently small, a large value of x may be obtained for a small value of p1
* – p2

*. Air is

used as the manometric fluid. Therefore, rm is negligible compared with rw and

hence,

p1
*
 – p2

*
 ª rw g x (2.36)

Air may be pumped through a value V  at the top of the manometer until the liquid

menisci are at a suitable level.

P

p1
z1

z2

p2

x
Q

V rm

rw

Fig. 2.13 An inverted tube manometer
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2.5.3 Micromanometer

When an additional gauge liquid is used in a U-tube manometer, a large difference

in meniscus levels may be obtained for a very small pressure difference. The typical

arrangement is shown in Fig. 2.14.

Cross-sectional

area A

Initial level of

gauge liquid

Gauge liquid

of density
Initial level of

manometric liquid

Cross-sectional

area a

Manometric liquid of

density rm

Working fluid

of density rw

h

p1 p2

p p1 2>

Dz
Dz

r r > rm G> w

rG

z

y

y

QP

2

2

Fig. 2.14 A micromanometer

The equation of hydrostatic equilibrium at PQ can be written as

p1 + rw g(h + Dz) + rG g –
2

y
z z

Ê ˆD +Á ˜Ë ¯
 = p2 + rw g(h – Dz)

+ rG g
2

y
z z

Ê ˆ+ D -Á ˜Ë ¯
 + rm g y (2.37)

where rw, rG and rm are the densities of working fluid, gauge liquid and

manometric liquid respectively.

From continuity of gauge liquid,

A  D z = a
2

y
(2.38)

Substituting for D z from Eq. (2.38) in Eq. (2.37), we have

p1 – p2 = gy { }1m G w

a a

A A
r r rÊ ˆ- - -Á ˜Ë ¯

(2.39)

If a is very small compared to A ,
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p1 – p2 ª (rm – rG) gy (2.40)

With a suitable choice for the manometric and gauge liquids so that their

densities are close (rm ª rG), a reasonable value of y may be achieved for a small

pressure difference.

2.6   HYDROSTATIC THRUSTS ON SUBMERGED SURFACES

Due to the existence of hydrostatic pressure in a fluid mass, a normal force is exerted

on any part of a solid surface which is in contact with a fluid. The individual forces

distributed over an area give rise to a resultant force. The  determination of the mag-

nitude and the line of action of the resultant force is of practical interest to engineers.

2.6.1 Plane Surfaces

Figure 2.15(a) shows a plane surface of arbitrary shape wholly submerged in a liquid

so that the plane of the surface makes an angle q with the free surface of the liquid. In

fact, any elemental area of the surface under this situation would be subjected to

normal forces in the opposite directions from the two sides of the surface due to hy-

drostatic pressure; therefore no resultant force would act on the surface. But we con-

sider the case as if the surface A  shown in Fig. 2.15(a) to be subjected to hydrostatic

pressure on one side and atmospheric pressure on the other side. Let p denote the

gauge pressure on an elemental area dA . The resultant force F on the area A  is there-

fore,

Free surface

(a) Inclined surface (b) Horizontal surface

F

Free surface

hc
hc

dA

p

A

h

x

x¢

x
p

c

q

y c

y¢

y

y p

y

c
x
y

p
p

p

(
,
)

c
x
y

(
,
)

c
cx

c

Fig. 2.15 Hydrostatic thrust on submerged plane surface

F =
A

ÚÚ p dA (2.41)

According to Eq. (2.11), Eq. (2.41) reduces to
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F = rg ÚÚ h dA  = r g sin q ÚÚ y d A (2.42)

where h is the vertical depth of the elemental area dA  from the free surface and the

distance y is measured from the x axis, the line of intersection between the

extension of the inclined plane and the free surface (Fig. 2.15(a)). The ordinate of

the centre of area of the plane surface A  is defined as

yc =
1

A
ÚÚ y dA (2.43)

Hence from Eqs (2.42) and (2.43), we get

F = r g yc sin q A  = r g hc A (2.44)

where hc (= yc sin q) is the vertical depth (from free surface) of centre of area c.

Equation (2.44) implies that the hydrostatic thrust on an inclined plane is equal

to the pressure at its centroid times the total area of the surface, i.e., the force that

would have been experienced by the surface if placed horizontally at a depth hc

from the free surface (Fig. 2.15(b)).

The point of action of the resultant force on the plane surface is called the centre

of pressure cp. Let xp and yp be the distances of the centre of pressure from the y and

x axes respectively. Equating the moment of the resultant force about the x axis to

the summation of the moments of the component forces, we have

yp F = Ú y d F = rg sin q ÚÚ y2 dA (2.45)

Solving for yp from Eq. (2.45) and replacing F from Eq. (2.42), we can write

yp =

2 d

d

A

A

y A

y A

ÚÚ

ÚÚ
(2.46)

In the same manner, the x coordinate of the centre of pressure can be obtained by

taking moment about the y axis. Therefore,

xp F = Ú x dF = rg sin q ÚÚ xy dA

from which,

xp =

d

d

A

A

xy A

y A

ÚÚ

ÚÚ
(2.47)

The two double integrals in the numerators of Eqs. (2.46) and (2.47) are the

moment of inertia about the x axis Ixx and the product of inertia Ixy about the x and y

axes of the plane area, respectively. By applying the theorem of parallel axis,

Ixx = ÚÚ y2 dA  = Ix¢x¢ + A  y2
c (2.48)

Ixy = ÚÚ xy dA  = Ix¢y¢ + A  xc yc (2.49)
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where, Ix¢x¢ and Ix¢y¢ are the moment of inertia and the product of inertia of the

surface about the centroidal axes (x¢ – y¢), xc and yc are the coordinates of the centre

of area c with respect to the x and y axes.

With the help of Eqs. (2.48), (2.49) and (2.43), Eqs. (2.46) and (2.47) can be

written as

yp = x x
c

c

I
y

A y

¢ ¢ + (2.50a)

xp =
x y

c
c

I
x

A y

¢ ¢ + (2.50b)

The first term on the right-hand side of Eq. (2.50a) is always positive. Hence, the

centre of pressure is always at a higher depth from the free surface than that at

which the centre of area lies. This is obvious because of the typical variation of

hydrostatic pressure with the depth from the free surface. When the plane area is

symmetrical about the y¢ axis, Ix¢y¢ = 0, and xp = xc.

Example 2.5

Oil of specific gravity 0.800 acts on a vertical triangular area whose apex is in the oil

surface. The triangle is isosceles of 3 m high and 4 m wide. A vertical rectangular

area of 2 m high is attached to the 4 m base of the triangle and is acted upon by

water. Find the magnitude and point of action of the resultant hydrostatic force on

the entire area.

Solution

The submerged area under oil and water is shown in Fig. 2.16.

O x O

3 mdz

z

2 m

P P Oil spgr = 0.8

Water

F F F= +1 2

F2

F1

H

R R

Q Q

y
4 m

Fig. 2.16 The submerged surface under oil and water as described in Example 2.5

Oil sp.gr
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The hydrostatic force F1 on the triangular area

= 9.81 ¥ 0.8 ¥ 10
3
 ¥ 

2 1
3 3 4

3 2

Ê ˆ Ê ˆ¥ ¥ ¥ ¥Á ˜ Á ˜Ë ¯ Ë ¯ N = 94.18 kN

The hydrostatic force F2 on the rectangular area

= 9.81 ¥ 103 (3 ¥ 0.8 + 1) ¥ (2 ¥ 4) N = 266.83 kN

Therefore the resultant force on the entire area

F = F1 + F2 = 94.18 + 266.83 = 361 kN

Since the vertical line through the apex 0 is the axis of symmetry of the entire

area, the hydrostatic forces will always act through this line. To find the points of

action of the forces F1 and F2 on this line, the axes Ox and Oy are taken as shown in

Fig. 2.16.

For the triangular area, moments of forces on the elemental strips of thickness dz
about Ox give

F1 ◊ OP =

3

0

Ú 9.81 ¥ 103 (0.8z) (Hdz.z)

Again from geometry, H = 
4

3
 z

Hence, OP =

3
3 3

0

3

4
9.81 10 0.8 d

3

94.18 10

z z
Ê ˆ¥ ¥ Ë ¯

¥

Ú
 = 2.25 m

In a similar way, the point of action of the force F2 on the rectangular area is

found out as

OQ =

5
3

3

3

9.81 10 {(3 0.8) ( 3)} (4 d )

266.83 10

z z z¥ ¥ + -

¥

Ú
 = 4.1 m

Finally the point of action R (Fig. 2.16) of the resultant force F is found out by

taking moments of the forces F1 and F2 about O as

OR =
94.18 2.25 266.83 4.1

361

¥ + ¥
 = 3.62 m

Example 2.6

Figure 2.17 shows a flash board. Find the depth of water h at the instant when the

water is just ready to tip the flash board.



70 Introduction to Fluid Mechanics and Fluid Machines

h

y p

y c

h/2

60°

60°

G

1
m

e

Hinge
O

B

Fig. 2.17 A flash board in water

Solution

The flash board will tip if the hydrostatic force on the board acts at a point away

from the hinge towards the free surface. Therefore, the depth of water h for which

the hydrostatic force Fp passes through the hinge point O is the required depth when

water is just ready to tip the board. Let G be the centre of gravity of the submerged

part of the board (Fig. 2.17).

Then BG =
/2

sin 60 3

h h
=

∞
If yp and yc are the distances of the pressure centre (point of application of the

hydrostatic force Fp) and the centre of gravity respectively from the free surface
along the board, then from Eq. (2.50a)

e = yp – yc = 
3

(2 / 3)

2
12

3 3

h

h hÊ ˆ
Ë ¯

 = h/ ( )3 3 (2.51)

(considering unit length of the board)

Again from the geometry,

e = BG – BO = ( )/ 3h  – 1 (2.52)

Equating the two expressions of e from Eqs. (2.51) and (2.52), we have

h/ ( )3 3  = h/ 3  – 1

from which h =
3 3

2
 = 2.6 m

Example 2.7

The plane gate (Fig. 2.18) weighs 2000 N/m length normal to the plane of the figure,

with its centre of gravity 2 m from the hinge O. Find h as a function of q for equilib-

rium of the gate.
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Water

G

h

F
P

O

W = 2000 N/m

4
m

y
p

2
m

q

Fig. 2.18 A plain gate in equilibrium under hydrostatic force due to water

Solution

Let F be the hydrostatic force acting on the gate at point P

Then F = Pressure at the centroid of the submerged portion of gate
¥ submerged area of the gate

=
2

3 4905
9.81 10 1

2 sin sin

h h h

q q
¥ ¥ ¥ ¥ = (2.53)

The distance of the pressure centre P from the free surface along the gate is

found out, according to Eq. (2.50), as

yp =
31 ( /sin ) 1 1 2

2 sin sin 2 6 3 sin
12 1

sin 2 sin

h h h h

h h

q

q q q

q q

¥ Ê ˆ+ = + =Á ˜Ë ¯Ê ˆ¥ ¥ Á ˜Ë ¯

Now, OP =
2 1

sin 3 sin 3 sin

h h h

q q q
- =

For equilibrium of the gate, moment of all the forces about the hinge O will be

zero.

Hence,
1

3 sin

h
F

q

Ê ˆ
Á ˜Ë ¯

 – 2000 (2 cos q) = 0

Substituting F from Eq. (2.53),

24905 1

sin 3 sin

h h

q q

Ê ˆ
Á ˜Ë ¯

 – 4000 cos q = 0

from which h = 1.347 (sin2 q cos q)1/3



72 Introduction to Fluid Mechanics and Fluid Machines

2.6.2 Curved Surfaces

On a curved surface, the direction of the normal changes from point to point, and

hence the pressure forces on individual elemental surfaces differ in their directions.

Therefore, a scalar summation of them cannot be made. Instead, the resultant thrusts

in certain directions are to be determined and these forces may then be combined

vectorially.

An arbitrary submerged curved surface is shown in Fig. 2.19. A rectangular Car-

tesian coordinate system is introduced whose xy plane coincides with the free sur-

face of the liquid and the z axis is directed downward below the xy plane.

Consider an elemental area dA  at a depth z from the surface of the liquid. The

hydrostatic force on the elemental area dA  is

d F = r g z dA (2.54)

and the force acts in a direction normal to the area dA . The components of the force

dF in x, y and z directions are

d Fx = l d F = l rgz dA (2.55a)

d Fy = m d F = m rgz dA (2.55b)

d Fz = n d F = n rgz dA (2.55c)

where l, m and n are the direction cosines of the normal to d A .

The components of the surface element d A  projected on the y z, x z and xy planes

are, respectively

dAx = l dA (2.56a)

dAy = m dA (2.56b)

dAz = n dA (2.56c)

Substituting Eqs (2.56a–2.56c) into (2.55), we can write

dFx = rg z dA x (2.57a)

dFy = rg z dA y (2.57b)

dFz = rg z dA z (2.57c)

Therefore, the components of the total hydrostatic force along the coordinate

axes are

Fx =

A

ÚÚ rg z d A x = rg zc A x (2.58a)

Fy =

A

ÚÚ rg z d A y = rg zc A y (2.58b)

Fz =

A

ÚÚ rg z d Az (2.58c)

where zc is the z coordinate of the centroid of area A x and A y (the projected areas of

curved surface on y z and x z plane, respectively). If zp and yp are taken to be the

coordinates of the point of action of Fx on the projected area A x on the y z plane,

following the method discussed in 2.6.1, we can write

zp =
21

d
yy

x
x c x c

I
z A

A z A z
=ÚÚ (2.59a)
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yp =
1

d
yz

x
x c x c

I
yz A

A z A z
=ÚÚ  (2.59b)

where Iyy is the moment of inertia of area A x about the y axis and Iy z is the product of

inertia of A x with respect to the axes y and z. In the similar fashion, z¢p and x¢p, the

coordinates of the point of action of the force Fy on area A y, can be written as

z¢p =
21

d xx
y

y c y c

I
z A

A z A z
=ÚÚ (2.60a)

x¢p =
1

d xz
y

y c y c

I
xz A

A z A z
=ÚÚ (2.60b)

where Ixx is the moment of inertia of area A y about the x axis and Ix z is the product of

inertia of A y about the axes x and z.

o

y
z

c

zp
zc

p

dAx
z

x

A

Fx

dAz

dA

dF

dFx

dFz
dFy

yp

yc

y

Fig. 2.19 Hydrostatic thrust on a submerged curved surface

We can conclude from Eqs (2.58), (2.59) and (2.60) that for a curved surface, the

component of hydrostatic force in a horizontal direction is equal to the

hydrostatic force on the projected plane surface perpendicular to that direction and

acts through the centre of pressure of the projected area. From Eq. (2.58c), the verti-

cal component of the hyrostatic force on the curved surface can be written as

Fz = d zg z A gVr r=ÚÚ (2.61)

where V  is the volume of the body of liquid within the region extending vertically

above the submerged surface to the free surface of the liquid. Therefore, the vertical

component of hydrostatic force on a submerged curved surface is equal to the weight

of the liquid volume vertically above the solid surface to the free surface of the liquid

and acts through the centre of gravity of the liquid in that volume.

In some instances (Fig. 2.20), it is only the underside of a curved surface which is

subjected to hydrostatic pressure. The vertical component of the hydrostatic thrust
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on the surface in this case acts upward and is

equal, in magnitude, to the weight of an imagi-

nary volume of liquid extending from the sur-

face up to the level of the free surface. If a free

surface does not exist in practice, an imagi-

nary free surface may be considered (Fig.

2.21(a), 2.21(b)) at a height p/rg above any

point where the pressure p is known. The hy-

drostatic forces on the surface can then be

calculated by considering the surface as a sub-

merged one in the same fluid with an imagi-

nary free surface as shown.

Pressurised

fluid in a

chamber

Pressurised

fluid in a

chamber

Imaginary free surface

Imaginary free surface

Surface

(a) (b)

1 p1
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g
3

3
=
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2 p2

p3

z
p

g
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2
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/ r

h
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g
=
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z
p

g
1

1
=

/ r

p

Fig. 2.21 Hydrostatic force exerted on a curved surface by a fluid without a

free surface

Example 2.8

A circular cylinder of 1.8 m diameter and 2.0 m long is acted upon by water in a tank

as shown in Fig. 2.22(a). Determine the horizontal and vertical components of hy-

drostatic force on the cylinder.

Solution

Let us consider, at a depth z from the free surface, an elemental surface on the

cylinder that subtends an angle dq at the centre. The horizontal and vertical compo-

nents of hydrostatic force on the elemental area can be written as

dFH = 9.81 ¥ 10
3
 {0.9 (1 + cos q)} (0.9 dq ¥ 2) sin q

and dFV  = 9.81 ¥ 103 {0.9 (1 + cos q)} (0.9 dq ¥ 2) cos q

Imaginary

volume of

liquid

Fz

Fig. 2.20 Hydrostatic thrust on

the underside of a

curved surface
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Therefore, the horizontal and vertical components of the net force on the entire

cylindrical surface in contact with water are given by

FH =

0

p

Ú 9.81 ¥ 103 {0.9(1 + cos q)} 1.8 sin q dq N = 31.78 kN

FV  =

0

p

Ú 9.81 ¥ 103 {0.9(1 + cos q)} 1.8 cos q dq N

= 9.81 ¥ 103 ¥ 0.9 ¥ 1.8 
2

0 0

cos d cos d

p p

q q q q
È ˘

+Í ˙
Í ˙Î ˚
Ú Ú

= 9.81 ¥ 10
3
 ¥ 0.9 ¥ 1.8 0 N

2

pÈ ˘+Í ˙Î ˚
= 24.96 kN

Alternative method:

The horizontal component of the hydrostatic force on surface ACB (Fig. 2.22 (b)) is

equal to the hydrostatic force on a projected plane area of 1.8 m high and 2 m long.

Therefore, FH = 9.81 ¥ 103 ¥ 0.9 ¥ (1.8 ¥ 2) N = 31.78 kN

dA

dF

O

0.9 m

dq

q

1
.8
m z

Fig. 2.22(a) A circular cylinder in a

tank of water

The downward vertical force acting on surface AC is equal to the weight of water

contained in the volume CDAC. The upward vertical force acting on surface CB is

equal to the weight of water corresponding to a volume BCDAB.

Therefore the net upward vertical force on surface ACB

= Weight of water corresponding to volume of BCDAB
– Weight of water in volume CDAC

= Weight of water corresponding to a volume of BCAB
(half of the cylinder volume)

Hence, FV  = 9.81 ¥ 10
3
 ¥ 

1

2
 {3.14 ¥ (0.9)

2
 ¥ 2}N = 24.96 kN

O

B

C

D A

1
.8
m

Fig. 2.22(b) A circular cylinder in a

tank of water
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Example 2.9

A parabolic gate AB is hinged at A and latched at B as shown in Fig. 2.23. The gate

is 3 m wide. Determine the components of net hydrostatic force on the gate exerted

by water.

B

A
x

(Gate profile)

z

x =

dx
dz

dF
v

q

z2
1

3

Water

z

dF

dFH

ds

1
.5
m

Fig. 2.23 A parabolic gate under hydrostatic pressure

Solution

The hydrostatic force on an elemental portion of the gate of length ds (Fig. 2.23) can

be written as

dF = 9.81 ¥ 103 ¥ (1.5 – z) ds ¥ 3

The horizontal and vertical components of the force dF are

dFH = 9.81 ¥ 10
3
 ¥ 3(1.5 – z) ¥ ds cos q

= 9.81 ¥ 3 ¥ (1.5 – z) ¥ 103 dz

and

dFV  = 9.81 ¥ 10
3
 ¥ 3(1.5 – z) ¥ ds sin q

= 9.81 ¥ 3 ¥ (1.5 – z) ¥ 103 dx

Therefore, the horizontal component of hydrostatic force on the entire gate

FH =

1.5

0

Ú 9.81 ¥ 3 ¥ (1.5 – z) ¥ 103 dz

= 9.81 ¥ 103 ¥ 
1.5 1.5

3
2

¥
¥  N = 33.11 kN

The vertical component of force on the entire gate

FV  =

1.5

0

Ú 9.81 ¥ 3 ¥ (1.5 – z) ¥ 10
3
 

2

3
z

Ê ˆ
Á ˜Ë ¯  dz
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F
HG
Since x = 21

3
z  for the gate profile, dx = 

2

3
z  dz

I
KJ

=

3
32 (1.5)

9.81 10 3 N 11.04 kN
3 6

¥ ¥ ¥ ¥ =

Example 2.10

A sector gate, of radius 4 m and length 5 m, controls the flow of water in a horizon-

tal channel. For the equilibrium condition shown in Fig. 2.24, determine the total

thrust on the gate.

30º

4
m

A

E

F
v

dFv

dFH

FH

zp

F

dF

C

D O

dA

a

B

h

1 m

dq

q

Fig. 2.24 A sector gate controlling the flow of water in a channel

Solution

The horizontal component of the hydrostatic force is the thrust which would be

exerted by the water on a projected plane surface in a vertical plane. The height of

this projected surface is 4 sin 30° m = 2 m and its centroid is (1 + 2/2) m = 2 m below

the free surface.

Therefore, the horizontal component of hydrostatic thrust

FH = r gh A  = 1000 ¥ 9.81 ¥ 2 ¥ (5 ¥ 2) N = 196.2 kN

The line of action of FH passes through the centre of pressure which is at a dis-

tance zp below the free surface, given by (see Eq. 2.50a)

zP = 2 + 
35(2)

12 (5 2) 2¥ ¥ ¥
 = 2.167 m
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The vertical component of the hydrostatic thrust FV

= Weight of imaginary water contained in the volume ABDCEA

Now, VolumeABDCEA = Volume ABDEA + Volume OECO – Volume ODCO

Volume ABDEA = 5 ¥ AB ¥ BD = 5 ¥ (4 – 4 cos 30°) ¥ 1

= 5 ¥ 0.536

Volume OECO = 5 ¥ p ¥ (OC)
2
 ¥ 30/360

= 5 ¥ p ¥ (4)2 ¥ (30/360)

Volume ODCO = 5 ¥ 1

2
 ¥ 4 sin 30° ¥ 4 cos 30°

= 5 ¥ 1

2
 ¥ 2 ¥ 4 cos 30°

Therefore,

FV  = 1000 ¥ 9.81 ¥ 5 
È
ÍÎ
(0.536 ¥ 1) + 

2 30
4

360
pÊ ˆ¥ ¥Á ˜Ë ¯

– 
1

2 4 cos 30
2

Ê ˆ ˘¥ ¥ ∞Á ˜ ˙Ë ¯ ˚
 N = 61.8 kN

The centre of gravity of the imaginary fluid volume ABDCEA is found by taking
moments of the weights of all the elementary fluid volumes about BC. It is 0.237 m

to the left of BC. The horizontal and vertical components, being coplanar, combine

to give a single resultant force of magnitude F as

F = (FH
2
 + FV

2
)
1/2

 = {(196.2)
2
 + (61.8)

2
}

1/2
 = 205.7 kN

at an angle a = tan–1 (61.8/196.2) ª 17.5° to the horizontal.

Alternative method:

Consider an elemental area dA  of the gate subtending a small angle dq at 0 (Fig.

2.24). Then the hydrostatic thrust dF on the area dA  becomes dF = r gh dA .

The horizontal and vertical components of dF are

dFH = r gh d A  cos q

dFy = r gh d A  sin q

where h is the vertical depth of area dA  below the free surface.

Now, h = (1 + 4 sin q)

and dA  = (4 dq ¥ 5) = 20 dq

Therefore, the total horizontal and vertical components are

FH =

/ 6

0

d 1000 9.81 20 (1 4 sin ) cos d NHF

p

q q q= ¥ ¥ +Ú Ú  = 196.2 kN

FV  = 1000 ¥ 9.81 ¥ 20 

/ 6

0

p

Ú (1 + 4 sin q ) sin q dq N = 61.8 kN

Since all the elemental thrusts are perpendicular to the surface, their lines of action

pass through O and that of the resultant force therefore also passes through O.
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2.7   BUOYANCY

When a body is either wholly or partially immersed in a fluid, the hydrostatic lift

due to the net vertical component of hydrostatic pressure forces experienced by the

body is called the buoyant force and the phenomenon is called buoyancy. Consider

a solid body of arbitrary shape completely submerged in a homogeneous liquid as

shown in Fig. 2.25. Hydrostatic pressure forces act on the entire surface of the body.

x

z2

z1

p1

p2
x

xB

dF1

dF2

dAz

FB

B

z

Free surface patm
o

Fig. 2.25 Buoyant force on a submerged body

It is evident according to the earlier discussion in Section 2.6, that the resultant

horizontal force in any direction for such a closed surface is always zero. To calcu-

late the vertical component of the resultant hydrostatic force, the body is considered

to be divided into a number of elementary vertical prisms. The vertical forces acting

on the two ends of such a prism of cross section dA z (Fig. 2.25) are respectively

dF1 = (patm + p1) dA z = (patm + rgz1)dA z (2.62a)

dF2 = (patm + p2) dA z = (patm + rgz2) dA z (2.62b)

Therefore, the buoyant force (the net vertically upward force) acting on the el-

emental prism is

dFB = dF2 – dF1 = rg (z2 – z1) dA z = rgdV (2.63)

where dV  is the volume of the prism.

Hence, the buoyant force FB on the entire submerged body is obtained as

FB = d

V

g VrÚÚÚ  = rgV (2.64)
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where V  is the total volume of the submerged body. The line of action of the force

FB can be found by taking moment of the force with respect to the z axis. Thus

xB FB = Ú x dFB (2.65)

Substituting for dFB and FB from Eqs. (2.63) and (2.64) respectively into

Eq. (2.65), the x coordinate of the centre of buoyancy is obtained as

xB =
1

d

V

x V
V ÚÚÚ (2.66)

which is the centroid of the displaced volume. It is found from Eq. (2.64) that the

buoyant force FB equals the weight of liquid displaced by the submerged body of

volume V . This phenomenon was discovered by Archimedes and is known as the

Archimedes principle. This principle states that the buoyant force on a submerged

body is equal to the weight of liquid displaced by the body, and acts vertically up-

ward through the centroid of the displaced volume. Thus the net weight of the sub-

merged body, (the net vertical downward force experienced by it) is reduced from

its actual weight by an amount that equals to the buoyant force. The buoyant force

of a partially immersed body, according to Archimedes principle, is also equal to the

weight of the displaced liquid. Therefore the buoyant force depends upon the density

of the fluid and the submerged volume of the body. For a floating body in static

equilibrium and in the absence of any other external force, the buoyant force must

balance the weight of the body.

Example 2.11

A block of steel (sp. gr. 7.85) floats at a mercury water interface as in Fig. 2.26.

What is the ratio of a and b for this condition? (sp. gr. of mercury is 13.57).

Steel block

Mercury

Water

a

b

Fig. 2.26 A steel block floating at mercury water interface

Solution

Let the block have a uniform cross-sectional area A .

Under the condition of floating equilibrium as shown in Fig. 2.26,

Weight of the body = Total buoyancy force acting on it
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A  ¥ (a + b) (7850) ¥ g = (b ¥ 13.57 + a) ¥ A  ¥ g ¥ 10
3

Hence 7.85 (a + b) = 13.57b + a

or
a

b
 =

5.72

6.85
 = 0.835

Example 2.12

An aluminium cube 150 mm on a side is suspended by a string in oil and water as

shown in Fig. 2.27. The cube is submerged with half of it being in oil and the other

half in water. Find the tension in the string if the specific gravity of oil is 0.8 and the

specific weight of aluminium is 25.93 kN/m
3
.

75 mm

Water

Oil

150 mm

T

T

Fig. 2.27 An aluminium cube suspended in an oil and water system

Solution

Tension T in the string can be written in consideration of the equilibrium of the cube as

T = W  – FB

= 25.93 ¥ 103 ¥ (.15)3 – 9.81 ¥ 103 [(.153 ¥ 0.5 ¥ 0.8

+ (.15)3 ¥ 0.5 ¥ 1] N

= 57.71 N

(W  = Weight of the cube and FB = Total buoyancy force on the cube)

2.8   STABILITY OF UNCONSTRAINED BODIES IN FLUIDS

2.8.1 Submerged Bodies

For a body not otherwise restrained, it is important to know whether it will rise or

fall in a fluid, and also whether an orginally vertical axis in the body will remain
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vertical. When a body is submerged in a liquid, the equilibrium requires that the

weight of the body acting through its cetre of gravity should be colinear with an

equal hydrostatic lift acting through the centre of buoyancy. In general, if the body

is not homogeneous in its distribution of mass over the entire volume, the location

of centre of gravity G does not coincide with the centre of volume, i.e., the centre of

buoyancy B. Depending upon the relative locations of G and B, a floating or sub-

merged body attains different states of equilibrium, namely, (i) stable equilibrium

(ii) unstable equilibrium and (iii) neutral equilibrium.

A body is said to be in stable equilibrium, if it, being given  a small angular

displacement and hence released, returns to its original position by retaining the

originally vertical axis as vertical. If, on the other hand, the body does not return to its

original position but moves further from it, the equilibrium is unstable. In neutral

equilibrium, the body having been given a small displacement and then released will

neither return to its original position nor increase its displacement further, it will

simply adopt its new position. Consider a submerged body in equilibrium whose

centre of gravity is located below the centre of buoyancy (Fig. 2.28(a)). If the body is

tilted slightly in any direction, the buoyant force and the weight always produce a

restoring couple trying to return the body to its original position (Fig. 2.28(b), 2.28(c)).

On the other hand, if point G is above point B (Fig. 2.29(a)), any disturbance from the

equilibrium position will create a destroying couple which will turn the body away

from its original position (Figs. 2.29(b), 2.29(c)). When the centre of gravity G and

centre of buoyancy B coincides, the body will always assume the same position in

FB

B

G

W

(a) (b) (c)

W

W = FB

W

G G

B B

FB FB

Free surface

Fig. 2.28 A submerged body in stable equilibrium



Fluids under Rest/Rigid Body Motion 83

which it is placed (Fig. 2.30) and hence it is in neutral equilibrium. Therefore, it can

be concluded from the above discussion that a submerged body will be in stable,

unstable or neutral equilibrium if its centre of gravity is below, above or coincident

with the centre of buoyancy respectively (Fig. 2.31).

G

B
B

W

W W

(a) (b) (c)

FB

FB W F= B

G

BFB

Free surface

G

Fig. 2.29 A submerged body in unstable equilibrium

W W W

(a) (b) (c)

FB

FB

W = FB

G

FB

Free surface

G B B G B

Fig. 2.30 A submerged body in neutral equilibrium
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W

(a) (b) (c)

W = FB

W = FB W = FB W = FB

FB

FB FB

Free surface

Stable
equilibrium

Neutral
equilibrium

Unstable
equilibrium

B

G

G B

W G

B

W

Fig. 2.31 States of equilibrium of a submerged body

2.8.2 Floating Bodies

The condition for angular stability of a floating body is a little more complicated.

This is because, when the body undergoes an angular displacement about a

horizontal axis, the shape of the immersed volume changes and so the centre of

buoyancy moves relative to the body. As a result, stable equlibrium can be achieved,

under certain condition, even when G is above B. Figure 2.32(a) illustrates a float-

ing body—a boat, for example, in its equilibrium position. The force of buoyancy

FB is equal to the weight of the body W  with the centre of gravity G being above the

centre of buoyancy in the same vertical line. Figure 2.32(b) shows the situation after

the body has undergone a small angular displacement q with respect to the vertical

axis. The centre of gravity G remains unchanged relative to the body (This is not

always true for ships where some of the cargo may shift during an angular displace-

ment). During the movement, the volume immersed on the right-hand side increases

while that on the left-hand side decreases. Therefore the centre of buoyancy (i.e.,

the centroid of immersed volume) moves towards the right to its new position B¢.
Let the new line of action of the buoyant force (which is always vertical) through B¢
intersect the axis BG (the old vertical line containing the centre of gravity G and the
old centre of buoyancy B) at M . For small values of q, the point M is practically

constant in position and is the known as the metacentre. For the body shown in Fig.

2.32, M  is above G, and the couple acting on the body in its displaced position is a

restoring couple which tends to turn the body to its original position. If M were

below G, the couple would be an overturning couple and the original equilibrium

would have been unstable. When M coincides with G, the body will assume its new

position without any further movement and thus will be in neutral equilibrium.

Therefore, for a floating body, the stability is determined not simply by the relative

position of B and G, but rather by the relative position of M  and G. The distance of
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the metacentre above G along the line BG is known as metacentric height GM which

can be written as

GM = BM – BG

W W

M

W = FB

Equilibrium position Tilted position

(a) (b)

B B¢
FB

FB

G

B

q

G

Fig. 2.32 A floating body in stable equilibrium

Hence the condition of stable equilibrium for a floating body can be expressed in

terms of metacentric height as follows:

GM > 0 (M is above G) Stable equilibrium

GM = 0 (M  coinciding with G) Neutral equilibrium

GM < 0 (M  is below G) Unstable equilibrium

The angular displacement of a boat or ship about its longitudinal axis is known as

‘rolling’ while that about its transverse axis is known as ‘pitching’.

2.8.3 Experimental Determination of Metacentric Height

A simple experiment is usually conducted to determine the metacentric height. Sup-

pose that for the boat, shown in Fig. 2.33, the metacentric height corresponding to

‘roll’ about the longitudinal axis (the axis perpendicular to the plane of the figure) is

required. Let a weight P be moved transversely across the deck (which was initially

horizontal) so that the boat heels through a small angle q and comes to rest at this

new position of equilibrium. The new centres of gravity and buoyancy are therefore

again vertically in line. The movement of the weight P through a distance x in fact

causes a parallel shift of the centre of gravity (centre of gravity of the boat including

P) from G to G¢.

Hence, P ◊ x = W  GG¢
Again, GG¢ = GM tan q

Therefore, GM = cot
P x

W
q

◊
(2.67)
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W

P

M

P

X

(a) (b)

B¢

G¢

FB

G
B

B

G

q

Fig. 2.33 Experimental determination of metacentric height

The angle of heel q can be measured by the movement of a plumb line over a

scale. Since the point M corresponds to the metacentre for small angles of heel only,

the true metacentric height is the limiting value of GM as q Æ 0. This may be

determined from a graph of nominal values of GM calculated from Eq. (2.67) for

various values of q (positive and negative).

It is well understood that the metacentric height serves as the criterion of

stability for a floating body. Therefore it is desirable to establish a relation between

the metacentric height and the geometrical shape and dimensions of a body so that

one can determine the position of the metacentre beforehand and then construct the

boat or the ship accordingly. This may be done simply by considering the shape of

the hull. Figure 2.34(a) shows the cross section, perpendicular to the axis of rota-

tion, in which the centre of buoyancy B lies at the initial equilibrium position. The

position of the body after a small angular displacement is shown in Fig. 2.34(b). The

section on the left, indicated by cross-hatching, has emerged from the liquid,

whereas the cross-hatched section on the right has moved down into the liquid. It is

assumed that there is no overall vertical movement; thus the vertical equilibrium is

undisturbed. As the total weight of the body remains unaltered so does the volume

immersed, and therefore the volumes corresponding to the cross-hatched sections

are equal. This is so if the planes of flotation for the equilibrium and displaced

positions intersect along the centroidal axes of the planes. The coordinate axes are

chosen through O as origin. O Y is perpendicular to the plane of Fig 2.34(a) and

2.34(b), O Y lies in the original plane of flotation (Fig. 2.34(c)) and OZ is vertically

downwards in the original equilibrium position. The total immersed volume is con-

sidered to be made up of elements each underneath an area dA  in the plane of flota-

tion as shown in Figs 2.34(a) and 2.34(c). The by definition is the centroid of the

immersed volume (the liquid being assumed homogeneous). The x coordinate xB of

the centre of buoyancy may therefore be determined by taking moments of elemen-

tal volumes about the y z plane as

VxB = ( d )z A xÚ (2.68)
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Plane of
flotation
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Plane of flotation

B

G

B¢

x

Fig. 2.34 Analysis of metacentric height

After displacement, the depth of each elemental volume immersed is z + x tan q

and hence the new centre of buoyancy x¢B can be written as

Vx¢B = Ú (z + x tan q ) dA  x (2.69)

Subtracting Eq. (2.68) from Eq. (2.69), we get

V (x¢B – xB) = Ú x2 tan q dA  = tan q Ú x2 dA (2.70)

The second moment of area of the plane of flotation about the axis Oy is

defined as

Iyy = Ú x2 dA (2.71)

Again, for small angular displacements,

x ¢B – xB = BM tan q (2.72)

With the help of Eqs (2.71) and (2.72), Eq. (2.70) can be written as

BM =
yyI

V
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=

Second moment of area of the plane of flotation about

the centroidal axis perpendicular to plane of rotation

Immersed volume
(2.73)

Hence, GM =
yyI

V
 – BG (2.74)

The length BM is sometimes referred to as the metacentric radius; it must not be

confused with the metacentric height GM. For the rolling movement of a ship, the

centroidal axis about which the second moment is taken is the longitudinal one,

while for pitching movements, the appropriate axis is the transverse one. For typical

sections of the boat, the second moment of area about the transverse axis is much

greater than that about the longitudinal axis. Hence, the stability of a boat or ship

with respect to its rolling is much more important compared to that with respect to

pitching. The value of BM for a ship is always affected by a change of loading

whereby the immersed volume alters. If the sides are not vertical at the water-line,

the value of Iyy may also change as the vessel rises or falls in the water. Therefore,

floating vessels must be designed in a way so that they are stable under all condi-

tions of loading and movement.

2.8.4 Floating Bodies Containing Liquid

If a floating body carrying liquid with a free surface undergoes an angular

displacement, the liquid will also move to keep its free surface horizontal. Thus not

only does the centre of buoyancy B move, but also the centre of gravity G of the

floating body  and its contents move in the same direction as the movement of B.

Hence the stability of the body is reduced. For this reason, liquid which has to be

carried in a ship is put into a number of separate compartments so as to minimise its

movement within the ship.

2.8.5 Period of Oscillation

It is observed from the foregoing discussion that the restoring couple caused by the

buoyant force and gravity force acting on a floating body displaced from its equilib-

rium position is W ◊ GM sin q (Fig. 2.32). Since the torque equals the mass moment

of inertia (i.e., second moment of mass) multiplied by angular acceleration, it can be

written as

W (GM) sin q = – IM (d2q/dt2) (2.75)

where IM represents the mass moment of inertia of the body about its axis of

rotation. The minus sign in the RHS of Eq. (2.75) arises since the torque is a retard-

ing one and decreases the angular acceleration. If q is small, sin q ª q and hence Eq.

(2.75) can be written as

2

2

d

d M

W GM

It

q
q

◊
+  = 0 (2.76)
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Equation (2.76) represents a simple harmonic motion. The time period (i.e., the

time of a complete  oscillation from one side to the other and back again) equals to

2p (IM /W ◊ GM)1/2. The oscillation of the body results in a flow of the liquid around

it and this flow has been disregarded here. In practice, of course, viscosity in the

liquid introduces a damping action which quickly suppresses the oscillation unless

further disturbances such as waves cause new angular displacements.

The metacentric height of ocean-going vessel is usually of the order of 0.3 m to

1.2 m. An increase in the metacentric height results in a better stability but

reduces the period of roll, and so the vessel is less comfortable for passengers. In

cargo vessels the metacentric height and the period of roll are adjusted by

changing the position of the cargo. If the cargo is placed further from the centre-

line, the moment of inertia of the vessel and consequently the period may be in-

creased with little sacrifice of stability. On the other hand, in warships and racing

yachts, stability is more important than comfort, and such vessels have larger meta-

centric heights.

Example 2.13

A cube of side a floats with one of its axes vertical in a liquid of specific gravity SL.

If the specific gravity of the cube material is Sc, find the values of SL/Sc for the

metacentric height to be zero.

Solution

Let the cube float with h as the submerged depth, as shown in Fig. 2.35.

For equilibrium of the cube,

Sp. gr. Sp. gr.

SL
SC

G

M

a

B
h

Fig. 2.35 A solid cube floating in a liquid

Weight = Buoyant force

a3Sc ¥ 103 ¥ 9.81 = h a2 ¥ SL ¥ 103 ¥ 9.81

or, h = a (Sc/SL) = a/x

where SL/Sc = x



90 Introduction to Fluid Mechanics and Fluid Machines

The distance between the centre of buoyancy B and centre of gravity G becomes

BG =
1

1
2 2 2

a h a

x

Ê ˆ- = -Á ˜Ë ¯

Let M  be the metacentre, then

BM =

3

4

2
2

12

12
12

a
a

I a ax

aV a h a
x

Ê ˆ
Á ˜Ë ¯

= = =
Ê ˆ
Ë ¯

The metacentric height MG = BM – BG = 
1

1
12 2

ax a

x

Ê ˆ- -Á ˜Ë ¯

According to the given condition,

MG =
1

1
12 2

ax a

x

Ê ˆ- -Á ˜Ë ¯
 = 0

or x2
 – 6x + 6 = 0

which gives x  =
6 12

2

±
 = 4.732, 1.268

Hence, SL/Sc = 4.732 or 1.268

Example 2.14

A rectangular barge of width b and a submerged depth of H has its centre of gravity

at the waterline. Find the metacentric height in terms of b/H, and hence show that

for stable equilibrium of the burge b/H ≥ 6 .

Solution

Let B, G and M  be the centre of buoyancy, centre of gravity and metacentre of the

burge (Fig. 2.36), respectively.

M

b

G

B
H

O

Fig. 2.36 A rectangular barge in water
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Now, OB = H/2

and OG = H (as given in the problem)

Hence, BG = OG – OB = H – 
2 2

H H
=

Again, BM =
3 2

12 12

I L b b

V L b H H
= =

¥ ¥ ¥
where, L is the length of the barge in a direction perpendicular to the plane of the

Fig. 2.36.

Therefore, MG = BM – BG = 

22 1
1

12 2 2 6

b H H b

H H

Ï ¸Ô ÔÊ ˆ- = -Ì ˝Á ˜Ë ¯Ô ÔÓ ˛

For stable equilibrium of the barge, MG ≥ 0

Hence,

2
1

1
2 6

H b

H

Ï ¸Ô ÔÊ ˆ -Ì ˝Á ˜Ë ¯Ô ÔÓ ˛
 ≥ 0

which gives b/H ≥ 6

Example 2.15

A solid hemisphere of density r and radius r floats with its plane base immersed in

a liquid of density rl (rl > r). Show that the equilibrium is stable and the metacentric

height is

3
1

8

lr
r

r

Ê ˆ-Á ˜Ë ¯

Solution

The hemisphere in its floating condition is shown in Fig. 2.37. Let V  be the

submerged volume. Then from equilibrium under floating condition,

32

3
rp r¥  = V  ¥ rl

or V  = 32

3 l

r
r

p
r

¥

M

B

G
H

z
dz

O

Fig. 2.37 A solid hemisphere floating in a liquid
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The centre of gravity G will lie on the axis of symmetry of the hemisphere. The

distance of G along this line from the base of the hemisphere can be found by taking

moments of elemental circular strips (Fig. 2.37) about the base as

OG =

2 2

0

3

( – ) d
3

2 8

3

r

r z z z

r

r

p

p

=
Ú

In a similar way, the location of centre of buoyancy which is the centre of

immersed volume V  is found as

OB =

2 2

2 2
0

2 2
3

( – ) d
3

2
2 8

3

H

l

l

r z z z
H H

r
r rr

p
r

r r
p

r

Ê ˆ
= -Á ˜Ë ¯

Ú
(2.77)

where H is the depth of immersed volume as shown in Fig. 2.37.

If rh is the radius of cross section of the hemisphere at water line, then we can write

H2
 = r2

 – r2
h

Substituting the value of H in Eq. (2.77), we have

OB =

4

4

3
1

8

l hrr
r

r

r

Ê ˆ
-Á ˜Ë ¯

The height of the metacentre M  above the centre of buoyancy B is given by

BM =
4 4

4
3

3

82
4

3

h l h

l

r rI
r

V r
r

p r

rr
p

r

= =
Ï ¸Ê ˆ
Ì ˝Ë ¯Ó ˛

Therefore, the metacentric height MG becomes

MG = MB – BG = MB – (OG – OB)

=

4 4

4 4

3 3 3
1

8 8 8

l h l hr r
r r r

r r

r r

r r

È Ê ˆ ˘
- + -Í ˙Á ˜Ë ¯Î ˚

=
3

1
8

lr
r

r

Ê ˆ
-Á ˜Ë ¯

Since rl > r, MG > 0, and hence, the equilibrium is stable.

Example 2.16

A cone floats in water with its apex downward (Fig. 2.38) and has a base diameter D

and a vertical height H. If the specific gravity of the cone is S , prove that for stable

equilibrium,
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H2
 <

2 1/3

1/3

1

4 1

D S

S

Ê ˆ
Á ˜Ë ¯-

Solution

Let the submerged height of the cone under floating condition be h, and the diameter

of the cross section at the plane of flotation be d (Fig. 2.38).

For the equilibrium,

Weight of the cone = Total buoyancy force

21

3 4

D
H Sp

Ê ˆ
◊Á ˜Ë ¯

 =
21

3 4

d
hp

Ê ˆ
◊Á ˜Ë ¯

(2.78)

Again from geometry,

d = D 
h

H
(2.79)

Using the value of d from Eq. (2.79) in Eq. (2.78), we get

h = H S1/3
(2.80)

The centre of gravity G of the cone is found out by considering the mass of

cylindrical element of height dz and diameter Dz/H, and its moment about the apex

0 in the following way:

OG =

2 2

2

0

2

d
4 3

41

3 4

H
D z

z z
H

H
D

H

p

p

=
Ú

The centre of buoyancy B is the centre of volume of the submerged conical part

and hence OB = 
3

4
 h.

Therefore, BG = OG – OB = 
3

4
 (H – h)

Substituting h from Eq. (2.80) we can

write

BG =
3

4
 H (1 – S1/3) (2.81)

If M  is the metacentre, the metacentric

radius BM can be written according to Eq.

(2.73) as

BM  = 
4 2

2

1 3

1 16
64 ( /4)

3

d d

V h
d h

p

p

= =
¥

D

H
h

G

O

z

dz

B

M

d

Fig. 2.38 A solid cone floating

in water
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Substituting d from Eq. (2.79) and h from Eq. (2.80), we can write

BM =
2

1/33

16

D
S

H

The metacentric height

MG = BM – BG

=
2

1/3 1/33 3
(1 )

16 4

D
S H S

H
- -

For stable equilibrium, MG > 0

Hence,
2

1/3 1/33 3
(1 ) 0

16 4

D
S H S

H
- - >

or
2

1/3 1/3

2
4(1 ) 0

D
S S

H
- - >

or
2

1/3 1/3

2
4(1 )

D
S S

H
> -

or

2

2 1/3 1/3

1

4(1 )

H

D S S
<

-

Hence,

2 1/3
2

1/34(1 )

D S
H

S
<

-

Example 2.17

An 80 mm diameter composite solid cylinder consists of an 80 mm diameter 20 mm

thick metallic plate having sp. gr. 4.0 attached at the lower end of an 80 mm diameter

wooden cylinder of specific gravity 0.8. Find the limits of the length of the wooden

portion so that the composite cylinder can float in stable equilibrium in water with

its axis vertical.

Solution

Let l be the length of the wooden piece. For floating equilibrium of the composite

cylinder,

Weight of the cylinder  £ Weight of the liquid of the same volume as that
of the cylinder

Hence,
2 2(0.08) (0.08)

{0.02 4 0.8 } {0.02 }
4 4

l l
p p

¥ + £ +

From which l ≥ 0.3 m
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Hence, the minimum length of the wooden portion lminimum = 0.3 m = 300 mm.

The minimum length corresponds to the situation when the cylinder will just

float with its top edge at the free surface (Fig. 2.39a). For any length l greater than

300 mm, the cylinder will always float in equilibrium with a part of its length

submerged as shown in (Fig. 2.39b). The upper limit of l would be decided from the
consideration of stable equilibrium (angular stability) of the cylinder.

l min h

l

20 mm

20 mm

80 mm

(a) (b)

80 mm

M

G

B

O

Fig. 2.39 A composite cylinder floating in water

For stable equilibrium,

Metacentric height > 0 (2.82)

The location of centre of gravity G of the composite cylinder can be found as

OG =

2

2

(.08)
[.02 4 .01 .8(0.5 0.02)]

4

(.08)
(.08 .8 )

4

l l

l

p

p

¥ ¥ + ¥ +

+

=
25 0.2 0.01

10 1

l l

l

+ +
+

The submerged length h of the wooden cylinder is found from the consideration

of floating equilibrium as

Weight of the cylinder = Buoyancy force

2(.08)
(.02 4 .8 }

4
l

p
¥ +  =

2(.08)

4
h

p
¥

or h = 0.08 (10 l + 1) (2.83)
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The location of the centre of buoyancy B can therefore be expressed as OB = h/2 =

0.04 (10 l + 1)

Now BG = OG – OB = 
25 0.2 0.01

0.04(10 1)
10 1

l l
l

l

+ +
- +

+

=

2 – 0.6 – .03

10 1

l l

l +
(2.84)

The location of the metacentre M above buoyancy B can be found out according

to Eq. (2.73) as

BM =

4

2

(.08) 4

64 (.08)

I

V h

p

p

¥
=

¥ ¥
(2.85)

Substituting h from Eq. (2.83) to Eq. (2.85), we get

BM =
.005

10 1l +

Therefore, MG = BM – BG = 
.005

10 1l +
 – 

2 0.6 .03

10 1

l l

l

- -
+

=

2– ( – 0.6 – .035)

10 1

l l

l +

Using the criterion for stable equilibrium as MG > 0 we have,

2– ( – 0.6 – .035)

10 1

l l

l +
 > 0

or l2
 – 0.6 l – .035 < 0

or (l – 0.653) (l + 0.053) < 0

The length l can never be negative. Hence, the physically possible condition is

l – 0.653 < 0

or l < 0.653

2.9 FLUIDS UNDER RIGID BODY MOTION (RELATIVE
EQUILIBRIUM)

In certain instances of fluid flow, the behaviour of fluids in motion can be found

from the principles of hydrostatics. Fluids in such motions are said to be in relative

equilibrium or in relative rest. These situations arise when a fluid flows with uniform

velocity without any acceleration or with uniform acceleration.

2.9.1 Flow with Constant Acceleration

When a fluid moves uniformly in a straight line without any acceleration, there is

neither shear force nor inertia force acting on the fluid particle which maintains its
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motion simply due to inertia. The weight of a fluid particle is balanced by the

pressure-force as it happens in case of a fluid mass at absolute rest, and therefore

the hydrostatic equations can be applied without change. If all the fluid concerned

now undergo a uniform acceleration in a straight line without any layer moving

relative to another, there are still no shear forces, but an additional force acts to

cause the acceleration. Nevertheless, provided that due allowance is made for the

additional force, the system may be studied by the methods of hydrostatics.

Let us consider a rectangular fluid element in a three-dimensional rectangular

Cartesian coordinate system, as shown in Fig. 2.40. The pressure in the centre of the

element is p. The fluid element is moving with a constant acceleration whose

components along the coordinate axes x, y, and z are ax, ay and az, respectively. The

force acting on the fluid element in the x direction is

1 1
d d

2 2

p p
p x p x

x x

∂ ∂

∂ ∂

ÈÊ ˆ Ê ˆ ˘- - +Á ˜ Á ˜Í ˙Ë ¯ Ë ¯Î ˚
 dy dz

=
p

x

∂

∂
 dx dy dz

p - p +

p +

p +

z az

ay

ax

ax

dz

o x

p -

p -

∂p ∂p

∂p

∂p

∂p

∂ p

dx dx

p

dx

dy

dy

y

dz

dz

dy

∂p ∂ x

∂ y

∂ z

∂ z

∂y

2 2

2

2

2

2

∂ p

∂y

Fig. 2.40 Equilibrium of fluid element moving with constant acceleration

Therefore the equation of motion in the x direction can be written as

r dx dy dz ax =
p

x

∂

∂
-  dx dy dz

or
p

x

∂

∂
 = – r ax (2.86a)

where r is the density of the fluid. In a similar fashion, the equation of motion in the

y direction can be written as
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p

y

∂

∂
 = – r ay (2.86b)

The net force on the fluid element in z direction is the difference of pressure force

and the weight. Therefore the equation of motion in the z direction is written as

p
g

z

∂
r

∂

Ê ˆ- -Á ˜Ë ¯  dx  dy dz = r az dx dy dz

or
p

z

∂

∂
 = – r (g + az) (2.86c)

It is observed that the governing equations of pressure distribution [Eqs (2.86a),

(2.86b) and (2.86c)] are similar to the pressure distribution equation of hydrostatics.

If we consider, for simplicity, a two-dimensional case where the y component of

the acceleration ay is zero, then a surface of constant pressure in the fluid will be one

along which

dp =
p

x

∂

∂
 dx  + 

p

z

∂

∂
 dz = 0

or
d

d

z

x
 = – 

p

x

p

z

∂

∂

∂

∂

 = x

z

a

g a
-

+
(2.87)

Since ax and az are constants, a surface of constant pressure has a constant slope.

One such surface is a free surface, if it exists, where p = patm; other constant pressure

planes are parallel to it. As a practical example, we consider an open tank containing

a liquid that is subjected to a uniform acceleration ax in horizontal direction (Fig.

2.41(a)). Here ay = az = 0, and the slope of constant pressure surfaces is given by

tan q = dz /dx = – ax /g (2.87a)

Original liquid

surface

(a) (b)

Constant-pressure
planes

z

ax

h

x

z

q

z

x

q = tan
–1{– /( )}ax g + ax

Fig. 2.41 (a) Liquid subjected to uniform acceleration (b) Constant pressure

planes
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If the tank is uniformly accelerated only in the vertical direction, then from the

Eq. (2.87), dz/dx = 0 and planes of constant pressure are horizontal. Therefore,

when a container with a liquid in it is allowed to fall freely under gravity, then the

free surface remains horizontal. Moreover, from the Eq. (2.86(c)), dp/dz = – r
(g – g) = 0. This implies that a point in the liquid under this situation experiences no

hydrostatic pressure due to the column of liquid above it. Therefore pressure is

throughout atmospheric, provided a free surface exists, for example, if the container

is open. From the above discussion, an interesting fact can be concluded, that if

there is a hole on the base of a container with an open top, liquid will not leak

through it during the free fall of the container.

For a two-dimensional system in a vertical plane, pressure at a point in the fluid

may be determined from Eq. (2.86a) and (2.86c) as

p = Ú dp = 
p

x

∂

∂Ú dx + 
p

x

∂

∂Ú dz

= – r ax x – r (g + az) z + constant (2.88)

The flow is considered to be of constant density and the integration constant is

determined by any given condition of the problem. An alternative expression for

pressure distribution can be obtained with respect to a frame of coordinates with z
and h axes (Fig. 2.41b), parallel and perpendicular to the constant-pressure planes

respectively. Then dp/dz = 0 and

p∂

∂h
 =

p

x x

∂ ∂h

∂ ∂
 = 

sin

xar

q

-
(2.89)

Again from Eq. (2.87),

d

d

z

x
 = tan q = x

z

a

g a

-
+

which gives, sin q =
2 2 1/ 2

( ( ) )

x

x z

a

a g a+ +
(2.90)

Since p is a function of h only, ∂p/∂h can be written as dp/dh. Hence the Eq. (2.89)

can be written with the help of the Eq. (2.90) as

dp

dh
 = ( )1/ 22 2( )x za g ar- + + (2.91)

A comparison of the Eq. (2.91) with the pressure distribution equation in

hydrostatics [Eq. (2.9)] shows that pressure in case of fluid motions with uniform

acceleration may be calculated by the hydrostatic principle provided that

( )1/22 2( )x za g a+ +  takes the place of g, and h the place of vertical coordinate.

Discussion on fluids under rigid body rotation (forced vortex flow) has been

made in Chapter 4.



100 Introduction to Fluid Mechanics and Fluid Machines

Example 2.18

Determine the equation of free surface of water in a tank 4 m long, moving with a

constant acceleration of 0.5 g along the x axis as shown in Fig. 2.42.

4 m

ax = 0.5 g

z

x

Fig. 2.42 Liquid in a tank under uniform acceleration

Solution

Let us consider the pressure p at a point to be a function of x and z.

Hence, dp =
p

x

∂

∂
dx + 

p

z

∂

∂
dz (2.92)

From Eqs. (2.86a) and (2.86c),

∂p/∂x = – r ax

∂p/∂z = – r (g + az)

where ax and az are the accelerations in x and z directions, respectively.

Here, ax = 0.5 g

and az = 0

Therefore, Eq. (2.92) becomes,

dp = – r (0.5g dx + g dz)

Integrating the equation, we obtain

p = – rg (0.5x + z) + c (2.93)

where c is a constant. Considering the origin of the coordinate axes at free surface,

we have

p = patm (atmospheric pressure), at x = 0 and z = 0

Therefore, Eq. (2.93) becomes

– rg (0.5x + z) = p – patm (2.94)
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The equation of free surface can be obtained by putting p = patm in Eq. (2.94) as

– rg (0.5x + z) = 0

or z + 0.5x = 0

Example 2.19

A rectangular tank of length L = 10 m, height h = 2 m and width (perpendicular to

the plane of Fig. 2.43) 1 m is initially half-filled with water. The tank suddenly

accelerates along the horizontal direction with an acceleration = g (acceleration due

to gravity). Will any water spill out of the tank?

—

L

h

g

x

h0

Fig. 2.43 

Solution

Ñ

L

h

g

x

h0
q ,maxx

a

Fig. 2.43(a) 
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Let us consider the case that the tank accelerates with a maximum acceleration ax

along the horizontal direction without spilling the water. Since the volume of the

water in the tank remains unchanged, the free surface takes the shape as shown in

Fig. 2.43(a).

From Eq. (2.87a), we have

,max
tan

xah

L g
q = =

or
,max 2

0.2
10

xa

g
= =

or ,max 0.2xa g=

This is the maximum acceleration that can be given without spilling the water.

Since the given acceleration is higher than this value, the water will spill out of the

tank.

Example 2.20

A rectangular tank of dimensions 1m ¥ 2m ¥ 3m is filled with water to one fourth of

its height and is closed at all sides (Fig. 2.44). If the tank accelerates towards the

right, then what is the minimum value of acceleration for which there is no force

exerted on the top face?

Ñ

1 m

2 m

g

a

Fig. 2.44 

Solution

Let us consider the two different cases separately as shown in Figs 2.44(a) and

2.44(b) for which there is no force exerted on the top face of the tank.

For case 1 (Fig. 2.44(a)), from Eq. (2.87a) one can write

1

2
tan

1

xah

g
q

-
= = (2.95)
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(a) (b)

Ñ

1 m

2 h-

x

z h

q1

Ñ

1 m

q2

2 m

a

Fig. 2.44 

Since the volume of the water in the tank remains unchanged, we have

1 0" = "

or 1

1 1
1 tan 1 1 2

2 4
hq¥ ¥ + ¥ = ¥ ¥ (2.96)

From Eqs (2.95) and (2.96), we get

2 1

2 2

h
h

-
+ =

or 1h = -
Therefore, this case is not possible.

For case 2 (Fig. 2.44b), from Eq. (2.87a) one can write

2

2
tan xa

a g
q = = (2.97)

Since the volume of the water in the tank remains unchanged, we have

2 0" = "

or 2

1 1
tan 1 2

2 4
a a q¥ ¥ = ¥ ¥ (2.98)

From Eqs (2.97) and (2.98), we get

2 2 1

2 2

a

a
¥ =

or
1

2
a =
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Now, 2

2
tan 4

1

2

xa

g
q = = =

or 4xa g=
This is the minimum value of acceleration for which there is no force exerted on

the top face of the tank.

Example 2.21

A U-tube manometer with diameter D (<< L) accelerates towards the right, as shown

in Fig. 2.45. Find out the value of h, when ax = 5m/s
2
.

xa
h

D

L

0.5L 0.5L

Fig. 2.45 

Solution

xa
h

D

L

0.5L 0.5L

q

Fig. 2.45(a) 
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The free surface (see Fig. 2.45(a)) can be considered as a point because the

diameter of the manometer is so small. With this consideration, from Eq. (2.87a),

one can write

5
tan 0.51

9.81

xa

g
q = = =

or 27.02q = ∞
Then, h can be found from the geometry of the Fig. (2.45(a)) as

0.5 tan 0.5 0.51 0.255h L L Lq= = ¥ =

Example 2.22

Water containing in a cylindrical tank, which is initially

rotated at a constant angular speed, w, about its axis as

shown in Fig. 2.46. After a short time duration, there is

no relative motion between the water and the tank.

Assuming the water to be undergoing a rigid body-like

rotation, determine the equation of free surface of the

water.

Solution

Let us consider the pressure p at a point to be a function of r and z.

Hence,
p p

dp dr dz
r z

∂ ∂
= +
∂ ∂

(2.99)

From Eqs (2.86a) and (2.86c),

r

p
a

r
r

∂
= -

∂

( )z

p
g a

z
r

∂
= - +

∂

Here,
2

ra rw= - (centripetal acceleration)

and 0za =

Therefore, Eq. (2.99) becomes

2dp rdr gdzrw r= -  (2.99a)

Integrating the Eq. (2.99a), we obtain

2 2

2

r
p gz c

rw
r= - +  (2.100)

where c is an integration constant. Considering the origin of the coordinate axes at

free surface, we have

r

z

w

g

Fig. 2.46 
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p = patm, at z = 0 and r = 0

Therefore, Eq. (2.100) becomes

2 2

atm
2

r
p p gz

rw
r- = -  (2.101)

The equation of free surface can be obtained by putting p = patm in Eq. (2.101) as

2 2

2

r
gz

rw
r =

or
2 2

2

r
z

g

w
=  (2.102)

Example 2.23

A U-tube manometer with diameter D (<< L) is rotated about its right leg with

angular velocity w without translation, as shown in Fig. 2.47. Find out the value of h.

r

z

h

h

w
D

L

Fig. 2.47 

Solution

The free surface of the fluid is shown in Fig. 2.47 for the case of rotation without

translation.

Since D << L, from Eq. (2.102) the pressure difference between the two legs can

be calculated as

2 2 2 2

2
2 2

r L
h

g g

w w
= =

or
2 2

4

L
h

g

w
=
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SUMMARY

∑ Normal stresses at any point in a fluid at rest, being directed towards the

point from all directions, are of equal magnitude. The scalar magnitude of

the stress is known as hydrostatic or thermodynamic pressure.

∑ The fundamental equations of fluid statics are written as ∂ p/∂ x = 0, ∂ p/∂ y

= 0 and ∂ p/∂ z = – rg with respect to a Cartesian frame of reference with x –

y plane as horizontal and axis z being directed vertically upwards. For an

incompressible fluid, pressure p at a depth h below the free surface can be

written as p = p0 + rgh, where p0 is the local atmospheric pressure.

∑ At sea level, the international standard atmospheric pressure has been cho-

sen as patm = 101.32 kN/m
2
. The pressure expressed as the difference be-

tween its value and the local atmospheric pressure is known as gauge pres-

sure.

∑ Piezometer tube measures the gauge pressure of a flowing liquid in terms of

the height of liquid column. Manometers are devices in which columns of a

suitable liquid are used to measure the difference in pressure between two

points or between a certain point and the atmosphere. A simple U-tube ma-

nometer can be modified as an inclined tube manometer, an inverted tube

manometer and a micro manometer to measure a small difference in pres-

sure through a relatively large deflection of liquid columns.

∑ The hydrostatic force on any one side of a submerged plane surface is equal

to the product of the area and the pressure at the centre of area. The force

acts in a direction perpendicular to the surface and its point of action, known

as pressure centre, is always at a higher depth than that at which the centre of

area lies. The distance of centre of pressure from the centre of area along the

axis of symmetry is given by yp – yC = Ix¢x¢/A yc.

∑ For a curved surface, the component of hydrostatic force in any horizontal

direction is equal to the hydrostatic force on the projected plane surface on a

vertical plane perpendicular to that direction and acts through the centre of

pressure for the projected plane area. The vertical component of hydrostatic

force on a submerged curved surface is equal to the weight of the liquid

volume vertically above the submerged surface to the level of the free sur-

face of liquid and acts through the centre of gravity of the liquid in that

volume.

∑ When a solid body is either wholly or partially immersed in a fluid, the hy-

drostatic lift due to the net vertical component of the hydrostatic pressure

forces experienced by the body is called the buoyant force. The buoyant

force on a submerged or floating body is equal to the weight of liquid dis-

placed by the body and acts vertically upward through the centroid of dis-

placed volume known as the centre of buoyancy.

∑ The equilibrium of floating or submerged bodies requires that the weight of

the body acting through its centre of gravity has to be colinear with an equal

buoyant force acting through the centre of buoyancy. A submerged body

will be in stable, unstable or neutral equilibrium if its centre of gravity is

below, above or coincident with the centre of buoyancy respectively. The

metacentre of a floating body is defined as the point of intersection of the
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centre line of cross section containing the centre of gravity and centre of

buoyancy with the vertical line through new centre of buoyancy due to any

small angular displacement of the body. For stable equilibrium of floating

bodies, metacentre M has to be above the centre of gravity G. M coinciding

with G or lying below G refers to the situation of neutral and unstable equi-
librium respectively. The distance of metacentre from centre of gravity along

the centre line of cross section is known as metacentric height and is given

by MG = (Iyy /V ) – BG.

∑ Fluids moving with a uniform velocity or uniform acceleration develop no

shear stress in the flow field. The weight of the fluid particle is balanced by

the pressure force and a constant inertia force (zero in the case of uniform

velocity). The pressure distribution equations under the situations are simi-

lar to those in hydrostatics in a sense that the pressure gradients in space

coordinates are constants. The fluids in such motions are said to be in rela-

tive equilibrium.

EXERCISES

2.1 Choose the correct answer:

(i) The normal stress is the same in all directions at a point in a fluid

(a) only when the fluid is frictionless

(b) only when the fluid is frictionless and incompressible

(c) in a liquid at rest

(d) when the fluid is at rest, regardless of its nature

(ii) The magnitude of hydrostatic force on one side of a circular surface of

unit area, with the centroid 10 m below a free water (density r) surface is

(a) less than 10 rg

(b) equals to 10 rg

(c) greater than 10 rg

(d) the product of rg and the vertical distance from the free surface to

pressure centre

(e) None of the above

(iii) The line of action of the buoyancy force acts through the

(a) centre of gravity of any submerged body

(b) centroid of the volume of any floating body

(c) centroid of the displaced volume of fluid

(d) centroid of the volume of fluid vertically above the body

(e) centroid of the horizontal projection of the body

(iv) For stable equilibrium of floating bodies, the centre of gravity has to:

(a) be always below the centre of buoyancy

(b) be always above the centre of buoyancy

(c) be always above the metacentre

(d) be always below the metacentre

(e) coincide with metacentre
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(v) A fish tank is being carried on a car moving with constant horizontal

acceleration. The level of water will

(a) remain unchanged

(b) rise on the front side of the tank only

(c) rise on the front side of the tank and fall on the back side

(d) rise on the back side of the tank and fall on the front side

(e) None of the above

2.2 In construction, a barometer is a graduated inverted tube with its open end

dipped in the measuring liquid contained in a trough opened to the atmo-

sphere.

Estimate the height of the liquid column in a barometer where the atmo-

spheric pressure is 100 kN/m2 (a) When the liquid is mercury and (b) When

the liquid is water. The measuring temperature is 50 °C, the vapour pres-

sures of mercury and water at this temperature are respectively 0.015 ¥ 104

N/m2 and 1.23 ¥ 104 N/m2, and the densities are 13500 and 980 kg/m3, re-

spectively. What would be the percentage error if the effect of vapour pres-

sure is neglected.

Ans. (0.754 m, 9.12 m, 0.14%, 14.05%)

2.3 The density of a fluid mixture r (in kg/m
3
) in a chemical reactor varies with

the vertical distance z (in metre) above the bottom of the reactor according

to the relation

r = 10.1 

2

1 –
500 1000

z zÈ ˘Ê ˆ+ Á ˜Í ˙Ë ¯Î ˚
Assuming the mixture to be stationary, determine the pressure difference

between the bottom and top of a 60 m tall reactor.

Ans. (5.59 kN/m2)

2.4 Find the atmospheric pressure just at the end of troposphere which extends

up to a height of 11.02 km from sea level. Consider a temperature variation

in the troposphere as T = 288.16 – 6.49

¥ 10–3 z, where z is in metres and T in

Kelvin. The atmospheric pressure at

sea level is 101.32 kN/m2.

Ans. (22.55 kN/m
2
)

2.5 Find the pressure at an elevation of

3000 m above the sea level by assum-

ing (a) an isothermal condition of air

and (b) an isentropic condition of air.

Pressure and temperature at sea level

are 101.32 kN/m2 and 293.15 K. Con-

sider air to be an ideal gas with R (char-

acteristic gas constant) = 287 J/kg K,

and g (ratio of specific heats) = 1.4.

Ans. (71.41 kN/m2, 70.08 kN/m2)

+ A

1
.8

m

z

+ B

Fig. 2.48 Pipes with water and

carbon tetrachloride
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2.6 Two pipes A  and B (Fig. 2.48) are in the same elevation. Water is contained

in A  and rises to a level of 1.8 m above it. Carbon tetrachloride (Sp. gr. =

1.59) is contained in B. The inverted U-tube is filled with compressed air at

300 kN/m2 and 30 °C. The barometer reads 760 mm of mercury. Determine:

(a) The pressure difference in kN/m
2
 between A  and B  

if z = 0.45 m.

(b) The absolute pressure in B in mm of mercury.

Ans. (PB – PA  = 3.4 kN/m2, 2408.26 mm)

2.7 A multitube manometer using water and mercury is used to measure the

pressure of air in a vessel, as shown in Fig. 2.49. For the given values of

heights, calculate the gauge pressure in the vessel. h1 = 0.4 m, h2 = 0.5 m, h3

= 0.3 m, h4 = 0.7 mh5 =  0.1 m and h6 = 0.5 m.

Ans. (190.31 kN/m2 gauge)

Water

Mercury

Air

h1 h2 h4

h5

h3 h6
Air

O O

Fig. 2.49 A multitube manometer measuring air pressure in a vessel

2.8 Gate A B in Fig. 2.50 is 1.2 m wide (in a direction perpendicular to the plane

of the figure) and is hinged at A . Gauge G reads – 0.147 bar and oil in the

right hand tank is having a relative density 0.75. What horizontal force must

be applied at B for equilibrium of gate A B?

Ans. (3.66 kN)

Air

Water

B

A
5.5 m

1.8 mOil

Fig. 2.50 A plane gate with water on one side and oil on the other side
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2.9 Show that the centre of pressure for a vertical semicircular plane submerged

in a homogeneous liquid and with its diameter d at the free surface lies on

the centre line at a depth of 3pd/32 from the free surface.

2.10 A spherical viewing port exists 1.5 m below the static water surface of a tank

as shown in Fig. 2.51. Calculate the magnitude, direction and location of the

thrust on the viewing port.

1.5 m

1m O

Fig. 2.51 A spherical viewing port in a water tank

Ans. (79.74 kN, 75° in a direction 75° clockwise

from a vertically upward line and passes through the centre O)

2.11 Find the weight of the cylinder (dia = 2 m) per metre length if it supports

water and oil (Sp. gr. 0.82) as shown in Fig. 2.52. Assume contact with wall

as frictionless.

Ans. (14.02 kN)

A

E

O C
Water

Oil
R = 1m

B

Fig. 2.52 A cylinder supporting oil and water

2.12 Calculate the force F required to hold the gate in a closed position (Fig.

2.53), if R = 0.6 m.

Ans. (46.02 kN)
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OF

Gate 1.2 m
wide

Hinge

Mercury

S = 1.0

R

0.2 m

0.6 m

S = 0.8

Oil

A

Water

Fig. 2.53 A gate in closed position supporting oil and water in a tank

2.13 A cylindrical log of specific gravity 0.425 is 5 m long and 2 m in diameter.

To what depth the log will sink in fresh water with its axis being horizontal?

Ans. (0.882 m)

2.14 A sphere of 1219 mm diameter floats half submerged in salt water (r =

1025 kg/m3). What minimum mass of concrete (r = 2403 kg/m3) has to be

used as an anchor to submerge the sphere completely?

Ans. (848.47 kg)

2.15 The drain plug shown in Fig. 2.54 is

closed initially. As the water fills up

and the level reaches 2 m, the

buoyancy force on the float opens

the plug. Find the volume of the

spherical weight if the total mass of

the plug and the weight is 5 kg. As

soon as the plug opens it is observed

that the plug-float assembly jumps

upward and attains a floating

position. Explain why. Determine

the level in the reservoir when the

plug closes again. Can the plug

diameter be larger than the float

diameter? Find out the maximum

possible plug diameter.

Ans. (0.018 m3, 1.95 m, No, 87.5 mm)

2.16 A long prism, the cross section of which is an equilateral triangle of side a,

floats in water with one side horizontal and submerged to a depth h. Find

Patm

Plug

Water
2 m

50 mm

String

Fig. 2.54 A typical drain plug
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(a) h/a as a function of the specific gravity S of the prism.

(b) The metacentric height in terms of side a for small angle of rotation if

specific gravity, S = 0.8.

Ans. ( 3 2s , 0.11a)

2.17 A uniform wooden cylinder has a specific
gravity of 0.6. Find the ratio of diameter to
length of the cylinder so that it will just float
upright in a state of neutral equilibrium in
water.

Ans. (1.386)

2.18 Find the minimum apex angle of a solid cone
of specific gravity 0.8 so that it can float in
stable equilbrium in fresh water with its axis
vertical and vertex downward.

Ans. (31.12°)

2.19 A ship weighing 25 MN floats in sea water
with its axis vertical. A pendulum 2 m long
is observed to have a horizontal displace-
ment of 20 mm when a weight of 40 kN is
moved 5 m across the deck. Find the meta-
centric height of the ship.

Ans. (0.8 m)

2.20 A ship of mass 2 ¥ 106 kg has a cross section
at the waterline as shown in Fig. 2.55. The
centre of buoyancy is 1.5 m below the free
surface, and the centre of gravity is 0.6 m
above the free surface. Calculate the meta-
centric height for rolling and pitching of the
ship with a small angle of tilt.

Ans. (0.42 m, 25.41 m)

2.21 An open rectangular tank of 5 m ¥ 4 m is 3 m high and contains water up to

a height of 2 m. The tank is accelerated at 3 m/s2

(a) horizontally along the longer side

(b) vertically upwards

(c) vertically downwards and

(d) in a direction inclined at 30° upwards to the horizontal along the longer

side.

Draw in each case, the shape of the free surface and calculate the total

force on the base of the tank as well as on the vertical faces of the con-

tainer. At what acceleration will the force on each face be zero?

Ans. [(a) base: 392.40 kN, leading face: 29.97 kN, trailing face: 149.89 kN, other

two faces: 102.74 kN

(b) base: 512.40 kN, faces with longer side: 128.10 kN, other two faces:

102.48 kN

1
5
m

1
5
m

6
m

6
m

Fig. 2.55 Cross section of

a ship at the

waterline
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(c) base: 272.40 kN, faces with longer side: 68.10 kN, other two faces: 54.48 kN

(d) base: 452.40 kN, leading face: 45.93 kN, trailing face: 149.98 kN, other

two faces: 116.22 kN; downward acceleration of 9.81 m/s2].

2.22 An open-topped tank in the form of a cube of 900 mm side, has a mass of

340 kg. It contains 0.405 m3 of oil of specific gravity 0.85 and is accelerated

uniformly up along a slope at tan–1 (1/3) to the horizontal, the base of the

tank remains parallel to the slope, and the side faces are parallel to the direc-

tion of motion. Neglecting the thickness of the walls of the tank, estimate the

net force (parallel to the slope) accelerating the tank if the oil is just on the

point of spilling.

Ans. (3538 N)

2.23 An open rectangular tank of 5 m ¥ 4 m is 3 m high. It contains water up to a

height of 2 m and is accelerated horizontally along the longer side. Deter-

mine the maximum acceleration that can be given without spilling the water

and also calculate the percentage of water spilt over, if this acceleration is

increased by 20%.

Ans. (3.92 m/s2, 10%)



3

KINEMATICS OF FLUID FLOW

3.1  INTRODUCTION

Kinematics of fluid flow is that branch of fluid mechanics which describes the fluid
motion and its consequences without consideration of the nature of forces causing
the motion. The basic understanding of the fluid kinematics forms the groundwork
for the studies on dynamical behaviour of fluids in consideration of the forces
accompanying the motion. The subject has the following three main aspects:

(a) The development of methods and techniques for describing and specifying
the motions of fluids.

(b) Characterisation of different types of motion and associated deformation
rates of any fluid element.

(c) The determination of the conditions for the kinematic possibility of fluid
motions, i.e., the exploration of the consequences of continuity in the mo-
tion.

3.2  SCALAR AND VECTOR FIELDS

Scalar A quantity which has only magnitude is defined to be a scalar. A scalar

quantity can be completely specified by a single number representing its magnitude.
Typical scalar quantities are mass, density and temperature. The magnitude of a
scalar (a real number) will change when the units expressing the scalar are changed,
but the physical entity remains the same.

Vector A quantity which is specified by both magnitude and direction is known

to be a vector. Force, velocity and displacement are typical vector quantities. The
magnitude of a vector is a scalar.

Scalar Field If at every point in a region, a scalar function has a defined value,
the region is called a scalar field. The temperature distribution in a rod is an example
of a scalar field.

Vector Field If at every point in a region, a vector function has a defined value,

the region is called a vector field. Force and velocity fields are typical examples of
vector fields.
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3.3 FLOW FIELD AND DESCRIPTION OF FLUID MOTION

A flow field is a region in which the flow velocity is defined at each and every point
in space, at any instant of time. Usually, the velocity describes the flow. In other
words, a flow field is specified by the velocities at different points in the region at
different times. A fluid mass can be conceived of consisting of a number of fluid
particles. Hence the instantaneous velocity at any point in a fluid region is actually
the velocity of a particle (of the same density as that of the fluid) that exists at that
point at that instant. In order to obtain a complete picture of the flow, the fluid
motion is described by two methods discussed as follows:

1. Lagrangian Method In this method, the fluid motion is described by tracing

the kinematic behaviour of each and every individual particle constituting the flow.
Identities of the particles are made by specifying their initial position (spatial
location) at a given time. The position of a particle at any other instant of time then
becomes a function of its identity and time. This statement can be analytically
expressed as

S
r

 = S( S
r

0, t) (3.1)

where S
r

 is the position vector of a particle (with respect to a fixed  point of
reference) at a time t. S

r

0 is its initial position at a given time t = t0, and thus specifies
the identity of the particle. Equation (3.1) can be written into scalar components
with respect to a rectangular Cartesian frame of coordinates as

x  = x(x0, y0, z0, t) (3.1a)

y  = y(x0, y0, z0, t) (3.1b)

z = z(x0, y0, z0, t) (3.1c)

where x0, y0, z0 are the initial coordinates and x, y, z are the coordinates at a time t of
the particle. Hence S

r
 in Eq. (3.1) can be expressed as

S
r

 = ˆˆ ˆi x j y k z+ +

where î , ĵ  and k̂  are the unit vectors along the x, y and z axes, respectively. The

velocity V
r

 and acceleration a
r

 of the fluid particle can be obtained from the
material derivatives of the position of the particle with respect to time.
Therefore,

V
r

 =
0

d

d
S

S

t

È ˘
Í ˙
Î ˚

r

(3.2a)

or, in terms of scalar components,

u =
0 0 0,

d

d x y z

x

t

È ˘
Í ˙Î ˚

(3.2b)

v =

0 0 0,

d

d x y z

y

t

È ˘
Í ˙Î ˚

(3.2c)
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w =

0 0, 0,

d

d x y z

z

t

È ˘
Í ˙Î ˚

(3.2d)

u, v, w are the components of velocity in x, y and z directions, respectively. For the
acceleration,

a
r

 =

0

2

2

d

d
S

S

t

È ˘
Í ˙
Î ˚

r

(3.3a)

and hence, ax =

0 0 0

2

2
, ,

d

d
x y z

x

t

È ˘
Í ˙
Î ˚

(3.3b)

ay =

0 0 0

2

2
, ,

d

d
x y z

y

t

È ˘
Í ˙
Î ˚

(3.3c)

az =

0 0 0

2

2
, ,

d

d
x y z

z

t

È ˘
Í ˙
Î ˚

(3.3d)

The subscripts in Eqs (3.2) and (3.3) represent the initial (at t = t0) position of the
particle and thus specify the particle identity. The favourable aspect of the method
lies in the information about the motion and trajectory of each and every particle of
the fluid so that at any time it is possible to trace the history of each fluid particle. In
addition, by virtue of the fact that particles are initially identified and traced through
their motion, conservation of mass is inherent. However, the serious drawback of
this method is that the solution of the equations (Eqs (3.2) and (3.3)) presents
appreciable mathematical difficulties except certain special cases and therefore, the
method is rarely suitable for practical applications.

2. Eulerian Method The method given by Leonhard Euler is of greater advan-

tage since it avoids the determination of the movement of each individual fluid

particle in all details. Instead it seeks the velocity V
r

 and its variation with time t at

each and every location ( S
r

) in the flow field. In the Lagrangian view, all hydrody-
namic parameters are tied to the particles or elements, whereas in the Eulerian view,
they are functions of location and time. Mathematically, the flow field in the
Eulerian method is described as

V
r

 = V
r

( S
r

, t) (3.4)

where, V
r

 = ˆˆ ˆi u j k w+ +v

and S
r

 = ˆˆ ˆi x j y k z+ +

Therefore, u = u(x, y, z, t) (3.4a)

v = v(x, y, z, t) (3.4b)

w = w(x, y, z, t) (3.4c)
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The relationship between the Eulerian and the Lagrangian method can  now be
shown. Equation (3.4) of Eulerian description can be written as

d

d

S

t

r

 = V
r

( S
r

, t) (3.5)

or
d

d

x

t
 = u(x, y, z, t) (3.5a)

d

d

y

t
 = v(x, y, z, t) (3.5b)

d

d

z

t
 = w(x, y, z, t)(3.5c)

The integration of Eq. (3.5) yields the constants of integration which are to be
found from the initial coordinates of the fluid particles. Hence, the solution of
Eq. (3.5) gives the equations of Lagrange as

S
r

 = S
r

( S
r

0 , t)
or x  = x(x0, y0, z0, t)

y  = y(x0, y0, z0, t)

z = z(x0, y0, z0, t)

Therefore, it is evident that, in principle, the Lagrangian method of description
can always be derived from the Eulerian method. But the solution of the set of three
simultaneous differential equations is generally very difficult.

Example 3.1

In a one-dimensional flow field, the velocity at a point may be given in the Eulerian
system by u = x + t. Determine the displacement of a fluid particle whose initial
position is x0 at initial time t0 in the Lagrangian system.

Solution

u = x + t

or dx/dt = x + t

Using D as the operator d/dt, the above equation can be written as

(D – 1)x = t

The solution of the equation is

x  = Aet – t – 1

The constant A  is found from the initial condition as follows:

x0 = Aet0 – t0 – 1

Hence, A  =
0

0 0 1
t

x t

e

+ +
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Substituting the value of A  in the solution, we get

x  = (x0 + t0 + 1) e(t – t0) – t – 1

This equation is the required Lagrangian version of the fluid particle having the
identity x = x0 at t = t0.

Example 3.2

A two-dimensional flow is described in the Lagrangian system as

x  = x0e–kt + y0 (1 – e–2kt)

and y  = y0 e
kt

Find (a) the equation of a fluid particle in the flow field and (b) the velocity
components in the Eulerian system.

Solution

(a) Trajectory of fluid particle in the flow field is found by eliminating t from
the equations describing its motion as follows:

ekt = y/y0

Hence, x  =  x0(y0/y) + y0(1 – y2
0/y2)

which finally gives after some arrangement

(x – y0)y2 – x0 y0 y + y3
0 = 0

This is the required equation

(b) u (the x component of velocity)

=
dx

dt

= – 2
0 0 (1 )kt ktd

x e y e
dt

-È ˘+ -Î ˚

= – kx0 e
–kt + 2 ky0 e

–2kt

= – k [x – y0(1 – e–2kt)] + 2 ky0 e–2kt

= – kx + ky0 (1 + e–2kt)

= – kx + ky (e– kt + e–3kt)

v (the y component of velocity)

 =
dy

dt
 = ( )0

ktd
y e

dt

= y0 kekt = ky

Example 3.3

The velocities at a point in a fluid in the Eulerian system are given by
u = x + y + z + t, v = 2(x + y + z) + t, w = 3 (x + y + z) + t
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Show that the displacements of a fluid particle in the Lagrangian system are

x = 6 2
0 0 0 0 0 0

5 1 1 1 1 1 1 1

6 6 6 6 12 12 4 72
tx y z x y z e t t

Ê ˆ- - + + + + - + -Á ˜Ë ¯

y = 6
0 0 0 0 0 0

1 2 1 1 1 1 1

3 3 3 3 12 6 36
tx y z x y z e t

Ê ˆ- + - + + + + - -Á ˜Ë ¯

z = 6 2
0 0 0 0 0 0

1 1 1 1 1 1 1 1

2 2 2 2 12 4 4 24
tx y z x y z e t t

Ê ˆ- - + + + + + - + -Á ˜Ë ¯

where x0, y0, and z0 are the initial position in the Lagrangian coordinates when
t = t0 = 0.

Solution

u + v + w = 6(x + y + z) + 3t

or
dx dy dz

dt dt dt
+ +  = 6(x + y + z) + 3t

or
d

dt
(x + y + z) = 6(x + y + z) + 3t

x + y + z = c ( ) ( )6 63 1
6 1 6 1

36 12
t te t ce t+ - - = - +

or x + y + z = ( )6 1
6 1

12
tce t- +

At t = t0, x = x0, y = y0, and z = z0, which implies

x0 + y0 + z0 = c –
1

12

or c = x0 + y0 + z0 + 
1

12

Thus, x + y + z = ( )6
0 0 0

1 1
6 1

12 12
tx y z e t

Ê ˆ+ + + - +Á ˜Ë ¯

Now,

u =
dx

dt
 = x + y + z + t

or
dx

dt
 = ( )6

0 0 0

1 1
6 1

12 12
tx y z e t t

Ê ˆ+ + + - + +Á ˜Ë ¯

Integrating, we get

x  =

6 2 2

0 0 0 1

1 1
6

12 6 12 2 2

t
e t t

x y z t c
Ê ˆÊ ˆ+ + + - + + +Á ˜ Á ˜Ë ¯ Ë ¯
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The integration constant c1 can be found from the initial conditions as t = t0 = 0, x = x0

x0 = 0 0 0 1

1 1

12 6
x y z c

Ê ˆ+ + + +Á ˜Ë ¯

or c1 = 0 0 0

5 1 1 1

6 6 6 72
x y z- - -

Putting the value of c1, we obtain

x = 6 2
0 0 0 0 0 0

5 1 1 1 1 1 1 1

6 6 6 6 12 12 4 72
tx y z x y z e t t

Ê ˆ- - + + + + - + -Á ˜Ë ¯

Again v = ( )2
dy

x y z t
dt

= + + +

or
dy

dt
 = ( )6

0 0 0

1 1
2 6 1

12 6
tx y z e t t

Ê ˆ+ + + - + +Á ˜Ë ¯

Integrating, we obtain

v =
6 2 2

0 0 0 2

1 1
6

12 3 6 2 2

t
e t t

x y z t c
Ê ˆÊ ˆ+ + + - + + +Á ˜ Á ˜Ë ¯ Ë ¯

The integration constant c2 can be found from the initial conditions as t = t0 = 0, y = y0

y0 = 0 0 0 2

1 1

12 3
x y z c

Ê ˆ+ + + +Á ˜Ë ¯

or c2 = 0 0 0

1 2 1 1

3 3 3 36
x y z- + - -

Putting the value of c2, we obtain

y  = 6
0 0 0 0 0 0

1 2 1 1 1 1 1

3 3 3 3 12 6 36
tx y z x y z e t

Ê ˆ- + - + + + + - -Á ˜Ë ¯

Again w = ( )3
dz

x y z t
dt

= + + +

or
dz

dt
 = ( )6

0 0 0

1 1
3 6 1

12 4
tx y z e t t

Ê ˆ+ + + - + +Á ˜Ë ¯
Integrating, we obtain

z =

6 2 2

0 0 0 3

1 1
6

12 2 4 2 2

t
e t t

x y z t c
Ê ˆÊ ˆ+ + + - + + +Á ˜ Á ˜Ë ¯ Ë ¯

The integration constant c3 can be found from the initial conditions as t = t0, z = z0

z0 = 0 0 0 3

1 1

12 2
x y z c

Ê ˆ+ + + +Á ˜Ë ¯

or c3 = 0 0 0

1 1 1 1

2 2 2 24
x y z- - + -
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Putting the value of c3, we obtain

z = 6 2
0 0 0 0 0 0

1 1 1 1 1 1 1 1

2 2 2 2 12 4 4 24
tx y z x y z e t t

Ê ˆ- - + + + + + - + -Á ˜Ë ¯

3.3.1 Variation of Flow Parameters in Time and Space

In general, the flow velocity and other hydrodynamic parameters like pressure and
density may vary from one point to another at any instant, and also from one instant
to another at a fixed point. According to the type of variations, different categories
of flow are described as follows:

3.3.1.1 Steady and Unsteady Flows

A steady flow is defined as a flow in which the flow velocities and fluid properties at
any point do not change with time. The flow in which any of these parameters
change with time is termed as unsteady flow. In the Eulerian approach, a steady
flow is described as

V
ur

 = ( )V S
urr

which means that the flow velocity is a function of space coordinates only. This
implies that, in a steady flow, the flow velocity and fluid properties may vary with
location, but the spatial distribution of any such parameter essentially remains
invariant with time.

In the Lagrangian approach, time is inherent in describing the trajectory of any
particle (Eq. (3.1)). But in steady flow, the velocities of all particles passing through
any fixed point at different times will be same. In other words, the description of
velocity as a function of time for a given particle will simply show the velocities at
different points through which the particle has passed and thus furnish the
information of velocity as a function of spatial location as described by the Eulerian
method. Therefore, the Eulerian and the Lagrangian approaches of describing fluid
motion become identical under this situation.

  In practice, absolute steady flow is the exception rather than the rule, but many
problems may be studied effectively by assuming that the flow is steady. Though
minor fluctuations of velocity and other quantities with time occur in reality, the
average value of any quantity over a reasonable interval of time remains unchanged.
Moreover, a particular flow may appear steady to one observer but unsteady to
another. This is because all movement is relative. The motion of a body or a fluid
element is described with respect to a reference frame. Therefore, the flow may
appear unsteady depending upon the choice of the reference frame. For example,
the movement of water past the sides of a motorboat traveling at constant velocity
would (apart from small fluctuations) appear steady to an observer in the boat. He/
she would compare the water flow with an imaginary set of reference frame fixed to
the boat. To an observer on a bridge, however, the same flow would appear to
change with time as the boat passes underneath him/her. He/she would be
comparing the flow with reference axes fixed to the bridge. Since the examination
of steady flow is usually much simpler that that of unsteady flow, reference frames
are chosen, where possible, so that flow with respect to the reference frame becomes
steady .
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3.3.1.2 Uniform and Non-uniform Flow

When velocity and fluid properties at any instant of time, do not change from point
to point in flow field, the flow is said to be uniform. If, however, changes do occur
from one point to another, the flow is non-uniform. Hence, for a uniform flow, the
velocity is a function of time only, which can be expressed in the Eulerian
description as

V
ur

 = ( )V t
ur

This implies that for a uniform flow, there will be no spatial distribution of fluid
velocities and flow properties. Any such parameter will have a unique value in the
entire field, which of course, may change with time if the flow is unsteady.

For non-uniform flow, the changes with position may be found either in the
direction of flow or in directions perpendicular to it. The latter kind of non-
uniformity is always encountered near solid boundaries past which the fluids flow.
This is because all fluids possess viscosity which reduces the relative velocity
(velocity relative to solid boundary) to zero at a solid boundary (no-slip condition as
described in Chapter 1).

For a steady and uniform flow, velocity is neither a function of time nor of space
coordinates, and hence it assumes a constant value throughout the region of flow at
all times. Steadiness of flow and uniformity of flow do not necessarily go together.
Any of the four combinations as shown in Table 3.1 are possible.

Table 3.1

Type Example

1. Steady uniform flow Flow at constant rate through a duct of uniform
cross section. (The region close to the walls of
the duct is however disregarded.)

2. Steady non-uniform flow Flow at constant rate through a duct of non-
uniform cross section (tapering pipe.)

3. Unsteady uniform flow Flow at varying rates through a long straight pipe
of uniform cross section. (Again the region close
to the  walls is ignored.)

4. Unsteady non-uniform flow Flow at varying rates through a duct flow of
non-uniform cross section.

3.3.2 Material Derivative and Acceleration

Let the position of a particle at any instant t in a flow field be given by the space
coordinates (x, y, z) with respect to a rectangular Cartesian frame of reference. The
velocity components u, v, w  of the particle along the x, y  and z directions,
respectively, can then be written in the Eulerian form as

u = u (x, y, z, t)
v = v (x, y, z, t)
w = w (x, y, z, t)
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At an infinitesimal time interval D t later, let the particle move to a new position
given by the coordinates (x + D x, y + Dy, z + D z), and its velocity components at
this new position be u + Du, v + Dv and w + Dw . Therefore, we can write

u + Du = u (x + Dx, y + Dy, z + Dz, t + Dt) (3.6a)

v + Dv = v (x + Dx, y + Dy, z + Dz, t + Dt) (3.6b)

w  + Dw = w (x + Dx, y + Dy, z + Dz, t + Dt) (3.6c)

The expansion of the right-hand side of the Eqs (3.6a) to (3.6c) in the form of
Taylor’s series gives

u + Du = ( , , , )
u u u u

u x y z t x y z t
x y z t

∂ ∂ ∂ ∂

∂ ∂ ∂ ∂
+ D + D + D + D

+ higher order terms in Dx, Dy, Dz and Dt (3.7a)

v + Dv = ( , , , )x y z t x y z t
x y z t

∂ ∂ ∂ ∂

∂ ∂ ∂ ∂
+ D + D + D + D

v v v v
v

+ higher order terms in Dx, Dy, Dz and Dt (3.7b)

w  + Dw = ( , , , )
w w w w

w x y z t x y z t
x y z t

∂ ∂ ∂ ∂

∂ ∂ ∂ ∂
+ D + D + D + D

+ higher order terms in Dx, Dy, Dz and Dt (3.7c)
The increment in space coordinates can be written as

Dx  = u Dt, Dy = v Dt, Dz = w Dt

Substituting the values of Dx, Dy and Dz in Eqs (3.7a) to (3.7c), we have

D
D

u

t
 =

u u u u
u w

x y z t

∂ ∂ ∂ ∂

∂ ∂ ∂ ∂
+ + +v

+ terms containing Dt and its higher orders

t

D
D

v
 = u w

x y z t

∂ ∂ ∂ ∂

∂ ∂ ∂ ∂
+ + +

v v v v
v

+ terms containing Dt and its higher orders

D
D
w

t
 =

w w w w
u w

x y z t

∂ ∂ ∂ ∂

∂ ∂ ∂ ∂
+ + +v

+ terms containing Dt and its higher orders

The limiting forms of the equations as Dt Æ 0 become

D

D

u

t
 =

u u u u
u w

t x y z

∂ ∂ ∂ ∂

∂ ∂ ∂ ∂
+ + +v (3.8a)

D

Dt

v
 = u w

t x y z

∂ ∂ ∂ ∂

∂ ∂ ∂ ∂
+ + +

v v v v
v (3.8b)

D

D

w

t
 =

w w w w
u w

t x y z

∂ ∂ ∂ ∂

∂ ∂ ∂ ∂
+ + +v (3.8c)

L

N
MSince 

0 0 0

D D D
lim , lim , lim

D D Dt t t

u u w w

t t t t t tD Æ D Æ D Æ

D D D
= = =

D D D
v v

,
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0
lim
tD Æ  (terms containing Dt and its higher orders) = 0

O

Q
P

It is important to note in this context that in the limit as Dt Æ 0, the Eulerian and
the Lagrangian description merge (i.e., the velocity of flow at a point at any instant
is the velocity of a fluid particle that exists at that point at that instant), so that

0
lim
t

x

tD Æ

D
D

= u, which is the x component of velocity at the point of concern, and

similarly for the components v and w.
It is evident from the above equations that the operator for total differential with

respect to time, D/Dt in a convective field is related to the partial differential ∂/∂t as

D

Dt
 = u w

t x y z

∂ ∂ ∂ ∂

∂ ∂ ∂ ∂
+ + +v (3.9)

The total differential D/Dt is known as the material or substantial derivative

with respect to time. The first term ∂/∂t on the right-hand side of Eq. (3.9) is known
as temporal or local derivative which expresses the rate of change with time, at a
fixed position. The last three terms on the right-hand side of Eq. (3.9) are together
known as convective derivative which represent the time rate of change due to
change in position in the field. Therefore, the terms on the left-hand sides of Eqs
(3.8a) to (3.8c) are defined the as the x, y and z components of substantial or material
acceleration. The first terms on the right-hand sides of Eqs (3.8a) to (3.8c) represent
the respective local or temporal accelerations, while the other terms are convective
accelerations. Thus we can write,

ax =
D

D

u u u u u
u w

t t x y z

∂ ∂ ∂ ∂

∂ ∂ ∂ ∂
= + + +v (3.9a)

ay =
D

D
u w

t t x y z

∂ ∂ ∂ ∂

∂ ∂ ∂ ∂
= + + +

v v v v v
v (3.9b)

az =
D

D

w w w w w
u w

t t x y z

∂ ∂ ∂ ∂

∂ ∂ ∂ ∂
= + + +v (3.9c)

(Material or substantial acceleration) = (Temporal or local acceleration) +
(Convective acceleration)

In a steady flow, the temporal acceleration is zero, since the velocity at any point
is invariant with time. In a uniform flow, on the other hand, the convective
acceleration is zero, since the velocity components are not the functions of space
coordinates. In a steady and uniform flow, both the temporal and convective
acceleration vanish and hence there exists no material acceleration. Existence of the
components of acceleration for different types of flow, as described in Table 3.1, is
shown in Table 3.2.
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Table 3.2

Type of flow Material acceleration

Temporal Convective

Steady and uniform 0 0

Steady and non-uniform 0 Exists

Unsteady and uniform Exists 0

Unsteady and non-uniform Exists Exists

3.3.2.1 Components of Acceleration in Other Coordinate Systems

In a cylindrical polar coordinate system (Fig. 3.1 (a), the components of acceleration
in r, q and z directions can be written as

ar = 
2 2D

–
D

r r r r r
r z

v v vv v v v v
v v

t r t r r z r

q q q∂ ∂ ∂ ∂

∂ ∂ ∂q ∂
- = + + + (3.10a)

aq = 
D

D
r r

r z

v v v v v v v v v v
v v

t r t r r z r

q q q q q q q q∂ ∂ ∂ ∂

∂ ∂ ∂q ∂
+ = + + + + (3.10b)

az = 
D

D
z z z z z

r z

vv v v v v
V v

t t r r z

q∂ ∂ ∂ ∂

∂ ∂ ∂q ∂
= + + + (3.10c)

The term – v2
q /r in the Eq. (3.10a) appears due to an inward radial acceleration

arising from a change in the direction of vq (velocity component in the azimuthal
direction q ) with q as shown in Fig. 3.1 (a). This is typically known as centripetal
acceleration. In a similar fashion, the term vr vq /r represents a component of accel-
eration in azimuthal direction caused by a change in the direction of vr with q (Fig.
3.1(a).

The acceleration components in a spherical polar coordinate system (Fig. 3.1(b)
can be expressed as

aR =
2 2

sin
r r r r

r

v v vvv v v v
v

t R R R R

f f qq∂ ∂ ∂ ∂

∂ ∂ ∂ f f ∂ q

+
+ + + - (3.11a)

af =
sin

R

v v v v vv
v

t R R R

f f f f fq

f

∂ ∂ ∂ ∂

∂ ∂ ∂ f ∂ q
+ + +

2 cotRv v v

R R

f q f
- - (3.11b)

aq =
sin

R

vv v v v v
v

t R R R

fq q q q q∂ ∂ ∂ ∂

∂ ∂ ∂ f f ∂ q
+ + +

+ 
cot

R
v vv v

R R

q fq
f

+ (3.11c)
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Fig. 3.1(a) Velocity components in a cylindrical polar coordinate system
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Fig. 3.1(b) Velocity components in a spherical polar coordinate system

Example 3.4

Given a velocity field V
r

 = (4 + xy + 2t) î  + 6x3 ĵ  + (2xt2 + z) k̂ . Find the

acceleration of a fluid particle at (2, 4, – 4) and time t = 3.

Solution

a
r

 = 
D

( )
D

V V
V V

t t

∂

∂
= + ◊—
r r

r r
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V

t

∂

∂

r

 = 2 î  + 6x tk̂

(V
r

.—)V
r

 = 3 2 ˆˆ ˆ[(4 2 ) 6 (2 ) ]u w xy t i x j xt z k
x y z

∂ ∂ ∂

∂ ∂ ∂

Ê ˆ+ + + + + + +Á ˜Ë ¯
v

= 2 2 ˆ ˆˆ ˆ ˆ( 18 3 ) ( ) ( )u yi x j t k xi w k+ + + +v

= (4 + xy + 2t) 2 2 3 2ˆ ˆˆ ˆ ˆ( 18 3 ) 6 ( ) (2 )yi x j t k x xi xt z k+ + + + +

= (4y + xy2 + 2ty + 6x4) î  + (72x2 + 18x3y  + 36tx2) ĵ

+ (12t2 + 3xyt2 + 6t3 + 3xt2 + z) k̂
Finally, the acceleration field can be expressed as

a
r

 = (2 + 4y + xy2 + 2ty + 6x4) î  + (72x2 + 18x3y + 36tx2) ĵ

+ (6xt + 12t2 + 3xyt2 + 6t3 + 3xt2 + z) k̂

The acceleration vector at the point (2, 4, –4) and at time t = 3 can be found out
by substituting the values of x, y, z and t in the Eq. (3.36) as

a
r

 = 170 î  + 1296 ĵ  + 572 k̂

Hence, x component of acceleration ax = 170 units
  y component of acceleration ay = 1296 units

z component of acceleration az = 572 units
Magnitude of resultant acceleration

| |a
r

 = [(170)2 + (1296)2 + (572)2]1/2

= 1375.39 units

Example 3.5

Find the acceleration components at a point (1, 1, 1) for the following flow field:

u = 2x2 + 3y, v = – 2xy + 3y2 + 3z y, w = – 2 23
2 9

2
z xz y z+ -

Solution

x component of acceleration

ax =
u u u u

u v w
t x y z

∂ ∂ ∂ ∂

∂ ∂ ∂ ∂
+ + +

= 0 + (2x2 + 3y) 4x + (–2xy + 3y2 + 3z y)3 + 0

Therefore, (ax) at (1, 1, 1) = 0 + 5 ¥ 4 + 4 ¥ 3 + 0 = 32 units

y component of acceleration

ay =
v v v v

u v w
t x y z

∂ ∂ ∂ ∂

∂ ∂ ∂ ∂
+ + +

= 0 + (2x2 + 3y) (–2y) + (–2xy + 3y2 + 3z y) (–2x + 6y + 3z)
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+ 2 23
– 2 – 9 3

2
z xz y z y

Ê ˆ+Á ˜Ë ¯

Therefore, (ay)at (1, 1, 1) = 5 ¥ (–2) + 4 ¥ 7 + (–8.5) ¥ 3 = – 7.5 units

z component of acceleration

az =
w w w w

u w
t x y z

∂ ∂ ∂ ∂

∂ ∂ ∂ ∂
+ + +v

= 0 + (2x2 + 3y) 2z + (–2xy + 3y2 + 3z y) (–18y z)

+ 2 2 23
– 2 – 9 (–3 2 – 9 )

2
z xz y z z x y

Ê ˆ+ +Á ˜Ë ¯

Therefore (az) at (1, 1, 1) = 0 + (2 + 3) ¥ 2 – (– 2 + 3 + 3)18

+ 
3

2

Ê -ÁË
 + 2 – 9) (–3 + 2 – 9)

= 23 units

Example 3.6

The velocity and density fields in a diffuser are given by

u = u0 e
–2x/L and r = r0 e –x/L

Find the rate of change of density at x = L.

Solution

The rate of change of density in this case can be written as

D

D t

r
 = u

t x

∂ r ∂ r

∂ ∂
+

= 0 + u0 e
–2x/L ( )/

0
x L

e
x

∂
r

∂
-

= 2 / /0
0 –x L x L

u e e
L

r- -Ê ˆ
Á ˜Ë ¯

= 3 /0 0 x Lu
e a

L

r --

at x = L, Dr/Dt = 30 0u
e

L

r --

Example 3.7

Find the acceleration of a fluid particle at the point r = 2a, q = p/2 for a two-
dimensional flow given by

vr =
2

2
1 – cos

a
u

r
q

Ê ˆ
- Á ˜Ë ¯

, vq = 
2

2
1 sin

a
u

r
q

Ê ˆ
+Á ˜Ë ¯
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Solution

rv∂

∂q
 =

2 2

2 2
sin 1 – , cos 1

va a
u u

r r

q∂
q q

∂q

Ê ˆ Ê ˆ
= +Á ˜ Á ˜Ë ¯ Ë ¯

rv

r

∂

∂
 =

2 2

3 3

2 2
cos , sin ,

vua ua

rr r

q∂
q q

∂

- -
=

Acceleration in the radial direction

ar =
2

r r
r

v vv v
v

r r r

q q∂ ∂

∂ ∂q
+ -

=

22 2 2 2 4 2 2
2 2 2

3 2 4 2

2
1 cos 1 sin 1 sin

u a a u a u a

r rr r r r
q q q

Ê ˆ Ê ˆ Ê ˆ
- + - - +Á ˜ Á ˜ Á ˜Ë ¯ Ë ¯ Ë ¯

Hence, (ar) at r = 2a, q = p/2

=
22 21 1

0 1 1
2 16 2 4

u u

a a

Ê ˆ Ê ˆ+ - - +Á ˜ Á ˜Ë ¯ Ë ¯

=
25

16

u

a
-

Acceleration in the azimuthal direction

aq = r
r

v v v v v
v

r r r

q q q q∂ ∂

∂ ∂q
+ +

=

22 2 2 2 2

3 2 2

2
1 – sin cos 1 sin cos

u a a u a

rr r r
q q q q

Ê ˆ Ê ˆ
+ +Á ˜ Á ˜Ë ¯ Ë ¯

– 
2 4

4
1 – sin cos

u a

r r
q q

Ê ˆ
Á ˜Ë ¯

Hence, (aq) (at r = 2a, q = p/2) = 0 + 0 + 0 = 0

Therefore, at r = 2a, q = p/2

ar = – 5u2/16, aq = 0

Example 3.8

A fluid is flowing at a constant volume flow rate of Q through a divergent pipe
having inlet and outlet diameters of D1 and D2, respectively, and a length of L.
Assuming the velocity to be axial and uniform at any section, show that the

accelerations at the inlet and outlet of the pipe are given by –
( – )32 2

2 1
2

1
5

Q D D

L Dp
 and

–
( – )32 2

2 1
2

2
5

Q D D

L Dp
, respectively.
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Direction

of flow

D1
D2

x

L

Dx

Fig. 3.2 Flow through a divergent duct

Solution

The diameter of the duct at an axial distance x from the inlet plane (Fig. 3.2) is given
by

Dx = D1 + 
x

L
(D2 – D1)

Therefore, the velocity at this section can be written as

u =
2

1 2 1

4

( – )

Q

x
D D D

L
p È ˘+Í ˙Î ˚

Acceleration at this section can be written as

a = u 
u

x

∂

∂

= 2 1
2 3

1 2 1 1 2 1

( – )4 –8

( – ) ( – )

D DQ Q

Lx x
D D D D D D

L L
p p

¥
È ˘ È ˘+ +Í ˙ Í ˙Î ˚ Î ˚

=
2

2 1
5

2
1 2 1

– 32 ( – )

( – )

Q D D

x
L D D D

L
p È ˘+Í ˙Î ˚

This is the general expression of acceleration at any section at a distance x from the
inlet of the pipe. Substituting the values of x = 0 (for inlet) and x = L  (for outlet) in  the
above equation, we have

Acceleration at the inlet =
– ( – )32 2

2 1
2

1
5

Q D D

L Dp

and acceleration at the outlet =
– ( – )32 2

2 1
2

2
5

Q D D

L Dp
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3.3.3 Streamlines, Path Lines and Streak Lines

3.3.3.1 Streamlines

The analytical description of flow velocities by the Eulerian approach is
geometrically depicted through the concept of streamlines. In the Eulerian method,
the velocity vector is defined as a function of time and space coordinates. If for a

fixed instant of time, a space curve is drawn so that it is tangent everywhere to the

velocity vector, then this curve is called a streamline. Therefore, the Eulerian

method gives a series of instantaneous streamlines of the state of motion (Fig.

3.3(a)). In other words, a streamline at any instant can be defined as an imaginary

curve or line in the flow field so that the tangent to the curve at any point represents

the direction of the instantaneous velocity at that point. In an unsteady flow where
the velocity vector changes with time, the pattern of streamlines also changes from
instant to instant. In a steady flow, the orientation or the pattern of streamlines will
be fixed. From the above definition of streamline, it can be written

V
r

 ¥ d S
r

 = 0 (3.12)

VV

V

(a) Streamlines (b) Stream tube

Fig. 3.3 

d S
r

 is the length of an infinitesimal line segment along a streamline at a point where
V
r

is the instantaneous velocity vector. The above expression therefore represents
the differential equation of a streamline. In a Cartesian coordinate system, the

vectors V
r

and d S
r

 can be written in terms of their components along the coordinate

axes as V
r

 = ˆˆ ˆiu j kw+ +v  and  d S
r

 = ˆˆ ˆd d di x j y k z+ + . Then Eq. (3.12) gives

dx

u
 =

d dy z

w
=

v
(3.13)

and thus describes the differential equation of streamlines in a cartesian frame of
reference.

A bundle of neighbouring streamlines may be imagined to form a passage
through which the fluid flows (Fig. 3.3(b)). This passage (not necessarily circular in
cross section) is known as a stream tube. A stream tube with a cross section small
enough for the variation of velocity over it to be negligible is sometimes termed as a
stream filament. Since the stream tube is bounded on all sides by streamlines, and
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by definition, velocity does not exist across a streamline, no fluid may enter or leave
a stream tube except through its ends. The entire flow in a flow field may be
imagined to be composed of flows through stream tubes arranged in some arbitrary
positions.

3.3.3.2 Path Lines

Path lines are the outcome of the Lagrangian method in  describing fluid flow and
show the paths of different fluid particles as a function of time. In other words, a
path line is the trajectory of a fluid particle of fixed identity as defined by Eq. (3.1).

Therefore a family of path lines represents the trajectories of different particles,

say, P1, P2, P3, etc. (Fig. 3.4). It can be mentioned in this context that while stream
lines are referred to a particular instant of time, the description of path lines
inherently involves the variation of time, since a fluid particle takes time to move
from one point to another. Two path lines can intersect with one another or a single

path line itself can form a loop. This is quite possible in a sense that, under certain
conditions of flow, different particles or even a same particle can arrive at same

location at different instants of time. The two stream lines, on the other hand, can
never intersect each other since the instantaneous velocity vector at a given location

is always unique. It is evident that path lines are identical to streamlines in a steady

flow as the Eulerian and the Lagrangian versions become the same.

P1

P1

P2

P2

P3 P3

Fig. 3.4 Path lines

3.3.3.3 Streak Lines

A streak line at any instant of time is the locus of the temporary locations of all
particles that have passed though a fixed point in the flow field. While a path line
refers to the identity of a fluid particle, a streak line is specified by a fixed point in
the flow field. This line is of particular interest in experimental flow visualisation. If
dye is injected into a liquid at a fixed point in the flow field, then at a later time t, the
dye will indicate the end points of the path lines of particles which have passed
through the injection point. The equation of a streak line at time t can be derived by
the Lagrangian method. If a  fluid particle ( S

r

0) passes through a fixed point ( S
r

1) in
a course of time t, then the Lagrangian method of description gives the equation

S( S
r

0, t) = S
r

1 (3.14)

or solving for S
r

0 ,

S
r

0 = F( S
r

1, t) (3.15)
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If the positions ( S
r
) of the particles which have passed through the fixed

point ( S
r

1) are determined, then a streak line can be drawn through these points. The
equation of the streak line at a time t is given by

S
r
 = f( S

r

0, t) (3.16)

Upon substitution of Eq. (3.15) into Eq. (3.16) we obtain,

S
r
 = f [F( S

r

1, t), t] (3.17)

This is the final form of the equation of a streak line referred to a fixed point S1.
Figure 3.5 describe the difference between streak lines and path lines. Let P be a
fixed point in space through which particles of different identities pass at different
times. In an unsteady flow, the velocity vector at P will change with time and hence
the particles arriving at P at different times will traverse different paths like PAQ,
PBR, and PCS which represent the path lines of the particles. Let at any instant t1,
these particles arrive at points Q, R, and S. Thus, Q, R, and S represent the end
points of the trajectories of these three particles at the instant t1. Therefore, the
curve joining the points S, R, Q, and the fixed point P will define the streak line at
that instant t1. The fixed point P will also lie on the line, since at any instant, there
will be always a particle of some identity at that point. For a steady flow, the velocity
vector at any point is invariant with time and hence the path lines of the particles
with different identities passing through P at different times will not differ, rather
would coincide with one another in a single curve which will indicate the streak line
too. Therefore, in a steady flow, the path lines, streak lines and streamlines are
identical.

P

A

B

CQ

R

S

Fig. 3.5 Description of a streakline

Example 3.9

A two-dimensional flow field is defined as 
r
V  = î x – ĵy. Derive the equation of

stream line passing through the point (1, 1).
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Solution

The equation of stream line is
r
V  ¥ ds

r
 = 0

or, udy – vdx = 0

Hence, dy/dx = v/u = –y/x

or, dy/y + dx/x = 0

Integration of the above equation gives xy = C, where C is constant
For the stream line passing through (1,1), the value of the constant C is 1.

Hence, the required equation of stream line passing through (1,1) is xy – 1 = 0.

Example 3.10

The velocity components in a flow field are given as follows:

u = 
0

x

t t+
, v = v0, w  = 0, where t0 and v0 are constants. A coloured dye is injected at

the point A (x0, y0, z0) in the flow field. Find (i) the equation of a coloured line
visible in the flow field at t = 2t0, as a consequence of the dye injection, given that
the dye injection starts at t = t0; and (ii) Find the locus of a fluid particle that passes
through the point A at t = t0.

Solution

(i) Here, essentially, we need to obtain the equation of streakline at t = 2t0. In order
to obtain the same, we consider that fluid particles are injected through the point at
instants of time symbolically denoted by ti, where ti £2t0. Importantly ti is a variable
and not a fixed instant of time. Now, based on the given velocity field, we have

u =
0

dx x

dt t t
=

+

fi 0

0

2

0i

x t

x t

dx dt

x t t
=

+Ú Ú

fi 0 0

0 0

2
ln ln

i

t tx

x t t

+
=

+

fi 0

0 0

3

i

tx

x t t
=

+
(3.18)

Similarly, v = 0

dy

dt
= v

fi 0

0

2

0
i

y t

y t
dy dt=Ú Ú v
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fi y – y0 = v0 (2t0 – ti)

fi  ti = 0
0

0

2
y y

t
-

+
v

(3.19)

Eliminating ti from Eqs (3.18) and (3.19), one can write

0 0

0 0 00
0 0 0

0 0 0 0

3 3 1

2 3 1
3

t tx

y y y y y yx
t t t

t

= = =
- - -

+ + + +
v v v

0

0 0 0

1 1
3

y yx

x t

-Ê ˆ
+ =Á ˜Ë ¯v

(3.20)

Equation. (3.20) is the equation of a coloured line visible in the flow field at t = 2t0.
(ii) Here, essentially, we need to obtain the equation of the pathline, corresponding
to a fluid particle that at t = t0 passed through (x0, y0)

Now, u =
0

dx x

dt t t
=

+

fi
0 0 0

x t

x t

dx dt

x t t
=

+Ú Ú

fi 0 0

0 0 0 0

ln ln ln
2

t t t tx

x t t t

+ +
= =

+

fi 0

0 02

t tx

x t

+
= (3.21)

Similarly, v = 0

dy

dt
= v

0 0
0

y t

y t
dy dt=Ú Ú v

y – y0 = v0 (t – t0)

t – t0 = + 0

0

y y-
v

(3.22)

Eliminating t from Eqs (3.21) and (3.22), one can write

0
0 0

0 0

0 0 0 0

1
2 2

y y
t t

y yx

x t t

-
+ +

-
= = +

v

v
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0

0 0 0

1
2

y yx

x t

-
- =

v
(3.23)

Equation. (3.23) is the equation of the locus of a fluid particle that passes through
the point A at t = t0.

3.3.4 One-, Two- and Three-Dimensional Flows

In general, fluid flow is three dimensional. This means that the flow parameters like
velocity, pressure and so on vary in all the three coordinate directions. Sometimes
simplification is made in the analysis of different fluid flow problems by selecting
the coordinate directions so that appreciable variation of the hydrodynamic
parameters take place in only two directions or even in only one.

So one-dimensional flow is that in which all the flow parameters may be
expressed as functions of time and one space coordinate only. This single space
coordinate is usually the distance measured along the centre line (not necessarily
straight) of some conduit in which the fluid is flowing. For instance, the flow in a
pipe is considered one-dimensional when variations of pressure and velocity occur
along the length of the pipe, but any variation over the cross section is assumed
negligible. In reality the flow is never one dimensional because viscosity causes the
velocity to decrease to zero at the solid boundaries. If, however, the non-uniformity
of the actual flow is not too great, valuable results may often be obtained from ‘one-
dimensional analysis’. Under this situation, the average values of the flow
parameters at any given section (perpendicular to the flow) are assumed to be
applied to the entire flow at that section. In two-dimensional flow, the flow
parameters are functions of time and two space coordinates (say, x and y). There is
no variation in the z direction, and therefore the same streamline pattern could, at
any instant, be found in all planes perpendicular to the z direction. In three-
dimensional flow, the hydrodynamic parameters are functions of three space
coordinates and time.

3.3.5 Translation, Rate of Deformation and Rotation

The movement of a fluid element in space has three distinct features, namely,
translation, rate of deformation, and rotation. A fluid motion, in general, consists of
these three features simultaneously. Translation and rotation without deformation
represent rigid-body displacements which do not induce any strain in the body.
Figure. 3.6 shows the picture of a pure translation in absence of rotation and
deformation of a fluid element in a three-dimensional flow described by a
rectangular Cartesian coordinate system. In absence of deformation and rotation,
there will be no change in the length of the sides or in the included angles made by
the sides of the fluid element. The sides are displaced parallely. This is possible
when the flow velocities u ( the x component velocity), v ( the y component
velocity), and w ( the z component velocity) are neither a function of x, y, nor of z, in
other words, the flow field is totally uniform.
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3.3.5.1 Rate of Linear Deformation

Now consider a situation where a component of flow velocity becomes the function
of only one space coordinate along which that velocity component is defined, for
example, u = u(x), v = v(y) and w = w(z). Let us consider a fluid element, as shown
in Fig. 3.7 (a), which in course of its translation suffers a change in its linear
dimensions without any change in the included angle by the sides.
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Displacement of the faces ABCD and EFGH along the x direction during a time

interval of Dt are uDt and 
u

u x t
x

∂Ê ˆ+ D DÁ ˜Ë ¯∂
, respectively (neglecting higher order

terms). As a result, there occurs a change in length of the element along the x

direction which is equal to 
u

x t
x

∂
D D

∂
 (Fig.3.7(b)). Therefore, the rate of elemental

strain (the rate of change of length per unit original length) along the x direction is

x

u

x
e

∂
=

∂
& (3.24a)

In a similar way, the rate of strain along the y and z directions can be expressed as

y
y

e
∂

=
∂

&
v

(3.24b)

z

w

z
e

∂
=

∂
& (3.24c)

New lengths along the x, y and z directions (Fig.3.7(b)) are 1
u

x t
x

∂Ê ˆD + DÁ ˜Ë ¯∂
,

1y t
y

∂Ê ˆD + DÁ ˜Ë ¯∂
v

 and 1
w

z t
z

∂Ê ˆD + DÁ ˜Ë ¯∂
, respectively. Therefore, the change in volume

of the fluid element (Fig. 3.7 (b)) is

1 1 1
u w

x y z t t t x y z
x y z

∂ ∂ ∂Ê ˆÊ ˆ Ê ˆD D D + D + D + D - D D DÁ ˜ Á ˜Á ˜Ë ¯ Ë ¯Ë ¯∂ ∂ ∂
v

u w
x y z t

x y z

∂ ∂ ∂ÈÊ ˆ ˘= D D D + + DÁ ˜Í ˙Ë ¯∂ ∂ ∂Î ˚

v
(neglecting higher order terms)

Rate of volumetric strain is given by the rate of change of volume per unit original
volume, which becomes

vol x y z

u w

x y z
e e e e

∂ ∂ ∂
= + + = + +

∂ ∂ ∂
& & & &

v

If the volume of the fluid element is denoted by v , then by definition vol

1
e =&

v

D v

Dt
.

Thus,

1

v

D v
.

u w
V

Dt x y z

∂ ∂ ∂
= + + = —

∂ ∂ ∂

rv
(3.24d)

The above implicates that the volumetric strain of a fluid element is given by the
divergence of the velocity vector. Flows in which there is no volumetric strain are
known as incompressible flows. Incompressible flows therefore, by definition are

flows with . 0V— =
r

. It is important to note that there is a subtle difference between
incompressible fluid, and incompressible flows. Flows with zero rate of volumetric
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strain are termed as incompressible flows. On contrary, a fluid is called
incompressible if its density does not change significantly with change in pressure.

It is important to mention here that the condition for incompressibility is
intimately related to the consideration of conservation of mass for incompressible
flows. In Section 3.4 we will revisit this issue with more elaborate details, starting
from the general principles of conservation of mass applied to fluid flow.

3.3.5.2 Rate of Angular Deformation and Rotation of Fluid Elements

For simplicity, let us consider a fluid element ABCD (Fig. 3.8) in a two-dimensional
velocity field, where both the velocities u and v become functions of x and y, i.e.,

u = u(x, y)
v = v(x, y)

In the expansion of u and v about x and y in a Taylor series function, the higher
order terms are neglected for any derivation as follows. Displacement of A and B

along the x  direction during a time duration Dt are uDt and 
u

u x t
x

∂Ê ˆ+ D DÁ ˜Ë ¯∂
,

respectively. Similarly, the displacement of A and B along the y direction during a

time duration Dt are vDt and x t
x

∂Ê ˆ+ D DÁ ˜Ë ¯∂
v

v , respectively. Therefore, the point B

has relative displacements in both x and y directions with respect to point A, whose

magnitudes are 
u

x t
x

∂
D D

∂
 and x t

x

∂
D D

∂
v

, respectively. Similarly, point D has relative

displacements in both x and y directionss with respect to point A, whose magnitudes

are 
u

y t
y

∂
D D

∂
 and y t

y

∂
D D

∂
v

, respectively. Because of the relative displacement of B

in the y direction with respect to A and the relative displacement of D in the x
direction with respect to A, the included angle between AB and AD changes, and
the fluid element suffers a continuous angular deformation along with the linear
deformations in course of its motion. The rate of angular strain or angular

deformation xye&  is defined as the rate of change of the angle between two line

elements in the fluids which were originally perpendicular to each other. Consider
AB and AD as two such line elements, for example. On deformation, the angle

between them is, ( )B A D
2

p
a b< = - D + D¢ ¢ ¢ .

The change in the angle is ( ) ( )
2 2

p p
a b a bÈ ˘= - - D + D = D + DÍ ˙Î ˚

Rate of change of the angle, or rate of angular deformation is

xye&  =
0

lim
t t

a b

D Æ

D + DÊ ˆ
Á ˜Ë ¯D

or xye&  =
d d

dt dt

a b
+
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From the geometry, we obtain

tan Da =

1

x t
B E x

uA E
x t

x

∂
D D¢ ¢ ∂=
∂¢ ¢ Ê ˆD + DË ¯∂

v

For small values of Da (which occurs at small Dt), Da ª Da

Hence, Da =

1

x t
x

u
x t

x

∂
D D

∂
∂Ê ˆD + DË ¯∂

v

0 0
lim lim

1
t t

x
d x

udt t
x t

x

a a

D Æ D Æ

∂
DD ∂= =
∂D Ê ˆD + DË ¯∂

v

 =
x

∂
∂
v

Similarly,
0 0

lim lim

1
t t

u
y

d y

dt t
x t

y

b b
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∂
D

D ∂
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 =
u

y

∂
∂

Thus, xy

d d u

dt dt x y

a b
e

∂ ∂
= + = +

∂ ∂
&

v
(3.25)

Similarly,

yz

w

z y
e

∂ ∂
= +

∂ ∂
&

v
(3.25a)

xz

w u

x z
e

∂ ∂
= +

∂ ∂
& (3.25b)

In index notation, the rate of angular deformation can be expressed as

j i
ij

i j

u u

x x
e

∂ ∂
= +

∂ ∂
& (3.26)

Specification of e& , thus requires two indices; and like stress, it is also a second
order tensor. It may be easily derived that the strain rate tensor is symmetric, i.e.,

ij jie e=& & .

It is important to note in this context that because of relative motion between
fluid layers, deformable fluids do not rotate like rigid bodies. However, an angular
velocity for such fluid flow may be artificially defined in such a way that in the
limiting case of non-deformable fluids, it conforms to the motion of rigid body
rotation. Accordingly, the angular velocity at a point is defined as the arithmetic
mean of angular velocities of two line elements at that point, which were originally
perpendicular to each other. Referring to Fig. 3.8, the angular velocities of two

originally perpendicular line elements AB and AD in the xy plane are 
d

dt

a
 and 

d

dt

b

respectively, but oriented in the opposite sense. Considering the anticlockwise
direction as positive, the angular velocity of the fluid element at A thus can be
written as,

wxy = ( )1 1

2 2

u

x y
a b

∂ ∂Ê ˆ- = -Á ˜Ë ¯∂ ∂
&&

v
(3.27)

Instead of wxy, one may also use an alternative notation of wz, considering that
rotation in the  xy plane and rotation with respect to the z axis is essentially the same
thing.
In three-dimensional flow, the components of rotation are defined as

wxy =
1

2z

u

x y
w

∂ ∂Ê ˆ= -Á ˜Ë ¯∂ ∂
v

(3.27a)
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wyz =
1

2x

w

y z
w

∂ ∂Ê ˆ= -Á ˜Ë ¯∂ ∂
v

(3.27b)

wzx =
1

2
y

u w

z x
w

∂ ∂Ê ˆ= -Á ˜Ë ¯∂ ∂
(3.27c)

In index notation, the angular velocity can be expressed as

1

2

j i
ij

i j

u u

x x
w

∂Ê ˆ∂
= -Á ˜∂ ∂Ë ¯

(3.28)

Obviously the angular velocity tensor is skew-symmetric as wij = – wji. It is

interesting to note in this context that the velocity gradient tensor i

j

u

x

∂
∂

 can be

decomposed into two components, viz., one symmetric and another skew-
symmetric, as follows:

1 1

2 2

ij ij

j ji i i

j j i j i

u uu u u

x x x x x

e w

∂ ∂Ê ˆ Ê ˆ∂ ∂ ∂
= + + -Á ˜ Á ˜∂ ∂ ∂ ∂ ∂Ë ¯ Ë ¯

&

1442443 1442443 (3.29)

Here the symmetric component represents the rate of shear strain tensor and the
skew-symmetric part represents the angular velocity tensor.

The angular velocity of fluid flow has further mathematical implications, which
may be inferred by referring to the fact that following Eqs (3.27a) to (3.27c),
rotation in a flow field can be expressed in a vector form as

( )1

2
Vw = — ¥
rr

(3.30)

The quantity VW = — ¥
r r

 is defined as the vorticity of flow, which is a mathematical
measure of rotationalities in the flow field. In Cartesian coordinate systems

ˆˆ ˆ             

    

            

i j k

V
x y z

u v w

∂ ∂ ∂
W = — ¥ =

∂ ∂ ∂

r r

= ˆˆ ˆ 2
w u w u

i j k
y z z x x y

w
∂ ∂ ∂ ∂ ∂ ∂Ê ˆ Ê ˆÊ ˆ- + - + - =Á ˜Á ˜ Á ˜Ë ¯Ë ¯ Ë ¯∂ ∂ ∂ ∂ ∂ ∂

rv v
(3.31)

If an imaginary line is drawn in the fluid so that the tangent to it at each point is in
the direction of the vorticity vector W

r
 at that point, the line is called a vortex line.

Therefore, the general equation of the vortex line can be written as
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0dsW ¥ =
r r

(3.32)

Let us now consider some special cases of angular deformation of fluid elements

x

∂

∂

v
 = – 

u

y

∂

∂
,

xye&  = 0 (from Eq. 3.25) (3.33a)

and wz =
x

∂

∂

v
 = – 

u

y

∂

∂
(from Eq. 3.27) (3.33b)

This implies that the linear segments A B and A D move with the same angular
velocity (both in magnitude and direction) and hence the included angle between
them remains the same and no angular deformation takes place. This situation is
known as pure rotation (Fig. 3.9(a). In another special case,

when
x

∂

∂

v
 =

u

y

∂

∂

xyg&  = 2 2
u

x y

∂ ∂

∂ ∂
=

v
 (from Eq. 3.25) (3.34a)

and wz = 0 (from Eq. (3.27)) (3.34b)

This implies that the fluid element has an angular deformation rate but no
rotation about the z axis (Fig. 3.9(b)
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When the components of rotation at all points in a flow field become zero, the flow
is said to be irrotational. Therefore, the necessary and sufficient condition for a flow
field to be irrotational is

— ¥
r
V  = 0 (3.35)

3.3.5.3 Vorticity in Polar Coordinates

In a two-dimensional polar coordinate system (Fig. 3.10), the angular velocity of
segment Dr can be written as
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Fig. 3.10 Definition of rotation in a polar coordinate system

The additional term arising from the angular velocity about the centre O is
V q/r.

Hence, the vorticity component Wz in polar coordinates is

Wz =
1

2 r
z

v vv

r r r

q q∂ ∂
w

∂ ∂q
= - +

Therefore, in a three-dimensional cylindrical polar coordinate system, the
vorticity components can be written as

Wz =
1 rv vv

r r r

q q∂ ∂

∂ ∂q
- + (3.36a)

Wr =
1 z vv

r z

q∂∂

∂q ∂
- (3.36b)

Wq = r zv v

z r

∂ ∂

∂ ∂
- (3.36c)

In a spherical polar coordinate system (Fig. 3.1(b)), the vorticity components are
defined as
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WR =
1 1

cot
sin

vv v

R R R

fq q
∂∂

f
∂f f ∂q

- + (3.37a)
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R v vv

R R R

q q∂∂

f ∂q ∂
- - (3.37b)

Wq =
1 R

v v v

R R R

f f∂ ∂

∂ ∂f
+ - (3.37c)

3.3.5.4 Circulation

The circulation G around a closed contour is defined as the line integral of the
tangential component of velocity and is given by (Fig. 3.11)

G = .V dsÚ
r r

(3.38)

where ds
r

 is a line element of the contour. Circulation is traditionally taken to be
positive in the anticlockwise direction (not a mandatory but a general convention).
The circulation can be expressed in terms of area integral using Stokes theorem as

G = ( ) ˆ. .
A

V ds V ndA= — ¥Ú Ú
r rr

(3.39)

where dA is the elemental area of the surface and A  is the total surface area bounded

by the close curve around which circulation is evaluated. In Eq. (3.39), n̂ is a unit
vector outward normal to dA.

Using the definition of vorticity, Eq. (3.39) becomes

G = ˆ.
A

ndAWÚ
r

(3.40)

n̂

V

ds

Fig. 3.11 

It is interesting to illustrate the concept of circulation through some special types of
flows known as vortex flows. Vortex flows are flows for which the radial component
of velocity, vr, is zero; but the cross-radial component of velocity, vq, is non-zero (in
fact, a function of r).

The first example of vortex flow that we introduce here is called forced vortex,
which is defined by the following velocity components:
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vq = w r

and vr = 0

Consider a close contour ABCD in the above flow field shown in Fig. 3.12.
Circulation along the close contour ABCD is given by

GABCD = ( ).
AB BC CD DAr rV ds rd dr r dr d rdq qq q q= - - + + +Ú

r r
v v v v

= – ( )
BCrr rdw q - v ( )( )0

DArdr r dr r dr dw q+ + + - v
0
rdq

GABCD = 2wrdrdq  (3.41)

Circulation per unit area is given by

ABCD

rdrdq

G
 = 2w (3.41a)

Interestingly, here 2w is the vorticity of flow. Thus, circulation per unit area is the
vorticity of the flow.

r

dr

dq

A

D
C

B

Fig. 3.12 

As a next example of vortex flow, we consider the free vortex, the flow field
corresponding to which is defined by the following velocity components:

vq =
C

r

and vr = 0

Close to such a situation is the flow observed in a kitchen sink. For such a flow,
circulation along the closed contour ABCD is given by

GABCD = ( ).
AB BC CD DAr rV ds rd dr r dr d rdq qq q q= - - + + +Ú

r r
v v v v

=
BCr

C
rd

r
q- - v ( )0

DAr

C
dr r dr d

r dr
q+ + -

+
v

0
0rdq =
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It is important to mention here that free vortex flow at the origin is impossible
because of mathematical singularity (vq tends to infinity as r tends to zero). In this
context, one may also note that although free vortex is an irrotational motion, the
circulation around a path containing any singular point (such as the origin) is non-
zero. However, that is not a technically correct way of evaluating the circulation,
since the contour chosen must not include any point of singularity. Thus, if the
circulation is calculated for a free vortex flow along any closed contour excluding
the singular point (the origin), it should be zero, consistent with the conditions to be
satisfied by an irrotational flow field.

A classical example of vortex flow in nature is a tornado. Up to the eye of a
tornado, it is a forced vortex, having a strong element of rotationality. Beyond a
critical radius it is like a free vortex. Thus, a tornado can be represented by a Rankine

vortex which is a combination of forced and free vortex (Fig. 3.13). At the critical
radius, vq evaluated from free vortex zone must be equal to that evaluated from the
forced vortex zone.

r

vq

Forced vortex Free vortex

rc

(critical radius)

Fig. 3.13 Velocity distribution in a Rankine vortex

Example 3.11

The velocity field in a fluid medium is given by
r

V  = 2 ˆˆ ˆ3 2 (2 3 )xy i xy j zy t k+ + +

Find the magnitudes and directions of (i) translational velocity, (ii) rotational
velocity, and (iii) the vorticity of a fluid element at (1, 2, 1) and at time t = 3.

Solution

(i) Translational velocity vector at (1, 2, 1) and at t = 3 can be written as
r

V  = 3(2)(4) î  + 2(1)(2) ĵ  + [2(1)(2) + 3(3)] k̂  = 12 î  + 4 ĵ  + 13 k̂
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Hence, x component of translational velocity u = 12 units
 y component of translational velocity v = 4 units
 z component of translational velocity w = 13 units

(ii) Rotational velocity vector is found as

w
r

 =

ˆˆ ˆ

1 1
( )

2 2

i j k

V
x y z

u w

∂ ∂ ∂

∂ ∂ ∂
— ¥ =

r

v

=
ˆˆ ˆ

– – –
2 2 2

i w j u w k u

y z z x x y

∂ ∂ ∂ ∂ ∂ ∂

∂ ∂ ∂ ∂ ∂ ∂

Ï ¸ Ï ¸ Ï ¸
+ +Ì ˝ Ì ˝ Ì ˝

Ó ˛ Ó ˛ Ó ˛

v v

= ( )1ˆ (2 3 ) – 2
2

i zy t xy
y z

∂ ∂

∂ ∂

È ˘+Í ˙Î ˚

+ ( )21ˆ (3 ) 2 3
2

j xy zy t
z x

∂ ∂

∂ ∂

È ˘- +Í ˙Î ˚

+ ( )21ˆ (2 ) 3
2

k xy xy
x y

∂ ∂

∂ ∂

È ˘-Í ˙Î ˚

= z î  + (y – 3xy) k̂

at (1, 2, 1) and t = 3,

w
r

 = î  – 4 k̂

Therefore, the rotational velocity about x axis wx = 1 unit
the rotational velocity about y axis wy = 0 unit
the rotational velocity about z axis wz = – 4 units

(iii) The vorticity
r

W  = 2w
r

Hence,
r

W  = 2 î  – 8 k̂

Example 3.12

Find the vorticity components at a point (1,1,1) for the following flow field:

u = 2x2 + 3y, v = – 2xy + 3y2 + 3z y, w = 
3

2
 z2 + 2x z – 9y2z

Solution

Wx =
w

y z

∂ ∂
-

∂ ∂
v

 = 18y z – 3y = – (18y z + 3y)

Wy =
u w

z x

∂ ∂
-

∂ ∂
 = 0 – 2z = – 2z
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Wz =
u

x y

∂ ∂
-

∂ ∂
v

 = – 2y – 3 = – (2y + 3)

at the point (1, 1, 1)

Wx = – (18 + 3) = – 21 units

Wy = – 2 units

Wz = – (2 + 3) = – 5  units

3.3.5.5 Generalised Expression of the Movement of a Fluid Element

An analytical expression to represent the most general form of the movement of a
fluid element consisting of translation, rotation and deformation can be developed
as follows.

Consider the movement of a fluid element in a fluid continuum as shown in Fig.
3.14.

P

S

O

V

V

dV

1
=

+

S
s

+
d

P1

ds

dV

VV

Fig. 3.14 General representation of fluid motion

The velocity at a point P(x, y, z) is 
r
V  and at point P1(x1, y1, z1), a small distance d

r

S

from P, is 
r
V1.

The velocity vector 
r

V1 can be written as
r
V1 = 1 1 1

ˆˆ ˆi u j k w V dV+ + = +
r r

v

= ˆˆ ˆ d d d
V V V

i u j k w x y z
x y z

∂ ∂ ∂

∂ ∂ ∂
+ + + + +

r r r

v

= ˆ d d d
u u u

i u x y z
x y z

∂ ∂ ∂

∂ ∂ ∂

È ˘+ + +Í ˙Î ˚
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+ ˆ d d dj x y z
x y z

∂ ∂ ∂

∂ ∂ ∂

È ˘+ + +Í ˙Î ˚

v v v
v

+ d d d
w w w

k w x y z
x y z

∂ ∂ ∂

∂ ∂ ∂

È ˘
+ + +Í ˙

Î ˚

r

(3.42)

where u1, v1, w1 are the respective x, y and z components of 
r
V 1 and u, v, w are

those of 
r

V .
Equation (3.42) can be rearranged as

r
V1 =

1 1ˆ d d d
2 2

u u u w
i u x y z

x x y z x

∂ ∂ ∂ ∂ ∂

∂ ∂ ∂ ∂ ∂

È Ï Ê ˆ Ê ˆ ¸+ + + + +Ì ˝Á ˜ Á ˜Í Ë ¯ Ë ¯Î Ó ˛

v

+ 
1

d d
2

u w u
z y

z x x y

∂ ∂ ∂ ∂

∂ ∂ ∂ ∂

ÏÊ ˆ Ê ˆ ¸˘- - -Ì ˝Á ˜ Á ˜ ˙Ë ¯ Ë ¯ ˚Ó ˛

v

+ 
1 1ˆ d d d
2 2

u w
j y x z

y x y y z

∂ ∂ ∂ ∂ ∂

∂ ∂ ∂ ∂ ∂

È Ï Ê ˆ Ê ˆ ¸+ + + + +Ì ˝Á ˜ Á ˜Í Ë ¯ Ë ¯Î Ó ˛

v v v
v

+ 
1

d d
2

u w
x z

x y y z

∂ ∂ ∂ ∂

∂ ∂ ∂ ∂

ÏÊ ˆ Ê ˆ ¸˘- - -Ì ˝Á ˜ Á ˜ ˙Ë ¯ Ë ¯ ˚Ó ˛

v v

+ 
1 1ˆ d d d
2 2

w u w w
k w z x y

z z x y z

∂ ∂ ∂ ∂ ∂

∂ ∂ ∂ ∂ ∂

È Ï Ê ˆ Ê ˆ ¸+ + + + +Ì ˝Á ˜ Á ˜Í Ë ¯ Ë ¯Î Ó ˛

v

+ 
1

d d
2

w u w
y x

y z z x

∂ ∂ ∂ ∂

∂ ∂ ∂ ∂

ÏÊ ˆ Ê ˆ ¸˘- - -Ì ˝Á ˜ Á ˜ ˙Ë ¯ Ë ¯ ˚Ó ˛

v

=
r r r r
V s D+ ¥ +1

2
W d (3.43)

where, d
r

S  = ˆˆ ˆd d di x j y k z+ + ,
r

W  is the vorticity vector as defined by Eq. (3.31)

and
r

D  =
1 1ˆ d d d
2 2

u u u w
i x y z

x x y z x

∂ ∂ ∂ ∂ ∂

∂ ∂ ∂ ∂ ∂

È Ê ˆ Ê ˆ ˘+ + + +Á ˜ Á ˜Í ˙Ë ¯ Ë ¯Î ˚

v

+ 
1 1ˆ d d d
2 2

u w
j x y z

x y y y z

∂ ∂ ∂ ∂ ∂

∂ ∂ ∂ ∂ ∂

È Ê ˆ Ê ˆ ˘+ + + +Á ˜ Á ˜Í ˙Ë ¯ Ë ¯Î ˚

v v v

+ 
1 1ˆ d dy + d
2 2

u w w w
k x z

z x y z z

∂ ∂ ∂ ∂ ∂

∂ ∂ ∂ ∂ ∂

È Ê ˆ Ê ˆ ˘+ + +Á ˜ Á ˜Í ˙Ë ¯ Ë ¯Î ˚

v
(3.44)

Equation (3.43) represents the most general form of the movement of a fluid
element. The first term represents the translational velocity which indicates linear
motion without any change of shape of the fluid body. The second term represents a

rigid body rotation of the fluid element, while the third term 
r
D  represents the rate of

deformation.
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3.4   CONSERVATION OF MASS FOR FLUID FLOW

A fluid being a material body, must obey the law of conservation of mass in the
course of its flow. In other words, if a velocity field V

r
 has to exist in a fluid

continuum, the velocity components must obey the mass conservation principle.
Velocity components in accordance with the mass conservation principle are said to
constitute a possible fluid flow, whereas these in violation of this principle, are said
to constitute an impossible flow. Therefore, the existence of a physically possible
flow field is verified from the principle of conservation of mass.

In Section (3.3.5), we have shown that condition for incompressibility of fluid
flow leads to the kinematic constraint . 0V— =

r
. Interestingly, this consideration is

intimately related to the consideration of the conservation of mass for
incompressible flows. In this section, we will emphasise on the mathematical
description of conservation of mass for general fluid flows from different
perspectives, and eventually arrive at certain specific conclusions related to the
kinematic constraints of incompressible flows.

3.4.1 Conservation of Mass for a Fluid Element (Lagrangian Point of
View: A Control Mass System Approach)

Let us consider a fluid element of mass m, density r, and volume v . Mass of a fluid
element can be expressed in terms of elemental density and elemental volume as

m = r v

or In m = In r + In v

Differentiating (obtaining total derivative) with respect to time t, we obtain

1 1 1Dm D

m Dt Dt

r

r
= +

v

D v

Dt

Since mass of the element is conserved, 0
Dm

Dt
= , which implies that we can write

in a Cartesian system ( noting that 
1

v

D v

Dt
 is the rate of volumetric strain; see Eq.

3.24d)

0 =
1 D u v w

Dt x y z

r

r

∂ ∂ ∂
+ + +

∂ ∂ ∂

fi 0 =
1 u v w

u v w
t x y z x y z

r r r r

r

∂ ∂ ∂ ∂ ∂ ∂ ∂È ˘+ + + + + +Í ˙∂ ∂ ∂ ∂ ∂ ∂ ∂Î ˚

fi 0
u v w

u v w
t x y z x y z

r r r r
r r r

∂ ∂ ∂ ∂ ∂ ∂ ∂
+ + + + + + =

∂ ∂ ∂ ∂ ∂ ∂ ∂

( ) ( ) ( ) 0u v w
t x y z

r
r r r

∂ ∂ ∂ ∂
+ + + =

∂ ∂ ∂ ∂
(3.45)

Equation. (3.45) is the well-known equation of continuity in a rectangular Cartesian
coordinate system. The equation can be written in a vector form as



Kinematics of Fluid Flow 153

( ). 0V
t

r
r

∂
+ — =

∂

r
(3.46)

where V
r

 represents the velocity vector. Equation. (3.46) is the celebrated

continuity equation in fluid mechanics, which mathematically represents the
conservating mass for fluid flow.

In case of steady flow,

t

r∂
∂

 = 0

Hence, Eq. (3.46) becomes

( ). Vr—
r

 = 0 (3.47)

or, in a rectangular Cartesian coordinate system

( ) ( ) ( ) 0u w
x y z

r r r
∂ ∂ ∂

+ + =
∂ ∂ ∂

v (3.48)

In case of incompressible flow, we have earlier seen by definition that

.V—
r

 = 0 (3.49)

or, in a Cartesian system 0
u w

x y z

∂ ∂ ∂
+ + =

∂ ∂ ∂
v

(3.50)

Substituting Eq. (3.49) in Eq. (3.46), we thus get, for incompressible flow

.V
t

r
r

∂
+ —

∂

r
 = 0 (3.51)

or
D

Dt

r
 = 0 (3.51a)

Equation. (3.51a) implies that for an incompressible flow, the total derivative of

density is zero ( in a Cartesian system: 0
D

u w
Dt t x y z

r r r r r∂ ∂ ∂ ∂
= + + + =

∂ ∂ ∂ ∂
v ).

However, this does not necessarily imply that the density has to be a constant for

incompressible flow. In fact, the density can be functions of position and time in Eq.

(3.50) in a manner such that all terms in the expression for 
D

Dt

r
 cancel each other,

leading to 
D

Dt

r
 = 0. Such flows are known as variable density, incompressible flows.

Nevertheless, for the special case of a constant density flow, 
D

Dt

r
 is trivially zero.

Thus, constant density flow is a special outclass of incompressible flow.
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3.4.2 Alternate Derivation of Continuity Equation (Eulerian Point of
View: A Control Volume Approach)

In order to derive the continuity equation from an Eulerian perspective, one may
consider a differentially small rectangular control volume (i.e., an identified volume
in space across which fluid flows) with coordinate axes as shown in Fig. 3.15.
Importantly, fluid velocity components normal to the faces of the control volume
solely contribute towards the volume flow rates across those respective faces. For
illustration, we consider first the flow along the x  direction, and subsequently extend
similar inferences to y and z directions. Let the fluid enter across the face ABCD
with a velocity u and density r. Therefore, the rate of mass entering the control
volume (CV) along the x direction through face ABCD is given by

( )in x
m u y zr= D D&

The rate of mass leaving the control volume along the x direction through face
EFGH is

( ) ( ) ( ) higher order terms (h.o.t.)out in inx x x x
m m m x

x+D
∂

= + D +
∂

& & &

= ( ) h.o.t.u y z u x y z
x

r r
∂

D D + D D D +
∂

Hence, the net rate of mass entering the control volume along the x direction is

( ) ( ) ( ) h.o.t.in outx x x
m m u x y z

x
r+D

∂
- = - D D D +

∂
& &

xD

zD

x

y

z

A

B

D

F

E

G

H

x
( )m in

. x+D x
( )m out

.

yD

Fig. 3.15 

In a similar fashion, the net rate of mass entering the control volume along the y
direction is
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( ) ( ) ( ) h.o.t.in outy y y
m m x y z

y
r+D

∂
- = - D D D +

∂
& & v

and the net rate of mass entering the control volume along the z direction is

( ) ( ) ( ) h.o.t.in outz z z
m m w x y z

z
r+D

∂
- = - D D D +

∂
& &

The conservation of mass for the control volume gives

( ) ( )in out CVm m m x y z x y z
t t t

r
r

∂ ∂ ∂
- = = D D D = D D D

∂ ∂ ∂
& & (3.52)

(Since DxDyDz is invariant with time).
Taking Dx, Dy, Dz Æ  0 so that higher order term Æ  0, and substituting expressions

for in outm m-& &  different terms in Eq. (3.52), we obtain

( ) ( ) ( )u x y z x y z w x y z x y z
x y z t

r
r r r

∂ ∂ ∂ ∂
- D D D - D D D - D D D = D D D

∂ ∂ ∂ ∂
v

( ) ( ) ( ) 0u w x y z
t x y z

r
r r r

∂ ∂ ∂ ∂È ˘+ + + D D D =Í ˙∂ ∂ ∂ ∂Î ˚
v

Since the equation is valid irrespective of the size Dx Dy Dz of the control volume,
we can write

( ) ( ) ( ) 0u w
t x y z

r
r r r

∂ ∂ ∂ ∂
+ + + =

∂ ∂ ∂ ∂
v

or, ( ). 0V
t

r
r

∂
+ — =

∂

r

3.4.3 One-dimensional Cross-sectionally Averaged Form of the
Continuity Equation

Consider steady flow through a variable area conduit, as shown in Fig. 3.16(a).

(a) (b)

x

y
Ai

dv
Ae

Fig. 3.16 
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The corresponding continuity equation reads

( ). 0Vr— =
r

Integrating the same over the domain (an elemental volume d v  is depicted in Fig.
3.16b), we get

( ). V dr—
r

v
v

0=Ú
Using the divergence theorem, the above integral may be converted into an

integral over an area that bounds the volume v , so that one may write

( ) ˆ. 0
A

V ndAr =Ú
r

where n̂  is a unit vector normal to dA . Since the velocity vector is zero except for
the inflow (A i) and outflow (A e) boundaries, the above integral may be written as

( ) ( )ˆ ˆ. . 0
i eA A

V ndA V ndAr r+ =Ú Ú
r r

Since ˆn̂ i= -  over A i and ˆn̂ i=  over A e, one may write the above as

0
i eA A

udA udAr r- + =Ú Ú (3.53)

where u is the x  component of flow velocity.
For steady flow, thus the mass flow rate at section i is equal to the mass flow rate

at section e. Many times it is convenient to express the above in terms of average
velocity. For example, consider a situation in which density does not vary over a
given section. Further, we note that the cross-sectionally average velocity is defined
as

A
udA

u
A

=
Ú

(3.54)

Physically, the average velocity is an equivalent uniform velocity that could have
given rise to the same volumetric flow rate as that induced by the variable velocity
under consideration. Combining Eqs (3.53) and (3.54), one can write

i i i e e eu A u Ar r= (3.55)

where the subscript i and e indicate the inlet and exit conditions respectively.
If density is not varying spatially, i.e., ri = re, Eq. (3.55) becomes

i i e eu A u A= (3.56)

3.4.4 Continuity Equation in a Cylindrical Polar Coordinate System

The continuity equation in any coordinate system can be derived in two ways, viz.,
(i) either by expanding the vectorial form of general Eq. (3.46) with respect to the
particular coordinate system, or (ii) by considering an elemental control volume
appropriate to the reference frame of coordinates and then by applying the
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fundamental principle of conservation of mass. The term —◊( )r
r
V  in a cylindrical

polar coordinate system (Fig. 3.17) can be written as

( )Vr—◊
r

 =

( )1
( ) ( )r

r z

vv
v v

r r r z

q∂ rr∂ ∂
r r

∂ ∂q ∂
+ + + (3.57)

Therefore, the equation of continuity in a cylindrical polar coordinate system can
be written as

( )1
( ) ( )r

r z

vv
v v

t r r r z

q∂ rr∂ r ∂ ∂
r r

∂ ∂ ∂q ∂
+ + + +  = 0 (3.58)

The above equation can also be derived by
considering the mass fluxes in the control volume
shown in Fig. 3.18.
Rate of mass entering the control volume through
face ABCD

= r vr r dq dz

Rate of mass leaving the control volume through
the face EFGH

= r vr r dq dz + ( d d )drv r z r
r

∂
r q

∂

Hence, the net rate of mass efflux in the r direction = 
1

( )drv r V
r r

∂
r

∂

where, dV  = r dr dq dz (the elemental volume)

rv r zq d d +

dz

H

G
D

C

E

F

B

A

( d d ) dr qv r zq

r qv r rd ( d +)

r qv r z +r d d

r

q
v r

z

r
d
d

rv r zqd d

r qv r rzd ( d )

rdq dr

( d d )dr qv r r zz

( d d )dr qv r z rr

∂

∂

∂
∂q

∂ z

∂ r

Fig. 3.18 A control volume appropriate to a cylindrical polar coordinate system

z
y

r

x
q

Fig. 3.17 A cylindeical polar

coordinate system
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The net rate of mass efflux from the control volume, in q direction, is the difference
of mass leaving through face ADHE and the mass entering through face BCGF and
can be written as

1
( )dv V

r
q

∂
r

∂q
.

The net rate of mass efflux in the z direction can be written in a similar fashion as

( )dzv V
z

∂
r

∂

The rate of increase of mass within the control volume becomes

( d )V
t

∂
r

∂
 = (d )V

t

∂ r

∂

Hence, following the fundamental principle of conservation of mass (rate of
accumulation of mass in the control volume + net rate of mass efflux from the
control volume = 0), the final form of continuity equation in a cylindrical polar
coordinate system becomes

1 1
( ) ( ) ( )r zv r v v

t r r r z
q

∂ r ∂ ∂ ∂
r r r

∂ ∂ ∂q ∂
+ + +  = 0

or,
1

( ) ( ) ( )r
r z

v
v v v

t r r r z
q

r∂ r ∂ ∂ ∂
r r r

∂ ∂ ∂q ∂
+ + + +  = 0

In case of an incompressible flow,

1r r zvv v v

r r r z

q∂∂ ∂

∂ ∂q ∂
+ + +  = 0 (3.59)

The equation of continuity in a spherical polar coordinate system (Fig. 3.1) can

be written by expanding the term —◊( )r
r
V  of Eq. (3.46) as

2
2

( sin )( )1 1 1
( )

sin sin
R

vv
R v

t R R RR

fq
∂ r f∂ r∂ r ∂

r
∂ ∂ f ∂q f ∂f

+ + +  = 0

(3.60)

For an incompressible flow, Eq. (3.60) reduces to

21 1 1 ( sin )
( )

sin sinR

v v
R v

R R

q∂∂ ∂ f f

∂ f ∂q f ∂f
+ +  = 0 (3.61)

The derivation of Eq. (3.60) by considering an elemental control volume
appropriate to a spherical polar coordinate system is left as an exercise for the
readers.

Example 3.13

Does a velocity field given by
r

V  = 3 2 ˆˆ ˆ5 – 15x i x y j t k+
represent a possible incompressible flow of fluid?
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Solution

In order to check for a physically possible incompressible fluid flow, one has to look
for its compliance with the equation of continuity.

The continuity equation (in differential form) for a three-dimensional incompre-
ssible flow can be written as

— ◊ 
r

V  =
u w

x y z

∂ ∂ ∂

∂ ∂ ∂
+ +

v

 = 0

Here, u = 5x3, v = –15x2y and w = t,

Hence,
∂

∂

u

x
 = 15x2, 

y

∂

∂

v

 = –15x2 and
w

z

∂

∂
 = 0

which, on substitution in the continuity equation satisfies it for all x, y, z and t
values. This shows that the above velocity field represents a physically possible
incompressible flow.

Example 3.14

Which of the following sets of equations represent possible two-dimensional
incompressible flows?

(i) u = x + y; v = x – y
(ii) u = x + 2y; v = x2 – y2

(iii) u = 4x + y; v = x – y2

(iv) u = xt + 2y; v = x2 – yt2

(v) u = xt2; v = xyt + y2

Solution

The continuity equation (in differential form) for a two-dimensional incompressible

flow is 
u

x y

∂ ∂

∂ ∂
+

v

 = 0

(i) u = x + y v = x – y;
u

x y

∂ ∂

∂ ∂
+

v

 = 1 + (–1) = 0

\ two-dimensional incompressible flow is possible.

(ii) u = x + 2y, v = x2 – y2;
u

x y

∂ ∂

∂ ∂
+

v

 = 1 – 2y

\ two-dimensional incompressible flow is not possible.

(iii) u = 4x + y, v = x – y2;
u

x y

∂ ∂

∂ ∂
+

v

 = 4 – 2y

\ two-dimensional incompressible flow is not possible.
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(iv) u = xt + 2y, v = x2 – yt2;
u

x y

∂ ∂

∂ ∂
+

v
 = t – t2

\ two-dimensional incompressible flow is not possible.

(v) u = xt2, v = xyt + y2; 
u

x y

∂ ∂

∂ ∂
+

v

 = t 2 + xt + 2y

two-dimensional incompressible flow is not possible.

Example 3.15

For a flow in the xy plane, the y component of velocity is given by

v = y2 – 2x + 2y

Determine a possible x component for a steady incompressible flow. How many
possible x components are there?

Solution

The flow field is steady and incompressible. Therefore, from continuity

u

x y

∂ ∂

∂ ∂
+

v

 = 0

or
u

x

∂

∂
 = – 

y

∂

∂

v

Now, – 
y

∂

∂

v

 = – 2( – 2 2 ) (2 2) 2 2y x y y y
y

∂

∂
+ = - + = - -

Hence, u = d d (2 2) d
u

x x y x
x y

∂ ∂

∂ ∂
= - = - +Ú Ú Ú

v

= – 2yx – 2x + f (y)

There are infinite number of possible x components, since f (y) is arbitrary. The
simplest one would be found by setting f (y) = 0.

Example 3.16

A heated rectangular electronic chip floats on the top of a thin layer of air, above a
bottom plate. Air is blown at a uniform velocity v0 through holes in the bottom
plate. For steady, inviscid, and constant density flow, find out the components of
velocity and acceleration. Width of the chip perpendicular to the plane of the figure
is b.
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v0

Chip

y

h

L

x

u x( )

CV

x

Fig. 3.19 

Solution

Choose a fixed control volume as shown by the dashed line in Fig. 3.19.
The rate at which air enters this control volume through the bottom is the same rate
at which it leaves the control volume across the gap, to maintain continuity. Thus,
one may write

v0 xb = u(x) hb

or u(x) = 0 x

h

v

Continuity equation becomes

0
u

x y

∂ ∂
+ =

∂ ∂
v

or 0 0
h y

∂
+ =

∂
v v

or 0 y
h

∂ = - ∂
v

v

( )0 y f x
h

\ = - +
v

v (3.62)

The integration constant f (x) can be found by applying an appropriate boundary
condition as follows:

At y = h, v = 0

( ) 0
0f x h

h
\ = =

v
v

Thus, 0 1
y

h

Ê ˆ= -Á ˜Ë ¯v v (3.62a)

x

u
a

t

∂
=

∂

0
u u

u
x y

∂ ∂
+ +

∂ ∂
v
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 =
2

0 0 0
2

x x

h h h
=

v v v

ya
t

∂
=

∂
v

0

u
x y

∂ ∂
+ +

∂ ∂
v v

v

=
2

0 0
0 1 1

y y

h h h h

Ê ˆÊ ˆ Ê ˆ- - = - -Á ˜ Á ˜Á ˜Ë ¯ Ë ¯Ë ¯
v v

v

The acceleration field can be expressed as

2 2
0 0

2
ˆ ˆ1

x y
a i j

h hh

Ê ˆ= - -Á ˜Ë ¯
r v v

This example illustrates that although velocity is not a function of time but still
there is an acceleration, because of the convective component (originating out of
spatial gradients of flow velocities).

Example 3.17

Fluid flows through a convergent nozzle as shown in Fig. 3.20. Cross-sectional area
of the nozzle is given as A  = A 0 (1 – bx), where x is measured from the entrance, A 0

is the cross-sectional area of the nozzle at the entrance, and b is a constant. The free
stream velocity is given as u• = c(1 + at), where c and a are dimensional constants.
Find out an expression for acceleration assuming inviscid flow.

x

y u•

Fig. 3.20 

Solution

The cross-sectionally averaged continuity equation provides us with

 u• A0 = u(x, t)A (x)

or u (x, t) =
( )

( )
( )

( )
0

0

1 1

1 1

c at A c at

A bx bx

+ +
=

- -
The acceleration field can be expressed as

ax  = 
( )

( )
( )

( )
( ) ( )

( )
( )

2

2 2

1 1 1

1 1 11 1

u u ca c at cb at c cb at
u a

t x bx bx bxbx bx

È ˘∂ ∂ + + +
+ = + = +Í ˙∂ ∂ - - -- -Î ˚
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Example 3.18

The two plates separated by a distance b form a channel (Fig. 3.21). One of the
plates is porus and the other one is impermeable. A flow takes place within the
channel so that the x component velocity u is a function of x only and its value at the
inlet is u0. There is a uniform inflow v0 through the porus wall to the channel so that
the velocity component v in the y direction within the channel is a function of y
only. Considering the flow to be incompressible, find the expression of u as a
function of x, and v as a function of y.

u0

v0

y

x

b

Fig. 3.21 Flow through a channel formed by two plates

Solution

The equation of continuity at any point within the channel can be written as

u

x y

∂ ∂

∂ ∂
+

v

 = 0

or
∂

∂

u

x
 = – 

y

∂

∂

v

(3.63)

Since u is a function of x only and v is a function of y only, the equality of their
derivatives, as expressed by the Eq. (3.63), would be valid provided both of them
are equal to a constant. Hence, we can write

du

dx
 = – 

d

dy

v

  = K (a constant)

which give
du

dx
 = K (3.64a)

d

dy

v

 = –K (3.64b)

Integration of Eqs  (3.64a) and (3.64b) gives

u = Kx + C1 (3.65a)
v = –Ky + C2 (3.65b)

Using the boundary conditions

at x = 0 u = u0

at y = 0 v = v0
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and at y = b v = 0

in Eqs (3.65a) and  (3.65b), we have

C1 = u0, C2 = v0, K = v0 /b

Substituting the values of K, C1 and C2 in Eqs (3.65a) and (3.65b), the final
expressions for u and v are obtained as

u = u0 + 0 x
b

v

and v = v0 – 0 y
b

v

3.5    STREAM FUNCTION

The concept of stream function is a direct consequence of the principle of
continuity. Let us consider a two-dimensional incompressible flow parallel to the
xy plane in a rectangular Cartesian coordinate system. The flow field in this case is
defined by

u = u(x, y, t)

v = v(x, y, t)

w = 0

The equation of continuity is

u

x y

∂ ∂

∂ ∂
+

v
 = 0 (3.66)

If a function y (x, y, t) is defined in the manner

u =
y

∂y

∂
(3.67a)

and v = – 
x

∂y

∂
(3.67b)

so that it automatically satisfies the equation of continuity (Eq. (3.66)), then the
function y is known as stream function. For a steady flow, y is a function of two
variables x and y only. In case of a two-dimensional irrotational flow,

u

x y

∂ ∂

∂ ∂
-

v
 = 0

so that

–
x x y y

∂ ∂y ∂ ∂y

∂ ∂ ∂ ∂

Ê ˆ Ê ˆ-Á ˜ Á ˜Ë ¯ Ë ¯
 = 0

or
2 2

2
2 2x y

∂ y ∂ y
y

∂ ∂
— = +  = 0 (3.68)

Thus, for an irrotational flow, stream function satisfies the Laplace’s equation.

3.5.1 Constancy of yyyyy on a Streamline

Since y is a point function, it has a value at every point in the flow field. Hence, a
change in the stream function y can be written as
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dy = d dx y
x y

∂y ∂y

∂ ∂
+  = – v dx + u dy

Further, the equation of a streamline is given by

d

u

x
 =

dy

v
or u dy – v dx  = 0

It follows that dy = 0 on a streamline, i.e., the value of y is constant along a
streamline. Therefore, the equation of a streamline can be expressed in terms of the
stream function as

y (x, y) =constant (3.69)

Once the function y is known, streamline can be drawn by joining the same
values of y in the flow field.

3.5.2 Physical Significance of Stream Function

Figure 3.22(a) illustrates a two-dimensional flow. Let A  be a fixed point, but P be
any point in the plane of the flow. The points A  and P are joined by the arbitrary
lines ABP and ACP. For an incompressible steady flow, the volume flow rate across
ABP into the space ABPCA (considering a unit width in a direction perpendicular to
the plane of the flow) must be equal to that across ACP. A number of different paths
connecting A  and P (ADP, AEP, . . .) may be imagined but the volume flow rate
across all the paths would be the same. This implies that the rate of flow across any
curve between A  and P depends only on the end points A  and P.

Since A  is fixed, the rate of flow across ABP, ACP, ADP, AEP (any path
connecting A  and P) is a function only of the position P. This function is known as
the stream function y. The value of y at P therefore represents the volume flow rate
across any line joining P to A . The value of y at A  is made arbitrarily zero. The fixed
point A  may be the origin of coordinates, but this is not necessary. If a point P¢ is
considered (Fig. 3.22(b)), PP¢ being along a streamline, then the rate of flow across
the curve joining A  to P¢ must be the same as across AP, since, by the definition of
a streamline, there is no flow across PP¢. The value of y thus remains same at P¢ and
P. Since P¢ was taken as any point on the streamline through P, it follows that y is
constant along a streamline. Thus the flow may be represented by a series of
streamlines at equal increments of y. If another point P¢¢ is considered (Fig. 3.22(b))
in the plane, such that PP¢¢ is a small distance dn perpendicular to the streamline
through P with AP¢¢ > AP, then the volume flow rate across the curve AP¢¢ is greater
than that across AP by the increment dy of the stream function from point P to P¢¢.
Let the average velocity perpendicular to PP¢¢ (i.e., in the direction of streamline at
P) be V , then

dy = V ◊ d n

or V  = dy/d n
Therefore, the velocity at a point can be expressed in terms of the stream function

y as

V  =
0

lim
n n nd

dy ∂y

d ∂Æ
=
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This gives the mathematical definition of the stream function at the point P. The
above concept can be visualised more easily by considering the flow between two
adjacent streamlines in a rectangular Cartesian coordinate system (Fig. 3.22(c)). Let
the values of the stream functions for the two streamlines be denoted by y and y +
dy. The volume flow rate dQ for an incompressible flow across any line, say A B, of
unit width, joining any two points A  and B on two streamlines, can be written as

dQ = dy

E

D
C

B

y
yd

co
ns
tan

t

+

=

y
= c

on
sta
nt

y

P

- xvd

A

B

dQ

u yd

A

(a) (b)

(c)

P¢ P¢¢

P

dn

P

Str
eam

lin
es

A

Fig. 3.22 Physical interpretation of stream function

As y is a function of space coordinates, x and y,

dy = d dx y
x y

∂y ∂y

∂ ∂
+

Hence, dQ = d dx y
x y

∂y ∂y

∂ ∂
+ (3.70)

Again, the volume of fluid crossing the surface A B must be flowing out from
surfaces AP and BP of unit width. Hence,

dQ = u dy – v dx (3.71)
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Comparing the Eqs (3.70) and (3.71), we get

u =
y

∂y

∂
and v = – 

x

∂y

∂

The stream function, in a polar coordinate system is defined as

vr =
1

r

∂y

∂q
and vq = – 

r

∂y

∂

The expressions for vr and vq in terms of the stream function automatically satisfy
the equation of continuity given by

( ) ( )rv r v
r

q

∂ ∂

∂ ∂q
+  = 0

3.5.3 Stream Function in a Three-Dimensional Flow

It is not possible to draw a streamline with a single stream function in case of  a
three-dimensional flow. An axially symmetric three-dimensional flow is similar to
the two-dimensional case in a sense that the flow field is the same in every plane
containing the axis of symmetry. The equation of continuity in the cylindrical polar
coordinate system for an incompressible flow is given by Eq (3.59). For an axially
symmetric flow (the axis r = 0 being the axis of symmetry), the simplified form of

Eq. (3.59) without the term 
1 v

r

q∂

∂q
 is satisfied by a function defined as

r vr = – 
z

∂y

∂
, r vz = 

r

∂y

∂
(3.72)

The function y, defined by the Eq. (3.72) in case of a three-dimensional flow
with an axial symmetry, is called the stokes stream function.

3.5.4 Stream Function in Compressible Flow

Definition of the stream function y for a two-dimensional compressible flow offers
no difficulty. Instead of relating it to the volume flow rate, one can relate it to the
mass flow rate. The continuity equation for a steady two-dimensional compressible
flow is given by

( ) ( )u
x y

∂ ∂
r r

∂ ∂
+ v  = 0

Hence a stream function y can be defined which will satisfy the above equation
of continuity as

r u = 0
y

∂y
r

∂

r v = – 0
x

∂y
r

∂
(3.73)
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where r0 is a reference density and is used in the manner as shown in Eq. (3.73), to
retain the unit of y same as that in the case of an incompressible flow. Therefore,
from a physical point of view, the difference in stream function between any two
streamlines multiplied by the reference density r0 will give the mass flow rate
through the passage of unit width formed by the streamlines.

Example 3.19

A stream function is given by

y = 2x2y + (3 + t)y2

Find the flow rates across the faces of the triangular prism OAB, shown in Fig.
3.23, having a thickness of 1 unit in the z direction at time t = 1.

B

dA
A
B

dAOA

dAOB

dx
dy

3

2 n

O A

y

x

Fig. 3.23 The faces of a triangular prism

Solution

The velocity field corresponding to the given stream function can be written
according to Eqs (3.67a) and (3.67b) as

u = 22 2(3 )x t y
y

∂y

∂
= + +

v = – 
x

∂y

∂
 = – 4xy

where u and v are the velocity components along the x  and y directions,
respectively.

At t = 1

(u)t = 1 = 2x2 + 8y

(v)t = 1 = – 4xy

The volume flow rate across the face perpendicular to the x direction and with
the edge OB as seen in the xy plane is found as
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QOB = ( )u A y yt
x

A

OB

OB

=
=

z z= ◊1
0

0

2

8d d  = 16 units

Similarly, the flow rate across the face with edge OA (as seen in the xy plane) and
perpendicular to the y direction becomes

QOA = ( )v t
y

A

OA

OA

A=
=

z 1
0

d

= 0

Since the z component of velocity is zero, the volume flow rates across the faces
perpendicular to the z direction (i.e., face OAB and the face parallel to it and
separated by a unit distance) become zero.

Volume flow rate across the inclined face with A B as the edge seen on the xy

plane can be written as

QA B = ˆ d ABn A V◊Ú
r

(3.74)

where 
r
n  is the unit vector along the normal to the element of surface dA A B, taken

positive when directed outwards as shown in Fig. 3.23. Hence, we can write Eq.
(3.74) as

QA B =
2ˆ ˆ ˆ ˆ[ d d ] [ (2 8 ) (–4 )]

ABA

i y j x i x y j xy+ ◊ + +Ú

(where, î  and ĵ  are the unit vectors along the x and y directions, respectively)

=
2[2 8 ]d ( 4 )d

AB ABA A

x y y xy x+ + -Ú Ú (3.75)

Again from the geometry,

y

x3 -
 =

2

3

along the surface A B.
Using the relation in Eq. (3.75), we get

QA B =

22 3

0 0

3 2
2 3 8 d 4 2 d

2 3
y y y x x x

È ˘Ê ˆ Ê ˆ- + - -Í ˙Á ˜ Á ˜Ë ¯ Ë ¯Í ˙Î ˚
Ú Ú  = 16 units

Example 3.20

An incompressible flow around a circular cylinder of radius a, is represented by the
stream function
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y = – U r sin q + 
2 sinU a

r

q

where U represents the free stream velocity. Show that vr (the radial component of

velocity) = 0 along the circle, r = a. Find the values of q at r = a, where | |
r

V  = U.

Solution

In a polar coordinate system,

vr =
1

r

∂y

∂q , vq = 
r

∂y

∂
-

So vr =
2 2

2

1
cos cos cos 1

Ua a
U r U

r r r
q q q

È ˘ Ê ˆ
- + = - -Í ˙ Á ˜Ë ¯Î ˚

and vq =
2 2

2 2
sin sin sin 1

Ua a
U U

r r
q q q

È ˘ Ê ˆ
+ = +Í ˙ Á ˜Ë ¯Î ˚

at r = a, vr = 0 for all values of q and vq = 2U sin q

Therefore, along the circle r = a, | |
r

V  = |vq | = |2U sin q |

Putting | |
r

V  = U, we get sin q = ± 1

2
, i.e., when q = + 30°, 150°, 210° and 330°.

Example 3.21

The velocity components for a steady flow are given as
u = 0, v = – y3 – 4z,  w = 3y2 z. Determine: (i) whether the flow field is one-,two-,

or three-dimensional, (ii) whether the flow is incompressible or compressible, and
(iii) the stream function for the flow.

Solution

(i) Since the velocity field is a function of y and z only, the flow field is two-
dimensional.

(ii) For an incompressible flow the continuity equation can be written in differ-
ential form as

. 0
u w

V
x y z

∂ ∂ ∂
— = + + =

∂ ∂ ∂

r v

Here, u = 0, v = – y3 – 4z and w = 3y2 z

Hence, 0
u

x

∂
=

∂
23y

y

∂
= -

∂
v

 and 23
w

y
z

∂
=

∂

which, on substitution in the continuity equation satisfies it for all x, y, z and t
values. This shows that the above velocity field represents a physically possible
incompressible flow.
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(iii) From the definition of stream functiony,

v =
z

y∂
∂

y = 3 2
12 ( )dz y z z f y C= - - + +Ú v

w =
y

y∂
-

∂

y = 3
2( )wdy y z g z C- = - + +Ú

Comparing the two expressions for y, we find

f (y)  = 0, g(z) = – 2z2

Hence, y = – y3 z – 2z2 + C

where, C is a constant.
It is important to note that solid wall itself is a stream function, because there is

no flow across it. By physical sense, solid boundary of any shape is a streamline. We
can give a particular value of stream function if the flow is two-dimensional and
incompressible. Although classically we give y = 0 at the wall but we can give any
value. It is just some sort of reference with respect to which one can find the other
stream functions.

3.6   VELOCITY POTENTIAL

If 0V— ¥ =
r

, then the velocity field is called the conservative field and V
r

 may be
expressed in the form of gradient of a scalar function known as velocity potential.

Thus, in that case,

V f= —
r

(3.76)

which implies

u =
x

f∂
∂

(3.76a)

v =
y

f∂
∂

(3.76b)

w =
z

f∂
∂

(3.76c)

In case of a two-dimensional incompressible flow, the continuity equation
becomes

0
u w

x y z

∂ ∂ ∂
+ + =

∂ ∂ ∂
v
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Substituting u, v in terms of f, we obtain

2 2 2

2 2 2
0

x y z

f f f∂ ∂ ∂
+ + =

∂ ∂ ∂
(3.77)

Thus, velocity potential automatically satisfies the Laplace's equation.

3.6.1 Relationship between Velocity Potential and Stream Function

Consider a two-dimensional, incompressible and irrotational flow so that both the
stream function and velocity potential exist.

Since the flow is two-dimensional, f = f (x, y)

Thus, d dx dy
x y

f f
f

∂ ∂
= +

∂ ∂

= udx + vdy

For constant f, df, i.e.,

cont

dy u

dx f =
= -

v
(3.78)

Again for two-dimensional, incompressible flow, the stream function is expressed
as

y = y(x, y)

dy = dx dy
x y

y y∂ ∂
+

∂ ∂

= – vdx + udy

For constant y, dy, = 0 i.e.,

cont

dy

dx uy =
=

v
(3.79)

const const

1
dy dy

dx dxf y= =

Ê ˆÊ ˆ
¥ = -Á ˜Á ˜Ë ¯ Ë ¯

(u, v π 0) (3.80)

Equation. (3.80) implies that the lines of constant f (equipotential line) and lines of
constant y (streamline) are orthogonal to each other everywhere in the flow field
except at certain points where the velocities are zero (stagnation points).

Example 3.22

The velocity potential function for a flow is given by f = x2 – y2. Verify that the flow is

incompressible and then determine the stream function for the flow.
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Solution

f = x2 – y2

From the definition of velocity potential

r

V  = —f = ˆ ˆi j
x y

∂f ∂f

∂ ∂
+

Therefore,
r

V  = 2x î  – 2y ĵ , u = 2x, v = – 2y

Check for incompressible flow, 
u

x y

∂ ∂

∂ ∂
+

v

 = 2 – 2 = 0

From the definition of stream function y,

u =
y

∂y

∂
, y = Ú udy = 2xy + f (x) + C1

v = – 
x

∂y

∂
, y = – Ú v dx = 2xy + g(y) + C2

comparing the two expressions for y, we find

f (x) = g(y) = 0

Hence, y = 2xy + C

where, C is a constant.

SUMMARY

∑ Kinematics of fluid characterises the different types of motion and associ-
ated deformation rates of fluid element, without any reference to the forcing
parameters.

∑ Fluid motion is described by two methods, namely, the Lagrangian method
and the Eulerian method. In the Lagrangian view, the velocity and other
hydrodynamic parameters are specified for particles or elements of given
identities, while, in the Eulerian view, these parameters are expressed as
functions of location and time. The Lagrangian version of a flow field can be
obtained from the integration of the set of equations describing the flow in
the Eulerian version.

∑ A flow is defined to be steady when the flow velocities and fluid properties
at any point do not change with time. Flow in which any of these parameters
changes with time is termed as unsteady. A flow may appear steady or un-
steady depending upon the choice of coordinate axes. A flow is said to be
uniform when flow velocities and fluid properties do not change from point
to point at any instant of time, or else the flow is non-uniform.

∑ The total derivative of velocity with respect to time is known as material or
substantial acceleration, while the partial derivative of velocity with respect
to time for a fixed location is known as temporal acceleration. Material ac-
celeration = Temporal acceleration + Convective acceleration.
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∑ A streamline at any instant of time is an imaginary curve or line in the flow
field so that the tangent to the curve at any point represents the direction of
the instantaneous velocity at that point. A path line is the trajectory of a fluid
particle of a given identity. A streak line at any instant of time is the locus of
temporary locations of all particles that have passed through a fixed point in
the flow. In a steady flow, the streamlines, path lines, and streak lines are
identical.

∑ Flow parameters, in general, become functions of time and space coordi-
nates. A one-dimensional flow is that in which the flow parameters are func-
tions of time and one space coordinate only.

∑ A fluid motion consists of translation, rotation, and continuous deformation.
In a uniform flow, the fluid elements are simply translated without any de-
formation or rotation. The deformation and rotation of fluid elements are
caused by the variations in velocity components with the space coordinates.
The linear deformation or strain rate is defined as the rate of change of length
of a linear fluid element per unit original length. The rate of angular defor-
mation at a point is defined as the rate of change of angle between two linear
elements at that point which were initially perpendicular to each other. The
rotation at a point is defined as the arithmetic mean of the angular velocities
of two perpendicular linear meeting at that point. The rotation of a fluid
element in the absence of any deformation is known as pure or rigid body
rotation.

∑ Continuity equation mathematically represents conservation of mass for
fluid flow. In an incompressible flow field, the velocity vector is divergence-
free. Further, for some cases, total derivative of density becomes zero,
though that does not necessarily imply that density is a constant. However, a
constant density flow is a special case of incompressible flow. The existence
of a physically possible flow field is verified from the principle of conserva-
tion of mass.

∑ Vorticity of flow is defined as curl of the velocity vector, and is twice the
angular velocity of flow. Circulation of flow is defined as the contour inte-
gral of the dot product of velocity with a oriented line element taken along
the contour. When the vorticity (or circulation) at all points in the flow field
is zero, the flow is said to be irrotational.

∑ The concept of stream function is a consequence of continuity. In a two-
dimensional incompressible flow, the difference in stream functions be-
tween two points gives the volume flow rate ( per unit width in a direction
perpendicular to the plane of flow) across any line joining the points. The
value of stream function is constant along a streamline.

∑ Irrotationality leads to the condition 0V— ¥ =
r

 which demands V f= —
r

,

where f is known as a potential function. Equipotential lines and streamlines
are orthogonal to each other everywhere in the flow field except at the stag-
nation points.
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EXERCISES

3.1 Choose the correct answer:
(i) A flow is said to be steady when

(a) conditions change steadily with time
(b) conditions do not change with time at any point
(c) conditions do not change steadily with time at any point
(d) the velocity does not change at all with time at any point
(e) only when the velocity vector at any point remains constant with

space and time
(ii) A streamline is a line

(a) drawn normal to the velocity vector at any point
(b) such that the streamlines divide the passage into equal number of

parts
(c) which is along the path of a particle
(d) tangent to which is in the direction of velocity vector at every point

(iii) Streamline, pathline and streakline are identical when
(a) the flow is uniform
(b) the flow is steady
(c) the flow velocities do not change steadily with time
(e) the flow is neither steady nor uniform.

(iv) The material acceleration is zero for a
(a) steady flow
(b) steady and uniform flow
(c) unsteady and uniform flow
(d) unsteady and non-uniform flow

(v) A flow field satisfying . 0V— =
r

 as the continuity equation represents
always a
(a) steady and unifor flow
(b) unsteady and non-uniform flow
(c) unsteady and incompressible flow
(d) unsteady and incompressible flow
(d) incompressible flow

3.2 Given the velocity field

2 ˆˆ ˆ10 15 (25 – 3 )V x y i xyj t xy k= + +
r

Find the acceleration of a fluid particle at a point (1, 2, – 1) at time, t = 0.5.
Ans. (1531.90 units)

3.3 Given an unsteady temperature field T = (xy + z + 3t)K and unsteady veloc-

ity field ˆˆ ˆ 5V xy i zj t k= + +
r

, what will be the rate of change of temperature

of a particle at a point (2, – 2, 1) at time t = 2s?
Ans. (23 K/s)
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3.4 A two-dimensional pressure field p = 4x3 – 2y2 is associated with a velocity

field given by 2 2 ˆ ˆ( ) (2 )V x y x i x y y j= - + - +
r

. Determine the rate of

change of pressure at a point (2, 1).
Ans. (260 units)

3.5 The velocity field in a steady flow is given in a rectangular Cartesian coordi-

nate system as 
r
V  = ˆ6 xi  + (4y + 10) ĵ  + 2t k̂ . What is the path line of a

particle which is at (2, 6, 4) at time t = 2s?
Ans. [{ln x + ln(4y + 10) + 15.77}2 – 100 z = 0]

3.6 The velocity field in the neighbourhood of a stagnation point is given by

u = U0 x/L, v = – U0 y/L, w  = 0

(i) show that the acceleration vector is purely radial
(ii) if L = 0.5 m, what is the magnitude of U0 if the total acceleration at

(x, y) = (L, L) is 10 m/s2

Ans. (1.88 m/s)
3.7 For a steady two-dimensional incompressible flow through a nozzle, the ve-

locity field is given by 
r

V  = u0(1 + 2x/L) î , where x is the distance along the

axis of the nozzle from its inlet plane and L is the length of the nozzle. Find
(i) an expression of the acceleration of a particle flowing through the

nozzle and
(ii) the time required for a fluid particle to travel from the inlet to the exit

of the nozzle.

Ans. 
L

u2
3

0

ln
F

HG
I

KJ

3.8 For a steady flow through a conical nozzle the axial velocity is approxi-
mately given by u = U0 (1 – x/L)–2, where U0 is the entry velocity and L is the
distance from inlet plane to the apparent vertex of the cone. (i) Derive a
general expression for the axial acceleration, and (ii) determine the accel-
eration at x = 0 and x = 1.0 m if U0 = 5 m/s and L = 2m.

Ans. (25 m/s2, 800 m/s2)
3.9 Two large circular plates contain an incompressible fluid in between. The

bottom plate is fixed and the top plate is moved downwards with a velocity
V 0 causing the fluid to flow out in radial direction and azimuthal symmetry.
Derive an expression of radial velocity and acceleration at a radial location r
when the height between the plates is h. Consider the radial velocity across
the plates to be uniform.

Ans. 
V r

h

V r

h

0 0
2

22 4
,

F

HG
I

KJ

3.10 A fluid flows through a horizontal conical pipe having an inlet diameter of
200 mm and an outlet diameter of 400 mm and a length of 2 m. The velocity
over any cross section may be considered to be uniform. Determine the con-
vective and local acceleration at a section where the diameter is 300 mm for
the following cases:
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(i) Constant inlet discharge of 0.3 m3/s.
(ii) Inlet discharge varying linearly from 0.3 m3/s to 0.6 m3/s over two sec-

onds. The time of interest is when t = 1 second.
Ans. ((a) 0, – 12.01 m/s2; (b) 2.12 m/s2, – 27.02 m/s2)

3.11 The velocity components in a two-dimensional flow field for an incompress-
ible fluid are given by

u = ex cos h(y) and v = – ex sin h(x)

Determine the equation of streamline for this flow.
Ans. (cos hx + sin hy = constant)

3.12 A three-dimensional velocity field is given by u = – x, v = 2y, and w = 5 – z.
Find the equation of streamline through (2, 2, 1).

Ans. (x2 y = 8, y(5 – z)2 = 32)
3.13 A three-dimensional velocity field is given by

u(x, y, z) = cx + 2w0 y + u0

v(x, y, z) = cy + v0

w(x, y, z) = – 2cz + w0

where c, w0, u0, and v0 are constants. Find the components of (i) rotational
velocity, (ii) vorticity and (iii) the strain rates for the above flow field.

Ans. 
& & , & ; ,

& , & , & ; & , & &

w w w

e e e g g g

x y z x y z

xx yy zz x y yz x z

w w

c c c w

= = = - = = = -
= = = - = = =

R
S
T

U
V
W

0 0 2

2 2 0

0 0

0

W W W

3.14 Verify whether the following flow fields are rotational. If so, determine the
component of rotation about various axes.
(i) u = xyz (ii) u = xy (iii) V r = A /r (iv) V r = A /r

v = z x v = 
1

2
 (x2 – y2) V 0 = Br V 0 = B/r

w = y z – xy2 w = 0 V z = 0 V z = 0

Ans. 

1 1 1
(i) Rotational, ( 2 ), ( ), (1 );

2 2 2
(ii) irrotational, (iii) rotational, 0, , (iv) irrotational

x y z

r z

z x y x y x y z x

Bq

w w w

w w w

È ˘= - - = - = -Í ˙
Í ˙

= = =Î ˚

3.15 Show that the velocity field given by 
r

V  = (a + by – cz) î  + (d – bx + ez) ĵ  +

( f + cx – ey) k̂  of a fluid represents a rigid body motion.
3.16 Do the following velocity components represent a physically possible in-

compressible flow?

(i) ( )2ˆ ˆ5 3V xi y y j= + +
r

(ii) 4rV m rp= , V q = 0, V z = 0

   Ans. ((i) No, (ii) Yes)
3.17 For the flows represented by the following stream functions, determine the

velocity components and check for the irrotationality,
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(i) y = xy

(ii) y = In (x2 + y2)
         Ans. ((i) u = x , v = – y; irrotational flow

    (ii) 
2 2

2y
u

x y
=

+
, 

2 2

2x

x y

-
=

+
v ; irrotational flow)

3.18 In a two-dimensional incompressible flow over a solid plate, the velocity
component perpendicular to the plate is v = 2x2 y2 + 3y3 x, where x is the
coordinate along the plate and y is perpendicular to the plate. Hence, find
out (i) the velocity component along the plate, and (ii) an expression for
stream function and verify whether the flow is irrotational or not.

     Ans. ( 3 2 24 9

3 2
u x y x y= - - , 3 2 2 32 3

3 2
x y x yy = - - ; rotational)

3.19 Prandtl has suggested that the velocity distribution for turbulent flow in con-

duits may be approximated by the equation ( )1 7
max 0y r=v v , where r0 is

the pipe radius and y is the distance from the pipe wall. Determine the ex-
pression of average velocity in terms of centre line velocity in the conduits.

 Ans. (vav = 0.817 vmax)



4.1   INTRODUCTION

In Chapter 3, we dealt with the kinematics of fluid flow. Discussions in Chapter 3,

accordingly, considered fluid motion disregarding the forcing parameters influenc-

ing the flow. In this chapter, we will discuss the role of some of the forcing

parameters that influence the motion as well as their relation with the motion of the

fluid. In particular, in this chapter, we will be neglecting the role of viscous effects,

and analysing the fluid flow based on that consideration. Such idealised flows

without viscous effects are known as inviscid flows. Although this might appear to

be a hypothetical paradigm, it has interesting implications in several practical

situations. For example, one may refer to flow outside the boundary layer (see

Chapter 1) in which viscous effects are not relevant, despite the fluid possessing

non-zero viscosity.

4.2   EQUATION OF MOTION FOR INVISCID FLOW IN
CARTESIAN COORDINATES

Let us consider an elementary parallelopiped of fluid element as a control mass

system in a frame of rectangular Cartesian coordinate system as shown in Fig. 4.1.

Let bx,by,bz be the components of body forces acting per unit mass of the fluid

element along the coordinate axes x, y and z, respectively. It is important to mention

in this context that in the absence of viscous effects, the fluid is subjected to no

shear stress and only normal stress acts on the system (expressed in terms of

negative fluid pressure).

We can write Newton’s second law of motion for the fluid element along the x

direction, as

( )x xF dm a=Â

4

DYNAMICS OF INVISCID

FLOWS: FUNDAMENTALS AND

APPLICATIONS
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massbody force
surface force acceleration

x

p u u u u
pdydz p dx dydz b dxdydz dxdydz u w

x t x y z
r r

È ˘
Í ˙∂ ∂ ∂ ∂ ∂Ê ˆ- + + = + + +Í ˙Á ˜Ë ¯∂ ∂ ∂ ∂ ∂Í ˙
Î ˚

1424314243
14444244443 14444244443

v

dx

x

z

y

p

p
p dx

x
∂+ ∂

dz

p

p dz
z
p∂+ ∂

p

p
p dy

y

∂+
∂

dy

Fig. 4.1 A rectangular fluid element with surface forces in terms of pressure

After simplification, the above equation becomes

x

p u u u u
b u w

x t x y z
r r

∂ ∂ ∂ ∂ ∂È ˘- + = + + +Í ˙∂ ∂ ∂ ∂ ∂Î ˚
v

or
x

u u u u p
u w b

t x y z x
r r

∂ ∂ ∂ ∂ ∂È ˘+ + + = -Í ˙∂ ∂ ∂ ∂ ∂Î ˚
v (4.1)

Equation (4.1) is known as Euler’s equation of motion along the x direction.

Similarly, Euler’s equation of motion along the y and z directions can be written as

y

p
u w b

t x y z y
r r

∂ ∂ ∂ ∂ ∂È ˘+ + + = -Í ˙∂ ∂ ∂ ∂ ∂Î ˚

v v v v
v (4.2)

z

w w w w p
u w b

t x y z z
r r

∂ ∂ ∂ ∂ ∂È ˘+ + + = -Í ˙∂ ∂ ∂ ∂ ∂Î ˚
v (4.3)

Equations (4.1) – (4.3) can be cast into a single vector form as

DV
b p

Dt
r r= - —

r
r

(4.4)

or ( ).
V

V V b p
t

r r
∂È ˘+ — = - —Í ˙∂Î ˚

rr r
(4.4a)
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4.3   PRESSURE DIFFERENTIAL BETWEEN TWO POINTS IN AN
INVISCID FLOW FIELD

Let us consider two points 1 and 2 very close to each other and the position vector

dl
r

directed from point 1 to 2 be such that

ˆˆ ˆdl dxi dyj dzk= + +
r

Our interest is to find the pressure difference between the points 1 and 2. For that

purpose, one can write

p p p
dp dx dy dz

x y z

∂ ∂ ∂
= + +

∂ ∂ ∂
(4.5)

From Eq. (4.1), we get

x

p u u u u
u w b

x t x y z
r r

∂ ∂ ∂ ∂ ∂Ï ¸= - + + + +Ì ˝∂ ∂ ∂ ∂ ∂Ó ˛
v

{ }. x

u
V u b

t
r r

∂
= - + — +

∂

r

Similarly, from Eqs (4.2), and (4.3), we get

{ }. y

p
V b

y t
r r

∂ ∂
= - + — +

∂ ∂

rv
v

{ }. z

p w
V w b

z t
r r

∂ ∂
= - + — +

∂ ∂

r

Putting the expressions of p

x

∂
∂

,
p

y

∂
∂

 and p

z

∂
∂

 in Eq. (4.5), we get

( ) ( ) ( )
Term 2

Term 1

. . .
u w

dp dx dy dz V u dx V dy V w dz
t t t

r r
∂ ∂ ∂È ˘ È ˘= - + + - — + — + —Î ˚Í ˙∂ ∂ ∂Î ˚

r r r

14444444244444443
1444442444443

v
v

Term 3

x y zb dx b dy b dzr È ˘+ + +Î ˚14444244443
(4.5a)

We simplify various terms appearing in Eq. (4.5a), as follows:

Term 1 .
u w V

dx dy dz dl
t t t t

r r
∂ ∂ ∂ È ∂ ˘È ˘= - + + = - Í ˙Í ˙∂ ∂ ∂ ∂Î ˚ Î ˚

r
rv

For simplifying Term 2, we first note the vector identity

( ) ( ) ( )1
. .

2
V V V V V V— = — - ¥ — ¥

rr r r r r r
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( )1
.

2
V V V x= — - ¥

rr r r
(noting that the vorticity, Vx = — ¥

r r
)

Term 2 ( ) ( ) ( ) ( ). . . . .V u dx V dy V w dz V V dlr r È ˘È ˘= - — + — + — = - —Î ˚ Î ˚
r rr r r r r

v

( )1
. .

2
V V V dlr xÈ ˘= - — - ¥Í ˙Î ˚

r rr r r
 (using the above vector identity)

{ }
2 2 21 ˆˆ ˆ . .

2

V V V
i j k dl V dl

x y z
r x

È Ï ¸ ˘∂ ∂ ∂
= - + + - ¥Ì ˝Í ˙∂ ∂ ∂Î ˚Ó ˛

rr rr

{ }
2 2 21 ˆ ˆˆ ˆ ˆ ˆ.( ) .

2

V V V
i j k idx jdy kdz V dl

x y z
r x

È Ï ¸ ˘∂ ∂ ∂
= - + + + + - ¥Ì ˝Í ˙∂ ∂ ∂Î ˚Ó ˛

r rr

( ) ( ) ( ) ( )2 2 21
.

2
V dx V dy V dz V dl

x y z
r r x

∂ ∂ ∂È Ï ¸˘ È ˘= - + + + ¥Ì ˝Í ˙ Î ˚∂ ∂ ∂Î ˚Ó ˛

r rr

( ) ( )21
.

2
dV V dlr r xÈ ˘= - + ¥Î ˚

r rr

Considering gravity as the only body force which is acting along negative z

direction

(i.e., 0, 0,x y zb b b g= = = - ), Term 3 becomes

Term 3  = 
x y zb dx b dy b dz gdzr rÈ ˘+ + = -Î ˚

Substituting Terms 1 through 3 in Eq. (4.5a), we obtain

( ) ( ){ }21
. .

2

V
dp dl d V V dl gdz

t
r r r x r

È∂ ˘
= - - + ¥ -Í ˙∂Î ˚

r
rr rr

or ( ) ( )21
. . 0

2
A

V
dp d V gdz dl V dl

t
r r r r x

È ∂ ˘ È ˘+ + + - ¥ =Í ˙ Î ˚∂Î ˚

r
rr rr

1442443
     (4.6)

Next, we will identify the cases for which the last term (A) in Eq. (4.6) becomes

zero.

Case (1) When dl
r

is along a streamline (since, in that Case V
w

 and dl
r

 are oriented

in the same direction, by definition of streamline, ( ).V dlx¥
r rr

 becomes zero),

Or, Case (2), when  0x =
r

(irrotational flow),

Or, Case (3), when V x¥
rr

is perpendicular to dl
r

.

Cases (1) and (2) are more common in practical situations than Case (3). Although

Case (3) is not commonly encountered, we cannot rule it out mathematically.

Considering any of the above cases to be valid, we will simplify Eq. (4.6) further

for steady and unsteady flows.
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4.3.1 Steady Flow

Under the situation, in consideration of any of the above three cases, Eq. (4.6)

simplifies to

( )21
0

2
dp d V gdzr r+ + =

or ( )21
 0

2

dp
d V gdz

r
+ + =  (4.7)

If we consider dl
r

 to be oriented along a streamline [Case (1) above], Eq. (4.7) is

known as Euler’s equation of motion along a streamline. Equation (4.7) is valid for

both compressible and incompressible flow.

Integrating Eq. (4.7) between any two points 1 and 2 along the same streamline ( or

between any points 1 and 2 in the flow field no matter whether the points are located

on the same streamline or not, provided that the flow field is irrotational; see Case

(2) above), we get

( )2 2 22

1 1 1

1
0

2

dp
d V gdz

r
+ + =Ú Ú Ú

If we further assume constant density flow, the above integration yields

( ) ( )2 22 1
2 1 2 1

1
0

2

p p
V V g z z

r

-
+ - + - = (4.8)

or
2 2

1 1 2 2
1 2 

2 2

p V p V
gz gz

r r
+ + = + + (4.8a)

Equations (4.8) or (4.8a) is known as Bernoulli’s equation.  To summarise, Eq.

(4.8a) (Bernoulli’s equation) is valid only when the flow is inviscid, steady, and

incompressible. In addition, either of the following conditions needs to be satisfied:

(i) points 1 and 2 are located on the same streamline, (ii) the flow field is irrotational,

(iii) V x¥
rr

 is perpendicular to dl
r

. For cases (ii) and (iii), the points 1 and 2 can be

located anywhere in the flow field, and not necessarily on the same streamline.

It is important to note that that though we have considered here gravity as the only

body force component, the form of Bernoulli’s equation given by Eq. (4.8a) is valid

under the situation of any conservative body force field so that the last terms of both

LHS and RHS of Eq. (4.8a) are to be replaced by the corresponding potential

energies per unit mass.

Equation (4.8a) may also be written in the following form:

2 2
1 1 2 2

1 2
2 2

p V p V
z z

g g g gr r
+ + = + + (4.8b)

This particular form of Bernoulli’s equation has each term of dimension of length,

we shall see soon that these represent energy per unit weight in some form. In fluid

engineering, energy per unit weight is technically known as head.
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The physical consequences of each and every term in the Bernoulli’s equation

are as follows:

Second term of Eq. (4.8b) can be expressed as:

2 2
1 11 1

2 2

V mV

g mg
= ; which is nothing but the kinetic energy per unit weight.

Third term of Eq. (4.8b) can be expressed as

1
1

mgz
z

mg
= ; which is nothing but the potential energy per unit weight.

To understand the physical meaning of the first term, let us consider fluid flows

through a pipe, as shown in Fig. 4.2. For a flowing stream, a layer of fluid at any

cross section has to push the adjacent neighbouring layer at its downstream in the

direction of flow to make its way through and thus does work on it. The amount of

work done can be calculated by considering a small amount of fluid of cross-

sectional area A  undergoes a small displacement xD . Pressure remains constant over

the small displacement as p. Work done to maintain the flow in the presence of

pressure is pA xD . The work done to maintain the flow in presence of pressure per

unit weight is

pA x p

A xg gr r

D
= =

D
Therefore, the first term of Eq. (4.8b) represents the work done to maintain the

flow in presence of pressure per unit weight. This is known as flow energy or flow

work.

xD

p

Fig. 4.2 Work done by a fluid to flow against a pressure

Bernoulli’s equation along a streamline essentially states that the sum total of the

flow energy, kinetic energy and potential energy per unit weight remains conserved

as it is transmitted from one point to another in the flow field along a streamline

under the assumptions of inviscid, steady, constant density flow. This is a sort of

conservation of mechanical energy. The equation was developed first by Daniel

Bernoulli in 1738 and is therefore referred to as Bernoulli’s equation.

Interestingly, Bernoulli’s equation can also be perceived as a mathematical

depiction of mechanical energy balance between two sections of a conduit, provided

that velocity profiles are uniform  over each section (consistent with inviscid flow

analysis), pressure is uniform over each section, and the differences in elevations of
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different points in the same section are negligible. This consideration has been

invoked for the analysis presented in Section 4.7 and ahead, with an assumption that

the other relevant restrictions of the Bernoulli’s equation also apply.

 4.3.2 Unsteady Flow Along a Streamline

When the term (A) becomes zero, Eq. (4.6) simplifies to

( )21
. 0

2

V
dp d V gdz dl

t
r r r

∂
+ + + =

∂

r
r

or ( )21
.

2

V
dp d V gdz dl

t
r r r

∂
+ + = -

∂

r
r

     (4.9)

We further consider that the flow is along a streamline. Therefore, from the

definition of streamline, the velocity V
r

 is oriented along the streamline, i.e.,

ˆ
sV Ve=

r

where ˆ
se

 is the unit vector in the streamwise direction. Similarly, we can write

ˆ
sdl dse=

r

Now, right-hand side of Eq. (4.9) can be written as

.
V V

dl ds
t t

r r
∂ ∂

=
∂ ∂

r
r

Thus, Eq. (4.9) simplifies to

( )21

2

V
dp d V gdz ds

t
r r r

∂
+ + = -

∂

or ( )21

2

dp V
d V gdz ds

tr

∂
+ + = -

∂
 (4.10)

Integrating Eq. (4.9) between any two points 1 and 2 along the streamline, we get

( )2 2 2 22

1 1 1 1

1

2

dp V
d V gdz ds

tr

∂
+ + = -

∂Ú Ú Ú Ú
For constant density flow, the above equation yields

22 2
1 1 2 2

1 2

1
2 2

p V p V V
gz gz ds

tr r

∂
+ + = + + +

∂Ú (4.11)

Equation (4.11) is known as the unsteady form of Bernoulli’s equation.

4.3.3 Unsteady Irrotational Flow

As discussed in Chapter 3, the velocity vector for an irrotational flow can be

expressed as the gradient of a scalar function, the velocity potential (f).

ˆˆ ˆV i j k
x y z

f f f
f

∂ ∂ ∂
= — = + +

∂ ∂ ∂

rr
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Since, ˆˆ ˆdl dxi dyj dzk= + +
r

, we have from Eq. (4.9)

.
V

dl dx dy dz d
t t x y z t

f f f f∂ ∂ ∂ ∂ ∂ ∂È ˘ Ê ˆ= + + = Á ˜Í ˙ Ë ¯∂ ∂ ∂ ∂ ∂ ∂Î ˚

r
r

Thus, under the assumption of inviscid and irrotational flow, Eq. (4.9) simplifies to

( )21

2

dp
d gdz d

t

f
f

r

∂Ê ˆ+ — + = - Á ˜Ë ¯∂
    (4.12)

Equation (4.12) is the Euler equation (unsteady form) in terms of the velocity

potential. It is important to note that Eq. (4.12) is derived under the assumptions of

inviscid and irrotational flow.

* 
The relationship between irrotational flow and inviscid flow is rather intriguing.

In fact, viscous effect happens to be one of the important mechanisms that can

convert an originally irrotational flow to a rotational one. For the sake of

completeness, here we discuss some of the mechanisms that may be responsible

for transferring an irrotational flow into a rotational one.

(a) Presence of a solid boundary and viscous effects: In fluid mechanics,

solid boundaries are common for wall-bounded flows. Because of no-slip

boundary condition (a combined consequence of viscous effects and the

existence of a solid boundary), the fluid in contact with the solid boundary

remains stationary. Consider the situation depicted in Fig. 4.3, in which

ABCD is a rectangular fluid element in an originally irrotational flow. How-

ever coming in contact with the wall, the motion of the line element A B get

‘frozen’ whereas motion of the line element DC is relatively more unhin-

dered. This imparts a rotational effect to the fluid element in its deformed

configuration ABC¢D¢. This situation is very much analogous to the top-

pling effect induced on a person (analogous to the fluid element!) who

jumps out of a running bus. The ground attempts to freeze the motion of the

person, whereas his/her inertia attempts to carry him/her further.

A B

D¢ C C¢D

 Fig. 4.3 

(b) Presence of shock waves: Shock waves may be presented in highly com-

pressible (supersonic, i.e., Mach number>1) flows in which there is an

* This portion may be omitted without loss of continuity
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abrupt discontinuity in the fluid properties. The shock wave manifests itself

through a wave front across which there is a jump in all flow properties.

Across the shock front, there is a state that changes from supersonic to

subsonic (i.e., Mach number<1). There may be situations in which a flow

that was originally irrotational becomes rotational because of the presence

of the shock wave, even if viscous effects are not important.

(c) Thermal stratification: Thermal stratification refers to the layering of

fluid elements that occur due to the density gradient created by changes in

temperature. In thermal stratification, a hotter, less dense fluid layer over-

lies a colder, denser fluid layer. Thermally stratified layers can make the

flow rotational from an irrotational one.

(d) Coriolis forces: An originally irrotational flow may become rotational due

to the presence of Coriolis forces. For example, there are rotational effects

in the ocean currents which are predominantly created by the Coriolis ef-

fects.

Because of the fact that the above four factors are commonly present in nature,

one cannot ensure the eternal irrotationality of an originally irrotational flow.

However, in the absence of these factors, an originally irrotational flow will remain

irrotational forever.

Example 4.1

In a frictionless, incompressible flow, the velocity field (in m/s) and the body force

are given by ˆˆ ˆ and ;V Axi Ayj g gk= - = -
r r  the coordinates are measured in m. The

pressure is 
0p at point (0, 0, 0). Obtain an expression for the pressure field, p(x,y,z),

in terms of the velocity field.

Solution

Given: u = A x, v = – A y, w = 0, bx = by = 0, and bz = – g

Putting the values of u, v, w, and bx in Eq. (4.1), we get

( ) ( )[ ]0 0 0 0
p

Ax A Ay
x

r
∂

¥ + - ¥ + ¥ = - +
∂

or 2 
p

A x
x

r
∂

= -
∂

Integrating with respect to x, we obtain

( )
2

2
1 ,

2

x
p A f y zr= - + (4.13)

Putting the values of u, v, w, and by  in Eq. (4.2), we have

( ) ( )[ ]0 0 0 0
p

A Ay A
y

r
∂

¥ + - ¥ - + ¥ = - +
∂
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or 2p
A y

y
r

∂
=

∂
Integrating with respect to y, we get

( )
2

2
2 ,

2

y
p A f x zr= - + (4.14)

Putting the values of u, v, w, and bzin Eq. (4.3), it yields

0
p

g
z

r
∂

= - +
∂

or  
p

g
z

r
∂

= -
∂

Integrating with respect to z, we get

( )3 ,p gz f x yr= - + (4.15)

Equations (4.13), (4.14) and (4.15) are all essentially representing the same pressure

field. Comparing the above three equations, thus, we obtain

( )
2

2
1 ,

2

y
f y z A gz Cr r= - - + ,

( )
2

2
1 ,

2

x
f x z A gz Cr r= - - +  and

( )
2 2

2 2
1 ,

2 2

x y
f x y A A Cr r= - - + ( where C is a constant)

Thus,

2 2
2 2

2 2

x y
p A A gz Cr r r= - - - +

21
          

2
V gz Cr r= - - +  (since, ( ) ( )2 2

V Ax Ay= +  and

2 2 2 2 2.V V V A x A y= = + )

or
21

  
2

p V gz Cr r+ + =     (4.16)

Equation (4.16) essentially relates the pressure field with the velocity field. It is

interesting to note here that for this flow,

the rate of angular deformation 0xy

u

y x
e

∂ ∂
= + =

∂ ∂
&

v

and rotation 1
0

2
xy

u

x y
w

∂ ∂Ê ˆ= - =Á ˜Ë ¯∂ ∂
v
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This, in turn implies that it is effectively an inviscid (shear stress = 0) and

irrotational (angular velocity = 0) flow. Since the fluid density is assumed to be

constant in addition, Bernoulli’s equation can be applied between any two points in

the flow field, no matter whether those points are located on the same streamline or

not.

Example 4.2

A rectangular chip floats on the top of a thin layer of air, above a bottom plate. Air

is blown at a uniform velocity v0 through holes in the bottom plate. For steady,

inviscid, constant density flow, find out the weight of the chip that can be held in

equilibrium by the air injected. Width of the chip perpendicular to the plane of the

figure is L.

v0

y

h

b

x

CV

Chip

u x( )

Fig. 4.4 

Solution

Choose a fixed control volume as shown by the dashed line in Fig. 4.4

The rate at which air enters this control volume through the bottom is the same rate

at which it leaves the control volume across the gap, to maintain continuity. Thus,

one may write

( )0 xL u x hL=v

or ( ) 0 x
u x

h
=

v

Note that here we considered a uniform velocity profile along y (u as function of x

only), since the flow is assumed to be inviscid.

Acceleration of the fluid along the x direction is

2
0

2x

u
a u x

x h

∂
= =

∂
v (4.17)

Applying Euler’s equation of motion along the x direction (Eq. (4.1)), one can get
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x

p
a

x
r

∂
= -

∂

2
0

2

p
x

x h
r

∂
= -

∂
v

2 2
0

12 2

x
p C

h
r\ = - +

v     (4.18)

The integration constant C1 can be found by applying an appropriate boundary

condition as follows:

At ,
2

bx = atmp p=

( )22
0

1 2

2

2
atm

b
C p

h
r\ = +

v

( )22 2 2
0 0

2 2

2

2 2
atm

vb x
p p

h h
r r\ = + -

v     (4.18a)

The net pressure force on the plate is upward. The net pressure force acting on the

plate is determined to be

( )net atm

A

F p p dA= -Ú

( )
2

0
2

b

atmp p Ldx= -Ú

( )22 2 2
2

0 0

2 20

2
2

2 2

b b x
Ldx

h h
r r

Ê ˆ
= -Á ˜Ë ¯Ú

v v

or
2 3
0

212
net

b L
F

h

r
=

v (4.19)

For equilibrium, the weight of the plate is balanced by the net pressure force. Hence,

2 3
0

212

b L
W

h

r
=

v (4.19a)

4.4 EULER’S EQUATION OF MOTION IN STREAMLINE

COORDINATE SYSTEM

Consider a fluid element in an inviscid flow field, as shown in Fig. 4.5(a). The

coordinate s is the streamwise coordinate oriented along the streamline and the
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coordinate n is oriented normal to the streamline. The different forces acting on the

fluid element along s are shown in Fig. 4.5(b).

If we apply Newton’s second law in the streamwise (the s) direction to the fluid

element, we get

( )s sF m a= DÂ

cos s

p
p n p s n g s n s na

s
r q r

∂Ê ˆD - + D D - D D = D DÁ ˜Ë ¯∂

s

p z
g a

s s
r r

∂ D
- - =

∂ D
 (4.20)

The advantage of using streamline coordinate is that flow is one-dimensional

along the streamline, since the velocity vector is always tangential to the streamline.

Since the velocity is a function of s and t only (V=V(s, t)), along a streamline, the

total acceleration of a fluid particle in the streamwise direction is given by

s

DV V V
a V

Dt t s

∂ ∂
= = +

∂ ∂

Putting 
s

V V
a V

t s

∂ ∂
= +

∂ ∂
 into the Eq. (4.20), we obtain

p z V V
g V

s s t s
r r

∂ D ∂ ∂Ê ˆ- - = +Á ˜Ë ¯∂ D ∂ ∂
(4.21)

In the limit 0sD Æ , 
z

s

D
D

 becomes
z

s

∂
∂

. Eq. (4.21) becomes

s
n

nD

(1)( )p nD

(1)
p

p s n)
s

∂
+ D (D

∂
æ
ç
è

ö
÷
ø

s

n

q zD

rg s nD D 1

sD

(a) Flow along a streamline (b) Forces acting on the fluid element along the streamline

Fig. 4.5 
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V V p z
V g

t s s s
r r

∂ ∂ ∂ ∂Ê ˆ+ = - -Á ˜Ë ¯∂ ∂ ∂ ∂
(4.22)

The Eq. (4.22) is the Euler’s equation of motion along a streamline.

The different forces acting on the fluid element along the direction normal to

streamline are shown in Fig. 4.6. To obtain the equation of motion along a direction

normal to the streamline (n direction), we apply Newton’s second law in the normal

(the n) direction to the fluid element.

( )n nF m a= DÂ

cos n

p
p s p n s g s n s na

n
r a r

∂Ê ˆD - + D D - D D = D DÁ ˜Ë ¯∂

n

p z
g a

n n
r r

∂ D
- - =

∂ D
(4.23)

In the limit , 0s nD D Æ , the fluid element shrinks to a fluid particle so that one can

consider that a fluid particle is moving along a curve. Equation (4.23) becomes

n

p z
g a

n n
r r

∂ ∂
- - =

∂ ∂
(4.24)

Further, the acceleration normal to the streamline is given by

2

n

V
a

r
= -

where r is the local radius of curvature of the streamline at that point. The

acceleration an acts inward along the streamline normal and is usually known as

centripetal acceleration. The equation of motion normal to the streamline,

accordingly, can be written for a steady flow as

2
p z V

g
n n r

r r
∂ ∂

+ =
∂ ∂

(4.25)

For steady flow in a horizontal plane, Euler’s equation normal to a streamline

becomes

21 p V

n rr

∂
=

∂
(4.26)

Equation (4.26) indicates that there may occur a normal pressure gradient across the

streamline due to streamline curvature. Thus, in regions where the streamlines are

straight, the radius of curvature, r, is infinite and there is no pressure variation

normal to the streamlines.
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( )( )1p sD

( )( )1p
p n s

n

∂ ö+ D D÷∂
æ
ç
è ø

n

azD

1g s nD Dr

nD

Fig. 4.6 Forces acting on a fluid element normal to the streamline

Example 4.3

Consider the velocity field 2ˆ ˆ2V Ax i Axyj= -
r

, where A  is a dimensional constant.

Show that this is a possible incompressible flow. Derive an algebraic expression for

the acceleration of a fluid particle. Estimate the radius of curvature of the streamline

at (x, y) = (1, 3).

Solution

For two-dimensional incompressible flow, the continuity equation becomes

0
u

x y

∂ ∂
+ =

∂ ∂
v

For the given flow,

2
u

Ax
x

∂
=

∂

2Ax
y

∂
= -

∂
v

Thus, 0
u

x y

∂ ∂
+ =

∂ ∂
v (4.27)

Since the given velocity field satisfies the continuity equation for incompressible

flow, it is a possible incompressible flow field.

The acceleration of a fluid particle can be obtained as follows:

ˆ ˆ
x ya a i a j= +r

ˆ ˆ
s s n na ae e= +       (where s and n are streamline and cross-stream

 line coordinates)
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( )( ) ( )( )2 2 32 2 0 2x

u u
a u Ax Ax Axy A x

x y

∂ ∂
= + = - =

∂ ∂
v

( ) ( )( )2 2 22 2 2 2ya u Ax Ay Axy Ax A x y
x y

∂ ∂
= + = - + - - =

∂ ∂
v v

v

The acceleration of the fluid particle at (x, y) is

2 3 2 2ˆ ˆ ˆ ˆ2 2x ya a i a j A x i A x yj= + = +
r

(4.28)

The acceleration of the fluid particle at (1,3) is

( ) ( )( )2 3 2 2 2 2ˆ ˆ ˆ ˆ2 1 2 1 3 2 6a A i A j A i A j= + = +
r

The velocity of the fluid particle at (1,3) is

( ) ( ) ( )2 ˆ ˆ ˆ ˆ1 2 1 3 6V A i A j Ai Aj= - = -
r

The unit vector tangent to the streamline is

( ) ( )2 2

ˆ ˆ6
ˆ ˆˆ 0.164 0.986

6
s

V Ai Aj
Ai Aj

V A A
e

-
= = = -

+

r

r     (4.29)

The unit vector normal to the streamline is

( )ˆ ˆˆ ˆ ˆ ˆˆ ˆ 0.164 0.986 0.986 0.164n s k Ai Aj k Ai Aje e= ¥ = - ¥ = - -
The normal component of acceleration is

( ) ( )2 2 3ˆ ˆ ˆ ˆˆ. 2 6 . 0.986 0.164 2.956n na a A i A j Ai Aj Ae= = + - - = -
r (4.30)

The radius of curvature can be found as follows:

2

n

V
a

r
= -

i.e,
2 2

3

37 0.013

2.956n

V A
r

a AA
= - = =

Example 4.4

The radial variation of velocity at the midsection of the 180° bend shown is given by

rVq
= constant as shown in Fig 4.7. The cross section of the bend is square. Assume

that the velocity is not a function of z. Derive an expression for the pressure

difference between the outside and the inside of the bend. Express your answer in

terms of the mass flow rate, the fluid density, the geometric parameters, R1 and R2,

and the depth of the bend, b = R2 – R1.
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R1

r

Vq

R2

Fig. 4.7 

Solution

Applying Euler’s equation along r, we obtain

21 p V

r rr

∂
=

∂

22 Vdp V

dr r r

qr r= =  where 
c

V
r

q =

2

3

dp c

dr r
r= (4.31)

Integrating, we have

22

11

2
2 3 2

2 1
2

RR

RR

r
p p c r dr cr r

-
- È ˘

- = = Í ˙-Î ˚
Ú

2 22
2 1

2 2
1 2

2

R Rc

R R

r È ˘-
= Í ˙

Î ˚
(4.32)

The constant, c, can be written in terms of the mass flow rate, m as given by

2 2

1 1

R R

R R

c
m V drb b dr

r
qr r= =Ú Ú& (4.33)

2

1

ln
R

bc
R

r=

or
2

1

ln

m
c

R
b

R
r

=
&

(4.33a)

Substituting the value of c in Eq. (4.32), one can write



196 Introduction to Fluid Mechanics and Fluid Machines

2 22
2 1

2 1 2 2
2 22 1 2

1

2 (ln )

R Rm
p p

R R Rb
R

r

È ˘-
- = Í ˙

Î ˚

&
(4.33b)

It is interesting to note that
( )2 2

1 2

2 1
2

V V
p p r

-
- = , although1and 2 are not located

on the same streamline. This is not surprising, as the flow field given by rVq =

constant is irrotational.

Example 4.5

A cylindrical tank of diameter D contains liquid to an initial height of h0, as shown

in Fig. 4.8. At time t = 0,  a small stopper of diameter d is removed from the bottom.

For constant density, inviscid flow with no losses, derive (i) a differential equation

for the free-surface height h(t)during draining, and (ii) an expression for the time t0
to drain the entire tank.

D

(1)

h(t)

d

(2) V2

h0

Fig. 4.8 

Solution

(i) Applying continuity equation between the sections 1 and 2 (Fig. 4.8), one

can write

2
1

2 1 1

2

A D
V V V

A d

Ê ˆ= = Á ˜Ë ¯
   (4.34)

Applying unsteady Bernoulli’s equation between along a streamline con-

necting the centrepoints of the sections 1 and 2, we get

22 2
1 1 2 2

1 2

1
2 2

p V p V V
gz gz ds

tr r

∂
+ + = + + +

∂Ú

Noting that the integral term 2
1

1

dVV
ds h

t dt

∂
ª

∂Ú , and 
1 2 atmp p p= = , we get
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( )
2 2

2 1 1
1 2

2

V V dV
g z z h

dt

-
- - = -

Now, 

1

1

dV
h

dt

gh
·· , so that the term 1dV

h
dt

 can be neglected. Thus, one can

write

2 2
2 1

2

V V
gh

-
= (4.35)

Using Eq. ( 4.34) in Eq. (4.35), we get

42
1 1
2

V D
gh

d

È ˘Ê ˆ - =Á ˜Í ˙Ë ¯Î ˚

or
1 2V C gh= (4.36)

where
4

1

1

C
D

d

=
Ê ˆ -Ë ¯

Again, substituting 
1 ,

dh
V

dt
= -  and then integrating, we have

( )

1/ 2
2 ,

o

h t t

h o

dh
C g dt

h
= -Ú Ú

or

21

21/ 2 ( )
2

o

g
h t h C t

È ˘
Ê ˆÍ ˙= - Á ˜Ë ¯Í ˙

Î ˚

 (4.37)

(ii) The tank is empty when h(t) = 0, then from Eq. (4.37), we get

21

21/ 20
2

o e

g
h C t

È ˘
Ê ˆÍ ˙= - Á ˜Ë ¯Í ˙

Î ˚
where te is the tank emptying time. Simplifying, we get

1
4 2

1
0

20

2 1
2

e

D
h

dh
t

Cg g

È Ï ¸˘Ê ˆ -Ì ˝Í ˙Ë ¯È ˘ Ó ˛Í ˙= =Í ˙ Í ˙Î ˚
Í ˙
Í ˙Î ˚

(4.37a)
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Example 4.6

Two circular plates are separated by a liquid layer as shown in Fig. 4.9. The lower

plate is stationary; the upper plate moves downward at constant speed, V . The radius

of the top plate is R. The liquid is squeezed out in the transverse direction between

the plates. Find an expression for pressure distribution, p(r), assuming inviscid flow.

R

V

b

Fig. 4.9 

Solution

Consider a control volume of radius r, coaxial with the plate and of height b. By

continuity, the fluid squeezes out of the gap between the plates cross the control

surface at the same rate at which it is forced to move by the downward motion of the

upper plate. Thus, one may write (considering uniform cross-radial velocity profile

due to inviscid flow)

2 2 rr V rbVp p=

2
r

Vr
V

b
= (4.38)

Streamline

R

2
1

V

b

r

CV

Fig. 4.9(a) 
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The temporal variation of the flow velocity is, thus,

22

rV Vr db

t dtb

∂
= -

∂

( )
2

2 22 2

Vr V r
V

b b

Ê ˆ= - - =Á ˜Ë ¯
    (4.39)

Applying unsteady Bernoulli’s equation between points 1 and 2 located on the same

radial streamline, we get

2 2
2

1 1 2 2
1 2

12 2

rp V p V V
gz gz ds

tr r

∂
+ + = + + +

∂Ú
Since the points 1 and 2 are on same horizontal line, we can write

2 2

2
1

1

2 2

2 2

atm r

Vr VR

pp Vb b
dr

tr r

Ê ˆ Ê ˆ
Ë ¯ Ë ¯ ∂

+ = + +
∂Ú

or, ( )
2 2

2 21

2 28 2

R
atm

r

p p V V r
R r dr

b br

-
= - + Ú (using Eq. (4.39))

i.e., ( )
2 2

2 2 2 21

2 28 4

atmp p V V
R r R r

b br

-
È ˘= - + -Î ˚     (4.40)

4.5   PRINCIPLE OF MECHANICAL ENERGY CONSERVATION
AND ITS APPLICATIONS TO VORTEX FLOWS

The total mechanical energy per unit weight (also known as total head, H) can be

expressed in terms of velocity, pressure and vertical elevation as

2

2

V p
H z

g gr
= + + (4.41)

where z is the vertical elevation of the point from any reference datum. According to

Bernoulli’s equation, H remains constant along a streamline for an inviscid flow.

Hence,

0
H

s

∂
=

∂
Differentiating Eq. (4.41) with respect to n, we have

1H V V p z

n g n g n nr

∂ ∂ ∂ ∂
= + +

∂ ∂ ∂ ∂
(4.42)
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Substituting p

n

∂
∂

 from Eq. (4.25) into Eq. (4.42) we have

2H V V V z z

n g n gR n n

∂ ∂ ∂ ∂
= + - +

∂ ∂ ∂ ∂

or, H V V V

n g n R

∂ ∂Ê ˆ= +Á ˜Ë ¯∂ ∂
(4.43)

Equation (4.43) physically implies the variation of total mechanical energy in a

direction normal to the streamline for an inviscid flow.

4.5.1 Plane Circular Vortex Flows

For plane circular vortex flows for which there exists only tangential component of

velocity (vq) (radial component of velocity vr = 0), Eq. (4.43) can be written for the

variation of total mechanical energy with radius with respect to a polar coordinate

system as

v dv vdH

dr g dr r

q q qÊ ˆ= +Á ˜Ë ¯
(4.44)

4.5.1.1 Free Vortex Flows

Free vortex flows are the plane circular vortex flows where the total mechanical

energy remains constant in the entire flow field. There is neither any addition nor

any destruction of mechanical energy in the flow field. Therefore, the total

mechanical energy does not vary from streamline to streamline. Hence from Eq.

(4.44), we have,

d

d

H

r
 =

d

d

v v v

g r r

q q qÊ ˆ
+Á ˜Ë ¯

 = 0

or
1 d

( )
d

v r
r r

q

È ˘
Í ˙Î ˚

 = 0 (4.45)

Integration of Eq. (4.45) gives

vq =
C

r
(4.46)

The Eq. (4.46) describes the velocity field in a free vortex flow, where C is a

constant in the entire flow field. The vorticity in a polar coordinate system is defined

by Eq. (3.27a) as

W =
1 rv vv

r r r

q q∂ ∂

∂ ∂q
- +

In case of vortex flows, it can be written as
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W =
d

d

v v

r r

q q+

For a free vortex flow, described by Eq. (4.46), W becomes zero. Therefore we

conclude that a free vortex flow is irrotational, and hence, it is also referred to as

irrotational vortex. It has been shown in Section. 4.3 that the total mechanical energy

remains same throughout in an irrotational flow field. Therefore, irrotationality is a

direct consequence of the constancy of total mechanical energy in the entire flow

field and vice versa. The interesting feature in a free vortex flow is that as r Æ 0, vq

Æ μ, [Eq. (4.46)]. It mathematically signifies a point of singularity at r = 0 which,

in practice, is impossible. In fact, the definition of a free vortex flow cannot be

extended as r = 0 is approached. In a real fluid, friction becomes dominant as r Æ 0

and so a fluid in this central region tends to rotate as a solid body. Therefore, the

singularity at r = 0 does not render the theory of irrotational vortex useless, since, in

practical problems, our concern is with conditions away from the central core.

4.5.1.2 Pressure Distribution in a Free Vortex Flow

Pressure distribution in a vortex flow is usually found out by integrating the equation

of motion in the r direction. The equation of motion in the radial direction for a

vortex flow can be written with the help of Eq. (4.25) as

1 d

d

p

rr
= 

2
d

d

v z
g

r r

q - (4.47)

Integrating Eq. (4.47) with respect to dr, and considering the flow to be

incompressible we have,

p

r
=

2v

r

qÚ dr – gz + A (4.48)

where A  is a constant to be found out from a suitable boundary condition.

For a free vortex flow,

vq = 
C

r

Hence, Eq. (4.48.) becomes

p

r
= -

C

r

2

22
 – gz + A (4.49)

If the pressure at some radius r = ra, is known to be the atmospheric pressure

patm, then Eq. (4.49) can be written as

p p- atm

r
= 

C

r ra

2

2 22

1 1
-

F

HG
I

KJ
 – g(z – za)

= 

2
( )

2

ar rvq =
 – 

2

2

vq  – g(z – za) (4.50)
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where z and za are the vertical elevations (measured from any arbitrary datum) at r

and ra. Equation (4.50) can also be derived by a straightforward application of

Bernoulli’s equation between any two points at r = ra and r = r. In a free vortex flow,

the total mechanical energy remains constant. There is neither any energy

interaction between an outside source and the flow, nor is there any dissipation of

mechanical energy within the flow. The fluid rotates by virtue of some rotation

previously imparted to it or because of some internal action. Some examples are a

whirlpool in a river, the rotatory flow that often arises in a shallow vessel when

liquid flows out through a hole in the bottom (as is often seen when water flows out

from a bath tub or a wash basin), and flow in a centrifugal pump case just outside

the impeller.

4.5.1.3 Cylindrical Free Vortex

A cylindrical free vortex motion is conceived in a cylindrical coordinate system

with axis z directing vertically upwards (Fig. 4.10), where at each horizontal cross

section, there exists a planar free vortex motion with tangenital velocity given by

Eq. (4.46). The total energy at any point remains constant and can be written as

p C

rr
+

2

22
 + gz = H (constant) (4.51)

The pressure distribution along the radius can be found from Eq. (4.51) by

considering z as constant; again, for any constant pressure p, values of z ,

determining a surface of equal pressure, can also be found from Eq. (4.51). If p is

measured in gauge pressure, then the value of z, where p = 0 determines the free

surface (Fig. 4.10), if one exists.

Free surface

Constant
pressure lines

Datum

V2 C2

V2p
2g 2gr2

2grg

=

H z= +

z

+

 Fig. 4.10 Cylindrical free vortex
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4.5.1.4 Spiral Free Vortex

A plane spiral free vortex flow in a two-dimensional frame of reference is described

in a sense that the tangential and radial velocity components at any point with

respect to a polar coordinate system are inversely proportional to the radial

coordinate of the point. Therefore, the flow field (Fig. 4.11) can be mathematically

defined as

vq =
1c

r
(4.52)

and vr =
c

r
2 (4.53)

dr
a

vq

rdq

dq
q

n
v

Streamline

r0

r

Normal vectorvr

Fig. 4.11 Geometry of spiral flow

Therefore, we can say that the superimposition of a radial flow described by Eq.

(4.53) with a free vortex flow gives rise to a spiral free vortex flow. If a becomes the

angle between the velocity vector 
r

V , which is tangential to a streamline (Fig. 4.11),

and the tangential component of velocity vq at any point, then the equation of

streamline can be expressed as

1 d

d

r

r q
 = tan a (4.54)

Again, we can write

tan a = 2

1

rv c

v cq

=

It follows therefore that the angle a is constant, i.e., independent of radius r.

Hence Eq. (4.54) can be integrated, treating tan a as constant, to obtain the equation

of streamlines as

vr
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r = r0 eq tan a = r0 

2

1

c

c
e

q
Ê ˆ
Á ˜Ë ¯

(4.55)

where r0 is the radius at q = 0 (Fig. 4.11). Equation (4.55) shows that the pattern

of streamlines are logarithmic spirals. Vorticity 
r

W  as defined by Eq. (4.52) becomes

zero for the flow field described by Eqs (4.52) and (4.53). Therefore, the spiral free

vortex flow is also irrotational like a circular free vortex flow and hence the total

energy remains constant in the entire flow field. The outflow through a circular hole

in the bottom of a shallow vessel resembles closely to a spiral free vortex flow.

4.5.1.5 Forced Vortex Flows

Flows where streamlines are concentric circles and the tangential velocity is directly

proportional to the radius of curvature are known as plane circular forced vortex

flows. The flow field is described in a polar coordinate system as

vq = w r (4.56 a)

and vr = 0 (4.56 b)

All fluid particles rotate with the same angular velocity w like a solid body.

Hence, a forced vortex flow is termed as a solid body rotation. The vorticity W for

the flow field can be calculated as

W =
1 rv vv

r r r

q q∂ ∂

∂ ∂q
- +

= w – 0 + w = 2w

Therefore, a forced vortex motion is not irrotational; rather it is a rotational flow

with a constant vorticity 2w. Equation (4.43) is used to determine the distribution of

mechanical energy across the radius as

d

d

H

r
 =  

2d 2

d

v v v r

g r r g

q q q wÊ ˆ
+ =Á ˜Ë ¯

Integrating the equation between the two radii on the same horizontal plane, we

have

H2 – H1 =
2

g

w
 (r2

2 – r2
1) (4.57)

Thus, we see from Eq. (4.57) that the total head (total energy per unit weight)

increases with an increase in radius. The total mechanical energy at any point is the

sum of the kinetic energy, the flow work or pressure energy, and the potential

energy. Therefore, the difference in total head between any two points in the same

horizontal plane can be written as

H2 – H1 =

2 2
2 1 2 1

2 2

p p v v

g g g gr r

È ˘È ˘
- + -Í ˙Í ˙Î ˚ Î ˚
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= 2 1p p

g gr r

È ˘
-Í ˙Î ˚

 + 
2

2g

w
[r2

2 – r2
1]

Substituting this expression of H2 – H1 in Eq. (4.57), we get

2 1p p

r

-
 =  

2

2

w
 [r2

2 – r2
1] (4.58)

The same equation can also be obtained by integrating the equation of motion in a

radial direction as

2

1

1 d

d

p

rrÚ  dr =

2 2

1

v

r

qÚ  dr = w2 

2

1

Ú r dr

or 2 1p p

r

-
 =

2

2

w
 [r2

2 – r2
1]

To maintain a forced vortex flow, mechanical energy has to be spent from outside

and thus an external torque is always necessary to be applied continuously. Forced

vortex can be generated by rotating a vessel containing a fluid so that the angular

velocity is the same at all points. A paddle rotating in a large mass of fluid creates a

forced vortex flow near its diameter. Another common example is the motion of

liquid within a centrifugal pump or of gas in a centrifugal compressor.

4.5.1.6 Cylindrical Forced Vortex

A cylindrical forced vortex motion is realised in a three-dimensional space. It can be

generated by rotating a cylindrical vessel containing a fluid (Fig. 4.12a). At any

horizontal plane, the tangential velocity satisfies the Eq. (4.56a). The pressure head

p/rg at any point in the fluid is equal to z, the depth of the point below the free

surface, if one exists (Fig. 4.12a). By writing the Eq. (4.58) between the points a and

o at the same horizontal plane (Fig. 4.12a) we have,

z – z0 =
2 2

2

r

g

w
(4.59)

Equation (4.59) represents the equation of free surface which, if r is

perpendicular to z (i.e., the axis of rotation is vertical), is a paraboloid of revolution.

If the liquid is confined within a vessel (Fig. 4.12b), the free surface may not exist,

but the pressure along any radius will vary in the same way as if there were a free

surface. Hence, the two are equivalent.
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r
r

pr

po

0 a Datum

(a) Open vessel (b) Closed vessel

z0
rg

rgz

Fig. 4.12 Cylindrical forced vortex

4.5.1.7 Spiral Forced Vortex

Superimposition of purely radial flow (inwards or outwards) with a plane circular

forced vortex results in a spiral forced vortex flow.

Example 4.7

Water flows through a right-angled bend (Fig. 4.13) formed by two concentric circular

arcs in a horizontal plane with the inner and outer radii of 0.15 m and 0.45 m,

respectively. The centre-line velocity is 3 m/s. Assuming a two-dimensional free

vortex flow, determine (i) the tangential and normal accelerations at the inner and

outer walls of the bend, (ii) the pressure gradients normal to the streamline at the inner

and outer walls of the bend, and (iii) the pressure difference between the inner and

outer walls of the bend.

r
1 =

0.15
m

r2 = 0.45 m

Fig. 4.13 Flow of water through a right-angled bend
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Solution

Here the streamlines are concentric circular arcs, and hence the velocity of fluid is

in the tangential direction only. Moreover, the velocity field satisfies the equation of

free vortex as

vq = c/r

where c is a constant.

We have vq = 3 m/s at r = 
0.15 0.45

2

+
 = 0.3 m

Hence, c = 3 ¥ 0.3 = 0.9 m
2
/s

Therefore, velocities at the inner and outer radii are

(vq)at r = r1
 =

0.9

0.15
 = 6 m/s

(vq)at r = r2
 =

0.9

0.45
 = 2 m/s

(i) The accelerations along the streamline and normal to it can be written as as

(acceleration along the streamline) = vq 
v

r

q∂

∂q
 = 0

an (acceleration normal to streamline) = 

2v

r

q-

Therefore, (an)r = r1
 =

6 6

0.15

- ¥
 = – 240 m/s

2

(an)r = r2
 =

2 2

0.45

- ¥
 = – 8.89 m/s2

Minus sign indicates that the accelerations are radially inwards.

(ii) The pressure gradient normal to the streamline is given by Eq. (4.47) as

d

d

p

r
 =

2v

r

qr

Therefore,

1at 

d

d
r r

p

r =

Ê ˆ
Á ˜Ë ¯

 = 1000 ¥ 
6 6

0 15

¥
◊

 = 240 ¥ 10
3
 N/m

2
 = 240 kN/m

2

and

2at 

d

d
r r

p

r =

Ê ˆ
Á ˜Ë ¯

 = 1000 ¥ 
2 2

0.45

¥
 = 8.89 ¥ 103 N/m2 = 8.89 kN/m2

(iii) At any radius r,

d

d

p

r
 =

2v

r

qr
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Hence,
2

1

d

d

r

r

p

r
Ú  dr =

2

1

2

3

r

r

c

r
rÚ  dr

or p2 – p1 =
2

r
 (c2/r2

1 – c2/r2
2) = 

2

r
 (v2

q1
 – v2

q2
)

=
1000

2
 ¥ (36 – 4) N/m

2
 = 16 kN/m

2

where p1 and p2 are the pressures at inner and outer walls of the bend respectively.

Example 4.8

A hollow cylinder of 0.6 m diameter, open at the top, contains a liquid and spins

about its vertical axis, producing a forced vortex motion. (i) Calculate the height of

the vessel so that the liquid just reaches the top of the vessel and begins to uncover

the base at 100 rpm. (ii) If the speed is now increased to 130 rpm, what area of the

base will be uncovered?

Solution

(i) The situation when the liquid just reaches the top of the vessel and begins to
uncover the base is shown in Fig. 4.14a. Let H be the height of the cylinder. The

difference in pressure between the point 1 (at the centre), and 2 (at the outer wall),

at the bottom surface of the vessel can be found from Eq. (4.47) as,

2

1

d

d

p

rÚ  dr =

2

1

R
v

r

qrÚ  dr

=
2

r
 (w2

 r
2
)
R
0

or p2 – p1 =
2 2

2

Rw
r (4.60)

where R is the radius and w is the angular velocity of the vessel.
Since point 1 is on the free surface (Fig. 4.14a) and point 2 is at a depth H below

the free surface,

p1 = patm (atmospheric pressure)

p2 = patm + rgH

Substituting the values of p1 and p2 in Eq. (4.60), we get

H =

2 2

2

R

g

w

=

2 22 100 (0.3)

60 2 9.81

p ¥Ê ˆ
Á ˜Ë ¯ ¥

 = 0.503 m
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H

R1

w = 100
rpm

w = 130
rpm

1 2 2 1

The situation when the liquid
begins to uncover the base

The situation when the
liquid uncovers the base

(a) (b)

Fig. 4.14 Liquid under uniform rotation in an open vessel

(ii) When the speed is increased beyond 100 rpm, the maximum centrifugal head

w2
R

2
/2g will be more than the maximum static pressure head rgH, and hence the

liquid being detached from the centre will uncover the base as shown in Fig. 4.14b.
Let R1 be the radius where the free surface meets the base; then the pressure

difference between points 1 and 2 (Fig. 4.14b) can be written as

p2 – p1 =

2

2

rw
 (R2 – R2

1)

but p2 – p1 = rgH

Hence, rgH =

2

2

rw
 (R2 – R2

1)

or R
2
1 = R

2
 – 

2

2 g H

w

= (0.3)
2
 – 

2

2 9.81 0.503

(2 130/60)p

¥ ¥

¥
 = 0.037 m

2

Therefore, uncovered area at the base = p R2
1 = p (0.037) = 0.116 m2.
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Example 4.9

A closed cylinder 0.4 m in diameter and 0.4 m in height is filled with oil of specific

gravity 0.80. If the cylinder is rotated about its vertical axis at a speed of 200 rpm,

calculate the thrust of oil on top and bottom covers of the cylinder.

A B
O

200 rpm

H = 0.4 m

R = 0.2 m

dr

r

Fig. 4.15 A rotating closed cylinder filled with oil

Solution

In the top plane A B of the cylinder (Fig. 4.15), pressure head at any radial distance

r is given by

p/rg = w2
r

2
/2g

where, w is the angular velocity of the cylinder.

Considering a thin annular ring of radius r and thickness dr (Fig. 4.15), and

summing up the forces on all such elemental rings, we have

The thrust on top plane,

FT  =

0

R

Ú p2p r dr

= pr w2 

0

R

Ú r3 dr

=

2 4

4

Rp rw
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Here,

w =
2 200

60

p ¥
 = 20.94 rad/sec

R (the radius of the cylinder) = 0.2 m

Therefore, FT =

3 2 40.8 10 (20.94) (0.2)

4

p ¥ ¥ ¥

= 440.81 N

The radial distribution of pressure due to rotation will remain same for both the

top and bottom covers. But the bottom cover experiences an additional hydrostatic

thrust due to the weight of liquid above it.

Hence, the thrust at the bottom cover

F = FT + rg H ¥ p R2

= 440.81 + 0.8 ¥ 10
3
 ¥ 9.81 ¥ 0.4 ¥ p ¥ (0.2)

2

= 835.29 N

Example 4.10

At a radial location r1 in a horizontal plane, the velocity of a free vortex becomes the

same as that of a forced vortex. If the pressure difference between r1 and r2 (r2 being

another radial location in the same horizontal plane with r2 > r1) in the forced vortex

becomes twice that in the free vortex, determine r2 in terms of r1.

Solution

At any radius r, the tangential velocities for the two vortices are defined as

vq free vortex = c/r (where c is a constant throughout the flow)

vq forced vortex = w r (where w is the angular velocity)

From the equality of two velocities at r = r1,

c/r1 = w r1

or c/w = r2
1 (4.61)

The pressure difference between the points r = r1 and r = r2 for the two vortices can

be written as

(p2 – p1)free vortex =

2

2

c
r  (1/r2

1 – 1/r2
2)

(p2 – p1)forced vortex =

2

2

w
r  (r2

2 – r2
1)

From the condition given in the problem,

2

2

w
r  (r2

2 – r2
1) = 2

2

2

r c  (1/r2
1 – 1/r2

2)
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or r
2
1 r

2
2 = 2c

2
/w2

(4.62)

Finally, from Eq. (4.61) and (4.62), we have

r
2
2/r

2
1 = 2

or r2 = 2  r1

Example 4.11

The velocity of air at the outer edge of a tornado, where the pressure is 750 mm of

Hg and diameter 30, is 12 m/s. Calculate the velocity and pressure of air at a radius

of 2, from its axis. Consider the density of air to be constant and equals to 1.2 kg/m
3

(specific gravity of mercury = 13.6).

Solution

The flow field in a tornado (except near the centre) is simulated by a free vortex

motion. Therefore, the velocity at a radius of 2 m is given by

(vq)at r = 2m = (vq)at r = 15 m ¥ 15/2 = 12 ¥ 15/2 = 90 m/s

Let p0 and p be the absolute pressures at the outer edge of the tornado and at a

radius of 2 m from its axis respectively. Then, for a free vortex,

0p p

g gr r
-  =

2 2(90) (12)

2g

-

= 405.50 m of air

where r is the density of air

It is given that

0p

gr
 =

3 3750 10 13.6 10

1.2

-¥ ¥ ¥

= 8500 m of air

Hence, p/rg = 8500 – 405.50

= 8094.5 m of air

= 714.22 mm of Hg

4.6   PRINCIPLES OF A HYDRAULIC SIPHON: APPLICATION OF

BERNOULLI'S EQUATION

Fluids always flow from a higher energy level to a lower energy level. Here, by

energy, we mean the total mechanical energy. Consider a container T containing

some liquid (Fig. 4.16). If one end of a pipe S , completely filled in with the same

liquid, is dipped into the container as shown in Fig. 4.16 with other end being open

and vertically below the free surface of the liquid in the container T, then the liquid

will continuously flow from the container T through the pipe S  and will get

discharged at the end B. This is known as the siphonic action by which the tank T
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containing the liquid can be made empty. The pipe S, under the situation, is known

as a hydraulic siphon or simply a siphon. The justification of flow through the pipe

S can be made in the following way.

If we write the Bernoulli’s equation, neglecting the frictional effects, at the two

points A  and B as shown in Fig. 4.16, we have

Ap

gr
 + 0 + zA  =

2

2

B Bp V

g gr
+  + zB (4.63a)

C

A

B
zB

zA

T

h

H

zc

Dz

SD

Fig. 4.16 Hydraulic siphon

The pressures at A  and B are same and equal to the atmospheric pressure.

Velocity at A  is negligible compared to that at B, since the area of the tank T is very

large compared to that of the tube S. Hence we get from Eq. (4.63a)

VB = 2 ( ) 2A Bg z z g z- = D (4.63b)

Equation (4.63b) shows that a velocity head at B is created at the expense of the

difference in potential head between A  and B and thus justifies the flow from tank T

through the pipe S .

The frictional effect due to viscosity of the fluid is taken care of by writing the

Eq. (4.63a) in a modified from as

Ap

gr
 + 0 + zA  =

2

2

B Bp V

g gr
+  + zB + hL
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which gives VB = 2 ( )Lg z hD - (4.63c)

Since pA  = pB = patm (atmospheric pressure)

Here hL is the loss of total head due to fluid friction in the flow from A  to B .

Hence, the velocity V B expressed by the Eq. (4.63c) becomes less than that predicted

by the Eq. (4.63b) in the absence of friction. Let us consider a point C in the pipe

(Fig. 4.16), and apply the Bernoulli’s equation between A  and C. Then, neglecting

frictional losses, we have

Ap

gr
 + 0 + zA  =

2

2

C Cp V

g gr
+  + zC (4.64a)

Considering the cross-sectional area of the pipe to be uniform, we have, from

continuity, V B = V C, and the Eq. (4.64a) can be written as

Cp

gr
 =

2
atm

2

Bp V

g gr
-  – h (4.64b)

(Since, pA  = patm, the atmospheric pressure and zC – zA  = h)

With the consideration of frictional losses, Eq. (4.64b) becomes

Cp

gr
 =

2
atm

2

Bp V

g gr
-  – h – h¢L (4.64c)

where h¢L is the loss of head due to friction in the flow from A  to C. Therefore, it is

found that the pressure at C is below the atmospheric pressure by the amount (V 2
B/2g

+ h + h¢L). This implies physically that a part of the pressure head at A  is responsible

for the gain in the velocity and potential head of the fluid at C plus the head which is

utilised to overcome the friction in the path of flow. Usually the frictional loss h¢L is

small due to the low velocity of flow and one can neglect it with respect to the

change in potential head. Now it is obvious that the minimum pressure in the flow

would be attained at the topmost part of the siphon, for example, point D, where the

potential head is maximum. From the application of Bernoulli’s equation between A

and D,  neglecting losses, we have

Dp

gr
 =

2
atm

2

Bp V

g gr
-  – H

(Since the pipe is uniform, velocity at D equals to that at B)

From the Eq. (4.63b)

2

2

BV

g
 = D z

Therefore, it becomes, Dp

gr
 = atmp

gr
 – (D z + H) (4.65)

The Eq. (4.65) can also be obtained by the application of Bernoulli’s equation

between D and B.
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If the pressure of a liquid becomes equal to its vapour pressure at the existing

temperature, then the liquid starts boiling and pockets of vapour are formed which

create vapour locks to the flow and the flow is stopped. The vapour pockets are

formed where the pressure is sufficiently low. These pockets are suddenly

collapsed—either because they are carried along by the liquid until they arrive at a

region of higher pressure or because the pressure increases again at the point in

question. It results in cavities and the surrounding liquid rushes in to fill it, creating

a very high pressure which can seriously damage the solid surface. This

phenomenon is known as cavitation. In ordinary circumstances, liquids contain

some dissolved air. This air is released as the pressure is reduced, and it too may

form pockets in the liquid as air locks. Therefore to avoid this, the absolute pressure

in a flow of liquid should never be allowed to fall to a pressure below which the air

locking problem starts in practice. For water, this minimum pressure is about 20

Kpa (2 m of water). Therefore, the phenomenon of cavitation puts a constraint in

the design of any hydraulic circuit where there is a chance for the liquid to attain a

pressure below that of the atmosphere. For a siphon, this condition has to be checked

at point D, so that pD > pmin, where pmin is the pressure for air locking or vapour

locking to start.

Example 4.12 
A tube is used as a siphon to discharge an oil of specific gravity 0.8 from a large

open vessel into a drain at atmospheric pressure as shown in Fig. 4.17. Calculate (i)

the velocity of oil through the siphon, (ii) the pressure at points A  and B,(iii) the

pressure at the highest point C,(iv) the maximum height of C that can be

accommodated above the level in the vessel, and (v) the maximum vertical depth of

the right limb of the siphon. (Take the vapour pressure of liquid at the working

temperature to be 29.5 kPa and the atmospheric pressure as 101 kPa. Neglect

friction)

Solution

(i) Applying Bernoullis equation between points 1 and D, we get

2
atm 1

2

p V

g gr
+  + 5.5 =

2

2

D Dp V

g gr
+  + 0 (4.66)

The horizontal plane through D is taken as the datum. Since the siphon
discharges into the atmosphere, the pressure at the exit is atmospheric.

Hence, pD = patm

Again, V 1 << V D, since the area of tank is much larger compared to that of the

tube. Therefore, Eq. (4.66) can be written as

atmp

gr
 + 0 + 5.5 =

2
atm

2

Dp V

g gr
+
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or V D = 2 9 81 5 5¥ ¥. .  = 10.39 m/s

If the cross-sectional area of the siphon tube is uniform, the velocity of oil through

the siphon will be uniform and equals to 10.39 m/s.

(ii) The points A  and B are on the same horizontal plane, while point A  is outside the

tube, B is inside it.

D

1.5 m

1.5 m

4 m

h

H

1

A

B

C

Fig. 4.17 A siphon discharging oil from a vessel to the atmosphere

The pressure at A  is pA  = patm + 1.5 ¥ 0.8 ¥ 10
3 ¥ 9.81 Pa

= (101 + 11.77) ¥ 103 Pa

= 112.77 kPa

Applying Bernoulli’s equation between A  and B,

Ap

gr
 + 0 + 4.0 =

2

2

B Bp V

g gr
+  + 4.0 (4.67)

or pB = pA  – 

2

2

BV
r

We have VB = V D = 10.39 m/s and pA  = 112.77 kPa

Hence, pB = 112.77 – 0.8 ¥ 103 ¥
2

3

(10.39)

2 10¥
 = 69.59 kPa

(iii) Applying Bernoulli’s equation between 1 and C,

atmp

gr
 + 0 + 5.5 = 

2(10.39)

2

cp

g gr
+  + 7 (4.68)
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or
Cp

gr
 =

atmp

gr
 – 7

or pC = 101 – 
3

3

7 0.8 10 9.81

10

¥ ¥ ¥
 = 46.06 kPa

(iv) For a maximum height of c above the liquid level, the pressure at C will be the
vapour pressure of the liquid at working temperature. Let h be this height. Then

applying Bernoulli’s equation between 1 and c.

atmp

gr
 + 0 + 5.5 =

3 229.5 10 (10.39)

2g gr

¥
+  + 5.5 + h

or h =

3 3

3 3

101 10 29.5 10

0.8 10 9.81 0.8 10 9.81

¥ ¥
-

¥ ¥ ¥ ¥
 – 5.5

=  3.61 m

(The velocity of oil in the siphon will remain the same at 10.39 m/s so long the

vertical height between the liquid level and the siphon exit remains same at 5.5 m.)

(v) More is the depth of the right limb of the siphon below the liquid level in the

tank, more will be the velocity of flow in the siphon and less will be the pressure at

C. Let H be the maximum value of this depth which renders the pressure at C to be

the vapour pressure. Then from Bernoulli’s equation between 1 and D.

V D = 2g H

Again from Bernoulli’s equation between 1 and C.

atmp

gr
 + 0 + H =

23

3

29.5 10

20.8 10 9.81

DV

g

¥
+

¥ ¥
 + H + 1.5 [Since V C = V D] (4.69)

or H =

3
atm

3

29.5 10

0.8 10 9.81

p

gr

¥
-

¥ ¥
 – 1.5

=

3 3

3 3

101 10 29.5 10

0.8 10 9.81 0.8 10 9.81

¥ ¥
-

¥ ¥ ¥ ¥
 – 1.5

= 7.61 m

4.7   APPLICATION OF BERNOULLI’S EQUATION FOR

MEASUREMENT OF FLOW RATE THROUGH PIPES

Flow rate through a pipe is usually measured by providing a coaxial area contraction

within the pipe and by recording the pressure drop across the contraction.

Determination of the flow rate from the measurement of the concerned pressure

drop depends on the straightforward application of Bernoulli’s equation. Three

different flow meters primarily operate on this principle. These are (i) Venturimeter,

(ii) Orificemeter, and (iii) Flow nozzle.
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4.7.1 Venturimeter

A venturimeter is essentially a short pipe (Fig. 4.18) consisting of two conical parts

with a short portion of uniform cross section in between. This short portion has the

minimum area and is known as the throat. The two conical portions have the same

base diameter, but one has a shorter length with a larger cone angle while the other

has a larger length with a smaller cone angle.

Direction of flow

Fig. 4.18 A venturimeter

The venturimeter is always used in a way that the upstream part of the flow takes

place through the short conical portion while the downstream part of the flow

through the long one. This ensures a rapid converging passage and a gradual

diverging passage in the direction of flow to avoid loss of energy due to separation.

In course of a flow through the converging part, the velocity increases in the

direction of flow according to the principle of continuity, while the pressure

decreases according to Bernoulli’s theorem. The velocity reaches its maximum

value and pressure reaches its minimum value at the throat. Subsequently, a

decrease in the velocity and an increase in the pressure take place in course of flow

through the divergent part. This typical variation of fluid velocity and pressure by

allowing it to flow through such a constricted convergent-divergent passage was

first demonstrated by an Italian scientist, Giovanni Battista Venturi, in 1797.

Figure 4.19 shows that a venturimeter is inserted in an inclined pipe line in a

vertical plane to measure the flow rate through the pipe. Let us consider a steady,

ideal and one-dimensional (along the axis of the venturimeter) flow of fluid. Under

this situation, the velocity and pressure at any section will be uniform. Let the

velocity and pressure at the inlet (Section 1) are V 1 and p1, respectively, while those

at the throat (Section 2) are V 2 and p2. Now, applying mechanical energy balance

equation between sections 1 and 2, we get

2
1 1

2

p V

g gr
+  + z1 =

2
2 2

2

p V

g gr
+  + z2 (4.70)

or

2 2
2 1

2

V V

g

-
 = 1 2p p

gr

-
 + z1 – z2 (4.71)

where r is the density of fluid flowing through the venturimeter. From continuity,

V2 A2 = V1A1 (4.72)
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1

2

z1

0 0

z2

h0

Dh

Fig. 4.19 Measurement of flow by a venturimeter

where A 2 and A 1 are the cross-sectional areas of the venturimeter at its throat and

inlet, respectively. With the help of Eq. (4.72), Eq. (4.71) can be written as

2 2
2 2

2
1

1
2

V A

g A

Ê ˆ
-Á ˜Ë ¯

 = 1 2
1 2

p p
z z

g gr r

Ê ˆ Ê ˆ
+ - +Á ˜ Á ˜Ë ¯ Ë ¯

or V 2 =
* *
1 2

2
2

2
1

1
2 ( )

1

g h h
A

A

-

-

(4.73)

where h*
1 and h*

2 are the piezometric pressure heads at 1 and 2 respectively, and are

defined as

h*
1 = 1p

gr
 + z1 (4.74a)

h*
2 = 2p

gr
 + z2 (4.74b)

Hence, the volume flow rate through the pipe is given by

Q = A 2V 2 = * *2
1 2

2
2

2
1

2 ( )

1

A
g h h

A

A

-

-

(4.75)

If the pressure difference between 1 and 2 is measured by a manometer, as shown

in Fig. 4.19, we can write

p1 + rg (z1 – h0) = p2 + rg (z2 – h0 – Dh) + Dh rmg



220 Introduction to Fluid Mechanics and Fluid Machines

or (p1 + rg z1) – (p2 + rg z2) = (rm – r)g Dh

or 1 2
1 2

p p
z z

g gr r

Ê ˆ Ê ˆ
+ - +Á ˜ Á ˜Ë ¯ Ë ¯

 = 1mr

r

Ê ˆ
-Á ˜Ë ¯

 Dh

or h*
1 – h*

2 =
r

r
m -

F
HG

I
KJ

1  Dh (4.76)

where rm is the density of the manometric liquid. Equation (4.76) shows that a

manometer always registers a direct reading of the difference in piezometric

pressures. Now, substitution of h*
1 – h*

2 from Eq. (4.76) in Eq. (4.75) gives

Q = 1 2

2 2
1 2

2 ( / 1)m

A A
g h

A A
r r - D

-
(4.77)

If the pipe along with the venturimeter is horizontal, then z1 = z2; and hence

h*
1 – h*

2 becomes h1 – h2, where h1 and h2 are the static pressure heads 1
1

p
h

gr

Ê
=ÁË

,

2
2

p
h

gr

ˆ
= ˜̄ . The manometric equation [Eq. (5.59)] then becomes

h1 – h2 = 1mr

r

È ˘
-Í ˙

Î ˚
 Dh

Therefore, it is interesting to note that the final expression of flow rate, given by

Eq. (4.77), in terms of manometer deflection Dh, remains the same irrespective of

whether the pipeline along with the venturimeter connection is horizontal or not.

Measured values of Dh, the difference in piezometric pressures between

Sections 1 and 2, for a real fluid will always be greater than that assumed in case of

an ideal fluid because of frictional losses in addition to the change in momentum.

Therefore, Eq. (4.77) always overestimates the actual flow rate since we substitute

the value of Dh from actual measurement in practice. In order to take this into

account, a multiplying factor Cd, called the coefficient of discharge, is incorporated

in the Eq. (4.77) as

Qactual = Cd 1 2

2 2
1 2

2 ( / 1)m

A A
g h

A A
r r - D

-
(4.78)

The coefficient of discharge Cd is always less than unity and is defined as

Cd =
Actual rate of discharge

Theoretical rate of discharge

where, the theoretical discharge rate is predicted by the Eq. (4.77) with the

measured value of Dh, and the actual rate of discharge is the discharge rate measured

in practice. Value of Cd for a venturimeter usually lies between 0.95  and 0.98.
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Example 4.13 
Water flows through a 300 mm ¥ 150 mm venturimeter at the rate of 0.037 m3/s and

the differential gauge is deflected 1 m, as shown in Fig. 4.20. Specific gravity of the

gauge liquid is 1.25. Determine the coefficient of discharge of the meter.

C¢
300 mm D z

300 mm D

C

D1 m

150 mm D

21

BA

Fig. 4.20 A venturimeter measuring the flow of water through a pipe

Solution

Applying Bernoulli’s equation between A  and B, and considering the fluid to be

inviscid, we get

2

2

A Ap V

g gr
+  + 0 =

2

2

B Bp V

g gr
+  + 0 (4.79)

(the axis of the venturimeter is considered to be horizontal)

Again from continuity,

V2
A = (AB/AA)

2V2
B (4.80)

Solving for V B from Eq. (4.79) with the help of Eq. (4.80), we have

VB =
2

2( )/

1 ( / )

A B

B A

p p

A A

r-

-

The actual rate of discharge Q can be written as

Q = CD AB VB

= CD A B 
2

2( )/

1 ( / )

A B

B A

p p

A A

r-

-
(4.81)

where CD is the coefficient of discharge.

From the principle of hydrostatics applied to the differential gauge, we get

(pA/rg – z) = pB/rg – (z + 1) + 1.25 ¥ 1

or
A Bp p

gr

-
 = 0.25 m

Hence, from Eq. (4.81), we can write
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0.037 = CD p
4

 (0.15)2 2 9.81(0.25)/(1 1/16)¥ -

which gives CD = 0.976

Example 4.14

A necked-down or venturi section of a pipe flow develops a low pressure which can

be used to aspirate liquid upward from a reservoir as shown in Fig. 4.21. Derive an

expression for the exit velocity V 2 which is just sufficient to cause Sthe reservoir

liquid to rise in the tube up to Section 1 (Fig. 4.21).

Consider the liquids originally flowing through the pipe and that to be pumped

from the reservoir are same (neglect frictional losses).

Water

D1

1

D2

h

V2

V1Water

patm

p = p2 atm

Fig. 4.21 A venturi section used for pumping water from a reservoir

Solution

If p1 is the pressure at Section 1 (throat of venturi tube), then for the liquid from the

reservoir to rise through the tube,

1atmp p ghr- ≥

where patm is the atmospheric pressure acting on the free surface of the liquid in the

reservoir.

From continuity, V 1 = V 2 (D2/D1)2

Applying the Bernoulli’s equation in consideration of the pipe axis to be
horizontal, and without any loss of head in the flow, we have

p1 + 
1

2
rV 2

1 = p2 + 
1

2
 rV 2

2

Here, p2 = patm as given in the problem.

Hence, patm – p1 =
1

2
 r[V 2

1 – V 2
2]
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=

4

22
2

1

1
1

2

D
V

D
r
È ˘Ê ˆ

-Í ˙Á ˜Ë ¯Í ˙Î ˚
For the liquid to rise through the tube,

patm – p1 ≥ rgh

or (1/2) 

4

2

1

1
D

D
r
È ˘Ê ˆ

-Í ˙Á ˜Ë ¯Í ˙Î ˚
 V 2

2 ≥ rgh

Therefore, V 2 ≥ / 24

2

1

2

1

gh

D

D

1
È ˘Ê ˆ

-Í ˙Á ˜Ë ¯Í ˙Î ˚

The existing velocity V 2, which is just sufficient to cause the reservoir liquid to

rise through the tube, is given by the above expression with the equality sign.

4.7.2 Orificemeter

An orificemeter provides a simpler and cheaper arrangement for the measurement

of flow through a pipe. An orificemeter is essentially a thin circular plate with a

sharp-edged concentric circular hole in it. The orifice plate, being fixed at a section

of the pipe, (Fig. 4.22) creates an obstruction to the flow by providing an opening in

the form of an orifice to the flow passage. The area A 0 of the orifice is much smaller

than the cross-sectional area of the pipe. The flow from an upstream section, where

it is uniform, adjusts itself in such a way that it contracts until a section downstream

the orifice plate is reached, where the vena contracta is formed, and then expands to

fill the passage of the pipe. One of the pressure tapings is usually provided at a

distance of one diameter upstream the orifice plate where the flow is almost uniform

(Section 1–1) and the other at a distance of half a diameter downstream the orifice

plate. Considering the fluid to be ideal and the downstream pressure taping to be at

the vena contracta (Section c–c), we can write, by applying mechanical energy

conservation between Section 1–1 and Section c–c,

* 2
1 1

2

p V

g gr
+  =

* 2

2

c cp V

g gr
+ (4.82)

where p*
1 and p*

c are the piezometric pressures at Section 1–1 and c–c, respectively.

From the equation of continuity,

V 1 A 1 = V c Ac (4.83)

where A c is the area of the vena contracta. With the help of Eq. (4.83), Eq. (4.82)

can be written as
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Vc =

* *
1

2 2
1

2( )

(1 / )

c

c

p p

A Ar

-

-
(4.84)

D h

1

1

V1
Vc

p1

cpc

A1

A0

c

Fig. 4.22 Flow through an orificemeter

Recalling the fact that the measured value of the piezometric pressure drop for a

real fluid is always more due to friction than that assumed in case of an inviscid

flow, a coefficient of velocity Cv (always less than 1) has to be introduced to

determine the actual velocity V c when the pressure drop p*
1 – p*

c in Eq. (4.84) is

substituted by its measured value in terms of the manometer deflection Dh

Hence, Vc = Cv 2 2
1

2 ( / 1)

(1 / )

m

c

g h

A A

r r - D

-
(4.85)

where Dh is the difference in liquid levels in the manometer and rm is the density of

the manometric liquid.

Volumetric flow rate Q = A c V c (4.86)

If a coefficient of contraction Cc is defined as, Cc = A c/A 0, where A 0 is the area of

the orifice, then Eq.(4.86) can be written, with the help of Eq. (4.85) as

Q = Cc A 0 Cv 
2 2 2

0 1

2 ( / 1)

(1 / )

m

c

g
h

C A A

r r -
D

-

= Cv Cc A 0 
2 2 2

0 1

2
( / 1)

(1 /
m

c

g
h

C A A
r r - D

-



Dynamics of Inviscid Flows: Fundamentals and Applications 225

= ( / 1)mC hr r - D (4.87)

with, C = Cd A 0 
2 2 2

0 1

2

(1 / )c

g

C A A-
, where (Cd = Cv Cc)

The value of C depends upon the ratio of the orifice to the duct area, and the

Reynolds number of flow. The main job in measuring the flow rate with the help of

an orificemeter, is to find out accurately the value of C at the operating condition.

The downstream manometer connection should strictly be made to the section

where the vena contracta occurs, but this is not feasible as the vena contracta is

somewhat variable in position and is difficult to realise. In practice, various

positions are used for the manometer connections and C is thereby affected.

Determination of accurate values of C of an orificemeter at different operating

conditions is known as calibration of the orificemeter.

Example 4.15

Water flows at the rate of 0.015 m3/s through a 100 mm diameter orifice used in a

200 mm pipe. What is the difference in pressure head between the upstream section

and the vena contracta section? (Take coefficient of contraction Cc = 0.60 and Cv

=1.0).

Solution

We know from Eq. (4.87)

Q =
p

C
gr

D

where, C = Cv Cc A 0 
2 2 2

0 1

2

(1 /c

g

C A A-

For the present problem,

C = 1.0 ¥ 0.60 ¥ p
4

 (0.1)
2
 

2 4

2 9.81

[(1 (0.60) (1/2) )]

¥
-

= 0.0211

Hence, 0.015 = 0.0211 /p grD

or Dp/rg = 0.505 m of water

4.7.3 Flow Nozzle

The flow nozzle as shown in Fig. 4.23 is essentially a venturimeter with the

divergent part omitted. Therefore the basic equations for calculation of flow rate are

the same as those for a venturimeter. The dissipation of energy downstream of the
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throat due to flow separation is greater than that for a venturimeter. But this

disadvantage is often offset by the lower cost of the nozzle. The downstream

connection of the manometer may not necessarily be at the throat of the nozzle or at

a point sufficiently for from the nozzle. The deviations however are taken care of in

the values of Cd. The coefficient Cd depends on the shape of the nozzle, the ratio of

pipe to nozzle diameter and the Reynolds number of flow.

1 2

Fig. 4.23 A flow nozzle

A comparative picture of the typical values of Cd, accuracy, and the cost of three

flowmeters (venturimeter, orificemeter and flow nozzle) is given below:

Type of Flowmeter Accuracy Cost Loss of TypicalValues

Total Head of Cd

Venturimeter High High Low 0.95 to 0.98

Orificemeter Low Low High 0.60 to 0.65

Flow nozzle Intermediate between a 0.70 to 0.80

venturimeter and an

orificemeter

4.7.4 Concept of Static and Stagnation Pressures and Application of
Pitot Tube in Flow Measurements

4.7.4.1 Static Pressure

The thermodynamic or hydrostatic pressure caused by molecular collisions is known

as static pressure in a fluid flow and is usually referred to as the pressure p. When

the fluid is at rest, this pressure p is the same in all directions and is categorically

known as the hydrostatic pressure. For the flow of a real and Stoksian fluid (the

fluid which obeys Stoke’s law as explained in Section. 8.2) the static or

thermodynamic pressure becomes equal to the negative of the arithmetic average of

the normal stresses at a point (mechanical pressure). The static pressure is a

parameter to describe the state of a flowing fluid. Physically it is the pressure of

fluid that one can measure while moving with the flow. Let us consider the flow of
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a fluid through a closed passage as shown in Fig. 4.24(a). If a hole is made at the

wall and is connected to any pressure measuring device, it will then sense the static

pressure at the wall. This type of hole at the wall is known as a wall tap. The fact that

a wall tap actually senses the static pressure can be appreciated by noticing that

there is no component of velocity along the axis of the hole. In most circumstances,

for example, in case of parallel flows, the static pressure at the cross section remains

the same. The wall tap under this situation registers the static pressure at that cross

section. In practice, instead of a single wall tap, a number of taps along the periphery

of the wall are made and are mutually connected by flexible tubes ( Fig. 4.24 (b) in

order to register the static pressure more accurately.

Static probe

Wall tap

(a) Single wall tap

(b) Multiple wall tap

3
2

1

p

Fig. 4.24 Measurement of static pressure

4.7.4.2 Stagnation Pressure

The stagnation pressure at a point in a fluid flow is the pressure which could result

if the fluid were brought to rest isentropically. The word ‘isentropically’ implies the

sense that the entire kinetic energy of a fluid particle is utilised to increase its

pressure only. This is possible only in a reversible adiabatic process known as

isentropic process. Let us consider the flow of fluid through a closed passage (Fig.

4.25). At Section 1–1 let the velocity and static pressure of the fluid be uniform.

Consider a point A  on that section just in front of which a right-angled tube with one

end facing the flow and the other end closed is placed. When equilibrium is attained,

the fluid in the tube will be at rest, and the pressure at any point in the tube including

the point B will be more than that at A  where the flow velocity exists. By the
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application of Bernoulli’s equation between the points B and A , in consideration of

the flow to be inviscid and incompressible, we have

p0 = p + 
rV 2

2
(4.88)

Pressure
measuring
device

p < p¢0 0

B
AV

1

1

Fig. 4.25 Measurement of stagnation pressure

where p and V  are the pressure and velocity, respectively, at the point A  at

Section 1–1, and p0 is the pressure at B, which, according to the definition, refers to

the stagnation pressure at point A . It is found from Eq. (4.88) that the stagnation

pressure p0 consists of two terms, the static pressure p and the term rV 2/2, which is

known as dynamic pressure. Therefore Eq. (4.88) can be written for a better

understanding as

p0 = p +
1
2

 rV 2 (4.89)

Stagnation Static Dynamic
pressure pressure pressure

or V  = 02( )/p p r- (4.90)

Therefore, it appears from Eq. (4.90), that from a measurement of both static and

stagnation pressure in a flowing fluid, the velocity of flow can be determined. But it

is difficult to measure the stagnation pressure in practice for a real fluid due to

friction. The pressure p¢0 in the stagnation tube indicated by any pressure measuring

device (Fig. 4.25) will always be less than p0, since a part of the kinetic energy will

be converted into intermolecular energy due to fluid friction. This is taken care of

by an empirical factor C in determining the velocity from Eq. (4.90) as
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V  = C 02( )/p p r- (4.91)

4.7.4.3 Pitot Tube for Flow Measurement

The principle of flow measurement by the Pitot tube was adopted first by a French

Scientist, Henri Pitot, in 1732 for measuring velocities in the river. A right-angled

glass tube, large enough for capillary effects to be negligible, is used for this

purpose. One end of the tube faces the flow while the other end is open to the

atmosphere, as shown in Fig. 4.26a. The liquid flows up the tube and when

equilibrium is attained, the liquid reaches a height above the free surface of the

water stream. Since the static pressure, under this situation, is equal to the

hydrostatic pressure due to its depth below the free surface, the difference in level

between the liquid in the glass tube and the free surface becomes the measure of

dynamic pressure. Therefore, we can write, neglecting friction,

p0 – p =
1

2
 rV 2 = h r g

V

A
V

h

p g V g/ + /2r 2

p g/r

V g2/2

(a) For measuring the
stagnation pressure

(b) With static and
stagnation tubes

Fig. 4.26 Simple pitot tube

where p0, p and V  are the stagnation pressure, static pressure and velocity

respectively at point A  (Fig. 4.26a).

or V  = 2gh

Such a tube is known as a Pitot tube and provides one of the most accurate means

of measuring fluid velocity. For an open stream of liquid with a free surface, this

single tube is sufficient to determine the velocity. But for a fluid flowing through a

closed duct, the Pitot tube measures only the stagnation pressure and so the static

pressure must be measured separately. Measurement of static pressure in this case

is made at the boundary of the wall (Fig. 4.26b). The axis of the tube measuring the
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static pressure must be perpendicular to the boundary and free from burrs, so that

the boundary is smooth and hence the streamlines adjacent to it are not curved. This

is done to sense the static pressure only without any part of the dynamic pressure. A

Pitot tube is also inserted as shown (Fig. 4.26b) to sense the stagnation pressure.

The ends of the Pitot tube, measuring the stagnation pressure, and the piezometric

tube, measuring the static pressure, may be connected to a suitable differential

manometer for the determination of flow velocity and hence the flow rate.

4.7.4.4 Pitot Static Tube

The tubes recording static pressure and the stagnation pressure (Fig. 4.26b) are

usually combined into one instrument known as the Pitot static tube (Fig. 4.27). The

tube for sensing the static pressure is known as the static tube which surrounds the

Pitot tube that measures the stagnation pressure. Two or more holes are drilled

radially through the outer wall of the static tube into the annular space. The position

of these static holes is important. Downstream of the nose N, the flow is accelerated

somewhat with consequent reduction in static pressure. But in front of the

supporting stem, there is a reduction in velocity and increase in pressure. The static

holes should therefore be at the position where the two opposing effects are

counterbalanced and the reading corresponds to the undisturbed static pressure.

Finally, the flow velocity is given by

V  = C 2 /p rD (4.92)

where Dp is the difference between stagnation and static pressures. The factor C

takes care of the non-idealities, due to friction, in converting the dynamic head into

pressure head and depends, to a large extent, on the geometry of the pitot tube. The

value of C is usually determined from calibration test of the Pitot tube.

Total head tube

Static head tube

N

Holes to sense the
static pressure

Fig. 4.27 Pitat static tube

Example 4.16

Air flows through a duct, and the Pitotstatic tube measuring the velocity is attached to a

differential manometer containing water. If the deflection of the manometer is 100 mm,
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calculate the air velocity, assuming the density of air is constant and equals to 1.22

kg/m
3
, and that the coefficient of the tube is 0.98.

Solution

From the differential manometer,

p

gr

D
 =

3(0.1) (9.81) 10

1.22 9.81

¥ ¥
¥

= 81.97 m of air

where, Dp is the difference in stagnation and static pressures as measured by the

differential manometer. Velocity of air is calculated using Eq. (4.92) as

V  = 0.98 2 9.81 (81.97)¥ ¥

= 39.3 m/s

Example 4.17

Water flows at a velocity of 1.417 m/s. A differential gauge which contains a liquid

of specific gravity 1.25 is attached to a Pitot static tube. What is the deflection of the

gauge fluid? (Assume the coefficient of the tube to be 1).

Solution

We know from Eq. (4.92)

V  = C 2 ( / )g p grD

Therefore, for the present case,

1.417 = 1.00 2 9.81( / )p gr¥ D

Hence, Dp/rg = 0.1023 m of water

From the manometric equation of the differential gauge,

0.1023 = (1.25 – 1) h

which gives the deflection of the gauge h = 0.409 m = 409 mm

4.8   SOME PRACTICAL CONSIDERATION ON FLOWS THROUGH
ORIFICES AND MOUTHPIECES

An orifice is a small aperture through which a fluid passes. The thickness of an

orifice in the direction of flow is very small in comparison to its other dimensions. If

a tank containing a liquid has a hole made on the side or base through which a liquid

flows, then such a hole may be termed as an orifice. The rate of flow of the liquid

through such an orifice at a given time will depend partly on the shape, size and

form of the orifice. An orifice usually has a sharp edge so that there is minimum

contact with the fluid and consequently minimum frictional resistance at the sides
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of the orifice. If a sharp edge is not provided, the flow depends on the thickness of

the orifice and the roughness of its boundary surface too.

4.8.1 Flow from an Orifice at the Side of a Tank under a Constant
Head

Let us consider a tank containing a liquid and with an orifice at its side wall as

shown in Fig. 4.28. The orifice has a sharp edge with the bevelled side facing

downstream. Let the height of the free surface of liquid above the centre line of the

orifice be kept fixed by some adjustable arrangements of inflow to the tank. The

liquid issues from the orifice as a free jet under the influence of gravity only. The

streamlines approaching the orifice converge towards it. Since an instantaneous

change of direction is not possible, the streamlines continue to converge beyond the

orifice until they become parallel at the Section c–c (Fig. 4.28). For an ideal fluid,

streamlines will strictly be parallel at an infinite distance, but however fluid friction

in practice produce parallel flow at only a short distance from the orifice. The area

of the jet at the Section c–c is lower than the area of the orifice. Section c–c is

known as the vena contracta. The contraction of the jet can be attributed to the

action of a lateral force on the jet due to a change in the direction of flow velocity

when the fluid approaches the orifice. Since the streamlines become parallel at vena

contracta, the pressure at this section is assumed to be uniform. If the pressure

difference due to surface tension is neglected, the pressure in the jet at vena

contracta becomes equal to that of the ambience surrounding the jet. Considering

the flow to be steady and frictional effects to be negligible, we can write by the

application of Bernoulli’s equation between two points 1 and 2 on a particular

stream-line with point 2 being at vena contracta (Fig 4.28).

h

z1 c
(2)

(1)

c

Fig. 4.28 Flow from a sharp edged orifice

p1/rg + V 2
1/2g + z1 = patm/rg + V 2

2/2g + 0 (4.93)

The horizontal plane through the centre of the orifice has been taken as the datum

level for determining the potential head. If the area of the tank is large enough as
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compared to that of the orifice, the velocity at Point 1 becomes negligibly small and

pressure p1 equals to the hydrostatic pressure at that point as

p1 = patm + rg (h – z1).

Therefore, Eq. (4.93) becomes

patm/rg + (h – z1) + 0 + z1 = patm/rg + V 2
2/2g (4.94)

or V 2 = 2 gh (4.95)

If the orifice is small in comparison to h, the velocity of the jet is constant across

the vena contracta. The Eq. (4.95) states that the velocity with which a jet of liquid

escapes from a small orifice is proportional to the square root of the head above the

orifice, and is known as Torricelli’s formula. The velocity V 2 in Eq. (4.95)

represents the ideal velocity since the frictional effects were neglected in the

derivation. Therefore, a multiplying factor Cv, known as coefficient of velocity is

introduced to determine the actual velocity as

V 2 actual = Cv 2 gh

Since the role of friction is to reduce the velocity, Cv is always less than unity. The

rate of discharge through the orifice can then be written as

Q = ac Cv 2 gh (4.96)

where ac is the cross-sectional area of the jet at vena contracta. Defining a

coefficient of contraction Cc as the ratio of the area of vena contracta to the area of

orifice, Eq. (4.96) can be written as

Q = Cc Cv a0 2 gh (4.97)

where, a0 is the cross-sectional area of the orifice. The product of Cc and Cv is

written as Cd and is termed as coefficient of discharge. Therefore,

Q = Cd a0 2 gh

or Cd =

0 2

Q

a g h

=
Actual discharge

Ideal discharge

4.8.2 Determination of Coefficient of Velocity C
v

, Coefficient
of Contraction Cc and Coefficient of Discharge Cd

All the coefficients Cv, Cc and Cd of an orifice depend on the shape and size of the

orifice. The values of Cv, Cc and Cd are determined experimentally as described

below.

Consider the tank in Fig. 4.29. Let H be the height of the liquid, maintained

constant, above the centre line of the orifice. The Section c–c is at vena contracta.

The jet of liquid coming out of the orifice is acted upon by gravity only with a
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downward acceleration of g. Therefore, the horizontal component of velocity u of

the jet remains constant. Let P be a point on the jet such that x  and z are the

horizontal and vertical coordinates respectively of P from the vena contracta c–c as

shown in Fig. 4.29. Considering the flow of a fluid particle from c–c to P along the

jet, we can write

x  = ut

and z = gt2
/2

(where t is the time taken by the fluid particle to move from c–c to P).

Eliminating t from the two equations, we have

x

u

2

2  =
2z
g

H

c x

z
P

c

Fig. 4.29 Trajectory of a liquid jet discharged from a sharp- edged orifice

or u2
 =

2

2

g x

z
(4.98)

But Cv =
2

u

g H

Substituting for u from Eq. (4.98)

Cv =
4

x

zH
(4.99)

Therefore, the coefficient of velocity Cv of an orifice under a given value of H

can be found from Eq. (4.99) with the measured values of x and z. The coefficient of

discharge is determined by measuring the actual quantity of liquid discharged

through the orifice in a given time under a constant head, and then dividing this

quantity by the theoretical discharge. The theoretical discharge rate is calculated

from known values of liquid head H and orifice area a0, as Qtheo = a0 2gH . The

coefficient of contraction Cc is usually found out by dividing the value of Cd by the

measured value of Cv. The coefficient of discharge varies with the head ‘H’ and the



Dynamics of Inviscid Flows: Fundamentals and Applications 235

type of orifice. For a sharp-edged orifice, typical values of Cd lie between 0.60 and

0.65, while the values of Cv vary between 0.97 and 0.99.

Example 4.18

For the configuration shown, (Fig. 4.30) calculate the minimum or just sufficient

head H in the vessel and the corresponding discharge which can pass over the plate.

(Take Cv = 1, Cd = 0.8)

P
la

te

1 m

o
0.5 m

H

c

z

x

a = 200 mm2

Fig. 4.30 Trajectory of a liquid jet discharged from a vessel and passing over a

plate

Solution

For a point  O on the trajectory,

x  = u1t

and z =
1

2
 gt2

where t is the time taken for any liquid particle to reach the point O after being

ejected from the orifice with a velocity u1. Eliminating t from the two equations, we

get,

z =
2

2
1

2

g x

u

which shows that the trajectory must be parabolic.

Again, for Cv = 1,
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u1 = 2g H

Therefore, z =

2

4

x

H

or H =

2

4

x

z

Hence, the minimum head H to pass over c

= (1)2/4 ¥ (0.5) = 0.5 m

The corresponding minimum discharge

Q = 2 9.81 0.5¥ ¥  ¥ (2 ¥ 10–4) ¥ 0.8 m3/s

= 0.0005 m3/s

Example 4.19

Two identical orifices are mounted on one side of a vertical tank (Fig. 4.31). The height

of water above the upper orifice is 3 m. If the jets of water from the two orifices intersect

at a horizontal distance of 8 m from the tank, estimate the vertical distance between the

two orifices. Calculate the vertical distance of the point of intersection of the jets from

the water level in the tank. Assume Cv = 1 for the orifices.

3 m

8 m

H

h

P

Fig. 4.31 Trajectory of water jets discharged from two orifices at the side of

a tank

Solution
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Let, P be the point of intersection of two jets as shown in Fig. 4.31. If t is the time taken

for any liquid particle flowing in the jet from the upper orifice to reach the point P from

the plane of the orifice, then,

8 = u1t (4.100a)

and (H – 3) =
1

2
gt2 (4.100b)

where, u1 is the velocity of discharge at the plane of the upper orifice and H is the

vertical distance of P from the water level in the tank. Eliminating t from Eqs

(4.100a) and (4.100b),

(H – 3) =
2
1

1 64

2
g

u

or

2
1u

g
 (H – 3) = 32 (4.101)

again, applying the Bernoulli’s equation between the top water level and the
discharge plane of the upper orifice,

u2
1 = 2g ¥ 3 = 6g

Substituting this value of u2
1 in Eq. (4.101), we have

3(H – 3) = 16

or H = 8.33 m

Similarly, for the jet from the lower orifice,

8 = u2t

and, (H – 3 – h) =
1

2
gt2

Eliminating t from the above two,

2
2u

g
 (H – 3 – h) = 32

again, u2
2 = 2g(3 + h)

Hence, (3 + h) (H – 3 – h) = 16

or 3(H – 3) – 3h + h(H – 3) – h2 = 16

Substituting H = 8.33 in the above expression we get

h2
 – 2.33h = 0

or h(h – 2.33) = 0

which gives h = 0 and h = 2.33 m.

Therefore, the distance between the orifices is 2.33 m.

Example 4.20

A fireman must reach a window 40 m above the ground (Fig. 4.32) with a water jet,

from a nozzle of 30 mm diameter discharging 30 kg/s. Assuming the nozzle
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discharge to be at a height of 2 m from the ground, determine the greatest distance
from the building where the fireman can stand so that the jet can reach the window.

Solution

Let u1 be the velocity of discharge from the nozzle,

then, u1 =
m

Ar

&
 = 

2

30

1000 ( /4) (0.03)p¥ ¥
 = 42.44 m/s

(Note that u2
1/2g should be more than the height of the window for the jet to reach

at all. In this case u2
1/2g = 91.80 m which is greater than 40 m.)

Let a be the angle of the nozzle with horizontal. Considering the time taken by a
fluid particle in the jet to reach the window at point 2 from the discharge point 1 as
t, we can write

x  = 42.44 cos a t (4.102a)

and 38 = 42.44 sin a t – 1/2 gt2 (4.102b)

where, x  is the horizontal distance between the nozzle and window. Eliminating t

from Eqs (4.102a)and (4.102b), we have

38 = x tan a – 
2

2 2

9.81

2 (42.44) cos

x

a¥
(4.103)

3
8

m

Window

4
0

m

2

x

2 m
1

a

Fig. 4.32 Trajectory of a water jet issued from a nozzle to reach a window

above the ground

The value of x depends upon the value of a. For maximum value of x we require

an optimization with a.

Differentiating each term of Eq. (4.103) with respect to a, we get

0 = x sec2 a + tan a
d

d

x

a
 – 0.0027 x2 (2 sec2 a tan a)
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– 
2

0.0027 d
2

dcos

x
x

aa

Ê ˆ
Á ˜Ë ¯

For maximum x, 
d

d

x

a
 = 0

Hence, x sec2 a – 2 ¥ 0.0027 x2 sec2 a tan a = 0

x tan a =
1

2 0.0027¥
 = 185.2 m (4.104)

Solving for x and a from Eq. (4.103) and (4.104), we get

38 = 185.2 – 0.0027 x2/cos2 a

which gives x/cos a = 233.5 m

Again, x tan a = 185.2 m

sin a =
185.2

233.5
 = 0.793

or a = 52.5°

and x  = 142 m

4.8.3 Large Vertical Orifices

If a vertical orifice is so large that its height is comparable to the height of the liquid

in the tank, then the variation in the liquid head at different heights of the orifice will

be considerable. To take this into account in calculating the discharge rate, the

geometrical shape of the orifice has to be known.

H1 h

b

dh
H2

Fig. 4.33 Large Vertical orifice

Consider a large orifice with a rectangular cross section, as shown in Fig. 4.33.

Let the heights of the liquid level be H1 and H2 above the top and the lower edges of

the orifice respectively. Let b be the breadth of the orifice. Consider, at a depth h

from the liquid level, a horizontal strip of the orifice of thickness dh. The velocity of
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liquid coming out from this strip will be equal to 2g H . Hence, the rate of

discharge through the elemental strip

= Cd ¥ area ¥ velocity = Cd ¥ b dh ¥ 2gh

Therefore, the rate of discharge through the entire orifice

=
2

1

H

H

Ú Cd ¥ b dh ¥ 2gh

= Cd b 
2

1

2

H

H

g Ú h1/2 dh

=
2

3
 Cdb 2g  (H2

3/2
 – H1

3/2
)

Here Cd is assumed to be constant throughout the orifice.

4.8.4 Drowned or Submerged Orifice

A drowned or submerged orifice is one which does not discharge into the open

atmosphere, but discharges into a liquid of the same kind. The orifice illustrated in

Fig. 4.34 is an example of a submerged orifice. It discharges liquid from one side of

the tank to the other side, where, the heights of the liquid are maintained constant on

both the sides. The formation of the vena contracta takes place but the pressure

there corresponds to the head h2 (Fig. 4.34). Application of Bernoulli’s equation

between points 1 and 2 on a streamline (Fig. 4.34) gives

p1/rg + z1 + V 2
1/2g = p2/rg + 0 + V 2

2/2g

or (h1 – z1) + z1 + 0 = h2 + V 2
2/2g

(since V 1 << V 2)

or V 2 = 1 22 ( )g h h- (4.105)

h2

h1

z1

(1)

(2)

Fig. 4.34 Drowned oriflice
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In other words, Torricelli’s formula as expressed by Eq. (4.95) is still applicable

provided that h refers to the difference of head across the orifice. For a large

submerged orifice, the head causing flow through it at any height remains same as

(h1 – h2), and hence the Eq. (4.105) is valid. This is because the variations in head

with the orifice height from both the sides cancel each other.

4.8.5 Time of Emptying Tank

Let us consider a tank of uniform cross-sectional area A  (Fig. 4.35) to contain a

liquid of height H1 from the base. Let the liquid be discharged through an orifice of

area a in the base of the tank and the height of the liquid in the tank fall accordingly.

If at any instant, h is the height of the liquid level which falls by an amount dh during

an infinitesimal time interval dt, then from continuity, (the volume displaced by

liquid level in the tank equals to the volumetric flow through the orifice), we can

write

H1

A

dh

h

a

v

H2

Fig. 4.35 Discharge from a tank of uniform area

– A  dh = Cd a 2gh  dt

The minus sign is introduced because the height h decreases with time.

Therefore, dt =
d

2d

A h

C a gh

-
(4.106)

If T is the time taken for the liquid level to fall from a height H1 to a height H2, then,

0

T

Ú dt =
2

1
2

H

d H

A

C a g

-
Ú h–1/2 dh

From which,

T =
2

2d

A

C a g
 (H1

1/2
 – H2

1/2
) (4.107a)
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If the tank is completely emptied, H2 = 0.

Then,

T =
2

2

A

C a gd

H1
1/2 (4.107b)

4.8.5.1 Time of Emptying Tank with Non-uniform Cross Section

In the foregoing problem, we have considered the cross-sectional area A  of the tank

to be uniform and therefore while integrating the right-hand side of Eq. (4.106) with

respect to h, the area A  was considered to be

constant. For a tank where A  varies with height,

a functional relationship between A  and h has

to be found out from the geometry of the tank

so that the relationship can be introduced in the

Eq. (4.106) for its integration to determine the

time of emptying. An example to determine the

time of emptying a hemispherical vessel is

given below.

Let R be the radius of a hemispherical vessel

as shown in Fig. 4.36, and let the liquid level

fall from H1 to H2 in time T due to the discharge from an orifice at the bottom of the

vessel. Consider the instant when the liquid level is at a height h from the bottom of

the vessel, and the radius of the vessel’s cross section at this level be x. If dh is the

decrease in the liquid level in time dt, then from continuity,

– A h dh = Cd a 2gh  dt

or dt =
d

2

h

d

A h

C a gh

-
(4.108)

where, A h is the cross-sectional area of the vessel at height h

Here, Ah = p x2

From the geometry of the vessel,

x2 = R2 – (R – h)2

= 2Rh – h2

Therefore, Eq. (4.108) becomes

dt =
2(2 )

2d

Rh h

C a gh

p- -
 dh

or

0

T

z dt =
2

1
2

H

d H
C a g

p-
Ú (2Rh1/2

 – h3/2
) dh

or T = ( ) ( )3/ 2 3/ 2 5/ 2 5/ 2
1 2 1 2

2 2
1/5

32d

R H H H H
C a g

p- È ˘- - -Í ˙Î ˚
(4.109a)

H1

H2

dh h

x

a

v

R

Fig. 4.36 Discharge from a

hemispherical vessel
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If the vessel is initially full and is completely emptied afterwards, then, H1 = R

and H2 = 0. Equation (4.109a) then becomes

T = 5/ 2 5/ 22 2 1

3 52d

R R
C a g

p Ê ˆ-Á ˜Ë ¯

=
5/ 214

15 2d

R

C a g

p
(4.109b)

Here, T is the time of emptying the vessel.

4.8.6 Time of Flow from One Tank to Another

Let us consider a liquid flowing from a tank of area A 1 to another tank of area A 2

through an orifice between the tanks as shown in the Fig. 4.37. Under this situation,

the liquid level falls in one tank while it rises in the other one. The orifice will be

drowned. The head causing flow at any instant of time will be equal to the difference

between the instantaneous liquid levels in the tanks. At a certain instant, let this

difference in liquid levels between the tanks be h, and in time dt, the small quantity

of fluid that passes through the orifice causes the liquid level in tank A 1 to fall by an

amount dH. The liquid level in tank A 2 will then rise by an amount dH (A 1/A 2).

  

A1

A1

A2

A2

hdH

dH

a
v

Fig. 4.37 Flow of liquid from one tank to another

 Hence, the difference in levels after a time dt becomes

h – dH (1 + A 1/A 2)

Therefore, the change in head causing flow

dh = h – [h – dH (1 + A 1/A 2)]

= dH (1 + A 1/A 2) (4.110)

From principle of continuity in tank A 1, we can write

– A 1dH = Cd a 2gh  dt

Therefore, dt = 1d

2d

A H

C a gh

-
(4.111)
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Substituting for dH from Eq. (4.110) in Eq. (4.111), we have

dt = 1

1 2

d

(1 / ) 2d

A h

C a A A gh

-

+
(4.112)

If T is the time taken to bring the difference in levels between the tanks from H1

to H2, then,

0

T

Ú dt =
2

1

1

1 2(1 / ) 2

H

d H

A

C a A A g

-

+ Ú h–1/2 dh

or T =
1/ 2 1/ 2

1 1 2

1 2

2 ( )

(1 / ) 2d

A H H

C a A A g

-

+
(4.113)

The flow of liquid from one tank to the other will stop automatically when the

head causing the flow, i.e., the difference in liquid levels between the tanks will

become zero. If T1 is the time taken to make this equalisation of the liquid levels,

then from Eq. (4.114),

T1 =
1/ 2

1 1

1 2

2

(1 / ) 2d

A H

C a A A g+
(4.114)

where H1 represents the initial value of the difference in the liquid levels.

Example 4.21

A tank has the form of a frustum of a cone, with a diameter of 2.44 m at the top and

1.22 m at the bottom as shown in Fig. 4.38. The bottom contains a circular orifice

whose coefficient of discharge is 0.60. What diameter of the orifice will empty the

tank in 6 minutes if the full depth is 3.05 m?

2.44 m

1.22 m

a

3.05 m

h

Fig. 4.38 A tank in the form of a frustum of a cone
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Solution

Let the diameter of the orifice be d0, and at any instant t, the height of the liquid

level above the orifice be h. Then during an infinitesimal time dt, discharge through

the orifice is

q = Cd 

2
0 2

4

d
gh

p
 dt

= 0.60 ¥ 
1

4
 pd2

0 2gh  dt

If the liquid level in the tank falls by an amount dh during this time, then from
continuity,

– A h dh = 0.60 

2
0 2

4

d
gh

p
 dt (4.115)

where A h is the area of the tank at height h.

From the geometry of the tank (Fig. 4.38),

tan a =
(2.44 1.22)

2 3.05

-
¥

 = 0.2

Therefore the diameter of the tank at height h = 1.22 + 2 ¥ 0.2 h

Hence, Ah = (p/4) (1.22 + 0.4h)
2

Substituting the value of A h in Eq. (4.115), we have

0.60 ¥ (1/4) pd2
0 2 9.81h¥  dt = – p/4 (1.22 + 0.4h)2 dh

or d2
0 Ú dt =

1

0.60 2 9.81¥ ¥
 

3 05

0

.

z (1.22 + 0.4 h)2 h–1/2dh

Since, the time of emptying Ú dt = 360 seconds

d2
0 =

0

3.05

1

0.60 2 9.81 360¥ ¥ ¥ Ú (1.22 + 0.4h2) h–1/2 dh

Integrating and solving for d0, we get

d2
0 = 0.010 m2

or d0 = 0.1 m = 100 mm

Example 4.22

A concrete tank is 10 m long and 6 m wide, and its sides are vertical. Water enters

the tank at the rate of 0.1 m3/s and is discharged from an orifice of area

0.05 m2 at its bottom (Fig. 4.39). Initial level of water in the tank from the bottom is
5 m. Find whether the liquid level will start rising, or falling, or will remain the
same, if the liquid level changes (either rise or fall), then find the value of the steady
state level to which the liquid will reach. Find also the time taken for the change in
the liquid level to be 60% of its total change (Take Cd = 0.60).
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Q = 0.1 m /s3

q

dh

h

Fig. 4.39 A tank, with an inflow, discharging water from an orifice at the

bottom

Solution

The rise or fall of liquid level at any instant will depend upon the relative magnitudes

of instantaneous rate of inflow to and outflow from the tank. Here, the rate of inflow

Q is constant and equals to 0.1 m3/s. Initially, the discharge rate from the orifice

q = 0.6 ¥ 0.05 2 9.81 5¥ ¥
= 0.297 m3/s

Since q > Q, the liquid level will start falling. As the liquid level falls, the

discharge rate through the orifice decreases, and when it equals to the rate of inflow,

the liquid level will neither rise nor fall further. Let Hs be this height of steady liquid

level from the bottom of the tank.

Then 0.6 ¥ 0.05 ¥ 2 9.81 sH¥ ¥  = 0.1

or Hs =

2

2 2

(0.1)

2 9.81 (0.6) (0.05)¥ ¥ ¥
 = 0.57 m

Total change in the liquid level = (5 – 0.57) = 4.43 m. The liquid will attain a

level of 2.34 m (= 5 – 0.6 ¥ 4.43) when the change in the level will be 60% of its
final value 4.43.

Consider at any instant t, the height of liquid level in the tank to be h, and let this

height fall by dh in a small interval of time dt.

The amount of inflow during this time = Q dt = 0.1 dt

and the amount of discharge = 0.6 ¥ 0.05 2gh  dt

= 0.133 h  dt

From continuity,

– Adh = 0.133 h  dt – 0.1 dt

where A  is the area of the tank = 6 ¥ 10 = 60 m2
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Hence, dt =
60d

(0.1 0.133 )

h

h-
(4.116)

Let H = 0.1 – 0.133 h

Then, h =

2(0.1 )

0.0177

H-

dh = –
2(0.1 )

0.0177

H-
 dH

Substituting the value of dh in Eq. (4.116) and writing H for the denominator, we get

dt =
120(0.1 ) d

0.0177

H H

H

- -

= – 6780 
0.1

1
H

Ê ˆ-Á ˜Ë ¯
 dH

If T is the time taken for the liquid level to fall from 5 m to 2.34 m, then

0

T

Ú dt = – 6780 [0.1 ln (0.1 – 0.133 h ) – (0.1 – 0.133 h )]5
2.34

= – 6780 
0.1 0.133 2.34

0.1 ln 0.133( 2.34 5)
0.1 0.133 5

È ˘-
+ -Í ˙

-Î ˚

= 5080 s

= 1.41 h

4.8.7 External Mouthpieces

The discharge through an orifice may be increased by fitting a short length of pipe

to the outside. This is because, the vena contracta gets the opportunity to expand

and fill the pipe. Therefore, the coefficient of contraction becomes unity. The

increase in the value of Cc thus increases the discharge rate despite a little decrease

in the value of Cv due to frictional losses in the pipe.

Consider the tank in Fig. 4.40. A cylindrical piece of pipe is attached to the orifice

towards the outside of the tank. This pipe is known as cylindrical mouthpiece.

Let a = Cross-sectional area of the mouthpiece

ac = Cross-sectional area of flow at vena contracta

V  = Velocity at outlet of pipe

Vc = Velocity at vena contracta
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H

z1

1

21 3

c

Vc
V

c

Fig. 4.40 Flow through an external mouthpiece

Applying Bernoulli’s equation between the points 1 and 3 (Point 3 being at the

plane of discharge) on a streamline, we get

patm/rg + (H – z1) + 0 + z1 = patm/rg + V 2
/2g + 0 + hL (4.117)

(where patm is the atmospheric pressure. Velocity in the tank is considered to be

negligible as compared to that in the pipe) hL is the loss of head. If friction is

neglected because of the short length of the pipe, hL represents only the loss of head

due to contraction. Hence,

hL =

2( )

2

cV V

g

-

Again, from continuity,

ac V c = aV

or V  = Cc Vc

where, Cc (the coefficient of contraction) = ac/a

Therefore, hL =

2

2

V

g
 (1/Cc – 1)2

Hence Eq. (4.117) becomes,

H =
V

g

2

2
 [1 + (1/Cc – 1)

2
] = K V

g

2

2

where K = [1 + (1/Cc – 1)2]

The coefficient of velocity Cv can be written as

Cv =
2

V

gH
 = 

2 /

2

gH K

gH

or Cv = 1/K
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Since there is no contraction of flow area at discharge, the coefficient of

discharge Cd = Cv = 1/ K .

On the other hand, an orifice of area a, in the absence of friction, will give Cd =

Cc. It can be proved that for all values of Cc less than unity, 1/ K  is always greater

than Cc, and hence, the coefficient of discharge of an external mouthpiece is greater

than that of an orifice. Assuming a typical value of Cc = 0.62.

K = [1 + (1/0.62 – 1)
2
] = 1.375

Hence (Cd)mouthpiece = 1/ 1.375  = 0.855

While (Cd)orifice = Cc = 0.62

In order to find the pressure at the vena contracta, we apply Bernoulli’s equation

between points 1 and 2 (Point 2 being at the vena contracta; Fig. 4.40) on a

streamline as

patm/rg + (H – z1) + 0 + z1 = pc/rg + V 2
c/2g + 0 (4.118)

or pc/rg = patm/rg + H – V 2
c/2g

but H = K V2/2g

and Vc = V /Cc

Therefore, pc/rg = patm/rg + K V2/2g – (1/C2
c)V

2/2g

= patm/rg – (1/C2
c – K) V 2/2g

It was stated earlier that 1/C2
c is always greater than K for all values of Cc < 1.

Hence, the pressure at vena contracta is always lower than the atmospheric pressure.

When Cc = 0.62,

K = (1/0.62 – 1)2 + 1 = 1.375

Then, pc/rg = patm/rg – [1/(0.62)
2
 – 1.375] V 2

/2g

= patm/rg – 1.225 V 2/2g

Therefore, the influence of the mouthpiece on the rate of discharge can also be

looked at from an angle of decrease in pressure at the vena contracta in increasing

the effective head causing flow.

4.8.7.1 Convergent Divergent Mouthpiece

The losses due to contraction in a mouthpiece may be considerably reduced if the

mouthpiece is convergent up to the vena contracta and becomes divergent

afterwards. In this case, the geometry of the mouthpiece is made almost to the shape

of the jet. If frictional losses are neglected, the coefficient of discharge for this type

of mouthpiece becomes unity. Such a mouthpiece is shown in Fig. 4.41. Applying

Bernoulli’s equation between points 1 and 2 (Point 2 being at the vena contracta cc;

Fig. 4.41), we have

patm/rg + (H – z1) + 0 + z1

= pc/rg + V 2
c/2g + 0

Hence, V 2
c/2g = patm/rg + H – pc/rg (4.119)
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H

c

Vc

V

c

1

3
2

z1

Fig. 4.41 Flow through a convergent divergent mouthpiece

Again, application of Bernoulli’s equation between points 1 and 3 (Point 3 being

on the plane of discharge, Fig. 4.41) gives,

patm/rg + (H – z1) + 0 + z1 = patm/rg + V 2/2g + 0

or V 2/2g = H (4.120)

The loss of head due to contraction does not take place under this situation. From

Eqs (4.119) and (4.120),

V

V
c  = 1 a cH H

H

-
+ (4.121)

where, Ha = pa tm/rg (the atmospheric pressure head)

Hc = pc /rg (the pressure head at vena contracta cc)

From continuity, V c ac = Va

Therefore, Eq. (4.121) becomes

a
ac

 = 1 a cH H

H

-
+ (4.122)

The maximum ratio of a and ac to avoid separation is given by

(a/ac)max =
minimum

1
a cH H

H

-
+ (4.123)

where, Hc minimum is the minimum head at cc to avoid cavitation.

Example 4.23

For the 100 mm diameter short tube acting as a mouthpiece in a tanks as shown in

Fig. 4.42, (i) what flow of water at 24 °C will occur under a head of 9.2 m? (ii) What



Dynamics of Inviscid Flows: Fundamentals and Applications 251

is the pressure head at the vena contracta section c? (iii) What maximum head can be

used if the tube is to flow full at exit? (Take Cd = 0.82 and Cv = 1.0; vapour pressure for

water at 24 °C is 3 kPa absolute, atmospheric pressure is 101 kPa).

bc

h

z

a

Fig. 4.42 A tank with a short tube as a mouthpiece

Solution

(i) Applying Bernoulli’s equation between the points a and b (the point b being

at the exit plane) on a streamline (Fig. 4.42), with the horizontal plane

through b as datum, we can write

atmp

gr
 + (h – z) + 0 + z =

22 2
atm 1

0 1
2 2

b b

c

p V V

g g g Cr

Ê ˆ
+ + + -Á ˜Ë ¯

(4.124)

where Cc is the coefficient of contraction (= Cd/Cv = 0.82/1 = 0.82). With the

values given,

9.2 =

22
1

1 1
2 0.82

bV

g

È ˘Ê ˆ+ -Í ˙Á ˜Ë ¯Í ˙Î ˚
which gives V b = 13.12 m/s

Then Q = Cd ¥ A  ¥ V b = 0.82 ¥ (p/4) (0.1)2 ¥ (13.12) = 0.084 m3/s

(ii) Applying Bernoulli’s equation between the points a and c on a streamline

(the point c being at the vena contracta section), we get

atmp

gr
 + (h – z) + 0 + z =

2

2

c cp V

g gr
+  + 0 (4.125)

Again from continuity,

A b ¥ V b = Ac ¥ Vc

where A b and A c are the areas at the exit and the vena contracta, respectively
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Hence, Vc = /

b

c b

V

A A
= 

b

c

V

C
= 

13.12

0.82
 = 16 m/s

Substituting V c in Eq. (4.125), we have

atmp

gr
 + 9.2 = 

2(16)

2

cp

g gr
+

 which gives Pc/rg = 
atm 3.85

p

gr

Ê ˆ
-Á ˜Ë ¯

 m of water

Therefore the pressure at the vena contracta = 3.85 m of water vacuum.

(iii) As the head causing flow through the short tube is increased, the velocity of

flow at any section will increase and the pressure head at c will be reduced.

For a steady flow with the tube full at exit, the pressure at c must not be less

than the vapour pressure of the liquid at the working temperature. For any

head h (the height of the liquid level in the tank above the centre line of the

tube), we get from Eq. (4.125)

atmp

gr
 + h = 

2

2

c cp V

g gr
+ (4.126)

Again Vc = A b V b/A c = V b/Cc

Again, from Eq. (4.124),

V2
b = 

2

1
1 1

c

gh

C

Ê ˆ
- +Á ˜Ë ¯

Therefore,

2

2

cV

g
= 

2

2 1
1 1c

c

h

C
C

È ˘Ê ˆ
- +Í ˙Á ˜Ë ¯Í ˙Î ˚

= 
2

2 1
(0.82) 1 1

0.82

h

È ˘Ê ˆ- +Í ˙Á ˜Ë ¯Í ˙Î ˚

 = 1.42 h

Substituting this value of V c in Eq. (4.126), we get

atmp

gr
 + h = 

cp

gr
 + 1.42 h
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or 0.42 h = 
atmp

gr
 – 

cp

gr

For the maximum head h, pc = pv, the vapour pressure of water at the work-

ing temperature.

For the present case,
p

gr
v

 =

3

3

3 10

10 9.81

¥

¥
 = 0.306 m

While
atmp

gr
 = 

3

3

101 10

10 9.81

¥
¥

 = 10.296 m

Hence, hmax =
10.296 0.306

0.42

-
 = 23.78 m

Example 4.24

An external mouthpiece converges from the inlet up to the vena contracta to the

shape of the jet and then it diverges gradually. The diameter at the vena contracta is

20 mm and the total head over the centre of the mouthpiece is 1.44 m of water above

the atmospheric pressure. The head loss in flow through the converging passage and

through the diverging passage may be taken as one per cent and five per cent,

respectively, of the total head at the inlet to the mouthpiece. What is the maximum

discharge that can be drawn through the outlet and what should be the corresponding

diameter at the outlet. Assume that the pressure in the system may be permitted to

fall to 8 m of water below the atmospheric pressure head, and the liquid conveyed is

water.

Solution

In terms of meters of water, total head available at the inlet to the mouthpiece
h1 = 1.44 m above the atmospheric pressure.

Loss of head in the converging passage = 0.01 ¥ 1.44

= 0.0144 m

Loss of head in the divergent part = 0.05 ¥ 1.44

 = 0.0720 m

Total head available at the vena contracta

= 1.44 – 0.0144 = 1.4256 m above the atmospheric pressure

At the vena contracta, we can write

2

2

c cp V

g gr
+  =1.4256 + 

atmp

gr
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For a maximum velocity V c, the pressure pc will attain its lower limit which is 8 m

below the atmospheric pressure. Therefore,

p

g
atm

r
 – 8 + 

V
g
c
2

2
= 1.4256 + 

p

g
atm

r

which gives V c = 13.6 m/s

Therefore, the maximum possible discharge becomes

Qmax = 13.6 ´ p(0.02)
2
/4 = 0.0043 m

3
/s

Pressure at the exit is atmospheric. Application of Bernoulli’s equation between

the vena contracta section and the exit section gives

p

g
atm

r
 + 1.4256 = 

p

g
atm

r
 + 

V

g
2
2

2
 + 0.0720

Hence, V 2, the exit velocity = 5.15 m/s

Therefore, the diameter d2 at the exit is given by

(p d2
2/4) ¥ 5.15 = 0.0043

or d2 = 0.0326 m = 32.60 mm

SUMMARY

∑ Euler’s equation of motion describes the dynamics of inviscid flows.

Bernouilli’s equation explicates the fact that the sum total of flow energy,

kinetic energy and potential energy transmitted in a steady, constant density,

inviscid flow field remains conserved between points 1 and 2. In addition,

either of the following conditions needs to be satisfied for the Bernoulli’s

equation to remain applicable (i) points 1 and 2 are located on the same

streamline, or (ii) points 1 and 2 may be located anywhere in the flow field

(not necessarily on the same streamline) provided the flow is irrotational

( 0Vx = —¥ =
r r

), or (V x¥
rr

) is perpendicular to the line element joining

points 1 and 2.

∑ Flows having only tangential velocities with streamlines as concentric circles

are known as plane circular vortex flows. A free vortex flow is an irrota-

tional vortex flow where the total mechanical energy of the fluid elements

remains same in the entire flow field and the tangential velocity is inversely

proportional to the radius of curvature. A forced vortex flow is a rotational

vortex flow where the tangential velocity is directly proportional to the ra-

dius of curvature. Pressure in vortex flows increases with an increase in ra-

dius of curvature. Spiral vortex flows are obtained as a result of superimpo-

sition of a plane circular vortex flow with a purely radial flow.

∑ The flow through a siphon takes place because of a difference in potential

head between the entrance and exit of the tube. The maximum height of a

siphon tube above the liquid level at atmospheric pressure is limited by the

minimum pressure inside the tube which is never allowed to fall below the

vapour pressure of the working liquid at the existing temperature, to avoid

vapour locking in the flow.
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∑ Venturimeter, orificemeter and flow nozzle are typical flowmeters which

measure the rate of flow of a fluid through a pipe by providing a coaxial area

contraction within the pipe, thus creating a pressure drop across the contrac-

tion. The flow rate is measured by determining the velocity of flow at the

constricted section in terms of the pressure drop by the application of

Bernoulli’s equation. The pressure drop is recorded experimentally. A

venturimeter is a short pipe consisting of two conical parts with a short uni-

form cross section, in between, known as throat. An orificementer is a thin

circular plate with a sharp-edged concentric circular hole in it. A flow nozzle

is a short conical tube providing only a convergent passage to the flow. In a

comparison between the three flowmeters, a venturimeter is the most accu-

rate but the most expensive, while the orificemeter is the least expensive but

the least accurate. The flow nozzle falls in between these two.

∑ The static pressure in a fluid is the thermodynamic pressure defining the

state of fluid and becomes equal to the negative of the arithmetic average of

the normal stresses at a point (mechanical pressure) in case of a real and

Stokesian fluid. The stagnation pressure at a point in a fluid flow is the pres-

sure which could result if the fluid were brought to rest isentropically. The

difference between the stagnation and static pressure is the pressure equiva-

lence of the velocity head ( 21

2
Vr ) and is known as dynamic pressure. An

instrument which contains tubes to record the stagnation and static pres-

sures in a flow to finally determine the flow velocity and flow rate is known

as a Pitot static tube.

∑ An orifice is a small aperture through which a fluid passes. Liquid contained

in a tank is usually discharged through a small orifice at its side. A drowned

or submerged orifice is one which does not discharge into the open atmo-

sphere, but discharges into a liquid of the same kind. The discharge through

an orifice is increased by fitting a short length of pipe to the outside known

as the external mouthpiece. The discharge rate is increased due to a decrease

in the pressure at the vena contracta within the mouthpiece, resulting in an

increase in the effective head causing the flow.

EXERCISES

4.1 Choose the correct answer:

(i) Euler’s equation of motion

(a) is a statement of energy balance

(b) is a preliminary step to derive Bernoulli’s equation

(c) statement of conservation of momentum for a real fluid

(d) statement of conservation of momentum for an incompressible flow
(e) statement of conservation of momentum for the flow of an inviscid

(ii) From the following statements, choose the correct one related to

Bernoulli’s equation
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V 2
/2 + p/r + gz = constant

(a) The equation is valid for the steady flow of an incompressible ideal

or real fluid along a stream tube.

(b) The energy equation for the flow of a frictionless fluid of constant

density along a streamline with gravity as the only body force.

(c) The equation is derived from dynamic consideration involving grav-

ity, viscous and inertia forces.

(d) The constant in the equation varies across streamlines if the flow is

irrotational.

(iii) When is Bernoulli’s equation applicable between any two points in a
flow field?

(a) The flow is steady, constant density and rotational

(b) The flow is steady, variable density and irrotational

(c) The flow is unsteady, constant density and irrotational

(d) The flow is steady, constant density and irrotational

(iii) Stagnation pressure at a point in the fluid flow is the pressure

(a) which could result if the fluid were brought to rest isentropically

(b) which could result if the fluid were brought to rest isothermally

(c) at stagnation point

(d) None of these

4.2 The velocity components in an inviscid, constant density ( 31000 kg/m= ),

steady flow field are given as follows: ( )
2

A
u x y z= + + , ( )

2

A
x y z= + +v ,

( )w A x y z= - + + , where A  is a dimensional constant, with a numerical

value of 1 unit. Consider a directed line segment in the flow field, connect-

ing the points P1(0,0,0) and P2(–3,3,0). The pressure is given as zero gauge

at the origin. (i) Can Bernoulli’s equation be applied to find the change in

pressure experienced on moving from the point P1 to the point P2 along the

directionP1P2? (ii) Starting from Euler’s equation of motion in differential

form, find the pressure at P2. What is the stagnation pressure at the same

point?

Ans.((i) No (ii) Zero (gauge), Zero (gauge)

4.3 Water comes out of a tank through a nozzle, as an open jet. As a result, the

level of water in the tank continuously falls. A streamline in the tank concep-

tually identifies in the Fig. 4.43 (Spanning from Point 1 to Point 2), the cur-

vilinear length of which (Spanning from Point 1 to the Point 2) is approxi-

mately kh, where k = 1.5. For mathematical analysis, the following assump-

tions can be made: (i) velocity of flow along the streamline is approximately

V 1, and (ii) viscous effects are negligible. The ratio of area of cross section

of the tank to that of the nozzle is 2:1. At a given instant of time, h = 5m and

V 2 = 1m/s, what is the local component of acceleration of flow at Point 2, at

that instant?
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—1

2
Open jet

g

h t( )

Fig. 4.43 

Ans. (6.47 m/s2)

4.4 A 0.3 m diameter pipe contains a short section in which the diameter is

gradually reduced to 0.15 m and then enlarged again to 0.3 m. The 0.15 m

section is 0.6 m below section A in the 0.3 m pipe where the pressure is 517

kN/m2. If a differential manometer containing mercury is attached to the 0.3

m and 0.15 m section, what is the deflection of the manometer when the flow

of water is 0.12 m3/s downward? Assume the flow to be inviscid.

   Ans. (175 mm)

4.5 At point A in a pipeline carrying water, the diameter is 1 m, the pressure is

98 kPa and the velocity is 1 m/s. At point B, 2 m higher than A, the diameter

is 0.5 m and the pressure is 20 kPa. Determine the direction of flow.

     Ans. (From A to B)

4.6 A tornado may be modeled as a combination of vortices with 0r z= =v v

and ( )rq q=v v , such that  rq w=v r R£

2R

r
q

w
=v r R≥

Determine whether the flow pattern is irrotational in either the inner or outer

region. Using the r-momentum equation, determine the pressure distribu-

tion p(r) in the tornado. Assume p p•=  at rÆ• . Find the location and

magnitude of the lowest pressure.

       Ans. (Rotational for r R£ , irrotational for r R≥

2
2 2

2
1

2

r
p p R

R
rw•

Ê ˆ
= - -Á ˜Ë ¯

r R£

2
2 2 R

p p R
r

rw•
Ê ˆ= - Á ˜Ë ¯

r R≥

minp is at 0r = , 
2 2p p Rrw•= - )
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4.7 A horizontal cylinder of internal diameter 100 mm is filled with water and

rotated about its axis with an angular velocity of 3000 rpm. Calculate the

pressure at the ends of the horizontal and vertical diameter.

Ans. (Ends of horizontal diameter: 124.1 kN/m2; Vertical diameter:

Top end: 123.6 kN/m2; Bottom end: 124.6 kN/m2)

4.8 A hollow cone filled with a liquid, with its apex downwards, has a base di-

ameter d and a vertical height h. At what speed should it spin about its verti-

cal axis so that the kinetic energy of the rotating liquid is maximum? What

per cent of the total volume of the cone is then occupied by the liquid?

Ans. (w = 12 5 2gh d/ , 55%)

4.9 A vessel with a fluid moves vertically upward with an acceleration of g/2,

and simultaneously rotates about the vertical axis of symmetry with an an-

gular velocity of w. Derive an equation for the free surface of the liquid in a

Cartesian coordinate system.

Ans. ((z = w2(x2 + y2)/3g))

4.10 A paddle wheel of 100 mm diameter rotates at 150 rpm inside a closed con-

centric vertical cylinder of 300 mm diameter completely filled with water.

(i) Assuming a two-dimensional flow in a horizontal plane, find the differ-

ence in pressure between the cylinder surface and the centre of the wheel.

(ii) If provision is made for an outward radial flow which has a velocity of
1m/s at the periphery of the wheel, what is the resultant velocity at a radius

of 100 mm and its inclination to the radial direction?

Ans. ((i) 0.582 kN/m2 (ii) 0.636 m/s, 38.13°)

4.11 The velocity of water at the outer edge of a whirlpool where the water level

is horizontal and in the same plane as the bulk of the liquid, is 2 m/s and the

diameter is 500 mm. Calculate the depth of free surface at a diameter of 100

mm from the eye of the whirlpool.

Ans. (4.89 m)

4.12 In a flapper valve, air enters at the centre of the lower disk through a 10 mm

pipe with a velocity of 10 m/s. It then moves radially to the outer

circumference.The two disks forming the valve are of 150 mm diameter and

5 mm apart. The air pressure at inlet is 1.5 kN/m2 gauge. Assuming the air

density to be constant at 1.2 kg/m3, estimate the net force acting on the up-

per plate.

Ans. (27.443 N)

4.13 Water flows upward through a vertical 300 mm ¥ 150 mm venturimeter

whose coefficient is 0.98. The deflection of a differential gauge is 1.18 m of

liquid of specific gravity 1.25, as shown in Fig. 4.44. Determine the flow rate

in m3/s.

Ans. (0.044 m3/s)
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DC

457 mm

1.18 m

B

A

300
mm

Fig. 4.44 A vertical venturimeter

4.14 A vertical venturimeter carries a liquid of specific gravity 0.8 and has an

inlet and throat diameter of 150 mm and 75 mm, respectively. The pressure

connection at the throat is 150 mm above that at the inlet. If the actual rate of

flow is 40 liters/s and the coefficient of discharge is 0.96, calculate (i) the

pressure difference between inlet and throat, and (ii) the difference in levels

of mercury in a vertical U-tube manometer connected between these points.

Ans. ((i) 34.53 kN/m
2
, (ii) 0.275 m)

4.15 The loss of head from the entrance to the throat of a 254 mm ¥ 127 mm

venturimeter is 1/6 times the throat velocity head. If the mercury in the dif-

ferential gauge attached to the meter deflects 101.6 mm, what is the flow of

water through the venturimeter?

Ans. (0.06 m
3
/s)

4.16 The air supply to an oil-engine is measured by inducting air directly from the

atmosphere into a large reservoir through a sharp-edged orifice of 50 mm

diameter. The pressure difference across the orifice is measured by an alco-

hol manometer set at a slope of sin
–1

 0.1 to the horizontal. Calculate the

volume flow rate of air if the manometer reading is 271 mm. Specific gravity

of alcohol is 0.80, the coefficient of discharge for the orifice is 0.62 and

atmospheric pressure and temperature are 775 mm of Hg and 15.8 °C, re-

spectively. (Take Cc, the coefficient of contraction = 0.6.)

Ans. (0.022 m3/s)

4.17 Flow of air at 49°C is measured by a Pitot static tube. If the velocity of air is

18.29 m/s and the coefficient of the tube is 0.95, what differential reading
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will be shown in a water manometer? Assume the density of air to be con-

stant at 1.2 kg/m3.

Ans. (22.70 mm)

4.18 What is the size of an orifice required to discharge 0.016 m3/s of water under

a head of 8.69 m? (Consider the coefficient of discharge to be unity.)

Ans. (area: 1225 mm
2
)

4.19 A sharpe-edged orifice has a diameter of 25.4 mm and coefficients of veloc-

ity and contraction of 0.98 and 0.62, respectively. If the jet drops 939 mm in

a horizontal distance of 2496 mm, determine the flow in m3/s and the head

on the orifice.

Ans. (0.0018 m
3
/s, 1727 mm)

4.20 A vertical triangular orifice in the wall of a reservoir has a base 0.9 m long

which is 0.6 m below its vertex and 1.2 m below the water surface. Deter-

mine the rate of theoretical discharge.

Ans. (1.19 m
3
/s)

4.21 An orifice in the side of a large tank is rectangular in shape, 1.2 m broad and

0.6 m deep. The water level on one side of the orifice is 1.2 m above the top

edge; the water level on the other side of the orifice is 0.3 m below the top

edge. Find the discharge per second if the coefficient of discharge of the

orifice is 0.62.

Ans. (2.36 m3/s)

4.22 Two orifices in the side of a tank are one above the other and are vertically

1.829 m apart. The total depth of water in the tank is 4.267 m and the height

of  the water surface from the upper orifice is 1.219 m. For the same values

of Cv, show that the jets will strike the horizontal plane, on which the tank

rests, at the same point.

4.23 Water issues out of a conical tank whose radius of cross section varies lin-

early with height from 0.1 m at the bottom of the tank. The slope of the tank

wall with the vertical is 30°. Calculate the time taken for the tank to be emp-

tied from an initial water level of 0.7 m through a circular orifice of 20 mm

diameter at the base. Take Cd of the orifice to be 0.6.

Ans. (437.97s)

4.24 A tank 3 m long and 1.5 m wide is divided into two parts by a partition so

that the area of one part is three times the area of the other. The partition

contains a square orifice of 75 mm sides through which the water may flow

from one part to the other. If water level in the smaller division is 3 m above

that of the larger, find the time taken to reduce the difference of water level

to 0.6 m. Cd of the orifice is 0.6.

Ans. (108s)

4.25 A cylindrical tank is placed with its axis vertical and is provided with a circu-

lar orifice, 80 mm in diameter, at the bottom. Water flows into the tank at a

uniform rate, and is discharged through the orifice. It is found that it takes

107 s for the water height in the tank to rise from 0.6 m to 0.75 m and 120 s

for it to rise from 1.2 m to 1.28 m. Find the rate of inflow and the cross-

sectional area of the tank. Assume a coefficient of discharge of 0.62 for the

orifice.

Ans. (0.019 m3/s, 5.48 m2)
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4.26 Calculate the coefficient of discharge from a projecting mouthpiece in the

side of a water tank assuming that the only loss is that due to the sudden

enlargement of water stream in the mouthpiece. Take a coefficient of con-

traction 0.64.

Ans. (0.871)



5
INTEGRAL FORMS OF

CONSERVATION EQUATIONS

5.1   REYNOLDS TRANSPORT THEOREM (RTT)

It is important to note that the laws of Newtonian mechanics were originally stated

for particles or particle systems of invariant mass. As such, the classical statements

of the basic laws of mechanics and thermodynamics are all postulated on a system-

based approach (Lagrangian approach). However, because of its continuously

deformable nature, fluid flow may be more conveniently studied from a control

volume (CV)-based approach (Eulerian approach), rather than a system-based

approach. To apply the classical laws from a control volume perspective, one may,

therefore need to apply some kind of mathematical transformation that can express

the rate of change of a physical parameter with respect to a system in terms of that

with respect to a control volume. This transformation is achieved by a general

theorem, known as Reynolds transport theorem.

5.1.1 Derivation of Reynolds Transport Theorem

To obtain a relation between system-based and control-volume-based formulation,
we refer to the situation as depicted in Fig. 5.1. As shown in the figure, at any time
instant t, a control mass system occupies a region in space that is given by the
combinations of zones I and II. At time t + Dt the control mass system has moved
somewhat, as the collection of particles constituting the control mass system now
occupies a new configuration, given by the combinations of zones II and III. Let N
be an extensive property (for example, total mass, momentum, energy) associated
with the system at time t, and let h be the same property but expressed per unit mass
at any location. The quantity N may be any scalar or vector property of the fluid. As
Dt Æ 0, we may identify a common region between the system configurations at
times t and t + Dt. This common region (Zone II) here signifies the control volume;
essentially an identified region in space across which the transported entity may
flow. Our objective is to express the time rate of change in N for the system in terms
of the time rate of change in N for the control volume.

In order to determine the rate of change of N  within the system, we first note that

the property of the system at time t is given by

(N)t = (NI)t + (NII)t

The property of the system at time t + Dt is given by

(N)t + Dt = (NII)t + Dt + (NIII)t + Dt
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System at time t

III

II

Control volume

System at time +t tDI

Fig. 5.1 System and control volume configuration

From the definition of a derivative, the rate of change of N, as observed from the

system perspective is given by

0system

–
lim t t t

t

N NdN

dt t

+D

D Æ
∫

D

=
( ) ( ) ( ) ( )

0 0 0

Term 1 Term 2 Term 3

–
lim lim lim

II II III It t t t t t

t t t

N N N N

t t t

+D +D

D Æ D Æ D Æ
+ -

D D D14444244443 1442443 14243

 (5.1)

Since lim Dt Æ 0, system approaches the control volume, the first term on the right-

hand side of Eq. (5.1) simplifies to (considering r as the fluid density)

CV
CV

N
d

t t
hr

∂ ∂
= "

∂ ∂ Ú
where d" is a volume element arbitrarily chosen within the CV. Note the use of the

partial derivative with respect to time here, as we refer to time variations at invariant

spatial locations (Zone II) considered in this term.

To understand the physical meaning of the last two terms on the right-hand side of

Eq. (5.1), we consider an elemental area dA on the surface of the CV across which

fluid is leaving with a velocity V
r

, as shown in Fig. 5.2. Let n̂  be a unit vector

oriented along outward normal to dA. Let q be the angle between V
r

 and n̂ . Then

the mass of fluid swept through dA  in time Dt is given by

Dm = ( )ˆcos ·VdA t V n dA tr q rD = D
r r

The rate of mass flow of fluid through the elemental surface dA is given by

( )ˆ·m V n dArD =
r

&
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The rate of flow of the property N through the elemental surface is given by

( )ˆ·N V n dArhD =
r

&

Considering that the fluid properties as well as flow velocities may vary across the

control surface (CS), the rate of outflow of the transported property N across the

control surface may be obtained by integrating the above expression over the

outflow boundary, representing the second term on the right-hand side of Eq. (5.1),

to yield

( )outflow outflow surface
ˆ·N V n dArh= Ú

r
&

The same integral expression, but carried over the inflow boundary, gives the rate of

inward transport of the quantity under concern across the control surface, i.e.,

( )inflow inflow surface
ˆ·N V n dArh= Ú

r
&

It can be mentioned in this context that n̂  is the outward normal unit vector to dA.

Therefore, V
r

· n̂  is positive for outflow from the CV and negative for inflow into the

CV and its integral over the entire control surface, i.e., ( )ˆ·
CS

V n dAh rÚ
r

 gives the

net rate of outflow, i.e., outflow minus inflow, of the property N from the CV (sum

of the second and third terms on the right-hand side of Eq. 5.1).

n̂

n̂

V

dA

dA
q

Outflow boundary

Inflow boundary

Æ

V
Æ

Fig. 5.2 

Thus, from Eq. (5.1), one may write

( )
system

ˆ·
CV CS

dN
d V n dA

dt t
hr h r

∂
= " +
∂ Ú Ú

r
 (5.2)

Equation (5.2) is the mathematical statement of the Reynolds Transport Theorem

(RTT). The left-hand side of Eq. (5.2) represents rate of change of property N with

respect to the system. First term on the right-hand side represents the same but with

respect to CV.The second term on the right-hand side represents the net rate of

outflow ( i.e., outflow-inflow) of the same property across the CS. Equation. (5.2),
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therefore, relates the rate of change with respect to the CV to that with respect to the

system. In words, this relationship may be rephrased as ‘the time rate of change of

property N within a control mass system is equal to the time rate of change of

property N within the control volume plus the net rate of efflux of the property N

across the control surface.’

It is important to mention in this context that in the derivation of RTT the control

volume is considered to be fixed in a frame of reference in which the velocity field

is described. Moreover, for evaluation of rates of outflow and inflow of properties,

the velocities must be expressed relative to the CV, so that Eq. (5.2) is more

precisely described as

( )
system

ˆ·r
CV CS

dN
d V n dA

dt t
hr h r

∂
= " +
∂ Ú Ú

r
 (5.3)

where V
r

r is the velocity of fluid relative to the control volume,

r cV V V= -
r r r

 (5.4)

where V
r

 and V
r

c are the velocities of fluid and the control volume respectively, as

observed in a fixed reference frame.

5.1.2 Application of RTT to Conservation of Mass

For applying Eq. (5.3) to express mass conservation, we set N  = m i.e., h = 1. Then

Eq. (5.3) becomes

( )
system

ˆ·r
CV CS

dm
d V n dA

dt t
r r

∂
= " +
∂ Ú Ú

r

For a control mass system ( defined as a system with fixed mass and identity),

system

0
dm

dt
=

This gives

( )ˆ0 ·r
CV CS

d V n dA
t

r r
∂

= "+
∂ Ú Ú

r
 (5.5)

Next, we may consider a non-deformable CV as a specific example, so that " is

not a function of t. In that case, we can take 
t

∂
∂

 inside and outside the first integral

appearing on the right-hand side of Eq. (5.5) interchangeably. Further, we also

assume a stationary CV, so that rV V=
r r

. Considering these two assumptions, Eq.

(5.5) simplifies to

( )ˆ0 ·
CV CS

d V n dA
t

r
r

∂
= " +

∂Ú Ú
r

 (5.6)

Applying Gauss divergence theorem to the second term on the right-hand side, Eq.

(5.6) becomes

( )0 ·
CV CV

d V d
t

r
r

∂
= "+ — "

∂Ú Ú
r

i.e, ( )0 ·
CV

V d
t

r
r

∂È ˘= +— "Í ˙∂Î ˚Ú
r
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Since the choice of the elemental CV is arbitrary, we have

( )· 0V
t

r
r

∂
+— =

∂

r
(5.7)

Equation (5.7) is the well-known continuity equation in its differential form.

Example 5.1

A two-dimensional wedge-shaped fluid element as shown in Fig. 5.3 below is

subjected to the following velocity field: 0

x
u V

L
= , 0

y
V

L
= -v  and w = 0, where u,

v  and w are the velocity components along the x, y and z directions respectively, and

V 0 is constant. For constant density flow, find the volume flow rate through the

surface AC, per unit width.

y

x

A

B C

Fig. 5.3 

Solution

Choose a fixed control volume as shown by the dotted line in Fig. 5.3 (a).

y

A

x

B C

ˆ–i

ˆn

q

ˆ–j

q

Fig. 5.3(a) 
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From the conservation of mass for the control volume, we get

ˆ0 ( · )
CV CS

d V n dA
t

r r
∂

= "+
∂ Ú Ú

r

Since density is constant, we can write

ˆ( · ) 0
CV CS

d V n dA
t

∂ È ˘" + =Î ˚∂ Ú Ú
r

Now, 
CV

d" = "Ú , and hence

( )
ˆ( . ) 0CV

CS
V n dA

t

∂ "
+ =

∂ Ú
r

(5.8)

For non-deformable control volume, first term of Eq. (5.8) is zero. Thus,

ˆ( · ) 0
CS

V n dA =Ú
r

The velocity field everywhere has the form ˆ ˆV iu j= + v. This must be evaluated

along each surface. Surface AB is the plane x = 0. The unit outward normal is
ˆn̂ i= - , as shown in Fig. 5.3 (a). The normal velocity is

( ) ( ) 0
ˆ ˆ ˆˆ. · 0xAB

V n iu j i u == + = =
r

v

The volume flow through surface AB is thus,

ˆ( · ) 0AB
AB

Q V n dA= =Ú
r

Section BC is the plane y = 0. The unit normal is ˆn̂ j= - , as shown in Fig. 5.3 (a).

The normal velocity is

( ) ( ) ( ) 0
ˆ ˆ ˆˆ· · 0yBC

V n iu j j == + - = - =
r

v v

Thus, normal velocity is zero all along surface BC. Hence ˆ( . ) 0BC
BC

Q V n dA= =Ú
r

.

 Mass is conserved in this constant-density flow, and there are no net sources or

sinks within the control volume. Therefore, the sum of the volume flow through

surfaces AB, BC and AC will be zero, i.e.,

QAB + QBC  + QA C = 0

or QBC = 0

The volume flow rate through the surface AC is zero.

Example 5.2

A fluid flows through a constant head tank as shown in Fig 5.4. fluid is entering into

the tank with a uniform velocity U• and is leaving with a velocity u such that

2
1

0 2
(1 )

y
u U

H
= - , where y1 is the local transverse coordinate, as shown in Fig. 5.4.
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Width perpendicular to the plane of paper is b. For constant density flow, express

U0 in terms of U•.

U•

h

n̂
x
1

y
1

2
1

2
(1 )

y
u U= 0

H
–

1
n̂

HH

Fig. 5.4 

Solution

Choose a fixed control volume as shown by the dotted line in Fig. 5.4(a).

U•

h

n̂
x
1

y
1

2
1
2

(1 )
y

u U= 0
H

–

1
n̂

HH

Fig. 5.4(a) 

From the conservation of mass for the control volume, we get

ˆ0 ( · )
CV CS

d V n dA
t

r r
∂

= "+
∂ Ú Ú

r

Since density is constant, we can write

ˆ( · ) 0
CV CS

d V n dA
t

∂ È ˘" + =Î ˚∂ Ú Ú
r
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Now, 
CV

d" = "Ú , and hence

 
( )

ˆ( . ) 0CV

CS
V n dA

t

∂ "
+ =

∂ Ú
r

(5.9)

For a non-deformable control volume, the first term on the left-hand side of Eq.

(5.9) is zero. Thus,

ˆ( · ) 0
CS

V n dA =Ú
r

22
1

0 12

2

(1 ) 0

H

H

y
U Hb U dy b

H
•

-

- + - =Ú

After simplification,

0

12

11
U U•=

Example 5.3

A fluid flows through a variable head tank, as shown in Fig. 5.5. The fluid is entering

the tank with a uniform velocity V 1 through a pipe of cross-sectional area V 1  as well

as with a uniform velocity V 2 through a pipe of cross-sectional area V 2. Height of the

tank from the bottom is h. For constant density flow, find an expression for the

change in fluid height.

h

V2V1
—

Fig. 5.5 

Solution

Choose a fixed control volume as shown by the dotted line in Fig. 5.5 (a).
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h

V2V1

—

Fig. 5.5(a) 

Flow within the control volume is unsteady. Writing the conservation of mass for

the control volume results in

0 = ˆ( · )
CV CS

d V n dA
t

r r
∂

" +
∂ Ú Ú

r

1 1 1 2 2 20
CV

d AV A V
t

r r r
∂

= "- -
∂ Ú (5.10)

Now if A  is the tank cross-sectional area, the unsteady term can be evaluated as
follows:

( )
CV

d dh
d Ah A

t dt dt
r r r

∂
" = =

∂ Ú
Substituting the unsteady term in Eq. (5.10) we find the change in of the fluid,

height

1 1 1 2 2 2AV A Vdh

dt A

r r

r

+
=

For constant density flow, r1 = r2 = r, and this result reduces to

1 1 2 2AV A Vdh

dt A

+
=

Example 5.4

A conical tank of half-angle q, with radius R and height H, drains though a hole of

radius re in its bottom, as shown in Fig. 5.6. The speed of the liquid leaving the tank

is approximately 2eV ghª , where h is the instantaneous height of the liquid free

surface above the hole at a time t. Find the rate of change of surface level in the tank

at the instant when h = H/2.
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q

h

Ve

H

R

Fig. 5.6 

Solution

We choose a CV fixed with the free surface of the liquid, as shown by the dotted line

in the Fig. 5.6(a).

H

R

h

Ve

re

q

r

Fig. 5.6(a) 
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From the conservation of mass for the control volume, we get

0 = ˆ( · )
CV CS

d V n dA
t

r r
∂

"+
∂ Ú Ú

r

Since density is constant, we can write

ˆ( . ) 0
CV CS

d V n dA
t

∂ È ˘" + =Î ˚∂ Ú Ú (5.11)

Volume of the CV at that instant,

" =
21

3
r hp

=
3 21

tan
3

hp q  (since tan
r

h
q = )

From Eq. (5.11), we obtain

\ 0 = 3 21
tan

3
e e

d
h V A

dt
r p q rÊ ˆ +Á ˜Ë ¯

3 2 21
tan 0

3
e e

d
h V r

dt
r p q r pÊ ˆ + =Á ˜Ë ¯

2 2 21
3 tan 2 0

3
e

dh
h gh r

dt
p q p+ =

3
2 22 tan 2 e

dh
h gr

dt
q = -

2

3
22

2

tan

egrdh

dt
h q

= -

When, h = H/2

( )

2

3 22

2

2 tan

egrdh

dt H q
= -

Example 5.5

A rigid tank of volume " contains air at an absolute

pressure of P and temperature T. At t = 0, air begins

escaping from the tank through a valve with a flow area

of A 1. The air passing through the valve has a speed of

V 1 and a density of r1. Determine the instantaneous

rate of change of density in the tank at t = 0, assuming

it to be uniform within the tank.

Fig. 5.7 
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Solution

Choose a fixed control volume as shown by the

dashed line in Fig. 5.7(a).

From conservation of mass for the control vol-
ume, we get

ˆ0 ( . )

CV CS

d V n dA
t

r r
∂

= " +
∂ Ú Ú (5.12)

Assuming that the properties in the tank are uniform, but time–dependent, the above
equation can be written in the form

ˆ( . ) 0

CV CS

d V n dA
t

r r
È ˘∂

" + =Í ˙
∂ Í ˙Î ˚

Ú Ú (5.12a)

Now, 

CV

d" = "Ú . Hence,

( )
ˆ( · ) 0CV

CS

V n dA
t

r
r

∂ "
+ =

∂ Ú
r

The only place where mass crosses the boundary of the control volume is at surface
(1). Hence,

1

ˆ ˆ( · ) ( · )

CS A

V n dA V n dAr r=Ú Ú
r r

The flow is assumed uniform over surface (1), so that

( )
1 1 1 0V A

t

r
r

∂ "
+ =

∂
Since the volume, ", of the tank is not a function of time,

1 1 1 0V A
t

r
r

∂
" + =

∂

1 1 1V A

t

rr∂
= -

∂ "

Example 5.6

Compressed air exhausts from a small hole in a rigid

spherical tank at the mass flow rate of em& , which is

proportional to the density (r) of the tank. If r0 is the

initial density in the tank of volume, ", derive an

expression for the density change as a function of time

after the hole is opened. Assume uniform density within

the tank.

Surface (1)

Fig. 5.7(a) 

Fig. 5.8 
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As a numerical example, assume diameter of the tank as 60 cm with an initial

pressure of 400 kPa and temperature of 400 K. Initial exhaust rate of air through the

hole is 0.02 kg/s. Find the time required for the tank density to drop by 40 %.

Solution

Choose a fixed control volume as shown by the dotted

line in Fig. 5.8 (a).
From the conservation of mass for the fixed control
volume, we get

ˆ0 ( . )

CV CS

d V n dA
t

r r
∂

= " +
∂ Ú Ú (5.13)

Assuming that the properties in the tank are uniform, but time-dependent, the above
equation can be written in the form,

ˆ( . ) 0

CV CS

d V n dA
t

r r
È ˘∂

" + =Í ˙
∂ Í ˙Î ˚

Ú Ú (5.13a)

Now, tank ,

CV

d" = "Ú  is not a function of time. Hence,

tank 0e

d
m

dt

r
" + =& (5.14)

Since em rμ& , we assume em kr=& , where k is a proportionality constant. Thus,

tank 0
d

k
dt

r
r" + = (5.14a)

Integrating,

tank 0
d

k
dt

r
r" + =

0 tank

exp
k

t
r

r

È ˘
= -Í ˙"Î ˚

(5.15)

Now, p0 = 400 kPa, and T0 = 400 K, then 
30

0
0

400
 =3.48 kg/m

0.287 400

p

RT
r = =

¥

0 0 0.02em kr= =&

or
30.02

0.005747 m /s
3.48

k = =

The tank volume is 
3 3 3

tank (0.6 m) 0.113 m
6 6

D
p p

" = = =

For the given final conditions,

Fig. 5.8(a) 
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0

0.005747
0.4 exp

0.113
t

r

r

È ˘= = -Í ˙Î ˚

t = 18 s

5.1.3 Conservation of Momentum or Momentum Theorem

The principle of conservation of momentum as applied to a control volume is

usually referred to as the momentum theorem.

5.1.3.1 Conservation of Linear Momentum

Let N  be the linear momentum, 
system

dmVÚ
r

, of the system and h be the linear

momentum per unit mass, i.e., the velocity V
r

. Then Eq. (5.3) becomes

( ) ( )
system

ˆ·r
CV CS

d
dmV Vd V V n dA

dt t
r r

∂
= " +
∂Ú Ú Ú

r r r r
 (5.16)

The velocity V
r

 defined in Eq. (5.16) is the fluid velocity relative to an inertial

(non-accelerating) frame of reference.

Now, ( )system system

d dV
dmV dm

dt dt
=Ú Ú

r
r

 (since mass of a system is invariant with time)

=
system

admÚ
r

=
system

FÂ
r

(by Newton’s second law of motion)

We have derived the RTT with a limit as Dt Æ 0. Hence the left-hand side of Eq.

(5.16) essentially becomes the resultant force acting on the control volume

(
CV

FÂ
r

). Thus, Eq. (5.16) may be written as

( )ˆ.rCV CV CS
F Vd V V n dA

t
r r

∂
= " +
∂Â Ú Ú

r r r r
 (5.17)

In other words, the momentum theorem may be stated as follows: the resultant force

acting on a control volume is equal to the time rate of increase of linear momentum

within the control volume plus the net efflux of linear momentum from the control

surface.

Example 5.7

A plate with frictionless surfaces is oriented inclined to an incipient water jet, as

shown in Fig. 5.9. Velocity is uniform over each flow section. The fluid flow may be

approximated as incompressible and inviscid. The angle made by the plate with the

vertical is q. Express Q1 and Q2 as functions of Q0 and q. Assume density of the

water is constant. Neglect the change in height between the various points.
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Smooth plate

A , Q2 2

q

A Q1 1,

A , Q0 0

Fig. 5.9 

Solution

Choose a fixed CV as shown by the dotted line in Fig. 5.9(a).

A Q0 0,

q

c

A Q1 1,

b

en
es

A Q2 2,

Fig. 5.9(a) 

From the conservation of mass for the control volume, we get

0 = 0 + r (– Q0) + rQ1 + rQ2
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or Q1 + Q2 = Q0 (5.18)

or A1V 1 + A2V2 = A0V0

where V 0, V 1 and V 2 are the uniform velocities at section 0, 1 and 2, respectively, and

A 0, A 1 and A 2 are the corresponding cross-sectional areas.

From the conservation of linear momentum of the control volume following Eq.

(5.17), one can write

( )( ) ( )( )0 0 0 1 1 2 2
ˆ ˆ ˆ ˆ ˆ ˆ0 sin cosS S n n s n S SF F V V Q V Q V Qe e r q e q e r e r e+ = + - - + + -

 (5.19)

where ˆ
Se  and ˆ

ne  are unit vectors tangential and normal to the inclined plates,

respectively. Further, Fs and Fn are the respective force components exerted by the

plate on the water. Equating the force components along the surface of the plate we

get

Fs = 0 1 1 2 2sinV V Q V Qr q r r- + -  (5.20)

Since the plate is frictionless, the net tangential force acting on the plate is zero.

Therefore, Eq. (5.20) becomes

0 = 0 1 1 2 2sinV V Q V Qr q r r- + -

or 2 2 1 1 0 0 sinQ V Q V V Q q- = -  (5.21)

Since the flow is steady, inviscid, and of constant density, Bernoulli’s equation may

be applied along a streamline. Accordingly, applying Bernoulli’s equation along a

streamline connecting the points and b, we get

2 2

2 2

a a b b
a b

p V p V
gz gz

r r
+ + = + +

Since pa = pb and za = zb, V a = V b, i.e, V 0 = V 1

Similarly, V 0 = V 2

Thus, from Eqs (5.18) and (5.21), we get

Q1 = ( )0 1 sin
2

Q
q+  and ( )0 1 sin

2

Q
q-

Note: From Eq. (5.19), equating the force components normal to the plate, we get

2
0 0 0 0cos cosnF V Q A Vr q r q= = . (5.22)

This is the force exerted by the plate on the water present in the control volume.

Therefore, the force exerted by the water on the plate is 
2

0 0 cosA Vr q- .

Example 5.8

A fluid of constant density r flows over a stationary flat plate. The relative velocity

between the solid boundary and the fluid in contact with that is zero (no-slip

boundary condition). The flow domain may be conceptually divided into two parts,

viz., a region adhering to the plate in which viscous effects are important and an
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outer region where viscous effects are negligible. The imaginary line that

demarcates these two regions is the edge of the so called boundary layer, as shown

in the Fig. 5.10. Incipient free stream velocity on the plate is U•. The velocity

distribution within the boundary layer is approximated by 

2

2
u y y

U d d•

Ê ˆ= - Á ˜Ë ¯ . The

boundary layer thickness at location B is d0. The plate width perpendicular to the

plane of the figure is w. Find the net drag force exerted by the plate on the fluid over

the length L.

y

x

A
L

B

d0

C

Edge of
boundary
Layer

U• U•

Fig. 5.10 

Solution

Choose a fixed CV as shown by the dashed line in Fig. 5.10 (a).

y

x

d0

C

Edge of
boundary
Layer

U•

U•

CV

A B

Fig. 5.10(a) 

From conservation of mass for the CV, we get

0 =
0

0

0 ACudyw m

d

r+ +Ú &

0

0

ACm udyw

d

r= - Ú&
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Applying the x component of the linear momentum conservation equation, we have

Fx =
0

0

0 .AC ACu uwdy u m

d

r+ +Ú &

Fx = ( )
0 0 0

2 2

0 0 0

w u dy U udy w u uU dy

d d d

r r• •

È ˘
- = -Í ˙

Í ˙Î ˚
Ú Ú Ú (5.23)

Substituting 

2

2
u y y

U d d•

Ê ˆ= - Á ˜Ë ¯  into Eq. (5.23), and letting 
y

h
d

= , we obtain

Fx =

1 1
2 2 2 2 2

0 0

0 0

1 1
2 ( ) ( )

2 2
w U d U dr d h h h d h h h• •

È ˘
- - -Í ˙

Í ˙Î ˚
Ú Ú

 =

1 1
2 2 4 3 2

0

0 0

1 1
2 ( ) ( )

4 2
wU d dr d h h h h h h h•

È ˘
+ - - -Í ˙

Í ˙Î ˚
Ú Ú

 =

13 2 4 5
2

0

0

3 1
2

2 3 2 4 4 5
wU

h h h h
r d•

È ˘
- - +Í ˙

Î ˚

 = 2
0

3 1 1 1 1 1
2

2 3 2 4 4 5
wUr d•

È ˘- - +Í ˙Î ˚

 = 2
0

2

5
wUr d•-

This is the force exerted by the plate on the fluid. Note that the minus sign indicates

a force along the negative x direction, i.e, the force tends to slow the fluid down

(hence the name drag force). Also note that by Newton’s third law, the drag force

exerted by the fluid on the plate will be 
2

0

2

5
wUr d• , which is a force along the

positive x direction.

Alternative Choice of the Control Volume (CV)

y

x

A B

d0

C

Edge of
boundary
Layer

U• U•

CV

h0

D

Fig. 5.10(b) 
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The very fact that there is a flow across AC in Fig. 5.10(a) renders our calculations

somewhat tedious, which may be simplified to some extent if we choose another

reference line instead of AC such that the net flow across that new reference line is

zero. Such a line may be chosen by considering the streamline passing through C

(i.e., DC in Fig. 5.10(b)), since by definition there is no flow across a streamline.

This motivates us to choose the CV as ABCD, as indicated in Fig. 5.10(b). Further,

because of no penetration boundary condition at the plate (i.e., zero normal

component of flow velocity at the wall), there is no flux across the surfaces A B.

Thus fluxes flow out only across the surfaces AD and BC.

From conservation of mass for the CV, we get

0 = ˆ ˆ0 ( · ) ( · )

AD BC

V n dA V n dAr r+ +Ú Ú
r r

i.e., 0 = ( )
0

0 0

0
oh

U wdy uwdy

d

r r•+ - +Ú Ú

i.e.,
0

0

0

U h udy

d

• = Ú (5.24)

Applying the x component of momentum conservation equation for the CV, we

have

Fx = ˆ ˆ( . ) ( . )

AD BC

u V n dA u V n dAr r+Ú Ú
r r

 = ( ) ( )
0

0 0

oh

U U wdy u u wdy

d

r r• •- +Ú Ú

 =
0

2 2
0

0

U wh w u dy

d

r r•- + Ú

 =
0 0

2

0 0

U w udy w u dy

d d

r r•- +Ú Ú
(Substituting U• h0 from Eq. (5.24))

Thus, Fx =
0 0

2

0 0

w u dy U udy

d d

r •

È ˘
-Í ˙

Í ˙Î ˚
Ú Ú

The remaining part of the solution is the same as that obtained by the previous
method.

Example 5.9

A fluid of constant density r flows over a solid body of arbitrary shape with a

uniform free stream velocity U•, as shown in Fig. 5.11. The velocity distribution at
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the downstream of the body is given by sin
2

u y

U a

p

•

Ê ˆ= Á ˜Ë ¯ . The width of flow

perpendicular to the plane of the figure is w. Assuming that the flow is symmetrical

with respect to the centre line, find the total drag force on the solid body exerted by

the fluid.

U•

Solid body of
arbitrary shape

U•

a sin
2

y
u U

a

p
¥

æ ö
= ç ÷

è ø
U•

Fig. 5.11 

Solution

Choose a CV ABCD as shown in Fig. 5.11(a), such that AD and BC are streamlines,

i.e., there are no fluxes across these two surfaces.

U•

U•

aA

B

D

C

u = U• sin
h p y

2 a

Fig. 5.11(a) 

Writing the conservation of mass for the CV results in

0 = ( )ˆ0 ·

CS

V n dAr+ Ú
r

0 = ˆ ˆ0 ( · ) ( · )

AB CD

V n dA V n dAr r+ +Ú Ú
r r
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0 = ( )
0 0

0 2

h a

U wdy uwdyr •+ - +Ú Ú

0

a

U h udy• = Ú (5.25)

Applying the x component of the linear momentum conservation equation, we have

ˆ ˆ( . ) ( . )x

AB CD

F u V n dA u V n dAr r= +Â Ú Ú
r r

 = ( ) ( )
0 0

2 2

h a

U U wdy u u wdyr r• •- +Ú Ú

 =
2 2

0

2 2

a

U wh w u dyr r•- + Ú

 =
2

0 0

2

a a

w u dy U udyr •

È ˘
-Í ˙

Í ˙Î ˚
Ú Ú  (5.26)

Substituting, sin
2

u y

U a

p

•

Ê ˆ= Á ˜Ë ¯  in Eq. (5.26), and letting 
2

y

a

p
q =  , we obtain

 
2 2

2 2

0 0

2
2 . sin sinX

a
F wU d d

p p

r q q q q
p

•

È ˘
Í ˙

= -Í ˙
Í ˙
Î ˚

Â Ú Ú

=
2

2

0

4 sin 2
cos

2 4

a wU
p

r q q
q

p
• È ˘- +Í ˙Î ˚

 =
24

1
4

a wUr p

p
• È ˘-Í ˙Î ˚

This is the force exerted by the solid body on the fluid. By Newton’s third law, the

drag force exerted by the fluid on the solid body will be 
24

1
4

a wUr p

p
• È ˘-Í ˙Î ˚

.

Example 5.10

Water flows steadily through the 90° reducing elbow, as shown in the Fig. 5.12. At

the inlet to the elbow, the pressure, velocity and cross-sectional area are p1, V 1 and

A 1, respectively. At the outlet, the corresponding values are p2, V 2 and A 2,

respectively. The weight of the elbow is W . The elbow discharges to the atmosphere.

Determine the force required to hold the elbow in place. Neglect the non-uniformity

in the velocity profile.
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1
p ,

1
A ,

1
V

2
p ,

2
A ,

2V

2

1

Fig. 5.12 

Solution

Choose a fixed CV (water + elbow) as shown by the dashed line in Fig. 5.12(a).

1
p ,

1
A ,

1
V

2
p ,

2
A ,

2V

2

1

y

x

Fig. 5.12(a) 

The forces acting on the control volume include those due to

∑ Pressure p1 acting on area A 1

∑ Pressure  p2 acting on area A 2

∑ Weight of the elbow

∑ Weight of the water in the control volume

∑ Reacting force acting on control volume (force exerted by the pipe supports

on the elbow).

It is extremely important to mention here that the resultant force due to uniform

pressure distribution acting over a closed contour is zero. Therefore, a uniform

atmospheric pressure around the CV exerts no resultant force acting on the same.

Thus, any pressure difference relative to the atmospheric pressure (i.e., gauge

pressure) is only capable enough of exerting any net force on the CV due to

pressure. Here, such deviation occurs only over sections 1 and 2, with the

corresponding gauge pressures as (p1 – patm) and (p2 – patm), respectively.

Now, writing the linear momentum conservation equation for the CV results in

( )ˆ0 ·
CS

F V V n dAr= +Â Ú
r r r

 (5.27)
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The left-hand side of Eq. (5.27)

  reaction pressure water weight elbow weightF F F F F= + + +Â
r r r r r

or 1 1 2 2
ˆ ˆ ˆ ˆ( ) ( )reaction atm atm waterF F p p A i p p A j gj Wjr= + - + - - " -Â

r r

(Noting that pressure is always acting inward normal to any given surface) The

right-hand side of Eq. (5.27) becomes

( ) ( )( ) ( )( )1 1 1 2 2 2
ˆ ˆˆ·

CS
V V n dA V i V A V j V Ar r r= - + -Ú
r r

Thus, Eq. (5.27) simplifies to

( )( ) ( )( )1 1 2 2 1 1 1 2 2 2
ˆ ˆ ˆ ˆ ˆ ˆ( ) ( )reaction atm atm waterF p p A i p p A j gj Wj V i V A V j V Ar r r+ - + - - " - = - + -

r

( )( ) ( )( )1 1 2 2 1 1 1 2 2 2
ˆ ˆ ˆ ˆ ˆ ˆ( ) ( )reaction atm atm waterF p p A i p p A j gj Wj V i V A V j V Ar r r=- - - - + " + + - + -

r

Example 5.11

A jet of water issuing from a stationary nozzle with a uniform velocity, V , strikes a

frictionless turning vane mounted on a cart, as shown in Fig. 5.13. The vane turns

the jet through an angle q. The area corresponding to the jet velocity, V , is A . An

external mass, M , is connected to the cart through a frictionless pulley. Determine

the magnitude of M required to hold the cart stationary. Assume the ground to be

frictionless.

V A,

Pulley

M

q

Fig. 5.13 

Solution

Choose a fixed CV, as shown by the dashed line in Fig. 5.13(a).
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Applying the x component of the linear momentum equation to the inertial CV, we

have

Fx = ( ) ( ) ( )( )ˆ. cos

A

V V n dA V AV V AV Tr r q r= + - = -Ú
r r

(5.28)

where T is the tension the string (see Fig. 5.13(b), which shows forces acting on the

CV).
T = rA V2

(1 – cos q)
Since, for equilibrium, tension in the string equals to Mg, because of frictionless

nature of the pulley, we have
T = rA V2(1 – cos q) = Mg

or M =
( )2 1 cosAV

g

r q-
(5.29)

V A,

Pulley

M

q

N

T

M gcart

(a)

(b)

Fig. 5.13 

5.1.3.2 Analysis for Accelerating Reference Frame

Till this stage, we have considered CV analysis with respect to stationary reference

frames. However, for situations involving arbitrarily moving CVs (linearly
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accelerating and/or rotating), one may require to apply suitable transformations for

extending laws originally derived for inertial reference frames to arbitrarily moving

reference frames. To have a basic understanding of the underlying principles, we

first consider a fixed vector, A
r

, relative to an arbitrarily moving reference frame

xyz; whereas X Y Z is a stationary reference frame. We consider xyz to be rotating at

an angular velocity, w
r

, relative to X Y Z. We further consider, the vector A
r

 to be

rotating in the plane of figure, for the sake of illustration, without loss of generality.

Position of the vector A
r

 at time t + Dt and is shown in Fig. 5.14 (b).

�

x

y

z

Y

Z

Vector

Arbitrary moving
reference frame

Stationary
reference frame

A
�

w

X

(a) Location of a vector A
r

 in inertial (X Y Z) and non-inertial (xyz) reference frames

D

1ê

2
ê

�

( )A t t+ D
�

AD
�

A ( )t

q

(b) Vector triangle depicting the change in a fixed vector A
r

 in reference frame

xyz over a time interval Dt; 1̂e  and 2ê  being the unit vectors along radial and

cross-radial directions, such that 1 2 3
ˆ ˆ ˆe e e¥ = . Here 3ê  is the direction along

which the angular velocity vector   is oriented.

Fig. 5.14 
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Let us consider that the vector A
r

 sweeps an angle Dq over the time interval Dt.

Therefore, the change in the vector is

2ˆA A eqD = D
r

2
0

ˆ lim
t

XYZ

dA
Ae

dt t

q

D Æ

D
=

D

r

= 2
ˆAe w

Also, 3 1 2ˆ ˆ ˆA e Ae Aew w w¥ = ¥ =
rr

Hence,
XYZ

dA
A

dt
w= ¥

r
rr

For an arbitrary vector A
r

 in reference frame xyz (which may translate relative to

XYZ, in addition to its rotation), we may generalise the above as

XYZ xyz

dA dA
A

dt dt
w= + ¥

r r
rr

(5.30)

Equation (5.18) is known as Chasles’ theorem.

For illustration, we may now apply this theorem for estimating velocity and

acceleration of a particle. We consider the particle P having a position vector r
r

relative to the arbitrarily moving reference frame xyz, and a position vector R
r

relative to the stationary reference frame X Y Z, as depicted in Fig. 5.15.

R
�

0
r
�

�

r
�

x

y

z

Y

X

Z

Particle

Arbitrary moving
reference frame

Stationary
reference frame

Pw

Fig. 5.15 Location of a particle in inertial (XYZ) and non-inertial (xyz) reference

 frames

From the geometry of the figure,

0R r r= +
r r r
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The velocity of the particle at the point P with respect to inertial reference frame,

XYZ, is

0
0XYZ xyz CV xyz

XYZXYZXYZ

drdR dr
V r r r V V r

dt dt dt
w w= = + = + + ¥ = + + ¥

r r r
r r rr rr r r r& &

(by Chasles’ theorem)

or XYZ CV xyzV V V rw= + + ¥
r r r r r

(5.31)

where CVV
r

 is the velocity of the control volume and xyzV
r

 is the velocity of the

particle relative to non-inertial reference frame xyz. On right-hand side of Eq (5.31),

all quantities are expressed relative to xyz.

Acceleration of the particle with respect to inertial reference frame, X Y Z, is given by

{ } [ ] ( ){ }2

02XYZ xyz

XYZ

d R d d
a r r r r r

dt dtdt
w w w w= = + È ˘ + ¥ + ¥ + ¥ ¥Î ˚

r
r r r rr r r r r r&& & &

(Differentiating Eq. (5.31) over X Y Z and applying Chasles’ theorem to transfer the

result relative to xyz)

( )0 2XYZa r r r r rw w w w= + + ¥ + ¥ + ¥ ¥
r r r rr r r r r r&&& && &  (5.32)

or ( )2XYZ CV xyz xyza a a V r rw w w w= + + ¥ + ¥ + ¥ ¥
rr r r rr r r r r&  (5.32a)

Equation. (5.32a) can also be expressed as

XYZ xyz rela a a= +
r r r

(5.32b)

where

( )2rel CV xyza a V r rw w w w= + ¥ + ¥ + ¥ ¥
rr r r rr r r r&  (5.32c)

The physical interpretations of the different terms in Eq. (5.32) are as follows:

1. XYZa
r

 is the rectilinear acceleration of the particle relative to the inertial ref-

erence frame X Y Z.

2. xyza
r

 is the rectilinear acceleration of the particle relative to the non-inertial

reference frame xyz.

3. rw ¥
r r&  is the component of acceleration due to angular acceleration of the

moving reference frame.

4. 2 rw ¥
r r&  is the Coriolis component of acceleration due to translation of the

particle relative to the rotating reference frame xyz.

5. ( )rw w¥ ¥
r r r

 is the centripetal acceleration, due to angular velocity of the

moving reference frame xyz.
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5.1.3.3 Reynolds Transport Theorem Applied for Linear Momentum
 Conservation for Control Volume with Arbitrary Acceleration

Let N be the linear momentum, 
system

xyzdmVÚ
r

, of the system in an arbitrary moving

reference frame (xyz) and h be the linear momentum per unit mass, i.e., xyzV
r

. Then

Eq. (5.3) becomes

( )
system

ˆ.xyz xyz xyz xyz
CV CS

d
dmV V d V V n dA

dt t
r r

∂È ˘ = " +Í ˙Î ˚ ∂Ú Ú Ú
r r r r

(5.33)

Left-hand side of Eq. (5.33) can be written as

system system

xyz

xyz

dVd
dmV dm

dt dt
=Ú Ú

r
r

(Since system mass is time invariant)

=
system xyz

dmaÚ
r

= [ ]
system

XYZ reldm a a-Ú
r r

= CV rel
CV

F a dr- "Â Ú
r

 (5.34)

(since system
system

XYZdma F= ÂÚ
rr

)

The first term on the right-hand side of Eq. (5.34) represents mass times

acceleration as viewed from the inertial reference frame, X Y Z, and according to

Newton’s 2nd law of motion, the same is equal to the resultant force acting on the

system. In the limiting case of Dt Æ 0, the same is equal to the resultant force acting

on the control volume. Therefore, the right-hand side of Eq. (5.33) becomes

CV rel
CV

F a dm-Â Ú
r r

Thus, Eq. (5.35) becomes

( )ˆ.C rel xyz xyz xyz
CV CV CS

F a dm V d V V n dA
t

r r"
∂

- = " +
∂Â Ú Ú Ú

r r r rr
(5.35)

From Eq. (5.35), it is evident that there is a correction term on the left-hand side

because of the acceleration of the control volume (non-inertial reference frame).

Example 5.12

A vane, with a turning angle q, is attached to a cart which is moving with uniform

velocity, V c, on a frictionless track. The vane receives a jet of water, which leaves a

stationary nozzle horizontally with a velocity V . Determine the resultant force

exerted by the water jet on the cart. Assume the water flow to be inviscid.
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cV

V, A q

Fig. 5.16 

Solution

Choose the CV and coordinate systems as shown in Fig. 5.16(a). X Y is the inertial

reference frame, while reference frame xy moves with the cart.

cV

V, A

y

x

Y

X

q

Fig. 5.16(a) 

Applying the linear momentum conservation equation to the moving CV, we have

( )ˆ0 0 .CV xyz xyz
CS

F V V n dAr- = +Â Ú
r r r

(5.36)

Note that the correction term on the left-hand side is zero, since the reference frame

xyz is non-accelerating. The right-hand side of Eq. (5.36) may be further expanded

by noting that because of the frictionless nature of the flow, the speed of water

relative to the cart remains unaltered as it enters and leaves the CV (this may be

ascertained by applying Bernoulli’s equation along a streamline connecting the inlet

and the exit), although the flow direction gets altered, thereby giving rise to a rate of

change of linear momentum. Mathematically, the scenario may be represented as

( ) ( ) ( )( )( )ˆ ˆ ˆcos sinCV c c c cF V V i V V A V V i j V V Ar r q qÈ ˘= È- - - ˘ + - + -Î ˚ Î ˚Â
r

(5.37)

The x component of the force is
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Fx = ( )( )[ ] ( ) ( )[ ]cosc c c cV V V V A V V V V Ar r q- - - + - -

( ) ( )2
cos 1x cF A V Vr q= - - (5.37a)

The y component of the force is

Fy = ( ) ( )[ ] ( )2sin sinc c cV V V V A A V Vr q r q- - = - (5.37b)

These are the x and y components of force exerted by the cart on the water jet. By

Newton’s third law, the x and y components of force exerted by the water on the cart

are rA (V  – V c)
2 (1 – cos q) and – rA (V  – V c)

2  sin q, respectively.

Example 5.13

A vane is attached to a block as shown in Fig. 5.17. The block moves under the

influence of a liquid jet. The mass of the block is Mb. The coefficient of kinetic

friction for motion of the block along the surface is mk. Obtain a differential equation

for the speed of the block as it accelerates from rest. Also find the terminal speed of

the block.

mk

Ub

M

Aj Vj,

Fig. 5.17 

Solution

Choose the CV and coordinate systems as shown in Fig. 5.17(a). X Y is the inertial

reference frame, while reference frame xy moves with the cart.

mk

Ub

M

Aj Vj,

x

y

X

Y

Fig. 5.17(a) 

Applying x component of linear momentum conservation equation to the linearly

accelerating control volume, we get
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( ) ( )0b
k b b j b j b

dU
M g M A V U A V U

dt
m r È ˘- - = + - - -Î ˚ (5.38)

It is important to note here that the CV constitutes of a solid portion (block) and

a fluid portion (liquid). The fractional occupancy of the liquid in the CV is small

enough so that its contribution to the velocity relative to the xy reference frame (i.e.,

V xy) may be practically neglected. Thus, the first term on the right-hand side of the

momentum equation turns out to be approximately zero. In addition, the exit of

water relative to CV has orientations only along the vertical (one stream upward and

another stream downward), leaving no outward flux of momentum along the x

direction. Accordingly, one may obtain the linear momentum equation ( Eq. (5.38))

in the following simplified form:

( )2 0b
b j b k b

dU
M A V U M g

dt
r m- - + = (5.39)

Equation (5.39) may be rearranged as

( )2j bb
k

b

A V UdU
g

dt M

r
m

-
= -

With an initial condition:

t = 0, Ub = 0

At terminal speed, 0bdU

dt
=  and Ub = Ubt,  so

0 =
( )2j bt

k
b

A V U
g

M

r
m

-
-

or
k b

j bt

M g
V U

A

m

r
- =

or Ubt  = k b
j

M g
V

A

m

r
- (5.40)

Motion of a Rocket Till now, we have considered examples of linear

momentum conservation with a fixed mass inside the CV. However, there may

occur interesting situations in which mass inside the CV may change with time.

Motion of a rocket pertains to one such classical example. In the rocket, a portion of

the mass included (fuel) gets ignited and gets expelled in the downward direction,

leaving the mass remaining inside the rocket to be time-dependent. To analyse the

mass and momentum transport in that situation, one may attach an accelerating

reference frame xy with the rocket. We assume X Y as the inertial reference frame.

The CV is shown in the Fig. 5.18 by a dotted line, which encloses the rocket, cuts

through the exit jet, and accelerates upward at the rocket speed.
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X

Y

CV

Ve me
.

x

y

Fig. 5.18 

Further we may use conservation of mass for the CV to get

0 = ( )ˆ·xyz
CV CS

dm V n dA
t

r
∂

+
∂ Ú Ú

r

 = CV
e

dM
m

dt
+ &

0 0

M t

CV e

M

dM m dt= -Ú Ú &

Noting that at t = 0, MC V = M0 and at t = t, MC V = M  one may integrate the above to
get

Then, M – M0 = em t&

or M – M0 = em t& (5.41)

The linear momentum conservation equation becomes

( )ˆ.rel xyz xyz xyz
CV CV CS

F a dm V d V V n dA
t

r r
∂

- = " +
∂Â Ú Ú Ú

r r r rr
(5.42)

where ( )2rel CV xyza a V r rw w w w= + ¥ + ¥ + ¥ ¥
rr r r rr r r r&

Since the reference frame has no angular motion, rel CVa a=
r r

. Thus, the second

term on the left-hand side of Eq. (5.42) becomes

ˆC
rel

CV

dV
a dm M j

dt

"- = -Ú
r

where M is the instantaneous mass of the rocket (including unburnt fuel).
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Let em&  be the rate at which spent gases are discharged from the rocket with a

velocity, V e, relative to the rocket. We assume both em&  and V e to be constants.

Accordingly, the last term on the right-hand side of Eq. (5.42) becomes

( ) ( ) ˆˆ.xyz xyz e e
CS

V V n dA V m jr = -Ú
r r

&

Considering gravity and the resistive drag force against the motion of the rocket as

the sole external forces on the CV, the first term on the left-hand side of Eq. (5.42)

becomes

( ) ˆF D Mg j= - -Â
r

Thus, Eq. (5.42) becomes

CV
e e

dV
D Mg M m V

dt
- - - = - &  (5.43)

It is important to mention here that in arriving at Eq. (5.43), we make a simplistic

assumption that the term xyz
CV

V d
t

r
∂

"
∂ Ú

r
 is negligible. This, in turn, implicates that

we neglect time dependences of fluid velocities relative to the CV (rocket) within

the rocket itself as well as time dependence of density within the rocket (which is

strictly not true).

Substituting Eq (5.41) into (5.43), we obtain

( ) ( )0 0
CV

e e e e

dV
D M m t g M m t m V

dt
- - - - - = -& & & (5.43a)

Neglecting the drag force for simplicity, one may write

( )0

CV e e

e

dV m V
g

dt M m t
= -

-
&

&
(5.44)

( )0
00 0

CV

t t
V

e e
CV

e

m V
dV dt g dt

M m t
= -

-Ú Ú Ú
&

&

Assuming that the velocity of the control volume at time t = 0, we have

0

0

lnCV e
e

M
V V gt

M m t
= -

- &
(5.45)

where V C V is the velocity of the control volume at time t.

Example 5.14

A cart is propelled by a liquid jet issuing horizontally from a tank as shown in Fig.

5.19. The initial mass of the block is M0. The tank is pressurised so that the jet speed

may be considered to be a constant. Obtain an expression for the speed of the block

as it accelerates from rest. Assume that the jet issues with a velocity V  in the leftward

direction, relative to the cart. Also assume the track to be frictionless.
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U

V
A

r

Fig. 5.19 

Solution

We attach the reference frame xy to the control volume moving with cart (Fig. 5.19

(a)), whereas the reference frame X Y is inertial.

U

V
A

r

y

x

Y

X

Fig. 5.19(a) 

From the conservation of mass for the linearly accelerating control volume, we get

0 = ( )ˆ·xyz
CV CS

dm V n dA
t

r
∂

+
∂ Ú Ú

r

 = CV
e

dM
m

dt
+ &

0 0

M t

CV e

M

dM m dt= -Ú Ú &

or M = 0 eM m t- &

Where M = MC V.
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Writing the x component of the linear momentum equation for the linearly

accelerating CV, we get

( ) 2
e

dU
M m V AV V AV

dt
r r- = - = - = -&

or
2 2

0 e

dU AV AV

dt M M m t

r r
= =

- &
(5.46)

Separating the variables and integrating,

2

00 0

U t

e

AV
dU dt

M m t

r
=

-Ú Ú &

[ ]
2

0 0
ln

t
e

e

AV
U M m t

m

r
= - - &

&

or 0

0

ln
e

M
U V

M m t

Ê ˆ
= Á ˜Ë ¯- &

(5.47)

5.1.3.4 Reynolds Transport Theorem Applied for Angular Momentum
  Conservation Relative to Stationary Reference Frame

The angular momentum or moment of momentum conservation theorem may be

derived from Eq. (5.3) in consideration of the property N as the angular momentum,

r mV¥
rr

, and accordingly h as the angular momentum per unit mass, r V¥
rr

. Thus,

one can write

( ) ( )( )
system

ˆ·r
CV CS

d
r dmV r V d r V V n dA

dt t
r r

∂
¥ = ¥ "+ ¥

∂Ú Ú Ú
r r r rr r r

(5.48)

where r
r

 is the position vector of any arbitrary point having flow velocity as V
r
. The

left-hand side of Eq. (5.48) may be simplified as

( )
system system

d d
r dmV r V dm

dt dt
¥ = ¥Ú Ú

r rr r

(Since system mass is invariant with time)

=
system

dV
r dm

dt
¥Ú
r

r
 (since 0

dr
V V V

dt
¥ = ¥ =
r
r r r

)
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The term on the left-hand side of Eq. (5.48) is the time rate of change of angular

momentum of a system, while the first and second terms on the right-hand side of

the equation are the time rate of increase of angular momentum within a control

volume and the rate of net efflux of angular momentum across the control surface.

 The velocity V
r
 defining the angular momentum in Eq. (5.48) is described in an

inertial frame of reference. Therefore, the term ( )
system

d
r mV

dt
¥
rr

 can be substituted

by the net moment MÂ  applied to the system or to the coinciding control volume.

Hence, one can write Eq. (5.48) as

MÂ  = ( ) ( )( )ˆ.r
CV CS

r V d r V V n dA
t

r r
∂

¥ "+ ¥
∂ Ú Ú

r r rr r
 (5.49)

The Eq. (5.49) is the analytical statement of angular momentum theorem applied to

a control volume.

5.1.3.5 Reynolds Transport Theorem Applied for Angular Momentum
 Conservation for Control Volume with Arbitrary Acceleration

Let N be the angular momentum, xyzr mV¥
rr

, of the system in an arbitrary moving

reference frame and h be the linear momentum per unit mass, i.e. xyzr V¥
rr

. Then Eq.

(5.3) becomes

( ) ( )( )
system

ˆ.xyz xyz xyz xyz
CV CS

d
r dmV r V d r V V n dA

dt t
r r

∂
¥ = ¥ " + ¥

∂Ú Ú Ú
r r r rr r r

 (5.50)

The left-hand side of Eq. (5.50) may be simplified, following the simplification of

Eq. (5.48), as

( )
system system

xyz

d d
r dmV r V dm

dt dt
¥ = ¥Ú Ú

r rr r

(Since system mass is invariant with time)

 =
system

dV
r dm

dt
¥Ú
r

r
 (since 0

dr
V V V

dt
¥ = ¥ =
r
r r r

)

After simplification, Eq. (5.50) becomes

( ) ( ) ( )( )ˆ.rel xyz xyz xyz
CV CV CS

M r a dm r V d r V V n dA
t

r r
∂

- ¥ = ¥ " + ¥
∂Â Ú Ú Ú

r r r rr r r r
 (5.51)

Where ( )2rel CV xyza a V r rw w w w= + ¥ + ¥ + ¥ ¥
rr r r rr r r r&
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Example 5.15

A lawn sprinkler discharges water upward and outward from the horizontal plane,

as shown in Fig. 5.20. Initially, the angular speed of the sprinkler is zero. The total

volumetric rate of discharges through the sprinkler is Q. If the area of cross section

of the sprinkler arms and the discharging nozzles is A , derive an expression for the

angular velocity, w, of the sprinkler as a function of time.

R

L

w

Fig. 5.20 

Solution

Approach 1: Moving Reference Frame

R

w

y

Y

X

x

r

Fig. 5.20(a) 

Angular momentum conservation equation for a moving reference frame attached

with the rotating sprinkler, as shown in Fig. 5.20(a), results in

{
( ) ( ) ( )( )

Term 1 Term 2 Term 4Term 3

ˆ.rel xyz xyz xyz
CV CV CS

M r a dm r V d r V V n dA
t

r r
∂

- ¥ = ¥ "+ ¥
∂Â Ú Ú Ú

r r r rr r r r

1442443 14444244443144424443 (5.52)

Term 1 = 0M =Â
r

 (since the sprinkler is freely rotating about its pivot)

For the term 2, we note that

( )2rel CV xyza a V r rw w w w= + ¥ + ¥ + ¥ ¥
rr r r rr r r r&
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or ( )ˆ ˆ ˆ ˆˆ ˆ ˆ 0 2rel xyza k V i k ri k k riw w w w= + ¥ + ¥ + ¥ ¥
r

&

or 2ˆ ˆ ˆ 2rel xyza V j rj riw w w= + -
r

&

( )2 ˆˆ ˆ ˆ ˆ2 2rel xyz xyzr a ri V j rj i V r kw w w w wÈ ˘¥ = ¥ + - = +Î ˚
r r

& &

Thus, Term 2 = ( ) ( )
0

ˆ2 2

R

rel xyz
CV

r a dm V r Adrkw w r¥ = +Ú Ú
r r

&

=
3

2 ˆ2
3

xyz

R
A V R kr w w
Ê ˆ

+Á ˜Ë ¯
&

Term 3 = ( ) 0xyz
CV

r V d
t

r
∂

¥ " =
∂ Ú

rr
 (Since xyzV

r
 is time invariant)

Term 4 = ( )( )ˆ.xyz xyzCS
r V V n dAr ¥Ú
r rr

= ˆ ˆ2
2

xyz

Q
Ri V jr¥ ¥

(Neglecting small length of the bent portion)

= ˆ
xyzRV Qkr

Note here that multiplier 2 in the equation preceding the above is indicative of the

fact that there are two outflow boundaries with a flow rate of 
2

Q
 through each

boundary.

Substituting Terms 1 through 4 into Eq. (5.52), we obtain

3
22

3
xyz xyz

R
A V R RV Qr w w r
Ê ˆ

- + =Á ˜Ë ¯
&

where
2

xyz

Q
V

A
= (Relative speed of flow through each limb)

3
22

2 3 2

Q d R Q
A R R Q

A dt A

w
r w r

Ê ˆ
- + =Á ˜Ë ¯

(5.53)

Equation (5.53) may be cast in the form,

d
a b

dt

w
w= - (5.53a)
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where a =
2

2

3

4

Q

AR
- , 

3

2

Q
b

AR
=

0 0

td
dt

a b

w w

w
=

-Ú Ú

Integrating and rearranging the terms, we get

( )
1

1
exp

a

b bt
w

È ˘
= -Í ˙Î ˚

(5.54)

Approach 2: Stationary Reference Frame

R

w

Y

X

Z

r

Fig. 5.20(b) 

Writing the angular momentum conservation equation relative to the stationary

reference frame X Y Z, as shown in Fig. 5.20(b), results in

{
( ) ( )( )

Term 1 Term 3Term 2

ˆ.r
CV CS

M r V d r V V n dA
t

r r
∂

= ¥ " + ¥
∂Â Ú Ú

r r r rr r

144424443144424443

 (5.55)

Term 1:

0M =Â
r

For Term 2, we note that:

sprinkler rV V V= +
r r r

where rV
r

 is the velocity of water relative to sprinkler.

Thus, considering the right arm (horizontal portion of the sprinkler),

( )ˆ ˆ ˆ ˆ ˆ
r rV k ri V i rj V iw w= ¥ + = +

r

( ) 2 ˆˆ ˆ ˆ
rr V ri rj V i r kw w¥ = ¥ + =

rr

Term 2 = ( ) ( )
0

2

R

CV
r V d r V d

t t
r r

∂ ∂
¥ " = ¥ "

∂ ∂Ú Ú
r rr r
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=
3

2

0

ˆ ˆ2 2
3

R
R d

r kAdr A k
t dt

w
rw r

∂
=

∂ Ú

Term 3 = ( )( )ˆ.r
CS

r V V n dAr ¥Ú
r rr

= { }ˆ ˆ ˆ2
2

r

Q
Ri Rj V jr wÈ ˘¥ +Í ˙Î ˚

= ( )2 ˆ2 rR Q RV Q krw r+

Substituting terms 1 through 3 into Eq. (5.55), we obtain

0 =

3
22 2

3
r

R d
A R Q RV Q

dt

w
r rw r+ +

The solution of this differential equation may be obtained in a manner similar to the

approach adapted in the context of moving-reference-frame-based method adapted

for this problem.

SUMMARY

∑ Reynolds transport theorem relates the rate of change of a physical param-

eter with respect to a system in terms of that with respect to a control vol-

ume. In other words, this relationship may be stated as ‘the time rate of

change of property N within a system, is equal to the time rate of change of

property N within the control volume, plus the net rate of efflux of the prop-

erty N across the control surface’.

∑ Differential form of the continuity equation can be derived from Reynolds

transport theorem by applying the law of conservation of mass to a control

volume.

∑ The statement of the law of conservation of linear momentum as applied to

a control volume is known as the momentum theorem. This theorem states

that the resultant force acting on a control volume is equal to the time rate of

increase of linear momentum within the control volume plus the net efflux

of linear momentum from the control surface.

∑ The law of conservation of angular momentum as applied to a control vol-

ume states that the resultant moment acting on a control volume is equal to

the time rate of increase of the angular momentum within the control vol-

ume, plus the net efflux of the angular momentum from the control surface.

∑ Reynolds transport theorem applied for linear momentum conservation can

be extended to a non-inertial reference frame using Chasles’ theorem. There

is a correction term in force acting on the control volume because of the

acceleration of the control volume (non-inertial reference frame).

∑ Similar to linear momentum conservation, Reynolds transport theorem can

also be extended to non-inertial reference frame for angular momentum con-

servation and there is a correction term in the moment acting on the control

volume.
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EXERCISES

5. 1 A fluid flows steadily through a parallel-plate channel of height 2h. The

fluid is entering the channel with a uniform velocity Uav. The velocity distri-

bution at a section downstream is 

2

max 1
y

u u
h

È ˘Ê ˆ= - Á ˜Í ˙Ë ¯Î ˚
, where umax is the

maximum velocity. For constant density flow, express umax in term of Uav.

Ans. max

3

2
avu U

Ê ˆ=Á ˜Ë ¯
5.2 Thin liquid film of fluid falling slowly down an inclined wall as shown in

Fig. 5.21. The velocity profile at a section downstream is 
2

2
y y

u U
h h

È ˘Ê ˆ= - Á ˜Í ˙Ë ¯Î ˚
,

where U is the surface velocity. Find the volume flow rate per unit width.

Ans. 
5

3
Uh

Ê ˆ
Á ˜Ë ¯

x

y

h

u

Free surface

Fig. 5.21 

5.3 A fluid flows through a variable head cylindrical tank as shown in Fig 5.22.

The fluid is entering the tank with a uniform velocity V 2, through a pipe of

diameter d2, as well as with a volume flow rate of Q3, through a pipe on the

top of the tank. The fluid is leaving with a uniform velocity V 1, through a

pipe of diameter d1. The height of the tank from the bottom is h. For constant

density flow, find an expression for the change in height of the fluid.

Ans. 

2 2
2 2 1 1

2 2

4 d V d Vdh Q

dt D Dp

Ê ˆ-
= +Á ˜Ë ¯
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1
V 2V

Ñ

h

3
Q

D

d1
d 2

Fig. 5.22 

5.4 Two circular plates are separated by a liquid layer as shown in Fig. 5.23. The

lower plate is stationary and the upper plate moves downward at constant

speed, V 0. The radius of the top plate is R. The liquid is squeezed out in the

transverse direction between the plates. Find an expression for V (r), assum-

ing inviscid flow.

Ans. ( ) 0
2

r
V r V

h

Ê ˆ=Á ˜Ë ¯

r

V r( )

CV

V0

R

h(t)

Fig. 5.23 
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5.5 A cylindrical tank of diameter D contains liquid to an initial height of h0. At

time t = 0, a small stopper of diameter d is removed from the bottom.

Assume Torricelli’s idealisation of efflux from a hole in the bottom of the

tank as 2V gh= , where h is the height of the free surface from the bottom

of the  tank. Determine the depth of liquid at time t. As a numerical example,

assume diameter of the tank as 60 cm and that of the stopper as 6 mm. Initial

height of the liquid is 0.5 m. Find the time required for the liquid height drop

by 40 %.

Ans. 

22

0 2
,  11 min 59 sec

2

g d
h t

D

Ê ˆÊ ˆ
-Á ˜Á ˜Ë ¯Ë ¯

5.6 A conical tank of half-angle q, with radius R and height H, drains though a

hole of radius re in its bottom as shown in Fig. 5.6. The speed of the liquid

leaving the tank is approximately 2eV ghª , where h is the instantaneous

height of the liquid free surface above the hole at a time t. Obtain an expres-

sion for the time required to drain the tank.

Ans. 

5 2 2

2

2
tan

5

2 e

H

gr

qÊ ˆ
Á ˜
Á ˜
Á ˜Ë ¯

5.7 A fluid of constant density r flows over a stationary, smooth flat plate with

an incipient free stream velocity U•, as shown in Fig. 5.24. The thickness of

the boundary layer at section CD is d. The velocity distribution within the

boundary layer is approximated by 
u y

U d•
= . The plate width perpendicular

to the plane of the Figure. is w . Determine the mass flow rate across the sec-

tion BC.

Ans. 
2

U w
d

r •
Ê ˆ
Á ˜Ë ¯

A

U• U•

d

C

u

D

B

Fig. 5.24 
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5.8 A fluid of constant density r flows steadily past a porous plate with a uni-

form free stream velocity U•, as shown in Fig 5.25. Constant suction is ap-

plied along the porous section. The velocity distribution at section CD is

given by 

3
3 1

2 2

u y y

U d d•

Ê ˆ= - Á ˜Ë ¯ . Determine the mass flow rate across the sec-

tion BC.

Ans. 
3

0.1
8

U Lr d•
Ê Ê ˆ ˆ-Á Á ˜ ˜Ë Ë ¯ ¯

U•
U•

B

A D

C

L

V = – 0.1U• ĵ

Fig. 5.25 

5.9 A spherical balloon of initial radius R0 is being filled through section 1 (Fig.

5.26), where the area is A 1, velocity (uniform) is V 1, and fluid density is r1.

The spatial average density within the balloon is rb(t), which is given by

1b

t

ketr r= = , where t and k are constants, and t is the time. Find an ex-

pression for the rate of change of the radius of the balloon when its radius is

same as R0.

Ans. 01 1

2
0

34

RAV

R tp

Ê ˆ
-Á ˜Ë ¯

R t0( )

1

Average

density ( )rb t

Pipe

Fig. 5.26 
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5.10 A jet of water of cross-sectional area A , issuing from a stationary nozzle with

a velocity V  strikes a vertical plate concentrically. Develop an expression for

the force required to hold the plate in place. Water flowing at the rate of

0.034 m3/s strikes a flat plate held normal to its path. If the force exerted on

the plate in the direction of incoming water jet is 720 N, calculate the diam-

eter of the stream of water.

Ans. (rA V, 45 mm)

5.11 Water flows steadily through the 180° reducing pipe bend as shown in the

Fig. 5.27. At the inlet to the pipe, the pressure, velocity and cross-sectional

area are 80 kPa (gauge), 5 m/s and 0.3 m2, respectively. At the outlet, the

cross-sectional area is 0.15 m2. The pipe discharges to the atmosphere. De-

termine the force required to hold the pipe in place. Neglect the weight of

the bend and the water weight.

Ans. (46.5 kN)

2

1

Fig. 5.27 

5.12 Water exits to the atmosphere through a split nozzle as shown in Fig. 5.28.

The duct areas are A 1 = 0.02 m2 and A2 = A 3 = 0.01 m2. The flow rate is

Q2 = Q3 = 0.04 m2/s, and the inlet pressure p1 = 150 kPa (absolute). Com-

pute the force on the flange bolts at Section 1.

Ans. (1577.13 N)
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3

1

2

30°

30°

Fig. 5.28 

5.13 A fluid of constant density r, flows over a stationary flat plate with a uni-

form free stream velocity U•, as shown in Fig 5.29. The velocity distribution

at the downstream of the body is given by 

3
3 1

2 2

u y y

U d d•

Ê ˆ= - Á ˜Ë ¯ . The width of

flow perpendicular to the plane of the figure is w. Find the net drag force

exerted by the plate on the fluid over the length L.

Ans. 
2

0

39

140
wUr d•

Ê ˆ
Á ˜Ë ¯

U•

Edge of
boundary
Layer

U•

A B

C

0d

L

Fig. 5.29 

5.14 A vertical jet issuing from a nozzle with a velocity of 10 m/s impinges on a

horizontal plate bearing a total load of 200 N (Fig. 5.30). The fluid is an oil

of density 800 kg/m
3
 and the nozzle exit diameter is 60 mm. Obtain a gen-

eral expression for the speed of the fluid jet as a function of height, h. Find

the height to which the plate will rise and remain stationary.

Ans. (1.12 m)
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h

Fig. 5.30 

5.15 A jet of water issuing from a stationary nozzle with a velocity 10 m/s strikes

a turning vane mounted on a cart, as shown in Fig. 5.13. The vane turns the

jet through an angle 30∞. The area corresponding to jet velocity 10 m/s A . An

external mass M  is connected to the cart through a frictionless pulley. Deter-

mine the  magnitude of M required to hold the cart stationary.

Ans. 4.4 kg

5.16 A tank, weighing 150 N when empty, contains water with a density of 1000

kg/m3. The tank is of cylindrical shape with a diameter of 1 m, and is kept on

a smooth slab of ice (Fig. 5.31). Coefficient of static friction between the

tank and the ice slab is 0.01 and the coefficient of kinetic friction between

the two is 0.001. Assume Torricelli’s idealisation of efflux from a hole on

the side of the tank as 2V gh= . The hole’s diameter is 9 cm.

(i) Does the tank move from its initial state of rest towards the right, if

h = 0.6 m?

(ii) Derive a differential equation of motion describing the velocity of the

tank as a function of time, assuming an initial value of h as h0 at t = 0.

Express the equation in terms of the instantaneous level of water in the

tank.

Ans. 
hole

hole tank 0
tank

(i) No, (ii) 0,
2

Adh g
A V A h h t

dt A

Ê ˆ
+ = = +Á ˜Ë ¯

h

30 cm

1m

V

Fig. 5.31 
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5.17 A container with vertical walls, filled with water, rolls without resistance

along a smooth horizontal track. A water jet issues horizontally through a

small nozzle located on the wall of the container (Fig. 5.32). The jet has a

velocity V f relative to the container and has a cross-sectional area A f. The

initial mass of the filled container is M0 and its velocity is u0 at t = 0. One

face of the container is struck by a horizontal water jet of cross-sectional

area A j and velocity V j, so as to slow it down. Obtain an expression for the

variation of the velocity of the container as a function of time.

Ans. ( ) ( )22
0

CV
f f f f CV

dV
M m t A V A V V

dt
r r

Ê ˆ- - = - + +Á ˜Ë ¯
&

Vf

Af

V, A

Fig. 5.32 

5.18 A vertical jet issuing from a nozzle with a velocity of 10 m/s impinges on a

horizontal plate bearing a total load of 200 N (Fig. 5.33). The fluid is an oil

of density 800 kg/m3 and the nozzle exit diameter is 60 mm. When the plate

is 1.12 m above the nozzle exit, it is moving upward at 5 m/s. Find the verti-

cal acceleration of the plate at this instant.

Ans. (1.24 m/s2)

5 m/s

h = 1.12 m

Fig. 5.33 
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5.19 A vane, with turning angle q = 120°, is attached to a cart which is moving

with uniform velocity 10 m/s on a frictionless track (Fig. 5.34). The vane

receives a jet of water of 10 cm diameter which leaves a stationary nozzle

horizontally with a velocity Eq. 30 m/s. Determine the resultant force ex-

erted by the water jet on the cart. Assume the water flow to be inviscid.

Ans. (5.44 kN)

30 m/s q = 120∞

10 m/s

Fig. 5.34 

5.20 A rocket, with an initial mass of 250 kg, is to be launched vertically. The

spent gases are discharged from the rocket at a constant rate of 9 kg/s and

with a constant velocity of 3000 m/s relative to the rocket. Neglecting the air

drag, find the rocket speed after 10 s.

Ans. (1240.76 m/s)

5.21 A lawn sprinkler is supplied with water at a volume flow rate of Q. The water

runs along two equal arms of radius R and is discharged through nozzles of

cross-sectional area A , at an angle of q as shown in Fig. 5.35. Find the steady-

state angular velocity w assuming no friction at the pivot. Neglect small

length of the bent portion.

Ans. 
2

Q

AR

Ê ˆ-Á ˜Ë ¯

R

q

w
R

q

Fig. 5.35 



6.1  INTRODUCTION

Solutions to engineering problems, due to their complex nature, are determined mostly

from experiments. Due to economic advantages, saving of time and ease of

investigations, it is not possible in a number of instances, to perform experiments in

the laboratory under identical conditions, in relation to the operating parameters

prevailing in practice. Therefore, laboratory tests are usually carried out under altered

conditions of the operating variables from the actual ones in practice. These variables

in case of problems relating to fluid flow are pressure, velocity, geometrical

dimensions of the working systems, and the physical properties of the working fluid.

The pertinent questions arising out of this situation are the following:

(i) How can we apply the test results from laboratory experiments to the actual

problems for another set of conditions in practice?

(ii) When the performance of a system is governed by a large number of operat-

ing parameters as the input variables, a large number of experiments are re-

quired to be carried out accordingly to determine the influences of each and

every operating parameter on the performance of the system. Is it possible, by

any way, to reduce the large number of experiments, involving huge labour,

time, and cost, to a lesser one in achieving the same objective?

A positive clue in answering the above two questions lies in the principle of physical

similarity. This principle makes it possible and justifiable (i) to apply the results taken

from tests under one set of conditions to another set of conditions and (ii) to predict

the influences of a large number of independent operating variables on the

performance of a system from an experiment with a limited number of operating

variables. Therefore, a large part of the progress made in the study of mechanics of

fluids and in the engineering applications of the subject has come from experiments

conducted on scale models. No aircraft is now built before exhaustive tests are carried

out on small models in a wind tunnel. The behaviour and power requirements of a ship

are calculated in advance from the results of tests in which a small model of the ship

is towed through water. Flood control of rivers, spillways of dams, harbour works,

performances of fluid machines like turbines, pumps and propellers, and similar large-

scale projects are studied in detail with models in the laboratory. In a number of

situations, tests are conducted with one fluid and the results are applied to situations

in which another fluid is used.

6

PRINCIPLES OF PHYSICAL

SIMILARITY AND

DIMENSIONAL ANALYSIS
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6.2   CONCEPT AND TYPES OF PHYSICAL SIMILARITY

The primary and fundamental requirement for the physical similarity between two

problems is that the physics of the problems must be the same. For example, a fully

developed flow through a closed conduit can never be made, (under any situation)

physically similar to a flow in an open channel, since the flow in the earlier case is

governed by viscous and pressure forces while the gravity force is dominant in the

latter case to maintain the flow. Therefore, the laws of similarity have to be sought

between problems described by the same physics. We shall first define physical

similarity as a general proposition. Two systems, described by the same physics, but

operating under different sets of conditions are said to be physically similar in respect

of certain specified physical quantities when the ratio of corresponding magnitudes

of these quantities between the two systems is the same everywhere. If the specified

physical quantities are geometrical dimensions, the similarity is called geometric

similarity, if the quantities are related to motion, the similarity is called kinematic

similarity and if the quantities refer to force, then the similarity is termed as dynamic

similarity. In the field of mechanics, these three similarities together constitute the

complete similarity between problems of the same kind.

6.2.1 Geometric Similarity

Geometric similarity is the similarity of shape. This is probably the type of similarity

most commonly encountered and most easily understood. In geometrically similar

systems, the ratio of any length in one system to the corresponding length in the

other system is the same everywhere. This ratio is usually known as the scale factor.

Therefore, geometrically similar objects are similar in their shapes, i.e., proportionate

in their physical dimensions, but differ in size. In investigations of physical similarity,

the full size or actual scale systems are known as prototypes while the laboratory

scale systems are referred to as models. As already indicated, use of the same fluid

with both the prototype and the model is not necessary, nor is the model necessarily

smaller than the prototype. The flow of fluid through an injection nozzle or a

curburettor, for example, would be more easily studied by using a model much larger

than the prototype. The model and prototype may be of identical size, although the

two may then differ in regard to other factors such as velocity, and properties of the

fluid. If l1 and l2 are the two characteristic physical dimensions of any object, then the

requirement of geometrical similarity is

1

1

m

p

l

l
 = 2

2

m

p

l

l
 = lr

(The second suffices m and p refer to model and prototype, respectively) where lr

is the scale factor or sometimes known as the model ratio. Figure 6.1 shows three

pairs of geometrically similar objects, namely, a right circular cylinder, a

parallolepiped, and a triangular prism.
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Right circular cylinders

D

D/2
a

a/2

a/2

h/2

b/2b

b/2

Parallelopipeds

b

h

c

c/2h

h/2

a

Triangular prisms

Fig. 6.1 Geometrically similar objects

It can be mentioned in this context that roughness of the surface should also be

geometrically similar. Geometric similarity is perhaps the most obvious requirement in

a model system designed to correspond to a given prototype system. A perfect

geometric similarity is not always easy to attain. For a small model, the surface

roughness might not be reduced according to the scale factor unless the model

surfaces can be made very much smoother than those of the prototype. If for any

reason the scale factor is not the same throughout, a distorted model results.

Sometimes it may so happen that to have a perfect geometric similarity within the

available laboratory space, physics of the problem changes. For example, in case of

large prototypes, such as rivers, the size of the model is limited by the available floor

space of the laboratory; but if a very low scale factor is used in reducing both the

horizontal and vertical lengths, this may result in a stream so shallow that surface

tension has a considerable effect and moreover, the flow may be laminar instead of

turbulent. In this situation, a distorted model may be unavoidable (a lower scale factor

for horizontal lengths while a relatively higher scale factor for vertical lengths). The

extent to which perfect geometric similarity should be sought therefore depends on

the problem being investigated, and the accuracy required from the solution.
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6.2.2 Kinematic Similarity

Kinematic similarity is similarity of motion. Since motions are described by distance

and time, kinematic similarity implies similarity of lengths (i.e., geometrical similarity)

and in addition, similarity of time intervals. If the corresponding lengths in the two

systems are in a fixed ratio, the velocities of corresponding particles must be in a fixed

ratio of magnitude of corresponding time intervals. If the ratio of corresponding

lengths, known as the scale factor, is lr and the ratio of corresponding time intervals

is tr, then the magnitudes of corresponding velocities are in the ratio lr/tr and the

magnitudes of corresponding accelerations are in the ratio lr/tr
2.

A well-known example of kinematic similarity is found in a planetarium. Here the

galaxies of stars and planets in space are reproduced in accordance with a certain

length scale and in simulating the motions of the planets, a fixed ratio of time intervals

(and hence velocities and accelerations) is used.

When fluid motions are kinematically similar, the patterns formed by streamlines

are geometrically similar at corresponding times. Since the impermeable boundaries

also represent streamlines, kinematically similar flows are possible only past

geometrically similar boundaries. Therefore, geometric similarity is a necessary

condition for the kinematic similarity to be achieved, but not the sufficient one. For

example, geometrically similar boundaries may ensure geometrically similar

streamlines in the near vicinity of the boundary but not at a distance from the

boundary.

6.2.3 Dynamic Similarity

Dynamic similarity is the similarity of forces. In dynamically similar systems, the

magnitudes of forces at similar points in each system are in a fixed ratio. In other

words, the ratio of magnitudes of any two forces in one system must be the same as

the magnitude ratio of the corresponding forces in other systems. In a system

involving flow of fluid, different forces due to different causes may act on a fluid

element. These forces are as follows:

Viscous force (due to viscosity) F
r

v

Pressure force (due to difference in pressure) F
r

p

Gravity force (due to gravitational attraction) F
r

g

Capillary force (due to surface tension) F
r

c

Compressibility force (due to elasticity) F
r

e

According to Newton’s law, the resultant FR of all these forces, will cause the

acceleration of a fluid element. Hence,

F
r

R = F
r

v
 + F

r

p + F
r

g + F
r

c + F
r

e (6.1)

Moreover, the inertia force 
r

F i is defined as equal and opposite to the resultant

accelerating force F
r

R. Therefore, Eq. (6.1) may also be expressed as

F
r

v + F
r

p + F
r

g + F
r

c + F
r

e + F
r

i = 0
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For dynamic similarity, the magnitude ratios of these forces have to be same for

both the prototype and the model. The inertia force F
r

i is usually taken as the common

one to describe the ratios as

, , , ,
p g c e

i i i i i

F FF F F

F F F F F

r rr r r

r r r r r

v

A fluid motion, under all such forces is characterised by (i) hydrodynamic

parameters like pressure, velocity and acceleration due to gravity, (ii) rheological and

other physical properties of the fluid involved, and (iii) geometrical dimensions of the

system. Now it becomes important to express the magnitudes of different forces in

terms of these parameters, so as to know the extent of their influences on the different

forces acting on a fluid element in the course of its flow.

Inertia Force 
r

Fi The inertia force acting on a fluid element is equal in magnitude

to the mass of the element multiplied by its acceleration. The mass of a fluid element

is proportional to rl3, where r is the density of fluid and l is the characteristic

geometrical dimension of the system. The acceleration of a fluid element in any

direction is the rate at which its velocity in that direction changes with time and is

therefore proportional in magnitude to some characteristic velocity V , divided by

some specified interval of time t. The time interval t, is proportional to the

characteristic length l, divided by the characteristic velocity V , so that the

acceleration becomes proportional to V 2/l. The magnitude of inertia force is thus

proportional to rl3V 2/l = rl2V 2. This can be written as

iF
r

 μ rl2V2
(6.2a)

Viscous Force 
r

Fv The viscous force arises from shear stress in a flow of fluid.

Therefore, we can write

Magnitude of viscous force F
r

v  = Shear stress ¥ Surface area over which the

shear stress acts

Again, shear stress = m (Viscosity) ¥ Rate of shear strain

where, rate of shear strain μ velocity gradient μ 
V

l
 and surface are μ l 2

Hence, F
r

v  μ 2V
l

l
m

μ m Vl (6.2b)

Pressure Force 
r

pF The pressure force arises due to the difference of pressure in

a flow field. Hence, it can be written as

pF
r

 μ D p ◊ l2 (6.2c)

where D p is some characteristic pressure difference in the flow.

Gravity Force rFg The gravity force on a fluid element is its weight.

Hence, gF
r

 μ rl3g (6.2d)
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where g is the acceleration due to gravity or weight per unit mass.

Capillary or Surface Tension Force 
r

Fc The capillary force arises due to the

existence of an interface between two fluids. The surface tension force acts tangential

to a surface and is equal to the coefficient of surface tension s multiplied by the

length of a linear element on the surface perpendicular to which the force acts.

Therefore,

cF
r

 μ s l (6.2e)

Compressibility or Elastic Force 
r

Fe Elastic force comes into consideration

due to the compressibility of the fluid in course of its flow. It has been shown in Eq.

(1.3) that for a given compression (a decrease in volume), the increase in pressure is

proportional to the bulk modulus of elasticity E and gives rise to a force known as the

elastic force.

Hence, eF
r

 μ El2 (6.2f)

The flow of a fluid in practice does not involve all the forces simultaneously.

Therefore, the pertinent dimensionless parameters for dynamic similarity are derived

from the ratios of dominant forces causing the flow.

6.2.4 Dynamic Similarity of Flows governed by Viscous, Pressure
and Inertia Forces

The criteria of dynamic similarity for the flows controlled by viscous, pressure and

inertia forces are derived from the ratios of the representative magnitudes of these

forces with the help of Eqs (6.2a) to (6.2c) as follows:

Viscous force

Inertia force
 =

2 2
i

F V l

lVF V l

m m

rr
μ =

r

r

v
(6.3a)

Pressure force

Inertia force
 =

2

2 2 2

p

i

F pl p

F l V Vr r

D D
μ =

r

r (6.3b)

The term rlV /m is known as Reynolds number, Re, after the name of the scientist

who first developed it and is thus proportional to the magnitude ratio of inertia force

to viscous force. The term D p/rV 2 on the RHS of Eq. (6.3b) is known as Euler number,

Eu, after the name of the scientist who first derived it. Therefore, the dimensionless

terms Re and Eu represent the criteria of dynamic similarity for the flows which are

affected only by viscous, pressure and inertia forces. Such instances, for example, are

(i) the full flow of fluid in a completely closed conduit, (ii) flow of air past a low-speed

aircraft and (iii) the flow of water past a submarine deeply submerged to produce no

waves on the surface. Hence, for a complete dynamic similarity to exist between the

prototype and the model for this class of flows, the Reynolds number, Re, and the

Euler number, Eu, have to be same for the two (prototype and model). Thus,
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p p p

p

l Vr

m
 = m m m

m

l Vr

m
(6.3c)

2

p

p p

p

Vr

D
 =

2

m

m m

p

Vr

D
(6.3d)

where the suffix p and suffix m refer to the parameters for prototype and model

respectively. In practice, the pressure drop is the dependent variable, and hence it is

compared to the two systems with the help of Eq. (6.3d), while the equality of

Reynolds number (Eq. (6.3c)) along with the equalities of other parameters in relation

to kinematic and geometric similarities are maintained.

The characteristic geometrical dimension l, and the reference velocity V , in the

expression of the Reynolds number may be any geometrical dimension and any

velocity which are significant in determining the pattern of flow. For internal flows

through a closed duct, the hydraulic diameter of the duct Dh , and the average flow

velocity at a section are invariably used for l and V , respectively. The hydraulic

diameter Dh , is defined as Dh = 4A /P, where A  and P are the cross-sectional area and

wetted perimeter, respectively.

6.2.5 Dynamic Similarity of Flows with Gravity, Pressure and
Inertia Forces

A flow of the type, where significant forces are gravity force, pressure force and

inertia force, is found when a free surface is present. One example is the flow of a

liquid in an open channel; another is the wave motion caused by the passage of a ship

through water. Other instances are the flows over weirs and spillways. The condition

for dynamic similarity of such flows requires the equality of the Euler number Eu (the

magnitude ratio of pressure to inertia force), and the equality in the magnitude ratio of

gravity to inertia force at corresponding points in the systems being compared.

From Eqs (6.2a) and (6.2d),

Gravity force

Inertia force
 =

3

2 2 2

g

i

F l g lg

F l V V

r

r
μ =

r

r (6.3e)

In practice, it is often convenient to use the square root of this ratio to have the first

power of the velocity. From a physical point of view, equality of (lg)
1/2

/V  implies

equality of lg/V 2
 as regard to the concept of dynamic similarity. The reciprocal of the

term (lg)
1/2

 /V  is known as Froude number after William Froude who first suggested

the use of this number in the study of naval architecture. Hence Froude number, Fr =

V /(lg)
1/2

. Therefore, the primary requirement for dynamic similarity between the

prototype and the model involving flow of fluid with gravity as the dominant force, is

the equality of Froude number, Fr, i.e.,

1/ 2( )p p

p

l g

V
 =

1/ 2( )m m

m

l g

V
(6.3f)
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6.2.6 Dynamic Similarity of Flows with Surface Tension as the
Dominant Force

 Surface tension forces are important in certain classes of practical problems such as

(i) flows in which capillary waves appear, (ii) flows of small jets and thin sheets of

liquid injected by a nozzle in air (iii) flow of a thin sheet of liquid over a solid surface.

Here the significant parameter for dynamic similarity is the magnitude ratio of the

surface tension force to the inertia force, and can be written with the help of Eqs (6.2a)

and (6.2e) as

c

i

F

F

r

r  μ
2 2 2

l

l V V l

s s

r r
= (6.3g)

The term s/rV 2l is usually known as Weber number, Wb, after the German naval

architect Moritz Weber who first suggested the use of this term as a relevant

parameter.

6.2.7 Dynamic Similarity of Flows with Elastic Force

When the compressibility of fluid in the course of its flow becomes important, the

elastic force along with the pressure and inertia forces has to be considered.

Therefore, the magnitude ratio of inertia to elastic force becomes a relevant parameter

for dynamic similarity under this situation. With the help of Eqs (6.2a) and (6.2f)

Inertia force

Elastic force
 =

2 2 2

2

i

e

F l V V

EF El

r r
μ =

r

r (6.3h)

The parameter rV 2/E is known as the Cauchy number, after the French

mathematician A.L. Cauchy. If we consider the flow to be isentropic, then it can be

written

i

e

F

F

r

r  μ
2

s

V

E

r
(6.3i)

where Es is the isentropic bulk modulus of elasticity. It is shown  in Chapter 14 that

the velocity with which a sound wave propagates through a fluid medium equals to

/sE r . Hence, the term rV 2
/Es can be written as V 2

/ a2
, where a is the acoustic

velocity in the fluid medium. The ratio V /a is known as the Mach number, Ma, after an

Austrian physicist Earnst Mach. It has been shown in Chapter 1, Eq. (1.29) that the

effects of compressibility become important when the Mach number exceeds 0.33.

The situation arises in the flow of air past high-speed aircraft, missiles, propellers and

rotory compressors. In these cases equality of the Mach number is a condition for

dynamic similarity.

Therefore, V p/ap = Vm /am (6.3j)
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It is appropriate at this point to summarise the ratios of forces arising in the context

of dynamic similarity for different situations of flow as discussed above. This is

shown in Table 6.1.

Table 6.1

Pertinent dimensionless (Representative) Name Recommended

term as the criterion of magnitude symbol

dynamic similarity in ratio of the

different situations forces

of fluid flow

rlV/m
Inertia force

Viscous force
Reynolds number Re

D p/rV2 Pressure force

Inertia force
Euler number Eu

V /(lg)
1/2 Inertia force

Gravity force
Froude number Fr

s/rV2l
Surface tension force

Inertia force
Weber number Wb

V/ Es /r
Inertia force

Elastic force
Mach number Ma

6.3   THE APPLICATION OF DYNAMIC SIMILARITY—
DIMENSIONAL ANALYSIS

We have already seen that a number of dimensionless parameters, representing the

magnitude ratios of certain physical variables, namely, geometrical dimension,

velocity and force become the criteria of complete physical similarity between systems

governed by the same physical phenomenon. Therefore, a physical problem may be

characterised by a group of dimensionless similarity parameters or variables rather

than by the original dimensional variables. This gives a clue to the reduction in the

number of parameters requiring separate consideration in an experimental

investigation. For example, if the Reynolds number Re = rVDh/m is considered as the

independent variable, in case of a flow of fluid through a closed duct of hydraulic

diameter Dh, then a change in Re may be caused through a change in flow velocity V ,

only. Thus a range of Re can be covered simply by the variation in V , without varying

other independent dimensional variables r, Dh and m. In fact, the variation in the

Reynolds number physically implies the variation in any of the dimensional

parameters defining it, though the change in Re, may be obtained through the

variation in any one parameter, say the velocity V . A number of such dimensionless

parameters in relation to dynamic similarity are shown in Table 6.1. Sometimes it
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becomes difficult to derive these parameters straightforward from an estimation of the

representative order of magnitudes of the forces involved. An alternative method of

determining these dimensionless parameters by a mathematical technique is known

as dimensional analysis. The requirement of dimensional homogeneity imposes

conditions on the quantities involved in a physical problem, and these restrictions,

placed in the form of an algebraic function by the requirement of dimensional

homogeneity, play the central role in dimensional analysis. There are two existing

approaches; one due to Buckingham and the other due to Rayleigh. Before

discussing the description of these two methods, a few examples of the dimensions of

physical quantities are given as follows.

6.3.1 Dimensions of Physical Quantities

All physical quantities are expressed by magnitudes and units. For example, the

velocity and acceleration of a fluid particle are 8 m/s and 10 m/s2 respectively. Here

the dimensions of velocity and acceleration are ms–1 and ms–2 respectively. In SI

(System International) units, the primary physical quantities which are assigned base

dimensions are mass, length, time, temperature, current, and luminous intensity. Of

these, the first four are used in fluid mechanics and they are symbolised as M (mass),

L (length), T (time), and q (temperature).

Any physical quantity can be expressed in terms of these primary quantities by

using the basic mathematical definition of the quantity. The resulting expression is

known as the dimension of the quantity. For example, shear stress t is defined as

force/area. Again, force = mass ¥ acceleration

Dimensions of acceleration = Dimensions of velocity/Dimension of time

=
2

Dimension of distance

(Dimension of time)

=
2

L

T

Dimension of area = (Length)2 = L2

Hence, dimensions of shear stress t = ML/T
2
L

2
 = ML

–1
T

–2
(6.4)

To find out the dimension of viscosity, as another example, one has to consider

Newton’s law (Eq. 1.1) for the definition of viscosity as

t = m du/dy

or m =
(d /d )u y

t

The dimension of velocity gradient du/dy can be written as

dimension of du/dy = dimension of u/dimension of y = L/TL = T–1

The dimenison of shear stress t is given in Eq. (6.4).
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Hence, dimension of m =
Dimension of

Dimension of d /du y

t
 = 

–1 – 2

–1

ML T

T

= ML
–1

T
–1

Dimensions of various physical quantities commonly encountered in problems on

fluid flow are given in Table 6.2.

Table  6.2 Dimensions of physical quantities

Physical quantity Dimension

Mass M

Length L

Time T

Temperature q

Velocity LT
–1

Angular velocity T –1

Acceleration LT –2

Angular acceleration T
–2

Force, Thrust, Weight MLT –2

Stress, Pressure ML–1T –2

Momentum MLT
–1

Angular momentum ML2T –1

Moment, Torque ML2T –2

Work, Energy ML
2
T

–2

Power ML2T –3

Stream function L2T –1

Vorticity, Shear rate T
–1

Velocity potential L2T –1

Density ML–3

Coefficient of dynamic viscosity ML
–1

T
–1

Coefficient of kinematic viscosity L2T –1

Surface tension MT –2

Bulk modulus of elasticity ML
–1

T
–2

6.3.2 Buckingham’s Pi Theorem

When a physical phenomenon is described by m number of variables like x1, x2, x3, ...

xm, we may express the phenomenon analytically by an implicit functional relationship

of the controlling variables as
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f (x1, x2, x3, .., xm) = 0 (6.5)

Let n be the number of fundamental dimensions like mass, length, time,

temperature, etc., involved in these m variables, then according to Buckingham’s p
theorem, and following the conditions of dimensional homogeneity of the variables,

the phenomenon can be described in terms of (m – n) dimensionless groups like p1,

p2, ... pm–n. The p terms,  which represent the dimensionless groups or parameters

consist of different combinations of a number of dimensional variables out of the m

variables defining the problem. Therefore, the analytical version of the phenomenon

given by Eq. (6.5) can be reduced to

F(p1, p2, ... pm–n) = 0 (6.6)

This physically implies that the phenomenon which is basically described by m

dimensional variables, is ultimately controlled by (m–n) dimensionless parameters

known as p terms. One out of these p terms includes the dependent physical variable

and thus represents the dependent p term which is a function of the remaining

independent p terms

6.3.2.1 Determination of p terms

The number of p terms is fixed by the Pi theorem. The next step is the determination of

p terms as follows:

Any group of n (n = number of fundamental dimensions) variables out of

m (m = total number of variables defining the problem) is first chosen. These  n

variables are referred to as repeating variables. Then the p terms are formed by the

product of these repeating variables raised to arbitrary unknown integer exponents

and any one of the excluded (m – n) variables. For example, x1 x2 ... xn are taken as the

repeating variables. Then,

p1 =x
a
1

1  x
a
2

2  . . . xn
an  xn+1

p2 =x
a
1

1  x2
a2

 . . . xn
an  xn+2

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

p m – n = x
a
1

1  x 2
a2  .. . xn

an  xm

The sets of integer exponents a1 a2 ... an are different for each p term. Since p terms

are dimensionless, it requires that if all the variables in any p term are expressed in

terms of their fundamental dimensions, the exponent of all the basic dimensions must

be zero. This leads to a system of n linear equations in a1 a2 ... an which gives a unique

solution for the exponents. Thus the values of a1 a2 ... an for each p term are known and

hence the p terms are uniquely defined. In selecting the repeating variables, the

following points have to be considered:

(i) The repeating variables must include among them all the n fundamental di-

mensions, not necessarily in each one but collectively.

(ii) The dependent variable or the output parameter of the physical phenomenon

should not be included in the repeating variables.

It can be mentioned in this context that when m < n, there is no solution which

means no physical phenomenon is described under this situation. Moreover, when m =

n, there is a unique solution of the variables involved and hence all the parameters
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have fixed values. This situation also does not represent a physical phenomenon or

process. Therefore all feasible phenomena in paractice are defined with m > n. When

m = n + 1, then, according to the Pi theorem, the number of p term is one and the

phenomenon can be expressed as

f(p1) =  0

where, the non-dimensional term p1 is some specific combination of n + 1 variables

involved in the problem.

When m > n + 1, the number of p terms are more than one. The most important point

to discuss is that a number of choices regarding the repeating variables arise in this

case. Again, it is true that if one of the repeating variables is changed, it results in a

different set of p terms. Therefore the interesting question is which set of repeating

variables is to be chosen, to arrive at the correct set of p terms to describe the problem.

The answer to this question lies in the fact that different sets of p terms resulting from

the use of different sets of repeating variables are not independent. Thus, any one of

such interdependent sets is meaningful in describing the same physical phenomenon.

From any set of such p terms, one can obtain the other meaningful sets from some

combination of the p terms of the existing set without altering their total numbers (m–n)

as fixed by the Pi theorem. The following two examples will make the understanding of

Buckingham’s Pi theorem clear.

Example 6.1

The vertical displacement h of a freely falling body from its point of projection at any

time t, is determined by the acceleration due to gravity g. Find the relationship of h

with t and g using Buckingham’s Pi theorem.

Solution

The above phenomenon can be described by the functional relation as

F(h, t, g) = 0 (6.7)

Here , the number of variables m = 3 (h, t, and g) and they can be expressed in terms

of two fundamental dimensions L and T. Hence, the number of p terms

= m – n = 3 – 2 = 1. In determining this p term, the number of repeating variables to be

taken is 2. Since h is the dependent variable, the only choice left for the repeating

variables is with t and g.

Therefore,

p1 = t a
 gbh (6.8)

By substituting the fundamental dimensions of the variables on the left- and- right-

hand sides of Eq. (6.8), we get

L
0
T

0
= T

a
 (LT

–2
)
b
L

Equating the exponents of T and L on both the sides of the above equation we

have

a – 2b = 0
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and b + 1 = 0

which give,
    a = –2

b = –1
Hence, p1 = h/gt2

Therefore the functional relationship (Eq. (6.7)) of the variables describing the

phenomenon of free fall of a body under gravity can be written in terms of the

dimensionless parameter (p1) as

f 
2

h

gt

Ê ˆ
Á ˜Ë ¯

= 0 (6.9)

From elementary classical mechanics we know that 
2

1

2

h

gt
= . One should know, in this

context, that the Pi theorem can only determine the pertinent dimensionless groups

describing the problem but not the exact functional relationship between them.

Example 6.2

For a steady, fully developed laminar flow through a duct, the pressure drop per unit

length of the duct D p/l is constant in the direction of flow and depends on the

average flow velocity V , the hydraulic diameter of the duct Dh, the density r, and the

viscosity m, of the fluid. Find out the pertinent dimensionless groups governing the

problem by the use of Buckingham’s p theorem.

Solution

The variables involved in the problem are

p

l

D
, V , Dh, r, m

Hence, m = 5.

The fundamental dimensions in which these five variables can be expressed are M

(mass), L (length) and  T time . Therefore, n = 3. According to Pi theorem, the number of

independent p terms is (5–3) = 2, and the problem can be expressed as

f (p1 p2) = 0 (6.10)

In determining p1 and p2, the number of repeating variables that can be taken is 3. The

term D p/l being the dependent variable should not be taken as the repeating one.

Therefore, choices are left with V , Dh, r and m. Incidentally,  any combination of three

out of these four quantities involves all the fundamental dimensions M, L and T.

Hence any one of the following four possible sets of repeating variables can be used:

V , Dh, r
V , Dh, m
Dh, r, m
V , r, m
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Let us first use the set V , Dh and r. Then the p terms can be written as

p1 = V a Dh
b rc Dp/l (6.11)

p2 = V a
 Dh

b
 rc

 m (6.12)

Expressing the Eqs (6.11) and (6.12) in terms of the fundamental dimensions of the

variables, we get

M
0
L

0
T

0
 = (LT

–1
)
a
 (L)

b
 (ML

–3
)
c
 ML

–2
T

–2
(6.13)

M0L0T0 = (LT–1)a (L)b (ML–3)c ML–1T–1 (6.14)

Equating the exponents of M, L and T on both sides of Eq. (6.13) we have,

c + 1 = 0

a + b – 3c – 2 = 0

– a – 2 = 0

which give a = –2, b = 1 and c = –1

\ p1 =
2

p Dh

l Vr

D

Similarly from Eq. (6.14)

c + 1 = 0

a + b – 3c – 1 = 0

– a – 1 = 0

which give a = –1, b = –1, and c = –1

Therefore, p2 =
hVD

m

r

Hence, Eq. (6.10) can be written as

F 
2

,h

h

pD

VDl V

m

rr

Ê ˆD
Á ˜Ë ¯

 = 0 (6.15)

The term p2 is the reciprocal of Reynolds number, Re, as defined earlier.Equation

(6.15) can also be expressed as

f 2
,h hpD VD

l V

r

mr

Ê ˆD
Á ˜Ë ¯  = 0 (6.16)

or 2

hpD

l Vr

D
 = f (Re) (6.17)

The term p1, i.e., 2

hpD

l Vr

D
  is known as the friction factor in relation to a fully developed

flow through a closed duct.

Let us now choose V , Dh and m as the repeating variables.

Then

p1 = V a Dh
b mc (Dp/l) (6.18)
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p2 = V a Dh
b mc r (6.19)

Expressing the right-hand side of Eq. (6.18) in terms of fundamental dimensions, we

have

M0L0T0 = (LT–1)aLb (ML–1T–1)c ML–2T–2

Equating the exponents of M, L and T from above,

c + 1 = 0

a + b – c – 2 = 0

– a – c – 2 = 0

Finally, a = –1, b = 2, c = –1

Therefore, p1 =
D p

l

D

V

h
2

m

Similarly, equating the exponents of fundamental dimensions of the variables on both

sides of Eq. (6.19) we get

a = 1, b = 1, c = –1

Therefore, p2 = hVDr

m
Hence, the same problem which was defined by Eq. (6.15) can also be defined by the

equation

f

2

,h hD VDp

l V

r

m m

Ê ˆD
Á ˜Ë ¯  = 0 (6.20)

Though the Eqs (6.15) and (6.20) are not identical, but they are interdependent.

Now if we write the two sets of p terms obtained straightforward from the application

of p theorem as

p1 p2

Set 1:
2

hpD

l Vr

D
,

hVD

m

r

Set 2:

2
hp D

lV m

D
, hVDr

m

We observe that

(1/p2) of Set 2 = (p2) of Set 1

and (p1/p2) of Set 2 = (p1) of Set 1

Therefore, it can be concluded that, from one set of p terms, one can obtain the other

set by some combination of the p terms of the existing set. It is justified both

mathematically and physically that the functional relationship of p terms representing

a problem in the form

f  (p1, p2, ... pr) = 0
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is equivalent to any implicit functional relationship between other p terms obtained

from any arbitrary mathematical combination of p terms of the existing set, provided

the total number of independent p terms remains the same. For example, Eq. (6.20) and

Eq. (6.15) can be defined in terms of p parameters of the Set 2 as f (p1, p2) = 0 and F(p1/

p2, 1/p2) = 0, respectively.

Table 6.3 shows different mutually interdependent sets of p terms obtained from all

possible combinations of the repeating variables of Example 6.2. Though the different

sets of p terms as shown in Column 2 of Table 6.3 are mathematically meaningful, many

of them lack physical significance. The physically meaningful parameters of the problem

are Dp Dh/lrV2 are rVDh/m and are known as friction factor and Reynolds number,

respectively. Therefore while selecting the repeating variables, for a fluid flow problem,

it is desirable to choose one variable with geometric characteristics, another variable

with flow characteristics and yet another variable with fluid properties. This ensures

that the dimensionless parameters obtained will be the meaningful ones with respect to

their physical interpretations.

Table 6.3 Different sets of p terms resulting from different combinations of

  repeating variables of a pipe flow problem

Repeating Set of p terms Functional relation

variables p1 p2

V , Dh, r
D p D

l V

h

r 2

m

r VDh

F
2

,h

h

p D

VDl V

m

rr

Ê ˆD
Á ˜Ë ¯

 = 0

V , Dh, m
D p D

lV

h
2

m

r

m

VDh f
2

,h hp D VD

lV

r

m m

Ê ˆD
Á ˜Ë ¯

 = 0

Dh, r, m
D p D

l

h
3

2

r

m

r

m

VDh f
3

2
,h hp D VD

l

r r

mm

Ê ˆD
Á ˜Ë ¯

 = 0

V, r, m
D p

lV

m

r3 2

r

m

VDh y
3 2

, hVDp

lV

rm

mr

Ê ˆD
Á ˜Ë ¯

 = 0

The above discussion on Buckingham’s p theorem can be summarised as follows:

(i) List the m physical quantities involved in a particular problem. Note the num-

ber n, of the fundamental dimensions to express the m quantities. There will be

(m–n) p terms.

(ii) Select n of the m quantities, excluding any dependent variable, none dimen-

sionless and no two having the same dimensions. All fundamental dimen-

sions must be included collectively in the quantities chosen.

(iii) The first p term can be expressed as the product of the chosen quantities each

raised to an unknown exponent and one other quantity.

(iv) Retain the quantities chosen in (ii) as repeating variables and then choose

one of the remaining variables to establish the next p term in a similar manner

as described in (iii). Repeat this procedure for the successive p terms.



328 Introduction to Fluid Mechanics and Fluid Machines

(v) For each p term, solve for the unknown exponents by dimensional analysis.

(vi) If a  quantity out of m physical variables is dimensionless, it is a p term.

(vii) If any two physical quantities have the same dimensions, their ratio will be

one of the p terms.

(viii) Any p term may be replaced by the term, raised to an exponent. For example, p3

may be replaced by p3
2 or p2 by p 2 .

(ix) Any p term may be replaced by multiplying it by a numerical constant. For

example, p1 may be replaced by 3 p1.

Example 6.3

Drag force F, on a high speed air craft depends on the velocity of flight V , the

characteristic geometrical dimension of the air craft l, the density r, viscosity m, and

isentropic bulk modulus of elasticity Es, of ambient air. Using Buckingham’s p
theorem, find out the independent dimensionless quantities which describe the

phenomenon of drag on the aircraft.

Solution

The physical variables involved in the problem are F, V , l, r, m and Es; and they are 6

in number. The fundamental dimensions involved with these variables are 3 in number

and they are, namely, M, L, T. Therefore, according to the p theorem, the number of

independent p terms are (6 – 3) = 3.

Now to determine these p terms, V , l and r are chosen as the repeating variables. Then

the p terms can be written as

p1 = V a
 lb

 rc F

p2 = V a lb rc m

p3 = V a lb rc Es

The variables of the above equations can be expressed in terms of their fundamental

dimensions as

M0L0T0 = (LT–1)a Lb (ML–3)c MLT–2 (6.21)

M
0
L

0
T

0
 = (LT

–1
)
a
 L

b
 (ML

–3
)
c
 ML

–1
T

–1
(6.22)

M0L0T0 = (LT–1)aLb (ML–3)c ML–1T–2 (6.23)

Equating the exponents of M, L and T on both sides of the equations we have,

from Eq. (6.21),

c + 1 = 0

a + b – 3c + 1 = 0

– a – 2 = 0

which, give, a = – 2, b = – 2, and c = – 1

Therefore, p1 =
2 2

F

V lr

From Eq. (6.22), c + 1 = 0
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a + b –3c –1 = 0

– a – 1 = 0

which give, a = –1, b = –1 and c = –1

Therefore, p2 =
Vl

m

r

From Eq. (6.23), c + 1 = 0

a + b –3c – 1 = 0

– a – 2 = 0

which give a = – 2, b = 0 and c = – 1

Therefore, p3 =
2

sE

V r

=
2

/sE

V

r

Hence, the independent dimensionless parameters describing the problem are

p1 = 2 2

F

V lr
p2 = 

Vl

m

r
and p3 = 

2

/sE

V

r

Now we see that
2

1

p
 =

Vlr

m
 = Re (Reynolds number)

and

3

1

p
 =

/s

V V

aE r
=  = Ma (Mach number)

where a is the local speed of sound.

Therefore, the problem of drag on an aircraft can be expressed by an implicit

functional relationship of the pertinent dimensionless parameters as

f 
2 2

, ,
F Vl V

aV l

r

mr

Ê ˆ
Á ˜Ë ¯

 = 0

or
2 2

F

V lr
 = ,

Vl V

a

r
f

m

Ê ˆ
Á ˜Ë ¯

 (6.24)

The term F/rV 2l2 is known as drag coefficient CD. Hence Eq. (6.24) can be written as

CD = f (Re, Ma)

Example 6.4

An aircraft is to fly at a height of 9 km (where the temperature and pressure are – 45°C

and 30.2 kPa, respectively) at 400 m/s. A 1/20
th

 scale model is tested in a pressurised

wind-tunnel in which the air is at 15 °C. For complete dynamic similarity what pressure
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and velocity should be used in the wind tunnel? (For air, m μ T 3/2/(T + 117), Es = g p, p =

rRT where the temperature T is in kelvin, g is the ratio of specific heats).

Solution

We find from Eq. (6.24) that for complete dynamic similarity the Reynolds number, Re

and Mach number, Ma for the model must be the same with those of the prototype.

From the equality of Mach number Ma,

m

m

V

a
 =

p

p

V

a

or Vm =
m

p
p

a
V

a

=
m

p

s m

p
s p

E
V

E

r

r

(Subscripts m and p refer to the model and prototype, respectively.)

=
pm

p
p m

p
V

p

rg

g r
◊

(Since a = 
sE r , and E = g p)

Again from the equation of state,

pm

m p

p

p

r

r
 =

T
T

m

p

Hence, Vm =
m

p
p

T
V

T

= 400 m/s 
(273.15 15)

(273.15 45)

+
-

= 450 m/s

From the equality of Reynolds number,

m m m

m

V lr

m
 =

p p p

p

V lr

m

or m

p

r

r
 =

p p m

m m p

V l

V l

m

m
◊ ◊

or m

p

p

p
 = ,

p p m m

m m p p

V l T

V l T

m

m
◊ ◊
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=

5/ 2
117

117

p p pm

m m p m

V l TT

V l T T

+È ˘ È ˘
◊ Í ˙ Í ˙+Î ˚Î ˚

[Since m μ T3/2 / (T + 117)]

Therefore pm = 30.2 kPa 

5/ 2
400 273.15 15 273.15 45 117

(20)
450 273.15 45 273.15 15 117

+ - +Ê ˆ Ê ˆÊ ˆ
Á ˜ Á ˜ Á ˜Ë ¯ Ë ¯ Ë ¯- + +

= 821 kPa

Example 6.5

An agitator of diameter D, requires power P, to rotate at a constant speed N, in a liquid

of density r, and viscosity m . Show (i) with the help of the Pi theorem that P = r N3 D5

F(r N D2
/m) and (ii) An agitator of 225 mm diameter rotating at 23 rev/s in water requires

a driving torque of 1.1 Nm. Calculate the corresponding speed and the torque required

to drive a similar agitator of 675 mm diameter rotating in air (Viscosities: air 1.86 ¥ 10
5

Pas, water 1.01 ¥ 10
–3

 Pas. Densities: air 1.20 kg/m
3
, water 1000 kg/m

3
).

Solution

(i) The problem is described by 5 variables as

F (P, N, D, r, m) = 0

These variables are expressed by 3 fundamental dimensions M, L, and T. Therefore,

the number of p terms = (5 – 3) = 2. N, D, and r are taken as the repeating variables in

determining the p terms.

Then, p1 = Na
 Db

 rc
 P (6.25)

p2 = Na Db rc m (6.26)

Substituting the variables of Eq. (6.25) and (6.26) in terms of their fundamental

dimensions M, L and T we get,

M0 L0 T0 = (T–1)a (L)b (ML–3)c ML2 T–3 (6.27)

M0 L0 T0 = (T–1)a (L)b (ML–3)c ML–1 T–1 (6.28)

Equating the exponents of M, L and T from Eq. (6.27), we get
c + 1 = 0

b – 3c + 2 = 0

– a – 3 = 0

which give a = – 3, b = – 5, c = – 1

and hence p1 =
3 5

P

N Dr

Similarly, from Eq. (6.28)

c + 1 = 0
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b – 3c – 1 = 0

– a – 1 = 0

which give a = – 1 , b = – 2, c = – 1

Hence p2 =
2

ND

m

r

Therefore, the problem can be expressed in terms of independent dimensionless

parameters as

3 5 2
,

P
f

N D ND

m

r r

Ê ˆ
Á ˜Ë ¯

 = 0

which is equivalent to

2

3 5
,

P ND

N D

r
y

mr

Ê ˆ
Á ˜Ë ¯

 = 0

or
3 5

P

N Dr
 =

2ND
F

r

m

Ê ˆ
Á ˜Ë ¯

or P = rN3D5 
2ND

F
r

m

Ê ˆ
Á ˜Ë ¯

(ii) D1 = 225 mm D2 = 675 mm

N1 = 23 rev/s N2 = ?

r1 = 1000 kg/m3 r2 = 1.20 kg/m3

m1 = 1.01 ¥ 10
–3

 Pas m2 = 1.86 ¥ 10
–5

 Pas

P1 = 2p ¥ 23 ¥ 1.1 W P2 = ?

From the condition of similarity as established above,

2
2 2 2

2

N Dr

m
 =

2
1 1 1

1

N Dr

m

N2 =

2

1 1 2
1

2 2 1

D
N

D

r m

r m

Ê ˆ
Á ˜Ë ¯

= 23 rev/s 

2 5

3

225 1000 1.86 10

675 1.20 1.01 10

-

-
¥Ê ˆ

Á ˜Ë ¯ ¥

= 39.22 rev/s

again,
2

3 5
2 2 2

P

N Dr
 =

1

3 5
1 1 1

P

N Dr
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or
2

1

P

P
 =

5 3

2 2 2

1 1 1

D N

D N

r

r

Ê ˆ Ê ˆ
Á ˜ Á ˜Ë ¯ Ë ¯

or
2

1

T

T
 =

5 2

2 2 2

1 1 1

D N

D N

r

r

Ê ˆ Ê ˆ
Á ˜ Á ˜Ë ¯ Ë ¯

where, T represents the torque and satisfies the relation P = 2 pNT

Hence, T2 =

5 2

2 2 2
1

1 1 1

D N
T

D N

r

r

Ê ˆ Ê ˆ
Á ˜ Á ˜Ë ¯ Ë ¯

= 1.1 Nm 
5 2

675 39.22 1.20

225 23 1000

Ê ˆ Ê ˆ
Á ˜ Á ˜Ë ¯ Ë ¯

= 0.933 Nm

Example 6.6

A torpedo-shaped object 900 mm diameter is to move in air at 60 m/s and its drag is to

be estimated from tests in water on a half scale model. Determine the necessary speed

of the model and the drag of the full scale object if that of the model is 1140 N. (Fluid

properties are same as in Example 6.5 (ii)).

Solution

The dimensionless parameters representing the criteria of similarity, have to be

determined first. The drag force F on the object depends upon its velocity V , diameter

D, the density r, and viscosity m of air. Now we use Buckhingham’s p theorem to find

the dimensionless parameters. The five variables F, V , D, r and m are expressed by

three fundamental dimensions M, L and T. Therefore the number of p terms is (5 – 3)

= 2.

We choose V , D and r as the repeating variables

Then, p1 = V a Db rc F

p2 = V a Db rc m

Expressing the variables in the equations above in terms of their fundamental

dimensions, we have

M0 L0 T0 = (LT–1)a Lb (ML–3)c MLT–2 (6.29)

M0 L0 T0 = (LT–1)a Lb (ML–3)c ML–1 T–1 (6.30)

Equating the exponents of M, L and  T on both the sides of the above equations, we

get a = –2, b = –2, c = –1 from Eq. (6.29), and a = – 1, b = – 1, c = – 1 from Eq. (6.30)

Hence, p1 =
2 2

F

V Dr
and p2 = 

V D

m

r
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The problem can now be expressed mathematically as

f 
2 2

,
F V D

V D

r

mr

Ê ˆ
Á ˜Ë ¯

 = 0

or
2 2

F V D

V D

r
f

mr

Ê ˆ= Á ˜Ë ¯
(6.31)

For dynamic similarity, the Reynolds numbers (rVD/m) of both the model and

prototype have to be same so that drag force F, of the model and prototype can be

compared from the p1 term which is known as the drag coefficient. Therefore, we can

write

m m m

m

V Dr

m
 =

p p p

p

V Dr

m

(Subscripts m and p refer to the model and prototype, respectively)

or Vm = Vp 
p p m

m m p

D

D

r m

r m

Ê ˆÊ ˆ Ê ˆ
Á ˜Á ˜ Á ˜Ë ¯ Ë ¯ Ë ¯

Here,
m

p

D

D
 = 1

2

Hence, Vm = 60 ¥ (2) ¥ 

3

5

1.20 1.01 10

1000 1.86 10

-

-

Ê ˆ¥Ê ˆ
Á ˜ Á ˜Ë ¯ Ë ¯¥

= 7.82 m/s

At the same value of Re, we can write from Eq. (6.31)

2 2

p

p p p

F

V Dr
 =

2 2

m

m m m

F

V Dr

or Fp = Fm 

2 2
p p p

m m m

D V

D V

r

r

Ê ˆ Ê ˆ Ê ˆ
Á ˜ Á ˜ Á ˜Ë ¯ Ë ¯ Ë ¯

= 1140 (4) 

2
60 1.20

N
7.82 1000

Ê ˆ Ê ˆ
Á ˜Á ˜ Ë ¯Ë ¯

= 322 N

Example 6.7

A fully developed laminar incompressible flow between two flat plates with one plate

moving with a uniform velocity U, with respect to other is known as Couette flow. In a

Couette flow, the velocity u, at a point depends on its location y (measured

perpendicularly from one of the plates), the distance of separation h, between the

plates, the relative velocity U, between the plates, the pressures gradient dp/dx

imposed on the flow, and the viscosity m of the fluid. Find a relation in dimensionless

form to express u in terms of the independent variables as described above.
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Solution

The Buckingham’s p theorem is used for this purpose. The variables describing a

Couette flow are u, U, y h, dp/dx and m. Therefore, m (the total no. of variables) = 6.

n (the number of fundamental dimensions in which the six variables are expressed) =

3 (M, L and T)

Hence no. of independent p terms is 6 – 3 = 3

To determine these p terms, U, h and m are taken as repeating variables. Then,

p1 = Ua
 hb

 mc
 u

p2 = Ua hb mc y

p3 = Ua hb mc dp/dx

The above three equations can be expressed in terms of the fundamental dimensions of

each variable as

M0L0T0 = (LT–1)a (L)b (ML–1T–1)c LT–1 (6.32)

M
0
L

0
T

0
 = (LT

–1
)
a
 (L)

b
 (ML

–1
T

–1
)
c
L (6.33)

M0L0T0 = (LT–1)a (L)b (ML–1T–1)c ML–2T–2 (6.34)

Equating the exponents of M, L and T on both sides of the above equations we get

the following:

From Eq. (6.32): c = 0

a + b – c + 1 = 0

–a – c –1 = 0

which give a = –1, b = 0 and c = 0

Therefore, p1 = u
U

From equation (6.33): c = 0

a + b – c +1 = 0

– c – a = 0

which give a = 0, b = –1 and c = 0

Therefore, p2 =
y
h

It is known from one of the corolaries of the p  theorem, as discussed earlier, that if

any two physical quantities defining a problem have the same dimensions, the ratio of

the quantities is a p term. Therefore, there is no need of evaluating the terms p1 and p2

through a routine application of p theorem as done here; instead they can be written

straight forward as p1 = u/U and p2 = y/h.

From Eq. (6.34)

c + 1 = 0

a + b – c – 2 = 0

– a – c – 2 = 0

which give a = –1, b = 2 and c = –1

Therefore, p3 = h
U

p
x

2

m
d
d
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Hence, the governing relation amongst the different variables of a couette flow in

dimensionless form is

f u
U

y
h

h
U

p
x

, ,
2

m
d
d

F
HG

I
KJ

 = 0

or u
U

 = F
y
h

h
U

p
x

,
2

m
d
d

F
HG

I
KJ

(6.35)

It is interesting to note, in this context, that from the exact solution of Navier Stokes

equation, the expression of velocity profile in case of a couette f low has been derived in

Chapter 8 (Sec. 8.3.2) and is given by Eq. (6.34) as

u
U

 = y/h – h
U

p
x

y
h

y
h

2

2
1

m
d
d

F
HG

I
KJ

-F
H

I
K

However, p theorem can never determine this explicit functional form of the relation

between the variables.

Example 6.8

A 1/30 model of a ship with 900 m
2
 wetted area, towed in water at 2 m/s, experiences a

resistance of 20 N. Calculate, (i) the corresponding speed of the ship, (ii) the wave

making drag on the ship, (iii) the skin-friction drag if the skin-drag coefficient for the

model is 0.004 and for the prototype 0.015, (iv) the total drag on the ship, and (v) the

power to propel the ship.

Solution

First of all we should identify the pertinent dimensionless parameters that describe

the ship resistance problem. For this we have to physically define  the problem as follows:

The total drag force F, on a ship depends on ship velocity V , its characteristic

geometrical length l, acceleration due to gravity g, density r, and viscosity m, of the

fluid. Therefore, the total number of variables which describe the problem = 6 and the

number of fundamental dimensions involved with the variables = 3.

Hence, according to the p theorem, number of independent

p terms = 6 – 3 = 3

V , l and r are chosen as the repeating variables.

Then p1 = V a lb rc F

p2 = V a lb rc g

p3 = V a lb rc m

Expressing the p terms by the dimensional formula of the variables involved we can

write

M
0

L
0

T
0
 = (LT

–1
)
a
 (L)

b
 (ML

–3
)
c
 (MLT

–2
) (6.36)

M0 L0 T0 = (LT–1)a (L)b (ML–3)c (LT–2) (6.37)

M0L0T0 = (LT–1)a (L)b (ML–3)c (ML–1T–1) (6.38)
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Equating the exponents of the fundamental dimensions on both sides of the above

equations we have

From Eq. (6.36):

c + 1 = 0

a + b – 3c + 1 = 0

– a – 2 = 0

which give a = –2, b = –2 and c = –1

Therefore, p1 =
2 2

F

V lr

From Eq. (6.37)

c = 0

a + b – 3c + 1 = 0

–a – 2 = 0

which give a = – 2, b = 1 and c = 0

Therefore, p2 =
2

lg

V

p2 is the reciprocal of the square of the Froude number, Fr.

From Eq. (6.38)

c + 1 = 0

a + b – 3c – 1 = 0

– a – 1 = 0

which give a = –1, b = –1 and c = –1.

Hence,

p3 =
V l

m

r

which is the reciprocal of the Reynolds number, Re. Hence the problem of ship

resistance can be expressed as

f 

2

2 2
, ,

F V V l

lgV l

r

mr

Ê ˆ
Á ˜Ë ¯

 = 0

or F =

2
2 2 ,

V V l
V l

lg

r
r f

m

Ê ˆ
Á ˜Ë ¯

(6.39)

Therefore, it is found from Eq. (6.39) that the total resistance depends on both the

Reynolds number and the Froude number. For complete similarity between a prototype

and its model, the Reynolds number must be the same, i.e.,

p p p

p

V l r

m
 =

m m m

m

V l r

m
 (6.40)

and also the Froude number must be the same, that i.e.,

1/ 2( )

p

p p

V

l g
 =

1/ 2
( )

m

m m

V

l g
(6.41)
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Equation (6.40) gives V m/V p = (lp/lm) (nm/np) where, n (kinematic viscosity) = m/r. On

the other hand, Eq. (6.41) gives V m/V p = (lm/lp)1/2  since, in practice, gm cannot be

different from gp. For testing small models these conditions are incompatible. The two

conditions together require (lm/lp)3/2 = nm/np and since both the model and prototype

usually operate in water, this condition for the scale factor cannot be satisfied. There

is, in fact, no practicable liquid which would enable nm to be less than np. Therefore,

it concludes that the similarity of viscous forces (represented by the Reynolds

number) and similarity of gravity forces (represented by the Froude number) cannot

be achieved simultaneously between the model and the prototype.

The way out of the difficulty was suggested by Froude. The assumption is made that

the total resistance is the sum of three distinct parts: (a) the wave-making resistance;

(b) skin friction; and (c) the eddy-making resistance. The part (a) is usually uninfluenced

by viscosity but depends on gravity and is therefore independent of the Reynolds

number, Re. Part (c), in most cases, is a small portion of the total resistance and varies little

with the Reynolds number. Part (b) depends only on the Reynolds number. Therefore, it

is usual to lump (c) together with (a). These assumptions allow us to express the

function of Re and Fr in Eq. (6.39) as the sum of two separate functions, f1 (Re) + f2

(Fr). Now the skin friction part may be estimated by assuming that it has the same

value as that for a flat plate, with the same length and wetted surface area, which

moves end on through the water at same velocity. Hence, the function f1 (Re) is

provided by the empirical information of drag resistance on such surfaces. Since the

part of the resistance which depends on the Reynolds number is separately determined,

the  test on  the model is conducted at the corresponding velocity which gives equality

of the Froude number between the model and the prototype; thus dynamic similarity

for the wave-making resistance is obtained. Therefore, the solution of present problem

(Example 6.8) is made as follows:

From the equality of the Froude number,

m

m

V

l g
 =

p

p

V

l g

(i) The corresponding speed of the ship V p = 
p

m
m

l
V

l
◊

= 30  ¥ 2 m/s

= 10.95 m/s

Area ratio, =

2
1 1

30 900

m

p

A

A

Ê ˆ= =Á ˜Ë ¯

Therefore A m (area of the model) = 

2900m

900
 = 1 m

2

(ii) If Fw and Fs represent the wave-making  resistance  and  skin   friction resistance

of the ship respectively, then from the definition of the drag coefficient CD , we

can write

Fsm
 =

1

2
 rm ¥ V 2

m ¥ A m ¥ CD
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=
1

2
 ¥ 1000 ¥ 2

2
 ¥ .004

= 8N

Now the total resistance on the model Fm = Fsm
 + Fwm

Hence, Fwm
 = Fm – Fsm

 = 20 – 8 = 12 N

Now from dynamic similarity for wave making resistance

2 2

pw

p p p

F

V lr
 =

2 2

mw

m m m

F

V lr

or FwP
 = Fwm

2 2
p p p

m m m

V l

V l

r

r

Ê ˆ Ê ˆ
Á ˜ Á ˜Ë ¯ Ë ¯

= 12 ¥ 1 ¥ 30 ¥ 900 N = 324 kN

(iii) Fsp
 (skin friction of the prototype)

=
1

2
 ́  1000 ¥ (10.95)

2
 ́  900 ́  0.015 N

= 809.34 kN

(iv) Therefore, Fp (total drag resistance of the prototype)

= 324 + 809.34 = 1133.34 kN

(v) Propulsive power required = 1133.34 ¥ 10.95 = 12410 kW

= 12.41 MW

Example 6.9

In the study of vortex shedding phenomenon due to the presence of a bluff body in

a flow through a closed duct, the following parameters are found to be important:

velocity of flow V , density of liquid r, coefficient of dynamic viscosity of liquid m,

hydraulic diameter of the duct Dh, the width of the body B, and the frequency of vortex

shedding n. Obtain the dimensionless parameters governing the phenomenon.

Solution

The problem is described by 6 variables V , r, m, Dh, B, and n. The number of

fundamental dimensions in which the variables can be expressed = 3. Therefore, the

number of independent p terms is (6–3) = 3. We use the Buckingham’s p theorem to find

the p terms and choose r, V , Dh as the repeating variables.

Hence, p1 = ra V b Dh
c m

p2 = ra
 V b

 Dh
c
 B

p3 = ra
 V b

 Dh
c
 n

Expressing the equations in terms of the fundamental dimensions of the variables we

have
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M
0
L

0
T

0
 = (ML

–3
)
a
 (LT

–1
)
b
 (L)

c
 (ML

–1
T

–1
) (6.42)

M
0
L

0
T

0
 = (ML

–3
)
a
 (LT

–1
)
b
 (L)

c
 L (6.43)

M
0
L

0
T

0
 = (ML

–3
)
a
 (LT

–1
)
b
 (L)

c
 T

–1
(6.44)

Equating the exponents of M, L and T in the above equations we get, From Eq. (6.42),

a + 1 = 0

–3a + b + c – 1 = 0, – b –1 = 0

which give a = –1, b = –1 and c = –1

Hence, p1 = m/rV  Dh

From Eq. (6.43),

a = 0

–3a + b + c + 1 = 0

–b = 0

which give a = b = 0, c = –1

Hence, p2 = B/Dh

From Eq. (6.44),

a = 0

–3a + b + c = 0

–b – 1 = 0

which give a = 0, b = –1, c = 1

Hence, p3 = (n Dh)/V

Therefore, the governing dimensionless parameters are

hV Dr

m

Ê ˆ
Á ˜Ë ¯

(= 1/p1) the Reynolds number

h

B

D
(= p2) ratio of the width of the body to hydraulic

diameter of the duct

hn D

V
(= p3) the Strouhal number

6.3.3 Rayleigh’s Indicial Method

This alternative method is also based on the fundamental principle ofdimensional

homogeneity of physical variables involved in a problem. Here the dependent variable

is expressed as a product of all the independent variables raised to an unknown

integer exponent. Equating the indices of n fundamental dimensions of the variables

involved, n independent equations are obtained which are solved for the purpose of
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obtaining the dimensionless groups. Let us illustrate this method by solving the pipe

flow problem in Example 2. Here, the dependent variable Dp/l can be written as

p

l

D
 = A  V a Dh

b rc md (6.45)

where, A  is a dimensionless constant.

Inserting the dimensions of each variable in the above equation, we obtain,

M L–2 T–2 = A (LT–1)a (L)b (ML–3)c (ML–1T–1)d

Equating the indices of M, L, and T on both sides, we get

c + d = 1

a + b – 3c – d = – 2

– a – d = – 2 (6.46)

There are three equations and four unknowns. Solving these equations in terms of

the unknown d, we have

a = 2 – d

b = – d – 1

c = 1 – d

Hence, Eq. (6.45) can be written as

p

l

D
 = A  V 2– d

 Dh
–d–1

 r1–d
 md

or
p

l

D
 =

2 d
AV

D VDh h

r m

r

Ê ˆ
Á ˜
Ë ¯

or 2

hpD

l Vr

D
 = A

d

hVD

m

r

Ê ˆ
Á ˜Ë ¯

(6.47)

Therefore we see that there are two independent dimensionless terms of the

problem, namely,

2
andh

h

pD

VDl V

m

rr

D

It should be mentioned in this context that both Buckingham’s method and

Rayleigh’s method of dimensional analysis determine only the relevant independent

dimensionless parameters of a problem, but not the exact relationship between them.

For example, the numerical values of A  and d in the Eq. (6.47) can never be known from

dimensional analysis. They are found out from experiments. If the system of Eq. (6.46)

is solved for the unknown c, it results,

2
hDp

l V m

D
 = A h

c
VDr

m

Ê ˆ
Á ˜Ë ¯

Therefore, different interdependent sets of dimensionless terms are obtainedwith the

change of unknown indices in terms of which the set of indicial equations are solved.

This is similar to the situations arising with different possible choices of repeating

variables in Buckingham’s Pi theorem.
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Example 6.10

The time period t of a simple pendulum depends on its effective length l and the local

acceleration due to gravity g. Using both Buckingham’s Pi theorem and Rayleigh’s

indicial method, find the functional relationship between the variables involved.

Solution

Application of Buckingham’s Pi theorem:

The variables of the problem are t, l and g and the fundamental dimensions involved

in these variables are L (length) and T (time). Therefore the no. of independent p term

= (3 – 2) = 1, since t is the dependent variable, the only choice left for the repeating

variables to be l and g.

Hence, p1 = la gb t

Expressing the equation in terms of the fundamental dimensions of the variables we

get L0T0 = La (LT –2)bT. Equating the exponents of L and T on both sides of the

equation, we have,
a + b = 0, and –2b + 1 = 0

which give a = – 1
2

, b = 1
2

; and hence p1 = 
g

l
t

Therefore, the required functional relationship between the variables of the problem

is

f  
g

l
t

Ê ˆ
Á ˜Ë ¯

 = 0 (6.48)

Application of Rayleigh’s indicial method:

Since t is the dependent variable, it can be expressed as

t = A  la gb (6.49)

where A  is a non-dimensional constant. The Eq. (6.49) can be written in terms of the

fundamental dimensions of the variables as

T = ALa (LT–2)b

Equating the exponent of L and T on both sides of the equation, we get, a + b = 0 and

–2b = 1 which give a = 
1

2
and b = – 

1

2
.

Hence, Eq. (6.49) becomes t = A
l

g

or t
g

l
 = A

Therefore, it is concluded that the dimensionless governing parameter of the

problem is t
g

l
. From elementary physics, we know that A  = 2p.
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Example 6.11

The capillary rise h, of a fluid of density r, and surface tension s, in a tube of diameter

D, depends upon the contact angle f, and acceleration due to gravity g. Find an

expression for h in terms of dimensionless variables by Rayleigh’s indicial method.

Solution

Capillary rise h, is the dependent variable of the problem and can be expressed in

terms of the independent variables as

h = A  ra s b Dc gd f (6.50)

where A  is a dimensionless constant.

(f is not raised to any exponent, since it is a dimensionless variable and hence an

independent p term).

Expressing the variables in terms of their fundamental dimensions in the above

equation, we get

L = A (ML
–3

)
a
 (MT

–2
)
b
 L

c
 (LT

–2
)
d

Equating the exponents of M, L and T in LHS and RHS of the equation, we have

a + b = 0

–3a + c + d = 1

–2b – 2d = 0

Solving these three equations in terms of a, we get

b = – a

c = 1 + 2a

d = a

Substituting these values in Eq. (6.52), we get

h = A  D 
2 a

g Dr

s

Ê ˆ
Á ˜Ë ¯

 f

or
h

D
 = A  

2 a
g Dr

s

Ê ˆ
Á ˜Ë ¯

 f

This is the required expression.

SUMMARY

∑ Physical similarities are always sought between the problems of same phys-

ics. The complete physical similarity requires geometric similarity, kinematic

similarity and dynamic similarity to exist simultaneously.

∑ In geometric similarity, the ratios of the corresponding geometrical dimen-

sions between the systems remain the same. In kinematic similarity, the ratios

of corresponding motions and in dynamic similarity, the ratios of correspond-

ing forces between the systems remain the same.
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∑ For prediction of the performance characteristics of actual systems in practice

from the results of model scale experiments in laboratories, complete physical

similarity has to be achieved between the prototype and the model.

∑ Dimensional homogeneity of physical quantities implies that the number of

dimensionless independent variables are smaller as compared to the number

of their dimensional counterparts to describe a physical phenomenon. The

dimensionless variables represent the criteria of similarity. Buckingham’s Pi

theorem states that if a physical problem is described by m dimensional vari-

ables which can be expressed by n fundamental dimensions, then the number

of independent dimensionless variables defining the problem will be m – n.

These dimensionless variables are known as p terms. The independent p
terms of a physical problem are determined either by Buckingham’s  Pi theo-

rem or by Rayleigh’s indicial method.
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EXERCISES

6.1 Choose the correct answer:

(i) The repeating variables in a dimensional analysis should

(a) be equal in number to that of the fundamental dimensions involved in

the problem variables

(b) include the dependent variable

(c) have at least one variable containing all the fundamental dimen-

sions

(d) collectively contain all the fundamental dimensions

(ii) A dimensionless group formed with the variables r (density), w (angular

velocity), m (dynamic viscosity), and D (characteristic diameter) is

(a) r w m /D2

(b) r w D2/m
(c) m D2 r w
(d) r w m D

(iii) In similitude with gravity force, where equality of Froude number exists,

the acceleration ratio ar becomes

(a) Lr
2

(b) 1.0

(c) 1/Lr

(d) Lr
5/2

(where Lr is the geometrical scale factor)
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6.2 Show that for a flow governed by gravity, inertia and pressure forces, the ratio

of volume flow rates in two dynamically similar systems equals to the 5/2

power of the length ratio.

6.3 Using the Buckingham’s p theorem, show that the velocity U through a circu-

lar orifice is given by

U = (2gH)
0.5

 f (D/H, rUH/m)

where H is the head causing flow, D is the diameter of the orifice, m is the

coefficient of dynamic viscosity, r is the density of fluid flowing through the

orifice and g is the acceleration due to gravity.

6.4 For rotodynamic fluid machines of a given shape, and handling an incom-

pressible fluid, the relevant variables involved are D (the rotor diameter), Q

(the volume flow rate through the machine), N (the rotational speed of the

machine), gH (the difference of head across the machine, i.e., energy per unit

mass), r (the density of fluid), m (the dynamic viscosity of the fluid) and P (the

power transferred between fluid and rotor). Show with the help of

Buckingham’s ri theorem that the relationship between the variables can be

expressed by a functional form of the pertinent dimensionless parameters as

f (Q/N D3, gH/N2 D2, r N D2/m, P/r N3 D5) = 0

6.5 In a two-dimensional motion of a projectile, the range R depends upon the x

component of velocity Vx, the y component of velocity V y , and the acceleration

due to gravity g. Show with the help of  Rayleigh’s s indicial method of dimen-

sional analysis that

R =
2

yx

x

VV
f

g V

Ê ˆ
Á ˜Ë ¯

6.6 The boundary layer thickness d at any section for a flow past a flat plate de-

pends upon the distance x measured along the plate from the leading edge to

the section, free stream velocity U and the kinematic viscosity n of the fluid.

Show with the help of Rayleigh’s indicial method of dimensional analysis that

x

d
 μ (Ux/n) or 

Ux
f

x

d

n

Ê ˆ= Á ˜Ë ¯
6.7 A high speed liquid sheet in ambient air is disintegrated into drops of liquid due

to hydrodynamic instability. The drop diameter d depends upon the velocity V  of

liquid sheet, the thickness h of the liquid sheet, the surface tension coefficient s
of the liquid and density r of ambient air. Show, with the help of both (i)

Buckingham’s Pi theorem and (ii) Rayleigh’s indicial method, that the functional

relationship amongst the above variables can be expressed as d/h = f (s /r V2 h).

6.8 A model of a reservoir is drained in 4 minutes by opening a sluice gate. The

model scale is 1:225. How long should it take to empty the prototype?

Ans. (60 minutes)

6.9 Evaluate the model scale when both viscous and gravity forces are necessary to
secure similitude. What should be the model scale if oil of kinematic viscosity
92.9 ¥ 10–6 m2/s is used in the model tests and if the prototype liquid has a

kinematic viscosity of 743.2 ¥ 10
–6

 m
2
/s?

Ans. (lm /lp = (nm /np)2/3; lm = 0.25 lp)
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6.10 A sphere advancing at 1.5 m/s in a stationary mass of water experiences a drag
of 4.5 N. Find the flow velocity required for dynamic similarity of another
sphere twice the diameter, placed in a wind tunnel. Calculate the drag at this
speed if the kinematic viscosity of air is 13 times that of water and its density
is 1.25 kg/m

3
.

Ans. (9.75 m/s, 0.951 N)

6.11 Calculate the thrust required to run a motor boat 5 m long at 100 m/s in a lake
if the force required to tow a 1:30 model in a reservoir is 5 N. Neglect the
viscous resistance due to water in comparison to the wave-making resistance.

Ans. (135 kN)

6.12 The flow rate over a spillway is 120 m3/s. What is the length scale for a
dynamically similar model if a flow rate of 0.75 m

3
/s is available in the labora-

tory? On part of such model, a force of 2.8 N is measured. What is the corre-
sponding force on the prototype spillway? (viscosity and surface tension
effects are negligible.)

Ans. (lm = 0.13 lp, 1.27 kN)

6.13 The flow through a closed, circular-sectioned pipe may be metered by measur-
ing the speed of rotation of a propeller having its axis along the pipe centre
line. Derive a relation between the volume flow rate and the rotational speed
of the propeller, in terms of the diameters of the pipe and the propeller and the
density and viscosity of the fluid. A propeller of 75 mm diameter, installed in
a 150 mm pipe carrying water at 42.5 litres/s, was found to rotate at 20.7 rev/s.
In a similar physical situation, a propeller rotates in air flow through a pipe of
750 mm diameter. Estimate the diameter and rotational speed of the propeller
and the volume flow rate of air. The density of air is 1.25 kg/m3 and its viscos-
ity 1.93 ¥ 10

–5
 Pas. The viscosity of water is 1.145 ¥ 10

–3
 Pas.

Ans. (375 mm, 11.16 rev/s, 2.86 m3/s)

Fig. 6.2 Vortex shedding past a cylinder [1]

6.14 The vortices are shed from the rear of a cylinder placed in a cross flow. The
vortices alternately leave the top and bottom of the cylinder, as shown in Fig.
6.2. The vortex shedding frequency, f, is thought to depend on r, V , D and m.

(i) Use dimensional analysis to develop a functional relationship for f.
(ii) The vortex shedding occurs in standard air on two different cylinders

with a diameter ratio of 2. Determine the velocity ratio for dynamic simi-
larity, and ratio of the vortex shedding frequencies.

Ans. 
f D V D

V

r
f

m

Ê Ê ˆ ˆ=Á Á ˜˜Ë Ë ¯ ¯



7.1  INTRODUCTION

Flows at high Reynolds number reveal that the viscous effects are confined within

the boundary layers. Far away from the solid surface, the flow is nearly inviscid and

in many cases it is incompressible. We now aim at developing techniques for

analyses of inviscid incompressible flows.

Incompressible flow is a constant density flow, and we assume r to be  constant.

We visualise a fluid element of defined mass moving along a streamline in an

incompressible flow. Because the density is constant, we can write

—◊V
r

 = 0 (7.1)

Over and above, if the fluid element does not rotate as it moves along the

streamline, or to be precise, if its motion is translational (and deformation with no

rotation) only, the flow is termed as irrotational flow. It has already been shown in

Sec. 3.3.5 that the motion of a fluid element can in general have translation,

deformation and rotation. The rate of rotation of the fluid element can be measured

by the average rate of rotation of two perpendicular line segments. The average rate

of rotation wz about the z axis is expressed in terms of the gradients of velocity

components (refer to Chapter 3) as

wz =
1

2

u

x y

∂ ∂

∂ ∂

È ˘-Í ˙Î ˚

v

Similarly, the other two components of rotation are

wx =
1

2

w

y z

∂ ∂

∂ ∂

È ˘
-Í ˙

Î ˚

v
and wy = 

1

2

u w

z x

∂ ∂

∂ ∂

È ˘
-Í ˙

Î ˚

As such, they are components of 
r
w , which is given by

r
w  = ( )1

2
— ¥ V
r

In a two-dimensional flow, wz is the only non-trivial component of the rate of

rotation. Imagine a pathline of a fluid particle shown in Fig. 7.1. Rate of spin of the

particle is wz. The flow in which this spin is zero throughout is known as irrotational

flow. A generalised statement is more appropriate: For irrotational flows, — ¥ 
r

V  = 0 in

the flow field.

7

FLOW OF IDEAL FLUIDS
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t t= f

t t= i

Fig. 7.1 Pathline of a fluid particle

Therefore for an irrotational flow, the velocity 
r

V  can be expressed as the gradient

of a scalar function called the velocity potential, denoted by f
r

V  = —f (7.2)

Combination of Eqs (7.1) and (7.2) yields,

—2 f = 0 (7.3)

From Eq. (7.3) we see that an inviscid, incompressible, irrotational flow is

governed by Laplace’s equation.

Laplace’s equation is linear, hence any number of particular solutions of Eq. (7.3)

added together will yield another solution. This concept forms the building-block of

the solution of inviscid, incompressible, irrotational flows. A complicated flow

pattern for an inviscid, incompressible, irrotational flow can be synthesised by adding

together a number of elementary flows which are also inviscid, incompressible and

irrotational.

The analysis of Laplace’s Eq. (7.3) and finding out the potential functions are

known as potential flow theory and the inviscid, incompressible, irrotational flow is

often called as potential flow. However, the following elementary flows can

constitute several complex potential-flow problems:

1. Uniform flow

2. Source or sink

3. Vortex

7.2  ELEMENTARY FLOWS IN A TWO-DIMENSIONAL PLANE

7.2.1 Uniform Flow

In this flow, velocity is uniform along the y axis and there exists only one component

of velocity which is in the x direction. Magnitude of the velocity is U0.

From Eq. (7.2) ,we can write

0
ˆ ˆ ˆ ˆ0U

x y

f f∂ ∂
+ = +

∂ ∂
i j i j

or
x

f∂
∂

 = U0 y

f∂
∂

 = 0

Hence, f = U0 x + C1 (7.4)
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Recall from Sec. 3.5 that in a two-dimensional flow field, the flow can also be

described by stream function y. In the case of uniform flow,

∂y

∂ y
 = U0 and – 

x

∂y

∂
 = 0

so that Y = U0y + K1 (7.5)

The constants of integration C1 and K1 in Eqs (7.4) and (7.5) are arbitrary. The

values of y and f for different streamlines and velocity potential lines may change but

flow pattern is unaltered. The constants of integration may be omitted and it is possible

to write

y = U0 y, f = U0 x (7.6)

These are plotted in Fig. 7.2(a) and consist of a rectangular mesh of straight

streamlines and orthogonal straight potential lines. It is conventional to put arrows

on the streamlines showing the direction of flow.

In terms of polar (r – q) coordinate, Eq. (7.6) becomes

y = U0 r sin q, f = U0 r cos q (7.7)

f1

y

x

f2

f3

a

y1

y2

y3

y4

(a) Flownet for a uniform stream

(b) Flownet for a uniform stream with an angle with the axisa x

k

q

r

U0

y

f
=
U

k
0

f
=

U
k

2
0

f
=

U
k

3
0

y = U h0

y 2= U h0

y 3= U h0

x

h

Fig. 7.2  Streamlines and velocity potential lines
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If we consider a uniform stream at an angle a to the  x axis  as shown in Fig. 7.2(b),

we require that

u = U0 cos a = 
y x

∂y ∂f

∂ ∂
=

and v = U0 sin a = –
x y

∂y ∂f

∂ ∂
= (7.8)

Integrating, we obtain for a uniform velocity U0 at an angle a, the stream function

and velocity potential respectively as

y = U0(y cosa – x sina), f = U0 (x cosa + y sina) (7.9)

Example 7.1

The velocity components of two-dimensional incompressible flow are u = 2xy and

v = a2
 + x2

 – y2
. Show that a velocity potential function exists and find out the velocity

potential.

Solution

The velocity potential function exists only for irrotational flow. The condition to be

satisfied is

x

∂

∂

v
 =

u

y

∂

∂

Evaluating the derivatives mentioned above, we get

x

∂

∂

v
 = 2x and

u

y

∂

∂
 = 2x

The flow is irrotational. From definition we can also write

u =
x

∂f

∂

x

∂f

∂
 = 2 xy or f = x2y + f1 (y)

Also v =
y

∂f

∂

or
y

∂f

∂
 = a2 + x2 – y2 or f = a2y + x2y – 

3

3

y
 + f2(x)

Since both the solutions are same, we can write

x2y + f1(y) = a2y + x2y – 
3

3

y  + f2(x)
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or f1(y) = a2y – 
3

3

y
 + f2(x)

In order to keep the above expression valid for all the values of y, f2(x) has to be a

constant.

Thus, f = a2y + x2y – 

3

3

y
 + constant

Since f = constant and represents a family of lines, f may be written without a

constant as

f = a2y + x2y – 
3

3

y

Example 7.2

The flow of an incompressible fluid is defined by u = 2, v = 8x. Does a stream function

exist? If so, find its expression.

Solution

Compliance of continuity describes the existence of a stream function

u

x y

∂ ∂

∂ ∂
+

v
 =

(2)
(8 )x

x y

∂ ∂

∂ ∂
+  = 0

Therefore, the stream function exists.

Now we can write

dy = d dx y
x y

∂y ∂y

∂ ∂
+

or dy = – vdx + udy

or dy = – 8xdx + 2dy

or y = – 4x2
 + 2y + C

Dropping the constant C, y = – 4x2 + 2y.

Example 7.3

Does a velocity potential function f = 2(x2 + 2y – y2) describe the possible flow of an

incompressible fluid? If so, find out the equation for the velocity vector V
r

. Also

determine the equation for streamlines.

Solution

For the given f, in order to describe an incompressible flow, we check with the

Laplace’s equation,
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2 2

2 2x y

∂ f ∂ f

∂ ∂
+  = 2(2) + 2(–2) = 0

So, a flow field exists.

The velocity components are

u =
x

∂f

∂
 = 2(2x) = 4x

v =
y

∂f

∂
 = 2 (2 – 2y) = 4 – 4y

Velocity vector
r
V  = 4x $i  + (4 – 4y) $j

Stream function y can be expressed as

dy = d dx y
x y

∂y ∂y

∂ ∂
+

or dy = – vdx + udy

or dy = – (4 – 4y) dx + 4x dy

y = – Ú (4– 4y)dx + Ú 4x dy + C

y = – 4x + 4xy + 4xy + C

Dropping the constant C, stream function becomes

y = 4 (2xy – x)

7.2.2 Source or Sink

Consider a flow with straight streamlines emerging from a point, where the velocity

along each streamline varies inversely with distance from the point, as shown in Fig.

7.3. Only the radial component of velocity is non-trivial (vq = 0, vz = 0).

Kp
y =

Kp
y =

3Kp
y =

y pK=

f = lnK r1

y = 0

f = ln (   )K r2

r > r2 1

O

2

44

Fig. 7.3 Flownet for a source flow

Such a flow is called source flow. In a steady source flow the amount of fluid

crossing any given cylindrical surface of radius r, and unit length is constant ( m& )

m&  = 2p r vr r
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or vr =
1

2

m

rpr
◊
&

 = 
1

2

K

r rp

L
◊ = (7.10a)

where, K  is the source strength

K =
&m

2 2pr p
= L

(7.10b)

and L is the volume flow rate:

Again recall from Sec. 4.2.2 that the definition of stream function in cylindrical polar

coordinate states that

vr =
1

r

∂y

∂q
and vq = 

r

∂y

∂
- (7.11)

Now, for the source flow, it can be said that

1

r

∂y

∂q
 =

K

r
(7.12)

and
r

∂y

∂
-  = 0 (7.13)

Combining Eqs (7.12) and (7.13), we get

y = Kq + C1 (7.14)

However, this flow is also irrotational and we can write

î vr + ĵvq =

or vr =
r

∂f

∂
and vq = 0 = 

1

r

∂f

∂q

or
r

∂f

∂
 = vr = 

K

r
or f = K ln r + C2 (7.15)

Likewise in uniform flow, the integration constants C1 and C2 in Eqs (7.14) and

(7.15) have no effect on the basic structure of velocity and pressure in the flow. The

equations for streamlines and velocity potential lines for source flow become
y = Kq and f = K ln r (7.16)

where K is defined as the source strength and is proportional to L ,which is the rate of

volume flow from the source per unit depth perpendicular to the page as shown in Fig.

7.3. If L is negative, we have sink flow, where the flow is in the opposite direction of the

source flow. In Fig. 7.3, the point O is the origin of the radial streamlines. We visualise

that point O is a point source or sink that induces radial flow in the neighbourhood.

The point source or sink is a point of singularity in the flow field (because vr becomes

infinite). It can also be visualised that point O in Fig. 7.3 is simply a point formed by the

intersection of plane of the paper and a line perpendicular to the paper. The line

perpendicular to the paper is a line source, with volume flow rate (L) per unit length.

However, for sink, the stream function and velocity potential function are

y = – Kq and f = – K ln r (7.17)
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Example 7.4

The radial velocity of a flow is described by vr = 
k

r
 cos q.

If vq = 0 at q = 0, find out vq and the stream function for the flow.

Solution

vr =
1

cos
k

r r

∂y
q

∂q
◊ =

or
∂y

∂q
 = k r  cos q

or y = k r  sin q = f (r)

Now, vq = – 
2

k

r r

∂y

∂
=  sin q + f ¢(r)

We know, vq = 0 at q = 0, which depicts

f ¢(r) = 0 and f  (r) = constant

Therefore, vq =
2

k

r
 sin q and y = k r  sin q

7.2.3 Vortex Flow

In this flow all the streamlines are concentric circles about a given point where the

velocity along each streamline is inversely proportional to the distance from the

centre, as shown in Fig. 7.4. Such a flow is called vortex (free vortex) flow. This flow

is necessarily irrotational.

f =

f =

f = 0
q

.

.

G

G p

q2p

2p 2

y = – ln r2
G
2p

G
– ln r12p

y =
O

Fig. 7.4 Flownet for a vortex (free vortex)
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In purely circulatory (free vortex flow) motion, we can write the tangential

velocity as

vq =
Circulation constant

r

vq =
/2

r

pG
(7.18)

where G is circulation,

Also, for purely circulatory motion one can write

vr = 0 (7.19)

With the definition of stream function, it is evident that

vq = –
r

∂y

∂ and vr = 
1

r

∂y

∂q

Combining Eqs (7.18) and (7.19) with the above said relations for stream function,

it is possible to write

y =
2p

G
-  ln r + C1 (7.20)

Because of irrotationality, it should satisfy

î vr + ĵvq =
1ˆ ˆ

r r

∂f ∂f

∂ ∂q
+i j

Eqs (7.18) and (7.19) and the above solution of Laplace’s equation yields,

f = 2+
2

Cq
p

G
(7.21)

The integration constants C1 and C2 have no effect whatsoever on the structure of

velocities or pressures in the flow. Therefore like other elementary flows, we shall

consistently ignore such constants. It is clear that the streamlines for vortex flow are

circles while the potential lines are radial. These are given by

y = –
2p

G
 ln r and f = 

2p

G
q (7.22)

In Fig. 7.4, point O can be imagined as a point vortex that induces the circulatory

flow around it. The point vortex is a singularity in the flow field (vq becomes infinite).

It is also discerned that the point O in Fig. 7.4 is simply a point formed by the

intersection of the plane of a paper and a line perpendicular to the plane. This line is

called vortex filament of strength G, where G is the circulation around the vortex

filament and the circulation is defined as

G = ◊Ú V ds
r r

(7.23)

In Eq. (7.23), the line integral of the velocity component tangent to a curve of

elemental length ds, is taken around a closed curve. It may be stated that the

circulation for a closed path in an irrotational flow field is zero. However, the

circulation for a given path in an irrotational flow containing a finite number of
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singular points is constant. In general this circulation constant G denotes the

algebraic strength of the vortex filament contained within the closed curve.

From Eq. (7.23) we can write

G = ◊Ú V ds
r r

 = Ú (udx + vdy + wdz)

For a two-dimensional flow

G = Ú  (udx + v dy)

or GGGGG = Ú V cosa ds (7.24)

Consider a fluid element as shown in Fig. 7.5. Circulation is positive in the anti-

clockwise direction (not a mandatory but general convention).

Fig. 7.5 Circulation in a flow field

d G = u d x + 
u

x y u y x y
x y

∂ ∂
d d d d d

∂ ∂

Ê ˆ Ê ˆ+ - + -Á ˜ Á ˜Ë ¯ Ë ¯
v

v v

or d G =
u

x y
x y

∂ ∂
d d

∂ ∂

Ê ˆ-Á ˜Ë ¯
v

or d G =  Wz dA

or d G/d A = Wz (7.25)

Physically, circulation per unit area is the vorticity of the flow.

Now, for a free vortex flow, the tangential velocity is given by Eq. (7.18) as

vq = /2 C

r r

pG
=

For a circular path (refer Fig. 7.5)

a = 0, V  = vq =
C

r

Thus, G =

2

0

C

r

p

Ú r dq = 2p C (7.26)

It may be noted that although free vortex is basically an irrotational motion, the

circulation for a given path containing a singular point (including the origin) is
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constant (2p C ) and independent of the radius of a circular streamline. However, if

the circulation is calculated in a free vortex flow along any closed contour excluding

the singular point (the origin), it should be zero. Let us look at Fig. 7.6(a) and take a

closed contour ABCD in order to find out circulation about the point, P around ABCD

GABCD = – vqA B
 r1 dq – vrBC

 (r2 – r1) + vqCD
 r2 dq + vrDA

 (r2 – r1)

There is no radial flow

vrBC
 = vrDA

 = 0, vqA B
 =

1

C

r
and vqCD

 = 
2

C

r

GABCD = 1 2
1 2

d d 0
C C

r r
r r

q q
-

◊ + ◊ = (7.27)

If there exists a solid body rotation at constant w induced by some external

mechanism, the flow should be called a forced vortex motion (Fig. 7.6(b)) and we can

write
vq = wr and

G =

2

2

0

d d 2s r r r

p

q w q p w= ◊ =Ú Úv (7.28)

Equation (7.28) predicts that the circulation is zero at the origin and it increases

with increasing radius. The variation is parabolic.

It may be mentioned that the free vortex (irrotational) flow at the origin

(Fig. 7.6(a)) is impossible because of mathematical singularity. However, physically

there should exist a rotational (forced vortex) core which is shown by the dotted line.

Below are given two statements which are related to Kelvin’s circulation theorem

(1869) and Cauchy’s theorem on irrotational motion (1815), respectively:

dq

vq =

vq

C
r

B

A
P

D

C

r1dq

r1

r2dq

rd
q

r

rO

dq r2

Rotational
core

(a) Free vortex flow

Fig. 7.6  (Contd.)
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vq w= r

vq

vq

rd
q

r

r r

dq

(b) Forced vortex flow

Fig. 7.6  Vortex Flow

(i) The circulation around any closed contour is invariant with time in an invis-

cid fluid.

(ii) A body of inviscid fluid in irrotational motion continues to move irrota-

tionally.

Example 7.5

The wind velocity at a location 5 km away from the centre of a tornado (consider

inviscid, irrotational vortex motion shown in Fig 7.7) was measured as 30 km/hr and

1 km
vq

vq

b

a

5 km

Fig. 7.7 Model of a tornado (irrotational vortex)
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the barometric pressure was 750 mm of Hg. Calculate the wind velocity 1 km from the

tornado centre and its barometric pressure. (Density of air = 1.2 kg/m
3
, density of

mercury = 13.6 ¥ 10
3
 kg/m

3
).

Solution

pa = 750 mm of Hg = 0.75 m of Hg

= 0.75 ¥ 13.6 ¥ 103 ¥ 9.81 = 100.062 kN/m2

From free vortex consideration, we can write

ra vq a = rb vq b = C

ra = 5000 m, vq a = 
30 1000

60 60

¥
¥

 = 8.33 m/s

C = circulation constant = 41650 m2/s

at rb = 1000 m,

vqb =
41650

1000
 = 41.65 m/s

Bernoulli’s equation between points a and b,

2

2

aa
Vp

g g

q

r
+  =

2

2

bb
Vp

g g

q

r
+

2100062 (8.33)

1.2 9.81 2 9.81
+

¥ ¥
 =

2(41.65)

2 9.81

bp

gr
+

¥

or bp

gr
 = 8500 + 3.536 – 88.416

or bp

gr
 = 8415.12

or pb = 99062 N/m2 = 99.062 kN/m2

7.3   SUPERPOSITION OF ELEMENTARY FLOWS

We can now form different flow patterns by superimposing the velocity potential and

stream functions of the elementary flows stated above.

7.3.1 Doublet

In order to develop a doublet, imagine a source and a sink of equal strength K at

equal distance s from the origin along the x axis, as shown in Fig. 7.8

From any point P(x, y) in the field, r1 and r2 are drawn to the source and the sink.

The polar coordinates of this point (r, q) have been shown.

The potential functions of the two flows may be superimposed to describe the

potential for the combined flow at P as
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Sink

s

O

s

r1

r2

r

P x, y( )

q1 q q2

y

y

x

x

Source

Fig. 7.8 Superposition of a source and a sink

f = K ln r1 – K ln r2 (7.29)

Similarly,

y = K  (q1 – q2) = – Ka (7.30)

where a = (q2 – q1)

We can also write

tan q1 =
y

x s+
and tan q2 = 

y

x s-
(7.31)

 r1 = 
2 2 2 cosr s rs q+ + and r2 = 

2 2 2 cosr s rs q+ - (7.32)

Now using the above mentioned relations we find

tan (q2 – q1) =
2 1

2 1

tan tan

1 tan tan

q q

q q

-
+

or tan a =
2

2 2 2 2
1

y x ys y x ys y

x s x s

Ê ˆÈ ˘+ - +
+Í ˙ Á ˜Ë ¯- -Î ˚

or tan a =
2 2 2

2ys

x y s+ -
(7.33)

Hence the stream function and the velocity potential function are formed by

combining Eqs (7.30) and (7.33), as well as Eqs (7.29) and (7.32) respectively,

y = – K tan–1 
2 2 2

2ys

x y s

Ê ˆ
Á ˜Ë ¯+ -

(7.34)

f =
2 2

2 2

2 cos
ln

2 2 cos

K r s rs

r s rs

q

q

Ê ˆ+ +
Á ˜Ë ¯+ -

(7.35)
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Doublet is a special case when a source as well as a sink are brought together in

such a way that s Æ 0 and at the same time the strength K (L /2p) is increased to an

infinite value. These are assumed to be accomplished in a manner which makes the

product of s and L/p (in limiting case) a finite value c. Under the aforesaid

circumstances,

y = –
2 2 2

2

2

ys

x y sp

L
◊

+ -

[Since in the limiting case tan
–1

 a = a]

y =
2 2

siny

rx y

c qc -
- ◊ =

+
(7.36)

From Eq. (7.35), we get

f =
4p

L
 [ln (r2 + s2 + 2rs cos q) – ln (r2 + s2 – 2rs cos q)]

or f = ( )2 2

2 2 2 2

2 cos 2 cos
ln 1 ln ) 1

4

2 2rs rs
r s (r s

r s r s

q q

p

È Ï Ê ˆ¸ Ï Ê ˆ¸˘L
+ + - + -Ì ˝ Ì ˝Í ˙Á ˜ Á ˜Ë ¯ Ë ¯+ +Î Ó ˛ Ó ˛˚

or f = 

2 3

2 2 2 2 2 2

2 cos 1 2 cos 1 2 cos

4 2 3

rs rs rs

r s r s r s

q q q

p

ÈÏ ¸Ê ˆ È ˘L Ô ÔÍ - + +Ì ˝Í ˙Á ˜Ë ¯+ + +Í Î ˚Ô ÔÎÓ ˛
L

2 3

2 2 2 2 2 2

2 cos 1 2 cos 1 2 cos

2 3

rs rs rs

r s r s r s

q q qÏ ¸˘Ê ˆ È ˘Ô Ô- - - - + ˙Ì ˝Í ˙Á ˜Ë ¯+ + + ˙Î ˚Ô ÔÓ ˛˚
L

or f = 

3

2 2 2 2

4 cos 2 2 cos

4 3

rs rs

r s r s

q q

p

È ˘Ê ˆL
+ +Í ˙Á ˜Ë ¯+ +Í ˙Î ˚

L

In the limiting condition the above expression can be written as

f ª
2 2

cosr

r s

c q

+

or f ª
cos

r

c q
(7.37)

We can see that the streamlines associated with the doublet are

sin
–

r

c q
 = C1

If we replace sinq by y/r, and the minus sign be absorbed in C1, we get

2

y

r
c  = C1 (7.38a)

In terms of Cartesian coordinate, it is possible to write

x2 + y2 – 

1

y
C

c
 = 0 (7.38b)
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Equation (7.38b) represents a family of circles. For x  = 0, there are two values of y,

one of which is zero. The centres of the circles fall on the y axis. On the circle, where

y = 0, x has to be zero for all the values of the constant. It is obvious that the family of

circles formed due to different values of C1 must be tangent to the x axis at the origin.

These streamlines are illustrated in Fig. 7.9. Due to the initial positions of the source

and the sink in the development of the doublet, it is certain that the flow will emerge in

the negative x direction from the origin and it will converge via the positive x

direction of the origin.

y = C3

y = C2

Streamlines

x

y

Velocity
potential lines

Fig. 7.9 Streamlines and velocity potential lines for a doublet

However, the velocity potential lines are

cos

r

c q
 = K1

In Cartesian coordinate this equation becomes

x2 + y2 – 
1

x
K

c
 = 0 (7.39)

Once again we shall obtain a family of circles. The centres will fall on the x axis. For

y = 0 there are two values of x, one of which is zero. When x = 0, y has to be zero for all

values of the constant. Therefore these circles are tangent to the y axis at the origin.
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The orthogonality of constant y and constant f lines are maintained as we iron out the

procedure of drawing constant value lines (Fig. 7.9). In addition to the determination

of the stream function and velocity potential, it is observed from Eq. (7.37) that for a

doublet

vr = 2

cos

r r

∂f c q

∂

-
= (7.40)

As the centre of the doublet is approached, the radial velocity tends to be infinite.

It shows that the doublet flow has a singularity. Since the circulation about a singular

point of a source or a sink is zero for any strength, it is obvious that the circulation

about the singular point in a doublet flow must be zero. It follows that for all paths in a

doublet flow G = 0

G = ◊Ú V ds
r r

 = 0 (7.41)

Applying Stokes theorem between the line integral and the area integral,

G = ( ) dA— ¥ÚÚ V
rr

 = 0 (7.42)

From Eq. (7.42), the obvious conclusion is — ¥ V
r

 = 0, i.e., doublet flow is an

irrotational flow.

At large distances from a doublet, the flow approximates the disturbances of a two-

dimensional airfoil. The influence of an airfoil as felt at distant walls may be

approximated mathematically by a combination of doublets with varying strengths.

Thus the cruise conditions of a two-dimensional airfoil can be simulated by the

superposition of a uniform flow and a doublet sheet of varying strengths.

7.3.2 Flow about a Cylinder Without Circulation

Inviscid-incompressible flow about a cylinder in uniform flow is equivalent to the

superposition of a uniform flow and a doublet. The doublet has its axis of

development parallel to the direction of the uniform flow. The combined potential of

this flow is given by

f = 0

cos
U x

r

c q
+ (7.43)

and consequently the stream function becomes

y = U0y – 
sin

r

c q
(7.44)

In our analysis, we shall draw streamlines in the flow field. In  two-dimensional

flow, a streamline may be interpreted as the edge of a surface on which the velocity

vector should always be tangent and there is no flow in the direction normal to it. The

latter is identically the characteristics of a solid impervious boundary. Hence, a

streamline may also be considered as the contour of an impervious two-dimensional

body. Figure 7.10 shows a set of streamlines. The streamline C-D may be considered as

the edge of a two-dimensional body while the remaining streamlines form the flow

about the boundary.
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C D

Fig. 7.10 Surface streamline

Now we follow the essential steps involving the superposition of elementary

flows in order to form a flow about the body of interest. A streamline has to be

determined which encloses an area whose shape is of practical importance in fluid

flow. This streamline will describe the boundary of a  two-dimensional solid body.

The remaining streamlines outside this solid region will constitute the flow about

this body.

Let us look for the streamline whose value is zero. Thus, we obtain

0

sin
U y

r

c q
-  = 0 (7.45)

replacing y by r sin q, we have

sin q 0U r
r

cÊ ˆ-Á ˜Ë ¯  = 0 (7.46)

If q = 0 or q = p, the equation is satisfied. This indicates that the x axis is a part of

the streamline y = 0. When the quantity in the parentheses is zero, the equation is

identically satisfied. Hence it follows that

r =

1/2

0U

cÊ ˆ
Á ˜Ë ¯

(7.47)

It can be said that there is a circle of radius 

1/2

0U

cÊ ˆ
Á ˜Ë ¯

 which is an intrinsic part of the

streamline y = 0. This is shown in Fig. 7.11.

Let us look at the points of intersection of

the circle and the x axis, i.e., the points A  and

B. The polar coordinates of these points are

r =

1/2

0U

cÊ ˆ
Á ˜Ë ¯

, q = p, for point A

r =

1/2

0U

cÊ ˆ
Á ˜Ë ¯

, q = 0, for point B

The velocity at these points are found

out by taking partial derivatives of the

velocity potential in two orthogonal direc-

tions and then substituting the proper

values of the coordinates. Thus

Fig. 7.11 Streamline y = 0 in a

superimposed flow of

doublet and uniform

stream

r =
1/2c

U0

y = 0

y = 0

y = 0

A B
x

y
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vr =
r

∂f

∂
 = U0 cos q – 

2

cos

r

c q
(7.48a)

vq =
1

r

∂f

∂q
 = –U0 sin q – 

2

sin

r

c q
(7.48b)

At point A

1/2

0

, r
U

c
q p

È ˘Ê ˆ
= =Í ˙Á ˜Ë ¯Í ˙Î ˚

vr = 0, vq = 0

At point B

1/2

0

0, r
U

c
q

È ˘Ê ˆ
= =Í ˙Á ˜Ë ¯Í ˙Î ˚

vr = 0, vq = 0

The points A  and B are clearly

the stagnation points through which

the flow divides and subsequently

reunites forming a zone of circular

bluff body.

The circular region, enclosed by part of the streamline y = 0 could be imagined as a

solid cylinder in an inviscid flow. At a large distance from the cylinder the flow is

moving uniformly in a cross-flow configuration.

Figure 7.12 shows the streamlines of the flow. The streamlines outside the circle

describe the flow pattern of the inviscid irrotational flow across a cylinder. However,

the streamlines inside the circle may be disregarded since this region is considered as

a solid obstacle.

7.3.3 Lift and Drag for Flow Past a Cylinder Without
Circulation

Lift and drag are the forces per unit length on the cylinder in the directions normal and

parallel respectively, to the direction of uniform flow.

Pressure for the combined doublet and uniform flow becomes uniform at large

distances from the cylinder where the influence of doublet is indeed small. Let us

imagine the pressure p0 is known as well as uniform velocity U0. Now we can apply

Bernoulli’s equation between infinity and the points on the boundary of the cylinder.

Neglecting the variation of potential energy between the aforesaid point at infinity

and any point on the surface of the cylinder, we can write

2
0 0

2

p U

g gr
+  =

2

2

b bp U

g gr
+ (7.49)

where, the subscript b indicates the surface of the cylinder. As we know, since fluids

cannot penetrate a solid boundary, the velocity Ub should be in the transverse

direction only or in other words, only vq component of velocity be present on the

streamline y = 0.

Fig. 7.12 Inviscid flow past a cylinder
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Thus, at r = 

1/2

0U

cÊ ˆ
Á ˜Ë ¯

Ub =
( )

( )
1/2

0 1/2
0

at /
at /

1

r U
r U

r
q

c
c

∂f

∂q
=

=

=v
(7.50)

= – 2U0 sin q

From Eqs (7.49) and (7.50) we obtain

pb =

2 2
0 0 0(2 sin )

2 2

U p U
g

g g g

q
r

r

È ˘
+ -Í ˙

Î ˚
(7.51)

The drag is calculated by integrating the force components arising out of

pressure, in the x direction on the boundary. Referring to Fig. 7.13, the drag force can

be written as

D = – 

1/22

00

cos dbp
U

p
c

q q
Ê ˆ
Á ˜Ë ¯Ú

or D =

1/22 2 2
0 0 0

00

(2 sin )
cos d

2 2

U p U
g

U g g g

p
qc

r q q
r

È ˘Ê ˆ
- + -Í ˙Á ˜Ë ¯ Î ˚

Ú

D =

1/22 2
20

0
00

(1 4sin ) cos d
2

U
p

U

p
r c

q q q
È ˘ Ê ˆ

- + -Í ˙Á ˜Ë ¯Î ˚
Ú (7.52)

Similarly, the lift force

L =

1/22

00

sin dbp
U

p
c

q q
Ê ˆ

- Á ˜Ë ¯Ú (7.53)

The Eqs (7.52) and (7.53) produce D = 0 and L= 0 after the integration is carried

out.

However, in reality, the cylinder will always

experience some drag force. This contradiction

between the inviscid flow result and the

experiment is usually known as D’Almbert

paradox. The reason for the discrepancy lies

in completely ignoring the viscous effects

throughout the flow field. Effect of the thin

region adjacent to the solid boundary is of

paramount importance in determining drag

force. However, the lift may often be predicted

by the present technique. We shall appreciate

this fact in a subsequent section.

y

pb

x

r =
c

U0

U0

q

dq

Fig 7.13  Calculation of drag on

a cylinder
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Bernoulli' s equation can be used to calculate the pressure distribution on the

cylinder surface

2( ) ( )

2

b bp U

g g

q q

r
+  =

2
0 0

2

p U

g gr
+

( )
0bp pq

r

-
 =

2
20 1 4 sin

2

U
qÈ ˘-Î ˚

The pressure coefficient, cp is therefore

Cp = 20

2
0

( )
[1 4sin ]

1

2

bp p

U

q
q

r

-
= - (7.54)

The pressure distribution on a cylinder is shown (Fig.7.14) below.

– 1

0

1

– 2

– 3

0 90 180 270 360

C
p

q
x

pb ( )q

Fig. 7.14 Variation of coefficient of pressure with angle

Example 7.6

A two-dimensional source of volume flow rate L = 2.5 m2/s is located in a uniform flow

(U0) of 2 m/s. Determine the stagnation point and the maximum thickness of the

resulting half body.

Solution

We have already constructed different flow patterns by superimposing elementary

flows. An interesting body shape appears if we superimpose a uniform flow over an

isolated source or sink which is known as Rankine half-body (refer Fig. 7.15). Let the

source be located at the origin.

(i) Then the stream function of combination is

y = U0 y + 
1tan

2

y

xp
-L Ê ˆ

Á ˜Ë ¯

or y = U0 y + K tan–1 y

x

Ê ˆ
Á ˜Ë ¯



368 Introduction to Fluid Mechanics and Fluid Machines

Maximum
width = 2ymax

ymax
y p= K

f = K1

K2

K3 K4

y - p= K

y = 0a x

y

U0

Fig. 7.15 Uniform flow plus source equals a half-body

Velocity, u = 0 2 2

x
U K

y x y

∂y

∂
= +

+

Similarly, v = – 
2 2

y
K

x x y

∂y

∂
= +

+

At the stagnation point u = 0, v = 0, demand from the above equation y = 0 and

x =
0

2.5

2 2 2Up p

L
= -

¥
 = – 0.2 m

The coordinates of stagnation points are (– a, 0) or (– 0.2, 0)

The value of stream function at the stagnation point is

y (– 0.2, 0) = 0 + 
1tan 0

2p
-L

or ystag = 0 + 
2.5

2
p

p
 = 1.25 m2/s

The half-body is described by dividing streamline,

y =
2 2

p
p

L L
= ◊  = p K

or U0 y  + 1tan
2 2

y

xp
-L L

=
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or U0 y + 
2 2

q

p

L L
= or y = 

0

1

2U

q

p
Ê ˆL -Ë ¯

at q = 0 ymax = 
02U

L
, the maximum ordinate

at q =
2

p , y = 
04U

L
, the upper ordinate at the origin

at q = p, y = 0, the stagnation point

at q = 3

2

p , y = –
04U

L
, the lower ordinate at the origin

(ii) However, the equation of the half-body becomes

U0y + 
1tan

2 2

y

xp
-L LÊ ˆ =Á ˜Ë ¯

The maximum thickness occurs as x Æ •

2y + 11.25
tan 0

p
-  = 1.25

y =
1.25

2
 = 0.625 m

The maximum thickness = 2ymax = 1.25

Example 7.7

A source at the origin and a uniform flow at 5m/s are superimposed. The half-body

which is formed has a maximum width of 2 m. Calculate (i)The location of stagnation

point, (ii) width of the body at the origin, and (iii) velocity at a point 0.7,
2

pÊ ˆ
Á ˜Ë ¯ .

Solution

(i) We have seen in Example 7.5, that

at q = 0, ymax = 
0

2

2 2U

L
=  = 1 m

or L = 2 ¥ 5 ¥ 1 = 10 m
2
/s

for stagnation point,

x =
0 0

10
– –

2 2 5

K

U Up p

L -
= =

¥
 = – 0.32 m

and y = 0
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(ii) at q =
2

p
, y = 

04U

L
 [from Example 7.5]

at q =
2

p
, y = 

10

4 5¥
 = 0.5 m

The width of the body at the origin is 2 ¥ 0.5 = 1 m

(iii) In polar coordinate,

y = U0 r sin q + Kq, where K = 
2p

L

vr = 0

1
cos

2
U

r r

∂y
q

∂q p

L
= +

vq = 0– sinU
r

∂y
q

∂
= -

at the point (0.7, p/2),

vr =
10

2 2 0.7rp p

L
=

¥
 = 2.27 m/s

vq = – U0 sin q = –5 sin 
2

p
 = –5 m/s

V resultant =
2 2(2.27) (5)+  = 5.49 m/s

Example 7.8

A line source discharging a flow at 0.6 m2/s per unit length is located at (–1,0) and a

sink of volume flow rate 1.2 m
2
/s is located at (2,0). For a dynamic pressure of 10 N/m

2
 at

the origin, determine the velocity and dynamic pressure at (1,1).

( 1, 0)– (2, 0)

P x y( , )

q1

r1

y

x

r2

q2

Fig. 7.16 Source and sink pair
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Solution

y at P may be expressed as

y = K1q1 – K2q2

or y = 1 2
1 2

2 2
q q

p p

L L
-

or y = 1 10.6 1.2
tan tan

2 1 2 2

y y

x xp p
- -Ê ˆ Ê ˆ-Á ˜ Á ˜Ë ¯ Ë ¯+ -

u =  =

2 2 2 2

0.6 ( 1) 1.2 ( – 2)

2 2( 1) ( – 2)

x x

x y x yp p

È ˘ È ˘+
-Í ˙ Í ˙

+ + +Î ˚ Î ˚

v = –
∂y
∂ x

 =
2 2 2 2

0.6 1.2

2 2( 1) ( – 2)

y y

x y x yp p

È ˘ È ˘
-Í ˙ Í ˙

+ + +Î ˚ Î ˚

at the origin (0,0)

u =
0.6 1.2 2 0.6 0.6 0.6

2 2 4 2 2p p p p p

-Ê ˆ- = + =Á ˜Ë ¯  = 0.1909 m/s

v = 0

Dynamic pressure 
21

2
Vr  = 10 N/m

2

or r = 20
2V

 = 548.3 kg/m3

At point (1,1)

u =
0.6 2 1.2 1 0.6 0.6

2 5 2 2 5 2p p p p
◊ + ◊ = +

= 0.0381 + 0.0954 = 0.1335 m/s

v =
0.6 1 1.2 1 0.6 0.6

2 5 2 2 10 2p p p p
◊ - ◊ = +

= 0.019 – 0.0954 = –0.0764 m/s

V resultant = 0.1538 m/s

Dynamic pressure at (1,1) = 
1

2
 ¥ 548.3 ¥ (0.1538)2

=  6.48 N/m2

Example 7.9

A source with volume flow rate 0.2 m2/s and a vortex with strength1 m2/s are located

at the origin. Determine the equations for velocity potential and stream function.

What should be the resultant velocity at x = 0.9 m and y = 0.8 m?
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Solution

For the source, y = K1q, f = K1 ln r

For the vortex, y = – K2 ln r, f = K2q

Combined, y =
0.2 1

ln
2 2

rq
p p

-  = 
1 1

0.1 ln
2

rq
p

È ˘-Í ˙Î ˚

Combined, f =
0.2 1

ln
2 2

r q
p p

+  = 
1 1

0.1 ln
2

r q
p

È ˘+Í ˙Î ˚

Now, vr =
1

10r r

∂f

∂ p
=

vq =
1 1

2r r

∂f

∂q p
=

at x = 0.9 m and y = 0.8 m

r = 2 2(0.9) (0.8)+  = 1.204 m

vr (0.9, 0.8) =
1

10 1.204p¥ ¥
 = 0.026 m/s

vq (0.9, 0.8) =
1 1

2 2 1.204rp p
=

¥ ¥
= 0.132 m/s

V resultant =
2 2(0.026) (0.132)+  = 0.134 m/s

7.3.4 Flow about a Rotating Cylinder

In addition to the superimposed uniform flow and a doublet, a vortex is thrown at the

doublet centre. This will simulate a rotating cylinder inuniform stream. We shall see that

the pressure distribution will result in a force, a component of which will culminate in

lift force. The phenomenon of generation of lift by a rotating object placed in a stream

is known as Magnus effect. The velocity potential and stream functions for the

combination of doublet, vortex and uniform flow are

f = U0 x + 
cos

2r

c q
q

p

G
-  (clockwise rotation) (7.55 a)

y = U0 y – 
sin

2r

c q

p

G
+  ln r (clockwise rotation) (7.55 b)

By making use of either the stream function or velocity potential function, the

velocity components are

vr = 0 2

1
cosU

r r

∂y c
q

∂q
Ê ˆ= -Á ˜Ë ¯ (7.56)

vq = 0 2

1
sin

2
U

r rr

∂f c
q

∂q p

GÊ ˆ= - + -Á ˜Ë ¯ (7.57)



Flow of Ideal Fluids 373

Implicit in the above derivation are x = r cosq and y = r sin q. At the stagnation

points the velocity components must vanish. From Eq. (7.56), we get

cos q 0 2
U

r

cÊ ˆ-Á ˜Ë ¯  = 0 (7.58)

From Eq. (7.58) it is evident that a zero radial velocity component may occur at q =

2

p
±  and along the circle, r = 

1/2

0U

cÊ ˆ
Á ˜Ë ¯

. Eq. (7.57) depicts that a zero transverse

velocity requires

sin q =
2

0

/2

( / )

r

U r

p

c

- G

+
or q = sin–1 

0 2

/2 r

U
r

p

c

- GÈ ˘
Í ˙

+Í ˙
Î ˚

(7.59)

However, at the stagnation point, both radial and transverse velocity components

must be zero.

So, the location of stragnation point occurs at

r =

1/2

0U

cÊ ˆ
Á ˜Ë ¯

and q = sin–1 

1/2

0

0
0

2
U

U
U

c
p

c
c

Ï ¸Ê ˆÊ ˆÔ Ô- G Á ˜Ì ˝Á ˜Á ˜Ë ¯Ô Ë ¯ ÔÓ ˛
È ˘Ê ˆ

+Í ˙Á ˜Ë ¯Î ˚

or q = sin–1 
1/2

0

0

1

2
2

U

U

c
p

- GÈ ˘◊Í ˙Ê ˆÍ ˙Á ˜Í ˙Ë ¯Î ˚

or q = sin–1 
( )1/2

04 Ucp

È ˘- G
Í ˙
Í ˙Î ˚

(7.60)

There will be two stagnation points since there are two angles for a given sine

except for sin–1 (±1).

The streamline passing through these points may be determined by evaluating y
at these points. Substitution of the stagnation coordinate (r, q) into the stream

function (Eq. 7.55 b) yields,

y =
( )

1/2 1/2

1
0 1/2 1/2

0 00

0

sin sin ln
24

U
U UU

U

c c c

pp cc

-
È ˘ È ˘- G GÊ ˆ Ê ˆ

- +Í ˙ Í ˙Á ˜ Á ˜Ë ¯ Ë ¯Í ˙Í ˙Ê ˆ Î ˚
Í ˙Á ˜Ë ¯Î ˚

y  = ( )
( )

1/2
1/2 1/2

0 0 1/2
00

( ) ln
24

U U
UU

cc c
c pp

È ˘- G G Ê ˆÈ ˘- +Í ˙ Á ˜Î ˚ Ë ¯Í ˙Î ˚
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or ystag= 

1/ 2

0

ln
2 U

c

p

G Ê ˆ
Á ˜Ë ¯

(7.61)

Equating the general expression for stream function to the above constant, we get

U0 r sin q – 

1/2

0

sin
ln ln

2 2
r =

r U

c q c

p p

G G Ê ˆ
+ Á ˜Ë ¯

By rearranging we can write

sin q 

1/2

0
0

ln ln 0
2

U r r
r U

c c

p

È ˘G Ê ˆÈ ˘- + - =Í ˙Á ˜Í ˙ Ë ¯Î ˚ Í ˙Î ˚
(7.62)

All points along the circle r = 

1/2

0U

cÊ ˆ
Á ˜Ë ¯

satisfy Eq. (7.62), since for this value of r,

each quantity within parentheses in the

equation is zero. Considering the interior of

the circle (on which y = 0) to be a solid

cylinder, the outer streamline pattern is

shown in Fig. 7.17.

A further look into Eq. (7.60) explains

that at the stagnation point

q =
1

1/ 2
0

( /2 )
sin

2( )U

p

c

- È ˘- G
Í ˙
Í ˙Î ˚

or q =
1

0

( /2 )
sin

2U r

p- È ˘- G
Í ˙
Î ˚

(7.63)

The limiting case arises for 
0

( /2 )

U r

pG
 = 2, where q = sin

–1
 (–1) = – 90° and two

stagnation points meet at the bottom as shown in Fig. 7.18.

Stagnation point

Fig. 7.18 Flow past a circular cylinder with circulation value 
Ã/2ð

0
U r

 = 2

A B

Stagnation points

Fig. 7.17 Flow past a cylinder

with circulation
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However, in all these cases the effects of the vortex and doublet become

negligibly small as one moves a large distance from the cylinder. The flow is assumed

to be uniform at infinity. We have already seen that the change in strength G of the

vortex changes the flow pattern, particularly the position of the stagnation points

but the radius of the cylinder remains unchanged.

7.3.5 Lift and Drag for Flow about a Rotating Cylinder

The pressure at large distances from the cylinder is uniform and given by p0.

Deploying Bernoulli’s equation between the points at infinity and on the boundary of

the cylinder,

pb = rg
2 2
0 0

2 2

bU p U

g g gr

È ˘
+ -Í ˙

Î ˚
(7.64)

The velocity Ub is as such 1/ 2

0

r
U

q

cÊ ˆ
= Á ˜Ë ¯

v

Hence, Ub =

1/2

0
0

1
2 sin

2

U
U

r

∂f
q

∂q p c

G È ˘= - - Í ˙Î ˚
(7.65)

From Eqs (7.64) and (7.65) we can write

pb =

1
2

2

0
02

0 0

2 sin
2

2 2

U
U

U p
g

g g g

q
p c

r
r

È ˘È ˘G Ê ˆÍ ˙- -Í ˙Á ˜Ë ¯Í ˙Í ˙Î ˚Í ˙+ -
Í ˙
Í ˙
Í ˙Î ˚

(7.66)

The lift may calculated as (refer Fig. 7.12)
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or L = rU0 G (7.67)

The drag force, which includes the multiplication by cos q (and integration over

2p) is zero.

Thus, the inviscid flow also demonstrates lift. It can be seen that the lift becomes a

simple formula involving only the density of the medium, free stream velocity and

circulation. In addition, it can also be shown that in two-dimensional incompressible

steady flow about a boundary of any shape, the lift is always a product of these three

quantities.

The validity of Eq. (7.67) for any two-dimensional incompressible steady potential

flow around a body of any shape, not necessarily a circular cylinder, is known as the

Kutta-Joukowski theorem, named after the German fluid dynamist Wilhelm Kutta

(1867–1944) and Russian mathematician Nikolai J. Joukowski (1847–1921). A very

popular example of the lift force acting on a rotating body is observed in the game of

soccer. If a player imparts rotation on the ball while shooting it, instead of following the

usual trajectory, the ball will swerve in the air and puzzle the goalkeeper. The swerve

in the air can be controlled by varying the strength of circulation, i.e., the amount of

rotation. In 1924, a man named Flettner had a ship built in Germany which possessed

two rotating cylinders to generate thrust normal to wind blowing past the ship. The

Flettner design did not gain any popularity but it is of considerable scientific interest

(shown in Fig. 7.19).

Wind ( m/s)V

U m/s

Ship

Cylinders

Fig. 7.19 Schematic diagram of the plan view of Flettner�s ship
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Example 7.10

A 300 mm diameter circular cylinder is rotated about its axis in a stream of water

having a uniform velocity of 5 m/s. Estimate the rotational speed when both the

stagnation points coincide. Estimate the lift force experienced by the cylinder under

such condition. r of water may be assumed to be 1000 kg/m3.

Solution

Stagnation point is given by

q = sin–1 
0

–

4 r Up

GÊ ˆ
Á ˜Ë ¯

When both the stagnation points coincide, the two angles are equal and q = –90°.

The stagnation point is at the lower surface [Fig. 7.18].

Thus,
04 r Up

G
 = 1

or G = 4p r U0

If the cylinder is rotating at an angular speed w, the circulation due to the

equivalent forced vortex is

G = Ú (wr ) r dq = 2p r2 w

2p w r2
 = 4 p r U0

w = 02U

r

or w =
2 5

0.15

¥
 = 66.67 rad/s

and G = 4p ¥ 0.15 ¥ 5

= 9.42 m2/s

Lift force = L = r U G

or L = 1000 ¥ 5 ¥ 9.42 
2

3

kg m m

s sm

È ˘
◊ ◊Í ˙

Î ˚
or L = 47100 N/m

As such, the lift is calculated per metre length of the cylinder

So, Lift = 47.1 kN/m2

7.4   AEROFOIL THEORY

Aerofoils are streamline-shaped wings which are used in airplanes and turbo-

machinery. These shapes are such that the drag force is a very small fraction of the lift.

The following nomenclatures are used for defining an aerofoil (refer to Fig. 7.20).
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The chord (c) is the distance between the leading edge and trailing edge. The

length of an aerofoil, normal to the cross section (i.e., normal to the plane of a paper)

is called the span of aerofoil. The camber line represents the mean profile of the

aerofoil. Some important geometrical parameters for an aerofoil are the ratio of

maximum thickness to chord (t/c) and the ratio of maximum camber to chord (h/c).

When these ratios are small, an aerofoil can be considered to be thin. For the analysis

of flow, a thin aerofoil is represented by its camber.

y y= 1

xa

y y= 2

t h

Leading
edge

Chord ( )C

Camber line = ( + )/2y y y1 2

Trailing edge

Fig. 7.20 Aerofoil section

The theory of thick cambered aerofoils is an advanced topic. Basically it uses a

complex-variable mapping which transforms the inviscid flow across a rotating

cylinder into the flow about an aerofoil shape with circulation.

7.4.1 Flow Around a Thin Aerofoil

Thin aerofoil theory is based upon the superposition of uniform flow at infinity and a

continuous distribution of clockwise free vortex on the camber line having circulation

density g (s) per unit length. The circulation density g (s) should be such that the

resultant flow is tangent to the camber line at every point.

Since the slope of the camber line is assumed to be small, g (s)ds = g (h)dh (refer

Fig. 7.21). The total circulation around the profile is given by

G =

0

( ) d

C

g h hÚ (7.68)

A vortical motion of strength g dh at x = h develops a velocity at the point P

which may be expressed as

dv =
( ) d

2 ( )x

g h h

p h -
 acting upwards

The total induced velocity in the upward direction at P due to the entire vortex

distribution along the camber line is

v(x) =
0

1 ( ) d

2 ( )

C

x

g h h

p h -Ú (7.69)
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v

( , )x y
v

x

x

( , 0)x

Fig. 7.21 Flow around thin aerofoil

For a small camber (having small a), this expression is identically valid for the

induced velocity at P¢ due to the vortex sheet of variable strength g (s) on the camber

line. The resultant velocity due to U• and v(x) must be tangential to the camber line

so that the slope of a camber line may be expressed as

d

d

y

x
 =

sin
tan

cos cos

U

U U

a
a

a a
•

• •

+
= +

v v

or
d

d

y

x
 =

U
a

•
+

v
 [since a is very small] (7.70)

From Eqs (7.69) and (7.70) we can write

d

d

y

x
 = a + 

0

1 ( ) d

2 ( )

C

U x

g h h

p h• -Ú (7.71)*

* For a given aerofoil, the left-hand side term of the integral Eq. (7.71) is a known

function. Finding out g (h) from it is a formidable task. This exercise is not being

discussed in this text. Interested readers may refer to the books by Glauert [1]

and Batchelor [2]. If g (h) is determined, the circulation G and consequently the

lift L = r U• G can easily be calculated.
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Let us consider an element ds on the camber line. Consider a small rectangle

(drawn with dotted line) around ds. The upper and lower sides of the rectangle are very

close to each other and these are parallel to the camber line. The other two sides are

normal to the camber line. The circulation along the rectangle is measured in

clockwise direction as

V 1 ds – V 2 ds = g ds [Normal component of velocity at the camber
line should be zero]

or V 1 – V 2 = g (7.72)

If the mean velocity in the tangential direction at the camber line is given by

V s = (V 1 + V 2)/2, it can be rewritten as

V1 = V s + 
2

g
and V 2 = V s – 

2

g

In the event, it can be said that if v is very small [v <<U•], V s becomes equal to U•.

The difference in velocity across the camber line brought about by the vortex sheet of

variable strength g (s) causes pressure difference and generates lift force.

7.4.2 Generation of Vortices around a Wing

The lift around an aerofoil is generated following Kutta-Joukowski theorem. Lift is a

product of r, U• and the circulation G. Mechanism of induction of circulation is to be

understood clearly.

When the motion of a wing starts from rest, vortices are formed at the trailing edge

(refer Fig. 7.22).

At the start, there is a velocity discontinuity at the trailing edge. This is eventual

because near the trailing edge, the velocity at the bottom surface is higher than that

at the top surface. This discrepancy in velocity culminates in the formation of vortices

at the trailing edge. Figure 7.22 (a) depicts the formation of starting vortex

by impulsively moving aerofoil. However, the starting vortices induce a counter

circulation as shown in Figure 7.22 (b). The circulation around a path (ABCD)

enclosing the wing and just shed (starting) vortex must be zero. Here we refer to

Kelvin’s theorem once again.

B

A D

C

Fig . 7.22 Vortices generated when an aerofoil just begins to move
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Initially the flow starts with the zero circulation around the closed path.

Thereafter, due to the change in angle of attack or flow velocity, if a fresh starting

vortex is shed, the circulation around the wing will adjust itself so that a net zero

vorticity is set around the closed path.

The discussions in the previous section were for two-dimensional, infinite span

wings. But real wings have finite span or finite aspect ratio l, defined as

l =
2

s

b

A
(7.73)

where b is the span length and A s is the plan form area as seen from the top. For a wing

of finite span, the end conditions affect both the lift and the drag. In the leading edge

region, pressure at the bottom surface of a wing is higher than that at the top surface. The

longitudinal vortices are generated at the edges of finite wing owing to pressure

differences between the bottom surface directly facing the flow and the top surface (refer

Fig. 7.23). This is very prominent for small aspect ratio delta wings which are used in high-

performance aircrafts as shown in Fig. 7.24.

Fig. 7.23 Vortices around a finite wing

Leading edge

Trailing edge

Angle of attack

b
l

b

Fig. 7.24 Counter rotating leading edge vortices generated by a delta-wing

However, circulation around a wing gives rise to bound vortices that move along

with the wing. In 1918, Prandtl successfully modelled such flows by replacing the

wing with a lifting line. The bound vortices around this lifting line, the starting

vortices and the longitudinal vortices formed at the edges, constitute a closed vortex

ring as shown in Fig. 7.23.
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SUMMARY

This chapter has given a brief description of inviscid, incompressible, irrotational

flows.

∑ Irrotationality leads to the condition — ¥ 
r
V  = 0 which demands 

r
V  = —f, where f

is known as a potential function. For a potential flow —2f = 0.

∑ The stream function y also obeys the Laplace’s equation —2 y = 0 for the

potential flows. Laplace’s equation is linear, hence any number of particular

solutions of Laplace’s equation added together will yield another solution. So a

complicated flow for an inviscid, incompressible, irrotational condition can

be synthesised by adding together a number of elementary flows which are

also inviscid, incompressible and irrotational. This is called the method of

superposition.

∑ Some inviscid flow configurations of practical importance are solved by using

the method of superposition. The circulation in a flow field is defined as G =

dV s◊Ú
r r

. Subsequently, the vorticity may be defined as circulation per unit area.

The circulation for a closed path in an irrotational flow field is zero. However, the

circulation for a given closed path in an irrotational flow containing a finite

number of singular points is a non-zero constant.

∑ The lift around an immersed  body is generated when the flow field possesses

circulation. The lift around a body of any shape is given by L = rU0G, where r is

the density and U0 is the velocity in the streamwise direction.
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EXERCISES

7.1 Choose the correct answer :

(i) Stream function is defined for

(a) all three-dimensional flow situations

(b) flow of perfect fluid

(c) irrotational flows only

(d) two-dimensional incompressible flows

(ii) Velocity potential exists for

(a) all three-dimensional flow situations

(b) flow of perfect fluid

(c) all irrotational flows

(d) steady irrotational flow
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(iii) The continuity equation for a fluid states that

(a) mass flow rate through a stream tube is constant

(b) the derivatives of velocity components exist at every point

(c) the velocity is tangential to stream lines

(d) the stream function exists for steady flows

(iv) —. V
r

 = 0 implies that

(a) dilatation rate for a fluid particle is zero

(b) net mass flux from a control volume in any flow situation is zero

(c) the fluid is compressible

(d) density is a function of time only

(v) Momentum theorem is valid only if the fluid is

(a) incompressible (b) in irrotational motion

(c) inviscid (d) irrespective of the above restrictions.

(vi) Circulation is defined as

(a) line integral of velocity about any path

(b) integral of tangential component of velocity about a path

(c) line integral of velocity about a closed path

(d) line integral of tangential component of velocity about a closed

path.

(vii) In an irrotational flow, Stokes theorem implies that circulation is zero

(a) around two-dimensional infinite bodies

(b) in simply connected regions

(c) in  multiply connected regions

(d) without any restriction

(viii) The curl of a given velocity field indicates

(a) the rate of increase or decrease of flow at a point

(b) the rate of twisting of the lines of flow

(c) the deformation rate

(d) None of the above

7.2 Prove that the streamlines y (r, q) in a polar coordinate system are orthogonal

to the velocity potential lines f(r, q).

7.3 The x and y components of velocity in a two-dimensional incompressible flow

are given by

u = 3x + 3y and v = 2x – 3y

Derive an expression for the stream function. Show that the flow is rotational.

Calculate the vorticity in the flow field.

Ans. (–x2
 + 3xy + (3/2) y2

, — ¥
r

V  = – 1)

7.4 A source of volume flow rate 2 m2/s is located at origin and another source

of volume flow rate 4 m2/s is located at (3,0). Find out the velocity compo-

nents at (2, 2).

Ans. (u = –0.048 m/s, v = 0.334 m/s)

7.5 A source of volume flow rate 5 m2/s at the origin and a uniform flow of veloc-

ity 4 m/s combine to form a two-dimensional half-body. Find out the maximum

width of the half-body.

Ans. (1.25 m)
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7.6 A source and a sink of equal volume flow rate 10  m2/s are located 2 m apart. If

a uniform flow of 5 m/s  is superimposed, find out the location of the stagna-

tion points.

Ans. (1.28, 0) and (–1.28, 0)

7.7 The discharge of 30 m2/s pollutants from a chemical plant into 10 m deep

river, flowing at 0.3 m/s, can be modelled as a two-dimensional source across

the river depth. It is found that the fishes in a certain zone die whereas those

outside the zone are unaffected. Find out the extent of this critical zone, if the

point of discharge is in the midplane of a wide river.

Ans. (Rankine half-body with stagnation point (15.91, 0) and 2ymax = 100 m)

7.8 The Flettner rotor ship (Fig. 7.15) makes use of two rotating vertical cylinders.

Each has a diameter of 3 m and length of 15 m. If they rotate at a speed of

720 rpm, calculate the magnitude of magnus force developed by the rotors in a

breeze of 10 m/s. Assume air density as 1.22 kg/m
3
.

Ans. (390.083 kN)

7.9 Find out the strength of a doublet which simulates a physical situation of 2 m

diameter cylinder in a uniform flow of 15 m/s.

Ans. (L = 47.124 m
3
/s per metre)

7.10 Consider a forced vortex rotated at an angular speed w. Evaluate the circula-

tion around any closed path in a forced vortex flow.

Derive the expression of hydrodynamic pressure as a function of radius for (i) a

free vortex and (ii) a forced vortex.

Ans. (Forced vortex G = 2p r2
 w ; (i) p = – r C2

/r2
 + C2 (ii) p = rw2 r2

/2 + C1)

7.11 A tornado may be modelled as a circulating flow  shown in Fig. 7.25 with

vr = vz = 0
vq = wr for r £ R

=
w R

r

2

 for r ≥ R

R

vq ( )r

r

a

Fig. 7.25 Model of a tornado (Combination of free and forced vortex)

Determine whether the flow pattern is irrotational in either the inner (r < R) or

the outer (r > R) region. Using r momentum equation, determine the pressure
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distribution p (r) in the tornado, assuming p = p• at r Æ •. Find out the loca-

tion of the minimum pressure.

Ans. (p = p• – rw2
 R2

 (1 – r2
/ 2R2

) for r < R;

p = p• – rw2 R4 / 2r2 for r > R)

7.12 A 2 m diameter cylinder is rotating at 1400 rpm in an air stream flowing at

20 m/s. Calculate the lift and drag forces per unit depth of the cylinder. As-

sume air density as 1.22 kg/m3.

Ans. (L = 22.476 kN, D = 0)

7.13 Flow past a rotating cylinder can be simulated by superposition of a doublet,

a uniform flow and a vortex. The peripheral velocity of the rotating cylinder

alone is given by vq at r = R (R is the radius of the cylinder). Use the expres-

sion for the combined velocity potential for the superimposed uniform flow,

doublet and vortex flow (clockwise rotation) and show that the resultant ve-

locity at any point on the cylinder is given by – 2Uo sin q – vq (at r = R). The

angle q is the angular position of the point of interest. A cylinder rotates at

360 rpm around its own axis which is perpendicular to the uniform air stream

(density 1.24 kg/m3) having a velocity of 25 m/s. The cylinder is 2 m in diam-

eter. Find out (a) circulation, G (b) lift per unit length and the (c) position of

the stagnation points.

Ans. (236.87 m2/s, 7343 N/m, – 48.93° and 228.93°)

7.14 Flow past a rotating cylinder can be simulated by superposition of a doublet,

a uniform flow and a vortex. The peripheral velocity of the rotating cylinder

alone is given by vq at r = R (R is the radius of the cylinder). Use the expres-

sion for the combined velocity potential for the superimposed uniform flow,

doublet and vortex flow (clockwise rotation) and show that the resultant ve-

locity at any point on the cylinder is given by – 2Uo sin q – vq (at r = R). The

angle q is the angular position of the point of interest. A cylinder rotates at

240 rpm around its own axis which is perpendicular to the uniform air stream

(density 1.24 kg/m3) having a velocity of 20 m/s. The cylinder is 2 m in diam-

eter. Find out (a) circulation, G (b) lift per unit length and the (c) speed of

rotation of the cylinder, which yields only a single stagnation point.

Ans. (157.91 m2/s, 3916.25 N/m, 382 rpm)
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DYNAMICS OF VISCOUS FLOWS

8.1   INTRODUCTION

In Chapter 4, we dealt with fluid flow analysis using integral forms of the

conservation equations that do not explicitly take into account point-to-point

variations in the flow domain, but rather express the sense of overall conservation

within the control volume in an integral form. However, in many cases, information on

point-to-point variations in the flow field may be necessary for analysing fluid flow

problems. In this chapter, we will be developing a differential equation-based

approach to address this issue, considering that viscous effects are important in

dictating the flow characteristics. It is important to mention here that the derivation of

the governing equations, as presented in this chapter, is valid for both incompressible

as well as compressible viscous flows. However, in the subsequent portion of the

chapter, solutions to these equations are presented only for certain simple cases of

steady, viscous, incompressible flows for which elementary analytical solutions exist.

Solutions of conservation equations for compressible flows are beyond the scope of

this chapter.

8.2   CONSERVATION OF LINEAR MOMENTUM IN
DIFFERENTIAL FORM

Our first attempt in this chapter will be to derive a differential equation for linear

momentum conservation, starting from the corresponding integral form. Considering

a stationary reference frame and non-deformable control volume, the integral form

of conservation of linear momentum may be written as (see Chapter 4),

( )ˆ·CV CV CS
F Vd V V n dA

t
r r

∂
= " +

∂Â Ú Ú
r r r r

or ( )ˆ·CV
CV CS

F Vd V V n dA
t

r r
∂

= " +
∂Â Ú Ú

r r r r

 (8.1)

where CVFÂ
r

is the resultant force on the control volume (CV). The net force acting

on the control volume along the ith
 direction is given by
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FCV,i = Net surface force along i + Net body force along i

i.e., FCV,i = Fsurface,i + Fbody,i  (8.2)

where Fsurface,i is the net surface force acting on the CV along ith
 direction and  Fbody,i

is the net body force acting on the CV along the same direction. In the subsequent

discussions, we will delineate the manner in which these forces may be expressed in

a structured mathematical form.

Referring to Fig 8.1, let T n
 be the traction vector acting on an elemental plane of a

control surface having unit normal vector n̂ . Let T n
i be the ith

 component of the

traction vector T n
 ( note that i = 1 means component along x, i = 2 means component

along y, and i = 3 means component along z in a Cartesian indexing system). In

special cases when the direction n̂  coincides with any of the coordinate directions

(say, j), the notations T j
i and tji may be used equivalently. The later ones are also

known to constitute the stress tensor components ( see Chapter 1). Note that each of

the indices i and j may vary between 1 and 3.

n̂

n
T
r

dA

q

Fig. 8.1 

For any arbitrary orientation n̂ , the traction vector at a point may be expressed in

terms of the stress tensor components, by utilising Cauchy’s theorem (see Chapter

1), as follows:

3 3

1 1

n
i ji j ij j

j j

T n nt t
= =

= =Â Â  (since, from angular momentum conservation, tji = tij)

where, 1 2 3
ˆˆ ˆn̂ n i n j n k= + +  and 1 1 2 2 3 3 ˆ·ij j i i i in n n n nt t t t t= + + =

r
 (defining it

r
 as

1 2 3
ˆˆ ˆ

i i i ii j kt t t t= + +
r

).

Thus, Fsurface,i = ( )ˆ·n
i i

CS
T dA n dAt=Ú Ú

r

Let bi be the ith
 component of the body force per unit mass. Therefore, the ith

component of the body force acting on an elemental volume d" within the CV is

rbid". Thus, the net body force along i is given by
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*
This portion may be omitted without loss of continuity

Fbody,i = i
CV

b dr "Ú
Hence, Eq. (8.2) may be rewritten as

,CV iFÂ = ( )ˆ·i i
CS CV

n dA b dt r+ "Ú Ú
r

Accordingly, the ith component of the vector equation (8.1) may be written as

( ) ( ) ( )ˆ ˆ· ·i i i i
CS CV CV CS

n dA b d u d u V n dA
t

t r r r
∂

+ " = " +
∂Ú Ú Ú Ú

rr
(8.3)

where ui is the ith component of the velocity vector V
r

. Now, using the divergence

theorem ( ˆ· ·
CS CV

F n dA Fd= — "Ú Ú
r r

), the area integrals appearing in Eq. (8.3) may

be converted into volume integrals, to yield

( ) ( ) ( )· ·i i i i
CV CV CV CV

d b d u d u V d
t

t r r r
∂

— " + " = " + — "
∂Ú Ú Ú Ú

rr
(8.4)

or, ( ) ( ) ( )· · 0i i i i
CV

b u u V d
t

t r r r
∂È ˘— + - - — " =Í ˙∂Î ˚Ú

rr
 (8.4a)

Since the choice of the elemental CV is arbitrary, we have

( ) ( ) ( )· · 0i i i ib u u V
t

t r r r
∂

— + - - — =
∂

rr
,

or equivalently,

( ) ( )· ·i i i iu u V b
t

r r t r
∂

+ — = — +
∂

r r
 (8.5)

Equation ( 8.5) may be alternatively expressed in Cartesian index notation as

( ) ( ) ( )i i j i j i
j j

u u u b
t x x

r r t r
∂ ∂ ∂

+ = +
∂ ∂ ∂

 (8.5a)

Equation (8.5) or (8.5a) is known as the Navier’s equation of equilibrium along the

ith direction.

*Eq. (8.5a) has been derived starting with the application of linear momentum

conservation to a finite control volume. It can be mentioned in this context that the

same equation can be derived by straightforward application of Newton’s second

law of motion to a fluid element as a control mass system. In order to illustrate the

same, one may consider a fluid element of volume d v 1 2 3dx dx dx=   and mass dm

in a Cartesian reference frame with coordinate axes as shown in Fig. 8.2 and write

a force balance on the same. It is important to reiterate in this context that in the

representation of stress through tij notation, the first subscript (i) denotes the

direction of the normal to the plane on which the stress acts, while the second

subscript (j) denotes the direction of action of the force which causes the stress. As

mentioned earlier, i = 1 means component along x, i = 2 means component along y,

and i = 3 means component along z. If the stress components at the centre of the

differential element are taken to be t11, t21, and t31, then the stress components on

different planes caused by the forces in x1 direction (obtained by a Taylor series

expansion about the centre of the element) are only shown in Fig. 8.2.
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The net surface force in the x1 direction is given by
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 Fig. 8.2 

Let b1 be the component of the body force per unit mass in the x1 direction.

Therefore, component of the body force acting in the x1 direction is rb1dx1dx2dx3.

Thus, the net force in the x1 direction,
1xdF ,  is given by

1

3111 21
1 1 2 3

1 2 3
xdF b dx dx dx

x x x

tt t
r

∂∂ ∂Ê ˆ
= + + +Á ˜Ë ¯∂ ∂ ∂

Writing Newton's second law of motion to the fluid element along x1 direction,

we obtain

311 11 21
1 1 2 3

1 2 3

Du
dm b dx dx dx

Dt x x x

tt t
r

∂∂ ∂Ê ˆ
= + + +Á ˜Ë ¯∂ ∂ ∂

or 311 11 21
1

1 2 3

Du
b

Dt x x x

tt t
r r

∂∂ ∂
= + + +

∂ ∂ ∂
 (8.5b)

One can derive similar expressions for the force components in the x2 and x3

directions. These can be generalised, so that the equation of motion in ith direction

may be expressed in Cartesian index notation as
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( )i
ji i

j

Du
b

Dt x
r t r

∂
= +

∂
Since from angular momentum conservation,tji = tij, the above equation can be

expressed as

( )i
i j i

j

Du
b

Dt x
r t r

∂
= +

∂
        (8.5c)

While the left-hand side of Eq. (8.5a) implies the net rate of momentum change

in control volume plus the net rate of momentum efflux from the control volume,

the left-hand side of Eq. (8.5c) represents the rate of change in momentum per unit

volume of a fluid element as control mass system. The equality of the two can be

proved with the aid of continuity equation as follows:

( ) ( ) ( )i i
i j i i i j j

j j j

u u
u u u u u u u

t x t t x x

r
r r r r r

∂ ∂∂ ∂ ∂ ∂
+ = + + +

∂ ∂ ∂ ∂ ∂ ∂

= ( )
{

From continuity equation

0 i

i i
i j j

j j

Du

Dt

u u
u u u

t x t x

r
r r

È ˘È ˘
Í ˙Í ˙
Í ˙Í ˙ ∂ ∂∂ ∂ Í ˙+ + +Í ˙

∂ ∂ ∂ ∂Í ˙Í ˙
Í ˙Í ˙
Í ˙Í ˙Î ˚ Î ˚

1442443 1442443

= iDu

Dt
r

Equation (8.5a) is fairly generic in nature, but not mathematically closed. This is
because of the fact that in addition to flow velocities, it contains tij s also as additional
unknowns, for which additional governing equations need to be prescribed. This task
can be accomplished by expressing tij s in terms of the primary variables (velocity
and pressure), which is by no means a trivial act. The non-triviality in such
mathematical descriptions stems from the fact that different types of fluids are
constitutively different. In other words, the relationship between stress and the rate
of deformation (also known as constitutive relationship for fluids) for different types
of fluids may intrinsically differ in their mathematical forms.

In an effort to obtain more fruitful insight on the mathematical description of fluid
stresses, one may note that it is possible to split the net stress into two parts; one
being the function of deformation (called deviatoric component) and another being
independent of deformation (called hydrostatic component). The hydrostatic
component of stress, independent of fluid deformation, would exist even if the fluid
is at rest. The deviatoric component of stress, on the other hand, is directly linked to

the fluid deformation. Accordingly, one may express tij as

tij =
hydrostatic deviatoric

ij ijt t+  (8.6)

The philosophy of writing the stress tensor as above (Eq. (8.6)) is that the
expression of stress field must have continuity to that under the situation of
hydrostatics where the deformation rates are zero.

The deviatoric component of the stress tensor is related to the velocity gradients.
The velocity gradient tensor can be decomposed into symmetric and antisymmetric

parts, as
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1 1

2 2

ij ij

j ji i i

j j i j i

e

u uu u u

x x x x x

w

∂ ∂Ê ˆ Ê ˆ∂ ∂ ∂
= + + -Á ˜ Á ˜∂ ∂ ∂ ∂ ∂Ë ¯ Ë ¯
1442443 1442443

The symmetric part represents fluid deformation and the antisymmetric part

represents fluid rotation. The antisymmetric part cannot by itself generate stress.

Therefore, deviatoric stress tensor should be naturally related to symmetric part of

the velocity gradient tensor. Mathematically, we can write

tij
deviatoric = f (rate of deformation)  (8.7)

In deriving the explicit form of the relation given by Eq.(8.7), the following

assumptions are made:

∑ The relationship between the stress tensor and the deformation rate tensor is

linear. The fluids which obey the linear relationship are known as Newtonian

fluids.

∑ The fluid is homogeneous and isotropic so that the relationship given by Eq.

(8.8) is invariant to coordinate transformation comprising rotation, transla-

tion and reflection. Thus, the relation implies a physical law.

Based on the above assumptions, and following a rigorous mathematical

derivation, Eq. (8.7) can be written as

tij
deviatoric

 =
jk i

ij
k j i

uu u

x x x
l d m

∂Ê ˆ∂ ∂
+ +Á ˜∂ ∂ ∂Ë ¯

 (8.8)

Here m is the viscosity of the fluid which relates to the deviatoric component of

the stress linearly with the rate of shear deformation 
j i

i j

u u

x x

∂Ê ˆ∂
+Á ˜∂ ∂Ë ¯

 for homogeneous

and isotropic Newtonian fluids. l is known as the 2
nd

 coefficient of viscosity, which

relates the deviatoric component of the stress linearly with the rate of volumetric

deformation ( k

k

u

x

∂
∂

).

* Equation (8.8) may be arrived at by starting from Eq. (8.7). In order to achieve

that, it may first be noted that for Newtonian fluids, the functional relationship

between the deviatoric stress tensor and the velocity gradient tensor is linear. It is

also important to recognise in this context that both deviatoric stress and velocity

gradient tensors are second order tensors. To linearly map one of them into the

other (as necessary for Newtonian fluids), one requires a fourth-order tensor as a

mediator, so that one may write

tij
deviatoric = Cijkl ekl (8.9)

where 
1

2

k l
kl

l k

u u
e

x x

∂ ∂È ˘
= +Í ˙∂ ∂Î ˚

and Cijkl is a fourth-order tensor (having 81 components

that depend on the thermodynamic state of the medium).

*
This portion may be omitted without loss of continuity
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For a homogeneous and isotropic fluid, the Cijkl components are position

independent and are also invariant to rotation of the coordinate axes. To move

deeper into the underlying implications, let us attempt to form a scalar starting from

Cijkl. To do that, clearly we can employ four vectors , , ,A B C D
r rr r

, each of which may

offer with one index, so that the product CijklA iBjCkDl becomes a scalar ( note that

repeated index implies an invisible summation over the same from 1 to 3). Further,

if the scalar is isotropic, then that is independent of the absolute orientations of the

individual vectors but just dependent on the angle between those taken two at a

time. Since the angle between the two vectors is also given by their dot product, one

may write, for an isotropic scalar Cijkl,

( ) ( ) ( )( ) ( ) ( )· · · · · ·ijkl i j k lC A B C D A B C D A C B D A D B Ca b g= + +
r r r r r rr r r r r r

(8.10)

where a, b, and g are constant scalars. In terms of index notations:

ijkl i j k l i i k k i i j j i i j jC A B C D A B C D A C B D A D B Ca b g= + +

or ijkl i j k l i j k l ij kl ik jl il jkC A B C D A B C D ad d b d d gd dÈ ˘= + +Î ˚ (8.11)

where dij is the Kronecker delta and is given by

dij = 1 if i = j

= 0 if i π j

In Eq. (8.11), we have used the generic vector transformation: Bi = Bjdij. From
Eq. (8.11), we get

ijkl ij kl ik jl il jkC ad d b d d gd d= + + (8.12)

Equation (8.12) expresses the homogeneous and isotropic tensor Cijkl in terms

of 3 homogeneous and isotropic scalars a, b, and g . Further, since tij
deviatoric

 is a

symmetric tensor

tij
deviatoric = tji

deviatoric

so that

Cijkl ekl = Cjikl ekl

From Eq. (8.12) we get

jikl ji kl jk il jl ikC ad d b d d gd d= + + (8.13)

Comparing Eqs (8.12) and (8.13), and noting that dij is a symmetric tensor (dij
= dji), we have

( ) ( )ik jl il jkb g d d d d- -  = 0

Since ( )ik jl il jkd d d d-  is not equal to zero in general, one must have

 (b – g ) = 0  (8.14)

which implies

Cijkl  = ij kl ik jl il jkad d b d d bd d+ +

Thus,  tij
deviatoric

 = ijkl kl ij kl kl ik jl kl il jk klC e e e ead d b d d bd d= + +

or tij
deviatoric = ij kk ij jie e ead b b+ +  (since dmn π 0 only if n = m)
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or, tij
deviatoric

 = 2ij kk ije ead b+  ( since eij = eji)

Further, since, 2
ji

ij
j i

uu
e

x x

∂Ê ˆ∂
= +Á ˜∂ ∂Ë ¯

, which is the rate of deformation, b b b b b must be

physically the viscosity (m) of the fluid that relates the deviatoric stress in a

Newtonian fluid with the rate of deformation. The coefficient a is given a general

notation l in standard texts, which is known as the second coefficient of viscosity

and is related to the volumetric rate of dilation 31 2

1 2 3

k
kk

k

u uu u
e

x x x x

∂ ∂∂ ∂Ê ˆ
= + + =Á ˜Ë ¯∂ ∂ ∂ ∂

.

Therefore, the deviatoric stress tensor component for homogeneous and isotropic

Newtonian fluids can be written as

tij
deviatoric

 =
jk i

ij
k j i

uu u

x x x
l d m

∂Ê ˆ∂ ∂
+ +Á ˜∂ ∂ ∂Ë ¯

Regarding the description of the hydrostatic components of stress tensor, it is

important to reiterate here that in a fluid at rest there are only normal components of

stress on a surface that are independent of the orientation of the surface. In other

words, the hydrostatic stress tensor is isotropic or spherically symmetric. Because

the stress in a static fluid is isotropic, it must be of the form

tij
hydrostatic = – pdij  (8.15)

where p is the thermodynamic pressure, which may be related to density and

temperature by an equation of state for compressible fluids. It is important to

recognise here that the hydrostatic component of stress is present not only for fluid

at rest, but is also equally active for fluid under motion. Only, for fluid under motion,

an additional stress component in terms of deviatoric stress acts, which is absent for

fluid at rest. A negative sign is introduced in Eq. (8.15) because of the fact that the

normal components of stress are regarded as positive if they indicate tension, whereas

pressure by definition is compressive in nature. Thus, one may write

tij = tij
hydrostatic + tij

deviatoric

or, tij =
jk i

ij ij
k i j

uu u
p

x x x
d l d m

∂Ê ˆ∂ ∂
- + + +Á ˜∂ ∂ ∂Ë ¯

 (8.16)

Equation. (8.16) is a representation of the general constitutive behaviour of a

homogeneous and isotropic Newtonian fluid.

To proceed further, we first consider the normal components of the stress tensor,

1
11

1

2
22

2

3
33

3

2

2

2

k

k

k

k

k

k

u u
p

x x

u u
p

x x

u u
p

x x

t l m

t l m

t l m

∂ ∂ ¸
= - + + Ô∂ ∂ Ô

Ô∂ ∂
= - + + ˝∂ ∂ Ô

Ô∂ ∂
= - + + Ô

∂ ∂ ˛

 (8.17)
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From Eq. (8.17), one gets

11 22 33 2

3 3

k

k

u
p

x

t t t
l m

+ + ∂Ê ˆ= - + +Á ˜Ë ¯ ∂

or
2

3

k
m

k

u
p p

x
l m

∂Ê ˆ- = - + +Á ˜Ë ¯ ∂
 (8.18)

Here, 11 22 33

3
mp

t t t+ +
= - , is the mechanical pressure, which is defined as the

arithmetic average of the normal components of the stress tensor. A negative sign is

introduced because the normal components of stress are regarded as positive if they

indicate tension, whereas pressure by definition is compressive in nature. It is

important to mention in this context that, in general, mechanical pressure is not the

same as thermodynamic pressure. Mechanical pressure represents the effects of

translational mode of energy of the system of molecules, whereas thermodynamic

pressure represents combined effects of translational, rotational and vibrational

modes of energy of the system of molecules. Distinction between them, therefore, is

because of rotational and vibrational modes of energy of the system of molecules.

There are some substances for which the rotational and vibrational modes of energy

are zero (for example, dilute monatomic gases), so that the mechanical pressure is

identically equal to thermodynamic pressure. For such substances, Eq. (8.18) yields

2
0

3
l m+ =

or l =
2

3
m-

For a fluid in general, therefore pm π p. However, for fluids in local

thermodynamic equilibrium, the various modes of energy corresponding to the

thermodynamic pressure almost instantaneously get converted into the translational

modes of energy manifested in terms of mechanical pressure. Thus, for most cases,

we have

2
0

3
l m+ =  (8.19)

Equation (8.19) is known as the Stokes hypothesis, which follows from physical

arguments. Fluids obeying this hypothesis are called Stokesian fluids. Interestingly,

note that for incompressible flows, 0k

k

u

x

∂
=

∂
, so that pm = p, is trivially independent

of invoking the Stokes hypothesis.

To have a deeper understanding on the possible applicability of the Stokes

hypothesis, let us consider a bubble, inside which there is a gas that changes its

thermodynamic states. With a change in state, the effect may be perceived as an

equivalent change in mechanical pressure as well. This change in mechanical

pressure may be the same as equating the corresponding change in thermodynamic

pressure only if sufficient time is allowed over which the system is made to locally

equilibrate. This time required is called relaxation time. If the change that is taking
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place is so fast that the time scale of the change is faster than the relaxation time (for

example, consider the case of a bubble that is alternatively expanding and

contracting at a very high frequency), then the fluid will not be able to come to a state

of equilibrium before a new change of state has taken place. Under such

circumstances, pm π p, and Stokes hypothesis will not work. However, for most

practical applications, Stokes hypothesis works, since usually the relaxation time-

scales for fluids are very fast (at least, significantly faster than the time-scale of

imposition of the thermodynamic change for most processes).

It is also interesting to note that following Stokes hypothesis, l is negative for

positive m. Considering the expression for t11, we may observe that the contributor of

volumetric deformation to  t11 is negative if the fluid is expanding (i.e., if k

k

u

x

∂
∂

 is

positive). Thus, higher the value of k

k

u

x

∂
∂

 (considering it to be positive), the

corresponding proportionate change in t11 is actually less, because it is multiplied by

a negative term. It means if a fluid element is already expanding, the proportionate

enhancement in stress to expand it further is less.

To derive the final forms of the differential equation of motion, we will now apply

Eq. (8.16) to Eq. (8.5a). This, in turn, implies

( ) ( ) jk i
i j i ij ij i

j j k i j

uu u
u u u p b

t x x x x x
r r d l d m r

∂È Ê ˆ ˘∂ ∂∂ ∂ ∂
+ = - + + + +Í ˙Á ˜∂ ∂ ∂ ∂ ∂ ∂Ë ¯Î ˚

=
jk i

i
i i k j i j

uu up
b

x x x x x x
l m r

∂È Ê ˆ ˘∂ ∂∂ ∂ ∂Ê ˆ
- + + + +Í ˙Á ˜Á ˜Ë ¯∂ ∂ ∂ ∂ ∂ ∂Ë ¯Î ˚

 (8.20)

Since 
j j k

j i i j i k

u u u

x x x x x x
m m m

∂ ∂Ê ˆ ∂Ê ˆ∂ ∂ ∂ Ê ˆ
= =Á ˜ Á ˜Á ˜ Ë ¯Ë ¯∂ ∂ ∂ ∂ ∂ ∂Ë ¯

, Eq. (8.20) may be rewritten as

( ) ( ) ( )i k
i j i i

j i j j i k

u up
u u u b

t x x x x x x
r r m l m r

Ê ˆ∂ ∂∂ ∂ ∂ ∂ ∂ È ˘
+ = - + + + +Í ˙Á ˜∂ ∂ ∂ ∂ ∂ ∂ ∂Ë ¯ Î ˚

 (8.21)

Since, using continuity equation, left-hand side of Eq. (8.21) may also be written as

i i i
j

j

u u Du
u

t x Dt
r r

È ˘∂ ∂
+ =Í ˙

∂ ∂Î ˚
, it also follows

( )i i k
i

i j j i k

Du u up
b

Dt x x x x x
r m l m r

Ê ˆ∂ ∂∂ ∂ ∂ È ˘
= - + + + +Í ˙Á ˜∂ ∂ ∂ ∂ ∂Ë ¯ Î ˚

(8.22)

While Eq. (8.21) is known as the conservative form of the momentum equation

(since it is directly derived from control volume conservation considerations), Eq.

(8.22) is the non-conservative form of the same. Equations (8.21) and (8.22) are valid

for both incompressible as well as compressible flows.
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Using Stokes hypothesis (
2

3
l m= - ), Eqs. (8.21) and (8.22) can be written as

( ) ( )
3

i k
i j i i

j i j j i k

u up
u u u b

t x x x x x x

m
r r m r

Ê ˆ∂ ∂∂ ∂ ∂ ∂ ∂ È ˘
+ = - + + +Í ˙Á ˜∂ ∂ ∂ ∂ ∂ ∂ ∂Ë ¯ Î ˚

 (8.23a)

3

i i k
i

i j j i k

Du u up
b

Dt x x x x x

m
r m r

Ê ˆ∂ ∂∂ ∂ ∂ È ˘
= - + + +Í ˙Á ˜∂ ∂ ∂ ∂ ∂Ë ¯ Î ˚

 (8.23b)

Equation (8.23a), or equivalently (8.23b), is known as the Navier Stokes equation.

It is important to mention here that these equations are non-linear second-order

partial differential equations. Unknowns in these equations are the three velocity

components, density, and pressure. Hence, in addition to the three components of the

momentum conservation equation (Navier Stokes equation), one also needs to invoke

the continuity equation, the equation of state (to relate pressure with density and

temperature) and energy equation (governing differential equation for temperature)

to close the unknowns with the requisite set of independent equations.

It is important to mention here that we often deal with incompressible flows, for

which the Navier Stokes equation becomes

i i
i

i j j

Du up
b

Dt x x x
r m r

Ê ˆ∂∂ ∂
= - + +Á ˜∂ ∂ ∂Ë ¯

(8.24)

Equation. (8.24) is essentially a mathematical representation of Newtons's second

law of motion from an Eulerian perspective. The left-hand side is nothing but mass

times acceleration per unit volume, whereas the right-hand side is the resultant force

per unit volume. The first term on the right-hand side is force due to pressure

gradient, the second term on the right-hand side is force due to viscous effects, and

the third term on the right-hand side is the body forces (all forces expressed per unit

volume).

The corresponding expression in vector notation, considering fluids with position

independent viscosity, may be written as

{
{{{

2

force due to viscous shear force body force per
mass acceleration pressure gradient  per unit volume unit volume
per unit volume per unit volume

Du
p u b

Dt
r m r

¥

= -— + — +
r rr

 (8.25)

If viscous effects are negligible, we obtain the Euler equation for inviscid flow from

Eq. (8.25) as

Du
p b

Dt
r r= -— +

r r
 (8.26)

It is important to mention here that many physical situations involve the action of

a constant body force, for example, the gravity force. In that case, considering g
r

 as

acceleration due to gravity vector, one may replace b
r

 in Eq. (8.25) with g
r

, and

write the same in a compact form as
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* 2Du
p u

Dt
r m= -— + —

r
r

 (8.27)

where 
*p p gr— = — -

r

Denoting zv as a coordinate axis aligned with the vertically upward direction

(opposite in sense to the action of g
r

), the above implies

*p p
g

z z
r

∂ ∂
= +

∂ ∂v v

For constant density flow,

*p p gzr= + v (with suitable choice of reference datum for zv)

Here
*p  is known as piezometric pressure. From Eq. (8.27), it eventually follows

that one can couple the effect of a constant body force vector with the pressure

gradient term in the Navier Stokes equation, by defining a modified pressure. For the

special case of gravity force as the particular body force, this modified pressure term

is nothing but the piezometric pressure. Thus, when the pressure gradient term

denotes the piezometric pressure gradient, no separate accounting of gravity force

becomes necessary in the Navier Stokes equation, since it is already incorporated in

the definition of piezometric pressure.

Scalar components of Eq. (8.25) in a Cartesian coordinate system may be written

as (where ˆˆ ˆu ui j wk= + +
r

v , and u, v and w are the velocity components along x, y,

and z directions, respectively).

2 2 2

2 2 2 x

u u u u p u u u
u w b

t x y z x x y z
r m r

Ê ˆ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂È ˘
+ + + = - + + + +Í ˙ Á ˜∂ ∂ ∂ ∂ ∂ Ë ¯∂ ∂ ∂Î ˚

v  (8.28a)

2 2 2

2 2 2 y

p
u w b

t x y z y x y z
r m r

Ê ˆ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂È ˘
+ + + = - + + + +Í ˙ Á ˜∂ ∂ ∂ ∂ ∂ Ë ¯∂ ∂ ∂Î ˚

v v v v v v v
v  (8.28b)

2 2 2

2 2 2 z

w w w w p w w w
u w b

t x y z z x y z
r m r

Ê ˆ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂È ˘+ + + = - + + + +Í ˙ Á ˜∂ ∂ ∂ ∂ ∂ Ë ¯∂ ∂ ∂Î ˚
v  (8.28c)

Equations 8.26 (a), (b), and (c) are mathematically closed with the aid of the

continuity equation.

Navier Stokes equations in cylindrical coordinates (Fig. 8.3) are useful in solving

many problems. If vr, vq and vz  denote the velocity components along the radial,

azimuthal and axial directions respectively, then for incompressible flow Eq. (8.25)

leads to the following system of momentum equations in r, q, and z directions as

follows:

( )

2

2 2

2 2 2 2

1 1 2

r r r r
r z

r r
r r

p

t r r r z r

r b
r r r r z r

q q

q

r
q

m r
qq

Ê ˆ∂ ∂ ∂ ∂ ∂
+ + - + = -Á ˜∂ ∂ ∂ ∂ ∂Ë ¯

È ˘∂∂ ∂∂ ∂Ê ˆ+ + + - +Á ˜Í ˙Ë ¯∂ ∂ ∂∂ ∂Î ˚

v vv v v v
v v

vv v
v

 (8.28d)
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( )
2 2

2 2 2 2

1

1 1 2

r
r z

r

p

t r r r z r

r b
r r r r z r

q q q q q q

q q
q q

r
q q

m r
qq

∂ ∂ ∂ ∂ ∂Ê ˆ+ + + + = -Á ˜Ë ¯∂ ∂ ∂ ∂ ∂

È ˘∂ ∂ ∂∂ ∂Ê ˆ+ + + + +Á ˜Í ˙Ë ¯∂ ∂ ∂∂ ∂Î ˚

v v v v v v v
v v

v v v
v

 (8.28e)

2 2

2 2 2

1 1

z z z z
r z

z z z
z

p

t r z z

r b
r r r r z

qr
q

m r
q

∂ ∂ ∂ ∂ ∂Ê ˆ+ + + = -Á ˜Ë ¯∂ ∂ ∂ ∂ ∂

È ˘∂ ∂ ∂∂ Ê ˆ+ + + +Á ˜Í ˙Ë ¯∂ ∂ ∂ ∂Î ˚

v v v v
v v v

v v v
 (8.28f)

q

z

vq

vr

vz

Fig. 8.3 Cylindrical polar coordinate and the velocity components

In spherical coordinates (Fig. 8.4), Eq. (8.25) leads to the system of momentum

equations in the r, q, and f directions as follows:

2 2

sin

r r r r
r

p

t r r r r r

f q fqr
q q f

Ê ˆ+∂ ∂ ∂ ∂ ∂
+ + + - = -Á ˜∂ ∂ ∂ ∂ ∂Ë ¯

v v vvv v v v
v

( )
22

2

2 2 2 2 2

1 1 1
sin

sin sin

r r
r rr b

r r r r
m q r

q qq q f

È ˘∂ ∂∂ ∂ Ê ˆ+ + + +Á ˜Í ˙Ë ¯∂ ∂∂ ∂Î ˚

v v
v (8.28g)

2 cot 1

sin

r

r

p

t r r r r r

f q fq q q q q
q

r
q q f q

Ê ˆ-∂ ∂ ∂ ∂ ∂
+ + + + = -Á ˜∂ ∂ ∂ ∂ ∂Ë ¯

v v v vv v v v v
v

( ) ( )
2

2

2 2 2

1 1 1
sin

sin
r

r r r
qq qq q q

m
∂ ∂ ∂

+
∂ ∂∂

È Ê ˆ+ Á ˜Í Ë ¯Î
v v

2

2 2 2 2

1 2 2 cot

sinsin

r

r r r
bq

qq q
q q fq f

r
∂ ∂∂

+ -
∂ ∂∂

˘
+ +˙

˙̊

v vv
(8.28h)

cot 1

sin sin

r

r

p

t r r r r r

f f f f f f q fq
q

r
q q f q f

∂ ∂ ∂ ∂ +Ê ˆ ∂
+ + + + = -Á ˜Ë ¯∂ ∂ ∂ ∂ ∂

v v v v v v v v vv
v
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( )2

2 2

1 1 1
sin

sin
r

r rr r

f
fm q

q q q

∂È Ê ˆ∂ ∂ ∂Ê ˆ+ + Á ˜Í Á ˜ Ë ¯Ë ¯∂ ∂ ∂ ∂Î

v
v

2

2 2 2 2

1 2 2 cot

sinsin sin

r b
r r r

f q
f

q
r

f q fq f q

˘∂ ∂∂
+ + + +˙

∂ ∂∂ ˙̊

v vv
 (8.28i)

x

y

z

f

q

v
q

v
f

rv

Fig. 8.4 Spherical coordinate and the velocity components

8.3   SOME EXACT SOLUTIONS OF NAVIER STOKES EQUATION
FOR STEADY INCOMPRESSIBLE FLOWS

Navier Stokes equation represents a set of partial differential equations that are

coupled and non-linear. Therefore, in most cases, analytical solutions to these

equations are intractable, and one needs to resort to numerical techniques by

employing suitable computational fluid dynamics (CFD) algorithms. However, there

are a few special cases in which the Navier Stokes equations may be analytically

solved. Some such cases are discussed below.
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8.3.1 Fully Developed Laminar Flow Between Two Infinite Parallel
Plates or Plane Poiseuille Flow

Let us consider that an incompressible free stream with uniform velocity (u•) enters

the gap between two parallel plates (see Fig. 8.5). Each plate offers a frictional

resistance to the fluid so that adjacent to the plates the fluid is effectively slowed

down. As discussed in Chapter 1, boundary layers tend to grow past the respective

plates so that the velocity profile continuously changes as we move along the axial

direction. Velocity in the core region (outside the boundary layer) increases

progressively along that direction to compensate for a slowing down effect in the

progressively thickening boundary layer (the net mass flow rate must be conserved at

each section). In the core region, viscous effects are not felt. The boundary layers

from the two plates meet at section AA, as shown in Fig. 8.5, so that beyond this

section the entire fluid (including the centerline fluid) feels the effect of the walls.

Beyond section AA, the flow is said to be fully developed in a sense that the velocity

profile does not vary with the axial coordinate (x) any further, i.e., 0
u

x

∂
=

∂
 for all y.

The region from the channel entrance to section AA is known as the developing

region and the corresponding length is known as the entrance length. Obtaining the

velocity profile in the developing region is not trivial and is beyond the scope of this

introductory text. Rather, our objective here will be to obtain an expression for the

cross-sectional velocity variation in this fully developed region.

A

A

Entrance length

Fully developed region

x

2H

z

u•

Inviscid core region

y

Fig. 8.5 Parallel flow in a straight inclined channel

First we consider an important simplification by considering the width of the

plates along the z direction to be infinitely large as compared to its height (2H), so

that there are no gradients of flow variables along the z direction. This renders the

basic flow consideration to be two-dimensional, for which the continuity equation

under incompressible flow conditions reads:
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0
u

x y

∂ ∂
+ =

∂ ∂
v

For fully developed flow, 0
u

x

∂
=

∂

Hence, 0
y

∂
=

∂
v

 fi v π v(y)

Since v = 0 at y = ± H as a result of the no-penetration at the walls, v is identically

equal to zero for all y.

Now, considering the two-dimensional form of Eq (8.28b), one may write

* 2 2

2 2

p
u

t x y y x y
r m

Ê ˆ∂ ∂ ∂ ∂ ∂ ∂È ˘+ + = - + +Í ˙ Á ˜∂ ∂ ∂ ∂ Ë ¯∂ ∂Î ˚

v v v v v
v

Since v is identically equal to zero for fully developed flow, the above leads to

*

0
p

y

∂
=

∂
 (8.29)

It implies that 
*p  is a function of x only.

Next, we consider the two-dimenisonal form of Eq. (8.28a),

* 2 2

2 2

u u u p u u
u

t x y x x y
r m

Ê ˆ∂ ∂ ∂ ∂ ∂ ∂È ˘
+ + = - + +Í ˙ Á ˜∂ ∂ ∂ ∂ Ë ¯∂ ∂Î ˚

v (8.30)

We further assume steady flow, so that 0
u

t

∂
=

∂
. Further, since the flow is fully

developed, 0
u

x

∂
=

∂
. We also proved earlier that as a consequence, v = 0. Thus, left-

hand side of Eq.( 8.30) is identically equal to zero. Further, since 0
u

x

∂
=

∂
, 

2

2

u

x

∂
∂

is also

equal to zero. In addition, since the flow is two-dimensional and 0
u

x

∂
=

∂
, u is a

function of y only, so that 
2

2

u

y

∂
∂

 can be written as 
2

2

d u

dy
. Hence, Eq. (8.30) simplifies to

* 2

2

p d u

x dy
m

∂
=

∂
(8.30a)

Further, from Eq. (8.29) it follows that 
*p is a function of x only. Therefore, Eq.

(8.30a) can be written as
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* 2

2

dp d u

dx dy
m= (8.30b)

Since 
*p is a function of x only and u is a function of y only, it becomes

2 *

2
 constant= ( )

d u dp
c say

dxdy
m = = (8.31)

It can be mentioned in this context that Eq. (8.31) implies 
*p is a linear function of

x, while u is a quadratic function of y.

Integrating Eq. (8.31), we have

1

du c
y c

dy m
= +

2
1 2

2

c
u y c y c

m
= + +  (8.32)

where c1 and c2 are arbitrary, independent constants of integration.

The boundary conditions are at y = H, u = 0; and at y  = – H, u = 0 (Note that one

may use an alternative boundary condition: 0
du

dy
=  at y = 0; since because of

symmetry, maximum of u occurs at y = 0). Applying the boundary conditions, the

constants of integration are evaluated as c1 = 0 and 
2

2
2

cH
c = - . Therefore, from Eq.

(8.32) we get

( )
* 2 * 2

2 2

2

1
1

2 2

dp H dp y
u H y

dx dx Hm m

Ê ˆ Ê ˆ-
= - = - -Á ˜ Á ˜Ë ¯ Ë ¯

 (8.33)

Equation (8.33) implies that the velocity profile is parabolic. This typical flow is

usually termed as plane Poiseuille flow. Eq. (8.33) implies that the flow is always

associated with a negative piezometric pressure gradient.

The average velocity, (which is physically an equivalent uniform velocity field

that could have given rise to the same volume flow rate as that induced by the variable

velocity field under consideration) u , is given by

u =
2

H

A H

udA udyb

A b H

-=
Ú Ú

=

( )2 2

0 0

2

2 2

H H

udy y H dy
c

H Hm

-

=
Ú Ú
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=
3

3 2

2 3 3

c H c
H H

Hm m

Ê ˆ
- = -Á ˜Ë ¯

c =
*

2

3 u dp

dxH

m-
=  (8.34)

Using Eq. (8.34) in Eq. (8.33), it follows that

2

2

3
1

2

u y

u H

Ê ˆ
= -Á ˜Ë ¯

 (8.35)

The maximum velocity occurs at the centerline y = 0;

umax =
*

21

2

dp
H

dxm

-

So that  
max

2

3

u

u
= (8.36)

Shear stress at the wall is given by

*

w xy wall
wall y H

u u dp H

y x y dx
t t m m

m=±

Ê ˆ∂ ∂ ∂Ê ˆ Ê ˆ= = + = = -Á ˜ Á ˜ Á ˜Ë ¯ Ë ¯∂ ∂ ∂ Ë ¯
v

(using Eq. (8.33))

Using Eq. (8.34), it follows that

tw =
3 u

H

m
(8.37)

The skin friction coefficient Cf , which is a dimensionless representation of the wall

shear stress, is defined as

Cf  =
21

2

w

u

t

r

 =
2

3

6

1

2

u

H

Huu

m
m

mr

=

Cf  =
2

12 12

2 Re H
u H

r
m

=  (8.38)

where 2

2
Re H

u H
r

m

Ê ˆ=Á ˜Ë ¯
 is the Reynolds number of flow based on average flow

velocity and the channel height 2H.
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Example 8.1

Water at 20°C is flowing between a two-dimensional channel in which the top and

bottom walls are 1.5 mm apart. If the average velocity is 2 m/s, find out (i) the

maximum velocity, (ii) the pressure drop, and (iii) the wall shearing stress [m =

0.00101 kg/m.s]

Solution

(i) The maximum velocity is given by

umax = [ ]3 3
2 3 m/s

2 2
u = =

(ii) The pressure drop in a two-dimensional straight channel is given by

max

2

2 udp

dx H

m-
= , where H = half the channel height

 =
( )
( )[ ]2

2 0.00101 3

1.5 / 2 1000

-

¥

= – 10773.33 N/m3

or  = – 10773.33 N/m2 per m

(iii) The wall shearing stress in a channel flow is given by

tw = ( )
wall

1.5
10773.33

2 1000

u dp
H

y dx
m

∂ -
= - = -

∂ ¥

or tw = 8.080 N/m
2

Example 8.2

Two viscous, incompressible, immiscible fluids of same density (= r) but different

viscosities (viscosity of the lower fluid layer = m1 and that of the upper fluid layer =

m2 < m1) flow in separate layers between parallel boundaries located at y = ± H, as

shown in the Fig. 8.6. Thickness of each fluid layer is identical and their interface is

flat. The flow is driven by a constant favourable pressure gradient of 
dp

dx
. Derive

expressions for the velocity profiles in the fluid layers. Also, make a sketch of the

velocity profiles. Assume the flow to be steady and the plates to be of infinitely large

width.
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Stationary plate

H

Stationary plate

x

y

1,r m H

2,r m
2

1

Fig. 8.6 

Solution

Large lateral width of the plate renders the basic flow consideration to be two-

dimensional, for which the continuity equation under incompressible flow conditions

reads:

0
u

x y

∂ ∂
+ =

∂ ∂
v

For fully developed flow, 0
u

x

∂
=

∂

Hence, 0
y

∂
=

∂
v

fi v π v(y)

Since v = 0 at y = ± H as a result of the no-penetration at the walls, v is identically

equal to zero for all y, i.e.,

\ v = 0 at – H £ y £ H

Now, considering x momentum equation, we have, for steady flow,

2 2

2 2

u u dp u u
u

x y dx x y
r m

Ê ˆ∂ ∂ ∂ ∂È ˘
+ = - + +Í ˙ Á ˜∂ ∂ Ë ¯∂ ∂Î ˚

v

Using derivations identical to those presented in Sec. 8.3.1, it follows that
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{{

2

2

Function of  onlyFunction of  only

1
 constant

xy

d u dp

dxdy m
= =

For – H £ y £ 0

2
1

2
1

1d u dp

dxdy m
=

Integrating the above equation, we have

1
1

1

1du dp
y C

dy dxm
= +

u1 =
2

1 2

1

1

2

dp y
C y C

dxm
+ +  (8.39a)

where C1 and C2 are constants of integration.

For 0 £ y £ H

2
2

2
2

1d u dp

dxdy m
=

Integrating the above equation, we have

2
3

2

1du dp
y C

dy dxm
= +

u2 =
2

3 4

2

1

2

dp y
C y C

dxm
+ + (8.39b)

where C3 and C4 are constants of integration.

Equations (8.39a) and (8.39b) are subjected to the following boundary condi-

tions.

At y = – H, u1 = 0,

At y = H, u2 = 0,

At y = 0, u1 = u2 (continuity of flow velocity)

At y = 0, 1 2
1 2

du du

dy dy
m m=  (continuity of shear stress)

From the boundary conditions at y = – H, u1 = 0, and at y = H, u2 = 0, we get
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C2 =
2

1

1

1

2

dp H
C H

dxm
-

C4 =
2

3

2

1

2

dp H
C H

dxm
- -

From the boundary condition at y = 0, 
1 2

1 2

du du

dy dy
m m= , we have

m1C1 = m2C3

fi C1 = 2
3

1

C
m

m

From the boundary condition at y = 0, u1 = u2, one can write

C2 = C4

or
2 2

1 3
1 2

1 1

2 2

dp H dp H
C H C H

dx dxm m
- = - -

or (C1 + C3) H =
2

1 2

1 1

2

dp H

dx m m

È ˘
-Í ˙

Î ˚

or 2
3

1 1 2

1 1
1

2

dp H
C

dx

m

m m m

Ê ˆ È ˘
+ = -Í ˙Á ˜Ë ¯ Î ˚

or C3 =
( )

( )
2 1

2 1 22

dp H

dx

m m

m m m

-
+

C1 =
( )

( )
2 1

2 1 12

dp H

dx

m m

m m m

-
+

Substituting the values of C1, C2, C3 and C4 in the Eqs (8.39a) and (8.39b), we
have

u1 =
( )
( )

( )2 2 2 1

1 2 1

1 1

2

dp
y H H y H

dx

m m

m m m

-È ˘
- + +Í ˙+Î ˚

u2 =
( )
( )

( )2 2 2 1

2 2 1

1 1

2

dp
y H H y H

dx

m m

m m m

-È ˘
- + -Í ˙+Î ˚

The velocity profiles are shown in Fig. 8.7.
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u

0

–H

H

y

q1

q2

Fig. 8.7 Velocity profiles for two viscous, incompressible, immiscible

fluids flowing between two stationary parallel plates

Note from the above figure that since m2 < m1, 
2 1

0 0y y

du du

dy dy= =

>

(so as to satisfy 1 2
1 2

0 0y y

du du

dy dy
m m

= =

= )

or
1 20 0y y

dy dy

du du= =

> ,

or equivalently, tan q1 > tan q2.

8.3.2 Couette Flow

Consider steady, incompressible, viscous flow of a Newtonian fluid between two

parallel plates located a distance H apart, as shown in Fig. 8.8, such that one of the

plates moves with a velocity relative to the other (without loss of generality, we

assume that the upper plate moves towards the right with a constant velocity U,
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whereas the lower plate is stationary, as an example). The flow induced in the channel

in the process is known as the Couette flow. Such a flow physically is a shear driven

flow, since the shear induced velocity gradient between the plates triggers the flow.

In addition to the shear driven component, a pressure gradient (
dp

dx
) may also act on

the flow. Such a flow is called a combined shear and pressure driven flow.

U

x

y H

Fig. 8.8 

Under the assumptions mentioned as above, the governing equation will remain

the same as that for the plane Poiseuille flow, i.e.,

2 *

2

d u dp

dxdy
m = (8.40)

Subjected to the boundary conditions,

at y = 0, u = 0

and at y = H, u = U

Integrating Eq. (8.40), we get

u =
*

2
1 2

1

2

dp
y C y C

dxm
+ +

Applying the boundary conditions, the constants of integration are evaluated as

C2 = 0

and C1 =
*1

2

U dp
H

H dxm
-

Therefore,

u = 1
y y y

U UP
H H H

Ê ˆ+ -Á ˜Ë ¯  (8.41)
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where P =
2 *

2

H dp

U dxm

Ê ˆ
-Á ˜Ë ¯

when P = 0, the velocity field turns out to be

u =
y

U
H

(8.42)

This implies that when there is no piezometric  pressure gradient, the velocity

varies linearly from zero at the fixed plates to U at the moving plate and hence the

shear stress across the section of the channel remains constant. This situation is

known as simple Couette flow. For a simple Couette flow, thus the shear rate (du/dy),

turns out to be U/H, which remains constant within the channel.

Therefore it is observed from Eq. (8.41) that Couette flow is a superimposition of

simple Couette flow (purely shear driven flow) and plane Poisseuille flow( purely

pressure driven flow)

The quantitative description of non-dimensional velocity distribution across the

channel, depicted by Eq. (8.42), is shown in Fig. 8.9(a).

Reverse
flow

0.8

0.6

0.4

0.2

0

P = – 2

1.41.21.00.80.60.40.2.0– 0.2

H
H

y
–1 0 1 32

U

u

U

(a) Velocity distribution of the Couette flow

Fig. 8.9(a) 

The location of maximum or minimum velocity in the channel is found by setting the

derivative du/dy equal to zero. From Eq. (8.42), we can write

1 2
du U PU y

dy H H H

Ê ˆ= + -Á ˜Ë ¯

For maximum or minimum velocity,

0
du

dy
=

which gives max 1 1

2 2

y

H P
= + (8.42a)
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where ymax is the y corresponding to the location of maximum or minimum velocity.
Substituting y = ymax in Eq. (8.41), one write

umax =
( )2
1

4

U P

P

+
for P ≥ 1

umin =
( )2
1

4

U P

P

+
for P £ 1  (8.42b)

Some interesting features in the flow field are observed for different values of P,

which are shown in Fig. 8.9(b) and are described below.

Let us first consider the case of favourable pressure gradient in the direction of

flow (P > 0). The following may be observed from Eq. (8.42a):

(i) When P lies between 0 and 1, the velocity profile (given by Eq. (8.41)) exhibits

neither a maximum nor a minimum in the flow field. The velocity increases

monotonically from zero at the stationary plate to U at the moving plate.

(ii) When P = 1, the velocity profile exhibits its maximum at max 1
y

H
= . Therefore,

the velocity gradient (du/dy) and hence the shear stress becomes zero at the

upper moving plate.

(iii) When P > 1, the maximum fluid velocity occurs at a location somewhere below

the moving plate, and the value of the maximum velocity (given by Eq. (8.42b))

is obviously greater than U, the velocity of the moving plate. This happens

since the pressure gradient aids the shear driven flow by the moving plate.

1 1 1 1 1

y

H

u U

dp

dx
>> 0

dp

dx
> 0

dp

dx
= 0

dp

dx
= 0

dp

dx
< 0

Pressure increases in
the direction of upper-
plate motion

Zero pressure gradient
Pressure decreases in
the direction of upper-
plate motion

P = – 4 P = –1 P = 0 P = 1 P = 4

(b) Velocity profile for the Couette flow for varoius values of pressure gradient

Fig. 8.9(b)  

Let us now consider the case of adverse pressure gradient ((P < 0) in the direction of

flow. The following may be observed from Eq. (8.42a).
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(i) When P lies between 0 and – 1, the velocity profile exhibits neither a maximum

nor a minimum within the flow field. The velocity decreases monotonically

from U at the moving plate to zero at the stationary plate.

(ii) When P = – 1, the minimum velocity is attained at the stationary plate. The

velocity gradient (du/dy) and hence the shear stress at the stationary plate

becomes zero. This implies the onset of flow reversal.

(iii) When P < – 1, the minimum velocity is attained at locations given by

max 0
y

H
> , which means that there occurs a back flow near the fixed plate.

The volumetric flow rate per unit width of the plates can be written as

Q =
0

h
udyÚ

With the help of Eq. (8.41), the above equation becomes

Q =
1

2 6

P
UH

Ê ˆ+Á ˜Ë ¯ (8.42c)

The average velocity u  is given by

u  =
1

2 6

P
U

Ê ˆ+Á ˜Ë ¯ (8.42d)

The Eq. (8.42c) implies that when P = – 3, there is no flow across the passage

formed by the plates. This is due to the fact that the influence of adverse pressure

gradient balances the dragging action by the moving plate. In other words, shear

driven flow balances the opposing pressure driven flow. There is a pure recirculating

flow within the passage under the situation.

Example 8.3

Two infinite plates are h distance apart as in Fig. 8.10. There is a fluid of viscosity m
between the plates and the pressure is constant. The upper plate is moving at speed

U = 4 m/s. The height of the channel h = 1.8 cm. Calculate the shear stress at the upper

and lower walls if m = 0.44 kg/m.s and r = 888 kg/m3.

U

u

v

h

y
x

Fig. 8.10 Parallel flow between two plates with upper plate moving
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Solution

Re = rhU/m = (888) (1.8/100) (4)/0.44 = 145. So, the flow is laminar and t = m
∂

∂

u

y
, u at

any y is given by 
U

h
y.

Shear stresses at the two walls are of equal magnitude, therefore,

t = m
∂

∂

u

y
 = m

( )U

h

- 0
 = (0.44) (4)/(1.8 /100)

= 97.8 Pa

Example 8.4

Water at 60°C flows between two large flat plates. The lower plate moves to the left at

a speed of 0.3 m/s. The plate spacing is 3 mm and the flow is laminar. Determine the

pressure gradient required to produce zero net flow at a cross section. (m = 4.7 ¥ 10–4 Ns/

m2 at 60 °C)

x

y

b

–U

U
b

= 0.3 m/sec
= 3 mm

Fig. 8.11 

Solution

Governing equation: m 
2

2

d d

dd

u p

xy
=

u = 2
1 2

1 d

2 d

p
y C y C

xm
+ +

at y = 0, u = –U, C2 = –U

at y = b, u = 0, which yields

0 = 2
1

1 d

2 d

p
b C b U

xm
+ - ,

or C1 =
1 d

2 d

U p
b

b xm
- ◊

u = 21 d
( ) 1

2 d

p y
y by U

x bm
Ê ˆ- + -Á ˜Ë ¯
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Now, Q =
2

0 0

1 d
d ( ) 1 d

2 d

b b
p y

u y y by U y
x bm

È ˘Ê ˆ= - + -Á ˜Í ˙Ë ¯Î ˚Ú Ú

or Q = – 31 d

12 d 2

p Ub
b a

xm
-

For Q = 0, with m = 4.7 ¥ 10–4 Ns/m2

d

d

p

x
 = –

4

2 2

6 6 0.3 4.7 10

(0.003)

U

b

m -- ¥ ¥ ¥
=  = – 94.0 N/m2 ◊ m

8.3.3 Thin Film Flows

Consider a steady fully developed flow of a thin liquid film falling slowly down an

inclined wall, as shown in Fig. 8.12. The films thickness is h. The liquid constituting

the film is assumed to have constant physical properties, for simplicity.

1

2

L

x

y

Air

g

Liquid

h

q

Fig. 8.12 

With similar considerations as the flow between two parallel plates, we may first

invoke the continuity equation to show that v = 0 for all values of y. Thus the y

momentum equation reduces to

0 = –
p

y

∂
∂

– rg cos q

or, p = – rg cos q y + f (x)
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Note here that we have used the static pressure itself instead of the piezometric

pressure for the pressure gradient term, because of which an additional accounting of

the gravity force in terms of a body force becomes necessary.

The x momentum equation can be written as

2 2

2 2
sin

u u u p u u
u g

t x y x x y
r m r q

Ê ˆ∂ ∂ ∂ ∂ ∂ ∂È ˘+ + = - + + +Í ˙ Á ˜∂ ∂ ∂ ∂ Ë ¯∂ ∂Î ˚
v

Following a procedure similar to the one adopted for analysing flow in parallel

plate channels, one may obtain:

2

2
sin

d u p
g

xy
m r q

∂
= -

∂∂

If the films thickness is considered to be small enough then the variation of

pressure across the film may be neglected and then p effectively becomes a function

of x only, so that one may write

2

2
sin

d u dp
g

dxy
m r q= -

∂

Since p is a function of x only and u is a function of y only, it becomes

2

2
sin constant ( )

d u dp
g C say

dxdy
m r q+ = fi =

Hence, 2 1 0a ap pp pdp

dx L L

--
= = =  ( since both the inlet as well as the exit sections

are exposed to the same ambient conditions)

Thus, C = 0, which physically implies that the flow is entirely gravity driven.

Accordingly, one may write

2

2
sin 0

d u
g

dy
m r q+ =  (8.43)

The above equation is subjected to following boundary conditions:

(i) At y = 0, u = 0

(ii) At y = h, liquid air

liquid air

du du

dy dy
m m= (continuity of shear stress)

Since mair  mliquid the boundary condition (ii) may be approximated as

liquid

liquid

0
du

dy
m ª  at y = h, for most practical conditions. Under these circumstances,

solution to Eq. (8.43) may be obtained as

u = ( )21
sin 2

2
g hy yr q

m
-  (8.44)
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Example 8.5

A continuous belt (Fig. 8.13) passing upward through a chemical bath at velocity U0,

picks up a liquid film of thickness h, density r, and viscosity m. Gravity tends to make

the liquid drain down, but the movement of the belt keep the fluid from running off

completely. Assume that the flow is fully developed and that the atmosphere pro-

duces no shear at the outer surface of the film. State clearly the boundary conditions to

be satisfied by velocity at y = 0 and y = h. Obtain an expression for the velocity profile.

x

y

h

dx

dy

U0

Belt

p p=
atm

Bath

g

Fig. 8.13 

Solution

The governing equation is

2

2

d

d

u

y
m  = rg

or
d

d

u

y
m  = rgy + C1

or
d

d

u

y
 = 1Cgyr

m m
+

u =

2
1

2
2

Cgy
y C

r

m m
+ +

at y = 0, u = U0, so C2 = U0

at y = h, t = 0, so 
d

d

u

y
 = 0 and C1 = – rgh

u =
2 2

0 0
2 2

gy ghy g y
U hy U

r r r

m m m

Ê ˆ
- + = - +Á ˜Ë ¯
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8.3.4 Fully Developed Flow Through Circular Tube / Pipe (Hagen
Poiseuille Flow)

Consider a steady, fully developed laminar flow through a circular pipe/tube, as

shown in Fig. 8.14. For flow in a circular tube with axial symmetry it is convenient to

employ a cylindrical coordinate system. The continuity equation in cylindrical co-

ordinates is given by

( ) ( ) ( )1 1
0r zr

r r r z
qr r r

q

∂ ∂ ∂
+ + =

∂ ∂ ∂
v v v  (8.45)

z

r

q

( ),r q

Fig. 8.14 Hagen Poiseuille flow through a circular tube/pipe

We assume that the flow is fully developed, i.e., 0z

z

∂
=

∂
v

 . We also assume that

there is no rotational component in the flow (vq = 0) and the flow is axially symmetric

( (any variable) 0
q

∂
=

∂
). Then, Eq. (8.45) reduces to

( ) 0rr
r

∂
=

∂
v

The above implies that rvr is not a function of r. This, in turn, by virtue of no-

penetration boundary condition at the wall, implies that vr = 0 everywhere in the flow

field (except at r = 0, which is a singularity in this case). Hence, for fully developed

flow, there is only one velocity component, vz = vz (r).

Next, we invoke the r momentum equation, which reads

2 *
r r r r

r z

p

t r r r z r

q qr
q

Ê ˆ∂ ∂ ∂ ∂ ∂
+ + - + = -Á ˜∂ ∂ ∂ ∂ ∂Ë ¯

v vv v v v
v v

( )
2 2

2 2 2 2

1 1 2r r
rr

r r r r z r

qm
qq

È ˘∂∂ ∂∂ ∂Ê ˆ+ + + -Á ˜Í ˙Ë ¯∂ ∂ ∂∂ ∂Î ˚

vv v
v  (8.46)
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With the simplifying assumptions mentioned earlier, Eq. (8.46) simplifies to

0 = – 
*p

r

∂
∂

 (8.47)

In other words, *
p  is not a function of r. Therefore, *

p  is a function of z only.

Next, we invoke the z momentum equation in cylindrical coordinates as

2 2*

2 2 2

1 1z z z z z z z
r z

vp
r

t r r z z r r r r z

qr m
q q

È ˘∂ ∂ ∂ ∂ ∂ ∂ ∂∂ ∂Ê ˆ Ê ˆ+ + + = - + + +Á ˜Á ˜ Í ˙Ë ¯Ë ¯∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂Î ˚

vv v v v v v
v v

(8.48)

Considering the simplifying assumptions mentioned earlier, Eq. (8.48) becomes

0 = –
* 1 zp

r
z r r r

m
∂∂ ∂ Ê ˆ+ Á ˜Ë ¯∂ ∂ ∂

v

or
* 1 zddp d

r
dz r dr dr

m
Ê ˆ= Á ˜Ë ¯

v
 (8.49)

Since *
p is a function of z only and u is a function of r only, Eq. (8.49) simplifies to

* 1
constant =zddp d

r C
dz r dr dr

m
È ˘= fiÍ ˙Î ˚

v
 (say)  (8.50)

Thus,
1 zdd

r
r dr dr

m
È ˘
Í ˙Î ˚

v
 = C

Multiplying both sides by 
r

m
, we integrate once to get

2

1
2

zd Cr
r C

dr m
= +

v

where C1 is a constant of integration. Dividing both sides by r, we integrate once
more to obtain

vz =
2

1 2ln
4

Cr
C r C

m
+ +  (8.51)

where C2 is another constant of integration. The boundary conditions are no-slip at

the wall and finite velocity at the centreline. The former (i.e., vz = 0 at r = R) results in

0 =
2

1 2ln
4

Cr
C r C

m
+ +

Further, to ensure finite velocity at the channel centreline (avoiding a logarithmic

singularity) we must have, C1 = 0 (this also follows from the consideration of maximum

velocity at the centreline).

Thus,

C2 =
2

4

CR

m
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Therefore, vz = ( )2 2

4

C
R r

m
- -

or, equivalently, vz =
2 * 2

2
1

4

R dp r

dz Rm

Ê ˆ
- -Á ˜Ë ¯

(8.52)

This shows that the axial velocity profile in a steady, fully developed laminar flow

through a circular tube has a parabolic variation along r.

The maximum velocity occurs at the centreline, as given by

vz, max =
2 *

4

R dp

dzm
- (8.53)

Therefore, we can write

2

2
,max

1z

z

r

R

Ê ˆ
= -Á ˜Ë ¯

v

v
(8.53a)

The volume flow rate in a pipe is

Q = zdAÚ v

The average velocity is given by

zv  =
2

2

R

z

o

rdr
Q

A R

p

p
=

Ú v

Using Eq. (8.52), we have

zv  =

2 *

8

R dp

dzm
- (8.54)

Comparing Eq. (8.53) and (8.54), one can write

zv  =
,max

2

zv
 (8.54a)

One can also write

2

2
2 1z

z

r

R

Ê ˆ
= -Á ˜Ë ¯

v

v
(8.55)

Shear stress at any location can be written as

t = trz = r z

z r
m

∂ ∂Ê ˆ+Á ˜Ë ¯∂ ∂
v v

= zd

dr
m

v

(Since, vr = 0 under the present situation and vz is a function of r only).
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With the help of Eq. (8.52), we can write

t =
*

2

r dp

dz
 (8.56)

Equation (8.56) indicates that shear stress varies linearly with the radial distance
from the axis.

Therefore, the wall shear stress is

tw =
*

2

R dp

dz
(8.56a)

The skin friction coefficient Cf (also known as Fanning friction coefficient), is
defined as

Cf  =
21

2

w

z

t

rv

Using Eqs (8.54) and (8.56a), it becomes

Cf  =
16

z Dr mv

The quantity in the denominator at the above equation is defined as Reynolds num-
ber for pipe flow as

ReD = z Dr

m

v

Hence, Cf  =
16

ReD

(8.57)

We note from Eq (8.54) that

*

2

8 zdp

dz R

m
= -

v
(8.58)

Sine 
*

dp

dz
 is linear, we can write in consideration of 

*
1p  and 

*
2p  being the

piezometric pressures at upstream and downstream, respectively, over a length L

* ** *
2 1p pdp p

dz L L

- D
= = -

where 
* * *

1 2p p pD = -

Hence Eq. (8.58) can be written as

*

2 2

8 32z zL L
p

R D

m m
D = =

v v
 (8.59)
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where D is the pipe diameter.

Since
2

4Q

Dp
=v , it becomes

*

4

128 QL
p

D

m

p
D = (8.60)

Equation (8.60) is known as the Hagen Poiseuille equation. The equation is

sometimes expressed in terms of head loss *
fh p gr= D  as

hf = 4

128 QL

g D

m

r p
(8.61)

It is important to mention here that frictional head losses in a pipe may alternatively

be represented by a non-dimensional factor f, known as Darcy friction factor (for

details, see the Chapter 11), defined such that the following equation (known as 7)

holds:

hf =
2

2

zL
f

D g

v
(8.62)

Equations (8.59) and (8.62) yield,

2

2

32

2

z z LL
f

D g gD

m

r
=

v v

or f =
64 64

Rez D
Dr

m

=
v

 (8.63)

On comparison between Eqs (8.57) and (8.63), it appears

f = 4Cf (8.63a)

i.e., the Darcy friction factor is 4 times the Fanning friction coefficient.

Example 8.6

The analysis of a fully developed laminar flow through a pipe can alter-

natively be derived from control volume approach. Derive the expression

vz = 
R p

z

r

R

2 2

24
1

m
-F

H
I
K

-
F

HG
I

KJ
d

d
 accordingly.

R

p p + pd

dr dr

r
r

r
z

d l

d

Fig. 8.15 Fully developed laminar flow through a pipe
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Solution

Let us have a look at Fig. 8.15. The fluid moves due to the axial pressure gradient while

the pressure across a section may be regarded as constant. Due to viscous friction,

individual layers act on each other producing a shearing stress which is proportional

to 
∂

∂

vz

r
.

In order to establish the condition of equilibrium, we consider a fluid cylinder of

length d l and radius r. Now we can write

[p – (p + dp)] p r2
 = – t 2 p r d l

or – dp p r2 = – m 
∂

∂

vz

r
 2 p r dl

or
∂

∂

vz

r
 =

1

2

1

2m m

d

d

d

d

p

l
r

p

z
r=

Upon integration,

vz =
1

4

2

m

d

d

p

z
r K+

at r =R, vz = 0, hence K = –
1

4

2

m

d

d

p

z
R

F
HG

I
KJ

◊

So, vz =
R p

z

r

R

2 2

24
1

m
–

d

d

F
H

I
K

-
F

HG
I

KJ

Example 8.7

In the laminar flow of a fluid in a circular pipe, the velocity profile is exactly a parabola.

The rate of discharge is then represented by volume of a paraboloid. Prove that for

this case the ratio of the maximum velocity to mean velocity is 2.

Solution

See Fig. 8.15. For a paraboloid,

vz = vzmax
 1

2

- F
H

I
K

L

N
M
M

O

Q
P
P

r

R

Q = v vz z

R

A
r

R
r rd dz z= - F

H
I
K

L

N
M
M

O

Q
P
Pmax
( )1 2

2

0

p

= 2p vzmax
 

r r

R

R R
R

z

2 4

2

0

2 2

2 4
2

2 4
-

L

N
M

O

Q
P = -

L

N
M

O

Q
Pp v

max

= vzmax
 

p R2

2

F

HG
I

KJ
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vzmean
 = Q

A

R

R

z z= =
v v

max max
( / )

( )

p

p

2

2

2

2

Thus,
v

v

z

z

max

mean

 = 2

Example 8.8

The velocity distribution for a fully developed laminar flow in a pipe is given by

vz = – 
R p

z
r R

2
2

4
1

m

∂

∂
◊ -[ / ]b g

Determine the radial distance from the pipe axis at which the velocity equals the

average velocity.

Solution

For a fully developed laminar flow in a pipe, we can write

vz = – 
R p

z

r

R

2 2

4
1

m

∂

∂
- F

H
I
K

L

N
M
M

O

Q
P
P

zv  =
Q

A R

R p

z

r

R
r r

R

= - - F
H

I
K

L

N
M
M

O

Q
P
P

R
S
|

T|

U
V
|

W|
z1

4
1 2

2

2 2

0
p m

∂

∂
p d

= –
R p

z

2

8m

∂

∂

Now, for zv = zv we have,

R p

z

r

R

2 2

4
1

m

∂

∂
- F
H

I
K

L

N
M
M

O

Q
P
P

 = –
R p

z

2

8m

∂

∂

or 1 – 
r

R

F
H

I
K

2

 =
1

2

or
r

R

F
H

I
K

2

 =
1

2
or r = 

R

2
 = 0.707 R

8.3.5 Flow Between Two Concentric Large Rotating Cylinders

Consider steady, incompressible flow in the annulus of two cylinders, where R1 and

R2 are the radii of inner and outer cylinders, respectively, and the cylinders move

with different rotational speeds, w1 and w2, respectively (Fig. 8.16).
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1R

2R

w2

w1

Fig. 8.16 

We assume that the length of the cylinders are large enough so that the end

effects can be neglected and ( )any property 0
z

∂
=

∂
. Since both the cylinders rotate

without any preference on q, ( )any property 0
z

∂
=

∂
 (axially symmetric flow). To

analyse this problem, we first invoke the continuity equation.

The continuity equation for this problem becomes

 ( ) ( ) ( )1 1
0r zr

t r r r z
q

r
r r r

q

∂ ∂ ∂ ∂
+ + + =

∂ ∂ ∂ ∂
v v v

or ( )1 1
0 0 0 0rr

r r r
r

∂
+ + + =

∂
v

or ( )1
0rr

r r

∂
=

∂
v

or rvr = constant (8.64)

Since vr = 0 at both the inner and outer cylinders, it follows that vr = 0 everywhere

and the motion can only be purely circumferential, vq = vq (r).

Next, we invoke the r momentum equation, which reads

( )

2

2 2

2 2 2 2

1 1 2

r r r r
r z

r r
r

p

t r r r z r

r
r r r r z r

q q

q

r
q

m
qq

Ê ˆ∂ ∂ ∂ ∂ ∂
+ + - + = -Á ˜∂ ∂ ∂ ∂ ∂Ë ¯

È ˘∂∂ ∂∂ ∂Ê ˆ+ + + -Á ˜Í ˙Ë ¯∂ ∂ ∂∂ ∂Î ˚

v vv v v v
v v

vv v
v

With the simplifying considerations mentioned as above, the r momentum

equation finally becomes
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2
p

r r

qr ∂
- = -

∂
v

(8.65)

Next, we consider the z momentum equation in cylindrical coordinates as

2 2

2 2 2

1 1z z z z z z z
r z

p
r

t r z z r r r r z
qr m

q q

È ˘∂ ∂ ∂ ∂ ∂ ∂ ∂∂ ∂Ê ˆ Ê ˆ+ + + = - + + +Á ˜ Á ˜Í ˙Ë ¯ Ë ¯∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂Î ˚

v v v v v v v
v v v

Since vz = 0, it follows from the above that

 
p

z

∂
-

∂
 = 0 (8.66)

The q momentum equation may be written as

( )
2 2

2 2 2 2

1

1 1 2

r
r z

r

p

t r r r z r

r
r r r r z r

q q q q q q

q q
q

r
q q

m
qq

∂ ∂ ∂ ∂ ∂Ê ˆ+ + + + = -Á ˜Ë ¯∂ ∂ ∂ ∂ ∂

È ˘∂ ∂ ∂∂ ∂Ê ˆ+ + + +Á ˜Í ˙Ë ¯∂ ∂ ∂∂ ∂Î ˚

v v v v v v v
v v

v v v
v

Since vr = 0, (any variable) 0
q

∂
=

∂
, vz = 0 and vq = vq r only, it follows from the

above that

( )1
r

r r r
qm

∂ ∂È ˘
Í ˙∂ ∂Î ˚

v  = 0  (8.67)

Since vq is a function of r only, Eq. (8.67) can be rewritten as

( )1d d
r

dr r dr
q

È ˘
Í ˙Î ˚

v  = 0

Integrating Eq. (8.67), it follows that

 vq = 2
1

2

Cr
C

r
+  (8.68)

The constants are readily found by imposing the boundary conditions at the inner and

outer cylinders:

Outer at r = R2, vq = 2 2
2 2 1

22

R C
R C

R
w = +

Inner at  r = R1, vq = 1 2
1 1 1

12

R C
R C

R
w = +

Thus, C1 =
( ) ( )

2
2

1 1 22 2
2 1

2
R

R R
w w w

È ˘
- -Í ˙

-Í ˙Î ˚

and C2 = ( ) ( )
2 2

1 2
1 22 2

2 1

R R

R R
w w-

-

Finally, the velocity distribution is given by
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vq = ( ) ( ) ( )
2 2

2 2 1 2
2 2 1 1 1 22 2

2 1

1 R R
R R r

rR R
w w w w

È ˘
- + -Í ˙

- Î ˚
 (8.69)

( ) ( ) ( )
2 2

2 2 1 2
2 2 1 1 1 222 2

2 1

1 R R
R R

r rR R

q w w w w
È ˘

= - + -Í ˙
- Î ˚

v

Shear stress at any location is given by

trq =
1 rr

r r r

qm
q

∂∂È Ê ˆ ˘+Á ˜Í ˙Ë ¯∂ ∂Î ˚
v v

or trq =
( ) ( )

2 2
1 2

1 232 2
2 1

1
. .( 2 ) 0

R R
r

rR R
m w w

È ˘
- - +Í ˙

-Í ˙Î ˚

or trq = ( ) ( )
2 2

1 2
1 2 22 2

2 1

2 1R R

rR R

m
w w- -

-
 (8.70)

As an interesting limiting case, we may consider a single solid cylinder rotating in

a fluid of infinite extent, so that R2 Æ •, and w2 = 0. In that case, the constant C1

appearing in Eq. (8.68) becomes identically zero ( so as to predict a finite vq), so that

2C

r
q =v , which is essentially reminiscent of a free vortex flow. The corresponding

shear stress distribution is given as

trq = 2

2

2 C

r

m
- (8.71)

Next, it would be interesting to calculate the shear force per unit volume. For that,

we utilise the vector form of the Navier Stokes equation and note that 
2Vm—
r

 is

nothing but the viscous shear force per unit volume. Next, we use the vector identity

( ) ( )2 ·V V V— = — — - — ¥ — ¥
r r r

and utilise that · 0V— =
r

 for incompressible flow, to get

( )2V Vm m— = - — ¥ — ¥
r r

= m x- — ¥
r

(8.72)

where Vx = — ¥
r r

 is the vorticity vector. Since 2C

r
q =v , an irrotational flow field,

the vorticity vector becomes null, and hence from Eq. (8.72) it follows that the

viscous shear force per unit volume becomes identically zero. Thus, this case confers

to an interesting situation in which the shear force per unit volume is zero, despite

the shear stress (trq) being non-zero.

Example 8.9

Consider steady flow of an incompressible Newtonian fluid (density = r, viscosity = m)

between two infinitely long concentric circular cylinders of inner radius a and outer
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radius b (Fig. 8.17). Both the cylinders rotate with the same angular velocity w. In

addition, the inner cylinder moves along the z direction, with a constant velocity of

Ui.

(i) Assuming steady flow with no axial pressure gradient, derive the velocity

field between the two cylinders.

(ii) Assuming the pressure at the surface of the inner cylinder to be pi, derive the

pressure field between the cylinders.

Solution

a

w

w

b

r

q

Ui

z

Fig. 8.17 

Infinitely long cylinder implies ( )any variable 0
z

∂
=

∂
.

Since, the flow is rotational symmetric, we have ( ( )any variable 0
z

∂
=

∂
).

No axial pressure gradient means 0
p

z

∂
=

∂
 and for steady flow 

z

∂
∂

(any variable) = 0)

The continuity equation in cylindrical coordinates under the above conditions is

given by

( )rr
r

r
∂
∂

v  = 0

which implies that rvr is not a function of r. Now, by virtue of no penetration

boundary condition vr = 0 at r = a, b, which implies that vr = 0 everywhere in the flow

field (except at r = 0, which is a singularity in this case).

From the z momentum equation in cylindrical coordinates (Eq. 8.28f), we get, using

the above simplifying considerations
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0 = zr
r r

∂∂ Ê ˆ
Á ˜Ë ¯∂ ∂

v

Integrating the above equation (noting that vz is a function of r only), we have

zd
r

dr

v
 = C1

vz = C1 In r + C2 (8.73a)

where C1 and C2 are constants of integration.

Equation (8.73a) is subjected to the following boundary conditions:

vz = Ui at r = a and vz = 0 at r = b.

The constants of integrations are accordingly found to be

C1 =

ln

iU

a

b

 and C1 = ln

ln

iU
b

a

b

-

Thus, Eq. (8.73a) becomes

vz = ln

ln

iU r

a b

b

From the q momentum equation in cylindrical coordinates (Eq. 8.28e) and using the

simplifying considerations specified as before, we get

0 = ( )1
r

r r r
q

∂ ∂Ê ˆ
Á ˜Ë ¯∂ ∂

v

Integrating the above equation (noting that vq is a function of r only), we have

( ) 3

1
r C

r r
q

∂
=

∂
v

vq = 4
3

2

Cr
C

r
+ (8.73b)

Equation (8.73b) is subjected to the following boundary conditions:

At r = a, vq = aw and at r = b, vq = bw.

The constant of integrations are found to be

C3 = 2w and C4 = 0

Finally, Eq. (8.73b) becomes

vq = wr

(ii) The r momentum equation in cylindrical co-ordinates (Eq. 8.28d), using the
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simplifying considerations specified as before, reads

2
p

r r

qr
∂

- = -
∂

v

or

2
dp

dr r

qr=
v

( Since p is a function of r only)

or

2 2
dp r

dr r

w
r=

Integrating the above equation, we have

2

i

p r

p a
dp rdrrw=Ú Ú

( )
2

2 2

2
ip p r a

rw
= + -

8.4   LOW REYNOLDS NUMBER FLOW

We have seen in Chapter 6 that Reynolds number is the ratio of inertia force to

viscous force. For flow at low Reynolds number, the inertia terms in the

Navier–Stokes equations become small as compared to viscous terms. As such, when

the inertia terms are omitted from the equations of motion, the analyses are valid for

only Re << 1. Consequently, this approximation, linearises the Navier–Stokes equa-

tions and for some problems, makes it amenable to analytical solutions. We shall

discuss such flows in this section. Motions at very low Reynolds number are some-

times referred to as creeping motion.

8.4.1 Theory of Hydrodynamic Lubrication

A thin film of oil, confined between the interspace of moving parts, may acquire high

pressures up to 100 MPa which is capable of supporting load and reducing friction.

The salient features of this type of motion can be understood from a study of slipper

bearing (Fig. 8.18). The slipper moves with a constant velocity U, past the bearing

plate. This slipper face and the bearing plate are not parallel but slightly inclined at

an angle of a. A typical bearing has a gap width of 0.025 mm or less, and the conver-

gence between the walls may be of the order of 1/5000. It is assumed that the sliding

surfaces are very large in transverse direction so that the problem can be considered

two dimensional.
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p p– 0

y

x U

Slipper

Bearing plate

a

h1
h x( )

h2

l

Fig. 8.18 Flow in a slipper bearing

For the analysis, we may assume that the slipper is at rest and the plate is forced

to move with a constant velocity U. The height h(x) of the wedge between the

block and the guide is assumed to be very small as compared with the length l of the

block. This motion is different from that we have considered while discussing Couette

flow. The essential difference lies in the fact that here the two walls are inclined at an

angle to each other. Due to the gradual reduction of narrowing passage, the convec-

tive acceleration u 
u

x

∂

∂

Ê ˆ
Á ˜Ë ¯

 is distinctly not zero. However, a relative estimation of

inertia term with respect to viscous term suggests that, for all practical purposes,
inertia terms can be neglected. The estimate is done in the following way:

Inertia force

Viscous force
 =

22

2 2 2

( / ) /

( / ) /

u u x U l U l h

lu y U h

r ∂ ∂ r r

mm ∂ ∂ m

Ê ˆ= = Á ˜Ë ¯
The inertia force can be neglected with respect to viscous force if the modified

Reynolds number,

R*=

2

1
U l h

ln

Ê ˆ <<Á ˜Ë ¯
The equation for motion in the y direction can be omitted since the v component of

velocity is very small with respect to u. Besides, in the x momentum equation,

∂ 2u/∂ x2 can be neglected as compared with ∂ 2u/∂ y2 because the former is smaller

than the latter by a factor of the order of (h/l)2. With these simplifications the equa-

tions of motion reduce to

m 
∂

∂

2

2

u

y
 =

d

d

p

x
(8.74)

The equation of continuity can be written as

Q =

( )

0

d

h x

u yÚ (8.75)
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The boundary conditions are as follows:
at y = 0, u = U at x = 0, p = p0

at y = h, u = 0 and at x = l, p = p0 (8.76)

Integrating Eq. (8.74) with respect to y, we obtain

u = 2
1 2

1 d

2 d

p
y C y C

xm
◊ + +

Application of the kinematic boundary conditions (at y = 0, u = U and at y = h, u = 0),

yields

u =

2 d
1 1

2 d

y h p y y
U

h x h hm

Ê ˆ Ê ˆ- - ◊ -Á ˜ Á ˜Ë ¯ Ë ¯
(8.77)

It is to be noticed that 
d

d

p

x

Ê ˆ
Á ˜Ë ¯

 is constant as far as integration along y is concerned,

but p and 
d

d

p

x
 vary along the x axis. At the point of maximum pressure, 

d

d

p

x
 = 0, hence,

u = U 1
y

h

Ê ˆ-Á ˜Ë ¯
(8.78)

Equation (8.78) depicts that the velocity profile along y is linear at the location of

maximum pressure. The gap at this location may be denoted as h*.

Now, substituting Eq. (8.77) into Eq. (8.75) and integrating, we get

Q =
Uh p h

2 12

3

- ¢
m

or p¢ =
2 3

12
2

U Q

h h
m

Ê ˆ-Á ˜Ë ¯
(8.79)

where p¢ = dp/dx.

Integrating Eq. (8.79) with respect to x, we obtain

d
d

d

p
x

xÚ  = 32 3
1 1

d d
6 12

( ) ( )

x x
U Q C

h x h x
m m

a a
- +

- -Ú Ú (8.80a)

or p =
6 6

1 1
2 3

m

a a

m

a a

U

h x

Q

h x
C

( ) ( )-
-

-
+ (8.80b)

where a = (h1 – h2)/l and C3 is a constant.

Since the pressure must be the same (p = p0), at the ends of the bearing, namely,

p = p0 at x = 0 and p = p0 at x = l, the unknowns in the above equations can be

determined by applying the pressure boundary conditions. We obtain

Q =
U h h

h h

1 2

1 2+
and C3 = p0 – 

6

1 2

m

a

U

h h( )+
With these values inserted, the equation for pressure distribution (8.80) becomes

p = p
Ux h h

h h h
0

2

2
1 2

6
+

-
+

m ( )

( )

or p – p0 =
6 2

2
1 2

mUx h h

h h h

( )

( )

-
+

(8.81)
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It may be seen from Eq. (8.81) that, if the gap is uniform, i.e., h = h1 = h2, the gauge

pressure will be zero. Furthermore, it can be said that very high pressure can be

developed by keeping the film thickness very small. Figure 8.18 shows the distribution

of pressure throughout the bearing.

The total load bearing capacity per unit width is

P = 2
0 2

1 20 0

( )6
( ) d d

l l
x h hU

p p x x
h h h

m -
- =

+Ú Ú
After substituting h = h1 – a x with a = (h1 – h2)/l in the above equation and

performing the integration,

P =

2
1 1 2

2
2 1 21 2

6
ln 2

( )

h h hU l

h h hh h

m È ˘Ï ¸-
-Í ˙Ì ˝+- Í ˙Ó ˛Î ˚

(8.82)

The shear stress at the bearing plate is

t0 =

0

–
2

y

u h U
p

y h

∂
m m

∂ =

Ê ˆ= +¢Á ˜Ë ¯
(8.83)

Substituting the value of p¢ from Eq. (8.79) and then invoking the value of Q in Eq.

(8.83), the final expression for shear stress becomes

t0 = 4
6 1 2
2

1 2

m
mU

h

U h h

h h h
-

+( )

The drag force required to move the lower surface at speed U is expressed by

D = 1 1 2
0

1 2 2 1 20

d 4ln 6

l
h h hU l

x
h h h h h

m
t

È ˘-
= -Í ˙- +Î ˚

Ú (8.84)

Michell thrust bearing, named after A.G.M. Michell, works on the principles based on

the theory of hydrodynamic lubrication. The journal bearing (Fig. 8.19) develops its

force by the same action, except that the surfaces are curved.

A
Line of centres

O

W

w

B

p

h1

h2

Fig. 8.19 Hydrodynamic action of a journal bearing



Dynamics of Viscous Flows 433

Example 8.10

A slipper (slider) and plate (guide), both 0.5 m wide, constitutes a bearing as shown in

Fig. 8.20. Density of the fluid, r = 9.00 kg/m3 and viscosity, m = 0.1 Ns/m2.

20 cm

1 m/s

0.005 cm
0.002 cm

Fig. 8.20 Slipper and plate both 0.5 m wide

Find out the (i) load carrying capacity of the bearing, (ii) drag, and (iii) power lost in

the bearing.

Solution

(i) Considering the width as b and using Eq. (8.82) for the load carrying

capacity,

P =

2
1 1 2

2
2 1 21 2

6
ln 2

( )

h h hU l b

h h hh h

p -È ˘
-Í ˙+- Î ˚

= 
2

6 0.1 1 0.2 0.2 0.5

(0.005 0.002)

È ˘¥ ¥ ¥ ¥ ¥
Í ˙

-Î ˚
 ¥ 

0.005 0.005 0.002
ln 2

0.002 0.005 0.002

-È ˘-Í ˙+Î ˚

=
6

0.012

9.0 10
-¥

 (0.9163 – 0.8571) = 78.93 N

(ii) Making use of Eq. (8.84) for width b, the drag force may be written as

D = 1 1 2

1 2 2 1 2

4 ln 6
h h hUl b

h h h h h

m -È ˘
-Í ˙- +Î ˚

=
0 1 1 0 2 0 5

0 005 0 002

. . .

( . . )

¥ ¥ ¥
-

0.005 0.005 0.002
4ln 6

0.002 0.005 0.002

-È ˘-Í ˙+Î ˚

=
0 01

0 003

.

.
 (3.6651 – 2.5714) = 3.645 N

(iii) Power lost = Drag ¥ Velocity

= 3.645 ¥ 1 = 3.645 W
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Example 8.11

A cylindrical journal bearing supports a load directed vertically upwards, with the

shaft rotating clockwise. Sketch the position of the shaft centre with respect to that of

the bearing (hole), if no cavitation is present. Give explanation. No equations are

required.

q
+

+ + +

+

-
-

- - -

-

-

Force on the shaft due to
lubrication pressure

Load (ext.)

(a)

(b)

( )p p- 0

O

+

-

p

q

2p

Bearing
centre

Shaft
centre

Fig. 8.21 

Solution

In this case, the pressure distribution is symmetric, as shown in (Fig 8.21), where q is

measured in the direction of the rotation of the shaft from the position of maximum

clearance. Thus, as shown, the shaft centre is to the right of the bearing centre, and

the line of centres is horizontal.

Example 8.12

For the following thrust bearing (Fig. 8.22), show that the force on the straight slider

in the x direction is the same as that on the guide.
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Slider

p0 = atm pressure

Guide

U

h2

ah1

p0

y

x

L

Fig. 8.22 

Solution

It is given that the velocity profile is

u

U
 = 12

1 1 3 1
1

hy y

h h n h

È Ê ˆ ˘Ê ˆ- - -Á ˜ Á ˜Í ˙Ë ¯ Ë ¯+Î ˚

and load

P =

2

2 2
2

6 2( 1)
ln

1( 1)

U L n
n

nh n

m -È ˘
-Í ˙+- Î ˚

where n = h1/h2

Force on the slider in the x direction is

Fs = 0

0 0

cos d
d (1) ( ) (1) sin

cos cos

L L

s

x
x p p

a
t a

a a
+ -Ú Ú

= 0

0 0

d tan ( ) d

L L

s x p p xt a+ -Ú Ú

Now, ts = -
F
HG

I
KJ =

m
∂

∂

u

y
y h

and u = U 1 1 3 1
2
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1-F
H

I
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+

◊
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L

N
M
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O

Q
P
P

y
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h n

h

h
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∂

∂
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y
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h
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H
I
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◊
F
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I
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\ ts = – mU
h h n

h

h
- + -
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F
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P

Also, h = h1 – (h1 – h2) 
x

L

Therefore, dh = – 
h h

L

1 2-
 dx

Thus, t s

L
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0
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L
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=
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=
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=
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Also, load P = ( )
cos

cos
p p

x
L

-z 0

0

d a

a

(neglecting contribution of ts to load; a is small)

Therefore, Fs =

0

L

z ts dx + tan a (P)

or Fs =
mUL
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n

n

n

h h
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Now the force on the guide is

FG = t G

L

xd

0

z

But tG =
0y

u

y

∂
m

∂ =

Ê ˆ
Á ˜Ë ¯
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P

The expression is tG = mU 
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O

Q
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which is the same as Fs.

8.4.2 Low Reynolds Number Flow around a Sphere

In 1851 Stokes obtained the solution for the slow motion of a viscous fluid past a

sphere. In his analysis, Stokes neglected the inertia terms of Navier–Stokes

equations. Such flows are called creeping flows. The flow patterns are identical in all

planes parallel to the mainstream and passing through the centre of the sphere.

Consider the low Reynolds number flow around a sphere of radius R placed in a

uniform stream, U• (Fig. 8.23). For fluids with high viscosity or for fluids flowing at

very slow speeds (Re < 1) the inertia terms on the left-hand side of Eq. ( 8.25) can be

neglected when compared with the viscous terms. The body force is neglected and

steady flow is considered. The Navier-Stokes equations, Eq. (8.25) and the continuity

equation, reduce respectively, to
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2p um— = —
r

(8.85)

 · 0u— =
r

(8.86)

The divergence of Eq. (8.85) yields

( ) ( )2 2 2· · 0p u um m— = — — = — — =
r r

(8.87)

Equation (8.87) depicts that the pressure p, satisfies the Laplace equation.

Therefore for very slow motions or for the motion of highly viscous fluids pressure is

a harmonic function.

Equations (8.85), (8.86) and (8.87) may by deployed to describe a steady uniform

flow around a sphere at rest (Fig. 8.23). This problem was first solved by Stokes and

is often referred to as Stokes’ problem. Let the origin of the coordinate system be

chosen at the centre of the sphere, the z axis be the direction of uniform flow far away

from the sphere, and ( )1
22 2 2

r x y z= + +  be the distance of an arbitrary point from

the origin. The boundary conditions which must be satisfied by the flow are as

follows:

, ,

0

0,

w u at r R

w U u p p at r• •

= = = = ¸
˝= = = = = • ˛

v

v
(8.88)

where R is the radius of the sphere and U• the uniform velocity far away from the

sphere.

From the potential flow theory, the solution of Eq. (8.87) satisfying the required

properties is

p – p• =
2 3

 cos zAA

r r

f
- = - (8.89)

where A  is a constant to be determined from the boundary conditions (Eq.(8.88 )).

Substituting Eq.(8.89) into Eq. (8.85) one obtains

2
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5 3

2
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2
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3 1

3
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A z
w

r r

A zy

r

A zx
u
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m

m

m

Ê ˆ ¸
— = - ÔÁ ˜Ë ¯ Ô

ÔÔ— = ˝
Ô
Ô

— = Ô
Ǫ̂

v  (8.90)



Dynamics of Viscous Flows 439

U•

vf

vz

vr

w
z

f

R

x
u

y v

Fig. 8.23 

The solutions of Eqs. (8.90) are beyond the scope of this text. The results of the

solutions are

2 2 3

3 2 3
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3 2

2

3 2

3 3 1
1 1
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1
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Rz R R R
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v (8.91)

and the pressure is

p – p• =
3

3

2

z
U R

r
m •

Ê ˆ- Á ˜Ë ¯ (8.92)

It can be readily verified that the velocity components in Eq. (8.91) satisfy Eq.

(8.90) and the boundary conditions in Eq. (8.88). The pressure at the leading and

trailing stagnation points of the sphere ( )z R= m  are, respectively,

3

2
R

U
p p

R

m •- = ±m
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This indicates that the fluid exerts a force in the z direction. The total force (drag)

acting on the sphere moving relative to an undisturbed stream along the z axis is

equal to the surface integral of the normal pressure and the tangential shearing

stresses acting on it. The normal pressure acting on the surface of the sphere is

( ) ( ) 2 r
rr r R

p p
r

t m•=
∂È ˘= - - +Í ˙∂Î ˚

v
(8.93)

and the corresponding shearing stress is

( ) 1 r
r r R

r R

r
r r r

f
ft m

f=
=

∂È Ê ˆ ˘∂
= +Í ˙Á ˜Ë ¯∂ ∂Î ˚

v v
(8.94)

The radial and tangential components of velocity vr and  vf  respectively, can be

calculated in terms of u, v, w, as follows:

vr = sin  +  cos
x y

u wf fÊ ˆ+Á ˜Ë ¯G G
v

=
x y z

u w
r r r

+ +v (8.95)

vf =  sin +  cos
x y

w uf fÊ ˆ- +Á ˜Ë ¯G G
v

=
xz yz

w u
r r r

G
- + + v (8.96)

where G2 = x2 + y2. Substituting Eqs (8.91) into Eqs (8.95) and (8.96), we have

vr =
3

3

3 1
 cos 1

2 2

R R
U

r r
f•

Ê ˆ
- +Á ˜Ë ¯

(8.97)

vf =
3

3

3
 sin 1

4 4

R R
U

r r
f•

Ê ˆ
- - -Á ˜Ë ¯

(8.98)

With the values of radial and tangential components of velocity in Eqs (8.85) and

(8.86), the normal and shearing stresses acting on the surface of the sphere become

[Eqs (8.93) to (8.94)]

(trf)r = R = ( ) 3
cos

2

U
p p

R

m
f•

•- - = (8.99)

and

(trf)r = R =
3

sin
2

U

R

m
f•- (8.100)

The total drag on the sphere now can be calculated by integrating the z component

of the normal and shearing stresses over the surface of the sphere as follows:

D = ( )cos dA+ sinrp p dAff t f•-ÚÚ ÚÚ
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The expression given in Eq. (8.100) is known as the Stokes’ formula for the drag of

a sphere in which one-third of the values arises from the normal pressure forces and

two-thirds from frictional forces. The coefficient of drag of the sphere at small

Reynolds numbers is

CD = ( )2 2

24 24

2 / Re

2

D

U R
U R

r up •
•

= =
Ê ˆ
Ë ¯

(8.101)

A comparison between Stokes’ drag coefficient in Eq. (8.101) and experimental

results is shown in Fig. 8.24. The approximate solution due to Stokes’ is valid only

for Re<1.

10-210-3
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CD

108

24
Stokes' theory

Re

Fig. 8.24 Comparison between Stokes� drag coefficient and experimental

drag coefficient

An important application of Stokes’ law is the determination of viscosity of a

viscous fluid by measuring the terminal velocity of a falling sphere. In this device, a

sphere is dropped in a transparent cylinder containing the fluid under test. If the spe-

cific weight of the sphere is close to that of the liquid, the sphere will approach a small

constant speed after being released in the fluid. Now we can apply Stokes’ law for

steady creeping flow around a sphere where the drag force on the sphere is given by

Eq. (8.85).
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With the sphere, falling at a constant speed, the acceleration is zero. This signifies

that the falling body has attained terminal velocity and we can say that the sum of the

buoyant force and drag force is equal to the weight of the body.

4

3

3p rR gs  =
4

3
63p r p mR g V Rl T+ (8.102)

where rs is the density of the sphere, rl is density of the liquid and V T is the terminal
velocity.

Solving for m, we get

m =
2

9

2gR

VT
s l( )r r- (8.103)

The terminal velocity V T, can be measured by observing the time for the sphere to
cross a know distance betwwwn two points after its acceleration has ceased.

SUMMARY

∑ The Navier–Stokes equation, based on the conservation of momentum has

been derived, which is valid for homogeneous and isotropic Newtonian and

Stokesian fluids.

∑ The Navier–Stokes equation is often not amenable to an analytical solution

due to the presence of non-linear inertia terms in it. However, there are some

special situations where the non-linear inertia terms are reduced to zero. In

such situations, exact solutions of the Navier–Stokes equation are obtainable.

This includes the plane Poiseuille flow, the Couette flow, the flow through a

straight pipe and the flow between two concentric rotating cylinders. All these

flows are known as parallel flows where only one component of the velocity

is non-trivial.

∑ Knowledge of the velocity field obtained through analytical methods permits

calculation of shear stress, pressure drop and flow rate. Applications of the

parallel flow theory to the measurement of viscosity and hydrodynamics of

bearing lubrication are explained.

EXERCISES

8.1 Choose the correct answer:

(i) Bulk stress is equal to thermodynamic pressure

(a) if the second coefficient of viscosity is zero

(b) for incompressible flows

(c) for a compressible fluid with negligible second coefficient of viscos-

ity

(d) if the bulk coefficient of viscosity is non-zero

(ii) Assumptions made in derivation of Navier–Stokes equations are

(a) continuum, incompressible flow, Newtonian fluid and m = constant

(b) steady flow, incompressible flow, irrotational flow

(c) continuum, non-Newtonian fluid, incompressible flow

(d) continuum, Newtonian fluid, Stokes’ hypothesis and isotropy
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(iii) In a fully developed pipe flow

(a) The pressure gradient is greater than the wall shear stress

(b) The inertia force balances the wall shear stress

(c) The pressure gradient balances the wall shear stress only and has a

constant value

(d) None of the above

(iv) In the case of fully developed flow through tubes

(a) Darcy’s friction factor is four times the skin friction coefficient

(b) Darcy’s friction factor and skin friction coefficients are same

(c) Darcy’s friction factor is double the skin friction coefficient

(d) the skin friction coefficient is greater than the Darcy’s friction fac-

tor.

(v) Based on the hydrodynamic theory of lubrication, state which of the fol-

lowing are correct.

(a) The load bearing capacity remains unchanged so long either the slip-

per or the bearing moves in the same direction while the other is held

fixed.

(b) Reversing the direction of the movement of the slipper, bearing

remaining fixed, does not cause any change in the load bearing ca-

pacity.

(c) u
u

x

u

y

∂

∂
m

∂

∂
>>

2

2

(d) For a large film thickness, h(x), the maximum pressure location

shifts from the middle.

(vi) Observation on a spherical object falling in a liquid pool is the method of

measuring viscosity by making use of Stokes’ viscosity law. The falling

body attains terminal velocity if

(a) the weight of the falling body is more than the sum of the buoyancy

force and the drag force

(b) the drag force is equal to the buoyancy force

(c) the buoyancy force is more than the drag force

(d) the sum of the buoyancy force and the drag force is equal to the weight

of the body.

8.2 (i) What is the basic difference between Euler’s equations of motion and

Navier–Stokes equations?

(ii) In case of flow through a straight tube of circular cross section with rota-

tional symmetry, the axial component of velocity is the only non-trivial

component and all the fluid particles move in the same direction only.

Find out the average velocity and the maximum velocity within the tube. If

Darcy–Weisbach equation for pressure drop over a finite length is given by

hf = f  (L/D) (V 2/2g), prove that f = 64/Re, where L is the length and D is

the diameter of the tube.

8.3 What is the relationship between the average velocity and maximum velocity

in case of parallel flow between two fixed parallel plates? What do you under-

stand by inlet region and developed region?

Ans. (Umax = 1.5 Uav)
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8.4 Show that in case of a Couette flow, the shear stress at the horizontal mid-plane

of the channel is independent of the pressure gradient imposed on the flow.

8.5 (i) Find out the total load and the frictional resistance on a block moving with a

velocity U, over a horizontal plate separated by a thin layer of lubricating

oil, the thickness of layer being h1 and h2 at the edges of the block which

has a straight bottom.

(ii) Also show that the volume flow rate of lubricant is given by

Q = U
h h

h h

1 2

1 2+
8.6 Oil flows between two parallel plates, one of which is at rest and the other moves

with a velocity U. (i) If the pressure is decreasing in the direction of flow at the

rate of 5 Pa/m, the dynamic viscosity is 0.05 kg/ms, the spacing of the horizontal

plate is 0.04 m and the volumetric flow Q per unit width is 0.02 m
2
/s, what is the

velocity U? (ii) Calculate U if the pressure is increasing at a rate of 5 Pa/m in the

direction of flow.

Ans. ((i) 0.97 m/s (ii) = 1.027 m/s)

8.7 Water flows between two very large, horizontal, parallel flat plates 20 mm apart.

If the average velocity of water is 0.15 m/s, what is the shear stress (i) at the

lower plate, and (ii) 5 mm and 10 mm above the lower plate? Assume m = 1.1 ¥ 10–

3 Ns/m2.

Ans. ((i) 0.0495 N/m2 (ii) 0.0248 N/m2)

8.8 A Newtonian liquid flows slowly under gravity along an inclined flat surface that

makes an angle q with the horizontal plane. The film thickness is T and it is

constant. The flow is two-dimensional. (i) Show that the fluid velocity u along the

x (flow) direction is given by

u =
sin

2

g y
y T

q

n

Ê ˆ-Á ˜Ë ¯
(ii) Calculate the average velocity uav, and the volumetric flow rate Q per unit

width of the surface. The pressure within the fluid is a function of y alone,

where y is the normal to the flow direction. The v component of velocity is

trivial.

Ans. (Uav = g sin q T2/3n, Q = g sin q T3/3n)

8.9 A horizontal circular pipe of outer radius R1, is placed concentrically inside

another circular pipe of inner radius R2. Considering fully developed laminar

flow in the annular space between pipes show that the maximum velocity occurs

at a radius R0 given by

R0 =

1/ 2
2 2
2 1

2 12 ln ( / )

R R

R R

È ˘-
Í ˙
Í ˙Î ˚

8.10 The Reynolds number for flow of oil through a 5 cm diameter pipe is 1700.

The kinematic viscosity, n = 1.02 ¥ 10
–6

 m
2
/s. What is the velocity at a point

0.625 cm away from the wall.

Ans. (0.03 m/s)
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8.11 The velocity along the centre line of the Hagen–Poiseuille flow in a 0.1 m diameter

pipe is 2 m/s. If the viscosity of the fluid is 0.07 kg/ms and its specific gravity is

0.92, calculate (i) the volumetric flow rate, (ii) shear stress of the fluid at the pipe

wall, (iii) local skin friction coefficient, and (iv) the Darcy friction coefficient.

Ans. ((i) 7.854 ¥ 10–3 m3/s (ii) 5.6 N/m2, (iii) 0.012 (iii) 0.048)

8.12 Kerosene at 10 °C flows steadily at 20 l/min through a 150 m long horizontal

length of 5.5 cm diameter cast iron pipe. Compare the pressure drop of the

kerosene flow with that of the same flow rate of benzene at 10 °C through the

same pipe. For kerosene at 10 °C, r = 820 kg/m3 and m = 0.0025 Ns/m2 and for

benzene r = 899 kg/m3 and m = 0.0008 Ns/m2. Why do you obtain greater

pressure drop for benzene?

8.13 A viscous oil flows steadily between parallel plates. The fully developed velocity

profile is given by

u = –

22
2

1
8

h p y

x h

∂

m ∂

È ˘Ê ˆ Ê ˆ-Í ˙Á ˜Á ˜ Ë ¯Ë ¯ Í ˙Î ˚
where the total gap between the plates is h = 3 mm and y is the distance from the

centre line. The viscosity of the oil is 0.5 Ns/m2 and the pressure gradient is

– 1200 N/m2/m. Find the magnitude and direction of the shear stress on the upper

plate, and the volumetric flow rate per metre width of the channel.

Ans. ((i) –1.80 N/m2, (ii) 5.40 ¥ 10–6 m3/s m)

8.14 A fully developed laminar flow is taking place in the annulus between two

concentric pipes. The inner pipe is stationary, and the outer pipe is moving in the

axial direction with a velocity V 0. Assume the axial pressure gradient to be zero

(dp/dz = 0). Find out a general expression for the shear stress as a function of

radial coordinate. Also find out a general expression for the velocity profile V z(r).

Ans. 0

ln ( / )
(i)  = / , (ii)  = 

ln ( / )

i
z

o i

r r
A r V V

r r
t

Ê ˆ
Á ˜Ë ¯

8.15 Refer to Fig. 8.25. This problem illustrates the secret if the strength of cello-

tape joints:

The task is to find out .F u = radial velocity

v dh dt= / at =z h
F

R

r

n

Fig. 8.25 
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A disc of radius r is at a uniform distance h from a large flat plate, and the gap h is

filled with a viscous liquid. The disc moves upwards at v = dh/dt, in the response to

a central force F. Due to the symmetry of the problem (in the q direction), the

governing equations are

Continuity:
1

( ) 0ru
r r z

∂ ∂
+ =

∂ ∂
v

u = radial velocity

Momentum

2 2

2 2 2

2 2

2 2

1 1

1

u u p u u u u
u

r z r r rr r z

p

r z z r z

n
r

n n
r

Ï Ê ˆ∂ ∂ ∂ ∂ ∂ ∂
+ = - + + - +Ô Á ˜∂ ∂ ∂ ∂Ë ¯∂ ∂Ô

Ì
Ê ˆ∂ ∂ ∂ ∂ ∂Ô + = - + +Á ˜Ô ∂ ∂ ∂ Ë ¯∂ ∂Ó

v

v v v v
u

Hints:

(a) Show that if h R<<  and 1
h dh

dtn
<< , inertia terms can be neglected in the

momentum equations and we get the following:

Continuity equation remains unchanged

p

r

∂
∂

 =
2

2
; 0

u p

zz
m

∂ ∂
=

∂∂
(b) Solve these differential equations to get

F =
4

3

3

2

R dh

dth
pm

(c) Estimate F if R = 1 cm, 1
dh

dt
=  mm/s,  h = 0.1 mm, m = 4.2 ¥ 10–6 N–cm–2– s



9.1  INTRODUCTION

The boundary layer of a flowing fluid is the thin layer close to the wall. In a flow field,
viscous stresses are very prominent within this layer. Although the layer is thin, it is
very important to know the details of flow within it. The main-flow velocity within this
layer tends to zero while approaching the wall. Also the gradient of this velocity
component in a direction normal to the surface is large as  compared to the gradient of
this component in the streamwise direction.

9.2  BOUNDARY LAYER EQUATIONS

In 1904, Ludwig Prandtl, the well-known German scientist, introduced the concept of
boundary layer [1] and derived the equations for boundary layer flow by correct
reduction of the Navier–Stokes equations. He hypothesised that for fluids having a
relatively small viscosity, the effect of internal fictitious in the fluid is significant only
in a narrow region surrounding the solid boundaries or bodies over which the fluid
flows. Thus, close to the body is the boundary layer where shear stresses exert an
increasingly larger effect on the fluid as one moves from free stream towards the solid
boundary. However, outside the boundary layer where the effect of the shear stresses
on the flow is small compared to values inside the boundary layer (since the velocity
gradient ∂u/∂y is negligible), the fluid particles experience no vorticity, and therefore,
the flow is similar to a potential flow. Hence, the surface at the boundary layer
interface is a rather fictitious one dividing rotational and irrotational flow. Prandtl’s
model regarding the boundary layer flow is shown in Fig. 9.1. Hence with the
exception of the immediate vicinity of the surface, the flow is frictionless (inviscid)
and the velocity is U. In the region very near to the surface (in the thin layer), there is
friction in the flow which signifies that the fluid is retarded until it adheres to the
surface. The transition of the mainstream velocity from zero at the surface to full
magnitude takes place across the boundary layer. Its thickness is d which is a function
of the coordinate direction x. The thickness is considered to be very small compared
to the characteristic length L of the domain. In the normal direction, within the thin
layer, the gradient ∂u/∂y is very large compared to the gradient in the flow direction
∂u/∂x. The next step is to simplify the Navier–Stokes equations for steady two-

9

LAMINAR BOUNDARY LAYERS
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dimensional laminar incompressible flows. Considering the Navier–Stokes equations
together with the equation of continuity, the following dimensional form is obtained:

u u
u

x y

∂ ∂

∂ ∂
+ v  = –

2 2

2 2

1 p u u

x x y

∂ m ∂ ∂

r ∂ r ∂ ∂

È ˘
+ +Í ˙

Î ˚
(9.1)

u
x y

∂ ∂

∂ ∂
+

v v
v  = –

2 2

2 2

1 p

y x y

∂ m ∂ ∂

r ∂ r ∂ ∂

È ˘
+ +Í ˙

Î ˚

v v
(9.2)

0
u

x y

∂ ∂

∂ ∂
+ =

v
(9.3)

Potential
flow

Free
stream

Boundary
layer

u x y( , )

x

U•

y

d(x)

L

u

U

Fig. 9.1 Boundary layer on a flat plate

Here the velocity components u and v are acting along the streamwise x and
normal y directions respectively. The static pressure is p, while r is the density and m
is the dynamic viscosity of the fluid.

The equations are now non-dimensionalised. The length and the velocity scales
are chosen as L and U• respectively. The non-dimensional variables are

* * *
2

, ,
u p

u p
U U Ur• • •

= = =
v

v

*x = *,
x y

y
L L

=

where U• is the dimensional free stream velocity and the pressure is non-
dimensionalised by twice the dynamic pressure pd = (1/2) r U2

•. Using these non-
dimensional variables,  Eqs (9.1) to (9.3) become

* *
*
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*

u u
u
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∂ ∂
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∂ ∂ ∂
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∂ ∂
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È ˘
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v v
(9.5)
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* *

* *

u

x y

∂ ∂

∂ ∂
+

v
 = 0 (9.6)

where the Reynolds number,

Re =
U Lr

m
•

Let us now examine what happens to the u velocity as we go across the boundary
layer. At the wall the u velocity is zero. The value of u on the inviscid side, i.e., on the
free stream side beyond the boundary layer. is U. For the case of external flow over a
flat plate, this U is equal to U•.

Based on the above, we can identify the following scales for the boundary layer
variables:

Variable Dimensional scale Non-dimensional scale

u U• 1

x L 1

y d e (=d /L)

The symbol e describes a value much smaller than 1. Now let us look at the order
of magnitude of each individual terms involved in Eqs (9.4), (9.5) and (9.6). We start with
the continuity Eq. (9.6). One general rule of incompressible fluid mechanics is that we
are not allowed to drop any term from the continuity equation. From the scales of
boundary layer variables, the derivative ∂u*/∂x* is of the order 1. The second term in
the continuity equation ∂v*/∂y* should also be of the order 1. Now, what makes ∂v*/
∂y* to have the order 1? Admittedly v* has to be of the order e because y* becomes e
(= d/L) at its maximum. Next, consider Eq. (9.4). Inertia terms are of the order 1. Among
the second order derivatives, ∂ 2u*/∂ x*2 is of the order 1 and ∂ 2 u*/∂ y*2 contains a
large estimate of (1/e 2). However, after multiplication with 1/Re, the sum of these two
second order derivatives should produce at least one term which is of the same order
of magnitude as the inertia terms. This is possible only if the Reynolds number (Re) is
of the order of 1/e2.

The order of Reynolds number can be determined in the following manner. While
deriving the boundary layer equation, the basic assumption is that outside the
boundary layer, the inertia force is >> viscous force. However, within the boundary
layer, the inertia force and viscous forces are comparable. If inertia force and the

viscous force components can be represented by 
u

u
x

r
∂
∂

 and 
2

2

u

y
m

∂
∂

 respectively, we

can say that within the boundary layer

2

2
~

u u
u

x y
r m

∂ ∂
∂ ∂

or

2
~

U U
U

L
r m

d
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or

2

2
~

UL Lr

m d

Finally, it can be conclusively said that

2

1
Re ~

e

It follows from the Eq. (9.4) that –∂ p*/∂ x* will not exceed the order of 1 so as to be in
balance with the remaining terms. Finally, Eqs (9.4), (9.5) and (9.6) can be rewritten as

*
*

*

u
u

x

∂

∂
+

*
* u

y

∂

∂
v = – 

*

*

p

x

∂

∂
+

2 * 2 *

*2 *2

1

Re

u u

x y

∂ ∂

∂ ∂

È ˘
+Í ˙

Î ˚
(9.4)

(1)
(1)

(1)

(1)
( )

( )
e

e
= (1) 2

2

(1) 1
( )

(1) ( )
e

e

È ˘
+Í ˙

Î ˚

*
*

*
u

x

∂

∂

v
+

*
*

*y

∂

∂

v
v =

*

*
–

p

y

∂

∂
+

2 * 2 *

*2 *2

1

Re x y

∂ ∂

∂ ∂

È ˘
+Í ˙

Î ˚

v v
(9.5)

( )
(1)

(1)

e ( )
( )

( )

e
e

e
= (?) 2

2

( )
( )

(1) ( )

e e
e

e

È ˘
+Í ˙

Î ˚
*

*

u

x

∂

∂
+

*

*y

∂

∂

v
= 0 (9.6)

(1)

(1)

( )

( )

e

e

As a consequence of the order of magnitude analysis

2 *

*2

u

x

∂

∂
 can be dropped from

the x direction momentum equation, because on multiplication with 1/Re it assumes
the smallest order of magnitude. Now consider the y direction momentum Eq. (9.5).
All the terms of this equation are of a smaller magnitude than those of Eq. (9.4). This
equation can only be balanced if ∂p*/∂y* is of the same order of magnitude as other
terms. Thus the y momentum equation reduces to

*

*

p

y

∂

∂
 = O (e) (9.7)

This means that the pressure across the boundary layer does not change. The
pressure is impressed on the boundary layer, and its value is determined by
hydrodynamic considerations. This also implies that the pressure p is only a function
of x. The pressure forces on a body are solely determined by the inviscid flow outside
the boundary layer. The application of Eq. (9.4) at the outer edge of boundary layer
gives
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*
*

*

d

d

u
u

x
= –

*

*

d

d

p

x
(9.8a)

In dimensional form, this can be written as

U 
d

d

U

x

1 d

d

p

xr
- (9.8b)

On integrating Eq. (9.8b), the well- known Bernoulli’s equation is obtained,

p + 21

2
Ur  = a constant (9.9)

Finally, it can be said that by the order of magnitude analysis, the Navier–Stokes
equations are simplified into equations given below.

* *
* *

* *

u u
u

x y

∂ ∂

∂ ∂
+ v  =

* 2 *

* *2

1
–

Re

p u

x y

∂ ∂

∂ ∂
+ (9.10)

*

*

p

y

∂

∂
 = 0 (9.11)

* *

* *

u

x y

∂ ∂

∂ ∂
+

v
 = 0 (9.12)

These are known as Prandtl’s boundary layer equations. The available boundary
conditions are

Solid surface
at y* = 0, u* = 0 = v* ¸

˝
˛or at y = 0 u = 0 =  v

(9.13)

Outer edge of boundary layer

at y* = (e) = d
L

, u* = 1 ¸
˝
˛or  at y = d, u = U(x)

(9.14)

The unknown pressure p in the x momentum equation can be determined from
Bernoulli’s Eq. (9.9), if the inviscid velocity distribution U (x) is also known. The
preceding derivations are related to a flat surface, but these can be easily extended to
curved surfaces. While doing so, it is seen that Eqs (9.10) to (9.14) continue to be
applicable only if the curvature does not change abruptly. However, the boundary
layer equations are relatively easier to solve as compared to the Navier–Stokes
equations and have been solved by various analytical and numerical techniques.

We solve the Prandtl boundary layer equations for u*(x, y) and v*(x, y) with U
obtained from the outer inviscid flow analysis. The equations are solved by
commencing at the leading edge of the body and moving downstream to the desired
location. Note that the reduced momentum Eq. (9.10) is still non-linear. However, it
does allow the no-slip boundary condition to be satisfied which constitutes a
significant improvement over the potential flow analysis while solving real fluid flow
problems. The Prandtl boundary layer equations are thus a simplification of the
Navier–Stokes equations.



452 Introduction to Fluid Mechanics and Fluid Machines

9.3  BLASIUS FLOW OVER A FLAT PLATE

The classical problem considered by H. Blasius was a two-dimensional, steady,
incompressible flow over a flat plate at zero angle of incidence with respect to the
uniform stream of velocity U•. The fluid extends to infinity in all directions from the
plate. The physical problem is already illustrated in Fig. 9.1.

Blasius wanted to determine (a) the velocity field solely within the boundary layer,
(b) the boundary layer thickness (d), (c) the shear stress distribution on the plate, and
(d) the drag force on the plate.

The Prandtl boundary layer equations in the case under consideration are

u u
u

x y

∂ ∂

∂ ∂
+ v  =

2

2

u

y

∂
n

∂
(9.15)

0
u v

x y

∂ ∂
+ =

∂ ∂
(9.3)

The boundary conditions are

at y = 0, u = v = 0
at y = • u = U• (9.16)

It may be mentioned that the substitution of the term 
1 d

d

p

xr

È ˘-Í ˙Î ˚
 in the original

boundary layer momentum equation in terms of the free stream velocity produces
d

d

U
U

x

•
•

È ˘
Í ˙Î ˚

 which is equal to zero. Hence the governing Eq. (9.15) does not contain

any pressure-gradient term. However, the characteristic parameters of this problem
are U•, n, x, y, i.e.,

u = u (U•, n, x, y)

Before we write down this relationship in terms of two non-dimensional
parameters, we have to be acquainted with the law of similarity in boundary layer
flows. It states that the u component of velocity with two velocity profiles of u(x, y) at
different x  locations differ only by scale factors in u and y. Therefore, the velocity
profiles u(x, y) at all values of x  can be made congruent if they are plotted in
coordinates which have been made dimensionless with reference to the scale factors.
The local free stream velocity U(x) at section x is an obvious scale factor for u, because
the dimensionless u(x) varies between zero and unity with y at all sections. The scale
factor for y, denoted by g(x), is proportional to the local boundary layer thickness so
that y itself varies between zero and unity. The principle of similarity demands that the
velocity at two arbitrary x locations, namely, x1 and x2 should satisfy the equation

{ }[ ]1 1

1

, / ( )

( )

u x y g x

U x
 =

{ }[ ]2 2

2

, / ( )

( )

u x y g x

U x
(9.17)

Now, for Blasius flow, it is possible to write
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u

U•
 =

y
F

x

U

n

•

Ê ˆ
Á ˜
Á ˜
Á ˜
Á ˜Ë ¯

 = F(h) (9.18)

where h ~ 
y

d
 and d ~ 

x

U

n

•

or more precisely, h =
y

x

U

n

•

(9.19)

The stream function can now be obtained in terms of the velocity components
as

y = d ( ) d ( ) d
x

u y U F U x F
U

n
h h n h h• •

•
= =Ú Ú Ú

or y = U xn•  f(h) + constant (9.20)

where ÚF(h) dh = f(h) and the constant of integration is zero if the stream function

at the solid surface is set equal to zero.
Now, the velocity components and their derivatives are

u = ( )U f
y y

∂y ∂y ∂h
h

∂ ∂h ∂ •= ◊ = ¢ (9.21a)
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1 1 1 1

– ( ) ( )
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or
∂

∂
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y
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U f
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• ¢¢ (9.21d)
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x
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Substituting (9.21) into (9.15), we have

( )
2 2 2

. ( ) ( ) [ ( ) ( )] ( )
2 2

U U U
f f f f f f

x x x

h
h h h h h h h• • •- + - =¢ ¢¢ ¢ ¢¢ ¢¢¢

or
2 21

– ( ) ( ) ( )
2

U U
f f f

x x
h h h• •=¢¢ ¢¢¢

or 2f ¢¢ ¢ (h) + f(h) f ¢¢(h) = 0 (9.22)

This is known as Blasius equation. The boundary conditions as in Eq. (9.16), in
combination with Eq. (9.21a) and (9.21b) become

at h = 0 : f (h) = 0, f ¢(h) = 0 ¸
˝
˛at h = • : f ¢(h) = 1

(9.23)

Equation (9.22) is a third order non-linear differential equation. Blasius
obtained the solution of this equation in the form of series expansion through
analytical techniques which is beyond the scope of this text. However, we shall
discuss a numerical technique to solve the aforesaid equation which can be
understood rather easily.

It is to be observed that the equation for f does not contain x. Further boundary
conditions at x = 0 and y = • merge into the condition h Æ •, u/U• = f ¢ = 1. This is the
key feature of similarity solution.

We can rewrite Eq. (9.22) as three first order differential equations in the following
way:

f ¢ = G (9.24a)

G¢ = H (9.24b)

H¢ =
1

2
f H- (9.24c)

Let us next consider the boundary conditions. The condition f (0) = 0 remains
valid. Next, the condition f ¢(0) = 0 means that G(0) = 0. Finally, f ¢(•) = 1 gives us G(•)
= 1. Note that the equations for f and G have initial values. However, the value for H(0)
is not known. Hence, we do not have a usual initial-value problem. Nevertheless, we
handle this problem as an initial-value problem by choosing values of H(0) and
solving by numerical methods f(h), G(h), and H(h). In general, the condition G(•) = 1
will not be satisfied for the function G arising from the numerical solution. We then
choose other initial values of H so that eventually we find an H(0) which results in
G(•) = 1. This method is called the shooting technique.



Laminar Boundary Layers 455

In Eq. (9.24), the primes refer to differentiation w.r.t the similarity variable h. The
integration steps following the Runge–Kutta method are given below:

fn+1 = fn + 
1

6
 (k1 + 2k2 + 2k3 + k4) (9.25a)

Gn+1 = Gn + 
1

6
 (l1 + 2l2 + 2l3 + l4) (9.25b)

Hn+1 = Hn + 
1

6
 (m1 + 2m2 + 2m3 + m4) (9.25c)

One moves from hn to hn+1 = hn + h. A fourth order accuracy is preserved if h is
constant along the integration path, that is, hn+1 – hn = h for all values of n. The values
of k, l and m are as follows:

For generality, let the system of governing equations be

f ¢ = F1 ( f, G, H, h), G¢ = F2( f, G, H, h) and H¢ = F3 ( f, G, H, h).
Then,

k1 = h F1 ( fn, Gn, Hn, hn)
l1 = h F2 ( fn, Gn, Hn, hn)

m1 = h F3 ( fn, Gn, Hn, hn)

k2 = h F1 { }1 1 1
1 1 1

, , ,
2 2 2 2n n n n

h
f k G l H m hÊ ˆ Ê ˆ Ê ˆ Ê ˆ+ + + +Á ˜ Á ˜ Á ˜ Á ˜Ë ¯ Ë ¯ Ë ¯ Ë ¯

l2 = h F2 { }1 1 1
1 1 1

, , ,
2 2 2 2n n n n

h
f k G l H m hÊ ˆ Ê ˆ Ê ˆ Ê ˆ+ + + +Á ˜ Á ˜ Á ˜ Á ˜Ë ¯ Ë ¯ Ë ¯ Ë ¯

m2 = h F3 { }1 1 1
1 1 1

, , ,
2 2 2 2n n n n

h
f k G l H m hÊ ˆ Ê ˆ Ê ˆ Ê ˆ+ + + +Á ˜ Á ˜ Á ˜ Á ˜Ë ¯ Ë ¯ Ë ¯ Ë ¯

In a similar way, k3, l3, m3 and k4, l4, m4 are calculated following standard formulae
for the Runge–Kutta integration. For example, k3 is given by

k3 = hF1 { }2 2 2

1 1 1
, , ,

2 2 2 2
n n n n

h
f k G l H m h+ + + +Ê ˆ Ê ˆ Ê ˆ Ê ˆ

Ë ¯ Ë ¯ Ë ¯ Ë ¯

The functions F1, F2 and F3 are G, H, – fH/2, respectively. Then at a distance Dh
from the wall, we have

f(Dh) = f(0) + G(0) Dh (9.26a)

G(Dh) = G(0) + H(0) Dh (9.26b)

H(Dh) = H(0) + H¢(0) Dh (9.26c)

H¢(Dh) = –
1
2

 f (Dh) H (Dh) (9.26d)

As mentioned earlier, f ¢¢(0) = H(0) = l is unknown. It must be determined such that

the condition f ¢(•) = G(•) = 1 is satisfied. The condition at infinity is usually

approximated at a finite value of h (around h = 10). The process of obtaining l

accurately involves iteration and may be calculated using the procedure described

below.

For this purpose, consider Fig. 9.2(a) where the solutions of G versus h for two

different values of H(0) are plotted. The values of G(•) are estimated from the G
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curves and are plotted in Fig. 9.2(b). The value of H(0) now can be calculated by

finding the value H
~

(0) at which the line 1–2 crosses the line G(•) = 1. By using similar

triangles, it can be said that

1 2 1

1 2 1

~
(0) (0) (0) (0)

1 ( ) ( ) ( )

H H H H

G G G

- -
=

- • • - •

By solving this, we get 
~
H (0). Next we repeat the same calculation as above by using

~
H (0) and the better of the two initial values of H(0). Thus we get another improved  value
~~
H (0). This process may continue, that is, we use 

~~
H (0) and 

~
H (0) as a pair of values to

find more improved values for H(0), and so forth. It should be always kept in mind that

for each value of H(0), the curve G(h) versus h is to be examined to get the proper

value of G(•).

The functions f(h), f ¢(h) = G and f ¢¢(h) = H are plotted in Fig. 9.3. The velocity
components, u and v inside the boundary layer can be computed from Eqs (9.21a) and
(9.21b) respectively. Measurements to test the accuracy of theoretical results were
carried out by many scientists. In his experiments, J. Nikuradse, found excellent
agreement with the theoretical results with respect to velocity distribution (u/U•)
within the boundary layer of a stream of air on a flat plate. However, some values of
the velocity profile shape f ¢(h) = u/U• = G and f ¢¢(h) = H are given in Table 9.1.

Table 9.1 Blasius Velocity Profile G = u/U• f and H after Schlichting [2]

h f G H

0 0 0 0.33206

0.2 0.00664 0.06641 0.33199

0.4 0.02656 0.13277 0.33147

0.8 0.10611 0.26471 0.32739

1.2 0.23795 0.39378 0.31659

1.6 0.42032 0.51676 0.29667

2.0 0.65003 0.62977 0.26675

2.4 0.92230 0.72899 0.22809

2.8 1.23099 0.81152 0.18401

3.2 1.56911 0.87609 0.13913

3.6 1.92954 0.92333 0.09809

4.0 2.30576 0.95552 0.06424

4.4 2.69238 0.97587 0.03897

4.8 3.08534 0.98779 0.02187

5.0 3.28329 0.99155 0.01591

8.8 7.07923 1.00000 0.00000
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Initial value H(O)2
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Fig. 9.2 Correcting the initial guess for H(O)
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Fig. 9.3 f, G, and H distribution in the boundary layer
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9.4  WALL SHEAR AND BOUNDARY LAYER THICKNESS

With the profile known, wall shear can be evaluated as

tw = m 
0y

u

y

∂

∂ =

or tw = m U• 
0

( )f
y h

∂ ∂h
h

∂h ∂ =

◊¢

or tw = m U• ¥ 0.33206 ¥ 
1

( )/x Un •
[ f ¢¢(0) = 0.33206 from Table 9.1]

or tw =
20.332

Rex

Ur • (9.27a)

and the local skin friction coefficient is

Cfx =
21

2

w

U

t

r •

Substituting from (9.27a) we get

Cfx =
0.664

Rex

(9.27b)

In 1951, Liepmann and Dhawan [3] measured the shearing stress on a flat plate
directly. Their results showed a striking confirmation of Eq. (9.27).Total frictional
force per unit width for the plate of length L is

F =
0

d
L

w xtÚ

or F =
2

0

0.332 d
L

U x

U x

r

n

•

•
Ú

or F =
2 1/ 2

0

0.332
1/
2

L

U x

U

r

n

•

•

È ˘
Í ˙

¥Í ˙
Ê ˆÍ ˙
Ë ¯Í ˙Î ˚

or F = 0.664 ¥ 2 L
U

U

n
r •

•
(9.28)

and the average skin friction coefficient is

C f  =

( )2

1.328
1 Re
2

L

F

U Lr •

= (9.29)
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where, ReL = U• L /n.

Since u/U• approaches 1.0 as y Æ •, it is customary to select the boundary layer
thickness d as that point where u/U• approaches 0.99. From Table 9.1, u/U• reaches 0.99
at h = 5.0 and we can write

x

U

n
d

•

Ê ˆ
Á ˜Ë ¯

ª 5 0.

or d ª 
5.0

5.0
Rex

x x

U

n

•

Ê ˆ
=Á ˜Ë ¯

(9.30)

However, the aforesaid definition of boundary layer thickness is somewhat
arbitrary, a physically more meaningful measure of boundary layer estimation is
expressed through displacement thickness.

d

d d* 0.34

d d** 0.13

U•

(a) Displacement thickness (b) Momentum thickness

U•

u

U•

0.99

0.99

Fig. 9.4 

Displacement thickness (d*) is defined as the distance by which the external
potential flow is displaced outwards due to the decrease in velocity in the boundary
layer.

U• d * =
0

•

Ú (U• – u) dy

Therefore, d * =
0

1
u

U

•

•

Ê ˆ
-Á ˜Ë ¯Ú  dy (9.31)

Substituting the values of (u/U•) and h from Eqs (9.21a) and (9.19) into Eq. (9.31),
we obtain

d* =
0

(1 ) d lim [ ( )]
x x

f f
U U h

n n
h h h

•

Æ•• •
- = -¢Ú

or d* = 1.7208 
1.7208

Rex

x x

U

n

•
= (9.32)

Following the analogy of the displacement thickness, a momentum thickness may
be defined. Momentum thickness (d**) is defined as the loss of momentum in the
boundary layer as compared with that of potential flow. Thus,
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r U•
2 d ** =

0

•

Ú ru (U• – u) dy

or d ** =
0

1 d
u u

y
U U

•

• •

Ê ˆ
-Á ˜Ë ¯Ú (9.33)

With the substitution of (u/U•) and h from Eq. (9.21a) and (9.19), we can evaluate
numerically the value of d** for a flat plate as

d ** =
0

(1 ) d
x

f f
U

n
h

•

•
-¢ ¢Ú

or d** = 0.664 
0.664

Rex

x x

U

n

•
= (9.34)

The relationships between d, d* and d** have been shown in Fig. 9.4.

Example 9.1

Water flows over a flat plate at a free stream velocity of 0.15 m/s. There is no pressure
gradient and laminar boundary layer is 6 mm thick. Assume a sinusoidal velocity
profile

u

U•
 = sin

2

yp

d

Ê ˆ
Á ˜Ë ¯

For the flow conditions stated above, calculate the local wall shear stress and skin
friction coefficient.

[m = 1.02 ¥ 10–3 kg/ms, r = 1000 kg/m3]
Solution

t =
( / )

( / )

U u Uu

y y

m ∂∂
m

∂ d ∂ d
• •= ◊

=
1.57

cos cos
2 2 2

U Uy ym mp p p

d d d d
• •Ê ˆ Ê ˆ◊ = ◊Á ˜ Á ˜Ë ¯ Ë ¯

tw = 0

1.57
y

Um
t

d
•

= =

or tw =
3

3

1.57 1.02 10 0.15

6 10

-

-
¥ ¥ ¥

¥
 = 0.04 N/m2

Cf = 2
2

2 0.04
1 1000 (0.15)
2

w

U

t

r •

¥
=

¥
 = 3.5 ¥ 10–3
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9.5   MOMENTUM-INTEGRAL EQUATIONS FOR BOUNDARY

 LAYER

If we are to employ boundary layer concepts in real engineering designs, we need to
devise approximate methods that would quickly lead to an answer even if the accuracy
is somewhat less. Karman and Pohlhausen devised a simplified method by satisfying
only the boundary conditions of the boundary layer flow rather than satisfying
Prandtl’s differential equations for each and every particle within the boundary layer.
We shall discuss this method herein.

Consider the case of a steady, two-dimensional and incompressible flow, i.e., we
shall refer to Eqs (9.10) to (9.14). Upon integrating the dimensional form of Eq. (9.10)
with respect to y = 0 (wall) to y = d (where d signifies the interface of the free stream and
the boundary layer), we obtain

2

2
0 0

1 d
d d

d

u u p u
u y y

x y x y

d d
∂ ∂ ∂

n
∂ ∂ r ∂

Ê ˆÊ ˆ
+ = - +Á ˜ Á ˜Ë ¯ Ë ¯Ú Úv

or
2

2
0 0 0 0

1 d
d d d d

d

u u p u
u y y y y

x y x y

d d d d
∂ ∂ ∂

n
∂ ∂ r ∂

+ = - +Ú Ú Ú Úv (9.35)

The second term of the left-hand side can be expanded as

0

d
u

y
y

d
∂

∂Ú v  = [ ]0
0

du u y
y

d
d ∂

∂
- Ú

v
v

or
0

d
u

y
y

d
∂

∂Ú v  =
0

u
d since

u
U u y

x x y

d

d

∂ ∂ ∂

∂ ∂ ∂•
Ê ˆ

+ = -Á ˜Ë ¯Ú
v

v

or
0

d
u

y
y

d
∂

∂Ú v  =
0 0

u u
d dU y u y

x x

d d
∂ ∂

∂ ∂•- +Ú Ú (9.36)

Substituting Eq. (9.36) in Eq. (9.35) we obtain

00 0 0

1 d
2 d – d d –

d
y

u u p u
u y U y y

x x x y

d d d
∂ ∂

n
∂ ∂ r•

=

∂
= -

∂Ú Ú Ú (9.37)

Substituting the relation between 
d

d

p

x
 and the free stream velocity U• for the

inviscid zone in Eq. (9.37), we get

0

0 0 0

d
2 d – d – d

d

y

u

yUu u
u y U y U y

x x x

d d d

∂
m

∂∂ ∂

∂ ∂ r

=•
• •

Ê ˆ
Á ˜
Á ˜= -
Á ˜
Á ˜Ë ¯

Ú Ú Ú

or
0

d
2 d

d
wUu u

u U U y
x x x

d
t∂ ∂

∂ ∂ r
•

• •
Ê ˆ

- - = -Á ˜Ë ¯Ú
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which is reduced to

{ }
0 0

d
[ ( )] d ( ) d

d
wU

u U u y U u y
x x

d d
t∂

∂ r
•

• •- + - =Ú Ú

Since the integrals vanish outside the boundary layer, we are allowed to put
d = •.

0 0

d
[ ( )]d ( ) d

d
wU

u U u y U u y
x x

t∂

∂ r

• •
•

• •- + - =Ú Ú

or
0 0

dd
[ ( )]d ( ) d

d d
wU

u U u y U u y
x x

t

r

• •
•

• •- + - =Ú Ú (9.38)

Substituting Eq. (9.31) and (9.33) in Eq. (9.38) we obtain

2 ** * dd

d d
wU

U U
x x

t
d d

r
•

• •È ˘ + =Î ˚ (9.39)

Equation (9.39) is known as the momentum integral equation for two-
dimensional incompressible laminar boundary layer. The same remains valid for
turbulent boundary layers as well. Needless to say, the wall shear stress (tw) will be

different for laminar and turbulent flows. The term 
d

d

U
U

x

•
•

Ê ˆ
Á ˜Ë ¯  signifies spacewise

acceleration of the free stream. Existence of this term means the presence of free

stream pressure gradient in the flow direction. For example, we get finite value of

d

d

U
U

x

•
•

Ê ˆ
Á ˜Ë ¯  outsidethe boundary layer in the entrance region of a pipe or a channel.

For external flows, the existence of 
d

d

U
U

x

•
•

Ê ˆ
Á ˜Ë ¯  depends on the shape of the body.

During the flow over a flat plate, 
d

d

U
U

x

•
•

Ê ˆ
Á ˜Ë ¯  = 0 and the momentum integral equation

is reduced to

2 **d

d
wU

x

t
d

r•È ˘ =Î ˚ (9.40)

9.6  SEPARATION OF BOUNDARY LAYER

It has been observed that the flow is reversed at the vicinity of the wall under certain
conditions. The phenomenon is termed as separation of boundary layer. Separation
takes place due to excessive momentum loss near the wall in a boundary layer trying to
move downstream against increasing pressure, i.e., dp/dx > 0, which is called adverse

pressure gradient. Figure 9.5 shows the flow past a circular cylinder, in an infinite
medium. Up to q = 90°, the flow area is  like a constricted passage and the flow behaviour
is like that of a nozzle. Beyond q = 90° the flow area is diverged, therefore, the flow
behaviour is very similar to a diffuser. This dictates the inviscid pressure distribution
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on the cylinder which is shown by a firm line in Fig. 9.5. Here p• and U• are the
pressure and velocity in the free stream and p is the local pressure on the cylinder.

Cylinder

Boundary layer

A

q
p•

U•

p p– •

rU•
2

2

q

–3.0

–2.0

–1.0

0.0

1.0

0° 45° 90° 135° 180°

Fig. 9.5 Flow separation and formation of wake behind a circular cylinder

Consider the forces in the flow field. It is evident that in the inviscid region, the
pressure force and the force due to streamwise acceleration are acting in the same
direction (pressure gradient being negative/favourable) until q = 90°. Beyond q = 90°,
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the pressure gradient is positive or adverse. Due to the adverse pressure gradient the
pressure force and the force due to acceleration will be opposing each other in the
inviscid zone of this part. So long as no viscous effect is considered, the situation
does not cause any sensation. However, in the viscid region (near the solid boundary),
up to q = 90°, the viscous force opposes the combined pressure force and the force
due to acceleration. Fluid particles overcome this viscous resistance. Beyond q = 90°,
within the viscous zone, the flow structure becomes different. It is seen that the force
due to acceleration is opposed by both the viscous force and pressure force.
Depending upon the magnitude of adverse pressure gradient, somewhere around q =
90°, the fluid particles, in the boundary layer are separated from the wall and driven in
the upstream direction. However, the far field external stream pushes back these
separated layers together with it and develops a broad pulsating wake behind the
cylinder. Now let us look at the mathematical explanation of flow separation. Following
the foregoing observation, the point of separation may be defined as the limit between
forward and reverse flow in the layer very close to the wall, i.e., at the point of
separation

0y

u

y

∂

∂ =

Ê ˆ
Á ˜Ë ¯

 = 0 (9.41)

This means that the shear stress at the wall, tw = 0. But at this point, the adverse
pressure continues to exist and at the downstream of this point the flow acts in a
reverse direction resulting in a back flow. We can also explain flow separation using
the argument about the second derivative of velocity u at the wall. From the
dimensional form of the momentum Eq. (9.10) at the wall, where u = v = 0, we can write

2

2
0y

u

y

∂

∂ =

Ê ˆ
Á ˜Ë ¯

 = 
1 dp

dxm
(9.42)

Consider the situation due to a favourable pressure gradient were 
d

d

p

x
 < 0. From

Eq. (9.42) we have, (∂ 2u/∂y 2)wall < 0. As we proceed towards the free stream, the
velocity u approaches U• aysmptotically, so ∂u/∂y decreases at a continuously lesser
rate in the y direction. This means that (∂2u/∂y2) remains less than zero near the edge
of the boundary layer. Finally it can be said that for a decreasing pressure gradient,
the curvature of a velocity profile (∂2u/∂y2) is always negative as shown in (Fig. 9.6(a).
Next consider the case of adverse pressure gradient, ∂p/∂x > 0. From Eq. (9.42), we
observe that at the boundary, the curvature of the profile must be positive (since ∂p/
∂x > 0).

However, near the interface of boundary layer and free stream the previous
argument regarding ∂u/∂y and ∂2u/∂y2 still holds good and the curvature is
negative. Thus we observe that for an adverse pressure gradient, there must exist a
point for which ∂ 2u/∂y2 = 0. This point is known as the point of inflection of the
velocity profile in the boundary layer as shown in Fig. 9.6(b). However, point of
separation means ∂u/∂y = 0 at the wall. In addition, Eq. (9.42) depicts ∂ 2u/∂y 2 > 0 at the
wall since   can only occur due to adverse pressure gradient. But we have already
seen that at the edge of the boundary layer, ∂ 2u/∂y 2 < 0. It is therefore, clear that if
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there is a point of separation, there must exist a point of inflection in the velocity
profile.

∂ u

∂ y

y

y y y

yy

U•

PI

u

dp
(b)Adverse pressure gradient,

dx
> 0

∂ 2u

∂ y2

∂ 2u

∂ y2

(a) Favourable pressure gradient

U

∂ u
∂ y

U•

dp

dx
< 0

Fig. 9.6 Velocity distribution within a boundary layer

Let us reconsider the flow past a circular cylinder and continue our discussion on the
wake behind a cylinder. The pressure distribution which was shown by the firm line in
Fig. 9.5 is obtained from the potential flow theory. However, somewhere near q = 90° (in
experiments it has been observed to be at q = 81°), the boundary layer detaches itself
from the wall. Meanwhile, pressure in the wake remains close to separation-point-
pressure since the eddies (formed as a consequence of the retarded layers being carried
together with the upper layer through the action of shear) cannot convert rotational
kinetic energy into pressure head. The actual pressure distribution is shown by the
dotted line in Fig. 9.5. Since the wake zone pressure is less than that of the forward
stagnation point (pressure at point A  in Fig. 9.5), the cylinder experiences a drag force
which is basically attributed to the pressure difference. The drag force, brought about
by the pressure difference is known as form drag whereas the shear stress at the wall
gives rise to skin friction drag. Generally, these two drag forces together are
responsible for resultant drag on a body.
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9.7   KA1RMAN–POHLHAUSEN APPROXIMATE METHOD FOR

  SOLUTION OF MOMENTUM INTEGRAL EQUATION OVER

  A FLAT PLATE

The basic equation for this method is obtained by integrating the x  direction
momentum equation (boundary layer momentum equation) with respect to y from the wall
(at y = 0) to a distance d (x) which is assumed to be outside the boundary layer. With this
notation, we can rewrite the Karman momentum integral equation (9.39) as

( )
**

2 ** * dd
2

d d
wU

U U
x x

td
d d

r
•

• •+ + = (9.43)

The effect of pressure gradient is described by the second term on the left-hand
side. For pressure gradient surfaces in external flow or for the developing sections in
internal flow, this term will be retained and will contribute to the pressure gradient.
However, we assume a velocity profile which is a polynomial of h =
y/d. As it has been seen earlier, h is a form of similarity variable. This implies that with
the growth of boundary layer as distance x varies from the leading edge, the velocity
profile (u/U•) remains geometrically similar. We choose a velocity profile in the form

u

U•
 = a0 + a1 h + a2 h2 + a3 h

3 (9.44)

In order to determine the constants a0, a1, a2 and a3 we shall prescribe the
following boundary conditions:

at y = 0, u = 0 or at h = 0, 
u

U•
 = 0 (9.45a)

at y = 0, 
2

2

u

y

∂

∂
 = 0 or at h = 0, 

2

2
( / )u U

∂

∂h
•  = 0 (9.45b)

at y = d, u = U• or at h = 1, 
u

U•
 = 1 (9.45c)

at y = d, 
u

y

∂

∂
 = 0 or at h = 1, 

( / )u U∂

∂h
•  = 0 (9.45d)

These requirements will yield

a0 = 0, a2 = 0, a1 + 3a3 = 0 and a1 + a3 = 1

Finally, we obtain the following values for the coefficients in Eq. (9.44),

a0 = 0, a1 =
3

2
a2 = 0 and a3 = – 

1

2

and the velocity profile becomes

u

U•
 =

3
2

1
2

3h h- (9.46)
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For flow over a flat plate, 
d

d

p

x
 = 0, hence U• 

d

d

U

x

•  = 0 and the governing Eq. (9.43)

reduces to

d
d

**d

x
 =

t

r

w

U•
2

(9.47)

Again from Eq. (9.33), the momentum thickness is

d ** =
0

1 d
u u

y
U U

•

• •

Ê ˆ
-Á ˜Ë ¯Ú

or d ** =
0

1 d
u u

y
U U

d

• •

Ê ˆ
-Á ˜Ë ¯Ú

or d ** =
1

3 3

0

3 1 3 1
1 d

2 2 2 2
d h h h h h

Ê ˆ Ê ˆ- + -Á ˜ Á ˜Ë ¯ Ë ¯Ú

or d ** =
39
280

d

The wall shear stress is given by

tw = m 
∂

∂

u

y y = 0

or tw = m 3

0

3 1

2 2
U

h

∂
h h

d ∂h
•

=

È ˘Ï ¸Ê ˆ-Ì ˝Í ˙Á ˜Ë ¯Ó ˛Î ˚

or tw =
3

2

Um

d
•

Substituting the values of d** and tw in Eq. (9.47), we get

39 d

280 dx

d  =
2

3

2

U

U

m

d r

•

•

or dd dÚ  = 1
140

d
13

x C
U

m

r •
+Ú

or
2

2

d
 = 1

140

13

x
C

U

n

•
+ (9.48)

where C1 is any arbitrary unknown constant.
The condition at the leading edge (at x = 0, d = 0) yields

C1 = 0
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Finally ,we obtain

d2 =
280

13

x

U

n

•
(9.49)

or d = 4.64
x

U

n

•

or d =
4.64

Rex

x
(9.50)

This is the value of boundary layer thickness on a flat plate. Although the method
is an approximate one, the result is found to be reasonably accurate. The value is
slightly lower than the exact solution of laminar flow over a flat plate given by Eq.
(9.30). As such, the accuracy depends on the order of the velocity profile. It may be
mentioned that instead of Eq. (9.44), we can as well use a fourth order polynomial as

u

U•
 = a0 + a1h + a2h2 + a3h3 + a4h

4 (9.51)

In addition to the boundary conditions in Eq. (9.45), we shall require another
boundary condition

at y = d, 
2

2

u

y

∂

∂
 = 0 or at  h = 1, 

2

2

( / )u U∂

∂h
•  = 0

To determine the constants as a0 = 0, a1 = 2, a2 = 0, a3 = –2 and a4 = 1. Finally the
velocity profile will be

u

U•
 = 2h – 2h3 + h4

Subsequently, for a fourth order profile the growth of boundary layer is given by

d =
5.83

Rex

x
(9.52)

This is also very close to the value of the exact solution.

Example 9.2

Air at standard conditions flows over a flat plate. The freestream speed is 3 m/sec.

Find d and tw at x = 1 m from the leading edge (assume a cubic velocity profile). For air,
n = 1.5 ¥ 10–5 m2/s and r = 1.23 kg/m3.

Solution

Applying the results developed in Section 9.7 for cubic velocity profile and the growth
of boundary layer, we can write
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U

U•

 = 33 1
, where at any

2 2

y
xh h h

d
- =

and
d

x
 =

4.64

Rex

For air with n = 1.5 ¥ 10–5 m2/s,  the local Reynolds number at x is

Rex = 5

3 1

1.5 10

U x

n
•

-
¥

=
¥

 = 2 ¥ 105

d =
5

4.64 4.64 1

Re 2 10x

x ¥
=

¥
m = 0.0103 m = 10.3 mm

tw =
0y

u

y

∂
m

∂ =

 = 3

0

3 1

d 2 2

U d

h

m
h h

d h
•

=

È ˘◊ -Í ˙Î ˚

tw =
3 3

2 2

U Um rn

d d
• •=

or tw =
53 1.23 1.5 10 3

2 0.0103

-¥ ¥ ¥ ¥
¥

tw = 8.06 ¥ 10–3 N/m2

Example 9.3

Air moves over a flat plate with a uniform free stream velocity of 10 m/s. At a position

15 cm away from the front edge of the plate, what is the boundary layer thickness? Use
a parabolic profile in the boundary layer. For air, n = 1.5 ¥ 10–5m2/s and r = 1.23 kg/m3.

Solution

For a parabolic profile let us take

u

U•
 = a + by + cy2

The boundary conditions are

at y = 0, u = 0

at y = d, u = U•

at y = d,
u

y

∂

∂
 = 0

Evaluating the constants, we get

u

U•
 =

2
22 2

y y
h h

d d
Ê ˆ Ê ˆ- = -Á ˜ Á ˜Ë ¯ Ë ¯
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Now, tw =
0 0

( / )

( / )
y

U u Uu

y y h

m ∂∂
m

∂ d ∂ d
• •

= =

= ◊

 =
2

0

d(2 )

d

U

h

m h h

d h
•

=

-
◊  = 

2 Um

d
•

Applying momentum integral equation,

tw =
1

2

0

d
1 d

d

u u
U

x U U

d
r h•

• •

Ê ˆ
-Á ˜Ë ¯Ú

2 Um

d
•  =

1
2 2 2

0

d
(2 ) (1 2 ) d

d
U

x

d
r h h h h h• - - +Ú

2

2 U

U

m

d r

•

•

 =
1

2 3 4

0

d
(2 5 4 – ) d

dx

d
h h h h h- +Ú

or
2

U

m

d r •

 =
2 d

15 dx

d

or d d d =
15

U

m

r •
 dx

d 2

2
 =

15

U

m

r •
x + C

It is assumed that at x  = 0, d = 0, which yields C = 0.
Thus,

d =
30

x
U

m

r •

or
d

x
 =

30 5.48

Rex
U x

m

r •
=

In this problem, Rex =
2

5

10 15 10

1.5 10

-

-

¥ ¥
¥

 = 1 ¥ 105

d =
5.48

Rex

 ¥ 15 cm = 0.259 cm

or d = 2.59 mm



Laminar Boundary Layers 471

Example 9.4

Air moves over a 10 m long flat plate. The transition from laminar to turbulent flow takes

place between Reynolds numbers of 2.5 ¥ 106 and 3.6 ¥ 106. What are the minimum and
maximum distance from the front edge of the plate along which one expect laminar flow
in the boundary layer? The free stream velocity is 30 m/s and n = 1.5 ¥ 10–5 m2/s.

Solution

We can see that the range of Reynolds numbers for laminar flow is 2.5 ¥ 106 to
3.6 ¥ 106

For the lower limit,

2.15 ¥ 106 =
5

30

1.5 10

x
-¥

or xmin = 1.075 m

For the upper limit,

3.6 ¥ 10–6 =
5

30

1.5 10

x
-¥

or xmax = 1.8 m

Example 9.5

Water at 15 °C flows over a flat plate at a speed of 1.2 m/s. The plate is 0.3 m long and 2 m

wide. The boundary layer on each surface of the plane is laminar. Assume the velocity

profile is approximated by a linear expression for which 
3.46

Rex
x

d
= .

Determine the drag force on the plate. For water n = 1.1 ¥ 10-6 m2/s, r = 1000 kg/m3.

Solution

On a flat plate, the drag is due to skin friction acting on each side of the plate

FD = 2
0

L

Ú twx b dx

For linear profile,
0

and w

y

u y u

U y

∂
t m

d ∂• =

= =

or tw =
0

( / )

( / )
y

U U U U

y

m ∂ m

d ∂ d d
• • •

=

◊ =
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FD = 2
m

d

m

n

U
b x

U U

x
b x

L L

• • •z z= ◊d d

0 2

2
3 46.

=
(1/ 2)

2

2 1
d

3.46

L
U U

b x
x

m

n
• • Ú

=
1

2
2

2
3.46

L

o

U b U
x

m

n
• •

È ˘
Í ˙
Í ˙Î ˚

=
4

3.46

U b U Lm

n
• •  = Re

3.46 L

U bm •

ReL =
6

1.2 0.3

1.1 10

U L

n
•

-
¥

=
¥

 = 3.27 ¥ 105

Therefore, (ReL)1/2 = 572

Thus, FD =
34 1.1 10 1.2 2 572

3.46

-¥ ¥ ¥ ¥ ¥
 = 1.745 N

Example 9.6

Air is flowing over a thin flat plate which is 1 m long and 0.3 m wide. At the leading

edge, the flow is assumed to be uniform and U• = 30 m/s. The flow condition is
independent of z (see Fig. 9.7). Using the control volume abcd, calculate the mass flow
rate across the surface ab. Determine the magnitude and direction of the x component of
force required to hold the plate stationary. The velocity profile at bc is given by

U

U•
 =

2

2
2

y y

d
Ê ˆ Ê ˆ-Á ˜ Á ˜Ë ¯ Ë ¯

and d = 4 mm. Density of air = 1.23 kg/m3 and n = 1.5 ¥ 10–5 m2/s.

U•
a b

d c

y

z

x

d

Fig. 9.7 Control volume of interest on flat plate
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Solution

At bc,
U

U•
 = 2h – h2; h = y/d

Steady state continuity equation is given by

V dA
S

r ◊Ú
rr

 = 0

or –rU• bd + 
0

d abu b y m

d

r +Ú &  = 0

but 
0

d

Ú ru b dy =rU• bd 
1

0
Ú (2h – h2)dh = rU• bd 

13
2

0

2

3 3
U b

h
h r d•

È ˘
- =Í ˙

Î ˚

mab = rU• bd – 
2 1

3 3
U b U br d r d• •=

or &m ab =
1

3
 ¥ 1.23 ¥ 30 ¥ 0.3 ¥ 0.004 = 0.0147 kg/s

Steady state momentum equation is given by

d sx

CS

u Fr ◊ =Ú V A
rr

or Rx = uda {–r U• bd} + uab mab + 
0

d

Ú u r ub dy

But uda = uab = U•, and

0

d

Ú u ru b dy = rU2
• bd 

1

0
Ú (2h – h2)2dh

= rU2
• bd 

15
2 4

0

4

3 3

h
h h

È ˘
- +Í ˙

Î ˚
 = 

8

15
rU2

• bd

Thus, Rx = – rU 2
• bd + 

1

3
rU2

• bd + 
8

15
rU2

• bd = – 
2

15
rU2

• bd

Rx = – 
2

15
{1.23 ¥ (3)2 ¥ 0.3 ¥ 0.004}

= – 0.177 N (the force must be applied to the CV by
the plate)

Hence, Fx = Rx = 0.177 N (to the left)
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9.8   INTEGRAL METHOD FOR NON-ZERO PRESSURE

  GRADIENT FLOWS

A wide variety of ‘integral methods’ in this category have been discussed by
Rosenhead [4]. The Thwaites method [5] is found to be a very elegant method, which
is an extension of the method due to Holstein and Bohlen [6]. We shall discuss the
Holstein–Bohlen method in this section.

This is an approximate method for solving boundary layer equations for two-
dimensional generalised flows. The integrated Eq. (9.39) for laminar flow with pressure
gradient can be written as

2 ** **d d
[ ]

d d

U
U U

x x
d d+  = wt

r

or

**
2 ** *d d

(2 )
d d

U
U U

x x

d
d d+ +  =

t
r
w (9.53)

The velocity profile of the boundary layer is considered to be a fourth-order
polynomial in terms of the dimensionless distance h = y/d, and is expressed as

u/U = ah + bh2 + ch3 + dh4

The boundary conditions are

h = 0: u = 0, v = 0
2

2 2

un

d h

∂
∂

 = 
1 d

d

p

xr
 = 

d

d

U
U

x
-

h = 1: u = U,
u∂

∂h
 = 0, 

2

u2∂

∂h
 = 0

A dimensionless quantity, known as shape factor, is introduced as

l =
2 d

d

U

x

d

n
(9.54)

The following relations are obtained

a = 2
6

l
+ , b = 

2

l
- , c = 2

2

l
- + , d = 1

6

l
-

Now, the velocity profile can be expressed as

u/U = F(h) + lG(h), (9.55)

where

F(h) = 2h – 2h3 + h4, G(h) = 
1

6
 h(1 – h)3

The shear stress tw = m(∂u/∂y)y=0 is given by

w

U

t d

m
 = 2

6

l
+ (9.56)
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We use the following dimensionless parameters,

L =
**

w

U

t d

m
(9.57)

K =
** 2( ) d

d

U

x

d

n
(9.58)

H = d*/d** (9.59)

The integrated momentum Eq. (9.53) reduces to

**
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d
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È ˘
Í ˙
Î ˚

 = 2[L – K (H + 2)] (9.60)

The parameter L is related to the skin friction and K is linked to the pressure
gradient. If we take K as the independent variable, L and H can be shown to be the
functions of K  since

*d

d
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1

0
Ú [1 – F(h) – lG(h)]dh = 
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10 120

l
- (9.61)

**d

d
 =  
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0
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=
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Therefore,
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6

+F
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I
KJ

l d
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2
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l l lÊ ˆÊ ˆ+ - -Á ˜ Á ˜Ë ¯ Ë ¯
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*

**  = 
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(37/315) ( /945) ( /9072)

l

l l

-

- -
 = f2(K)

The right-hand side of Eq. (9.60) is thus a function of K alone. Walz[7] pointed out
that this function can be approximated with a good degree of accuracy by a linear
function of K  so that

2[L – K(H + 2)] = a – bK
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Equation (9.60) can now be written as
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Solution of this differential equation for the dependent variable (U[d**]2/n)
subject to the boundary condition U = 0 when x = 0, gives

** 2[ ]U d

n
 =

1
0

x

b

a

U
- Ú Ub – 1 dx

With a = 0.47 and b = 6, the approximation is particularly close between the
stagnation point and the point of maximum velocity. Finally, the value of the
dependent variable is

[d **]2 = 5
6

0

0.47
d

x

U x
U

n
Ú (9.64)

By taking the limit of Eq. (9.64), according to L’Hospital’s rule, it can be shown that

[d **]2|x = 0 = 0.47n/6U ¢(0)

This corresponds to K = 0.0783. It may be mentioned that [d **] is not equal to zero
at the stagnation point. If ([d **]2/n) is determined from Eq. (9.64), K(x) can be obtained
from Eq. (9.58). Table 9.2 gives the necessary parameters for obtaining results, such
as velocity profile and shear stress tw. The approximate method can be applied
successfully to a wide range of problems.

As mentioned earlier, K and l are related to the pressure gradient and the shape
factor. Introduction of K and l in the integral analysis enables extension of Karman–
Pohlhausen method for solving flows over curved geometry. However, the analysis is
not valid for the geometries, where l < – 12 and l > + 12.

Table 9.2 Auxiliary functions after Holstein and Bohlen [6]

l K f1(K) f2(K)

12 0.0948 2.250 0.356

10 0.0919 2.260 0.351

8 0.0831 2.289 0.340

7.6 0.0807 2.297 0.337

7.2 0.0781 2.305 0.333

7.0 0.0767 2.309 0.331
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l K f1(K) f2(K)

6.6 0.0737 2.318 0.328

6.2 0.0706 2.328 0.324

5.0 0.0599 2.361 0.310

3.0 0.0385 2.427 0.283

1.0 0.0135 2.508 0.252

0 0 2.554 0.235

– 1 – 0.0140 2.604 0.217

– 3 – 0.0429 2.716 0.179

– 5 – 0.0720 2.847 0.140

– 7 – 0.0999 2.999 0.100

– 9 – 0.1254 3.176 0.059

– 11 – 0.1474 3.383 0.019

– 12 – 0.1567 3.500 0

9.9  ENTRY FLOW IN A DUCT

Growth of boundary layer has a remarkable influence on flow through a constant area
duct or pipe. Let us consider a flow entering a pipe with uniform velocity. The
boundary layer starts growing on the wall at the entrance of the pipe. Gradually it
becomes thicker in the downstream and the flow becomes fully developed when the
boundary layers from the wall meet at the axis of the pipe (Fig. 9.8). The velocity
profile is nearly rectangular at the entrance and it gradually changes to a parabolic
profile at the fully developed region. Before the boundary layers from the periphery
meet at the axis, there prevails a core region which is uninfluenced by viscosity.
Since the volume-flow must be same for every section and the boundary layer
thickness increases in the flow direction, the inviscid core accelerates, and there is a
corresponding fall in pressure. It can be shown that for laminar incompressible flows,
the velocity profile approaches the parabolic profile through a distance Le from the
entry of the pipe, which is given by

Le

D
 ª  0.05 Re, where Re = avU D

n

For a Reynolds number of 2000, this distance, which is often referred to as the
entrance length is about 100 pipe-diameters. For turbulent flows, the entrance region
is shorter, since the turbulent boundary layer grows faster.
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At the entrance region, the velocity gradient is steeper at the wall, causing a higher
value of shear stress as compared to a developed flow. In addition, momentum flux
across any section in the entrance region is higher than that typically at the inlet due to
the change in shape of the velocity profile. Arising out of these, an additional pressure
drop is brought about at the entrance region as compared to the pressure drop in the
fully developed region.

Entrance region Developed
region

Le

d

Fig. 9.8 Development of boundary layer in the entrance region of a duct

9.10  CONTROL OF BOUNDARY LAYER SEPARATION

It has already been seen that the total drag on a body is attributed to form drag and skin
friction drag. In some flow configurations, the contribution of form drag becomes
significant. In order to reduce the form drag, the boundary layer separation should be
prevented or delayed so that somewhat better pressure recovery takes place and the
form drag is reduced considerably. There are some popular methods for this purpose
which are stated as follows:

(i) By giving the profile of the body a streamlined shape as shown in
Fig. 9.9. This has an elongated shape in the rear part to reduce the magnitude
of the pressure gradient. The optimum contour for a streamlined body is the
one for which the wake zone is very narrow and the form drag is minimum.

(ii) The injection of fluid through porous wall can also control the boundary layer
separation. This is generally accomplished by blowing high energy fluid par-
ticles tangentially from the location where separation would have taken place
otherwise. This is shown in Fig. 9.10. The injection of fluid promotes turbu-
lence and thereby increases skin friction. But the form drag is reduced consid-
erably due to suppression of flow separation and this reduction can be of
significant magnitude so as to ignore the enhanced skin friction drag.
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(a)

CD = 1.2 CD = 0.07

10 < Re < 103 5 10 < Re < 103 5

(b)

D D

Fig. 9.9 Reduction of drag coefficient (CD) by giving the profile a streamlined

shape

Fig. 9.10 Boundary layer control by blowing

9.11  MECHANICS OF BOUNDARY LAYER TRANSITION

One of the interesting problems in fluid mechanics is the physical mechanism of
transition from laminar to turbulent flow. The problem evolves about the
generation of both steady and unsteady vorticity near a body, its subsequent
molecular diffusion, its kinematic and dynamic convection and redistribution
downstream, and the resulting feedback on the velocity and pressure fields near the
body. We can perhaps realise the complexity of the transition problem by examining
the behaviour of a real flow past a cylinder.

Figure 9.11 (a) shows the flow past a cylinder for a very low Reynolds number (~1).
The flow smoothly divides and reunites around the cylinder. At a Reynolds number of
about 4, the flow separates in the downstream and the wake is formed by two symmetric
eddies. The eddies remain steady and symmetrical but grow in size up to a Reynolds
number of about 40 as shown in Fig. 9.11(b).

When the Reynolds number crosses 40, oscillation in the wake induces asymmetry
and finally the wake starts shedding vortices into the stream. This situation is termed
as onset of periodicity as shown in Fig. 9.11(c) and the wake keeps on undulating up
to a Reynolds number of 90. As the Reynolds number further increases, the eddies are
shed alternately from a top and bottom of the cylinder and the regular pattern of
alternately shed clockwise and counter-clockwise vortices form Von Karman vortex

street as in Fig. 9.11(d). However, periodicity is eventually induced in the flow field
with the vortex-shedding phenomenon. The periodicity is characterised by the
frequency of vortex shedding, f.

Each time a vortex is shed from the cylinder, a circulation is produced and
consequently an unbalanced lateral force acts on the cylinder. The shedding of
vortices alternately from the top and bottom of the cylinder produces alternating
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lateral forces which may cause a forced vibration of the cylinder at the same frequency
of the shedding frequency.This is the cause  of the ‘singing’ of telephone wires in the
breeze. These alternating forces yield the phenomena of ‘flutter’, a serious problem
with the aircrafts. Vibrations brought about this way can affect chimneys, bridge
piers and they have caused destruction of suspension bridges in high winds. The
shedding frequency, f, of a circular cylinder, is given by the empirical formula (arising
out of experimental data)

fD

U•
 =

19.7
0.198 1

Re
Ê ˆ-Ë ¯ (9.65)

The formula works well for 250 < Re < 2 ¥ 105. The dimensionless parameter fD/U•
is known as the Strouhal number after the German physicist, V. Strouhal, who in 1878
first investigated the ‘singing’ of wires.

If the cylinder itself oscillates, the vortices are shed near the points of maximum
displacements of the cylinder and the wake width is increased by more than twice the
magnitude. The lateral force is increased and f decreases. Under various operating
conditions the oscillation frequency interacts with the vortex formation frequency
differently. Depending upon the flow situation, the wake comprises either a ‘2S’
mode, representing two single vortices formed per cycle or the ‘2P’ mode, whereby
two vortex pairs are formed per cycle. For some flows (P + S) mode is also visible.

(a)

(c)

(b)

(d)

Re = /U D• n

Re 1~

Re > 40

Re 4 to about 40~

Re ~ 90 to about 500

D
D

DD

Fig. 9.11 Influence of Reynolds number on wake-zone aerodynamics

At high Reynolds numbers, the large angular velocities and the rates of shear
associated with the individual vortices induce random turbulence close to the
cylinder. The undesirable vibration caused by a cylinder can be eliminated by
attaching a longitudinal fin to the downstream side. These are called wake splitters or
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splitter plates. If the length of the wake-splitter is greater than one diameter of the
cylinder, interaction between the vortices is stopped and shedding ceases.
Sometimes tall towers or chimneys have helical projections, similar to screw threads
in order to induce asymmetrical three-dimensional flows that destroy alternate
shedding.

An understanding of the transitional flow processes helps in practical problems
either by improving procedures for predicting positions or for determining methods
of advancing or retarding the transition position.

The critical value at which the transition occurs in pipe flow is Recr = 2300. The
actual value depends upon the disturbance in flow. Some experiments have shown
the critical Reynolds number to reach as high as 40,000. The precise upper bound is
no known, but the lower bound appears to be Recr = 2300. Below this value, the flow
remains laminar even when subjected to strong disturbances.

For 2300 £ Recr £ 2600, the flow alternates randomly between laminar and partially
turbulent. Near the centerline, the flow is more laminar than turbulent, whereas near
the wall, the flow is more turbulent than laminar. For flow over a flat plate, turbulent
regime is observed between Reynolds numbers (U• x/n) of 3.5 ¥ 105 and 106.

9.12  SEVERAL EVENTS OF TRANSITION

Transitional flow consists of several events as shown in Fig. 9.12. Let us consider the
sequence of events:

1. Region of instability of small wavy disturbances Consider a laminar flow over a flat
plate aligned with the flow direction (Fig. 9.12). It has been seen that in the presence
of an adverse pressure gradient, at a high Reynolds number (water velocity
approximately 9-cm/s), two-dimensional waves appear. These waves can be made
visible by a method known as tellurium method. In 1929, Tollmien and Schlichting
predicted that the waves would form and grow in the boundary layer. These waves
are called Tollmien-Schlichting waves.

2. Three-dimensional waves and vortex formation Disturbances in the free stream or
oscillations in the upstream boundary layer can generate wave growth, which has a
variation in the spanwise direction. This leads an initially two-dimensional wave to a
three-dimensional form. In many such transitional flows, periodicity is observed in
the spanwise direction. This is accompanied by the appearance of vortices whose
axes lie in the direction of flow.

3. Peak-valley development with streamwise vortices As the three-dimensional wave
propagates downstream, the boundary layer flow develops into a complex streamwise
vortex system. However, within this vortex system, at some spanwise location, the
velocities fluctuate violently. These locations are called peaks and the neighbouring
locations of the peaks are valleys (Fig. 9.13).

4. Vorticity concentration and shear layer development At the spanwise locations
corresponding to the peak, the instantaneous streamwise velocity profiles
demonstrate the following. Often, an inflexion is observed on the velocity profile. The
inflectional profile appears and disappears once after each cycle of the basic wave.
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5. Breakdown The instantaneous velocity profiles produce high shear in the outer
region of the boundary layer. The velocity fluctuations develop from the shear layer
at a higher frequency than that of the basic wave. However, these velocity
fluctuations have a strong ability to amplify any slight three-dimensionality, which is
already present in the flow field. As a result, a staggered vortex pattern evolves with
the streamwise wavelength twice the wavelength of Tollmien–Schlichting

wavelength. The spanwise wavelength of these structures is about one-half of the
streamwise value. This is known as breakdown. Klebanoff et al. [8] refer to the high
frequency fluctuations as hairpin eddies.

6. Turbulent-spot development The hairpin-eddies travel at a speed grater than that
of the basic (primary) waves. As they travel downstream, eddies spread in the
spanwise direction and towards the wall. The vortices begin a cascading breakdown
into smaller vortices. In such a fluctuating state, intense local changes occur at random
locations in the shear layer near the wall in the form of turbulent spots. Each spot
grows almost linearly with the downstream distance. The creation of spots is
considered as the main event of transition.

(1) (2) (3) (4) (5) (6)

Boundary layer

Streamline

Fig. 9.12 Sequence of event involved in transition

Peak Peak
Peak

Valley Valley

Fig. 9.13 Cross-stream view of the streamwise vortex system

SUMMARY

∑ The boundary layer is the thin layer of fluid adjacent to the solid surface.
Phenomenologically, the effect of viscosity is very prominent within this layer.

∑ The main stream velocity undergoes a change from zero at the solid-surface to
the full magnitude through the boundary layer.

∑ Effectively, the boundary layer theory is a complement to the inviscid flow
theory.

∑ The governing equation for the boundary layer can be obtained through correct
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reduction of the Navier Stokes equations within the thin layer referred above.
There is no variation in pressure in the y direction within the boundary layer.

∑ The pressure is impressed on the boundary layer by the outer inviscid flow,
which can be calculated using Bernoulli’s equation.

∑ The boundary layer equation is a second order non-linear partial differential
equation. The exact solution of this equation is known as the similarity solu-

tion. For the flow over a flat plate, the similarity solution is often referred to as
Blasius solution. Complete analytical treatment of this solution is beyond the
scope of this text. However, the momentum integral equation can be derived
from the boundary layer equation which is amenable to analytical treatment.

∑ The solutions of the momentum integral equation are called approximate solu-
tions of the boundary layer equation.

∑ The boundary layer equations are valid up to the point of separation. At the
point of separation, the flow gets detached from the solid surface due to exces-
sive adverse pressure gradient.

∑ Beyond the point of separation, the flow reversal produces eddies. During flow
past bluff-bodies, the desired pressure recovery does not take place in a sepa-
rated flow and the situation gives rise to pressure drag or form drag.
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EXERCISES

9.1 Choose the correct answer:
(i) The laminar boundary layer thickness on a flat plate varies as
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(a) x(–1/2) (b) x(4/5) (c) x (1/2) (d) x 2

(ii) The turbulent boundary layer thickness on a flat plate varies as

(a) x(+1/2) (b) x(4/5) (c) x(1/7) (d) x(6/7)

(iii) The injection of air through a porous wall can control the boundary layer
separation on the upper curved surface of an aerofoil wing. The injection of
fluid also promotes turbulence. The final result is
(a) increase in the skin friction and decrease in the form drag
(b) increase in the form drag and decrease in the skin friction
(c) decrease in both the skin friction and form drag
(d) increase in both the skin friction and form drag

(iv) In the entrance region of a pipe, the boundary layer grows and the inviscid
core accelerates. This is accompanied by a
(a) rise in pressure
(b) constant pressure gradient
(c) fall in pressure in the flow direction
(d) pressure pulse

(v) Flow separation is caused by
(a) reduction of pressure to vapour pressure
(b) a negative pressure gradient
(c) a positive pressure gradient
(d) the boundary layer thickness reducing to zero.

(vi) At the point of separation
(a) shear stress is zero
(b) velocity is negative
(c) pressure gradient is negative
(d) shear stress is maximum

(vii) Choose the expression for the momentum thickness of an incompressible
boundary layer

(a)
5.0

Rex

x
(b)

0

1 d
u

y
U

•

•

Ê ˆ
-Á ˜Ë ¯Ú

(c)
0

1 d
u u

y
U U

•

• •

Ê ˆ
-Á ˜Ë ¯Ú (d) ( )

0

/ du U y

•

•Ú

(viii) For cross flow over a circular cylinder at a Reynolds number Re
U D

n
•È ˘=Í ˙Î ˚

greater than 200, the wake is
(a) at a pressure equal to the forward stagnation point
(b) at a pressure lower than the forward stagnation point
(c) the principal cause of skin friction
(d) at a pressure higher than the forward stagnation point

9.2 Nikuradse, a student of Prandtl, obtained experimental data for laminar flow
over a flat plate placed at zero angle of attack. His measurements suggest:
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3
u y y

a b
U d d

Ê ˆ Ê ˆ= +Á ˜ Á ˜Ë ¯ Ë ¯

where y is the perpendicular distance from the plate. The local velocity is u.
Evaluate a and b from the physical boundary conditions. Obtain the expres-
sions for the boundary layer thickness d, displacement thickness d*, momen-
tum thickness d** ,and the shear stress tw on the surface of the plate.

Ans. ((a = 3/2, b = –1/2, d/x = 4.64 /(Rex)
0.5,

(d*/x = 1.73 (Rex)0.5, tw = 0.323 m (Rex)0.5 U/x)

9.3 Given the choice between cos A y and sin A y as velocity profiles, which one
would you prefer? To determine the choice of the profile, find the displace-
ment thickness, momentum thickness, wall shear stress and boundary layer thick-
ness, from the momentum integral equation for flow over a flat plate.

Ans. (sin A y, d* = 0.363 d, d** = 0.137 d, tw = pm U•/2d, d/x = 4.8/(Rex)
0.5

9.4 For the laminar flow over a flat plate, the experiments confirm the velocity profile

3
3 1

–
2 2

u y y

U d d

Ê ˆ Ê ˆ= Á ˜ Á ˜Ë ¯ Ë ¯ . For the turbulent flow over a flat plate, the experimental

observations over a range of Reynolds number suggest 
1/ 7

u y

U d

Ê ˆ= Á ˜Ë ¯ . Find the

ratio of (d*/d) for laminar and turbulent cases.

Ans. ((d*/d)Iam = 3/8, (d*/d)tur = 1/8)

9.5 Assuming the velocity profile 
( )

tanh
u y

U a x•
=  for the boundary layer over a

flat plate at zero incidence, find the relations for d, d* d** and tw. Check whether

the profile satisfies all the boundary conditions.

Note: a(x) π d (x) where d is such that at y = d, u = 0.99 U•

Ans. ((d/x = 6.76/(Rex)
0.5, d*/x = 1.77/(Rex)

0.5 d**/x = 0.783/(Rex)
0.5,

tw = m U• (Rex)
0.5/2.553 x)

9.6 An approximate expression for the velocity profile in a steady, two - dimen-
sional incompressible boundary layer is

u

U•
 = 1 1 sin

6
e k eh h p h- -Ê ˆ- + - -Á ˜Ë ¯ , for 0 £ h £ 3

= 1 – e–h – ke–h, for h ≥ 3

where h = y/d (x). Show that the profile satisfies the following boundary
conditions:

at y = 0, u = 0
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at y = •, u = U• , 
2

2

u u

y y

∂ ∂

∂ ∂
=  = 0

Also find out k from an appropriate boundary condition.

Ans. (k = (d2/n) (dU•/dx) –1)

9.7 Water of kinematic viscosity n = 1.02 ¥ 10–6 m2/s is flowing steadily over a
smooth flat plate at zero angle of attack with a velocity 1.6 m/s. The length of the
plate is 0.3 m. Calculate (i) the thickness of the boundary layer at 15 cm from
the leading edge (ii) the rate of growth of boundary layer at 15 cm from the
leading edge, and (iii) the total drag coefficient on one side of the plate.
Assume a parabolic velocity profile.

Ans. (d = 1.7 mm, dd/dx = 5.625 ¥ 10–3, C f = 1.935 ¥ 10–3)
9.8 Water flows between two parallel walls as shown in Fig. 9.14. The velocity is

uniform at the entrance and core region. Beyond a distance  Le downstream
from the entrance, the flow becomes fully developed so that the velocity varies
over the entire width 2h of the channel. In the boundary layer region, velocity

varies as  u = U(x) 
2

y

d
Ê ˆ
Á ˜Ë ¯ , where d = a x ; a being a constant. Determine the

acceleration on the axis of symmetry for 0 £ x £ Le.

Boundary
layer

Core

u

U x( )

U0

y d

h

x

Le

Fig. 9.14 Development of boundary layers in a channel

Ans. (a = (U2
0 / 3Le) (x/Le)–1/2/(1 – (2/3)(x/Le)0.5)3)

9.9 Consider the laminar boundary layer on a flat plate with uniform suction velocity
V0 as shown in Fig. 9.15.

Incompressible
fluid

V0 = constant

y

U

x
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Fig. 9.15 Flow on a flat plate with uniform suction velocity

Far down the plate (large x), a fully developed situation may be shown to exist in
which the velocity distribution does not vary with x. Find the velocity distribution
in this region, as well as the wall shear. The governing equations are

u

x y

∂ ∂

∂ ∂
+

v
 = 0 and

2

2

1 d

d

u p u
u

x y x y

∂ ∂ ∂
n

∂ ∂ r ∂
+ = - +

v
v

The boundary conditions are at y = 0, u = 0, v = V 0 and u(•) = U

Ans. (u = U{1 –exp (–V0 y/n)}, tw = rUV0)

9.10 Consider a laminar boundary layer on flat plate with a velocity profile given by

u

U
 = 33 1

2 2
h h- , where, h = y/d

For this profile 
4.64

Rexx

d
= .

Determine an expression for the local skin friction coefficient in terms of distance
and flow properties.

Ans. (Cf = 0.647 (Rex)
0.5)

9.11 A low-speed wind tunnel is provided with air supply up to a speed of 50 m/s at
20 °C. One needs to study the behaviour of the boundary layer over a flat plate
kept inside the wind tunnel up to a Reynolds number of Rex = 108. What is the
minimum plate length that should be used? At what distance from the leading
edge would the transition occur if the critical Reynolds number is Rex, c = 3.5 ¥
105 ? At 25 °C, n of air is 15.7 ¥ 10–6 m2/s.

Ans. (xmin = 31.4 m, xcr = 0.109 m)

9.12 Perform a numerical solution (develop a FORTRAN code) using Eq. (9.24) and a
Runge–Kutta method (as outlined in the text) which will iterate the Blasius
equation from an initial guess H(0) = 0.2 and converge to the exact value of H(0)
= 0.4696.

9.13 A liquid film of uniform thickness flows down the inner wall of a  vertical pipe,
the thickness of the film being very small compared to the pipe radius. Show
that, in the absence of any appreciable shear force on the free surface of the film,
the volume flow of liquid per unit time, Q1, is given by

Q1 =
32

3

r gtp

n

where, r is the pipe radius, g the gravitational acceleration, t is the thickness of
the film and n is the kinematic viscosity of the liquid.

Show further that, if air flows up the pipe at such a rate that the free surface
of the film remains at rest, then the volume flow of liquid per unit time Q, is given
by
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Q @ 1 1
1

4

Q d p

g d xr

Ê ˆ-Á ˜Ë ¯
.

where 
d

d

p

x
 is the pressure drop along the pipe, r is the density of the liquid

and other symbols are as defined above.
9.14 The velocity distribution in the laminar boundary layer is of the form

e

u

U
 = F(h) + lG(h)

where, F(h) =
33

2 2

h
h - ; G(h) = 

2 3

4 2 4

h h h
- + ;

h =
y

d
 and l = 

2 d

d

Ue

x

d

n

Find the value of l when the flow is on the point of separating and show that
then the displacement thickness will be half the boundary layer thickness.



10.1  INTRODUCTION

A turbulent motion is an irregular motion. The irregularity associated with
turbulence is such that it can be described by the laws of probability and turbulent
fluid motion can be considered as an irregular condition of flow in which various
quantities (such as velocity components and pressure) show a random variation with
time and space in such a way that the statistical average of those quantities can be
quantitatively expressed.

An irregular motion is associated with random fluctuations. It is postulated that
the fluctuations inherently come from disturbances (such as roughness of a solid
surface) and they may be either dampened out due to viscous damping or may grow
by drawing energy from the free stream. At a Reynolds number less than the critical,
the kinetic energy of flow is not enough to sustain random fluctuation against the
viscous damping and in such cases laminar flow continues to exist. At a somewhat
higher Reynolds number than the critical Reynolds number, the kinetic energy of
flow supports the growth of fluctuations and transition to turbulence takes place.

10.2  CHARACTERISTICS OF TURBULENT FLOW

In view of the preceding discussion, the most important characteristic of turbulent
motion is the fact that velocity and pressure at a point fluctuate with time in a
random manner (Fig. 10.1).

(a)
t

Laminar

UP UP

Turbulent

( )b
t

Fig. 10.1 Variation of U components of velocity for laminar and turbulent flows

at a point P

10

TURBULENT FLOW
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The mixing in turbulent flow is more due to these fluctuations. As a result we can
see more uniform velocity distributions in turbulent pipe flows as compared to
laminar flows (see Fig. 10.2).

Laminar

u r( ) u r( )
r

r

x x

º P º P

(a) (b)

up

up

Turbulent

Fig. 10.2 Comparison of velocity profiles in a pipe for (a) laminar

and (b) turbulent flows

Turbulence can be generated by frictional forces at the confining solid walls or
by the flow of layers of fluids with different velocities over one another. The
turbulence generated in these two ways are considered to be different. Turbulence
generated and continuously affected by fixed walls is designated as wall turbulence,
and turbulence generated by two adjacent layers of fluid in the absence of walls is
termed as free turbulence.

One of the effects of viscosity on turbulence is to make the flow more
homogeneous and less dependent on direction. If the turbulence has the same
structure quantitatively in all parts of the flow field, the turbulence is said to be
homogeneous. The turbulence is called isotropic if its statistical features have no
directional preference and perfect disorder persists. Its velocity fluctuations are
independent of the axis of reference, i.e., invariant to axis rotation and reflection.
Isotropic turbulence is by its definition always homogeneous. In such a situation,
the gradient of the mean velocity does not exist. The mean velocity is either zero or
constant throughout. However, when the mean velocity has a gradient, the
turbulence is called anisotropic.

A little more discussion on homogeneous and isotropic turbulence is needed at
this stage. The term ‘homogeneous turbulence’ implies that the velocity fluctuations
in the system are random. The average turbulent characteristics are independent of
the position in the fluid, i.e., invariant to axis translation.
Consider the root mean square velocity fluctuations:

u¢ = 2u , v¢ = 2
v , w ¢ = 2w

In homogeneous turbulence, the rms values of u¢, v¢ and w¢ can all be different, but
each value must be constant over the entire turbulent field. It is also to be understood
that even if the rms fluctuation of any component, say u¢s are constant over the
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entire field, the instantaneous values of u may differ from point to point at any
instant.

In addition to its homogeneous nature, if the velocity fluctuations are
independent of the axis of reference, i.e., invariant to axis rotation and reflection,
the situation leads to isotropic turbulence, which by definition as mentioned earlier,
is always homogeneous.

In isotropic turbulence, fluctuations are independent of the direction of reference
and

2u  = 2
v  = 2w

or u¢ = v¢ = w¢

Again, it is of relevance to say that even if the rms fluctuations at any point are
same, their instantaneous values may differ from each other at any instant.

Turbulent flow is also diffusive. In general, turbulence brings about better mixing
of a fluid and produces an additional diffusive effect. The term ‘eddy-diffusion’ is
often used to distinguish this effect from molecular diffusion. The effects caused by
mixing are as if the viscosity is increased by a factor of 100 or more. At a large
Reynolds number there exists a continuous transport of energy from the free stream
to the large eddies. Then, from the large eddies smaller eddies are continuously
formed. Near the wall, the smallest eddies dissipate energy and destroy themselves.

10.3   LAMINAR–TURBULENT TRANSITION

For turbulent flow over a flat plate, the boundary layer starts out as laminar flow at
the leading edge and subsequently, the flow turns into transition flow and very
shortly thereafter turns into turbulent flow. The turbulent boundary layer continues
to grow in thickness, with a small region below it, called a viscous sublayer. In this
sublayer, the flow is well behaved, just as the laminar boundary layer (Fig. 10.3).

A careful observation further suggests that at a certain axial location, the laminar
boundary layer tends to become unstable. Physically this means that the
disturbances in the flow grow in amplitude at this location.

Transitional
Laminar
sublayer

Turbulent

Laminar

U• U•

Fig. 10.3 Laminar-turbulent transition
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Free stream turbulence, wall roughness and acoustic signals may be among the
sources of such disturbances. Transition to turbulent flow is thus initiated with the
instability in laminar flow. The possibility of instability in boundary layer was felt
by Prandtl as early as 1912. The theoretical analysis of Tollmien and Schlichting
showed that unstable waves could exist if the Reynolds number was 575. The
Reynolds number was defined as

Re = U•d*/n

where U• is the free stream velocity and d * is the displacement thickness. Taylor
developed an alternate theory, which assumed that the transition is caused by a
momentary separation at the boundary layer associated with the free stream
turbulence. In a pipe flow the initiation of turbulence is usually observed at
Reynolds numbers (U• D/n) in the range of 2000 to 2700. The development starts
with a laminar profile, undergoes a transition, changes over to turbulent profile and
then stays turbulent thereafter (Fig. 10.4). The length of development is of the order
of 25 to 40 diameters of the pipe. The mechanisms related to the growth and the
decay of turbulence in a flow field are indeed an advanced topic and beyond the
scope of this text. However, interested readers may like to refer to Tennekes and
Lumley and Hinze for advanced knowledge.

Developing
region

U•

Fully developed
turbulent flow

L

x

d

u

Fig. 10.4 Development of turbulent flow in a circular duct

10.4   CORRELATION FUNCTIONS

A statistical correlation can be applied to fluctuating velocity terms in turbulence.
Turbulent motion is by definition eddying motion. Notwithstanding the circulation
strength of the individual eddies, a high degree of correlation exists between the
velocities at two points in space, if the distance between the points is smaller than
the diameter of the eddy.

Consider a statistical property of a random variable (velocity) at two points
separated by a distance r. An Eulerian correlation tensor (nine terms) at the two
points can be defined by
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Q = ( ) ( )x x r+u u

In other words, the dependence between the two velocities at two points is
measured by the correlations, i.e., the time averages of the products of the quantities
measured at two points. The correlation of the u ¢ components of the turbulent
velocity of these two points is defined as

( ) ( )u x u x r+¢ ¢

It is conventional to work with the non-dimensional form of the correlation, such as

R(r) =

( )1/ 2
2 2

( ) ( )

( ) ( )

u x u x r

u x u x r

+¢ ¢

+¢ ¢

A value of R(r) of unity signifies a perfect correlation of the two quantities involved
and their motion is in phase. Negative value of the correlation function implies that
the time averages of the velocities in the two correlated points have different signs.
Figure 10.5 shows typical variations of the correlation R with increasing separation r.

To describe the evolution of a fluctuating function u¢(t), we need to know the
manner in which the value of u¢ at different times are related. For this purpose a
correlation function

R(t) =
2( ) ( )u t u t ut+¢ ¢ ¢

between the values of u¢ at different times has been chosen. This is called the
autocorrelation function.

Correlation studies reveal that the turbulent motion is composed of eddies which
are convected by the mean motion. The eddies vary widely in their size. The size of
the large eddies is comparable with the dimensions of the neighbouring objects or
the dimensions of the flow passage. The size of the smallest eddies can be of the
order of 1 mm or less. However, the smallest eddies are much larger than the
molecular mean free paths and the turbulent motion obeys the principles of
continuum mechanics.

R r( )

Or

1.0

Fig. 10.5 Variation of R with the distance of separation r
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10.5   MEAN MOTION AND FLUCTUATIONS

In 1883, O. Reynolds conducted experiments with pipe flow by feeding into the
stream a thin thread of liquid dye. For low Reynolds numbers, the dye traced a
straight line and did not disperse. With increasing velocity, the dye thread got mixed
in all directions and the flowing fluid appeared to be uniformly coloured in the
downstream. It was conjectured that on the main motion in the direction of the axis,
there existed a superimposed motion all along the main motion at right angles to it.
The superimposed motion causes exchange of momentum in transverse direction
and the velocity distribution over the cross section is more uniform than in laminar
flow. This description of turbulent flow which consists of superimposed streaming
and fluctuating (eddying) motion is referred to as Reynolds decomposition of

turbulent flow.
Here we shall discuss different descriptions of mean motion. Generally, for

Eulerian velocity u, the following two methods of averaging could be obtained:
(i) Time average for a stationary turbulence

u xt ( )0  =
1

1
1

0
1 –

1
lim ( , ) d

2

t

t
t

u x t t
tÆ• Ú

(ii) Space average for a homogeneous turbulence

u ts ( )0  = 0

–

1
lim ( , ) d

2

x

x
x

u x t x
xÆ• Ú

For a stationary and homogeneous turbulence, it is assumed that the two averages
lead to the same result: u t = u s and the assumption is known as the ergodic

hypothesis.

In our analysis, average of any quantity will be evaluated as a time average. We
take t1 as a finite interval. This interval must be larger than the timescale of
turbulence. Needless to say that it must be small compared with the period t2 of any
slow variation (such as periodicity of the mean flow) in the flow field that we do not
consider to be chaotic or turbulent.

Thus, for a parallel flow, it can be written that the axial velocity component is

u( y, t) = u ( y) + u¢ (G, t) (10.1)

As such, the time mean component u (y) determines whether the turbulent
motion is steady or not. Let us look at two different turbulent motions described in
Fig. 10.6 (a) and (b). The symbol G signifies any of the space variables.

While the motion described by Fig. 10.6(a) is for a turbulent flow with steady
mean velocity, Fig. 10.6(b) shows an example of turbulent flow with unsteady mean
velocity. The time period of the high-frequency fluctuating component is t1, whereas
the time period for the unsteady mean motion is t2 and for obvious reason t2 >> t1.
Even if the bulk motion is parallel, the fluctuation u¢ being random varies in all
directions. Now let us look at the continuity equation
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u w

x y z

∂ ∂ ∂

∂ ∂ ∂
+ +

v
 = 0

Invoking Eq. (10.1) in the above expression, we get

u u w

x x y z

∂ ∂ ∂ ∂

∂ ∂ ∂ ∂

¢
+ + +

v
 = 0 (10.2)

V
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(a) Steady (b) Unsteady

Time

u u u= + ¢

u¢
u¢

u u u= + ¢
u

u

t1 t1

t2

- -
-

-

v¢v¢

Fig. 10.6 Steady and unsteady mean motions in a turbulent  flow

Since 
∂

∂

¢u

x
 π 0, Eq. (10.2) depicts that y and z components of velocity exist even

for the parallel flow if the flow is turbulent. We can write

u(y, t) = u (y) + u¢ (G, t)

v = 0 + v¢ (G, t)

¸
Ô
˝
Ǫ̂

(10.3)

w = 0 + w¢ (G, t)

However, the fluctuating components do not bring about the bulk displacement
of a fluid element. The instantaneous displacement is u¢ dt, and that is not
responsible for the bulk motion. We can conclude from the above

T

T-
Ú u¢ dt = 0, (t1 < T £ t2)

Due to the interaction of fluctuating components, macroscopic momentum transport
takes place. Therefore, interaction effect between two fluctuating components over
a long period is non-zero and this can be expressed as

T

T-
Ú u¢ v¢ dt π 0

We take time average of these two integrals and write

u ¢ =
1

2

T

T
T

-
Ú u¢ dt = 0 (10.4a)
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and u¢ ¢v  =
1

2

T

T
T -

Ú u¢ v¢ dt π 0 (10.4b)

Now, we can make a general statement with any two fluctuating parameters, say,
f ¢ and g ¢, as

f ¢  = ¢g  = 0 (10.5a)

f g¢ ¢  π 0 (10.5b)

The time averages of the spatial gradients of the fluctuating components also follow
the same laws, and they can be written as

f

s

∂

∂

¢
 =

2

2

f

s

∂

∂

¢
 = 0

¸
ÔÔ
˝
Ô
Ǫ̂and

( )f g

s

∂

∂

¢ ¢
 π 0

(10.6)

The intensity of turbulence or degree of turbulence in a flow is described by the
relative magnitude of the root mean square value of the fluctuating components
with respect to the time-averaged main velocity. The mathematical expression is
given by

I = 2 2 21
( )

3
u w U•+ +¢ ¢ ¢v (10.7a)

The degree of turbulence in a wind tunnel can be brought down by introducing
screens of fine mesh at the bell mouth entry. In general, at a certain distance from
the screens, the turbulence in a wind tunnel becomes isotropic, i.e., the mean
oscillation in the three components are equal,

2u ¢  =
2 2

w=¢ ¢v

In this case, it is sufficient to consider the oscillation u¢ in the direction of flow
and to put

I =
2u U•¢ (10.7b)

This simpler definition of turbulence intensity is often used in practice even in
cases when turbulence is not isotropic.

Following Reynolds decomposition, it is suggested to separate the motion into a
mean motion and a fluctuating or eddying motion. Denoting the time average of the
u component of velocity by u  and fluctuating component as u¢, we can write the
following:

u = u  + u¢, v = v  + v¢, w = w  + w¢, p = p  + p¢ (10.8)

By definition, the time averages of all quantities describing fluctuations are equal
to zero.
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u ¢  = 0, ¢v  = 0, w¢  = 0, p ¢  = 0 (10.9)

The fluctuations u¢, v¢, and w¢ influence the mean motion u , v  and w  in such a
way that the mean motion exhibits an apparent increase in the resistance to
deformation. In other words, the effect of fluctuations is an apparent increase in
viscosity or macroscopic momentum diffusivity.

We shall state some rules of mean time-averages here. If f and g are two depen-
dent variables and if s denotes any one of the independent variables x, y, z, t, then

f  = f ; ; ;f g f g f g f g+ = + ◊ = ◊

f

s

∂

∂
 = ; d d

f
f s f s

s

∂

∂
=Ú Ú (10.10)

10.6   DERIVATION OF GOVERNING EQUATIONS
FOR TURBULENT FLOW

For incompressible flows, the Navier–Stokes equations can be rearranged in the
form

r 
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(10.11a)
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(10.11c)

and
u w

x y z

∂ ∂ ∂
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+ +

v
 = 0 (10.12)

Let us express the velocity components and pressure in terms of time-mean val-
ues and corresponding fluctuations. In continuity equation, this substitution and
subsequent time averaging will lead to

( ) ( ) ( )u u w w

x y z

∂ ∂ ∂

∂ ∂ ∂

+ + +¢ ¢ ¢
+ +

v v
 = 0

or
u w u w

x y z x y z

∂ ∂ ∂ ∂ ∂ ∂

∂ ∂ ∂ ∂ ∂ ∂

Ê ˆ¢ ¢ ¢Ê ˆ
+ + + + +Á ˜ Á ˜Ë ¯ Ë ¯

v v
 = 0

Since
u w

x y z

∂ ∂ ∂

∂ ∂ ∂

¢ ¢ ¢
= =

v
 = 0 [From Eq. (10.6)]

We can write

u w

x y z

∂ ∂ ∂
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+ +

v
 = 0 (10.13a)
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From Eqs (10.13a) and (10.12), we obtain

u w

x y z

∂ ∂ ∂

∂ ∂ ∂

¢ ¢ ¢
+ +

v
 = 0 (10.13b)

It is evident that the time-averaged velocity components and the fluctuating ve-
locity components, each satisfy the continuity equation for incompressible flow.
Let us imagine a two-dimensional flow in which the turbulent components are
independent of the z direction. Eventually, Eq. (10.13b) tends to become

u

x

∂

∂

¢
 = – 

y

∂

∂

¢v
(10.14)

On the basis of condition (10.14), it is postulated that if at an instant there is an
increase in u¢ in the x direction, it will be followed by an increase in v¢ in the nega-

tive y direction. In other words, u ¢¢ v  is non-zero and negative. This is another

important consideration within the framework of mean-motion description of tur-
bulent flows.

Invoking the concepts of (10.8) into the equations of motion (10.11a, b, c), we
obtain expressions in terms of mean and fluctuating components. Now, forming
time averages and considering the rules of (10.10), we discern the following. The

terms which are linear, such as ∂ u¢/ ∂t and ∂ 2u¢/ ∂ x2 vanish when they are averaged

[from (10.6)]. The same is true for the mixed terms like u ◊ u¢, or u ◊ v¢, but the
quadratic terms in the fluctuating components remain in the equations. After aver-

aging, they form 
2u ¢ , u¢ ¢v , etc.

For example, if we perform the aforesaid exercise on the x momentum equation,
we shall obtain
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– r 2u u u w
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v

Introducing simplifications arising out of continuity Eq. (10.13a), we shall obtain
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u u u p

u w u
x y z x

∂ ∂ ∂ ∂
m

∂ ∂ ∂ ∂

È ˘+ + = + —Í ˙Î ˚
v

–r 2u u u w
x y z

∂ ∂ ∂

∂ ∂ ∂

È ˘+ +¢ ¢ ¢ ¢ ¢Í ˙Î ˚
v

Performing a similar treatment on y and z momentum equations, finally we ob-
tain the momentum equations in the form
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The left-hand side of Eqs (10.15a)–(10.15c) are essentially similar to the steady-
state Navier–Stokes equations if the velocity components u, v and w are

replaced by u , v  and w  respectively. The same argument holds good for the first

two terms on the right-hand side of Eqs (10.15a)–(10.15c). However, the equations
contain some additional terms which depend on turbulent fluctuations of the stream.
These additional terms can be interpreted as components of a stress tensor. Now,
the resultant surface force per unit area due to these terms may be considered as
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Comparing Eqs (10.15) and (10.16), we can write

2

2

2
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u w w w
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v

v v v

v

(10.17)

It can be said that the mean velocity components of turbulent flow satisfy the
same Navier–Stokes equations of laminar flow. However, for the turbulent flow, the
laminar stresses must be increased by additional stresses which are given by the

stress tensor (10.17). These additional stresses are known as apparent stresses of
turbulent flow or Reynolds stresses. Since turbulence is considered as eddying mo-
tion and the aforesaid additional stresses are added to the viscous stresses due to
mean motion in order to explain the complete stress field, it is often said that the
apparent stresses are caused by eddy viscosity. The total stresses are now

sxx = – 22
u

p u
x

∂
m r

∂
+ - ¢

˘
˙
˙
˙
˙
˚

txy = m 
u

u
y x

∂ ∂
r

∂ ∂

Ê ˆ
+ - ¢ ¢Á ˜Ë ¯

v
v

(10.18)

and so on. The apparent stresses are much larger than the viscous components, and
the viscous stresses can even be dropped in many actual calculations.

It may be mentioned here that the terms, such as, ,
u

t t

∂ ∂

∂ ∂

v
 and 

w

t

∂

∂
 were dropped

considering the mean motion is not varying with time, confirming the paradigm of
stationary random. However, there are flows where the mean motions are time vary-
ing and under such a situation, one has to retain these terms in the time-averaged
Navier–Stokes equations (10.16). The governing momentum equations, for such
flows are called Unsteady Reynolds Averaged Navier–Stokes (URANS) equations.

Example 10.1

Prove that

/ 2

– / 2

d

t T

t T

f x
+

Ú  =
/ 2

– / 2

d
t T

t T

f x
+

Ú

where f is a constinuous function of x.
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Solution
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/ 2 / 2

– / 2 – / 2

1
d d

t T t T

t T t T

t
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Ú Ú

Changing the order of integration, we can write

or
/ 2

– / 2

d
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t T

f x
+
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/ 2 / 2
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1
d d
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f x

+

Ú  =
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– / 2

d
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t T
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+

Ú

10.7   TURBULENT BOUNDARY LAYER EQUATIONS

For a two-dimensional flow (w  = 0) over a flat plate, the thickness of turbulent
boundary layer is assumed to be much smaller than the axial length and the order of
magnitude analysis (refer to Chapter 9) may be applied. As a consequence, the fol-
lowing inferences are drawn:

(a)
p

y

∂

∂
 = 0, (b) 

p

x

∂

∂
 = 

d

d

p

x

(c)

2

2

u
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∂

∂
 << 

2

2

u

y

∂

∂
, and

(d) ( )2u
x

∂
r

∂
- ¢  << ( )u

y

∂
r

∂
- ¢ ¢v

The turbulent boundary layer equation together with the equation of continuity
becomes

u

x y

∂ ∂

∂ ∂
+

v
 = 0 (10.19)

u
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x y

∂ ∂

∂ ∂
+

v
v  = –

1 d

d

p u
u

x y y

∂ ∂
n

r ∂ ∂

È ˘+ - ¢ ¢Í ˙Î ˚
v (10.20)

A comparison of Eq. (10.20) with laminar boundary layer Eq. (9.10) depicts that

u, v and p are replaced by the time-averaged values u , v  and p , and laminar viscous

force per unit volume 
( )l

y

∂ t

∂
 is replaced by

y

∂

∂
(tl + tt), where tl = m

u

y

∂

∂
 is the

laminar shear stress and tt = – ru¢ v¢ is the turbulent stress.
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10.8   BOUNDARY CONDITIONS

All the components of apparent stresses vanish at the solid walls and only stresses
which act near the wall are the viscous stresses of laminar flow. The boundary con-
ditions, to be satisfied by the mean velocity components, are similar to laminar
flow. A very thin layer next to the wall behaves like a near wall region of the laminar

flow. This layer is known as the laminar sublayer and its velocities are such that the
viscous forces dominate over the inertia forces. No turbulence exists in it (see Fig.
10.7). For a developed turbulent flow over a flat plate, in the near wall region, iner-
tial effects are insignificant, and we can write from Eq. (10.20),

n 
2

2

( )u u

yy

∂ ∂

∂∂

¢ ¢
-

v
 = 0

Turbulent
shear

Wall 0

Turbulent shear
stresses

Laminar
sublayer

Shaded area in
viscous shearBuffer

layer

U•

Us

u

Laminar
sublayer = ds

txy

ru¢v¢
h m du

dy

Fig. 10.7 Different zones of a turbulent flow past a wall

which can be integrated as, 
u

u
y

n ∂

∂
- ¢ ¢v  = constant

Again, as we know that the fluctuating components, do not exist near the wall,
the shear stress on the wall is purely viscous and it follows that

0y

u

y

∂
n

∂ =

 = wt

r

However, the wall shear stress in the vicinity of the laminar sublayer is estimated as

tw =
0

0
s s

s s

U U
m m

d d

-È ˘
=Í ˙-Î ˚

(10.21a)

where Us is the fluid velocity at the edge of the sublayer. The flow in the sublayer is
specified by a velocity scale (characteristic of this region). We define the friction
velocity,
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ut =

1/ 2
wt

r

È ˘
Í ˙Î ˚

(10.21b)

as our velocity scale. Once ut is specified, the structure of the sublayer is specified.

It has been confirmed experimentally that the turbulent intensity distributions are

scaled with ut . For example, maximum value of the 
2u ¢  is always about 8ut

2. The

relationship between ut and Us can be determined from Eqs (10.21a) and (10.21b)
as

ut
2 = s

s

U
n

d

Let us assume Us = CU • .

Now we can write

ut
2 =

s

U
Cn

d
•  where C  is a proportionality constant (10.22a)

or sutd

n
 =

U
C

ut

•È ˘
Í ˙
Î ˚

(10.22b)

Hence, a non-dimensional coordinate may be defined as, h = 
y ut

n
 which will

help us in estimating different zones in a turbulent flow. The thickness of laminar
sublayer or viscous sublayer is considered to be h ª 5. Turbulent effect starts in the
zone of h > 5 and in a zone of 5 < h < 70, laminar and turbulent motions coexist.
This domain is termed as the buffer zone. Turbulent effects far outweigh the laminar
effect in the zone beyond h = 70 and this regime is termed as the turbulent core.

For flow over a flat plate, the turbulent sheat stress (– r u¢ ¢v ) is constant

throughout in the y direction and this becomes equal to tw at the wall. In the event of

flow through a channel, the turbulent shear stress (– r u¢ ¢v ) varies with y and it is

possible to write

t

w

t

t
 =

h

z
(10.22c)

where the channel is assumed to have a height 2h and z is the distance measured
from the centreline of the channel (= h – y). Figure 10.7 explains such variation of
turbulent stress.

10.9   SHEAR STRESS MODELS

In analogy with the coefficient of viscosity for laminar flow, J. Boussinesq intro-
duced a mixing coefficient mt , for the Reynolds stress term by invoking
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tt = – t
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Now the expressions for shearing stresses are written as
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(10.23)

The term nt is known as eddy viscosity and the model is known as eddy viscosity

model. The difficulty in using Eq. (10.23) can be discussed herein. The value of nt is
not known. The term n is a property of the fluid whereas nt is attributed to random
fluctuations and is not a property of the fluid. However, it is necessary to find out
empirical relations between nt and the mean velocity. We shall discuss one such
well-known relation between the aforesaid apparent or eddy viscosity and the mean

velocity components in the following subsection.

10.9.1 Prandtl’s Mixing Length Hypothesis

Let us consider a fully developed turbulent boundary layer (Fig. 10.3). The
streamwise mean velocity varies only from streamline to streamline. The main flow
direction is assumed parallel to the x axis (Fig. 10.8).

The time-average components of velocity are given by u  = u  (y), v  = 0, w  = 0.
The fluctuating component of transverse velocity v¢ transports mass and momen-
tum across a plane at y1 from the wall. The shear stress due to the fluctuation is

given by tt = – r t

u
u

y

∂
m

∂
=¢ ¢v (10.24)

A lump of fluid, which comes to the layer y1 from a layer (y1 – l) has a positive
value of v¢. If the lump of fluid retains its original momentum then its velocity at its
current location y1 is smaller than the velocity prevailing there. The difference in

velocities is then

D u1 = u (y1) – u  (y1 – l) ª l
1y

u

y

∂

∂

Ê ˆ
Á ˜Ë ¯ (10.25)
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Proportional to u¢

l u y( )1

u y l( )1 –

y1

y

y

x

u y + l( )1

u y( )

l

v¢

Fig. 10.8 One-dimensional parallel flow and Prandtl�s mixing length hypothesis

The above expression is obtained by expanding the function u (y1 – l) in a Taylor

series and neglecting all higher order terms and higher order derivatives. As it is
said, l is a small length scale known as Prandtl’s mixing length. Prandtl proposed
that the transverse displacement of any fluid particle is, on an average, l. Let us
consider another lump of fluid with a negative value of v¢. This is arriving at y1 from
(y1 + l). If this lump retains its original momentum, its mean velocity at the current
lamina y1 will be somewhat more than the original mean velocity of y1. This differ-
ence is given by

Du2 = u ( y1 + l) – u  ( y1) ª l

1y

u

y

∂

∂

Ê ˆ
Á ˜Ë ¯

(10.26)

The velocity differences caused by the transverse motion can be regarded as the
turbulent velocity components at y1. We calculate the time average of the absolute
value of this fluctuation as

u¢  = ( )
1

1 2

1
| | | |

2
y

u
u u l

y

∂

∂

Ê ˆD + D = Á ˜Ë ¯
(10.27)

Suppose these two lumps of fluid meet at a layer y1. The lumps will collide with a
velocity 2u¢ and diverge. This proposes the possible existence of transverse velocity
component in both directions with respect to the layer at y1. Now, suppose that the
two lumps move away in a reverse order from layer y1 with a velocity 2u¢. The
empty space will be filled from the surrounding fluid creating transverse velocity
components which will again collide at y1. Keeping in mind this argument and the

physical explanation accompanying Eqs. (10.14), we may state that

¢v  ~ u¢



506 Introduction to Fluid Mechanics and Fluid Machines

or ¢v  = const u¢  = (const) l 
u

y

∂

∂

along with the condition that the moment at which u¢ is positive, v¢ is more likely to
be negative and conversely when u¢ is negative. Possibly, we can write at this stage

u¢ ¢v  = – C1 u¢  ¢v

or u¢ ¢v  = – C2 l2 

2
u

y

∂

∂

Ê ˆ
Á ˜Ë ¯

(10.28)

where C1 and C2 are different proportionality constants. However, the constant C2

can now be included in still unknown mixing length and Eq. (10.28) may be rewrit-
ten as

u¢ ¢v  = – l2 

2
u

y

∂

∂

Ê ˆ
Á ˜Ë ¯

For the expression of turbulent shearing stress tt, we may write

tt = – r u¢ ¢v  = r l2 

2
u

y

∂

∂

Ê ˆ
Á ˜Ë ¯

(10.29)

After comparing this expression with the eddy viscosity concept and Eq. (10.24),
we may arrive at a more precise definition,

tt = r l2 t

u u u

y y y

∂ ∂ ∂
m

∂ ∂ ∂

Ê ˆ =Á ˜Ë ¯
(10.30a)

where the apparent viscosity may be expressed as

mt = r l2 
u

y

∂

∂
(10.30b)

and the apparent kinematic viscosity is given by

nt = l2 
u

y

∂

∂
(10.30c)

The decision of expressing one of the velocity gradients of Eq. (10.29) in terms

of its modulus as 
u

y

∂

∂
 was made in order to assign a sign to tt according to the sign

of 
u

y

∂

∂
. It may be mentioned that the apparent viscosity and consequently, the mix-

ing length are not properties of fluid. They are dependent on turbulent fluctuation.
However, our problem is still not resolved. How to determine the value of l, the
mixing length? Several correlations, using experimental results for tt have been pro-
posed to determine l.
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However, so far the most widely used value of mixing length in the regime of
isotropic turbulence is given by

l = cy (10.31)

where y is the distance from the wall and c is known as von Karman constant (ª 0.4).

10.10 UNIVERSAL VELOCITY DISTRIBUTION LAW AND
FRICTION FACTOR IN DUCT FLOWS FOR VERY LARGE
REYNOLDS NUMBERS

For flows in a rectangular channel at very large Reynolds numbers the laminar
sublayer can practically be ignored. The channel may be assumed to have a width 2h

and the x axis will be placed along the bottom wall of the channel. We shall consider
a turbulent stream along  a smooth flat wall in such a duct and denote the distance
from the bottom wall by y, while u( y) will signify the velocity. In the neighbourhood

of the wall, we shall apply

l = c y

According to Prandtl’s assumption, the turbulent shearing stress will be

tt = rc2y2
2

u

y

∂

∂

Ê ˆ
Á ˜Ë ¯

(10.32)

At this point, Prandtl introduced an additional assumption which like a plane
Couette flow takes a constant shearing stress throughout, i.e,

tt = tw (10.33)
where tw denotes the shearing stress at the wall. Invoking once more the friction

velocity ut = 

1/ 2
wt
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È ˘
Í ˙Î ˚

, we obtain

ut
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(10.34)

or
u

y

∂

∂
 =

u

y

t

c
(10.35)

On integrating we find

u  = ln
u

y Ct

c
+ (10.36)

Despite the fact that Eq. (10.36) is derived on the basis of the friction velocity in the
neighbourhood of the wall because of the assumption that tw = tt = constant, we
shall use it for the entire region. At y = h (at the horizontal mid-plane of the chan-
nel), we have u  = Umax. The constant of integration is eliminated by considering

Umax = ln
u

h Ct

c
+
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or C = Umax – ln
u

ht

c

Substituting C in Eq. (10.36), we get

and maxU u

ut

-
 =

1
ln

h

yc

Ê ˆ
Á ˜Ë ¯

(10.37)

Equation (10.37) is known as universal velocity defect law of Prandtl and its distri-
bution has been shown in Fig. 10.9.

Here, we have seen that the friction velocity ut is a reference parameter for ve-
locity. We shall now discuss the problem with ( u /ut) and h (= y ut /n) as param-
eters. Equation (10.36) can be rewritten once again for this purpose as

u

ut

 =
1

c
 ln y + C

0
0

1.2

U umax -

y h/

( / )ut c

2.8

0.4 0.8 1.0

Fig. 10.9 Distribution of universal velocity defect law of

Prandtl in a turbulent channel flow

The no-slip condition at the wall cannot be satisfied with a finite constant of integra-
tion. This is expected that the appropriate condition for the present problem should
be that u  = 0 at a very small distance y = y0 from the wall. Hence, Eq. (10.36)
becomes

u

ut

 =
1

c
 (ln y – ln y0) (10.38)

The distance y0 is of the order of magnitude of the thickness of the viscous layer.
Now we can write Eq. (10.38) as

u

ut

 =
1

c
ln ln

u
y t b

n

È ˘-Í ˙Î ˚
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or
u

ut

 = A l ln h + D1 (10.39)

where A 1 = (l/c ), the unknown b is included in Dl.
Equation (10.39) is generally known as the universal velocity profile because of

the fact that it is applicable from moderate to a very large Reynolds number. How-
ever, the constants A 1 and D1 have to be found out from experiments.

Example 10.2

The well-known scientist, Theodore von Karman, suggested the mixing length to be

l = c 
2 2

d /d

d /d

u y

u y
. Using this relation drive the velocity profile near the wall of a flat-

plate boundary layer flow.
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Substituting von Karman’s suggestion, we get
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Taking the square root, and applying physical argument that (du /dy) cannot be
imaginary, we obtain
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Let m = du /dy
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then dm/dy = ± 
ut

c
 m2

Integration yields,

– 
1

m
 = ± 
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c
 y + C1

Using m fi • as y  fi 0, we get C1 = 0

Then,
d
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u
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u

y
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c
, since 

d
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d
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Integrating, we obtain,

u  =
ut

c
 ln  y + C2

At some value y = y0 , u  = 0

Invoking this, C2 = –
ut

c
 ln y0

Thus,
u

ut

 = 0

1
ln ( )y y

c
◊ -

Let us substitute y0 = b
n

tu
 order of which is same as viscous sublayer and b is an

arbitrary constant.
Thus, we shall get

u

ut

 =
1

ln ln
u yt b

c n

Ê ˆ-Á ˜Ë ¯

or
u

ut

 = A 1 ln h + D1

This is the universal velocity profile.

It may be mentioned that A 1 and D1 are near-universal constants for turbulent
flow past smooth impermeable walls. The parameter D1 varies with the pressure
gradient. The original pipe-flow measurements by Prandt’ s student, J. Nikuradse,
suggests c = 0.4 (thereby A 1 = 2.5) and D1 = 5.5. The determination of correct c for
various geometrical configurations is a subject of research even today.

The universal velocity profile is not only valid for channel flows; it retains the
same functional relationship for circuilar pipes as well. It may be mentioned that
even without the assumption of having a constant shear throughout, the universal
velocity profile can be derived. The following example makes it clear.
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Example 10.3

Using Karman’s relation l = c 2 2

d /d

d /d

u y

u y
, show that the universal velocity distri-

bution in a fully developed channel flow is given by

maxU u
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h hc
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- +Í ˙Á ˜Ë ¯Î ˚

where, 2h is the height of the channel, y is the distance measured from the centre
line of the channel and c is an empirical constant. The pressure gradient in flow
direction is (dp/dx).

Solution

From Reynolds equation, we get
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Substituting for m = 
u
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∂
 and integrating,
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at y = 0, u  = Umax
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Some Important Considertions for High Reynolds Number Pipe Flows

As discussed earlier, the experiments performed by Nikuradse showed that Eq.
(10.39) is in good agreement with experimental results. Based on Nikurads’ s and
Reichardt’ s experimental data, the empirical constants of Eq. (10.39) can be
determined for a smooth pipe as

u

ut

 = 2.5 ln h + 5.5 (10.40)

There is a serious lacuna in this expression; one cannot extend this up to the wall.
Actually the profile drops linearly to zero very close to the wall within thicknes too
small to be seen. For the key to the profile shape, we are indebted to the physical
insight of Prandtl and von-Karman. They concluded that the profile consist of an
inner and outer layer, plus an intermediate overlap layer between the two. The outer
layer (turbulent zone) is represented well by Eq. (10.40).
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The velocity distribution for the outer layer (turbulent zone) has been shown
through curve (b) in Fig. 10.10.

5
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20

30

10
5

102 103

h

104
60

b

Laminar
sublayer

Buffer
zone

Turbulent
zone

u
ut

Fig. 10.10 The universal velocity distribution law for smooth pipes

However, the corresponding friction factor concerning Eq. (10.40) is

1

f
 = 2.0 log10 (Re f ) – 0.8 (10.41)

As mentioned earlier, the universal velocity profile does not match very close to the

wall where the viscous shear predominates the flow. Prandtl and von Karman sug-
gested a modification for the laminar sublayer and the buffer zone which are

u

ut

 = h = 
u yt

n
for h < 5.0 (10.42)

and

u

ut

 = 11.5 log10 
u yt

n
 – 3.0 for 5 < h < 60 (10.43)

Equation (10.42) has been shown through curve (a) in Fig. 10.10.

It may be worthwhile to mention here that a surface is said to be hydraulically
smooth as long as

0 £ p ute

n
 £ 5 (10.44)

where ep is the average height of the protrusions inside the pipe.
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Physically, the above expression means that for smooth pipes protrusions will not
be extended outside the laminar sublayer. If protrusions exceed the thickness of the
laminar sublayer, it is conjectured (also justified though experimental verification)
that some additional frictional resistance will contribute to pipe friction due to the
form drag experienced by the protrusions in the boundary layer. In rough pipes, ex-
periments indicate that the velocity profile may be expressed as:

u

ut

 = 2.5 ln 8.5
p

y

e
+ (10.45)

At the centre-line, the maximum velocity is expressed as

maxU

ut

 = 2.5 ln 8.5
p

R

e
+ (10.46)

Note that n no longer appears with R and ep. This means that for completely rough
zone of turbulent flow, the profile is independent of Reynolds number and a strong

function of pipe roughness. However, for pipe roughness of varying degrees, the
recommendation due to Colebrook and White works well. Their formula is

1

f
 = 1.74 – 2.0 log10 

18.7

Re

p

R f

eÈ ˘
+Í ˙

Î ˚
(10.47)

where R is the pipe radius.
For ep Æ 0, this equation produces the result of the smooth pipes (Eq. (10.41)). For
Re Æ •, it gives the expression for friction factor for a completely rough pipe at a
very high Reynolds number which is given by

f =
2

1

2 log 1.74
p

R

e

Ê ˆ
+Á ˜Ë ¯

(10.48)

Turbulent flow through pipes has been investigated by many researchers because of
its enormous practical importance.

In the next section, we shall discuss, in detail the velocity distribution and other
important aspects of turbulent pipe flows.

10.11 FULLY–DEVELOPED TURBULENT FLOW IN A PIPE FOR
MODERATE REYNOLDS NUMBERS

The entry length of a turbulent flow is much shorter than that of a laminar flow, J.

Nikuradse determined that a fully developed profile for turbulent flow can be ob-
served after an entry length of 25 to 40 diameters. We shall focus herein our atten-
tion to fully-developed turbulent flow. Considering a fully developed turbulent pipe
flow  (Fig. 10.11) we can write

2 p R tw = – 
d

d

p

x

Ê ˆ
Á ˜Ë ¯

 p R2 (10.49)
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or
d

–
d

p

x

Ê ˆ
Á ˜Ë ¯

 =
2 w

R

t
(10.50)

x

dp
tw

tw

dx

Fig. 10.11 Fully developed turbulent pipe flow

It can be said that in a fully developed flow, the pressure gradient balances the

wall shear stress only and has a constant value at any x. However, the friction factor
(Darcy friction factor) is defined in a fully developed flow as

– 
d

d

p

x

Ê ˆ
Á ˜Ë ¯

 =
2
av

2

fU

D

r
(10.51)

Comparing Eq. (10.50) with Eq. (10.51), we can write

tw = 2
av

8

f
Ur (10.52)

H. Blasius conducted a critical survey of available experimental results and estab-
lished the empirical correlation for the above equation as

f = 0.3164 Re–0.25, where Re = rUavD/m (10.53)

It is found that the Blasius’s formula is valid in the range of Reynolds number of Re
£ 105. At the time when Blasius compiled the experimental data, results for higher

Reynolds numbers were not available. However, later, J. Nikuradse carried out ex-
periments with the laws of friction in a very wide range of Reynolds numbers, 4 ¥ 103

£ Re £ 3.2 ¥ 106. The velocity profile in this range follows:

u

u
 =

1/ n
y

R

È ˘
Í ˙Î ˚

(10.54)

where u  is the time mean velocity at the pipe centre and y is the distance from the

wall. The exponent n varies slightly with Reynolds number. In the range of Re ~ 105,
n is 7.

The ratio of u  and Uav for the aforesaid profile is found out by considering the
volume flow rate Q as

Q = p R2Uav = 
0

R

Ú 2p r u dr

or p R2Uav = 2p u  
0

R

Ú (R – y) (y/R)1/n (–dy)
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or p R2 Uav = 2p u

1 1 2 1 1

0
1 2 1

Rn n n

n n n n
n n

R y y R
n n

- + +
-È Ê ˆ Ê ˆ ˘

-Í ˙Á ˜ Á ˜+ +Ë ¯ Ë ¯Í ˙Î ˚

or p R2 Uav = 2p u  2 2

1 2 1

n n
R R

n n

È ˘-Í ˙+ +Î ˚

or p R2 Uav = 2p R2 u
2

( 1) (2 1)

n

n n

È ˘
Í ˙+ +Î ˚

or avU

u
 =

22

( 1) (2 1)

n

n n+ +
(10.55a)

Now, for different values of n (for different Reynolds numbers) we shall obtain differ-

ent values of Uav /u  from Eq. (10.55a). On substitution of Blasius resistance formula
(10.53) in Eq. (10.52), the following expression for the shear stress at the wall can be

obtained:

tw = 0.25 2
av

0.3164
Re

8
Ur-

or tw =
1/ 4

2
av

av

0.03955
2

U
R U

n
r

Ê ˆ
Á ˜Ë ¯

or tw =
1/ 4

7 / 4
av0.03325 U

R

n
r Ê ˆ

Á ˜Ë ¯

or tw =
7/ 4 1/ 4

7 / 4av0.03325 ( )
U

u
u R

n
r

Ê ˆ Ê ˆ
Á ˜Á ˜ Ë ¯Ë ¯

For n = 7, Uav/u  becomes equal to 0.8. Substituting Uav/u  = 0.8 in the above equa-
tion, we get

tw = 0.03325 r (0.8)1/4( u )7/4 (n/R)1/4

Finally it produces tw = 0.0225 r ( u )7/4 (n/R)1/4 (10.55b)

or ut
2 = 0.0225 ( u )7/4 

1/ 4

R

nÊ ˆ
Á ˜Ë ¯

where ut is friction velocity. However, ut
2 may be split into ut

7/4 and ut
1/4 and we

obtain
7/ 4

u

ut

Ê ˆ
Á ˜Ë ¯

 = 44.44 
1/ 4

u Rt

n

Ê ˆ
Á ˜Ë ¯

or
u

ut

 = 8.74 
1/ 7

u Rt

n

Ê ˆ
Á ˜Ë ¯ (10.56a)

Now we can assume that the above equation is not only valid at the pipe axis
(y = R) but also at any distance from the wall y and a general form is proposed as
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u

ut

 = 8.74 
1/ 7

yut

n

Ê ˆ
Á ˜Ë ¯ (10.56b)

In conclusion, it can be said that (1/7)th power velocity distribution law (10.56b) can
be derived from Blasius’s resistance formula (10.53). Equation (10.55b) gives the
shear stress relationship in  the pipe the flow at a moderate Reynolds number, i.e,
Re £ 105. Unlike very high Reynolds number flow, here laminar effect cannot be ne-
glected and the laminar sublayer brings about remarkable influence on the outer
zones.

It is worth mentioning that the friction factor for pipe flows f , defined by
Eq. (10.53) is valid for a specific range of Reynolds number and for a particular sur-
face condition. The experimental results for a wide range of Reynolds numbers and

variety of pipe roughness can be summarised through the Moody diagram, shown in
Chapter 11.

10.12 SKIN FRICTION COEFFICIENT FOR
BOUNDARY LAYERS ON A FLAT PLATE

Calculations of skin friction drag on lifting surface and on aerodynamic bodies are
somewhat similar to the analyses of skin friction on a flat plate. Because of zero pres-
sure gradient, the flat plate at zero incidence is easy to consider. In some of the appli-

cations cited above, the pressure gradient will differ from zero but the skin friction
will not be dramatically different as long as there is no separation.

We begin with the momentum integral equation for flat plate boundary layer which
is valid for both laminar and turbulent flow.

( )2 **d

d
U

x
d•  = wt

r
(10.57a)

Invoking the definition of Cf x 
21

2

w
fxC

U

t

r •

Ê ˆ
Á ˜=Á ˜
Á ˜Ë ¯

, Eq. (10.57a) can be rewritten as

Cfx =
**d

2
dx

d
(10.57b)

Due to the similarity in the laws of wall, correlations of the previous section may be

applied to the flat plate by substituting d for R and U• for the time mean velocity at the
pipe centre. The rationale for using the turbulent pipe flow results in the situation of a
turbulent flow over a flat plate is to consider that the time mean velocity, at the centre
of the pipe is analogous to the free stream velocity, both the velocities being defined at
the edge of boundary layer thickness.

Finally, the velocity profile will be [following Eq. (10.54)]

u

U•

 =
1/ 7

y

d
È ˘
Í ˙Î ˚

for Re £ 105 (10.58)
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If we evaluate momentum thickness with this profile, we shall obtain

 d** =
1/ 7 1/ 7

0

7
1 d

72

y y
y

d

d
d d

È ˘Ê ˆ Ê ˆ- =Á ˜ Á ˜Í ˙Ë ¯ Ë ¯Î ˚
Ú (10.59)

It is worth mentioning that Prandtl suggested the usage of the turbulent pipe flow
profile for the bounday layers over flat plates, on the grounds stated above. Although
Eq. (10.58) satisfactorily describes the velocity distribution in most of the boundary
layer, it fails to satisfy the boundary condition at the wall surface because ∂u/∂y =
(1/7) (U• d –1/7 y –6/7) = • at y = 0. Actually the viscous sublayer exists immediately
adjacent to the wall. And it is so thin that the velocity variation within the sublayer
may be taken as linear and tangential to the one-seventh profile at the point where the
viscous sublayer merges with the turbulent part of the boundary layer (Fig 10.12).

y

U•

dL= sublayer thickness

Edge of sublayer

Fig. 10.12 Turbulent boundary layer on a flat plate

Consequently, the law of shear stress (in range of Re £ 105) for the flat plate is
found out by making use of the pipe flow expression of Eq. (10.55b) as

tw = 0.0225 r( u )7/4 
1/ 4

R

nÊ ˆ
Á ˜Ë ¯

or 2( )

w

u

t

r
 = 0.0225 

1/ 4

R u

nÈ ˘
Í ˙Î ˚

Substituting U• for u  and d for R in the above expression, we get

or 2
w

U

t

r •
 = 0.0225 

1/ 4

U

n

d •

È ˘
Í ˙
Î ˚

(10.60)
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Once again substituting Eqs (10.59) and (10.60) in Eq. (10.57), we obtain

7 d

72 dx

d
◊  =

1/ 4

0.0225
U

n

d •

È ˘
Í ˙
Î ˚

or d1/4 d

dx

d
 =

1/ 4

0.2314
U

n

•

È ˘
Í ˙
Î ˚

or d 5/4 =
1/ 4

0.2892 x C
U

n

•

Ê ˆ
+Á ˜Ë ¯

(10.61)

For simplicity, if we assume that the turbulent boundary layer grows from the lead-
ing edge of the plate we shall be able to apply the boundary conditions x = 0, d = 0,

which will yield C = 0, and Eq. (10.61) will become

(d/x)5/4 = 0.2892 
1/ 4

xU

n

•

È ˘
Í ˙
Î ˚

or
x

d
 = 0.37 

1/5

xU

n

•

È ˘
Í ˙
Î ˚

or
x

d
 = 0.37 (Rex)–1/5 (10.62)

where Rex = (U• x)/n

From Eqs (10.57b), (10.59) and (10.62), it is possible to calculate the average skin

friction coefficient on a flat plate as

C
f = 0.072 (ReL)–1/5 (10.63)

It can be shown that Eq. (10.63) predicts the average skin friction coefficient cor-
rectly in the regime of Reynolds number below 2 ¥ 106.

This result is found to be in good agreement with the experimental results in the
range of Reynolds number between 5 ¥ 105 and 107 which is given by

C
f = 0.074 (ReL)–1/5 (10.64)

Equation (10.64) is a widely accepted correlation for the average value of turbu-
lent skin friction coefficient on a flat plate.

With the help of Nikuradse’s experiments, Schlichting obtained the semi-empiri-
cal equation for the average skin friction coefficient as

C
f = 2.58

0.455

(log Re)
(10.65)

Equation (10.65) was derived assuming the flat plate to be completely turbulent
over its entire length. In reality, a portion of it is laminar from the leading edge to some
downstream position. For this purpose, it was suggested to use

C
f = 2.58

0.455

Re(log Re)

A
- (10.66a)
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where A  has various values depending on the value of Reynolds number at which the
transition takes place. If the transition is assumed to take place around a Reynolds
number of 5 ¥ 105, the average skin friction correlation of Schlichling can be written
as

C f =
0 455 1700

2 58

.

(log Re) Re.
- (10.66b)

All that we have presented so far are valid for a smooth plate. Schlichting used a loga-
rithmic expression for turbulent flow over a rough surface and derived

C f =

2.5

1.89 1.62 log
p

L

e

-
Ê ˆ

+Á ˜
Ë ¯

(10.67)

Example 10.4

During flow over a flat plate the laminar boundary layer undergoes a transition to
turbulent boundary layer as the flow proceeds in the downstream. It is observed that
a parabolic laminar profile is finally changed into a 1/7th power law velocity profile
in the turbulent regime. Find out the ratio of turbulent and laminar boundary layers
if the momentum flux within the boundary layer remains constant.

Solution

Assume width of the boundary layers be a. Then momentum flux is

A  = Ú u r u a dy = r U•
2 a d 

2

d
u

U
h

•

Ê ˆ
Á ˜Ë ¯Ú

where h = y/d

For laminar flow,
u

U•
 = 2 h – h2

A lam =
1

2 2 3 4
lam

0

(4 – 4 ) dU ar d h h h h• +Ú

=

15
2 3 4

lam

0

4
–

3 5
U a

h
r d h h•

È ˘
+Í ˙

Î ˚

= 2
lam

8

15
U ar d•

For 1/7th power law turbulent profile,

u

U•
 = h1/7

A turb =
1

2 1/ 7 2
turb

0

( ) dU ar d h h• Ú



Turbulent Flow 521

=
1

2 2/7
turb

0

dU ar d h h• Ú

=
1

2 9/ 7 2
turb turb

0

7 7

9 9
U a U ar d h r d• •

È ˘ =Í ˙Î ˚

Comparing the momentum fluxes,

turb

lam

d

d
 =

72

105

It is to be noted that generally the turbulent boundary layer grows faster than the

laminar boundary layer when a completely turbulent flow is considered from the lead-
ing edge. However the present result is valid at transition for a constant momentum
flow.

Example 10.5

Air (r = 1.23 kg/m3 and n = 1.5 ¥ 10–5 m2/s) is flowing over a flat plate. The free stream

speed is 15 m/s. At a distance of 1 m from the leading edge, calculate d and tw for (i)

completely laminar flow and (ii) completely turbulent flow for a 1/7th power law ve-
locity profile.

Solution

Applying the results developed in Chapters 9 and 10, we can write for parabolic
velocity profile (laminar flow)

x

d
 =

0

5.48
and

Re
w

yx

u

y

∂
t m

∂ =

=

Rex =
6

5

15 1
1.0 10

1.5 10

U x

n -
¥

= = ¥
¥

d =
6

5.48
1 m

1.0 10
¥

¥
 = 5.48 mm

tw = 2
0

0

d
[2 ]

d
y

Uu

y
h

m∂
m h h

∂ d h
•

=
=

= ◊ -

tw =
5

22 1.23 1.5 10 15
0.101 N m

0.00548

-¥ ¥ ¥ ¥
=

For turbulent flow,

x

d
 =

1/5

0.37

(Re )x

 (from Eq. 10.62)
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or d =
6 1/5

0.370

(1.0 10 )¥
 ¥ 1 m = 23.34 mm

or d/x = 0.0233

tw = 0.0225 rU2
•

1/ 4

U

n

d•

Ê ˆ
Á ˜Ë ¯

 (from Eq. 10.60)

tw = 0.0225 ¥ 1.23 ¥ (15)2 
1/ 4

x

U x

n

d•

Ê ˆ
◊Á ˜Ë ¯

or tw = 0.0225 ¥ 1.23 ¥ (15)2 

1/ 4

6

1 1

0.02331.0 10

È ˘
¥Í ˙

¥Î ˚
= 0.502 N/m2

The turbulent boundary layer has a larger shear stress than the laminar boundary

layer.

SUMMARY

∑ Turbulent motion is an irregular motion of fluid particles in a flow field.
However, for homogeneous and isotropic turbulence, the flow field can be
described by time-mean motions and fluctuating components. This is
called Reynolds decomposition of turbulent flow.

∑ In a three-dimensional flow field, the velocity components and the pres-
sure can be expressed in terms of the time-averages and the corresponding

fluctuations. Substitution of these dependent variables in the Navier–
Stokes equations for incompressible flow and subsequent time-averaging
yield the governing equations for the turbulent flow. The mean velocity
components of turbulent flow satisfy the same Navier–Stokes equations
for laminar flow. However, for the turbulent flow, the laminar stresses are
increased by additional stresses arising out of the fluctuating velocity com-
ponents. These additional stresses are known as apparent stresses of tur-
bulent flow or Reynolds stresses.

∑ In analogy with the laminar shear stresses, the turbulent shear stresses can
be expressed in terms of mean velocity gradients and a mixing coefficient
known as eddy viscosity. The eddy viscosity (nt) can be expressed as

nt = l2 d

d

u

y
, where l is known as Prandtl’s mixing length.

∑ For a homogeneous and isotropic turbulence, the most widely used value
of mixing length is given by l = c y. In this expression, y is the distance
from the wall and c is known as the von Karman constant (ª 0.4). For high
Reynolds number, fully developed turbulent duct flows, the velocity pro-

file is given by
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u

ut

 = A 1 ln h + D1

where u  is the time-mean velocity at any h (= yut /n) and ut is the friction

velocity given by /wt r . The constants A 1 and D1 are determined from

experiments which are 2.5 and 5.5, respectively, for smooth pipes. The

corresponding friction factor ( f) is given by

the expression 
1

f
 = 2.0 log10 (Re f ) – 0.8.

∑ However, for pipe roughness of varying degree, the following recom-
mendation of Colebrook and White works well:

1

f
 = 10

18.7
1.74 2.0 log

Re

p

R f

eÈ ˘
- +Í ˙

Î ˚

where ep/R is pipe roughness.
∑ In the range of Re £ 105, the velocity distribution in a smooth pipe is

given by

u

ut

 =
1/ 7

8.74
y ut

n

Ê ˆ
Á ˜Ë ¯

∑ The friction factor in this regime is given by Blasius as

f = 0.3164 (Re)–0.25

∑ The growth of boundary layer for turbulent flow over a flat plate is given
by

x

d
 = 0.37 (Rex)–1/5

∑ The expression for the average skin friction coefficient on the entire
plate of length L has been determined as

C
f = 0.072 (ReL)–1/5

∑ This result is found to be in good agreement with the experimental re-
sults in the range of 5 ¥ 105 < Re < 107 which is given by

C
f = 0.074 (ReL)–1/5

∑ For turbulent flow over a rough plate, the average skin friction coeffi-
cient is given by

C
f =

2.5

1.89 1.62 log
p

L

e

-
Ê ˆ

+Á ˜Ë ¯
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EXERCISES

10.1 Only write down the option (true/false) or the choice (a, b, c or d) or the
appropriate conditions.
(i) For flow through pipes, due to the same pressure gradient, the turbulent

velocity profile will be more uniform than the laminar velocity profile.
(True/False)

(ii) If the mean velocity has a gradient, the turbulence is called isotropic.
(True/False)

(iii)
u

x y

∂ ∂

∂ ∂

¢ ¢
+

v
 = 0 for a turbulent flow signifies

(a) conservation bulk momentum transport
(b) increase in u¢ in the positive x direction will be followed by in-

crease in v¢ in negative y direction
(c) turbulence is anisotropic
(d) turbulence is isotropic

(vi) In a turbulent pipe flow the initiation of turbulence is usually observed
at a Reynolds number (based on pipe diameter) of
(a)  3.5 ¥ 105 (b)  2 ¥ 106

(c)  between 2000 and 2700 (d)  5000
(v) A turbulent boundary is thought to be comprised of laminar sublayer, a

buffer layer and a turbulent zone. The velocity profile outside the lami-
nar sublayer is described by a
(a) parabolic profile (b) cubic profile
(c) linear profile (d) logarithmic profile

(vi) A laminar boundary layer is less likely to separate than a turbulent
boundary layer. (True/False)

10.2 Show that, with the help of both the mixing length hypothesis due to Prandtl
and mixing length law due to Karman (given in Example 10.2), the universal
velocity profile near the wall in case of a fully developed turbulent flow
through a circular pipe can be expressed as

maxU u

ut

-
 =

1
ln

R

R rk

Ê ˆ
Á ˜Ë ¯-

where r is the radius of the pipe and k is a constant.

10.3 Calculate power required to move a flat plate, 8 m long and 3 m wide in wa-
ter (r = 1000 kg/m3, m = 1.02 ¥ 10–3 kg/ms) at 8 m/s for the following cases:
(i) the boundary layer is turbulent over the entire surface of the plate

(ii) the transition takes place at Re = 5 ¥ 105.
Ans. ((i) 12.536 ¥ 103 W (ii) 12.518 ¥ 103 W)
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10.4 The transition Reynolds number in a pipe flow based on Uav is approxi-
mately 2300. How can this value be extrapolated for the flow over a flat
plate if U• in the flat plate case is analogous to Umax in the pipe and d is
analogous to pipe radius R?

Ans. (Rex = 2.116 ¥ 105)

10.5 A plate 50 cm long and 2.5 m wide moves in water at a speed of 15 m/s.
Estimate its drag if the transition takes place at Re = 5 ¥ 105 for (i) a smooth
wall, and (ii) a rough wall, ep = 0.1 mm. For water, r = 1000 kg/m3 and m =
1.02 ¥ 10–3 kg/ms.

Ans. ((i) 411.405 W (ii) 806.168 W)

10.6 In turbulent flat-plate flow, the wall shear stress is given by the formula

tw = 0.0225 
1/ 4

2
U

U

n
r

d
•

•

È ˘
Í ˙
Î ˚

Two important equations concerning the 1/7th power law velocity profiles are

Cf x = 2 
**d

dx

d
and d** = 

7

72
d

From the above three equations, find the final expression for skin friction
coefficient (Cf x).

Ans. (Cfx = 0.0576 (Rex)
–1/5)

10.7 Water flows at a rate of 0.05 m3/s in a 20 cm diameter cast iron pipe
(ep/D = 0.0007). What is the head (pressure) loss per kilometer of the pipe?
For water, r = 1000 kg/m3, n = 1.0 ¥ 10–6 m2/s. Use Moody’s chart.

Ans. (12.2 m)

10.8 Air (r = 1.2 kg/m3 and n = 1.5 ¥ 10–5 m2/s) flows at a rate of 2.5 m3/s in a 30 cm
¥  60 cm steel rectangular duct (ep = 4.6 ¥ 10–5 m). What is the pressure drop
per 50 m of the duct? Use Moody’s chart.

Ans. (217 pa)

10.9 Water is being transported through a rough pipe line (ut ep /n = 100), 1 km long
with maximum velocity of 4 m/s. If the Reynolds number is 1.5 ¥ 106, find out
the diameter of the pipe and power required to maintain the flow. For water, r
= 1000 kg/m3, n = 1.0 ¥ 10–6 m2/s.

Ans. (D = 0.454 m, P = 134.113 kW)

10.10 Modify the friction drag coefficient given by Eq. (10.64) as C f  = 0.074 (ReL)–1/5 – A /

ReL. Let the flow be laminar up to a distance X cr from the leading edge and tur-
bulent for X cr £ x £ L. Consider the transition to occur at Rex = 5 ¥ 105.

Ans. (A  = 1700)

10.11 Air flows over a smooth flat plate at a velocity of 4.4 m/s. The density of air is
1.029 kg/m3 and the kinematic viscosity is 1.35 ¥ 10–5 m2/s. The length of the
plate is 12 m in the direction of flow. Calculate (i) the boundary layer thick-
ness at 16 cm and 12 m respectively, from the leading edge and (ii) the drag
coefficient for the entire plate surface (one side) considering turbulent flow.

Ans. ((i) 3.5 ¥ 10–3 m, and 0.0207 m (ii) fC  = 3.554 ¥ 10–3)
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10.12 The velocity distribution for a laminar boundary layer flow is given by 
e

u

u
 =

sin 
2

yp

d
Ê ˆ◊Á ˜Ë ¯

. The velocity at y = k is given by uk. It is assumed that the small

roughness of height k will not generate eddies to disturb the boundary layer if

ku k

n
 is less than about 5.0. Show that at a distance x from the leading edge, the

maximum permissible roughness height for the boundary layer to remain un-

distributed is given by 
k

c
 = 

1/ 4

3/ 4(Re)

A x

c

Ê ˆ
Á ˜Ë ¯  where, Re = eu c

n
, c is the total

length of the plate and A  is a constant.



11.1  INTRODUCTION

Fully developed laminar and turbulent flows through pipes of uniform cross section
have already been discussed in Sections 8.3.4 and 10.11 respectively. While a
complete analytical solution for the equation of motion in case of a laminar flow is
available, even the advanced theories in the analyses of turbulent flow depend at
some point on experimentally derived information. One of the most important items
of information that a hydraulic engineer needs is the power required to force fluids
at a certain steady rate through a pipe or pipe network system. This information is
furnished in practice through some routine solution of pipe flow problems with the
help of available empirical and theoretical information. This chapter deals with the
typical approaches to the solution of pipe flow problems in practice.

11.2  CONCEPT OF FRICTION FACTOR IN A PIPE FLOW

The friction factor in the case of a pipe flow has already been mentioned in Section
8.3.4. A little elaborate discussion on the friction factor or friction coefficient is still
needed for the sake of its use in different practical problems. Skin friction
coefficient for a fully developed flow through a closed duct is defined as

Cf = 2(1/2)
w

V

t

r
(11.1)

where, V  is the average velocity of flow given by V  = Q/A , Q and A  are the volume
flow rate through the duct and the cross-sectional area of the duct respectively.
From a force balance of a typical fluid element (Fig. 11.1) in course of its flow
through a duct of constant cross-sectional area, we can write

tw =
*

p A

S L

D
(11.2)

11

VISCOUS FLOWS

THROUGH PIPES
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tw

tw

p* p* p*– D

L

Fig. 11.1 Force balance of a fluid element in the course of flow through a duct

where, tw is the shear stress at the wall and D p* is the piezometric pressure drop
over a length of L. A  and S are respectively the cross-sectional area and wetted
perimeter of the duct. Substituting the expression (11.2) in Eq. (11.1), we have,

Cf =
*

2(1/2)

p A

S L Vr

D

=
*

2

1

4 (1/2)

hD p

L Vr

D
(11.3)

where, Dh = 4A /S and is known as the hydraulic diameter. In case of a circular pipe,
Dh = D, the diameter of the pipe. The coefficient Cf defined by Eqs (11.1)
or (11.3) is known as Fanning’s friction factor. To do away with the factor 1/4 in
the Eq. (11.3), Darcy defined a friction factor f as

f =
*

2(1/2)

hD p

L Vr

D
(11.4)

Comparison of Eqs (11.3) and (11.4) gives f = 4Cf . Equation (11.4) can be written
for a pipe flow as

f =
*

2(1/2)

D p

L Vr

D
(11.5)

Equation (11.5) is written in a different fashion for its use in the solution of pipe
flow problems in practice as

D p* = 21

2

L
f V

D
r (11.6a)

or in terms of head loss (energy loss per unit weight)

hf =
*

p

gr

D
 = 2( /2 )

L
f V g

D
(11.6b)
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where, hf represents the loss of head due to friction over the length L of the pipe.
Equation (11.6b) is frequently used in practice to determine hf by making use of
theoretical or empirical information on f beforehand.

Example 11.1

In a fully developed flow through a pipe of 300 mm diameter, the shear stress at the
wall is 50 Pa. The Darcy’s friction factor f is 0.05. What is the rate of flow in case of
(i) water flowing through the pipe and (ii) oil of specific gravity 0.70 flowing
through the pipe?

Solution

Darcy’s friction factor f is defined (see Eq. 11.1 to 11.4) as

f =
2

4
1

2

w

V

t

r

¥

where, tw is the wall shear stress and V  is the average flow velocity.

Therefore, V  =
8 w

f

t

r

and, flow rate Q = V  ¥ p R2 (where R is the pipe radius)
(i) For water flowing through the pipe

Q = p ¥ (0.3)2 
3

8 50

10 0.05

¥

¥
= 0.8 m3/s

(ii) For oil flowing through the pipe

Q = p ¥ (0.3)2 
3

8 50

0.70 10 0.05

¥
¥ ¥

= 0.96 m3/s

11.3  VARIATION OF FRICTION FACTOR

In case of a laminar fully developed flow through pipes, the friction factor f, is
found from the exact solution of the Navier–Stokes equation as discussed in
Section 8.4.3. It is given by

f =
64

Re
(11.7)

It has also been discussed in Sections 10.10 and 10.11 that in case of a turbulent
flow, friction factor depends on both the Reynolds number and the roughness of the
pipe surface.
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Sir Thomas E. Stanton (1865–1931) first started conducting experiments on a
number of pipes of various diameters and materials and with various fluids.
Afterwards, a German engineer Nikuradse carried out experiments on flows through
pipes in a very wide range of Reynolds number. A comprehensive documentation of
the experimental and theoretical investigations on the laws of friction in pipe flows
has been made in the form of a diagram, as shown in Fig. 11.2, by L.F. Moody to
show the variation of friction factor f, with the pertinent governing parameters,
namely, the Reynolds number of flow and the relative roughness e /D of the pipe.
This diagram is known as Moody’s diagram which is employed till today as the best
means for predicting the values of f.

Roughness in commercial pipes is due to the protrusions at the surface which are
random both in size and spacing. However, the commercial pipes are specified by
the average roughness which is the measure of some average height of the
protrusions. This equivalent average roughness is determined from the experimental
comparisons of flow rate and pressure drop in a commercial pipe with that of a pipe
with artificial roughness created by gluing grains of sand of uniform size to the wall.
Friction factor f, in laminar flow, as given by Eq. (11.7), is independent of the
roughness of the pipe wall, unless the roughness is so great that the irregularities
make an appreciable change in diameter of the pipe. Beyond a Reynolds number of
2000, i.e., in turbulent region, the flow depends on the roughness of the pipe. Figure
11.2 depicts that the friction factor f, at a given Reynolds number, in the turbulent
region, depends on the relative roughness, defined as the ratio of average roughness
to the diameter of the pipe, rather than the absolute roughness. For moderate degree
of roughness, a pipe acts as a smooth pipe up to a value of Re where the curve of f

versus Re for the pipe coincides with that of a smooth pipe. This zone is known as
the smooth zone of flow. The region where f versus Re curves (Fig. 11.2) become
horizontal showing that f is independent of Re, is known as the rough zone and the
intermediate region between the smooth and rough zone is known as the transition

zone. The position and extent of all these zones depend on the relative roughness of
the pipe. In the smooth zone of flow, the laminar sublayer becomes thick, and hence,
it covers appreciably the irregular surface protrusions. Therefore all the curves for
smooth flow coincide. With increasing Reynolds number, the thickness of sublayer
decreases and hence the surface bumps protrude through it. The higher is the
roughness of the pipe, the lower is the value of Re at which the curve of f versus Re
branches off from smooth pipe curve (Fig. 11.2). In the rough zone of flow, the flow
resistance is mainly due to the form drag of those protrusions. The pressure drop in
this region is approximately proportional to the square of the average velocity of
flow. Thus f becomes independent of Re in this region.

In practice, there are three distinct classes of problems relating to flow through a
single pipe line as follows:

(i) The flow rate and pipe diameter are given. One has to determine the loss of
head over a given length of pipe and the corresponding power required to
maintain the flow over that length.

(ii) The loss of head over a given length of a pipe of known diameter is given.
One has to find out the flow rate and the transmission of power accordingly.
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(iii) The flow rate through a pipe and the corresponding loss of head over a part
of its length are given. One has to find out the diameter of the pipe.

In the first category of problems, the friction factor f, is found out explicitly from
the given values of flow rate and pipe diameter. Therefore, the loss of head hf and
the power required P can be calculated by the sraightforward application of Eq.
(11.6b). A typical example of this category of problems is given below:

Example 11.2

Determine the loss of head in friction when water at 15 °C flows through a 300 m

long galvanised steel pipe of 150 mm diameter at 0.05 m3/s. (Kinematic viscosity of

water at 15 °C = 1.14 ¥ 10–6 m2/s. Average surface roughness for galvanised steel =
0.15 mm). Also calculate the pumping power required to maintain the above flow.

Solution

Average velocity of flow V  = 2

0.05

( /4)(0.15)p
 = 2. 83 m/s

Therefore, Reynolds number Re = 6

2.83 0.15

1.14 10

V D

n -
¥

=
¥

 = 3.72 ¥ 105

Relative roughness  e/D = 0.15/150 = 0.001
From Fig. 11.2, f = 0.02
Hence, using Eq. (11.6b)

hf = 0.02  
2300 (2.83)

0.15 2 9.81¥
= 16.33 m

Power required to maintain a flow at the rate of Q under a loss of head of hf is given
by

P = r g hf Q

= 103 ¥ 9.81 ¥ 16.33 ¥ 0.05 W

= 8 kW

In the second and third category of problems, both the flow rate and the pipe
diameter are not known beforehand to determine the friction factor. Therefore the
problems in these categories cannot be solved by the straightforward application of
Eq. (11.6b), as shown in Example 11.2 above. A method of iteration is suggested in
this case where a guess is first made regarding the value of f. With the guess value of
f the flow rate or the pipe diameter, whichever is unknown in the problem, is found
out as a first approximation using the Eq. (11.6b). Then the guess value of f  is
updated with the new value of Reynolds number found from the approximate value
of flow rate or pipe diameter as calculated. The problem is repeated till a legitimate
convergence in f is achieved. Examples of this typical method dealing with the
problems belonging to categories (ii) and (iii), as mentioned above, are given below.
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Example 11.3

Oil of kinematic viscosity 10–5 m2/s flows at a steady rate through a cast iron pipe of
100 mm diameter and of 0.25 mm average surface roughness. If the loss of head
over a pipe length of 120 m is 5 m of the oil, what is the flow rate through the pipe?

Solution

Since the velocity is unknown, Re is unknown. Relative rougness e/D = 0.25/100 =
0.0025. A guess of the friction factor at this relative roughness is made from Fig.
11.2 as f = 0.026 Then Eq. (11.6b) gives a first trial

5 = 0.026 
2120

0.10 2 9.81

V

¥
when, V  = 1.773 m/s

Then, Re = 4
5

1.773 0.10
1.773 10

10-
¥

= ¥

The value of Re, with e/D as 0.0025, gives f = 0.0316 (Fig. 11.2). The second
step of iteration involves a recalcualtion of V  with f = 0.0316, as

5 = 0.0316 ¥ 
2120

0.1 2 9.81

V

¥
which gives V  = 1.608 m/s

and Re =
5

1.608 0.10

10-
¥

 = 1.608 ¥ 104

The value of f at this Re (Fig. 11.2) becomes 0.0318. The relative change between
the two successive values of f  is 0.63% which is insignificant. Hence the value of
V  = 1.608 m/s is accepted as the final value.
Therefore, the flow rate Q = 1.608 ¥ (p/4) ¥ (0.10)2 = 0.013 m3/s

Example 11.4

Determine the size of a galvanised iron pipe needed to transmit water a distance of
180 m at 0.085 m3/s with a loss of head of 9 m. (Take kinematic viscosity of water
n = 1.14 ¥ 10–6 m2/s, and the average surface roughness for galvanised iron = 0.15
mm).

Solution

From Eq. (11.6b),

9 =

2

2

180 0.085 1

2 9.81/4
f

D Dp

Ê ˆ
Á ˜ ¥Ë ¯

which gives D5 = 0.012 f (11.8)
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and Re =
2 6

0.085

( /4) 1.14 10

D

Dp -¥ ¥

= 9.49 ¥ 104 
1

D
(11.9)

First, a guess in f is made as 0.024.

Then from Eq. (11.8) D = 0.196 m

and from Eq. (11.9) Re = 4.84 ¥ 105

The relative roughness e/D =
0.15

0.196
 ¥ 10–3 = 0.00076

With the values of Re and e/D, the updated value of f is found from Fig. 11.2 as
0.019. With this value of f as 0.019, a recalculation of D and Re from Eqs (11.8) and
(11.9) gives D = 0.187 m, Re = 5.07 ¥ 105. e/D becomes (0.15/0.187) ¥ 10–3 = 0.0008.
The new values of Re and Œ/D predict f = 0.0192 from Fig. 11.2. This value of f differs
negligibly (by 1%) from the previous value of 0.019. Therefore the calculated
diameter D = 0.187 m is accepted as the final value.

11.4  ENERGY CONSIDERATIONS IN PIPE FLOW

The discussions made in this chapter so far implicate that there is invariably an
energy loss to overcome viscous resistances in pipe flow. In order to assess the
underlying consequences from a control volume energy balance perspective, we
consider a control volume (CV) as depicted in Fig. 11.3. For applying Reynolds
transport theorem (Eq. (5.3)) for energy conservation as applicable to the identified
CV, we set N = E (where E is the total energy of the system = Kinetic energy + Potential

energy + Internal energy
2

2

V
m mgz mi= + + ; i being the internal energy per unit mass)

and eh = (where 
2

2

V
e gz i= + + , which is energy per unit mass). Accordingly, Eq.

(5.3) becomes

( )
system

ˆ·r
CV CS

dE
ed e V n dA

dt t
r r

∂
= " +

∂ Ú Ú
r

(11.10)

We further consider steady flow through a pipe so that 0
CV

ed
t

r
∂

" =
∂ Ú  and

furthermore, we assume a stationary CV, so that rV V=
r r

. Considering these two

assumptions, Eq. (11.10) simplifies to

( )
system

ˆ·
CS

dE
e V n dA

dt
r= Ú

r
     (11.10a)
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For describing Eq. (11.10a) in terms of heat-work interactions, we refer to the

first law of thermodynamics for a system which states that the heat Qd  added to a

system, minus the work done Wd by the system, equals to the change in its energy E
that depends only upon the initial and final states of the system. In mathematical
form

Q W dEd d- =      (11.11a)

Equation (11.11a) can be expressed on the time rate basis as

system

dE
Q W

dt
- =& &      (11.11b)

In Out

1

1

2

2

CV Pipe

Fig. 11.3 A control volume used to derive energy equation in pipe flow

Substituting Eq. (11.11b) into Eq. (11.10a), we get

( )ˆ·
CS

Q W e V n dAr- = Ú
r

& & (11.12)

The rate of work done by the fluid can be expressed as (refer Fig. 11.3)

( )ˆ.
CS

W pv V n dAr= -Ú
r

& (11.13)

Equation is the specific volume Eq. (11.13) follows from the consideration that
there is a work associated with the occurrence of flow in presence of pressure, which
is called as flow energy or flow work. At the inlet, work is input to the control
volume, which by the present sign convention, implicates negative work done by the
control volume. Reverse is the case at the flow outlet. It is important to mention
here that there is no work done to overcome the shear stress of the wall as there is no
displacement of fluid at the wall.

In many traditional texts, the rate of work done represented by Eq. (11.13) is
clubbed up with the rate of energy flow term depicted by the right-hand side of Eq.

(11.12). In that case, the net rate of work done, W , as appearing in the left hand side
of Eq. (11.12) should be taken as zero, since the same effect should not be taken
twice.
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Combining Eqs (11.12) and (11.13), one can write

2 2

2 2out in

p V p V
Q gz i VdA gz i VdAr r

r r

Ê ˆ Ê ˆ
= + + + - + + +Á ˜ Á ˜Ë ¯ Ë ¯Ú Ú& (11.14)

The average velocity at across section in a flowing stream is defined on the basis
of the volumetric flow rate as

A

VdA

V
A

=
Ú

The kinetic energy per unit mass of the fluid is usually expressed as ( )2 2Va ,

where a  is known as the kinetic energy correction factor. This correction factor is
introduced so that the kinetic energy becomes expressible in terms of the average
velocity over a section on adjustment with this factor. Therefore, we can write

(noting that rate of flow kinetic energy ( )
2 2

2 2

V V
m AVa r a=& )

3 31 1

2 2
A

V A V dAa r r= Ú

Thus,

3

3

V dA

V A

r
a

r
= Ú

(11.15a)

For a constant density flow,
3

3

V dA

V A
a = Ú

     (11.15b)

In case of a laminar fully developed constant density flow through a circular
pipe, the value of a  becomes 2. This can be derived straightway from Eq. (11.15b)

by noting that 
2

2
2 1

V r

V R

Ê ˆ
= -Á ˜Ë ¯

(Eq. (8.55) and 2dA rdrp= . For a turbulent flow

through a pipe, the value of a  usually varies from 1.01 to 1.15. In the absence of a
prior knowledge about the velocity distribution, the value of a , in most of the
practical analyses, is taken as unity for turbulent flows. The rationale behind this
argument is that the profile of average velocity for turbulent flow through a pipe is
virtually uniform due to efficient mixing, resulting in only marginal deviation of the
local average velocities from the mean averaged velocity.

Assuming that pressure is not varying at a given cross section, and denoting the
Subscripts 1 and 2 for inlet and outlet, respectively, (refer to Fig. 11.3), Eq. (11.14) ,
with the aid of Eq. (11.15a), can be written as

2 2
2 1 1 1

1 2 2 1 1 1
2 2

CV out out out out in in in in

p V p V
Q m m gz m i m m m gz m i ma a

r r
= + + + - - + +& & & & & & & & &

or ( )
2 2

1 1 2 2
1 1 2 2 2 1

2 2
CVQp V p V

gz gz i i
m

a a
r r

È ˘
+ + = + + + - -Í ˙

Î ˚

&

&
(11.16)

Equation  (11.16) is a statement of energy equation in pipe flow.
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In order to assess the physical implications of the terms appearing in the square
bracket in Eq. (11.16), one may note that in course of fluid flow, energy is dissipated

due to the viscous action to overcome the frictional resistance. This increases the
temperature of the system and thus 2 1i i> . Therefore, from Eq. (11.16) we can

conclude that there will be heat transfer from the system to the surroundings, i.e.,

CVQ&  is negative (until and unless the pipe wall is insulated, for which case

CVQ& becomes zero). The net effect is that the term ( )2 1
CVQ

i i
m

- -
&

&
represents a net

rate of loss of energy per unit mass flow rate to overcome the viscous action between
the various layers of the fluid. Physically, it represents a net effect of the

consequential increase in the intermolecular form of energy due to viscous friction
and a loss of heat from the system to the surroundings across the control surface. If

we denote this combined effect as a net loss of energy, which, per unit weight, is
expressed as fh , then Eq. (11.16) may be recast in a compact form as

2 2
1 1 2 2

1 1 2 2
2 2

f

p V p V
z z h

g g g g
a a

r r
+ + = + + + (11.17)

The terminology ‘head loss’ for fh stems from the fact that it amounts to the loss

in total mechanical energy per unit weight between Sections 1 and 2 due to the
effect of fluid friction or viscosity. Evidently, for flow through a pipe of uniform

cross section, the head loss fh  appearing in Eq. (11.17) is identical to the one
represented by Eq. (11.16), provided that the kinetic energy correction factors at
Sections 1 and 2 are identical.

Interestingly and elusively, Eq. (11.17) appears to be a modified Bernoulli’s
equation with a correction term accounting for viscous dissipation. Despite such a

resemblance, Eq. (11.17) should not be technically called a modified Bernoulli’s
equation, since Eq.(11.17) is applied between two sections of flow whereas

Bernoulli’s equation is applied between two points in the flow field under
appropriate conditions. Equation (11.17), rather, is a statement of thermo-

mechanical energy conservation, and may accordingly be alternatively termed as a
modified mechanical energy equation accounting for losses due to thermo-

mechanical interactions.
It is also important to mention that from here onwards, we represent the average

velocity by dropping the overbar, for notational convenience. Thus, for the problems
and theoretical discussions subsequently made in this chapter, the notation V  must

be read as V .

Example 11.5

Show that (i) the average velocity V  in a circular pipe of radius 0r  equals to

( )( )max

1
2

1 2k k

È ˘
Í ˙+ +Î ˚

v  and (ii) the kinetic energy correction factor

( ) ( )
( )( )

3 31 2

4 3 1 3 2

k k

k k
a

+ +
=

+ +
, for a velocity distribution given by ( )max 01

k
r r= -v v .
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Solution

(i) Average velocity V  is given by

( )
( )

0

0

0
max 02 2

0 0 0

2
2

1

r

r
k

r dr

V r r rdr
r r

p

p
= = -

Ú
Ú

v

v

Let 01 r r z- =

Hence, ( )0 1r r z= -  and 0dr r dz= -

Substituting the variable r in terms of z in the above integral, we have

( )
( ) ( )

1
2max

0 max2
0 0

2 1 1
1 2

1 2
k

V r z z dz
k kr

È ˘
= - = -Í ˙+ +Î ˚

Ú
v

v

( )( )max

1
2

1 2k k

È ˘
= Í ˙+ +Î ˚

v

(ii) Considering constant density flow, the kinetic energy correction factor can be
written, following Eq. (11.15b), as

( ) ( )

( )( )

0 3

max 0

0
3

3 2
max 0

1 2

1
8

1 2

r
k

r r r dr

r
k k

p

a

p

È ˘-Î ˚
=

È ˘
Í ˙+ +Î ˚

Ú v

v

Substituting r in terms of z using the transformation 01 /r r z- = , we get

( )

( )( )

( ) ( )

( )( )

1
3 2 3
max 0

0
3 3

3 2
max 0

1 12 1
1 3 1 3 2

41 1
8

1 2 1 2

k
r z z dz

k k

r
k k k k

p

a

p

È ˘- -Í ˙+ +Î ˚= =
È ˘ È ˘
Í ˙ Í ˙+ + + +Î ˚ Î ˚

Úv

v

( ) ( )
( ) ( )

3 31 21

4 3 1 3 2

k k

k k

+ +
=

+ +

11.5 LOSSES DUE TO GEOMETRIC CHANGES

In case of flow of a real fluid, the major source for the loss of its total mechanical
energy is the viscosity of fluid which causes friction between the  layers of fluid and
between the solid surface and adjacent fluid layer. It is the role of friction, as an
agent, to convert a part of the mechanical energy into intermolecular energy. This
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part of the mechanical energy converted into the intermolecular energy is termed as
the loss of energy, since our attention is focussed only on the mechanical energy of
the fluid.

Apart from the losses due to friction between the solid surface and the fluid layer
past it, the loss of mechanical energy is also incurred when the path of the fluid is
suddenly changed in course of its flow through a closed duct due to any abrupt
change in the geometry of the duct. In long ducts, these losses are very small
compared to the frictional loss, and hence they are often termed as minor losses. But
minor losses may, however, outweigh the frictional loss in short pipes or ducts. The
source of these losses is usually confined to a very short length of the duct, but the
turbulence produced may persist for a considerable distance downstream. A few
such minor losses are discussed below.

11.5.1 Losses Due to Sudden Enlargement

If the cross section of a pipe with fluid flowing through it, is abruptly enlarged (Fig.
11.4(a)) at a certain place, the fluid emerging from the smaller pipe is unable to
follow the abrupt deviation of the boundary. The streamline takes a typical diverging
pattern as shown in Fig. 11.4(a). This creates pockets of turbulent eddies in the
corners resulting in the dissipation of mechanical energy into intermolecular energy.

The basic mechanism of this type of loss is similar to that of losses due to
separation, in case of flow of fluid against an adverse pressure gradient. Here the
fluid flows against an adverse pressure gradient. The upstream pressure p1 at section
a–b is lower than the downstream pressure p2 at section e–f  since the upstream
velocity V 1 is higher than the downstream velocity V 2 as a consequence of
continuity. The fluid particles near the wall due to their low kinetic energy cannot
overcome the adverse pressure hill in the direction of flow and hence follow up the
reverse path under the favourable pressure gradient (from p2 to p1). This creates a
zone of recirculating flow with turbulent eddies near the wall of the larger tube at
the abrupt change of cross section, as shown in Fig. 11.4(a), resulting in a loss of
total mechanical energy. For high values of Reynolds number, usually found in
practice, the velocity in the smaller pipe may be assumed sensibly uniform over the
cross section. Due to the vigorous mixing caused by the turbulence, the velocity
becomes again uniform at a far downstream section e–f from the enlargement
(approximately 8 times the larger diameter). A control volume abcdefgha is
considered (Fig. 11.4(a)) for which the momentum theorem can be written as

p1

A1 A2

p2

V2

a

b

d

h
g f

e

c
V1

Fig. 11.4 (a) Flow through abrupt but

finite enlargement

Fig. 11.4 (b)   Flow at infinite

enlargement (Exit loss)
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p1A 1 + p¢ (A 2 – A1) – p2A 2 = rQ (V 2 – V 1) (11.18)

where A 1, A 2 are the cross-sectional areas of the smaller and larger parts of the pipe
respectively, Q is the volumetric flow rate and p¢ is the mean pressure of the eddying
fluid over the annular face, gd. It is known from experimental evidence that p¢ = p1

Hence the Eq. (11.18) becomes

(p2 – p1)A 2 = rQ (V 1 – V 2) (11.19)

From the equation of continuity,

Q = V2 A2 (11.20)

With the help of Eq. (11.20), Eq. (4.19) becomes

p2 – p1 = rV 2 (V 1 – V 2) (11.21)

Applying Bernoulli’s equation between sections ab and ef in consideration of the
flow to be incompressible and the axis of the pipe to be horizontal, we can write

2
1 1

2

p V

r
+  =

2
2 2

2

p V

r
+  + ghL

or 2 1p p

r

-
 =

2 2
1 2

2

V V-
 – ghL (11.22)

where hL is the loss of head. Substituting (p2 – p1) from Eq. (11.21) into Eq. (11.22),
we obtain

hL =
2

1 2( )

2

V V

g

-
 = 

2
1

2

V

g
 [1 – (A 1/A 2)]2 (11.23)

In view of the assumptions made, Eq. (11.23) is subjected to some inaccuracies,
but experiments show that for coaxial pipes they are within only a few per cent of
the actual values.

11.5.2 Exit Loss

If, in Eq. (11.23), A 2 Æ •, then the head loss at an abrupt enlargement tends to
V 2

1/2g. The physical resembleness of this situation is the submerged outlet of a pipe
discharging into a large reservoir as shown in Fig. 11.4(b). Since the fluid velocities
are arrested in a large reservoir, the entire kinetic energy at the outlet of the pipe is
dissipated into the intermolecular energy of the reservoir through the creation of
turbulent eddies. In such circumstances, the loss is usually termed as exit loss for
the pipe and equals to the velocity head at the discharge end of the pipe.

11.5.3 Losses Due to Sudden Contraction

An abrupt contraction is geometrically the reverse of an abrupt enlargement
(Fig. 11.5). Here also the streamlines cannot follow the abrupt change of geometry
and hence gradually converge from an upstream section of the larger tube. However,
immediately downstream of the junction of area contraction, the cross-sectional
area of the stream tube becomes the minimum and less than that of the smaller pipe.
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This section of the stream tube is known as the vena contracta, after which the

stream widens again to fill the pipe. The velocity of flow in the converging part of
the stream tube from Section 1–1 to Section c–c (vena contracta) increases due to

continuity and the pressure decreases in the direction of flow accordingly in
compliance with the Bernoulli’s theorem. In an accelerating flow, under a

favourable pressure gradient, losses due to separation cannot take place. But in the
decelerating part of the flow from Section c–c to Section 2–2, where the stream tube

expands to fill the pipe, losses take place in the similar fashion as occur in case of a
sudden geometrical enlargement. Hence eddies are formed between the vena

contracta c–c and the downstream Section 2–2. The flow pattern after the vena
contracta is similar to that after an abrupt enlargement, and the loss of head is thus

confined between Section c–c to Section 2–2. Therefore, we can say that the losses
due to contraction is not for the contraction itself, but due to the expansion followed

by the contraction. Following Eq. (11.23), the loss of head in this case can be written
as

hL =
2

2

2

V

g
 [(A 2/A c) – 1]2 = 

2
2

2

V

g
 [(1/Cc) – 1]2 (11.24)

(1)

(2)c

c (2)

Area Ac

Area A2

Area A1

V2

(1)

Fig. 11.5 Flow through a sudden contraction

where A c represents the cross-sectional area of the vena contracta, and Cc is the

coefficient of contraction defined by

Cc = Ac/A2 (11.25)

Equation (11.24) is usually expressed as

hL = K(V 2
2/2g) (11.26)

where K = [(1/Cc) – 1]2 (11.27)

Although the area A 1 is not explicitly involved in the Eq. (11.24), the value of Cc

depends on the ratio A 2/A 1. For coaxial circular pipes and at fairly high Reynolds
numbers, Table 11.1 gives representative values of the coefficient K.
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Table 11.1

A2/A1 0 0.04 0.16 0.36 0.64 1.0

K 0.5 0.45 0.38 0.28 0.14 0

11.5.4 Entry Loss

As A 1 Æ •, the value of K in the Eq. (11.26) tends to 0.5 as shown in Table 11.1.
This limiting situation corresponds to the flow from a large reservoir into a sharp-
edged pipe, provided the end of the pipe does not protrude into the reservoir
(Fig. 11.6(a)). The loss of head at the entrance to the pipe is therefore given by 0.5
(V 2

2/2g) and is known as entry loss. A protruding pipe (Fig. 11.6(b)) causes a greater
loss of head, while on the other hand, if the inlet of the pipe is well rounded (Fig.
11.6(c)), the fluid can follow the boundary without separating from it, and the entry
loss is much reduced and even may be zero depending upon the rounded geometry
of the pipe at its inlet.

(a) (b) (c)

> /2d

d d

Radius

Usually accepted
values of K

1.00.5 0

> 0.14d

Fig. 11.6 Flow from a reservoir to a sharp edged pipe

11.6  CONCEPT OF FLOW POTENTIAL AND FLOW RESISTANCE

Consider the flow of water from one reservoir to another as shown in Fig. 11.7. The
two reservoirs A  and B are maintained with constant levels of water. The difference
between these two levels is DH as shown in the figure. Therefore water flows from
reservoir A  to reservoir B. Application of Bernoulli’s equation between two points A
and B at the free surfaces in the two reservoirs gives

atm

g

p

r
 + HA  + ZA  =

atm

g

p

r
 + HB + ZB + hf

or D H = (ZA  + HA) – (ZB + HB) = hf (11.28)

where hf is the loss of head in the course of flow from A  to B. Therefore, Eq. (11.28)
states that under steady state, the head causing flow DH becomes equal to the total
loss of head due to the flow. Considering the possible hydrodynamic losses, the
total loss of head hf , can be written in terms of its different components as



Viscous Flows Through Pipes 543

patm

patm

B

L

V

D

A

DH

HB

ZA

ZB

HA

Datum

Fig. 11.7 Flow of liquid from one reservoir to another

hf =
20.5

2

V

g
+

2

2

L V
f

D g
+

2

2

V

g

Loss of head at Friction loss in Exit loss to the
entry to the pipe pipe over its reservoir B
from reservoir A length L

= 
2

1.5
2

L V
f

D g

Ê ˆ+Á ˜Ë ¯ (11.29)

where V  is the average velocity of flow in the pipe. The velocity V , in the above
equation is usually substituted in terms of flow rate Q, since, under steady state, the
flow rate remains constant throughout the pipe even if its diameter changes.

Therefore, we replace V  in Eq. (11.29) as V   = 4Q/pD2 and finally get

hf =
2

2 4

1
8 1.5

L
f Q

D D gp

È ˘Ê ˆ+Á ˜Í ˙Ë ¯Î ˚
or hf = R Q2 (11.30)

where R =
2 4

8
1.5

L
f

DD gp

È ˘Ê ˆ+Á ˜Í ˙Ë ¯Î ˚
(11.31)

The term R is defined as the flow resistance. In a situation where f becomes
independent of Re, the flow resistance expressed by Eq. (11.31) becomes simply a
function of the pipe geometry. With the help of Eq. (11.28), Eq. (11.30) can be written
as

D H = RQ2 (11.32)
DH in Eq. (11.32) is the head causing the flow and is defined as the difference in

flow potentials between A  and B.
This equation is comparable to the voltage-current relationship in a purely

resistive electrical circuit. In a purely resistive electrical circuit, DV  = r i, where DV

is the voltage or electrical potential difference across a resistor whose resistance is
r and the electrical current flowing through it is i. The difference however is that
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while the voltage drop in an electrical circuit is linearly proportional to current, the
difference in the flow potential in a fluid circuit is proportional to the square of the
flow rate. Therefore, the fluid flow system as shown in Fig. 11.7 and described by
Eq. (11.32) can be expressed by an equivalent electrical network system as shown in
Fig. 11.18.

Q2 R

D H
Fig. 11.8 Equivalent electrical network system for a simple

pipe flow problem shown in Fig. 11.7

11.7   FLOW THROUGH BRANCHED PIPES

In several practical situations, flow takes place under a given head through different
pipes joined together either in series or in parallel or in a combination of both of
them.

11.7.1 Pipes in Series

If a pipeline is joined to one or more pipelines in continuation, these are said to
constitute pipes in series. A typical example of pipes in series is shown in Fig. 11.9.
Here three pipes A , B and C are joined in series.

A
B

QA

Q = Q = QA B C

VA

QB VC

VB

C

DA

LA

H1 H2

1 2DB

LB

DC

LC

QC

Fig. 11.9 Pipes in series

In this case, rate of flow Q remains same in each pipe. Hence,

QA  = QB = QC = Q

If the total head available at Section 1 (at the inlet to pipe A ) is H1 which is
greater than H2, the total head at Section 2 (at the exit of pipe C), then the flow takes
place from 1 to 2 through the system of pipelines in series. Application of energy
equation between Sections 1 and 2 gives

H1 – H2 = hf
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where, hf is the loss of head due to the flow from 1 to 2. Recognising the minor and
major losses associated with the flow, hf can be written as

hf = fA  
2

2
A A

A

L V

D g
+

2( )

2
A BV V

g

-
+

2

2
B B

B
B

L V
f

D g
+

2 21
1

2
C

c

V

C g

Ê ˆ
-Á ˜Ë ¯

Friction loss Loss due to Friction loss Loss due to abrupt
in pipe A  enlargement at  in pipe B  contraction at entry

 entry to pipe B  to pipe C

+ fC 
2

2
C c

C

L V

D g
(11.33)

Friction loss in pipe C

The subscripts A , B and C refer to the quantities in pipe A , B and C respectively.
Cc is the coefficient of contraction.

The flow rate Q satisfies the equation,

Q =
22 2

4 4 4
CA B

A B C

DD D
V V V

pp p
= = (11.34)

Velocities V A, VB and V C in Eq. (11.33) are substituted from Eq. (11.34), and we get

hf =

22

2 5 2 2 4 2 5

8 8 1 8
1A A B

A B

A B A B
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f f
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È Ê ˆ
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c
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L
f Q

Cg D g Dp p

˘Ê ˆ
- + ˙Á ˜Ë ¯ ˙̊

(11.35)

R4 R5

or hf = RQ2

where, R = R1 + R2 + R3 + R4 + R5 (11.36)

Equation (11.36) states that the total flow resistance is equal to the sum of the
different resistance components. Therefore, the above problem can be described by an
equivalent electrical network system as shown in Fig. 11.10.

Q2
Q2

H1

R1 R3R2 R4 R5

H2

Fig. 11.10 Equivalent electrical network system for flow through pipes in

series
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11.7.2 Pipes in Parallel

When two or more pipes are connected, as shown in Fig. 11.11, so that the flow
divides and subsequently comes together again, the pipes are said to be in parallel.
In this case (Fig. 11.11), equation of continuity gives

Q = QA  + QB (11.37)

where, Q is the total flow rate and QA  and QB are the flow rates through pipes A
and B respectively. Loss of head between the locations 1 and 2 can be expressed by
applying energy equation either through the path 1–A –2 or 1–B–2. Therefore, we
can write

QA DA

DB

Q Q

A

BQB

H1 1 2 H2

Fig. 11.11 Pipes in parallel

H1 – H2 =
2

2
2 5

8

2
A A A

A A A
A A

L V L
f f Q

D g D gp
=

and H1 – H2  =
2

2
2 5

8

2
B B B

B B B
B B

L V L
f f Q

D g D gp
=

Equating the above two expressions, we get

QA
2 = 2B

B
A

R
Q

R
(11.38)

where, RA =
2 5

8 A
A

A

L
f

D gp

RB =
2 5

8 B
B

B

L
f

D gp

Equations (11.37) and (11.38) give

QA  =
1

,
1 1B

K
Q Q Q

K K
=

+ +
(11.39)

where, K = /B AR R (11.40)

The flow system can be described by an equivalent electrical circuit as shown in
Fig. 11.12.
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RA

RBH1 H2

QA

QB
Q2 Q22

2

Fig. 11.12 Equivalent electrical network system for flow through pipes in

parallel

From the above discussion on flow through branched pipes (pipes in series or in
parallel, or in combination of both), the following principles can be summarised:

(i) The friction equation (Eq. 11.4) must be satisfied for each pipe.
(ii) There can be only one value of head at any point.

(iii) The algebraic sum of the flow rates at any junction must be zero, i.e., the
total mass flow rate towards the junction must be equal to the total mass
flow rate away from it.

(iv) The algebraic sum of the products of the flux (Q2) and the flow resistance
(the sense being determined by the direction of flow) must be zero in any
closed hydraulic circuit.

The principles (iii) and (iv) can be written analytically as

S Q = 0 at a node (Junction) (11.41)

S R |Q|Q = 0 in a loop (11.42)

While Eq. (11.41) implies the principle of continuity in a hydraulic circuit,
Eq. (11.42) is referred to as pressure equation of the circuit.

Example 11.6

Three pipes of 400 mm, 200 mm and 300 mm diameters and having lengths of 400 m,

200 m and 300 m, respectively are connected in series to make a compound pipe. The

ends of this compound pipe are connected with two tanks whose difference in water
levels is 16 m, as shown in (Fig.11.13(a)). If the friction factor f, for all the pipes is
same and equal to 0.02, determine the discharge through the compound pipe
neglecting first the minor losses and then including them. Draw the equivalent
electrical network system. (Take coefficient of contraction = 0.6.)

Solution

Application of energy equation between sections A  and B (Fig. 11.13 (a)) gives

atm

g

p

r
 + 0 + 16 = atm

g

p

r
 + 0 + 0 + hf

or hf = 16 m (11.43)
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A

A

Q

B

1
6

m

D = 400 mm

400 m 200 m 300 mm

D = 200 mm D = 300 mm
I

II III

(a) Flow of water through pipes in series

R1 R1

Q2 Q2

R2 R2

DH = 16 m

(i) Without minor loss (ii) With minor loss

DH = 16 m

R3 R3 R4R4 R5R5 R6R6 R7R7

 (b) Equivalent electrical network system for flow through pipes in series

Fig. 11.13 

Let Q be the volumetric rate of discharge through the pipelines. Then,

the velocity of flow in pipe I (Fig. 11.13a) =
2

4

(0.4)

Q

p
 = 7.96 Q

the velocity of flow in pipe II (Fig. 11.13a) =
2

4

(0.2)

Q

p
 = 31.83 Q

the velocity of flow in pipe III (Fig. 11.13a) =
2

4

(0.3)

Q

p
 = 14.15 Q

When minor losses are not considered, the loss of head hf , in the course of flow
from A  to B constitutes of the friction losses in three pipes only, and can be written
as

hf =
2 2400 (7.96) 200 (31.83)

0.02 0.02
0.4 2 0.2 2g g

È
¥ ¥ + ¥ ¥Í

Î

+ 
2

2300 (14.15)
0.02

0.3 2
Q

g

˘
¥ ¥ ˙

˚
= 1301.46 Q2 (11.44)
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Equating Eq. (11.43) with Eq. (11.44) we have,

16 = 1301.46 Q2

which gives Q = 0.111 m3/s
The equivalent electrical network system in this case is shown in Fig. 11.13 b.

The resistances R1, R2, and R3 represent the flow resistances due to friction in pipes
I, II and III respectively, and are accordingly the first, second and third terms in the
RHS of Eq. (11.44).
When minor losses are considered,

hf = 16 = 0.5 ¥ 
2 2(7.96 ) 400 (7.96 )

0.02
2 0.4 2

Q Q

g g
+ ¥ ¥

+ 
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1
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Ê ˆ
- ¥Á ˜Ë ¯
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2300 (14.15 )
0.2

0.3 2

Q

g
+ ¥ ¥  + 

2(14.15 )

2

Q

g

= 1352 Q2 (11.45)

which gives Q = 0.109 m3/s

The equivalent electrical network system, under this situation, is shown in
Fig. 11.13 (b). The resistances R1, R2, R3, R4, R5, R6 and R7 represent the flow
resistances corresponding to losses of head due to entry at pipe I, friction in pipe I,
contraction at entrance to pipe II, friction in pipe II, expansion at entrance to pipe III,
friction in pipe III, exit from pipe III respectively.

Example 11.7

Two reservoirs 5.2 km apart are connected by a pipeline which consists of a 225 mm

diameter pipe for the first 1.6 km, sloping at 5.7 m per km. For the remaining
distance, the pipe diameter is 150 mm laid at a slope of 1.9 m per km. The levels of
water above the pipe openings are 6 m in the upper reservoir and 3.7 m in the lower
reservoir. Taking f = 0.024 for both the pipes and Cc = 0.6, calculate the rate of
discharge through the pipeline.

Solution

The connections of pipelines are shown in Fig. 11.14. From the given conditions of
pipe slopings,

h1 = 5.7 ¥ 1.6 = 9.12 m

h2 = 1.9 ¥ 3.6 = 6.84 m

Therefore, the length of the first pipe L1 = 3 2 2(1.6 10 ) (9.12) m¥ +

= 1.6 km
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and, the length of the second pipe L2 = 3 2 2(3.6 10 ) (6.84) m¥ +

= 3.6 km

Applying energy  equation between the sections A  and B taking the horizontal
plane through the pipe connection in the lower reservoir as datum (Fig. 11.14), we
can write

atm

g

p

r
 + 6 + 9.12 + 6.84 = atm

g

p

r
 + 3.7 + hf or hf = 18.26 m

where, hf is the total loss of head in the flow. Considering all the losses in the path of
flow, we can write

hf =
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or 18.26 = 171.17 
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(11.46)

A

B

6 m

1.6 km

h1
1

2

3.6 km

5.2 km

Datum

h2
3.7 m

Fig. 11.14 Flow of water from a upper reservoir to a lower one

through pipes in series
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where, V 1 and V 2 are the average flow velocities in pipe I and II, respectively. If Q is the

rate of discharge, then

V 1 = 2

4
25.15

(0.225)

Q
Q

p
=

V 2 = 2

4
56.59

(0.15)

Q
Q

p
=

Inserting the expressions for V 1 and V2 in Eq. (11.46), we have

18.26 =
2 2

2171.17 (25.15) 577.44 (56.59)

2 9.81 2 9.81
Q

È ˘¥ ¥
+Í ˙¥ ¥Î ˚

which gives Q = 0.0135 m3/s

Example 11.8

A pipeline of 0.6 m in diameter is 1.5 km long. In order to augment the discharge,
another parallel line of the same diameter is introduced in the second half of the
length. Neglecting minor losses, find the increase in discharge if f = 0.04. The head
at inlet is 30 m over that at the outlet.

Solution

Initially, for the single pipe, the discharge is calculated from the relationship

DH = hf = f 
2

2

L V

D g

The average flow velocity V  = 
2

4Q

Dp

Hence, DH = 2
2 5

16

2

f L
Q

g Dp ¥ ¥

(where DH is the difference in head between the inlet and outlet at the pipe and hf is
the frictional head loss).

or Q2 =
2 530 2 9.81 (0.6)

16 0.04 1500

p¥ ¥ ¥ ¥
¥ ¥

or Q = 0.686 m3/s
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1.5 km

0.75 km

A B C

D

Q¢ Q ¢
1

Q ¢
2

Fig. 11.15 Flow through a compound pipe

Let Q¢ be the discharge through the first half of the pipe when another parallel line
of the same diameter is introduced to the second half of the length, as shown in Fig.
11.15. If Q¢1 and Q¢2 are the flow rates through the two branched pipes in parallel,
then from continuity,

Q¢ = Q¢1 + Q¢2
We can write for the two parallel paths BC and BD

HB – HC =

2
2

12

0.04 0.75 4

0.6 2 9.81 (0.6)
Q

p

È ˘¥
¢Í ˙¥ ¥ Î ˚

HB – HD =

2
2

22

0.04 0.75 4

0.6 2 9.81 (0.6)
Q

p

È ˘¥
¢Í ˙¥ ¥ Î ˚

At outlet, HC = HD

Therefore, we get from the above two equations along with the equation of continuity

Q¢1 = Q¢2 = Q¢/2

Applying energy equation between A  and C through the hydraulic path ABC,
we have

30 =

23
2

2

0.04 0.75 10 4

0.6 2 9.81 (0.6)
Q

p

È ˘¥ ¥
¢Í ˙¥ ¥ Î ˚

2 23

2

0.04 0.75 10 4

0.6 2 9.81 2(0.6)

Q

p

È ˘¥ ¥ ¢Ê ˆ+ Í ˙ Ë ¯¥ ¥ Î ˚

= 39.85 Q¢2

which gives Q¢ = 0.868 m3/s

Therefore, the increase in the rate of discharge by the new arrangement becomes

Q¢ – Q = 0.868 – 0.686 = 0.182 m3/s

which is 0.182 ¥ 100/0.686 = 26.4% of the initial rate of discharge.
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Example 11.9

A pipeline conveys 8.33 litre per second of water from an overhead tank to a building.

The pipe is 2 km long and 0.15 m in diameter. It is desired to increase the discharge by

30% by installing another pipeline in parallel with this over half the length. Suggest a
suitable diameter of the pipe to be installed. Is there any upper limit on discharge
augmentation by this arrangement? (Take friction factor f = 0.03.)

Solution

The height H, of the overhead tank above the building can be determined from the
conditions with a single pipe.

H = hf =

2

2

2000 (4 0.00833) 1
0.03

0.15 2 9.81(0.15)p

È ˘¥
Í ˙ ¥Î ˚

 = 4.53 m

d = 0.15 m

A B C
Q1

Q2

D

hf1

hf2

1

2

l = 2 km

f = 0.03

0.00833 m /s3

Fig. 11.16 Flow through a compound pipe

In the new plan as shown in Fig. 11.16

hf = 4.53 = hfA B
 + hfBC

(11.47)

again,

hfBC
 = hfBD

 =

2 2

1 1 2 2
2 2

1 21 2

4 4

2 2( ) ( )

f L Q f L Q

g d g dd dp p

È ˘ È ˘
=Í ˙ Í ˙

Î ˚ Î ˚

Here, L1 = L2 = 1000 m

Therefore, (Q1/Q2)
2 = (d1/d2)5 (11.48)

hfA B
 =

2

2

0.03 1000 4

2 (0.15) (0.15)

Q

g p

È ˘¥
Í ˙
Î ˚

Therefore, Eq. (11.47) can be written as

22
1

2 5 2 5

0.03 1000 80.03 1000 8

9.81 (0.15) 9.81 (0.15)

QQ

p p

¥ ¥ ¥¥ ¥
+

¥ ¥ ¥ ¥
 = 4.53 (11.49)
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In this case, Q = 1.3 ¥ 0.00833 = 0.0108 m3/s

Then, from Eq. (11.49), we get

Q1
2 = 0.00014 – (0.0108)2

which gives Q1 = 0.0048 m3/s

From continuity, Q2 = 0.0108 – 0.0048 = 0.006 m3/s

From Eq. (11.48), we have d2 = 
2/5

0.006
0.15

0.0048

Ê ˆ
¥Á ˜Ë ¯

= 0.164 m

It can be observed from Eq. (11.41) that

Q1
2 = 0.00014 – Q2

or Q2 = 0.00014 – Q1
2

Now Q will be maximum when &Q 1 will be minimum. For a physically possible

situation, the minimum value of &Q 1 will be zero. Therefore, the maximum value of
Q will be

Qmax = 0.00014  = 0.0118 m3/s

which is 41.6% more than the initial value. The case (Q1 = 0, Q = 0.0118 m3/s)

corresponds to a situation of an infinitely large branched pipe, i.e., d2 Æ •.

Example 11.10

Two points A  and B at the ground level are supplied equal quantity of water through
branched pipes each 200 mm in diameter and 10 m long. Water supply is made from

an overhead tank whose water level above the ground is 12 m, and the length and
diameter of the pipe up to the junction point O are 14 m and 500 mm, respectively.

The point O is also on the ground level as shown in Fig. 11.17. The connection of a
new pipe of 200 mm diameter and 20 m length is to be made from O to C. The

friction factor f, for all the pipes is 0.016. Pipelines A  and B are provided valves for
controlling the flow rates.

Calculate (i) the flow rates at A  and B when the valves are fully open, before C
was connected, (ii) the flow rates at A , B and C with the valves fully open, (iii) the

valve resistance coefficients on pipelines A  and B so as to obtain equal flow rates at
A , B and C, and the value of such flow rates (Neglect entry and bend losses). Assume

kinetic energy correction factor as unity.
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200 mm
, 20 m

f

200 mm
, 10 m
f

500 mm , 14 mf

O A B C, , , are at
ground level

20
0
m
m

, 1
0
m

f

O

A

B

C

Fig. 11.17 Supply of water from an overhead tank through branched pipes

Solution

(i) Let the flow rate through the main pipe from the overhead tank to the junction O be
Q and those through the pipes OA and OB are Q1 and Q2. From continuity,

Q1 + Q2 = Q

Since length, diameter and friction factor for the pipes OA and OB are equal,

Q1 = Q2 = Q/2

Velocity in the main pipe from the tank to the point O = 
2

4

(0.5)

Q

p

= 5.09 Q

Velocity in the pipe OA  = 
2

2

(0.2)

Q

p
 = 15.92 Q

Applying energy equation between a section at the water level in the overhead tank
and the section  A  through the path connecting the main pipe and the pipe OA, we can
write

12 = 0.016 ( ) ( )2 214 1 10 1
5.09 0.016 15.92

0.5 2 0.2 2
Q Q

g g
+

or 12 = 10.92 Q2

which gives Q = 1.05 m3/s.

Hence flow rates at A  and B are
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Q1 = Q2 =
1.05

2
 = 0.525 m3/s

(ii) Let Q be the flow rate in the main pipe and Q1, Q2, Q3 be the flow rates through the
pipes OA, OB and OC, respectively.

From continuity, Q = Q1 + Q2 + Q3 (11.50)

If the discharge pressures at A , B and C are equal, then the sum of the frictional
loss and the velocity head (or the exit loss) through each pipe OA, OB and OC must be
equal. Hence we can write

2
12 4

10 16
1 0.016

0.2 (0.2)
Q

p

Ê ˆ+Á ˜Ë ¯
 = 2

22 4

10 16
1 0.016

0.2 (0.2)
Q

p

Ê ˆ+Á ˜Ë ¯

= 2
32 4

20 16
1 0.016

0.2 (0.2)
Q

p

Ê ˆ+Á ˜Ë ¯

which gives Q2 = Q1 (11.51)

and Q3 = 0.832 Q1 (11.52)

Therefore, from Eqs (11.50), (11.51) and (11.52), we get

Q = 2.832 Q1

Applying energy equation between a section at the water level in the overhead tank
and the section A  through the hydraulic path connecting the main pipe and the pipe OA,
we can write

12 = 0.016 

2 2

1 1
2 2

4 2.832 414 1 10 1
0.016

0.5 2 0.2 2(0.5) (0.2)

Q Q

g gp p

Ê ˆ È ˘¥
+ Í ˙Á ˜Ë ¯ Î ˚

= 46.06 Q1
2

which gives Q1 = 0.51 m3/s

and from (11.51) Q2 = 0.51 m3/s

from (11.52) Q3 = 0.42 m3/s

from (11.50) Q = 1.44 m3/s

(iii) Let Q1 be the flow rate through OA, OB and OC. Then the flow rate through the
main pipe Q = 3 Q1.
Since the diameter of the pipes OA, OB and OC are same, the average velocity of flow
through these pipes will also be the same. Let this velocity be V 1.

Then, V 1 =
1

2

4

(0.2)

Q

p
 = 31.83 Q1

Velocity through the main pipe V  = 1
2

4 3

(0.5)

Q

p

¥
 = 15.28 Q1

Let K  be the valve resistance coefficient in pipe OA or OB.
Equating the total losses through two parallel hydraulic paths OC and any one of

OA and OB, we have
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2 2
2 2
1 1

10 (31.83) 20 (31.83)
0.016 1 0.016 1

0.2 28 0.2 2
K Q Q

g

Ê ˆ Ê ˆ
¥ + + = ¥ +Á ˜ Á ˜Ë ¯ Ë ¯

or 1.8 + K = 2.6

Hence K = 0.8

Applying energy  equation between a section at the water level in the overhead tank
and the section A  through the path connecting the main pipe and OA, we have

12 = 
2 2

2 2
1 1

14 (15.28) 10 (31.83)
0.016 0.016 0.8 1

0.5 2 0.2 2
Q Q

g g

È ˘
+ + +Í ˙Î ˚

= 139.76 Q2
1

which gives Q1 = 0.293 m3/s

and hence, Q = 3 ¥ 0.293 = 0.879 m3/s

Example 11.11

Two reservoirs are connected through a 300 mm diameter pipe line, 1000 m long as

shown in Fig. 11.18. At a point B, 300 m from the reservoir A , a valve is inserted on a

short branch line which discharges to the atmosphere. The valve may be regarded as
a rounded orifice 75 mm diameter, Cd = 0.65. If friction factor f for all the pipes is
0.013, calculate the rate of discharge to the reservoir C when the valve at B is fully
opened. Estimate the leakage through the short pipe line at B. Assume kinetic energy
correction factor as unity.

Q1

Q2

Q B

C

A

300 m

2
8

m

D = 300 mm

1000 m

Fig. 11.18 Flow of water between two reservoir through a pipe

with a bypass discharge to atmosphere

Solution
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Let the flow rate through the first 300 m of the pipe be Q and the flow rates through
the next 700 m of the pipe and the short branch line containing the valve be Q1 and
Q2 respectively.

From continuity, Q = Q1 + Q2

Velocity in the pipe  BC = 1
2

4

(0.3)

Q

p
 = 14.15 Q1

Applying energy equation between sections B and C,
2

2
1

(14.15)

2
Bp

Q
g gr

+  =
2 2

2 2atm
1 1

700 (14.15) (14.15)
0.013

0.3 2 2

p
Q Q

g g gr
+ +

or atmBp p

gr

-
 = 309.55 Q1

2 (11.53)

The discharge through the valve acting as an orifice can be written as

Q2 =
2

atm2( )0.075
0.65

4
Bp p

p
r

-Ê ˆ¥ Ë ¯
(11.54)

Using Eqs (11.53) and (11.54), we have

Q2 =
20.075

0.65 2 309.55 9.81
4

p Ê ˆ¥ ¥ ¥Ë ¯  Q1

= 0.224 Q1

Hence, Q = 1.224 Q1

Applying energy equation between A  and C through the path ABC, we have,

28 =
2

2
1

300 (14.15 1.224)
0.5 0.013

0.3 2
Q

g

¥Ê ˆ
+Á ˜Ë ¯

+ 
2

2
1

700 (14.15)
1 0.013

0.3 2
Q

g

Ê ˆ+Á ˜Ë ¯

= 526.16 Q2
1

which gives Q1 = 0.231 m3/s

Q2 = 0.224 ¥ 0.231 = 0.052 m3/s

Example 11.12

Two reservoirs open to the atmosphere are connected by a pipe 800 m long. The

pipe goes over a hill whose height is 6 m above the level of water in the upper
reservoir. The pipe diameter is 300 mm and friction factor f = 0.032. The difference
in water levels in the two reservoirs is 12.5 m. If the absolute pressure of water
anywhere in the pipe is not allowed to fall below 1.2 m of water in order to prevent
vapour formation, calculate the length of pipe in the portion between the upper
reservoir and the hill sumit, and also the discharge through the pipe. Neglect bend
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losses. Draw the equivalent electrical network system. Assume kinetic energy
correction factor as unity.

Solution

Let the length of pipe upstream of C be L1 and that of the downstream be L2 (Fig. 11.19(a)).

It is given L1 + L2 = 800 m

Considering the entry, friction and exit losses,

the total loss from A  to C = hf1 =
2

10.032
0.5

0.3 2

L V

g

Ê ˆ
+Á ˜Ë ¯

(11.55)

the total loss from C to B = hf2 =
2

20.032
1

0.3 2

L V

g

Ê ˆ
+Á ˜Ë ¯

Therefore, the total loss from A  to B = hf  = 
20.032 800

0.5 1
0.3 2

V

g

¥Ê ˆ
+ +Á ˜Ë ¯

= 86.83 
2

2

V

g

Applying energy equation between A  and B, we have

D H = hf

A

C

6 m

Dh = 12.5 m

L1

B

L2

(a) Flow of water between two reservoirs through a pipe which goes over a height more
  than the water level in the upper reservoir

Fig. 11.19 
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D h = 12.5 m

R1

A BC

Q2

R2

(b) Equivalent electrical network of pipe flow problem of Example 11.12

Fig. 11.19 

or 12.5 = 86.83 
2

2

V

g

which gives V  =
12.5 2 9.81

86.83

¥ ¥
 = 1.68 m/s

Applying energy equation between A  and C, we have

atmp

gr
 =

2

16
2

c
f

p V
h

g gr
+ + + (11.56)

With the atmospheric pressure
patm = 760 mm of Hg

= 760 13.6

1000

¥  = 10.34 m of water,

Equation (11.56) becomes

10.34 =
2

1

(1.68)
1.2 6

2 9.81
fh+ + +

¥
which gives hf1 = 2.99 m

Using the value of hf1 = 2.99 m, and V  = 1.68 m/s in Eq. (11.55) we get

(0.5 + 0.107 L1) 
2(1.68)

2 9.81¥
 = 2.99

or 0.5 + 0.107 L1 = 20.78
which gives L1 = 189.53 m

Rate of discharge through the pipe

Q =
4

p
 (0.3)2 ¥ 1.68 = 0.119 m3/s

The equivalent electrical network of the system is shown in Fig. 11.19 (b).

11.7.3 Pipe Network: Solution by Hardy–Cross Method

The distribution of water supply in practice is often made through a pipe network
comprising a combination of pipes in series and parallel. The flow distribution in a
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pipe network is determined from Eqs (11.41) and (11.42). The solution of
Eqs (11.41) and (11.42) for the purpose is based on an iterative technique with an
initial guess in Q. The method was proposed by Hardy–Cross and is described
below:

(a) The flow rates in each pipe are assumed so that the continuity
(Eq. 11.41) at each node is satisfied. Usually the flow rate is assumed more
for smaller values of resistance R and vice versa.

(b) If the assumed values of flow rates are not correct, the pressure equation
(Eq. (11.42) will not be satisfied. The flow rate is then altered based on the
error in satisfying the Eq. (11.42).

Let Q0 be the correct flow in a path whereas the assumed flow be Q. The error dQ in
flow is then defined as

Q = Q0 + dQ (11.57)
Let h = R|Q|Q (11.58a)
and h¢ = R |Q0|Q0 (11.58b)

Then according to Eq. (11.46)
S h¢ = 0 in a loop (11.59a)

and S h = e in a loop (11.59b)
Where e is defined to be the error in pressure equation for a loop with the assumed
values of flow rate in each path.
From Eqs (11.59a) and (11.59b) we have

S (h – h¢) = e
or S dh = e (11.60)

Where dh (= h – h¢) is the error in pressure equation for a path. Again from
Eq. (11.58a), we can write

d

d

h

Q
 = 2R|Q|

or dh = 2R |Q|dQ (11.61)
Substituting the value of dh from Eq. (11.61) in Eq. (11.60) we have

S 2R |Q|dQ = e

Considering the error dQ to be the same for all hydraulic paths in a loop, we can
write

dQ =
2 | |

e

R QS
(11.62)

The Eq. (11.62) can be written with the help of Eqs (11.58a) and (11.59b) as

dQ =
| |

2 | |

R Q Q

R Q

S
S

(11.63)

The error in flow rate dQ is determined from Eq. (11.63) and the flow rate in
each path of a loop is then altered according to Eq. (11.57). The procedure is
repeated unless a reasonable convergence is achieved to get the correct flow rates.

The Hardy–Cross method can also be applied to a hydraulic circuit containing a
pump or a turbine. The pressure equation (Eq. (11.42)) is only modified in
consideration of a head source (pump) or a head sink (turbine) as

– DH + SR |Q|Q = 0 (11.64)
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where DH is the head delivered by a source in the circuit. Therefore, the value of DH

to be substituted in Eq. (11.64) will be positive for a pump and negative for a turbine.
The application of Hardy–Cross method in a pipe network is illustrated in the

following example.

Example 11.13

A pipe network with two loops is shown in Fig. 11.20. Determine the flow in each

pipe for an inflow of 5 units at the junction A  and outflows of 2.0 units and 3.0 units

at junctions D and C, respectively. The resistance R, for different pipes are shown in
the figure.

5.0 units

R = 200 units R = 300 units

2.0 units 3.0 units

R = 120 units

R = 150 units

R = 40
0 un

its

A

D

B

C

Fig. 11.20 A pipe network

Solution

Flow direction is assumed positive clockwise for both the loops ABD and BCD. The
iterative solutions based on the Hardy–Cross method has been made. The five trials
have been made and the results of each trial is shown in Fig. 11.21; for each trial, dQ

is calculated from Eq. (11.31). After the fifth trial, the error dQ is so small that it
changes the flow only in the third place of decimal. Hence the calculation has not
been continued beyond the fifth trial.

First trial:

 Loop ABD Loop BCD

R|Q|Q 2R|Q| R|Q|Q 2R|Q|

120 ¥ 22 2 ¥ 120 ¥ 2 300 ¥ (1.2)2 2 ¥ 300 ¥ 1.2

= 480 = 480 = 432  = 720

400 ¥ (0.8)2 2 ¥ 400 ¥ 0.8  – 150 ¥ (1.8)2 2 ¥ 150 ¥ 1.8

 = 256 = 640 = – 486 = 540

– 200 ¥ 32 2 ¥ 200 ¥ 3  – 400 ¥ (0.8)2 2 ¥ 400 ¥ 0.8
= – 1800 = 1200  = – 256  = 640

SR|Q|Q = – 10642SR|Q| = 2320 SR|Q|Q = – 3102SR|Q| = 1900

dQ = 
| |

2 | |

R Q Q

R Q

S
S

dQ =
| |

2 | |

R Q Q

R Q

S
S

= 
1064

2320

-
= 

300

1900

-

= – 0.46 = – 0.16
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R = 120

R = 120

R = 120

R = 120

R = 120

(a) First trial

(c) Third trial

(b) Second trial

(d) Fourth trial

(d) Fifth trial

R
=

3
0
0

R
=

3
0
0

R
=

3
0
0

R
=

3
0
0

R
=

3
0
0

R
=

2
0
0

R
=

2
0
0

R
=

2
0
0

R
=

2
0
0

R
=

2
0
0

R = 150

R = 150

R = 150

R = 150

R = 150

2.0

2.48

2.46

2.54

2.548

1.8

1.49

1.64

1.48

1.46

2.0

2.0

2.0

2.0

2.0

3.0

3.0

3.0

3.0

3.0

3
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=
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0
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=
40

0
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0

1
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5.0

5.0

5.0

5.0

5.0

A

A

A

A

A

D

D

D

D

D

B

B

B

B

B

C

C

C

C

C

Fig. 11.21 Flow distribution in a pipe network after different trials

for Example 11.13
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Second trial:

 Loop ABD Loop BCD

R|Q|Q 2R|Q| R|Q|Q 2R|Q|

120 ¥ (2.46)2 2 ¥ 120 ¥ 2.46 300 ¥ (1.36)2 2 ¥ 300 ¥ 1.36

= 726.19 = 590.40 = 554.88 = 816

400 ¥ (1.10)2 2 ¥ 400 ¥ 1.10 – 150 ¥ (1.64)2 2 ¥ 150 ¥ 1.64
= 484.00 = 880.00  = – 403.44 = 492

–1200 ¥ (2.54)2 2 ¥ 200 ¥ 2.54 – 400 ¥ (1.10)2 2 ¥ 400 ¥ 1.10
= –1290.32 = 1016.00 = – 484.00 = 880

SR|Q|Q = – 50.13 2SR|Q| = 2486.40 SR|Q|Q = – 332.56 2SR|Q| = 2188

dQ = 
| |

2 | |

R Q Q

R Q

S
S

dQ =
| |

2 | |

R Q Q

R Q

S
S

= 
50.13

2486.40

-
=

332.56

2188

-

= – 0.02 = – 0.15

Third trial:

 Loop ABD Loop BCD

R|Q|Q 2R|Q| R|Q|Q 2R|Q|

120 ¥ (2.48)2 2 ¥ 120 ¥ 2.48 300 ¥ (1.51)2 2 ¥ 300 ¥ 1.51
= 738.05  = 595.20 = 684.03 = 906.00

400 ¥ (0.97)2 2 ¥ 400 ¥ 0.97 – 150 ¥ (1.49)2 2 ¥ 150 ¥ 1.49

= 376.36 = 776.00  = – 333.01 = 447.00

–200 ¥ (2.52)2 2 ¥ 200 ¥ 2.52 – 400 ¥ (0.97)2 2 ¥ 400 ¥ 0.97

= – 1270.08  = 1008.00 = – 376.36 =776.00

SR |Q|Q = – 155.67 2SR |Q| = 2379.20 SR |Q|Q = – 25.34 2SR |Q| = 2129

dQ = 
| |

2 | |

R Q Q

R Q

S
S

dQ = 
| |

2 | |

R Q Q

R Q

S
S

= 
155.67

2379.67

-
= 

25.34

2129

-

= – 0.06 = – 0.01

Fourth trial:

 Loop ABD Loop BCD

R|Q|Q 2R|Q| R|Q|Q 2R|Q|

120 ¥ (2.54)2 2 ¥ 120 ¥ 2.54 300 ¥ (1.52)2 2 ¥ 300 ¥ 1.52
 = 774.20  = 609.60  = 693.12 = 912.00

400 ¥ (1.02)2 2 ¥ 400 ¥ 1.02 – 150 ¥ (1.48)2 2 ¥ 150 ¥ 1.48
 = 416.16  = 816.00  = – 328.56 = 444.00
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–200 ¥ (2.46)2 2 ¥ 200 ¥ 2.46 – 400 ¥ (1.02)2 2 ¥ 400 ¥ 1.02

= – 1210.32  = 984.00 = – 416.16 = 816.00

SR |Q|Q = – 19.96 2SR |Q| = 2409.60 SR |Q|Q = – 51.6 2SR |Q| = 2172

dQ =
| |

2 | |

R Q Q

R Q

S
S

dQ = 
| |

2 | |

R Q Q

R Q

S
S

=
19.96

2409.60

-
= 

51.6

2172

-

= – 0.008 = – 0.02

Fifth trial:

 Loop ABD Loop BCD

R|Q|Q 2R|Q| R|Q|Q 2R|Q|

120 ¥ (2.58)2 2 ¥ 120 ¥ 2.58 300 ¥ (1.54)2 2 ¥ 300 ¥ 1.54
 = 779.08  = 619.20  = 711.48 = 924.00

400 ¥ (1.008)2 2 ¥ 400 ¥ 1.008 – 150 ¥ (1.46)2 2 ¥ 150 ¥ 1.46
 = 406.42 = 806.40  = – 319.74 = 438.00

–200 ¥ (2.452)2 2 ¥ 200 ¥ 2.452 – 400 ¥ (1.08)2 2 ¥ 400 ¥ 1.008

 = –1202.46  = 980.80 = – 406.42 = 806.40

SR |Q|Q = – 16.96 2SR |Q| = 2406.40 SR |Q|Q = – 14.68 2SR |Q| = 2168.40

dQ = | |
2 | |
R Q Q

R Q

S
S

dQ = 
| |

2 | |

R Q Q

R Q

S
S

= 
16.96

2406.40

-
= 

14.68

2168.40

-

= – 0.007 = – 0.007

11.8   FLOW THROUGH PIPES WITH SIDE TAPPINGS

In course of flow through a pipe, a fluid may be withdrawn from the side tappings
along the length of the pipe as shown in Fig. 11.22. If the side tappings are very
closely spaced, the loss of head over a given length of pipe can be obtained as shown
below.
The rate of flow through the pipe, under this situation, decreases in the direction of
flow due to side tappings. Therefore, the average flow velocity at any section of the
pipe is not constant. The frictional head loss dhf , over a small length dx of the pipe at
any section can be written as

dhf = f

2d

2
xVx

D g
(11.65)

where, V x is the average flow velocity at that section. If the side tappings are very
close together, Eq. (11.65) can be integrated to determine the loss of head due to
friction over a given length L of the pipe, provided, V x can be replaced in terms of the
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length of the pipe. Let us
consider, for this purpose, a
Section 1–1 at the upstream
just after which the side
tappings are provided. If the
tappings are uniformly and
closely spaced, so that the fluid
is removed at a uniform rate q
per unit length of the pipe, then
the volume flow rate Qx at a
distance x  from the inlet
Section 1–1 can be written as

Qx = Q0 – qx
where, Q0 is the volume flow
rate at Sec. 1–1. Hence,

Vx =
0

2 2
0

4 4
1xQ Q q

x
QD Dp p

Ê ˆ
= -Á ˜Ë ¯

(11.66)

Substituting V x from Eq. (11.66) into Eq. (11.65), we have,

dhf =
22

0
2 5

0

16
1 d

2

Q f q
x x

QD gp

Ê ˆ
-Á ˜Ë ¯

(11.67)

Therefore, the loss of head due to friction over a length L, is given by

hf =
2 2

20
2 5 2

0 00

8 1
d 1

3

L

f

Q f L q q
h L L

QD g Qp

Ê ˆ
= - +Á ˜Ë ¯Ú (11.68a)

Here, the friction factor f, has been assumed to be constant over the length L,

of the pipe. If the entire flow at Sec. 1-1 is drained off over the length L, then,

Q0 – qL = 0 or
0

q

Q
 = 

1

L

Equation (11.68(a)), under this situation, becomes

hf = 
2
0

2 5

8

3

Q f L

D gp
 =

2
20

02

41 1 1 1

3 2 3 2

QL L
f f V

D g D gDp

Ê ˆ
=Á ˜Ë ¯

(11.68b)

where, V 0 is the average velocity of flow at the inlet Section 1–1.
Equation (11.68b) indicates that the loss of head due to friction over a length L of

a pipe, where the entire flow is drained off uniformly from the side tappings,
becomes one third of that in a pipe of same length and diameter, but without side
tappings.

11.9   LOSSES IN PIPE BENDS

Bends are provided in pipes to change the direction of flow through it. An additional
loss of head, apart from that due to fluid friction, takes place in the course of flow
through pipe bend. The fluid takes a curved path while flowing through a pipe bend
as shown in Fig. 11.23. Whenever a fluid flows in a curved path, there must be a
force acting radially inwards on the fluid to provide the inward acceleration, known

1

1

Q0 Qx

Vx

q

x

dx

q

Fig. 11.23 Flow through pipes with side tappings
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a s centripetal acceleration.  This results in an increase in pressure near the outer
wall of the bend, starting at some point A  (Fig. 11.23) and rising to a maximum at
some point B. There is also a reduction of pressure near the inner wall giving a
minimum pressure at C and a subsequent rise from C to D. Therefore between A  and
B and between C and D the fluid experiences an adverse pressure gradient (the
pressure increases in the direction of flow). Fluid particles in this region, because of
their close proximity to the wall, have low velocities and cannot overcome the
adverse pressure gradient and this leads to a separation of flow from the boundary
and consequent losses of energy in generating local eddies. Losses also take place
due to a secondary flow in the radial plane of the pipe because of a change in
pressure in the radial depth of the pipe. This flow, in conjunction with the main flow,
produces a typical spiral motion of the fluid
which persists even for a downstream distance of
fifty times the pipe diameter from the central
plane of the bend. This spiral motion of the fluid
increases the local flow velocity and the velocity
gradient at the pipe wall, and therefore results in
a greater frictional loss of head than that which
occurs for the same rate of flow in a straight pipe
of the same length and diameter.

The additional loss of head (apart from that
due to usual friction) in flow through pipe bends
is known as bend loss and is usually expressed as a
fraction of the velocity head as K V2/2g, where V
is the average velocity of flow through the pipe.
The value of K depends on the total length of the
bend and the ratio of radius of curvature of the bend and pipe diameter R/D. The
radius of curvature R is usually taken as the radius of curvature of the centre line of the
bend. The factor K  varies slightly with Reynolds number Re in the typical range of Re
encountered in practice, but increases with surface roughness.

11.10   LOSSES IN PIPE FITTINGS

An additional loss of head takes place in the course of flow through pipe fittings like
valves, couplings and so on. In general, more restricted the passage is, greater is the
loss of head. For turbulent flow, the losses are proportional to the square of the
average flow velocity and are usually expressed by K V2/2g, where V  is the average
velocity of flow. The value of K depends on the exact shape of the flow passages.
Typical values of K  are given in Table 11.2. Since the eddies generated by fittings
persist for some distance downstream, the total loss of head caused by two fittings
close together is not necessarily the same as the sum of the losses which each alone
would cause.

These losses are sometimes expressed in terms of an equivalent length of an
unobstructed straight pipe in which an equal loss would occur for the same average
flow velocity. That is

K 
2

2

V

g
 = f  

2

2
eL V

D g
or eL

D
 = 

K

f
(11.69)

B

D

C

A

Fig. 11.23 Flow through pipe

bend
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where Le represents the equivalent length which is usually expressed in terms of the
pipe diameter as given by Eq. (11.69). Thus Le/D depends upon the friction factor f,
and therefore on the Reynolds number and roughness of the pipe.

Table 11.2 Approximate Loss Coefficients K for Commercial Pipe Fittings

Type and position of fittings Values of K

Globe valve, wide open 10

Gate valve, wide open 0.2

three-quarters open 1.15

half open 5.6

quarter open 24

Pump foot valve 1.5

90° elbow (threaded) 0.9

45° elbow (threaded) 0.4

Side outlet of T junction 1.8

Example 11.14

A pump requires 50 kW to supply water at a rate of 0.2 m3/s to an overhead tank.
The pipe connecting the delivery end of the pump to the overhead tank is 120 m
long and 300 mm in diameter and has a friction factor f  = 0.02. A valve is inserted in
the delivery pipe to control the flow rate. The loss coefficient of the valve under
wide open condition is 5.0. Water is supplied from a reservoir 2 m below the
horizontal level of the pump though a suction pipe 6 m long and 400 mm in diameter
having f = 0.03. Determine the maximum height from the plane of the pump at
which the overhead tank can be placed under this situation. (Take the efficiency of
the pump h = 80%). Assume kinetic energy correction factor as unity.

Solution

Let H be the height of the overhead tank from the pump
pd be the pressure at the delivery side of the pump
ps be the pressure at the suction side of the pump.

The average velocity of flow in the delivery pipe

V d = 2

4 0.2

(0.3)p

¥
¥

 = 2.83 m/s

The average velocity of flow in the suction pipe

Vs = 2

4 0.2

(0.4)p

¥
¥

 = 1.59 m/s

Applying energy equation between a section at the inlet to the delivery pipe and a
point at the water surface in the overhead tank where the pressure is atmospheric, we
have,
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2(2.83)

2
dp

p g g
+  =

2
atm 120 (2.83)

0.02 5.0 1.0
0.3 2

p
H

g gr

Ê ˆ
+ + ¥ + + ¥Á ˜Ë ¯

or atmdp p

gr

-
 = H + 5.31 (11.70)

Applying energy equation between a section on the water surface in the supply
reservoir and a section at the end of the suction pipe connecting the pump, we can
write,

atmp

gr
 =

26.0 (1.59)
2 1 0.5 0.03

0.4 2
sp

g gr

Ê ˆ
+ + + + ¥ ¥Á ˜Ë ¯

or atm sp p

gr

-
 = 2.25 (11.71)

From Eqs (11.70) and (11.71), we get

d sp p

gr

-
 = H + 7.56

Power delivered by the pump to water = 50 ¥ 0.8 = 40 kW
Therefore, we can write,

0.2 ¥ (pd – ps) = 40 ¥ 103

or  0.2 ¥ 103 ¥ 9.81 (H + 7.56) = 40 ¥ 103

which gives, H = 12.83 m

Example 11.15

Water flows through a pipe line of 300 mm in diameter and 20 km long in a
horizontal plane. At a point B, the pipe is branched off into two parallel pipes each
of 150 mm diameter and 3.5 km long as shown in Fig. 11.24. In one of the these
pipes, water is completely drained off from side tappings at a constant rate of 0.01
litre/s per metre length of the pipe. Determine the flow rate and loss of head in the
main pipe. (Take friction factor for all the pipes as 0.012.)

300 mm

3.5
km

20 km

A Q B

D

C

150
mm

f

150 mm f

f

Fig. 11.24 Flow through a branched pipe with side tappings
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Solution

Let Q be the flow rate through the pipe A B and be divided at B into Q1 and Q2 for the pipes

BC and BD respectively. Then from continuity,

Q = Q1 + Q2

Since the entire flow at inlet to the pipe BD is drained off through side tappings at a

constant rate of 0.01 litre per metre length,

Q2 = 0.01 ¥ 3500 = 35 litre/s = 0.035 m3/s

Hence, average velocity at inlet to pipe BD

 =
2

4 0.035

(0.15)p

¥
 = 1.98 m/s

The loss of head in BD can be written with the help of Eq. (11.68b) as

hfBD =
21 3500 (1.98)

0.012
3 0.15 2 9.81

¥ ¥ ¥
¥

 = 18.65 m

Since B is a common point and C and D are at the same horizontal level and have the

same pressure which is equal to that of the atmosphere, the loss of head in the parallel

pipes BC and BD are equal.

Therefore, hfBC = hfBD = 18.65 m (11.72)

Average flow velocity in pipe BC = 1
2

4

(0.15)

Q

p
 = 56.59 Q1

Equating hfBC given by Eq. (11.72) with the different losses taking place in pipe BC, we

can write

hfBC = 18.65 = 0.012 ¥ 
2 2

2 2
1 1

3500 (56.59) (56.59)

0.15 2 2
Q Q

g g
¥ +

= 45865.6 Q1
2

which gives Q1 = 0.02 m3/s

Hence, Q = 0.035 + 0.02 + 0.055 m3/s

Velocity in the main pipe A B =  
2

4 0.055

(0.3)p

¥
 = 0.78 m/s

The loss of head in the main pipe A B =
220000 (0.78)

0.012
0.30 2 g

¥  = 24.81 m

11.11   POWER TRANSMISSION BY A PIPELINE

In certain occasions, hydraulic power is transmitted by conveying the fluid through a
pipeline. For example, water from a reservoir at a high altitude is often conveyed by
a pipeline to an impulse hydraulic turbine in a hydroelectric power station. The
hydrostatic head of water is thus transmitted by a pipeline. Let us analyse the
efficiency of power transmission under the situation.
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Reservoir

Pipeline

Turbine

H

Fig. 11.25 Transmission of hydraulic power by a pipeline to a turbine

The potential head of = H (the difference in the water level

water in the reservoir in the reservoir and the turbine centre)

(Fig. 11.25)

The head available at = HE = H – hf

the pipe exit (or at the

turbine entry)

where hf is the loss of head in the pipeline due to friction.
Assuming that the friction coefficient and other loss coefficients are constant,

we can write
hf = RQ2

where Q is the volume flow rate and R is the hydraulic resistance of the pipeline.
Therefore, the power available P at the exit of the pipeline becomes

P = rgQHE = rgQ(H – RQ2)

For P to be maximum, for a given head H, dP/dQ should be zero. This gives

H – 3RQ2 = 0

or RQ2 = hf =
3

H
(11.73)

[d2P/dQ2 is always negative which shows that P has only a maximum value (not a
minimum) with Q].

From Eq. (11.73), we can say that maximum power is obtained when one third of
the head available at the source (reservoir) is lost due to friction in the flow.
The efficiency of power transmission hp is defined as

hp =
2( )gQ H RQ

gQH

r

r

-

= 1 – 
2RQ

H
(11.74)

The efficiency hp equals to unity for the trivial case of Q = 0. For flow to
commence RQ2 £ H and hence hp is a monotonically decreasing function of Q from
a maximum value of unity to zero. The zero value of hp corresponds to the situation

given by RQ2 = H (or, Q = /H R ) when the head H available at the reservoir is
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totally lost to overcome friction in the flow through the pipe. The efficiency of
transmission at the condition of maximum power delivered is obtained by
substituting RQ2 from Eq. (11.73) in Eq. (11.74) as

hat P = Pmax
 = 1 – 

/3H

H

=
2

3
Therefore, the maximum power transmission efficiency through a pipeline is 67%.

SUMMARY

∑ Fanning’s friction coefficient fC , for a flow through a closed duct
is defined in terms of shear stress at the wall as ( ) 21 2f wC Vt r= ,

and in terms of piezometric pressure drop *pD over a length L, as

( ) ( )* 21
1 2

4f hC D L p Vr= D . Darcy’s friction factor f , is defined as f =

4Cf.
∑ Loss of head in a pipe flow is expressed in terms of Darcy’s friction factor

f  as ( )( )2 2fh f L D V g= .
∑ Friction factor in case of a laminar fully developed flow through pipes is

found from the exact solution of Navier–Stokes equation and is given
by 64 Ref = . Friction factor in a turbulent flow depends on both the
Reynolds number of flow and the roughness at pipe surface.

∑ Loss of head due to fluid friction may also be estimated by applying energy
conservation equation between two sections of flow. This loss can be attrib-
uted to irreversible conversion of viscous dissipation into intermolecular
form of energy and any possible heat transfer from the system to the sur-
roundings through the pipe walls.

∑ The head causing the flow is known as flow potential. Flows, in practice,
takes place through several pipes joined together either in series or in paral-
lel or in a combination of both of them. The flow through a pipe network
system has to overcome the pipe friction and other resistances due to minor

losses. The relationship between the head causing the flow HD  and the flow
rate Q can be expressed as DH = RQ2 , where R is the flow resistance in the
hydraulic path. This equation is analogous to the voltage-current relation-
ship in a purely resistive electrical circuit. Therefore, the pipe flow system
can be described by an equivalent electrical network system.

∑ The loss of head due to friction over a length L of a pipe, where the entire
flow is drained off uniformly from the side tappings, becomes one-third of
that in a pipe of the same length and diameter, but without side tappings.

∑ An additional head loss over that due to pipe friction takes place in a flow
through pipe bends and pipe fittings like valves, couplings and so on.
The hydraulic power can be transmitted by a pipeline. For a maximum power
transmission, the head lost due to friction in the flow equals to one-third of
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the head at source to be transmitted. The maximum power trasmission effi-
ciency is 2/3 (67%).

EXERCISES

11.1 Under what circumstances is the friction factor for the flow through a pipe
of constant diameter
(a) inversely proportional to the Reynolds number
(b) dependent on the relative roughness only
(c) independent of the relative roughness

11.2 Choose the correct answer:
(i) Friction loss through a pipe flow implies

(a) loss of energy due to the coefficient of friction between the material
of the pipe and the fluid

(b) loss due to dynamic coefficient of friction
(c) loss of flow rate in a pipe due to surface roughness
(d) loss of energy due to surface roughness
(e) loss of momentum due to surface roughness

(ii) For pipes arranged in series

(a) the flow may be different in different pipes
(b) the head loss per unit length must be more in a smaller pipe
(c) the velocity must be the same in all pipes
(d) the head loss must be the same in all pipes
(e) the flow rate must be the same in all pipes

(iii) In parallel pipe systems
(a) the pipes must be placed geometrically parallel to each other
(b) the flow must be the same in all pipes
(c) the head loss per unit length must be the same for all pipes
(d) the head loss across each of the parallel pipes must be the same
(e) None of the above

11.3 A 200 mm diameter pipe 200 m long discharges oil from a tank into the
atmosphere. At the midpoint of the pipe length, the pressure is one and a half
times the atmospheric pressure. The specific gravity of the oil is 0.9. The
friction factor f  = 0.03. Calculate (i) the discharge rate of oil and (ii) the
pressure in the tank at the inlet of the pipe.

 Ans. (0.086 m3/s, 206.64 kN/m2)

11.4 Calculate the power required to pump sulphuric acid (viscosity 0.04 Ns/m2

and specific gravity 1.83) at 45 litre/s from a supply tank through a glass-
lined 150 mm diameter pipe, 18 m long, into a storage tank. The liquid level in
the storage tank is 6 m above from that in the supply tank. For laminar flow f =
64/Re and for turbulent flow f = 0.0056 (1 + 100Re–1/3). Take all losses into
account

Ans. (6.12 kW)

11.5 The total head at inlet to a pipe network system is 20 m of water more than that
at its outlet. Compare the rate of discharge of water, if the network system
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consists of (i) three pipes each 700 m long but of diameters 450 mm, 300 mm
and 600 mm respectively in the order from inlet to outlet, (ii) the same three
pipes in parallel. Assume friction factor for all the pipes to be 0.01, and the
coefficient of contraction Cc = 0.6.

Ans. ((a) 0.263 m3/s, (b) 2.73 m3/s)

11.6 Water flows from a tank A  to a tank B. The difference in water level between
the two tanks is 7 m. The tanks are connected by a 30.5 m of 300 mm diam-
eter pipe (f = 0.02)  followed by the 30.5 m of 150 mm diameter pipe ( f =
0.015). There are two 90° bends in each pipe (k = 0.50 each), the coefficient
of contraction Cc = 0.75. If the junction of the two pipes is 5 m below the top
water level, find the pressure heads (in gauge) in 300 mm and 150 mm pipe
at the junction.

Ans. (4.76 m, 3.56 m)

11.7 There is a sudden increase in the diameter of a pipe from d1 to d2. What would
be the ratio d2 /d1 if the minor loss is independent of the direction of flow?
Assume coefficient of contraction Cc = 0.6.

Ans. ( )3

11.8 Show that the loss of head Dh due to friction for a laminar flow in a diffuser
of round cross section and with a small taper angle a is given by

Dh = 64 mQ (d2
3 – d3

1)/[3 p r g d3
1 d3

2 tan (a/2)]

where, Q is the rate of volumetric discharge, m and r are the viscosity and
density of the fluid respectively, d1 and d2 are the diameters of the diffuser at
its inlet and outlet respectively. Assume that Poiseuille’s law is valid for each
element of the diffuser length.

11.9 A single pipe 400 mm in diameter and 400 m long conveys water at the rate
of 0.5 m3/s. Find the increase in discharge if another pipe of 200 m long
and 200 mm in diameter is joined parallel with the existing pipe over half of
its length. Friction factor for all the pipes is same.

Ans. (0.04 m3/s)

11.10 Three piping systems (I), (II) and (III) are studied (Fig. 11.26). Take  f =
0.012 for all the pipes. Indicate which one has the greatest and which one has
the lowest capacity under a given head.

(Greatest - II, Lowest - III)
A

A

B

B

C

C

915 m, 406 mmf

915 m, 457 mmf

910 m, 406 mmf

1220 m, 254 mmf

1829 m, 305 mmf

(I)

(II) (III)

610 m, 356 mmf
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Fig. 11.26 Different piping systems

11.11 A pump delivers water through two pipes laid in parallel. One pipe is 100 mm in
diameter and 45 m long and discharges to atmosphere at a level of 6 m above the
pump outlet. The other pipe, 150 mm in diameter and 60 m long, discharges to
atmosphere at a level of 8 m above the pump outlet. The two pipes are connected
to a junction immediately after the pump. The inlet to the pump is 600 mm
below the level of its outlet. Taking the datum level as that of the pump inlet,
determine the total head at the pump outlet if the flow rate through it is 0.037 m3/s.
Take friction factor for the pipes f = 0.032, and neglect losses at the pipe junction.

Ans. (9.64 m)

11.12 Water flows out of a reservoir through a horizontal pipe 500 mm in diameter
and 400 m long. The level of water in the reservoir is 10 m. Due to partial
closure of the pipe at the discharge end by an obstruction, the flow velocity
through the pipe is 3 m/s, and the pressure loss per unit length is 135 N/m3.
Calculate the pipe friction factor and the loss coefficient of the obstruction.
Estimate the flow velocity when the resistance is withdrawn completely.
Neglect entry loss, but account for the exit velocity head.

Ans. (f = 0.015, k = 8.8, 3.88 m/s)

11.13 A pipe system consists of three pipes connected in series (i) 300 m long, 150
mm in diameter (ii) 150 m long, 100 mm in diameter and (iii) 250 m long,
200 mm in diameter. Determine the equivalent length of a 125 mm diameter
pipe. (Take friction factor f = 0.02, coefficient of contraction Cc = 0.6).

Ans. (620.4 m)
11.14 Two reservoirs are connected by three cast iron pipes in series. The length

and diameter of the pipes are L1 = 600 m, D1 = 0.3 m, L2 = 900 m, D2 = 0.4 m,
L3 =1500 m and D3 = 0.45 m, respectively. Find out the Reynolds number in
each of the pipes. The density and viscosity of water are 1000 kg/m3 and 1.1
¥ 10–3 Ns/m2, respectively. The friction factor in each pipe may be approxi-
mated as 0.02. The loss due to expansion at the junctions between Pipe 1 and
Pipe 2 as well as between Pipe 2 and Pipe 3 may be neglected. The discharge
is 0.11 m3/s. Determine the difference in elevation between the top surfaces
of the reservoirs. Include the entry loss to Pipe 1 and exit loss between Pipe 3
and the adjacent reservoir.

Ans. (8.426 m)
11.15 A ring main consists of a quadrilateral network ABCD and a triangular net-

work ADE, the pipe AD being common to both networks. The resistances of
the pipelines are A B = 4, BC = 2, CD = 5, DA = 4, AE = 2, and DE = 3 units.
Let a flow of 10 units enter at E and flows of 3, 4, 3 units leave at B, C and D,
respectively. Determine the magnitudes of the pipe flows to an accuracy of
0.1flow unit and indicate their directions on a sketch.
Ans. (EA = 5.32, ED = 4.68, A B = 3.82, BC = 0.82, DC = 3.18, AD = 1.50)



12.1  INTRODUCTION

The flow of a fluid is not always required to be bounded on all sides by solid surfaces

as discussed in the previous chapters. The flow of liquids, under certain circum-

stances, may take place when the uppermost boundary is the free surface of the liquid

itself. Then the cross section of flow is not determined entirely by the solid bound-

aries. The controlling parameters of flow in this case are different from those in the

case of flow through closed ducts.

Flow with a free surface takes place in open channels. The free surface is sub-

jected only to atmospheric pressure which is constant. Therefore the flow is caused

by the weight of the fluid. It has been discussed earlier on several occasions, that a

uniform flow through a closed duct takes place due to a drop in the Piezometric

pressure p* (= p + rgz). But for an open channel, a uniform flow is caused by the

second term rgz since the static pressure remains constant in the direction of flow.

Natural streams, rivers, artificial canals, irrigation ditches and flumes are examples of

open channels in practice. Pipe lines or tunnels which are not completely full of liquid

also have the essential features of open channels.

12.2  FLOW IN OPEN CHANNELS

12.2.1 Geometrical Terminologies

Depth of Flow h The depth of flow h at any section (Fig. 12.1) is the vertical

distance of the bed of the channel from the free surface at that section.

Top Breadth B It is the breadth of the channel section at the free surface

(Fig. 12.1).

The Water Area A The water area is the flow cross-sectional area perpendicular

to the direction of flow.

The Wetted Perimeter P The wetted perimeter P is the perimeter of the solid

boundary in contact with the liquid.

Hydraulic Radius Rh The hydraulic radius Rh is defined as Rh = A /P.

12

FLOWS WITH

A FREE SURFACE
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Flow A

B

h

Fig. 12.1 Geometry of a straight channel

12.2.2 Types of Flow in Open Channels

The flow in an open channel may be uniform or non-uniform, steady or unsteady,

laminar or turbulent.

h = constant

h Vand vary rapidly

h Vand vary
gradually upstream

(b) Gradually varied flow

Hydraulic jump

(c) Rapidly varied flow

(a) Uniform flow

V = constant

Fig. 12.2 Uniform and non-uniform flow in an open channel

Uniform Flow Uniform flow occurs in a channel when the cross section and

depth of flow do not change along the length of the channel. This is characterised by

the liquid surface being parallel to the base of the channel (Fig. 12.2(a)).Under this

circumstance, the velocity of liquid does not change either in magnitude or direction

from one section to another in the part of the channel under consideration.

Non-uniform Flow Flow in which the liquid surface is not parallel to the base of

the channel (Fig. 12.2(b)) is said to be non-uniform or varied, since the depth of flow

continuously varies from one section to another. This flow occurs in a channel

which is shaped irregularly and also in a prismatic channel when depth and velocity

vary. The change in depth may be gradual or rapid according to which a non-

uniform flow is termed as a gradually varied flow (Fig. 12.2(b)) or a rapidly varied flow

(Fig. 12.2(c)). In a gradually varied flow, the degree of non-uniformity is small and

gradual. This may extend upstream to a considerable distance due to some control
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structure, e.g., spillway of a dam, as shown in (Fig. 12.2(b)). In a rapidly varied flow,

the change in depth and velocity is rather abrupt or takes place within a short dis-

tance. Boundary frictional losses are small and the head loss arises mainly from eddy

formation. Such a flow is observed in a hydraulic jump (Fig. 12.2(c)), which will be

discussed later in Section 12.4 of this chapter.

Steady or Unsteady Flow Flow is termed steady or unsteady according to

whether the velocity at a point in the channel is invariant with time or not. Unsteady

non-uniform flow is more common in practice. It occurs when a sluice gate is oper-

ated in a dam or during a tidal bore. Non-uniform flow always occurs in short chan-

nels because a certain length of channel is required for the establishment of uniform

flow. Analysis of unsteady non-uniform flows is more complicated and difficult as

compared to that of a steady uniform flow.

The flow is an open channel may be either laminar or turbulent depending upon

the relative magnitudes of the viscous and inertia forces. Reynolds number Re, as the

criterion of transition from laminar to turbulent flow, is defined in this case as Re =

V av l/n, where V av is the average flow velocity at any cross section l, the characteristic

length is usually the hydraulic radius Rh (= A /P) and n is the kinematic viscosity of the

liquid. The lower critical value of Reynolds number below which the flow is always

laminar is 600. Flows in open channels are usually turbulent in practice. Laminar flow

may be observed in small grooves in domestic draining boards set at a small slope.

Another important classification of an open channel flow is made on the basis of

whether a small disturbance in the flow can travel upstream or not. This depends on

the flow velocity and is characterised by the magnitude of Froude number Fr. When

Froude number is less than 1.0, any small disturbance can travel against the flow

and affects the upstream condition, and the flow is described as tranquil. When

Froude number is greater than 1, a small disturbance cannot propagate upstream but

is washed downstream, and the flow is said to be rapid. When Froude number is

exactly equal to 1.0, the flow is said to be critical. Further discussion on tranquil and

rapid flow has been made in Section 12.2.7. Therefore, a complete description of flow

consists of four characteristics. The flow may be

(a) Either uniform or non-uniform

(b) Either steady or unsteady

(c) Either laminar or turbulent

(d) Either tranquil or rapid

12.2.3 Application of Bernoulli’s Equation in Open Channels

Bernoulli’s equation can be well applied to flow through an open channel, since no

restriction to flow between boundaries of a particular kind was made in the deriva-

tion of this equation. Bernoulli’s equation can be written for a steady incompress-

ible and inviscid flow as

p

g

V

gr
+

2

2
 + z = constant along a streamline
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In case of a flow through a channel where the streamlines are sensible, straight and

parallel or a little curved in nature (for a gradually varied flow), there is only a hydro-

static variation of pressure over the cross-section This implies that the pressure at

any point in the stream is governed only by its depth below the free surface. Consider

the flow through a straight channel, as shown in Fig. 12.3. Pressure head (p/rg) at any

point in the channel is therefore the vertical height of the free surface from the point.

Hence, the sum of pressure head (p/rg) and potential head (z) at any point becomes

equal to the height of the free surface, at the cross section containing the point,

above a horizontal datum of reference. (Fig. 12.3). Bernuolli’s equation is thus simpli-

fied to the following form:

The height of liquid surface above datum + (V 2
/2g) = constant (12.1)

Arbitrary horizontal datum

Free surface
Streamline
Bed of channel

p g/r

z

1.2
1.1

0.9

Fig. 12.3 Representation of pressure Fig. 12.4 Contours of constant

head and potential head in         
 

velocity in a rectangular

flow through a straight channel channel

provided that friction is negligible. If it is assumed that, at the section considered, the

velocity is same at all streamlines, then Eq. (12.1) is valid for the entire stream. In

practice, however, a uniform distribution of velocity over a section is never achieved.

The actual velocity distribution in an open channel is influenced both by the solid

boundaries and by the free surface. The irregularities in the boundaries of an open

channel are usually very large and greatly influence the velocity distribution. A

typical velocity distribution for a channel of rectangular section is shown in Fig. 12.4.

The maximum velocity usually occurs at a point slightly below the free surface. The

numeric in Fig. 12.4 represents the ratio of actual velocity to the velocity at free

surface. In practice, when liquid flows from one section to another, friction converts

a part of the mechanical energy into intermolecular energy and this part of energy is

regarded to be lost. If this loss of mechanical energy per unit weight between Sections

1 and 2 (Fig. 12.5) is hf, then for steady flow, mechanical energy balance equation (Eq.

12.1) between the two sections can be written as

(Height of liquid surface + 
V

g

1
2

2
= (Height of liquid surface

above a horizontal above a horizontal + 
V

g

2
2

2
 + hf

datum of reference) datum of reference)



580 Introduction to Fluid Mechanics and Fluid Machines

or h1 + z1 + 

2
1

2

V

g
 = h2 + z2 + 

2
2

2

V

g
 + hf (12.2a)

where V 1 and V 2 are the average flow velocities over the cross sections at 1 and 2

respectively.

To take account of non-uniformity of velocity over the cross section Eq. (12.2a)

may be written as

h1 + z1 + a1 

2
1

2

V

g
 = h2 + z2 + a2 

2
2

2

V

g
 + hf (12.2b)

Liquid surface

Streamline

Channel bed

Arbitrary horizontal datum

h1

h2

z1
z2

l

Fig. 12.5 Representation of total head at two sections in a channel flow

12.2.4 Energy Gradient and Hydraulic Gradient Lines

The concept of energy and hydraulic gradient lines is not restricted to channel flows,

rather it is referred, in general, to all kinds of flows through closed or open ducts. The

energy gradient line is the contour of the total mechanical energy per unit weight or

the total head (z + p/rg + V 2/2g) at a cross section, as ordinate against the distance

along the flow. The hydraulic gradient line is obtained by plotting the sum of poten-

tial and pressure heads (z + p/rg) as ordinate against the same abscissa (the distance

along the flow). Thus, the hydraulic gradient line is the contour of the free surface in

an open channel. The hydraulic gradient line in any kind of flow can be constructed

by subtracting the velocity head V 2/2g from the energy gradient line at every Section

The energy and hydraulic gradient lines are illustrated in case of a pipe flow and flow

through a straight channel in Figs 12.6 and 12.7 respectively.

Figure 12.6 shows a flow of fluid through a pipe one end of which is attached to a

reservoir maintained with a constant height of water, and the other end to a converg-

ing nozzle that increases the velocity at the expense of pressure. The energy gradient

line, as shown, fall gradually and continuously due to the frictional head loss in the

pipeline and the nozzle. The hydraulic gradient line always runs below the energy

gradient line, difference being the velocity head at the corresponding section. Since

the velocity increases in the nozzle, the hydraulic gradient line falls sharply in that

region. Both the energy gradient and hydraulic gradient lines meet on the reservoir
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surface where the velocity is negligible. If a pump or a turbine is fitted in the system,

the energy gradient line would show an abrupt rise across the pump by an amount

equal to the head developed, or an abrupt fall across the turbine by an amount equal

to the head extracted. The hydraulic gradient line on the other hand, may show an

abrupt rise or fall in a pipeline, if there occurs a sudden enlargement or contraction of

the pipe at any section.

Energy gradient line

Hydraulic gradient
line

2

V2

V2
2

2g

2g

Fig. 12.6 Energy gradient and hydraulic gradient lines in case of a pipe flow

The energy gradient and hydraulic gradient lines in case of a channel flow are

shown in Fig. 12.7. The hydraulic gradient line in this situation is the liquid surface

itself. In case of uniform flow, the depth of the bed h, and accordingly the average

velocity and kinetic energy correction factor, remain the same along the direction of

flow in the channel (h1 = h2, V 1 = V 2, a1 = a2). As a consequence, the energy gradient

line, the hydraulic gradient line or the liquid surface and the channel bed run parallel

to each other. The loss of mechanical energy due to friction per unit length of the bed

becomes hf /l, where hf is the total loss of head over the length of the channel l. The

quantity hf /l is termed as the energy gradient since it corresponds to the slope of the

energy gradient line. For a uniform flow through a channel, the energy gradient

becomes equal to the geometrical gradient of the channel bed and of the liquid sur-

face.

hf
V g2/2

Energy gradient line

Free surface or hydraulic
gradient line

Channel bed

Arbitrary horizontal datum

p/ gr

z

1

2

Fig. 12.7 Energy gradient and hydraulic gradient lines in case of a channel flow
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12.2.5 Steady Uniform Flow—the Chezy Equation

A relationship between the average flow velocity and pressure drop in a steady

uniform flow through a straight channel will now be developed. Let us consider a

control volume abcd in a straight channel as shown in Fig. 12.8. The hydrostatic

pressure forces at the surfaces ab and cd balance each other. The other forces acting

on the control volume are the component of weight along the flow direction and the

shear force at the solid boundary. Since the flow is steady and uniform, the rate of

momentum influx to the control volume at ab is equal to the rate of momentum

efflux from it at cd. Therefore, the net rate of momentum efflux from the control

volume is zero. Hence, applying the momentum theorem to the control volume for a

steady and uniform flow, we can write, as follows:

W

b
c

d
a

(1) (2)

Horizontal
Channel section

t0

90º - q

q

B

A

P

h

l

Fig. 12.8 Application of momentum theorem on a control volume in a uniform

flow through a straight channel

The net force acting on the control volume in the direction of flow = Net rate of

momentum efflux from the control volume = 0

or W  sin q – t0 Pl = 0

or rg Al sin q = t0 Pl

or t0 = rg (A /P) sin q = rg Rh S (12.3)

where, t0 is the average shear stress at the solid boundary and S  (= sin q) is the slope

of the bed of the channel. The hydraulic radius Rh = A /P as defined in Section 12.2.1.

An expression to substitute t0 in terms of the average flow velocity V  is needed.

This is done by expressing t0 in terms of Fanning’s friction factor f , as

t0 =
1

2
 rV2 f (12.4)

Moreover, in almost all cases of practical interest, the Reynolds number of flow in

an open channel is sufficiently high where the shear stress at the boundary is propor-

tional to the square of the average velocity and hence f remains constant. Combining

Eq. (12.3) with (12.4), we have

V = (2g/f )1/2 (RhS)1/2
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or V = c (RhS)
1/2

(12.5)

This is the well-known Chezy equation. The parameter c = (2g/f )1/2 is called the

Chezy’s coefficient and has the dimension L1/2 T–1. Although the validity of Eq.

(12.5) has been experimentally verified for uniform flow only, it can also be used

with reasonable accuracy for gradually varied flows. An expression similar to Eq.

(12.3) can be derived for a non-uniform flow also.

Variation of Chezy Coefficient To determine the velocity V , from Chezy equa-

tion (Eq. 12.5), one has to know the value of c, the Chezy coefficient. In case of flow

through pipes, as described in Chapter 11, the friction factor f , depends on both the

Reynolds number Re, and on the relative roughness e/d of the solid surface. Thus,

Chezy’s coefficient may be expected to depend on both Re and e/Rh (Rh is the hydrau-

lic radius), and also on the shape and size of the channel. The flow in open channels

are fully turbulent in practice and hence the dependence of c on Re is negligible, while

e/Rh becomes the only influencing parameter for c. The differences in the shape of the

channel cross section are taken care of by the use of hydraulic radius Rh. It is found

from experience that the shape of the cross section has little effect on the flow, if the

shear stress t0 does not vary much around the wetted perimeter. Therefore, the

hydraulic radius Rh, itself represents the characteristic parameter for the influence of

both the shape and size of the channel on flow through it.

Experiments were made by several workers to correlate the value of c with the

pertinent governing parameters. We shall mention here a few such important em-

pirical relations as follows:

c =

1 0.00155
23

0.00155
1 23

h

n S
n

S R

+ +

Ê ˆ+ +Ë ¯

(12.6)

[Ganguillet–Kulter (G.K.) formula]

c = (1/n) R y
h [Pavlovskii formula] (12.7)

where y = 2.5 n – 0.13 – 0.75 Rh(n – 0.1)

c = (1/n)Rh
1/6 [Manning’s formula] (12.8)

The parameter n in all these formulae is the roughness coefficient. The hydraulic

radius Rh has to be substituted in metre to get the value of c in m1/2 s from the above

relations. The simplest expression amongst all is the Eq. (12.8) due to Manning.

The values of roughness coefficient n for a straight channel are shown in Table

12.1. It is interesting to note that all the formulae (Eq. 12.6, 12.7 and 12.8) give the

same value for the Chezy’s coefficient c = 1/n at the unit hydraulic radius Rh = 1.

Inserting the value of c from Eq. (12.8) into Eq. (12.5), the expression for velocity

can be written as

V  = (1/n) Rh
2/3 S1/2 (12.9)

This equation is widely used in calculating the flow velocity in an open channel

because of its simplest form and yet good agreement with experiments.



584 Introduction to Fluid Mechanics and Fluid Machines

Table 12.1 Values of Manning�s Roughness Coefficient n for Straight

Uniform Channels

Type of surface n

Smooth cement, planed timber 0.010

Rough timber, canvas 0.012

Cast iron, good ashler masonry, brick work 0.013

Vertified clay, asphalt, good concrete 0.015

Rubble masonry 0.018

Firm gravel 0.020

Canals and rivers in good condition 0.025

Canals and rivers in bad condition 0.035

Example 12.1

The depth of a uniform steady flow of water in a 1.22 m wide rectangular cement

lined channel laid on a slope of 4 m in 10000 m, is 610 mm. Find the rate of dis-

charge using Manning’s value for c (Chezy coefficient).

Solution

We have to use Eq. (12.9) for the present purpose.

Here, Rh =
1 22 0 61

1 22 2 0 61

. ( . )

. .

¥
+ ¥

 = 0.305 m = 305 mm

S(slope) =
4

10000
 = 0.0004

n (from the Table 12.1) = 0.01

Therefore, from Eq. (12.9)

V =
1

0 01.
 (0.305)2/3 (0.0004)1/2

or Q = V  ◊ A  = 
1 22 0 61

0 01

. .

.

¥
 (0.305)

2/3
 (0.0004)

1/2

= 0.674 m3

Example 12.2

A trapezoidal channel, having a bottom width of 6.096 m and side slopes 1 to 1, flows

1.219 m deep on a slope of 0.0009. Find the rate of uniform discharge. Take n (rough-

ness coefficient) = 0.025.
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Solution

Here A , the cross-sectional area of flow (Fig. 12.9)

=
1

2
 [6.096 + 6.096 + 2 ¥ 1.219] ¥ 1.219

= (6.096 + 1.219) ¥ 1.219 = 8.917 m2

1.219 m 1.219 m

6.096 m

1.219 m

Fig. 12.9 A trapezoidal channel

Wetted perimeter P = 6.096 + 2(1.219/cos 45°)

= 6.096 + 2 ¥ 1.219 ¥ (2)1/2

= 9.544 m

Therefore, Rh = 8.917/9.544 = 0.934 m

Now we apply Eq. (12.9) to get the discharge as

Q =
8 917 0 934 0 0009

0 025

2 3 1 2
. ( . ) ( . )

.

/ /¥
 = 10.22 m

3
/s

Example 12.3

How deep will water flow at the rate of 6.79 m
3
/s in a rectangular channel 6.1 m wide,

laid on a slope of 0.0001? Use n = 0.0149.

Solution

Let the depth be h

Then A  (cross-sectional areas of flow) = 6.1 ¥ h

P (wetted perimeter) = 6.1 + 2h

Therefore, Rh (Hydraulic radius) = 
6 1

6 1 2

.

.

¥
+

h

h

By making use of Eq. (12.9),

6.79 =
6 1

0 0149

6 1

6 1 2

2 3
.

.

.

.

/
h h

h

¥
+

F
HG

I
KJ

 (0.0001)
1/2
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or 1.66 = h
h

h

6 1

6 1 2

2 3
.

.

/

+
F
HG

I
KJ

(12.10)

The value of h is found out from this equation by the method of successive trails.

Equation (12.10) is therefore written, for this purpose, as

h = 1.66
6 1 2

6 1

2 3
.

.

/
+F

HG
I
KJ

h

h
(12.11)

For a first trial, let us put h = 1.50 in the RHS. of Eq. (12.11) and get

h1
 = 1.65

Superscript on h indicates the number of trials.

Now we put h1 in the RHS of Eq. (12.11) for the second trial to get a new value of

h as

h2
 = 1.59

Putting this value of h in Eq. (12.11) we obtain

h3 = 1.61

Putting the new value of h again in Eq. (12.11) we obtain

h4 = 1.60

The difference between the two successive values of h now becomes 0.62%.

Therefore, we can write the final value of the depth h as 1.60 m.

Example 12.4

Show that the vertical distribution of velocity is parabolic for a uniform laminar

flow in a wide open channel with constant slope and depth of flow.

dL

dy

a

b tc
W

F1

x

h

a

y F2

u

y

d

Fig. 12.10  A uniform laminar flow in an open channel with constant slope and

  depth of flow
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Solution

Let the depth of flow be h (Fig. 12.10). A control volume abcda of length dL and of

width B (the width of the channel) is taken as shown in the figure. Now we have to

apply the momentum theorem to this control volume.
The forces acting on the surfaces ab and cd are the hydrostatic pressure forces as

shown in the figure.

Let F1 and F2 be the hydrostatic pressure forces on these two surfaces ab and cd

respectively.

Therefore the net force acting on the control volume in the direction of flow can

be written as

Fx = F1 – F2 + rg(h – y) dL B sin a – t dL B

Since F1 = F2

Fx = r g(h – y) dL B sin a – t dL B

For a steady uniform flow, the momentum coming into the control volume across

the face ab is equal to that leaving from the control volume across the face cd.

Therefore the net rate of momentum efflux from the control volume is zero.

Hence, we can write, from the momentum theorem applied to the control volume

abcda,

Fx = r g(h – y) dL B sin a – t dL B = 0
which gives,

t = r g(h – y) sin a (12.12)

For a laminar flow,

t = m
d

d

u

y

Substituting the expression of t in the Eq. (12.12), we get

du =
r

m

g
 (h – y) sin a dy

or u =
r a

m

g
hy

ysin
-

F

HG
I

KJ
2

2
 + C1 (12.13)

For small values of a, sin a = tan a = S (slope of the channel). The constant of

integration C1 in Eq. (12.13) can be obtained from the boundary condition that at y =

0, u = 0, which gives C1 = 0. Hence, Eq. (12.13) becomes

u =
r a

m

g
y h y h

sin
( / ) ( / )-L
NM

O
QP

1

2

2
(12.14)

Equation (12.14) is the required velocity distribution which is parabolic in nature.

Example 12.5

In a hydraulics laboratory, a flow of 0.412 m
3
/s was measured from a rectangular

channel flowing 1.22 m wide and 0.61 m deep. If the slope of the channel was

0.0004, find its roughness factor using Manning’s formula.
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Solution

Here,

A = 1.22 ¥ (0.61)

= 0.7442 m2

P =  1.22 + 2 ¥ 0.61 = 2.44

Therefore, Rh = A /P = 0.305 m

Using Eq. (12.9)

Q = 0.412 = 
1 22 0 610. .¥

n
 (0.305)

2/3
 (0.0004)

1/2

which gives n = 0.0163

12.2.6 Optimum Hydraulic Cross Section

With the help of Manning’s equation [Eq. (12.9)] for the velocity of flow, we can write

the expression for volumetric discharge rate through an open channel as

Q =
A

n
 Rh

2/3 S1/2 = 
A S

n P

5 3 1 2

2 3

/ /

/
(12.15)

A typical application of the above equation in the design of artificial canal for uniform

flow is the economical proportioning of its cross section. It may be observed from Eq.

(12.15) that the discharge rate Q, is maximum when the wetted perimeter is minimum

for a given flow area. The most efficient cross section, from the hydraulic point of

view, is semicircular as it has the least wetted perimeter among all sections with the

same flow area. It is desirable to use such a section not only for the sake of obtaining

the maximum discharge for a given cross-sectional area, but for the sake of economy

due to the fact that a minimum wetted perimeter requires a minimum of lining material.

The cross-sectional area of a channel under this condition is known as the optimum

hydraulic cross section. The condition is characterised by the maximum value of the

hydraulic radius Rh = A /P. Although a semi circular channel has the maximum hydrau-

lic mean radius and it is built from prefabricated sections, the semicircular shape is

impractical for other forms of construction. Trapezoidal sections on the other hand,

are very popular. We should therefore find out the condition for maximum hydraulic

mean radius for a trapezoidal section as follows:

Let us consider a trapezoidal section, as shown in Fig. 12.11.

h

b

a
h cosec a

Fig. 12.11 Section of a trapezoidal channel



Flows with a Free Surface 589

Cross-sectional area of flow A  = bh + h2
 cos a

Wetted perimeter P = b + 2h cosec a

Since b = (A /h) – h cot a,

Rh =
A

P
 = 

A

A h h h( / ) cot cos- +a a2 ec
(12.16)

For a given value of A , the expression is a maximum when its denominator is a

minimum. This is found from the consideration

d

dh
 [(A /h) – h cot a + 2h cosec a] = 0

or – (A /h2) – cot a + 2 cosec a = 0

or A  = h2
 (2 cosec a – cot a) (12.17)

The second derivative, 2A /h3, is clearly positive and so the condition is indeed

for a minimum of the denominator of Eq. (12.16), and hence for a maximum of Rh.

Substituting the value of A  from Eq. (12.17) in the expression for Rh, i.e., into Eq.

(12.16), we have

Rh =
2 (2 cosec cot )

(2cosec cot ) cot 2 cosec

h

h h h

a a

a a a a

-
- - +

=
2 (2cosec cot )

2 (2cosec cot ) 2

h h

h

a a

a a

-
=

-
(12.18)

In other words, for maximum efficiency, a trapezoidal channel should be so propor-

tioned that its hydraulic mean radius is half the central depth of flow. Since a rectangle

is a special case of a trapezium (with a = 90°), the optimum proportions for a rectan-

gular section is given by Rh = h/2, and from Eq. (12.17), A  = 2h2
 which finally gives that

the width of the rectangle B = 2h2/h = 2h.

If, instead of depth of flow, the side slope is varied to give the optimum cross

section, i.e. maximum Rh, then we can find the required condition as

d

da
 [(A /h) – h cot a + 2h cosec a] = 0

or h cosec a (cosec a – 2 cot a) = 0

Since h π 0,

cosec a – 2 cot a = 0

or cos a = 1/2

which gives a = 60° (12.19)

This concludes that, for a given depth of flow the optimum trapezoidal section,

given by maximum Rh, is half of a regular hexagon.
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Example 12.6

(i) Determine the most efficient section of trapezoidal channel, n = 0.025, to carry 12.74

m3/s. To prevent scouring, the maximum velocity is to be 0.92 m/s and the side slopes

of the trapezoidal channel are 1 vertical to 2 horizontal. (ii) What slope S  of the

channel is required?

2h 2hb

h

Fig. 12.12 A trapezoidal channel

Solution

(i) It is known from Eq. (12.18) that for the most efficient section (the minimum wetted

perimeter for a given discharge) of a trapezoidal channel

Rh = h/2

where Rh is the hydraulic radius and h is the depth of flow (Fig. 12.12). Hence we can

write,

Rh = h/2 = A /P = 
bh h h

b h

+
+
2 2 2

2 5
1 2

( / ) ( )

( )
/

or b = 2h (5)
1/2

 – 4h (12.20)

= 0.472 h

where b is the width at the base (Fig. 12.12). Again, from continuity, the cross-

sectional area to accommodate the maximum velocity is given by

A = 12.74/0.92 = bh + 2h2

or b = (13.85 – 2h2)/h (12.21)

Equating (12.20) and (12.21), we get

h = 2.37 m and b = 1.12 m

(ii) Using Manning’s equation, i.e. Eq., (12.9), for this trapezoidal channel with

b = 1.12 m, h = 2.37 m and n = 0.025, we can write

0.92 =
( . / )

.

/ /
2 37 2

0 025

2 3 1 2S

or S = 0.00042
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12.2.7 Propagation of Waves by Small Disturbances
in Open Channels

Any temporary disturbance of a free surface produces waves; for example, a stone

dropped into a pond, removal or insertion of an obstruction like sudden opening or

closing of a sluice gate in a river causes waves which are propagated upstream and

downstream of the source of disturbances. The depth of water in a channel is consid-

ered to be shallow when it is small as compared to the length of a wave on its surface.

Again, a wave is termed as a positive wave when it results in an increase in the depth

of stream, and is termed as a negative one if it causes a decrease in the depth.

We consider an open channel with a rectangular cross section and a horizontal

base. The slope of the bed is assumed to be nearly zero so that the weight of the

liquid has a negligible component in the direction of flow. Let the uniform flow in

the channel, represented by velocity V 1 and depth h1, (Fig. 12.13(a)) be disturbed by

a small disturbance, for example, the closing of a gate downstream, so that a posi-

tive wave travels upstream with a constant velocity C (relative to the bed of the

channel). Due to the disturbance, the changes in downstream conditions of the flow

are considered in a sense that a short distance downstream of the wave the flow has

again become uniform with altered values of velocity and depth as V 2 and h2, respec-

tively (Fig. 12.13(a)).

V1 V2

V C1 +

y

x

V C2 +

C

h1 h1

F1
F2

a

1 2

b

h2 h2

Control
volume

(a) Propagation of a wave in an open (b) A typical control  volume in the

channel analysis of propagation velocity of a

surface wave in a channel flow

Fig. 12.13 

The change in velocity from V 1 to V 2 caused by the passage of the wave is the

result of a net force acting on the fluid. The magnitude of this force can be found out

by applying the momentum theorem to a control volume enclosing the wave. Such a

control volume 1ab21 shown in Fig. 12.13(b) is taken for our analysis. In order of make

the flow steady, the frame of reference is chosen where the surge wave is stationary

while the fluid upstream and downstream the wave moves with velocity V 1 + C and V2

+ C, respectively. In other words, we can say, that the coordinate axes for the analy-

sis, are considered to be fixed with the moving wave. The net force acting on the
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control volume in the x direction is due to the forces acting on the surfaces 1a and 2b.

The forces acting on these surfaces (Fig. 12.13(b)) are the hydrostatic pressure forces

and can be written as

F1 =
r gh1

2

2
 and F2 = 

r gh2
2

2

Here the width of the channel has been considered to be unity.

Therefore, the net force in the x direction on the control volume,

=
r rgh gh1

2
2
2

2

-
(12.22)

The net rate of x momentum efflux from the control volume

= rQ (V2 – V1) (12.23)

where Q is the rat of volumetric discharge

From continuity,

Q = (V 1 + C)h1 = (V 2 + C)h2 (12.24a)

which gives V2 = (V 1 + C) 
h

h

1

2

 – C (12.24b)

For a steady flow, the momentum theorem as applied to the control volume 1ab2

gives

rg

2
 (h2

1 – h2
2) = rQ (V 2 – V 1) (12.25)

Substituting for Q and V 2 from Eqs (12.24a) and (12.24b) respectively into

Eq. (12.25) we get

rg

2
 (h2

1 – h2
2) = r (V 1 + C)h1 ( )V C

h

h
C V1

1

2

1+ - -
L

N
M

O

Q
P

= r (V 1 + C)
2
 
h

h

1

2

 (h1 – h2)

which gives, V 1 + C = (gh2)1/2 
1

2

2 1

1 2+L
NM

O
QP

h h/
/

(12.26)

If the height of the wave is considered to be small, which is usually true for

waves created by small disturbances, then, h2 = h1 = h, and Eq. (12.26) can be

written as

V 1 + C = (gh)
1/2

(12.27)

This equation implies that the velocity of the wave relative to the undisturbed liquid

is (gh)1/2. Though this derivation applies only to waves propagated in rectangular

channels, it can be shown that, for channels with different types of cross section, the

velocity of propagation of a small wave is (gh )
1/2

 relative to the undisturbed liquid,

where h  is the mean depth given by
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h  =
Area of cross section

Width of the liquid surface
 = 

A

B
(12.28)

Equation (12.27) gives the velocity of a wave whose height is small. A larger wave will

be propagated with a higher velocity than that given by the Eq. (12.27). Moreover, the

height of the wave does not remain constant over an appreciable distance due to

frictional effects. In the derivation of Eq. (12.27), the effect of friction has been as-

sumed to be negligible for the control volume 1ab2 (Fig. 12.13(b)), since the distance

between the sections 1a and 2b are considered to be very small. The present analysis

is, however, valid for a shallow depth.

12.2.8 Specific Energy and Alternative Depth of Flow

Definition of Specific Energy In the definition of total energy of a flowing fluid,

a reference horizontal datum is chosen arbitrarily so that the potential energy of a

fluid element is prescribed from the datum. In a channel flow, the sum of the pressure

head, p/rg and the potential head, z, (measured from any horizontal datum) is equiva-

lent to the height of free surface above the datum, and the total energy is therefore

equivalent to this height plus the height corresponding to velocity head V 2
/2g as

already explained in Fig. 12.7 in Section 12.2.4. Specific energy of a fluid element at

any point in a channel flow is defined as its total energy per unit weight where the

component potential energy is measured from the base or bed of the channel as the

datum. Therefore, specific energy Es, at any section of the channel if given by

Es = h + 
V

g

av
2

2
(12.29)

where V av represents the average flow velocity. If A  and Q are the cross sectional area

and rate of volumetric flow respectively at the section considered, then

Vav = Q/A (12.30a)

Again, if the width of the channel at that section is b, then

A = b h (12.30b)

With the help of Eqs (12.30a) and (12.30b), Eq. (12.29) can be written as

Es = h + 
q

g h

2

22

1F
HG

I
KJ

(12.31)

where q = Q/b

Equation (12.31) relates the specific energy with the depth of flow and the dis-

charge per unit width. Out of the three variables Es, q and h, any two can vary

independently and the third one becomes dependent by Eq. (12.31). Our particular

interest centres around the instances in which q is constant while h and Es vary, i.e.,

how the specific energy varies with depth of flow for a given rate of discharge. If Es

is plotted against h for a constant value of q, we get a curve, as shown in

Fig. 12.14, which is known as the specific energy diagram. At small values of h, the
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second term on the right-hand side of Eq. (12.31) becomes predominant over the first

one and then Es becomes an inverse function of h with Es Æ μ as h Æ 0. Therefore,

this part of the specific energy curve becomes asymptotic to the Es axis. Conversely,

as h increases, the velocity becomes smaller and the second term (q2/2g) 
1
2h

 becomes

insignificant compared to the first term h and therefore Es varies directly with h in this

region and finally becomes asymptotic to the line Es = h. Between these two extremes,

there is clearly a minimum value of Es. The depth of flow at which the minimum value

of Es occurs is known as critical depth hc. The value of Esmin
 and hc can be found out

as follows:

For Es to be minimum, we can write from Eq. (12.31)

∂ Es/∂ h = 1 + 
q

g

2

2
 (–2/h3) = 0

which gives h = (q2
/g)

1/3

This value of h is the critical depth hc and hence we can write

hc = (q2/g)1/3 (12.32)

The corresponding minimum value of Es is obtained by substituting q in terms of hc

from Eq. (12.32) into Eq. (12.31) as

Esmin
 = hc + (h3

c/2h2
c) = 

3

2
 hc (12.33)

We now examine another interesting case where h and q vary while specific en-

ergy Es is kept constant. Again, with the help of Eq. (12.31), the curve of h against q

for constant Es is drawn as shown in Fig. 12.15. Here we observe that q reaches a

maximum at a given value of h which indicates a maximum discharge for a given

specific energy. To obtain this condition, we first write the Eq. (12.31) in a form

q2 = 2gh2 (Es – h)

For maximum discharge,

2q 
∂

∂

q

h
 = 2g(2Es h – 3h2) = 0

which gives h =
2

3
 Es (12.34)

From Eqs (12.33) and (12.34) we conclude that, at the critical depth, either the dis-

charge is maximum for a given specific energy or the specific energy is minimum for a

given discharge.
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Critical Velocity The velocity of flow at the critical depth is known as critical

velocity in case of a channel flow. Since the velocity of flow V  = Q/bh = q/h, the critical

velocity V c may be determined from Eq. (12.32) as

Vc = q/hc = 
( ) /gh

h

c

c

3 1 2

 = (ghc)
1/2 (12.35)

Though the expressions for critical depth and critical velocity have been derived

here for a rectangular channel, the same results can be obtained for a channel with

any shape of section provided the mean depth h  as defined by Eq. (12.28) is used in

place of depth of flow h for a rectangular cross Section

Physical Implication of Critical Velocity and Definition of Tranquil and
Rapid Flow The most important outcome of critical velocity is that it separates

two distinct types of flow—one in which the velocity is less than the critical value,

and the other in which the velocity exceeds the critical value. We find that for each

value of Es other than the minimum (Fig. 12.14), and for each value of q other than

the maximum (Fig. 12.15), there are two possible values of h, one greater and one less

than hc (although 12.31) is a cubic in h, the third root is always negative and is

therefore physically meaningless). These two values of h are known as alternative

depths. When h < hc, the flow velocity V  is greater than V c and when h > hc, V  is less

than V c. Before examining the physical significance of these two regimes of flow

given by V  > V c and V  < V c, we first find the physical implication of the critical

velocity. We have  shown in Section 12.2.7 that the velocity of propagation

(relative to the undisturbed liquid) of a small surface wave in a shallow liquid equals

to (gh)
1/2

, where h is the mean depth of flow in case of varying cross section, or simply

the depth of flow, in case of a rectangular cross section throughout the channel. A

surface wave can be caused by any small disturbance to the flow. Hence the surface

wave can be considered as a messenger, propagated against the flow, for the liquid

upstream to be informed about the disturbances downstream so that it can change its

behaviour accordingly. The absolute velocity of surface wave propagating upstream

will be (gh1/2 – V ), which is positive when V  < gh1/2 and negative when V  > gh1/2. This

implies physically that when the flow velocity is less than the critical velocity, the

surface wave will have the opportunity to reach the upstream and to influence the

upstream liquid by the disturbances downstream. On the other hand, when the flow

velocity is greater than the critical velocity, the surface wave cannot propagate

upstream and hence the information about events downstream is never conveyed

upstream. When the flow velocity is equal to the critical velocity, a small wave which

tries to travel upstream cannot progress, since (gh1/2
 – V ) becomes zero. The wave

under this situation is known as a standing wave.
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q = Constant

Tranquil

Rapid

hc

45∞

Es

h

Esmin

E = hs

Fig. 12.14 Variation of specific energy with the depth of flow for a given

  discharge

Tranquil

Rapid

Es = Constant

hc

h

q

qmax

Fig. 12.15 Variation of discharge with depth of flow for a given specific energy

These three regimes of flow can be characterised by a dimensionless parameter

defined as the ratio of flow velocity to the critical velocity V /(gh)1/2. We have al-

ready seen in Section 6.2 that this dimensionless term is known as Froude number Fr,

where Fr = V /(gh)1/2.

Flow in which the velocity V , is less than the critical velocity (gh)1/2, i.e., when

Froude number Fr < 1, is referred to as tranquil flow. Flow in which the velocity V  is

greater than the critical velocity, i.e., when Fr > 1, is termed as rapid or shooting flow.

The flow in which the velocity is equal to the critical velocity, i.e., when Fr = 1 is

known as critical flow.
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Example 12.7

A rectangular channel carries 5.66 m3/s. Find the critical depth hc and critical velocity

V c for (i) a width of 3.66 m and (ii) a width of 2.74 m, (iii) what slope will produce the

critical velocity in (i) if n = 0.020?

Solution

(i) Critical depth is defined as the depth at which the flow velocity is given by its

critical value as

Vc = (ghc)
1/2

again, Vc = Q/bhc = 5.66/3.66 hc

Therefore, 5.66/3.66 hc = (ghc)
1/2

or hc =

1/3
5.66 5.66

3.66 3.66 9.81

¥È ˘
Í ˙¥ ¥Î ˚

 = 0.625 m

Now, Vc = (9.81 ¥ 0.625)
1/2

 = 2.48 m/s

(ii) When the width is 2.74 m

hc =

1/3
5.66 5.66

2.74 2.74 9.81

¥È ˘
Í ˙¥ ¥Î ˚

 = 0.758 m

and, Vc = (9.81 ¥ 0.758)
1/2

 = 2.73 m/s

(iii) Applying Eq. (12.9), we can write

Vc =
R S

n

c
2 3 1 2/ /

where Rc is the hydraulic radius at the critical flow and is given by

Rc =
3.66 0.625

(3.66 2 0.625)

¥
+ ¥

 = 0.466

Hence, 2.48 =
( . )

.

/
0 466

0 02

2 3

 S1/2

which gives S = 0.0068

Example 12.8

A rectangular channel, 9.14 m wide, carries 7.64 m3/s when flowing 914 mm deep. (i)

What is the specific energy? (ii) Is the flow tranquil or rapid?

Solution

(i) We know from Eq. (12.31) that

Es = h + 
q

g h

2

22

1F

HG
I

KJ
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or Es = 0.914 + 
1

2 9 81 0 914

7 64

9 14
2

2

¥ ¥
F
HG

I
KJ. ( . )

.

.

= 0.957 m

(ii) From Eq. (12.32),

hc =
7 64

9 14

1

9 81

2 1 3

.

. .

/

F
HG

I
KJ

L

N
M
M

O

Q
P
P

 = 0.415 m = 415 mm

Therefore, the flow is tranquil since the depth of flow is grater than the critical depth.

Example 12.9

A trapezoidal channel has a bottom width of 6.1 m and side slope of 2 horizontal to 1

vertical. When the depth of water is 1.07 m, the flow is 10.47 m
3
/s. (i) What is the

specific energy of flow? (ii) Is the flow tranquil or rapid?

Solution

The cross sectional area of flow,

A = 6.1(1.07) + 2 
1

2

F
H

I
K

 (1.07) (2.14) = 8.82 m2

From Eq. (12.31), we can write

Es = h + 
1

2g
 (Q/A)2

where Q is the volumetric flow rate.

Hence, ES = 1.07 + 
1

2 9 81

10 47

8 82

2

¥
F
HG

I
KJ.

.

.
 = 1.14 m

To determine the critical depth, we have to first find out a similar relation as given

in Eq. (12.32) for a channel whose width varies with the depth. For this purpose, we

start with Eq. (12.31) as

ES = h + 
1

2g
 (Q/A)2

where Q is the flow rate and A  is the cross-sectional area. At critical condition, i.e., for

minimum specific energy.

d

d

E

h

S  =
2

3

2 d
1

2 d

Q A

g hA

Ê ˆ+ -Á ˜Ë ¯
 = 0

substituting dA  = B¢ dh (B¢ is the width at the water surface), we get

(Q2B¢)/(g A3
c) = 1

or Q2
/g = A3

c/B¢

From the geometry of the channel, A c = 6.1 hc + 2 h2
c

and B¢ = 6.1 + 4 hc
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(where hc is the critical depth and A c is the corresponding cross-sectional area of flow)
Therefore,

(10.47)2/9.81 = (6.1 hc + 2 h2
c)

3/(6.1 + 4 hc)

Solving by trial, hc = 0.625 m

Since the actual depth exceeds the critical one, the flow is tranquil.

12.3  FLOW IN CLOSED CIRCULAR CONDUITS ONLY PARTLY
 FULL

Flows in closed conduits partly full are usually encountered in practice, namely, in

drains and sewers. Since the liquid has a free surface inside the conduits, the flow is

governed by the principles of channel flow. There are however some special char-

acteristic features of the flow which result from the convergence of the boundary to

the top.

Let us consider a circular conduit of diameter d, partly full of liquid flowing through

it. Let the angle subtended by the free surface at the centre of the conduit be 2q as

shown in Fig. 12.16(a).

The area of cross section of the liquid

A =
2d 1

2 sin cos
4 2 2 2

d dq
q q

Ê ˆ- Á ˜Ë ¯

=
2 1

sin 2
4 2

d
q q
Ê ˆ-Á ˜Ë ¯

(12.36)

The wetted perimeter P = dq

Therefore, the hydraulic radius Rh = A /P = 
d

4
1

1

2

2
-F

H
I
K

sin q

q

r

h

d
q

(a) Flow through a closed
conduit partly full

 

Q/Qfull

O Q V,
Qfull Vfull

h d/

1

1

V/Vfull

(b) Variation of discharge and velocity with
depth of flow for a closed conduit

Fig. 12.16 
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The rate of discharge may be calculated from Manning’s equation (Eq. 12.9) as

Q =
d

n
S

d
2

1 2

2 3

4

1

2
2

1

4
1

1

2

2
q q

q

q
-F

H
I
K
F
H

I
K -F

H
I
K

R
S
T

U
V
W

sin
sin/

/

= K q
q q

q
-F

H
I
K -
F
HG

I
KJ

sin sin
/

2

2
1

2

2

2 3

(12.37)

where the constant K =
d8/ 3

45 3

1 2

/

/S

n
(12.38)

The rate of discharge for the conduit flowing full can be obtained by putting q = p

in Eq. (12.37) as

Qfull = Kp

The rate of discharge Q is usually expressed in a dimensionless form as

Q

Qfull

 =
1 2

2
1

2

2

2 3

p
q

q q

q
-F

H
I
K -
F
HG

I
KJ

sin sin
/

(12.39)

In a similar fashion we can also write,

V

Vfull

 = 1
2

2

2 3

-
F
HG

I
KJ

sin
/

q

q
(12.40)

The depth of flow h (Fig. (12.16(a)) can be expressed in a dimensionless from h/d as

h

d
 =

1

2

1

2
-  cos q (12.41)

The variations of Q/Qfull, and V /V full with h/d are shown in Fig. 12.16(b). The maximum

value of Q/Qfull is found to be (from Eq. (12.39)) 1.08, at h/d = 0.94. This indicates that

the rate of discharge through a conduit is more in case of conduit partly full with h/d

= 0.94 than that in the case of the conduit flowing full. Similarly, it is found from Eq.

(12.40) that the maximum value of V /V full = 1.14 at h/d = 0.81. The physical explanation

for this can be attributed to the typical variation of Chezy’s coefficient with the

hydraulic radius Rh, in Manning’s formula. However, the values are based on the

assumption that Manning’s roughness coefficient n is independent of the depth of

flow. In practice, n tends to decrease with increasing flow depth. For this reason, the

experimental results differ slightly from the theoretical values with constant n, and

show the maximum discharge and veloc-

ity at h/d = 0.97 and 0.83, respectively.

Under fluctuating condition of dis-

charge, in practice, low velocity may

cause deposition of solids in the conduit

whereas high velocity at large depths of

flow may cause excessive scour. This is

rectified to some extent by changing the

shape of the conduit from circular to oval -

or egg-shaped sections as shown in Fig.

12.17.

Fig. 12.17 Commonly used sections for

 fluctuating flows through

conduits partly full



Flows with a Free Surface 601

Example 12.10

A circular culvert has a capacity of 0.5 m
3
/s when flowing full. Velocity should not be

less than 0.7 m/s if the depth is one-fourth of the diameter. Assuming uniform flow,

find the diameter and the slope, taking Manning’s roughness coefficient n = 0.012.

Solution

Putting h/d = 1/4 in Eq. (12.41), we get

1

4
 =

1

2

1

2
-  cos q

or cos q =
1

2

which gives q = p/3 radians.

From Eq. (12.40), we get

V

Vfull

 = 1
2 3

2 3

2 3

-
L

N
M

O

Q
P

sin /

/

/
p

p

= 0.70

Hence, V full =
V

0 70.
 = 

0 70

0 70

.

.
 = 1 m/s

From continuity Qfull =
p

4
d2 V full

or 0.5 =
p

4
d2 ¥ 1

which gives d, the diameter for the culvert = 0.798 m. When flowing full, the hydraulic

radius

Rh = A /P = d/4 = 0.798/4 = 0.1995 m

From Eq. (12.9)

1 =
( . )

.

/
0 1995

0 012

2 3

 S1/2

or S =
( . ) ( . )

( . )
/

0 012 0 012

0 1995
4 3

 = 0.0012

12.4  HYDRAULIC JUMP

A sudden transition from a rapid flow to a tranquil flow is known as hydraulic jump.

A rapid flow, in practice may occur due to the release of liquid in a channel at high
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velocity under a sluice gate or at the foot of a steep spillway. If this flow has to be

decelerated to a uniform tranquil flow due to some obstruction downstream or by the

roughness of the boundary of a long channel with a mild slope, then the only possible

way is a sudden change from rapid to tranquil flow at some location rather than a

gradual transition via the critical condition. This can be explained in the following

way:

A deceleration of flow is accompanied by an increase in the depth of flow which,

in the regime of rapid flow decreases the specific energy (Fig. 12.14). If this in-

crease in depth continues beyond the critical value then the specific energy has to

increase (Fig. 12.14) which is not possible under the circumstances without any

addition of energy from outside. Hence the specific energy may only decrease.

Therefore a demand from a rapid flow to a uniform tranquil flow due to some resis-

tance downstream in a channel is met only through a sudden transition before the

critical condition is reached. This is known as hydraulic jump. It represents a typical

discontinuity in the flow (Fig. 12.18(a)) during which the usual specific energy-

depth of flow relation is invalid. The process of hydraulic jump is highly irreversible

and is shown by the path 1-2 in Fig. (12.18(b)). The hydraulic jump results in the

formation of eddies and turbulences which are responsible for the loss of

mechanical energy hj (Fig. 12.15(b)). The most important task in this context is to

determine the relationship between the depths of flow before and after the hydraulic

jump.

l

1
1

2 2

V1
V2h1

h

h2

Es2 h j
Es1

Es

h1

h2
hc

(a) Hydraulic jump in a channel flow (a) Representation of hydraulic jump
in the specific energy diagram

Fig. 12.18 

Let us consider for the purpose of simplicity a rectangular channel where a hy-

draulic jump has taken place to increase the depth of flow from h1 to h2. The jump

may be considered as a standing wave through which the change has occurred. The

from Eq. (12.26), we can write, putting C = 0,

V1 = (gh2)1/2 
1

2

2 1

1 2+F
H

I
K

h h/
/

= (gh1)1/2 (h2/h1)1/2 
1

2

2 1

1 2+F
H

I
K

h h/
/
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Therefore,

V

gh

1

1
1 2( ) /

 = Fr1 = 
h

h

h h2

1

2 1

1 2
1

2

( / )
/

+L

N
M

O

Q
P (12.42)

Since h2 > h1, the right-hand side of this equation is greater than unity. This con-

cludes that a hydraulic jump, Froude number before the jump is greater than unity

and hence the flow is rapid. We can also calculate the Froude number after the jump

as

Fr2 =
V

gh

h h h

h
2

2
1 2

2 1

1 2

1

2

1

2( )

/
/

/

=
+L

NM
O
QP

F
HG

I
KJ

=
h

h

h h1

2

1 2

1 2
1

2

( / )
/

+L

N
M

O

Q
P (12.43)

For h1/h2 < 1, the right-hand side of this equation is less than unity which con-

cludes that the Froude number after the jump is less than unity and the flow be-

comes tranquil.

A rearrangement of Eq. (12.42) gives

h2
2 + h1h2 – 

2 1
2

1V h

g
 = 0

If we put V 1 = q/h1, where q is the discharge per unit width, we get

h1 h2
2 + h2

1 h2 – 2q2/g = 0 (12.44)

which gives
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F
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The negative sign for the radical is rejected because h2 cannot be negative. Hence,

h2 =
h q

gh
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or
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 =
1

2
 [(1 + 8 Fr

2
1)

1/2
 – 1] (12.46)

(Since, 8 q2/gh3
1 = 8 V 2

1/gh1 = 8 Fr2
1)

Equation (12.44) is symmetrical in respect of h1 and h2 and hence a similar solution

for h1 in terms of h2 may be obtained by interchanging the subscripts. The depths of

flow on both sides of a hydraulic jump are termed as the conjugate depths for the

jump.

Loss of Mechanical Energy in Hydraulic Jump The loss of mechanical energy

that takes place in a hydraulic jump is calculated by the application of energy equa-

tion (Bernoulli’s equation). If the loss of total head in the jump is hj as shown in Fig.
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12.18(b), then we can write by the application of Bernoulli’s equation between Sec-

tions 1 and 2 (Fig. 12.18(a)) neglecting the slope of the channel,

h1 + (V 2
1/2g) = h2 + (V 2

2/2g) + hj

or hj = h1 – h2 + 
V V

g

1
2

2
2

2

-

= h1 – h2 + 
q

g h h

2

1
2

2
22

1 1
-

F
HG

I
KJ

(12.47)

(Since from continuity, q = V 1 h1 = V 2 h2)

From Eq. (12.44), we can write

q

g
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h h h h1 2
2

1
2
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Invoking this relation into Eq. (12.47), we get

hj =  h1 – h2 + 
h h h h

h h
1 2
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which finally gives

hj =
( )h h

h h

2 1
3

1 24

-
(12.48)

The loss of head hj amounts to be the part of mechanical energy that is being

dissipated into intermolecular energy as a result of the creation of eddies and turbu-

lences in the wave. Friction at the boundaries make a negligible contribution to it.

This dissipation of energy results in a little rise in the liquid temperature. The hydrau-

lic jump is a very effective means of reducing unwanted energy in a stream which is

usually generated by the rapid discharge from a steep spillway to the channel.

Example 12.11

A rectangular channel, 6.1 m wide, carries 11.32 m3/s and discharges onto a 6.1 m wide

apron having no slope with a mean velocity of 6.1 m/s. (i) What is the height of the

hydraulic jump? (ii) What energy is absorbed (lost) in the jump?

Solution

(i) V1 = 6.1 m/s

q1 (the rate of discharge per unit width) = 11.32/6.1

= 1.86 m
3
/sm width

Therefore, h1 = q1/V1 = 1.86/6.1 = 0.305 m

and Fr1 = V 1/(gh1)
1/2 = 6.1/(9.81 ¥ 0.305)1/2 = 3.53
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using Eq. (12.46),

h2/h1 =
1

2
 [{1 + 8(3.53)2}1/2 – 1]

from which h2 = 1.38 m

Hence, the height of the hydraulic jump = 1.38 – 0.305 = 1.075 m

using Eq. (12.48)

Loss of head in the hydraulic jump hj =
( .

. .

1 07)

4 0 305 1 38

3

¥ ¥

= 0.73 m

Therefore the loss of total energy per second = r g Q hj

=
9 81 10 11 32 0 73

10

3

3

. ( . ) ( . )¥ ¥ ¥
 = 81.06 kW

Example 12.12

A control sluice spanning, the entry to a 3.5 m wide rectangular channel, admits 5.5

m
3
/s of water with a uniform velocity of 4.14 m/s. Explain under what conditions a

hydraulic jump will be formed and, assuming that these conditions exist, calculate

(i) the height of the jump, and (ii) power dissipated in the jump.

Solution

The upstream depth of flow is

h1 =
5 5

3 5 4 14

.

. .¥
 = 0.379 m

The upstream Froude number, Fr1 = 
4 14

9 81 0 379
1 2

.

( . . )
/¥

 = 2.15

For the hydraulic jump to occur, the downstream flow must be tranquil and the

depth of flow at downstream must satisfy the Eq. (12.46).

Therefore,

h2 =
0 379

2

.
 [{1 + 8(2.15)

2
}

1/2
 – 1] = 0.978 m

(i) Therefore, the height of the jump

Dh = (h2 – h1) = (0.978 – 0.379) = 0.6 m

(ii) The loss of head in the jump is found out from Eq. (12.48) as

hj =
( . )

. .

0 6

4 0 978 0 379

3

¥ ¥
 = 0.146 m

The rate of dissipation of energy = r g Qhj

= 103 ¥ 9.81 ¥ 5.5 ¥ 0.146 W = 7.66 kW
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12.5  OCCURRENCE OF CRITICAL CONDITIONS

We have discussed so far the nature of tranquil, rapid and critical flows. We have also

seen that the transition from rapid to tranquil flow occurs through a hydraulic jump.

Now it is important to know that under what conditions the critical flow occurs. The

location where the critical flow occurs is called the control section. The following

situations show the occurrence of critical conditions.

Change of Slope of Channel Bed Critical flow occurs when a tranquil flow

changes to a rapid one. One such situation is illustrated in Fig. 12.19 which shows a

long prismatic channel of mild slope connected to another long channel of steep

slope with identical cross section. At a large distance from the junction, there will be

uniform tranquil flow in the mild channel and uniform rapid flow in the steep channel.

The depths in the channels will be the normal depths corresponding to the respective

slope and rate of flow. The transition from tranquil to rapid flow will be non-uniform

and must pass through the critical condition that occurs at the junction. If the change

of the slope is abrupt, an appreciable curvature of the streamlines takes place near the

junction. This will not justify the assumption of a hydrostatic variation of pressure at

the Section This may result in the occurrence of critical condition given by the flow

velocity (gh)
1/2

 not exactly at the junction of the two slopes, but slightly upstream of

it.

The discharge of liquid from a long channel of steep slope to a long channel of mild

slope requires the flow to change from rapid to tranquil. This transition takes place

abruptly through a hydraulic jump near the junction point.

S S< c
S S>

c

hc

hc

Fig. 12.19 Transition from tranquil to rapid flow

Flow over a Spillway and in a Channel with a Rise in its Bed The critical flow

may occur even in a channel with a constant slope. A rise in the channel floor or bed

may bring about a critical flow. Flow over a spillway (Fig. 12.20(a)) and flow in a

channel with a rise in its bed caused by some obstruction (Fig. 12.20(b)) will pass

through a critical condition.

In the case of a flow through a rectangular channel of constant width, the total

mechanical energy per unit weight at any cross section is usually written as
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H = h + 
q

gh

2

22
 + z

where h is the depth of flow and z is the elevation of the bed from any reference

horizontal datum.

Neglecting the effect of friction, we can write

d

d

H

x
 =

d

d

d

d

d

d

h

x
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gh

h
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z

x
- +

2

3
 = 0 (12.49)

where, x is the distance measured along the direction of flow.

Since q = Q/b = Vbh/b = Vh,

d

d

d

d

d

d

h

x

V

gh

h

x

z

x
- +

2

 = 0

Recalling that Fr = V /(gh)1/2, we have

d

d

h

x
 (1 – Fr2) + 

d

d

z

x
 = 0 (12.50)

In case of flow over a spillway, (Fig. 12.20(a)), dz/dx = 0 at the crest, and since

dh/dx π 0, (1 – Fr
2
) = 0. This gives Fr = 1, i.e., the critical condition at the crest.

As another example for the occurrence of critical flow, we consider a rise in

channel bed caused by some obstruction or gradual transition as shown in

(Fig. 12.17(b)).

Crest

(a) Flow over a spilway
(b) Flow over an obstruction

S S0 > c

hc

hc

D z hc

E.G.

h1 Es1
Es2

Fig. 12.20 

We consider a tranquil flow upstream of the hump or the obstruction. Therefore,

the approach velocity to the obstruction is below the critical one and let the uniform

depth upstream be h1 and the corresponding specific energy be Es1
. If Es2

 is the

specific energy at the crest of the hump, then for a steady flow and a constant width

of channel (i.e., q is constant), Es1
 and Es2

 satisfy the relation
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Es2
 = Es1

 – Dz

At any value of Es2
 > Esc

 there are two possible depths corresponding to Es2
. To have

the state at the crest with the lower depth out of the two, the specific energy of the

flow upstream the hump should pass through a minimum and then increase. This is

possible only if the bed could rise above the level of the hump and then drop. There-

fore, under the present situation, the possible state is with the higher depth corre-

sponding to Es2
 and the flow remains tranquil over the hump and the surface of water

falls under this situation, since, from Eq. 12.50, dh/dx < 0 when dz/dx > 0 for Fr < 1. At

the crest of the hump, dz/dx = 0 and dh/dx = 0, and hence according to Eq. (12.50), Fr

may or may not be equal to unity. Therefore we can say that the critical condition may

or may not exist at the crest in general. As the height of the step is raised, i.e., Dz is

increased Es1
 – Es2

 increases until Es2
 corresponds to the critical specific energy Esc

.

Any further rise in Dz will maintain critical flow over the step.

SUMMARY

∑ Flow with a free surface is caused by the weight of the flowing fluid. Flow

in open channels is an example of such a flow. A uniform flow through an

open channel is characterised by the liquid surface being parallel to the

base of the channel whose cross section is same along the length of the

channel. In a non-uniform flow, the liquid surface is not parallel to the

base of the channel.

∑ Energy gradient line is the contour of total head (total mechanical energy

per unit weight) at a cross section as ordinate against the distance along

the flow as abscissa. The hydraulic gradient line is the contour of the sum

of potential and pressure heads as ordinate against the distance along the

flow as abscissa.

∑ The relationship between the average flow velocity and pressure drop in

a steady uniform flow through a straight channel is given by the well

known Chezy equation as V  = c (Rh Sb)
1/2

. The Chezy coefficient c, in-

cludes the friction factor f , and depends on the surface roughness and the

hydraulic radius of the channel. The simplest and widely used empirical

relation, in this regard, is given by c = (1/n) Rh
1/6

 and is known as

Manning’s formula, where n is the roughness coefficient.

∑ The optimum hydraulic cross section of a channel is characterised by the

maximum value of the hydraulic radius. For a trapezoidal section, this

condition is satisfied when the hydraulic radius becomes equal to half the

central depth of flow.

∑ Specific energy of a fluid element at any point in a channel flow is defined

as its total energy per unit weight where the component potential energy

is measured from the base of the channel. At critical depth given by hc =

(q2
/g)

1/3
, the specific energy of flow is a minimum for a given discharge, or

the discharge is a maximum for a given specific energy.
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∑ The velocity of flow at the critical depth is known as critical velocity and

is given by V c = (ghc)
1/2. Flow in which the velocity is less than the critical

velocity is known as tranquil flow, while the flow with a velocity greater

than the critical velocity is referred to as rapid flow. A small disturbance in

the open channels propagates upstream as a surface wave with a velocity

(relative to the undisturbed fluid) equal to (gh)1/2. Therefore, a surface

wave caused by any disturbance downstream can propagate upstream in

a tranquil flow, while it cannot do so in a rapid flow.

∑ A sudden transition from rapid flow to a tranquil one is known as hydrau-

lic jump and takes place through an abrupt discontinuity in the flow. The

loss of head in a hydraulic jump is given by (h2 – h1)
3
/4h1 h2, here h1 and

h2 are the depths of flow before and after the jump respectively.

EXERCISES

12.1 Choose the correct answer:

(i) In an open-channel flow, the free surface, the hydraulic gradient, and

energy gradient lines are such that

(a) the three of them coincide

(b) the first two coincide

(c) the last two must remain parallel

(d) the first and the last must remain parallel

(e) the three of them are different but parallel

(ii) A small disturbance in the rapid flow in an open channel
(a) can propagate both upstream and downstream

(b) can propagate neither upstream nor downstream

(c) cannot propagate upstream

(iii) For a critical flow in an open channel

(a) specific energy is maximum for a given flow

(b) shear stress is maximum at the bed surface

(c) the flow is minimum for a given specific energy

(d) the specific energy is minimum for a given flow

(iv) A hydraulic jump must occur when

(a) the flow is rapid

(b) the depth is less than the critical depth

(c) the slope is mild or level
(d) the flow is increased in a given channel

(e) the bed slope changes from steep to mild
12.2 The breadth of a rectangular channel is twice its depth. Assuming the Chezy

coefficient c to be 55 m1/2/s, find the cross-sectional dimensions of the chan-
nel and the slope to satisfy the conditions that the discharge when flowing
full should be 0.8 m3/s, and the velocity when flowing half-full should be 0.6 m/s.

Ans. (h = 0.74 m, B = 1.48 m, s = 0.00048)
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12.3 A channel of symmetrical trapezoidal section, 900 mm deep and with top and
bottom widths 1.8 m and 600 mm, respectively, carries water at a depth of
600 mm. If the channel slopes uniformly at 1 in 2600 and Chezy’s coefficient is
60 m1/2/s, calculate the steady rate of flow in the channel.

Ans. (0.38 m
3
/s)

12.4 An open channel of trapezoidal section with 5 m width at the base and with
side slope of 2 horizontal: 1 vertical has a bed slope of 1 in 3000. It is found that
when the flow is 8.5 m

3
/s, the depth of water in the channel is 1.5 m. Calculate

the flow rate when the depth is 1 m assuming the validity of Manning’s
formula.

Ans. (4.0 m
3
/s)

12.5 A long channel of trapezoidal section is constructed from rubble masonry at a
bed slope of 1 in 7000. The sides slope at tan–1 1.5 to the horizontal and the
required flow rate is 2.8 m

3
/s. Determine the base width of the channel if the

maximum depth is 1 m (use Table 12.1 for roughness coefficient of the channel).
Ans.(4.46 m)

12.6 A trapezoidal channel with a bottom width of 1.5 m and side slopes of 2
horizontal: 1 vertical has a bed slope of 1 in 3000. If the depth of water flowing

through the channel is 2.5 m, what is the average shear stress at the bound-

ary?

Ans. (4.19 N/m2)

12.7 A trapezoidal canal with side slopes of 1 horizontal: 1 vertical and bed slopes

of 0.00035 discharges water at the rate of 24 m3/s. Determine the base width

and depth of flow if the shear stress at the boundary is not to exceed 6 N/m2.

Take Manning’s roughness factor n = 0.028.

Ans. (6.64 m, 2.66 m)

12.8 A sewer pipe is to be laid at a slope of 1 in 8100 to carry a maximum discharge

of 600 litres/s when the depth of water is 75% of the vertical diameter. Find the

diameter of this pipe if the value of Manning’s roughness factor n = 0.025.
Ans. (1.79 m)

12.9 A circular conduit is to satisfy the following conditions: Capacity when flow-

ing full, 0.13 m3/s, velocity when the depth is one quarter the diameter, not

less than 600 mm/s. Assuming uniform flow, determine the diameter and the

slope if Chezy’s coefficient c = 58 m1/2/s.

Ans. (442 mm, 0.0016)

12.10 Determine the dimensions of the most economical trapezoidal concrete chan-

nel with a bed slope of 1 in 4000 and a side slope of 1 vertical to 2 horizontal to

carry water at the rate of 0.15 m
3
/s. Take Manning’s n = 0.015.

Ans. (b = 0.19 m, h = 0.41 m)

12.11 In a long rectangular channel 3 m wide, the specific energy is 1.8 m and the rate

of flow is 12 m
3
/s. Calculate two possible depths of flow and the corresponding

Froude numbers. If Manning’s roughness factor n = 0.014, what is the critical

slope for this discharge?

Ans. (1.03 m, 1.36 m, 1.22, 0.80, 0.0039)

12.12 For a constant specific energy of 2 m., what maximum flow may occur in a

rectangular channel 3 m wide?

Ans. (14.48 m3/s)
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12.13 A horizontal rectangular channel of constant width has a sluice gate installed

in it. At a position of 1 m opening, the velocity of water is 10 m/s. Determine

whether a jump can occur, and if so,

(a) the height downstream

(b) the loss of the head in the jump
(c) the ratio of Froude numbers across it.

Ans. ((a) 4.04 m, (b) 1.74 m, (c) 8.12)

12.14 In a rectangular channel of 0.6 m wide, a jump occurs where the Froude num-

ber is 3. The depth after the jump is 0.6 m. Estimate the loss of head and the

power dissipated due to the jump.

Ans. (0.22 m, 0.78 kW)



13

APPLICATIONS OF

UNSTEADY FLOWS

13.1  INTRODUCTION

Although most of the engineering problems are steady or quasi-steady in nature,

there are certain classes of problems in practice where the phenomenon of unsteady

flow becomes significant. In an unsteady flow, velocity, pressure, density, etc., at a

particular point change with time. Such variations pose considerable difficulties in

solving unsteady flow problems. Problems of unsteady flow may be put into the

following three broad categories according to the rate at which the changes in hydro-

dynamic parameters occur:

(i) Slow changes of flow where the velocity changes slowly so that the temporal

acceleration can be neglected. An example of this category of problems is the con-

tinuous filling or emptying of a reservoir as discussed in Section 5.8 of Chapter 5.

(ii) Rapid changes of flow causing the temporal acceleration to be important.

Examples of this category of problems are oscillations of liquids in U tubes and

between reservoirs, flows in positive displacement pumps and in hydraulic and pneu-

matic servo-mechanisms.

(iii) Very fast changes of flow, arising from sudden opening or closing of a valve,

so that density changes considerably and elastic force becomes significant.

The present chapter discusses a few unsteady flow problems of engineering im-

portance.

13.2  INERTIA PRESSURE AND ACCELERATIVE HEAD

Whenever any fluid element undergoes acceleration, either positive or negative, it

must be acted upon by a net external force. This force corresponds to a difference in

Piezometric pressure across the fluid element. This pressure difference is known as

the inertia pressure.

Let us consider, as a simple case, a stream tube of length L, and uniform cross-

sectional area A . The velocity of fluid flowing through it is considered to be uniform

both across a section and along the flow. Let the velocity of flow at any instant be V .

Therefore, the mass of the fluid concerned is rA L and the force causing the accelera-

tion, according to Newton’s second law, is the product of mass and acceleration. The

acceleration here is the temporal acceleration. Hence, the force causing acceleration
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equals to rA L (∂ V /∂ t). If this force arises because of a difference in the piezometric

pressure Dpi between the upstream and downstream ends of the tube, then

D pi A  = rAL 
∂

∂

V

t

or D pi = rL 
∂

∂

V

t
(13.1)

D pi, as defined by Eq. (13.1), is known as the inertia pressure (difference in piezomet-

ric pressure responsible for fluid acceleration). The corresponding head can be writ-

ten as

hi =
D p

g

L

g

V

t

i

r

∂

∂
= (13.2)

where hi is known as inertia head or accelerative head.

Energy Equation with Accelerative Head While deriving Bernoulli’s equation

in Section 4.3.1 of Chapter 4, we considered the flow to be steady. If the unsteady term

of the Euler’s equation, i.e., the temporal derivative of the velocity is taken care of in

the derivation of Bernoulli’s equation, then we can arrive at a modified form of the

Bernoulli’s equation for an unsteady but incompressible flow as

21
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V V p
S

g t g g

∂

∂ r
+ +Ú  + z = C (13.3)

where C is a constant along a streamline. The first term in Eq. (13.3) represents the

accelerative head. Therefore, Bernoulli’s equation between two points 1 and 2 along

a streamline can be written, for an unsteady flow, along with the consideration of

friction loss as
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where hf is the head loss due to friction, and

hi =

2

1

1
d

V
S

g t

∂

∂Ú
We shall now describe a few applications of unsteady flow problems in practice.

13.3  ESTABLISHMENT OF FLOW

The initiation of flow in a pipeline is governed by inertia pressure. Let us consider a

pipe of uniform cross section and of length L, to convey liquid from a reservoir as

shown in Fig. 13.1. The reservoir maintains a constant height of liquid above the pipe

connection to the reservoir. The pipe has a valve at its downstream end which is

initially closed, and the pressure downstream the valve is constant. When the valve

is opened, the difference in Piezometric pressure between the ends of the pipeline is
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applied to the static liquid column in it. Since at this moment, viscous and other

resistive forces are zero because of no movement of the liquid, this inertia pressure

force, being the net external force, tries to accelerate the liquid column to a maximum.

As soon as the flow initiates, the viscous and other types of resistive forces, if any,

arise and gradually become prominent with the increase in velocity and eventually

balance the pressure force to establish a steady state. Therefore we see that the flow

within the pipe increases from zero to a steady value determined by the frictional and

other losses in the pipe. Even if the valve could be opened instantaneously, the fluid

would not reach its steady state velocity instantaneously. The attainment of a steady

flow in the pipeline after the instantaneous opening of a valve at its downstream is

known as the establishment of flow. An analytical expression for the response char-

acteristic of the liquid column to the steady state can be derived as follows.

Let the loss of head in the pipeline be represented by K V2/2g, where V  is the

instantaneous average velocity at any section which remains same in the direction of

flow. The term K V2/2g includes both the frictional head loss and the minor losses

(entry  loss, valve loss, etc.). We can write the Bernoulli’s equation in consideration

of accelerative head between points 1 and 2 (Fig. 13.1) as

H

Datum

h

L

1

2

z

Fig. 13.1   Establishment of flow in a pipeline
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V 1 << V  for much larger cross-sectional area of the reservoir as compared to that of the

pipeline, and

p1 = patm + rg(H – z)

p2 = patm (atmospheric pressure)

hf = K V2/2g

Therefore, we have from Eq. (13.4)

( )H h
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g
+ -

2

2
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L
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t

KV

g

∂
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+

2

2
(13.5)

Since the velocity is a function of time only, the partial derivative of V  in Eq. (13.5)

is changed to a total derivative and we get an ordinary differential equation as
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(13.6)

Let V 0 be the steady state velocity. Then, applying Bernoulli’s equation between 1

and 2, at steady state, we have,

(H + h) = (1 + K) 
V

g

0
2

2

substituting the value of (H + h) into Eq. (13.6), we get
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On integrating the equation we have
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(13.7)

Here we have assumed that the value of K remains same for all values of V . Equa-

tion (13.7) shows that V  Æ V 0 when t Æ μ, which implies that it takes infinite time for

the flow to be established. However, the velocity reaches any fraction of V 0, say 99%

of V 0, within a finite period of time which depends upon V 0, L, H and h. Usually, the

time of establishment is defined as the time required for V  to reach 0.99 V 0. Therefore,

we get from Eq. (13.7),

testablishment =
0 1.99

ln
2 ( ) 0.01

LV

g H h

Ê ˆ
Á ˜+ Ë ¯

= 0 27 0.
( )

LV

H h+
(13.8)

Example 13.1

A straight pipe 600 m in length, and 1m in diameter, with a constant friction factor

f = 0.025, and a sharp inlet, leads from a reservoir where a constant level is maintained

at 25 m above the pipe outlet which is initially closed by a globe valve (K = 10). If the

valve is suddenly opened, find the time required to attain 90% of steady-state dis-

charge.
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Solution

This problem is an example of the straightforward application of Eq. (13.7) which

gives the time for establishment of steady flow in a pipe. By making use of this

equation for the present problem, we have

t =
600

2 9 81 25

1 9

0 1

0¥
¥ ¥

V

( . )
ln

.

.

Steady state velocity V 0 is found out by the application of Bernoulli’s equation, at

steady state, between a point on the free surface of water in the reservoir and a point

on the discharge plane after the valve, as

25 =
V

g

0
2

2
0 5

0 025 600

1
10 1.

.
+

¥
+ +F

H
I
K

or V0 =
2 9 81 25

26 5

1 2
¥ ¥L

N
M

O
Q
P

.

.

/

Putting this value of V 0 in the above equation, we have

t =
600

2 9 81 25 26 5

1 9

0 1
1 2

( . . ]
ln

.

.
/¥ ¥ ¥

= 15.5s

Example 13.2

A valve at the outlet end of a pipe 1m in diameter and 600 m long is rapidly opened.

The pipe discharges to atmosphere and the Piezometric head at the inlet end of the

pipe is 23 m (relative to the outlet level). The head loss through the open valve is 10

times the velocity head in the pipe, other minor losses amount to twice the velocity

head, and f, the friction factor is assumed constant at 0.020. What is the velocity after

12 sec?

Solution

We first determine the steady-state velocity V 0 by the application of Bernoulli’s

equation, at steady state, between a point at the inlet end of the pipe and a point at its

outlet end as

23 =
V

g

0
2

2

0 020 600

1
10 2

. ¥
+ +L

NM
O
QP

Therefore, V0 =
2 9 81 23

24

1 2¥ ¥L
NM

O
QP

.
/

 = 4.34 m/s

Let the velocity after 12 sec be V . Then, from Eq. (13.7) we can write

12 =
600 4 34

2 9 81 23

1

1

¥
¥ ¥

+
-

L

N
M

O

Q
P

.

.
ln

( )

( )

x

x

(where x = V /V0)

Hence, ln 
( )

( )

1

1

+
-

L

N
M

O

Q
P

x

x
 = 2.08
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or
( )

( )

1

1

+
-

x

x
 = 8

which gives x = 7/9

Therefore, V =
7 4 34

9

¥ .
 = 3.37 m/s

13.4  OSCILLATION IN A U-TUBE

(A) Frictionless Liquid Column Let us consider the oscillation of an inviscid

liquid in a U-tube of internal diameter d, as shown in Fig. 13.2(a). Let l be the length of

the liquid column.

z1

h

V1

V2z2
2

1

Datum

(a) Oscillation of liquid column in a U-tube

z

w t

Equation (13.21)

Equation (13.20b)

(b) Response characteristics with laminar resistance

Fig. 13.2 



618 Introduction to Fluid Mechanics and Fluid Machines

When the liquid is in equilibrium, the height of liquid column in both the limbs from

a datum line is denoted by h. Let us consider, after the equilibrium of the liquid

column being somehow disturbed, an instant when the meniscus in the left limb is

coming down with a velocity V 1, while that in right limb is going up with a velocity V2

as shown in Fig. 13.2(a). Since, the tube is uniform in cross section,

V1 = V2 = V (13.9a)

and z1 = z2 = z (13.9b)

where V  and z represent the velocity of liquid column in the U-tube and the displace-

ment of liquid level from its equilibrium position in either limb respectively.

The Bernouli’s equation for unsteady flow between the points 1 and 2 (Fig. 13.2(a))

can be written in the present case as

p

g

V

g
h zatm

r
+ + +

2

2
( ) =

22
atm

1

1 d
( ) d

2 d

p V V
h z S

g g g tr
+ + - + Ú (13.10)

or
d

d

V

t

g

l
z-

2
 = 0 (13.11)

Since z is diminishing with time at the instant considered, we can write

V = – 
d

d

z

t

Hence,
d

d

V

t
 = –

d

d

2z

t 2

Therefore, we have from Eq. (13.11)

d

d

2z

t

g

l
z

2

2
+  = 0 (13.12)

The solution of Eq. (13.12) is

z = A  cos (2g/l)1/2t + B sin (2g/l)1/2t (13.13)

To determine the constants A  and B, initial conditions are taken as

at t = 0; z = z0 (the maximum displacement from the equilibrium position)

and, dz/dt = 0

which gives A  = z0 and B = 0

Therefore, Eq. (13.13) becomes

z = z0 cos 

1/2
2 g

t
l

Ê ˆ
Á ˜Ë ¯

(13.14)

This equation implies that the liquid column executes an undamped periodic oscil-

lation with an amplitude z0 and a time period of 2p (l/2g)1/2.

(B) Viscous Fluid If we consider the viscous effects in the oscillation of liquid

columns, the Bernoulli’s equation between 1 and 2 can be written as



Applications of Unsteady Flows 619

p

g

V

g
h zatm

r
+ + +

2

2
( ) =

22
atm

1

1 d
( ) d

2 d
f

p V V
h z h S

g g g tr
+ + - + + Ú (13.15)

where hf is the frictional head loss in the tube due to the motion of the liquid column,

and can be expressed in terms of velocity head as

hf =
f l V

g d

2

2

If we consider the flow to be laminar, friction factor f, can be written as

f =
64 64

Re
=

n

V d

Hence, hf =
32

2

n l

g d
V

Invoking this value into Eq. (13.15), we get

d

d

V

t d
V

g

l
z+ -

32 2
2

n
 = 0

Substituting V = – 
d

d

z

t

and
d

d

V

t
 = – 

d

d

2z

t 2

we have,

d

d d

d

d

2z

t

z

t

g

l
z

2 2

32 2
+ +

n
 = 0 (13.16)

The differential equation corresponds to a damped oscillatory system. The gen-

eral solution of the equation can be written as

z = AeC1t
 + BeC2t

(13.17)

The values of C1 and C2 are the roots of the equation

m2
 + 

32 2
2

n

d
m

g

l
+  = 0

where m is a general variable.

Hence,

C1 = – 

1/2
2

2 2

16 16 2 g

ld d

n nÈ ˘Ê ˆ Ê ˆ+ -Í ˙Á ˜ Á ˜Ë ¯ Ë ¯Í ˙Î ˚
(13.18a)

and C2 = – 

1/2
2

2 2

16 16 2
–

g

ld d

n nÈ ˘Ê ˆ Ê ˆ-Í ˙Á ˜ Á ˜Ë ¯ Ë ¯Í ˙Î ˚
(13.18b)

putting a =
16

2

n

d
(13.19a)
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w2
 =

2 g

l
(13.19b)

and z = a/w = 
16

2

n

d
 (l/2g)1/2 (13.19c)

we can write

C1 = [– z + (z2 – 1)1/2]w

and C2 = [ – z – (z2
 – 1)

1/2
]w

The nature of the solution of Eq. (13.16) depends on three conditions: whether the

damping factor (a) z < 1, (b) z > 1 and (c) z = 1.

(a) When z < 1 (light damping), the general solution of Eq. (13.16) is written as a

special form of Eq. (13.17) as

z = Ae–zwt sin [(1 – z2)1/2 w t + f ] (13.20a)

The amplitude A  and the phase difference f are found from the initial conditions. If

we assume the initial conditions as

at t = 0, z = z0 and dz/dt = 0

we get from Eq. (13.20a),

A =
z0

2 1 21( ) /- z

and f =

2 1/2
1 (1 )

tan
z

z
- È ˘-

Í ˙
Î ˚

Equation (13.20a) can then be written as

z =

2 1/2
2 1/2 10

2 1/2

(1 )
sin (1 ) tan

(1 )

tz
e t

zw z
z w

zz

- -È ˘-
- +Í ˙

- Î ˚
(13.20b)

The time period of oscillation is

T =
2

1 2 1 2

p

w z( ) /-
(13.20c)

The flow under this situation oscillates with diminishing amplitudes (Fig. 13.2b),

because of the exponential damping term, and eventually comes to rest.

(b) When z > 1 (large damping) the Eq. (13.17) can be written as

z = A  exp [{–z + (z2
 – 1)

1/2
}wt] + B exp [{–z –(z2

 – 1)
1/2w t] (13.21)

with the initial conditions as z = 0, 
d

d

z

t
 = 0 at t = 0 we have

A = 0

2 1/2
1

2 ( 1)

z z

z

È ˘
+Í ˙

-Î ˚

and B = 0

2 1/2
1

2 ( 1)

z z

z

È ˘
-Í ˙

-Î ˚
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The flow under this situation does not oscillate, rather asymptotically reaches the

equilibrium position as shown in Fig. 13.2(b).

(c) When z = 1 (critical damping), the solution of Eq. (13.16) becomes

z = (A  + Bt) e –zwt (13.22a)

with the same initial conditions as described above in (a) and in (b), we get

A = z0, B = z w z0

Hence Eq. (13.22a) becomes

z = z0 (1 + zw t) e –zwt (13.22b)

The motion, under this situation is in transition, i.e., it changes from oscillatory to

non-oscillatory types.

Example 13.3

A 20 mm diameter U-tube contains liquid column of length 4 m. The kinematic viscos-

ity of the liquid is 8 ¥ 10–6 m2/s. If the liquid column oscillates, find the time period of

oscillation assuming the flow to be laminar. Find also the ratio of two successive

amplitudes.

Solution

The differential equation for oscillation of a liquid column in a U-tube (in consider-

ation of flow to be laminar) is given by Eq. (13.16), and the nature of its solution

depends upon the value of damping factor given by

z =
16

22

n

d

l

g

F

HG
I

KJ

Here, z =
16 8 10

20 10

4

2 9 81

6

2 6

¥ ¥
¥ ¥

-

-( ) .
 = 0.14

Since z < 1, the oscillatory flow in the present case is represented by the Eq. (13.20a),

and hence the time period is given by the Eq. (13.20c) as

T =
2

1 0 14

4

2 9 812 1 2

p

{ ( . ) } ./- ¥
 = 2.86 s

The ratio of two successive amplitudes can be written with the help of Eq. (13.20a) as

z

z

t

t T

( )

( )+
 = ezwT = exp . . / .0 14 2 9 81 4 2 86¥ ¥d i = 2.43

13.5 DAMPED OSCILLATION BETWEEN TWO RESERVOIRS

We now consider the oscillation of a viscous liquid column between two prismatic

reservoirs connected by a long pipeline as shown in Fig. 13.3. The flow in the pipeline
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is assumed to be turbulent so that the head loss becomes proportional to the square

of the velocity. Let us assume that the reservoirs are of uniform cross-sectional area

A 1 and A 2. The pipeline is of uniform circular cross section of diameter dp and area ap.

The total length of the pipeline is l as shown in Fig. 13.3. Let the height of the liquid

levels, under equilibrium position, from a reference datum be h.

Diameter
and area

dp
ap

z1
z2

A1

A2
h1 h2

l

h

(1)

(2)
z

Fig. 13.3 Oscillation of liquid column between two reservoirs

connected with a pipline

Applying Bernoulli’s equation between the liquid levels (1) and (2);

[Fig. 13.3] when the liquid column is in motion, we have,

p

g

V

g
h zatm

r
+ + +1

2

1
2

 =

22
atm 2

2

1

1 d
d

2 d
f

p V V
h z h S

g g g tr
+ + - + + Ú (13.23)

Let V  be the velocity at a distance S  from the surface 1 along a streamline, where the

cross-sectional area is A  which may be ap, A 1 or A 2 depending upon the distance S ,

and the liquid level in reservoir A 1 be moving down with a velocity V 1, while that in

reservoir A 2 be moving up with a velocity V 2.

From continuity,

V1A1 = V2 A2 = V A (13.24)

Again, from Kinematic condition,

V1 = – 
d

d

z

t

1 (13.25a)

V2 = – 
d

d

z

t

2 (13.25b)

and from geometrical condition z = z1 + z2 (13.25c)

Equations (13.24), (13.25a), (13.25b) and (13.25c) give

d

d

z

t

1  =
A

A A

z

t

2

1 2+
d

d
 (13.26a)
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and
d

d

z

t

2  =
A

A A

z

t

1

1 2+
d

d
(13.26b)

Again, V = V
A

A

A

A

z

t
1

1 1 1= -
d

d

= – 
A A

A A A

z

t

1 2

1 2( )+
d

d

Therefore,

d

d

V

t
 = – 

A A

A A A

z

t

1 2

1 2
2( )+

d

d

2

(13.27)

With the help of Eqs (13.25), (13.26) and (13.27), Eq. (13.23) can be written as

2 22
1 2 2 1

2
1 2 2 11

( )d d d

( ) 2 ( ) dd
f

A A A AS z z
h z

g A A A g A A tt

Ê ˆ - Ê ˆ- + +Á ˜ Á ˜Ë ¯+ +Ë ¯
Ú  = 0 (13.28)

If le is the equivalent length of the connecting pipe incorporating the minor losses,

then the total head loss hf ,can be written as

hf = 

22 2
2 1 2

2 2
1 2

d

2 2 d( )

e e

p p p

f l f l A A z
V

g d g d tA A a

Ê ˆ= Á ˜Ë ¯+
(13.29a)

Again,

2
1 1 2 2

1 21

d

p p

h z h zS l l

A A a A a

+ -
= + + @Ú (13.29b)

(Since A 1 and A 2 are much larger than ap)

With the help of Eqs (13.29a) and (13.29b), Eq. (13.28) can be written as

22

2

d d

dd

z z
M Nz

tt

Ê ˆ- +Á ˜Ë ¯
 = 0 (13.30)

where, M =
f l

d l a

A A

A A

a

l

A A

A A

e

p p

p

2 2

1 2

1 2

2 1

1 2( )

( )

/+
-

-

and N =
g a

l

A A

A A

p ( )2 1

1 2

-

The Eq. (13.30) is a non-linear ordinary differential equation in z. The non-linearity

arises due to the term 

2
d

d

z

t

Ê ˆ
Á ˜Ë ¯

. This equation can be solved numerically for z with

suitable initial conditions. Fourth order Runge Kutta method is best adopted for this

purpose. However, an analytical solution for the first derivative of z, i.e. 
d

d

z

t
 can be

obtained. By substituting y = 

2
d

d

z

t

Ê ˆ
Á ˜Ë ¯

, in Eq. (13.30) we get
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d

d

y

z
My Nz- +2 2  = 0

the solution of which is

y =

2
2

2

d
(2 1)

d 2

Mzz N
Mz C e

t M

Ê ˆ = + +Á ˜Ë ¯
(13.31)

If we put the initial condition

z = z0, 
d

d

z

t
 = 0 at t = 0

we get,

C =
-

+ -
N

M
Mz Mz

2
2 1 2

2 0 0( ) exp ( )

Therefore, Eq. (13.31) becomes,

d

d

z

t
 =

1/2

0 02
[(2 1) (2 1) exp {2 ( )}]

2

N
Mz Mz M z z

M

È ˘
± + - + -Í ˙

Î ˚
(13.32)

To find the time-displacement (z vs t) relationship, Eq. (13.32) has to be solved nu-

merically with the initial condition as z = z0 at t = t0.

13.6  WATER HAMMER

In the preceding sections, we considered unsteady problems where though the

changes in velocity were high to make the acceleration head as significant as the

velocity head, but at the same time were too low to cause the compressibility effect on

the liquid. We now consider the category of unsteady flow phenomena where the

change in velocity is so rapid that the compressibility effect of the liquid becomes

prominent and hence the elastic forces are important. As a result, a change in pres-

sure does not take place instantaneously throughout the fluid. This means that if a

change in pressure is caused by a change in velocity at any location, this change is

not sensed immediately by the entire fluid—rather this is sensed by the propagation

of a pressure wave with a finite velocity. The problem assumes importance in fields

like hydroelectric plants where the flow of water in a pipeline is required to be de-

creased suddenly by manipulating a valve downstream. This causes a phenomenon

like knocking of the pipe system due to repeated up and down motion of a pressure

wave within the pipe. It is also our common experience that when a domestic water tap

is turned off very quickly, a heavy knocking sound is heard and the entire pipe

vibrates. This typical phenomenon is known as water hammer. The name is perhaps a

little unfortunate because, not only water, but any liquid in a pipe under such situa-

tion will cause the phenomenon of water hammer.

Instantaneous Closure of a Valve For a detailed physical explanation of the

above phenomenon of water hammer, let us consider a simple situation where a long

pipeline discharging water from a reservoir is fitted with a valve at its end as shown in

Fig. 13.4(a). The uniform flow velocity in the pipe is considered to be V 0.
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V0

V0

V0

C

(a) Valve fully open

(b) At the instant of valve closure

Propagation of pressure wave after
the valve closure

(c)

Fig. 13.4   Effect of instantaneous valve closure

We assume that the valve is closed instantaneously to stop the discharge from the

pipeline. An instantaneous closure of a valve is not possible in practice; an extremely

rapid closure may be made at the best. However, the concept of instantaneous valve

closure makes the explanation simple for a basic physical understanding of the prob-

lem. If the liquid is fully incompressible, then the instantaneous closure of the valve

will cause the entire liquid in the pipe to come to rest instantaneously. But any liquid,

in fact, is compressible to some extent and so its constituent particles do not deceler-

ate instantaneously. Therefore even an instantaneous closure of the valve cannot

make the entire column of fluid stationary at once.

Only the fluid particles adjacent to the valve will be stopped instantaneously, and

the other would come to rest later (Fig. 13.4(b)). While the flow near the valve is

stopped completely, the fluid far away from the valve still moves with a velocity V 0

and compresses the fluid adjacent to the valve increasing its pressure and density.

This way, fluid column comes to rest layer by layer from valve end to the reservoir

(Fig. 13.4(c)). The kinetic energy of the liquid coming to rest is transformed partly into

elastic energy of liquid by compression and partly into elastic energy of pipe due to

its expansion. The process of deceleration and subsequent pressure rise of the liquid

column due to the valve closure is conceived by the propagation of a pressure wave

upstream as a message that is generated at the valve end. As the pressure wave
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moves upstream, the fluid downstream, though which it has moved, comes to rest and

the portion of the pipe downstream expands, depending upon its rigidity, due to rise

in pressure of the fluid. The fluid upstream, where the pressure wave is yet to reach,

is still in motion with the velocity V 0. The velocity with which the pressure wave

moves upstream is very high compared to the velocity of the liquid. The increase in

pressure head of the liquid, and the velocity of propagation of pressure wave are the

two important parameters to be determined in analysing any water hammer problem.

Velocity of Pressure Wave Figure 13.5(a) shows a pipe in which liquid flowing

from left to right with a velocity V 0, is brought to rest by a pressure wave X X moving

from right to left.

C

C

p A, ,r p A, ,r

a
b

c

d

p p, +
A + A
+D D

D
r r,

p p, +

A + A

+D D
D

r r,

V = 0
V0

C

Presume
wave

( ) (b)(a) Propagation of a pressure wave  (b) Model of a control volume analysis in

 in a pipe flow    determining the wave velocity

Fig. 13.5  

Let the pressure and density of the undisturbed liquid left of the wave be p and r
respectively, and the cross-sectional area of the pipe be A . After the wave has passed,

these quantities become p + Dp, r + Dr and A  + DA  respectively as shown in Fig.

13.5(a). Let the velocity of propagation of the pressure wave be C relative to the

flowing liquid, and hence, C–V 0 with respect to the stationary pipe. The conditions

will appear steady if we refer to coordinate axes moving with the wave, which, in other

words, means to consider a system where a velocity C–V 0 in an opposite direction to

that of the wave is superimposed on the flow to bring the wave front stationary as

illustrated in Fig. 13.5(b). Here the wave will appear to be stationary while the fluid

from left approaches with a velocity C and moves away with a velocity C–V 0 after

crossing the wave. Now we apply the continuity and momentum equations for a

steady flow to an elemental control volume abcd across the wave front as shown in

Fig. 13.5(b).

Continuity Equation

Ar C = (A  + D A) (r + Dr) (C – Vo)

or Ar C = (Ar + r D A  + A  D r) (C – V o)

(neglecting the higher order term D A  D r)

or ArVo = (C – V o) (r D A  + A  D r)
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Dividing both the sides by Ar (C – V o), we get

V

C V

o

o-
  =

D DA

A
+

r

r
(13.33)

Momentum Equation Neglecting the wall shear force, we can apply the momen-

tum theorem to the control volume abcd as

ArC [(C – V o) – C] = p(A  + D A) – (p + D p) (A  + D A )

or ArCV0 = Dp A  (the higher order term D pD A  is neglected)

or V o/C =
D p

Cr 2
(13.34)

The velocity C is, in fact, very high compared to V o. Hence, the Eq. (13.33) can be

written as

V

C

o
 =

D DA

A
+

r

r
(13.35)

Comparing Eqs (13.34) and (13.35), we can write

D p

Cr 2
 =

D DA

A
+

r

r
(13.36)

The change in density of a fluid is related to its change in pressure through the

bulk modulus of elasticity E (Eq. (1.22) in Chapter 1) as

Dp = E 
Dr
r

(13.37)

Substituting the value of Dr/r from Eq. (13.37) into Eq. (13.36) we have

D p

Cr 2
 =

D DA

A

p

E
+

or C2
 =

/

1

p E

A p E A

A E p A

r

r

D
=

D D DÊ ˆ Ê ˆ+ +Á ˜ Á ˜Ë ¯ Ë ¯D

Hence, C =

1/2

/

1

E

E A

p A

r

È ˘
Í ˙
Í ˙

DÊ ˆÍ ˙+ Á ˜Í ˙Ë ¯DÎ ˚

(13.38)

The quantity DA /A  in Eq. (13.38) is found out in consideration of the elasticity of

the pipe. It is assumed that the pipe is subjected to circumferential hoop stress st but

negligible longitudinal stress. Then we can write

D A

A
 =

2 2D d

d E

t

p

=
s

(13.39)
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where st is the hoop stress and Ep is the elasticity of the pipe material. For a circular

pipe in which the thickness t of the wall is small compared to the diameter d, the hoop

stress is given by

st =
D pd

t2

Therefore, from Eq. (13.39)

D A

A
 =

D pd

t Ep

(13.40)

Inserting the expression of DA /A  from Eq. (13.40) into Eq. (13.38), we have

C =

1/2

/

1 / p

E

Ed E t

rÈ ˘
Í ˙

+Í ˙Î ˚
(13.41)

For a rigid pipe, the quantity Ed/Ept is small compared to unity, and hence the

Eq. (13.41) can be written as

C = [E/r]1/2 (13.42)

The quantity (E/r]1/2 corresponds to the speed of sound through an elastic medium.

Therefore, Eq. (13.42) implies that the speed of pressure wave relative to the flowing

liquid is equal to the local acoustic speed through the liquid. Taking the value of E for

water at 20 °C as 2.2 ¥ 106 kN/m2 and r = 103 kg/m3, the value of C from Eq. (13.42) is

found to be 1482 m/s. Other liquids give figures of the same order. Let us calculate the

value of C from Eq. (13.41) in consideration of pipe elasticity. For a steel pipe,

Ep = 2 ¥ 108 kN/m2. Considering the diameter and thickness of the pipe to be 75 mm

and 6 mm respectively, we have

C =

1/ 2

9 3

9

11

2.2 10 /10

2.2 10 0.075
1

2 10 0.006

È ˘
Í ˙

¥Í ˙
Í ˙¥ ¥

+Í ˙
¥ ¥Î ˚

= 1390.7 m/s

Hence we see that the variation in the value of C calculated from Eqs (13.41) and

(13.42) is marginal as compared to their absolute values. In fact, the values of C are

much in excess of any liquid flow velocity encountered in practice. Therefore, the Eq.

(13.42) is used to determine the value of C for all practical purposes.

Reflection of Waves and Pressure Fluctuation We have so long discussed

how a pressure wave is generated at the valve end due its instantaneous closure and

is transmitted upstream by decelerating and pressurising the liquid column in the

pipe. If the pipe is not of infinite length, the reflection of pressure wave at the reser-

voir and valve ends causes a periodic fluctuation of pressure at any location in the

pipe. This is illustrated in Fig. 13.6.

Let us assume, for the sake of simplicity, that the flow is inviscid. When the valve

is closed instantaneously, a pressure wave moves upstream with a velocity C relative
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to the liquid as discussed earlier. The wave, as it progresses, brings the liquid to rest

increasing its pressure (Fig. 13.6(b)). Let us consider the initial pressure to be p0 and

the corresponding pressure head to be ho (= po/rg). The increase in presure head of

the liquid due to the propagation of pressure wave upstream can be found from Eq.

(13.34) as  Dh = Dp/rg = CV0/g. Therefore, after a time t = l/C (Fig. 13.6(c)), where l is

the length of the pipe, the whole pipe is filled with high pressure liquid (the pressure

head being more than the original one by an amount CV0/g) at rest.

The situation illustrated in Fig. 13.6(c) is unstable since there occurs a discontinu-

ity of pressure at the reservoir end, because the liquid is at original pressure in the

reservoir unlike in the pipe where it is at increased pressure. What happens, in this

situation, is that the liquid begins to flow from the pipe back into the reservoir so as

to equalise the liquid pressure in the pipe to the original value existing in the reservoir.

This is conceived by the propagation of a reflected pressure wave from reservoir end

towards the valve end. The action of this reflected wave from the reservoir end is to

superimpose a negative pressure head, –Dh of same magnitude of CV0/g on the

existing positive pressure head Dh and to set a velocity of the liquid towards the

reservoir. When the pressure wave reaches the valve end at t = 2 l/C, the entire liquid

in the pipe is at original pressure and is moving with a velocity V o towards the

reservoir. The pipe diameter is also back to its original value. This condition, as

depicted in Fig. 13.6e, is similar to that at t = 0 (Fig. 13.6(a)) except that the liquid

velocity V 0 is in the opposite direction.

As liquid tries to maintain its inertia of motion, i.e., its velocity V 0 towards the

reservoir end (Fig. 13.6(e)), the decompression of the liquid column in the pipe takes

place. Therefore, the pressure of the liquid in the pipe falls below its original value.

This decrease in pressure in the liquid column again starts from the valve end and

progresses gradually towards the reservoir end. The fall in pressure in the entire

liquid column is thus conceived by the propagation of a negative pressure wave as a

reflected wave from the valve end. The magnitude of the reflected wave is same as

that of the incident wave, and the sign remains unchanged.

At time t = 3l/C, when the negative pressure wave reaches the reservoir end, the

entire fluid in the pipe is at rest and at a pressure head lower than the original one by

an amount of Dh (Fig. 13.6(g)). This is again an unstable situation due to pressure

discontinuity at the reservoir end and causes a flow of liquid from the reservoir end to

the valve end to equalise the pressure in the liquid, i.e., to destroy the negative

pressure head of the liquid in the pipe. This process is again depicted by the propa-

gation of a positive pressure wave Dh, from the reservoir end towards the valve, and

at time t = 4l/C this pressure wave will reach the valve end when the pressure of the

entire liquid column in the pipe is again at its original value and the velocity is V 0

towards the valve.

Therefore, we observe that after a time period of  t = 4 l/C, the initial condition of

the liquid in the pipe, i.e., the condition at the instant when the valve was closed (at t

= 0), is reached (Fig. 13.6(i)). This complete cycle of events is repeated and, in the

absence of friction, would be repeated indefinitely, with the same period of time 4 l/C

and with undiminishing intensity of pressure waves.
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Fig. 13.6 Temporal histories of pressure head along a pipe length after
an instantaneous closure of valve (inviscid fluid)
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The periodic fluctuation of the pressure head at two points, one adjacent to the valve and

the other at a distance x from the reservoir end are shown in Fig. 13.7(a) and 13.7(b) respec-

tively. It is observed from the foregoing discussion that the time taken for a round trip of the

positive pressure wave over any point, say A , at a distance x from the pipe inlet (reservoir

end) is 2 x/C. Thus, for an instantaneous closing of the valve, the excess pressure created

at the point A  at a distance x from the pipe inlet due to the passing over of a pressure wave

remains constant for a time interval of 2x/C and this duration equals to 2 l/C at the valve end.

Therefore, the pressure head of the liquid at the valve end remains h0 + Dh (h0 is the original

presure head) over a time of 2l/C from the instant when the valve is closed.

At the time t = 2 l/C, the reflected negative pressure wave from the reservoir end

reaches the valve end and diminishing the excess pressure head Dh there, is again

reflected back instantaneously as a negative pressure wave and moves towards the

reservoir end. Therefore, the pressure head adjacent to the valve at this instant, t = 2l/C,

drops from h0 + Dh to h0 – Dh, and then remains constant over a period of 2l/C, i.e., from

t = 2 l/C to t = 4 l/C. During this interval, the negative pressure wave originated from the

valve end reaches the reservoir end and again comes back to the valve end as a re-

flected positive pressure wave. As soon as this wave strikes the valve end, it first

diminishes the existing negative pressure wave –Dh at the valve end and is reflected

back immediately as a positive pressure wave of Dh that starts proceeding towards the

reservoir end. Therefore,  at t = 4 l/C the pressure head adjacent to the valve increases

from h0 – Dh to h0 + Dh and assumes the initial value at the start when the valve was just

closed. This cyclic variation of pressure with time goes on repeating again and again.
+

+

h h0 + D
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h0

2 /l C
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(b) At a distance from the reservoirx
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Fig. 13.7 Pressure-time diagram for instantaneous valve closure
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Figure 13.7(b) shows the pressure-time diagram for a point at a distance x from the

reservoir. In this case, the pressure at the point remains at its original value from the

instant the value is closed (t = 0) until the positive pressure wave, originating from the

valve end, reaches there after a time t = (l – x)/C. Therefore, at t = (l – x)/C, the pressure

head changes to ho + Dh and remains the same for a period of 2 x/C which is the time

required for the round trip of the pressure wave to the reservoir and back to that point.

At time t = (l + x)/C (Fig. 13.7(b)), the pressure head changes from ho + Dh to ho, the

original pressure, and remains at this value for a period of 2(l – x)/C during which the

negative pressure wave reaching the valve end is again reflected back to the point. At

this instant, given by t = (3 l–x)/C, the pressure head at the point falls from ho to ho –

Dh and remains at this value for a period of 2 x/C until the negative pressure wave,

after reaching the reservoir end, is reflected back as a positive pressure wave to that

point. Therefore, at t = (3l + x)/C, the pressure head increases instantaneously from ho

– Dh to ho. After a time of l – x/C from then the positive wave reaches the valve end,

when the situation in the entire pipe is identical to that of the initial one when the

valve was just closed.

The effect of friction on the pressure-time diagram for a point at the valve end is

shown in Fig. 13.8. Due to the viscous dissipation of energy, the amplitude of pres-

sure wave is reduced in each reflection and hence the oscillations of the pressure

wave is damped. The interesting feature is that while the excess pressure over the

time period 2l/C remains constant in the case without friction, it changes when fric-

tional effect is considered. When the velocity of fluid is reduced, so is the head lost

to friction. Therefore, the head available at the downstream end of the pipe conse-

quently rises somewhat as layer after layer of the fluid is slowed down. This effect is

transmitted back from each layer in turn with a velocity C, and so the full effect is not

felt at the valve until a time 2l/C after its closure. In Fig. 13.8, this effect is indicated by

the upward slope of the line ab. During the second time interval of 2l/C, velocity and

pressure amplitudes have reversed their signs, and thus the line slopes downwards.

The frictional effect is usually neglected since the friction head is small compared to

the head produced by the water hammer. However, it is always safer to design a

pipeline assuming the initial head at the valve to be the same as in the reservoir, and

thus neglecting subsequent frictional effects.

ba
+

h0

–

2 /l C
C d

2 /l C

Time

Dh V C g= /0

Fig. 13.8 Effect of friction on pressure-time diagram at valve end for

instantaneous valve closure
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Rapid and Slow Closure of the Valve Our discussion has so far been based on

the instantaneous closure of the valve which means that the time taken for the valve

to be fully closed is zero. But this is practically impossible, and therefore, some time

must elapse for the complete closure of the valve. If this time interval of valve closure

is equal to or less than 2l/C, then results are not essentially different from that dis-

cussed from an instantaneous valve closure. Therefore, when the time for the valve to

be fully closed is less than or equal to 2l/C, the closing of valve is known as rapid

closure. In rapid closure, though the pressure head at the valve is gradually built up

as the valve is closed, the maximum pressure head reached for an inviscid fluid,

however is the same and equals to CVo/g as with the instantaneous closure. This is

because the conversion of entire kinetic energy of fluid to its strain energy (or pres-

sure energy) is completed before any reflected wave reaches the valve end. If on the

other hand, the time for complete closure of the valve is greater than 2 l/C, then before

the entire kinetic energy being converted into strain energy to raise the pressure head

to its maximum value of CVo/g, a reflected wave of negative pressure arrives to reduce

the pressure head at the valve end. This situation is termed as slow closure of valve.

Therefore, we see that the maximum pressure rise depends on whether the time during

which the valve is closed is greater or less than 2 l/C. When the time of valve closure

is much longer than 2 l/C, the effect of compressibility may be neglected. Thus we can

summarise the above discussion as follows:

tc(time taken for valve closure) = 0 (instantaneous closure)

£ 2l/C (rapid closure)

> 2l/C (slow closure)

>> 2l/C (slow closure where compressibility

effect and subsequent phenomenon of water

hammer can be neglected)

When a valve is rapidly closed (tc < 2l/C), the whole length of the pipe is not

subjected to peak pressure. Let, the length xo of the pipe from the reservoir end be

subjected to reduced pressure while the remaining portion, (l – xo) up to the valve end

be subjected to peak pressure head CVo/g. The value of xo depends upon the value of

tc, the time of valve closure, and can be obtained by equating the time for the peak

pressure to be generated up to the length (l – xo) with the time for the first reflected

negative pressure wave to reach there as

tc + 
l x

C

- 0  =
l

C

x

C
+ 0

or  xo = Ctc/2

When tc = 0, i.e., for instantaneous closure, xo = 0, which means that the entire pipe is

subjected to maximum pressure. The essential feature in the analysis of water hammer

problems due to a rapid or slow closure of the valve is to assume that the movement

of the valve does not take place continuously, rather in series of discrete steps of

instantaneous partial closure occurring at equal intervals of 2l/C or a sub-multiple of

2l/C. Between these discrete steps, the valve is assumed stationary. Each of these
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steps generates its own particular wave which is similar in form to those depicted in

Fig. 13.7(a) and 13.7(b). We can calculate the increase in pressure head due to the first

step of instantaneous closure by assuming that the velocity is reduced from V 0 to V 1

in this step. The momentum equation for a control volume circumscribing the pres-

sure wave in a steady state, under this situation, can be written as

rC [(C – V 0 + V 1) – C] = – D p

or rC(V0 – V1) = D p

Hence, Dh =
D p

g

C V V

gr
=

-( )0 1 (13.43)

For a rapid closure, the total pressure head at the valve end at the instant of its

complete closure is given by

S Dh =
CV

g

0

This is because no reflected wave returns back to the valve before it is completely

closed. Determination of V 1 and the pressure head developed for the first step is made

as follows.

Let the initial pressure head and the pressure head after the first step of partial

valve closure be h0 and h1 respectively. Then Eq. (13.43) can be written as

h1 – h0 =
C V V

g

( )0 1-
(13.44)

Another relation between h1 and V 1 is required if either is to be calculated. Let us

consider that the valve discharges into atmosphere, and it is regarded as similar to an

orifice with a constant coefficient of discharge Cd. Therefore, we can write from

continuity

A V1 = Q = Cd A
v
 (2gh1)1/2 (13.45a)

where A v is the area of valve opening after the first step of closure and A  is the cross-

sectional area of pipe where the fluid velocity is V 1. Equation (13.45a) can be written

as

V1 = B (h1)1/2 (13.45b)

where, B = Cd (Av/A )(2g)1/2

The factor B is usually known as the valve opening factor or area coefficient. It

should be noted that Cd is not necessarily constant, and therefore the variation of B

with the valve setting has to be determined by experiment for each design of valve.

Simultaneous solution of Eq. (13.44) and (13.45b) gives the values of V 1 and h1.

Calculations are usually carried out step by step for each discrete step of partial

closure of the valve.

Surge Tanks In many practical situations, problems associated with water ham-

mer may be overcome by the use of a surge tank. One  such situation occurs in

hydroelectric power stations. In hydroelectric installations, the turbine is supplied

with water via a long pipeline or a tunnel cut through rock known as penstock. If the
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electric power taken from the generator which is mechanically coupled to the turbine

is suddenly altered the turbine tends to change its speed. However this speed is kept

constant to maintain the constancy in cycle frequency in the power line, by altering

the water flow rate to the turbine through the operation of a valve at its inlet. This is

known as governing of turbines and the mechanism, through which it is automati-

cally done, is known as governor. Therefore, it is the consequent acceleration or

deceleration of water in the pipeline which may give rise to water hammer.

The minimisation of water hammer is of utmost importance because the large pres-

sure fluctuations not only produce a harmful effect on the pipeline but also impede

the governing. By using a surge tank in the pipeline at a convenient place near the

turbine, the adverse effect of water hammer can be restricted to a shorter length of the

penstock. Such an arrangement is shown in Fig. 13.9.

A

B

C

S

Turbine

‘Penstock’

Fig. 13.9 A simple surge tank

The simplest type of surge tank is an open vertical cylinder S  (Fig. 13.9) of large

diameter. It may be constructed of steel, or tunnelled in rock, and should be as close

to the turbine as possible. The upstream pipeline A B is of small slope, and the top of

the surge tank S is higher than the water level in the reservoir A . When there is a

sudden reduction in load on the turbines, the rate of flow of water to the turbines is

decreased through the governing mechanism. But the rate of flow in the line A B

cannot fall at once to the required new value. What happens, under this situation, is

that the temporary surplus of water goes into the surge tank S and the rise in water

level in the surge tank then creates a hydrostatic head which decelerates the water in

pipe A B. In case the required deceleration is very high, water is allowed to overflow

from the top of the surge tank so that the head in the surge tank does not increase

indefinitely. Thus a gradual deceleration of water in pipe A B takes place. Therefore, a

much shorter length of pipe BC is now subjected to water hammer effects due to

partial closure of the valve C. Therefore the pipe BC must be constructed strong

enough to withstand the increased pressure.
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Another important feature of a surge tank is that it provides a reverse supply of

water to make up a temporary deficiency of flow down the pipe A B when the demand

at the turbines is increased. If the load on the turbines is suddenly increased, a

sudden acceleration of the water column in the supply pipe is required. The excessive

drop in pressure at the turbines, under this situation, is controlled by supplying water

from the surge tank and thus meeting up the demand. As the water level in the surge

tank is drawn down, the difference in head along A B is increased, and so the water

there is gradually accelerated until the rate of flow in A B equals to that required by the

turbine.

We present here an analysis of the reduction of flow rate in a hydroelectric in-

stallation with a simple cylindrical surge tank as shown in Fig. 13.10. The part A B of

the pipe is free from water hammer effects since it has two open reservoirs at its ends.

Therefore, the flow in this part is treated as a simple inertia problem similar to that

discussed in Section 13.2. The flow in pipe BC is subjected to water hammer.

C

h
Datum

hf

Reservoir
Area (diam. )a d

O
B

L

A

Turbine

Fig. 13.10 Working principle of a cylindrical surge tank

At any instant, we can write from continuity,

aV = A   
d

d

h

t

È ˘-Í ˙Î ˚
 + Q (13.46)

where,

A  = Cross-sectional area of surge tank

a = Cross-sectional area of upstream pipeline A B

V = Average velocity (over a cross-section) in pipe A B

h = Depth of water level in surge tank below that of the reservoir, which is taken

as datum

Q = Rate of volume flow through the pipe BC to the turbine
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Under steady condition, the level in the surge tank h would be constant and would

equal to the frictional head loss hf due to flow from the reservoir to the surge tank

through pipe A B. But at any instant while the surge is taking place, the level in the

surge tank goes up from its steady state level, and thus an additional head of (hf – h)

is available to decelerate the liquid in pipe A B. If the area of the surge tank is consid-

ered to be large compared to a, the area of pipe A B, then the frictional head and the

head required to decelerate the liquid in the surge tank can be neglected compared to

that required for decelerating the liquid in pipe A B. Therefore, we can write, according

to Eq. (13.2),

hf – h  =
d

d

L V

g t

Ê ˆ-Á ˜Ë ¯
(13.47)

Instantaneous values of h and V  can be found out from simultaneous solution of Eqs

(13.46) and (13.47). It is difficult to have a closed form solution if friction factor f in

determining hf is not constant. However, numerical integrations of Eqs (13.46) and

(13.47) are possible, with a known initial steady condition, to determine the value of h

and V  at every instant while the surge is taking place.

For a special case when Q = 0, and assuming a constant value of f, we have a

solution for V  as

V2 =
2 4

exp
4 4

gd a d f Ah
h C

f L f A ad

Ê ˆ Ê ˆ+ + Á ˜Á ˜ Ë ¯Ë ¯

where d is the diameter of pipe A B and C is a constant.

Under steady condition, head (hf – h) should become zero and so the level in the

tank should fall immediately after the maximum height has been reached. The level

then oscillates about the steady position where h = hf. However, the movements are

damped out by friction.

We can conclude from the above discussion that a surge tank has the following

two distinct functions:

(i) Minimisation of water hammer effect in the pipelines leading from pen-

stock to the turbines.

(ii) Taking up the surplus water when the load is reduced and meeting up

with the extra water when the load is increased.

A simple cylindrical surge tank has the disadvantage in a sense that these two

effects are in no way separated, and hence it becomes a little sluggish in operation.

Tanks of different designs with varying cross section along the height and with

overflow devices or damping arrangements such as a restriction in the entrance are

incorporated in practice.

Example 13.4

Determine the maximum time for rapid valve closure on a pipeline 600 mm in diameter,

450 m long, made of steel (E = 207 ¥ 10
6
 kN/m

2
) with a wall thickness of 12.5 mm. The

pipe contains benzene of specific gravity 0.88, E = 1.035 ¥ 10
6
 kN/m

2
 flowing at 0.85

m
3
/s. The pipe is not restricted longitudinally.
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Solution

The maximum time for a rapid valve closure is given by

tmax =
2l

C

where l is the length of the pipe and C is the velocity (relative to flow of liquid) of

pressure wave created by the valve closure.

C is given according to Eq. (13.41) as

C =
E

Ed E tp

/

( / )

/

r

1

1 2

+

L

N
M
M

O

Q
P
P

=
1 035 10 0 88 10

1
1 035 600

207 12 5

9 3

1 2

. / .

.

.

/

¥ ¥

+
¥

¥
F
HG

I
KJ

L

N

M
M
M
M
M

O

Q

P
P
P
P
P

or C = 974 m/s

Hence, tmax =
2 450

974

¥
 = 0.924 s

Example 13.5

Water has to flow uniformly at the rate of 0.20 m3/s though a pipe of 200 mm diameter.

Calculate the minimum thickness of the pipe that has to be provided if, for a sudden

stoppage of flow, the pipe should not be stressed more than 5 ¥ 104 kN/m2. (Take E for

water = 2 ¥ 106 kN/m2 and E for the pipe material = 120 ¥ 106 kN/m2)

Solution

The velocity of flow V  through the pipe is given by

V =
4 0 20

0 2
2

¥ ( . )

( . )p

= 6.37 m/s

The velocity of pressure wave created due to valve closure is determined using

Eq. (13.41) as

C =
( / )

( . / )

2 10 10

1 2 0 2 120

9 3¥
+ ¥ t

(where t is the thickness of the pipe)

=
2 10

1 0 0033

6¥
+ . / t
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=
2

0 0033
103t

t +
¥

.
m/s

Now, Dp = rCV = 6.37 
2

0 0033
106t

t +
¥

.
N/m2

Again, from the consideration of stress in the pipe wall

t =
D pd t

t2

6 37 0 2

2 5 10

2

0 0033
10

7
6

s
=

¥
¥ ¥ +

¥
. .

.

= 0.01274 
2

0 0033

t

t + .

or 6161t2 + 20.33t – 2 = 0

This equation of t gives one positive root of t = 0.016 as the feasible solution.

Therefore, t = 0.016 m = 16 mm.

Example 13.6

A uniform U-tube has two vertical limbs open to atmosphere and connected by a

horizontal middle part. The left and right limbs are filled with liquids of length l1, l2 and

density r1, r2 respectively. The liquid columns meet in the horizontal part of the tube.

Calculate the frequency of oscillation under gravity, neglecting viscous effect.

z z
1

2

V
V

l1
l2

Fig. 13.11  Oscillations of two liquid columns in a U-tube
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Solution

At equilibrium position, the heights of liquid columns in left and right limbs from the

horizontal base of the manometer are l1 and l2 respectively (Fig. 13.11). Let us con-

sider an instant of oscillation when the liquid column in the left limb moves upward

while that in the right limb moves downward as shown in Fig. 13.11. By the application

of Bernoulli’s equation for unsteady flow between points 1 and 2 (Fig. 13.11) we get,

r r r r r
∂

∂
1

2

1 1 2

2

2 2

1

2

2 2

V
p g l z

V
p g l z

V

t
s+ + - = + + + + zatm atm d( ) ( )

[Displacement of the liquid columns and hence their velocities are equal since the

cross-sectional area of two limbs are considered to be the same]

or (r2 – r1) 
V2

2
 + (r2l2 – r1l1)g + (r2 + r1)gz + (r1l1 + r2l2) 

d

d

V

t
 = 0 (13.48)

Equating the hydrostatic pressures at the base of the manometer in the equilibrium

position of the liquids, we have

r2l2 g = r1l1g (13.49)

With the help of Eq. (13.49) and writing

V =
d

d
and

d

d

d

d

2
z

t

V

t

z

t
= 2

We have from Eq. (13.48)

d

d 2(

d

d 2(

2

2 2

z

t l l

z

t

g

l l
z

2
2 1

2 1 1

2

1 2

2 1 1

+
-
+

F
HG

I
KJ

+
+
+

( )

)

( )

)

r r

r r

r r

r r
 = 0

For small values of (dz/dt)2 (when amplitudes of oscillation are small compared to

the lengths of the liquid columns), this equation becomes

d

d (

2

2

z

t

g

l l
z

2
1 2

2 1 1

+
+
+

( )

)

r r

r r
 = 0

Hence, the frequency of oscillation becomes

w =
g

l l

( )

)

/
r r

r r
1 2

2 1 1

1 2
+
+

L
N
M

O
Q
P

( 2

Example 13.7

A cast iron pipe of 300 mm diameter and 8 mm thick is 1500 m long. The pipe is to

convey 200 litre/s of water.

(i) Estimate the maximum time of closure of a valve at the downstream end

that would be recognised as a rapid closure.

(ii) What is the peak water hammer pressure produced by rapid closure?

(iii) What is the length of the pipe subjected to peak water hammer pressure if

the time of closure is 2.0 s?

[For water E = 2200 MPa; for cast iron E = 80 ¥ 109 Pa]
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Solution

(i) The velocity of the pressure wave due to valve closure is determined according

to Eq. (13.41) as

C =
2 2 10

10 1
2 2 0 3

80 8 10

9

3
3

.

. .

¥

+
¥

¥ ¥
F
HG

I
KJ-

= 1041 m/s

The maximum time of valve closure to be recognised as a rapid one is given by

tmax =
2 2 1500

1041

l

C
=

¥
 = 2.88 s

(ii) The velocity of flow through the pipe

V0 =
0 2 4

0 3
2

.

( . )

¥
¥p

 = 2.83 m/s

Therefore, the peak pressure due to rapid closure

pmax = rCV0 = 10
3
 ¥ 1041 ¥ 2.83 Pa

= 2.95 MPa

(iii) Let the length of the pipe from the valve end which will be subjected to peak

pressure be x. Then equating the time for the peak pressure to be generated upto the

length x from the valve end with the time for the first reflected negative pressure wave

to reach there, we have

x

C
+ 2  =

l

C

l x

C
+

-

or
x

1041
2+  =

1500

1041

1500

1041
+

- x

which gives x = 459 m

Example 13.8

A 400 mm steel pipe is 2000 m long and conveys 100 litre/s of water with a static head

of 200 m at the downstream end of the pipe. If a valve at the downstream end is closed

in 6 s, estimate the stress in the pipe wall at the valve. The pipe thickness is 5 mm.

[For water E = 2.2 ¥ 10
9
 Pa; for steel E = 2.2 ¥ 10

11
 Pa]

Use an approximate expression to calculate the maximum rise in pressure head for

a slow closure as Dps = 
2l

TC
pr◊D , where Dps and Dpr are the peak rises in pressure due

to slow and rapid closure respectively. l, C and T are the length of the pipe, the wave

velocity and the time of valve closure respectively]
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Solution

The wave velocity C is given by

C =
2 2 10

10 1
2 2 0 4

2 2 10 5 10

9

3
2 3

.

. .

.

¥

+
¥

¥ ¥ ¥
F
HG

I
KJ-

= 1105 m/s

Velocity of flow, Vo =
0 1 4

0 4
2

.

( . )

¥
¥p

 = 0.796 m/s

The peak rise in water hammer pressure due to rapid closure,

D pr = rCVo = 10
3
 ¥ 1105 ¥ 0.796 = 879 kPa

The maximum time of rapid closure, Tmax = 
2 2000

1105

¥
 = 3.62 s

Since the time of closure is 6 s which is greater than 3.62 s, the present situation

corresponds to a slow closure.

The rise in pressure head at the valve end due to the slow closure is given by

D ps = 879 ¥ 
3 62

6

.
 = 530 kPa

Therefore, the rise in total pressure D p = D ps + D pstatic

= 530 ¥ 10
3
 + 200 ¥ 10

3
 ¥ 9.81 Pa

= 2.5 MPa

Therefore the stress s is determined as

s = 
D pd

t2
 =

2 5 10 0 4

2 5 10

6

3

. ( . )¥ ¥
¥ ¥ -  = 1 ¥ 108 N/m2 = 100 MN/m2

SUMMARY

∑ The temporal acceleration in an unsteady flow becomes important when

the change in velocity is rapid. In a very fast change of flow, arising from

sudden opening or closing of valve, the density of fluid changes consid-

erably and the elastic force becomes significant.

∑ The difference in the Piezometric pressure, causing a uniform temporal

acceleration of a liquid column, is known as the inertia pressure and the

corresponding head is known as the inertia head, which is given by (L/g)

(∂V /∂t), where L is the length of the liquid column being accelerated.

∑ Oscillation of an inviscid liquid column in a U-tube shows an undamped

periodic motion with a time period of 2p (l/2g)1/2, where l is the length of

the liquid column. The nature of oscillation of a viscous liquid column in a

U-tube depends upon the kind of flow and damping factor. For a laminar

flow, the oscillation is of damped periodic in nature with diminishing am-
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plitude when the damping factor is less than unity. The flow is a non-

oscillatory type reaching the equilibrium position asymptotically or a tran-

sitory one changing from oscillatory to non-oscillatory types depending

upon whether the damping factor is greater than unity or equals to unity

respectively.

∑ When the flow in a pipe line is suddenly reduced by closing a valve

downstream, a phenomenon like knocking of the pipe system takes place

due to repeated up and down motion of a pressure wave within the pipe.

This phenomenon is known as water hammer. The disturbance created at

the valve end, due to its closure, propagates upstream as a messenger in

the form of a pressure wave with a velocity C (relative to the liquid me-

dium) which equals to [(E/r) / (1 + Ed/Ept)]1/2. The rise in pressure head

due to deceleration of the liquid to rest by the instantaneous closure of a

valve is given by CVo/g. The valve closure is said to be rapid when the

time of closing the valve is less than or equal to 2l/C (l being the length of

the pipe), so that the maximum rise in pressure head at the valve end

becomes equal to C V0/g. The valve closure is considered to be slow when

the time of closing the valve is greater than 2l/C and under this situation

the maximum rise in pressure head at the valve end becomes less than C

V o/g due to the arrival of a reflected wave of negative pressure head from

the reservoir end.

∑ The problem of water hammer in the penstock in a hydroelectric power

station is circumvented by the use of a surge tank.

EXERCISES

13.1 Choose the correct answer:

(i) A long pipe connected to a water tank, providing a constant head, has a

valve at its downstream end which is suddenly opend. If t1 is the time to

reach 90% of the steady state flow determined by neglecting friction and

other losses, and t2 is the corresponding time obtained by including

friction and other losses, then

(a) t2 > t1 (b) t2 = t1 (c) t2 < t1 (d) t2 ≥ t1

(e) t2 £ t1

(ii) The propagation velocity of a pressure wave in a rigid pipe carrying a

fluid of density r and viscosity m varies as

(a) r (b) 1/r (c) r/m (d) r

(iii) The downstream valve of a pipe conveying a liquid at steady rate is

closed during a time interval of l/C, where l is the length of the pipe and

C is the wave velocity relative to liquid in the pipe. Under this situation,

the peak water hammer pressure would be experienced

(a) only at the valve end

(b) by one fourth length of the pipe from the valve end

(c) by half of the pipe length

(d) by the full pipe length
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(iv) In a pipe of 4000 m long carrying oil, the velocity of propagation of a

pressure wave is 500 m/s. A valve at the downstream end is closed sud-

denly. At the mid point of the pipeline, the peak water hammer pressure

will  exist for a duration of

(a) 1.0s (b) 2.0s (c) 4.0s (d) 8.0s

(v) A surge tank is provided in a hydroelectric power station to

(a) reduce frictional losses in the system

(b) reduce water hammer problem in the penstock

(c) increase the net head across the turbine

13.2 A 200 mm diameter and 2000 m long pipe leads from a large reservoir to an

outlet which is 30 m below the water level in the reservoir. If a valve at the pipe

outlet is suddenly opened, find the time required to reach (i) 50% and (ii) 90%

of steady state discharge. Assume the friction factor,  f = 0.02 and minor losses

(excluding the exit loss) as 10 (V 2
/2g).

Ans. (6.23s, 16.71s)

13.3 Two reservoirs with a constant difference of 15 m in their free water surface

are connected by a 200 mm diameter pipe of length 500 m and f = 0.020. The

minor losses in the pipe (including the exit loss) can be taken as 10 times the

velocity head in the pipe. If a valve controlling the flow is suddenly opened,

(i) find the time for 95% of the steady flow to be established, and (ii) find the

flow at the end of 10s from the opening of the valve.

Ans. (13.78s, 0.06 m3/s)

13.4 Determine the error in calculating the excess pressure of water hammer in a

steel pipe carrying water with an inner diameter d = 15 mm and a wall thick-

ness t = 2 mm if the elasticity of the material of the pipe wall is disregarded.

Take E = 2.07 ¥ 105 MN/m2 for steel and E = 2.2 ¥ 103 MN/m2 for water.

Ans. (3.92%)

13.5 A steel pipe 300 mm in diameter and 1500 m long conveys crude oil having a

specific gravity of 0.8 and a bulk modulus of elasticity 1520 MPa. The rate of

discharge of oil is 0.08 m
3
/s. A valve at the downstream end of the pipe is

completely closed in 2s. If the thickness of the pipe is 20 mm, calculate the

additional stress in the pipe due to the valve operation. (For steel pipe, modu-

lus of elasticity = 2.07 ¥ 10
5
 MPa).

Ans. (8.88 MPa)

13.6 A steel pipeline of 1200 m long, 500 mm in diameter has a wall thickness of

5 mm. The pipe discharges water at the rate of 0.1 m3/s. The static head at the

outlet is 200 m of water. If the working stress of steel is 0.1 kN/mm2, calculate

the minimum time of closure of a downstream valve. For water: E = 2.2 ¥ 103

MPa and for steel: E = 2.07 ¥ 105 MPa.

Ans. (32.17s)

13.7 A valve at the end of a pipe 600 m long is closed in five equal steps each of 2

l/C, where C = 1200 m/s (the wave velocity relative to liquid in the pipe). The

initial head at the valve which discharges to atmosphere, is 100 m and the

initial velocity in the pipe is 1 m/s. Neglecting the frictional effects, determine

the head at the valve after 1, 2 and 3 s.

Ans. (116.64 m, 111.5 m, 87.14 m)
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13.8 Show that, if the friction loss in a pipe line is proportional to the square of the

velocity, the oscillatory motion of the level in a simple, open, cylindrical surge

tank following complete shut-down of the turbines in a hydroelectric plant is

given by an equation of the form

22

2

d d

dd

H H
H

tt
a b

¢ ¢Ê ˆ
+ + ¢Á ˜Ë ¯¢¢

= 0

where H¢ = H/l, t¢ = t 
g

l
, with H being the instantaneous depth of water level

in surge tank below that of the reservoir, l the length of the pipeline from

reservoir to surge tank and t the time, a and b are the dimensionless con-

stants. Find the values of a and b for surge tank whose diameter is 10 times

more than that of the pipeline and the length to diameter ratio of the pipeline

is 200. (Take friction factor f = 0.02)

Ans. (a = –200, b = 0.01)
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COMPRESSIBLE FLOW

14.1  INTRODUCTION

Compressible flow is often called variable density flow. For the flow of all liquids and

for the flow of gases under certain conditions, the density changes are so small that

assumption of constant density remains valid (see Chapter 1).

Consider a small element of fluid of volume v. The pressure exerted on the element

by the neighbouring fluid is p. If the pressure is now increased by an amount dp, the

volume of the element will correspondingly be reduced by the amount dv. The

compressibility of the fluid, K, is thus defined as

K = –
1

v

vd

dp
(14.1)

However, when a gas is compressed, its temperature increases. Therefore, the

above mentioned definition of compressibility is not complete unless the temperature

condition is specified. If the temperature is maintained at a constant level, the

isothermal compressibility is defined as

KT = –
1

v

vd

dp
T

F
HG

I
KJ

(14.2)

Compressibility is a property of fluids. Liquids have very low value of

compressibility (for example, compressibility of water is 5 ¥ 10–10 m2/N at 1 atm under

isothermal condition), while gases have very high compressibility (for example,

compressibility of air is 10–5 m2/N at 1 atm under isothermal condition). If the fluid

element is considered to have unit mass, v  is the specific volume (volume per unit

mass) and the density is r = 1/v . In terms of density, Eq. (14.1) becomes

K =
1 d

d p

r

r
(14.3)

We can also say that for a change in pressure, dp, the change in density is

dr = rKdp (14.4)

So far we have thought about a fluid and its property–compressibility. If we also

consider the fluid motion, we shall appreciate that the flows are initiated and
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maintained by changes in pressure on the fluid. It is also known that high pressure

gradient is responsible for high speed flow. However, for a given pressure gradient

(dp), the change in density of a liquid will be smaller than the change in density of a

gas (as seen in Eq. (14.4)). So, for flow of gases, moderate to high pressure gradients

lead to substantial changes in the density. Due to such pressure gradients, gases

flow with high velocity. Such flows, where r is a variable, are known as compressible

flows.

If we recapitulate Chapter 1, we can say that the proper criterion for a nearly

incompressible flow is a small Mach number,

Ma =
V

a
 << 1 (14.5)

where V  is the flow velocity and a is the speed of sound in the fluid. For small Mach

numbers, changes in fluid density are small everywhere in the flow field. In this

chapter we shall treat compressible flows which have Mach numbers greater than 0.3

and exhibit appreciable density changes.

The Mach number is the most important parameter in compressible flow analysis.

Aerodynamicists make a distinction between different regions of Mach numbers in

the following ways:

∑ Ma < 0.3: incompressible flow; change in density is negligible.

∑ 0.3 < Ma < 0.8: subsonic flow; density changes are significant but shock

waves do not appear.

∑ 0.8 < Ma < 1.2: transonic flow; shock waves appear and divide the sub-

sonic and supersonic regions of the flow. Transonic flow is characterized

by mixed regions of locally subsonic and supersonic flow.

∑ 1.2 < Ma < 3.0: supersonic flow; flow field everywhere is above acoustic

speed. Shock waves appear and across the shock wave, the streamline

changes direction discontinuously.

∑ 3.0 < Ma: hypersonic flow; where the temperature, pressure and density of

the flow increase almost explosively across the shock wave.

The above five categories of flow are appropriate to external aerodynamics. For

internal flow, it is to be studied whether the flow is subsonic (Ma < 1) or supersonic

(Ma > 1). The effect of change in area on velocity changes in subsonic and supersonic

regime is of considerable interest. By and large, in this chapter we shall mostly focus

our attention to internal flows. The material in this chapter is inspired by the two-

volume classical book on compressible flows by A.H. Shapiro[ see Ref.1].

14.2  THERMODYNAMIC RELATIONS OF PERFECT GASES

14.2.1 Perfect Gas

Compressible flow calculations can be made by assuming the fluid to be a perfect gas.

A perfect gas is one in which intermolecular forces are neglected. The equation of

state for a perfect gas can be derived from the kinetic theory. It was synthesised from

laboratory experiments by Robert Boyle, Jacques Charles, Joseph Gay-Lussac and

John Dalton. However, for a perfect gas, it can be written

pV  = MRT (14.6)
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where p is pressure (N/m2), V  is the volume of the system (m3), M is the mass of the

system (kg), R is the specific gas constant (J/kg K) and T is the temperature (K). This

equation of state can be written as

pv  = RT (14.7)

where v  is the specific volume (m3/kg). We can also write

p = RT (14.8)

where  is the density (kg/m3).

In another approach, which is particularly useful in chemically reacting systems,

the equation of state is written as

pV  = N� T (14.9)

where N is the number of moles in the system, and � is the universal gas constant

which is same for all gases. It may be recalled that a mole of a substance is that amount

which contains a mass equal to the molecular weight of the gas and which is identified

with the particular system of units being used. For example, in case of oxygen (O
2
), 1

kilogram-mole (or kg mol) has a mass of 32 kg. Because the masses of different

molecules are in the same ratio as their molecular weights, 1 mol of different gases

always contains the same number of molecules, i.e., 1 kg-mol always contains 6.02  1026

molecules, independent of the species of the gas. Dividing Eq. (14.9) by the number of

moles of the system yields

pV 1 = � T (14.10)

If, Eq. (14.9) is divided by the mass of the system, we can write

pv  = � T (14.11)

where v  is the specific volume as before and  is the mole-mass ratio (kg-mol/kg).

Also, Eq. (14.9) can be divided by system volume, which results in

p = C�T (14.12)

where C is the concentration (kg-mol/m3).

The equation of state can also be expressed in terms of particles. If NA is the

number of particles in a mole (Avogadro constant, which for a kilogram-mole is 6.02  1026

particles), from Eq. (14.12) we obtain

p = (NAC) 
A

T
N

(14.13)

In the above equation, (NAC) is the number density, i.e., number of particles per unit

volume and (� /NA) is the gas constant per particle, which is nothing but the

Boltzmann constant.

Finally, Eq. (14.13) can be written as

p = nkT (14.14)

where n is the number density and k is the Boltzmann constant.

So far, we have come across different forms of equations of state for perfect gas.

They are necessarily same. A closer look depicts that there are a variety of gas

constants. They are categorised as
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1. Universal gas constant: When the equation deals with moles, it is in use. It

is same for all the gases.

� = 8314 J/ (kg-mol-K)

2. Characteristic gas constant: When the equation deals with mass, the char-

acteristic gas constant (R) is used. It is a gas constant per unit mass and it

is different for different gases. As such R = � /M, where M is the molecular

weight. For air at standard conditions,

R = 287 J/(kg-K)

3. Boltzmann constant: When the equation deals with particles, Boltzmann

constant is used. It is a gas constant per particle.

k = 1.38  10�23 J/K

However, the question is how accurately one can apply the perfect gas theory? It

has been experimentally determined that at low pressures (1 atm or less) and at high

temperature (273 K and above), the value of (pv/RT) for most pure gases differs with

unity by a quanity less than one per cent. It is also understood that at very cold

temperatures and high pressures the molecules are densely packed. Under such

circumstances, the gas is defined as real gas and the perfect gas equation of state is

replaced by van der Waals equation which is

p
a

b
%
'

(
0v

v
2

( )  = RT (14.15)

where a and b are constants and depend on the type of the gas. In conclusion, it can

be said that for a wide range of applications related to compressible flows, the

temperatures and pressures are such that the equation of state for the perfect gas can

be applied with a high degree of confidence.

Microscopic view of a gas is a collection of particles in random motion. Energy of a

particle can consist of translational energy, rotational energy, vibrational energy and

electronic energy. All these energies summed over all the particles of the gas, form the

internal energy, e, of the gas.

Let, us imagine a gas is in equilibrium. Equilibrium signifies gradients in velocity,

pressure, temperature and chemical concentrations do not exist. Let e be the internal

energy per unit mass. Then the enthalpy, h, is defined per unit mass, as h = e + pv , and

we know that

e = e (T, v)

h = h (T, p)
(14.16)

If the gas is not chemically reacting and the intermolecular forces are neglected,

the system can be called as a thermally perfect gas, where internal energy and

enthalpy are functions of temperature only. One can write

e = e (T)

h = h (T)

de = c
v
 dT

(14.17)

dh = cp dT
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If the specific heats are constant it can be called as a calorically perfect gas where

e = cvT

h = cpT

¸
˝
˛

(14.18)

In most of the compressible flow applications, the pressure and temperatures are

such that the gas can be considered as calorically perfect. However, for calorically

perfect gases, we can accept constant specific heats and write

cp – cv = R (14.19)

and the specific heats at constant pressure and constant volume are defined as

cp =

p

h

T

∂

∂

Ê ˆ
Á ˜Ë ¯

cv =
e

T

∂

∂

Ê ˆ
Á ˜Ë ¯

v

(14.20)

From Eq. (14.19), one can write

1 – 
p

c

c

v  =
R

cp

(14.21)

We also know that cp/cv = g. We can rewrite Eq. (14.21) as

1 – 
1

g
 =

R

cp

or cp =
g

g

R

- 1
(14.22)

In a similar way, from Eq. (14.19) we can write

cv =
R

g - 1
(14.23)

14.2.3 First Law of Thermodynamics

Let us imagine a system with a fixed mass of gas. If d q amount of heat is added to the

system across the system-boundary and if d w is the work done on the system by the

surroundings, then there will be an eventual change in internal energy of the system

which is denoted by de and we can write

de = d q + d w (14.24)

This is the First law of thermodynamics. Here, de is an exact differential and its

value depends only on initial and final states of the system. However, d q and dw are

dependent on the process. A process signifies the way by which heat can be added

and the work is done on the system. Here, we shall be interested in the isentropic

process which is a combination of adiabatic (no heat is added to or taken away from

the system) and reversible process (occurs through successive stages, each stage

consists of an infinitesimal small gradient). In an isentropic process, entropy of a

system remains same.
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14.2.4 Entropy and the Second Law of Thermodynamics

Equation (14.24) does not tell us about the direction (i.e., a hot body with respect to its

surrounding will gain temperature or cool down) of the process. To determine the

proper direction of a process, we define a new state variable, the entropy, which is

ds =
d q

T

rev
(14.25)

where s is the entropy of the system, dqrev is the heat added reversibly to the system and

T is the temperature of the system. Entropy is a state variable and it can be connected

with any type of process, reversible or irreversible. An effective value of dqrev can

always be assigned to relate initial and end points of an irreversible process, where the

actual amount of heat added is dq. One can write

ds =
d q

T
s+ d irrev (14.26)

It states that the change in entropy during a process is equal to the actual heat added

divided by the temperature plus a contribution from the irreversible dissipative

phenomena. The dissipative phenomena always increase the entropy,

dsirrev ≥ 0 (14.27)

Significance of the ‘greater than’ sign is understood. The ‘equal to’ sign represents a

reversible process. A combination of Eqs (14.26) and (14.27) yields,

ds ≥
d q

T
(14.28)

If the process is adiabatic, d q = 0, Eq. (14.28) yields,

ds ≥ 0 (14.29)

Equations (14.28) and (14.29) are the expressions for the second law of

thermodynamics. The second law tells us in what direction the process will take place.

The direction of a process is such that the change in entropy of the system plus

surrounding is always positive or zero (for a reversible adiabatic process). In

conclusion, it can be said that the second law governs the direction of a natural

process.

For a reversible process, it can be said (see Nag [2]) that dw = –pdv , where dv  is

change in volume and from the first law of thermodynamics it can be written as

dq – pdv  = de (14.30)

If the process is reversible, we use the definition of entropy in the form d qrev
 = T ds,

then Eq. (14.30) becomes

T ds – pdv  = de

or Tds = de + pdv (14.31)

Another form can be obtained in terms of enthalpy. For example, by definition

h = e + pv

Differentiating, we obtain

dh = de + pdv + vdp (14.32)
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Combining Eqs (14.31) and (14.32), we have

Tds = dh – vdp (14.33)

Equations (14.31) and (14.33) are termed as first Tds equation and second Tds

equation, respectively.

For a thermally perfect gas, we have dh = cp dT (from Eq. 14.20) and we can

substitute this in Eq. (14.33) to obtain

ds = c
T

T

p

T
p

d d
-

v
(14.34)

Further substitution of pv  = RT into Eq. (14.34) yields

ds = c
T

T
R

p

p
p

d d- (14.35)

Integrating Eq. (14.35) between states 1 and 2,

s2 – s1 =

2

1

2

1

d
ln

T

p

T

pT
c R

T p
-Ú (14.36)

If cp is a variable, we shall require gas tables; but for constant cp, we obtain the

analytic expression

s2 – s1 = c
T

T
R

p

p
p ln ln2

1

2

1

- (14.37)

In a similar way, starting with Eq. (14.31) and making use of the relation de = cvdT,

the change in entropy can also be obtained as

s2 – s1 = c
T

T
Rv

v

v
ln ln2

1

2

1

+ (14.38)

14.2.5 Isentropic Relation

An isentropic process has already been described as reversible-adiabatic. For an

adiabatic process d q = 0, and for a reversible process, dsirrev = 0. From Eq. (14.26), we

can see that for an isentropic process, ds = 0. However, in Eq. (14.37), substitution of

isentropic condition yields,

cp ln
T

T

2

1

 = R
p

p
ln 2

1

or ln
p

p

2

1

 =
c

R

T

T

p
ln 2

1

or
p

p

2

1

 =

/

2

1

pc R
T

T

Ê ˆ
Á ˜Ë ¯

(14.39)

Substituting Eq. (14.22) in Eq. (14.39), we get

p

p

2

1

 =
1

2

1

T

T

g

g -Ê ˆ
Á ˜Ë ¯

(14.40)
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In a similar way, from Eq. (14.38)

0 = cv ln 
T

T
R2

1

2

1

+ ln
v

v

ln
v

v
2

1

 = – ln
c

R

T

T

v 2

1

or
v

v
2

1

 =

/

2

1

c R
T

T

-
Ê ˆ
Á ˜Ë ¯

v

(14.41)

Substituting Eq. (14.23) in Eq. (14.41), we get

v

v
2

1

 =

1

1
2

1

T

T

g

-
-Ê ˆ

Á ˜Ë ¯
(14.42)

From our known relationship of r2/r1 = v1/v2, we can write

r

r
2

1

 =

1

1
2

1

T

T

g -Ê ˆ
Á ˜Ë ¯

(14.43)

Combining Eq. (14.40) with Eq. (14.43), we find

p

p

2

1

 = 2

1

g
r

r

Ê ˆ
Á ˜Ë ¯

 = 
1

2

1

T

T

g

g -Ê ˆ
Á ˜Ë ¯

(14.44)

14.3  SPEED OF SOUND

A pressure pulse in an incompressible flow behaves like that in a rigid body. A

displaced particle displaces all the particles in the medium. In a compressible fluid, on

the other hand, displaced mass compresses and increases the density of the

neighbouring mass which in turn increases the density of the adjoining mass and so

on. Thus, a disturbance in the form of an elastic wave or a pressure wave travels

through the medium. If the amplitude of the elastic wave is infinitesimal, it is termed as

acoustic wave or sound wave.

Figure 14.1(a) shows an infinitesimal pressure pulse propagating at a speed

“a” towards still fluid (V = 0) at the left. The fluid properties ahead of the wave are p, T

and r, while the properties behind the wave are p + dp, T + dT and r + dr. The fluid

velocity dV  is directed toward the left following wave but much slower.

In order to make the analysis steady, we superimpose a velocity “a” directed

towards right, on the entire system (Fig. 14.1(b)). The wave is now stationary and the

fluid appears to have velocity “a” on the  left and (a – dV ) on the right. The flow in Fig.

14.1 (b) is now steady and one dimensional across the wave. Consider an area A  on the

wave front. A mass balance gives
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p
T
r

V = 0

dV

Moving wave of
frontal area A

a
p + pd

T + Td

r r+ d

(a) Wave propagating into still fluid

p
T
r

Control volume

Stationary (Fixed) wave

p + pd

T + Td

r r+ d

V = a

V = a V– d

(b)  Stationary wave

Fig. 14.1 Propagation of a sound wave

rAa = (r + dr) A  (a – dV)

or dV  = a

d

+ d

r

r r

È ˘
Í ˙
Î ˚

(14.45)

This shows that dV  > 0 if dr is positive. A  compression wave leaves behind a fluid

moving in the direction of the wave (Fig. 14.1(a)). Equation (14.45) also signifies that

the fluid velocity on the right is much smaller than the wave speed “a”. Within the

framework of infinitesimal strength of the wave (sound wave), this “a” itself is very

small.

Now, let us apply the momentum balance on the same control volume in

Fig. 14.1 (b). It says that the net force in the x direction on the control volume equals

the rate of outflow of x  momentum minus the rate of inflow of x  momentum. In

symbolic form, this yields

pA – (p + dp) A  = Ar a (a – dV) – (A r a)a

In the above expression, Ara is the mass flow rate. The first term on the right-hand

side represents the rate of outflow of x momentum and the second term represents the

rate of inflow of x momentum. Simplifying the momentum equation, we get
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dp = ra dV (14.46)

Combining Eqs (14.45) and (14.46), we get

a2 =
d d

1
d

p r

r r

Ê ˆ
+Á ˜Ë ¯

(14.47a)

In the limit of infinitesimally small strength, dr Æ 0, we can write

a2 =
d

d

p

r
(14.47b)

Notice that in the limit of infinitesimally strength of sound wave, there are no

velocity gradients on either side of the wave. Therefore, the frictional effects

(irreversible) are confined to the interior of the wave. Moreover, we can appreciate

that the entire process of sound wave propagation is adiabatic because there is no

temperature gradient except inside the wave itself. So, for sound waves, we can see

that the process is reversible adiabatic or isentropic. This brings up the correct

expression for the sound speed

a =

s

p∂

∂ r

Ê ˆ
Á ˜Ë ¯

(14.48)

For a perfect gas, by using of p/rg
 = constant, and p = rRT, we deduce the speed of

sound as

a =
g

r
g

p
RT= (14.49)

For air at sea level and at a temperature of 15 °C, it gives a = 340 m/s.

14.4  PRESSURE FIELD DUE TO A MOVING SOURCE

Consider a point source emanating infinitesimal pressure disturbances in a still fluid,

in which the speed of sound is “a”. If the point disturbance, is stationary then the

wave fronts are concentric spheres. This is shown in Fig. 14.2(a), where the wave fronts

at intervals of Dt are shown.

Now suppose that source moves to the left at speed U < a. Figure 14.2(b) shows

four locations of the source, 1 to 4, at equal intervals of time Dt, with point 4 being the

current location of the source. At point 1, the source emanated a wave which has

spherically expanded to a radius 3aDt in an interval of time 3Dt. During this time the

source has moved to the location 4 at a distance of 3UDt from point 1. The figure also

shows the locations of the wave fronts emitted while the source was at points 2 and 3,

respectively.

When the source speed is supersonic (U > a) as shown in Fig. 14.2(c), the point

source is ahead of the disturbance and an observer in the downstream location is

unaware of the approaching source. The disturbance emitted at different points of

time are enveloped by an imaginary conical surface known as the Mach cone. The

half angle of the cone, a, is known as the Mach angle and is  given by
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a tD

a tD

U tD

a tD

2a tD

2a tD

U tD

2U tD

2U tD

3U tD

3U tD

2a tD

3a tD

3a tD

3a tD

U = 0

U

U

a

(a)

U a<

U > a

(b)

(c)

234

Zone of
silence

Zone of
action

Mach cone

3 2 14

Fig. 14.2 Wave fronts emitted from a point source in a still fluid when the

  source speed U is (a) U = 0, (b) U < a, and (c) U > a

sin a =
a t

U t

D
D

= 1

Ma

or a = sin
–1

 (1/Ma)

Since the disturbances are confined to the cone, the area within the cone is known

as the zone of action and the area outside the cone is the zone of silence. An observer

does not feel the effects of the moving source till the Mach cone covers his position.
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Example 14.1

An airplane travels at 800 km/h at sea level where the temperature is 15ºC. How fast

would the airplane be flying at the same Mach number at an altitude where the

temperature is – 40 ºC?

Solution

The sonic velocity a at the sea level is

a = g RT = 1 4 287 288. ( ) ( )  = 340.2 m/s

Velocity of the airplane,

V = 800 km/h = 222.2 m/s

So, the Mach number, Ma of the airplane = 222.2/340.2 = 0.653

The sonic velocity at an altitude where the temperature is – 40 °C

a = g RT = 1 4 287 233). ( ) ( = 306.0 m/s

Velocity of the airplane for the same Mach number,

V = 0.653 × 306 = 199.8 m/s

or velocity of the airplane, V  = 199.8 × 3600/1000 = 719.3 km/h

Example 14.2

An object is immersed in an air flow with a static pressure of 200 kPa (abs), a static

temperature of 20 °C, and a velocity of 200 m/s. What is the pressure and temperature

at the stagnation point?

Solution

Velocity of sound at 20 ºC = g RT = 1 4 287 293. ( )  = 343 m/s

Corresponding Mach number,

Ma = 200/343 = 0.583

Stagnation temperature,T0 = (293) [1 + 0.2 × (0.583)
2
]

= 293 × 1.068 = 312.9 K = 39.9 ºC

Stagnation pressure, p0 = (200) (1.068)3.5 = 251.8 kPa

14.5  BASIC EQUATIONS FOR ONE-DIMENSIONAL FLOW

Having had an exposure to the speed of sound, we begin our study of a class of

compressible flows that can be treated as one-dimensional flow. Such a simplification

is meaningful for flow through ducts where the centreline of the ducts does not have

a large curvature and the cross section of the ducts does not vary abruptly. For one-

dimensional assumption, the flow can be studied by ignoring the variation of velocity

and other properties across the cross-normal direction of the flow. However, these

distributions are taken care of by assigning an average value over the cross section
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(Fig. 14.3). The area of the duct is taken as A (x) and the flow properties are taken as

p(x), r(x), V (x), etc. The forms of the basic equations in a one-dimensional

compressible flow are discussed next.

Area
( )A x

y

x

2

1

V x( )

Fig. 14.3 One-dimensional approximation

Continuity Equation For steady one-dimensional flow, the equation of continuity is

r(x) V(x) A(x) = &m  = constant

Differentiating,  we get

d d dr

r
+ +V

V

A

A
 = 0 (14.50)

Energy Equation Let us consider a control volume within the duct shown by

dotted lines in Fig. 14.3. The first law of thermodynamics for a control volume fixed in

space is

d

d
d d

t
e

V
V e

V
V Ar r+

F
HG

I
KJ

+ +
F
HG

I
KJzzz zz

2 2

2 2
◊

= V A q A◊ ◊( )t d d- ◊zzzz (14.51)

where 
V 2

2
 is the kinetic energy per unit mass. The first term on the left-hand side

signifies the rate of change of energy (internal + kinetic) within the control
volume, and the second term depicts the flux of energy out of control surface. The
first term on the right-hand side represents the work done on the control surface, and
the second term on the right means the heat transferred through the control surface.
Here q is the heat flux per unit area per unit time. It may be mentioned that dA  is
directed along the outward normal.

We shall assume steady state so that the first term on the left-hand side of

Eq. (14.51) is zero. Writing m = r1 V 1 A 1 = r2 V 2 A 2 (where the subscripts are for

Sections 1 and 2), the second term on the left of Eq. (14.51) yields

e
V

V A+
F
HG

I
KJzz

2

2
r ◊d  =

2 2
2 1

2 1
2 2

V V
m e e

È ˘Ê ˆ Ê ˆ
+ - +Í ˙Á ˜ Á ˜Ë ¯ Ë ¯Í ˙Î ˚

&

The work done on the control surfaces is
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ÚÚ V ◊ (t ◊ dA) = V1 p1 A 1 – V2 p2 A 2

The rate of heat transfer to the control volume is

– ÚÚ q ◊ dA  = Q &m

where Q is the heat added per unit mass (in J/kg).

Invoking all the aforesaid relations in Eq. (14.51) and dividing by &m , we get

e
V

e
V

2
2
2

1
1
2

2 2
+ - -  = 1

1 1 1 2 2 2
&

[ ]
m

V p A V p A Q- + (14.52)

We know that the density r is given by &m /V A, hence the first term on the right may

be expressed in terms of v  
F
HG

specific volume; 
1

r
I
KJ

. Equation (14.52) can be rewritten

as

e
V

e
V

2
2
2

1
1
2

2 2
+ - -  = p1 v1 – p2v 2 + Q (14.53)

It is understood that p1v1 is the work done (per unit mass) by the surrounding in

pushing fluid into the control volume. Following a similar argument, p2v2 is the work

done by the fluid inside the control volume on the surroundings in pushing fluid out

of the control volume. Equation (14.53) may be reduced to a simpler form. Noting that

h = e + pv, we obtain

h2 + 
V2

2

2
 = h1 + 

V1
2

2
 + Q (14.54)

This is energy equation, which is valid even in the presence of friction or non-

equilibrium conditions between Sections 1 and 2. It is evident that the sum of enthalpy

and kinetic energy remains constant in an adiabatic flow. Enthalpy performs a similar

role that internal energy performs in a non-flowing system. The difference between

the two types of systems is the flow work pv  required to push the fluid through a

section.

Bernoulli and Euler Equations For inviscid flows, the steady form of the

momentum equation is the Euler equation,

d
d

p
V V

r
+  = 0 (14.55)

Integrating along a streamline, we get the Bernoulli’s equation for a compressible
flow as

2d

2

p V

r
+Ú  = constant (14.56)

For adiabatic frictionless flows the Bernoulli’s equation is identical to the energy

equation. To appreciate this, we have to remember that this is an isentropic flow, so that

the Tds equation is given by

Tds = dh – vdp
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which yields dh =
dp

r

Then the Euler equation (14.55) can also be written as

VdV  + dh = 0

Needless to say that this is identical to the adiabatic form of the energy Eq. (14.54).

The merger of the momentum and energy equation is attributed to the elimination of one

of the flow variables due to constant entropy.

Momentum Principle for a Control Volume For a finite control volume

between Sections 1 and 2 (Fig. 14.3), the momentum principle is

p1A 1 – p2A 2 + F = &mV 2 – &mV 1

or p1A 1 – p2A 2 + F = r2V
2
2A2 – r1V1

2 A1 (14.57)

where F is the x component of resultant force exerted on the fluid by the walls. The

momentum principle, Eq. (14.57), is applicable even when there are frictional dissipative

processes within the control volume.

14.6  STAGNATION AND SONIC PROPERTIES

The stagnation values are useful reference conditions in a compressible flow.

Suppose the properties of a flow (such as T, p, r, etc.) are known at a point. The

stagnation properties at a point are defined as those which are to be obtained if the

local flow were imagined to cease to zero velocity isentropically. The stagnation

values are denoted by a subscript zero. Thus, the stagnation enthalpy is defined as

h0 = h + 
1

2
V2

For a perfect gas, this yields,

cpT0 = cpT + 
1

2
V 2 (14.58)

which defines the stagnation temperature. It is meaningful to express the ratio of

(T0/T) in the form

0T

T
 =

2 21
1 1

2 2p

V V

c T RT

g

g

-
+ = + ◊

or
T

T

0  = 21
1 Ma

2

g -
+ (14.59)

If we know the local temperature (T) and Mach number (Ma), we can find out the

stagnation temperature T0. Consequently, isentropic relations can be used to obtain

stagnation pressure and stagnation density as

p

p

0  =
1 – 120 1

1 Ma
2

T

T

g g

g gg- -Ê ˆ È ˘= +Á ˜ Í ˙Ë ¯ Î ˚
(14.60)
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r

r
0  =

1 1

1 – 120 1
1 Ma

2

T

T

g gg- -Ê ˆ È ˘= +Á ˜ Í ˙Ë ¯ Î ˚
(14.61)

In general, the stagnation properties can vary throughout the flow field. However,

if the flow is adiabatic, then h + 
V 2

2
 is constant throughout the flow (Eq. 14.54). It

follows that the h0, T0, and a0 are constant throughout an adiabatic flow, even in the

presence of friction. It is understood that all stagnation properties are constant along

an isentropic flow. If such a flow starts from a large reservoir where the fluid is practically

at rest, then the properties in the reservoir are equal to the stagnation properties

everywhere in the flow (Fig. 14.4).

Isentropic process

Reservoir

h0

T0

p0

Q = 0

Fig. 14.4 An isentropic process starting from a reservoir

There is another set of conditions of comparable usefulness where the flow is

sonic, Ma = 1.0. These sonic, or critical properties are denoted by asterisks: p*
, r*

, a*
,

and T*
. These properties are attained if the local fluid is imagined to expand or compress

isentropically until it reachers Ma = 1.

We have already discussed that the total enthalpy, hence T0, is conserved so long

the process is adiabatic, irrespective of frictional effects. In contrast, the stagnation

pressure p0 and density r0 decrease if there is friction.

From Eq. (14.58), we note that

V2
 = 2 cp (T0 – T)

or V =

1

2

0

2
( )

1

R
T T

g

g

È ˘-Í ˙-Î ˚
(14.62a)

is the relationship between the fluid velocity and local temperature (T), in an adiabatic

flow. The flow can attain a maximum velocity of

Vmax =

1

202

1

RTg

g

È ˘
Í ˙-Î ˚

(14.62b)

As it has already been stated, the unity Mach number, Ma = 1, condition is of special

significance in compressible flow, and we can now write from Eqs. (14.59), (14.60) and

(14.61),

0

*

T

T
 =

1

2

g+
(14.63a)
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0

*

p

p
 =

11

2

g

gg -+Ê ˆ
Ë ¯

(14.63b)

0

*

r

r
 =

1

11

2

gg -+Ê ˆ
Ë ¯

(14.63c)

For diatomic gases, like air g  = 1.4, the numerical values are

*

0

T

T
 = 0.8333,

*

0

p

p
 = 0.5282, and

*

0

r

r
 = 0.6339

The fluid velocity and acoustic speed are equal at sonic condition and is

V* = a* = [g RT*]1/2 (14.64a)

or V*
 =

1

2

0

2

1
RT

g

g

È ˘
Í ˙+Î ˚

(14.64b)

We shall employ both stagnation conditions and critical conditions as reference

conditions in a variety of one-dimensional compressible flows.

14.6.1 Effect of Area Variation on Flow Properties in Isentropic
Flow

In considering the effect of area variation on flow properties in isentropic flow, we

shall concern ourselves primarily with the velocity and pressure. We shall determine

the effect of change in area A , on the velocity V , and the pressure p.

From Eq. (14.55), we can write

2d

2

p V
d

r

Ê ˆ
+ Á ˜Ë ¯

 = 0

or dp = – rV dV

Dividing by rV 2, we obtain

2

d p

Vr
 = – 

dV

V
(14.65)

A convenient differential form of the continuity equation can be obtained from Eq.

(14.50) as

d A

A
 = – 

d dV

V

r

r
-

Substituting from Eq. (14.65),

d A

A
 =

2

d dp

V

r

rr
-

or
d A

A
 =

2

2

d
1

d /d

p V

pV rr

È ˘
-Í ˙

Î ˚
(14.66)

Invoking the relation (14.47b) for isentropic process in Eq. (14.66), we get
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d A

A
 =

2
2

2 2 2

d d
1 [1 Ma ]

p V p

V a Vr r

È ˘
- = -Í ˙

Î ˚
(14.67)

From Eq. (14.67), we see that for Ma < 1 an area change causes a pressure change of the

same sign, i.e., positive dA  means positive dp for Ma < 1. For Ma > 1, an area change

causes a pressure change of opposite sign.

Again, substituting from Eq. (14.65) into Eq. (14.67), we obtain

d A

A
 = – 

dV

V
[1 – Ma

2
] (14.68)

From Eq. (14.68), we see that Ma < 1 an area change causes a velocity change of

opposite sign, i.e., positive dA  means negative dV  for Ma < 1. For Ma > 1, an area

change causes a velocity change of same sign.

These results are summarised in Fig. 14.5, and the relations (14.67) and (14.68) lead to

the following important conclusions about compressible flows:

(i) At subsonic speeds (Ma < 1) a decrease in area increases the speed of flow. A

subsonic nozzle should have a convergent profile and a subsonic diffuser

should possess a divergent profile. The flow behaviour in the regime of Ma < 1

is therefore qualitatively the same as in incompressible flows.

(ii) In supersonic flows (Ma > 1), the effect of area changes are different. Accord-

ing to Eq. (14.68), a supersonic nozzle must be built with an increasing area in

the flow direction. A supersonic diffuser must be a converging channel. Di-

vergent nozzles are used to produce supersonic flow in missiles and launch

vehicles.

d < 0, d > 0p V

Ma < 1
(Subsonic)

Ma > 1
(Supersonic)

Ma > 1
(Supersonic)

Ma < 1
(Subsonic)

d 0, d 0p > V <

Nozzle

Flow

Flow

Flow

Flow

Diffuser

Fig. 14.5 Shapes of nozzles and diffusers in subsonic and supersonic regimes

Suppose a nozzle is used to obtain a supersonic stream staring from low speeds at the

inlet (Fig. 14.6). Then the Mach number should increase from Ma = 0 near the inlet to

Ma > 1 at the exit. It is clear that the nozzle must converge in the subsonic portion and

diverge in the supersonic portion. Such a nozzle is called a convergent-divergent
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nozzle. A convergent-divergent nozzle is also called a de Laval nozzle, after Carl G.P.

de Laval who first used such a configuration in his steam turbines in the late

nineteenth century. From Fig. 14.6 it is clear that the Mach number must be unity at the

throat, where the area is neither increasing nor decreasing. This is consistent with Eq.

(14.68) which shows that dV can be non-zero at the throat only if Ma = 1. It also

follows that the sonic velocity can be achieved only at the throat of a nozzle or a

diffuser.

Throat

Ma < 1 Ma = 1 Ma > 1

Subsonic Supersonic

Fig. 14.6  A convergent-divergent nozzle

The condition, however, does not restrict that Ma must necessarily be unity at the

throat. According to Eq. (14.68), a situation is possible where Ma π 1 at the throat if dV

= 0 there. For example, the flow in a convergent-divergent duct may be subsonic

everywhere with Ma increasing in the convergent portion and decreasing in the

divergent portion with Ma π 1 at the throat (see Fig. 14.7). The first part of the duct is

acting as a nozzle, whereas the second part is acting as a diffuser. Alternatively, we

may have a convergent-divergent duct in which the flow is supersonic everywhere

with Ma decreasing in the convergent part and increasing in the divergent part and

again Ma π 1 at the throat (see Fig. 14.8).

Ma < 1

Ma

1.0

Ma < 1

Fig. 14.7 Convergent-divergent duct with Ma π 1 at throat
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Ma > 1

Ma

1.0

Ma > 1

Fig. 14.8 Convergent-divergent duct with Ma π 1 at throat

14.6.2 Isentropic Flow in a Converging Nozzle

Let us consider the mass flow rate of an ideal gas through a converging nozzle. If the

flow is isentropic, we can write

&m  = rAV

or
m

A

&

 =
p

RT
. a Ma [invoking Eqs (14.5) and (14.8)]

or
m

A

&

 =
p

RT
RT

g◊ ◊◊◊◊◊Ma

or
m

A

&

 =
p

RT

g
◊  ◊◊◊◊◊ Ma

or
m

A

&

 = 0
0

0 0

1Tp
p

p T T R

g
◊ ◊ ◊ Ma

or
m

A

&

 =

1

1 20 0 0

0

T T p

T T RT

g

g g
-
-Ê ˆ Ê ˆ◊ ◊ ◊Á ˜ Á ˜Ë ¯ Ë ¯ Ma

[invoking Eq. (14.44)]

or
m

A

&

 =

( 1)
–

2( 1)0 0

0

Map T

R TT

g

gg
+
-Ê ˆ◊ Á ˜Ë ¯
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or
m

A

&

 = 0
( 1)

0 2 2( 1)

Ma 1

1
1 Ma

2

p

R T g

g

g

g
+
-

◊ ◊
-È ˘+Í ˙Î ˚

(14.69)

In the expression (14.69), p0, T0, g and R are constant. The discharge per unit

area 
&m

A
 is a function of Ma only. There exists a particular value of Ma for which ( &m /A) is

maximum. Differentiating with respect to Ma and equating it to zero, we get

d( / )

dMa

m A&

 = 0

( 1)
0 2( 1)2

1

1
1 Ma

2

p

R T g

g

g

g
+
-

◊ ◊
-È ˘+Í ˙Î ˚

 + 0

0

Map

R T

g
◊

{ } { }
( 1)

1
2( 1)2( 1) 1 1

1 Ma 2Ma
2( 1) 2 2

g

gg g g

g

- +
-

-
È ˘+ - -Í ˙- +
Í ˙-
Î ˚

 = 0

or 1 – 

{ }
2

2

Ma ( 1)

1
2 1 Ma

2

g

g

+
-

+
 = 0

or Ma2 (g  + 1) = 2 + (g  – 1) Ma2

or Ma = 1

So, discharge is maximum when Ma = 1.

We know that V  = aMa = RTg Ma. By logarithmic differentiation, we get

dV

V
 =

dMa 1 d

Ma 2

T

T
+ (14.70)

We also know that

0

T

T
 =

1
21

1 Ma
2

g --È ˘+Í ˙Î ˚
(14.59 repeated)

By logarithmic differentiation, we get

dT

T
 =

2

2

( 1) Ma dMa
–

( 1) Ma
1 Ma

2

g

g

-
◊

-
+

(14.71)
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From Eqs (14.70) and (14.71), we get

dV

V
= 

2

2

dMa {( 1)/2}Ma
1

( 1)Ma
1 Ma

2

g

g

È ˘
Í ˙-

-Í ˙-Í ˙+
Î ˚

dV

V
= 

2

1 dMa

( 1) Ma
1 Ma

2

g
◊

-
+

(14.72)

From Eqs (14.68) and (14.72) we get

2

d 1

(Ma 1)

A

A -
= 

2

1 dMa

1 Ma
1 Ma

2

g
◊

-
+

dA

A
= 

2(Ma 1) dMa

( 1) Ma
1

2

g

-
◊

-
+

(14.73)

By substituting Ma = 1 in Eq. (14.73), we get dA  = 0 or A  = constant. Some

Ma = 1 can occur only at the throat and nowhere else, and this happens only when the

discharge is maximum. When Ma = 1, the discharge is maximum and the nozzle is said

to be choked. The properties at the throat are termed as critical properties which are

already expressed through Eq. (14.63a), (14.63b) and (14.63c). By substituting Ma = 1

in Eq. (14.69), we get

*

m

A

&

= 0

1
0 2( 1)

1

( 1)

2

p

R T g

g

g

g
+
-

◊ ◊
+È ˘

Í ˙Î ˚

(14.74)

(as we have earlier designated critical or sonic conditions by a superscript asterisk).

Dividing Eq. (14.74) by Eq. (14.69) we obtain

*

A

A
= { }

1

2( 1)21 2 ( 1)
1 Ma

Ma 1 2

g

gg

g

+
--ÈÏ ¸ ˘+Ì ˝Í ˙+Î ˚Ó ˛

(14.75)

From Eq. (14.75) we see that a choice of Ma gives a unique value of A /A*. The

variation of A /A* with Ma is shown in Fig. 14.9. Note that the curve is double valued;

that is, for a given value of A /A * (other than unity), there are two possible values of

Mach number. This signifies the fact that the supersonic nozzle is diverging.

The values of T0/T, p0/p, r0/r and A /A* at a point can be determined from Eqs. T2/

T1 (14.59) – (14.61) and Eq. (14.75), if the local Mach number is known. For g  = 1.4,

these values can be tabulated and the table is known as the Isentropic table. The

sample values of the isentropic table are shown in Table 14.1 (see Babu [3] ).
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0.5

0.5

1.0

1.5

2.0

2.5

3.0

0 1.0 1.5

Ma

A

A*

2.0 2.5 3.0

Fig. 14.9 Variation of A/A* with Ma in isentropic flow for g = 1.4

14.6.3 Pressure Distribution and Choking in a Converging Nozzle

Let us first consider a convergent nozzle as shown in Fig. 14.10(a). Figure 14.10(b)

shows the pressure ratio p/p0 along the length of the nozzle. The inlet conditions of

the gas are at the stagnation state (p0, T0) which are constants. The pressure at the

exit plane of the nozzle is denoted by pE and the back pressure is pB which can be

varied by the adjustment of the valve. At the condition p0 = pE = pB, there shall be no

flow through the nozzle. The pressure is p0 throughout, as shown by condition (i) in

Fig. 14.10(b). As pB is gradually reduced, the flow rate shall increase. The pressure

will decrease in the direction of flow as shown by condition (ii) in Fig. 14.10(b). The

exit plane pressure pE shall remain equal to pB so long as the maximum discharge

condition is not reached. Condition (iii) in Fig. 14.10(b) illustrates the pressure distri-

bution in the maximum discharge situation. When ( &m /A) attains its maximum value,

given by substituting Ma = 1 in Eq. (14.69), pE is equal to p*
. Since the nozzle does not

have a diverging section, further reduction in back pressure pB will not accelerate the

flow to supersonic condition. As a result, the exit pressure pE shall continue to remain

at p*
 even though pB is lowered further. The convergent-nozzle discharge against the

variation of back pressure is shown in Fig. 14.11. As it has been pointed out earlier,

the maximum value of ( &m /A ) at Ma = 1 is stated as the choked flow. With a given

nozzle, the flow rate cannot be increased further. Thus neither the nozzle exit pres-

sure, nor the mass flow rate are affected by lowering pB below p*.
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Valve

pBpEp T0 0,

(a) Compressible flow through a converging nozzle

(i)1.0

(ii)

(iii)

(iv)

p0

p0

p

p*

(b) Pressure distribution along a converging nozzle for different values of back pressure

Fig. 14.10 

m T0

p < pB E

p pB / 00.5282

Ma 1=

p = p*p0A

.

Fig. 14.11 Mass flow rate and the variation of back pressure in a

  converging nozzle

However for pB less than p*
, the flow leaving the nozzle has to expand to match the

lower back pressure as shown by condition (iv) in Fig. 14.10(b). This expansion

process is three-dimensional and the pressure distribution cannot be predicted by a

one-dimensional theory. Experiments reveal that a series of shocks form in the exit

stream, resulting in an increase in entropy.
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14.6.4 Isentropic Flow in a Converging-Diverging Nozzle

Now consider the flow in a convergent-divergent nozzle (Fig. 14.12). The

upstream stagnation conditions are assumed constant; the pressure in the exit plane

of the nozzle is denoted by pE; the nozzle discharges to the back pressure, pB. With

the value initially closed, there is no flow through the nozzle; the pressure is constant

at p0. Opening the valve slightly produces the pressure distribution shown by curve

(i). Completely subsonic flow is discerned. Then pB is lowered in such a way that

sonic condition is reached at the throat (ii). The flow rate becomes maximum for a

given nozzle and the stagnation conditions. On further reduction of the back pres-

sure, the flow upstream of the throat does not respond. However, if the back pressure

is reduced further (cases (iii) and (iv)), the flow initially becomes supersonic in the

diverging section, but then adjusts to the back pressure by means of a normal shock

standing inside the nozzle. In such cases, the position of the shock moves down-

stream as pB is decreased, and for curve (iv) the normal shock stands right at the exit

plane. The flow in the entire divergent portion up to the exit plane is now supersonic.

When the back pressure is reduced even further (v), there is no normal shock any-

where within the nozzle, and the jet pressure adjusts to pB by means of oblique shock

waves outside the exit plane. A converging diverging nozzle is generally intended to

produce supersonic flow near the exit plane. If the back pressure is set at (vi), the flow

will be isentropic throughout the nozzle, and supersonic at nozzle exit. Nozzles oper-

ating at pB = pVI (corresponding to curve (vi) in Fig. 14.12) are said to be at design

conditions. Rocket-propelled vehicles use converging-diverging nozzles to acceler-

ate the exhaust gases to the maximum possible velocity to produce high thrust.

Valve

Normal shock

Oblique shock

pBpE

p0

p/p0

Ma = 1

Shock

(vi)

(i)
(ii)

(iii)

(iv)

(v)

1.0

p/p0

Fig. 14.12 Pressure distribution along a converging-diverging nozzle for
different values of back pressure pB



Compressible Flow 671

Table 14.1 Isentropic Table

Ma 0T

T

0P

P

0r

r *

A

A

0.00 1.00000E+00 1.00000E+00 1.00000E+00 •

0.01 1.00002E+00 1.00007E+00 1.00005E+00 57.87384

0.02 1.00008E+00 1.00028E+00 1.00020E+00 28.94213

0.03 1.00018E+00 1.00063E+00 1.00045E+00 19.30054

0.11 1.00242E+00 1.00850E+00 1.00606E+00 5.29923

0.12 1.00288E+00 1.01012E+00 1.00722E+00 4.86432

0.13 1.00338E+00 1.01188E+00 1.00847E+00 4.49686

0.14 1.00392E+00 1.01379E+00 1.00983E+00 4.18240

0.15 1.00450E+00 1.01584E+00 1.01129E+00 3.91034

0.57 1.06498E+00 1.24651E+00 1.17045E+00 1.22633

0.58 1.06728E+00 1.25596E+00 1.17678E+00 1.21301

0.59 1.06962E+00 1.26562E+00 1.18324E+00 1.20031

0.60 1.07200E+00 1.27550E+00 1.18984E+00 1.18820

1.51 1.45602E+00 3.72465E+00 2.55810E+00 1.18299

1.52 1.46208E+00 3.77919E+00 2.58481E+00 1.18994

1.53 1.46818E+00 3.83467E+00 2.61185E+00 1.19702

1.54 1.47432E+00 3.89109E+00 2.63924E+00 1.20423

Example 14.3

A nozzle is designed to expand air isentropically to atmospheric pressure from a large

tank in which properties are held constant at 5 ºC and 304 kPa (abs). The desired flow

rate is 1 kg/s. Determine the exit area of the nozzle.

Solution

We know that

p

pe

0
= 1

1

2

2
1

+
-F

H
I
K

-
g

g g

Mae

/

Mach number at the exit is given by

Mae = 

0.5( 1) /

02
1

1 e

p

p

g g

g

-È Ï ¸˘Ê ˆÔ Ô-Í ˙Ì ˝Á ˜Ë ¯-Í ˙Ô ÔÎ ˚Ó ˛
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Mae = 1.36

Since Mae  > 1.0, the nozzle is converging-diverging. Again, we know

T

Te

0 = 2( 1)
1 Ma

2
e

g -
+

Te = 0

2
2

278

( 1) 1 0.2(1.36)1 Ma
2

e

T

g
=- ++

 = 203 K

re = 

3101 10

287 203

e

e

p

RT

¥
=

¥
 = 1.73 kg/m

3

Ve = Mae ae = Mae (g  RTe) 
0.5

 = 1.36 (1.4 × 287 × 203)
0.5

= 388 m/s

We also know that &m = re Ve A e; so the exit area A e is

Ae = &m /re Ve = 1.0/1.73 × 388 = 1.49 × 10–3 m2.

Example 14.4

Air at an absolute pressure 60.0 kPa and 27 ºC enters a passage at 486 m/s. The cross

sectional area at the entrance is 0.02 m2. At Section 2, further downstream, the

pressure is 78.8 kPa (abs). Assuming isentropic flow, calculate the Mach number at

Section 2. Also, identify the type of the nozzle.

Solution

For isentropic flow, p01 = p02 = p0 = constant

At Section 1, Ma1 = V 1/a1;

the sonic velocity, a1 = (g RT)0.5 = (1.4 × 287 × 300)0.5

= 347 m/s

So, Ma1 = 486/347 = 1.40

Now, P01 = p1 
/( 1)

2
1

1
1 Ma

2

g gg --Ê ˆ+Ë ¯

= 60(1 + 0.2 (1.40)2)3.5 = 191 kPa

Again, we can write  
p

p

02

2

= 
/( 1)

2
2

1
1 Ma

2

g gg --Ê ˆ+Ë ¯

and p02 = p01
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So, Ma2 = 

0.5( / ( 1))

01

2

2
1

1

p

p

g g

g

-Ï È ˘¸Ê ˆÔ Ô-Í ˙Ì ˝Á ˜Ë ¯- Í ˙Ô ÔÎ ˚Ó ˛

Ma2 = 1.2

Since Ma2 < Ma1 and Ma2 > 1.0, the flow passage from 1 to 2 is a supersonic
diffuser.

Example 14.5

A supersonic diffuser decelerates air isentropically from a Mach number of 3 to a

Mach number of 1.4. If the static pressure at the diffuser inlet is 30.0 kPa (abs),

calculate the static pressure rise in the diffuser and the ratio of inlet to outlet area of

the diffuser.

Solution

For isentropic flow, p01 = p02 = p03

Now,
p

p

0

1

= 
/( 1)

2
1

1
1 Ma

2

g gg --Ê ˆ+Ë ¯

so,
p

p

2

1

= 

/( 1)
2
1

02
/( 1)

0 1 2
2

1
1 Ma

2

1
1 Ma

2

pp

p p

g g

g g

g

g

-

-

-Ê ˆ+Ë ¯
¥ =

-Ê ˆ+Ë ¯

= 
2 3.5

2 3.5

[1 0.2(3.0) ]

[1 0.2(1.4) ]

+
+

 = 11.5

Now, p2 – p1 = 11.5, p1 – p1 = 10.5 × 30.0 kPa = 315 kPa is the static pressure rise in the
diffuser.

Again, from continuity, r1V 1A 1 = r2V 2A 2

or 1

2

A

A
= r2V2/r1V1

We also know that p/rg
= constant and r2/r1 = (p2/p1)

1/g

From the definition of Mach number, we can write Ma = V /a and a = RTg

Now, V2/V1 = Ma2 a2/Ma1 a1 = 

0.5

2 2

1 1

Ma

Ma

T

T

Ê ˆ
Á ˜Ë ¯

Since T0 is constant,
T

T

2

1

= 

2
1

02

20 1
2

1
1 Ma

2
1

1 Ma
2

TT

T T

g

g

-
+

¥ =
-

+
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Finally, we get

1 2 2

2 1 1

A V

A V

r

r
= = 

1/ 2
21/
1

2 2

21 1
2

1
1 Ma

Ma 2
1Ma

1 Ma
2

p

p

g
g

g

-È ˘+Í ˙Ê ˆ Ê ˆ
¥ ¥ Í ˙Á ˜ Á ˜ -Ë ¯ Ë ¯ Í ˙+

Î ˚

= (11.5)0.714 × 

1/ 22

2

1.4 1 0.2 (3.0)

3.0 1 0.2 (1.4)

È ˘+
¥ Í ˙+Î ˚

or A1/A2 = 3.79

So, the area ratio is 3.79.

Example 14.6

Air flows isentropically through a converging nozzle attached to a large tank where

the absolute pressure is 171 kPa and the temperature is 27 ºC. At the inlet section,

the Mach number is 0.2. The nozzle discharges into the atmosphere through an area

0.015 m2. Determine the magnitude and direction of the force that must be applied to

hold the nozzle in place.

Solution

Refer to Fig. 14.13.

T0 = 27 °C

p0 = 171 kPa

M1 = 0.2

x

Rx

pb = 101 kPa

A2
2= 0.015 m

Fig. 14.13 Magnitude and direction of force required to keep the nozzle in place

Ma2 = 

0.5 0 5( 1) / 0.286
0

th

2 2 171
1 1

1 0.4 101

p

p

g g

g

◊-È ˘ È ˘Ê ˆ Ê ˆ- = -Í ˙ Í ˙Á ˜ Ë ¯Ë ¯-Í ˙ Î ˚Î ˚
= 0.901

So, the flow is not choked

T2 = 
2 2

0 2

1
1 Ma 300 /[1 0.2(0.901) ] 258 K

2
T

g -È ˘+ = + =Í ˙Î ˚
V2 = Ma2a2 = Ma2 (g RT2)0.5 = 0.901 (1.4 × 287 × 258)0.5

= 290 m/s
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r2 = 
3

2

2

101 10

287 258

p

RT

¥
=

¥
 = 1.36 kg/m3

&m = r2 V2 A2 = 1.36 × 290 × 0.016 = 5.92 kg/s

T1 = 
2

0 1

1
1 Ma

2
T

g -È ˘+Í ˙Î ˚
 = 300/{1 + 0.2 (0.2)

2
] = 298 K

V1 = Ma1 a1 = Ma1 (g  RT1)
0.5

 = 0.2 (1.4 × 287 × 298)
0.5

= 69.2 m/s

r1 = 
/( 1)

2
0 1

1
1 Ma

2
p

g gg --È ˘+Í ˙Î ˚
 = 171/[1 + 0.2 (0.2)

2
]
3.5

= 166 kPa

r1 = p1/(RT1) = 166 × 103/(287 × 298) = 1.94 kg/m3

A1 = &m /r1 V1 = 5.92/(1.94 × 69.2) = 0.044 m2

Rx = p1 A 1 – p2 A 2 – patm (A 1 – A 2) –  &m (V 2 – V 1)

= p1g A 1 – p2g A 2 – &m  (V 2 – V 1)

= (166 –101) × 103 × 0.044 – 5.92 (290 – 69.2)

Rx = 1560 N (to the left)

Example 14.7

Air flowing isentropically through a converging nozzle discharges to the atmosphere.

At any section where the absolute pressure is 179 kPa, the temperature is given by 39 ºC

and the air velocity is 177 m/s. Determine the nozzle throat pressure.

Solution

Refer to Fig. 14.14.

p pb = = 101 kPaatm

T1 = 39 C∞
p1 = 179 kPa

V1 = 177 m/sec

Fig. 14.14 Pressure, temperature and velocity are specified at any section

 of a converging nozzle
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The nozzle will be choked (Math = 1.0) if pb/p0 = 0.528

Ma1 = V 1/a1; a1 = g RT1  = (1.4 ¥ 287 ¥ 312)
0.5

= 354 m/s

Ma1 = V1/a1 = 177/354 = 0.5

p

p

0

1
= 

/( 1)
2
1

1
1 Ma

2

g gg --Ê ˆ+Ë ¯

p0  = 179 (1 + 0.2 (0.5)2 )3.5

or p0 = 212 kPa

So, pb /p0 = 101/212 = 0.476 which is less than 0.528

For  Math = 1.0, pth/p0 = 0.528

Pth = 0.528 × p0 = 0.528 × 212 = 112 kPa

Example 14.8

Air flows steadily and isentropically in a converging-diverging nozzle. At the throat,

the air is at 140 kPa (abs), and at 60 ºC. The throat cross-sectional area is 0.05 m2. At

a certain section in the diverging part of the nozzle, the pressure is 70.0 kPa (abs).

Calculate the velocity and area of the this section.

Solution

Refer to Fig. 14.15.

Tth = 60 °C
p1 = 70.0 kPa

Pth = 140 kPa

Ath = 0.05 m2

Fig. 14.15 Flow in a converging-diverging nozzle and conditions at a

diverging section

Since p1 < pth, flow downstream of throat is supersonic and Math = 1.0

p0 = pth 

/( 1)
2
th

1
1 Ma

2

g gg --È ˘+Í ˙Î ˚

= 140 [1 + 0.2(1.0)2]3.5

= 265 kPa
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T0 = Tth 
2
th

1
1 Ma

2

g -È ˘+Í ˙Î ˚
 = 333 [1 + 0.2 (1.0)] = 400 K

V th = Math ath = Math (r RT)0.5

= 1.0 (1.4 × 287 × 333)
0.5

 = 366 m/s

Ma1 = 

0.5( 1) /

0

1

2
1

1

p

p

g g

g

-È ˘Ê ˆ
-Í ˙Á ˜Ë ¯-Í ˙Î ˚

= 

0.50.286
2 265

1
0.4 70

È ˘Ê ˆ -Í ˙Ë ¯Î ˚
 = 1.52

T1 = 0
2

2
1

400

1 1 0.2(1.52)1 Ma
2

T

g
=

- ++
 = 274 K

V1 = Ma1 a1 = 1.52 (91.4 × 287 × 274)0.5 = 504 m/s

&m = rth V th A th = r1 V 1 A1

A1 = 

1

th th th th
th th

1 1 1 1

V p V
A A

V p V

gr

r

Ê ˆ
◊ ◊ = ◊ ◊Á ˜Ë ¯

A1 = 
0.714

140 366
0.05

70 504

Ê ˆ ¥ ¥Ë ¯ = 0.0596 m2

Example 14.9

Air flows steadily and adiabatically from a large tank through a converging nozzle

connected to a constant area duct. The nozzle itself may be considered frictionless.

Air in the tank is at p = 1.00 MPa (abs), T = 125 ºC. The absolute pressure at the nozzle

exit (duct inlet) is 784 kPa. Determine the pressure at the end of the duct length L, if the

temperature there is 65 °C, and the entropy increases.

Solution

Refer to Fig. 14.16.

T0 = 125 C∞ T2 = 65 C∞

p0 = 1.05 MPa

p1 = 784 kPa

Nozzle is
frictionless

Fig. 14.16 Flow from a tank through a nozzle connected to a duct
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Ma1 = 

0.5( 1) / 0.5

0

1 1

2 2 398
1 1

1 0.4

p

p T

g g

g

-È Ï ¸˘Ê ˆ È Ê ˆ ˘Ô Ô- = -Í ˙Ì ˝Á ˜ Á ˜Í ˙Ë ¯ Ë ¯- Î ˚Í ˙Ô ÔÎ ˚Ó ˛

= 0.60

T1 = 0

2
2
1

398

1 1 0.2 (0.60)1 Ma
2

T

g
=- ++

 = 317 K, T2 = 338 K

Again, T0 = constant and Ma2 = 
2

1
10

2

0 5

g -
F
HG

I
KJ

-
L

N
M

O

Q
P

T

T

.

 = 0.942

V2 = Ma2 a2 = 0.942 (1.4 × 287 × 338)
0.5

 = 347 m/s

V1 = Ma1 a1 = 0.60 (1.4 × 287 × 371)
0.5

 = 232 m/s

r1 = p1/(RT1) = 784 × 10
3
/(287 × 371) = 7.36 kg/m

3

r2 = 
V

V

1

2

r1 = 4.92 kg/m3

p2 = r2 RT2 = 4.92 × 287 × 338 = 477 kPa

Tds = dh – v dp = cp dT – 
1

r
dp

s2 – s1 = 
2

1

d

s

p

s

s c=Ú ln 
T

T

2

1

– R ln 
p

p

2

1

= 10 ln (338/371) – 287 ln(477/784) = 49.5 J/kg K

14.7   NORMAL SHOCKS

Shock waves are highly localised irreversibilities in the flow. Within the distance of a

mean free path, the flow passes from a supersonic to a subsonic state, the velocity

decreases suddenly and the pressure rises sharply. To be more specific, a shock is said

to have occurred if there is an abrupt reduction of velocity in the downstream in course

of a supersonic flow in a passage or around a body. Normal shocks are substantially

perpendicular to the flow and oblique shocks are inclined at other angles. Shock

formation is possible for confined flows as well as for external flows. Normal shock and

oblique shock may mutually interact to make another shock pattern. Different type of

shocks are presented in Fig. 14.17.
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Fig. 14.17 Different type of shocks
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Fig. 14.18 One-dimensional normal shock

Figure 14.18 shows a control surface that includes a normal shock. The fluid is

assumed to be in thermodynamic equilibrium upstream and downstream of the shock,

the properties of which are designated by the subscripts 1 and 2, respectively.

Continuity equation can be written as



680 Introduction to Fluid Mechanics and Fluid Machines

m

A

&

= r1V 1 = r2V 2 = G (14.76)

where G is the mass velocity kg/m
2
s.

From momentum equation, one can write

p1 – p2 = 
m

A

&

 (V 2 – V 1) = r2 V 2 
2 – r1 V 2 2

or p1 + r1 V 21 = p2 + r2 V
2
2 (14.77a)

or F1 = F2 (14.77b)

where F = p + rV 2 can be termed as impulse function.

The energy equation may be written as

h1 + 
2

1

2

V
= h2 + 

2
2

2

V
 = h01 = h02 = h0 (14.78)

where h0 is stagnation enthalpy.

From the second law of thermodynamics, it may be written as

s2 – s1 ≥ 0 (14.79)

But Eq. (14.79) is of little help in calculating actual entropy change across the shock.

To calculate the entropy change, we have

Tds = dh – vdp (14.33 repeated)

For an ideal gas we can write

ds = cp 
d dT p

R
T p

-

For constant specific heat, this equation can be integrated to give

s2 – s1 = cp ln 
2

1

T

T
 – R ln 2

1

p

p
(14.80)

For an ideal gas the equation of state can be written as

p = rRT (14.8 repeated)

Equations (14.76), (14.77a), (14.78), (14.80) and (14.8) are the governing equations for

the flow of an ideal gas through normal shock. If all the properties at state ‘1’ (up-

stream of the shock) are known, then we have six unknowns (T2, p2, r2, V 2, h2, s2) in

these five equations. However, we have known relationship between h and T [Eq.

(14.17)] for an ideal gas which is given by dh = cp dT. For an ideal gas with constant

specific heats,

Dh = h2 – h1 = cp (T2 – T1) (14.81)

Thus, we have the situation of six equations and six unknowns.



Compressible Flow 681

If all the conditions at state ‘1’ (immediately upstream of the shock) are known,

how many possible states ‘2’ (immediate downstream of the shock) are there? The

mathematical answer indicates that there is a unique state ‘2’ for a given state ‘1’.

Before describing the physical picture and precise location of these two states let us

introduce Fanno line and Rayleigh line flows.

14.7.1 Fanno Line Flows

If we consider a problem of frictional adiabatic flow through a duct, the governing Eqs

(14.76), (14.78), (14.80) (14.8) and (14.81) are valid between any two points ‘1’ and ‘2’.

Equation (14.77a) requires to be modified in order to take into account the frictional

force, Rx , of the duct wall on the flow and we obtain

Rx + p1A  – p2A = 
&mV 2 – 

&mV 1 (14.82)

So, for a frictional flow, we thus have a situation of six equations and seven

unknowns. If all the conditions of ‘1’ are known, how many possible states ‘2’ are

there? Mathematically, we get number of possible states ‘2’. With an infinite number

of possible states ‘2’ for a given state ‘1’, what do we observe if all possible states ‘2’

are plotted on a T-s diagram? The locus of all possible states ‘2’ reachable from state

‘1’ is a continuous curve passing through state ‘1’. However, the question is how to

determine this curve? Perhaps the simplest way is to assume different values of T2.

For an assumed value of T2, the corresponding values of all other properties at ‘2’ and

Rx can be determined.

 

s

bT

Ma < 1

1¢

1

Ma > 1

Ma = 1

Fig. 14.19 Fanno line representation of constant area adiabatic flow

The locus of all possible downstream states is called the Fanno line and is shown

in Fig. 14.19. Point ‘b’ corresponds to maximum entropy where the flow is sonic. This

point splits the Fanno line into subsonic (upper)and supersonic (lower) portions. If
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the inlet flow is supersonic and corresponds to point 1 in Fig. 14.15, then friction

causes the downstream flow to move closer to point ‘b’ with a consequent decrease

of Mach number towards unity. Each point on the curve between point 1 and ‘b’

corresponds to a certain duct length L. As L is made larger, the conditions at the exit

move closer to point ‘b’. Finally, for a certain value of L, the flow becomes sonic. Any

further increase in L is not possible without a drastic revision of the inlet conditions.

Consider the alternative case where the inlet flow is subsonic, say, given the point 1¢
in Fig. 14.19. As L increases, the exit conditions move closer to point ‘b’. If L is

increased to a sufficiently large value, then point ‘b’ is reached and the flow at the exit

becomes sonic. The flow is again choked and any further increase in L is not possible

without an adjustment of the inlet conditions.

14.7.2 Rayleigh Line Flows

If we consider the effects of heat transfer on a frictionless compressible flow through

a duct, the governing Eq. (14.76), (14.77a), (14.80), (14.8) and (14.81) are valid between

any two points ‘1’ and ‘2’. Equation (14.78) requires to be modified in order to account

for the heat transferred to the flowing fluid per unit mass, dQ, and we obtain

dQ = h02 – h01 (14.83)

So, for frictionless flow of an ideal gas in a constant area duct with heat transfer, we

have again a situation of six equations and seven unknowns. If all conditions at state

‘1’ are known, how many possible states ‘2’ are there? Mathematically, there exists

infinite number of possible states ‘2’. With an infinite number of possible states ‘2’

for a given state ‘1’, what do we observe if all possible states ‘2’ are plotted on a T-s

diagram? The locus of all possible states ‘2’ reachable from state ‘1’ is a continuous

curve passing through state ‘1’. Again, the question arises as to how to determine

this curve? The simplest way to go about this problem is to assume different values

of T2. For an assumed value of T2, the corresponding values of all other properties at

‘2’ and dQ can be determined. The results of these calculations are shown on the T-s

plane in Fig. 14.20. The curve in Fig. 14.20 is called the Rayleigh line.

At the point of maximum temperature (point ‘c’ in Fig. 14.20), the value of Mach

number for an ideal gas is 1/ g . At the point of maximum entropy, the Mach number

is unity. On the upper branch of the curve, the flow is always subsonic and it in-

creases monotonically as we proceed to the right along the curve. At every point on

the lower branch of the curve, the flow is supersonic, and it decreases monotonically

as we move to the right along the curve. Irrespective of the initial Mach number, with

heat addition, the flow state proceeds to the right and with heat rejection, the flow

state proceeds to the left along the Rayleigh line. For example, let us consider a flow

which is at an initial state given by 1 on the Rayleigh line in fig. 14.20. If heat is added

to the flow, the conditions in the downstream region 2 will move close to point “b”.

The velocity reduces due to increase in pressure and density, and Ma approaches

unity. If dQ is increased to a sufficiently high value, then point ‘b’ will be reached and

flow in region 2 will be sonic. The flow is again choked, and any further increase in dQ

is not possible without an adjustment of the initial condition. The flow cannot be-

come subsonic by any further increase in dQ.
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Fig. 14.20 Rayleigh line representation of frictionless flow in a constant area

duct with heat transfer

14.7.3 Physical Picture of Flow through a Normal Shock

It is possible to obtain physical picture of flow through a normal shock by employing

some of the ideas of Fanno line and Rayleigh line flows. Flow through a normal shock

must satisfy Eqs (14.76), (14.77a), (14.78), (14.80), (14.8) and 14.81). Since all the con-

dition of state ‘1’ are known, there is no difficulty in locating state ‘1’ on T-s diagram.

In order to draw a Fanno line curve through state ‘1’, we require a locus of mathemati-

cal states that satisfy Eqs (14.76), (14.78), (14.80), (14.8) and (14.81). The Fanno line

curve does not satisfy Eq. (14.77a). A Rayleigh line curve through state ‘1’ gives a

locus of mathematical states that satisfy Eqs (14.76), (14.77a), (14.80), (14.8) and

(14.81). The Rayleigh line does not satisfy Eq.  (14.78). Both the curves on a same T-s

diagram are shown in Fig. 14.21. As we have already pointed out, the normal shock

should satisfy all the six equations stated above. At the same time, for a given state

‘1’, the end state ‘2’ of the normal shock must lie on both the Fanno line and Rayleigh

line passing through state ‘1’. Hence, the intersection of the two lines at state ‘2’

represents the conditions downstream from the shock. In Fig. 14.21, the flow through

the shock is indicated as transition from state ‘1’ to state ‘2’. This is also consistent

with directional principle indicated by the second law of thermodynamics, i.e. s2 > s1.

From Fig. 14.21, it is also evident that the flow through a normal shock signifies a

change of speed from supersonic to subsonic. Normal shock is possible only in a flow

which is initially supersonic.
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Fig. 14.21 Intersection of Fanno line and Rayleigh line and the solution for

normal shock condition

14.7.4 Calculation of Flow Properties Across a Normal Shock

The easiest way to analyse a normal shock is to consider a control surface around the

wave as shown in Fig. 14.18. The continuity equation (14.76), the momentum equation

(14.77) and the energy equation (14.78) have already been discussed earlier. The

energy equation can be simplified for an ideal gas as

T01 = T02 (14.84)

By making use of the equation for the speed of sound (14.49) and the equation of

state for ideal gas (14.8), the continuity equation can be rewritten to include the

influence of Mach number as

p

RT

1

1

Ma1 1RTg = 2

2

p

RT
Ma2 2RTg (14.85)

The Mach number can be introduced in momentum equation in the following way:

r2 V
2
2 – r1 V 2

1 = p1 – p2

p1 + 1

1

p

RT
 V 2

1 = p2 + 22
2

2

p
V

RT

p1 (1 + g Ma2
1) = p2 (1 + g Ma2

2) (14.86)
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Rearranging this equation for the static pressure ratio across the shock wave, we get

2

1

p

p
= 

2
1

2
2

(1 Ma )

(1 Ma )

g

g

+
+

(14.87)

As we have already seen that the Mach number of a normal shock wave is always

greater than unity in the upstream and less than unity in the downstream, the static

pressure always increases across the shock wave.

The energy equation can be written in terms of the temperature and Mach number

using the stagnation temperature relationship (14.84) as

2

1

T

T
= 

2
1

2
2

{1 [ 1) / 2]Ma

{1 [ 1)/2]Ma

g

g

+ -
+ -

(14.88)

Substituting Eqs (14.87) and (14.88) into Eq. (14.85) yields the following

relationship for the Mach numbers upstream and downstream of a normal shock

wave:

1/ 2
21
12

1

Ma 1
1 Ma

21 Ma

g

g

-Ê ˆ+Ë ¯+
= 

1/ 2
22
22

2

Ma 1
1 Ma

21 Ma

g

g

-Ê ˆ+Ë ¯+
(14.89)

Then, solving this equation for Ma2 as a function of Ma1, we obtain two

solutions. One solution is trivial, Ma1 = Ma2, which signifies no shock across the

control volume. The other solution is

Ma 2
2 = 

2
1

2
1

( 1) Ma 2

2 Ma ( 1)

g

g g

- +
- -

(14.90)

Ma1 = 1 in Eq. (14.90) results in Ma2 = 1. Equations (14.87) and (14.88) also show that

there would be no pressure or temperature increase across the shock. In fact, the

shock wave corresponding to Ma1 = 1 is the sound wave across which, by definition,

pressure and temperature changes are infinitesimal. Therefore, it can be said that the

sound wave represents a degenerated normal shock wave.

14.7.5 Rankine–Hugoniot Relation

Equation (14.87) describes the static pressure ratio across the normal shock. On

substituting for Ma2 from Eq. (14.90), we get

2

1

p

p
 =

2
12 Ma 1

1 1

g g

g g

-
-

+ +
(14.91)

The pressure ratio tends to infinity with the rising value of upstream Mach number.

Eq. (14.88) describes the temperature ratio across the normal shock. Substitution of

Ma2 from from Eq. (14.90), we get

2

1

T

T
 =

( )2 2
1 1

2 2
1

2 ( 1) Ma 2 Ma 1

( 1) Ma

g g g

g

È ˘ È ˘+ - - -Î ˚ Î ˚
+

(14.92)

The limiting value of T2/T1, as Ma1 Æ • is
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2

1

T

T
 =

( ) ( ) ( )
( )1

2 2
1 1

2Ma

2 / Ma 1 2 Ma 1
lim

1

g g g

gÆ•

È ˘ È ˘+ - - -Î ˚ Î ˚
+

or 2

1

T

T
Æ •

The ratio of densities after and before the shock is obtained by combining Eqs. (14.91)

and (14.92)

2

1

r

r
 = 2 1

1 2

p T

p T

Ê ˆ Ê ˆ
Á ˜ Á ˜Ë ¯ Ë ¯

or 2

1

r

r
 =

( )
( )

2
1

2
1

1 Ma

2 1 Ma

g

g

+
+ -

(14.93)

As, Ma1 Æ •, the limiting value of the density ratio is

1

2

Ma 1

lim
r

rÆ•

Ê ˆ
Á ˜Ë ¯

 =
( )

( )1Ma

2
1

1
lim

2
1

Ma

g

g
Æ•

+
È ˘

+ -Í ˙
Î ˚

=
( )
( )

1

1

g

g

+
-

 = 6 for g  = 1.4

Therefore even though the pressure and temperature ratios tend to infinity, the

density ratio remains finite for increasing value of upstream Mach number. The ratios

of pressures and densities on the downstream and upstream of a normal shock are

plotted in Fig. 14.22 and the plot is known as Rankine–Hugoniot curve.

14.7.6 Strength of a Shock

The strength of a shock may be defined as the rise in pressure across the shock as

compared to the upstream pressure. Thus,

S =
2 1 2

1 1

1
p p p

p p

-
= -

Invoking Eq. (14.91), we get,

S =
( ) ( )2

12 Ma 1 1

1

g g g

g

- - - +
+

or S =  
( )2

12 Ma 1

1

g

g

-

+
(14.94)

The interpretation of Eq. (14.94) is as the following. A shock wave has vanishing

strength as the upstream Mach number is close to unity The phenomenon is reduced

to isentropic expansion as illustrated in Fig. 14.22. The pressure density ratios of a
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shock wave (at Ma1 ~ 1) coincide with those of an isentropic flow. In other words, the

weak shock waves are acoustic waves.

1 2 3 4 5 6
1

5

10

50

100

Isentropic

Rankine–Hugoniot

relation

p2
p1

r2
r1

•

Fig. 14.22 Rankine�Hugoniot curve and isentropic expansion (g = 1.4)

14.8  OBLIQUE SHOCK

The discontinuities in supersonic flows do not always exist as normal to the flow

direction. There are oblique shocks which are inclined with respect to the flow direc-

tion. Let us refer to the shock structure on an obstacle, as depicted qualitatively in

Fig.14.23. The segment of the shock immediately in front of the body behaves like a

normal shock. Oblique shock is formed as a consequence of the bending of the shock

in the free-stream direction. Sometimes in a supersonic flow through a duct, viscous

effects cause the shock to be oblique near the walls, the shock being normal only in
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the core region. The shock is also oblique when a supersonic flow is made to change

direction near a sharp corner.

Normal
shock

Oblique
shock

Mach wave

Fig. 14.23 Normal and oblique shock in front of an obstacle

The same relationships derived earlier for the normal shock are valid for the veloc-

ity components normal to the oblique shock. The oblique shock continues to bend in

the downstream direction until the Mach number of the velocity component normal to

the wave is unity. At that instant, the oblique shock degenerates into a so-called

Mach wave across which changes in flow properties are infinitesimal.

Let us consider a two-dimensional oblique shock as shown in Fig. 14.24.

Shock wave

v

v

V2

V1

p1

a

q

b

p2

u2u1

Fig. 14.24 Two-dimensional oblique shock

In analysing flow through such a shock, it may be considered as a normal shock on

which a velocity v (parallel to the shock) is superimposed. The change across shock

front is determined in the same way as for the normal shock. The equations for mass,

momentum and energy conservation are, respectively,
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r1u1 = r2u2 (14.95)

r1u1 (u1 – u2) = p2 – p1 (14.96)

2
1 1

11 2

p Vg

g r
◊ +

-
= 

2
2 2

21 2

p Vg

g r
◊ +

-

or
2
1 1

12 1

u pg

g r
+ ◊

-
= 

2
2 2

22 1

u pg

g r
+ ◊

-
(14.97)

These equations are analogous to corresponding equations for normal shock. In

addition to these, we have

1

1

u

a
= Ma1 sin a and 2

2

u

a
 = Ma2 sin b

Then modifying normal shock relations by writing Ma1 sin a and Ma2 sin b in place

of Ma1 and Ma2, we obtain

2

1

p

p
= 

2 2
12 Ma sin 1

1

g a g

g

- +
+

(14.98)

2 1

1 2

u

u

r

r
= = 

2 2
1

tan 1 2

tan 1 ( 1) Ma sin

b g

a g g a

-
= +

+ +
(14.99)

Ma2
2 sin2 b = 

2 2
1

2

2 ( 1) Ma sin

1 tan (tan / tan )

g a

a b a

+ -
+

(14.100)

Note that although Ma2 sin b < 1, Ma2 may be greater than 1. So the flow behind an

oblique shock may be supersonic although the normal component of velocity is

subsonic. In order to obtain the angle of deflection of flow passing through an

oblique shock, we use the relation

tan q = tan (a – b) = 
tan tan

1 tan tan

a b

a b

-
+

= 
2

tan (tan / tan ) tan

1 tan (tan / tan )

a b a a

a b a

-
+

Having substituted (tan b /tan a) from Eq. (14.99), finally we get the relation

tan q = 
2
1

2
1

Ma sin 2 2 cot

Ma ( cos 2 ) 2

a a

g a

-
+ +

(14.101)

Sometimes, a design is done in such a way that an oblique shock is allowed instead

of a normal shock. The losses for the case of oblique shock are much less than those

of normal shock. This is the reason for making the nose angle of the fuselage of a

supersonic aircraft small.
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Example 14.10

A normal shock wave takes place during the flow of air at a Mach number of 1.8. The

static pressure and temperature of the air upstream of the shock wave are 100 kPa

(abs) and 15 ºC. Determine the Mach number, pressure and temperature downstream

of the shock.

Solution

Making use of Eq. (14.90), the Mach number downstream of the shock can be

calculated as

Ma2
2 = 

2

2

(0.4) (1.8) 2

(2.8) (1.8) 0.4

+
-

 = 0.38; or Ma2 = 0.616

Equations (14.87) and (14.88) provide the downstream pressure and temperature.

p2 = p1 
2 2
1

2 2
2

1 Ma 1 (1.4) (1.8)
100

1 Ma 1 (1.4) (0.616)

g

g

Ê ˆ Ê ˆ+ +
= Á ˜Á ˜ Ë ¯Ë ¯+ +

 = 361 kPa

T2 = T1 
2
1

2
2

1 [( 1)/2] Ma 1 (0.2)(3.24)
288

1 (0.2)(0.38)1 [ 1)/2] Ma

g

g

Ê ˆ+ - +Ê ˆ= Á ˜Á ˜ Ë ¯+Ë ¯+ -
= 288

= 441 K

SUMMARY

∑ Fluid density varies significantly due to a large Mach number (Ma = V /a)

flow. This leads to a situation where continuity and momentum equations

must be coupled to the energy equation and the equation of state to solve

for the four unknowns, namely, p, r, T and V .

∑ The stagnation enthalpy and hence, T0 are conserved in isentropic flows.

The effect of area variation on flow properties in an isentropic flow is of

great significance. This reveals the phenomenon of choking (maximum

mass flow) at the sonic velocity in the throat of a nozzle. At choked condi-

tion, the ratio of the throat pressure to the stagnation pressure is constant

and it is equal to 0.528 for g  = 1.4. A nozzle is basically a converging or

converging-diverging duct where the kinetic energy keeps increasing at

the expense of static pressure. A diffuser has a reversed geometry where

pressure recovery takes place at the expense of kinetic energy. At super-

sonic velocities, the normal-shock wave appears across which the gas

discontinuously reverts to the subsonic conditions.

∑ In order to understand the effect of non-isentropic flow conditions, an

understanding of constant area duct flow with friction and heat transfer is

necessary. These are known as Fanno line flows and Rayleigh line flows,

both of which entail choking of the exit flow. The conditions before and

after a normal shock are defined by the points of intersection of Fanno and

Rayleigh lines on a T-s diagram.
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∑ If a supersonic flow is made to change its direction, the oblique shock is

evolved. The oblique shock continues to bend in the downstream direc-

tion until the Mach number of the velocity component normal to the wave

is unity.
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EXERCISES

14.1 Choose the correct answer:

(i) Select the expression that does not give the speed of a sound wave (g =

cp/cv)

(a) g rp/ (b) g r / p (c) ∂ ∂p/ r (d) g RT

(ii) Shock waves are highly localised irreversibilities in the flow. Within the

distance of a mean free path, the flow passes from a

(a) supersonic to a subsonic state

(b) subsonic to a supersonic state

(c) subsonic state to a sonic state

(d) supersonic to a hypersonic state

(iii) The compressible flow upstream of a shock is always

(a) supersonic (b) subsonic

(c) sonic (d) none of these

(iv) Fluid is flowing through a duct with a Mach number equal to 1.2. An

increase in cross-sectional area in the downstream will cause an

(a) decrease in velocity (b) increase in velocity

(c) increase in static pressure (d) choked flow situation

(v) In a steady, adiabatic flow (it is not known whether reversible or not) of a

compressible fluid

(a) the stagnation temperature may vary throughout the flow field

(b) the stagnation pressure and stagnation density may change

(c) the stagnation temperature and stagnation density remain constant.

14.2 An airplane is capable of flying with a Mach number of 0.8. What can be the

maximum speed of the airplane (i) at the sea level where temperature is 15 ºC,

and (ii) at the high altitude where the temperature is – 55 ºC?

Ans. ((i) 272.13 m/s (ii) 236.76 m/s)
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14.3 Air is at rest (p = 101 kPa, T = 288 K) in a chamber. It is expanded isentropically.

What is the Mach number when the velocity becomes 200 m/s? What is the

velocity when the speed becomes sonic? Also find out the maximum attain-

able speed. Ans. (0.587, 340 m/s, 760 m/s)

14.4 Oxygen flow from a reservoir in which the temperature is at 200 ºC and the

pressure is at 300 kPa (abs). Assuming isentropic flow, calculate the velocity,

pressure and temperature where the Mach number is 0.8. For oxygen, g  = 1.4,

R = 260 J/kg K. Ans. (312.5 m/s, 196.8 kPa, 419.3 K)

14.5 One problem in creating high Mach number flows is condensation of the

oxygen component in air when the temperature reaches 50 K. If the tempera-

ture of a reservoir is 300 K and the flow is isentropic, at what Mach number will

condensation of oxygen take place? Ans. (Ma = 5.0)

14.6 A venturimeter with throat diameter 20 mm is installed in a pipe line of 60 mm

to measure air flow rate. The inlet side pressure and temperature are 400 kPa

(abs) and 298 K. The throat pressure is 300 kPa (abs). The flow in the

venturimeter is considered frictionless and without heat transfer. Estimate the

mass flow rate of air.

14.7 Air flows steadily and isentropically into an aircraft inlet at a rate of 100 kg/s.

At a section where the area is 0.464 m2, the Mach number, temperature and

absolute pressure are found to be 3, – 60 ºC and 15.0 kPa. Determine the

velocity and cross-sectional area downstream where T = 138 ºC. Sketch the

flow passage.

Ans. (V2 = 610 m/s, A2 = 0.129 m2 )

14.8 Air flows steadily and isentropically through a passage. At Section 1 where

the cross-sectional area is 0.02 m2, the air is at 40.0 kPa (abs), 60 ºC, and the

Mach number is 2.0. At a section 2 downstream, the velocity is 519 m/s.

Calculate the Mach number at Section 2. Sketch the shape of the passage

between Sections 1 and 2.

Ans. (Ma2 = 1.2)

14.9 Air flows from a large tank (p = 650 kPa (abs), T = 550ºC) through a converging

nozzle, with a throat area of 600 mm2, and discharges to the atmosphere.

Determine the rate of mass flow under isentropic condition in the nozzle.

Ans. (0.548 kg/s)

14.10 Air enters a converging-diverging nozzle with negligible velocity at an abso-

lute pressure of 1.0 MPa and a temperature of 60 ºC. If the flow is isentropic

and the exit temperature is – 11 ºC, what is the Mach number at the exit?

Ans. (1.16)

14.11 Air is to be expanded through a converging-diverging nozzle by a frictionless

adiabatic process from a pressure of 1.10 MPa (abs) and a temperature of 115 ºC

to a pressure of 141 kPa (abs). Determine the throat and exit areas for a well-

designed shockless nozzle if the mass flow rate is 2 kg/s.

Ans. (8.86 × 10–4 m2, 1.5 × 10–3 m2)

14.12 Air, at a stagnation pressure of 7.2 MPa (abs) and a stagnation temperature of

1100 K, flows isentropically through a converging-diverging nozzle having a

throat area of 0.01 m2. Determine the velocity at the downstream section where

the Mach number is 4.0. Also find out the mass flow rate.

Ans. (1300 m/s, 87.4 kg/s)
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14.13 A normal shock wave exists in a 500 m/s stream of nitrogen with a static

temperature of – 40 ºC and static pressure of 70 kPa. Calculate the Mach

number, pressure, and temperature downstream of the wave and entropy in-

crease across the wave. For nitrogen, g  = 1.4, R = 297 J/kg K.

Ans. (Ma2 = 0.665, p2 = 200 kPa, T2 = 325 K, Ds = 34.1 J/kg K)



15.1  INTRODUCTION

A fluid machine is a device which converts the energy stored by a fluid into

mechanical energy or vice versa. The energy stored by a fluid mass appears in the

form of potential, kinetic and intermolecular energy. Mechanical energy, on the

other hand, is usually transmitted by a rotating shaft. Machines using liquid (mainly

water, for almost all practical purposes) are termed as hydraulic machines. In this

chapter we shall discuss, in general, the basic fluid mechanical principles governing

energy transfer in a fluid machine and also a brief description of the different kinds

of hydraulic machines along with their performances. Discussion on machines using

air or other gases is beyond the scope of this chapter.

15.2  CLASSIFICATION OF FLUID MACHINES

Fluid machines may be classified under the following different categories.

15.2.1 Classification based on Direction of Energy Conversion

A device in which the kinetic, potential or intermolecular energy held by the fluid is

converted in the form of mechanical energy by a rotating member is known as a

turbine. The machines, on the other hand, where the mechanical energy from

moving parts is transferred to a fluid to increase its stored energy by increasing

either its pressure or velocity are known as pumps, compressors, fans or blowers.

15.2.2 Classification based on Principle of Operation

The machines whose functioning depends essentially on the change of volume of a

certain amount of fluid within the machine are known as positive displacement

machines. The word positive displacement comes from the fact that there is a

physical displacement of the boundary of a certain fluid mass as a closed system.

This principle is utilised in practice by the reciprocating motion of a piston within a

cylinder while entrapping a certain amount of fluid in it. Therefore, the word

‘reciprocating’ is commonly used with the name of machines of this kind. A

machine producing mechanical energy is known as a reciprocating engine while a

15

PRINCIPLES OF

FLUID MACHINES
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machine developing energy of the fluid from mechanical energy is known as a

reciprocating pump or a reciprocating compressor.

The machines, whose functioning basically depends on the principle of fluid

dynamics, are known as rotodynamic machines. They are distinguished from

positive displacement machines in requiring relative motion between the fluid and

the moving part of the machine. The rotating element of the machine usually

consisting of a number of vanes or blades, is known as the rotor or the impeller

while the fixed part is known as the stator.

For turbines, the work is done by the fluid on the rotor, while, in case of pumps,

compressors, fans or blowers, the work is done by the rotor on the fluid element.

Depending upon the main direction of the fluid path in the rotor, the machine is

termed as a radial flow or an axial flow machine. In a radial flow machine, the main

direction of flow in the rotor is radial while in an axial flow machine, it is axial. For

radial flow turbines, the flow is towards the centre of the rotor, while, for pumps and

compressors, the flow is away from the centre. Therefore, radial flow turbines are

sometimes referred to as radially inward flow machines and radial flow pumps as

radially outward flow machines. Examples of such machines are the Francis turbines

and the centrifugal pump or compressors. Examples of axial flow machines are

Kaplan turbines and axial flow compressors. If the flow is partly radial and partly

axial, the term ‘mixed flow machine’ is used.

15.2.3 Classification based on Fluid Used

Fluid machines use either liquid or gas as the working fluid depending upon the

purpose. A machine transferring mechanical energy of the rotor to the energy of

fluid is termed as a pump when it uses liquid, and is termed as a compressor or a fan

or a blower, when it uses gas. A compressor is a machine where the main objective

is to increase the static pressure of a gas. Therefore, the mechanical energy held by

the fluid is mainly in the form of pressure energy. Fans or blowers, on the other

hand, mainly cause a high flow of gas, and hence utilise the mechanical energy of

the rotor to increase mostly the kinetic energy of the fluid. In these machines, the

change in static pressure is quite small.

For all practical purposes, the liquid used by the turbines producing power is

water, and therefore, they are termed as water turbines or hydraulic turbines.

Turbines handling gases in practical fields are usually referred to as steam turbines,

gas turbines, or air turbines depending upon whether they use steam, gas (a mixture

of air and products of burnt fuel in the air) or air.

15.3  ROTODYNAMIC MACHINES

In this section, we shall discuss the basic principle of rotodynamic machines and the

performance of different kinds of those machines. The important element of a

rotodynamic machine, in general, is a rotor consisting of a number of vanes or

blades. There always exists a relative motion between the rotor vanes and the fluid.

The fluid has a component of velocity and hence of momentum in a direction

tangential to the rotor. While flowing through the rotor, tangential velocity and

hence the momentum changes.
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The rate at which this tangential momentum changes corresponds to a tangential

force on the rotor. In a turbine, the tangential momentum of the fluid is reduced and

therefore work is done by the fluid to the moving rotor. But in the case of pumps and

compressors, there is an increase in the tangential momentum of the fluid and

therefore work is absorbed by the fluid from the moving rotor.

15.3.1 Basic Equation of Energy Transfer in Rotodynamic Machines

The basic equation of fluid dynamics relating to energy transfer is same for all

rotodynamic machines and is a simple form of Newton’s laws of motion applied to

a fluid element traversing a rotor. Here we shall make use of the momentum theorem

as applicable to a fluid element while flowing through fixed and moving vanes.

Figure 15.1 represents diagrammatically a rotor of a generalised fluid machine,

Vf2

Vf1

O

O

V2

V1

Va2

Vw1

Va1

r2

r1

2

1

w

Vw 2

Fig. 15.1 Components of flow velocity in a generalised fluid machine

where 0–0 is the axis of rotation and w the angular velocity. Fluid enters the rotor at

1, passes through the rotor by any path and is discharged at 2. The points 1 and 2 are

at radii r1 and r2 from the centre of the rotor, and the directions of fluid velocities at

1 and 2 may be at any arbitrary angle. For the analysis of energy transfer due to fluid

flow in this situation, we assume the following:

(a) The flow is steady, i.e., the mass flow rate is constant across any section (no

storage or depletion of fluid mass in the rotor).

(b) The heat and work interactions between the rotor and its surroundings take

place at a constant rate.

(c) The velocity is uniform over any area normal to the flow. This means that

the velocity vector at any point is representative of the total flow over a

finite area. This condition also implies that there is no leakage loss, and the

entire fluid is undergoing the same process.
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The velocity at any point may be resolved into three mutually perpendicular

components as shown in Fig. 15.1. The axial component of velocity V a is directed

parallel to the axis of rotation, the radial component V f is directed radially through

the axis of rotation, while the tangential component V w is directed at right angles to

the radial direction and along the tangent to the rotor at that part.

The change in magnitude of the axial velocity components through the rotor

causes a change in the axial momentum. This change gives rise to an axial force,

which must be taken by a thrust bearing to the stationary rotor casing. The change in

magnitude of radial velocity causes a change in momentum in the radial direction.

However, for an axisymmetric flow, this does not result in any net radial force on

the rotor. In case of a non-uniform flow distribution over the periphery of the rotor

in practice, a change in momentum in the radial direction may result in a net radial

force which is carried as a journal load. The tangential component V w only has an

effect on the angular motion of the rotor. In consideration of the entire fluid body

within the rotor as a control volume, we can write from the moment of momentum

theorem (Eq. 5.28))

T = m (V w2
 r2 – V w1 r1) (15.1)

where T is the torque exerted by the rotor on the moving fluid, m is the mass flow

rate of fluid through the rotor. The subscripts 1 and 2 denote values at inlet and

outlet of the rotor respectively. The rate of energy transfer to the fluid is then given

by

E = Tw = m(V w2
 r2w – V w1

 r1w) = m(V w2
 U2 – V w1

 U1) (15.2)

where w is the angular velocity of the rotor and U = wr which represents the linear

velocity of the rotor. Therefore U2 and U1 are the linear velocities of the rotor at

points 2 (outlet) and 1 (inlet) respectively (Fig. 15.1). The Eq. (15.2) is known as

Euler’s equation in relation to fluid machines and can be written in terms of head

gained ‘H’ by the fluid as

H = 2 12 1w wV U V U

g

-
(15.3)

In usual convention relating to fluid machines, the head delivered by the fluid to the

rotor is considered to be positive and vice versa. Therefore, Eq. (15.3) is written

with a change in the sign on the right-hand side in accordance with the sign

convention as

H = 1 21 2w wV U V U

g

-
(15.4)

Components of Energy Transfer It is worth mentioning in this context that

either of the Eqs (15.2) and (15.4) is applicable regardless of changes in density or

components of velocity in other directions. Moreover, the shape of the path taken

by the fluid in moving from inlet to outlet is of no consequence. The expression

involves only the inlet and outlet conditions. A rotor, the moving part of a fluid

machine, usually consists of a number of vanes or blades mounted on a circular

disc. Figure 15.2(a) shows the velocity triangles at the inlet and outlet of a rotor.

The inlet and outlet portions of a rotor vane are only shown as a representative of

the whole rotor.
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w

(a) Velocity triangles for a generalised (b) Centrifugal effect in a flow of

rotor vane  fluid with rotation

Fig. 15.2 

Vector diagrams of velocities at inlet and outlet correspond to two velocity

triangles, where V r is the velocity of fluid relative to the rotor and a1, a2 are the

angles made by the directions of the absolute velocities at the inlet and outlet

respectively with the tangential direction, while b1 and b2 are the angles made by

the relative velocities with the tangential direction. The angles b1 and b2 should

match with vane or blade angles at inlet and outlet respectively for a smooth,

shockless entry and exit of the fluid to avoid undesirable losses. Now we shall apply

a simple geometrical relation as follows:

From the inlet velocity triangle,

V r1

2 = V 1
2 + U1

2 – 2 U1V 1 cos a1 = V 1
2 + U1

2 – 2 U1V w1

or U1Vw1
 =

1

2
(V 1

2 + U 1
2 – V 2

r1
) (15.5)

Similarly, from the outlet velocity triangle,

V r2

2 = V 2
2 + U 2

2 – 2 U2V 2 cos a2 = V 2
2 + U2

2 – 2 U2V w2

or U2Vw2
 =

1

2
(V 2

2
 + U2

2
 – V r2

2
) (15.6)

Invoking the expressions of U1V w1
 and U2V w2

 in Eq. (15.4), we get

H (work head, i.e., energy per unit weight of fluid, transferred between the fluid and

the rotor) as
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H =
1

2 g
[(V 1

2 – V 2
2) + (U1

2 – U2
2) + (V r2

2 – V r1

2)] (15.7)

The Eq. (15.7) is an important form of the Euler’s equation relating to fluid

machines since it gives the three distinct components of energy transfer as shown by

the pair of terms in the round brackets. These components throw light on the nature

of the energy transfer. The first term of Eq. (15.7) is readily seen to be the change in

absolute kinetic energy or dynamic head of the fluid while flowing through the rotor.

The second term of Eq. (15.7) represents a change in fluid energy due to the

movement of the rotating fluid from one radius of rotation to another. This can be

better explained by demonstrating a steady flow through a container having uniform

angular velocity w as shown in Fig. 15.2(b). The centrifugal force on an infinitesimal

body of a fluid of mass dm at radius r gives rise to a pressure difference dp across

the thickness dr of the body in a manner that a differential force of dp dA  acts on the

body radially inward. This force, in fact, is the centripetal force responsible for the

rotation of the fluid element and thus becomes equal to the centrifugal force under

equilibrium conditions in the radial direction. Therefore, we can write

dp ◊dA  = dm w2
 r

with dm = dA  dr r, where r is the density of the fluid, it becomes

dp/r = w2 r dr

For a reversible flow (flow without friction) between two points, say, 1 and 2, the

work done per unit mass of the fluid (i.e., the flow work) can be written as

2

1

dp

rÚ  =

2 2 2 2 2 2 2
2 2 1 2 1

1

d
2 2

r r U U
r r

w w
w

- -
= =Ú

This work is, therefore, done on or by the fluid element due to its displacement

from radius r1 to radius r2 and hence becomes equal to the energy held or lost by it.

Since the centrifugal force field is responsible for this energy transfer, the

corresponding head (energy per unit weight) U2/2g is termed as the centrifugal head.

The transfer of energy due to a change in centrifugal head [(U2
2 – U2

1)/2g] causes a

change in the static head of the fluid.

The third term represents a change in the static head due to a change in fluid

velocity relative to the rotor. This is similar to what happens in case of a flow

through a fixed duct of variable cross-sectional area. Regarding the effect of flow

area on fluid velocity V r relative to the rotor, a converging passage in the direction

of flow through the rotor increases the relative velocity (V r2 > V r1) and hence

decreases the static pressure. This usually happens in case of turbines. Similarly, a

diverging passage in the direction of flow through the rotor decreases the relative

velocity (V r2 < V r1) and increases the static pressure as occurs in case of pumps and

compressors.

The fact that the second and third terms of Eq. (15.7) correspond to a change in

static head can be demonstrated analytically by deriving Bernoulli’s equation in the

frame of the rotor.

In a rotating frame, the momentum equation for the flow of a fluid, assumed

‘inviscid’ can be written as

2 ( )
v

v v v r
t

∂
r w w w

∂

È ˘+ ◊— + ¥ + ¥ ¥Í ˙Î ˚

r

r r rr r r r

 = – —p
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where v
r

 is the fluid velocity relative to the coordinate frame rotating with an

angular velocity 
r

w .

We assume that the flow is steady in the rotating frame so that 
v

t

∂

∂

r

 = 0. We

choose a cylindrical coordinate system (r, q, z) with the z axis along the axis of

rotation. Then the momentum equation reduces to

2 1
2 z ri ri pw w

r
◊— + ¥ - = - —

r r
r r r

v v v

where, zi
r

 and ri
r

 are the unit vectors along z and r directions respectively. Let si
r

 be

a unit vector in the direction of 
r

v  and s be a coordinate along the stream line. Then

we can write

2 22s
s z s r

iv
v i v vi i ri

s s

∂∂
w w

∂ ∂
+ + ¥ -

r

r r r

 = - —
1

r
p

Taking scalar product with 
r

is  it becomes

v
v

s
r

r

s

∂

∂

∂

∂
- w 2

 = -
1

r

∂

∂

p

s

We have used s
s

i
i

s

∂

∂
◊

r

r

 = 0. With a little rearrangement, we have

2 2 21 1

2 2

p
v r

s

∂
w

∂ r

Ê ˆ- +Á ˜Ë ¯
 = 0

Since v is the velocity relative to the rotating frame we can replace it by V r. Further

w r = U is the linear velocity of the rotor. Integrating the momentum equation from

inlet to outlet along a streamline we have

1

2
 (V 2

r2
 – V 2

r1
) – 

1

2
 (U2

2 – U 2
1) + 2 1p p

r

-
 = 0

or
1

2
 (U2

1 – U2
2) + 

1

2
 (V 2

r2
 – V 2

r1
) = 1 2p p

r

-
(15.8)

Therefore, we can say, with the help of Eq. (15.8), that the last two terms of

Eq. (15.7) represent a change in the static head of fluid.

Energy Transfer in Axial Flow Machines For an axial flow machine, the main

direction of flow is parallel to the axis of the rotor, and hence the inlet and outlet

points of the flow do not vary in their radial locations from the axis of rotation.

Therefore, U1 = U2 and the equation of energy transfer [Eq. (15.7)] can be written,

under this situation, as

H =
1

2 g
[(V 1

2 – V 2
2) + (V r2

2 – V r1

2)] (15.9)

Hence, change in the static head in the rotor of an axial flow machine is only due to

the flow of fluid through the variable area passage in the rotor.
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Radially Outward and Inward Flow Machines For radially outward flow

machines, U2 > U1; hence the fluid gains in static head, while, for a radially inward

flow machine, U2 < U1, the fluid loses its static head. Therefore, in radial flow

pumps or compressors the flow is always directed radially outward, and in a radial

flow turbine it is directed radially inward.

Impulse and Reaction Machines The relative proportion of energy transfer

obtained by the change in static head and by the change in dynamic head is one of

the important factors for classifying fluid machines. The machine for which the

change in static head in the rotor is zero is known as an impulse machine. In these

machines, the energy transfer in the rotor takes place only by the change in the

dynamic head of the fluid. The parameter characterising the proportion of changes

in the dynamic and static head in the rotor of a fluid machine is known as the degree

of reaction and is defined as the ratio of energy transfer by the change in the static

head to the total energy transfer in the rotor.

Therefore, the degree of reaction,

R =

( ) ( )2 2 2 2
1 2 2 1

1

2
U U Vr Vr

g

H

È ˘- + -Î ˚
(15.10)

For an impulse machine, R = 0, because there is no change in static pressure in

the rotor. It is difficult to obtain a radial flow impulse machine, since the change in

the centrifugal head is obvious there. Nevertheless, an impulse machine of radial

flow type can be conceived by having a change in the static head in one direction

contributed by the centrifugal effect, and an equal change in the other direction

contributed by the change in the relative velocity. However, this has not been

established in practice. Thus for an axial flow impulse machine U1 = U2, V r1
 = V r2

. For an

impulse machine, the rotor can be made open, that is, the velocity V1 can represent an

open jet of fluid flowing through the rotor, which needs no casing. A very simple

example of an impulse machine is a paddle wheel rotated by the impingement of

water from a stationary nozzle as shown in Fig. 15.3(a).

Water jet

Fixed nozzle

Water under
pressure

Enlarged view
of nozzle arm

High velocity
jet

High velocity
jet

Entry of water
under pressure

(a) Paddle wheel as an example (b) Lawn sprinkler as an example of reaction

of impulse turbine turbine

Fig. 15.3 
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A machine with any degree of reaction must have an enclosed rotor so that the

fluid cannot expand freely in all directions. A simple example of a reaction machine

can be shown by the familiar lawn sprinkler, in which water comes out  (Fig. 15.3(b))

at a high velocity from the rotor in a tangential direction. The essential feature of the

rotor is that water enters at high pressure and this pressure energy is transformed

into kinetic energy by a nozzle which is a part of the rotor itself.

In the earlier example of impulse machine (Fig. 15.3(a)), the nozzle is stationary

and its function is only to transform pressure energy to kinetic energy and finally

this kinetic energy is transferred to the rotor by a pure impulse action. The change in

momentum of the fluid in the nozzle gives rise to a reaction force but as the nozzle

is held stationary, no energy is transferred by it. In the case of a lawn sprinkler (Fig.

15.3(b)), the nozzle, being a part of the rotor, is free to move and, in fact, rotates due

to the reaction force caused by the change in momentum of the fluid and hence the

word reaction machine follows.

Efficiencies The concept of efficiency of any machine comes from the

consideration of energy transfer and is defined, in general, as the ratio of useful

energy delivered to the energy supplied. Two efficiencies are usually considered for

fluid machines—the hydraulic efficiency concerning the energy transfer between

the fluid and the rotor, and the overall efficiency concerning the energy transfer

between the fluid and the shaft. The difference between the two represents the

energy absorbed by bearings, glands, couplings, etc. or, in general, by pure

mechanical effects which occur between the rotor itself and the point of actual

power input or output.

Therefore, for a pump or compressor,

hhydraulic = hh =

Useful energy gained by the fluid

at final discharge

Mechanical energy supplied to rotor
(15.11a)

hoverall =

Useful energy gained by the fluid

at final discharge

Mechanical energy supplied to

shaft at coupling

(15.11b)

For a turbine,

hh =
Mechanical energy delivered by the rotor

Energy available from the fluid
(15.12a)

hoverall =

Mechanical energy in output shaft

at coupling

Energy available from the fluid
(15.12b)

The ratio of rotor and shaft energy is represented by the mechanical efficiency

hm.

Hence, hm =
h

h
overall

h

(15.13)
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15.3.2 Principle of Similarity and Dimensional Analysis in
Rotodynamic Machines

The principle of similarity is a consequence of nature for any physical phenomenon.

The concept of similarity and dimensional analysis related to the problems of fluid

flow, in general, has been discussed in Chapter 6. By making use of this principle, it

becomes possible to predict the performance of one machine from the results of

tests on a geometrically similar machine, and also to predict the performance of the

same machine under conditions different from the test conditions. For fluid

machines, geometrical similarity must apply to all significant parts of the system,

viz., the rotor, the entrance and discharge passages and so on. Machines which are

geometrically similar form a homologous series. Therefore, the members of such a

series, having a common shape are simply enlargements or reductions of each other.

If two machines are kinematically similar, the velocity vector diagrams at inlet and

outlet of the rotor of one machine must be similar to those of the other. Geometrical

similarity of the inlet and outlet velocity diagrams is, therefore, a necessary

condition for dynamic similarity.

Let us now apply dimensional analysis to determine the dimensionless

parameters, i.e., the p terms as the criteria of similarity. For a machine of a given

shape, and handling compressible fluid, the relevant variables are given in

Table 15.1.

Table 15.1 Variable physical parameters of fluid machine

Variable physical parameters Dimensional formula

D = Any physical dimension of the machine as

a measure of the machine’s size, usually the

rotor diameter L

Q = Volume flow rate through the machine L3T –1

N = Rotational speed (rev./min.) T
–1

H = Difference in head (energy per unit weight) across

the machine. This may be either gained or given by

 the fluid depending upon whether the machine is a

pump or a turbine respectively L

r = Density of the fluid ML –3

m = Viscosity of the fluid ML
–1

T
–1

E = Coefficient of elasticity of the fluid ML –1T –2

g = Acceleration due to gravity LT –2

P = Power transferred between the fluid and the rotor (the

difference between P and H is taken care of by

the hydraulic efficiency hh) ML
2
T

–3
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In almost all fluid machines, flow with a free surface does not occur, and the

effect of gravitational force is negligible. Therefore, it is more logical to consider

the energy per unit mass gH as the variable rather than H alone so that

acceleration due to gravity g does not appear as a separate variable. Therefore, the

number of separate variables becomes eight: D, Q, N , gH, r, m, E and P. Since the

number of fundamental dimensions required to express these variables are three,

the number of independent p terms (dimensionless terms), becomes five. Using

Buckingham’s p theorem with D, N and r as the repeating variables, the expressions

for the p terms are obtained as

p1 = 
3

Q

ND
, p2 =

2 2

gH

N D
, p3 = 

2
NDr

m
, p4 = 

3 5

P

N Dr
, p5 = 2 2

/E

N D

r

We shall now discuss the physical significance and usual terminologies of

the different p  terms.

All lengths of the machine are proportional to D, and all areas to D2.

Therefore, the average flow velocity at any section in the machine is proportional to

Q/D2. Again, the peripheral velocity of the rotor is proportional to the product ND.

The first p term can be expressed as

p1 =
3

Q

ND
  =

2
/ Fluid velocity

Rotor velocity

Q D V

ND U
μ

Thus, p1 represents the condition for kinematic similarity, and is known as the

capacity coefficient or discharge coefficient. The second p term p2 is known as the

head coefficient since it expresses the head H in dimensionless form. Considering

the fact that ND μ rotor velocity, the term p2 becomes gH/U 2
, and can be interpreted

as the ratio of fluid head to kinetic energy of the rotor. Dividing p2 by the square of

p1 we get

2
2
1

p

p
 = 

2 2

Total fluid energy per unit mass

Kinetic energy of the fluid per unit mass( / )

gH

Q D
μ

The term p3 can be expressed as r (ND)D/m and thus represents the Reynolds

number with rotor velocity as the characteristic velocity. Again, if we make the

product of p1 and p3, it becomes r (Q/D2)D/m which represents the Reynold’s

number based on fluid velocity. Therefore, if p1 is kept same to obtain kinematic

similarity, p3 becomes proportional to the Reynolds number based on fluid velocity.

The term p4 expresses the power P in dimensionless form and is therefore known

as power coefficient. Combination of p4, p1 and p2 in the form of p4/p1p2 gives P/

rQgH. The term rQgH represents the rate of total energy given up by the fluid, in

case of turbine, and gained by the fluid in case of pump or compressor. Since P is

the power transferred to or from the rotor. Therefore p4/p1 p2 becomes the hydraulic

efficiency hh for a turbine and 1/hh for a pump or a compressor.

From the fifth p term, we get

5

1

p
 =

/

ND

E r
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Multiplying p1 on both sides, we get

1

5

p

p
 =

2/ Fluid velocity

Local acoustic velocity/

Q D

E r
μ

Therefore, we find that p1/ p 5
 represents the well known Mach number.

For a fluid machine handling incompressible fluid, the term p5 can be dropped.

Moreover, if the effect of liquid viscosity on the performance of fluid machines is

neglected or regarded as secondary, (which is often sufficiently true for certain cases

or over a limited range) the term p3 can also be dropped. Then the relationship

between the different dimensionless variables (p terms) can be expressed as

f 
3 2 2 3 5

, ,
Q gH P

ND N D N Dr

È ˘
Í ˙
Î ˚

 = 0 (15.14)

or, with another arrangement of the p terms,

f 
2 2 3 5

, ,h

gH P

N D N D
h

r

È ˘
Í ˙
Î ˚

 = 0 (15.15)

If data obtained from tests on a model machine are plotted so as to show the

variation of dimensionless parameters 
3 2 2 3 5

, ,
Q gH P

ND N D N Dr
 with one another,

then the graphs are applicable to any machine in the same homologous series. The

curves for other homologous series would naturally be different. Therefore one set

of relationship or curves of the p terms would be sufficient to describe the

performance of all the members of one series.

The performance or operating conditions for a turbine handling a particular fluid

are usually expressed by the values of N , P and H, and for a pump by N, Q and H. It

is important to know the range of these operating parameters covered by a machine

of a particular shape (homologous series). Such information enables us to select the

type of machine best suited to a particular application, and thus serves as a starting

point in its design. Therefore a parameter independent of the size of the machine D

is required which will be the characteristic of all the machines of a homologous

series. A parameter involving N, P and H but not D is obtained by dividing (p4)1/2 by

(p2)5/4. Let this parameter be designated by KsT
 as

KsT
  =

3 5 1/ 2 1/ 2

2 2 5/ 4 1/ 2 5/ 4

( / )

( / ) ( )

P N D NP

gH N D gH

r

r
= (15.16)

Similarly, a parameter involving N , Q and H but not D is obtained by dividing

(p1)1/2 by (p2)
3/4 and is represented by KsP

 as

KsP
 =

3 1/ 2 1/ 2

2 2 3/4 3/ 4

( / )

( / ) ( )

Q ND NQ

gH N D gH
= (15.17)

Since the dimensionless parameters KsT
 and KsP

 are found as a combination of basic

p terms, they must remain same for complete similarity of flow in machines of a
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homologous series. Therefore, a particular value of KsT
 or KsP

 relates all the

combinations of N, P and H or N , Q and H for which the flow conditions are similar

in the machines of that homologous series. Interest naturally centres on the

conditions for which the efficiency is maximum. For turbines, the values of N , P and

H, and for pumps and compressors, the values of N, Q and H are usually quoted for

which the machines run at maximum efficiency.

The machines of a particular homologous series, that is, of a particular shape,

correspond to a particular value of Ks for their maximum efficient operation.

Machines of different shapes have, in general, different values of Ks. Thus the

parameter Ks (KsT
 or KsP

) is referred to as the shape factor of the machines.

Considering the fluids used by the machines to be incompressible, (for hydraulic

turbines and pumps), and since the acceleration due to gravity does not vary under

this situation, the terms g and r are taken out from the expressions of KsT
 and KsP

.

The portions left as NP1/2/H5/4 and NQ1/2/H3/4 are termed for practical purposes, as

the specific speed Ns for turbines or pumps. Therefore, we can write,

NsT
 (specific speed for turbines) = NP1/2/H5/4 (15.18)

NsP
 (specific speed for pumps) = NQ1/2

/H3/4
(15.19)

The name specific speed for these expressions has little justification.

However, a meaning can be attributed from the concept of a hypothetical machine.

For a turbine, NsT is the speed of a member of the same homologous series as the

actual turbine, so reduced in size as to generate unit power under a unit head of

the fluid. Similarly, for a pump, NsP is the speed of a hypothetical pump with reduced

size but representing a homologous series so that it delivers unit flow rate at a unit

head. The specific speed Ns is, therefore, not a dimensionless quantity. The

dimension of Ns can be found from their expressions given by Eqs (15.18) and

(15.19). The dimensional formula and the unit of specific speed are given as follows:

Specific speed Dimensional formula Unit (SI)

NsT
 (turbine) M

1/2
 T

–5/2
 L

–1/4
kg

1/2
/s

5/2
m

1/4

NsP
(pump) L3/4 T –3/2 m3/4/s3/2

The dimensionless parameter Ks is often known as the dimensionless specific

speed to distinguish it from Ns. The values of specific speed Ns (for maximum

efficiencies) for different types of turbines and pumps will be discussed later.

Example 15.1

A radial flow hydraulic turbine is required to be designed to produce 20 MW under a

head of 16 m at a speed of 90 rpm. A geometrically similar model with an output of

30 kW and a head of 4 m is to be tested under dynamically similar conditions. At

what speed must the model be run? What is the required impeller diameter ratio

between the model and  the prototype and what is the volume flow rate through the

model if its efficiency can be asumed to be 90%?
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Solution

Equating the power coefficients (p term containing the power P) for the model and

prototype, we can write

1
3 5

1 1 1

P

N Dr
 = 2

3 5
2 2 2

P

N Dr

(where subscript 1 refers to the prototype and subscript 2 to the model)

Considering the fluids to be incompressible, and same for both the prototype and

model, we have

D2/D1 = [P2/P1]1/5 (N1/N2]3/5

= [0.03/20]1/5 [N1/N2]3/5

= 0.272 [N1/N2]3/5 (15.20)

Equating the head coefficients (p term containing the head H)

1
2

1 1( )

g H

N D
 = 2

2
2 2( )

g H

N D

Then,

D2/D1 = [H2/H1]1/2 [N1/N2] = [4/16]1/2 [N1/N2] (15.21)

Therefore, equating the diameter ratios from Eqs (15.20) and (15.21), we have

0.272 [N1/N2]3/5 = [4/16]1/2 [N1/N2]

or [N2/N1]
2/5

 = 1.84

Hence, N2 = N1 (1.84)5/2 = 90 ¥ (1.84)5/2

= 413.32 rpm

From Eq. (15.20)

D2/D1 = 0.272 [90/413.32]3/5 = 0.11

Model efficiency =
Power output

Water power input

Hence, 0.9 =
3

30 10

Q g Hr

¥

or Q =
3

3

30 10

0.9 10 9.81 4

¥
¥ ¥ ¥

 = 0.85 m3/s

Therefore, model volume flow rate = 0.85 m3/s.

Example 15.2

A reservoir has a head of 40 m and a channel leading from the reservoir permits a

flow rate of 34 m3/s. If the rotational speed of the rotor is 150 rpm, determine the

dimensionless specific speed of the turbine.
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Solution

We have,

Turbine power = r g Q H  = 1000 ¥ 9.81 ¥ 34 ¥ 40

= 13.34 MW

The dimensionless specific speed of a turbine is given according to Eq. (15.16) by

KsT
 =

1/2

1/2 5/4( )

N P

gHr

=
6 1/ 2

1/ 2 5/ 4

150 (13.34 10 )

60 (1000) (9.81 40)

¥ ¥
¥ ¥ ¥

= 0.165 rev

= 1.037 rad

Example 15.3

A centrifugal pump handles liquid whose kinematic viscosity is three times that of

water. The dimensionless specific speed of the pump is 0.183 rev and it has to

discharge 2 m
3
/s of liquid against a total head of 15 m. Determine the speed, test

head and flow rate for a one-quarter scale model investigation of the full size pump

if the model uses water.

Solution

Since the viscosity of the liquid in the model and prototype vary significantly,

equality of Reynolds number must apply for dynamic similarity. Let subscripts 1

and 2 refer to prototype and model respectively.

Equating Reynolds number,

N1D1
2/n1 = N2D2

2/n2

or N2/N1 = (4)2/3 = 5.333

Equating the flow coefficients,

Q1/N1D1
3 = Q2/N2D2

3

or Q2/Q1 = (N2/N1) (D2/D1)3

= 5.333/(4)
3
 = 0.0833

Equating head coefficients,

H1/(N1D1)
2
 = H2/(N2D2)

2

or H2/H1 = (N2/N1)2 (D2/D1)2

= (5.33/4)2 = 1.776
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Dimensionless specific speed of the pump can be written according to Eq. (15.17)

as

Ksp
 =

1/ 2
1 1

3/ 4
1( )

N Q

gH

or N1 =

3/ 4
1

1/ 2
1

( )
psK gH

Q

=

3/ 4

1/ 2

0.183(9.81 15)

2

¥

= 5.47 rev/s

Therefore, model speed N2 = 5.47 ¥ 5.33 = 29.15 rev/s

 Model flow rate = 0.0833 ¥ 2 = 0.166 m3/s

 Model head = 15 ¥ 1.776 = 26.64 m

Example 15.4

Specifications for an axial flow coolant pump for one loop of a pressurised water

nuclear reactor are as follows.

Head 85 m

Flow rate 10,000 m3/hour

Speed 1490 rpm

Diameter 1200 mm

Water density 714 kg/m3

Power 2 MW (electrical)

The manufacturer plans to build a model. Test conditions limit the available

electric power to 250 kW and flow to 0.25 m3/s of cold water. If the model and

prototype efficiencies are assumed equal, find the head, speed and scale ratio of the

model. Calculate the dimensionless specific speed of the prototype and confirm that

it is identical with the model.

Solution

Let subscripts 1 and 2 represent prototype and model respectively. Equating the

flow power and head coefficients for the model and prototype, we have

Q1/Q2 = (N1/N2) (D1/D2)3

or N1/N2 =
10000

0.25 3600

Ê ˆ
Á ˜Ë ¯¥

 (D2/D1)
3

= 11.11 (D2/D1)
3

Also, P1/P2 = (N1/N2)
3 

(D1/D2)
5
 (r1/r2)

Substituting for (N1/N2), we have
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2/0.25 = (11.11)3 (D2/D1)9 (D1/D2)
5 (714/1000)

or (D2/D1)
4
 =

3

8

(11.11) 0.714¥

which gives the scale ratio D2/D1 = 0.3

Then, N1/N2 = 11.11 ¥ (0.3)
3
 = 0.3

or N2/N1 = 1/0.3 = 3.33

H2/H1 = (N2/N1)
2
 (D2/D1)

2

=

2 2

2 2

1 1

1
0.3

0.3

N D

N D

ÏÊ ˆ Ê ˆ ¸ Ï ¸= ¥Ì ˝ Ì ˝Á ˜ Á ˜Ë ¯ Ë ¯ Ó ˛Ó ˛
 = 1.0

The dimensionless specific speed is given by

Ksp
 =

1/ 2

3/ 4( )

N Q

g H

For the prototype

Ksp1

 =
2 1490

60

p ¥
(10000/3600)1/2 (1/9.81)3/4(1/85)3/4

= 1.67 rad

For the model

Ksp2

 = 2p ¥ 
1/ 2

3/ 4

1490 (0.25)
3.33

60 (9.81 85)
¥ ¥

¥
= 1.67 rad

Therefore we see that the dimensionless specific speeds of both model and

prototype are the same.

15.4  DIFFERENT TYPES OF ROTODYNAMIC MACHINES

In this section we shall discuss the hydraulic machines which use water as the fluid

in practice.

15.4.1 Impulse Hydraulic Turbine: The Pelton Wheel

The only hydraulic turbine of the impulse type in common use is named after an

American engineer, Laster A Pelton, who contributed much to its development in

about 1880. Therefore this machine is known as the Pelton turbine or Pelton wheel.

It is an efficient machine particularly suited to high heads. The rotor consists of a

large circular disc or wheel on which a number (seldom less than 15) of spoon-

shaped buckets are spaced uniformly round its periphery,as shown in Fig. 15.4. The

wheel is driven by jets of water being discharged at atmospheric pressure the wheel
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Water jet

Fixed nozzle

Splitter

Side view of the bucket

Fig. 15.4 A Pelton wheel

is driven by jets of water being discharged at atmospheric pressure from pressure

nozzles. The nozzles are mounted so that each directs a jet along a tangent to the

circle through the centres of the buckets. Down the centre of each bucket, there is a

splitter ridge which divides the jet into two equal streams which flow round the

smooth inner surface of the bucket and leaves the bucket with a relative velocity

almost opposite in direction to the original jet.

For maximum change in momentum of the fluid and hence for the maximum

driving force on the wheel, the deflection of the water jet should be 180°. In practice,

however, the deflection is limited to about 165° so that the water leaving a bucket

may not hit the back of the following bucket. Therefore, the camber angle of the

buckets is made as 165° (q = 165°, Fig. 15.5(a)).

The number of jets is not more than two for horizontal shaft turbines and is

limited to six for vertical shaft turbines. The flow partly fills the buckets and the

fluid remains in contact with the atmosphere. Therefore, once the jet is produced by

the nozzle, the static pressure of the fluid remains atmospheric throughout the

machine. Because of the symmetry of the buckets, the side thrusts produced by the

fluid in each half should balance each other.

Analysis of Force on the Bucket and Power Generation Figure 15.5(a) shows

a section through a bucket which is being acted on by a jet. The plane of the section
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is parallel to the axis of the wheel and contains the axis of the jet. The absolute

velocity of the jet V 1 with which it strikes the bucket is given by

V 1 = C
v
 [2gH]1/2

V1

Bucket

Plane of wheel
U

b2
q

(a) Flow along the bucket of a pelton wheel

U

V1

Vr1

(b) Inlet velocity triangle (c) Outlet velocity triangle

Fig. 15.5 

where, C
v
 is the coefficient of velocity which takes care of the friction in the nozzle.

H is the head at the entrance to the nozzle which is equal to the total or gross head of

water stored at high altitudes minus the head lost due to friction in the long pipeline

leading to the nozzle. Let the velocity of the bucket (due to the rotation of the wheel)

at its centre where the jet strikes be U. Since the jet velocity V 1 is tangential, i.e., V 1

and U are colinear, the diagram of velocity vector at inlet (Fig. 15.5(b)) becomes

simply a straight line and the relative velocity V r1
 is given by

V r1
 = V 1 – U

It is assumed that the flow of fluid is uniform and it glides the blade all along,

including the entrance and exit sections, to avoid the unnecessary losses due to

shock. Therefore, the direction of relative velocity at the entrance and the exit

should match the inlet and outlet angles of the buckets respectively. The velocity

triangle at the outlet is shown in Fig. 15.5(c). The bucket velocity U remains the

same both at the inlet and outlet. With the direction of U being taken as positive, we

can write:

The tangential component of inlet velocity (Fig. 15.5(b)),

Vw1
 = V 1 = V r1

 + U

and the tangential component of outlet velocity (Fig. 15.5(c)),

Vw2
 = – (V r2

 cos b2 – U)

where, V r1
 and V r2

 are the velocities of the jet relative to the bucket at its inlet and

outlet and b2 is the outlet angle of the bucket.

b2 q

U

V2

Vw2

Vr kVr2 1=
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From Eq. (15.2) ( Euler’s equation for hydraulic machines), the energy delivered

by the fluid per unit mass to the rotor can be written as

E/m = [V w1
 – V w2

]U

= [V r1
 + V r2

 cos b2] U (15.22)

(since, in the present situation, U1 = U2 = U)

The relative velocity V r2
 becomes slightly less than V r1

 mainly because of the

friction in the bucket. Some additional loss is also inevitable as the fluid strikes

the splitter ridge, because the ridge cannot have zero thickness. These losses are

however kept to a minimum by making the inner surface of the bucket polished

and reducing the thickness of the splitter ridge. The relative velocity at outlet

V r2
 is usually expressed as V r2

 = K Vr1
 where, K  is a factor with a value less than

1. Therefore, we can write Eq. (15.22) as

E/m = V r1
 [1 + K  cos b2] U (15.23)

If Q is the volume flow rate of the jet, then the power transmitted by the fluid to

the wheel can be written as

P = r Q V r1
 [ 1 + K cos b2] U

= r Q [1 + K cos b2] (V 1 – U) U (15.24)

The power input to the wheel is  found from the kinetic energy of the jet arriving at

the wheel and is given by 
2

1

1

2
QVr . Therefore, the wheel efficiency of a Pelton

turbine can be written as

hw =
2 1

2
1

2 [1 cos ]( )Q K V U U

QV

r b

r

+ -

= 2
1 1

2[1 cos ] 1
U U

K
V V

b
È ˘

+ -Í ˙
Î ˚

(15.25)

It is found from Eq. (15.25) that the efficiency hw depends on K, b2 and U/V 1. For

a given design of the bucket, i.e., for constant values of b2 and K, the efficiency hw

becomes a function of U/V 1 only, and we can determine the condition given by U/V 1

at which hw becomes maximum.

For hw to be maximum,

1

d

d( / )

w

U V

h
 = 2

1

2[1 cos ] 1 2
U

K
V

b
È ˘

+ -Í ˙
Î ˚

 = 0

or U/V 1 =
1

2
(15.26)

d2hw /d(U/V 1)2 is always negative indicating that the Eq. (15.25) has only a

maximum (not a minimum) value.

The condition given by Eq. (15.26) states that the efficiency of the wheel in

converting the kinetic energy of the jet into mechanical energy of rotation becomes

maximum when the wheel speed at the centre of the bucket becomes one-half of the
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incoming velocity of the jet. The overall efficiency h0 will be less than hw because

of friction in bearing and windage, i.e., friction between the wheel and the

atmosphere in which it rotates. Moreover, as the losses due to bearing friction and

windage increase rapidly with speed, the overall efficiency reaches it peak when the

ratio U/V 1 is slightly less than the theoretical value of 0.5. The value usually

obtained in practice is about 0.46 (Fig. 15.6). An overall efficiency of 85–90% may

usually be obtained in large machines. To obtain high values of wheel efficiency,

the buckets should have a smooth surface and be properly designed. The length,

width, and depth of the buckets are chosen about 2.5, 4 and 0.8 times the jet

diameter. The buckets are notched for smooth entry of the jet.

Efficiency

Theoretical

Actual

Max. when = 1/2U V

U V= 1

Blade speed, U

Fig. 15.6 Variation of wheel efficiency with blade speed

Specific Speed and Wheel Geometry The specific speed of a Pelton wheel

depends on the ratio of jet diameter d and the wheel pitch diameter D (the diameter

at the centre of the bucket). If the hydraulic efficiency of a Pelton wheel is defined

as the ratio of the power delivered P to the wheel to the head available H at the

nozzle entrance, then we can write

P = r Q g H hh = 

2 3
1

24 2

hd V

C

p r h

¥ v

[Since, Q =
2

1
4

d
V

p
and V 1 = C

v
(2gH)1/2]

The specific speed NsT
 [Eq. (15.18)] = 

1/ 2

5/ 4

N P

H

The rotational speed N can be written as

N = U/pD

Therefore, it becomes

NsT
 =

5/ 43/ 2 1/ 21/ 2 2
1/ 21

1/ 2 2
1

( ) 2

(8)

hdV g CU

D C V

p h
r

p

È ˘Ê ˆ
Í ˙Á ˜Ë ¯ Î ˚

v

v
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=
5/4

1/23/2 1/2

1/2 1/4
1( ) 2

h

g U d
C

V D
h r

p
v (15.27a)

It may be concluded from Eq. (15.27a) that the specific speed NsT
 depends

primarily on the ratio d/D as the quantities U/V 1, C
v
 and hh vary only slightly. Using

the typical values of U/V 1 = 0.46, C
v
 = 0.97 and hh = 0.85, the approximate relation

between the specific speed and diameter ratio is obtained as

NsT
  ~= 105 (d/D) kg1/2s–5/2m–1/4 (15.27b)

The optimum value of the overall efficiency of a Pelton turbine depends both on

the values of the specific speed and the speed ratio. The Pelton wheels with a single

jet operate in the specific speed range of 4–16, and therefore the ratio D/d lies

between 6 and 26 as given by the Eq. (15.27b). A larger value of D/d reduces the

rpm as well as the mechanical efficiency of the wheel. It is possible to increase the

specific speed by choosing a lower value of D/d, but the efficiency will decrease

because of the close spacing of buckets. The value of D/d is normally kept between

14 and 16 to maintain high efficiency. The number of buckets required to maintain

optimum efficiency is usually fixed by the empirical relation

Number of buckets, = 15 + 
53

TsN

Governing of Pelton Turbine First let us discuss what is meant by governing of

turbines in general. When a turbine drives an electrical generator or alternator, the

primary requirement is that the rotational speed of the shaft and hence that of the

turbine rotor has to be kept fixed. Otherwise the frequency of the electrical output

will be altered. But when the electrical load changes depending upon the demand,

the speed of the turbine changes automatically. This is because the external resisting

torque on the shaft is altered while the driving torque due to change of momentum

in the flow of fluid through the turbine remains the same. For example, when the

load is increased, the speed of the turbine decreases and vice versa. A constancy in

speed is therefore maintained by adjusting the rate of energy input to the turbine

accordingly. This is usually accomplished by changing the rate of fluid flow through

the turbine—the flow is increased when the load is increased and the flow is

decreased when the load is decreased. This adjustment of flow with the load is

known as governing of turbines.

In case of a Pelton turbine, an additional requirement for its operation at the

condition of maximum efficiency is that the ratio of bucket to initial jet velocity

U/V 1 has to be kept at its optimum value of about 0.46. Hence, when U is fixed,

V 1 has to be fixed. Therefore the control must be made by a variation of the cross-

sectional area, A , of the jet so that the flow rate changes in proportion to the change

in the flow area keeping the jet velocity V 1 same. This is usually achieved by a spear

valve in the nozzle (Fig. 15.7(a)). Movement of the spear along the axis

of the nozzle changes the annular area between the spear and the housing. The

shape of the spear is such, that the fluid coalesces into a circular jet and then the

effect of the spear movement is to vary the diameter of the jet. Deflectors are often

used (Fig. 15.7(b)) along with the spear valve to prevent the serious water hammer

problem due to a sudden reduction in the rate of flow. These plates temporarily
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deflect the jet so that the entire flow does not reach the bucket; the spear valve may

then be moved slowly to its new position to reduce the rate of flow in the pipeline

gradually. If the bucket width is too small in relation to the jet diameter, the fluid is

not smoothly deflected by the buckets and, in consequence, much energy is

dissipated in turbulence and the efficiency drops considerably. On the other hand, if

the buckets are unduly large, the effect of friction on the surfaces is unnecessarily

high. The optimum value of the ratio of bucket width to jet diameter has been found

to vary between 4 to 5.

Spear valve

High load
( )

Low load

Flow

(a)  Spear valve to alter jet area in a Pelton wheel

Deflector

(b) Jet deflected from bucket

Fig. 15.7 

Limitation of a Pelton Turbine The Pelton wheel is efficient and reliable when

operating under large heads. To generate a given output power under a smaller head,

the rate of flow through the turbine has to be higher which requires an increase in

the jet diameter. The number of jets are usually limited to 4 or 6 per wheel. The

increase in jet diameter in turn increases the wheel diameter. Therefore the machine

becomes unduly large, bulky and slow-running. In practice, turbines of the reaction

type are more suitable for lower heads.

Example 15.5

The mean bucket speed of a Pelton turbine is 15 m/s. The rate of flow of water supplied

by the jet under a head of 42 m is 1 m
3
/s. If the jet is deflected by the buckets at an angle

of 165°, find the power and efficiency of the turbine. (Take coefficient of velocity

C
v
 = 0.985).
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Solution

Bucket speed is same at both inlet and outlet of the water jet.

Therefore, U1 = U2 = 15 m/s

Velocity of jet at inlet V 1 = 0.985 (2 ¥ 9.81 ¥ 42)1/2

= 28.27 m/s

Now the inlet and outlet velocity triangles are drawn as shown below:

U1 = 15 m/s

Inlet Outlet

Vr2V2

Vr1

V1 = 28.27 m/s

Vw2

b2 165º

U U2 1=

From inlet velocity triangle,

V r1
 = V 1 – U1 = 28.27 – 15 = 13.27 m/s

Vw1
 = V 1 = 28.27 m/s

The blade outlet angle is given by

b2 = 180° – 165° = 15°

Neglecting the frictional losses in the bucket

V r1
 = V r2

 = 13.27 m/s

From outlet velocity triangle

Vw2
 = U2 – V r2

 cos b2 [here U2 > V r2
 cos b2]

= 15 –13.27 cos 15°

= 2.18 m/s

Power developed, P = rQ (Vw1
 – Vw2

)U1

= 103 ¥ 1 ¥ (28.27 – 2.18) ¥ 15

= 391.35 kW

Turbine efficiency, h =
Power developed

Available power

=
3

3

391.35 10

10 9.81 1 42

¥
¥ ¥ ¥

= 0.95 = 95%

Example 15.6

A single jet pelton turbine is required to drive a generator to develop 10 MW. The

available head at the nozzle is 762 m. Assuming electric generator efficiency 95%,

Pelton wheel efficiency 87%, coefficient of velocity for nozzle 0.97, mean bucket

velocity 0.46 of jet velocity, outlet angle of the buckets 15° and the friction of the
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bucket reduces the relative velocity by 15 per cent, find (i) the diameter of the jet,

(ii) the rate of flow of water through the turbine, and (iii) the force exerted by the jet

on the buckets.

If the ratio of mean bucket circle diameter to the jet diameter is not to be less than

10, find the best synchronous speed for generation at 50 cycles per second and the

corresponding mean diameter of the runner.

Solution

Mechanical power output of the turbine = 
Electrical power output

Generator efficiency

=
10

0.95

= 10.53 MW

Pelton wheel efficiency, h =
P

g QHr

where Q is the flow rate through the turbine.

Then, Q =
P

g Hh r¥

=
6

3

10.53 10

0.87 10 9.81 762

¥
¥ ¥ ¥

 = 1.62 m3

If d1 is the diameter of the jet, we can write

Q1 = (p/4) ¥ d1
2 CV  (2gH)1/2

where, CV  is the coefficient of velocity.

Then, 1.62 = (p/4) ¥ d1
2 ¥ 0.97 ¥ (2 ¥ 9.81 ¥ 762)1/2

which gives d1 = 0.132 m = 132 mm

The inlet and outlet velocity triangles are shown below:

U1

Inlet Outlet

Vr2V2

U2

Vr1

V1

Vw2

15º

Jet velocity, V1 = C
v
 [2gH]1/2 = 0.97 [2 ¥ 9.81 ¥ 762]1/2

= 118.6 m/s

Mean bucket velocity, U1 = U2 = 0.46 ¥ 118.6 = 54.56 m/s

From the inlet velocity triangle,
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Vw1
 = V 1 = 118.6 m/s

V r1
 = V 1 – U1 = 118.50 – 54.56 = 63.94 m/s

V r2
 = 0.85 ¥ 63.94 = 54.35 m/s

From the outlet velocity triangle,

Vw2
 = U2 – V r2

 cos b2 = 54.56 – 54.35 ¥ cos 15°

= 2.06 m/s

Therefore, the force exerted by the jet on the bucket is given by

F = r Q (V w1
 – V w2

) = 10
3 ¥ 1.62 [118.5 – 2.06] N

= 188.63 kN

Considering the ratio of mean bucket circle diameter D to the jet diameter d as 10,

D = 10 ¥ 0.132 = 1.32 m

Again, U1 = [p DN]/60

Hence, N = [54.56 ¥ 60] / (p ¥ 1.32] = 789.51 rpm

Frequency of generator f = p ◊ N/60

where p = Number of pair of poles

p = 4 gives Nsyn = [60 ¥ 50]/4
= 750 rpm which is nearest to 789 rpm

Therefore, we choose Nsyn = 750 rpm

Now, D (revised) = [1.32 ¥ 789.51]/750 = 1.39 m

Example 15.7

In a hydroelectric scheme, a number of Pelton wheels are to be used under the

following conditions: total output required 30 MW; gross head 245 m; speed 6.25

rev/s; 2 jets per wheel; C
v
 of nozzles 0.97; maximum overall efficiency (based on

conditions immediately before the nozzles) 81.5%; dimensionless specific speed

not to exceed 0.022 rev. per jet; head lost to friction in pipeline is 12 m. Ratio of

blade to jet speed is 0.46.

Calculate (i) the number of wheels required, (ii) the diameters of the jets and

wheels, (iii) the hydraulic efficiency, if the blade deflects the water jet through 165°

and reduces its relative velocity by 15%, (iv) the percentage of the input power

which remains as kinetic energy of the water at discharge.

Solution

Dimensionless specific speed for turbine, KsT
 = 

1/2

1/2 5/4( )

N P

gHr

Here, KsT
 = 0.022 rev per jet.

The available head to the turbine (i.e., at the inlet to the nozzle)

H = 245 – 12 = 233 m

Hence, power per jet, P = [0.022 ¥ (103)1/2 ¥ (9.81 ¥ 233)5/4/6.25]2

= 3.09 ¥ 106 W = 3.09 MW
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(i) Therefore no. of wheels = 30/[3.09 ¥ 2]

= 5 (no. of wheels would be an integer)

(ii) If Q is the flow rate in m3/s per jet, then,

103 ¥ Q ¥ 9.81 ¥ 233 ¥ 0.815 =3.09 ¥ 106

which gives Q = 1.66 m3/s

Velocity of the jet, V 1 = 0.97 ¥ [2 ¥ 9.81 ¥ 233]1/2

= 65.58 m

Hence, 1.66 =
4

p
 ¥ d2 ¥ 65.58 (where d is the diameter of the jet)

or d =
4 1.66

65.58p

¥
¥

 = 0.179 m = 179 mm

Blade or wheel speed, U = 0.46 ¥ 65.58 = 30.17 m/s

Therefore wheel diameter D = 
30.17

6.25p ¥
 = 1.54 m

(iii) The inlet and outlet velocity triangles are drawn as shown below:

U1

Inlet Outlet

Vr2V2

U2

Vr1

V1

Vw2

165º

U1 = U2 = 30.17 m/s

V 1 = V w1
 = 65.58 m/s

V r1
 = V 1 – U1 = 65.58 – 30.17 = 35.41 m/s

The relative velocity at outlet, V r2
 = 0.85 ¥ 35.41

®= 30.1 m/s

From outlet velocity triangle, Vw2
 = 30.17 – 30.1 (cos 15°)

= 1.1 m/s

Hydraulic efficiency, hh =
( )

1 2 1w wV V U

g H

-

=
(65.58 1.1) 30.17

9.81 233

- ¥
¥

 = 0.851

= 85.1%

The kinetic energy at the outlet/unit mass = V 2
2
/2
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Input power / unit mass = gH

where H is the net head to the turbine (at nozzle inlet).

Let x be the percentage of input power remaining as kinetic energy of water at

discharge.

Then, x  =
2

2 100
2

V

gH
¥

From outlet velocity triangle, V 2
2 = [(30.1 ¥ sin 15°)2 + (1.1)2]

= 61.90 m2/s2

Therefore, x  =
61.90

100
2 9.81 233

¥
¥ ¥

 = 1.35%

Example 15.8

The blading of a single jet Pelton wheel runs at its optimum speed which is 0.46

times the jet speed. The overall efficiency of the machine is 0.85. Show that the

dimensionless specific speed is 0.192 d/D rev, where d represents the jet diameter

and D the wheel diameter. For the nozzle, the velocity coefficient C
v
 = 0.97.

Solution

Dimensionless specific speed KsT
 is given by the expression

KsT
 =

1/ 2

1/ 2 5/ 4( )

N P

gHr
(15.28)

The power developed, P = hoverall ¥ r g QH

Again, Q =
2 2

1/ 2
1 0.97[2 ]

4 4

d d
V gH

p p
¥ = ¥

= 1.08 d2 (gH)1/2

Hence, P = 0.85 ¥ r ¥ [1.08 d2 (gH)1/2] gH

= 0.92 r d2(gH)3/2 (15.29)

The rotational speed, N = U/pd

again the wheel speed, U = 0.46 ¥ V 1 = 0.46 ¥ 0.97 (2 gH)
1/2

= 0.63 (gH)
1/2

Hence, N =
1/ 2 1/ 20.63( ) ( )

0.2
gH gH

D Dp
= (15.30)

Substituting the values of P and N from Eqs (15.29) and (15.30) respectively into

Eq. (15.28), we have

KsT
  =

1/ 2
1/ 22 3/ 2

1/ 2 5/ 4

( ) 1
0.2 0.92 ( )

( )

gH
d gH

D gH
r

r

È ˘
È ˘Í ˙ Î ˚

Î ˚

= 0.192 
d

D
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15.4.2 Reaction Turbine

The principal feature of a reaction turbine that distinguishes it from an impulse

turbine is that only a part of the total head available at the inlet to the turbine is

converted to velocity head, before the runner is reached. Also in the reaction
turbines, the working fluid, instead of engaging only one or two blades, completely
fills the passages in the runner. The pressure or static head of the fluid changes
gradually as it passes through the runner along with the change in its kinetic energy
based on absolute velocity due to the impulse action between the fluid and the
runner. Therefore the cross-sectional  area of flow through the passages of the
runner changes gradually to accommodate the variation in static pressure of the
fluid. A reaction turbine is usually well suited for low heads. A radial flow hydraulic
turbine of reaction type was first developed by an American engineer, James B.
Francis (1815–92) and is named after him as the Francis turbine. The schematic

diagram of a Francis turbine is shown in Fig. 15.8 (a).

Spiral casing

Stay vanes

Draft tube

Runner

(a)

Fig. 15.8(a) A Francis turbine
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Volute casing Guide vanes
or wicket gates

Flow

Runner blades

(b)

Fig. 15.8(b) A schematic view of Francis Runner with Scroll Casing

Most of these machines have vertical shafts although some smaller machines of

this type have horizontal shafts. The fluid enters from the penstock (pipeline leading

to the turbine from the reservoir at a high altitude) to a spiral casing which

completely surrounds the runner. This casing is known as a scroll casing or a volute.

A schematic sectional view of the Francis runner along with the scroll casing is

shown in Fig. 15.8 (b). The cross-sectional area of this casing decreases uniformly

along the circumference to keep the fluid velocity constant in magnitude along its

path towards the guide vane. This is so because the rate of flow along the fluid path

in the volute decreases due to continuous entry of the fluid to the runner through the

openings of the guide vanes or stay vanes. The basic purpose of the guide vanes

(stay vanes) is to convert a part of pressure energy of the fluid at its entrance to the

kinetic energy and then to direct the fluid on to the runner blades at an angle

appropriate to the design. Moreover, the guide vanes are pivoted and can be turned

by a suitable governing mechanism to regulate the flow while the load changes. The

guide vanes are also known as wicket gates. The guide vanes impart a tangential

velocity and hence an angular momentum to the water before its entry to the runner.

The flow in the runner of a Francis turbine is not purely radial but a combination of

radial and tangential. The flow is inward, i.e., from the periphery towards the centre.

The height of the runner depends upon the specific speed. The height increases with

an increase in the specific speed. The main direction of flow changes as water passes

through the runner and is finally turned into the axial direction while entering the

draft tube.
The draft tube is a conduit which connects the runner exit to the tail race where

the water is being finally discharged from the turbine. The primary function of the

draft tube is to reduce the velocity of the discharged water to minimise the loss of

kinetic energy at the outlet. This permits the turbine to be set above the tail water

without any appreciable drop of available head. A clear understanding of the
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function of the draft tube in any reaction turbine, in fact, is very important for the

purpose of its design. The purpose of providing a draft tube will be better understood

if we carefully study the net available head across a reaction turbine.

Net Head Across a Reaction Turbine and the Purpose of Providing a Draft
Tube The effective head across any turbine is the difference between the head at

the inlet to the machine and the head at the outlet from it. A reaction turbine always

runs completely filled with the working fluid. The tube that connects the end of the

runner to the tail race is known as a draft tube and should completely be filled with

the working fluid flowing through it. The kinetic energy of the fluid finally

discharged into the tail race is wasted. A draft tube is made divergent so as to reduce

the velocity at the outlet to a minimum. Therefore a draft tube is basically a diffuser

and should be designed properly with the angle between the walls of the tube to be

limited to about 8 degrees so as to prevent the flow separation from the wall and to

reduce accordingly the loss of energy in the tube. Figure 15.9 shows a flow diagram

from the reservoir via a reaction turbine to the tail race.

The total head H1 at the entrance to the turbine can be found out by applying

Bernoulli’s equation between the free surface of the reservoir and the inlet to the

turbine as

H0 =
2

1 1

2
f

p V
z h

g gr
+ + +

or H1 = H0 – hf = 
2

1 1

2

p V
z

g gr
+ +

where hf is the head lost due to friction in the pipeline connecting the reservoir and

the turbine. Since the draft tube is a part of the turbine, the net head across the

turbine, for the conversion of mechanical work, is the difference of total head at

inlet to the machine and the total head at discharge from the draft tube at tail race

and is shown as H in Fig. 15.9.

Draft tube

Turbine

2g

V1
2

2

1

3
Tail race

H0

z

hf

2g

V3
2

p rg1/ H = Net head
producing workH1

Fig. 15.9 Head across a reaction turbine
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Therefore, H = total head at inlet to machine (1) – total head at discharge (3)

= 1p

gr
 + 

22
31

2 2

VV
z

g g
+ -  = H1 – 

2
3

2

V

g

= (H0 – hf) – 
2

3

2

V

g

The pressures are defined in terms of their values above the atmospheric

pressure. Sections 2 and 3 in Fig. 15.9 represent the exits from the runner and the

draft tube respectively. If the losses in the draft tube are neglected, then the total

head at 2 becomes equal to that at 3. Therefore, the net head across the machine is

either (H1 – H3) or (H1 – H2). Applying Bernoulli’s equation between 2 and 3 in

consideration of flow, without losses, through the draft tube, we can write,

2
2 2

2

p V
z

g gr
+ +  = 0 + 

2
3

2

V

g
 + 0

or 2p

gr
 = –

2 2
2 3

2

V V
z

g

È ˘-
+Í ˙

Î ˚
(15.31)

Since V 3 < V 2, both the terms in the bracket are positive and hence p2/rg is

always negative, which implies that the static pressure at the outlet of the runner is

always below the atmospheric pressure. Equation (15.31) also shows that the value

of the suction pressure at runner outlet depends on z, the height of the runner above

the tail race and (V 2
2 – V 3

2)/2g, the decrease in kinetic energy of the fluid in the draft

tube. The value of this minimum pressure p2 should never fall below the vapour

pressure of the liquid at its operating temperature to avoid the problem of cavitation.

Therefore, we find that the incorporation of a draft tube allows the turbine runner to

be set above the tail race without any drop of available head by maintaining a

vacuum pressure at the outlet of the runner.

Runner of Francis Turbine The shape of the blades of a Francis runner is

complex. The exact shape depends on its specific speed. It is obvious from the

equation of specific speed (Eq. 15.18) that higher specific speed means lower head.

This requires that the runner should admit a comparatively large quantity of water

for a given power output and at the same time the velocity of discharge at runner

outlet should be small to avoid cavitation. In a purely radial flow runner, as

developed by James B. Francis, the bulk flow is in the radial direction. To be more

clear, the flow is tangential and radial at the inlet but is entirely radial with a

negligible tangential component at the outlet. The flow, under the situation, has to

make a 90° turn after passing through the rotor for its inlet to the draft tube. Since

the flow area (area perpendicular to the radial direction) is small, there is a limit to

the capacity of this type of runner in keeping a low exit velocity. This leads to the

design of a mixed flow runner where water is turned from a radial to an axial

direction in the rotor itself. At the outlet of this type of runner, the flow is mostly

axial with negligible radial and tangential components. Because of a large discharge
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area (area perpendicular to the axial direction), this type of runner can pass a large

amount of water with a low exit velocity from the runner. The blades for a reaction

turbine are always so shaped that the tangential or whirling component of velocity

at the outlet becomes zero (V w2
 = 0). This is made to keep the kinetic energy at outlet

a minimum.

Figure 15.10 shows the velocity triangles at inlet and outlet of a typical blade of

a Francis turbine. Usually the flow velocity (velocity perpendicular to the tangential

direction) remains constant throughout, i.e. V f1 = V f2 and is equal to that at the inlet

to the draft tube.

The Euler’s equation for turbine (Eq. (15.2)) in this case reduces to

E/m = e = V w1
 U1 (15.32)

where, e is the energy transfer to the rotor per unit mass of the fluid.

From the inlet velocity triangle shown in Fig. 15.10.

Vw1
 = V f1

 cot a1 (15.33a)

and U1 = V f1
 (cot a1 + cot b1) (15.33b)

substituting the values of V w1
 and U1 from Eqs (15.33a) and (15.33b) respectively

into Eq. (15.32), we have

e = V f1

2 cot a1 (cot a1 + cot b1) (15.34)

U2

V1

Vr1

Vr2

Vf1

Vf2

b1

b2

a1

a2

U1

Fig. 15.10 Velocity triangle for a Francis runner

The loss of kinetic energy per unit mass becomes equal to V f2

2/2. Therefore,

neglecting friction, the blade efficiency becomes

hb =

2

2( /2)f

e

e V+
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= 1

2 1

2
1 1 1

2 2
1 1 1

2 cot (cot cot )

2 cot (cot cot )

f

f f

V

V V

a a b

a a b

+

+ +

Since, Vf1
 = V f2

, hb can be written as

hb =
1 1 1

1
1

1 2cot (cot cot )a a b
-

+ +

The change in pressure energy of the fluid in the rotor can be found out by

subtracting the change in its kinetic energy from the total energy released.

Therefore, we can write for the degree of reaction

R =
2 1

2 2 2 2
1 1

1 1
( ) cot

2 21
f fe V V V

e e

a- -
= -

(Since V 1
2
 – V f2

2
 = V 1

2
 – V f1

2
 = V f1

2
 cot

2
 a1)

using the expression of e from Eq. (15.29), we have

R = 1

1 1

cot
1

2(cot cot )

a

a b
-

+
(15.35)

The inlet blade angle b1 of a Francis runner varies from 45–120° and the guide

vane angle a1 from 10–40°. The ratio of blade width to the diameter of runner

B/D, at blade inlet, depends upon the required specific speed and varies from 1/20

to 2/3.

Expression for Specific Speed The dimensional specific speed of a turbine, as

given by Eq. (15.18), can be written as

NsT =

1/ 2

5/ 4

NP

H

Power generated P for a turbine can be expressed in terms of available head H

and hydraulic efficiency hh as

P = r Q g H hh

Hence, it becomes

NsT
 = N (r Q g hh)

1/2
 H –3/4

(15.36)

Again, N = U1/pD1,

Substituting U1 from Eq. (15.33b),

N = 1 1 1

1

(cot cot )fV

D

a b

p

+
(15.37)

Available head H equals the head delivered by the turbine plus the head lost at the

exit. Thus,
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gH = e + (V f2

2
/2)

Since Vf1
 = Vf2

gH = e + (V f1

2/2)

with the help of Eq. (15.34), it becomes

gH = V f1

2
 cot a1 (cot a1 + cot b1) + 1

2

2

fV

or H = 1

2

2

fV

g
[1 + 2 cot a1 (cot a1 + cot b1)] (15.38)

Substituting the values of H and N from Eqs (15.38) and (15.37) respectively into

the expression of NsT
 given by Eq. (15.36), we get,

NsT
 = 2

3/4g5/4
 (r hh Q)

1/2
 1

1/ 2

1

fV

Dp

-

 (cot a1 + cot b1) [1+2 cot a1

(cot a1 + cot b1)]
–3/4

Flow velocity at inlet V f1
 can be substituted from the equation of continuity as

Vf1
 =

1

Q

D Bp

where B is the width of the runner at its inlet.

Finally, the expression for NsT
 becomes,

NsT
 = 23/4g5/4 (r hh)

1/2 

1/ 2

1

B

Dp

Ê ˆ
Á ˜Ë ¯

 (cot a1 + cot b1)

[1+2 cot a1 (cot a1 + cot b1)]
–3/4 (15.39)

For a Francis turbine, the variations of geometrical parameters like a1 , b1 B/D

have been described earlier. These variations cover a range of specific speed

between 50 and 400. Higher specific speed corresponds to a lower head. This

requires that runner should admit a comparatively large quantity of water. For a

runner of given diameter, the maximum flow rate is achieved when the flow is

parallel to the axis. Such a machine is known as an axial flow reaction turbine. It

was first designed by an Austrian engineer, Viktor Kaplan and is therefore named

after him as Kaplan turbine.

Example 15.9

A Francis turbine has a diameter of 1.4 m and rotates at 430 rpm. Water enters the

runner without shock with a flow velocity of 9.5 m/s and leaves the runner without

whirl with an absolute velocity of 7 m/s. The difference between the sum of the

static and potential heads at the entrance to the runner and at the exit from the
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runner is 62 m. The turbine develops 12.25 MW. The flow rate through the turbine

is 12 m3/s for a net head of 115 m.

Find (i) absolute velocity of water at entry to the runner and the angle of the inlet

guide vanes, (ii) entry angle of the runner blades, and (iii) loss of head in the runner.

Solution

The inlet and outlet velocity triangles are drawn as shown below:

a1 b1
B2

Vw1

V1

Vr1
Vr2

Vf1

U1

U2

V2

Inlet Outlet

90º

(i) Runner tip speed U1 = 
430 1.4

60 60

NDp p ¥ ¥
=  = 31.52 m/s

Since, Vw2
 = 0,

Power given to the runner by water = r Q V w1
 U1

Hence, 12.25 ¥ 10
6
 = 10

3
 ¥ 12 ¥ V w1

 ¥ 31.52

which gives Vw1
 = 32.39 m/s

Inlet guide vane angle, a1 is given by

tan a1 = [9.5 / 32.29]

or a1 = tan–1 [9.5/32.39] = 16.35°

From the inlet velocity diagram, the absolute velocity at runner inlet

V 1 = [V f1

2 + V w1

2]1/2 = [(9.5)2 + (32.39)2]1/2 = 33.75 m/s

(ii) Runner blade entry angle b1 is given by

tan b1 =
9.5

32.39 31.52-

which gives b1 = 84.77°

(iii) Total head across the runner

= Head transferred to the runner
+ Head lost in the runner

At the inlet, H1 = (p1/rg) + (V 1
2/2g) + z1

At the outlet, H2 = (p2/rg) + (V 2
2
/2g) + z2
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where, z1 and z2 are the elevations of runner inlet and outlet from a reference datum.

For zero whirl at outlet, the work done per unit weight of the fluid = [V w1
 U1/g]

Hence loss of head in the runner becomes

hL = H1 – H2 – [V w1
 U1/g]

=
1

2 2
1 2 1 2

1 2 1[ ] /
2

w

p p V V
z z V U g

g gr

È ˘- -È ˘ È ˘+ + - -Í ˙Í ˙ Î ˚Î ˚ Î ˚

It is given that 1 2p p

gr

-È ˘
Í ˙Î ˚

 + [z1 – z2] = 62 m

Therefore, hL = 62 + 
2 2(33.75) (7) 31.52 32.39

2 9.81 9.81

È ˘- ¥È ˘-Í ˙ Í ˙¥ Î ˚Î ˚
= 13.49 m

Example 15.10

An inward flow vertical shaft reaction turbine runs at a speed of 375 rpm under an

available total head of 62 m above the atmospheric pressure. The external diameter

of the runner is 1.5 m and the dimensionless specific speed based on the power

transferred to the runner is 0.14 rev. Water enters the turbine without shock with a

flow velocity of 9 m/s and leaves the runner without whirl with an absolute velocity

of 7 m/s. The discharge velocity of water at tailrace is 2.0 m/s. The mean height of

the runner entry plane is 2 m above the tailrace level while the entrance to the draft

tube is 1.7 m above the tailrace level. At the entrance to the runner, the static

pressure head is 35 m above the atmospheric pressure, while at exit from the runner,

the static pressure head is 2.2 m below the atmospheric pressure.

Assuming a hydraulic efficiency of 90 %, find (i) the runner blade entry angle,

and (ii) the head loss in the guide vanes, in the runner and in the draft tube.

Solution

(i) Runner speed at the inlet, U1 = 
375 1.5

60 60

NDp p ¥ ¥
=

= 29.45 m/s

Since Vw2
 = 0,

the power transferred to the runner per unit mass flow of water = V w1
 U1

Hydraulic efficiency, hh = 1 1wV U

g H

Therefore, 0.9 = 1
29.45

9.81 62

wV ¥

¥
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or Vw1
 =

0.9 9.81 62

29.45

¥ ¥
 = 18.59 m/s

The inlet velocity triangle is shown below:

Vr1

Vf1

U1

V1

b1

Vw1

From the velocity triangle,

tan (180° – b1) =
1

11

9

(29.45 18.59)

f

w

V

U V
=

- -  = 0.83

Hence, b1 = 140.35°

(ii) Let the loss of head in the guide vanes be h1g
. Then applying Bernoulli’s

equation between the inlet to guide vanes and exit from the guide vanes (i.e., the

inlet to the runner), we have

2
0 0

0
2

p V
z

g gr
+ +  = 

2
1 1

1 1
2 g

p V
z h

g gr
+ + +

(0 and 1 apply to inlet and exit of guide vanes, respectively)

From the velocity triangle at runner inlet,

V 1
2 = (18.59)2 + (9)2 = 426.59 m2/s2

Again,
2

0 0
0

2

p V
z

g gr
+ +  = 62 m (total head to the turbine)

Therefore, 62 = 1

426.59
35 2

2 9.81 g
h

Ê ˆ+ + +Á ˜Ë ¯¥

Hence, h1g
 = 62 – 58.74 = 3.26 m

For the loss of head in the runner h1r
, the application of Bernoulli’s equation

between points at the runner entry and runner exit gives

2
1 1

1
2

p V
z

g gr
+ +  =

2
2 2

2 1
2 r

p V
z h W

g gr
+ + + +

where W  is the work head delivered by the fluid to the runner and is given by

W  = 1 1 18.59 29.45

9.81

wV U

g

¥
=  = 55.81 m
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Therefore,

h1r =
2426.59 7

35 2 2.2 1.7
2 9.81 2 9.81

È ˘È ˘
+ + - - + +Í ˙Í ˙¥ ¥Î ˚ Î ˚

 – 55.81

= 58.74 – 2.0 – 55.81 = 0.93 m

For the losses of head h1d
 in the draft tube, the Bernoulli’s equation between the

points at entry and exit of the draft tube gives

2
2 2

2
2

p V
z

g gr
+ +  = 

2
3 3

3 1
2 d

p V
z h

g gr
+ + +

where subscript 2 represents the runner outlet, i.e., the inlet of draft tube, and

subscript 3 represents the exit from draft tube. p3 is the atmospheric pressure (zero

gauge) and z3 is the datum level.

Therefore,

49
2.2 1.7

2 9.81

È ˘- + +Í ˙¥Î ˚
 = 1

4
0 0

2 9.81 d
h

È ˘+ + +Í ˙¥Î ˚

which gives, h1d
 = 1.8 m

Example 15.11

The diameter of the runner of a vertical-shaft turbine is 450 mm at the inlet. The

width of the runner at the inlet is 50 mm. The diameter and width at the outlet are

300 mm and 75 mm, respectively. The blades occupy 8% of the circumference. The

guide vane angle is 24°, the inlet angle of the runner blade is 95° and the outlet angle

is 30°. The fluid leaves the runner without any whirl. The pressure head at the inlet

is 55 mm above that at the exit from the runner. The fluid friction losses account for

18% of the pressure head at the inlet. Calculate the speed of the runner and the

output power (use mechanical efficiency as 95%).

Solution

Applying Bernoulli’s equation between the inlet and the outlet of the runner, we

have

2
1 1

2

p V

g gr
+  =

2
2 2

1
2 r

p V
W h

g gr
+ + + (15.40)

where W  is the work head given by the fluid to runner and h1r
 is the head loss in the

runner, subscript 1 represents the runner inlet while 2 represents the runner outlet.

1 2p p

g gr r
-  = 55 m (given in the problem)

and  h1r
 = 0.18 ¥ 55 = 9.9 m (given in the problem)
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The inlet and outlet velocity triangles are shown below:

a1= 24º

b1 = 95º b2 = 30º

Vw1

V1

Vr1
Vr2

Vf1

U1

U2

V2

Inlet Outlet

W  = [V w1
 U1]/g

From inlet velocity triangle,

Vw1
 = V 1 cos 24° = 0.913 V 1

From continuity,

V f1
 D1 B1 = V 2 D2 B2

or V f1
 ¥ 450 ¥ 50 = V 2 ¥ 300 ¥ 75

which gives V 2 = Vf1

Therefore, V 2 = V f1
 = V 1 sin 24° = 0.406 V 1

From the consideration of rotational speed,

U1/D1 = U2/D2

or U1 = 1
2 2

2

450

300

D
U U

D
=  = 1.5 U2

Again, from the outlet velocity triangle,

U2 = 2 10.406

tan 30 tan 30

V V
=

∞ ∞
 = 0.703 V 1

Hence, U1 = 1.5 ¥ 0.703 V 1 = 1.05 V 1

Therefore, W  = [V w1
 U1]/g = 2

1

0.913 1.05
V

g

¥
 = 

0 96 1
2

. V

g

Now Eq. (15.40) can be written as

55 – 9.9 =
2 2 2

1 1 1(0.406 ) 0.96

2 2

V V V

g g g

-
+ +

or 45.1 =
2

1

2

V

g
 [–1 + (0.406)2 + 2 ¥ 0.96] = 1.08 

2
1

2

V

g

Hence, V 1 = [45.1 ¥ 2 ¥ 9.81/1.08]
1/2

 = 28.62 m/s
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U1 = 1.05 ¥ 28.62 = 30.05 m/s

Therefore, N = 30.05 / [p ¥ 0.45] = 21.26 rev./s

Rate of flow, Q = 0.92 p D1 B1 ¥ V f1

Vf1
 = 0.406 ¥ 28.62 = 11.62 m/s

Hence, Q = 0.92 ¥ p ¥ 0.45 ¥ (0.05) ¥ 11.62 = 0.755 m3/s

Therefore, power developed, P = r Q V w1
 U1

= 10
3
 ¥ 0.755 ¥ (0.96) ¥ (28.62)

2
 = 593.60 kW

15.4.3 Development of Kaplan Runner from the Change in the Shape
of Francis Runner with Specific Speed

Figure 15.11 shows in stages the change in the shape of a Francis runner with the

variation of specific speed. The first three types [Fig. 15.11(a), (b) and (c)] have, in

order, the Francis runner (radial flow runner) at low, normal and high specific

speeds. As the specific speed increases, discharge becomes more and more axial.

The fourth type, as shown in Fig. 15.11(d), is a mixed flow runner (radial flow at

inlet but axial flow at outlet) and is known as Dubs runner, which is mainly suited

for high specific speeds. Figure 15.11(e) shows a propeller type runner with a less

number of blades where the flow is entirely axial (both at inlet and outlet). This type

of runner is the most suitable one for very high specific speeds and is known as

Kaplan runner or axial flow runner.

From the inlet velocity triangle for each of the five runners, as shown in

Figs 15.11(a) to 15.11(e), it is found that an increase in specific speed (or a

decreased in head) is accompanied by a reduction in inlet velocity V 1. But the flow

velocity V f1 at the inlet increases allowing a large amount of fluid to enter the

turbine. The most important point to be noted in this context is that the flow at the

inlet to all the runners, except the Kaplan one, is in radial and tangential directions.

Therefore, the inlet velocity triangles of those turbines (Figs 15.11(a) to 15.11(d))

are shown in a plane containing, the radial and tangential directions, and hence the

flow velocity V f1 represents the radial component of velocity.

In case of a Kaplan runner, the flow at inlet is in axial and tangential directions.

Therefore, the inlet velocity triangle in this case (Fig. 15.11(e)) is shown in a plane

containing the axial and tangential directions, and hence the flow velocity V f1

represents the axial component of velocity V a. The tangential component of velocity

is almost nil at the outlet of all runners. Therefore, the outlet velocity triangle (Fig.

15.11(f)) is identical in shape for all the runners. However, the exit velocity V 2 is

axial in Kaplan and Dubs runner, while it is the radial one in all other runners.
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b1

b1

b1

b1

a1

Vw1

Vw1

Vw1

Vw1

Vw1

U1

U1

U1

U1

U1

U2

Vf1
V1

V1

V1

V1

V1

V2

Vf1

Vf1

Vf1

Vf1

Vr1

Vr1

Vr1

Vr1

Vr1

Vr2

b1

b1

b1

b1

b1

b2

a1

a1

a1

a1

a1

a2 = 90º

Outlet velocity triangle

(f)

(e) Kaplan runner

For all reaction (Francis as
well as Kaplan) runners

=

(a) Francis runner for low specific speeds

(b) Francis runner for normal specific speeds

(c) Francis runner for high specific speeds

(d) Dubs runner

Fig. 15.11 Evolution of Kaplan runner from Francis one
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Figure 15.12 shows a schematic diagram of a propeller or Kaplan turbine. The

function of the guide vane is same as in case of a Francis turbine. Between the guide

vanes and the runner, the fluid in a propeller turbine turns through a right-angle into

the axial direction and then passes through the runner. The runner usually has four or

six blades and closely resembles a ship’s propeller. Neglecting the frictional effects,

the flow approaching the runner blades can be considered to be a free vortex with

whirl velocity being inversely proportional to the radius, while on the other hand, the

blade velocity is directly proportional to the radius. To take care of this different

relationship of the fluid velocity and the blade velocity with the change in radius, the

blades are twisted. The angle with the axis is greater at the tip than at the root.

Guide vane

Runner

Fig. 15.12 A propeller or Kaplan turbine

Example 15.12

An axial flow hydraulic turbine has a net head of 23 m across it, and when running

at a speed of 150 rpm, develops 23 MW. The blade tip and hub diameters are 4.75 and
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2.0 m, respectively. If the hydraulic efficiency is 93 % and the overall efficiency

85 %, calculate the inlet and outlet blade angles at the mean radius, assuming axial

flow at outlet.

Solution

Mean diameter, dm = (4.75 + 2)/2 = 3.375 m

Power available from the fluid= (Power developed)/(Overall efficiency)

Hence, 10
3
 ¥ 9.81 ¥ 23 ¥ Q =

6
23 10

0.85

¥

which gives the flow rate, Q = 119.92 m3/s

Rotor speed at mean diameter,

Um =
150 3.375

60 60

mN dp p ¥ ¥
=  = 26.51 m/s

Power developed by the runner = Power available from the fluid ¥ hh

= (23/0.85) ¥ 10
6
 ¥ 0.93 W

= 25.16 MW

Therefore, 103 ¥ 119.92 ¥ V w1 ¥ 26.51 = 25.16 ¥ 106

which gives Vw1
 = 7.92 m/s.

Axial velocity, V a = 2 2

119.92

[(4.75) (2) ]/4p -

= 8.22 m/s

Inlet and outlet velocity triangles are shown below:

a1
b1

b2

V1
Vr1

Vr2

Va

Um
Um

Um

V V2 = a

Inlet Outlet

Vw1

For the inlet velocity triangle,

tan b1 =

1

8.22

26.51 7.92
a

m w

V

U V
=

- -
which gives b1 = 23.85°

At outlet, tan b2 = V a/Um = 8.22/26.51

which gives b2 = 17.23°
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Different Types of Draft Tubes incorporated in Reaction Turbines The

draft tube is an integral part of a reaction turbine. Its principle has been explained

earlier. The shape of the draft tube plays an important role especially for high specific

speed turbines, since the efficient recovery of kinetic energy at the runner outlet depends

mainly on it. Typical draft tubes, employed in practice, are discussed as follows.

Straight Divergent Tube (Fig. 15.13(a)) The shape of this tube is that of a

frustrum of a cone. It is usually employed for low specific speed, vertical shaft

Francis turbine. The cone angle is restricted to 8° to avoid the losses due to

separation. The tube must discharge sufficiently low under tail water level. The

maximum efficiency of this type of draft tube is 90%. This type of draft tube

improves speed regulation on falling load.

Simple Elbow Type (Fig. 15.13(b)) The vertical length of the draft tube should

be made small in order to keep down the cost of excavation, particularly in rock.

The exit diameter of the draft tube should be as large as possible to recover kinetic

energy at the runner’s outlet. The cone angle of the tube is again fixed from the

consideration of losses due to flow separation. Therefore, the draft tube must be

bent to keep its definite length. Simple-elbow-type draft tube will serve such a

purpose. Its efficiency is, however, low (about 60%). This type of draft tube turns

the water from the vertical to the horizontal direction with a minimum depth of

excavation. Sometimes, the transition from a circular section in the vertical portion

to a rectangular section in the horizontal part (Fig. 15.13(c)) is incorporated in the

design to have a higher efficiency of the draft tube. The horizontal portion of the

draft tube is generally inclined upwards to lead the water gradually to the level of

the tail race and to prevent entry of air from the exit end.

(a) Straight type (b) Simple elbow type (c)

dia

h = 2 to 3.5d

d

h

Elbow type with
varying cross-section

4° 4°

Fig. 15.13 Different types of draft tubes

Cavitation in Reaction Turbines The phenomenon of cavitation has already

been discussed in Section 5.5 in Chapter 5. To avoid cavitation, the minimum

pressure in the passage of a liquid flow, should always be more than the vapour

pressure of the liquid at the working temperature. In a reaction turbine, the point of

minimum pressure is usually at the outlet end of the runner blades, i.e., at the inlet to

the draft tube. For the flow between such a point and the final discharge into the tail
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race (where the pressure is atmospheric), the Bernoulli’s equation can be written, in

consideration of the velocity at the discharge from draft tube to be negligibly small, as

2

2

e ep V
z

g gr
+ +  = atmp

gr
 + hf (15.41)

where, pe and V e represent the static pressure and velocity of the liquid at

the outlet of the runner (or at the inlet to the draft tube). The larger the value of V e,

the smaller is the value of pe and the cavitation is more likely to occur. The

term hf in Eq. (15.41) represents the loss of head due to friction in the draft

tube and z is the height of the turbine runner above the tail water surface.

For cavitation not to occur pe > pv, where pv is the vapour pressure of the liquid at

the working temperature.

An important parameter in the context of cavitation is the available suction

head (inclusive of both static and dynamic heads) at exit from the turbine and

is usually referred to as the net positive suction head ‘NPSH’ which is defined as

NPSH =
2

2

e e vp V p

g g gr r
+ - (15.42)

With the help of Eq. (15.41) and in consideration of negligible frictional losses in

the draft tube (hf = 0), Eq. (15,42) can be written as

NPSH = atm vp p

g gr r
-  – z (15.43)

A useful design parameter s, known as Thoma’s cavitation parameter (after the

German engineer Dietrich Thoma, who first introduced the concept) is defined as

s =
NPSH

H
 = atm( / ) ( / )vp g p g z

H

r r- -
(15.44)

For a given machine, operating at its design condition, another useful parameter sc,

known as critical cavitation parameter is defined as

sc =
atm( / ) ( / )ep g p g z

H

r r- -
(15.45)

Therefore, for cavitation not to occur, s > sc (since, pe > pv).

If either z or H is increased, s is reduced. To determine whether cavitation is

likely to occur in a particular installation, the value of s may be calculated. When

the value of s is greater than the value of sc for a particular design of turbine,

cavitation is not expected to occur.

In practice, the value of sc is used to determine the maximum elevation of the

turbine above tail water surface for cavitation to be avoided. The parameter sc

increases with an increase in the specific speed of the turbine. Hence, turbines

having higher specific speed must be installed closer to the tail water level.

15.4.4 Performance Characteristics of Reaction Turbines

It is not always possible in practice, although desirable, to run a machine at its

maximum efficiency due to changes in operating parameters. Therefore, it becomes

important to know the performance of the machine under conditions for which the

efficiency is less than the maximum. It is more useful to plot the basic dimensionless
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performance parameters (Fig. 15.14) as derived earlier from the similarity principles

of fluid machines. Thus one set of curves, as shown in Fig. 15.14, is applicable not just

to the conditions of the test, but to any machine in the same homologous series, under

any altered conditions.

(1)

(1) / ( )æ Q D gH2 1/2

ND gH/( )1/2

(2) hhæ

hh

(3) / ( )P D gHr 2 3/2æ
D gH2 1/2( )

Q

P

rD gH2 3/2( )

(2)

(3)

Fig. 15.14 Performance characteristics of a reaction turbine (in dimensionless

parameters)

Figure 15.15 is one of the typical plots where variation in efficiency of different

reaction turbines with the rated power is shown.
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Fig. 15.15 Variation of efficiency with load
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Comparison of Specific Speeds of Hydraulic Turbines Specific speeds and

their ranges of variation for different types of hydraulic turbines have already been

discussed earlier. Figure 15.16 shows the variation of efficiencies with the

dimensionless specific speed of different hydraulic turbines. The choice of a

hydraulic turbine for a given purpose depends upon the matching of its specific

speed corresponding to maximum efficiency with the required specific speed

determined from the operating parameters, namely, N (rotational speed), P (power)

and H (available head).

Francis turbines

Axial flow turbines

E
ff
ic
ie
n
cy
,

h

Dimensionless specific speed, (radian)KsT

Pelton wheel

0

0.82

0.86

0.90

0.94

0.98

1 2 3 4

Fig. 15.16 Variation of efficiency with specific speed for hydraulic turbines

Governing of Reaction Turbines Governing of reaction turbines is usually

done by altering the position of the guide vanes and thus controlling the flow

rate by changing the gate openings to the runner. The guide blades of a reaction

turbine (Fig. 15.17) are pivoted and connected by levers and links to the

regulating ring. Two long regulating rods, being attached to the regulating ring

at their one ends, are connected to a regulating lever at their other ends.  The

regulating lever is keyed to a regulating shaft which is turned by a servomotor

piston of the oil pressure governor. The penstock feeding the turbine inlet has a

relief valve better known as ‘pressure regulator’.

When the guide vanes have to be suddenly closed, the relief valve opens and

diverts the water to the tail race. Its function is, therefore, similar to that of the

deflector in Pelton turbines. Thus the double regulation, which is the simultaneous

operation of two elements is accomplished by moving the guide vanes and relief
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Connected to oil pressure
governor piping

Regulating
ring

Turbine inlet

Regulating
lever

Regulating rod

Servomotor

Spiral casing

Fig. 15.17 Governing of reaction turbine

valve in Francis turbine by the governor. Double regulation system for Kaplan

turbines comprises the movement of guide vanes as well as of runner vanes.

15.4.5 Rotodynamic Pumps

A rotodynamic pump is a device where mechanical energy is transferred from the

rotor to the fluid by the principle of fluid motion through it. Therefore, it is

essentially a turbine in reverse. Like turbines, pumps are classified according to the

main direction of fluid path through them like (i) radial flow or centrifugal, (ii) axial

flow and (iii) mixed flow types.

Centrifugal Pumps The centrifugal pump, by its principle, is converse of the

Francis turbine. The flow is radially outward, and hence the fluid gains in centrifugal

head while flowing through it. However, before considering the operation of a pump

in detail, a general pumping system is discussed as follows.

General Pumping System and the Net Head Developed by a Pump The

word pumping, referred to a hydraulic system commonly implies to convey liquid

from a low to a high reservoir. Such a pumping system, in general, is shown in Fig.

15.18. At any point in the system, the elevation or potential head is measured from

a fixed reference datum line. The total head at any point comprises the pressure

head, the velocity head and the elevation head. For the lower reservoir, the total

head at the free surface is HA  and is equal to the elevation of the free surface above

the datum line since the velocity and static gauge pressure at A  are zero. Similarly, the

total head at the free surface in the higher reservoir is (HA  + HS) and is equal to the

elevation of the free surface of the reservoir above the reference datum.
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The variation of total head as the liquid flows through the system is shown in Fig.

15.19. The liquid enters the intake pipe causing a head loss hin for which the total

energy line drops to point B corresponding to a location just after the entrance to

intake pipe. The total head at B can be written as

HB = HA  – hin

As the fluid flows from the intake to the inlet flange of the pump at elevation z1

the total head drops further to the point C (Fig. 15.19) due to pipe friction and other

losses equivalent to hf1
. The fluid then enters the pump and gains energy imparted

by the moving rotor of the pump. This raises the total head of the fluid to a point D

(Fig. 15.19) at the pump outlet (Fig. 15.18).

In course of flow from the pump outlet to the upper reservoir, friction and other

losses account for a total head loss of hf2
 down to a point E. At E an exit loss he

occurs when the liquid enters the upper reservoir, bringing the total head at point F

(Fig. 15.19) to that at the free surface of the upper reservoir. If the total heads are

measured at the inlet and outlet flanges respectively, as done in a standard pump

test, then

Reference datum

B

p / g1 r

p /2 rg

V1

V2

z1 z2

Hs

HA

A

C

D

E F

Fig. 15.18 A general pumping system
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HA

H

H + HA S

D
E

hf2

hf1

heF

A

hin

B

C

Fig. 15.19 Change of head in a pumping system

Total inlet head to the pump = (p1/rg) + (V 2
1/2g) + z1

Total outlet head of the pump = (p2/rg) + (V 2
2
/2g) + z2

where V 1 and V 2 are the velocities in suction and delivery pipes respectively.

Therefore, the total head developed by the pump,

H = [(p2 – p1) /rg] + [(V 2
2 

–V 1
2
)/2g] + [z2 – z1] (15.46)

The head developed H is termed as the manometric head. If the pipes connected

to inlet and outlet of the pump are of the same diameter, V 2 = V 1, and therefore the

head developed or manometric head H is simply the gain in Piezometric pressure

head across the pump which could have been recorded by a manometer connected

between the inlet and outlet flanges of the pump. In practice, (z2 – z1) is so small in

comparison to (p2 – p1)/rg that it is ignored. It is therefore not surprising to find that

the static pressure head across the pump is often used to describe the total head

developed by the pump. The vertical distance between the two levels in the

reservoirs Hs is known as the static head or static lift. Relationship between Hs, the

static head and H, the head developed can be found out by applying Bernoulli’s

equation between A  and C and between D and F (Fig. 15.18) as follows:

Between A  and C,

0 + 0 + HA  =
1

2
1 1

1 in
2

f

p V
z h h

g gr
+ + + + (15.47)

Between D and F,

2
2 2

2
2

p V
z

g gr
+ +  = 0 0

2
+ + + + +H H h hs A f e (15.48)

substituting HA  from Eq. (15.47) into Eq. (15.48), and then with the help of

Eq. (15.46), we can write
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H = Hs + hin + hf1
 + hf2

 + he

= Hs + S losses (15.49)

Therefore, we have, the total head developed by the pump = Static head + Sum of all

the losses.

The simplest form of a centrifugal pump is shown in Fig. 15.20. It consists of

three important parts (i) the rotor, usually called as impeller, (ii) the volute casing

and (iii) the diffuser ring. The impeller is a rotating solid disc with curved blades

standing out vertically from the face of the disc. The tips of the blades are sometimes

covered by another flat disc to give shrouded blades, otherwise the blade tips are

left open and the casing of the pump itself forms the solid outer wall of the blade

passages. The advantage of the shrouded blade is that flow is prevented from leaking

across the blade tips from one passage to another.

Stationary
diffuser vanes

Diffuser

With diffuserWithout diffuser

Impeller

Volute

Fig. 15.20 A centrifugal pump

As the impeller rotates, the fluid is drawn into the blade passage at the impeller

eye, the centre of the impeller. The inlet pipe is axial and therefore fluid enters the

impeller with very little whirl or tangential component of velocity and flows

outwards in the direction of the blades. The fluid receives energy from the impeller

while flowing through it and is discharged with increased pressure and velocity into

the casing. To convert the kinetic energy of fluid at the impeller outlet gradually

into pressure energy, diffuser blades mounted on a diffuser ring are used.

The stationary blade passages so formed have an increasing cross-sectional area

which reduces the flow velocity and hence increases the static pressure of the fluid.

Finally, the fluid moves from the diffuser blades into the volute casing which is a

passage of gradually increasing cross section and also serves to reduce the velocity

of fluid and to convert some of the velocity head into the static head. Sometimes

pumps have only volute casing without any diffuser.
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Figure 15.21 shows an impeller of a centrifugal pump with the velocity triangles

drawn at the inlet and the outlet. The blades are curved between the inlet and outlet

radius. A particle of fluid moves along the broken curve shown in Fig.15.21.

w

b1

b1

a1

a2

a2

b2

b2
Vf

2

V2

Vw2

U2

Vr1

Vr2

Vw1

V 1

U 1

Fig. 15.21 Velocity triangles for centrifugal pump impeller

Let b1 be the angle made by the blade at the inlet with the tangent to the inlet

radius, while b2 is the blade angle with the tangent at the outlet. V 1 and V 2 are the

absolute velocities of fluid at inlet and outlet respectively, while V r1
 and V r2

 are the

relative velocities (with respect to blade velocity) at inlet and outlet respectively.

Therefore, according to Eq. (15.3),

Work done on the fluid per unit weight = (V w2
 U2 – V w1

 U1)/g (15.50)

A centrifugal pump rarely has any sort of guide vanes at the inlet. The fluid

therefore approaches the impeller without an appreciable whirl and so the inlet

angle of the blades is designed to produce a right-angled velocity triangle at the

inlet (as shown in Fig. 15.21). At conditions other than those for which the

impeller was designed, the direction of relative velocity V r does not coincide

with that of a blade. Consequently, the fluid changes direction abruptly on

entering the impeller. In addition, the eddies give rise to some back flow into the

inlet pipe, thus causing fluid to have some whirl before entering the impeller.

However, considering the operation under design conditions, the inlet whirl velocity
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V w1
 and accordingly the inlet angular momentum of the fluid entering the impeller is

set to zero. Therefore, Eq. (15.50) can be written as

Work done on the fluid per unit weight = V w2
 U2/g (15.51)

We see from this equation that the work done is independent of the inlet radius.

The difference in total head across the pump [given by Eq. (15.46)], known as

manometric head, is always less than the quantity V w2
U2/g because of the energy

dissipated in eddies due to friction.

The ratio of manometric head H, and the work head imparted by the rotor on the

fluid V w2
 U2/g (usually known as Euler head) is termed as manometric efficiency

hm. It represents the effectiveness of the pump in increasing the total energy of the

fluid from the energy given to it by the impeller. Therefore, we can write

hm =
2 2w

gH

V U
(15.52)

The overall efficiency h0 of a pump is defined as

h0 =
Q g H

P

r
(15.53)

where, Q is the volume flow rate of the fluid through the pump, and P is the shaft

power, i.e., the input power to the shaft. The energy required at the shaft exceeds

V w2
 U2/g because of friction in the bearings and other mechanical parts. Thus a

mechanical efficiency is defined as

hmech =
2 2wQV U

P

r
(15.54)

so that, h0 = hm ¥ hmech (15.55)

Slip Factor Under certain circumstances, the angle at which the fluid leaves the

impeller may not be the same as the actual blade angle. This is due a phenomenon

known as fluid slip, which finally results in a reduction in V w2 the tangentialc

component of fluid velocity at impeller outlet. One possible explanation for slip is

given as follows.

In course of flow through the impeller passage, there occurs a difference in

pressure and velocity between the leading and trailing faces of the impeller blades.

On the leading face of a blade there is relatively a high pressure and low velocity,

while on the trailing face, the pressure is lower and hence the velocity is higher. This

results in a circulation around the blade and a non-uniform velocity distribution at

any radius. The mean direction of flow at outlet, under this situation, changes from

the blade angle at outlet b2 to a different angle b ¢2 as shown in Fig. 15.22. Therefore

the tangential velocity component at outlet V w2
 is reduced to V ¢w2

, as shown by the

velocity triangles in Fig. 15.22, and the difference DV w is defined as the slip. The

slip factor ss is defined as

ss = V¢w2
/Vw2
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U2

Vw 2

Vf2
V 2

b2

b¢2

Vr2

Vw¢ 2

DVw

Circulation

Ideal

Actual

+ High pressure

-Low pressure

p

w

p2

Fig. 15.22 Slip and velocity distribution in the impeller blade passage of a

centrifugal pump

With the application of slip factor ss, the work head imparted to the fluid (Euler

head) becomes ssV w2
 U2/g. The typical values of slip factor lie in the region of 0.9.

Losses in a Centrifugal Pump It has been mentioned earlier that the shaft

power P or energy that is supplied to the pump by the prime mover is not the same

as the energy received by the liquid. Some energy is dissipated as the liquid passes

through the machine. The losses can be divided into different categories as follows:

(a) Mechanical friction power loss due to friction between the fixed and rotat-

ing parts in the bearing and stuffing boxes.

(b) Disc friction power loss due to friction between the rotating faces of the

impeller (or disc) and the liquid.

(c) Leakage and recirculation power loss. This is due to loss of liquid from the

pump and recirculation of the liquid in the impeller. The pressure difference

between impeller tip and eye can cause a recirculation of a small volume of

liquid, thus reducing the flow rate at outlet of the impeller as shown in Fig.

15.23.
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QQ Q

Main flowLeakage flow between
blade and casing q

Q

Q

Fig. 15.23 Leakage and recirculation in a centrifugal pump

Characteristics of a Centrifugal Pump With the assumption of no whirl

component of velocity at entry to the impeller of a pump, the work done on the fluid

per unit weight by the impeller is given by Eq. (15.51). Considering the fluid to be

frictionless, the head developed by the pump will be the same and can be considered

as the theoretical head developed. Therefore we can write for theoretical head

developed Htheo as

Htheo =
2 2wV U

g
(15.56)

From the outlet velocity triangle (Fig. 15.21).

V w2
 = U2 – V f2

 cot b2 = U2 – (Q/A )cot b2 (15.57)

where Q is rate of flow at impleller outlet and A  is the flow area at the periphery of

the impeller. The blade speed at outlet U2 can be expressed in terms of rotational

speed of the impeller N as

U2 = p D N

Using this relation and the relation given by Eq. (15.57), the expression of

theoretical head developed can be written from Eq. (15.56) as

Htheo = p2D2N2
 – 2cot

DN
Q

A

p
bÈ ˘

Í ˙Î ˚
= K1 – K2Q (15.58)

where, K1 = 
2 2 2
D N

g

p
and K2 = (p DN/gA) cot b2

For a given impeller running at a constant rotational speed. K1 and K2 are

constants, and therefore head and discharge bears a linear relationship as shown by

Eq. (15.58). This linear variation of Htheo with Q is plotted as curve I in Fig. 15.24.

If slip is taken into account, the theoretical head will be reduced to ssV w2
U2/g.

Moreover the slip will increase with the increase in flow rate Q. The effect of slip in

head-dicharge relationship is shown by the curve II in Fig. 15.24. The loss due to

slip can occur in both a real and an ideal fluid, but in a real fluid the shock losses at
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entry to the blades, and the friction losses in the flow passages have to be

considered. At the design point the shock losses are zero since the fluid moves

tangentially onto the blade, but on either side of the design point the head loss due to

shock increases according to the relation

hshock = K3 (Qf – Q)2 (15.59)

Slip

Eq. (15.53)

Design point

Eq. (15.54)
hs chock

hf

Hydraulic
losses

H

Q

I

II

III

V

IV

(1 ) theo- ss H

Fig. 15.24 Head-discharge characteristics of a centrifugal pump

where Qf is the off design flow rate and K3 is a constant. The losses due to friction

can usually be expressed as

hf = K4Q
2 (15.60)

where, K4 is a constant.

Equations (15.59) and (15.60) are also shown in Fig. 15.24 (curves III and IV) as

the characteristics of losses in a centrifugal pump. By substracting the sum of the

losses from the head in consideration of the slip, at any flow rate (by substracting

the sum of ordinates of the curves III and IV from the ordinate of the curve II at all

values of the abscissa), we get the curve V  which represents the relationship of the

actual head with the flow rate, and is known as the head-discharge characteristic

curve of the pump.
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Effect of Blade Outlet Angle The head-discharge characteristic of a centrifugal

pump depends (among other things) on the outlet angle of the impeller blades which

in turn depends on the blade settings. Three types of blade settings are possible

(i) the forward facing for which the blade curvature is in the direction of rotation

and, therefore, b2 > 90° (Fig. 15.25a), (ii) radial, when b2 = 90° (Fig. 15.25b),

and (iii) backward facing for which the blade curvature is in a direction opposite to

that of the impeller rotation and therefore b2 < 90° (Fig. 15.25c). The outlet velocity

triangles for all the cases are also shown in Figs 15.25(a), 15.25(b), 15.25(c). From

the geometry of any triangle, the relationship between V w, U2 and b2 can be written

as

U2

U2
U2

V2
V2 V2

Vr2
Vr2 Vr2

b2 90º> b2 90º= b2 < 90º

(a) Forward-facing vanes (b) Radial vanes (c) Backward-facing vanes

Fig. 15.25 Outlet velocity triangles for different blade settings in a centrifugal

pump

V w2
 = U2 – V f2

 cot b2

which was expressed earlier by Eq. (15.51).

In case of forward facing blade, b2 > 90° and hence cot b2 is negative and

therefore V w2
 is more than U2. In case of radial blade, b2 = 90° and V w2

 = U2. In case

of backward facing blade, b2 < 90° and V w2
 < U2. Therefore the sign of K2, the

constant in the theoretical head-discharge relationship given by the Eq. (15.58),

depends accordingly on the type of blade setting as follows:

For forward curved blades, K2 < 0

For radial blades, K2 = 0

For backward curved blades, K2 > 0

With the incorporation of above conditions, the relationship of head and

discharge for three cases are shown in Fig. 15.26. These curves ultimately revert to

their more recognised shapes as the actual head-discharge characteristics

respectively after consideration of all the losses as explained earlier (Fig. 15.27).

For both radial and forward facing blades, the power is rising monotonically as

the flow rate is increased. In the case of backward facing blades, the maximum

efficiency occurs in the region of maximum power. If, for some reasons, Q increases

beyond QD there occurs a decrease in power. Therefore the motor used to drive the

pump at part load, but rated at the design point, may be safely used at the maximum
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power. This is known as self-limiting characteristic. In case of radial and forward-

facing blades, if the pump motor is rated for maximum power, then it will be under-

utilised most of the time, resulting in an increased cost for the extra rating. Whereas,

if a smaller motor is employed, rated at the design point, then if Q increases above

QD, the motor will be overloaded and may fail. It, therefore, becomes more difficult

to decide on a choice of motor in these later cases (radial and forward-facing

blades).

Forward facing ( > 90º)b2

Radial ( = 90º)b2

Backward facing ( < 90º)b2
K1

Q

H

Fig. 15.26 Theoretical head-discharge characteristic curves of a centrifugal

pump for different blade settings

Head
Forward

Radial

Radial

Power

Forward

Q

P, H

Backward

Backward

Fig. 15.27 Actual head-discharge and power-discharge characteristic curves

of a centrifugal pump
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Flow through Volute Chambers Apart from frictional effects, no torque is

applied to a fluid particle once it has left the impeller. The angular momentum of

fluid is therefore constant if friction is neglected. Thus the fluid particles follow the

path of a free vortex. In an ideal case, the radial velocity at the impeller outlet

remains constant round the circumference. The combination of uniform radial

velocity with the free vortex (V w . r = constant) gives a pattern of spiral streamlines

which should be matched by the shape of the volute. This is the most important

feature of the design of a pump. At maximum efficiency, about 10 % of the head

generated by the impeller is usually lost in the volute.

Vanned Diffuser A vanned diffuser, as shown in Fig. 15.28, converts the outlet

kinetic energy from impeller to pressure energy of the fluid in a shorter length and

with a higher efficiency. This is very advantageous where the size of the pump is

important. A ring of diffuser vanes surrounds the impeller at the outlet. The fluid

leaving the impeller first flows through a vaneless space before entering the diffuser

vanes. The divergence angle of the diffuser passage is of the order of 8–10° which

ensures no boundary layer separation. The optimum number of vanes are fixed by a

compromise between the diffusion and the frictional loss. The greater the number of

vanes, the better is the diffusion (rise in static pressure by the reduction in flow

velocity) but greater is the frictional loss. The number of diffuser vanes should have

no common factor with the number of impeller vanes to prevent resonant vibration.

Throat of diffuser passage

Diffuser passage

Diffuser vanes

V2

Fig. 15.28 A vanned diffuser of a centrifugal pump
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Cavitation in Centrifugal Pumps Cavitation is likely to occur at the inlet to

the pump, since the pressure there is the minimum and is lower than the atmospheric

pressure by an amount that equals the vertical height above which the pump is

situated from the supply reservoir (known as sump) plus the velocity head and

frictional losses in the suction pipe. Applying the Bernoulli’s equation between the

surface of the liquid in the sump and the entry to the impeller, we have

2

2

i ip V
z

g gr
+ +  = –A

f

p
h

gr
(15.61)

where, pi is the pressure at the impeller inlet and pA  is the pressure at the liquid

surface in the sump which is usually the atmospheric pressure, z is the vertical height

of the impeller inlet from the liquid surface in the sump, hf is the loss of head in the

suction pipe. Strainers and non-return valves are commonly fitted to intake pipes.

The term hf must therefore include the losses occurring past these devices, in

addition to losses caused by pipe friction and by bends in the pipe.

In a similar way as described in case of a reaction turbine, the net positive suction

head ‘NPSH’ in case of a pump is defined as the available suction head (inclusive of

both static and dynamic heads) at the pump inlet above the head corresponding to

vapour pressure.

Therefore,

NPSH =
2

2

i i vp V p

g g gr r
+ - (15.62)

Again, with the help of Eq. (15.55), we can write

NPSH = vA pp

g gr r
-  – z – hf

The Thomas cavitation parameter s and critical cavitation parameter sc are

defined accordingly (as done in case of reaction turbine) as

s =
NPSH

H
 = 

( / ) ( / )A v fp g p g z h

H

r r- - -
(15.63)

and sc =
( / ) ( / )A i fp g p g z h

H

r r- - -
(15.64)

We can say that for cavitation not to occur,

s > sc (i.e., pi > pv)

In order that s should be as large as possible, z must be as small as possible. In

some installations, it may even be necessary to set the pump below the liquid level

at the sump (i.e., with a negative value of z) to avoid cavitation.

Axial Flow or Propeller Pump The axial flow or propeller pump is the converse

of axial flow turbine and is very similar to it in appearance. The impeller consists of

a central boss with a number of blades mounted on it. The impeller rotates within a

cylindrical casing with fine clearance between the blade tips and the casing walls.

Fluid particles, in course of their flow through the pump, do not change their radial

locations. The inlet guide vanes are provided to properly direct the fluid to the rotor.

The outlet guide vanes are provided to eliminate the whirling component of velocity
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at discharge. The usual number of impeller blades lies between 2 and 8, with a hub

diameter to impeller diameter ratio of 0.3 to 0.6.

Stationary inlet
guide vanes

Impeller

w

y

X X

Stationary outlet
guide vanes

Fig. 15.29 A propeller of an axial flow pump

Matching of Pump and System Characteristics The design point of a

hydraulic pump corresponds to a situation where the overall efficiency of operation

is maximum. However the exact operating point of a pump, in practice, is

determined from the matching of the pump characteristic with the headloss-flow,

characteristic of the external system (i.e., pipe network, valve and so on) to which

the pump is connected.

Let us consider the pump and the piping system as shown in Fig. 15.18. Since the

flow is highly turbulent, the losses in pipe system are proportional to the square of

flow velocities and can, therefore, be expressed in terms of constant loss

coefficients. Therefore, the losses in both the suction and delivery sides can be

written as

h1 = fl1V 1
2/2gd1 + K1V 1

2/2g (15.65a)

h2 = fl2V 2
2
/2gd2 + K2V 2

2
/2g (15.65b)

where, h1 is the loss of head in suction side and h2 is the loss of head in delivery side

and f is the Darcy’s friction factor, l1, d1 and l2, d2 are the lengths and diameters of

the suction and delivery pipes respectively, while V 1 and V 2 are accordingly the

average flow velocities. The first terms in Eqs (15.65a) and (15.65b) represent the

major energy loss while the second terms represent the sum of all the minor losses
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through the loss coefficients K1 and K2 which include losses due to valves and pipe

bends, entry and exit losses, etc. Therefore the total head the pump has to develop in

order to supply the fluid from the lower to upper reservoir is

H = Hs + h1 + h2 (15.66)

Now flow rate through the system is proportional to the flow velocity. Therefore

resistance to flow in the form of losses is proportional to the square of the flow rate

and is usually written as

h1 + h2 = system resistance = K  Q2 (15.67)

where K  is a constant which includes, the lengths and diameters of the pipes and the

various loss coefficients. System resistance as expressed by Eq. (15.67), is a

measure of the loss of head at any particular flow rate through the system. If any

parameter in the system is changed, such as adjusting a valve opening, or inserting a

new bend, etc., then K will change. Therefore, total head of Eq. (15.66) becomes,

H = Hs + KQ2 (15.68)

The head H can be considered as the total opposing head of the pumping system

that must be overcome for the fluid to be pumped from the lower to the upper

reservoir.

The Eq. (15.68) is the equation for system characteristic, and while plotted on

H–Q plane (Fig. 15.30), represents the system characteristic curve. The point of

interesection between the system characteristic and the pump characteristic on H–Q

plane is the operating point which may or may not lie at the design point that

corresponds to maximum efficiency of the pump. The closeness of the operating

and design points depends on how good an estimate of the expected system losses

has been made. It should be noted that if there is no rise in static head of the liquid

(for example, pumping in a horizontal pipeline between two reservoirs at the same

elevation), Hs is zero and the system curve passes through the origin.

Hs

h, H
h– characteristic
of pump

Q

H Q characteristic of
pump
–

H Q characteristic of
system
–

Design point

Operating
pointH = H + KQs

2

QD Q

Fig. 15.30 H-Q Characteristics of pump and system
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Effect of Speed Variation Head-discharge characteristic of a given pump is

always referred to a constant speed. If such characteristic at one speed is known, it

is possible to predict the characteristic at other speeds by using the principle of

similarity. Let A , B, C are three points on the characteristic curve (Fig. 15.31) at

speed N1.

For points A , B and C, the corresponding heads and flows at a new speed N2 are

found as follows:

System characteristic
with static lift

System characteristic
without static lift

HS

H

N1

C

Q

B¢
A¢

A

BC¢

N2

Fig. 15.31 Effect of speed variation on operating point of a centrifugal pump

From the equality of p1 terms [Eq. (15.14)] gives

Q1/N1 = Q2 /N2 (since for a given pump D is constant) (15.69)

and similarly, equality of p2 terms [Eq. (15.14)] gives

H1/N2
1 = H2/N2

2 (15.70)

Applying Eqs (15.69) and (15.70) to points A , B  and C the corresponding points

A ’  B’  and C’  are found and then the characteristic curve can be drawn at

the new speed N2

Thus,

Q2 = Q1N2/N1 and H2 = H1(N2)
2/(N1)

2

which gives 2

1

H

H
 =

2
2
2
1

Q

Q

or H μ Q2
(15.71)

Equation (15.71) implies that all corresponding or similar points on head-

discharge characteristic curves at different speeds lie on a parabola passing through

the origin. If the static lift Hs becomes zero, then the curve for system characteristic

and the locus of similar operating points will be the same parabola passing through

the origin. This means that, in case of zero static lift, for an operating point at speed

N1, it is only necessary to apply the similarity laws directly to find the corresponding

operating point at the new speed since it will lie on the system curve itself (Fig.

15.31).
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Variation of Pump Diameter A variation in pump diameter may also be

examined through the similarity laws. For a constant speed,

Q1/D1
3 = Q2 /D2

3

and
H1/D1

2 = H2 /D2
2

or H μ Q2/3 (15.72)

Pumps in Series and Parallel When the head or flow rate of a single pump is

not sufficient for an application, pumps are combined in series or in parallel to meet

the desired requirement. Pumps are combined in series to obtain an increase in head

or in parallel for an increase in flow rate. The combined pumps need not be of the

same design.

Figures 15.32 and 15.33 depict the combined H–Q characteristic for the cases of

identical pumps connected in series and parallel respectively. It is found that the

operating point changes in both cases. Figure 15.34 shows the combined

characteristics of two different pumps connected in series and parallel.

H

Characteristic of
combined pumps

Operating point for
combined pumps

System
characteristic

Single pump
operating point

Single pump
characteristic

H1

H1

Q

Fig. 15.32 Two similar pumps connected in series

H
Single pump
characteristic

System
characteristic

Operating point for
combined pumps

Characteristic of
combined pumps

Single pump
operating point

Q1Q1

Q

Fig. 15.33 Two similar pumps connected in parallel
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Specific Speed of Centrifugal Pumps The concept of specific speed for a pump

is same as that for a turbine. However, the quantities of interest are N, H and Q

rather than N , H and P, like in the case of a turbines.

For pumps,

Nsp
 = N Q1/2

/H3/4
(15.73)

H

Q

Pumps in series

Pumps in parallel

Pump 1

Pump 2

Fig. 15.34 Two different pumps connected in series and parallel

The effect of the shape of the rotor on specific speed is also similar to that for

turbines. That is, radial flow (centrifugal) impellers have lower values of Nsp

compared to those of axial-flow designs. The impeller, however, is not the entire

pump and in particular, the shape of the volute may appreciably affect the specific

speed. Nevertheless, in general, centrifugal pumps are best suited for providing high

heads at moderate rates of flow as compared to axial flow pumps which are suitable

for large rates of flow at low heads. Similar to turbines, the higher the specific speed,

the more compact is the machine for given requirements. For multistage pumps, the

specific speed refers to a single stage.

Example 15.13

A centrifugal pump 1.3 m in diameter delivers 3.5 m3/min of water at a tip speed of

10 m/s and a flow velocity of 1.6 m/s. The outlet blade angle is 30° to the tangent at

the impeller periphery. Assuming zero whirl at inlet, and zero slip, calculate the

torque delivered by the impeller.

Solution

With zero slip and zero whirl at inlet, the work done on the liquid per unit weight by

the impeller can be written as

W  = V w2
 U2/g
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Therefore, power supplied, P = r Q V w2
 U2

(subscript 2 represents the outlet)

From the outlet velocity triangle shown below:

V2

Vr2

Vf2 = 1.6 m/s

U2 = 10 m/s

U2Vw2

30º

Vw2
 = 10 – 

16

tan 30∞
 = 7.23 m

Hence, P = 10
3
 ¥ 

3.5

60
 ¥ 7.23 ¥ 10 = 4217.5 W

Torque delivered =
Power 4217.5 0.65

Angular velocity 10

¥
=

= 274.14 Nm

Example 15.14

An impeller with an eye radius of 51 mm and an outside diameter of 406 mm rotates

at 900 rpm. The inlet and outlet blade angles measured from the radial flow direction

are 75° and 83° respectively, while the depth of blade is 64 mm.

Assuming zero inlet whirl, zero slip and an hydraulic efficiency of 89%,

calculate (i) the volume flow rate through the impeller, (ii) the stagnation and

static pressure rise across the impeller, (iii) the power transferred to the fluid, and (iv)

the input power to the impeller.

Solution

The inlet and outlet velocity triangles are shown below:

Vr2

Vr1

U1

V1

Inlet Outlet

U
2

Vw2

b1

75°

83
°

Vf 2

U
2

V
2



Principles of Fluid Machines 761

(i) At the inlet, the impeller blade velocity is

U1 =
900 2

0.051
60

p¥Ê ˆ ¥Ë ¯
 = 4.81 m/s

tan b1 = V1/U1

V 1 = 4.81 ¥ tan (90° – 75°) = 4.81 ¥ tan 15°

= 1.29 m/s

volume flow rate through the pump is given by

Q = 2p ¥ 0.051 ¥ 0.064 ¥ 1.29 = 0.026 m
3
/s

(ii) From continuity,

Vf2
 =

0 051 1 29

0 203

. .

.

¥
 = 0.324 m/s

At the outlet, the velocity of the impeller blades is given by

U2 =
900 2

60

p¥Ê ˆ
Ë ¯

 ¥ 0.203 = 19.13 m/s

Power transferred to the fluid per unit weight by the impeller can be written as

E =

2

2

2 2
2 tan 7

f

w

V
U U

V U

g g

Ê ˆ
-Á ˜∞Ë ¯

=

=
0.324 19.13

19.13
tan 7 9.81

Ê ˆ-Á ˜Ë ¯∞
 = 32.16 m

Therefore, total head developed by the pump = H = 0.89 ¥ 32.16 = 28.62 m

If the changes in potential head across the pump is neglected, the total head

developed by the pump can be written as

H =
2 2

2 1 2 1

2

p p V V

g gr

È ˘- -È ˘
+ Í ˙Í ˙Î ˚ Î ˚

Therefore, the rise in stagnation or total pressure becomes

p p

g

0 02 1
-

r
 =

p

g

V

g

p

g

V

g

2 2
2

1 1
2

2 2r r
+

L

N
M

O

Q
P - +

L

N
M

O

Q
P  = H

Hence, p02 – p01 = 103 ¥ 9.81 ¥ 28.62 Pa = 280.76 kPa.

At the impeller exit,

Vw2
 = 19.13 – 

0.324

tan 7∞
 = 16.49 m/s

Therefore, V 2 = [V f2

2 + V w2

2]1/2

= [(0.324)2 + (16.49)2]1/2 = 16.49 m/s

Solving for the static pressure head,
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2 1p p

gr

-
 =

2 2
2 1

2

V V
H

g

È ˘-
- Í ˙
Î ˚

= 28.62 – 
2 2(16.49) (1.29)

2 9.81

È ˘-
Í ˙¥Î ˚

 = 14.84 m

p2 – p1 = 103 ¥ 9.81 ¥ 14.89 Pa = 145.58 kPa

(iii) Power given to the fluid = r g Q H

= 103 ¥ 9.81 ¥ 0.026 ¥ 28.62 W = 7.30 kW

(iv) Input power to the impeller = 7.30/0.89 = 8.20 kW.

Example 15.15

The basic design of a centrifugal pump has a dimensionless specific speed of 0.075

rev. The blades are forward facing on the impeller and the outlet angle is 120° to the

tangent, with an impeller passage width at the outlet being equal to one-tenth of the

diameter. The pump is to be used to raise water through a vertical distance of 35 m

at a flow rate of 0.04 m3/s. The suction and delivery pipes are each of 150 mm

diameter and have a combined length of 40 m with a friction factor of 0.005. Other

losses at the pipe entry, exit, bends, etc. are three times the velocity head in the

pipes. If the blades occupy 6 % of the circumferential area and the hydraulic

efficiency (neglecting slip) is 76 %, what will be the diameter of the pump impeller?

Solution

Velocity in the pipes v = 
2

0.04 4

(0.15)p

¥
¥

 = 2.26 m/s

Total losses in the pipe

h1 =
2

24 3

2 2

f l

gd g
+

v
v  = 

2
4 0.005 40 (2.26)

3
0.15 2 9.81

¥ ¥È ˘
+ ¥Í ˙ ¥Î ˚

= 2.17 m

Therefore, total head required to be developed = 35 + 2.17

= 37.17 m

The speed of the pump is determined from the consideration of specific speed as

0.075 =
1/2

3/4

(0.04)

(9.81 37.17)

N

¥

or N =

3/4

1/2

0.075 (9.81 37.17)

(0.04)

¥
 = 31.29 rev/s

Let the impeller diameter be D.
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Flow area perpendicular to the impeller outlet periphery

= p D ¥ D/10 ¥ 0.94 = 0.295 D2

The inlet and outlet velocity triangles are drawn below:

Vr2

Vf2

Vr1

U1

V1

Inlet Outlet

V2

Vw2

120º

U2

Vf2
 =

2 2 2

0.04 0.135

0.295 0.295

Q

D D D
= =  m/s

U2 = p ND = 31.29 ¥ p ¥ D = 98.3 D m/s

hh (Hydraulic efficiency) = gH/(Vw2
U2)

or 0.76 =

2

9.81 37.17

98.3 wD V

¥
¥

which gives, Vw2
 =

4.88

D
 m/s

From the outlet velocity triangle,

tan 60° =
2

2

2
2

0.135

[4.88/ 98.3 ]

f

w

V

V U D D D
=

- -

or D3
 = 0.0496 D – 0.0008

which gives D = 0.214 m

Example 15.16

When a laboratory test was carried out on a pump, it was found that, for a pump

total head of 36 m at a discharge of 0.05 m3/s, cavitation began when the sum of the

static pressure and the velocity head at the inlet was reduced to 3.5 m. The

atmospheric pressure was 750 mm of Hg and the vapour pressure of water was 1.8

kPa. If the pump is to operate at a location where atmospheric pressure was reduced

to 620 mm of Hg and the temperature is so reduced that the vapour pressure of

water is 830 Pa, what is the value of the cavitation parameter when the pump

develops the same total head and discharge? Is it necessary to reduce the height of

the pump and if so by how much?
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Solution

Cavitation began when, 
2

1 1

2

p V

g gr
+  = 3.5 m

(where subscript 1 refers to the condition at inlet to the pump)

and at this condition, p1 = pvap

Therefore, V 1
2
/2g = 3.5 – 

3

3

1.8 10

9.81 10

¥
¥

= 3.32 m (net positive suction head)

Hence, the cavitation parameter, s =
2

1

2

V

gH

= 3.32/36 = 0.092

This dimensionless parameter will remain same for both the cases.

Applying Bernoulli’s equation, between the liquid level at sump and the inlet to

the pump (taking the sump level as datum), we can write for the first case,

2
1 1

1
2

p V
z

g gr
+ +  =

1

atm
f

p
h

gr
-  (sum of head losses)

or (z1 + hf1
) = atm 1p p

H
g g

s
r r

- ◊ -

= (0.75 ¥ 13.6) – 3.32 – 
1.8

9.81

= 6.7 m

For the second case,

2
1 1

1
2

p V
z

g gr

¢ ¢
+ + ¢  =

1

atm
f

p
h

gr

¢
- ¢

(Superscript ¢ refer to the second case)

or (z¢1 + h¢f1
) =

vapatm
pp

H
g g

s
r r

¢¢
- -

= (0.62 ¥ 13.6) – 3.32 – 
3

830

9.81 10¥
= 5.03 m

Since the flow rate is same, hf1
 = h¢f1

Therefore, the pump must be lowered a distance

(z1 – z¢1) = 6.7 – 5.03 = 1.67 m

at the new location.
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15.5  RECIPROCATING PUMP

We have described at the beginning of this chapter that the fluid machines can be

divided into two categories depending upon their principle of operation, viz., the

rotodynamic type and the positive displacement type. While the functioning of a

rotodynamic machine depends on the hydrodynamic principles of continuous flow

of a fluid through it, the working principle of a positive displacement machine is

based on the change of volume occupied by a certain amount of fluid within the

machine. The reciprocating pump is a positive displacement type of pump.

A reciprocating pump consists primarily of a piston or a plunger executing

reciprocating motion inside a close fitting cylinder (Fig. 15.35). The motion of the

piston outwards (i.e., towards the right in Fig. 15.35) causes a reduction of pressure

in the cylinder, and therefore liquid flows into the cylinder through the inlet valve.

The reverse movement of the piston (i.e., the motion of piston inside the cylinder)

pushes the liquid and increases its pressure. Then the inlet valve closes and the

outlet valve opens so that the high pressure liquid is discharged into the delivery

pipe. Usually, the operation of the valve is controlled automatically by the pressure

in the cylinder. In some designs, ports on the wall of the cylinder are provided

instead of valves. These ports are covered and uncovered by the movement of the

piston.

Outlet valve

Inlet valve

Suction level

hs

ls

hd

p

Cylinder

Reciprocating piston

Fig. 15.35 A reciprocating pump

The axial force exerted by the piston on the fluid at any instant is pA, where p is

the instantaneous pressure of the liquid in the cylinder and A  is the cross-sectional
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area of the piston. Due to a motion of the piston through a small distance dx along

the axis, the work done on the liquid becomes pA dx  = pdV  where dV  represents the

volume swept by the piston due to its movement through a distance dx. Therefore

the net work done by the pump is given by Ú p dV , calculated round the complete

cycle. This can be represented by the area enclosed by a curve of pressure against

volume. For an incompressible fluid, the ideal form of the diagram would be a

simple rectangle ABCD, as shown in Fig. 15.36, since the rise or fall in pressure will

not be associated with any change in volume. In practice, however, the acceleration

and deceleration of the piston give rise to corresponding acceleration and

deceleration of the liquid in the associated pipelines. At the beginning of the suction

stroke, the liquid is accelerated, and hence an additional pressure difference is

required. This makes the suction pressure at A  to assume a lower valve at E (Fig.

15.36).

Similarly, due to deceleration of liquid at the end of the suction stroke, a rise of

pressure in the cylinder is needed and therefore the end point B in the suction stroke

gets shifted to F. Neglecting the frictional effect and considering the motion of the

piston to be a simple harmonic one, the suction stroke is represented by a straight

line EF. A further modification of the diagram results from the effect of friction and

other losses in the suction pipe. The losses are zero at the ends of the stroke when

the velocity is zero, and a maximum at mid-stroke (again for simple harmonic

motion of the piston) when the velocity is at its maximum. The base of the diagram

(Fig. 15.36) therefore becomes ELF. Inertia and friction in the delivery pipe cause

similar modification of the ideal delivery stroke DC to KPG.

Absolute
pressure

Delivery

Suction

Volume

Atmospheric
pressure

p
D

P G

C

F

B

K

A

LE

Fig. 15.36 Pressure-displacement diagram for a reciprocating pump

Finally, the actual shape of the pressure volume diagram becomes ELFGPK. The

effects of inertia and friction in the cylinder are normally negligible as compared to
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those in the suction and delivery pipes. The speed of such a pump is usually

restricted by the pressure corresponding to the point E of the diagram which is the

minimum pressure point in a cycle. This pressure must not be allowed to fall below

a pressure where the air cavitation (liberation of dissolved gases from the liquid)

starts.

Analytical Expressions of Accelerating Heads During Suction and Delivery
Strokes It has already been mentioned that the liquid mass in suction and delivery

pipes gets accelerated and decelerated due to the typical accelerating and

decelerating motion undergone by the piston during suction and delivery strokes.

This causes a non-uniform additional head, known as acceleration head, which the

pump has to develop during the suction and delivery strokes along with the constant

theoretical suction and delivery head respectively. To obtain an expression of the

acceleration head in each stroke, it is essential to determine first the velocity of the

piston. This can be obtained from the consideration of crank revolution. The motion

of the piston is usually considered to be a simple harmonic one with zero velocities

at ends and maximum at the centre. However, this assumption is only true when the

ratio of the length of the connecting rod to that of the crank is very large.

Let us consider the displacement of the piston, after a time t from its inner dead

centre position (IDC) be x (Fig. 15.37). Then we can write

x = r – r cos q

where r is the radius of the crank and q is the angular displacement of the crank

during the time interval t. If w is the angular velocity of the crank, then we have

q = w t.

and x = r – r cos w t

IDC IDC

ODC ODC
x

w

q

x

l r

Fig. 15.37 Piston displacement diagram of a reciprocating machine

Hence, the instantaneous velocity of the piston 
d

d

x

t
= rw sin w t. Considering the

liquid in the piston to be moving with the velocity of the piston, the velocity V  of

liquid in the pipeline can be written from the principle of continuity as
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V  =
A

a
r w sin w t

where, A  and a are the cross-sectional areas of the cylinder and pipeline

respectively.

The acceleration of liquid in the pipeline can be written as

d

d

V

t
 =

d
sin

d

A
r t

t a
w wÊ ˆ

Ë ¯
 = 

A

a
r w2

 cos w t

Therefore, the force F required to accelerate the liquid mass is given by

F = r al 
A

a
r w2

 cos w t

= r l A  rw2 cos q (since q = w t)

(l is the length of the pipeline)

The pressure head caused by the force F is given by

F

a gr
 =

l

g

A

a
r w2

 cos q

This is known as the acceleration head ha. Using subscripts s and d to represent the

quantities for suction and delivery sides, we can write

has
 = s

s

l A

g a
◊ r w2 cos q

had
 = d

d

l A

g a
◊ r w2 cos q

It is evident from these expressions and Fig. 15.37 that the maximum and

minimum acceleration heads take place at the beginning and at the end of each

stroke respectively with zero at the middle of the stroke. The magnitude of

maximum acceleration head = 2l A
r

g a
w . The pump is, therefore, required to

develop an additional head of 2sl A
r

g a
w , at the beginning of the suction stroke, over

the constant suction head determined by the height of the pump above the supply

level. Similarly, an additional head of 
2d

d

l A
r

g a
w  is required to be developed by the

pump, at the beginning of the delivery stroke, over the constant delivery head

determined by the static lift of the pump. This has already been shown in Fig. 15.36.

Rate of Delivery

Single Acting Piston or Plunger Pump In a single acting piston pump the

entrance and discharge of liquid takes place from one side of the piston only.
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Therefore one stroke is meant only for suction and the other stroke is meant only for

discharge. Rate of delivery against crank angle for such type of a pump is shown in

Fig. 15.38. During the first half revolution of the crank there is only suction and

therefore the rate of delivery is zero. During the second half (corresponding to crank

angles between 180° to 360°) of the crank revolution, the discharge takes place.

Since the motion of the piston is approximately simple harmonic, the rate of delivery

versus the crank angle curve will be a sine curve. Velocity of discharge of water at

any instant is proportional to the velocity of the piston at that instant. Therefore the

sine curve, shown in Fig. 15.38 also represents the velocity of discharge to some

scale.

180º0 270º 360º

Suction Delivery

R
at
e
o
f
d
el
iv
er
y

Fig. 15.38 Rate of delivery versus crank angle for a single acting

reciprocating pump

Double Acting Piston or Plunger Pump In this type of pump provisions are

made for the entry and discharge of the liquid from both the sides of the piston.

Therefore each stroke is a suction-cum-delivery stroke. The curve of rate of delivery

against the angle of rotation of the crank is therefore the two sine curves drawn at a

phase difference of 180°.

Multi-Cylinder Pumps We observe that the rate of delivery from a single

cylinder, whether single acting or double acting, is non-uniform. Multi-cylinder

pumps are used to obtain a somewhat uniform discharge. In multi-cylinder pumps, a

number of cylinders are connected in parallel, their cranks being equally spaced

over 360°. The fluctuating discharge from the individual cylinders are thus added

together resulting in an almost uniform total discharge. This is illustrated in

Fig. 15.39 for a three-cylinder pump with the cranks at 120° to each other.
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Crank
angle q30° 90° 150° 210° 270° 330°

D
is
c h

ar
g
e

Fig. 15.39 Rate of delivery versus crank angle for a three cylinder

reciprocating pump

Air Vessel The pulsation of pressure due to inertia or acceleration heads in

suction and delivery pipe and the non-uniformity of discharge during the delivery

stroke may largely be eliminated by connecting a large and closed chamber to both

the suction and delivery pipes at points close to the pump cylinder as shown in Fig.

15.40. These vessels are known as air vessels.

Suction valve
(opened)

Cylinder

Connecting rod

Delivery valve
(closed)

Air vessel for
delivery pipe

Air vessel for
suction pipe

Piston

Fig. 15.40 Reciprocating pump connected with air vessels

Working Principle An air vessel in a reciprocating pump acts like a fly-wheel  of

an engine. The top of the vessel contains compressed air which can contract or

expand to absorb most of the pressure fluctuations. Whenever the pressure rises,
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water in excess of the mean discharge is forced into the air vessel, thereby

compressing the air within the vessel. When the water pressure in the pipe falls, the

compressed air again ejects the excess water out. Thus the air vessel acts like an

intermediate reservoir. On the suction side, the water first accumulates here and is

then transferred to the cylinder of the pump. On the delivery side, the water first

goes to the vessel and then flows with a uniform velocity in the delivery pipe. The

column of water which is now fluctuating, is only between the pump cylinder and

the air vessels which is very small due to the vessels being fitted as near to the pump

cylinder as possible. From the working principle, the advantages of air vessel

attached to a reciprocating pump can be written as follows:

(a) Suction side:

(i) Reduces the possibility of cavitation

(ii) The pump can be run at a higher speed

(iii) The length of the suction pipe below the air vessel can be in-

creased.

(b) Delivery side:

(i) A large amount of power consumed in supplying the accelerating

head can be saved.

(ii) Maintains almost a constant rate of discharge

15.6  HYDRAULIC SYSTEM

A hydraulic system is a circuit in which the forces and power are transmitted through

a liquid. The system may be divided into two groups, the hydrostatic and

hydrodynamic system.

Hydrostatic System The primary function of this system is the transmission of

force and power by the hydrostatic pressure of the fluid without causing its

continuous bulk motion and any fluid dynamical effect on the principle of operation.

Hydraulic press, hydraulic lift, hydraulic crane, pressure accumulator, rotary type

positive displacement pumps are examples of such a system. However, the

description of such systems is beyond the scope of this book.

Hydrodynamic System The main purpose of this system is to transmit power

by a change in velocity of flow of the working fluid medium. The change in pressure

of the working fluid is avoided as far as possible. The system primarily consists of a

centrifugal pump and a turbine, as a driver and driven respectively, built into a single

unit with a closed hydraulic circuit. Since the driver and the driven is not

mechanically connected, impulsive shocks and periodic vibrations are prevented by

the fluid coupling them.

The hydrodynamic transmission systems are of two types—hydraulic coupling

and hydraulic torque convertor.

Hydraulic or Fluid Coupling The essential features of a fluid coupling are

shown in Fig. 15.41. The primary function of the coupling is to transmit power with

the same torque on the driving and driven shafts. It mainly consists of a radial pump

impeller keyed to a driving shaft A , and a radial reaction turbine keyed to a driven
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A
w1

B
w2

Driving
shaft

Driven
shaft

Pump impeller Turbine runner

D

Fig. 15.41 Fluid or hydraulic coupling

shaft B. The blades of both the pump impeller and turbine runner are of straight

radial type. There is no mechanical connection between the driving and the driven

shafts. The two shafts together form a casing completely filled with the working

fluid which is usually ordinary mineral lubricating oil. If shaft A  is allowed to rotate,

the oil will pass through the impeller blades and will flow radially outwards with

higher energy. The fluid will then strike the turbine runners, and while flowing

radially inwards, transfer power to the turbine blades. With the increase in the speed

of shaft A , sufficient head is developed in the fluid at the outlet of the pump impeller

so that the power transferred to the turbine rotor becomes high enough to set the

driven shaft B in motion. Due to slip, the two shafts rotate at different speeds. If the

driver and the follower rotate at the same speed, the circulation of oil cannot take

place. This is because of the fact that the head produced by the pump should be

greater than the centrifugal head resisting flow through the turbine. At equal speed

of the shafts A  and B, the heads would balance each other and then no flow would

occur and no torque would be transmitted. If w1 and w2 are the angular velocities of

driving and driven shafts respectively, then the slip is expressed as (w1 – w2)/w1.

Under usual operating conditions, the slip is about 2 to 3 per cent. From the

dimensional analysis, the torque T can be expressed in terms of the pertinent

controlling dimensionless variables as

2 5
1

T

Drw
 =

2
2 1

3
1

V
, ,

D
F

D

w rw

w m

Ê ˆ
Á ˜Ë ¯
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The term T/rw2
1 D5 is known as the torque coefficient, and rw1D2/m corresponds

to the Reynolds number of fluid flow. V  is the volume of the fluid in the coupling

and D is the diameter of the impeller or the runner.

Fluid Torque Converter The main difference in the principle of operation

between a fluid coupling and fluid torque converter is that while the coupling

transmits power with the same torque on the driving and driven shafts, the converter

provides for torque multiplication with the same power (neglecting the losses) on

the driving and driven shafts. A torque converter essentially differs from the

coupling in that a third stationary member usually known as a reactionary member

(Fig. 15.42) is incorporated between the turbine runner and the pump impeller. In

fact, the function of the reactionary member is to augment the torque produced by

the driving shaft and then to transmit the increased torque to the driven shaft. The

reactionary member consists of a series of fixed guide vanes through which the fluid

flows. For a greater torque on the driven shaft, the change in angular momentum in

the turbine runner should be greater than that in the pump. The stationary reaction

blades are so shaped as to increase the angular momentum of the fluid which is

further increased in the course of flow through the pump impeller. Thus the

stationary members contribute to an additional torque over that of the driving shaft.

The amplification of torque depends on the design of the stationary blades and the

speed ratio (ratio of angular velocities of the driven and driving shafts).

D

w1
w2

Driving
shaft

Fixed guide
vane

Turbine
runner

Driven
shaft

Pump
impeller

Fig. 15.42 Fluid or hydraulic torque converter
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SUMMARY

∑ A fluid machine is termed as a turbine when the stored energy of a fluid is

transferred to mechanical energy of the rotating member of the machine,

and is termed as a pump or compressor when the mechanical energy of the

moving parts of the machine is transferred to increase the energy stored

by the fluid. The machines for which the principle of operation depends

on the theory of fluid dynamics are known as rotodynamic machines,

while the machines which function on the principle of a change in volume

of certain amount of fluid trapped in the machines are known as positive

displacement machines.

∑ In a rotodynamic fluid machine, the head (energy per unit weight of the fluid)

transferred by the fluid to the machine is given by (V w1
 U1 – V w2

 U2)/g. A

negative sign of the expression implies the head transferred by the machine

to the fluid. The above expression can be split up into three terms to show the

three distinct components of energy transfer as

1 21 2w wV U V U

g

-
 =

2 1

2 2 2 2 2 2
1 2 1 2

1
( ) ( ) ( )

2 r rV V U U V V
g
È ˘- + - - -Î ˚

The first term on the right-hand side represents the change in the absolute

dynamic head of the fluid, the second and the third terms pertain to the change

in the pressure head. For an axial flow machine, U1 = U2. The second term

becomes positive for a radially inward flow machine like turbines while it

becomes negative for a radially outward flow machine like centrifugal pump.

∑ The hydraulic efficiency of a turbine is defined as the ratio of mechanical

energy delivered by the rotor to the energy available from fluid, while for a

pump, it is defined as the ratio of useful energy gained by the fluid at final

discharge and the mechanical energy supplied to the rotor. The pertinent

dimensionless parameters governing the principle of operation of fluid

machines are

2

3 2 2 3 5 2 2

/
, , , ,

Q gH ND P E

ND N D N D N D

r r

m r

The dimensionless specific speed of a turbine is given by NP1/2/r1/2 (gH)5/4

and the corresponding dimensional version is Np1/2
/H5/4

. The dimensionless

specific speed of a pump is given by NQ1/2/(gH)3/4, and the dimensionl

version is NQ1/2
/H3/4

. The values of specific speed are quoted for maxi-

mum efficiency of the machine.

∑ The only hydraulic turbine of impulse type is the Pelton wheel. The buckets

of the wheel in a Pelton turbine is exposed to the atmosphere, and the high

pressure water expands to the atmospheric pressure in a nozzle and strikes

the bucket as a water jet. A Pelton wheel runs at its maximum bucket effi-

ciency (defined as the ratio of work developed by the buckets to the kinetic
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energy of water available at the rotor inlet) when the ratio of the blade speed

to the jet speed becomes 0.46. The governing of a Pelton turbine is made by

changing the cross-sectional area of the water jet by a spear valve in the

nozzle. The Pelton wheel is efficient under large heads, but unsuitable to

smaller heads.

∑ The reaction turbines are efficient under smaller heads. In a reaction machine,

there is a change in the pressure head of the fluid while flowing through the

rotor. A Francis turbine is a radial flow reaction turbine. To keep the kinetic

energy at the outlet a minimum, the tangential component of velocity at the

outlet becomes zero. Therefore, the head developed is given by V w1
U1/g. With

an increase in specific speed and decrease in head, the shape of the radial flow

Francis runner changes to that of an axial flow machine known as Kaplan

runner. The draft tube is a conduit which connects the runner exit to the tail

race. The primary function of a draft tube is to reduce the discharge velocity

of water to minimise the loss of kinetic energy at the outlet and to permit the

turbine to be set above the tail race without any appreciable drop in available

head. A draft tube has to be properly designed to avoid the phenomenon of

cavitation which is likely to occur at the tube inlet. Governing of reaction

turbines is usually done by altering the position of the guide vanes and thus

controlling the flow rate by changing the gate openings to the runner.

∑ A centrifugal pump, by its principle, is converse of the Francis turbine. The

flow is radially outward. The fluid enters the impeller eye with zero tangential

velocity. Therefore, the head developed by the fluid is given by s V w2
U2 /g.

The term s is known as the slip factor which takes care of the deviation of

actual tangential velocity component at outlet from the theoretical one due to

the secondary flow within the blade passages resulting in a non-uniform

velocity distribution at any radius. The actual operating point of a

centrifugal pump is determined by the matching or intersection of

head-discharge characteristic curve of the pump and the head loss-flow

rate characteristic curve of the pipeline to which the pump is connected.

∑ A reciprocating pump is a positive displacement type of pump and works on

the principle of forcing a definite amount of liquid in a cylinder by the re-

ciprocating motion of a piston within it. The rate of discharge from a single

cylinder pump is non-uniform. The delivery is made uniform by using

multi-cylinder pumps in parallel with their cranks being equally spaced over

360°. Incorporation of air vessel at the suction side reduces the possibility

of cavitation at higher speed, keeping a higher length of suction pipe below

the air vessel. The introduction of an air vessel at the delivery side maintains

almost a constant discharge with the saving of a large amount of power

consumed in supplying the accelerating head.

∑ The primary function of a fluid coupling is to transmit power through the dy-

namic action of the fluid with the same torque on the driving and driven

shafts, while a fluid torque converter transmits torque with amplification

keeping the power on the driving and driven shafts the same.
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EXERCISES

15.1 A quarter scale turbine model is tested under a head of 10.8 m. The full-scale

turbine is required to work under a head of 30 m and to run at 7.14 rev/s. At

what speed must the model be run? If it develops 100 kW and uses 1.085 m3

of water per second at this speed, what power will be obtained from the full-

scale turbine? The efficiency of the full-scale turbine being 3% greater than

that of the model? What is the dimensionless specific speed of the full-scale

turbine?

Ans. (17.14 rev/s, 7.66 MW, 0.513 rev/s)

15.2 A Pelton wheel operates with a jet of 150 mm diameter under the head of 500

m. Its mean runner diameter is 2.25 m and it rotates with a speed of 375 rpm.

The angle of bucket tip at outlet as 15°, coefficient of velocity is 0.98, me-

chanical losses equal to 3% of power supplied and the reduction in relative

velocity of water while passing through bucket is 15%. Find (i) the force of jet

on the bucket, (ii) the power developed (iii) bucket efficiency and (iv) the

overall efficiency.

Ans. ((i) 165.15 kN, (ii) 7.3 MW, (iii)  90.3%, (iv)  87.6%)

15.3 A Pelton wheel works at the foot of a dam because of which the head avail-

able at the nozzle is 400 m. The nozzle diameter is 160 mm and the coeffi-

cient of velocity is 0.98. The diameter of the wheel bucket circle is 1.75 m and

the buckets deflect the jet by 150°. The wheel-to-jet speed ratio is 0.46.

Neglecting friction, calculate (i) the power developed by the turbine, (ii)

its speed and (iii) hydraulic efficiency.

Ans. ((i) 6.08 MW, (ii) 435.9 rpm, (iii) 89.05%)

15.4 A powerhouse is equipped with Pelton type impulse turbines . Each turbine

delivers a power of 14 MW when working under a head of 900 m and running

at 600 rpm. Find the diameter of the jet and mean diameter of the wheel.

Assume that the overall efficiency is 89%, velocity coefficient of the jet

0.98, and speed ratio 0.46.

Ans. (132 mm, 1.91 m)

15.5 A Francis turbine has a wheel diameter of 1.2 m at the entrance and 0.6 m at

the exit. The blade angle at the entrance is 90° and the guide vane angle is 15°.

The water at the exit leaves the blades without any tangential velocity. The

available head is 30 m and the radial component of flow velocity is constant.

What would be the speed of the wheel in rpm and blade angle at the exit?

Ignore friction.

Ans. (268 rpm, 28.2°)

15.6 In a vertical shaft inward-flow reaction turbine, the sum of the pressure and
kinetic head at the entrance to the spiral casing is 120 m and the vertical dis-
tance between this section and the tail race level is 3 m. The peripheral veloc-
ity of the runner at the entry is 30 m/s, the radial velocity of water is constant
at 9 m/s and discharge from the runner is without swirl. The estimated hydrau-
lic losses are (i) between turbine entrance and exit from the guide vanes
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4.8 m, (ii) in the runner 8.8 m, (iii) in the draft tube 0.79 m, and (iv) kinetic
head rejected to the tail race 0.46 m. Calculate the guide vane angle and the
runner blade angle at the inlet and the pressure heads at the entry to and the
exit from the runner.

Ans. ((i) 14.28°, (ii) 120.78°, (iii)  47.34 m, (iv) –5.88 m)

15.7 A Kaplan turbine operating under a net head of 20 m develops 16 MW with an
overall efficiency of 80 %. The diameter of the runner is 4.2 m, while the hub
diameter is 2 m and the dimensionless specific speed is 3 rad. If the hydraulic
efficiency is 90%, calculate the inlet and exit angles of the runner blades at
the mean blade radius if the flow leaving the runner is purely axial.

Ans. (25°, 19.4°)

15.8 The following data refer to an elbow type draft tube:
Area of circular inlet = 25 m2

Area of rectangular outlet = 116 m
2

Velocity of water at inlet to draft tube = 10 m/s
The frictional head loss in the draft tube equals to 10% of the inlet velocity
head.
Elevation of inlet plane above tail race level = 0.6 m
Determine (i) Vacuum or negative head at the inlet, and (ii) Power thrown
away in tail race.

Ans. (4.95 m vac, 578 kW)

15.9 Show that when runner blade angle at inlet of a Francis turbine is 90° and the
velocity of flow is constant, the hydraulic efficiency is given by 2/(2 + tan2 a),
where a is the vane angle.

15.10 A Kaplan turbine develops 10 MW under a head of 4.3 m. Taking a speed
ratio of 1.8, flow ratio of 0.5, boss diameter 0.35 times the outer diameter and
overall efficiency of 90%, find the diameter and speed of the runner.

Ans. (9.12 m, 34.6 rpm)

15.11 A conical-type draft tube attached to a Francis turbine has an inlet diameter
of 3 m and its area at outlet is 20 m2. The velocity of water at inlet, which is
5 m above tail race level, is 5 m/s. Assuming the loss in draft tube equals to
50% of velocity head at outlet, find (i) the pressure head at the top of the draft
tube, (ii) the total head at the top of the draft tube taking tail race level as
datum, and (iii) power lost in draft tube.

Ans. ((i) 6.03 m vac, (ii) 0.24 m, (iii) 0.08 m)

15.12 Calculate the least diameter of impeller of a centrifugal pump to just start de-
livering water to a height of 30 m, if the inside diameter of impeller is half of
the outside diameter and the manometric efficiency is 0.8. The pump runs at
1000 rpm.

Ans. (0.6 m)

15.13 The impeller of a centrifugal pump is  0.5 m in diameter and rotates at 1200

rpm. Blades are curved back to an angle of 30° to the tangent at outlet tip. If

the measured velocity of flow at the outlet is 5 m/s, find the work input per kg

of water per second. Find the theoretical maximum lift to which the water can

be raised if the pump is provided with whirlpool chamber which reduces the

velocity of water by 50%.

Ans. (72.78 m, 65.87 m)
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15.14 The impeller of a centrifugal pump is 0.3 m in diameter and runs at 1450 rpm.

The pressure gauges on suction and delivery sides show the difference of

25 m. The blades are curved back to an angle of 30°. The velocity of flow

through impeller, being constant, equals to 2.5 m/s, find the manometric

efficiency of the pump. If the frictional losses in impeller amounts to 2 m,

find the fraction of total energy which is converted into pressure energy by

impeller. Also find the pressure rise in pump casing.

Ans. (58.35%, 54.1%, 1.83 m of water)

15.15 A centrifugal pump is required to work against a head of 20 m while rotating

at the speed of 700 rpm. If the blades are curved back to an angle of 30° to

tangent at outlet tip and velocity of flow through impeller is 2 m/s, calculate

the impeller diameter when (i) all the kinetic energy at impeller outlet is

wasted and (ii) when 50% of this energy is converted into pressure energy in

pump casing.

Ans. ((i) 0.55 m, (ii) 0.48 m)

15.16 During a laboratory test on a pump, appreciable cavitation began when the

pressure plus the velocity head at inlet was reduced to 3.26 m while the

change in total head across the pump was 36.5 m and the discharge was 48

litres/s. Barometric pressure was 750 mm of Hg and the vapour pressure of

water 1.8 kPa. What is the value of sc? If the pump is to give the same total

head and discharge in a location where the normal atmospheric pressure is

622 mm of Hg and the vapour pressure of water is 830 Pa, by how much must

the height of the pump above the supply level be reduced?

Ans. (0.084, 1.65 m)

15.17 A single acting reciprocating pump having a cylinder diameter of 150 mm

and stroke of 300 mm. is used to raise the water through a height of 20 m. Its

crank rotates at 60 rpm. Find the theoretical power required to run the pump

and the theoretical discharge. If actual discharge is 5 litres/s, find the percent-

age slip. If delivery pipe is 100 mm in diameter and is 15 m long, find the

acceleration head at the beginning of the stroke.

Ans. (1.04 kW, 0.0053 m
3
/s. 5.66, 20.37 m)

15.18 A reciprocating pump has a suction head of 6 m and delivery head of 15 m. It

has a bore of 150 mm and stroke of 250 mm and piston makes 60 double

strokes in a minute. Calculate the force required to move the piston during (i)

suction stroke, and (ii) during the delivery stroke. Find also the power re-

quired to drive the pump.

Ans. ((i) 1.04 kN, (ii) 2.60 kN, 1.81 kW)



In Chapter 15, we discussed the basic fluid mechanical principles governing  energy

transfer in a fluid machine. A brief description of different types of fluid machines

using water as the working fluid was also given in Chapter 15. However, there exist

a large number of fluid machines in practice, which use air, steam and gas (the

mixture of air and products of burnt fuel) as working fluids. The density of fluids

change with a change in pressure as well as in temperature as they pass through the

machines. These machines are called ‘compressible flow machines’or more

popularly ‘turbomachines’. Apart from the change in density with pressure, other

features of compressible flow, depending upon the flow regimes, are also observed

in course of flow of fluids through turbomachines. Therefore, the basic equation of

energy transfer (Euler’s equation, as discussed in Chapter 15) along with the

equation of state relating the pressure, density and temperature of the working fluid

and other necessary equations of compressible flow, (as discussed in Chapter 14),

are needed to describe the performance of a turbomachine. However, a detailed

discussion on all types of turbomachines is beyond the scope of this book. We shall

present a very brief description of a few compressible flow machines, namely,

compressors, fans and blowers in this chapter.

16.1  CENTRIFUGAL COMPRESSORS

A centrifugal compressor is  a radial flow rotodynamic fluid machine that uses

mostly air as the working fluid and utilises the mechanical energy imparted to the

machine from outside to increase the total internal energy of the fluid mainly in the

form of increased static pressure head.

During the Second World War most of the gas turbine units used centrifugal

compressors. Attention was focused on the simple turbojet units where low power-

plant weight was of great importance. Since the war, however, axial compressors

have been developed to the point where it has an appreciably higher isentropic

efficiency. Though centrifugal compressors are not that popular today, there is

renewed interest in the centrifugal stage, used in conjunction with one or more axial

stages, for small turbofan and turboprop aircraft engines.

A centrifugal compressor essentially consists of three components:

1. A stationary casing

16
COMPRESSORS, FANS

AND BLOWERS
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2. A rotating impeller, as shown in Fig. 16.1(a), which imparts high velocity

to the air. The impeller may be single or double sided, as shown in Fig. 16.1

(b) and (c) but the fundamental theory is the same for both of them.

3. A diffuser consists of a number of fixed diverging passages in which the air

is decelerated with a consequent rise in static pressure.

Fig. 16.1 Schematic views of a centrifugal compressor

Principle of Operation Air is sucked into the impeller eye and whirled outwards

at high speed by the impeller disk. At any point in the flow of air through the

impeller, the centripetal acceleration is obtained by a pressure head so that the static

pressure of the air increases from the eye to the tip of the impeller. The remainder of

the static pressure rise is obtained in the diffuser, where the very high velocity of air

leaving the impeller tip is reduced to almost the velocity with which the air enters

the impeller eye.

Usually, about half of the total pressure rise occurs in the impeller and the other

half in the diffuser. Owing to the action of the vanes in carrying the air around with

the impeller, there is a slightly higher static pressure on the forward side of the vane

than on the trailing face. The air will thus tend to flow around the edge of the vanes

in the clearing space between the impeller and casing. This results in a loss of

efficiency and the clearance must be kept as small as possible. Sometimes, a shroud
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attached to the blades, as shown in Fig. 16.1(d), may eliminate such a loss, but it is

avoided because of increased disc friction loss and of manufacturing difficulties.

The straight and radial blades are usually employed to avoid any undesirable

bending stress to be set up in the blades. The choice of radial blades also determines

that the total pressure rise is divided equally between the impeller and the diffuser.

Work Done and Pressure Rise Since no work is done on the air in the diffuser,

the energy absorbed by the compressor will be determined by the conditions of air at

the inlet and the outlet of the impeller. At the first instance, it is assumed that air

enters the impeller eye in the axial direction, so that the initial angular momentum

of air is zero. The axial portion of the vanes must be curved so that air can pass

smoothly into the eye. The angle which the leading edge of a vane makes with the

tangential direction, a, will be given by the direction of the relative velocity of the

air at inlet, V r1, as shown in Fig. 16.2. The air leaves the impeller tip with an absolute

velocity of V 2 that will have a tangential or whirl component V w2. Under ideal

conditions, V 2, would be such that the whirl component is equal to the impeller

speed U2 at the tip. Since air enters the impeller in axial direction, V w1 = 0. Under

r1

a

Vr1
Vf1=V1

U1

Section through eye
at radius r1

Ideal conditions
at impeller tip

V2
Vr2

V Uw2
= 2

V2

Velocity relative
to impeller

Vr2

V Uw2
< 2

Fig. 16.2 Velocity triangles at inlet and outlet of impeller blades

the situation of V w1 = 0 and V w2 = U2, we can derive from Eq. (15.2), the energy

transfer per unit mass of air as

E

m
 = U 2

2 (16.1)



782 Introduction to Fluid Mechanics and Fluid Machines

Due to its inertia the air trapped between the impeller vanes is reluctant to

move round with the impeller and we have already noted that this results in a

higher static pressure on the leading face of a vane than on the trailing face. It also

prevents the air from acquiring a whirl velocity equal to the impeller speed. This

effect is known as slip. Because of slip, we obtain V w2 < U2. The slip factor s is

defined in a similar way as in the case of a centrifugal pump as

s = 2

2

wV

U

The value of s lies between 0.9 and 0.92. The energy transfer per unit mass in case

of slip becomes

E

m
 = V Uw2 2  = s U2

2
(16.2)

One of the widely used expressions for s was suggested by Stanitz from the

solution of potential flow through the impeller passages. It is given by

s = 1 – 
0 63◊ p

n
, where n is the number of vanes.

Power Input Factor The power input factor takes into account the effect of

disk friction, windage, etc., for which a little more power has to be supplied than

required by the theoretical expression. Considering all these losses, the actual

work done (or energy input) on the air per unit mass becomes

w = YsU2
2 (16.3)

where Y is the power input factor.

From steady flow energy equation and in consideration of air as an ideal gas, one

can write for adiabatic work w per unit mass of air flow as

w = cp (T2t – T1t) (16.4)

where T1t and T2t are the stagnation temperatures at inlet and outlet of the

impeller, and cp is the mean specific heat over the entire temperature range. With

the help of Eq. (16.3), we can write

w = Y sU2
2 = cp (T2t – T1t) (16.5)

The stagnation temperature represents the total energy held by a fluid. Since

no energy is added in the diffuser, the stagnation temperature rise across the

impeller must be equal to that across the whole compressor. If the stagnation

temperature at the outlet of the diffuser is designated by T3t then T3t = T2t. One

can write from Eq. (16.5)

2

1

t

t

T

T
 =

3

1

t

t

T

T
 = 1 + 

2
2

1p t

U

c T

sY
(16.6)

The overall stagnation pressure ratio can be written as
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where, T ¢3t and T3t are the stagnation temperatures at the end of an ideal (isentropic)

and actual process of compression we know respectively (Fig. 16.3), and hc is the

isentropic efficiency defined as

hc =
3 1

3 1

t t

t t

T T

T T

-¢

-
(16.8)

T3t

T1t

T3t
′

p3t

s

p1t

T 3′

3

1

Fig. 16.3 Ideal and actual processes of compression on T-s plane

Since the stagnation temperature at the outlet of the impeller is the same as that

at the outlet of the diffuser, one can also write T2t in place of T3t in Eq. (16.8).

Typical values of the power input factor lie in the region of 1.035 to 1.04. If we

know hc, we will be able to calculate the stagnation pressure rise for a given impeller

speed. The variation in stagnation pressure ratio across the impeller with the

impeller speed is shown in Fig. 16.4. For common materials, U2 is limited to 450 m/s.

Figure 16.5 shows the inducing section of a compressor. The relative velocity V r1

at the eye tip has to be held low otherwise the Mach number (based on V r1) given by

Mr1 = 
1

1

rV

RTg
 will be too high causing shock losses. Mach number Mr1 should be in

the range of 0.7–0.9. The typical inlet velocity triangles for large and medium or

small eye tip diameter are shown in Fig. 16.6 (a) and (b) respectively.
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p2t

p1t

U2

Fig. 16.4 Variation in stagnation pressure ratio with impeller tip speed

Tip diameter
of the eye

Root diameter of
the eye

Passage
normal to flow

Fig. 16.5 Inducing section of a centrifugal compressor

V1
V1

Vr1

(a) (b)

Vr1

U1
U1

Fig. 16.6 Velocity triangles at the tip of the eye

16.1.1 Diffuser

The basic purpose of a compressor is to deliver air at high pressure required for

burning fuel in a combustion chamber so that the burnt products of combustion at

high pressure and temperature are used in turbines or propelling nozzles (in case of

an aircraft engine) to develop mechanical power. The problem of designing an

efficient combustion chamber is eased if velocity of the air entering the combustion

chamber is as low as possible. It is necessary, therefore to design the diffuser so that
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only a small part of the stagnation temperature at the compressor outlet corresponds

to kinetic energy.

It is much more diffucult to arrange for an efficient deceleration of flow than it is

to obtain efficient acceleration. There is a natural tendency in a diffusing process

for the air to break away from the walls of the diverging passage and reverse its

direction. This is typically due to the phenomenon of boundary layer separation as

explained in Section 9.6. This is shown in Fig. 16.7. Experiments have shown that

the maximum permissible included angle of divergence is 11° to avoid considerable

losses due to flow separation.

Pressure
increasing

Decelerating flow
through a diffuser (D)

Accelerating flow
through a nozzle (N)

Accelerating and decelerating
flow through a nozzle and a diffuser
with an intervening throat (T)

D N N D

U x( )

U x( )
x

T

Decreasing
pressure

Boundary
layer Back

flow

Inviscid
core

Fig. 16.7 Accelerating and decelerating flows

In order to control the flow of air effectively and carry-out the diffusion process in

as short a length as possible, the air leaving the impeller is divided into a number of

separate streams by fixed diffuser vanes. Usually the passages formed by the vanes

are of constant depth, the width diverging in accordance with the shape of the vanes.

The angle of the diffuser vanes at the leading edge must be designed to suit the

direction of the absolute velocity of the air at the radius of the leading edges, so that

the air will flow smoothly over the vanes. As there is a radial gap between the

impeller tip and the leading edge of the vanes (Fig. 16.8), this direction will not be

that with which the air leaves the impeller tip.

V2

Vw2

Vf 2 Diffuser

Vanes

Fig. 16.8 Diffuser vanes
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To find the correct angle for diffuser vanes, the flow in the vaneless space should be

considered. No further energy is supplied to the air after it leaves the impeller. If we

neglect the frictional losses, the angular momentum V w r remains consant. Hence V w

decreases from the impeller tip to the diffuser vane, in inverse proportion to the

radius. For a channel of constant depth, the area of flow in the radial direction is

directly proportional to the radius. The radial velocity V f will therefore also decrease

from the impeller tip to the diffuser vane, in accordance with the equation of

continuity. If both V f and V w decrease from the impeller tip then the resulant

velocityV  decreases from the impeller tip and some diffusion takes place in the

vaneless space. The consequent increase in density means that V f will not

decrease in inverse proportion to the radius as done by V w, and the way V f varies

must be found from the equation of continuity.

16.1.2 Losses in a Centrifugal Compressor

The losses in a centrifugal compressor are almost of the same types as those in a

centrifugal pump described in Section 15.3.3 of Chapter 15. However, the

following features are to be noted.

Frictional Losses A major portion of the losses is due to fluid friction in

stationary and rotating blade passages. The flow in impeller and diffuser is

decelerating in nature. Therefore the frictional losses are due to both skin friction

and boundary layer separation. The losses depend on the friction factor, length of

the flow passage and square of the fluid velocity. The variation of frictional losses

with mass flow is shown in Fig. 16.9.

Incidence Losses During the off-design conditions, the direction of relative

velocity of fluid at the inlet does not match with the inlet blade angle and therefore

the fluid cannot enter the blade passage smoothly by gliding along the blade surface.

The loss in energy that takes place because of this is known as incidence loss. This

is sometimes referred to as shock losses. However, the word shock in this context

should not be confused with the aerodynamic sense of shock which is a sudden

discontinuity in fluid properties and flow parameters that arises when a supersonic

flow decelerates to a subsonic one as described in Chapter 14.

Clearance and Leakage Losses Certain minimum clearances are necessary

between the impeller shaft and the casing and between the outer periphery of the

impeller eye and the casing. The leakage of gas through the shaft clearance is

minimised by the employing glands. The clearance losses depend upon the impeller

diameter and the static pressure at the impeller tip. A larger diameter of the impeller

is necessary for a higher peripheral speed (U2) and it is very difficult in this situation

to provide sealing between the casing and the impeller eye tip.

The variations of frictional losses, incidence losses and the total losses with mass

flow rate are shown in Fig. 16.9. The leakage losses comprise a small fraction of the

total loss. The incidence losses attain the minimum value at the designed mass flow

rate. The shock losses are, in fact, zero at the designed flow rate. However, the

incidence losses, as shown in Fig. 16.9, comprise both shock  losses and  impeller



Compressors, Fans and Blowers 787

Total loss

Loss

Mass flow

Incidence losses

Frictional losses

Fig. 16.9 Dependence of various losses with mass flow in a centrifugal

compressor

entry loss due to a change in the direction of fluid flow from the axial to the radial

direction in the vaneless space before entering the impeller blades. The impeller entry

loss is similar to that in a pipe bend and is very small compared to other losses. This is

why incidence losses show a non-zero minimum value (Fig. 16.9) at the designed flow

rate.

16.1.3 Compressor Characteristics

The theoretical and actual head-discharge relationships of a centrifugal compressor

are the same as those of a centrifugal pump, as described in Chapter 15. Therefore the

curves of H–Q are similar to those of Figs 15.26 and 15.27. However, the performance

of a compressor is usually specified by curves of delivery pressure and temperature

against mass flow rate for various fixed values of rotational speed at given values of

inlet pressure and temperature. It is always advisable to plot such performance

characteristic curves with dimensionless variables. To find these dimensionless

variables, we start with an implicit functional relationship of all the variables as

F(D, N, m, p1t, p2t, RT1t, RT2t, = 0 (16.9)

where D = characteristic linear dimension of the machine, N = rotational speed, m =

mass flow rate, p1t = stagnation pressure at compressor inlet, p2t = stagnation pres-

sure at compressor outlet, T1t = stagnation temperature at compressor inlet, T2t =

stagnation temperature at compressor outlet, and R = characteristic gas constant.

By making use of Buckingham’s p theorem, we obtain the non-dimensional

groups (p terms) as
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The third and fourth non-dimensional groups are defined as ‘non-dimensional

mass flow’ and non-dimensional rotational speed’ respectively. The physical

interpretation of these two non-dimensional groups can be ascertained as follows.
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Therefore, the ‘non-dimensional mass flow’ and ‘non-dimensional rotational speed’

can be regarded as flow Mach number, MF and rotational speed Mach number, MR.

When we are concerned with the performance of a machine of fixed size compressing

a specified gas, R and D may be omitted from the groups and we can write
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1 1 1 1
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 = 0 (16.10)

Though the terms 1 1/t tm T p  and 1/ tN T  are truly not dimensionless, they are

referred to as ‘non-dimensional mass flow’ and ‘non-dimensional rotational speed’

for practical purposes. The stagnation pressure and temperature ratios p2t/p1t and

T2t/T1t are plotted against 1 1/t tm T p  in the form of two families of curves, each

curve of a family being drawn for fixed values of 1/ tN T . The two families of

curves represent the compressor characteristics. From these curves, it is possible to

draw the curves of isentropic efficiency hc vs 1 1/t tm T p  for fixed values of

1/ tN T . We can recall, in this context, the definition of the isentropic efficiency as

hc =
2 1
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Before describing a typical set of characteristics, it is desirable  to consider what

might be expected to occur when a valve placed in the delivery line of the

compressor running at a constant speed, is slowly opened. When the valve is shut

and the mass flow rate is zero, the pressure ratio will have some value A

(Fig. 16.10), corresponding to the centrifugal pressure head produced by the action
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Fig. 16.10 The theoretical characteristic curve, after Cohen et al. [1]
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of the impeller on the air trapped between the vanes. As the valve is opened, flow

commences and the diffuser begins to influence the pressure rise, for which the

pressure ratio increases. At some point B, efficiency approaches its maximum and

the pressure ratio also reaches its maximum. Further increase of mass flow will

result in a fall of pressure ratio. For mass flows greatly in excess of that

corresponding to the design mass flow, the air angles will be widely different from

the vane angles and breakaway of the air will occur. In this hypothetical case, the

pressure ratio drops to unity at C, when the valve is fully open and all the power is

absorbed in overcoming internal frictional resistances.

In practice, the operating point A  could be obtained if desired but a part of the

curve between A  and B could not be obtained due to surging. It may be explained in

the following way. If we suppose that the compressor is operating at a point D on the

part of characteristic curve (Fig. 16.10) having a positive slope, then a decrease in

mass flow will be accompanied by a fall in delivery pressure. If the pressure of the

air downstream of the compressor does not fall quickly enough, the air will tend to

reverse its direction and will flow back in the direction of the resulting pressure

gradient. When this occurs, the pressure ratio drops rapidly causing a further drop in

mass flow until the point A  is reached, where the mass flow is zero. When the

pressure downstream of the compressor has reduced sufficiently due to reduced

mass flow rate, the positive flow becomes established again and the compressor

picks up repeat the cycle of events which occurs at high frequency.

This surging of air may not happen immediately as the operating point moves

to the left of B  because the pressure downstream of the compressor may at first

fall at a greater rate than the delivery pressure. As the mass flow is reduced, the

reverse will apply and the conditions are unstable between A  and B. As long as

the operating point is on the part of the characteristic having a negative slope,

decrease in mass flow is accompanied by a rise in delivery pressure and the

operation is stable.

Let us consider the constant speed curve ABC in Fig. 16.10. There is an additional

limitation to the operating range, between B  and C. As the mass flow increases

and the pressure decreases, the density is reduced and the radial component of

velocity must increase. At constant rotational speed this means an increase in

resultant velocity and hence in angle of incidence at the diffuser vane leading

edge. At some point, say E, the position is reached where no further increase

in mass flow can be obtained no matter how wide open the control valve is.

This point represents the maximum delivery obtainable at the particular

rotational speed for which the curve is drawn. This indicates that at some point

within the compressor sonic conditions have been reached, causing the

limiting maximum mass flow rate to be set as in the case of compressible flow

through a converging diverging nozzle. Choking is said to have taken place.

Other curves may be obtained for different speeds, so that the actual variation

of pressure ratio over the complete range of mass flow and rotational speed

will be shown by curves such as those in Fig. 16.11. The left-hand extremities

of the constant speed curves may be joined to form the surge line, the right-

hand extremities indicate choking(Fig. 16.11).
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Fig. 16.11 Variations of pressure ratio over the complete range of mass flow

for different rotational speeds, after Cohen et al. [1]

Example 16.1

Air at a stagnation temperature of 27º C enters the impeller of a centrifugal

compressor in the axial direction. The rotor which has 15 radial vanes, rotates at

20000 rpm. The stagnation pressure ratio between the diffuser outlet and  the

impeller inlet is 4 and the isentropic efficiency is 85%. Determine (i) the impeller

tip radius and (ii) power input to the compressor when the mass flow rate is 2 kg/s.

Assume a power input factor of 1.05 and a slip factor s = 1 – 2/n, where n  is the

number of vanes. For air, take g  = 1.4, R = 287 J/kg K.

Solution

(i) From Eq (16.7), we can write

T3t – T1t = 

1

1 3 1( / ) 1t t t

c

T p p

g

g

h

-È ˘
Í ˙-
Í ˙Î ˚

again with the help of Eq (16.5) and T2t = T3t it becomes
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U2
2 = 

1

1 3 1( / ) 1p t t t

c

c T p p

g

g

h sy

-È ˘
Í ˙-
Í ˙Î ˚

Here, p3t/p1t = 4

Tlt = 300 K

cp = 
1

Rg

g -

= 
1.4 287

0.4

¥

= 1005 J/kg K.

s = 1 – 
2

15

= 0.867

y = 1.05

Therefore, U2
2 = 

( )0.4

1.4
1005 300

4 1

0.85 0.867 1.05

¥ ¥
-

¥ ¥

which gives U2 = 435 m/s

Thus the impeller tip radius is

r2 = 
435 60

2 20000p

¥
¥

= 0.21 m

(ii) Power input to the air = 
22 1.05 0.867 (435)

kW
1000

¥ ¥ ¥

= 344.52 kW

Example 16.2

Determine the pressure ratio developed and the specific work input to drive a

centrifugal air compressor of an impeller diameter of  0.5 m and running at 7000

rpm. Assume zero whirl at the entry and T1t = 290 K. The slip factor and power

input factor to be unity, the process of compression is isentropic and for air cp =1005

J/kg K, g  = 1.4.
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Solution

The impeller tip speed

U2 = 
0.5 7000

60

p ¥ ¥

= 183.26 m/s

With the help of Eqs (16.6) and (16.7), we can write

Pressure ratio = 
2 1
2

1

1
p t

U

c T

g

g -È ˘
+Í ˙

Î ˚

= 

1.4
2 0.4(183.26)

1
1005 290

È ˘
+Í ˙¥Î ˚

= 1.46

From Eq (16.3), specific work input = U2
2 = 

2(183.26)

1000
 = 33.58 kJ/kg

Example 16.3

A centrifugal compressor has an impeller tip speed of 360 m/s. Determine (i) the

absolute Mach number of flow leaving the radial vanes of the impeller and (ii) the

mass flow rate. The following data are given:

Impeller Tip speed 360 m/s

Radial component of flow velocity at impeller exit 30 m/s

Slip factor 0.9

Flow area at impeller exit 0.1 m
2

Power input factor 1.0

Isentropic efficiency 0.9

Inlet stagnation temperature 300 K

Inlet stagnation pressure 100 kN/m
2

R (for air) 287 J/kg K

g (for air) 1.4

Solution

The absolute Mach number is the Mach number based on absolute velocity.

Therefore, M2 = 2

2

V

RTg
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Now V 2 and T2 have to be determined.

From the velocity triangle at the impeller exit,

V2 = 
2 2
2 2w fV V+

In case of slip, Vw2 = sU2

Hence, V2 = ( )2 2
2 2fU Vs +

= 
2 2(0.9 360) (30)¥ +

= 325.38 m/s

From Eq. (16.5)

T2t = T lt + 
2
2

p

U

c

y s

L

NM
cp = 

1.4 287
1005 J/kg K

1 0.4

Rg

g

¥ ˘= = ˙- ˚

T2t = 
20.9 (360)

300
1005

¥
+

= 416 K.

T2 = T2t – 
2

2

2 p

V

c

= 
2(325.38)

416
2 1005

-
¥

= 363.33 K.

Therefore, M2 = 
325.28

1.4 287 363.33¥ ¥

= 0.85

Mass flow rate &m = r2A 2Vf 2

We have to find out r2

With the help of Eq. (16.7), we can write
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2

1

t

t

p

p
= 

1.4

0.40.9 (416 300)
1

300

¥ -È ˘+Í ˙Î ˚

= 2.84

Again, 2

2t

p

p
= 

1.4 1.4

0.4 0.42

2

363.33
0.623

416t

T

T

Ê ˆ Ê ˆ= =Á ˜ Ë ¯Ë ¯

Hence,

p2 = 0.623 p2t

= 0.623 × 2.84 plt

= 0.623 × 2.84 × 100 kPa

= 176.93 kPa

Therefore, &m = 2
2 2

2
f

p
A V

RT

Ê ˆ
◊Á ˜Ë ¯

=
3176.93 10

0.1 30
287 363.33

¥
¥ ¥

¥

= 5.09 kg/s

Example 16.4

Air at a temperature of 27°C flows into a centrifugal compressor running at 20,000

rpm. The following data are given:

Slip factor 0.80

Power input factor 1

Isentropic efficiency 80%

Outer diameter of blade tip 0.5 m

Assuming the absolute velocities of air entering and leaving the compressor are

same, find (i) static temperature rise of air passing through the compressor, and

(ii) the static pressure ratio.

Solution

Velocity of the blade tip,

U2 = 
0.5 20,000

60

p ¥ ¥

= 523.6 m/s
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From Eq. (16.5),

Stagnation temperature rise (T2t – T1t ) = 
2
2

p

U

c

y s

= 
20.80 (523.6)

1005

¥
 = 218.23º C

(cp of air has been taken as 1005 J/kg K)

Since the absolute velocities at the inlet and the outlet of the stage are the same,
the rise in stagnation temperature equals to that in static temperature.

The static pressure ratio can be written as

2

1

p

p
= 

1
2

1

T

T

g

g -¢Ê ˆ
Á ˜Ë ¯

= 
1

2 1

1

( )
1 c T T

T

g

gh --È ˘
+Í ˙

Î ˚

= 

1.4

0.40.8 218.23
1

300

¥È ˘+Í ˙Î ˚

= 4.98

16.2  AXIAL FLOW COMPRESSORS

The basic components of an axial flow compressor are a rotor and a stator; the

former carrying the moving blades and the latter the stationary rows of blades. The

stationary blades convert the kinetic energy of the fluid into pressure energy, and

also redirect the flow into an angle suitable for entry to the next row of moving

blades. Each stage will consist of one rotor row followed by a stator row but it is

usual to provide a row of so-called inlet guide vanes. This is an additional stator row

upstream of the first stage in the compressor and serves to direct the axially

approaching flow correctly into the first row of the rotating blades. Two forms of

rotor have been taken up, namely, drum type and disk type. A disk-type rotor is

illustrated in Fig. 16.12. The disk type is used where consideration of low weight is

most important. There is a contraction of the flow annulus from the low to the high-

pressure end of the compressor. This is necessary to maintain the axial velocity at a

reasonably constant level throughout the length of the compressor despite the

increase in density of air. Figure 16.13 illustrates this flow through compressor

stages.
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Inlet casting

Stator blade carrier

Outlet

Stator blade

Rotor blade

Fig. 16.12 Disk type axial flow compressor

The basic principle of acceleration of the working fluid, followed by diffusion to

convert acquired kinetic energy into a pressure rise, is applied in the axial

compressor. The flow is considered as occurring in a tangential plane at the mean

blade height where the blade peripheral velocity is U. This two-dimensional

approach means that, in general, the flow velocity will have two components, one

axial and one peripheral denoted by subscript w, implying a whirl velocity. It is first

assumed that the air approaches the rotor blades with an absolute velocity V 1, at an

angle a1 to the axial direction. In combination with the peripheral velocity U of the

blades, its relative velocity will be V r1 at an angle b1 as shown in the upper velocity

triangle (Fig. 16.14). After passing through the diverging passages formed between

the rotor blades which do work on the air and increase its absolue velocity, the air

will emerge with the relative velocity of V r2 at angle b2 which is less than b1. This

turning of air towards the axial direction is, as previously mentioned, necessary to

provide an increase in the effective flow area and is brought about by the camber of

the blades. Since V r2 is less than V r1 due to diffusion, some pressure rise has been

accomplished in the rotor. The velocity V r2  in combination with U gives the absolute

velocity V 2 at the exit from the rotor at an angle angle a2 to the axial direction. The

air then passes through the passages formed by the stator blades where it is further

diffused to velocity V 3 at an angle a3 which in most designs equals to a1 so that it is

prepared for entry to the next stage. Here again, the turning of the air towards the

axial direction is brought about by the camber of the blades.
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Fig. 16.13 Flow through stages
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Fig. 16.14 Velocity triangles of a stage of an axial flow compressor

Two basic equations follow immediately from the geometry of the velocity triangles.

These are as follows:

f

U

V
 = tan a1 + tan b1 (16.12)

f

U

V
 = tan a2 + tan b2 (16.13)
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in which V f = V f 1 = V f 2 is the axial velocity, assumed consant through the stage.

The work done per unit mass or specific work input, w being given by

w = U(Vw2 – Vw1) (16.14)

This expression can be put in terms of the axial velocity and air angles to give

w = UVf (tan a2 – tan a1) (16.15)

or by using Eqs (16.12) and (16.13)

w = UVf (tan b1 – tan b2) (16.16)

This input energy will be absorbed usefully in raising the pressure and velocity of

the air. A part of it will be spent in overcoming various frictional losses. Regardless

of the losses, the input will reveal itself as a rise in the stagnation temperature of the

air DTst. If the absolute velocity of the air leaving the stage V 3 is made equal to that

at the entry V 1, the stagnation temperature rise DTst will also be the static

temperature rise of the stage, DTs, so that

DTst = DTs = 
f

p

UV

c
 (tan b1 – tan b2) (16.17)

In fact, the stage temperature rise will be less than that given in Eq. (16.17)

owing to three-dimensional effects in the compressor annulus. Experiments show

that it is necessary to multiply the right-hand side of Eq. (16.17) by a work-done

factor l which is a number less than unity. This is a measure of the ratio of actual

work-absorbing capacity of the stage to its ideal value.

The radial distribution of axial velocity is not constant across the annulus but

becomes increasingly peaky (Fig. 16.15) as the flow proceeds, setting down to a

fixed profile at about the fourth stage. Equation (16.16) can be written with the help

of Eq. (16.12) as
w = U [(U – V f tan a1) – V f tan b2]

= U (U – V f (tan a1 + tan b2)) (16.18)

Blade
height I Stage

IV StageBlade
height

Vfmean

Vf

Fig. 16.15 Axial velocity distributions
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Since the outlet angles of the stator and the rotor blades fix the value of a1

and b2 and hence the value of (tan a1 + tan b2). Any increase in V f will result in

a decrease in w  and vice versa. If the compressor is designed for constant radial

distribution of V f as shown by the dotted line in Fig. 16.15, the effect of an

increase in V f in the central region of the annulus will be to reduce the work

capacity of blading in that area. However, this reduction is somewhat

compensated by an increase in w  in the regions of the root and tip of the blading

because of the reduction of V f at these parts of the annulus. However, the net

result is a loss in total work capacity because of the adverse effects of blade tip

clearance and boundary layers on the annulus walls. This effect becomes more

pronounced as the number of stages is increased and the way in which the mean

value varies with the number of stages. The variation of l with the number of

stages is shown in Fig. 16.16. Care should be taken to avoid confusion of this

factor with the idea of an efficiency. If w  is the expression for the specific work

input (Eq. 16.14), then lw  is the actual amount of work which can be supplied to

the stage. The application of an isentropic efficiency to the resulting

temperature rise will yield the equivalent isentropic temperature rise from which

the stage pressure ratio may be calculated. Thus, the actual stage temperature

rise is given by

DTst =
f

p

UV

c

l
 (tan b1 – tan b2) (16.19)

and the pressure ratio Rs by

Rs =
1

1

1 s st

t

T

T

g

gh -DÈ ˘
+Í ˙

Î ˚
(16.20)

where T1t is the inlet stagnation temperature and hs is the stage isentropic efficiency.

4
0.8

0.9
l

1.0

8 12

Number of stages

16 20

Fig. 16.16 Variation of work-done factor with number of stages
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Example 16.5

At the mean diameter, U = 200 m/s, V f = 180 m/s, b1 = 43.9° and b2 = 13.5°. The

factor l = 0.86 and hs = 0.85 and inlet temperature T1t is 288 K. Calculate the

pressure ratio.

Solution

DTst = 3

0 86 200 180

1 005 10

◊ ¥ ¥
◊ ¥

 (tan 43.9° – tan 13.5°)

= 22.24 K

and Rs =
3.5

0 85 22 24
1

288

◊ ¥ ◊È ˘+Í ˙Î ˚
 = 1.25

[cp of air has been taken as 1005 J/kg K]

Example 16.6

The conditions of air at the entry of an axial flow compressor stage are p1 = 100kN/m
2

and Tl = 300 K. The air angles are b1 = 51º, b2 = 10º, a1 = a 3 = 8º.

The mean diameter and peripheral speed are 0.5 m and 150 m/s respectively.

Mass flow rate through the stage is 30 kg/s; the work done factor is 0.95 and

mechanical efficiency is 90%. Assuming an isentropic stage efficiency of  85%,

determine (i) blade height at entry (ii) stage pressure ratio, and (iii) the power

required to drive the stage (for air, R = 287 J/kg K, g  = 1.4)

Solution

(i) r1 = 1

1

p

RT
 = 

3
100 10

287 300

¥
¥

 = 1.16 kg/m3

From Eq. (16.12),

f

U

V
= tan a1 + tan b1

Hence, Vf = 
150

tan 8º tan51+ ∞

= 109.06 m/s

&m = V f  r l (p d hl)

30 = 109.06 × 1.16 × p × 0.5 hl

which gives h1 = 0.15 m

(ii) From Eq. (16.19)



Compressors, Fans and Blowers 801

DTst = 1 2(tan tan )
f

p

U V

c

l
b b-

Again, cp = 
1.4

(1.4 1)-
 × 287 = 1005 J/kg K

Hence, DTst = 
0.95 150 190.06

1005

¥ ¥
 (tan 51º – tan 10º )

= 16.37º C

With the help of Eq. (16.20) we can write

Pressure ratio, Rs = 

1.4

0.40.85 16.37
1

300

¥È ˘+Í ˙Î ˚

= 1.17

(iii) P = 
p st

m m

mc Tmw

h h

D
=

&

&

= 
30 1005 16.37

kW
0.9 1000

¥ ¥
¥

 = 548.39 kW

16.2.1 Degree of Reaction

A certain amount of diffusion (a rise in static pressure) takes place as the air

passes through the rotor as well as the stator; the rise in pressure through the

stage is in general, attributed to both blade rows. The term degree of reaction is a

measure of the extent to which the rotor itself contributes to the increase in the

static head of fluid. It is defined as the ratio of the static enthalpy rise in the rotor

to that in the whole stage. Variation of cp over the relevent temperature range will be

negligibly small and hence this ratio of enthalpy rise will be equal to the

corresponding temperature rise.

It is useful to obtain a formula for the degree of reaction in terms of the various

velocities and air angles associated with the stage. This will be done for the most

common case in which it is assumed that the air leaves the stage with the same

velocity (absolute) with which it enters (V 1 = V 3).

This leads to DTs = DTst. If DTA  and DTB are the static temperature rises in the

rotor and the stator respectively, then from Eqs (16.15), (16.16) and (16.17),

w = cp (DTA  + DTB) = cpDTs

= UVf (tan b1 – tan b2)

= UVf (tan a2 – tan a1) (16.21)

Since all the work input to the stage is transferred to air by means of the rotor, the

steady flow energy equation yields
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w = cp 
2 2

2 1

1
( )

2
AT V VD + -

With the help of Eq. (16.21), it becomes

cpDTA  = UVf (tan a2 – tan a1) – 2 2
2 1

1
( )

2
V V-

But V 2 = V f sec a2 and V 1 = V f sec a1, and hence

cpDTA  = UVf (tan a2 – tan a1) – 
1

2
 V

2
f (sec

2a2 – sec
2a1)

= UVf (tan a2 – tan a1) – 
1

2
 V2

f (tan2a2 – tan2a1) (16.22)

The degree of reaction

L = A

A B

T

T T

D
D + D

(16.23)

With the help of Eq. (16.22), it becomes

L =

2 2 2
2 1 2 1

2 1

1
(tan tan ) (tan tan )

2
(tan tan )

f f

f

UV V

UV

a a a a

a a

- - -

-

By adding up Eq. (16.12) and Eq. (16.13), we get

2

f

U

V
 = tan a1 + tan b1 + tan a2 + tan b2

Hence,

L = 1 – 
2

fV

U
 (tan a2 + tan a1)

or L = 1 2

2 2
tan tan

2

f

f f

V U U

U V V
b b

Ê ˆ
- + +Á ˜Ë ¯

or L =
2

fV

U
 (tan b1 + tan b2) (16.24)

As the case of 50% reaction blading is important in design, it is of interest to see

the result for L = 0.5

tan b1 + tan b2 =
f

U

V

and it follows from Eqs (16.12) and (16.13) that

tan a1 = tan b2, i.e. a1 = b2 (16.25a)

tan b1 = tan a2, i.e. b1 = a2 (16.25b)

Furthermore, since V f is constant through the stage.

Vf = V 1 cos a1 = V 3 cos a3

And since we have initially assumed that V 3 = V 1, it follows that a1 = a3. Because

of this equality of angles, namely, a1 = b2 = a3 and b1 = a2, blading designed on this

basis is sometimes referred to as symmetrical blading.
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It is to be remembered that in deriving Eq. (16.24) for L we have implicitly

assumed a work done factor l of unity in making use of Eq. (16.22). A stage

designed with symmetrical blading is referred to as 50% reaction stage although

L will differ slightly for l.

Example 16.7

The preliminary design of an axial flow compressor is to be based upon a simplified

consideration of the mean diameter conditions. Suppose that the characteristics of a

repeating stage of such a design are as follows:

Stagnation temperature rise (DTst) 30 K

Degree of reaction ( L) 0.6

Flow coefficienty (V f /U) 0.5

Blade speed (U) 300 m/s

Assuming constant axial velocity across the stage and equal absolute velocities at

inlet and outlet, determine the blade angles of the rotor for a shock free flow.

 (cp for air = 1005 J/kg K).

Solution

Specific work input w = 1005 ¥ 30 J/kg

From Eq. (16.17)

1005 × 30 = (300)2 ¥ (0.5) (tan b1 – tan b 2)

or tan b1 – tan b 2 = 0.67

Again from Eq. (16.24),

0.6 = 
0.5

2
 (tan b1 + tan b 2)

tan b1 + tan b2 = 2.4

The above two equations give

b1 = 56.92º, b2 = 40.86º

16.3  FANS AND BLOWERS

Fans and blowers (Fig. 16.17) are turbomachines which deliver air at a desired

high velocity (and accordingly at a high mass flow rate) but at a relatively low static

pressure. The total pressure rise across a fan is extremely low and is of the order of

a few millimeters of water gauge. The rise in static pressure across a blower is

relatively higher and is more than 1000 mm of water guage that is

required to overcome the pressure losses of the gas during its flow through various

passages.
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Volute
casing

Impeller

Inlet

Outlet

Fig. 16.17 A centrifugal fan or blower

A large number of fans and blowers for relatively high pressure applications are of

centrifugal type. The main components of a centrifugal blower are shown in Fig. 16.18.

It consists of an impeller which has blades fixed between the inner and outer diameters.

The impeller can be mounted either directly on the shaft extension of the prime mover or

separately on a shaft supported between two additional bearings. Air or gas enters the

impeller axially through the inlet nozzle which provides slight acceleration to the air

before its entry to the impeller. The action of the impeller swings the gas from a smaller

to a larger radius and delivers the gas at a high pressure and velocity to the casing. The

flow from the impeller blades is collected by a spiral-shaped casing known as volute

casing or spiral casing. The casing can further increase the static pressure of the air and

it finally delivers the air to the exit of the blower.

DriveFlow

Inlet flange

Nozzle

Impeller

b2

b1

Volute
casing

Outlet

D1 D2

Fig. 16.18 Main components of a centrifugal blower
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The centrifugal fan impeller can be fabricated by welding curved or almost straight

metal blades to the two side walls (shrouds) of the rotor. The casings are made of

sheet metal of different thickness and steel reinforcing ribs on the outside. Suitable

sealing devices are used between the shaft and the casing.

A centrifugal fan impeller may have backward swept blades, radial tipped blades

or forward swept blades as shown in Fig. 16.19. The inlet and outlet

velocity triangles are also shown accordingly in the figure. Under ideal conditions,

the directions of the relative velocity vectors V r1 and V r2 are same as the

blade angles at the entry and the exit. A zero whirl at the inlet is assumed

which results in a zero angular momentum at the inlet. The backward swept

blades are employed for lower pressure and lower flow rates. The radial-tipped

blades are employed for handling dust-laden air or gas because they are less prone

to blockage, dust erosion and failure. The radial-tipped blades in practice are of

forward-swept type at the inlet, as shown in Fig. 16.19. The forward-swept blades

are widely used in practice. On account of the forward-swept blade tips at the exit,

the whirl component of exit velocity (V w2) is large which results in a higher stage

pressure rise.

Vf2

Vr2

V
r1

Vr1

Vw
2

U
2

V 1

U
1

Forward
swept

Radial

Backward
sweptV V1 = f1

Vr2 = Vf2

Vr1

Vr2

Vw2

V2

V2

b2

b1

b2 = 90∞

b2

b1 b1

U1 U1

V1

V1

V2

a2
a2

a2

U2

U2

Fig. 16.19 Velocity triangles at inlet and outlet of different types of blades of

an impeller of a centrifugal blower

16.3.1 Parametric Calculations

The mass flow rate through the impeller is given by

&m  = r1 Q1 = r2 Q2 (16.26)

The areas of cross sections normal to the radial velocity components V f1 and V f 2 are

A 1 = pD1b1 and A 2 = pD2b2

m = r1V f 1 (pD1b1) = r2V f 2 (pD2b2) (16.27)

The radial component of velocities at the impeller entry and exit depend on its width

at these sections. For small pressure rise through the impeller stage, the density
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change in the flow is negligible and the flow can be assumed to be almost

incompressible. For constant radial velocity

V f 1 = Vf 2 = Vf (16.28)

Eqs (16.27) and (16.28) give

b1/b2 = D2/D1 (16.29)

16.3.2 Work

The work done is given by Euler’s Equation (Eq. 15.2) as

w = U2Vw2 – U1Vw1 (16.30)

It is reasonable to assume zero whirl at the entry. This condition gives

a1 = 90°, V w1 = 0 and hence, U1V w1 = 0

Therefore we can write,

V 1 = V f 1 = V f 2 = U1 tan b1 (16.31)

Equation (16.30) gives

w = U2V w2 = U2
2 

2

2

wV

U

Ê ˆ
Á ˜Ë ¯

(16.32)

For any of the exit velocity triangles (Fig. 16.19)

U2 – V w2 = V f2 cot b2

2

2

wV

U
 =

2 2

2

cot
1

fV

U

bÈ ˘
-Í ˙

Î ˚
(16.33)

Eqs (16.32) and (16.33) yield

w = U2
2 [1 – j cot b2] (16.34)

where j (= V f 2/U2) is known as the flow coefficient

Head developed in metres of air = Ha = 2 2wU V

g
(16.35)

Equivalent head in metres of water = Hw = a a

w

Hr

r
(16.36)

where ra and rw are the densities of air and water respectively.

Assuming that the flow fully obeys the geometry of the impeller blades, the

specific work done in an isentropic process is given by

(Dh0) = U2 (1 – j cotb2) (16.37)

The power required to drive the fan is

P = m (Dh0) = mU2V w2 = mU2
2
 (1 – j cot b2)

= mcp (DT0) (16.38)
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The static pressure rise through the impeller is due to the change in centrifugal

energy and the diffusion of relative velocity component. Therefore, it can be written

as

p2 – p1 = (Dp) = 2 2 2 2
2 1 1 2

1 1
( ) ( )

2 2
r rU U V Vr r- + - (16.39)

The stagnation pressure rise through the stage can also be obtained as

(Dp0) =
2 2 2 2 2 2
2 1 1 2 2 1

1 1 1
( ) ( ) ( )

2 2 2
r rU U V V V Vr r r- + - + - (16.40)

From (16.39) and (16.40), we get

(Dp0) = (Dp) + 
1

2
r (V 2

2 – V 2
1) (16.41)

From any of the outlet velocity triangles (Fig. 16.19),

2

2sin

V

b
 = 2

2 2sin { ( )}

U

p a b- +

or 2

2sin

V

b
 = 2

2 2sin ( )

U

a b+
(16.42)

or Vw2 = V 2cos a2 = 2 2 2

2 2

sin cos

sin ( )

U b a

a b+

or 2

2

wV

U
 = 2 2

2 2 2 2

sin cos

sin cos cos sin

b a

a b a b+

or 2

2

wV

U
 = 2

2 2

tan

tan tan

b

a b+
(16.43)

work done per unit mass is also given by (from (16.32) and (16.43))

w =
2 2
2

2 2

tan

tan tan
U

b

a b

Ê ˆ
Á ˜Ë ¯+

(16.44)

16.3.3 Efficiency

On account of losses, the isentropic work 
1

r
 (Dp0) is less than the actual work.

Therefore the stage efficiency is defined by

hs =
0

2 2

( )

w

p

U Vr

D
(16.45)
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16.3.4 Number of Blades

Too few blades are unable to fully impose their geometry on the flow, whereas too

many of them restrict the flow passage and lead to higher losses. Most of the efforts

to determine the optimum number of blades have resulted in only empirical relations

given below

(i) n = 2

1 2

8 5 sin

1 /D D

b◊
-

(16.46)

(ii) n = 6◊5 
2 1

2 1

D D

D D

+Ê ˆ
Á ˜Ë ¯-

 sin 
1

2
 (b1 + b2) (16.47)

(iii) n = 
1

3
 b2 (16.48)

For a detailed procedure on design, please refer to Stepanoff [2].

16.3.5 Impeller Size

The diameter ratio (D1/D2) of the impeller determines the length of the blade

passages. The smaller the ratio, the longer is the blade passage. The following

value for the diameter ratio is often used by the designers:

1

2

D

D
 = 1◊2(j)1/3 (16.49)

where j = Vf 2/U2

The following relation for the blade width to diameter ratio is recommended:

b1/D1 ª 0◊2 (16.50)

If the rate of diffusion in a parallel wall impeller is too high, the tapered shape

towards the outer periphery, is preferable.

The typical performance curves describing the variations of head, power and

efficiency with discharge of a centrifugal blower or fan are shown in Fig. 16.20.

H P, , h

Efficiency h

Q

Power P

Head
developed H

Fig. 16.20 Performance characteristic curves of a centrifugal blower or fan
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16.3.6 Fan Laws

The relationships of discharge Q, head H and Power P with the diameter D and

rotational speed N of a centrifugal fan can easily be expressed from the

diamensionless performance parameters determined from the principle of similarity

of rotodynamic machines as described in Section 15.3.2. These relationships are

known as Fan Laws and described as follows:

Q = KqD3N (16.51)

H =
2 2

hK D N

g

r
(16.52)

P =

5 3
pK D N

g

r

where Kq, Kh, and Kp are constants.

For the same fan, the dimensions get fixed and the laws are

1

2

Q

Q
 = 1

2

N

N

1

2

H

H
 =

2

1

2

N

N

Ê ˆ
Á ˜Ë ¯

 and 1

2

P

P
 = 

3

1

2

N

N

Ê ˆ
Á ˜Ë ¯

For a different size and other conditions remaining same, the laws are

1

2

Q

Q
 =

3

1

2

D

D

Ê ˆ
Á ˜Ë ¯

, 1

2

H

H
 = 

2

1

2

D

D

Ê ˆ
Á ˜Ë ¯

 and 1

2

P

P
 = 

5

1

2

D

D

Ê ˆ
Á ˜Ë ¯

Example 16.8

A centrifugal fan running at 1500 rpm has inner and outer diameter of the impeller

as 0.2 m and 0.24 m. The absolute and relative velocities of air at entry are 21 m/s and

20 m/s respectively and those at exit are 25 m/s and 18 m/s respectively. The flow rate

is 0.6 kg/s and the motor efficiency is 80%. Determine (i) the stage pressure rise, (ii)

degree of reaction and (iii) the power required to drive the fan. Assuming

the flow to be incompressible with the density of air as 1.2 kg/m3.

Solution

(i) U1 = 
0.20 1500

60

p ¥ ¥

= 15.71 m/s



810 Introduction to Fluid Mechanics and Fluid Machines

U2 = 
0.24 1500

60

p ¥ ¥

= 18.85 m/s

From Eq. (16.40), the total pressure rise across the stage is

(Dpt)stage = 
1

2
2
2

1
2

2
2

1
2

1
2

1
2r [( ) ( ) ( )]V V U U V Vr r- + - + -

= 2 2 2 2 2 21
1.2 [(25 21 ) (18.85 15.71 ) (20 18 )]

2
¥ - + - + -

= 221.11 N/m
2

(ii) The static pressure rise across the stage is

(Dps)stage = 2 2 2 2
2 1 1 2

1
[( ) ( )]

2
r rU U V Vr - + -

= 2 2 2 21
1.2 [(18.85 15.71 ) (20 18 )]

2
¥ - + -

= 110.71 N/m2

The degree of reaction = 
110.71

221.11

= 0.5

(iii) The specific power input to the stage is

w = 
0 stage( )p

r

D

= 
221.11

1.2

= 184.26 J/kg

Therefore, the power required to drive the fan is

P = 
m

m w

h

&

= 
0 6 184 26

0 8

◊ ¥ ◊
◊

=138.19 W
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SUMMARY

∑ A centrifugal compressor is a radial flow machine which utilises the

mechanical energy imparted to the machine from outside to increase the

internal energy of the fluid mainly in the form of increased static pressure.

∑ A centrifugal compressor mainly consists of a rotating impeller which im-

parts energy to the fluid flowing past the impeller blades and a diffuser

comprising a number of fixed diverging passages in which the fluid is

decelerated with a consequent rise in static pressure. Usually, about half

of the total pressure rise occurs in the impeller and the other half in the

diffuser.

∑ The losses in a centrifugal compressor are due to (i) fluid friction in

stationary and rotating blade passages, (ii) leakage through the clearances

between the impeller shaft and casing and between the outer periphery of

the impeller eye and the casing, (iii) incidence of fluid with shock during

off design conditions.

∑ The performance characteristics of a compressor are usually specified by

curves of stagnation pressure ratio (p2t/p1t) and stagnation temperature

ratio (T2t/T1t) against non-dimensional mass flow ( )2
1 1/t tm RT D p  and

non-dimensional rotational speed ( )1/ tND RT .

∑ Most of the positive slope part of the characteristic curve

( )2
2 1 1 1/  m /t t t tp p vs RT D p  of a centrifugal compressor cannot be obta-

ined in practice because of the phenomenon of surging which is an unstable

operation of the compressor manifested by a cyclic reversal of pressure gra-

dient and flow in the delivery pipe.

∑ An axial flow compressor consists of several stages. Each stage has a

rotor carrying the moving blades and a stator comprising the stationary

blades. While the rotor of a stage imparts energy to the fluid, the stator

serves the process of diffusion to increase the static pressure. The bulk

flow is in the axial direction and brought about by the camber of the blades

in the stator.

∑ An important parameter in the design of an axial flow compressor is the

degree of reaction which is defined as the ratio of the static enthalpy rise

in the rotor to that in the whole stage. A 50% degree of reaction results in

a symmetrical blading which means the inlet and outlet angles of a rotor

blade are equal to those of a stator blade.

∑ Fans and blowers are turbomachines which deliver air at a desired high

velocity but at a relativelely low static pressure. A large number of fans

and blowers for relatively high pressure applications are of centrifugal

type. A centrifugal blower consists of an impeller which has blades fixed

between inner and outer diameters and a spiral-shaped volute casing.

∑ The relationships of discharge (Q), head (H ) and power (P) with the
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diameter (D) and rotational speed (N ) of a fan are known as Fan Laws.

For the same fan, Q μ N, H μ N 2
 and P μ N 3

. For fans of different sizes,

Q μ D3
, H μ D2

 and P μ D 5
.
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EXERCISES

[Note: For the Problems, assume R = 287 J/kg K and g = 1.4 and Cp = 1005 J/kg K

for air]

16.1 Determine the pressure ratio developed and the specific work input to drive

a centrifugal air compressor having an impeller diameter of 0.5 m and run-

ning at 7000 rpm. Assume zero whirl at the entry and T1t = 288 K.

Ans. (1.47, 33.58 kJ/kg)

16.2 A centrifugal compressor develops a pressure ratio of 4 : 1. The inlet eye of

the compressor impeller is 0.3 m in diameter. The axial velocity at inlet is

120 m/s and the mass flow rate is 10 kg/s. The velocity in the delivery duct is

110 m/s. The tip speed of the impeller is 450 m/s and runs at 16,000 rpm

with a total head isentropic efficiency of 80%. The inlet stagnation pressure

and temperature are 101 kN/m2 and 300 K. Calculate (i) the static tempera-

tures and pressures at inlet and outlet of the compressor, (ii) the static pres-

sure ratio, (iii) the power required to drive the compressor.

Ans. (T1 = 292.8 K, T2 = 476.45 K, p1 = 93 kN/m2,

p2 = 386.9 kN/m2, p2/p1 = 4.16, P = 1.83 MW)

16.3 The following results were obtained from a test on a small single-sided cen-

trifugals compressor:

Compressor delivery stagnation pressure 2.97 bar

Compressor delivery stagnation temperature 429 K

Static pressure at impeller tip 1.92 bar

Mass flow 0.60 kg/s

Rotational speed 766 rev/s

Ambient conditions 0.99 bar 288 K

Determine the isentropic efficiency of the compressor.

The diameter of the impeller is 0.165 m, the axial depth of the vaneless

diffuser is 0.01 m and the number of impeller vanes is 17. Making use of the

Stanitz equation for slip factor, calculate the stagnation pressure at the im-

peller tip.

Ans. (0.75, 3.13 bar)
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16.4 A single-sided centrifugal compressor is to deliver 14 kg/s of air when operat-

ing at a pressure ratio of 4:1 and a speed of 200 rev/s. The inlet stagnation

conditions are 288 K and 1.0 bar. The slip factor and power input factor may

be taken as 0.9 and 1.04 respectively. The overall isentropic efficiency is

0.80. Determine the overall diameter of the impeller.

Ans. (0.69 m)

16.5 Each stage of an axial flow compressor is of 50% degree of reaction and has

the same mean blade speed and the same value of outlet relative velocity

angle b2 = 30º. The mean flow coefficient  (V f /U) is constant for all stages at

0.5. At the entry to the first stage, the stagnation temperature is 290 K, the

stagnation pressure is 101 kPa. The static pressure is 87 kPa and the flow

area is 0.38 m
2
. Determine the axial velocity, the mass flow rate and the

shaft power needed to drive the compressor when there are 6 stages and the

mechanical efficiency is 0.98.

Ans. (135.51 m/s, 56.20 kg/s, 10.68 MW)

16.6 An axial flow compressor stage has blade root, mean and tip velocities of

150, 200 and 250 m/s respectively. The stage is to be designed for a stagna-

tion temperature rise of 20 K and an axial velocity of 150 m/s, both constant

from root to tip. The work done factor is 0.93. Assuming degree of reaction

is 0.5 at the mean radius, determine the stage air angles at root mean and tip

for a free vortex design  where the whirl component of velocity varies in-

versely with the radius

Ans. (a1= 17.04º (= b 2), b 1 = 45.75º (= a 2) at mean radius;

a 1 = 13.77º, b 1 = 54.88º, b 2 = 40.36º, a 2 = 39.34º at tip;

a1 = 22.10º,  b1 = 30.71º, b2 = – 19.95º, a2 = 53.74º at root)

16.7 An axial compressor has the following data:

Temperature and pressure at entry 300 K, 1.0 bar

Degree of reaction 50%

Mean blade diameter 0.4 m

Rotational speed 15,000 rpm

Blade height at entry 0.08 m

Air angles at rotor and stator exit 25º

Axial velocity 150 m/s

Work done factor 0.90

Isentropic stage efficiency 85%

Mechanical efficiency 97%
Determine (i) air angles at the rotor and stator entry (ii) the mass flow rate of
air (iii) the power required to drive the compressor, (iv) the pressure ratio
developed by the stage (v) The mach number (based on relative velocities)
at the rotor entry.

Ans. ((i) 25º, 58.44º (ii) 17.51 kg/s, (iii) 0.89 MW, (iv) 1.58, (v) 0.83)
16.8 An axial flow compressor stage has a mean diameter of 0.6 m and runs at

15,000 rpm. If the actual temperature rise and pressure ratio developed are
30º C and 1.36 respectively, determine (i) the power required to drive the
compressor while delivering 57 kg/s of air. Assume mechanical efficiency of



814 Introduction to Fluid Mechanics and Fluid Machines

86% and an initial temperature of 35º C, (ii) the isentropic efficiency of the
stage and (iii) the degree of reaction if the temperature at the rotor exit is 55º C.

Ans. ((i) 2 MW, (ii) 94.2%, (iii) 66.6%)
16.9 A centrifugal blower takes in 200 m

3
/min of air at a pressure and the tem-

perature of 101 kN/m
2
 and 45º C and delivers it at a pressure of  750 mm of

water gauge. Assuming the efficiencies of the blower and drive as 80% and
82% respectively, determine (i) the power required to drive the blower and
(ii) the pressure and temperature of air at blower exit.

Ans. (37.38 kW, 108.36 kN/m
2
, 326.06 K)

16.10 A backward-swept centrifugal fan develops a pressure of 80 mm of water
guage. It has an impeller diameter of 0.89 m and runs at 720 rpm. The blade
angle at tip is 39º and the width of the impeller is 0.1 m. Assuming a constant
radial velocity of 9.15 m/s and density of air as 1.2 kg/m3, determine the fan
efficiency, discharge and power required.

Ans. (87.61%, 2.56 m3/s, 2.29 kW)



Table A.1 Physical Properties of Some Common Liquids at 20°C and 101.325 kNm2

Liquid Density, r Isentropic Surface tension

(kg/m3) bulk modulus incontact with

of elasticity, air, s ¥ 102

Es (GN/m2) (N/m)

Benzene 879 1.48 2.89

Carbon tetrachloride 1595 1.36 2.70

Castor oil 969 2.11 –

Glycerine 1260 4.59 6.30

Kerosene 820 1.43 2.68

Lubricating oil 880 1.44 –

Mercury 13550 28.50 48.40

Sea water 1025 2.42 7.00

Water 998 2.24 7.28

Appendix A
PHYSICAL PROPERTIES OF

FLUIDS
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Table A.2 International Standard Atmosphere

Altitude above Temperature Absolute pressure Density

sea level (m) (K) (kN/m2) (kg/m3)

0* 288.15* 101.325* 1.2250*

1000 281.7 89.88 1.1117

2000 275.2 79.50 1.0066

4000 262.2 61.66 0.8194

6000 249.2 47.22 0.6602

8000 236.2 35.65 0.5258

10000 223.3 26.50 0.4134

11500 216.7 20.98 0.3375

14000 216.7 14.17 0.2279

16000 216.7 10.35 0.1665

18000 216.7 7.565 0.1216

20000 216.7 5.529 0.08892

22000 218.6 4.097 0.06451

24000 220.6 2.972 0.04694

26000 222.5 2.188 0.03426

28000 224.5 1.616 0.02508

30000 226.5 1.197 0.01848

32000 228.5 0.889 0.01356

* STP conditions

Dynamic viscosity of common fluids has been shown in Fig. 1.13 in

Chapter 1. Figure A.1 shows the kinematic viscosity of common fluids.
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B.1  DEFINITION OF VECTOR

Definition of scalar and vector quantities has been provided in Section 3.2. Vector
quantities are denoted by symbols either with an arrow or a cap at the top, like
r r r
ABC , etc. or $ $ $ABC , etc. A vector quantity 

r

A is written in terms of its components
in a rectangular cartesian coordinates system (Fig. B.1) as

r

A = ˆˆ ˆ
x y zi A j A k A+ +

A

k

J

Az

Ay

Ax io x

z

y

L

^

^

^

Fig. B.1 Magnitude and components of a vector

where î , ĵ  and k̂  are the unit vectors and Ax, Ay and Az are the components of A
r

in x, y, z directions respectively. |
r

A | is the magnitude of 
r

A. From Fig. B.1.

[| A
r

|]2 = L2 + A 2
z = A 2

x + A 2
y + A 2

z

Appendix B
REVIEW OF PRELIMINARY

CONCEPTS IN VECTORS AND

THEIR OPERATIONS
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Therefore, |
r

A | = 2 2 2
x y zA A A+ +

B.2  ADDITION OF VECTORS

Vector quantities are added in consideration of both magnitude and direction. Thus,

for addition of two vectors A
r

 and B
r

, we have from the rule of parallelogram (Fig. B.2).

A B

C

Fig. B.2 Addition of vectors by the rule of parallelogram

C
r

 = A
r

 + B
r

 and C
r

 = î Cx + ĵ Cy + k̂ Cz

= î A x + ĵ A y + k̂ A z + î Bx + ĵ By + k̂ Bz

= î (Ax + Bx) + ĵ (Ay + By) + k̂ (Az + Bz)

Hence, Cx = Ax + Bx, Cy = Ay + By and Cz = Az + Bz

If a vector D
r

 equals to zero, then all its components are identically zero,
i.e., Dx = Dy = Dz = 0.

B.3  PRODUCT OF VECTORS

B.3.1 The Dot Product (or Scalar Product)

The dot product of two vector quantities 
r

A and 
r

B  is defined as

A
r

◊ B
r

 = | A
r

| | B
r

| cos qA B
where qA B is the angle between the vectors. The dot product is a scalar quantity
which physically represents the product of | A

r

| with the component of | B
r

| in the
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direction of A
r

. If qA B < p/2, its magnitude is positive, while for qA B > p/2, it is
negative. If qA B = p /2, 

r

A ◊
r

B  = 0. The dot products of unit vectors in a Cartesian
coordinate system are :

î ◊ î  = 1 ĵ ◊ î  = 0 k̂ ◊ î  = 0

î ◊ ĵ  = 0 ĵ ◊ ĵ  = 1 k̂ ◊ ĵ  = 0

î ◊ k̂  = 0 ĵ  ◊ k̂  = 0 k̂ ◊ k̂  = 1

Therefore,
r

A ◊
r

B  = ( î A x + ĵ A y + k̂ A z) ◊ ( î Bx + ĵ By + k̂ Bz)

= Ax Bx + Ay By + Az Bz

The following rules apply for the dot product of vectors:
(i) The dot product is commutative, i.e., 

r

A ◊
r

B  = 
r

B ◊
r

A

(ii) The dot product is distributive, i.e., 
r

A ◊ (
r

B  + 
r

C ) = 
r

A ◊
r

B  + 
r

A ◊
r

C

(iii) The dot product is not associative, i.e., 
r

A(
r

B ◊
r

C ) π (
r

A ◊
r

B )
r

C .

B.3.2 Cross Product of Vectors

The cross product of two vector quantities 
r

A and 
r

B  is written as 
r

A ¥ 
r

B . It is a

vector quantity whose magnitude is given by |
r

A ¥ 
r

B | = |
r

A| |
r

B | sin qA B and is

perpendicular to both 
r

A and 
r

B . The sense of 
r

A ¥ 
r

B  is given by the right-hand rule,

that is, as 
r

A is rotated into 
r

B , then 
r

A ¥ 
r

B  points in the direction of the right thumb.
This is shown in Fig. B.3.

A

z

o

y

x

A
A

B

B

B

qABRotation of

into

¥

Fig. B.3 Cross product of vectors
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If A
r

 and B
r

 are parallel, then sin qA B = 0 and 
r

A ¥ 
r

B= 0. The cross products among
unit vectors in a Cartesian coordinate system are

î  ¥ î  = 0 ĵ  ¥ î  = k̂- k̂  ¥ î  = ĵ

î  ¥ ĵ  = k̂ ĵ  ¥ ĵ  = 0 k̂  ¥ ĵ  = î-

î  ¥ k̂  = ĵ- ĵ  ¥ k̂  = î k̂  ¥ k̂  = 0

The cross product A
r

 ¥ B
r

 is usually written in a determinant form as

A
r

 ¥ B
r

 =

ˆˆ ˆ

x y z

x y z

i j k

A A A

B B B

By expanding the determinant we have

A
r

 ¥ B
r

 = î (Ay Bz – Az By) + ĵ (Az Bx – Ax Bz) + k̂ (Ax By – Ay Bx)

The following properties apply for the cross product of vectors:

(i) The cross product is not commutative, i.e., A
r

 ¥ B
r

 π B
r

 ¥ A
r

 since the

interchange of two rows changes the sign of a determinant, A
r

 ¥ B
r

 =

– B
r

 ¥ A
r

.

(ii) The cross product is distributive, i.e., A
r

 ¥ ( B
r

 + C
v

) = A
r

 ¥ B
r

 + A
r

 + C
v

(iii) The cross product is not associative, i.e., A
r

 ¥ ( B
r

 ¥ C
v

) π ( A
r

 ¥ B
r

) ¥ C
v

B.4  DIFFERENTIATION OF VECTORS

The derivative of a vector quantity is defined in the same way as it is done for a
scalar quantity. Let there be a vector A

r

 = A
r

(t) then in rectangular coordinates
Ax = Ax(t), Ay = Ay(t), Az = Az(t)

d

d

A

t

r

 =
0

( ) ( )
lim
t

A t t A t

tD Æ

+ D -
D

r r

= 
0

ˆˆ ˆ[ ( ) ( )] [ ( ) ( )] [ ( ) ( )]
lim

x x y y z z

t

i A t t A t j A t t A t k A t t A t

tD Æ

+ D - + + D - + + D -

D

The limiting process applies to each term, and hence

d

d

A

t

r

 =
0 0

( ) ( )( ) ( ) ˆ ˆlim lim
y yx x

t t

A t t A tA t t A t
i j

t tD Æ D Æ

+ D -+ D -
+

D D

0

( ) ( ) ˆlim z z

t

A t t A t
k

tD Æ

+ D -
+

D

=
dd d ˆˆ ˆ

d d d

yx z
AA A

i j k
t t t

+ +
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Similarly, if A
r

 = A
r

 (x, y, z) that is, Ax = Ax (x, y, z), etc. then

A

x

∂

∂

r

 = ˆˆ ˆ yx z
AA A

i j k
x x x

∂∂ ∂

∂ ∂ ∂
+ +

A

y

∂

∂

r

 = ˆˆ ˆ yx z
AA A

i j k
y y y

∂∂ ∂

∂ ∂ ∂
+ +

A

z

∂

∂

r

 = ˆˆ ˆ yx z
AA A

i j k
z z z

∂∂ ∂

∂ ∂ ∂
+ +

B.5  VECTOR OPERATOR —————

B.5.1 Definition of —————
The vector operator del, —, is defined as

— = ˆˆ ˆi j k
x y z

∂ ∂ ∂

∂ ∂ ∂
+ + (Cartesian coordinates)

— = ˆ ˆ ˆ
r zi i i

r r z
q

∂ ∂ ∂

∂ ∂q ∂
+ + (Cylindrical coordinates)

where, r̂i , îq  and ẑi  are the unit vectors in r, q and z directions respectively in a

cylindrical coordinate system. Three possible products and other functions can be
formed with the operator — as follows:

B.5.2 Gradient

When — operates on a differentiable scalar function, the resulting term is known as
the gradient of the scalar function. Let y (x, y, z) be a scalar function,

Then, —y = gradient y = grad y = ˆˆ ˆi j k
x y z

∂y ∂y ∂y

∂ ∂ ∂
+ +

It has to be noted that though y is a scalar function, —y is a vector function (or
field).

B.5.3 Divergence

The dot product of — and a vector function (or field) results in a scalar function (or

field) known as divergence. For a vector field A
r

(x, y, z) in a rectangular Cartesian
coordinate system,

— ◊ A
r

 = divergence 
r

A  (or div 
r

A )

= ˆ ˆˆ ˆ ˆ ˆ. ( )x y zi j k i A j A k A
x y z

∂ ∂ ∂

∂ ∂ ∂

Ê ˆ+ + + +Á ˜Ë ¯
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= yx z
AA A

x y z

∂∂ ∂

∂ ∂ ∂
+ +

ˆˆ ˆ
Since, 0

i j k

x y z

∂ ∂ ∂

∂ ∂ ∂

Ê ˆ
= = =Á ˜Ë ¯

In cylindrical coordinates, if A
r

  = 
r

A  (r, q, z), then

— ◊ 
r

A  =
1ˆ ˆ ˆ ˆ ˆ ˆ. ( )r z r r z zi i i i A i A i A

r r z
q q q

∂ ∂ ∂

∂ ∂q ∂

Ê ˆ+ + + +Á ˜Ë ¯

=
1r r r zA A A A

r r r z

∂ ∂ ∂

∂ ∂q ∂
+ + +

ˆˆ ˆ ˆ
ˆSince, 0 and , 0r z r ii i i
i

r z r

q
q

∂∂ ∂ ∂

∂ ∂ ∂q ∂

Ê
= = = =ÁË

,

ˆ ˆ
ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ, . . . 1r r r r z z

i i
i i i i i i i iq q

q q
q q

∂ ∂ ˆ
= - = - = = = ˜∂ ∂ ¯

The divergence of velocity vector V
r

, i.e., — ◊ V
r

 was used to describe the continuity
equation [Eq. (3.6)] in Section 3.4.

B.5.4 Curl

The cross product between — and a vector function (or field) results in a vector

function (or field) known as curl. For a vector field A
r

 = 
r

A  (x, y, z) in Cartesian
coordinates,

— ¥ A
r

 = Curl 
r

A  = 

ˆˆ ˆ

x y z

i j k

x y z

A A A

∂ ∂ ∂

∂ ∂ ∂

or — ¥ 
r

A  = ˆˆ ˆy yx xz z
A AA AA A

i j k
y z z x x y

∂ ∂∂ ∂∂ ∂

∂ ∂ ∂ ∂ ∂ ∂

Ê ˆ Ê ˆÊ ˆ- + - + -Á ˜Á ˜ Á ˜Ë ¯Ë ¯ Ë ¯

In cylindrical coordinates, A
r

 = 
r

A  (r, q, z). Then

— ¥ 
r

A  =
1ˆ ˆ ˆ ˆ ˆ ˆ( )r z r r z zi i i i A i A i A

r r z
q q q

∂ ∂ ∂

∂ ∂q ∂

Ê ˆ+ + ¥ + +Á ˜Ë ¯

= ˆ ˆ ˆ ˆ ˆ ˆ( ) ( ) ( )r r r r r z zi i A i i A i i A
r r r

q q

∂ ∂ ∂

∂ ∂ ∂
¥ + ¥ + ¥

1 1 1ˆ ˆ ˆ ˆ ˆ ˆ( ) ( ) ( )r r z zi i A i i A i i A
r r r

q q q q q

∂ ∂ ∂

∂q ∂q ∂q
+ ¥ + ¥ + ¥
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ˆ ˆ ˆ ˆ ˆ ˆ( ) ( ) ( )z r r z z z zi i A i i A i i A
z z z

q q

∂ ∂ ∂

∂ ∂ ∂
+ ¥ + ¥ + ¥

=
0 0 ˆ

ˆ ˆ ˆ ˆ ˆ ˆr r
r r r r r r

A iA i
i i i A i i i A

r r r r

q q
q q

∂∂ ∂

∂ ∂ ∂

= =Ê ˆ ∂
¥ + ¥ + ¥ + ¥Á ˜ ∂Ë ¯

0=Ê ˆ
Á ˜
Á ˜Ë ¯

ˆ ˆ ˆ ˆ ˆz
r z r

A
i i i i i

r
q q

∂

∂
+ ¥ + ¥ ¥

0 1 1ˆ ˆ r
r

A A
i i

r r

q
q

∂

q ∂q

= ∂Ê ˆ + ¥Á ˜Ë ¯∂

+ 
0ˆ1 1ˆ ˆ ˆ

i

r
r

Ai
i A i i

r r

q

q
q q q

q q

= =Ê ˆ ∂∂
¥ + ¥Á ˜∂ ∂Ë ¯

+ 
ˆ ˆ1ˆ ˆ

ri

r
r

i i
i A i A

r z

q
q q q

q

= -Ê ˆ∂ ∂
¥ + ¥Á ˜∂ ∂Ë ¯

0 0ˆ1ˆ z
z

i
i A

r
q

q

= =Ê ˆ Ê ˆ∂
+ ¥Á ˜ Á ˜Á ˜ ∂Ë ¯Ë ¯

+ 
00 ˆˆ

ˆ ˆ ˆ ˆ ˆr r
z r z r z z

A iA i
i i i A i i i A

z z z z

q q
q q

== Ê ˆÊ ˆ ∂ ∂∂ ∂
¥ + ¥ + ¥ + ¥ Á ˜Á ˜∂ ∂ ∂ ∂Ë ¯ Ë ¯

                       + ˆ ˆ
z zi i¥

0
0 ˆ

ˆz z
z z

A i
i A

z z

=
= Ê ˆ∂ ∂

+ ¥ Á ˜∂ ∂Ë ¯

or, — ¥
r
A  = 1 1ˆ ˆ ˆ ˆ ˆz r z

z z z r

A AA A A
i i i i i

r r r r r

q q
q

q q

∂ ∂ ∂ ∂
- - + +

∂ ∂ ∂ ∂

+ ˆ ˆr
r

AA
i i

z z

q
q

∂∂
-

∂ ∂
and finally,

— ¥
r
A  = curl 

r

A = 
1ˆ ˆz r z

r

AA A A
i i

r z z r

q
q

q

∂∂ ∂ ∂Ê ˆ Ê ˆ- + -Á ˜Á ˜ Ë ¯Ë ¯∂ ∂ ∂ ∂

+ ( )1ˆ r
z

A
i r A
r r

q
q

∂∂Ê ˆ-Á ˜Ë ¯∂ ∂

The curl of velocity vector V
r

, i.e., V— ¥
r

 was used in describing the rotation of a

fluid element in Sec. 3.2.5.

B.5.5 Laplacian

The scalar function obtained by the dot product —◊—  is known as the Laplacian and

is denoted by the symbol —2 .

Therefore, in Cartesian coordinates,

—2  = —◊—  = ˆ ˆˆ ˆ ˆ ˆi j k i j k
x y z x y z

∂ ∂ ∂ ∂ ∂ ∂Ê ˆ Ê ˆ+ + ◊ + +Á ˜ Á ˜Ë ¯ Ë ¯∂ ∂ ∂ ∂ ∂ ∂
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=
2 2 2

2 2 2x y z

∂ ∂ ∂
+ +

∂ ∂ ∂

In cylindrical coordinates,

— = —◊—2  =
1ˆ ˆ ˆ ˆ ˆ ˆ

r z r zi i i i i i
r r z r r z

q q
q q

∂ ∂ ∂ ∂ ∂ ∂Ê ˆ Ê ˆ+ + ◊ + +Ë ¯ Ë ¯∂ ∂ ∂ ∂ ∂ ∂

=
2 2 2 2

2 2 2

ˆˆ1 1 1ˆ ˆ ˆr
r

ii
i i i
r r r r rr z

q
q q

q q q q q

Ê ˆ∂∂∂ ∂ ∂ ∂ ∂ ∂
+ + + + +Á ˜∂ ∂ ∂ ∂ ∂ ∂Ë ¯∂ ∂ ∂

=
2 2 2

2 2 2 2

1 1

r rr r zq

∂ ∂ ∂ ∂
+ + +

∂∂ ∂ ∂

=
2 2

2 2 2

1 1
r

r r r r zq

∂ ∂ ∂ ∂Ê ˆ + +Ë ¯∂ ∂ ∂ ∂

B.6  VECTOR IDENTITIES

B.6.1 —  ¥¥¥¥¥ —qqqqq = 0, where qqqqq is Any Scalar Function

This relation may be verified by expanding it into components. Therefore, in
Cartesian coordinates,

— ¥ —q  = ˆˆ ˆi j k
x y z

q q q∂ ∂ ∂Ê ˆ— ¥ + +Á ˜Ë ¯∂ ∂ ∂

ˆˆ ˆ

/ / /

/ / /

i j k

x y z

x y zq q q

∂ ∂ ∂ ∂ ∂ ∂
∂ ∂ ∂ ∂ ∂ ∂

=
2 2 2 2 2 2

ˆˆ ˆi j k
y z z y z x x z x y y x

q q q q q qÊ ˆ Ê ˆ Ê ˆ∂ ∂ ∂ ∂ ∂ ∂
- + + -Á ˜ Á ˜ Á ˜∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂Ë ¯ Ë ¯ Ë ¯

If q = q (x, y, z) is a continuous, differentiable function, then

2

x y

q∂
∂ ∂

 =
2 2 2

;
y x x z z x

q q q∂ ∂ ∂
=

∂ ∂ ∂ ∂ ∂ ∂
 and 

2 2

y z z y

q q∂ ∂
=

∂ ∂ ∂ ∂

consequently, —  ¥ —q = 0
The proof of the identity in cylindrical coordinates is a more lengthy process and

is left as an exercise for the readers.
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B.6.2 For Two Vector Functions 
r

A  and 
r

B ,

— ◊
r r
A Bd i  =

r r r r r r r r
A B B A A B B A◊— + ◊— + ¥ — ¥ + ¥ — ¥d i d i d i d i

In Cartesian coordinates, we can write

A B◊
r r

 = Ax Bx + Ay By + Az Bz

and so, ( )A B— ◊
r r

 = ( ) ( ) ( ){ }ˆ
x x y y z zi A B A B A B

x x x

∂ ∂ ∂
+ +

∂ ∂ ∂

+ ( ) ( ) ( )ˆ
x x y y z zj A B A B A B

y y y

∂ ∂ ∂Ï ¸+ +Ì ˝∂ ∂ ∂Ó ˛

+ ( ) ( ) ( ){ }ˆ
x x y y z zk A B A B A B

z z z

∂ ∂ ∂
+ +

∂ ∂ ∂
(B.1)

Again, A◊—
r

 = Ax 
x

∂
∂

 + Ay 
y

∂
∂

 + Az 
z

∂
∂

and so, ( )A B◊—
r r

 = ˆ x x x
x y z

B B B
i A A A

x y z

∂ ∂ ∂Ê ˆ+ +Á ˜Ë ¯∂ ∂ ∂

+ ˆ y y y
x y z

B B B
j A A A

x y z

∂ ∂ ∂Ê ˆ
+ +Á ˜Ë ¯∂ ∂ ∂

+ ˆ z z z
x y z

B B B
k A A A

x y z

∂ ∂ ∂Ê ˆ+ +Á ˜Ë ¯∂ ∂ ∂
(B.2)

In a similar, way, we can write

( )B A◊—
rr

 = ˆ x x x
x y z

A A A
i B B B

x y z

∂ ∂ ∂Ê ˆ+ +Á ˜Ë ¯∂ ∂ ∂

+ ˆ y y y
x y z

A A A
j B B B

x y z

∂ ∂ ∂Ê ˆ
+ +Á ˜Ë ¯∂ ∂ ∂

+ ˆ z z z
x y z

A A A
k B B B

x y z

∂ ∂ ∂Ê ˆ+ +Á ˜Ë ¯∂ ∂ ∂
(B.3)

and ( )A B¥ — ¥
r r

 = 

ˆˆ ˆ

x y z

y yx xz z

i j k

A A A

B BB BB B

y z z x x y

∂ ∂∂ ∂∂ ∂Ê ˆ Ê ˆÊ ˆ- - -Á ˜Á ˜ Á ˜Ë ¯Ë ¯ Ë ¯∂ ∂ ∂ ∂ ∂ ∂
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= ˆ y x xz
y z y z

B B BB
i A A A A

x x y z

∂ ∂ ∂∂Ê ˆ
+ - -Á ˜Ë ¯∂ ∂ ∂ ∂

– ˆ y y x z
x z x z

B B B B
j A A A A

x z y y

∂ ∂ ∂ ∂Ê ˆ
+ - -Á ˜Ë ¯∂ ∂ ∂ ∂

+ ˆ yx z z
x y x y

BB B B
k A A A A

z z x y

∂∂ ∂ ∂Ê ˆ
+ - -Á ˜Ë ¯∂ ∂ ∂ ∂

(B.4)

Similarly, ( )B A¥ — ¥
rr

 = ˆ y x xz
y z y z

A A AA
i B B B B

x x y z

∂ ∂ ∂∂Ê ˆ
+ - -Á ˜Ë ¯∂ ∂ ∂ ∂

– ˆ y y x z
x z x z

A A A A
j B B B B

x z y y

∂ ∂ ∂ ∂Ê ˆ
+ - -Á ˜Ë ¯∂ ∂ ∂ ∂

+ ˆ yx z z
x y x y

AA A A
k B B B B

z z x y

∂∂ ∂ ∂Ê ˆ
+ - -Á ˜Ë ¯∂ ∂ ∂ ∂

(B.5)

Adding Eqs (B.2), (B.3), (B.4) and (B.5) we have

( ) ( ) ( ) ( )A B B A B B A◊— + ◊— + ¥ — ¥ + ¥ — ¥
r r rr r r r

= ( ) ( ) ( ){ }ˆ
x x y y z zi A B A B A B

x x x

∂ ∂ ∂
+ +

∂ ∂ ∂

+ ( ) ( ) ( )ˆ
x x y y z zj A B A B A B

y y y

∂ ∂ ∂Ï ¸+ +Ì ˝∂ ∂ ∂Ó ˛

+ ( ) ( ) ( ){ }ˆ
x x y y z zk A B A B A B

z z z

∂ ∂ ∂
+ +

∂ ∂ ∂
(B.6)

Comparison of Eqs (B.1) and (B.6) proves that

( )A B— ◊
r r

 = ( ) ( ) ( ) ( )A B B A A B B A◊— + ◊— + ¥ — ¥ + ¥ — ¥
r r r rr r r r
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A

A Pelton wheel 711

Absolute pressure 56

Accelerating Reference Frame 285

adiabatic 29

Aerofoils 377

air turbines 695

Air Vessel 770

alternative depths 595

An inclined tube manometer 63

Angular Deformation 2, 140, 142, 144

angular momentum theorem 297

angular strain 140

angular velocity 142, 143

‘apparent’ 15

‘apparent slip’ 16

apparent viscosity 24

Archimedes principle 80

Arrhenius equation 23

atmosphere 54

autocorrelation function 493

average velocity 156, 402

Avogadro’s hypothesis, 3

axial flow 754

axial flow compressor 795

axial flow machine 695

axial flow pump 755

B

Barometer 57

Bernoulli’s equation 183, 184, 185

Bingham plastic 24

blade efficiency 726

Blasius equation 454

Blasius’s formula 515

blowers 694, 803

body force 51, 52

Boltzmann constant 648, 649

Bond number 39

boundary layer 18, 447

Buckingham’s Pi theorem 321, 322, 323

buffer zone 503

bulk modulus of elasticity 28, 318

buoyancy 79

buoyant force 79, 80

C

capacity coefficient 704

capillary depression 39

capillary force 316

capillary rise 39

Cauchy number 318

Cauchy’s theorem 9

Cavitation 215, 738, 754

centre of buoyancy 80

centre of pressure 67

centrifugal compressor 779

centrifugal head. 699

centrifugal pump 742, 745, 746, 748

centripetal acceleration 126, 288

centroid 67

characteristic gas constant 29

Characteristic gas constant 649

Characteristics of a Centrifugal

Pump 749

Chasles’ theorem. 287

Chezy Equation 582, 583

choked flow 668

Choking 789

circulation 146, 355

coefficient of contraction 224, 233
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coefficient of discharge 220, 233

coefficient of drag 441

coefficient of velocity 224, 233

Compressibility 28, 29, 646

Compressible flow 646, 647

computational fluid dynamics 399

conjugate depths 603

Conservation of Linear Momentum 275

Conservation of Mass 152, 265

conservative field 171

conservative form of the momentum

equation 395

constitutive behaviour 12

Continuity Equation 154, 155, 156,

158, 266

continuum 3, 4, 5

control mass system 388

control volume 388

convective accelerations 125

convective derivative 125

Convergent Divergent Mouthpiece 249

convergent-divergent 663

convergent-divergent nozzle 670

converging nozzle 665

core region 400, 477

Coriolis component of acceleration 288

Coriolis forces 187

Couette Flow 408, 409, 410

creeping motion. 429

critical depth 594

critical flow 596

critical velocity 595

curved surface 72

Cylinders 423

D

D’Almbert paradox 366

Darcy friction factor 421

de Laval nozzle, 664

deformation 137

degree of reaction 727, 801

density 13

developing region 400

deviatoric component of stress 390

deviatoric stress tensor 391

diffuser 663, 745,  753, 780, 784

‘diffusophoresis’ 15

dilatant 24

dimension 320, 321

dimensional analysis 320

discharge coefficient 704

Displacement thickness 459

doublet 359, 362, 363

draft tube 723, 724, 725, 738

drag 365

dynamic pressure 228

Dynamic similarity 314

E

eddy viscosity 504

effective head across any tur-

bine 724

Elastic force 316

energy gradient line 580, 581

entrance length 400, 478

entropy 651

entry loss 542

equation in pipe flow 536

equation of continuity 152, 157

equation of state 29

equations. 500

ergodic hypothesis. 494

Establishment of Flow 613, 614

Euler equation 186

Euler equation for inviscid flow 396

Euler number, 316

Eulerian Method 117, 118

Euler’s equation in relation to fluid

machines 697

Euler’s equation of motion 180, 190,

192

Exit Loss 540

F

Fan Laws 809

Fanning friction coefficient 420

Fanning’s friction factor 528

Fanno Line Flows 681

Fans 803

fans 694

First law of thermodynamics. 650

Floating Bodies 84



Index 831

Flow about a cylinder 363

Flow About a Rotating Cylinder 372

Flow Around a Sphere 437

Flow coefficient 806

Flow energy 184

Flow meters 217

Flow nozzle 225, 226

Flow over a spillway 606

flow resistance 543

Flow with Constant Acceleration 96

flow work 184

fluid 1

fluid deformation 391

fluid machine 694

Fluid or hydraulic coupling 772

fluid properties 13

fluid rotation 391

fluid torque converter 773

fluids (rheology) 23

forced vortex 146, 204, 205

form drag 466

formula 583

Francis Turbine 723, 723, 725, 728

free surface 576

free turbulence 490

Free vortex 147, 200, 202, 354, 355,

356

friction factor 528, 529

Froude number 317, 596

fully developed 400, 477

G

Ganguillet–Kulter 583

gauge pressure 56

Gauss divergence theorem 265

Geometric similarity 312, 313

Governing of reaction turbines 741

governing of turbines 715

gradually varied flow 577

gravity force 315

gross head 712

guide vanes 723, 795

H

Hagen Poiseuille equation 421

Hagen Poiseuille Flow 416

head coefficient 704

head loss 537

head 183

Hershel-Buckley 24

‘homogeneous turbulence’ 490

hydraulic diameter 528

hydraulic efficiency 702

hydraulic gradient line 580, 581

hydraulic jump 601, 602, 603

hydraulic machines. 694

Hydraulic or Fluid Coupling 771

hydraulic radius 576

hydraulic siphon 212, 213

hydraulic turbines 695

hydrophilic 37

hydrophobic 37

hydrostatic component of stress 390,

393

hydrostatic pressure 28, 53, 226

‘hydrostatic state of stress’ 5

hypersonic flow 647

I

impeller 745, 780

impulse machine 701

inclined tube manometer 62

incompressible flow 29, 30, 139, 153

inertia force 315

inertial reference frame 286, 288

inverted U-tube manometer 64

inviscid flows 179

irrotational flow 185, 347

irrotational 144

isentropic 29

isentropic efficiency 788

isentropic process 227

Isotropic turbulence 490

J

J. Nikuradse, 457

K

Kaplan turbine 736

Karman momentum integral equa-

tion 466
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Karman vortex street 479

Kinematic similarity 314

kinematic viscosity 20

Kinematics of fluid flow 115

kinetic energy 184

kinetic energy correction factor 536

Knudsen number 5

Kutta-Joukowski theorem 376, 380

L

Lagrangian Method 116

Lagrangian method of description 118

laminar sublayer 502

lapse rate 54

law of similarity 452

Lift 365

Linear Deformation 138

local 125

Losses in Pipe Bends 566

Losses in Pipe Fittings 567

Lubrication 429

Ludwig Prandtl 447

M

Mach angle 655

Mach cone 655

Mach number 22, 30, 318, 647, 705

‘macroscopic’ 3

Magnus effect 372

Manning’s formula 583

manometer 59, 60, 61

manometric efficiency 747

manometric fluid 60, 747,

manometric head. 744

Marangoni flow 40

material 125

mechanical efficiency 702

mechanical energy 184

mechanical pressure 394

metacentre 84, 86

metacentric height 85, 88

metacentric radius 88

Micromanometer 65

‘microscopic’ 3

minor losses 539

mixing length 506

models 312

moment of inertia 67

momentum conservation theo-

rem 296

momentum integral equation 463

momentum theorem 275

Momentum thickness 460

Moody’s diagram 530

Motion of a Rocket 292

mouthpiece 247, 248, 249, 250

N

Navier Stokes equation. 396

Navier Stokes equations in cylindrical

coordinates 397

Navier–Stokes equa-

tions 497, 499, 500

Navier’s equation 388

net head across the turbine, 724

net positive suction head 739, 754

Neutral equilibrium 82, 85

Newtonian fluids. 19, 391

Newton’s law of viscosity. 19

Nikuradse 512, 530

no-slip’ boundary condition 15

non-conservative form 395

non-inertial reference

frame 288, 289

non-Newtonian 23

non-Newtonian fluid 24

Non-uniform Flow 123, 577

‘normal component of stress’ 7

normal shock 678–680

nozzle. 664

O

Oblique shock 687

oblique shock 688

one-dimensional flow 137

optimum cross section, 589

optimum hydraulic cross-sec-

tion. 588

orifice 231, 232, 233, 239, 240

orificemeter 223, 224, 225

Oscillation between Two reservoirs 621

Oscillation of liquid column between two

reservoir 622
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Oscillation of liquid column in a U-

tube 617

oscillation of liquid columns 618

overall efficiency 702

P

Pascal 56

Path lines 133

Pelton turbine 710, 713, 715

Pelton wheel 710, 712, 714, 716

penstock 723

Physical Similarity 312

Pi theorem 322, 323

piezometer 57

Piezometric pressure 64, 219, 397, 576

Pipes in Parallel 546

pipes in series 544

‘pitching’ 85

Pitot static tube 230

Pitot tube 229

plane Poiseuille flow 402

point of inflection 465

Poiseuille Flow 400

positive displacement machines 694

potential energy 184

potential flow 348

power coefficient 704

power input factor 782

Prandtl’s boundary layer equations 451

Prandtl’s mixing length 504, 505

pressure 5

pressure coefficient 367

pressure force 315

pressure head 57

product of inertia 67

propeller pump 754

prototypes 312

pseudoplastic 24

pumps, compressors 694

Pumps in Series and Parallel 758

R

Radial flow machine, 695

Rankine vortex 148

Rankine–Hugoniot Relation 685

rapid 596

rapidly varied flow 577

rate of deformation 12

rate of shear deformation 391

rate of strain 12

Rayleigh Line Flows 682

Rayleigh’s Indicial Method 340

reaction machine 702

reaction turbine 722, 724

reciprocating pump 765, 766

relaxation time 394

Reynolds Averaged Navier–Stokes 500

Reynolds decomposition of turbulent

flow. 494

Reynolds number 19, 20, 316, 403

Reynolds stresses 500

Reynolds Transport Theorem 262, 264

rheopectic fluids 25

Rigid body Motion 96

‘rolling’ 85

rotation 137, 142, 144

rotodynamic machines. 695

rotodynamic pump 742

rough zone 530

Runge–Kutta 455

S

Schlichting 457, 519

scroll casing 723

second coefficient of viscosity 393

second law of thermodynamics 651

Separation 464, 466

shape factor 706

shear stress 1

shedding frequency 480

shock losses 783, 786

shock waves 186

shooting flow 596

shooting technique 455

simply 213

Sink 352, 353

Skin friction coefficient 403, 420, 458,

527

skin friction drag 466

‘slip’ 15

slip factor 747, 782

smooth plate 520

smooth zone 530



834 Index

solid body rotation 204

source 352, 353

Space average 494

specific energy 593

specific energy diagram 593

specific gravity 14

specific speed 706

specific speed for a pump 706, 759

specific speed for turbines 706, 727

Specific volume 13

Specific weight 14

spiral casing 804

spiral forced vortex 203, 206

Stable equilibrium 82, 85

stage efficiency 807

stagnation pressure 227, 228, 660

stagnation properties 660, 661

stagnation temperature 660, 782

static pressure 226

steady flow 122

steam turbines, gas turbines, 695

Stokes hypothesis 394

Stokes’ problem 438

Stokesian fluids 394

streak line 133, 134

stream function 164, 165, 166, 172

stream tube 132

streamline 132, 133, 167

Strouhal number 480

Submerged Surfaces 66

subsonic flow 647

subsonic nozzle 663

substantial 125

substantial derivative 125

supersonic flow 647

supersonic nozzle 663

surface energy 36

surface force 6, 51

surface tension 33, 34, 35, 36

surface tension force 316

surge tank 634, 635, 636, 637

surging 789

Sutherland formula 23

symmetrical blading 802

T

temporal accelerations 125

Thermal stratification 187

thermo-mechanical energy conserva-

tion 537

thermodynamic pressure 51, 393

‘thermophoresis’ 15

Thin Film Flows 414

thixotropic fluid 25

Thomas cavitation parameter 739, 754

three-dimensional flow 137

throat 218

Time average 494

Toricelli’s principle 53

traction vector 6

tranquil flow 596

transition zone 530

Translation 137

transonic flow 647

‘true’ slip 15

turbine 694

turbulent core 503

Turbulent Flow 489, 490, 492

turbulent flows 490

two-dimensional flow 137

U

Uniform flow 123, 577

Universal gas constant 648, 649

universal velocity profile 509

Unstable equilibrium 82, 85

unsteady flow 122

V

vacuum pressure 56

van der Waal’s equation 649

Vapour Pressure 44, 45

vector 115

velocity potential 171, 172

vena contracta 223, 232

venturimeter 218, 219, 220

Viscosity 18, 19

viscous force 315

viscous sublayer 491

volumetric rate of dilation 393

volumetric strain 139

volute casing 804

volute 723

vortex filament 355

Vortex Flow 146, 199, 200, 354
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vortex line 143

vortex street 479

vortex-shedding 479

vorticity of flow 143

W

wake 464, 466

wall turbulence 490

water hammer 624

water turbines 695

Weber number 318

wetted perimeter 576

‘wetting’ 37

wicket gates 723

with circulation 374

Without Circulation 363, 365

work-done factor 798

Y

Young–Laplace equation 35

‘Young’s Law’ 37

Z

zone of action 656

zone of silence 656
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