


Data Analytics



Systems Innovation Series
Series Editor

Adedeji B. Badiru
Air Force Institute of Technology (AFIT) – Dayton, Ohio

Systems innovation refers to all aspects of developing and deploying new technol-

ogy, methodology, techniques, and best practices in advancing industrial production 

and economic development. This entails such topics as product design and develop-

ment, entrepreneurship, global trade, environmental consciousness, operations and 

logistics, introduction and management of technology, collaborative system design, 

and product commercialization. Industrial innovation suggests breaking away from 

the traditional approaches to industrial production. It encourages the marriage of 

systems science, management principles, and technology implementation. Particular 

focus will be the impact of modern technology on industrial development and indus-

trialization approaches, particularly for developing economics. The series will also 

cover how emerging technologies and entrepreneurship are essential for economic 

development and society advancement.

Productivity Theory for Industrial Engineering

Ryspek Usubamatov

Quality Management in Construction Projects

Abdul Razzak Rumane

Company Success in Manufacturing Organizations

A Holistic Systems Approach

Ana M. Ferreras and Lesia L. Crumpton-Young

Introduction to Industrial Engineering

Avraham Shtub and Yuval Cohen

Design for Profitability

Guidelines to Cost Effectively Manage the Development Process of 

Complex Products

Salah Ahmed Mohamed Elmoselhy

Data Analytics

Handbook of Formulas and Techniques

Adedeji B. Badiru

For more information about this series, please visit: https://www.crcpress.com/

Systems-Innovation-Book-Series/book-series/CRCSYSINNOV

https://www.crcpress.com
https://www.crcpress.com


Data Analytics
Handbook of Formulas and Techniques

Adedeji B. Badiru



First edition published 2020

by CRC Press

6000 Broken Sound Parkway NW, Suite 300, Boca Raton, FL 33487-2742

and by CRC Press

2 Park Square, Milton Park, Abingdon, Oxon, OX14 4RN

© 2021 Taylor & Francis Group, LLC

CRC Press is an imprint of Taylor & Francis Group, LLC

The right of Adedeji B. Badiru to be identified as author of this work has been asserted by him in 

accordance with sections 77 and 78 of the Copyright, Designs and Patents Act 1988.

Reasonable efforts have been made to publish reliable data and information, but the author and 

 publisher cannot assume responsibility for the validity of all materials or the consequences of 

their use. The authors and publishers have attempted to trace the copyright holders of all material 

re produced in this publication and apologize to copyright holders if permission to publish in this 

form has not been obtained. If any copyright material has not been acknowledged please write and 

let us know so we may rectify in any future reprint.

Except as permitted under U.S. Copyright Law, no part of this book may be reprinted, reproduced, 

transmitted, or utilized in any form by any electronic, mechanical, or other means, now known 

or hereafter invented, including photocopying, microfilming, and recording, or in any information 

storage or retrieval system, without written permission from the publishers.

For permission to photocopy or use material electronically from this work, access www.copyright.com 

or contact the Copyright Clearance Center, Inc. (CCC), 222 Rosewood Drive, Danvers, MA 01923, 

978-750-8400. For works that are not available on CCC please contact  mpkbookspermissions@

tandf.co.uk

Trademark notice: Product or corporate names may be trademarks or registered trademarks and are 

used only for identification and explanation without intent to infringe.

Library of Congress Cataloging-in-Publication Data

Names: Badiru, Adedeji Bodunde, 1952- author. 

Title: Data analytics : handbook of formulas and techniques / Adedeji Badiru. 

Description: First edition. | Boca Raton, FL : CRC Press/Taylor & Francis 

Group, LLC, 2021. | Series: Systems innovation book series |

Includes bibliographical references and index. 

Identifiers: LCCN 2020033885 (print) | LCCN 2020033886 (ebook) | 

ISBN 9780367537418 (hardback) | ISBN 9781003083146 (ebook) 

Subjects: LCSH: Quantitative research—Handbooks, manuals, etc. | 

Information visualization—Handbooks, manuals, etc. |

Engineering mathematics—Formulae—Handbooks, manuals, etc. |

Business mathematics—Handbooks, manuals, etc. 

Classification: LCC QA76.9.Q36 B33 2021 (print) | LCC QA76.9.Q36 (ebook) | 

DDC 001.4/2—dc23 

LC record available at https://lccn.loc.gov/2020033885

LC ebook record available at https://lccn.loc.gov/2020033886

ISBN: 978-0-367-53741-8 (hbk)

ISBN: 978-1-003-08314-6 (ebk)

Typeset in Times

by codeMantra

http://www.copyright.com
mailto:mpkbookspermissions@tandf.co.uk
mailto:mpkbookspermissions@tandf.co.uk
https://lccn.loc.gov
https://lccn.loc.gov


To the fond memories of the illuminating lectures and 
mentoring of Dr. Leland Long and Dr. Reginald Mazeres, 
my Mathematics professors at Tennessee Technological 

University, who heightened my interest in data visualization 
well before the name data analytics was coined.



https://taylorandfrancis.com


vii

Contents
Preface.....................................................................................................................xxi

Acknowledgments ................................................................................................ xxiii

Author ....................................................................................................................xxv

Chapter 1 Essentials of Data Analytics ................................................................1

Introduction to COVID-19 Data Analytics ..........................................1

Systems View of Data Analytics ..........................................................2

Global Growth of Data Analytics ........................................................2

Background in Predictive Analytics ....................................................3

Data Modeling Approaches ..................................................................5

Data Fanaticism ....................................................................................6

Data and Measurements for Data Analytics ........................................7

What Is Measurement? ....................................................................7

Data Measurement Systems ........................................................8

Fundamental Scientific Equations ............................................ 11

Einstein’s Equation ................................................................... 11

Einstein’s Field Equation .......................................................... 11

Heisenberg’s Uncertainty Principle .......................................... 12

Schrödinger Equation ............................................................... 12

Dirac Equation .......................................................................... 12

Maxwell’s Equations ................................................................. 13

Boltzmann’s Equation for Entropy ........................................... 13

Planck–Einstein Equation ......................................................... 13

Planck’s Blackbody Radiation Formula.................................... 14

Hawking Equation for Black Hole Temperature ...................... 14

Navier–Stokes Equation for a Fluid .......................................... 14

Lagrangian for Quantum Chromodynamics ............................ 14

Bardeen–Cooper–Schrieffer Equation for Superconductivity .... 15

Josephson Effect ....................................................................... 15

Fermat’s Last Theorem ............................................................. 15

Methods for Data Measurement and Comparison ......................... 16

Direct Comparison ................................................................... 16

Indirect Comparison ................................................................. 17

Data Measurement Scales ............................................................. 17

Nominal Scale of Measurement ............................................... 18

Ordinal Scale of Measurement ................................................. 18

Interval Scale of Measurement ................................................. 18

Ratio Scale Measurement ......................................................... 18

Reference Units of Measurements ................................................. 19

Common Constants .......................................................................20

Numeric Data Representation........................................................20



viii Contents

The Language of Data Analytics ....................................................... 21

Quick Reference for Mathematical Equations ................................... 21

Reference ............................................................................................28

Chapter 2 Empirical Model Building ................................................................. 29

Introduction to the Model Environment ............................................. 29

State-Space Modeling ........................................................................30

Calculus Reference for Data Analytics .............................................. 32

Integration Rules ................................................................................ 33

Solving Integrals with Variable Substitution......................................34

Riemann Integral ................................................................................34

Integration by Parts ............................................................................34

Compound Functions Where the Inner Function Is ax .................34

Integration by Parts ....................................................................... 35

Systems Modeling for Data Analytics ...............................................36

Triple C Questions .............................................................................. 39

Communication ..................................................................................40

Cooperation ........................................................................................ 45

Coordination ....................................................................................... 47

Conflict Resolution in Data Analytics ................................................ 47

References .......................................................................................... 49

Chapter 3 Data Visualization Methods ............................................................... 51

Introduction to Data Visualization ..................................................... 51

Case Example of “Covidvisualizer” Website ..................................... 51

Dynamism and Volatility of Data ...................................................... 52

Data Determination and Collection ................................................... 53

Choosing the Data ......................................................................... 53

Collecting the Data ........................................................................ 53

Relevance Check ...........................................................................54

Limit Check ...................................................................................54

Critical Value .................................................................................54

Coding the Data .............................................................................54

Processing the Data .......................................................................54

Control Total ..................................................................................54

Consistency Check ........................................................................ 55

Scales of Measurement .................................................................. 55

Using the Information ................................................................... 55

Data Exploitation ........................................................................... 57

Raw Data .................................................................................. 57

Total Revenue ........................................................................... 58

Average Revenue....................................................................... 59

Median Revenue ....................................................................... 61

Quartiles and Percentiles .......................................................... 62



ixContents

The Mode .................................................................................. 63

Range of Revenue ..................................................................... 63

Average Deviation..................................................................... 63

Sample Variance .......................................................................64

Standard Deviation ...................................................................65

Chapter 4 Basic Mathematical Calculations for Data Analytics ........................69

Introduction to Calculation for Data Analytics ..................................69

Quadratic Equation ............................................................................69

Overall Mean ................................................................................. 70

Chebyshev’s Theorem .................................................................... 70

Permutations .................................................................................. 70

Combinations ................................................................................. 70

Failure ............................................................................................ 71

Probability Distribution ................................................................. 71

Probability ..................................................................................... 71

Distribution Function ..................................................................... 71

Expected Value .............................................................................. 72

Variance ......................................................................................... 72

Binomial Distribution .................................................................... 73

Poisson Distribution ...................................................................... 73

Mean of a Binomial Distribution ................................................... 73

Variance ......................................................................................... 73

Normal Distribution ...................................................................... 73

Cumulative Distribution Function ................................................. 73

Population Mean ............................................................................ 73

Standard Error of the Mean ........................................................... 74

t-Distribution ................................................................................. 74

Chi-Squared Distribution .............................................................. 74

Definition of Set and Notation............................................................ 74

Set Terms and Symbols ...................................................................... 75

Venn Diagrams ................................................................................... 75

Operations on Sets ......................................................................... 76

De Morgan’s Laws ......................................................................... 76

Probability Terminology................................................................ 77

Basic Probability Principles .......................................................... 77

Random Variable ........................................................................... 77

Mean Value x̂ or Expected Value μ ............................................... 78

Series Expansions ............................................................................... 78

Mathematical Signs and Symbols ...................................................... 81

Greek Alphabet .................................................................................. 83

Algebra ............................................................................................... 83

Laws of Algebraic Operations ....................................................... 83

Special Products and Factors ......................................................... 83

Powers and Roots ..........................................................................85



x Contents

Proportion ......................................................................................85

Arithmetic Mean of n Quantities A ...............................................86

Geometric Mean of n Quantities G ...............................................86

Harmonic Mean of n Quantities H ................................................86

Generalized Mean .........................................................................86

Solution of Quadratic Equations ...................................................87

Solution of Cubic Equations ..........................................................87

Trigonometric Solution of the Cubic Equation ..............................88

Solution of Quadratic Equations ................................................... 89

Partial Fractions ............................................................................ 89

Non-repeated Linear Factors ......................................................... 89

Repeated Linear Factors ................................................................90

General Terms ...............................................................................90

Repeated Linear Factors ................................................................ 91

Factors of Higher Degree .............................................................. 91

Geometry ............................................................................................ 91

Triangles ........................................................................................ 91

Right Triangle ................................................................................92

Equilateral Triangle .......................................................................92

General Triangle ............................................................................92

Menelaus’s Theorem .................................................................93

Ceva’s Theorem ........................................................................93

Quadrilaterals ................................................................................93

Rectangle .......................................................................................93

Parallelogram ................................................................................94

Rhombus ........................................................................................94

Trapezoid .......................................................................................94

General Quadrilateral ....................................................................94

Regular Polygon of n Sides Each of Length b ...............................95

Regular Polygon of n Sides Inscribed in a Circle of Radius r .......95

Regular Polygon of n Sides Circumscribing a Circle of Radius r....95

Cyclic Quadrilateral ......................................................................95

Prolemy’s Theorem ........................................................................96

Cyclic-Inscriptable Quadrilateral ..................................................96

Planar Areas by Approximation ....................................................97

Trapezoidal Rule .......................................................................97

Durand’s Rule ...........................................................................97

Simpson’s Rule (n even) ............................................................97

Weddle’s Rule (n = 6) ...............................................................98

Solids Bounded by Planes .............................................................98

Cube ..........................................................................................98

Rectangular Parallelepiped (or Box) .........................................98

Prism ..............................................................................................98

Pyramid .........................................................................................98

Prismatoid ......................................................................................99

Regular Polyhedra .........................................................................99



xiContents

Sphere of Radius r ....................................................................... 100

Right Circular Cylinder of Radius r and Height h ...................... 100

Circular Cylinder of Radius r and Slant Height l ....................... 100

Cylinder of Cross-Sectional Area A and Slant Height l .............. 100

Right Circular Cone of Radius r and Height h ............................ 101

Spherical Cap of Radius r and Height h ...................................... 101

Frustum of Right Circular Cone of Radii a, b and Height h ....... 101

Zone and Segment of Two Bases ................................................. 101

Lune ............................................................................................. 101

Spherical Sector ........................................................................... 101

Spherical Triangle and Polygon ................................................... 101

Spheroids ..................................................................................... 102

Ellipsoid .................................................................................. 102

Oblate Spheroid ...................................................................... 102

Prolate Spheroid ...................................................................... 102

Circular Torus ......................................................................... 102

Formulas from Plane Analytic Geometry ........................................ 102

Distance d between Two Points ................................................... 102

Slope m of Line Joining Two Points ............................................ 103

Equation of Line Joining Two Points .......................................... 103

Equation of Line in Terms of x Intercept a ≠ 0 and y intercept 

b ≠ 0 ............................................................................................. 103

Normal Form for Equation of Line ............................................. 103

General Equation of Line ............................................................ 103

Distance from Point ( )x y1 1,  to Line Ax + +By C = 0 .................. 103

Angle ψ  between Two Lines Having Slopes m1 2and m  .............. 103

Area of Triangle with Verticles ................................................... 104

Transformation of Coordinates Involving Pure Translation ........ 104

Transformation of Coordinates Involving Pure Rotation ............ 104

Transformation of Coordinates Involving Translation and 

Rotation ....................................................................................... 104

Polar Coordinates (r,θ ) ............................................................... 105

Plane Curves ................................................................................ 105

Catenary, Hyperbolic Cosine ....................................................... 105

Cardioid ....................................................................................... 105

Circle ........................................................................................... 105

Cassinian Curves ......................................................................... 105

Cotangent Curve .......................................................................... 106

Cubical Parabola .......................................................................... 106

Cosecant Curve ........................................................................... 106

Cosine Curve ............................................................................... 106

Ellipse .......................................................................................... 106

Gamma Function ......................................................................... 106

Hyperbolic Functions .................................................................. 106

Inverse Cosine Curve .................................................................. 107

Inverse Sine Curve ...................................................................... 107



xii Contents

Inverse Tangent Curve ................................................................. 107

Logarithmic Curve ...................................................................... 107

Parabola ....................................................................................... 107

Cubical Parabola .......................................................................... 107

Tangent Curve ............................................................................. 107

Ellipsoid ....................................................................................... 107

Elliptic Cone ................................................................................ 107

Elliptic Cylinder .......................................................................... 107

Hyperboloid of One Sheet ........................................................... 108

Elliptic Paraboloid ....................................................................... 108

Hyperboloid of Two Sheets ......................................................... 108

Hyperbolic Paraboloid ................................................................. 108

Sphere .......................................................................................... 108

Distance d between Two Points ................................................... 108

Equations of Line Joining P x1 1( ), ,y1 z1 and P2 (x2 , y2 2, z ) in 

Standard Form ............................................................................. 108

Equations of Line Joining P x1 1( ), ,y1 z1 and P2 (x2 , y2 2, z ) in 

Parametric Form .......................................................................... 108

Angle φ  between Two Lines with Direction Cosines l m n1 1, , 1 

and l m n2 2, , 2 ................................................................................ 108

General Equation of a Plane ........................................................ 109

Equation of Plane Passing through Points ................................... 109

Equation of Plane in Intercept Form ........................................... 109

Equations of Line through (x y0 0, , z0 ) and Perpendicular 

to Plane ........................................................................................ 109

Distance from Point (x y, , z) to Plane Ax + +By D = 0 .............. 109

Normal form for Equation of Plane ............................................. 109

Transformation of Coordinates Involving Pure Translation ........ 110

Transformation of Coordinates Involving Pure Rotation ............ 110

Transformation of Coordinates Involving Translation and 

Rotation ....................................................................................... 110

Cylindrical Coordinates ( )r z, ,θ  ................................................. 111

Spherical Coordinates ( )r, ,θ φ  .................................................... 111

Logarithmic Identities ................................................................. 112

Special Values ............................................................................. 112

Logarithms to General Base ........................................................ 112

Series Expansions ........................................................................ 113

Limiting Values ........................................................................... 113

Inequalities .................................................................................. 113

Continued Fractions..................................................................... 114

Polynomial Approximations ........................................................ 114

Fundamental Properties............................................................... 115

Definition of General Powers ...................................................... 116

Logarithmic and Exponential Functions ..................................... 116

Polynomial Approximations ........................................................ 117

Slopes ........................................................................................... 125



xiiiContents

Trigonometric Ratios ................................................................... 125

Sine Law ...................................................................................... 127

Cosine Law .................................................................................. 127

Algebra ............................................................................................. 127

Expanding .................................................................................... 127

Factoring ...................................................................................... 127

Roots of Quadratic ....................................................................... 128

Law of Exponents ........................................................................ 128

Logarithms .................................................................................. 128

Chapter 5 Statistical Methods for Data Analytics ............................................ 129

Introduction ...................................................................................... 129

Discrete Distributions ....................................................................... 129

Bernoulli Distribution ................................................................. 129

Beta Binomial Distribution ......................................................... 129

Beta Pascal Distribution .............................................................. 132

Binomial Distribution .................................................................. 132

Discrete Weibull Distribution ...................................................... 132

Geometric Distribution ................................................................ 132

Hypergeometric Distribution ....................................................... 133

Negative Binomial Distribution ................................................... 133

Poisson Distribution .................................................................... 134

Rectangular (Discrete Uniform) Distribution ............................. 134

Continuous Distributions .................................................................. 134

Arcsin Distribution ...................................................................... 134

Beta Distribution ......................................................................... 135

Cauchy Distribution ..................................................................... 135

Chi Distribution ........................................................................... 135

Chi-Square Distribution .............................................................. 135

Erlang Distribution ...................................................................... 136

Exponential Distribution ............................................................. 136

Extreme-Value Distribution ......................................................... 136

F Distribution .............................................................................. 136

Gamma Distribution .................................................................... 137

Half-Normal Distribution ............................................................ 137

Laplace (Double Exponential) Distribution ................................ 138

Logistic Distribution .................................................................... 138

Lognormal Distribution ............................................................... 138

Noncentral Chi-Square Distribution ........................................... 139

Noncentral F Distribution ........................................................... 139

Noncentral t Distribution ............................................................. 139

Normal Distribution .................................................................... 140

Pareto Distribution ...................................................................... 140

Rayleigh Distribution ................................................................... 140

t Distribution ................................................................................ 141



xiv Contents

Triangular Distribution ................................................................ 141
Uniform Distribution ................................................................... 142
Weibull Distribution .................................................................... 142

Distribution Parameters.................................................................... 142
Average ........................................................................................ 142
Variance ....................................................................................... 142
Standard Deviation ...................................................................... 143
Standard Error ............................................................................. 143
Skewness ..................................................................................... 143
Standardized Skewness ............................................................... 143
Kurtosis ....................................................................................... 143
Standardized Kurtosis ................................................................. 143
Weighted Average ........................................................................ 143

Estimation and Testing ..................................................................... 144
100(1  − α)% Confidence Interval for Mean ................................. 144
100(1  − α)% Confidence Interval for Variance ............................ 144
100(1  − α)% Confidence Interval for Difference in Means ......... 144

Equal Variance ....................................................................... 144
Unequal Variance ................................................................... 144

100(1  − α)% Confidence Interval for Ratio of Variances ............ 145
Normal Probability Plot .............................................................. 145
Comparison of Poisson Rates ...................................................... 145

Distribution Functions and Parameter Estimation ........................... 146
Bernoulli ...................................................................................... 146
Binomial ...................................................................................... 146
Discrete Uniform ......................................................................... 146
Geometric .................................................................................... 146
Negative Binomial ....................................................................... 146
Poisson ......................................................................................... 146
Beta .............................................................................................. 146
Chi-Square ................................................................................... 147
Erlang .......................................................................................... 147
Exponential .................................................................................. 147
F ................................................................................................... 147
Gamma ........................................................................................ 147
Lognormal ................................................................................... 148
System Displays ........................................................................... 148
Normal ......................................................................................... 148
Student’s t .................................................................................... 148
Triangular .................................................................................... 148
Uniform ....................................................................................... 149
Weibull ........................................................................................ 149
Chi-Square Test for Distribution Fitting ..................................... 149
Kolmogorov–Smirnov Test ......................................................... 149
ANOVA (Analysis of Variance) .................................................. 150

Notations ................................................................................. 150



xvContents

Standard Error (Internal) ........................................................ 151

Standard Error (Pooled) .......................................................... 151

Interval Estimates ................................................................... 151

Tukey Interval .............................................................................. 151

Scheffe Interval ........................................................................... 151

Cochran C-Test ............................................................................ 151

Bartlett Test ................................................................................. 152

Hartley’s Test ............................................................................... 152

Kruskal–Wallis Test .................................................................... 152

Freidman Test .............................................................................. 153

Regression.................................................................................... 154

Notations ................................................................................. 154

Regression Statistics ............................................................... 154

Predictions .............................................................................. 155

Nonlinear Regression ............................................................. 156

Ridge Regression .................................................................... 157

Quality Control ....................................................................... 157

Subgroup Statistics ................................................................. 157

X-Bar Charts ........................................................................... 158

Capability Ratios .................................................................... 159

R Charts .................................................................................. 159

S Charts ................................................................................... 160

C Charts .................................................................................. 160

U Charts .................................................................................. 160

P Charts .................................................................................. 160

NP Charts ............................................................................... 161

CuSum Chart for the Mean .................................................... 161

Multivariate Control Charts .................................................... 162

Time Series Analysis ................................................................... 162

Notations ................................................................................. 162

Autocorrelation at Lag k ......................................................... 162

Partial Autocorrelation at Lag k ............................................. 163

Cross-Correlation at Lag k ...................................................... 163

Box-Cox .................................................................................. 163

Periodogram (Computed Using Fast Fourier Transform) ....... 164

Categorical Analysis .................................................................... 164

Notations ................................................................................. 164

Totals ....................................................................................... 164

Chi-Square .............................................................................. 165

Fisher’s Exact Test .................................................................. 165

Lambda ................................................................................... 165

Uncertainty Coefficient........................................................... 165

Somer’s D ................................................................................ 166

Eta ........................................................................................... 167

Contingency Coefficient ......................................................... 167

Cramer’s V .............................................................................. 168



xvi Contents

Conditional Gamma................................................................ 168

Pearson’s r ............................................................................... 168

Kendall’s Tau b ....................................................................... 168

Tau C ....................................................................................... 168

Probability Terminology.............................................................. 168

Basic Probability Principles ........................................................ 169

Random Variable ......................................................................... 169

Mean Value x̂  or Expected Value μ ............................................ 169

Discrete Distribution Formulas ........................................................ 170

Bernoulli Distribution ................................................................. 170

Beta Binomial Distribution ......................................................... 170

Beta Pascal Distribution .............................................................. 171

Binomial Distribution .................................................................. 171

Discrete Weibull Distribution ...................................................... 171

Geometric Distribution ................................................................ 171

Hypergeometric Distribution ....................................................... 171

Negative Binomial Distribution ................................................... 172

Poisson Distribution .................................................................... 172

Rectangular (Discrete Uniform) Distribution ............................. 173

Continuous Distribution Formulas .............................................. 173

Arcsin Distribution ...................................................................... 173

Beta Distribution ......................................................................... 173

Cauchy Distribution ..................................................................... 174

Chi Distribution ........................................................................... 174

Chi-Square Distribution .............................................................. 174

Erlang Distribution ...................................................................... 174

Exponential Distribution ............................................................. 175

Extreme-Value Distribution ......................................................... 175

F Distribution............................................................................... 175

Gamma Distribution .................................................................... 176

Half-Normal Distribution ............................................................ 176

Laplace (Double Exponential) Distribution ................................ 176

Logistic Distribution .................................................................... 177

Lognormal Distribution ............................................................... 177

Noncentral Chi-Square Distribution ........................................... 177

Noncentral F Distribution ........................................................... 178

Noncentral t Distribution ............................................................. 178

Normal Distribution .................................................................... 178

Pareto Distribution ...................................................................... 179

Rayleigh Distribution ................................................................... 179

t Distribution ................................................................................ 179

Triangular Distribution ................................................................ 180

Uniform Distribution ................................................................... 180

Weibull Distribution .................................................................... 180

Variate Generation Techniques ................................................... 181

Reference .......................................................................................... 183



xviiContents

Chapter 6 Descriptive Statistics for Data Presentation ..................................... 185

Introduction ...................................................................................... 185

Sample Average ........................................................................... 185

Sample Variance .......................................................................... 185

Sample Standard Deviation ......................................................... 186

Sample Standard Error of the Mean ............................................ 187

Skewness ................................................................................. 187

Standardized Skewness .......................................................... 188

Kurtosis ................................................................................... 188

Standardized Kurtosis ............................................................ 188

Weighted Average ................................................................... 188

Estimation and Testing ..................................................................... 188

100(1 − α)% Confidence Interval for Mean ................................ 188

100(1 − α)% Confidence Interval for Variance ........................... 188

100(1 − α)% Confidence Interval for Difference in Means ........ 188

For Equal Variance ................................................................. 188

For Unequal Variance ............................................................. 189

100(1 − α)% Confidence Interval for Ratio of Variances ........... 189

Normal Probability Plot .............................................................. 189

Comparison of Poisson Rates ...................................................... 190

Distribution functions and Parameter Estimation ............................ 190

Bernoulli Distribution ................................................................. 190

Binomial Distribution .................................................................. 190

Discrete Uniform Distribution..................................................... 190

Geometric Distribution ................................................................ 190

Negative Binomial Distribution ................................................... 191

Poisson Distribution .................................................................... 191

Beta Distribution ......................................................................... 191

Chi-Square Distribution .............................................................. 191

Erlang Distribution ...................................................................... 191

Exponential Distribution ............................................................. 192

F Distribution............................................................................... 192

Gamma Distribution .................................................................... 192

Lognormal Distribution ............................................................... 192

Normal Distribution .................................................................... 193

Student’s t .................................................................................... 193

Triangular Distribution ................................................................ 193

Uniform Distribution ................................................................... 193

Weibull Distribution .................................................................... 193

Chi-Square Test for Distribution Fitting ..................................... 194

Kolmogorov–Smirnov Test ......................................................... 194

ANOVA (Analysis of Variance) .................................................. 194

Notations ................................................................................. 194

Standard Error ........................................................................ 195

Interval Estimates ................................................................... 195



xviii Contents

Tukey Interval .............................................................................. 195

Scheffe Interval ........................................................................... 196

Cochran C-test ............................................................................. 196

Bartlett Test ................................................................................. 196

Hartley’s Test ............................................................................... 196

Kruskal–Wallis Test .................................................................... 197

Freidman Test .............................................................................. 197

Regression.................................................................................... 198

Notations ................................................................................. 198

Statistical Quality Control ...................................................... 199

Subgroup Statistics ................................................................. 199

X-Bar Charts ........................................................................... 199

Capability Ratios ....................................................................200

R Charts .................................................................................. 201

S Charts .................................................................................. 201

C Charts .................................................................................. 201

U Charts .................................................................................. 201

P Charts .................................................................................. 201

NP Charts ...............................................................................202

CuSum Chart for the Mean ....................................................202

Time Series Analysis ...................................................................203

Notations .................................................................................203

Autocorrelation at Lag k .........................................................203

Partial Autocorrelation at Lag k .............................................203

Cross-Correlation at Lag k ......................................................203

Box-Cox Computation ............................................................204

Periodogram (Computed Using Fast Fourier Transform) .......204

Categorical Analysis ....................................................................205

Notations .................................................................................205

Totals .......................................................................................205

Chi-Square ..............................................................................205

Lambda ...................................................................................205

Uncertainty Coefficient...........................................................206

Somer’s D Measure .................................................................206

Eta ...........................................................................................207

Contingency Coefficient .........................................................208

Cramer’s V Measure ...............................................................208

Conditional Gamma................................................................208

Pearson’s r Measure ................................................................208

Kendall’s Tau b Measure ........................................................208

Tau C Measure ........................................................................209

Overall Mean ..........................................................................209

Chebyshev’s Theorem .............................................................209

Permutation .............................................................................209

Combination ...........................................................................209

Failure .....................................................................................209



xixContents

Chapter 7 Data Analytics Tools for Understanding Random Field 

Regression Models ........................................................................... 211

Introduction ...................................................................................... 211

RFR Models ..................................................................................... 212

Two Examples .................................................................................. 214

Bayesian Regression Models and Random Fields ............................ 214

Data Analysis: Finding the Associated Regression Model .............. 215

Relating Eigenvectors to Regression Functions ............................... 223

Some Special Random Field Models ...............................................225

Gaussian Covariance as Damped Polynomial Regression ...............225

Trigonometric Regression and Spline Covariance ........................... 227

Discussion.........................................................................................228

References ........................................................................................ 229

Chapter 8 Application of DEJI Systems Model to Data Integration................. 233

Introduction to Data Integration ....................................................... 233

Leveraging the Input-Control-Output-Mechanism Model ...............234

Data Types and Fidelity .................................................................... 235

Data Collection and Sanitization ...................................................... 236

DEJI Systems Model for Data Quality ............................................. 238

Data Value Model ............................................................................. 239

Data Quality Control ........................................................................ 241

References ........................................................................................242

Index ...................................................................................................................... 243



https://taylorandfrancis.com


xxi

Preface
The year 2020 represents a particularly challenging year for humanity because of 

the COVID-19 pandemic caused by the coronavirus. No part of the entire world was 

spared from the ravages of the pandemic. As the world scrambled around to find 

a response, treatment, or cure, data was at the core of all efforts. All types of data 

analytics initiatives emerged to try and make sense of what was happening. The fast-

spread pace of COVID-19 necessitated new and renewed interest in the tools and 

techniques of data collection, analysis, presentation, and sense-making. The unan-

ticipated developments provided the motivation for writing this book. Having lived 

my industrial engineering profession within the hierarchical realm of data, informa-

tion, and decision, I embarked on the arduous task of preparing this manuscript. Fast 

and good decisions were needed. This meant that data analytics was urgently needed. 

Good data analytics is the basis for effective decisions. Whoever has the data has the 

ability to extract information promptly and effectively to make pertinent decisions. 

Good data is useless if we cannot extract useful information relevant for the decision 

at hand. The ability to extract useful information is enhanced by data analytics tools. 

The premise of this book is to empower users and tool developers with the appro-

priate collection of formulas and techniques for data analytics. This will serve as a 

quick reference to keep pertinent formulas within fingertip reach of readers. It is well 

understood that we cannot manage or control anything that we cannot measure. Data 

analytics is the cornerstone of achieving pertinent measurement for the control of 

that which needs to be controlled. Therein lies the value of this book. The formulas 

and techniques contained in this book will be useful and relevant for all categories 

of readers. Its focus and conciseness will make the book appealing. Contents include 

formulas for descriptive statistics, estimation, testing, parametric analysis, distribu-

tion functions, analysis of variance, regression, quality control, time series analysis, 

and categorical data analysis.

Wishing readers fast data responses,
Adedeji B. Badiru

July 2020
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1 Essentials of Data 
Analytics

Data, data, data everywhere, but not a bit to byte and chew on.

INTRODUCTION TO COVID-19 DATA ANALYTICS

This equation-and-formula-based book is the result of COVID-19-driven interest in 

data analytics. The worldwide pandemic of COVID-19, the disease caused by the 

novel coronavirus, in early 2020 heightened the awareness and interest in data analyt-

ics. Prior to this particular pandemic, most people paid little attention to the efficacy 

of data analytics. As the horror of the pandemic unfolded, the primary connectivity 

that citizens had to the latest gory developments was through output of data analytics 

presented in streaming updates of visualization charts, tables, and numeric details. 

In fact, the hurried global assembling of COVID-19 data served as the initial motiva-

tion that initiated my foray into writing this handbook. The increased interest in data 

analytics is for the purpose of visualizing and predicting the spread of the disease. 

Thus, the need for this handbook is predicted on the growing demand for additional 

references on data analytics. The handbook focuses on providing the mathematical 

backbone upon which data analytics tools and software can be developed. As such, 

the premise of the handbook lies on data analytics formulas and techniques. Students 

and researchers developing data models can use the contents as guiding references 

for what is available in terms of modeling techniques. Data analytics can be used for 

data diagnostics for COVID-19 and other pandemics. Data analytics is needed for a 

prove of concept of new developments or new treatments protocols. Data analytics 

can help to achieve the following:

• Know the data we have.

• Know what the data says.

• Know how to analyze the data.

• Know how to present the data for relevant decisions.

The ubiquitous Microsoft Excel has powerful tools that are based on formulas and 

equations of the genre contained in this book. The spreadsheet software can do data-

base queries, illustrative plots, simulation, optimization, machine learning, and curve 

fitting. Creative and experienced users can develop customized uses of the software. 

Coronavirus modeling requires formulas, equations, and techniques similar to the 

contents of this book.
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SYSTEMS VIEW OF DATA ANALYTICS

Coronavirus has disrupted the entire world system. No place is immune because 

there is no previous immunity against the virus. This brings us to take a systems view 

of the world. In systems engineering, a system is defined as follows:

A collection of interrelated elements, whose combined output is higher than the sum of 

the individual outputs of the elements making up the system.

I offer the following COVID-19 definition of a contagion-prone world system:

COVID-19 Novel Definition of a World System

A COVID-19 World System is a group of inter-connected regions of the world, whose 

normally-localized individual contagion has spread to infect the entire World.

Flattening the COVID-19 curve has been the calling card of governments and 

 organizations. But we must know what the curve looks like before we can flatten it. 

To know the curve, we must know the data. To see the power of the data, we must use 

data analytics. To use data analytics, we must understand the underlying formulas 

and techniques. Therein lies the efficacy of this handbook.

GLOBAL GROWTH OF DATA ANALYTICS

You don’t go to war with the data you need. You go to war with the data you have.

Dilbert Comic, May 7, 2020

Even before the advent of COVID-19, “data,” in all its ramifications, is of interest 

in every organization, whether in business, industry, government, the military, or 

academia. Research and practical applications of data have led to alternate names 

for what we do with data or how we process it. Consequently, we have seen alternate 

entries in what this author refers to as “Data Terminology Dictionary,” which con-

tains names such as the ones in the following list:

• Data science

• Data analytics

• Big data

• Data mining

• Data awareness

• Data familiarization

• Data socializing

• Data visualizing

• Data envelopment

• Data minding

• Data processing

• Data analysis

• Data management

• Data modeling
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Over the past several decades, there have been significant developments in the appli-

cation of quantitative techniques for decision-making in most areas of human activi-

ties. The success of such applications, however, depends on the quality of information 

available to the decision maker. That essential information is derived from archival 

or live data. Analysts have always struggled with developing new tools and tech-

niques to extract useful information from the available data. The necessary informa-

tion often involves future developments, which are, in most cases, nondeterministic. 

In such unfortunate situations, forecasting and projections are the viable means of 

obtaining the much-desired information. The problem then is to formulate method-

ologies, tools, techniques, and models that could efficiently and consistently yield 

reliable forecasts, projections, and trend lines. The search for enhanced approaches 

has led to the emergence of data-oriented movements, such as Data Mining, Big 

Data, and Data Envelopment. More recently, the previous approaches have morphed 

into the hot areas of data analytics, data science, data visualization, and data model-

ing. These new names are like new wine in an old bottle. What is different now is 

that emergence of new powerful computational tools, such as supercomputers, neural 

networks, and artificial intelligence, that make it possible to quickly analyze large 

volumes of data.

Interest in data analytics is spreading rapidly all over the world. This fact is the 

reason that most universities are now starting new degree programs and certificate 

offerings in data analytics, data science, and data modeling. This book is directly 

applicable to this evidence. The language of mathematics is universal. Formulas, 

equations, and quantitative modeling are the basis for data analytics. This handbook 

is designed as a useful reference for the tools and techniques of data analytics. For the 

quantitative-inclined readers, the formulas will be appealing. Illustrative examples 

will increase the comfort level with how each technique is used, thus helping to 

increase the use of data analytics to improve decision-making in organizations. This 

handbook can be a ready reference to what is contained in data analytics software 

tools. Analytics is presently the rage in business, industry, government, and aca-

demia. The basis of all operations in any environment rests on a foundation of data 

analytics. This handbook provides additional incentive to embrace data analytics and 

mitigate the proverbial risk of “garbage in, garbage out.”

BACKGROUND IN PREDICTIVE ANALYTICS

My own personal interest in data analytics dates back to my high school days at Saint 

Finbarr’s College, Lagos, Nigeria, in the 1960s. Interestingly, that interest was spurred 

by the historical accounts of how Florence Nightingale used statistics as a tool for 

promoting a crusade for hygiene throughout the population. One of our teachers at 

Saint Finbarr’s College was particularly enamored with Florence’s historical exploits, 

and he lectured repeatedly about her accomplishments to the extent that I developed 

an interest in how statistics could be used for personal planning even at that forma-

tive stage of my education. Florence Nightingale’s data-driven practices were credited 

with significantly improving hospital efficiency of that era. I was very intrigued.
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Florence Nightingale was a British social reformer and statistician, and the founder 

of modern nursing. Nightingale came to prominence while serving as a manager and 

trainer of nurses during the Crimean War (October 1853–February 1856), in which 

she organized care for wounded soldiers.

With an interest in boosting my academic performance in selected subjects, 

I started developing hand-drawn charts to do trend analysis of my course grades. It 

was an interesting application that caught the attention of my classmates and teach-

ers. With the trend charts, I could see the fluctuations in my course grades, based on 

which I intensified by study habits either to maintain or improve outcomes in specific 

courses. It was a rudimentary application of visual data analytics for a personal topic 

of interest, although the name “data analytics” was far from what I would have called 

it. It worked. I did not think much of that basal tool of course-grade statistics until 

I started my industrial engineering studies at Tennessee Technological University 

many years later. As of today, I still have the original hand-drawn data analytics trend 

chart of my high school course grades from 1968 through 1972. Although faded in 

resolution and finessing, it still conveys my long-standing interest and dogged pursuit 

of data analytics. Figure 1.1 presents an archival illustrative rendering of what the 

1972 chart looks like. It is like taking a step back in data visualizing time. It is impor-

tant to re-emphasize that Figure 1.1 is a scanned reprint of the original hand-drawn 

chart from 1968 to 1972. The importance of preserving the original appearance of 

the chart, albeit in low-resolution print quality, is to convey that data visualization 

does not have to be esoteric. Even a rudimentary hastily hand-drawn chart may pro-

vide sufficient information for corrective or proactive actions to enhance a desired 

end result. The chart in Figure 1.1, as poor in print quality as it may appear here, did 

provide the desired impact over the grade-tracking years of 1968 through 1972.

Along the line of my high school course performance trend charts, at Tennessee 

Technological University graduate school, I did a 1981 master’s thesis research on 

stochastic modeling of energy consumption at the university (Badiru, 1981). The the-

sis research concerned the development of a stochastic forecasting model for energy 

consumption at the university. Such a model is useful for obtaining reliable forecasts 

of future energy consumption. This was an important pursuit in that era because of 

FIGURE 1.1 High school grade data analytics: Academic performance trend line.
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the energy crisis of the 1979–1980 period. Tennessee Tech energy forecasts were 

important for managerial decisions, short-range planning, conservation efforts, and 

budget preparations. Using the ARIMA (Autoregressive Integrated Moving Average) 

time series modeling approach (Badiru, 1981), I constructed a forecast model, using 

a set of six-year data obtained from the university’s physical plan office. A computer 

program was written in FORTRAN programming language to achieve the model 

building and the forecasting processes. Figures 1.2 and 1.3 illustrate samples of the 

plotting achieved from the time series model.

DATA MODELING APPROACHES

Several models and variations for data analytics are used in practice. Below are some 

of the more common models:

 1. Conceptual models

 2. Theoretical models

 3. Observational models

 4. Experimental models

FIGURE 1.2 Time series sample data for energy consumption data analytics.

FIGURE 1.3 Energy consumption forecast versus actual comparison.
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 5. Empirical models

 6. Iconic models

 7. A priori reasoning

The conceptual data model is a structured business view of the data required to 

support business processes, record business events, and track-related performance 

measures. This model focuses on identifying the data used in the business but not its 

processing flow or physical characteristics.

So, a theoretical model can be defined as a theory that is developed to explain a 

situation or a phenomenon and, further, to be able to forecast it. Theoretical model-

ing is based on a number or a set of theories. These theories are used to explain some 

situations, phenomena, and behavior types.

This term is more commonly used in qualitative research, while the term “theo-

retical model” usually appears as a tool in quantitative research. They both refer to 

the key theories, models, and ideas that exist in relation to your chosen topic. They 

give your research a direction and set boundaries for the reader.

Observational learning is a type of learning that happens indirectly through a 

process of watching others and then imitating, or modeling, their behavior, with the 

imitating being called modeling. His 1961 Bobo doll experiment demonstrated how 

school-aged children modeled aggressive behavior seen in adults.

Experimental model is an example of conducting experiments to collect data to 

develop understanding that can then be transferred to another situation of interest. 

A common example is the use of animal experiments to model the human case. 

Animals that are employed to model the development and progression of diseases, 

and to test new treatments before they are given to humans, are used in experimen-

tal modeling. Animals with transplanted human cancers or other tissues are called 

xenograft models.

Empirical modeling refers to any kind of (computer) modeling based on empirical 

observations rather than on mathematically describable relationships of the system 

modeled. Empirical modeling is a generic term for activities that create models by 

observation and experiment. Empirical Modeling (with the initial letters capitalized, 

and often abbreviated to EM) refers to a specific variety of empirical modeling in 

which models are constructed following particular principles.

An iconic model is an exact physical representation and may be larger or smaller 

than what it represents. The characteristics of an iconic model and the object that it 

represents are the same. This model is frequently used in Operations Research.

In a priori reasoning, the modeling is based on knowledge or inclination originat-

ing from theoretical deduction rather than from observation, experience, or empirical 

data assessment.

DATA FANATICISM

As has been illustrated with the examples presented in this chapter, the passion and 

reliance for data suggests the growth of data fanaticism, whereby people demand 

data as the basis for believing whatever is presented to them. This became more 

obvious during public briefings on COVID-19 pandemic in the early to mid-2020s. 
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Several newspaper, radio, and television programs bombarded the airwaves with seg-

ments on “Data and Facts” and “Facts and Fears” of COVID-19. The phrase “show us 

the data and we will believe” became a frequent call from the public as government 

officials scramble to convince the public to maintain social distancing and wear face 

masks to curtail the spread of coronavirus. These public observations heightened my 

interest in writing this book. Having used data analytics to drive personal academic 

performance and using data analytics on official job functions, my fervor to compile 

a guide for others persisted throughout the manuscript-writing chore.

DATA AND MEASUREMENTS FOR DATA ANALYTICS

Measurement pervades everything we do. This applies to technical, management, 

and social activities and requirements. Even in innocuous situations, such as human 

leisure, the importance of data and measurement comes to the surface. How much, 

how far, how good, how fast, how long, how high, how many, and how often are 

typical conveyances of some sort of measurement. This has taken on an even more 

significant implication under the ravages of the COVID-19 pandemic, where there 

is daily tracking of the number of virus tests the number of infections, the number 

of hospitalizations, and the number of deaths. It is on the basis of data, measure-

ments, and tracking that we can aspire to straighten or bend the curve of COVID-19 

 pandemic or other pandemics of the future.

WHAT IS MEASUREMENT?

It is well understood that we cannot manage anything if we cannot measure it. All 

elements involved in our day-to-day decision-making involve some form of mea-

surement. Measuring an attribute of a system and then analyzing it against some 

standard, some best practice, or some benchmark empowers a decision maker to take 

appropriate and timely actions.

Fundamentally, measurement is the act or the result of a quantitative comparison 

between a predefined standard and an unknown magnitude. If the result is to be 

 generally meaningful, two requirements must be met in the act of measurement:

 1. The standard that is used for comparison must be accurately known and 

commonly accepted.

 2. The procedure and instrument employed for obtaining the comparison must 

be provable and repeatable.

The first requirement is that there is an accepted standard of comparison. A weight 

cannot simply be heavy. It can only be proportionately as heavy as something else, 

namely, the standard. A comparison must be made, and unless it is made relative 

to something generally recognized as a standard, the measurement can only have a 

limited meaning. This holds for any quantitative measurement we may wish to make. 

In general, the comparison is one of magnitude, and a numerical result is presup-

posed. The quantity in question may be twice as large as the standard, or 1.5 times 

as large, or in some other ratio, but a numerical comparison must be made for it to 
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be meaningful. The typical characteristics of a measurement process include the 

following:

• Precision

• Accuracy

• Correlation

• Stability

• Linearity

• Type of data

Data Measurement Systems
The worldwide spread of COVID-19 has further heightened the recognition that dif-

ferent systems of measurement exist. The two primary and most commonly used 

systems are the English system and the metric system. For a good comparative 

assessment of data collected across the world, we need to be more cognizant of the 

differences and similarities between the two systems and the conversion relation-

ships. For example, body temperature is one of the primary symptoms assessed in the 

initial diagnosis of COVID-19. In the English system, the standard body temperature 

is 98.6°F. Anything above 101.4°F is adjudged to represent a fever, a key signal of 

an infection. The question, often, is why are those two temperature numbers not 

whole numbers? Why don’t we use 98°F, 99°F, 101°F, or 102°F? The temperature 

points are actually whole numbers in the metric system, where the normal body tem-

perature is 37°C and a fever is indicated at 38°C. It is upon converting the 37°C and 

38°C to Fahrenheit that we get 98.6°F and 101.4°F, respectively. Thus, it is important 

to have an appreciation of the different measurement systems and their conversion 

relationships.

The English system is the system that is commonly used in the United States 

today, whereas the metric system is used in many other parts of the world. The 

American measurement system is nearly the same as that brought by the American 

colony settlers from England. These measures had their origins in a variety of cul-

tures, including Babylonian, Egyptian, Roman, Anglo-Saxon, and Nordic French. 

The ancient “digit,” “palm,” “span,” and “cubic” units of length slowly lost preference 

to the length units “inch,” “foot,” and “yard.” Roman contributions include the use of 

12 as a base number and the words from which we derive many of the modern names 

of measurement units. For example, the 12 divisions of the Roman “pes” or foot were 

called unciae. The “foot” as a unit of measuring length is divided into 12 inches. The 

common words “inch” and “ounce” are both derived from Latin words. The “yard” 

as a measure of length can be traced back to early Saxon kings. They wore a sash or 

girdle around the waist that could be removed and used as a convenient measuring 

device. Thus, the word “yard” comes from the Saxon word “gird,” which represents 

the circumference of a person’s waist, preferably as “standard person,” such as a king.

Evolution and standardization of measurement units often had interesting origins. 

For example, it was recorded that King Henry I decreed that a yard should be the 

distance from the tip of his nose to the end of his outstretched thumb. The length of 

a furlong (or furrow-long) was established by early Tudor rulers as 220 yards. This 

led Queen Elizabeth I to declare in the 16th century that the traditional Roman mile 
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of 5,000 feet would be replaced by one of 5,280 feet, making the mile exactly eight 

furlongs and providing a convenient relationship between the furlong and the mile. 

To this day, there are 5,280 feet in one mile, which is 1,760 yards. Thus, through 

royal edicts, England, by the 18th century, had achieved a greater degree of standard-

ization than other European countries. The English units were well suited to com-

merce and trade because they had been developed and refined to meet commercial 

needs. Through English colonization and its dominance of world commerce during 

the 17th, 18th, and l9th centuries, the English system of measurement units became 

established in many parts of the world, including the American colonies. The early 

13 American colonies, however, had undesirable differences with respect to mea-

surement standards for commerce. The need for a greater uniformity led to clauses 

in the Articles of Confederation (ratified by the original colonies in 1781) and the 

Constitution of the United States (ratified in 1788) that gave Congress the power to 

fix uniform standards for weights and measures across the colonies. Today, standards 

provided by the U.S. National Institute of Standards and Technology (NIST) ensure 

uniformity of measurement units throughout the country.

The need for a single worldwide coordinated measurement system was recog-

nized over 300 years ago. In 1670, Gabriel Mouton, Vicar of St. Paul’s Church in 

Lyons and an astronomer, proposed a comprehensive decimal measurement system 

based on the length of one minute of arc of a great circle of the Earth. Mouton also 

proposed the swing length of a pendulum with a frequency of one beat per second as 

the unit of length. A pendulum with this beat would have been fairly easily reproduc-

ible, thus facilitating the widespread distribution of uniform standards.

In 1790, in the midst of the French Revolution, the National Assembly of France 

requested the French Academy of Sciences to “deduce an invariable standard for 

all the measures and all the weights.” The Commission appointed by the Academy 

created a system that was, at once, simple and scientific. The unit of length was to 

be a portion of the Earth’s circumference. Measures for capacity (volume) and mass 

were to be derived from the unit of length, thus relating the basic units of the system 

to each other and to nature. Furthermore, larger and smaller multiples of each unit 

were to be created by multiplying or dividing the basic units by 10 and powers of 10. 

This feature provided a great convenience to users of the system, by eliminating the 

need for such calculations as dividing by 16 (to convert ounces to pounds) or by 12 

(to convert inches to feet). Similar calculations in the metric system could be per-

formed simply by shifting the decimal point. Thus, the metric system is a “base-10” 

or “decimal” system.

The Commission assigned the name metre (i.e., meter in English) to the unit of 

length. This name was derived from the Greek word metron, meaning “a measure.” 

The physical standard representing the meter was to be constructed so that it would 

equal one ten-millionth of the distance from the North Pole to the equator along the 

meridian running near Dunkirk in France and Barcelona in Spain. The initial metric 

unit of mass, the “gram,” was defined as the mass of one cubic centimeter (a cube that 

is 0.01 m on each side) of water at its temperature of maximum density. The cubic 

decimeter (a cube 0.1 m on each side) was chosen as the unit for capacity. The fluid 

volume measurement for the cubic decimeter was given the name “liter.” Although 

the metric system was not accepted with much enthusiasm at first, adoption by other 
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nations occurred steadily after France made its use compulsory in 1840. In my own 

personal educational case, I grew up in Nigeria in the 1950s, 1960s, and early 1970s, 

under the English system of measurement. Nigeria converted to the metric system in 

1975, the year that I proceeded to the United States for further studies. So, I never 

underwent the necessity to educationally convert to the metric system since the 

United States continued to use the English system. Children born in Nigeria after the 

conversion went through the metric system of measurement in school. Attempts by 

the United States to convert to the metric system in the late 1970s and early 1980s 

never really took hold. For me today, I still straddle both systems of measurement in 

my professional interactions between the United States and the metric-using coun-

tries. I often have to visualize the conversion from one system to the other depending 

on the current context of my professional engagements. This can be a disadvantage 

in critical high-pressure and time-sensitive engagements requiring a quick response. 

This could become further exacerbated for medical practitioners in response to 

world-centric responses to the COVID-19 pandemic.

As a good illustration of dual usage of measuring systems, a widespread news 

report in late September 1999 reported how the National Aeronautics and Space 

Administration (NASA) lost a $125 million Mars orbiter in a crash onto the surface 

of Mars because a Lockheed Martin engineering team used the English units of 

measurement, whereas the agency’s team, based in Europe, used the more conven-

tional metric system for a key operation of the spacecraft. The unit’s mismatch pre-

vented navigation information from transferring between the Mars Climate Orbiter 

spacecraft team at Lockheed Martin in Denver and the flight team at NASA’s Jet 

Propulsion Laboratory in Pasadena, California. So, even at such a high-stakes scien-

tific endeavor, nonstandardization of measuring units can create havoc.

The standardized structure and decimal features of the metric system made it well 

suited for scientific and engineering work. Consequently, it is not surprising that the 

rapid spread of the system coincided with an age of rapid technological development. 

In the United States, by the Act of Congress in 1866, it became “lawful throughout 

the United States of America to employ the weights and measures of the metric 

system in all contracts, dealings or court proceedings.” However, the United States 

has remained a hold-out with respect to a widespread adoption of the metric system. 

Today, in some localities of the United States, both English and metric systems are 

used side by side.

In 1875, an international agreement, known as the Meter Convention, set up well-

defined metric standards for length and mass and established permanent mechanisms 

to recommend and adopt further refinements in the metric system. This agreement, 

commonly called the “Treaty of the Meter” in the United States, was signed by 

17 countries, including the United States. As a result of the Treaty, metric standards 

were constructed and distributed to each nation that ratified the Convention. Since 

1893, the internationally adopted metric standards have served as the fundamental 

measurement standards of the United States, at least in theory, if not in practice.

By 1900 a total of 35 nations, including the major nations of continental Europe 

and most of South America, had officially accepted the metric system. In 1960, the 

General Conference on Weights and Measures, the diplomatic organization made up 

of the signatory nations to the Meter Convention, adopted an extensive revision and 
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simplification of the system. The following seven units were adopted as the base units 

for the metric system:

 1. Meter (for length)

 2. Kilogram (for mass)

 3. Second (for time)

 4. Ampere (for electric current)

 5. Kelvin (for thermodynamic temperature)

 6. Mole (for amount of substance)

 7. Candela (for luminous intensity)

Based on the general standardization described above, the name Système International 

d’Unités (International System of Units), with the international abbreviation SI, was 

adopted for the modern metric system. Throughout the world, measurement science 

research and development continue to develop more precise and easily reproduc-

ible ways of defining measurement units. The working organizations of the General 

Conference on Weights and Measures coordinate the exchange of information about 

the use and refinement of the metric system and make recommendations concern-

ing improvements in the system and its related standards. Our daily lives are mostly 

ruled or governed by the measurements of length, weight, volume, and time.

Fundamental Scientific Equations
Several fundamental equations govern how we do data analytics once we collect the 

data pertinent to a problem of interest. In modeling our experimental data, we often 

will need to develop our own best-fit equations. But there are cases where our mod-

eling approach may be informed by standard scientific and engineering equations. 

Some of the seminal and fundamental theoretical scientific equations have emerged 

over the centuries. Perhaps, the most quoted and recognized in modern scientific 

literature is Einstein’s equation.

Einstein’s Equation

 E = mc2

The fundamental relationship connecting energy, mass, and the speed of light 

emerges from Einstein’s theory of special relativity, published in 1905. Showing the 

equivalence of mass and energy, it may be the most famous and beautiful equation in 

all of modern science. Its power was graphically demonstrated less than four decades 

later with the discovery of nuclear fission, a process in which a small amount of mass 

is converted to a very large amount of energy, precisely in accord with this equation.

Einstein’s Field Equation

1
 R gμ μv v− +R Λgμv = 8πGTμ

2
v

Einstein’s elegant equation published in 1916 is the foundation for his theory of grav-

ity, the theory of general relativity. The equation relates the geometrical curvature 
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of space-time to the energy density of matter. The theory constructs an entirely new 

picture of space and time, out of which gravity emerges in the form of geometry and 

from which Newton’s theory of gravity emerges as a limiting case. Einstein’s field 

equation explains many features of modern cosmology, including the expansion of 

the universe and the bending of star light by matter, and it predicts black holes and 

gravitational waves. He introduced a cosmological constant in the equation, which he 

called his greatest blunder, but that quantity may be needed if, as recent observations 

suggest, the expansion of the universe is accelerating. A remaining challenge for 

physicists in the 21st century is to produce a fundamental theory uniting gravitation 

and quantum mechanics.

Heisenberg’s Uncertainty Principle

h
 Δ Δx p ≥

2

Werner Heisenberg’s matrix formulation of quantum mechanics led him to discover 

in 1927 that an irreducible uncertainty exists when simultaneously measuring the 

position and momentum of an object. Unlike classical mechanics, quantum mechan-

ics requires that the more accurately the position of an object is known, the less 

accurately its momentum is known, and vice versa. The magnitude of that irreducible 

uncertainty is proportional to Planck’s constant.

Schrödinger Equation

∂Ψ
 ih = ΨH

∂t

In 1926, Erwin Schrödinger derived his nonrelativistic wave equation for the quan-

tum mechanical motion of particles such as electrons in atoms. The probability den-

sity of finding a particle at a particular position in space is the square of the absolute 

value of the complex wave function, which is calculated from Schrödinger’s equa-

tion. This equation accurately predicts the allowed energy levels for the electron 

in the hydrogen atom. With the use of modern computers, generalizations of this 

equation predict the properties of larger molecules and the behavior of electrons in 

complex materials.

Dirac Equation

∂Ψ -- ( )-- --
 ih = −⎡ α Α + β + Φ⎤Ψ

∂t ⎣c p mc2 e ⎦

In 1928, Paul Dirac derived a relativistic generalization of Schrödinger’s wave equa-

tion for the quantum mechanical motion of a charged particle in an electromagnetic 

field. His marvelous equation predicts the magnetic moment of the electron and the 

existence of antimatter.
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Maxwell’s Equations
-- --

 ∇ ⋅ =D p

---- --- - ∂D
 ∇ × =H J +

∂t

---- -- ∂B
 ∇ × +E = 0

∂t

-- --
 ∇ ⋅ =B 0

The fundamental equations explaining classical electromagnetism were developed 

over many years by James Clerk Maxwell and finished in his famous treatise pub-

lished in 1873. His classical field theory provides an elegant framework for under-

standing electricity, magnetism, and propagation of light. Maxwell’s theory was a 

major achievement of 19th-century physics, and it contained one of the clues that 

were used years later by Einstein to develop special relativity. Classical field theory 

was also the springboard for the development of quantum filed theory.

Boltzmann’s Equation for Entropy

 S k= lnW

Ludwig Boltzmann, one of the founders of statistical mechanics in the late 19th cen-

tury, proposed that the probability for any physical state of macroscopic system is 

proportional to the number of ways in which the internal state of that system can be 

rearranged without changing the system’s external properties. When more arrange-

ments are possible, the system is more disordered. Boltzmann showed that the loga-

rithm of the multiplicity of states of a system, or its disorder, is proportional to its 

entropy, and the constant of proportionality is Boltzmann’s constant k. The second 

law of thermodynamics states that the total entropy of a system and its surroundings 

always increases as time elapses. Boltzmann’s equation for entropy is carved on his 

grave.

Planck–Einstein Equation

 E = hv

The simple relation between the energy of a light quantum and the frequency of the 

associated light wave first emerged in a formula discovered in 1900 by Max Planck. 

He was examining the intensity of electromagnetic radiation emitted by the atoms 

in the walls of an enclosed cavity (a blackbody) at fixed temperature. He found that 

he could fit the experimental data by assuming that the energy associated with each 

mode of the electromagnetic field is an integral multiple of some minimum energy 

that is proportional to the frequency. The constant of proportionality, h, is known as 

Planck’s constant. It is one of the most important fundamental numbers in physics. 
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In  1905, Albert Einstein recognized that Planck’s equation implies that light is 

absorbed or emitted in discrete quanta, explaining the photoelectric effect and ignit-

ing the quantum mechanical revolution.

Planck’s Blackbody Radiation Formula

π ⎡ ⎤
−1

8 h hv

 u = v e3 ⎢ kT −1⎥
c3

⎣ ⎦

In studying the energy density of radiation in a cavity, Max Planck compared two 

approximate formulas: one for low frequency and one for high frequency. In 1900, 

using an ingenious extrapolation, he found his equation for the energy density of 

blackbody radiation, which reproduced experimental results. Seeking to understand 

the significance of his formula, he discovered the relation between energy and fre-

quency known as Planck–Einstein equation.

Hawking Equation for Black Hole Temperature

hc3

 TBH =
8πGMk

Using insights from thermodynamics, relativist quantum mechanics, and Einstein’s 

gravitational theory, Stephen Hawking predicted in 1974 the surprising result that 

gravitational black holes, which are predicted by general relativity, would radiate 

energy. His formula for the temperature of the radiating black hole depends on the 

gravitational constant, Planck’s constant, the speed of light, and Boltzmann’s con-

stant. While Hawking radiation remains to be observed, his formula provides a 

tempting glimpse of the insights that will be uncovered in a unified theory combin-

ing quantum mechanics and gravity.

Navier–Stokes Equation for a Fluid
-

∂v
 ρ ρ( )- -- - -- -

+ ⋅υ ∇ υ = −∇p + μ∇2υ + ( )
--

+ μ ⋅ +
∂ ( )-- - -

λ ∇ ∇ υ ρ
t

The Navier–Stokes equation was derived in the 19th century from Newtonian 

mechanics to model viscous fluid flow. Its nonlinear properties make it extremely dif-

ficult to solve, even with the modern analytic and computational technique. However, 

its solutions describe a rich variety of phenomena including turbulence.

Lagrangian for Quantum Chromodynamics

1
 L FQDC = − μv ⋅ F μ + Ψ ⎡i∇ − gA t − m ⎤Ψ

4
a a v ∑ ⎣ a a f f⎦

f f

Relativistic quantum field theory had its first great success with quantum electro-

dynamics, which explains the interaction of charged particles with the quantized 

g
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electromagnetic field. Exploration of non-Abelian gauge theories led next to the 

spectacular unification of the electromagnetic and weak interactions. Then, with 

insights developed from the quark model, quantum chromodynamics was devel-

oped to explain the strong interactions. This theory predicts that quarks are bound 

more tightly together as their separation increases, which explains why individual 

quarks are not seen directly in experiments. The standard model, which incor-

porates strong, weak, and electromagnetic interactions in a single quantum field 

theory, describes the interaction of quarks, gluons, and leptons, and has achieved 

remarkable success in predicting experimental results in elementary particle 

physics.

Bardeen–Cooper–Schrieffer Equation for Superconductivity

1−
 T ec = Θ1.13 N V(0)

Superconductors are materials that exhibit no electrical resistance at low tempera-

tures. In 1957 John Bardeen, Leon N. Cooper, and J. Robert Schrieffer applied 

quantum field theory with an approximate effective potential to explain this unique 

behavior of electrons in a superconductor. The electrons were paired and move col-

lectively without resistance in the crystal lattice of the super-conducting material. 

The Bardeen–Cooper–Schrieffer (BCS) theory and its later generalizations predict 

a wide variety of phenomena that agree with experimental observations and have 

many practical applications. John Bardeen’s contributions to solid-state physics also 

include inventing the transistor, made from semiconductors, with Walter Brattain 

and William Shockley in 1947.

Josephson Effect

d ( )Δϕ 2eV
 =

dt h

In 1962, Brian Josephson made the remarkable prediction that electric current could 

flow between two thin pieces of superconducting material separated by a thin piece of 

insulating material without application of a voltage. Using the BCS theory of super-

conductivity, he also predicted that if a voltage difference were maintained across the 

junction, there would be an alternating current with a frequency related to the volt-

age and Planck’s constant. The presence of magnetic fields influences the Josephson 

effect, allowing it to be used to measure very weak magnetic fields approaching the 

microscopic limit set by quantum mechanics.

Fermat’s Last Theorem

 xn n+ =y zn

While studying the properties of whole numbers, or integers, the French math-

ematician Pierre de Fermat wrote in 1637 that it is impossible for the cube of an 

integer to be written as the sum of the cubes of two other integers. More generally, 



16 Data Analytics

he stated that it is impossible to find such a relation between three integers for any 

integral power greater than two. He went on to write a tantalizing statement in the 

margin of his copy of a Latin translation of Diophantus’s Arithemetica: “I have a 

truly marvelous demonstration of this proposition, which this margin is too nar-

row to contain.” It took over 350 years to prove Fermat’s simple conjecture. The 

feat was achieved by Andrew Wiles in 1994 with a “tour de force” proof of many 

pages using newly developed techniques in number theory. It is noteworthy that 

many researchers, mathematicians, and scholars toiled for almost four centuries 

before a credible proof of Fermat’s last theorem was found. Indeed, the lead edi-

tor of this handbook, as a Mathematics graduate student in the early 1980s, was 

introduced to the problem during his Advanced Calculus studies under Professor 

Reginald Mazeres at Tennessee Technological University in 1980. Like many naïve 

researchers before him, he struggled with the problem as a potential thesis topic for 

six months before abandoning it to pursue a more doable topic in predictive time 

series modeling.

METHODS FOR DATA MEASUREMENT AND COMPARISON

There are two basic methods of measurement:

 1. Direct comparison with either a primary or a secondary standard

 2. Indirect comparison with a standard through the use of a calibrated system

Direct Comparison
How do you measure the length of a cold-rolled bar? You probably use a steel 

tape. You compare the bar’s length with a standard. The bar is so many feet long 

because that many units on your standard have the same length as the bar. You have 

determined this by making a direct comparison. Although you do not have access 

to the primary standard defining the unit, you manage very well with a secondary 

standard. Primary measurement standards have the least amount of uncertainty 

compared to the certified value and are traceable directly to the SI. Secondary 

standards, on the other hand, are derived by assigning value by comparison to a 

primary standard.

In some respect, measurement by direct comparison is quite common. Many 

length measurements are made in this way. In addition, time of day is usually deter-

mined by comparison, with a watch used as a secondary standard. The watch goes 

through its double cycle, in synchronization with the Earth’s rotation. Although, in 

this case, the primary standard is available to everyone, the watch is more convenient 

because its works on cloudy days, indoors, outdoors, in daylight, and in the dark 

(at night). It is also more precise. That is, its resolution is better. In addition, if well 

regulated, the watch is more accurate, because the Earth does not rotate at a uniform 

speed. It is seen, therefore, that in some cases, a secondary standard is actually more 

useful than the primary standard.
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Measuring by direct comparison implies stripping the measurement problem to 

its barest essentials. However, the method is not always the most accurate or the best. 

The human senses are not equipped to make direct comparisons of all quantities 

with equal facility. In many cases, they are not sensitive enough. We can make direct 

length comparisons using a steel rule with a level of precision of about 0.01 inch. 

Often, we wish for a greater accuracy, in which case we must call for additional 

assistance from some calibrated measuring system.

Indirect Comparison
While we can do a reasonable job through direct comparison of length, how well 

can we compare masses, for example? Our senses enable us to make rough com-

parisons. We can lift a pound of meat and compare its effect with that of some 

unknown mass. If the unknown is about the same weight, we may be able to say 

that it is slightly heavier, or perhaps, not quite as heavy as our “standard” pound, 

but we could never be certain that the two masses were the same, even say within 

one ounce. Our ability to make this comparison is not as good as it is for the dis-

placement of the mass. Our effectiveness in coming close to the standard is related 

to our ability to “gage” the relative impacts of mass on our ability to displace the 

mass. This brings to mind the common riddles of “Which weighs more? A pound 

of feathers or a pound of stones?” Of course, both weigh the same with respect to 

the standard weight of “pound.”

In making most engineering measurements, we require the assistance of some 

form of measuring system, and measurement by direct comparison is less general 

than measurement by indirect comparison.

A generic measurement sequence can involve the following steps:

Identify the variable to measure or for which data is to be collected.

Take the actual measurement.

Analyze the measurement (or data).

Interpret the measurement in the context of the prevailing practical application.

Generate information from the data interpretation.

Make actionable decision from the information.

Implement the action.

Communicate the action.

Do an assessment of the outcome for feedback purpose.

Institute process improvement for the next cycle of data engagement.

DATA MEASUREMENT SCALES

Every decision requires data collection, measurement, and analysis. In practice, we 

encounter different types of measurement scales depending on the particular items of 

interest. Data may need to be collected on decision factors, costs, performance levels, 

outputs, and so on. The different types of data measurement scales that are applicable 

are presented below.



18 Data Analytics

Nominal Scale of Measurement
Nominal scale is the lowest level of measurement scales. It classifies items into cate-

gories. The categories are mutually exclusive and collectively exhaustive. That is, the 

categories do not overlap, and they cover all possible categories of the characteristics 

being observed. For example, in the analysis of the critical path in a project network, 

each job is classified as either critical or not critical. Gender, type of industry, job 

classification, and color are examples of measurements on a nominal scale.

Ordinal Scale of Measurement
Ordinal scale is distinguished from a nominal scale by the property of order among 

the categories. An example is the process of prioritizing project tasks for resource 

allocation. We know that first is above second, but we do not know how far above. 

Similarly, we know that better is preferred to good, but we do not know by how 

much. In quality control, the ABC classification of items based on the Pareto distri-

bution is an example of a measurement on an ordinal scale.

Interval Scale of Measurement
Interval scale is distinguished from an ordinal scale by having equal intervals 

between the units of measurement. The assignment of priority ratings to project 

objectives on a scale of 0–10 is an example of a measurement on an interval scale. 

Even though an objective may have a priority rating of zero, it does not mean that the 

objective has absolutely no significance to the project team. Similarly, the scoring 

of zero on an examination does not imply that a student knows absolutely nothing 

about the materials covered by the examination. Temperature is a good example of 

an item that is measured on an interval scale. Even though there is a zero point on 

the temperature scale, it is an arbitrary relative measure. Other examples of interval 

scale are IQ measurements and aptitude ratings.

Ratio Scale Measurement
Ratio scale has the same properties of an interval scale but with a true zero point. 

For example, an estimate of zero-time unit for the duration of a task is a ratio scale 

measurement. Other examples of items measured on a ratio scale are cost, time, 

volume, length, height, weight, and inventory level. Many of the items measured in 

engineering systems will be on a ratio scale.

Another important aspect of measurement involves the classification scheme 

used. Most systems will have both quantitative and qualitative data. Quantitative 

data require that we describe the characteristics of the items being studied numeri-

cally. Qualitative data, on the other hand, are associated with attributes that are not 

measured numerically. Most items measured on the nominal and ordinal scales will 

normally be classified into the qualitative data category, whereas those measured on 

the interval and ratio scales will normally be classified into the quantitative data cat-

egory. The implication for engineering system control is that qualitative data can lead 

to bias in the control mechanism because qualitative data are subject to the personal 

views and interpretations of the person using the data. As much as possible, data 

for an engineering systems control should be based on a quantitative measurement. 
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As a summary, examples of the four types of data measurement scales are presented 

below:

• Nominal scale (attribute of classification): color, gender, design type

• Ordinal scale (attribute of order): first, second, low, high, good, better

• Interval scale (attribute of relative measure): intelligence quotient, grade 

point average, temperature

• Ratio (attribute of true zero): cost, voltage, income, budget

Notice that temperature is included in the “relative” category rather the “true zero” 

category. Even though there are zero temperature points on the common temperature 

scales (i.e., Fahrenheit, Celsius, and Kelvin), those points are experimentally or theo-

retically established. They are not true points as one might find in a counting system.

REFERENCE UNITS OF MEASUREMENTS

Some common units of measurement for reference purposes are provided below:

Acre. An area of 43,560 square feet.

Agate. 1/14 inch (used in printing for measuring column length).

Ampere. Unit of electric current.

Astronomical (A.U.). 93,000,000 miles; the average distance of the Earth 

from the sun (used in astronomy).

Bale. A large bundle of goods. In the United States, approximate weight of a 

bale of cotton is 500 pounds. The weight of a bale may vary from country 

to country.

Board foot. 144 cubic inches (12 by 12 by 1 used for lumber).

Bolt. 40 yards (used for measuring cloth).

Btu. British thermal unit; the amount of heat needed to increase the tempera-

ture of one pound of water by 1°F (252 calories).

Carat. 200 mg or 3,086 troy; used for weighing precious stones (originally the 

weight of a seed of the carob tree in the Mediterranean region). See also 
Karat.

Chain. 66 feet; used in surveying (1 mile = 80 chains).

Cubit. 18 inches (derived from the distance between the elbow and the tip of 

the middle finger).

Decibel. Unit of relative loudness.

Freight Ton. 40 cubic feet of merchandise (used for cargo freight).

Gross. 12 dozens (144).

Hertz. Unit of measurement of electromagnetic wave frequencies (measures 

cycles per second).

Hogshead. Two liquid barrels or 14,653 cubic inches.

Horsepower. The power needed to lift 33,000 pounds a distance of one foot in 

one minute (about 1½ times the power an average horse can exert); used for 

measuring the power of mechanical engines.
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Karat. A measure of the purity of gold. It indicates how many parts out of 24 

are pure. 18 karat gold is ¾ pure gold.

Knot. The rate of speed of 1 nautical mile per hour; used for measuring the 

speed of ships (not distance).

League. Approximately 3 miles.

Light-year. 5,880,000,000,000 miles; the distance traveled by light in one year 

at the rate of 186,281.7 miles per second; used for measuring the interstellar 

space.

Magnum. Two-quart bottle; used for measuring wine.

Ohm. Unit of electrical resistance.

Parsec. Approximately 3.26 light-years of 19.2 trillion miles; used for measur-

ing interstellar distances.

Pi (π). 3.14159265+; the ratio of the circumference of a circle to its diameter.

Pica. 1/6 inch or 12 points; used in printing for measuring the column width.

Pipe. 2 hogsheads; used for measuring wine and other liquids.

Point. 0.013837 (approximately 1/72 inch or 1/12 pica); used in printing for 

measuring type size.

Quintal. 100,000 g or 220.46 pounds avoirdupois.

Quire. 24 or 25 sheets; used for measuring paper (20 quires is one ream).

Ream. 480 or 500 sheets; used for measuring paper.

Roentgen. Dosage unit of radiation exposure produced by X-rays.

Score. 20 units.

Span. 9 inches or 22.86 cm; derived from the distance between the end of the 

thumb and the end of the little finger when both are outstretched.

Square. 100 square feet; used in building.

Stone. 14 pounds avoirdupois in Great Britain.

Therm. 100,000 Btu’s.

Township. U.S. land measurement of almost 36 square miles; used in 

surveying.

Tun. 252 gallons (sometimes larger); used for measuring wine and other 

liquids.

Watt. Unit of power.

COMMON CONSTANTS

Speed of light: 2.997,925 × 1010 cm/sec (983.6 106 ft/sec; 186,284 miles/sec)

Velocity of sound: 340.3 m/sec (1,116 ft/sec)

Gravity (acceleration): 9.80665 m/sec2 (32.174 ft/sec2; 386.089 inches/sec2)

NUMERIC DATA REPRESENTATION

Exponentiation is essential for data measurement and presentation for both small 

and large numbers. For the purpose of data analytics, the data exponentiation sys-

tem is important for analysts. The standard exponentiation numbers and prefixes are 

 presented below: 



21Essentials of Data Analytics

THE LANGUAGE OF DATA ANALYTICS

Mathematicians and statisticians are often accused of speaking in their own strange 

“Greek” language when presenting their work. To do and appreciate data analytics, 

we must learn to recognize and use the common notations and symbols commonly 

used in mathematics and statistics. For this reason, we are presenting this reference 

material up front here rather than in an appendix. Table 1.1 presents a tabulation of 

Greek symbols often used for data analytics, whereas Table 1.2 presents the common 

Roman numerals. This entire book is billed as reference handbook for equations 

and formulas for data analytics. As such, the reference equations and formulas are 

 presented as the inherent body of the book.

QUICK REFERENCE FOR MATHEMATICAL EQUATIONS

Presented below is a collection of quick references for mathematical equations and 

formulas:

 ∑
∞

xn

= ex

n!
n=0

 ∑
∞

xn ⎛ 1 ⎞= 1n⎜ ⎟
n x⎝ 1− ⎠

n=0

yotta (1024) 1 000 000 000 000 000 000 000 000

zetta (1021) 1 000 000 000 000 000 000 000

exa (1018) 1 000 000 000 000 000 000

peta (1015) 1 000 000 000 000 000

tera (1012) 1 000 000 000 000

giga (109) 1 000 000 000

mega (106) 1 000 000

kilo (103) 1 000

hecto (102) 100

deca (101) 10

deci (10–1) 0.1

centi (10–2) 0.01

milli (10–3)

micro (10–6) 0.000 001

nano (10–9) 0.000 000 001

pico (10–12) 0.000 000 000 001

0.001

femto (10–15) 0.000 000 000 000 001

atto (10–18) 0.000 000 000 000 000 001

zepto (10–21) 0.000 000 000 000 000 000 001

yocto (10–24) 0.000 000 000 000 000 000 000 001
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TABLE 1.1
Greek Symbols for Data Analytics

Capital Lowercase Greek Name Pronunciation English

Α α Alpha al-fah a

Β β Beta bay-tah b

Γ γ Gamma gam-ah g

Δ δ Delta del-tah d

Ε ε Epsilon ep-si-lon e

Ζ ζ Zeta zat-tah z

Η η Eta ay-tah h

Θ θ Theta thay-tah th

Ι ι Iota eye-oh-tah i

Κ κ Kappa cap-ah k

Λ λ Lambda lamb-da l

Μ μ Mu mew m

Ν ν Nu new n

Ξ ξ Xi sah-eye x

Ο ο Omicron oh-mi-cron o

Π π Pi pie p

Ρ ρ Rho roe r

Σ σ Sigma sig-mah s

Τ τ Tau tah-hoe t

Υ υ Upsilon oop-si-lon u

Φ φ Phi fah-eye ph

Χ χ Chi kigh ch

Ψ ψ Psi sigh ps

Ω Ω Omega Oh-mega o

TABLE 1.2
Roman Numerals for Data Analytics
1 I 14 XIV 27 XXVII 150 CL

2 II 15 XV 28 XXVIII 200 CC

3 III 16 XVI 29 XXIX 300 CCC

4 IV 17 XVII 30 XXX 400 CD

5 V 18 XVIII 31 XXXI 500 D

6 VI 19 XIX 40 XL 600 DC

7 VII 20 XX 50 L 700 DCC

8 VIII 21 XXI 60 LX 800 DCCC

9 IX 22 XXII 70 LXX 900 CM

10 X 23 XXIII 80 LXXX 1000 M

11 XI 24 XXIV 90 XC 1600 MDC

12 XII 25 XXV 100 C 1700 MDCC

13 XIII 26 XXVI 101 CI 1900 MCM
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Derivation of the Quadratic Formula

Formula:

 ax b2 + +x c = 0

Solution:

− ±b b2 − 4ac
 x =

2a

If b a2 − <4 0c , the roots are complex.

If b a2 − >4 0c , the roots are real.

If b a2 − =4 0c , the roots are real and repeated.

Formula:

 ax b2 + +x c = 0

Dividing both sides by “a,” (a ≠ 0)

 x2 b c+ +x = 0
a a

c
Note if a = 0, the solution to ax b2 + +x c = 0 is x = − .

b
Rewrite

 2 b c
x + +x = 0

a a

as

⎛ b ⎞ 2 b2 c
 ⎜ x + ⎟ − + = 0⎝ 2 4a ⎠ a2 a

⎛ b ⎞ 2 b2 c b a2 − 4 c
 ⎜ x + ⎟ = − =⎝ 2 4a ⎠ a2 a 4a2

b b a2 − 4 c b a2 − 4 c
 x + = ±

2a 4a2
= ±

2a
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b b a2 − 4 c
 x = − ±

2a 2a

− ±b b2 − 4ac
 x =

2a
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2 Empirical Model Building

Believe me or not, the model tells you the facts.

INTRODUCTION TO THE MODEL ENVIRONMENT

This chapter presents concept frameworks for building a model based on the avail-

able data. It addresses data regression and data projection. It also addresses the math-

ematical steps to building an empirical model. Models are not crystal balls. Yet, they 

are relied upon to get glimpse of the future, even if it is a fuzzy view. Models are 

forecasts. In this regard, they are better than nothing. Therein lies the efficacy of 

data analytics. Figure 2.1 illustrates the empirical modeling environment represent-

ing data linkages of the past, present, and future projections. The simplest and most 

common types of models are those representing growth and decay. An example is 

as follows:

 X( )j+1 = +( )1 α X j

This is a case of the next element at time j + 1 being derived from the preceding 

element at time j at the behest of a multiplier factor of (1 + α). With an appropriate 

choice of the value of α, this simple equation can be made to generate a growth or a 

decay. Another simple example is the exponential form presented below:

 y e= t

COVID-19 presents a particularly challenging environment for modeling. One 

difficulty is that we don’t yet have enough data to generate reliable or meaningful 

mathematical models. Another difficulty is that, for now, COVID-19 is still mostly 

stochastic and nonlinear, leading to intractable patterns for a modeling exercise. 

However, as the pandemic moves on, stunted or uninhibited, we will acquire more 

data to make COVID-19 modeling more reliable. The premise of this book is to 

FIGURE 2.1 Model environment representing data linkages of the past, present, and future.
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provide a collection of the mathematical equations, formulas, and techniques now 

for the purpose of getting researchers and practitioners ready for that future state. As 

more incidents happen and are recorded, we will achieve more data agility to make 

modeling possible and more reliable.

STATE-SPACE MODELING

The state space of a dynamical system is the set of all possible states of the sys-

tem. Each coordinate of the state space is a state variable, and the values of all the 

state variables completely describe the state of the system. Classical control system 

focuses on control of the dynamics of mechanical objects, such as a pump, electrical 

motor, turbine, and rotating wheel. The mathematical basis for such control systems 

can be adapted (albeit in iconic formats) for general data analytics. This is because 

system transitions are characterized by inputs, variables, processing, control, feed-

back, and output. This is represented graphically by input–process–output relation-

ship block diagrams. Mathematically, it can be represented as

 z = +f x( ) ε

where

z is the output.

f() is the functional relationship.

ε is the error component (noise, disturbance, etc.).

For multivariable cases, the mathematical expression is represented as vector–matrix 

functions as shown in the following:

 Z f= +( )X E

where

each term is a matrix.

Z is the output vector.

f(·) is the input vector.

E is the error vector.

Regardless of the level or form of mathematics used, all systems exhibit the same 

input–process–output characteristics, either quantitatively or qualitatively, as they 

transition from one state to another. System objectives are achieved by state-to-state 

transformations, where a subsequent state is derived from the characteristics of the 

preceding state. This simple representation can be expanded to cover several com-

ponents within the realm of data analytics. Hierarchical linking of system elements 

provides an expanded transformation structure. The system state can be expanded in 

accordance with implicit requirements or explicit impositions. These requirements 

might include grouping of system elements, precedence linking (both technical and 

procedural), required communication links, and reporting requirements. The actions 
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to be taken at each state depend on the prevailing system conditions. The nature of 

subsequent alternate states depends on what actions are implemented. Sometimes, 

there are multiple paths that can lead to the end result. At other times, there exists 

only one unique path to the end result. In conventional practice, the characteristics 

of the future states can only be recognized after the fact, thus making it impossible 

to develop adaptive plans. If we describe a product by P state variables si, then the 

composite state of the product at any given time can be represented by a vector S 

containing P elements. That is,

 S = { }s s1 2, ,K ,sP

The components of the state vector could represent either quantitative or qualitative 

variables (e.g., cost, energy, color, time). We can visualize every state vector as a 

point in the M-dimensional state space. The representation is unique since every state 

vector corresponds to one and only one point in the state space.

Suppose we have a set of actions (transformation agents) that we can apply to a 

product information space so as to change it from one state to another within the 

system state space. The transformation will change a state vector into another state 

vector. For example, for a product development application, a transformation may be 

a change in raw material or a change in design approach. Suppose we let Tk be the 

kth type of transformation. If Tk is applied to the product when it is in state S, the 

new state vector will be Tk(S), which is another point in the state space. The number 

of transformations (or actions) available for a product may be finite or countably infi-

nite. We can construct trajectories that describe the potential states of a product evo-

lution as we apply successive transformations. Each transformation may be repeated 

as many times as needed. Given an initial state S0, the sequence of state vectors is 

represented by the following:

 S S1 1= T ( )0

 S S2 2= T ( )1

 S S3 3= T ( 2 )
 …

 S Sn n= T ( )n−1

The final state, Sn, depends on the initial state S and the effects of the actions applied. 

Apart from the function of prediction, data analytics can also have the utility of 

helping to determine the decision paths for resource allocation. In the hypothetical 

framework in Figure 2.2, the resource base is distributed along priority paths based 

on predetermined weighting factors. The weighting factors are used to compute the 

relative number of resource units going into each resource budget. A resource allo-

cation measure can be viewed as the action applied within a state space to move a 

system from one state to the next state. Thus, we can have distributive data analytics 

for resource allocation.
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CALCULUS REFERENCE FOR DATA ANALYTICS

Mathematics, simple or advanced, is the backbone of data analytics. Calculus, in 

particular, is essential for data analytics. A simple calculus reference here puts the 

basic concepts at the fingertip of the reader. Calculus is the mathematical study of 

continuous change, in the same way that geometry is the study of shape and alge-

bra is the study of generalizations of arithmetic operations. Calculus presents the 

changes between values that are related by a function, such as what may be of inter-

est in trend analysis in data analytics. Put simply, Calculus is the mathematics of 

rate of change, as in tracking functional changes in the rate of coronavirus pandemic 

infections. The rate of change computation is accomplished by the process of taking 

the “derivative” of a function or “differentiating” the function. For example, the rate 

of change of a constant (e.g., the number 5) is 0. The rate of change of the variable 

x (actually 1x) is 1. The definition of a derivative comes from taking the limit of the 

slope formula as the two points on a function get closer and closer together. Thus, 

the derivative is used to determine the slope of a curve at a particular point, which 

is an item of interest in straightening, bending, or reversing the curve of COVID-19 

incidents. The converse of taking the derivative of a function or differentiating the 

function is finding the integral of the curve (i.e., differentiating the function). In 

other words, differentiation is the action of computing a derivative. The derivative 

of a function y = f(x) of a variable x is a measure of the rate at which the value y of 

the function changes with respect to the change of the variable x. That rate of change 

is called the derivative of the function f with respect to the variable x. All these 

basic concepts are essential in building data analytics models and performing func-

tional analysis on the models for predictive, descriptive, or prescriptive purposes. 

Table 2.1 summarizes some basic integration guide that may be useful in systems 

modeling for data analytics.

FIGURE 2.2 Graphical framework for distributive data analytics.
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INTEGRATION RULES

The sum rule integrates long expressions term by term.

 ∫ ∫[ ]f ( )x + =g( )x dx f ( )x dx + ∫ g( )x dx

The constant multiple rule moves a constant outside of an integral before integration.

TABLE 2.1
Derivatives and antiderivatives for selected functions

Derivative Integral (Antiderivative)

d
n = 0

dx ∫ 0 dx = C

d
x = 1

dx
1 dx = +x C∫

d
ex = ex

dx
x xe = e + C∫

d 1
ln n =

dx x

1
dx = ln x + Cs∫ x

d
nx = nx ln n

dx ∫ nx

n dx x = + C
ln n

d
sin x = cos x

dx ∫ cos x dx = sin x + C

d
cos x = − sin x

dx
sin x dx = − cos x + C∫

d
tan x = sec2 x

dx
sec2 x dx = tan x + C∫

d
cot x = − csc2 x

dx
csc2 x dx = − cot x + C∫

d
sec x = sec x tan x

dx
tan x sec x dx = sec x + C∫

d
csc x = − csc x cot x

dx
cot x csc x dx = − csc x + C∫

d 1
arcsin x = −

dx 1− x2

1
dx = arcsin x + C∫ 21− x

d 1
arccos x = −

dx 1− x2

1∫ − dx = arccos x + C
21− x

d 1
arctan x =

dx 1+ x2

1
dx = arctan x + C

2∫ +1 x
d 1

arccot x = −
dx 1+ x2

1∫ − dx = arccot x + C
21+ x

d 1
arcsec x =

dx x x2 −1

1
dx = arcsec x + C∫ 2x x −1

d 1
arccsc x = −

dx x x2 −1

1∫ − = arccsc +x C
2x x −1
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 ∫ ∫nf ( )x dx = n f ( )x dx

The power rule integrates any real power of x (except –1).

∫ n xn−1

 x dx = + ≠C n, where 1
n +1

SOLVING INTEGRALS WITH VARIABLE SUBSTITUTION

Step 1: Declare a variable u and set it equal to an algebraic expression that 

appears in the integral, and then substitute u for this expression in the 

integral.
du

Step 2: Differentiate u to find  and then isolate all x variables on one side of 
dx

the equality sign.

Step 3: Make another substitution to change dx and all other occurrences of x 

in the integral to an expression that includes du.

Step 4: Integrate by using u as the new variable of integration.

Step 5: Now, express the answer in terms of x.

RIEMANN INTEGRAL

Riemann integral is the limit of the Riemann sums of a continuous function as the 

partitions get smaller and smaller. This approach is also applicable to functions that 

are not too seriously discontinuous. The Riemann sum formula provides a precise 

definition of the definite integral as the limit of an infinite series:

b

 ∫ ( ) = ∑
n

−( )⎛ b a ⎞f x dx lim f xi
n

⎜ ⎟
→∞ ⎝ n ⎠

a i=1

INTEGRATION BY PARTS

To evaluate an integral by using integration by parts, follow these steps:

 1. Decompose the entire integral (including dx) into two factors.

 2. Let the factor without dx equal dv.

 3. Differentiate u to find du and integrate dv to find v.

 4. Use the formula ∫ ∫u du = −uv v du.

 5. Evaluate the right side of this equation to solve the integral.

COMPOUND FUNCTIONS WHERE THE INNER FUNCTION IS AX

This shortcut works for compositions of functions f ( )g x( )  for which
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• We know how to integrate the outer function f .

• The inner function g x( ) is of the form ax, which differentiates to a constant. 

Examples are as follows:

 ∫ 1
e d2 2x xx = +e C

2

1
 ∫ cos3x dx = +sin3x C

3

 ∫ 1
tan4x dx = +sec2 4x C

4

INTEGRATION BY PARTS

Integration by parts or partial integration is a process that finds the integral of a 

function that is a product of smaller functions. This is done in terms of the integral 

of the product of the smaller functions’ derivative and antiderivative. Many methods 

have evolved over the years to executing integration by parts. One method is the 

“DI-agonal method.” The basic form of integration by parts is presented below:

 ∫ ∫udv = −uv v du

Examples are as follows:

x x

 
∫ ln dx

∫ udu = −uv ∫ v du

1 x2

Let u x= =ln , du dx, v = , dv = xdx
x 2

 ∫ ∫x2 2x 1
x xln dx = −ln x ⋅ dx

2 2 x

x2

= ln x −
2

 
∫ x

dx
2

x2 2x= ln x − + C
2 4

x
 ∫

3

dx
1− x2
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x2 −2x
Let u = − , ,du = −xdx dv = dx

2 1− x2

 v x= −2 1 2

 ∫ ∫x3

dx = −x2 21 2
2

− x − ( )− x 1− x2 dx
1− x

 = − +x x2 2 2
1 − ( )

2

1− x2 3 + C
3

Readers are referred to standard calculus references for additional methods and 

examples of integration by parts.

SYSTEMS MODELING FOR DATA ANALYTICS

Data analytics can be most useful if the data environment is viewed as a system. 

Many operational and functional elements interact to generate whatever data we are 

interested in. In a conventional definition, a system is defined as a collection of inter-

related elements, whose collective and composite output, together, is higher than the 

mere sum of the outputs of the individual elements. With this viewpoint, each ele-

ment in the system is recognized as a key driver or cornerstone in the overall system. 

Systems integration makes the world run smoothly for everyone. The output of data 

analytics must enmesh with the objectives, goals, and/or priorities of the organiza-

tion. For this reason, data integration is as important as data collection. With today’s 

interconnected world, as we have seen in the case of COVID-19, when something 

flares up in one corner of the world, it can quickly spread to other parts. Systems 

thinking enhances the functional interfaces as we endeavor to provide, not just schol-

arly insights into world developments but also social appreciation of what the society 

needs in terms of healthcare, education, mentoring, culture, diversity, work climate, 

gender equity, job training, leadership, respect, appreciation, recognition, reward, 

work compensation, digital work environment, career advancement opportunities, 

hierarchy of needs, and other dimensions of the work environment. There are several 

moving parts in the workplace in business, industry, government, academia, and the 

military. Only a systems view can ensure that all components are factored into the 

overall end goal. A systems view of data analytics allows an integrated design, analy-

sis, and implementation of strategic plans. It would not work to have one segment of 

the enterprise embarking on one strategic approach, while another segment embraces 

practices that impede the overall achievement of an integrated organizational pur-

suit. In the context of operating in the global environment, whether a process is 

repeatable or not, in a statistical sense, is an issue of business stability and sustain-

ment. A systems-based framework allows us to plan for prudent utilization of scarce 

human resources across all operations, particularly in response to developments, 

such as the COVID-19 pandemic. For the purpose of systems implementation for 
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data analytics, several systems models are available for consideration. These include 

the V-model, the waterfall model, the spiral model, the walking skeleton model, and 

the DEJI (Design, Evaluation, Justification, and Integration) systems model (Badiru, 

2019). For the purpose of data integration, the DEJI model has a fitting applicability 

because of its steps of design, evaluation, justification, and integration. Figure 2.3 

illustrates the basic structure and contents of the model. The DEJI model of systems 

engineering provides one additional option for systems engineering development 

applications. Although the DEJI model is generally applicable in all types of systems 

modeling, it is particularly well suited for data analytics. The core stages of the DEJI 

model applied to data analytics are as follows:

• Design of the data format

• Evaluation of the data elements and characteristics

• Justification of the data protocol

• Integration of the data analytics output into the prevailing operation scenario

Design encompasses any system initiative providing a starting point for a project. 

Thus, design can include technical product design, data format design, process ini-

tiation, and concept development. In essence, we can say that “design” represents 

requirements and specifications. Evaluation can use a variety of metrics both quali-

tative and quantitative, depending on the organization’s needs. Justification can be 

done on the basis of monetary, technical, or social reasons. Not everything that is 

feasible is practical and desirable. Thus, justification is essential in the process of 

overall system design. After design, evaluation, and justification, integration needs to 

be done with respect to the normal or standard operations of the organization. Thus, 

FIGURE 2.3 The DEJI model for systems design, evaluation, justification, and integration.
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the DEJI model provides an avenue of closing the loop in any system modeling chal-

lenge. This is especially useful for data analytics applications, where the end goal is 

expected to justify the means and analysis performed.

Empirical model building requires a structured approach executed in a sequence 

of questions related to what, when, where, who, how, and why. Some examples are 

summarized below:

Why is data analytics needed?

Who are the stakeholders?

What data is needed?

Where is the data available?

Who owns the data?

Who will collect the data?

How will the data be processed?

Who will perform the analytics?

How much time is needed for the process?

Along with the preceding discussions, communication, cooperation, and coordina-

tion are important for making the best use of the outputs of data analytics. Beyond 

the technical aspects of data analytics, the human aspects also play a crucial role. 

The nuances of human-system integration make it imperative that we also consider 

human needs for communication, cooperation, and coordination. The Triple C model 

presented by Badiru (2008) is an effective project planning and control tool. The 

model states that project management can be enhanced by implementing it within the 

integrated functions summarized below:

• Communication

• Cooperation

• Coordination

The model facilitates a systematic approach to project planning, organizing, schedul-

ing, and control. The triple C model is distinguished from the 3C approach commonly 

used in military operations. The military approach emphasizes personnel manage-

ment in the hierarchy of command, control, and communication. This places commu-

nication as the last function. The triple C model, by contrast, suggests communication 

as the first and foremost function. The triple C model can be implemented for project 

planning, scheduling, and control purposes. The basic questions of what, who, why, 

how, where, and when revolve around the triple C model. It highlights what must be 

done and when. It can also help to identify the resources (personnel, equipment, facili-

ties, etc.) required for each effort. It points out important questions such as

• Does each project participant know what the objective is?

• Does each participant know his or her role in achieving the objective?

• What obstacles may prevent a participant from playing his or her role 

effectively?
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Triple C can mitigate disparity between idea and practice because it explicitly solicits 

information about the critical aspects of a project in terms of the following queries:

Types of communication

• Verbal

• Written

• Body language

• Visual tools (e.g., graphical tools)

• Sensual (use of all five senses: sight, smell, touch, taste, and hearing – olfac-

tory, tactile, auditory)

• Simplex (unidirectional)

• Half-duplex (bidirectional with time lag)

• Full-duplex (real-time dialogue)

• One-on-one

• One-to-many

• Many-to-one

Types of cooperation

• Proximity

• Functional

• Professional

• Social

• Romantic

• Power influence

• Authority influence

• Hierarchical

• Lateral

• Cooperation by intimidation

• Cooperation by enticement

Types of coordination

• Teaming

• Delegation

• Supervision

• Partnership

• Token-passing

• Baton hand-off

TRIPLE C QUESTIONS

Questioning is the best approach to getting information for effective project manage-

ment. Everything should be questioned. By up-front questions, we can preempt and 
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avert project problems later on. Typical questions to ask under triple C approach are 

as follows:

• What is the purpose of the project?

• Who is in charge of the project?

• Why is the project needed?

• Where is the project located?

• When will the project be carried out?

• How will the project contribute to increased opportunities for the 

organization?

• What is the project designed to achieve?

• How will the project affect different groups of people within the organization?

• What will be the project approach or methodology?

• What other groups or organizations will be involved (if any)?

• What will happen at the end of the project?

• How will the project be tracked, monitored, evaluated, and reported?

• What resources are required?

• What are the associated costs of the required resources?

• How do the project objectives fit the goal of the organization?

• What respective contribution is expected from each participant?

• What level of cooperation is expected from each group?

• Where is the coordinating point for the project?

The key to getting everyone on board with a project is to ensure that task objectives 

are clear and comply with the principle of SMART as outlined below:

Specific. Task objective must be specific.

Measurable. Task objective must be measurable.

Aligned. Task objective must be achievable and aligned with overall project 

goal.

Realistic. Task objective must be realistic and relevant to the organization.

Timed. Task objective must have a time basis.

If a task has the above intrinsic characteristics, then the function of communicating 

the task will more likely lead to personnel cooperation.

COMMUNICATION

Communication makes working together possible. The communication function of 

project management involves making all those concerned become aware of project 

requirements and progress. Those who will be affected by the project directly or 

indirectly, as direct participants or as beneficiaries, should be informed as appropri-

ate regarding the following:

• Scope of the project

• Personnel contribution required
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• Expected cost and merits of the project

• Project organization and implementation plan

• Potential adverse effects if the project should fail

• Alternatives, if any, for achieving the project goal

• Potential direct and indirect benefits of the project

The communication channel must be kept open throughout the project life cycle. 

In addition to internal communication, appropriate external sources should also be 

consulted. The project manager must

• Exude commitment to the project.

• Utilize the communication responsibility matrix.

• Facilitate multi-channel communication interfaces.

• Identify internal and external communication needs.

• Resolve organizational and communication hierarchies.

• Encourage both formal and informal communication links.

When clear communication is maintained between management and employees and 

among peers, many project problems can be averted. Project communication may be 

carried out in one or more of the following formats:

• One-to-many

• One-to-one

• Many-to-one

• Written and formal

• Written and informal

• Oral and formal

• Oral and informal

• Nonverbal gestures

Good communication is affected when what is implied is perceived as intended. 

Effective communications are vital to the success of any project. Despite the aware-

ness that proper communications form the blueprint for project success, many orga-

nizations still fail in their communications functions. The study of communication is 

complex. Factors that influence the effectiveness of communication within a project 

organization structure include the following.

 1. Personal perception. Each person perceives events on the basis of personal 

psychological, social, cultural, and experimental background. As a result, 

no two people can interpret a given event the same way. The nature of events 

is not always the critical aspect of a problem situation. Rather, the problem 

is often the different perceptions of the different people involved.

 2. Psychological profile. The psychological makeup of each person deter-

mines personal reactions to events or words. Thus, individual needs and 

level of thinking will dictate how a message is interpreted.
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 3. Social environment. Communication problems sometimes arise because 

people have been conditioned by their prevailing social environment to 

interpret certain things in unique ways. Vocabulary, idioms, organizational 

status, social stereotypes, and economic situation are among the social fac-

tors that can thwart effective communication.

 4. Cultural background. Cultural differences are among the most pervasive 

barriers to project communications, especially in today’s multinational 

organizations. Language and cultural idiosyncrasies often determine how 

communication is approached and interpreted.

 5. Semantic and syntactic factors. Semantic and syntactic barriers to com-

munications usually occur in written documents. Semantic factors are those 

that relate to the intrinsic knowledge of the subject of the communication. 

Syntactic factors are those that relate to the form in which the communica-

tion is presented. The problems created by these factors become acute in 

situations where response, feedback, or reaction to the communication can-

not be observed.

 6. Organizational structure. Frequently, the organization structure in which 

a project is conducted has a direct influence on the flow of information 

and, consequently, on the effectiveness of communication. Organization 

hierarchy may determine how different personnel levels perceive a given 

communication.

 7. Communication media. The method of transmitting a message may also 

affect the value ascribed to the message and consequently how it is inter-

preted or used. The common barriers to project communications are as 

follows:

• Inattentiveness

• Lack of organization

• Outstanding grudges

• Preconceived notions

• Ambiguous presentation

• Emotions and sentiments

• Lack of communication feedback

• Sloppy and unprofessional presentation

• Lack of confidence in the communicator

• Lack of confidence by the communicator

• Low credibility of communicator

• Unnecessary technical jargon

• Too many people involved

• Untimely communication

• Arrogance or imposition

• Lack of focus

Some suggestions on improving the effectiveness of communication are presented 

next. The recommendations may be implemented as appropriate for any of the forms 
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of communications listed earlier. The recommendations are for both the communica-

tor and the audience.

 1. Never assume that the integrity of the information sent will be preserved 

as the information passes through several communication channels. 

Information is generally filtered, condensed, or expanded by the receivers 

before relaying it to the next destination. When preparing a communication 

that needs to pass through several organization structures, one safeguard is 

to compose the original information in a concise form to minimize the need 

for recomposition of the project structure.

 2. Give the audience a central role in the discussion. A leading role can help 

make a person feel a part of the project effort and responsible for the proj-

ects’ success. He or she can then have a more constructive view of project 

communication.

 3. Do homework and think through the intended accomplishment of the com-

munication. This helps eliminate trivial and inconsequential communica-

tion efforts.

 4. Carefully plan the organization of the ideas embodied in the communica-

tion. Use indexing or points of reference whenever possible. Grouping ideas 

into related chunks of information can be particularly effective. Present the 

short messages first. Short messages help create focus, maintain interest, 

and prepare the mind for the longer messages to follow.

 5. Highlight why the communication is of interest and how it is intended to 

be used. Full attention should be given to the content of the message with 

regard to the prevailing project situation.

 6. Elicit the support of those around you by integrating their ideas into the 

communication. The more people feel they have contributed to the issue, the 

more expeditious they are in soliciting the cooperation of others. The effect 

of the multiplicative rule can quickly garner support for the communication 

purpose.

 7. Be responsive to the feelings of others. It takes two to communicate. 

Anticipate and appreciate the reactions of members of the audience. 

Recognize their operational circumstances and present your message in a 

form they can relate to.

 8. Accept constructive criticism. Nobody is infallible. Use criticism as a 

springboard to higher communication performance.

 9. Exhibit interest in the issue in order to arouse the interest of your audi-

ence. Avoid delivering your messages as a matter of a routine organizational 

requirement.

 10. Obtain and furnish feedback promptly. Clarify vague points with examples.

 11. Communicate at the appropriate time, at the right place, to the right people.

 12. Reinforce words with positive action. Never promise what cannot be deliv-

ered. Value your credibility.

 13. Maintain eye contact in oral communication and read the facial expressions 

of your audience to obtain real-time feedback.



44 Data Analytics

 14. Concentrate on listening as much as speaking. Evaluate both the implicit 

and explicit meanings of statements.

 15. Document communication transactions for future references.

 16. Avoid asking questions that can be answered yes or no. Use relevant ques-

tions to focus the attention of the audience. Use questions that make people 

reflect upon their words, such as “How do you think this will work?” com-

pared to “Do you this will work?”

 17. Avoid patronizing the audience. Respect their judgment and knowledge.

 18. Speak and write in a controlled tempo. Avoid emotionally charged voice 

inflections.

 19. Create an atmosphere for formal and informal exchange of ideas.

 20. Summarize the objectives of the communication and how they will be 

achieved.

A communication responsibility matrix shows the linking of sources of communica-

tion and targets of communication. Cells within the matrix indicate the subject of the 

desired communication. There should be at least one filled cell in each row and each 

column of the matrix. This assures that each individual of a department has at least 

one communication source or target associated with him or her. With a communica-

tion responsibility matrix, a clear understanding of what needs to be communicated 

to whom can be developed. Communication in a project environment can take any of 

several forms. The specific needs of a project may dictate the most appropriate mode. 

Three popular computer communication modes are discussed next in the context of 

communicating data and information for project management.

Simplex communication. This is a unidirectional communication arrange-

ment in which one project entity initiates communication to another entity 

or individual within the project environment. The entity addressed in the 

communication does not have mechanism or capability for responding to 

the communication. An extreme example of this is a one-way, top-down 

communication from top management to the project personnel. In this case, 

the personnel have no communication access or input to top management. A 

budget-related example is a case where top management allocates budget to 

a project without requesting and reviewing the actual needs of the project. 

Simplex communication is common in authoritarian organizations.

Half-duplex communication. This is a bidirectional communication arrange-

ment whereby one project entity can communicate with another entity and 

receive a response within a certain time lag. Both entities can communicate 

with each other but not at the same time. An example of half-duplex com-

munication is a project organization that permits communication with top 

management without a direct meeting. Each communicator must wait for 

a response from the target of the communication. A request and allocation 

without a budget meeting is another example of half-duplex data communi-

cation in project management.

Full-duplex communication. This involves a communication arrange-

ment that permits a dialogue between the communicating entities. Both 
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individuals and entities can communicate with each other at the same time 

or face-to-face. As long as there is no clash of words, this appears to be the 

most receptive communication mode. It allows participative project plan-

ning, in which each project participant has an opportunity to contribute to 

the planning process.

Each member of a project team needs to recognize the nature of the prevailing com-

munication mode in the project. Management must evaluate the prevailing communi-

cation structure and attempt to modify it, if necessary, to enhance project functions. 

An evaluation of who is to communicate with whom about what may help improve 

the project data/information communication process. A communication matrix may 

include notations about the desired modes of communication between individuals 

and groups in the project environment.

COOPERATION

The cooperation of the project personnel must be explicitly elicited. Merely voicing 

consent for a project is not enough assurance of full cooperation. The participants 

and beneficiaries of the project must be convinced of the merits of the project. Some 

of the factors that influence cooperation in a project environment include personnel 

requirements, resource requirements, budget limitations, past experiences, conflict-

ing priorities, and lack of uniform organizational support. A structured approach to 

seeking cooperation should clarify the following:

• Cooperative efforts required

• Precedents for future projects

• Implication of lack of cooperation

• Criticality of cooperation to project success

• Organizational impact of cooperation

• Time frame involved in the project

• Rewards of good cooperation

Cooperation is a basic virtue of human interaction. More projects fail due to a lack 

of cooperation and commitment than any other project factors. To secure and retain 

the cooperation of project participants, you must elicit a positive first reaction to the 

project. The most positive aspects of a project should be the first items of project 

communication. For project management, there are different types of cooperation 

that should be understood.

Functional cooperation. This is the type of cooperation induced by the nature 

of the functional relationship between two groups. The two groups may 

be required to perform related functions that can only be accomplished 

through mutual cooperation.

Social cooperation. This is the type of cooperation effected by the social rela-

tionship between two groups. The prevailing social relationship motivates 

cooperation that may be useful in getting project work done.



46 Data Analytics

Legal cooperation. This is the type of cooperation that is imposed through 

some authoritative requirement. In this case, the participants may have no 

choice other than to cooperate.

Administrative cooperation. This is the type of cooperation brought on by 

administrative requirements that make it imperative that two groups work 

together on a common goal.

Associative cooperation. This type of cooperation may also be referred to as 

collegiality. The level of cooperation is determined by the association that 

exists between two groups.

Proximity cooperation. Cooperation due to the fact that two groups are geo-

graphically close is referred to as proximity cooperation. Being close makes 

it imperative that the two groups work together.

Dependency cooperation. This is the type of cooperation caused by the fact 

that one group depends on another group for some important aspect. Such 

dependency is usually of a mutual two-way nature. One group depends on 

the other for one thing while the latter group depends on the former for 

some other thing.

Imposed cooperation. In this type of cooperation, external agents must be 

employed to induced cooperation between two groups. This is applicable 

for cases where the two groups have no natural reason to cooperate. This is 

where the approaches presented earlier for seeking cooperation can became 

very useful.

Lateral cooperation. This cooperation involves cooperation with peers and 

immediate associates. It is often easy to achieve because existing lateral rela-

tionships create an environment that is conducive for project cooperation.

Vertical cooperation. Vertical or hierarchical cooperation refers to coopera-

tion that is implied by the hierarchical structure of the project. For example, 

subordinates are expected to cooperate with their vertical superiors.

Whichever type of cooperation is available in a project environment; the coopera-

tive forces should be channeled toward achieving project goals. Documentation of 

the prevailing level of cooperation is useful for winning further support for a project. 

Clarification of project priorities will facilitate personnel cooperation. Relative priori-

ties of multiple projects should be specified so that a priority to all groups within the 

organization. Some guidelines for securing cooperation for most projects are as follows:

• Establish achievable goals for the project.

• Clearly outline the individual commitments required.

• Integrate project priorities with existing priorities.

• Eliminate the fear of job loss due to industrialization.

• Anticipate and eliminate potential sources of conflict.

• Use an open-door policy to address project grievances.

• Remove skepticism by documenting the merits of the project.

Commitment. Cooperation must be supported with commitment. To cooperate is to 

support the ideas of a project. To commit is to willingly and actively participate in 



47Empirical Model Building

project efforts again and again through the thick and thin of the project. Provision of 

resources is one way that management can express commitment to a project. Success 

can be assured if personal commitment is coupled with the triple C model.

COORDINATION

After the communication and cooperation functions have successfully been initiated, 

the efforts of the project personnel must be coordinated. Coordination facilitates 

harmonious organization of project efforts. The construction of a responsibility chart 

can be very helpful at this stage. A responsibility chart is a matrix consisting of 

columns of individual or functional departments and rows of required actions. Cells 

within the matrix are filled with relationship codes that indicate who is responsible 

for what. The matrix helps avoid neglecting crucial communication requirements 

and obligations. It can help resolve questions such as the following:

• Who is to do what?

• How long will it take?

• Who is to inform whom of what?

• Whose approval is needed for what?

• Who is responsible for which results?

• What personnel interfaces are required?

• What support is needed from whom and when?

CONFLICT RESOLUTION IN DATA ANALYTICS

Conflicts can and do develop in any work environment. Conflicts, whether intended 

or inadvertent, prevents an organization from getting the most out of the work force. 

When implemented as an integrated process, the triple C model can help avoid con-

flicts in a project. When conflicts do develop, it can help in resolving the conflicts. 

The key to conflict resolution is open and direct communication, mutual cooperation, 

and sustainable coordination. Several sources of conflicts can exist in projects. Some 

of these are discussed below.

Schedule conflict. Conflicts can develop because of improper timing or 

sequencing of project tasks. This is particularly common in large multiple 

projects. Procrastination can lead to having too much to do at once, thereby 

creating a clash of project functions and discord among project team mem-

bers. Inaccurate estimates of time requirements may lead to infeasible activ-

ity schedules. Project coordination can help avoid schedule conflicts.

Cost conflict. Project cost may not be generally acceptable to the clients of a 

project. This will lead to project conflict. Even if the initial cost of the project 

is acceptable, a lack of cost control during implementation can lead to con-

flicts. Poor budget allocation approaches and the lack of a financial feasibil-

ity study will cause cost conflicts later on in a project. Communication and 

coordination can help prevent most of the adverse effects of cost conflicts.
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Performance conflict. If clear performance requirements are not established, 

performance conflicts will develop. Lack of clearly defined performance 

standards can lead each person to evaluate his or her own performance 

based on personal value judgments. In order to uniformly evaluate qual-

ity of work and monitor project progress, performance standards should be 

established by using the triple C approach.

Management conflict. There must be a two-way alliance between manage-

ment and the project team. The views of management should be understood 

by the team. The views of the team should be appreciated by management. 

If this does not happen, management conflicts will develop. A lack of a 

two-way interaction can lead to strikes and industrial actions, which can 

be detrimental to project objectives. The triple C approach can help create 

a conducive dialogue environment between management and the project 

team.

Technical conflict. If the technical basis of a project is not sound, techni-

cal conflict will develop. New industrial projects are particularly prone to 

technical conflicts because of their significant dependence on technology. 

Lack of a comprehensive technical feasibility study will lead to technical 

conflicts. Performance requirements and systems specifications can be inte-

grated through the triple C approach to avoid technical conflicts.

Priority conflict. Priority conflicts can develop if project objectives are not 

defined properly and applied uniformly across a project. Lack of a direct 

project definition can lead each project member to define his or her own 

goals which may be in conflict with the intended goal of a project. Lack of 

consistency of the project mission is another potential source of conflicts in 

priorities. Over-assignment of responsibilities with no guidelines for relative 

significance levels can also lead to priority conflicts. Communication can 

help defuse priority conflict.

Resource conflict. Resource allocation problems are a major source of conflict 

in project management. Competition for resources, including personnel, 

tools, hardware, and software, can lead to disruptive clashes among project 

members. The triple C approach can help secure resource cooperation.

Power conflict. Project politics lead to a power play which can adversely affect 

the progress of a project. Project authority and project power should be 

clearly delineated. Project authority is the control that a person has by virtue 

of his or her functional post. Project power relates to the clout and influence, 

which a person can exercise due to connections within the administrative 

structure. People with popular personalities can often wield a lot of project 

power in spite of low or nonexistent project authority. The triple C model 

can facilitate a positive marriage of project authority and power to the ben-

efit of project goals. This will help define clear leadership for a project.

Personality conflict. Personality conflict is a common problem in projects 

involving a large group of people. The larger the project, the larger the size 

of the management team needed to keep things running. Unfortunately, the 

larger management team creates an opportunity for personality conflicts. 
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Communication and cooperation can help defuse personality conflicts. In 

summary, conflict resolution through triple C can be achieved by observing 

the following guidelines:

 1. Confront the conflict and identify the underlying causes.

 2. Be cooperative and receptive to negotiation as a mechanism for resolv-

ing conflicts.

 3. Distinguish between proactive, inactive, and reactive behaviors in a 

conflict situation.

 4. Use communication to defuse internal strife and competition.

 5. Recognize that short-term compromise can lead to long-term gains.

 6. Use coordination to work toward a unified goal.

 7. Use communication and cooperation to turn a competitor into a 

collaborator.

It is the little and often neglected aspects of a project that lead to project failures. 

Several factors may constrain the project implementation. All the relevant factors can 

be evaluated under the triple C model right from the project initiation stage.
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3 Data Visualization 
Methods

Data viewed is data appreciated. 

INTRODUCTION TO DATA VISUALIZATION

Statistical data management is essential for measurement with respect to analyzing 

and interpreting measurement outputs. In this chapter, a project control scenario is 

used to illustrate data management for measurement of project performance. The 

data presentation techniques presented in this chapter are translatable to other data 

analytics platforms. The present age of computer software, hardware, and tools offers 

a vast array of techniques for data visualization, beyond what is presented in this 

chapter. Readers are encouraged to refer to the latest commercial and open-source 

software for data visualization. More important, the prevalence of cloud-based sub-

scription software products can assist with on-demand data visualization needs. 

Those online tools should be leveraged at the time of need. The chapter presents only 

basic and standard methods to spark and guide the interest and awareness of readers.

CASE EXAMPLE OF “COVIDVISUALIZER” WEBSITE

For challenges of interest, such as the COVID-19 pandemic, data visualization can 

generate an immediate impact of understanding and appreciation, and, consequently, 

the determination of the lines of action needed. Tracking the fast worldwide spread 

of coronavirus helped to heighten the necessity and utility of data visualization. In 

the wake of COVID-19, several online data visualization tools evolved quickly to 

inform and educate the public about the disease’s spread. One of the earliest such 

tools was the www.covidvisualizer.com website, which was developed by Navid 
Mamoon and Gabriel Rasskin, two undergraduate students at Carnegie Mellon 
University in 2020. The goal of the project is to provide a simple interactive way 

to visualize the impact of COVID-19. The developers want people to be able to see 

the effort as something that brings people all together in the collective worldwide 

fight against COVID-19. The website has a colorful and visually pleasing (almost 

trance-inducing) rotation of the Earth. Clicking on a country as it rotates by bringing 

up the country’s up-to-the-minute current statistics for COVID-19. The information 

displayed includes the following:

• Country name

• Country flag

• Total cases

http://www.covidvisualizer.com
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• Active cases

• Deceased

• Recovered cases

• Line chart (trend line) over time for active, deaths, and recovered

In response to the developers’ solicitation of questions, suggestions, or feedback, I 

had the pleasure of contacting them to offer the suggestion of adding a search tool 

to the website. The original website design only has access to each country’s infor-

mation only when it is clicked during the rotational cycle of geography without the 

benefit of having written names of the countries. This means that a user has to know 

which country is which on the world map in order to click on it. Unfortunately, not 

all users can identify specific countries on the world map. Further, some countries 

are so tiny that clicking on them on a rotating globe is practically impossible. The 

idea of a search tool is to improve the user-friendliness of the website by providing a 

way to search for a specific country of interest. The developers were excited about the 

feedback and implemented a by-name search tool. The confirmation of below (date 

March 28, 2020) is the response:

Thank you for requesting the search feature on our website, covidvisualizer.com. We 

apologize for the delay, (it can take a while to develop a feature like this) but there is 

now a search function running on the site! You can search by country name or ISO code 

by simply clicking the new little search icon.

Unfortunately, within 24 hours, the search tool was removed, for which I reengaged 

with the developers. The response of March 29, 2020, is echoed below:

We unfortunately disabled it, it caused some issues with our server and we'll have to 

develop it further.

Apparently, adding a search tool caused the website computer server to crash. The 

developers responded to the suggestion and they developed the visualization tool 

further. In a subsequent version of the website, the developers included two stable 

and sustainable search tools, through which a user can search by country name or by 

scrolling through the alphabetical listing of all countries. The website has enjoyed 

a consistent worldwide usage since it was introduced in early March 2020. I am 

delighted and proud that, from a user perspective, I was able to provide mentoring 

and technical feedback to the website developers. The lesson and moral of this center 

around the fact that we are all in the fight against COVID-19 together and teamwork 

is essential for success. In addition, user assessment and feedback are essential for 

product advancement regardless of whether the product is a commercial product or 

an open-source tool available free online. Thus, making a contribution to the utility 

of this very useful website is a proud accomplishment that bears out the theme of this 

chapter and the entire book.

DYNAMISM AND VOLATILITY OF DATA

The data to be visually presented can be dynamic, volatile, and elusive. The more 

we can know about the characteristics of the data, the better we can design, evaluate, 

and implement the technical protocol to handle the data. Transient data is defined 

http://covidvisualizer.com
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as a volatile set of data that is used for one-time decision-making and is not then 

needed again. An example may be the number of operators that show up at a job site 

on a given day. Unless there is some correlation between the day-to-day attendance 

records of operators, this piece of information will have relevance only for that given 

day. The project manager can make his decision for that day on the basis of that day’s 

attendance record. Transient data need not be stored in a permanent database unless 

it may be needed for future analysis or uses (e.g., forecasting, incentive programs, 

performance review).

Recurring data refers to data that is encountered frequently enough to necessitate 

storage on a permanent basis. An example is a file containing contract due dates. This 

file will need to be kept at least through the project life cycle. Recurring data may be 

further categorized into static data and dynamic data. A recurring data that is static 

will retain its original parameters and values each time it is retrieved and used. A 

recurring data that is dynamic has the potential for taking on different parameters 

and values each time it is retrieved and used. Storage and retrieval considerations for 

project control should address the following questions:

 1. What is the origin of the data?

 2. How long will the data be maintained?

 3. Who needs access to the data?

 4. What will the data be used for?

 5. How often will the data be needed?

 6. Is the data for look-up purposes only (i.e., no printouts)?

 7. Is the data for reporting purposes (i.e., generate reports)?

 8. In what format is the data needed?

 9. How fast will the data need to be retrieved?

 10. What security measures are needed for the data?

DATA DETERMINATION AND COLLECTION

It is essential to determine what data to collect for project control purposes. Data col-

lection and analysis are the basic components of generating information for project 

control. The requirements for data collection are discussed next.

CHOOSING THE DATA

This involves selecting data on the basis of their relevance and the level of likelihood 

that they will be needed for future decisions and whether or not they contribute to 

making the decision better. The intended users of the data should also be identified.

COLLECTING THE DATA

This identifies a suitable method of collecting the data as well as the source from 

which the data will be collected. The collection method will depend on the particular 

operation being addressed. The common methods include manual tabulation, direct 

keyboard entry, optical character reader, magnetic coding, electronic scanner, and, 
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more recently, voice command. An input control may be used to confirm the accu-

racy of collected data. Examples of items to control when collecting data are the 

following:

RELEVANCE CHECK

This checks if the data is relevant to the prevailing problem. For example, data col-

lected on personnel productivity may not be relevant for a decision involving market-

ing strategies.

LIMIT CHECK

This checks to ensure that the data is within known or acceptable limits. For exam-

ple, an employee overtime claim amounting to over 80 hours per week for several 

weeks in a row is an indication of a record well beyond ordinary limits.

CRITICAL VALUE

This identifies a boundary point for data values. Values below or above a critical 

value fall in different data categories. For example, the lower specification limit for a 

given characteristic of a product is a critical value that determines whether or not the 

product meets quality requirements.

CODING THE DATA

This refers to the technique used in representing data in a form useful for generating 

information. This should be done in a compact and yet meaningful format. The per-

formance of information systems can be greatly improved if effective data formats 

and coding are designed into the system right from the beginning.

PROCESSING THE DATA

Data processing is the manipulation of data to generate useful information. Different 

types of information may be generated from a given data set depending on how it is 

processed. The processing method should consider how the information will be used, 

who will be using it, and what caliber of system response time is desired. If possible, 

processing controls should be used.

CONTROL TOTAL

It checks the completeness of the processing by comparing accumulated results to a 

known total. An example of this is the comparison of machine throughput to a stan-

dard production level or the comparison of cumulative project budget depletion to a 

cost accounting standard.
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CONSISTENCY CHECK

It checks if the processing is producing the same results for similar data. For exam-

ple, an electronic inspection device that suddenly shows a measurement that is ten 

times higher than the norm warrants an investigation of both the input and the pro-

cessing mechanisms.

SCALES OF MEASUREMENT

For numeric scales, specify units of measurement, increments, the zero point on the 

measurement scale, and the range of values.

USING THE INFORMATION

Using information involves people. Computers can collect data, manipulate data, 

and generate information, but the ultimate decision rests with people, and decision-

making starts when information becomes available. Intuition, experience, training, 

interest, and ethics are just a few of the factors that determine how people use infor-

mation. The same piece of information that is positively used to further the progress 

of a project in one instance may also be used negatively in another instance. To 

assure that data and information are used appropriately, computer-based security 

measures can be built into the information system. Project data may be obtained 

from several sources. Some potential sources are as follows:

• Formal reports

• Interviews and surveys

• Regular project meetings

• Personnel time cards or work schedules

The timing of data is also very important for project control purposes. The contents, 

level of detail, and frequency of data can affect the control process. An important 

aspect of project management is the determination of the data required to generate 

the information needed for project control. The function of keeping track of the vast 

quantity of rapidly changing and interrelated data about project attributes can be 

very complicated. The major steps involved in data analysis for project control are 

as follows:

• Data collection

• Data analysis and presentation

• Decision-making

• Implementation of action

Data is processed to generate information. Information is analyzed by the deci-

sion maker to make the required decisions. Good decisions are based on timely and 
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relevant information, which in turn is based on reliable data. Data analysis for project 

control may involve the following functions:

• Organizing and printing computer-generated information in a form usable 

by managers

• Integrating different hardware and software systems to communicate in the 

same project environment

• Incorporating new technologies such as expert systems into data analysis

• Using graphics and other presentation techniques to convey project 

information

Proper data management will prevent misuse, misinterpretation, or mishandling. 

Data is needed at every stage in the life cycle of a project from the problem identifica-

tion stage through the project phase-out stage. The various items for which data may 

be needed are project specifications, feasibility study, resource availability, staff size, 

schedule, project status, performance data, and phase-out plan. The documentation 

of data requirements should cover the following:

• Data summary. A data summary is a general summary of the information 

and decision for which the data is required as well as the form in which 

the data should be prepared. The summary indicates the impact of the data 

requirements on the organizational goals.

• Data processing environment. The processing environment identifies the 

project for which the data is required, the user personnel, and the computer 

system to be used in processing the data. It refers to the project request or 

authorization and relationship to other projects and specifies the expected 

data communication needs and mode of transmission.

• Data policies and procedures. Data handling policies and procedures 

describe policies governing data handling, storage, and modification and 

the specific procedures for implementing changes to the data. Additionally, 

they provide instructions for data collection and organization.

• Static data. A static data description describes that portion of the data that 

is used mainly for reference purposes and it is rarely updated.

• Dynamic data. A dynamic data description describes that portion of the 

data that is frequently updated based on the prevailing circumstances in the 

organization.

• Data frequency. The frequency of data update specifies the expected fre-

quency of data change for the dynamic portion of the data, for example, 

quarterly. This data change frequency should be described in relation to the 

frequency of processing.

• Data constraints. Data constraints refer to the limitations on the data 

requirements. Constraints may be procedural (e.g., based on corporate pol-

icy), technical (e.g., based on computer limitations), or imposed (e.g., based 

on project goals).

• Data compatibility. Data compatibility analysis involves ensuring that data 

collected for project control needs will be compatible with future needs.
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• Data contingency. A data contingency plan concerns data security mea-

sures in case of accidental or deliberate damage or sabotage affecting hard-

ware, software, or personnel.

DATA EXPLOITATION

Data availability should be exploited and leverage for pertinent decision-making. 

Data exploitation refers to the various mathematical and graphical operations that 

can be performed on data to elicit the inherent information contained in the data. 

The manner in which project data is analyzed and presented can affect how the 

information is perceived by the decision maker. The examples presented in this sec-

tion illustrate how basic data analysis techniques can be used to convey important 

information for project control.

In many cases, data is represented as the answer to direct questions such as the 

following: When is the project deadline? Who are the people assigned to the first 

task? How many resource units are available? Are enough funds available for the 

project? What are the quarterly expenditures on the project for the past two years? 

Is personnel productivity low, average, or high? Who is the person in charge of the 

project? Answers to these types of questions constitute data of different forms or 

expressed on different scales. The resulting data may be qualitative or quantitative. 

Different techniques are available for analyzing the different types of data. This sec-

tion discusses some of the basic techniques for data analysis. The data presented in 

Table 3.1 is used to illustrate the data analysis techniques.

Raw Data
Raw data consists of ordinary observations recorded for a decision variable or fac-

tor. Examples of factors for which data may be collected for decision-making are 

revenue, cost, personnel productivity, task duration, project completion time, product 

quality, and resource availability. Raw data should be organized into a format suit-

able for visual review and computational analysis. The data in Table 3.1 represents 

the quarterly revenues from projects A, B, C, and D. For example, the data for quarter 

1 indicates that project C yielded the highest revenue of $4,500,000, while project B 

yielded the lowest revenue of $1,200,000. Figure 3.1 presents the raw data of project 

revenue as a line graph. The same information is presented as a multiple bar chart 

in Figure 3.2. 

TABLE 3.1
Quarterly Revenue from Four Projects (in $1,000s)

Project Quarter 1 Quarter 2 Quarter 3 Quarter 4 Row Total

A 3,000 3,200 3,400 2,800 12,400

B 1,200 1,900 2,500 2,400 8,000

C 4,500 3,400 4,600 4,200 16,700

D 2,000 2,500 3,200 2,600 10,300

Total 10,700 11,000 13,700 12,000 47,400
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Total Revenue
A total or sum is a measure that indicates the overall effect of a particular variable. 

If X1, X2, X3, …, Xn represent a set of n observations (e.g., revenues), then the total is 

computed as follows:

n

 T X=∑ i   

i=1

FIGURE 3.1 Line graph of quarterly project revenues.

FIGURE 3.2 Multiple bar chart of quarterly project revenues.
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For the data in Table 3.1, the total revenue for each project is shown in the last column. 

The totals indicate that project C brought in the largest total revenue over the four 

quarters under consideration, while project B produced the lowest total revenue. The 

last row of the table shows the total revenue for each quarter. The totals reveal that the 

largest revenue occurred in the third quarter. The first quarter brought in the lowest 

total revenue. The grand total revenue for the four projects over the four quarters is 

shown as $47,400,000 in the last cell in the table. The total revenues for the four proj-

ects over the four quarters are shown in a pie chart in Figure 3.3. The percentage of the 

overall revenue contributed by each project is also shown on the pie chart.

Average Revenue
Average is one of the most used measures in data analysis. Given n observations (e.g., 

revenues), X1, X2, X3, …, Xn, the average of the observations is computed as

 
∑ n

Xi

X = i=1

n
T

 = x

n

where Tx is the sum of n revenues. For our sample data, the average quarterly rev-

enues for the four projects are

( )3,000 + + +3,200 3,400 2,800 ( )$1,000
XA =

 4

= $3,100,000

FIGURE 3.3 Pie chart of total revenue per project.
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( )1,200 + +1,900 2,500 + 2,400 ( )$1,000
XB =

4

= $2,000,000

( )4,500 + +3,400 4,600 + 4,200 ( )$1,000
XC =

4

= $4,175,000

( )2,000 + +2,500 3,200 + 2,600 ( )$1,000
XD =

4

= 2,575,000

Similarly, the expected average revenues per project for the four quarters are

( )3,000 + +1,200 4,500 + 2,000 ( )$1,000
X1 =

4

= $2,675,000

( )3,200 + +1,900 3,400 + 2,500 ( )$1,000
X2 =

4

= $2,750,000

( )3,400 + +2,500 4,600 + 3,200 ( )$1,000
X3 =

4

= $3,425,000

( )2,800 + +2,400 4,200 + 2,600 ( )$1,000
X4 =

4

= $3,000,000

The above values are shown in a bar chart in Figure 3.4. The average revenue from 

any of the four projects in any given quarter is calculated as the sum of all the obser-

vations divided by the number of observations. That is,

N

X =
∑ ∑M

Xij
i= =1 1j

K

where

N is the number of projects.

M is the number of quarters.

K is the total number of observations (K = NM).
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The overall average per project per quarter is

$47,400,000
X =

 16

= $2,962,500

As a cross-check, the sum of the quarterly averages should be equal to the sum of the 

project revenue averages, which is equal to the grand total divided by 4.

(2,675+ +2,750 3,425+ 3,000) (( )$1,000 = 3,100 + +2,000 4,175+ 2,575)($1,000)
= $11,800,000

 = $47,400,000/4

The cross-check procedure above works because we have a balanced table of obser-

vations. That is, we have four projects and four quarters. If there were only three 

projects, for example, the sum of the quarterly averages would not be equal to the 

sum of the project averages.

Median Revenue
The median is the value that falls in the middle of a group of observations arranged 

in order of magnitude. One-half of the observations are above the median, and the 

other half are below the median. The method of determining the median depends 

on whether or not the observations are organized into a frequency distribution. For 

unorganized data, it is necessary to arrange the data in an increasing or decreasing 

order before finding the median. Given K observations (e.g., revenues), X1, X2, X3, …, 
XK, arranged in increasing or decreasing order, the median is identified as the value 

in position (K + 1)/2 in the data arrangement if K is an odd number. If K is an even 

FIGURE 3.4 Average revenue per project for each quarter.
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number, then the average of the two middle values is considered to be the median. If 

the sample data are arranged in increasing order, we would get the following:

1,200, 1,900, 2,000, 2,400, 2,500, 2,500, 2,600, 2,800, 3,000, 3,200, 3,200, 3,400, 

3,400, 4,200, 4,500, and 4,600

The median is then calculated as (2,800+3,000)/2 = 2,900. Half of the recorded 

revenues are expected to be above $2,900,000, while half are expected to be below 

that amount. Figure 3.5 presents a bar chart of the revenue data arranged in increas-

ing order. The median is anywhere between the eighth and ninth values in the ordered 

data.

Quartiles and Percentiles
The median is a position measure because its value is based on its position in a set 

of observations. Other measures of position are quartiles and percentiles. There are 

three quartiles that divide a set of data into four equal categories. The first quartile, 

denoted Q1, is the value below which one-fourth of all the observations in the data set 

fall. The second quartile, denoted Q2, is the value below which two-fourths or one-

half of all the observations in the data set fall. The third quartile, denoted Q3, is the 

value below which three-fourths of the observations fall. The second quartile is iden-

tical to the median. It is technically incorrect to talk of the fourth quartile because 

it will imply that there is a point within the data set below which all the data points 

fall: a contradiction! A data point cannot lie within the range of the observations and 

at the same time exceed all the observations, including itself.

The concept of percentiles is similar to the concept of quartiles except that refer-

ence is made to percentage points. There are 99 percentiles that divide a set of obser-

vations into 100 equal parts. The X percentile is the value below which X percent 

FIGURE 3.5 Ordered bar chart.
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of the data fall. The 99 percentile refers to the point below which 99 percent of the 

observations fall. The three quartiles discussed previously are regarded as the 25th, 

50th, and 75th percentiles. It would be technically incorrect to talk of the 100 per-

centile. For the purpose of doing performance rating, such as on an examination or a 

product quality assessment, the higher the percentile of an individual or product, the 

better. In many cases, recorded data are classified into categories that are not indexed 

to numerical measures. In such cases, other measures of central tendency or position 

will be needed. An example of such a measure is the mode.

The Mode
The mode is defined as the value that has the highest frequency in a set of observa-

tions. When the recorded observations can be classified only into categories, the 

mode can be particularly helpful in describing the data. Given a set of K observa-

tions (e.g., revenues), X1, X2, X3, …, XK, the mode is identified as that value that 

occurs more than any other value in the set. Sometimes, the mode is not unique 

in a set of observations. For example, in Table 3.2, $2,500, $3,200, and $3,400 all 

have the same number of occurrences. Each of them is a mode of the set of revenue 

observations. If there is a unique mode in a set of observations, then the data is 

said to be unimodal. The mode is very useful in expressing the central tendency 

for observations with qualitative characteristics such as color, marital status, or 

state of origin.

Range of Revenue
The range is determined by the two extreme values in a set of observations. Given 

K observations (e.g., revenues), X1, X2, X3, …, XK, the range of the observations is 

simply the difference between the lowest and the highest observations. This measure 

is useful when the analyst wants to know the extent of extreme variations in a param-

eter. The range of the revenues in our sample data is ($4,600,000 − $1,200,000) =  

$3,400,000. Because of its dependence on only two values, the range tends to increase 

as the sample size increases. Furthermore, it does not provide a measurement of the 

variability of the observations relative to the center of the distribution. This is why 

the standard deviation is normally used as a more reliable measure of dispersion than 

the range.

The variability of a distribution is generally expressed in terms of the deviation 

of each observed value from the sample average. If the deviations are small, the 

set of data is said to have low variability. The deviations provide information about 

the degree of dispersion in a set of observations. A general formula to evaluate the 

variability of data cannot be based on the deviations. This is because some of the 

deviations are negative, whereas some are positive and the sum of all the deviations 

is equal to 0. One possible solution to this is to compute the average deviation.

Average Deviation
The average deviation is the average of the absolute values of the deviations from the 

sample average. Given K observations (e.g., revenues), X1, X2, X3, …, XK, the average 

deviation of the data is computed as
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K

X X−
 D =

∑ i
i=1

K

Table 3.2 shows how the average deviation is computed for our sample data. One aspect 

of the average deviation measure is that the procedure ignores the sign associated with 

each deviation. Despite this disadvantage, its simplicity and ease of computation make 

it useful. In addition, the knowledge of the average deviation helps in understanding 

the standard deviation, which is the most important measure of dispersion available.

Sample Variance
Sample variance is the average of the squared deviations computed from a set of 

observations. If the variance of a set of observations is large, the data is said to have 

a large variability. For example, a large variability in the levels of productivity of a 

project team may indicate a lack of consistency or improper methods in the project 

functions. Given K observations (e.g., revenues), X1, X2, X3, …, XK, the sample vari-

ance of the data is computed as

K

 =
∑ −

2 =1
( )2
X Xi

s i

K −1

TABLE 3.2
Average Deviation, Standard Deviation, and Variance

Observation 
Number (i)

Recorded 
Observation Xi

Deviation from 
Average Xi − X

Absolute 
Value Xi − X

Square of 

Deviation (Xi −
2

X )
1 3,000 37.5 37.5 1,406.25

2 1,200 −1,762.5 1762.5 3,106,406.30

3 4,500 1,537.5 1537.5 2,363,906.30

4 2,000 −962.5 962.5 926,406.25

5 3,200 237.5 237.5 56,406.25

6 1,900 −1,062.5 1062.5 1,128,906.30

7 3,400 437.5 437.5 191,406.25

8 2,500 −462.5 462.5 213,906.25

9 3,400 437.5 437.5 191,406.25

10 2,500 −462.5 462.5 213,906.25

11 4,600 1,637.5 1637.5 2,681,406.30

12 3,200 237.5 237.5 56,406.25

13 2,800 −162.5 162.5 26,406.25

14 2,400 −562.5 562.5 316,406.25

15 4,200 1,237.5 1237.5 1,531,406.30

16 2,600 −362.5 362.5 131,406.25

Total 47,400.0 0.0 11,600.0 13,137,500.25

Average 2,962.5 0.0 725.0 821,093.77

Square root — — — 906.14
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The variance can also be computed by the following alternate formulas:

∑ ∑⎛ ⎛ 1 ⎞ ⎞ ⎡
2K K

⎜ X 2 ⎤
i − ⎜ ⎟ X

K ⎠ ⎣ i
i= =1⎝ ⎝ ⎠ ⎟ ⎢ i 1 ⎦⎥

 s2 =
K −1

K

 
∑ X K2 2

i −
2

( )X
s = i=1

K −1

Using the first formula, the sample variance of the data in Table 3.2 is calculated as

13,137,500.25
s2 =

 16 −1

= 875,833.33

The average calculated in the last column of Table 3.1 is obtained by dividing the 

total for that column by 16 instead of 16 − 1 = 15. That average is not the correct value 

of the sample variance. However, as the number of observations gets very large, the 

average as computed in the table will become a close estimate for the correct sample 

variance. Analysts make a distinction between the two values by referring to the 

number calculated in the table as the population variance when K is very large and 

referring to the number calculated by the formulas above as the sample variance 

particularly when K is small. For our example, the population variance is given by

σ 2 =
∑K

X Xi −
i=1

( )2

K

13,137,500.25
 =

16

= 821,093.77

while the sample variance, as shown previously for the same data set, is given by

∑K 2
X Xi −

σ 2 = i=1
( )

K −1

13,137,500.25
  = ( )16 −1

= 875,833.33

Standard Deviation
The sample standard deviation of a set of observations is the positive square root 

of the sample variance. The use of variance as a measure of variability has some 
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drawbacks. For example, the knowledge of the variance is helpful only when two 

or more sets of observations are compared. Because of the squaring operation, the 

variance is expressed in square units rather than the original units of the raw data. To 

get a reliable feel for the variability in the data, it is necessary to restore the original 

units by performing the square root operation on the variance. This is why standard 

deviation is a widely recognized measure of variability. Given K observations (e.g., 

revenues), X1, X2, X3, …, XK, the sample standard deviation of the data is computed as

K

 
∑ ( )−

2
X Xi

s = i=1

K −1

As in the case of the sample variance, the sample standard deviation can also be 

computed by the following alternate formulas:

K ⎛ 1 ⎞ ⎡ ⎤
2K

X 2
i − ⎜ ⎟ X⎝ K ⎠ ⎣⎢ i

= = ⎦⎥ s =
∑ ∑i 1 i 1

K −1

K

 
∑ 2 − ( )2

X Ki X
s = i=1

K −1

Using the first formula, the sample standard deviation of the data is calculated as

13,137,500.25
s = ( )16 −1

 = 875,833.33

= 935.8597

We can say that the variability in the expected revenue per project per quarter is 

$935,859.70. The population sample standard deviation is given by the following:

σ
∑K 2

1
( )X Xi −

= i=

K

13,137,500.25 =
16

= 821,093.77

= 906.1423

The sample standard deviation is given by the following expression:
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K

X X−
=

∑ =1
( )2

i

s i

K −1

13,137,500.25
 =

(16 −1)

= 935.8597

The results of data analysis can be reviewed directly to determine where and when 

project control actions may be needed. The results can also be used to generate con-

trol charts, as illustrated in Chapter 1 for my high school course grades.
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4 Basic Mathematical 
Calculations for 
Data Analytics

Where there is no calculation, there is no compliance.

INTRODUCTION TO CALCULATION FOR DATA ANALYTICS

Data analytics is, inherently, dependent on mathematical calculations. For ease of 

reference and use, a comprehensive collection of basic mathematical calculations 

is presented in this chapter. Illustrative and/or clarifying computational examples 

are provided for some of the equations and formulas. Readers are encouraged to go 

through the collection to find equations that may be applicable and useful for the data 

set of interest. Many times, seeing a presentation of a new equation may spark an idea 

of what type of data modeling technique is relevant for a data set.

QUADRATIC EQUATION

 ax b2 + +x c = 0

Solution:

− ±b b2 − 4ac
 x =

2a

If b a2 − <4 0c , the roots are complex.

If b a2 − >4 0c , the roots are real.

If b a2 − =4 0c , the roots are real and repeated.

Dividing both sides of Eq. (1.1) by “a” (a ≠ 0),

b c
 x2 + +x = 0

a a

c
Note if a = 0, the solution to ax b2 + +x c = 0 is x = − .

b
Rewrite Eq. (1.1) as 

⎛ b ⎞ 2 b2 c
 ⎜ x + ⎟ − +

2
= 0⎝ 2 4a ⎠ a a
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⎛ b ⎞ 2 b2 c b a2 − 4 c
 ⎜ x + ⎟ = −

2 4a a2
=⎝ ⎠ a 4a2

b b a2 − 4 c b a2 − 4 c
 x + = ± = ±

2a 4a2 2a

b b a2 − 4 c
 x = − ±

2a 4a2

− ±b b2 − 4ac
 x =

2a

OVERALL MEAN

nxn x + +n x ...
 x 2 n3 3 + + n x= 1 1 2 x k k = ∑

n n1 2+ + n3 +...+ nk ∑n

CHEBYSHEV’S THEOREM

 1 1− /k 2

PERMUTATIONS

A permutation of m elements from a set of n elements is any arrangement, without 

repetition, of m elements. The total number of all the possible permutations of n dis-

tinct objects taken m times is

( ) n!
 P n,m = ( )n m≥

( )n m− !

Example:
Find the number of ways a president, vice president, secretary, and a treasurer can 

be chosen from a committee of eight members.

Solution:

( ) n! 8! 8.7.6.5.4.3.2.1
 P n,m = = =P( )8,4 = = 1,680

( )n m− ! ( )8 4− ! 4.3.2.1

There are 1,680 ways of choosing the four officials from the committee of eight members.

COMBINATIONS

The number of combinations of n distinct elements taken is given by

( ) n!
 C n,m = (n m≥ )

m n! !( )− m
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Example:
How many poker hands of five cards can be dealt from a standard deck of 52 cards?

Solution:
Note: The order in which the five cards are dealt is not important.

( ) n! ( ) 52! 52!
C n,m = = =C 52,5 =

m n! !( )− m 5!( )52 − 5 ! 5!47!
 

52.51.50.49.48= = 2,598,963
5.4.3.2.1

FAILURE

n s−
 q p= −1 =

n

PROBABILITY DISTRIBUTION

An example of probability distribution is shown in the histogram plot in Figure 4.1. 

A probability density function can be inferred from the probability distribution as 

shown by the example in Figure 4.2. 

PROBABILITY

x

 P X( ≤ =x) F ( )x = ∫ f ( )x dx
−∞

DISTRIBUTION FUNCTION

Figure 4.3 shows the general profile of the cumulative probability function of the 

probability density function in Figure 4.2.

FIGURE 4.1 Probability distribution plot.
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EXPECTED VALUE

 μ =∑( )xf ( )x

VARIANCE

∞
2

 σ 2 = −∑( )x fμ σ( )x or 2 = ∫ ( )x − μ 2
f ( )x dx

−∞

Figure 4.4 illustrates the distribution spread conveyed by the variance measure.

FIGURE 4.2 Example of probability density function.

FIGURE 4.3 Cumulative probability plot.
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BINOMIAL DISTRIBUTION

−
 f x( ) = −ncx px ( )1 p

n x

POISSON DISTRIBUTION

( )np
x
e−np

 f x( ) =
x!

MEAN OF A BINOMIAL DISTRIBUTION

 μ = np

VARIANCE

 σ 2 = npq

where q = −1 p and is the probability of obtaining x failures in the n trials.

NORMAL DISTRIBUTION

( )2− −x μ

1
 f x( ) = e 2σ 2

σ 2π

CUMULATIVE DISTRIBUTION FUNCTION

x − −( )μ 2x
1

 F x( ) = ≤P(X x) = e 2σ 2
dx

σ 2π
−∞
∫

POPULATION MEAN

 μ μx =

FIGURE 4.4 Graphical illustration of variance.
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STANDARD ERROR OF THE MEAN

σ
 σ x =

n

T-DISTRIBUTION

⎛ s ⎞ ⎛ s ⎞
 x − tα α/ 2 ⎜ ⎟ ≤ ≤μ x t+

⎝ ⎠ / 2 ⎜ ⎟n ⎝ n ⎠

where

x  = sample mean

μ = population mean

s = sample standard deviation

CHI-SQUARED DISTRIBUTION

The chi-squared distribution is shown graphically in Figure 4.5.

( )n s−1 12 ( )n s− 2

 
2α α/2

≤ ≤σ 2

χ χ 21− /2

DEFINITION OF SET AND NOTATION

A set is a collection of objects called elements. In mathematics, we write a set by 

putting its elements between the curly braces { }.

Set A containing numbers 3, 4, and 5 is written as

 A = { }3,4,5

FIGURE 4.5 Chi-squared distribution.
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 a. Empty set

A set with no elements is called an empty set and it denoted by

 { } = Φ

 b. Subset

Sometimes every element of one set also belongs to another set:

 A B= ={ }3,4,5 and {1,2,3,4,5,6,7,}

Set A is a subset of set B because every elements of set A is also an element 

of set B, and it is written as

 A B⊆

 c. Set equality

Sets A and B are equal if and only if they have exactly the same elements, 

and the equality is written as

 A B=

 d. Set union

The union of set A and set B is the set of all elements that belong to either 

A or B or both, and it is written as

 A b∪ = { }x x ∈A or x ∈B or both

SET TERMS AND SYMBOLS

{ }: set braces

∈: is an element of

∉: is not an element of

⊆: is a subset of

⊄: is not a subset of

A ': complement of set A

 : set intersection

u: set union

VENN DIAGRAMS

Venn diagrams are used to visually illustrate relationships between sets. Examples 

are shown in Figure 4.6.

These Venn diagrams illustrate the following statements:

 a.  Set A is a subset of set B (A B⊂ ).
 b.  Set B′ is the complement of B.

 c.  Two sets A and B with their intersection A∩ B.

 d.  Two sets A and B with their union A∪ B.
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OPERATIONS ON SETS

If A, B, and C are arbitrary subsets of universal set ∪, then the following rules govern 

the operations on sets:

 1. Commutative law for union

 A B∪ = B ∪ A

 2. Commutative law for intersection

 A B∩ = B ∩ A

 3. Associative law for union

 A B∪ ∪( )C = ( )A∪ B ∪C

 4. Associative law for intersection

 A B∩ ∩( )C = ( )A∩ B ∩C

 5. Distributive law for union

 A B∪ ∩( )C = ( )A∪ B ∩(A∪C )
 6. Distributive law for intersection

 A B∩ ∩( )C = ( )A∩ B ∪(A∩C )

DE MORGAN’S LAWS

 (A B∪ )′ = A′∩B′ (4.1)

 (A B∩ )′ = A′∪B′ (4.2)

The complement of the union of two sets is equal to the intersection of their comple-

ments (Eq. 4.1). The complement of the intersection of two sets is equal to the union 

of their complements (Eq. 4.2).

Counting the Elements Is a Set

The number of the elements in a finite set is determined by simply counting the 

elements in the set.

FIGURE 4.6 Venn diagram examples.
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If A and B are disjoint sets, then

 n( )A B∪ = n(A) + n( )B

In general, A and B need not to be disjoint, so

 n( )A∪ =B n A( ) + n( )B − n A( )∩ B

where

n = number of the elements in a set

PROBABILITY TERMINOLOGY

A number of specialized terms are used in the study of probability.

Experiment. An activity or occurrence with an observable result

Outcome. The result of the experiment

Sample point. An outcome of an experiment

Event. A set of outcomes (a subset of the sample space) to which a probability 

is assigned

BASIC PROBABILITY PRINCIPLES

Consider a random sampling process in which all the outcomes solely depend on chance, 

that is, each outcome is equally likely to happen. If S is a uniform sample space and the 

collection of desired outcomes is E, the probability of the desired outcomes is

( ) n E( )
 P E =

n S( )

where

n( )E  = number of favorable outcomes in E
n( )S  = number of possible outcomes in S

Since E is a subset of S,

 0 ,≤ ≤n E( ) n( )S

the probability of the desired outcome is

 0 1≤ ≤P E( )

RANDOM VARIABLE

A random variable is a rule that assigns a number to each outcome of a chance 

experiment.
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Example:

 1. A coin is tossed six times. The random variable X is the number of tails that 

are noted. X can only take the values 1, 2, …, 6, so X is a discrete random 

variable.

 2. A light bulb is burned until it burns out. The random variable Y is its  lifetime 

in hours. Y can take any positive real value, so Y is a continuous random 

variable.

MEAN VALUE x̂ OR EXPECTED VALUE μμ
The mean value or expected value of a random variable indicates its average or 

 central value. It is a useful summary value of the variable’s distribution.

 1. If random variable X is a discrete mean value,

n

 x̂ = +x p1 1 x2 p2 +...+ xn np =∑x p1 1

i=1

where

pi = probability densities

 2. If X is a continuous random variable with probability density function f(x), 

then the expected value of X is

+∞

 μ = =E X( ) xf (x)dx
−∞
∫

where

f ( )x =  probability densities

SERIES EXPANSIONS

 a. Expansions of common functions

1 1 1
 e = +1 + + +...

1! 2! 3!

x x2 3

 ex = +1 x + + +...
2! 3!

1 l
( )2 3

 ax x aln x aln
= + x an + +

( )
+...

2! 3!

− 2x 2 x x4 6 x8

 e = −1 x + − + −...
2! 3! 4!
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 ( ) 1
ln ( ) 1

x x= −1 − x −1
2 3+ ( )x −1 ,−... 0 < x ≤ 2

2 3

x −1 1 ⎛ x −1 1⎞ 2 3⎛ x −1⎞ 1
ln x = + ⎜ ⎟ + ⎜ ⎟ + >..., x

x 2 ⎝ x ⎠ 3 ⎝ x ⎠ 2

⎡ x −1 1 ⎛ x −1⎞ 3 5
1 ⎛ x −1⎞ ⎤

ln x = 2 ⎢ + ⎜ ⎟ + ⎜ ⎟ +...⎥ , 0x >
x +1 ⎝ x +1⎠ 5 ⎝ x +1⎠⎣ 3 ⎦

x x2 3 4

ln( ) x
1+ =x x − + − +..., 1x ≤

2 3 4

⎡ x 1 ⎛ x ⎞ 3 5
1 ⎛ x ⎞ ⎤

ln( )a x+ = lna + 2 ⎢ + ⎜ ⎟ + ⎜ ⎟ +...⎥ ,⎝⎣2a x+ 3 2a x+ ⎠ 5 2⎝ a x+ ⎠ ⎦

a > −0, a x< < +∞

⎛ 1+ x ⎞ ⎛ x x x3 5 7 ⎞
ln⎜ ⎟ = 2 x + + + +... , 1x2 <⎝ 1− x ⎠ ⎜ ⎟⎝ 3 5 7 ⎠

⎛ 1+ x ⎞ ⎡ 1 1 ⎛ 1 1⎞ 3 5⎛ 1 1⎞ ⎛ ⎞ 7 ⎤
ln⎜ ⎟ = +2 ⎢ ⎜ ⎟ + ⎜ ⎟ + ⎜ ⎟ +...⎥ , 1x2 >⎝ 1− x x⎠ 3 ⎝ x ⎠ 5 ⎝ ⎠⎣ x ⎝ x ⎠ ⎦

⎛ 1+ x ⎞ ⎡ 1 1 1 ⎤
ln⎜ ⎟ = 2 ⎢ + + +...⎥ , 0x >⎝ x x⎠ ⎣2 1+ 3 2( )x x+1

3 5
5 2( )+1 ⎦

x x x3 5 7

sin x x= − + − +...
3! 5! 7!

x x2 4 6x
cos 1x = − + − +...

2! 4! 6!

x x3 52 17x7 62x9 π2

tan x x= + + + + +..., x2 <
3 15 315 2835 4

1 x x3 31 3 1 5 x7
− 3

sin x x= + + ⋅ ⋅ + ⋅ ⋅ ⋅ +..., 1x2 <
6 2 4 5 2 4 6 7

1
tan−1 31 1

x x= − + −x x5 x7 +..., 1x2 <
3 5 7

1 1
tan−1 π 1

x = − + − + 2

2 x x3 3 5
..., 1x >

5x
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x x x3 5 7

 sinh x x= + + + +...
3! 5! 7!

x x2 4 6x
 cosh x = +1 + + +...

2! 4! 6!

x x3 52 17x7

 tanh x x= − + − +...
3 15 315

3 5
−1 1 x x1 3⋅ 1 3⋅ ⋅5 x7

 sinh x x= − ⋅ + ⋅ − ⋅ +..., 1x2 <
2 3 2 4⋅ 5 2 4 6⋅ ⋅ 7

−1 1 1 1 3⋅ 1 1 3⋅ ⋅5 1
 sinh x x= +ln2 ⋅ − ⋅ −

2 2x x2 4
⋅ +

2 4⋅ 4 2 4 6⋅ ⋅ 6x6
..., 1x >

− 1
 1 1 1 3⋅ 1 1 3⋅ ⋅5 1

cosh x x= −ln2 ⋅
2 2 4

− ⋅ − ⋅ −...
2x x2 4⋅ 4 2 4 6⋅ ⋅ 6x6

 1 x x x3 5 7

tanh− x x= + + + +..., 1x2 <
3 5 7

 b. Binomial theorem

n n( )−1 n n( )− −(n )
 ( 1 2

a x+ =)n an n+ na − −1 2x + a xn 2 +
2! 3!

 an−3 3x x+ <..., 2 a2

 c. Taylor series expansion

A function f (x) may be expanded about x = a if the function is continu-

ous, and its derivatives exist and are finite at x = a.

( )− ( )− 2 3( )−
 f x( ) ( ) x a= +f a f ′( )a + f a′′( ) x a

f a( ) x a+ ′′′ +...
1! 2! 3!

n
n−1 ( )( ) x a− −1

 + f a + R( )n −1 !
n

 d. Maclaurin series expansion

The Maclaurin series expansion is a special case of the Taylor series 

expansion for a = 0.

 f x( ) x x2 3x 1

= +f ( ) ( ) xn−

0 0f ′( ) + f ′′( )0 + f ′′′( )0 + +... f n−1 ( )0 + R
1! 2! 3! ( )n −1 !

n
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 e. Arithmetic progression

The sum to n terms of the arithmetic progression

 S a= + +( )a d + +(a 2 1d ) +...+ + −[ ]a (n )d

is (in terms of the last number l)

n
 S = +( )a l

2

where

 l a= + ( )n −1 d

 f. Geometric progression

The sum of the geometric progression to n terms is

 − ⎛ 1− rn ⎞
S = +a ar + ar2 1+...+ arn = a⎜ ⎟⎝ 1− r ⎠

 g. Sterling’s formula for factorials

 n! 2≈ πn en n+ −1/2

MATHEMATICAL SIGNS AND SYMBOLS

± ( ) : plus or minus (minus or plus)

:: divided by, ratio sign

::: proportional sign

<: less than

 : not less than

>: greater than

 : not greater than

≅: approximately equals, congruent

 : similar to

≡: equivalent to

≠: not equal to

 : approaches, approximately equal to

∝: varies as

∞: infinity

∴: therefore

: square root
3 : cube root
n : nth root

∠: angle

⊥: perpendicular to
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 : parallel to

x : numerical value of x
log or log10: common logarithm or Briggsian logarithm

loge or ln: natural logarithm or hyperbolic logarithm or Napierian logarithm

e: base (2.718) of natural system of logarithms

a°: an angle “a” in degrees

a′: a prime, an angle “a” in minutes

a′′: a double prime, an angle “a” in seconds, a second

sin: sine

cos: cosine

tan: tangent

ctn or cot: cotangent 

sec: secant

csc: cosecant

vers: versed sine

covers: coversed sine

exsec: exsecant

sin−1: anti-sine or angle whose sine is

sinh: hyperbolic sine

cosh: hyperbolic cosine

tanh: hyperbolic tangent

sinh−1: anti-hyperbolic sine or angle whose hyperbolic sine is

f ( )x xor φ( ): function of x
Δx: increment of x

∑: summation of

dx: differential of x
dy d/ ox r y′: derivative of y with respect to x

d 2 2y d/ ox r y′′: second derivative of y with respect to x

d n ny d/ x : nth derivative of y with respect to x
∂ ∂y x/ : partial derivative of y with respect to x
∂ ∂n ny x/ : nth partial derivative of y with respect to x
∂n y

: nth partial derivative with respect to x and y
∂ ∂x y

∫ : integral of

∫
b

: integral between the limits a and b
a

y.: first derivative of y with respect to time

..y: second derivative of y with respect to time

Δ ∇or 2: the “Laplacian”

δ : sign of a variation

ξ: sign of integration around a closed path
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GREEK ALPHABET

ALGEBRA

LAWS OF ALGEBRAIC OPERATIONS

 a. Commutative law: a + = +b b a, ab b= a
 b. Associative law: a + +( )b c = (a + +b) c, a(bc) = (ab)c
 c. Distributive law: c( )a + =b ca + cb

SPECIAL PRODUCTS AND FACTORS

 ( )x y+ =2
x2 2+ 2xy + y

 ( )x y− =2
x2 2− 2xy + y

 ( )x y+ =3
x3 2+ 3 3x y + xy2 + y3

Name Letter Capital Pronunciation (as in) English

Alpha α Α al-fah (hat) a, A

Beta β Β bay-tah (ball) b, B

Gamma γ Γ gam-ah (gift) g, G

Delta δ Δ del-tah (den) d, D

Epsilon ε Ε ep-si-lon (met) e, E

Zeta ζ Ζ zay-tah (zoo) z, Z

Eta η Η ay-tay, ay-tah (they) e, E

Theta θ Θ thay-tah (thing) Th

Iota ι Ι eye-o-tah (kit) i, I

Kappa κ Κ cap-ah (kitchen) k, K

Lambda λ Λ lamb-dah (lamb) l, L

Mu μ Μ mew (mother) m, M

Nu ν Ν new (nice) n, N

Xi ξ Ξ zzEee, zee-eye (taxi) x, X

Omicron ο Ο om-ah-cron (pot) o, O

Pi π Π pie (pie) p, P

Rho ρ Ρ row (row) r, R

Sigma σ, ς Σ sig-ma (sigma) s, S

Tau τ Τ tawh (tau) t, T

Upsilon υ Υ oop-si-lon (put) U, U

Phi φ Φ figh, fie, fah-ee (phone) Ph

Chi χ Χ kigh (kah-i) Ch

Psi ψ Ψ sigh (sigh) Ps

Omega ω Ω o-may-gah (bone) O
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 ( )x y− =3
x3 2− 3 3x y + xy2 − y3

 ( )x y+ =4
x4 3+ 4 6x y + x2y2 + 4xy3 + y4

 ( )x y− =4
x4 3− 4 6x y + x2y2 − 4xy3 + y4

 ( )x y+ 5 = x5 + 5 1x4 y + + +0x3 2y 10x2 3y 5xy4 + y5

 ( )x y− 5 = x5 − 5 1x4 y + − +0x3 2y 10x2 3y 5xy4 − y5

 ( )x y+ =6
x6 5+ 6 1x y + 5x4 y2 + 20x3y3 +15x2y4 + 6xy5 + y6

 ( )x y− =6
x6 5− 6 1x y + 5x4 y2 − 20x3y3 +15x2y4 − 6xy5 + y6

The results above are special cases of the binomial formula.

 x2 2− =y x( )− y ( )x + y

 x3 3− =y x( )− y ( )x2 + xy + y2

 x3 3+ =y x( )+ y ( )x2 − xy + y2

 x4 4− =y x( )− y ( )x + y ( )x2 + y2

 x5 5− =y x( )− y ( )x4 + x3y + x2y2 + xy3 + y4

 x5 5+ =y x( )+ y ( )x4 − x3y + x2y2 − xy3 + y4

 x6 − y6 = ( )x y− ( )x y+ ( )x2 2+ +xy y ( )x2 2− +xy y

 x4 + +x2y2 y4 = ( )x2 2+ xy + y ( )x2 2− xy + y

 x4 + 4 2y4 = ( )x2 2+ +xy 2y ( )x2 2− +2xy 2y

Some generalization of the above are given by the following results where n is a posi-

tive integer:

 x y2 1n n+ +− =2 1 ( )x − y (x2n + x2 1n− y + x2n−2y2 +...+ y2n

π
 ( )⎛ 2 22π ⎞ ⎛ 4 ⎞= x y− −⎜ x 2 cxy os + y x⎟ ⎜ 2 − 2 cxy os + y2⎟⎝ 2 1n + ⎠ ⎝ 2 1n + ⎠

⎛
 ...⎜ x x2 22nπ ⎞− 2 cy os + y ⎟⎝ 2 1n + ⎠

)
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 x y2 1n n+ ++ =2 1 ( )x + y ( )x2n − x2 1n− y + x2n−2y2 −...+ y2n

( )⎛ 2  ⎞ ⎛ 4 ⎞
 = x y+ +⎜ x2 22 cxy os + y x⎟ ⎜ 2 2+ 2 cxy os + y ⎟⎝ 2 1n + ⎠ ⎝ 2 1n + ⎠

⎛ 2n ⎞
 ...⎜ x x2 2+ 2 cy os + y ⎟⎝ 2 1n + ⎠

 x2n n− =y x2 ( )− y ( )x + y ( )xn− −1 2+ xn y + xn−3y2 +... ...(xn−1 2− xn− y + xn−3y2 − )

( )( )⎛   ⎞ ⎛ 2 ⎞
 = x y− +x y ⎜ x2 2− 2 cxy os + y x⎟ ⎜ 2 − +2 cxy os y2⎟⎝ n ⎠ ⎝ n ⎠

⎛ n 1  
 ...⎜ x x2 2( )− ⎞− 2 cy os + y ⎟⎝ n ⎠

 x2 2n n ⎛ 2   ⎞ ⎛ 3 ⎞+ =y x⎜ + 2 cxy os + y x2⎟ ⎜ 2 + +2 cxy os y2⎟⎝ 2n ⎠ ⎝ 2n ⎠

⎛ ( )2 1n −  ⎞
 ...⎜ x x2 2+ 2 cy os + y ⎟⎝ 2n ⎠

POWERS AND ROOTS

( )a ax y× = a x y+ a0 = 1 i⎡ f a ≠ 0⎤⎣ ⎦ ( )abx x= a bx

ax

ay = ( )x y−a
1

a−x =
ax

⎛ a ⎞ x ax

⎜ ⎟ =⎝ b ⎠ bx

 

( )y
a ax = xy

1

a x = x a x ab = x a bx

x

a y = y
ax a x a

x =
b x b

x y a a= xy

PROPORTION

a c
If = ,

b d
 

a b− c d−=
b d

a b+ c d+=
b d

a b− c d−=
a b+ c d+

then

Sum of arithmetic progression to n terms1

 a + +( )a d + +(a 2 1d ) +...+ ( )a + −(n )d

1 n
 = na + −n( )n 1 d = (a l+ ),

2 2
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the last term in series = l a= + ( )n −1 d
Sum of geometric progression to n terms

( )n
2 1n a r1−

 sn = +a ar + ar +...+ ar − =
1− r

 lim 8n = −a r!( )1 (−1 < r < 1
n

)
→∞

ARITHMETIC MEAN OF N QUANTITIES A

a a1 2+ +...+ a
 Α = n

n

GEOMETRIC MEAN OF N QUANTITIES G

 G a= ( )a ... 1/n
1 2 an

 (a kk > =0, 1,2,...,n)

HARMONIC MEAN OF N QUANTITIES H

1 1 ⎛ 1 1 1 ⎞
 = +⎜ +...+ ⎟H n ⎝ a1 2a an ⎠

 (a kk > =0, 1,2,...,n)

GENERALIZED MEAN

⎛ 1/ tn ⎞
 M t( ) 1= ⎜ al

n∑ k ⎟
⎝ k=1 ⎠

 M t( ) = <0(t 0, some ak zero)
 lim M t( ) = =max. ( )a1 2,a ,...,an max. a

t→∞

 lim M t( ) = =min. ( )a1 2,a ,...,an min. a
t→−∞

 lim M t( ) = G
t→0

 M ( )1 = Α

 M H( )− =1
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SOLUTION OF QUADRATIC EQUATIONS

Given az b2 + +z c = 0

⎛ b ⎞ 1
1

 z1, 2 = − ⎜ ⎟ ± =q q2 , 4b2 − ac,⎝ 2a a⎠ 2

 z1 2+ =z b− / ,a z1z2 = c/a

If q > 0,  two real roots.

If q = 0, two equal roots.

If q < 0, pair of complex conjugate roots.

SOLUTION OF CUBIC EQUATIONS

Given z2 + +a z2
2 a1 0z + a = 0, let

1 1
 q a= − a2

3
1 2

9

1
 r a= −( ) 1

1 2a 3a0 − a3

6 27
2

If q r3 2+ > 0, one real root and a pair of complex conjugate roots.

If q r3 2+ = 0, all roots real and at least two are equal.

If q r3 2+ < 0, all roots real (irreducible case).

Let

1

⎡ 1 ⎤ 2

 s ⎢
3 2

1 = +r q( )+ r 2 ⎥
⎣ ⎦

1

⎡ 1 2

 s = −⎢r q( )3 2+ r 2
⎤

2 ⎥
⎣ ⎦

then

 z1 1= +( ) a
s s 2

2 −
3

1 a i 3
 z2 1= − ( )s s+ 2 s s

2 3
2 − + ( )

2
1 2−

1 a i 3
 z3 1= − ( )s s+ 2 s s

2 3
2 − − ( )

2
1 2−
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If z1 2, ,z z3 are the roots of the cubic equation,

 z1 2+ +z z3 = −a2

 z1 2z z+ +1z3 z2z3 = a1

 z1 2z z3 = a0

TRIGONOMETRIC SOLUTION OF THE CUBIC EQUATION

The form x3 + +ax b = 0 with ab ≠ 0 can always be solved by transforming it to the 

trigonometric identity

 4cos3θ θ− −3cos cos( )3θ ≡ 0

Let x = m cosθ , then

 x3 3+ +ax b = m cos3θ θ+ am cos + b = 4cos3θ − 3cosθ − cos( )3θ ≡ 0

Hence,

4 3 − cos( )3θ
 

m a3
= − =

m b

from which follows that

a b3
 m = −2 , cos( )3θ =

3 am

3b
Any solution θ1 which satisfies cos 3( )θ =  will also have the solutions

am

2  4
 θ1 1+ +and θ

3 3

The roots of the cubic x3 + +ax b = 0 are

a
 2 − cosθ

3
1

a ⎛ 2 ⎞
 2 − +cos ⎜θ1 ⎟

3 ⎝ 3 ⎠

a ⎛ 4 ⎞
 2 − +cos ⎜θ ⎟

3 ⎝ 1
3 ⎠
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SOLUTION OF QUADRATIC EQUATIONS

Given z4 + +a z3
3 a2z2 + a1 0z + a = 0, find the real root u1 of the cubic equation

 u3 − +a2u
2 ( )a1 3a − 4 4a0 u − ( )a2

1 + a a2
0 3 − a a0 2 = 0

and determine the four roots of the quartic as solutions of the two quadratic equations

⎡ 1 ⎤ 1

⎡⎢ a a⎛ 2 ⎞ u u⎛ ⎞ 22 ⎤ 2

 ν 2 + +3 3  ⎜ u a ⎥− 1 1

⎝ 1 2 ν + −⎟ ⎢ a 0⎢ 2 4 ⎠ ⎥ 2 2 ⎠ 0 ⎥ =⎝⎣ ⎦⎣⎢ ⎦⎥

If all roots of the cubic equation are real, use the value of u1 which gives real coef-

ficients in the quadratic equation and select signs so that if

 z4 + +a z3
3 a2z3 + a1 0z + a = ( )z2 + p1 1z + q (z2 + p z2 2+ q )

then

 p1 + =p2 a3, ,p1p2 + q1 + q a2 2= p1q2 + p2q1 = a1,q1q a2 0=

If z1 , ,z z2 3 4,z  are the roots,

 ∑z at t= − 3 1,∑z z j zk = −a

 ∑z zt j = =a2 , z1 z2 3 4z z a0

PARTIAL FRACTIONS

This section applies only to rational algebraic fractions with the numerator of lower 

degree than the denominator. Improper fractions can be reduced to proper fractions 

by long division.

Every fraction may be expressed as the sum of component fractions whose 

denominators are factors of the denominator of the original fraction.

Let N(x) = numerator, a polynomial of the form

 N ( )x = +n0 1n x + n2x2 +...+ n x1
1

NON-REPEATED LINEAR FACTORS

N x( ) A F x( )
 = +

( )x a− G (x) x a− G x( )

⎡ N x( ) ⎤
 A = ⎢

⎣G x( ) ⎥⎦x a=

F(x) is determined by methods discussed in the sections that follow.



90 Data Analytics

REPEATED LINEAR FACTORS

N x( ) A0 1A Am−1 F x( )
 m m= + m ...

( )x x x −1
+ + +

x G x G x( )

 N ( )x n= + n x + n x2
o n 3

1 2 + 3x +...

 F x( ) = +f f x f 2
0 1 + 2x +...

 G x( ) = +g0 1g x + g2x2 +...

n n A g
 A 0

0 = =, A 1 0− 1
1

g0 g0

n A2 0− −g A2 1g
 A 1

2 =
g0

GENERAL TERMS

k−1
n

 A = =0 1 ⎡
0 ,

g
k k⎢n A− tgk t k 1

0 0g ∑ ⎤
A − ⎥ >

⎣⎢ t=0 ⎥⎦

⎧ f n0 1= − A0g1

⎪
 m∗ ⎪= 1⎨ f n1 2= − A0g2

⎪
f n1 1= −⎩⎪ j t+ +A0 1g

⎧ f n0 2= − A0g2 − A1g⎪ 1

⎪
 m = 2⎨ f n1 3= − A0g3 − A1g2

⎪
⎪⎩ f n1 2= −j+ +[ ]A0g1 2 + +A1g1 1

⎧ f n0 3= − A0g3 − A1g2 − A⎪ 2g1

⎪
 m = 3⎨ f n1 3= − A0g4 − A1g3 − A2g2

⎪
⎪ f n1 3= −j j⎡⎩ + +⎣A0g 3 + A1gj+2 + A2 1gj+ ⎤⎦

m−1

 any m f: 1 1= −nm m+ +∑A1g j−1

i=0

N x( ) A0 1A A F x( )
 = + + +... m−1 +

( )x a− m mG (x) ( )x a− ( )x a− m−1 ( )x a− G x( )
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N y′ ( )
Change to form m = +( )  by substitution of x y a. Resolve into partial fractions 

y G′ y

in terms of y as described above. Then express in terms of x by substitution y x= − a.

REPEATED LINEAR FACTORS

Alternative method of determining coefficients:

N x( ) A0 1Ak A ( )+ + + + − F x
 = ... ... m +

( )x a− m mG (x) ( )x a− ( )x a− m k− x a− G x( )

1 ⎪⎧ ⎡ N x( ) ⎤⎪⎫
 Ak x= ⎨Dk

⎢! ⎣ ( ) ⎥⎬k ⎩⎪ G x ⎦⎭⎪x G−

where Dk
x  is the differentiating operator, and the derivative of zero order is defined as

 D u0
x = u

FACTORS OF HIGHER DEGREE

Factors of higher degree have the corresponding numerators indicated.

N x( ) a x + a F x( )
 ( )2

= 1 0

x h+ +1 0x h G ( )x x h2
+

+ +1 0x h G x( )

N x( ) a x1 0+ a b x +
 = 2 + 1 0b F x( )

( )
+

x h2 + +
2

1 0x h G ( )x ( )x h2 + + 2

1 0x h ( )x h+ +1 0x h G x( )

N x( ) a x2 + +a x a ( )
 ( )x h3

= 2 1 0 F x+ , etc.
+ +x2

2 h x + ( ) 3 2
1 0h G x x h+ +2x h1 0x + h G x( )

Problems of this type are determined first by solving for the coefficients due to lin-

ear factors as shown above, and then determining the remaining coefficients by the 

general methods given below.

GEOMETRY

Mensuration formulas are used for measuring angles and distances in geometry. 

Examples are presented below.

TRIANGLES

Let K = area, r = radius of the inscribed circle, and R = radius of circumscribed 

circle.
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RIGHT TRIANGLE

 A B+ = C = 90°

 c2 2= +a b2 ( )Pythagorean relations

 a = +( )c b ( )c b−

1
 K a= b

2

ab 1
 r = , R c=

a b+ + c 2

ab b2 2a
 h = =, ,m n =

c c c

EQUILATERAL TRIANGLE

 A B= = C = 60°

1
 K a= 2 3

4

1 1
 r a= =3, R a 3

6 3

1
 h a= 3

2

GENERAL TRIANGLE

1
Let s = +( )a b + c ,hc = length of altitude on side c,tc = length of bisector of angle 

2
C, and mc = length of median to side c.

 A B+ + C = 180°

c2 2= +a b2 − 2ab cos C (lawof cosines)
1 1

 K h= =cc ab sin C
2 2

c A2 sin sin B
 =

2sinC

abc
 = rs =

4R



93Basic Mathematical Calculations

 = s( )s − − −a s( )b s( c) ( )Heron’sformula

A B C absinC C
 r c= =sin sin sec = ( )s c− tan

2 2 2 2s 2

( )s a− − −( )s b (s c) K A B C
 = = = 4 sR in sin sin

s s 2 2 2

c abc abc
 R = = =

2sinC 4 s( )s − − −a s( )b s( c) 4K

2K
 h ac = =sin B bsin A =

c

2ab C ⎧ c2 ⎫
 tc = cos = −ab⎨1

a b+ 2 ( )a b+ 2 ⎬
⎩⎪ ⎭⎪

a b2 2 c2

 mc = + −
2 2 4

Menelaus’s Theorem
A necessary and sufficient condition for points D, E, F on the respective side lines 

BC, CA, AB of a triangle ABC to be collinear is that

 BD ⋅ ⋅CE AF = −DC ⋅ EA ⋅ FB

where all segments in the formula are directed segments.

Ceva’s Theorem
A necessary and sufficient condition for AD, BE, CF, where D, E, F are points on the 

respective side lines BC, CA, AB of a triangle ABC, to be concurrent is that

 BD ⋅ ⋅CE AF = +DC ⋅ EA ⋅ FB

where all segments in the formula are directed segments.

QUADRILATERALS

Let K = area, p and q are diagonals.

RECTANGLE

 A B= = C = D = 90°

 K a= =b, p a2 2+ b
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PARALLELOGRAM

 A C= =, B D, A B+ = 180°

 K = =bh absin A = absin B

 h a= =sin A asin B

 p a= +2 2b − 2 cab os A

 q = +a2 2b − 2 cab os B = a2 2+ b + 2 cab os A

RHOMBUS

p q2 2+ = 4a2

 
1

K p= q
2

TRAPEZOID

1
m = +( )a b

2
 

1
K a= +( )b h = mh

2

GENERAL QUADRILATERAL

1
Let s = +( )a b + c + d .

2

1
 K p= qsinθ

2

1
 = b d2 2+ − a2 − c2 tanθ

4
( )

1 2

 = 4 p q2 2 − +( )b2 d 2 − a2 − c2

4

(Bretschneider’s formula)

= ( ) A B+
 s a ( )s b (s c)(s d ) ⎛ ⎞− − − − − abcd cos2 ⎜ ⎟⎝ 2 ⎠

Theorem:
The diagonals of a quadrilateral with consecutive sides a, b, c, d are perpendicular 

if and only if a2 2+ =c b2 + d 2.
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REGULAR POLYGON OF N SIDES EACH OF LENGTH B

1 s π /
 Area = nb2 2π 1 co ( )n

cot = nb
4 n 4 sin( )π /n

Perimeter = nb
Circle of radius = r

Area = πr2

 
Perimeter = π2 r

REGULAR POLYGON OF N SIDES INSCRIBED IN A CIRCLE OF RADIUS R

1
 Area nr2 22 1π 360°= sin = nr sin

2 n 2 n

π 180°
 Perimeter = 2nr sin = 2nr sin

n n

REGULAR POLYGON OF N SIDES CIRCUMSCRIBING A CIRCLE OF RADIUS R

180
 Area = nr2 2π °

tan = nr tan
n n

π 180°
 Perimeter = 2nr tan = 2nr tan

n n

CYCLIC QUADRILATERAL

Let R = radius of the circumscribed circle.

 A C+ = B + D = 180°

( )ac + +bd ( )ad bc (ab + cd )
 K = ( )s − − −a s( )b s( c)(s − d ) =

4R

( )ac + +bd (ab cd )
 p =

ad + bc

( )ac + +bd ( )ad bc
 q =

ab + cd

1 ( )ac + +bd ( )ad bc (ab + cd )
 R =

2 ( )s a− −( )s b (s − −c)(s d )

2K
 sinθ =

ac + bd
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PROLEMY’S THEOREM

A convex quadrilateral with consecutive sides a, b, c, d and diagonals p, q is cyclic if 

and only if ac b+ =d pq.

CYCLIC-INSCRIPTABLE QUADRILATERAL

Let r = radius of the inscribed circle, R = radius of the circumscribed circle, and 
m = distance between the centers of the inscribed and circumscribed circles.

 A C+ = B + D = 180°

 a + =c b + d

 K = abcd

1 1 1
 

( )R m− 2 2+ =
( )R m+ r 2

abcd
 r =

s

1 ( )ac + +bd ( )ad bc (ab + cd )
 R =

2 abcd

Sector of circle of radius r

1
 Area = r2θ θ⎡⎣ in radians⎤⎦2

 Arc length s r= θ

Radius of circle inscribed in a triangle of sides a, b, c

8( )8 8 8− − −a b( )( c)
 r =

8

where

1
 s = +( )a b + c = semiperimeter

2

Radius of circle circumscribing a triangle of sides a, b, c

abc
 R =

4 8( )8 8 8− − −a b( )( c)
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where

1
 s = +( )a b + c = semiperimeter

2

Segment of circle of radius r
1

Area of shaded part = r2 ( )θ θ− sin
2

Ellipse of semi-major axis a and semi-minor axis b

 Area = πab

 / 2

Perimeter = −4a k∫ 1 2 2sin θ θd
0

 
1= +2 2 2 [approximately]
2
( )a b

where k a= −2 2b / .a

Segment of a parabola

2
Area = ab

8

 
1 b2 2⎛ 4 1a b+ + 6a2 ⎞

Arc length ABC = +b2 216a + 1n ⎜ ⎟
2 8a ⎝ b ⎠

PLANAR AREAS BY APPROXIMATION

Divide the planar area K into n strips by equidistant parallel chords of lengths 

y y0 1 2, , y ,..., yn (where y0 and/or yn may be zero), and let h denote the common dis-

tance between the chords.

Then, approximately:

Trapezoidal Rule

⎛ 1 1 ⎞
 K h= +⎜ y0 1 2y + y +...+ y − ⎟⎝ 1 + y

2
n n

2 ⎠

Durand’s Rule

⎛ 4 11 11 4 ⎞
 K h= +⎜ y y + y + y⎝ 10

0 1
10

2 3 +...+ yn n− −2 + y y
10

1 +
10

n ⎟⎠

Simpson’s Rule (n even)

1
 K h= +(y0 14 2y + y 4y3 2y ... 2yn n y

3
2 + + 4 + + − −2 + 4y 1 + n )



98 Data Analytics

Weddle’s Rule (n = 6)

3
 K = +h (y y0 15 6+ y2 + y y y5 y

10
3 + 4 + 5 + 6

SOLIDS BOUNDED BY PLANES

In the following, S = lateral surface, T = total surface, V = volume.

Cube
Let a = length of each edge.

 T a= =6 2, diagonal of face a 2

 V = =a a3, diagonal of cube 3

Rectangular Parallelepiped (or Box)
Let a, b, c, be the lengths of its edges.

 T = +2 ,( )ab bc + ca V = abc

 Diagonal = +a b2 2 + c2

PRISM

S = (perimeter of the base) × (height) + 2(area of the base): total surface area of 

a right prism

V = (area of the base) × (height)

Truncated triangular prism
1

V = (area of right section) ×  (sum of the three lateral edges)
3

PYRAMID

1
S of regular pyramid =  (perimeter of base) × (slant height)

2
1

V =  (area of base) × (altitude)
3

Frustum of pyramid

Let B1 = area of lower base, B2 = area of upper base, and h = altitude.
1

S of regular figure =  (sum of perimeters of base) × (slant height)
2

1
 V = +h B( )B + B

3
1 2 1B2

)
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PRISMATOID

A prismatoid is a polyhedron having for bases two polygons in parallel planes and for 

lateral faces triangles or trapezoids with one side lying in one base, and the opposite 

vertex or side lying in the other base, of the polyhedron. Let B1 = area of lower base, 

M = area of midsection, B2 = area of upper base, and h = altitude.

1
 V = +h B( )1 24M + B ( )theprismoidal formula

6

Note: Since cubes, rectangular parallelepipeds, prisms, pyramids, and frustums of 

pyramids are all examples of prismatoids, the formula for the volume of a prismatoid 

subsumes most of the above volume formulae.

REGULAR POLYHEDRA

Let

v = number of vertices

e = number of edges

f = number of faces

α = each dihedral angle

a = length of each edge

r = radius of the inscribed sphere

R = radius of the circumscribed sphere

A = area of each face

T = total area

V = volume

 v e− + f = 2

 T f= A

1 1
 V = =rfA rT

3 3

Name Nature of Surface T V

Tetrahedron Four equilateral triangles  1.73205 a2 0.11785 a3

Hexahedron (cube) Six squares  6.00000 a2 1.00000 a3

Octahedron Eight equilateral triangles  3.46410 a2 0.47140 a3

Dodecahedron Twelve regular pentagons 20.64573 a2 7.66312 a3

Icosahedron Twenty equilateral triangles  8.66025 a2 2.18169 a2 
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SPHERE OF RADIUS R
3

Volume = πr3

4

Surface area = π4 r2

RIGHT CIRCULAR CYLINDER OF RADIUS R AND HEIGHT H

Volume = πr h2

Lateral surface area = 2πrh

CIRCULAR CYLINDER OF RADIUS R AND SLANT HEIGHT ll

Volume = πr h2 2= πr l sin θ
Lateral surface area = pl

CYLINDER OF CROSS-SECTIONAL AREA A AND SLANT HEIGHT ll

Volume = =Ah Al sin θ
Lateral surface area = pl

Name v E f αα a

Tetrahedron

Hexahedron

 4

 8

 6

12

 4

 6

70° 32′
°90

1.633R

1.155R

0.333R

0.577R

Octahedron

Dodecahedron

Icosahedron

 6

20

12

12

30

30

 8

12

20

°190 28′
116° 34′

° ′138 11

1.414R

0.714R

1.051R

0.577R

0.795R

0.795R

r

Name A r R V

Tetrahedron
1

a2 3
4

1
a 6

12

1
a 6

4

1
a3 2

12

Hexahedron (cube) a2
1

a
2

1
a 3

2
a3

Octahedron

Dodecahedron

Icosahedron

1
a2 3

4

1
a2 25 +10 5

4

1
a2 3

4

1
a 6

6

1
a 250 +110 5

20

1
a 42 +18 5

12

1
a 2

2

1
a

4
( 15 + 3 )

1
a 10 + 2 5

4

1
a3 2

3

1
a3 (15 + 7 5

4
)

5
a3 (3 + 5

12
)
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RIGHT CIRCULAR CONE OF RADIUS R AND HEIGHT H
1

Volume = πr h2

3

Lateral surface area = π +r r2 2h = πrl

SPHERICAL CAP OF RADIUS R AND HEIGHT H
1

Volume (shaded in figure) = π −h r2 ( )3 h
3

Surface area = 2πrh

FRUSTUM OF RIGHT CIRCULAR CONE OF RADII A, B AND HEIGHT H
1

Volume = π +h( )a2 2ab + b
3

Lateral surface area = π +( )a b h2 + ( )b a− 2

= π +( )a b l

ZONE AND SEGMENT OF TWO BASES

 S R= π2 h = πDh

1
 V = πh a3 32 2b h2

6
( )+ +

LUNE

S R= 2 ,3θ θ  in radians

SPHERICAL SECTOR

2 1
 V = πR h2 2= πD h

3 6

SPHERICAL TRIANGLE AND POLYGON

Let A, B, C be the angles, in radians, of the triangle and θ  be the sum of angles, in 

radians, of a spherical polygon on n sides.

 S A= +( )B + C − π R2

 S n= −[ ]θ ( )− 2 π R2
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SPHEROIDS

Ellipsoid
Let a, b, c be the lengths of the semiaxes.

4
 V = πabc

3

Oblate Spheroid
An oblate spheroid is formed by the rotation of an ellipse about its minor axis. Let 

a and b be the major and minor semiaxes, respectively, and ∈ the eccentricity, of the 

revolving ellipse.

2 b2 1+ ∈
 S a= π2 l+ π og

∈ e
1− ∈

4
 V = πa b2

3

Prolate Spheroid
A prolate spheroid is formed by the rotation of an ellipse about its major axis. Let a 

and b be the major and minor semiaxes, respectively, and ∈ the eccentricity, of the 

revolving ellipse.

 2 1ab
S b= π2 2+ π sin− ∈

∈

3
 V = πab2

4

Circular Torus
A circular torus is formed by the rotation of a circle about an axis in the plane of the 

circle and not cutting the circle. Let r be the radius of the revolving circle and R be 

the distance of its center from the axis of rotation.

 S R= π4 2 r

 V = π2 2 2Rr

FORMULAS FROM PLANE ANALYTIC GEOMETRY

DISTANCE D BETWEEN TWO POINTS

 P x1 1( ), y1 and P2 (x2 , y2 )

 d = −( )x x 2
2 1 + ( )y2 1− y

2
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SLOPE M OF LINE JOINING TWO POINTS

 P x1 1( ), y1 and P2 (x2 , y2 )
y y

 m = 2 1− = tan θ
x x2 1−

EQUATION OF LINE JOINING TWO POINTS

 P x1 1( ), y1 and P2 (x2 , y2 )
y y− y y

 
1 = 2 1− = −m yor y1 1= m( )x − x

x x− 1 x x2 1−

 y m= +x b

x y x y
where b y= −1 1mx = 2 1 − 1 2

 is the intercept on the y axis, that is, the y intercept
x x2 1−

EQUATION OF LINE IN TERMS OF X INTERCEPT A ≠≠ 0 AND Y INTERCEPT b ≠≠ 0

x y
 + = 1

a b

NORMAL FORM FOR EQUATION OF LINE

 x cos α α+ =y sin p

where

p = perpendicular distance from origin O to line

α = angle of inclination of perpendicular with positive x axis.

GENERAL EQUATION OF LINE

 Ax + +By C = 0

DISTANCE FROM POINT (x y1 1, ) TO LINE Ax B+ +y C = 0

Ax By C
 

1 1+ +
± +A B2 2

where the sign is chosen so that the distance is nonnegative.

ANGLE ψψ  BETWEEN TWO LINES HAVING SLOPES m m1 2and

m m
 tanψ = 2 1−

1+ m m1 2
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Lines are parallel or coincident if and only if m1 2= m .

Lines are perpendicular if and only if m2 1= −1/m .

AREA OF TRIANGLE WITH VERTICES

At (x y1 1, ,) (x2 , y2 ) (, x3, y3 )
x y1 1 1

1
 Area = ± x y

2
2 2 1

x y3 3 1

1
 = ± (x y + y x + − −y x

2
1 2 1 3 3 2 y2 3x y1x2 − x y1 3

where the sign is chosen so that the area is nonnegative.

If the area is zero, the points all lie on a line.

TRANSFORMATION OF COORDINATES INVOLVING PURE TRANSLATION

⎧x x= ′ + x0 ⎧x x′ = + x⎪ ⎪ 0

 ⎨ or ⎨
⎪y y= ′ +⎩ y0 ⎪ ′ = +⎩y y y0

where x, y are old coordinates relative to the xy system, (x y′ ′, ) are new coordinates 

relative to the x′ ′y  system, and (x y0 0 ) are the coordinates of the new origin O′ rela-

tive to the old xy coordinate system.

TRANSFORMATION OF COORDINATES INVOLVING PURE ROTATION

⎧x x= ′ cos α α− y′ sin ⎧x x′ = +cos α y sin α⎪ ⎪
 ⎨ or ⎨

⎪y x= ′ sin α α+ y′ cos ⎪y y′ = −⎩ ⎩ cos α αx sin

where the origins of the old ( )xy and new (x′ ′y ) coordinate systems are the same, but 

the x′ axis makes an angle α  with the positive x axis.

TRANSFORMATION OF COORDINATES INVOLVING TRANSLATION AND ROTATION

⎧x x= ′ cos α α− y′ sin + x⎪ 0

⎨
y x= ′⎩⎪ sin α α+ y′ cos + y0

 
⎧x x′ = −⎪ ( )x0 0cos sα α+ ( )y − y in

or ⎨
⎩⎪y y′ = −( )y0 0cos α α− ( )x − x sin

)
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where the new origin O′ ′of x y′ coordinate system has coordinates (x y0 0, ) relative 

to the old xy coordinate system and the x′ axis makes an angle α  with the positive 

x axis.

POLAR COORDINATES ( )r, θθ
A point P can be located by rectangular coordinates (x, y) or polar coordinates (r,θ ). 
The transformation between these coordinates is

⎧x r= cosθ ⎧⎪ r x= +2 2

⎪ y
 ⎨ or ⎨

⎪y r= sin θ⎩ ⎪θ =⎩ tan /−1 ( )y x

PLANE CURVES

2
 (x2 2+ =y ) ax2y

 r a= sin θ cos2 θ

CATENARY, HYPERBOLIC COSINE

a x
 y = +( )e ex e/ /−x e = acosh

2 a

CARDIOID

2
 (x2 2+ −y ax) (= a2 2x + y2 )
 r a= +( )cosθ 1

or

 r a= −( )cosθ 1

 [ ]P A′ = =AP a

CIRCLE

 x2 2+ =y a2

 r a=

CASSINIAN CURVES

 x2 2+ =y a2 x



106 Data Analytics

 r a= 2 cosθ

 x2 2+ =y ax + by

 r a= +cosθ bsinθ

COTANGENT CURVE

 y x= cot

CUBICAL PARABOLA

 y a= >x3, 0a

2 21
 r = >sec θ θtan , a 0

a

COSECANT CURVE

 y x= csc

COSINE CURVE

 y x= cos

ELLIPSE

 x2 2/ /a y+ =2 2b 1

⎧x a= cosφ⎪
 ⎨

⎩⎪y b= sinφ

GAMMA FUNCTION

n 1

 Γ =( )n x∫
∞ −

e−xdx ( )n > 0
0

Γ +( )n 1
 Γ =( )n ( )0 1> ≠n − , − 2, − 3,...

n

HYPERBOLIC FUNCTIONS

e ex x− − 2
 sinh x = csch x =

2 e ex x− −

e ex x− − 2
 cosh x = csch x =

2 e ex x− −
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e ex x− − e ex x+ −

 tanh x = coth x
e ex x =

+ − e ex x− −

INVERSE COSINE CURVE

 y x= arccos

INVERSE SINE CURVE

 y x= arcsin

INVERSE TANGENT CURVE

 y x= arctan

LOGARITHMIC CURVE

 y x= loga

PARABOLA

 y x= 2

CUBICAL PARABOLA

 y x= 3

TANGENT CURVE

 y x= tan

ELLIPSOID

x2 y2 z2

 + +
a2 b2

=
c2

1

ELLIPTIC CONE

x2 y2 z2

 0
a2

+ −
b2

=
c2

ELLIPTIC CYLINDER

x2 y2

 + = 1
a2 b2
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HYPERBOLOID OF ONE SHEET

x2 y2 z2

 1
a2

+ −
b2 c2

=

ELLIPTIC PARABOLOID

x2 y2

 cz
a2

+ =
b2

HYPERBOLOID OF TWO SHEETS

z2 x2 y2

 
2
− − 1

c a2 b2
=

HYPERBOLIC PARABOLOID

x2 y2

 
2
− =

2
cz

a b

SPHERE

 x2 2+ +y z2 = a2

DISTANCE D BETWEEN TWO POINTS

 P x1 1( ), ,y1 z1 and P2 (x2 , y2 2, z )
 d = −( )x x 2 2 2

2 1 + ( )y2 1− y + (z2 1− z )

EQUATIONS OF LINE JOINING P x1 1( ), ,y1 z1  AND P x2 2( ), ,y2 z2  IN STANDARD FORM

x x− y y z z
 

1 − 1 −= = 1
or

x x2 1− y y2 1− z z2 1−

x x− y y z z
 

1 1− −= = 1

l m n

EQUATIONS OF LINE JOINING P x1 1( ), ,y1 z1  AND P x2 2( ), ,y2 z2  IN PARAMETRIC FORM

 x = +x l1 1t, ,y = y + mt z = z1 + nt

ANGLE φφ BETWEEN TWO LINES WITH DIRECTION COSINES l m1 1, , n1 AND l m2 2, , n2

 cosφ = +l l1 2 m1m2 + n1n2
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GENERAL EQUATION OF A PLANE

 Ax + +By Cz + D = 0

where A, B, C, D are constants.

EQUATION OF PLANE PASSING THROUGH POINTS

 (x y1 1, , z1) (, x2 , y2 , z2 ) (, x3, y3, z3 )
x x− −1 1y y z − z1

 x x2 1− −y2 y1 z2 − z1 = 0

x x3 1− −y3 y1 z3 − z1

or

y y2 1− −z2 z1 − −( ) z z x x
x x− + 2 1 2 1 ( )y y− +

y y− −z3 z 1
1 z z3 1− −x3 x 1

3 1 1

 

x x2 1− −y2 y1 ( )z z− =1 0
x x3 1− −y3 y1

EQUATION OF PLANE IN INTERCEPT FORM

x y z
 + + = 1

a b c

where a, b, c are the intercepts on the x, y, z axes, respectively.

EQUATIONS OF LINE THROUGH (x y0 0, , z0 ) AND PERPENDICULAR TO PLANE

 Ax + +By Cz + D = 0

x x− y y z z
 

0 0− −= = 0

A B C

 or ,x = +x0 0At y = y + Bt, z = z0 + Ct

DISTANCE FROM POINT ( )x y, , z  TO PLANE Ax B+ +y D = 0

Ax By Cz + D
 

0 0+ + 0

± +A B2 2 + C2

where the sign is chosen so that the distance is nonnegative.

NORMAL FORM FOR EQUATION OF PLANE

 x cosα β+ +y zcos cosγ = p
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where p is the perpendicular distance from O to plane at P and α , ,β γ  are angles 

between OP and positive x, y, z axes.

TRANSFORMATION OF COORDINATES INVOLVING PURE TRANSLATION

⎧x x= ′ + x0 ⎧x x′ = + x0

⎪ ⎪⎪ ⎪
 ⎨y y= ′ + y0 or ⎨y y′ = + y0

⎪ ⎪
⎪z z= ′ +⎩ z0 z z′ = +⎩⎪ z0

where (x, y, z) are old coordinates relative to the xyz system, (x y′ ′, , z′) are new coor-

dinates relative to the (x y′ ′, , z′) system, and (x y0 0, , z0 ) are the coordinates of the 

new origin O′ relative to the old xyz coordinate system.

TRANSFORMATION OF COORDINATES INVOLVING PURE ROTATION

⎧x l= 1 2x′ + l y′ + l3z′ ⎧x l′ = +1 1x m y + n1z
⎪ ⎪⎪ ⎪

 ⎨y m= 1 2x′ + m y′ + m3z′ or ⎨y l′ = +2 2x m y + n3z
⎪ ⎪
⎩⎪z n= 1 2x′ + n y′ + n3z′ z l′ = +⎩⎪ 3 3x m y + n3z

where the origins of the xyz and x′ ′, ,y z′ systems are the same and 

l m n1 1, , 1; l2 , m2 , n2; l3, m3, n3 are the direction cosines of the x′ ′, ,y z′ axes relative 

to the x, y, z axes, respectively.

TRANSFORMATION OF COORDINATES INVOLVING TRANSLATION AND ROTATION

⎧x l= 1 2x′ + l y′ + l3z′ + x0

⎪⎪
⎨y m= 1 2x′ + m y′ + m3z′ + y0

⎪
⎪z n= x′ +⎩ 1 2n y′ + n3z′ + z0

 or

⎧x l′ = −1 0( )x x + m1 0( )y − y + −n1 0(z z )
⎪⎪
⎨y l′ = −2 0( )x x + m2 0( )y − y + −n2 (z z0 )
⎪
⎪z l′ = −⎩ 3 0( )x x + m3 0( )y − y + −n3 (z z0 )

where the origin O′ of the x′ ′y z′ system has coordinates (x y0, 0,z0, ) relative to the xyz 

system and l m n1 1, , 1; l2 , m2 , n2; l3, m3, n3 are the direction cosines of the x′ ′y z′ axes 

relative to the x, y, z axes, respectively.
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CYLINDRICAL COORDINATES (r z, ,θθ )
A point P can be located by cylindrical coordinates (r z, ,θ ) as well as rectangular 

coordinates (x, y, z). The transformation between these coordinates is

⎧⎧x r= cosθ r x= +2 2y
⎪⎪⎪ ⎪

 ⎨y r= sinθ θor ⎨ = tan−1 ( )y x/
⎪ ⎪
⎪z z= z z=⎩ ⎪

⎩

SPHERICAL COORDINATES ( )r, ,θθ φφ
A point P can be located by cylindrical coordinates (r, ,θ φ) as well as rectangular 

coordinates (x y, , z). The transformation between these coordinates is

⎧
⎧x r= cosθ φcos ⎪r x= +2 2y + z2

⎪ ⎪⎪ ⎪
 ⎨y r= sinθ φsin or ⎨φ = tan−1 ( )y x/

⎪ ⎪
z r= cosθ⎩⎪ ⎪θ = +cos−1 2( )z x/ y z2 2+

⎩⎪

Equation of sphere in rectangular coordinates

 (x x− +2
0 ) (( )y − y

2
0 + z − z 2

0 ) = R2

where the sphere has cent (x y0 0, , z0 ) and radius R.

Equation of sphere in cylindrical coordinates

 r r2 − −2 c0 0r os( )θ θ + r2
0 + (z − z 2

0 ) = R2

where the sphere has center (r z0 0, ,θ 0 ) in cylindrical coordinates and radius R.

If the center is at the origin, the equation is

 r z2 2+ = R2

Equation of sphere in spherical coordinates

 r r2 + −2
0 2 sr0 0r inθ θsin cos( )φ −φ 2

0 = R

where the sphere has center (r0 0, ,θ φ0 ) in spherical coordinates and radius R.

If the center is at the origin, the equation is

 r R=
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LOGARITHMIC IDENTITIES

 Ln L( )z z1 2 = +n z1 Ln z2

 ln ( )z z1 2 = +ln z1 ln z2 (−π < arg z1 + arg z2 ≤ π)
z

 Ln L
1 = −n z z1 2Ln

z2

z
 ln

1
= ln z z1 2− −ln ( π < arg z1 − arg z2 ≤ π

z2

)
 Ln z nn = Ln z (n integer)
 lnzn = −n zln (n integer, π < narg z ≤ π)

SPECIAL VALUES

 ln 1 = 0

 ln 0 = −∞

 ln ( )− =1 πi

( ) 1
 ln ± =i i± π

2

ln 1e e= ,  is the real number such that

∫
e dt

 = 1
1 t

⎛ 1 ⎞ n

 e = +lim 1 2.71828 18284...
n

⎜ ⎟ =
→∞ ⎝ n ⎠

LOGARITHMS TO GENERAL BASE

 loga z z= ln / lna

log z
 loga z = b

logb a

1
 loga b =

logb a

 loge z z= ln

 log10 z z= =ln / ln 10 log10 e ln z = (0.43429 44819... ln z

 ln z z= =ln 10 log10 ( )2.30258 50929... log10 z

)
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⎛ loge x x= ln , called natural, Napierian, or hyperbolic logarithms ⎞
 ⎜ ⎟

⎝ log10x, called common or Briggs logarithms ⎠

SERIES EXPANSIONS

( ) 1 1
 ln 1+ =z z − z2 3+ z −...( z ≤ 1 and z ≠ −1

2 3
)

⎛ z −1 1⎞ ⎛ z −1 1⎞ 2 3⎛ z −1 1⎞ ⎛ ⎞
 ln z = ⎜ ⎟ + ⎜ ⎟ + ⎜ ⎟ + ℜ...⎜ z ≥ ⎟⎝ z ⎠ 2 ⎝ z ⎠ 3 ⎝ z ⎠ ⎝ 2⎠

1
 ln z z 1 z 1

2 31= −( ) − ( )− + ( )z −1 1−...( )z − ≤ 1, z ≠ 0
2 3

⎡⎛ z −1⎞ 1 ⎛ z −1⎞ 3 5
1 ⎛ z −1⎞ ⎤

 ln z = 2 ⎢⎜ ⎟ + ⎜ ⎟ + ⎜ ⎟ +...⎥ ℜ ≥z z0, ≠ 0⎝ z +1⎠ 3 ⎝ z +1⎠⎣⎢ 5 ⎝ z +1⎠ ( )
⎦⎥

⎛ z +1⎞ ⎛ 1 1 1 ⎞
 ln⎜ ⎟ = 2⎜ + + +⎝ − 3 5

...⎟z z1⎠ ⎝ 3z 5z ⎠ ( )z z≥ ≠1, ±1

⎡⎛ z ⎞ 1 ⎛ z ⎞ 3 5
1 ⎛ z ⎞ ⎤

ln l( )z a+ = na + 2 ⎢⎜ ⎟ + ⎜ ⎟ + ⎜ ⎟ +...⎥ a z> ℜ0, ≥ −a ≠ z
⎢⎝ 2a z+ ⎠ 3 2⎝ a z+ ⎠ ⎝ a z ⎠ (
⎣ 5 2 + )

⎦⎥

LIMITING VALUES

 lim x x−α ln = ℜ0 ( )α αconstant, > 0
x→∞

 lim x xα ln = ℜ0 α αconstant, 0
x 0

( )>
→

⎛
∑

m
1 ⎞

 lim − lnm γ ( )Euler's constant .57721 56649...
m

⎜ ⎟ = =
→∞⎝ k

k=1 ⎠

INEQUALITIES

x
 < +ln ( )1 x x< ( )x > −1, x ≠ 0

1+ x

( ) x
 x < − ln 1− x < x x< ≠1, 0

1+ x
( )

3x
 ln ( )1− <x (0 < x ≤ .5828)

2
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 ln x x≤ −1 ( )x > 0

 ln x n≤ −( )x1/n 1 forany positiven (x > 0)

 ln ( )1− ≤z z− ln( )1− ( z <1)

CONTINUED FRACTIONS

( ) z z z 4z 4z 9z
ln 1+ =z ...

1 2+ + 3 + 4 + 5 + +6 

(z in theplanecut from− −1to ∞)

⎛ 1+ z ⎞ 2z z2 24z 9z2

 ln⎜ ⎟ = ...⎝ 1− z ⎠ 1 3− − 5 − 7 −

POLYNOMIAL APPROXIMATIONS

1
 ≤ ≤x 10

10

 log10 x a= +1t a3t
3 + ε ( )x , t = ( )x −1 / (x +1)

 ε ( )x ≤ ×6 10−4

 a1 3= =.86304 a .36415

1
 ≤ ≤x 10

10

 log10 x = a1t + + +a3t a3
5t a5

7t
7 + a9t

9 + ε ( )x

 t = −( )x x1 / ( )+1

 ε ( )x ≤ 10−7

 a1 = .86859 1718

 a3 = .28933 5524

 a5 = .17752 2071

 a7 = .09437 6476

 a9 = .19133 7714



115Basic Mathematical Calculations

 0 1≤ ≤x

 ln( )1+ =x a1 2x + a x2 + a3x3 + a4x4 + a 5
5x + ε ( )x

 ε ( )x ≤ ×1 10−5

 a1 = .99949 556

 a2 = .49190 896

 a3 = .28947 478

 a4 = .13606 275

 a5 = .03215 845

 0 1≤ ≤x

 ln( )1+ =x a x + a x2 + a x a3 + x4 + a x a5
3 a 7

1 2 + x6
6 7x a 8

4 5 + + 8x + ε ( )x

 ε ( )x ≤ ×3 10−8

 a1 = .99999 64239

 a2 = −.49987 41238

 a3 = .33179 90258

 a4 = −.24073 38084

 a5 = .16765 40711

 a6 = −.09532 93897

 a7 = .03608 84937

 a8 = −.00645 35442

Exponential function series expansion

z z2 3z
 ez = =exp z 1+ + +... ( )z x= + iy

1! 2! 3!

FUNDAMENTAL PROPERTIES

 Ln ( )exp z z= + 2k i ( )k any integer
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⎛ ln( )exp z z= −π <  ∫ ⎞z ≤ π⎝ ⎠

 exp( )ln z z= =exp ( )Ln z

d
 exp z z= exp

dz

DEFINITION OF GENERAL POWERS

 If N a= =z , then z loga N

 az = exp (z aln )

 If a a= −exp ( )i arg a ( )π < arga ≤ π

 a az = x e−v aarg

 arg( )a yz = +ln a x arg a

 Lna zz = ln a foroneof thevaluesof Lna

 lna xx = lna ( )a realand positive

 e ez x=

 arg( )e yz =

 az z1 2a a= z1 + z2

 az zb a= −( )b z ( )π < arga + argb ≤ π

LOGARITHMIC AND EXPONENTIAL FUNCTIONS

Periodic property

 ez k+2 i = e kz ( any integer)

1
 ex < (x < 1)

1− x

1
 < −( )1 1e x−x < ( )x > −

1− x

 x ( )ex 1< −1 < ( )x < 1
1− x

z
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x

 1 1+ >x e1+ x ( )x > −

x xn

 e > +1 n x> 0, > 0
n!

( )
y

x xy
 ex ⎛ ⎞

> +⎜1 0> >⎟ x y
y ex y ,

⎝ ⎠ + ( )>

 −x x
e < −1 ( )0 < x ≤1.5936

2

1
 z ez 7< −1 < z ( )0 1< z <

4 4

 e ez z− ≤1 1− ≤ z e z ( )all z

1 2 2
2a arctan

2
2 1a a + a + 4 a2 + 9

 e = +1 ...
z a− + 3z + 5z + 7z +

POLYNOMIAL APPROXIMATIONS

 0 ≤ ≤x ln2 = .693...

 e−x = +1 a x1 2+ a x2 + ε ( )x

 ε ( )x ≤ ×3 10−3

 a1 = −.9664

 a2 = .3536

 0 l≤ ≤x n2

 e−x = +1 a x1 2+ a x2 + a3x3 + a4x4 + ε ( )x

 ε ( )x ≤ ×3 10−5

 a1 = −.99986 84

 a2 = .49829 26

 a3 = −.15953 32

0
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 a4 = .02936 41

0 l≤ ≤x n2

e−x = +1 a x + a x2 + a x3 4 5 6 7
1 2 3 + a4x + a x5 + a6x + a7x + ε ( )x

ε ( )x ≤ ×2 10−10

a1 = −.99999 99995

a2 = .49999 99206

a3 = −.16666 53019

a4 = .04165 73475

a5 = −.00830 13598

a6 = .00132 98820

a7 = −.00014 13161

0 1≤ ≤x

2
10x = +( )1 a x a x2 a x3 4

1 2+ + 3 + a4x + ε ( )x

ε ( )x ≤ ×7 10−4

a1 = 1.14991 96

a2 = .67743 23

a3 = .20800 30

a4 = .12680 89

0 1≤ ≤x

10 = +( 2x 1 a1 2x + a x2 + a x3
3 + a4x4 + a x5

5 + a 6 7
6x + a7x + ε (x)

ε ( )x ≤ ×5 10−8

a1 = 1.15129 277603

a2 = .66273 088429

a3 = .25439 357484

a4 = .07295 173666
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 a5 = .01742 111988

 a6 = .00255 491796

 a7 = .00093 264267

Tables 4.1–4.7 show functional relationships for the equations and formulas that 

follow.

TABLE 4.1
Basic Laplace Transforms

Laplace Transforms of Some Basic Functions

f ( )t

1

L { f t( )} = F (s)

1

s

n!

Sn+1tn , n = 1,2,3,...

1

s a−
ate

k

s2 + k 2sin kt

s

s2 + k 2cos kt

k

s2 − k 2sinh kt

s

s2 − k 2cosh kt

TABLE 4.2
Operational Properties of Transforms

e ( )at f t (F s − a)
f ( −t a)U ( −t a) , a > 0 −e ( )asF s

nt ( )f t , n = 1,2,3,...
n

n d(− )1 ( )F snds

( )nf ( )t , n = 1,2,3,... n n−1 (n− )1( ) −s F s s f ( )0 −...− f ( )0

t

τ τf ( )d∫0

( )F s

s
t

f τ( ) (g t − τ )dτ∫0
( )F s G ( )s
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TABLE 4.3
Transforms of Functional Products

n att e , n = 1,2,3,...
n!

n+1( −s a)

eat sin kt
k

2 2( −s a) + k

ate cos kt
−s a

2 2( −s a) + k

2ks

( 2
s2 2+ k )t sin kt

s2 2− k

( 2
s2 2+ k )t cos kt

2k3

( 2
s2 2+ k )sin kt − kt cos kt

sin kt + kt cos kt
22ks

22 2(s + k )

TABLE 4.4
Units of Measurement

English System Metric System

1 foot (ft) = 12 inches (in)       1′ = 12″ mm millimeter .001 m

1 yard (yd) = 3 feet cm centimeter .01 m

1 mile (mi) = 1760 yards dm decimeter .1 m

1 sq. foot = 144 sq. inches m meter 1m

1 sq. yard = 9 sq. feet dam decameter 10 m

1 acre = 4840 sq. yard = 43560 ft2 hm hectometer 100 m

1 sq. mile = 640 acres km kilometer 1000 m
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TABLE 4.5
Common Units of Measurement

Common Units used with the International System

Units of 
Measurement

Units of 
MeasurementAbbreviation Relation Abbreviation Relation

meter m Length degree Celsius °C Temperature

hectare ha Area kelvin K Thermodynamic 

temperature

tonne t Mass pascal Pa Pressure, stress

kilogram kg Mass joule J Energy, work

nautical mile M Distance 

(navigation)

newton N Force

knot kn Speed 

(navigation)

watt W Power, radiant flux

liter L Volume or 

capacity

ampere A Electric current

second s Time volt V Electric potential

hertz Hz Frequency ohm Ω Electric resistance

candela cd Luminous 

intensity

coulomb C Electric charge

TABLE 4.6
Values of Trig Ratio

θθ 0 π /π 2 ππ π /3π 2 π2π

sinθ 0 1  0 −1 0

cosθ 1 0 −1  0 1

tanθ 0 ∞  0 −∞ 0

TABLE 4.7
Physics Equations

d = vt

m
D =

V
D density

⎛ g kg ⎞m mass ⎜⎝ cm3
=

m3 ⎟⎠

V volume

d distance m
v velocity m/s

t time s

W
p =

t

1
KE = mv2

2

P power W (=watts)
W work J

t time s

KE kinetic energy J

m mass kg

v velocity m/s

(Continued)
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2Surface area of cylinder = 2 2π +rh πr
Volume of cylinder = πr h2  

Figures 4.7–4.11 illustrate the shapes related to the formula measures that 

follow.

Surface area of a cone = πr r2 + π s
πr h2

Volume of a cone = 
3

Bh
Volume of a pyramid = 

3
(B = area of base)

TABLE 4.7 (Continued)
Physics Equations

vf − vi
a =

t
a acceleration m/s2

vf final velocity m/s

vi initial velocity m/s

t time s

kQ Q1 2Fe =
2d

Fe electrical force N

k Coulomb's constant

⎛ 2
9 Nm ⎞

k = ×⎜ 9 10
⎝ c2 ⎟⎠

Q1, Q2 are electrical charges

d separation distance m

1
d = vit + at2

2

d distance m

vi initial velocity m/s

t time s

a acceleration m/s2

W
V =

Q
V electrical potential

difference V (=volts)
W work done J

Q electric charge

=F ma F net force N (=newtons)
m mass kg

a acceleration m/s2

Q
l =

t
l electric current amperes

Q electric charge flowing C

t time s

Gm m1 2Fg =
2d

Fg force of gravity N

G universal gravitational

⎛ 2

cons −11 N m− ⎞
tant G = 6.67 ×⎜ 10 ⎟⎝ kg2 ⎠

m1, m2 masses of the twoobjects kg

d separation distance m

W = Vlt W electrical energy J

V current V

l current A

t time s

=p mv p momentum kgm/s

m mass kg

v velocity m/s

=p Vl P power W

V voltage V

l current A

W = Fd W work J (=joules)
F force N

d distance m

= ΔH cm T H heat energy J

m mass kg

ΔT change in temperature C

c specific heat J/Kg°C
°
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FIGURE 4.8 Volume of a pyramid.

FIGURE 4.7 Surface area of a cone.
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FIGURE 4.9 Equation of a straight line.

FIGURE 4.10 Triangle equations.

FIGURE 4.11 Right triangle calculations.
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SLOPES

Equation of a straight line: y y− =1 1m( )x − x

rise
where m = slope =

run

Δy y y−
 = = 2 1

Δx x x2 1−

or

 y m= +x b

where

m = slope
 

b y= -intercept

TRIGONOMETRIC RATIOS

sinθ
 tanθ =

cosθ
 sin2 2θ θ+ =cos 1

 1 t+ =an2 2θ sec θ

 1+ =cot2 2θ θcsc

 cos2 2θ θ− =sin cos2θ

1
 sin45° =

2

1
 cos45° =

2

 tan45° = 1

 sin ( )A B+ = sin A cos B + cos A sin B

 sin ( )A B− = sin A cos B − cos A sin B

 cos ( )A B+ = cos A cos B − sin A sin B

 cos ( )A B− = cos A cos B + sin A sin B
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+( ) tan A Btan
 tan A B+ =

1 t− an A Btan

( ) tan A B− tan
 tan A B− =

1 t+ an A Btan

y
 sinθ = =( )opposite/hypotenuse 1/ csc

r

x
 cosθ = =( )adjacent/hypotenuse 1/ secθ

r

y
 tanθ = =( )opposite/adjacent 1/ cot

x

Figures 4.12 and 4.13 illustrate angle measurements.

1 3
 sin 30° = sin 60° =

2 2

θ

θ

FIGURE 4.13 Cosine law.

FIGURE 4.12 Angle relationships.
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3 1
 cos 30° = cos 60° =

2 2

1
 tan 30° = tan 60° = 3

3

SINE LAW

a b c
 = =

sin A sin B sinC

COSINE LAW

 a2 2= +b c2 − 2 cbc os A

 b a2 2= + c2 − 2 cac os B

 c2 2= +a b2 − 2 cab osC

 θ = 1 radian

 2 radians = °360

ALGEBRA

EXPANDING

 a( )b + =c ab + ac

 (a b+ =)2 a2 + 2ab b+ 2

 (a b− =)2 a2 − 2ab b+ 2

 (a + +b)(c d ) = ac + ad + bc + bd

 (a b+ =)3 a3 2+ 3 3a b + ab2 + b3

 (a b− =)3 a3 2− 3 3a b + ab2 − b3

FACTORING

 a2 2− =b a( )+ b ( )a − b

 a2 2+ +2ab b = ( )a + b 2

 a3 3+ =b ( )a + b ( )a2 − ab + b2

 a3b a− =b ab( )a +1 1( )a −
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 a2 2− +2ab b = ( )a − b 2

 a3 3− =b ( )a − b ( )a2 + ab + b2

ROOTS OF QUADRATIC

The solution for isa quadratic equation ax b2 + +x c = 0 is

− ±b b2 − 4ac
 x =

2a

LAW OF EXPONENTS

 ar s⋅ =a ar+s

a ap q

 a p q r

ar = + −

ar

 ar s

as = −

( s
 a ar ) = rs

 (ab)r = ar rb

⎛ a ⎞ r ar

 ⎜ ⎟ = ≠r ( )b 0⎝ b ⎠ b

 a0 = ≠1 0( )a

1
 a−r = ≠

ar ( )a 0

r 1 1

 a s = =s a ar 2 a a3 = 3 a

LOGARITHMS

Example:

( ) ⎛ x ⎞
 log xy = +log x log y log = −⎜ ⎟ log x ylog

⎝ y ⎠

 log x rr = log x

 log x n= ↔ =x 10n ( )commonlog π  3.14159265

 loga x n= ↔ =x an ( )log to the basea e  2.71828183

 ln x n= ↔ =x en ( )natural log
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5 Statistical Methods 
for Data Analytics

Statistics is the language of data. 

INTRODUCTION

Data analytics relies on statistical distributions and methods. The most common 

 distributions are summarized in Table 5.1 (Leemis, 1987).

DISCRETE DISTRIBUTIONS

Probability mass function, p x( )
Mean, μ
Variance, σ 2

Coefficient of skewness, β1

Coefficient of kurtosis, β2

Moment-generating function, M t( )
Characteristic function, φ( )t
Probability-generating function, P t( )

BERNOULLI DISTRIBUTION

 p x( ) = =px xq −1 x 0,1 0 ≤ p ≤ 1 q = 1− p

2 1 2− p 1 6− pq
 μ = =p pσ βq 1 2= β = +3

pq pq

 M ( )t = +q pet iφ( )t = +q pe t P( )t = +q pt

BETA BINOMIAL DISTRIBUTION

B a( )+ +x b n − x
 p x( ) 1 ,= x n= >0,1,2,..., a 0 b > 0

n +1 B x( )+ −1,n x +1 B(a,b)
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, 
∞

)

(−
∞

, 
∞

)

(0
, 
∞

)

(0
, 
∞

)
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na nab( )a + +b nμ = σ 2 = 2 B a( ),b a b+ ( )a b+ +(a b +1)  is the beta function.

BETA PASCAL DISTRIBUTION

Γ Γ Γ( )x x( )ν ρ( )+ν Γ ν + − ρ + r
 p x( ) = ( )( )

( ) ( ) x r= +,r 1,... ν > p > 0
Γ Γ( )r x( )− r +1 Γ ρ νΓ − ρ νΓ( + x)

ν −1 ( )ν ν− −1
r r, 1

( )ρ
 μ = ρ σ> =2 ( )r + ρ −1 , 2ρ >

ρ −1 ( )ρ ρ− −1 2
2 ( )

BINOMIAL DISTRIBUTION

n
 p x( ) = =( ) px nq − x x 0,1,2,...,n 0 < p < 1 q = 1− p

x

2 1 2− p 1 6− pq
 μ = =np σ βnpq 1 2= β = +3

npq npq

( )n
 M ( )t = +q pet φ( )t = +( )n

q peit P( )t = ( )q p+ t
n

DISCRETE WEIBULL DISTRIBUTION

 p x( ) = −( )
β β

1 1p
x x− ( )− ( )+

p
1

x = 0,1,... 0 ≤ p ≤1 β > 0

GEOMETRIC DISTRIBUTION

 p x( ) = =pq1− x x 0,1,2,... 0 ≤ p ≤ 1 q = 1− p

1 22 q − p p q2 +
 μ = =σ β

p p2 1 2= β =
q q

( ) p p p
 M t = ( )t P t

1 1qet iφ =
qe t ( ) =

− − 1− qt

6
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HYPERGEOMETRIC DISTRIBUTION

M N M
 p x( ) =

( )( )−
x

( )
n x− x n= ≤0,1,2,..., x M n − x ≤ N M−

N
n

 n, ,M N ,∈ ≤N 1 n ≤ N 1 ≤ M ≤ N N = 1,2,...

M 2 ⎛ N n− ⎞ M ⎛ M ⎞ ( )N M− −2 2(N n) N −1
 μ = =n σ β⎜ ⎟ n ⎜1− ⎟

N ⎝ N −1 ⎠ N ⎝ 1 =
N ⎠ ( )N n− −2 M ( )N M (N − n)

N N2 ( )−1
 β2 = ( )N N− −2 3( )nM ( )N − M (N − n)

{ ( ) ( ) M
 N N + −1 6n N − n + 3 (N M N 2 2

2
− )⎡ (n − 2) − Nn + 6n( )N −⎣ n ⎤⎦N }

( )N M− −! !(N n) ( )t ( )N M− −! !(N n)
M t( ) = F e., φ( )t = F e

N! !
( ).,

N

( ) ⎛ N M− ⎞ n

 P t = ⎜ ⎟ F t( ).,⎝ N ⎠

F x( )α β, ,γ ,  is the hypergeometric function. α = −n M; ;β γ= − = N − M − n +1

NEGATIVE BINOMIAL DISTRIBUTION

( ) ( )x r+ −1

 p x = =pr xq x 0,1,2,... ...r = 1,2, 0 ≤ p ≤1 q = 1− p
r−1

rq rq 2 p p q2 6
 μ = =σ β2 − +β 3

p p2 1 2= = +
rq rq

⎛ r
p ⎞ ⎛ p ⎞ r r⎛ p ⎞

 M t( ) = ⎜ t φ⎟ ( )t = ⎜ it ⎟ P t( ) = ⎜ ⎟⎝ 1 1− qe ⎠ ⎝ − qe ⎠ ⎝ 1− qt ⎠

it
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POISSON DISTRIBUTION

e−μμ x

 p x( ) = =x 0,1,2,... μ > 0
x!

2 1 1
 μ = =μ σ μ β1 2= β = 3 +

μ μ

 M t( ) = −exp ⎡μ σ⎤⎣ ( )et i1 ( )t = −exp ⎡μ t ⎤ =⎦ ⎣ ( )e 1 ⎦ P( )t exp[ ( )t 1

RECTANGULAR (DISCRETE UNIFORM) DISTRIBUTION

 p x( ) = =1 / n x 1,2,...,n n ∈N

n n+1 2 1 3 4
 μ = σ β2 − ⎛ ⎞= 1 2= =0 β ⎜3 −

2 12 5 ⎝ n2 ⎟−1⎠

e et n( )1− t e eit 1− nit t t1− n

 M t( ) = φ ( )
( ) ( )t = P t( ) = ( )

n e1− t n e( )1− it n t( )1−

CONTINUOUS DISTRIBUTIONS

Probability density function, f (x)
Mean, μ
Variance, σ 2

Coefficient of skewness, β1

Coefficient of kurtosis, β2

Moment-generating function, M t( )
Characteristic function, φ( )t

ARCSIN DISTRIBUTION

 f x( ) 1= 0 1< <x
π x x( )1−

1
 2 1 3μ = =σ β = 0

8
1 2β

2 2

μ ]−
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BETA DISTRIBUTION

Γ +α β
 f x

( )( ) = xα −1( )1 0− <x β−1 < α β( ) x 1 , > 0
Γ Γ( )α β

α 2 αβ 2 1( )β α− +α β +
 μ = σ = β =

α β+ ( )α β+ +2 (α β +
1

1) αβ ( )α + +β 2

3 1( )α β+ + ⎡2(α β+ )2 +αβ⎣ (α β+ − 6)⎤⎦ β2 =
αβ ( )α β+ + 2 3(α β+ + )

CAUCHY DISTRIBUTION

1
 f x( ) = − ∞ < x a< b 0

⎛ ⎛ x a− ⎞ 2
∞ − ∞ < < ∞ >

⎞
bπ 1+⎜ ⎜ ⎟

⎝ ⎝ b ⎠ ⎟⎠

 μ, ,σ β2
1 2, β , M t( ) do not exist. φ( )t a= −exp ⎡⎣ it b t ⎤⎦

CHI DISTRIBUTION

x e
2n x− −1 2/

 f x( ) = x n≥ ∈0 N( )2 /n / 2 −1Γ( )n 2

⎛ n +1⎞ ⎛ n + 2⎞ ⎡ ⎛ n +1⎞ ⎤
2

Γ⎜ ⎟ Γ⎜ ⎟ Γ⎜ ⎟⎝ 2 ⎠ 2 ⎝ 2 ⎠ ⎢ ⎝ 2 ⎠ ⎥
 μ = σ = − ⎢ ⎥

⎛ n ⎞ ⎛ n ⎞ ⎛ n ⎞Γ Γ ⎢ Γ ⎥
⎝ 2 ⎠ ⎝ 2 ⎠ ⎢ ⎝ 2 ⎠⎣ ⎦⎥

CHI-SQUARE DISTRIBUTION

− −/ 2 ( )e xx ν / 2 1

 f x( ) = x Nν / 2
≥ ∈0 ν

2 /Γ( )ν 2

2 12 1
 μ = =ν σ 2 2ν β1 2= 2 /ν β = 3 + M t( ) = ( )1 2− t −ν / 2

, t <
ν 2

 φ( )t i= −( )1 2 t −ν / 2
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ERLANG DISTRIBUTION

 f x( ) 1= ≥n n 1 !
xn x− −1 /e β x 0 0( ) > n ∈N

β − β

2 2 2 6
 μ = =n nβ σ β β1 2= β = 3 +

n n

 M t( ) = −( )1 1β φ− −
t

n n( )t = −( βit)

EXPONENTIAL DISTRIBUTION

 f x( ) = ≥λ λe−λx x 0 0>

1 1
 μ σ 2 λ= =

2
β β1 2= 2 9= M t( ) =

λ λ λ − t

λ
 φ( )t =

λ − it

EXTREME-VALUE DISTRIBUTION

 f x( ) = −exp ⎡ e− −( )x α β/ ⎤ − ∞ < < ∞ − ∞ <α β< ∞ >⎣ ⎦ x 0

2 π β2 2

 μ = +α γβ , γ  ….5772  is Euler’s constant σ = .
6

 β1 2= =1.29857 β 5.4

1
 M t( ) = Γeα αt i( )1 ,− βt t < φ β( )t = e Γ(1− it)

β
t

F DISTRIBUTION

Γ +( )ν ν / 2 ν ν/ 2 /2

 f x
[ ]( )

1 2
1 2 ν1 ν2 ( )x ν1 /2 −1( )ν ν / 2

Γ Γ( )ν ν1 2( / 2) 2 1+ ( )x − +ν ν1 2

/ 2

 x > ∈0 ν ν1, 2 N
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ν 2

 μ = 2 ν νν σ 2 2 2ν
, 3≥ = 2 ( )1 2+ −

, 5ν ≥
ν2 − 2

2 ν ν1 2( )− −2 4
2 (ν ) 2

2

( )2 2ν ν+ − 8(ν − 4)
 β1 = 1 2 2

, 7ν
ν ν1 2( )− +6 2ν ν 2 ≥

1 2 −

12 ⎡( )ν ν2
2 − −2 ( 2 14) +ν (ν1 +ν2 − 2)(5ν2 − 22)⎤⎣ ⎦ β2 = +3 , 9ν ≥

ν ν1 2( )− −6 8(ν ) 2

2 (ν1 +ν2 − 2)

⎛ ν ⎞
 M t( ) G t( )ν ν, ,

 does not exist. φ ⎜
1 t⎟ = 1 2

⎝ ν2 ⎠ B( )ν ν1 2/ 2, / 2

B a( ),b  is the beta function. G is defined by

 (m n+ − 2 ,) (G( )m n,t = m − 2)G(m − 2,n,t) + 2it G(m,n − 2,t), m,n > 2

 mG( )m, ,n t = −( )n 2 G(m n+ 2, − 2,t) − 2it G(m n+ 2, − 4,t), n > 4

 nG n( )2, ,t = +2 2it G n(2, − 2,t), n > 2

GAMMA DISTRIBUTION

1
 f x( ) = xα β− −1 /e x x ≥ >0 ,α α β 0

β αΓ( )

2 2 2 ⎛ 2 ⎞
 μ = =αβ σ αβ β1 2= β = 3 1⎜ + ⎟α ⎝ α ⎠

( ) = −( )β φ− −α α
 M t 1 1t ( )t = −( βit)

HALF-NORMAL DISTRIBUTION

2θ
 f x( ) = exp ⎡− π( )θ θ2 2x / ⎤ x ≥ >0 0

π ⎣ ⎦
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1 2⎛ π − ⎞ 1 4 − π 3π −2 4π −12
 μ = =σ 2 ⎜ ⎟ β

θ 2 θ 2 1 =
θ 3

β⎝ ⎠ 2 =
4θ 4

LAPLACE (DOUBLE EXPONENTIAL) DISTRIBUTION

1 ⎡ x −α ⎤
 f x( ) = −exp ⎢ ⎥ − ∞ < x < ∞ − ∞ <α β< ∞ > 0

2β ⎣ β ⎦

 μ = =α σ 2 22 0β β1 2= β = 6

eα αt ie t

 M t( ) = t
1 1β 2 2

φ( ) =
− t + β 2 2t

LOGISTIC DISTRIBUTION

exp −
= [ ]( )x α β/

 f x( )
β α( )2

1+ −exp[ ]( )x / β

 −∞ < x < ∞ − ∞ <α β< ∞ − ∞ < < ∞

β π2 2

 μ = =α σ 2 β β1 2= 0 4= .2
3

 M t( ) = πeα αt iβ βt csc( )π t φ( )t = e tπβ it csc( )πβ it

LOGNORMAL DISTRIBUTION

⎡
 f x( ) 1 1= −

2 ⎤
exp −

x
( )μ

σ σ 2
1n x

2 ⎢⎣ 2 ⎥⎦

 x > −0 ∞ < μ σ< ∞ > 0

 μ = =e eμ σ+ +2 2/2 σ 2 2μ σ ( )eσ 2

−1

4 3

= +( 2 2)( )1/2 ( ) 2

 β1 e eσ σ2 1− β2 = eσ 2

+ 2( )eσ 2

+ 3( )eσ 2

− 3
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NONCENTRAL CHI-SQUARE DISTRIBUTION

⎡ 1 ⎤
exp − +x λ⎢ ( ) ∞ ( )

( ) ⎣ 2 ⎥⎦ ν λ

= ∑ x / 2 + −j j1

 f x
2ν / 2

j jj
j

⎛ ν ⎞Γ + 2 !2
=0 ⎝ 2 ⎠

 x > >0 0λ ν ∈N

8 3 12 4
 = + σ 2 ν λ+

= 2 2
( ) ( )ν λ+

μ ν λ ( )ν + λ β1 = β = +
( )

3
ν λ+

2
2

3/2 ( )ν λ+ 2
2

 ( )− −⎡( ) ν ν/ 2 λt ⎤ ⎡ λ( ) it ⎤M t = −1 2t exp φ t i= −( / 2

⎢ ⎥ 1 2 t) exp ⎢⎣1 2− t ⎦ ⎣1 2− it ⎥⎦

NONCENTRAL F DISTRIBUTION

( )
⎛ + + i

2i ν ν ⎞ ⎛ ⎞ 2 /+ν1 2

Γ⎜
1 2 ν

⎟
1 ( )2 2

x
i+ −ν1 // 2 −λ 2 ⎛ λ ⎞

∑
∞ ⎜ ⎟⎝ ⎠ ⎜ ⎟ e

2 2⎝ ν
 f x( ) = 2 ⎠ ⎝ ⎠

( )i+ + 2

i= ⎛ ν ν 2 /ν ν
0 2 1⎞ ⎛ 2i + ⎞ ⎛ ν 1 2

Γ Γ⎜ ⎟ + x⎠ ⎝ ⎠ ⎜
1 ⎞ν⎝ ⎟2 2

1! 1
⎝ ν2 ⎠

 x > ∈0 ,ν ν1 2 N λ > 0

 
( )ν λ1 2+ ν

μ = , ν > 2( )ν ν− 2
2

2 1

2
2 ( )ν λ 2

1 + + 2( )ν λ1 2+ ν ( )ν λ+ 2ν 2

 σ =
2

− 1 2
, 4ν >( )ν ν − 2

2 2− −2 4( )v ( )2
1 ν ν2 2 2

1

NONCENTRAL T DISTRIBUTION

νν δ/ 2 e− 2 ∞ ν δ
i // 2 + +1 i ⎞( ) ⎛ ⎞ ⎛ ⎛ 2

i 2x2 ⎞
 f x =

⎛ ν ⎞ π ν( )( )
+

ν +1 /2 ∑Γ
x2

⎜ ⎟⎝ ⎠ ⎜ ⎟ ⎜ ⎟2 !⎝ i xΓ i
⎠ 2

⎠ 0
⎝ ν + ⎠

⎝ =
2

 −∞ < x N< ∞ − ∞ < δ ν< ∞ ∈
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⎛ ν − r ⎞Γ ν r / 2

⎝ ⎠ r
2 ( )2 1r − !δ 2 1r−

 μr r′ = c , ,ν > =r c2 1r− r i− ,

2r / 2 ⎛ ν ⎞ ∑ 2 1i r i 2Γ⎝ i
2 ⎠ 1

( )− −! !
=

( )

∑
r ( )2 !r δ 2i

 c2r = r i , 1r = ,2,3,− ...
=

( )2 !i r i !2
i 0

( )−

NORMAL DISTRIBUTION

1 ⎡ ( )x − μ 2 ⎤
 f x( ) = −exp ⎢σ 2 2σ 2 ⎥

⎣⎢ ⎦⎥

 −∞ < x < ∞ − ∞ < μ σ< ∞ > 0

t2 2

 2 2 ⎡ σ ⎤μ = =μ σ σ β1 2= 0 3β = M t( ) = exp ⎢μt + ⎥
⎣ 2 ⎦

⎡ t2 2σ ⎤
 φ( )t i= −exp ⎢μ t ⎥

⎣ 2 ⎦

PARETO DISTRIBUTION

 f ( )x a= ≥θ θθ θ/ 0x +1 x a > a > 0

θa a2

 μ , 1θ σ 2 θ= > = , 2θ >
θ −1 ( )θ θ− −1 2

2 ( )

M t( ) does not exist.

RAYLEIGH DISTRIBUTION

x x⎡ 2 ⎤
 f x( ) = −

2
exp ⎢ x 0 0

σ σ2 2 ⎥ ≥ =σ
⎣ ⎦
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⎛   ⎞ ( ) − 3
 μ = =σ σ / 2 2 22σ 1− β⎝ 4 4⎠ 1 =

⎛  ⎞ 3/2

1−⎝ 4 ⎠

3
2 −  2

 β2 = 16

⎛  ⎞ 2

1−⎝ 4 ⎠

T DISTRIBUTION

⎛ ν +1⎞Γ⎜ ⎟⎝ ⎠ ⎛ ⎞ − +( )ν 1 /2

( ) 1 2 x2

 f x = 1+ − ∞ <⎜ ⎟ x N< ∞ ∈ν
 ν ν ⎝ ν ⎠Γ

2

ν
 μ = ≥0, ν σ2 2 = , 3ν β≥ =

2
1 0, ν ≥ 4

ν −

6
 β2 = +3 , 5ν ≥

ν − 4

⎛ ν ⎞ Γ ∞
⎝

M t( ) eitz

 does not exist. φ( ) 2 ⎠ ν

t = dz
⎛ ν +1⎞ ∫ ( )( )

+
ν +1 /2

Γ 1 2

⎜ ⎟ z
⎝ 2 ⎠ −∞

TRIANGULAR DISTRIBUTION

⎧ 0 x a≤
⎪
⎪ 4 /( )x − −a ( )b a 2 a < x ≤ ( )a b+ / 2

 f x( ) = ⎨
⎪ 4 /(b − −x) ( )b a 2 ( )a b+ / 2 < x b<
⎪
⎩ 0 x b≥

 −∞ < < <a b ∞

a b+ ( )b a 2
12

 μ = σ β2 −= 1 2= =0 β
2 24 5

4 4
 M t = −

( )2
e e−

2at / 2 bt / 2 e eait / 2 − bit / 2

( )
2 2 φ( )t =

( )
t b( )− a t b2 ( )− a 2
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UNIFORM DISTRIBUTION

1
 f x( ) = a x b≤ ≤ − ∞ < < <a b ∞

b a−

a b+ ( )b a 2
9

 μ = σ β2 −= = =0 β
2 12

1 2
5

e ebt − at e ebit − ait

 M t( ) = φ( )t =( )b a− t ( )b a− it

WEIBULL DISTRIBUTION

α
 f x( ) = ≥xα −1 ( )αe− x /β x

βα 0 ,α β > 0

⎛ 1 ⎞ ⎡ ⎛ 2 ⎞ ⎛ 1 ⎞ ⎤
 μ = Γβ ⎜1+ ⎟ σ β2 2= Γ⎢ ⎜1+ ⎟ − Γ2 ⎜1+ ⎟⎝ α ⎠ ⎣ ⎝ α α⎠ ⎝ ⎠ ⎦

⎛ 3 ⎞ ⎛ 1 ⎞ ⎛ 2 ⎞ ⎛ 1 ⎞Γ +⎜1 ⎟ − Γ3 1⎜ + ⎟ Γ +⎜1 ⎟ + Γ2 13 ⎜ + ⎟⎝ α α⎠ ⎝ ⎠ ⎝ α ⎠ ⎝ α ⎠
 β1 =

⎡ ⎛
3/

2 ⎞
2

1Γ +⎢ ⎜1 ⎟ − Γ2 ⎛ ⎞ ⎤
⎜1+ ⎟⎝ ⎠ ⎝ ⎠ ⎥⎣ α α ⎦

⎛ 4 ⎞ ⎛ 1 ⎞ ⎛ 3 ⎞ ⎛ 1 ⎞ ⎛ 2 ⎞ ⎛ 1 ⎞Γ +⎜1 ⎟ − Γ4 1⎜ + ⎟ Γ +⎜1 ⎟ + Γ6 12 ⎜ + ⎟ Γ +⎜1 ⎟ − Γ3 14 ⎜ + ⎟⎝ α α⎠ ⎝ ⎠ ⎝ α ⎠ ⎝ α ⎠ ⎝ α ⎠ ⎝ α ⎠
 β2 =

⎡ ⎛ 2 ⎞ 2 ⎛ 1 ⎞ ⎤
2

Γ + − Γ +⎢ ⎜1 ⎟ ⎜1 ⎟
⎣ ⎝ α α⎠ ⎝ ⎠ ⎥⎦

DISTRIBUTION PARAMETERS

AVERAGE

n
1

 x = x
n∑ i

i=1

VARIANCE

n
1

 s2 = x x 2

n 1∑( )
− i −

i=1
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STANDARD DEVIATION

 s = s2

STANDARD ERROR

s
 

n

SKEWNESS

(missing if s = 0 or n < 3)

∑
n

n x( )x 3
i −

 i=1

( )n n− −1 2( )s3

STANDARDIZED SKEWNESS

skewness
 

6

n

KURTOSIS

(missing if s = 0 or n < 4) 

n

n n( )+ −1 ∑( )xi x 4

2

 i=1 3 1( )n −−( )n n− −1 2( )(n − 3)s4 ( )n n− −2 3( )

STANDARDIZED KURTOSIS

Kurtosis
 

24

n

WEIGHTED AVERAGE

∑
n

x wi i

 i=1

∑
n

wi

i=1
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ESTIMATION AND TESTING

100(1  − α)% CONFIDENCE INTERVAL FOR MEAN

s
 x ± tn−1;α / 2

n

100(1  − α)% CONFIDENCE INTERVAL FOR VARIANCE

⎡ ( )n s− −1 2 ( )n s1 2 ⎤
 ⎢ ,

χ χ2 2 ⎥
⎣⎢ n n− −1;α α/ 2 1;1− / 2 ⎥⎦

100(1  − α)% CONFIDENCE INTERVAL FOR DIFFERENCE IN MEANS

Equal Variance

 (x x1 2− ±) 1 1
tn n1 2+ −2;α / 2 sp +

n n1 2

where

( )n s 2
1 1− +1 1(n s 2

 s 2 2− )
p =

n n1 2+ − 2

Unequal Variance

⎡ s 2 s 2 ⎤
 ⎢( )x x1 2− ± t 1

m + 2
;α / 2 ⎥

⎣⎢ n1 n2 ⎦⎥

where

1 c2 ( )1− c 2

 = +
m n1 −1 n2 −1

and

s 2
1

n
 c= 1

s 2
1 s 2

+ 2

n1 n2
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100(1  − α)% ConfidenCe interval for ratio of varianCes

 
s

s F

s

s Fn n n n

1
,

11
2

2
2

1, 1; /2

1
2

2
2

1, 1; /21 2 1 2
























α α− − − −

normal Probability Plot

The data is sorted from the smallest to the largest value to compute order statistics. 
A scatterplot is then generated where

 x iHorizontalposition = ( )

 
i

n
Vertical position

3 / 8
1 / 4

= Φ −
+







The labels for the vertical axis are based upon the probability scale using

 
i

n
100

3 / 8
1 / 4

−
+







ComParison of Poisson rates

 n jj numberof events insample=

 t jj lengthof sample=

 r
n

t
j

j

j

Rateestimates: =

 
r

r
Rate ratio: 1

2

Test statistic:

 z
n

n n

n n
max 0,

2
1
2

4

1
1 2

1 2

( )

( )
=

− + −

+



















where z follows the standard normal distribution.
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DISTRIBUTION FUNCTIONS AND PARAMETER ESTIMATION

BERNOULLI

 p xˆ =

BINOMIAL

x
 p̂ =

n

where n is the number of trials.

DISCRETE UNIFORM

 â = min xi

ˆ b x= max i

GEOMETRIC

1
 p̂ =

1+ x

NEGATIVE BINOMIAL

k
 p̂ =

x

where k is the number of successes.

POISSON

ˆ β = x

BETA

⎡ x x1 ⎤
 α̂ ( )−= x −⎢ ⎥⎣ 2

1
s ⎦

β̂ ⎛ x x( )1− ⎞
 = −( )1 x ⎜ 1

s2
− ⎟⎝ ⎠
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CHI-SQUARE

 d.f. ν = x

ERLANG

α̂ = round ( )α̂ from gamma

 α̂β̂ =
x

EXPONENTIAL

 β̂ 1=
x

β̂Note: system displays 1 / .

F

2w wˆ 3 2− 4 ˆ
 Numerator degrees of freedom (num d f): ν̂ = ( )s w2 ( )ˆ − −2

2 (ŵ 4 2) − ŵ2

max( )1,2x
 Denominator degrees of freedom (den df): ŵ =

− +1 x

GAMMA

⎛ arithmetic mean ⎞
 R = log⎜ ⎟⎝ geometric mean ⎠

If 0< R ≤ 0.5772,

 α̂ = +
2

R R−1 ( )0.5000876 0.1648852 − 0.0544274 R

or if R > 0.5772,

α
1

 ˆ = +R R( )−−1 217.79728 11.968477 + R (8.898919 + 9.059950 R + 0.9775373 R2 )

β̂ = α̂ / x
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LOGNORMAL

n
1

 μ̂ = ∑ log x
n

i

i=1

n
1

 α̂ = ∑( )2
log x −

− i μ̂
n 1

i=1

SYSTEM DISPLAYS

 Means: exp( )μ αˆ ˆ+ 2 / 2

 Standarddeviation: exp( )2μ αˆ ˆ+ −2 2⎡exp(α̂ ) 1⎤⎣ ⎦

NORMAL

 μ̂ = x

 σ̂ = s

STUDENT’S T

If s2 ≤ ≤1 or if v 2, then the system indicates that the data is inappropriate.

2

∑
n

x 2
i

 s = i=1

n

2s2

 v̂ =
− +1 s2

TRIANGULAR

 â = min xi

 ĉ = max xi

ˆ b x= −3 â − x
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UNIFORM

 â = min xi

ˆ b x= max i

WEIBULL

Solves the simultaneous equations:

n
 α̂ =

⎡⎛ n
1 ⎞ n ⎤

⎢⎜ ⎟ ∑x xâ
i log li i−∑ og x ⎥

⎢⎝ β̂ ⎠⎣ i=1 i=1
⎥⎦

1

⎛∑
n ˆ

⎜ x ˆ
⎞ α

α
i ⎟

ˆ ⎜ β = i=1 ⎟
⎜ n ⎟
⎜ ⎟
⎜ ⎟⎝ ⎠

CHI-SQUARE TEST FOR DISTRIBUTION FITTING

Divide the range of data into non-overlapping classes. The classes are aggregated at 

each end to ensure that classes have an expected frequency of at least 5.

Oi = observed frequency in class i
Ei = expected frequency in class i from fitted distribution

k = number of classes after aggregation

Test statistic:

∑
k 2

 χ 2 ( )O E−= i i

Eii=1

This statistic follows a chi-square distribution with the degrees of freedom equal to 

(k – 1 – number of estimated parameters)

KOLMOGOROV–SMIRNOV TEST

D + i
n i= −max F x

 { }ˆ ( )
n

1 ≤ ≤i n
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−= −{ }i
D F− 1ˆ

n imax ( )x
 n

1 ≤ ≤i n

 D Dn n= max{ }+ −, Dn

ˆwhere F x( i ) is the estimated cumulative distribution at xi.

ANOVA (ANALYSIS OF VARIANCE)

Notations

 k = numberof treatments

 nt = numberof observationsfor treatment t

 n = =n k/ average treatmentsize

∑
k

 n = nt

t=1

 x th
it = i observation in treatment t

∑
n t

xi t

 x tr i
t = =eatment mean =1

nt

∑
n t

( )2
x xi t − t

 s 2 = =treatment variance i=1
t

nt −1

∑
k

( )n st t−1 2

 MSE = =meansquareerror t=1

⎛
∑

k ⎞
⎜ n kt ⎟ −
⎝ t=1 ⎠

⎛
∑

k ⎞
 df = degreesof freedom for theerror term ⎜ n kt ⎟ −

⎝ t=1 ⎠
=
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Standard Error (Internal)

s 2

 
t

nt

Standard Error (Pooled)

MSE
 

nt

Interval Estimates

MSE
 xt ± M

nt

where

Confidence interval

 M t= n k− ; /α 2

Least significant difference (LSD) interval

1
 M t=

2
n k− ; /α 2

TUKEY INTERVAL

1
 M q=

2
n k− , ;k α

where qn k− , ;k α is the value of the studentized range distribution with n − k degrees of 

freedom and k samples such that the cumulative probability equals 1−α .

SCHEFFE INTERVAL

k −1
 M = F

2
k n− −1, k; α

COCHRAN C-TEST

Follow F distribution with n − −1 and ( )n k1 ( −1) degrees of freedom.

( )k C−1
 Test statistic: F =

1− C
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where

max s 2

 C = t

∑
k

s 2
t

t=1

BARTLETT TEST

Test statistic:

M

 B = 10 ( )n k−

k

 M n= −( )k log10 MSE −∑( )n 1 log 2
t t− 10 s

t=1

The significance test is based on

M 1n 10
 

( )
2

⎡
Xk ⎤ k−1

1 1 1
1+ ⎢ − ⎥

3 1( )k n− −1 N − k⎢⎣
∑

tt=1
( ) ⎦⎥

which follows a chi-square distribution with k −1 degrees of freedom.

HARTLEY’S TEST

max( )s 2
t

 H =
min( )s 2

t

KRUSKAL–WALLIS TEST

Average rank of treatment:

∑
nt

Ri t

 R i 1
t = =

nt

If there are no ties:

⎛ k
12 ⎞

Test statistic: w = ⎜ n R
2

n
n

t t 3 1( )
⎝

∑ ⎟ − +
i=1 ⎠

Adjustment for ties
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Let uj be the number of observations tied at any rank for j m= 1,2,3,...,  where m 

is the number of unique values in the sample.

w
 W =

∑ ∑
m m

u u3
j − j

1− j= =1 1

( )
j

n n2 −1

Significance level: W follows a chi-square distribution with k − 1 degrees of freedom.

FREIDMAN TEST

 Xi t = observation in the i tthrow, th column

 i n= =1,2,... ..., t 1,2, , k

 R Xi t = rankof i t within its row

n = common treatment size (all treatment sizes must be the same for this test)

n

 R Rt i=∑ t

i=1

∑
nt

Ri t

average rank R i 1
t = =

nt

where data are ranked within each row separately.

Test statistic:

12S k( )−1
 Q =

n k ( )k 2 3− −1 ( )∑u −∑u

where

⎛
∑

k ⎞
2 n k2 ( )k +1

2

 S R= ⎜ i ⎟ −
⎝ 4

t=1 ⎠

Q follows a chi-square distribution with k degrees of freedom.
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REGRESSION

Notations
Y = vector of n observations for the dependent variable ~
 

X = n by p matrix of observations for p independent variables, including constant 
 

term, if any

~  indicates that a variable is a vector or matrix.

∑
n

Yi

 Y = i=1

n

Regression Statistics
 1. Estimated coefficients

Note: estimated by a modified Gram-Schmidt orthogonal decomposition 

with tolerance = 1.0E − 08.

−
 b X= ( )′ 1

X XY
     

 2.  Standard errors

S b( ) −
 = diagonal elements of ( ) 1

X X′ MSE
   

Y Y′ − b′ ′X Y
where MSE =

n p−

 3.  t-Values

b
 t =  

 S b( )
 

 4.  Significance level

t-Values follow the student’s t distribution with n-p degrees of freedom.

 5.  R-squared

 R2 SSTO − SSE= ,
SSTO

⎧Y n′ − Y 2

⎪ , if constant
where SSTO = ⎨

⎩⎪YY , if no constant

SSE = residual sum of squares
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 6. Adjusted R-squared

⎛ n −1 ⎞
 1− ( )1− R2

⎜ ⎟⎝ n p− ⎠

 7.  Standard error of estimate

 SE = MSE

 8.  Predicted values

ˆ Y = Xb
   

 9.  Residuals

= − ˆ e Y Y
   

 10.  Durbin–Watson statistic

∑
n−1

( )e e 2
i i+1 −

 D = i=1

∑
n

e 2
i

i=1

 11.  Mean absolute error

⎛ n

⎜ ei

⎝
∑

⎞
⎟

 
i=1 ⎠

n

Predictions
Xh = m by p matrix of independent variables for m predictions
  1. Predicted value

ˆ Y h h= X b
   

 2.  Standard error of predictions

ˆ S Y( )h new = +diagonal elementsof MSE( )1
1

( ) Xh h( )X ′ ′−
X X

    

 3.  Standard error of mean response

−
 ( )ˆ 1 ˆS Y

  
h h= diagonal elementsof MSE( )X X( )′X X

   
h
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 4. Prediction matrix results

Column 1 = index numbers of forecasts 

ˆ2 = Y
 

h

3 = ˆS Y( h( )
 

new )
ˆ ˆ4 = −(Y th n− p, /α 2 S ( )Y ( )
  

h new )
5 = +( ˆ ˆY th n− p, /α 2 S ( )Y

  
h n( )ew )

6 = −ˆ ˆY th n− p, /α 2 S Y
  

( )h

= +ˆ ˆ7 Y t S Y
  

h n− p, /α 2 ( )h

Nonlinear Regression

( )ˆF X ,β ˆ are values of nonlinear function using parameter estimates β.

 1. Estimated coefficients

Obtained by minimizing the residual sum of squares using a search 

procedure suggested by Marquardt. This is a compromise between Gauss–

Newton and steepest descent methods. The user specifies

 a. initial estimates β0.

 b. the initial value o f Marquardt parameter λ, which is modified at each 

iteration.

As λ → 0, the procedure approaches Gauss–Newton; as λ → ∞, the 

procedure approaches steepest descent.

 c. the scaling factor used to multiply Marquardt parameter after each 

Iteration.

 d. the  maximum value of Marquardt parameter.

Partial derivatives of F with respect to each parameter are estimated 

numerically.

 2.  Standard errors

estimated from residual sum of squares and partial derivatives

 3. Ratio

coefficient
 ratio =

standarderror

 4.  R-squared

SSTO − SSE
 R2 =

SSTO

where

SSTO = Y Y′ − nY 2

=   SSE  residual sum of squares
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Ridge Regression
Additional notation:

Z = matrix of independent variables standardized so that Z Z′  equals the 
    correlation matrix

θ = value of the ridge parameter

Parameter estimates

−1
 b Z( )θ θ= ( )′Z + Ι Z Y

  
p ′ ,

   

Quality Control
For all quality control formulas:

 k = numberof subgroups

nj = numberof observationsinsubgroup j
 

j k= 1,2,...,

 xij = i jth observation insubgroup

All formulas below for quality control assume 3-sigma limits. If other limits are 

specified, the formulas are adjusted proportionally based on sigma for the selected 

limits. Also, average sample size is used unless otherwise specified.

Subgroup Statistics

Subgroup Means

∑
nj

xij

 x i 1
j = =

nj

Subgroup Standard Deviations

∑
nj

( )2
x xij − j

 s i 1
j = =

( )nj −1
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Subgroup Range

 R xj i= ≤max { }j 1 i ≤ nj − min{ }xij 1 ≤ i ≤ nj

X-Bar Charts

∑
k

n xi j

 Compute x = j=1

∑
k

ni

j=1

⎛
∑

k ⎞
⎜ n R
⎜ i j ⎟
⎝

 R = j 1
⎟

= ⎠

∑
k

ni

j=1

∑
k

( )n sj j−1 2

 s j 1
p = =

∑
k

( )nj −1

j=1

∑
k

1
 n = n

k
i

j=1

For a chart based on range:

 Upper Control Limit: UCL = +x A2R

 Lower Control Limit: LCL = −x A2R

For a chart based on sigma:

3s
 UCL = +x p

n

3s
 LCL = −x p

n
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For a chart based on known sigma:

σ
 UCL = +x 3

n

σ
 LCL = −x 3

n

If other than 3-sigma limits are used, such as 2-sigma limits, all bounds are adjusted 

proportionately. If average sample size is not used, then uneven bounds are displays 

based on

 1 / nj

rather than 1/ n .

If the data is normalized, each observation is transformed according to

x x
 z

i j −
ij = α̂

where α = estimated standard deviation.

Capability Ratios
Note: The following indices are useful only when the control limits are placed at the 

specification limits. To override the normal calculations, specify a subgroup size of 

one and select the “known standard deviation” option. Then enter the standard devia-

tion as half of the distance between the USL and the LSL. Change the position of the 

centerline to be the midpoint of the USL and LSL and specify the upper and lower 

control line at one sigma.

USL − LSL
 CP =

6α̂

1
 CR =

CP

⎛ USL − −x x LSL ⎞
 CPK = min⎜ ,

⎝ 3α αˆ 3 ˆ ⎟⎠

R Charts

Control Limit: CL = R

 UCL = D R4
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 LCL = Max 0,D R3

S Charts

 CL = sP

χ 2
− α

 UCL = s
n 1;

P
n −1

χ 2

 LCL = s
n−1;α

P
n −1

C Charts

 c u= =∑ j UCL c + 3 c

 ∑n cj LCL = − 3 c

where uj = number of defects in the jth sample.

U Charts

numberof defects inall samples j
 u = ∑u

numberof units inall samples ∑nj

3 u
 UCL = +u

n

3 u
 LCL = −u

n

P Charts

numberof defective units
 p =

numberof units inspected

numberof defectives inall samples p nj j
 p = ∑

numberof units inall samples ∑nj

( )

=

=
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3 1p p( )−
 UCL = +p

n

3 1p p( )−
 LCL = −p

n

NP Charts

d j
 p = ∑

∑
,

nj

where dj is the number of defectives in the jth sample.

 UCL = +n p 3 n p ( )1− p

 LCL = −n p 3 n p ( )1− p

CuSum Chart for the Mean

Control mean = μ
Standard deviation =α 
Difference to detect = Δ

Plot cumulative sums Ct versus t where

t

 C xt i= −∑( )μ for t = 1,2,...,n
i=1

The V-mask is located at distance

2 /⎡α β2 n 1− ⎤
 d = ⎢ ln ⎥Δ Δ⎣ α / 2 ⎦

in front of the last data point.

Angle of mast = 2 tan−1 Δ
2

Δ
Slope of the lines = ±

2
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Multivariate Control Charts

X = matrix of n rows and k columns containing n observations for each k 
 variable

S = sample covariance matrix

Xt = observation vector at time t
 X = vector of column average
 

Then,

 T X2 1
t t= −( )X S− ( )X X

    
t −

⎛ k n( )−1 ⎞
 UCL = ⎜ ⎟ F

⎝ n k− ⎠ k n, ;−k α

TIME SERIES ANALYSIS

Notations

 xt tor y t= =observation at time ,t 1,2,...,n

 n = numberof observations

Autocorrelation at Lag k

c
 r k

k =
c0

where

n k
1

 ck t= −y y y y
n∑

−

( )( t k+ − )
t=1

and

⎛
∑

n ⎞
⎜ yt ⎟
⎝

 y = t=1 ⎠
n

1 ⎧ k−1 ⎫⎪ ⎪
 standarderror = +⎨1 2∑r 2

n
v ⎬

⎩⎪ v=1 ⎭⎪
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Partial Autocorrelation at Lag k
θ kk  is obtained by solving the Yule–Walker equations:

= + ˆ ˆ r rj kθ θˆ ˆ
1 1j− −k 2 rj 2 +...+θk k( )−1 rj k− +1 +θk krj k−

 j k= 1,2,...,

1
 standarderror =

n

Cross-Correlation at Lag k
x = input time series

y = output time series

c k
 r kxy ( ) xy ( )= =k 0,±1,±2,...

s sx y

where

⎧ −
1

⎪
n∑

n k

( )x xt t− −( )y +k y k = 0,1,2,...
⎪⎪ t

 cx y ( )
=1

k = ⎨
⎪ ∑

n k+
1

⎪ ( )x x− −( )y − y k = 0,−1,−2,...
n

t t k

⎩⎪ t=1

and

 S cx x= x ( )0

 S cy y= y ( )0

Box-Cox

y λ 1
1

 yt
( )+ −λ

= 2
if λ > 0

λ ( )λ 1
g 1 −1

1

 yt = +g1n( )y λ λ2 1if = 0

where g = sample geometric mean (y + λ2 ).
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Periodogram (Computed Using Fast Fourier Transform)
If n is odd:

( ) n
 Ι f = +( ) ⎡n −1

1 a b2 2 ⎤
i i i = 1,2,...,

2 ⎢⎣ 2 ⎥⎦

where

∑
n

2
 ai t= t tcos2 f

n
i

t=1

n
2

 bi t= y fsin2 t
n∑ i

t=1

i
 fi =

n

If n is even, an additional term is added:

⎛ 2n
1 ⎞

 Ι( )0.5 = −n⎜ ∑( 1)t Yt ⎟
⎝ n

t=1 ⎠

CATEGORICAL ANALYSIS

Notations
r = number of rows in the table

c = number of columns in the table

fij = frequency in position (row i, column j)
xi = distinct values of row variable arranged in ascending order; i = 1,...,r
yj = distinct values of column variable arranged in ascending order; j c= 1,...,

Totals

c r

 R Cj i= =∑ ∑f fj j ij

j= =1 1i

∑
r c

 N = fij

i=1

∑
j=1

Note: any row or column which totals zero is eliminated from the table before calcu-

lations are performed.
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Chi-Square

r c f E
 χ 2 ( )−

2

=∑∑ ij ij

Eiji=1 j=1

where

R C
 E i j

ij = ~ χ 2
( )

N
r c− −1 1( )

A warning is issued if any Eij < 2or if 20% or more of all Eij < 5. For 2 2×  tables, a 

second statistic is printed using Yate’s continuity correction.

Fisher’s Exact Test
Run for a 2 × 2 table, when N is less than or equal to 100.

Lambda

⎛ c

⎜∑
⎞

f Rmax, j −⎜ max ⎟
⎝

 λ = j 1
⎟

= ⎠
with rowsdependent

N R− max

⎛
∑

r ⎞
⎜ f Ci,max − max ⎟
⎝

 λ = i=1 ⎠
with columnsdependent 

N C− max

⎛ r c

⎜ f f C R
⎜ i jmax, −
⎝
∑

⎞
,max + − max max ⎟

λ = i
⎟

=1

∑
 

j=1 ⎠
whensymmetric( )2N R− −max Cmax

where

fi max =  largest value in row i
fmax j =  largest value in column j
Rmax = largest row total

Cmax = largest column total

Uncertainty Coefficient

U R( ) + −U ( )C U (RC )
 UR = with rowsdependent

U R( )
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U R( ) + −U ( )C U (RC )
 UC = withcolumnsdependent

U C( )

⎛ U R( ) + −U ( )C U (RC )⎞
 U = 2⎜ when symmetric

⎝ U R( ) +U ( )C ⎟⎠

where

r
R R

 U ( )R = −∑ i i
log

N N
i=1

∑
c

C C
 U ( )C = − j j

log
N N

j=1

∑
r c

( ) ∑ fij f
 U RC = − log

ij
for f

N N
ij > 0

i=1 j=1

Somer’s D

2( )P P−
 D = C D

R with rowsdependent
⎛ c ⎞
⎜ N C2 2−∑ j ⎟
⎜⎝ j 1

⎟
= ⎠

2( )P P
 D C D−

C = withcolumnsdependent
⎛ r

⎜ N R2 2−∑
⎞

i ⎟
⎝ i=1 ⎠

4( )P P
 D = C D−

whensymmetric
⎛ r c

⎜ N R2 2− N 2 2C j

⎝
∑ ∑

⎞ ⎛ ⎞
i ⎟ + −⎜ ⎟

i= =1 ⎠ ⎜⎝ j 1
⎟⎠

where the number of concordant pairs is

r c

 P fC i=∑∑ j∑∑ fhk

i=1 j=1 h i< k j<

and the number of discordant pairs is

r c

 P fD i=∑∑ j

=
∑∑ fhk

i=1 j 1 h i< k j>
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Eta

SS
 E RN

R = −1 with rowsdependent
SSR

where the total corrected sum of squares for the rows is

⎛ 2
r c ⎞

⎜ x f

∑
i ij ⎟

r

∑
c ⎜ ⎟⎝

∑∑
 SS = − = − ⎠

R ix 2 f
i 1 j 1

ij
N

i=1 j−1

and the sum of squares of rows within categories of columns is

⎛ ⎞
⎜ ⎟

c ⎜ ⎛ r ⎞ 2⎟
 SSRN =∑⎜ ⎜ x f2

i ij
⎟

r ⎟
j=1 ⎜ ⎟

2

∑
⎠⎜ x fi ij − i 1

⎜⎝
∑ ⎝ = ⎟

C j ⎟
i=1 ⎠

SS
 E CN

C = −1 withcolumnsdependent
SSC

where the total corrected sum of squares for the columns is

⎛ c ⎞ 2
r

⎜ y f

 ∑∑
⎜ i ij ⎟

r c ⎟
SS = −y 2 ⎝

∑
=
∑

= ⎠
f

i 1 j 1

C i ij
N

i=1 j=1

and the sum of squares of columns within categories of rows is

⎛ ⎛ c ⎞ 2⎞
⎜ ⎜

⎜∑ y 2 ⎟

∑
⎜ j if j ⎟

r

∑
c

j 1
⎟ ⎟⎝ =

 SS ⎜ y 2 ⎠
CN = −i fi j ⎟ j

⎜ Rii=1 ⎜ j=1
⎟
⎟

⎜ ⎟⎝ ⎠

Contingency Coefficient

χ 2

 C = ( )χ 2 + N
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Cramer’s V

χ 2

V =  for 2 × 2 tables
N

χ 2

V =  for all others where m = min(r, c)
N m( )−1

Conditional Gamma

P P−
 G = C D

P PC D+

Pearson’s r

⎛ c r ⎞ ⎛ c r ⎞
⎜ ∑x fi i ⎟

c r ⎜∑ ∑j ⎜ y f ⎟

∑ j 1 1i 1
⎟ ⎜ j

⎝ ⎠ ⎝
∑ i i

x y
1

i j fij −
j i

⎟
= == = ⎠

N
 R = j=1

∑
i=1

SSR CSS

If R = 1, no significance is printed. Otherwise, the one-sided significance is based on

N − 2
 t = R

1− R2

Kendall’s Tau b

2( )P P
 τ = C D−

⎛ r c

⎜ N R2 2−∑ ∑
⎞ ⎛ ⎞

i ⎟ ⎜ N 2 2− C j ⎟
⎝ i 1 ⎠ ⎜⎝ j 1

⎟
= = ⎠

Tau C

2m P( )C D− P
 τC = ( )m N−1 2

PROBABILITY TERMINOLOGY

Experiment. An activity or occurrence with an observable result

Outcome. The result of the experiment

Sample point. An outcome of an experiment

Event. A set of outcomes (a subset of the sample space) to which a probability 

is assigned
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BASIC PROBABILITY PRINCIPLES

Consider a random sampling process in which all the outcomes solely depend on 

chance, that is, each outcome is equally likely to happen. If S is a uniform sample space 

and the collection of desired outcomes is E, the probability of the desired outcomes is

( ) n E( )
 P E =

n S( )

where

n(E) = number of favorable outcomes in E
n(S) = number of possible outcomes in S

Since E is a subset of S,

 0 ,≤ ≤n E( ) n( )S

the probability of the desired outcome is

 0 1≤ ≤P E( )

RANDOM VARIABLE

A random variable is a rule that assigns a number to each outcome of a chance 

experiment.

Example:

 1.  A coin is tossed six times. The random variable X is the number of tails that 

are noted. X can only take the values 1,2,…, 6, so X is a discrete random 

variable.

 2.  A light bulb is burned until it burns out. The random variable Y is its life-

time in hours. Y can take any positive real value, so Y is a continuous ran-

dom variable.

MEAN VALUE x̂ OR EXPECTED VALUE μμ

The mean value or expected value of a random variable indicates its average or cen-

tral value. It is a useful summary value of the variable’s distribution.

 1.  If random variable X is a discrete mean value,

n

 x̂ = +x p1 1 x2 p2 +...+ xn np =∑x p1 1

i=1
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where

pi = probability densities

 2.  If X is a continuous random variable with probability density function f(x), 

then the expected value of X is

+∞

 μ = =E X( ) ∫ xf (x)dx
−∞

where

f(x) = probability densities

DISCRETE DISTRIBUTION FORMULAS

Probability mass function, p x( )
Mean, μ
Variance, σ 2

Coefficient of skewness, β1

Coefficient of kurtosis, β2

Moment-generating function, M t( )
Characteristic function, φ( )t
Probability-generating function, P t( )

BERNOULLI DISTRIBUTION

 p x( ) = =px xq −1 x 0,1 0 ≤ p ≤ 1 q = 1− p

 2 1 2− p 1 6− pqμ = =p pσ βq 1 2= β = +3
pq pq

 M ( )t = +q pet iφ( )t = +q pe t P( )t = +q pt

BETA BINOMIAL DISTRIBUTION

B a( )x b n − x
 p x( ) 1 + +,= x n= >0,1,2,..., a b0 > 0

n +1 B x( )+ −1,n x +1 B(a,b)

na nab( )a + +b n
 μ = σ 2 = 2 B a( ),b  is the beta function.

a b+ ( )a b+ +(a b +1)
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BETA PASCAL DISTRIBUTION

Γ Γ Γ( )x x( )ν ρ( )+ν Γ ν + − (ρ + r )
 p x( ) = ( )

x r= +, 1r , 0... ν > p >
Γ Γ( )r x( )− r +1 Γ( )ρ νΓ( − ρ ν)Γ( + x)

ν −1 ρ
 μ = r r, 1ρ σ 2 ( )

> = ( ) ν ν− −1
r 1

( )+ ρ −
ρ 1 1 2

2 ρ
( ) ( )

, 2>
− ρ ρ− −

BINOMIAL DISTRIBUTION

 p x( ) = =( )n
px nq − x x 0,1,2,...,n 0 < p < 1 q = 1− p

x

 2 1 2− p 1 6− pqμ = =np σ βnpq 1 2= β = +3
npq npq

 M ( )t = +( )n
q pet φ( ) = +

n
t ( )q peit P( )t = ( )q p+ t

n

DISCRETE WEIBULL DISTRIBUTION

β

 p x( ) = −( )
β

1 1p
x x− ( )− ( )+

p
1

x = 0,1,... 0 ≤ p ≤1 β > 0

GEOMETRIC DISTRIBUTION

 p x( ) = =pq1− x x 0,1,2,... 0 ≤ p ≤ 1 q = 1− p

1 22 q − p p q2 + 6
 μ = =σ β

p p2 1 2= β =
q q

p p p
 M t( ) = t iφ( )t = P t

qe qe t ( ) =
1 1− − 1− qt

HYPERGEOMETRIC DISTRIBUTION

−
( )

( )M N M
 p x = x ( )

( )
n x− x n= ≤0,1,2,..., x M n − x ≤ N M−

N
n
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 n, ,M N ,∈ ≤N 1 n ≤ N 1 ≤ M ≤ N N = 1,2,...

M 2 ⎛ N n− ⎞ M ⎛ M ⎞ ( )N M− −2 2(N n) N −1
 μ = =n σ β⎜ ⎟ n ⎜1− ⎟⎝ 1 N ⎝ 1 =

N N − ⎠ N ⎠ ( )N n− −2 M ( )N M (N − n)

N N2 ( )−1
 β2 = ( )N N− −2 3( )nM ( )N − M (N − n)

{ M
 N N( )+ −1 6n( )N − n + 3

2
(N M− )⎡⎣N 2 2(n − 2) − Nn + 6n( )N − n ⎤⎦N }

( )− −( ) ( )t ( )( ) N M ! !N n ( ) N M− −! !(N n)
M t = F e., φ t = F e.,

N! N!
( )

−( ) ⎛ N M ⎞ n

 P t = ⎜ ⎟ F t( ).,⎝ N ⎠

F x( )α β, ,γ ,  is the hypergeometric function. α = −n M; ;β γ= − = N − M − n +

NEGATIVE BINOMIAL DISTRIBUTION

 p x( ) ( )x r+ −1

= =pr xq x 0,1,2,... ...r = 1,2, 0 ≤ p ≤1 q = 1− p
r−1

rq 2 rq 2 − p p q2 + 6
 μ = =σ β

2 1 2= β = +3
p p rq rq

⎛ p ⎞ r ⎛( ) p ⎞ r r⎛ p ⎞
 M t = t φ( )t = it P t( ) =⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎝ 1 1− qe ⎠ ⎝ − qe ⎠ ⎝ 1− qt ⎠

POISSON DISTRIBUTION

e−μμ x

 p x( ) = =x 0,1,2,... μ > 0
x!

2 1 1
 μ = =μ σ μ β1 2= β = 3 +

μ μ

 M t( ) = −exp ⎡μ σ( )et i= −⎣ 1 ⎤ ( )t exp ⎡μ( )e t 1 ⎤ P( )t = −exp[ ]μ⎦ ⎣ ⎦ ( )t 1

it

1
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RECTANGULAR (DISCRETE UNIFORM) DISTRIBUTION

 p x( ) = =1 / n x 1,2,...,n n ∈N

n n+1 2 1
 2 − 3 ⎛ 4 ⎞μ = σ β=

2 12
1 2= =0 β ⎜3 −

5 ⎝ n2 ⎟−1⎠

e et n( )1− t e eit ( )1− nit t t( )1− n

 M t( ) = ( )1 t
φ( )t = ( ) P t( ) =

n e− n e1− it n t( )1−

CONTINUOUS DISTRIBUTION FORMULAS

Probability density function, f (x)
Mean, μ
Variance, σ 2

Coefficient of skewness, β1

Coefficient of kurtosis, β2

Moment-generating function, M t( )
Characteristic function, φ( )t

ARCSIN DISTRIBUTION

1
 f x( ) = 0 1< <x

 x x( )1−

1 1 3
 μ = =σ β2 0

2 8
1 2= β

2

BETA DISTRIBUTION

Γ +α β
 f x

( )( ) = xα −1( )1 0− <x β−1 x < α β( ) 1 , > 0
Γ Γ( )α β

α 2 1β
 = 2 αβ ( )β α− +α +

μ σ = β =
α β+ ( )α β+ +2 (α β + ) 1

1 αβ ( )α + +β 2

3 1( )α β+ + ⎡2(α β+ )2 +αβ (α β+ − 6 ⎤
⎣ )⎦ β2 =

αβ ( )α β+ + 2 3(α β+ + )
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CAUCHY DISTRIBUTION

1
 f x( ) = − ∞ < x a< ∞ − ∞ < < ∞ b > 0

⎛ ⎛ x a− ⎞ 2⎞
b ⎜1+ ⎜ ⎟

⎝ ⎝ b ⎠ ⎟⎠

 μ, ,σ β2
1 2, β , M t( ) do not exist. φ( )t a= −exp ⎡⎣ it b t ⎤⎦

CHI DISTRIBUTION

x en x− −1 2/2

 f x( ) = n / 2
x n−1
≥ ∈0 N( )2 /Γ( )n 2

⎛ n +1⎞ ⎛ n + 2⎞ ⎡ ⎛ n +1⎞ ⎤
2

Γ⎜ ⎟ Γ⎜ ⎟ Γ⎝ 2 ⎢ ⎜ ⎟
2 ⎠ 2 ⎝ ⎠ ⎝ 2 ⎠ ⎥

 μ = σ = − ⎢ ⎥
⎛ n ⎞ ⎛ n ⎞ ⎛ n ⎞Γ Γ ⎢ Γ ⎥
⎝ 2 ⎠ ⎝ 2 ⎠ ⎝ 2 ⎠⎣⎢ ⎦⎥

CHI-SQUARE DISTRIBUTION

( )e x− −x / 2 ν / 2 1

 f x( ) =
/ 2

x N≥ ∈0
2 /ν ν

Γ( )ν 2

2 12 1
 μ = =ν σ 2 2ν β1 2= 2 /ν β = 3 + M t( ) = ( )1 2− t −ν / 2

, t <
ν 2

 φ( )t i= −( )1 2 t −ν / 2

ERLANG DISTRIBUTION

 f x( ) 1= ≥xn x− −1 /

n n 1 !
e β x 0 0β > n ∈N

β ( )−

2 2 2 6
 μ = =n nβ σ β β1 2= β = 3 +

n n

− −
 M t( ) = −( )1 1β φt

n n( )t = −( βit)
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EXPONENTIAL DISTRIBUTION

 f ( )x e= ≥λ λ−λx x 0 0>

1 1
 μ = =σ 2 λβ β= 2 9= M t( ) =

λ λ 2 1 2 λ − t

λ
 φ( )t =

λ − it

EXTREME-VALUE DISTRIBUTION

 f x( ) = −exp ⎡ e− −( )x α β/ ⎤ − ∞ < < ∞ − ∞ < < ∞ >⎣ ⎦ x α β 0

2 π β2 2

 μ = +α γβ , γ  ….5772  is Euler’s constant σ = .
6

 β1 2= =1.29857 β 5.4

( ) 1
 M t = Γeα t ( )1 ,− βt t < φ β( )t = eα itΓ(1− it)

β

F DISTRIBUTION

Γ +[ ]( )ν ν1 2 / 2 ν ν ν/ 2

( )
1 2 /2

1 ν2 ( ) f x x ν1 /2 −1( )ν ν2 1+ − +( )x ν ν1 2 /2

Γ Γ( )ν ν1 2/ 2 ( / 2)

 x > ∈0 ν ν1, 2 N

ν 2 2ν ν2 ( )
 μ 2

, 3ν σ 2 2 1 2+ −ν= 2 ≥ = , 5
2 1 2 2 4

2 ν ≥
ν − 2 ν ν( )− −(ν ) 2

2

( )2 2ν ν1 2+ − 8(ν2 − 4)
 β1 = , 7ν

ν ν( )6 2ν ν 2 ≥
1 2 − +1 2 −

12 ⎡( )ν ν2 − −2
2 ( 2 14) +ν (ν1 +ν2 −⎣ 2)(5ν − 22 ⎤

 β
2 )⎦

2 = +3 , 9ν ≥
ν ν 2

1 2( )− −6 8(ν2 )(ν1 +ν2 − 2)
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⎛ ν
M 1 ⎞ G t( )ν ν, ,

(t) does not exist. φ ⎜ t⎟ = 1 2

⎝ ν2 ⎠ B( )ν ν1 2/ 2, / 2

B(a,b) is the beta function. G is defined by

 (m + −n 2 ,) (G( )m n,t = m − 2)G(m − 2,n,t) + 2itG(m,n − 2,t), m,n > 2

 mG( )m, ,n t = −( )n 2 G(m n+ 2, − 2,t) − 2itG(m n+ 2, − 4,t), n > 4

 nG( )2,n,t = +2 2itG(2,n − 2,t), n > 2

GAMMA DISTRIBUTION

 f x( ) 1= xα β− −1 /e x x ≥ >0 ,α β 0
β ααΓ( )

= =2 2 2 ⎛ 2 ⎞
 μ αβ σ αβ β1 2= β = 3 1⎜ + ⎟α ⎝ α ⎠

 M t( ) = −( )1 1β φ− −α α
t ( )t = −( βit)

HALF-NORMAL DISTRIBUTION

2θ
 f x( ) = −exp ⎡ ( )θ θ2 2x /  ⎤ x ≥ >0 0

 ⎣ ⎦

1 2  − ⎞ 1 4 − 3 2
2 ⎛ − −4 12

 μ = =σ ⎜ ⎟θ θ 2
β⎝ 2 ⎠ 1 =

θ 3
β2 =

4θ 4

LAPLACE (DOUBLE EXPONENTIAL) DISTRIBUTION

1 ⎡ x −α ⎤
 f x( ) = −exp ⎢ ⎥ − ∞ < x < ∞ − ∞ <α β< ∞ > 0

2β ⎣ β ⎦

 μ = =α σ 2 22 0β β1 2= β = 6

eα αt ie t

 M t( ) = t
1 1β 2 2

φ( ) =
− t + β 2 2t
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LOGISTIC DISTRIBUTION

exp ( )x α β/
 f x( ) = [ ]−

β α( )β
2

1+ −exp[ ]( )x /

 −∞ < x < ∞ − ∞ <α β< ∞ − ∞ < < ∞

β 2 2 
 μ = =α σ 2 β β1 2= 0 = 4.2

3

 M t( ) = =eα αt i  β βt csc( )t φ( )t e t βit csc( βit)

LOGNORMAL DISTRIBUTION

 f x( ) 1 ⎡ 1 2 ⎤= −exp 1n x − μ
2 σ σx ⎢⎣ 2 2 ( ) ⎥⎦

 x > −0 0∞ < μ σ< ∞ >

 μ = =e eμ σ+ +2 2/2 σ 2 2μ σ ( )eσ 2

−1

 β e e
2 2

1 = +( σ σ2 1)( − )1/2 2 4 32 2 2

β σ σ σ
2 = ( )e + 2( )e + 3( )e − 3

NONCENTRAL CHI-SQUARE DISTRIBUTION

⎡ 1
exp − +x λ⎢ ( )⎤ ∞ ( )

( ) ⎣ ν λ+ −
2 ⎥⎦ x j j

f x ∑
/ 2 1

 =
2ν / 2 ν 2 j

j 0
⎛ ⎞

= Γ + j j2 !⎝ 2 ⎠

 x > >0 0λ ν ∈N

2 ( ) 8 3( )ν λ+ 12 ν λ+ 4
 μ ν λ σ = 2 2

( )= + ν + λ β1 = β
ν λ2

3/2 2 = +
( )

3
+ ( )ν λ+ 2

2

λ
 ( ) ⎡M t( ) = −1 2t − −ν ν/ 2 t ⎤ ⎡ λ ⎤

exp φ⎢ ⎥ ( ) ( it
t i= −1 2 t) / 2

exp
⎣1 2 ⎢− t ⎦ ⎣1 2− it ⎥⎦
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NONCENTRAL F DISTRIBUTION

( )+
i ⎞ ν i

2 + +ν ν ⎛ 2 /ν
⎛

1 2

1 2 1 ⎞ ( )2 2i+ −ν1 // 2 −λ 2e ⎛ λ ⎞
∞ Γ⎜ ⎟ ⎜ ⎟ x ⎜⎝ ⎠ ⎝ ν ⎠ ⎝ ⎠

 f x( ) =∑
⎟

2 2

( )ν ν+ ⎛ ν ⎞ 2 /i+ +ν ν 2

i ⎛Γ 2 1⎛ 2i ⎞
1 2

=0 ⎞ Γ⎜ ⎟ν1! 1⎜ + 1 x⎝ ⎠ ⎝ ⎟2 2 ⎠ ⎝ ν2 ⎠

 x > ∈0 ,ν ν1 2 N λ > 0

( )ν λ
 μ 1 2+ ν

= , ν2 > 2( )ν ν2 1− 2

σ 2 ν λ+ +2
2 ν λ+ ν 2 ν λ+ 2ν 2

 
( ) ( ) ( )= 1 1 2 − 1 2

2
, 4ν( )ν ν2 2− −2 4( ) 2 >

v1 ( )ν ν− 2
2 2

2
1

NONCENTRAL T DISTRIBUTION

νν δ/ 2 ∞
e− 2

+ + ⎛ ⎛ i/ 2 i 1⎞ ⎞
/ 2

⎛ ν δ i 2x2 ⎞
 f x( ) =

⎛ ν ⎞ ( )( )
ν +

ν+1 /2
x2 ∑Γ⎜ ⎟⎝ ⎜ ⎟ ⎜ ⎟2 !⎠ i

i 0
⎝ ⎠ ⎝ ν + x2 ⎠Γ⎝ 2 ⎠ =

 −∞ < x < ∞ − ∞ <δ ν< ∞ ∈N

⎛ ν − r ⎞Γ ν r /2

⎝ ⎠ r
2 ( )2 1r − !δ 2 1r−

 μr r′ = c , ,ν > =r c2 1r− r i− ,

2r /2 ⎛ ν ⎞ ∑ 2 1i r! !i 2Γ⎝ i 1
( )− −( )

2 ⎠ =

∑
r ( )2 !r δ 2i

 c2r = r i− , 1r = ,2,3,...
2 !i r i !2

i 0
( ) ( )−

=

NORMAL DISTRIBUTION

1 ⎡ ( )x − μ 2 ⎤
 f x( ) = −exp ⎢σ 2 σ 2 ⎥

⎢⎣ 2 ⎦⎥

 −∞ < x < ∞ − ∞ < μ σ< ∞ > 0

2
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⎡ 2 2
2 2 t σ ⎤

 μ = =μ σ σ β1 2= 0 3β = M t( ) = exp ⎢μt + ⎥
⎣ 2 ⎦

⎡ t2 2σ ⎤
 φ( )t i= −exp ⎢μ t ⎥

⎣ 2 ⎦

PARETO DISTRIBUTION

 f ( )x a= ≥θ θθ θ/ 0x +1 x a > a > 0

θa a2

 μ , 1θ σ 2 θ= > = 2 , 2θ >
θ −1 ( )θ θ− −1 2( )

M(t) does not exist.

RAYLEIGH DISTRIBUTION

x x⎡ 2 ⎤
 f x( ) = −

2
exp ⎢ 2 ⎥ x ≥ =0 0σ

σ σ⎣ 2 ⎦

μ 2 2 ⎛   ⎞ ( ) − 3
 = =σ σ / 2 2σ 1− β =⎝ 4 4⎠ 1

⎛  ⎞ 3/2

1−⎝ 4 ⎠

3
2 −  2

β = 16 2

⎛  ⎞ 2

1−⎝ 4 ⎠

T DISTRIBUTION

⎛ ν +1⎞Γ⎜ ⎟⎝ ⎠ ⎛ ⎞ − +( )ν 1 /2

( ) 1 2 x2

 f x = + < x N< ν
 ν ν ⎜1 − ∞ ∞ ∈⎟⎝ ν ⎠Γ

2

2 ν
 μ = ≥0, ν σ2 = , 3ν β≥ = 0, 4

ν 2
1 ν ≥

−

6
 β2 = +3 , 5ν ≥

ν − 4
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⎛ ν ⎞ Γ ∞
⎝ eitz ν

2 ⎠
M(t) does not exist. φ( )t =

⎛ ν +1⎞ ∫ ( ) 1 /2
dz

Γ 1+
ν

z2 ( )+

⎜ ⎟⎝ 2 ⎠ −∞

TRIANGULAR DISTRIBUTION

⎧ 0 x a≤
⎪
⎪ 4 /( )x − −a ( )b a 2 a < x ≤ ( )a b+ / 2

 f x( ) = ⎨
⎪ 4 /(b − −x) ( )b a 2 ( )a b+ / 2 < x b<
⎪ 0 x b≥⎩

 −∞ < < <a b ∞

a b+ b a 12
 μ σ β2 ( )− 2

= = 0
2 24

1 2= =β
5

2
4 4( )at − ( / 2 −

2
e e/ 2 bt / 2 e eait bit / 2

 M t = − t
)( )

t b2 ( )a 2 φ( ) =
− t b2 ( )− a 2

UNIFORM DISTRIBUTION

1
 f x( ) = a x b≤ ≤ − ∞ < < <a b ∞

b a−

a b+ ( )2
2 b a− 9

 μ = σ β= 0
2 12

1 2= =β
5

e ebt − at −( ) e ebit ait

 M t = φ( )t =( )b a− t ( )b a− it

WEIBULL DISTRIBUTION

α α
 f x( ) = ≥xα −1 ( )e− x /β xα 0 ,α β > 0

β

⎛ 1 ⎞ ⎡ ⎛ 2
 1 ⎟ 2 2 ⎞ ⎛ 1 ⎞ ⎤μ = Γβ ⎜ + σ β= Γ⎜1+ ⎟ − Γ2

⎢ ⎜1+ ⎟⎝ α ⎠ ⎣ ⎝ α α⎠ ⎝ ⎠ ⎥⎦
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⎛ 3 ⎞ ⎛ 1 ⎞ ⎛ 2 ⎞ ⎛ 1 ⎞Γ +⎜1 ⎟ − Γ3 1⎜ + ⎟ Γ +⎜1 ⎟ + Γ2 13 ⎜ + ⎟⎝ α α⎠ ⎝ ⎠ ⎝ α ⎠ ⎝ α ⎠
 β1 =

⎡ ⎛
3/2

2 ⎞
1 2 ⎛ 1 ⎞ ⎤Γ +⎜ ⎟ − Γ ⎜1+⎢ ⎟

⎣ ⎝ α α⎠ ⎝ ⎠ ⎥⎦

⎛ 4 ⎞ ⎛ 1 ⎞ ⎛ 3 ⎞ ⎛ 1 ⎞ ⎛ 2 ⎞ ⎛ 1 ⎞Γ +⎜1 ⎟ − Γ4 1⎜ + ⎟ Γ +⎜1 ⎟ + Γ6 12 4⎜ + ⎟ Γ +⎜1 ⎟ − Γ3 1⎜ + ⎟⎝ α α⎠ ⎝ ⎠ ⎝ α ⎠ ⎝ α ⎠ ⎝ α ⎠ ⎝ α ⎠
 β2 =

⎡ ⎛ 2 ⎞ 2 ⎛ 1 ⎞ ⎤
2

Γ +⎜1 ⎟ − Γ 1+⎢ ⎜ ⎟ ⎥⎣ ⎝ α α⎠ ⎝ ⎠ ⎦

VARIATE G 1ENERATION TECHNIQUES

 1. Notation

∫
t

Let h t( )and H ( )t = h(τ τ) d  be the hazard and cumulative hazard 

functions, respectively, f0or a continuous nonnegative random variable T , 

the lifetime of the item under study. The q x 1 vector z contains covariates 

associated with a particular item or individual. The covariates are linked to 

the lifetime by the function Ψ( )z , which satisfies Ψ( )0 1= Ψand ( )z ≥ 0 for 

all z. A popular choice is Ψ( )z e= β′z , where β is a q x 1 vector of regression 

coefficients.

The cumulative hazard function for T  in the accelerated life model (Cox 

and Oakes 1984) is

 H t( ) = ΨH0 (t (z)),
where H  is a baseline cumulative hazard function. Note that when 0
z = ≡0, H H0 . In this model, the covariates accelerate (Ψ >( )z 1) or decel-

erate (Ψ <( )z 1), the rate at which the item moves through time. The pro-
portional hazards model

 H t( ) = Ψ (z)H0 ( )t

increases (Ψ >( )z 1) or decreases (Ψ <( )z 1) the failure rate of the item by 

the factor Ψ ( )z  for all values of t.
 2. Variate generation algorithms

The literature shows that the cumulative hazard function, H(T), has a 

unit exponential distribution. Therefore, a random variate t corresponding 

to a cumulative hazard function H(t) can be generated by

 t = −H u−1 ( )log( )

1 From Leemis, L. M. (1987), “Variate Generation for Accelerated Life and Proportional Hazards 

Models”, Operations Research, 35(6), Nov-Dec 1987.
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where u is uniformly distributed between 0 and 1. In the accelerated life 

model, since time is being expanded or contracted by a factor Ψ( )z , variates 

are generated by

H u−1 log
t 0 ( )− ( )
=

Ψ( )z

In the proportional hazards model, equating − log( )u Hto (t) yields the 

variate generation formula

= 1 ⎛ − log( )u ⎞
t H −

0 ⎜⎝ ( )z ⎟Ψ ⎠

H tT T >a ( ) = −H ( )t H (a) t > a

In the accelerate life model, where H t( ) = ΨH0 ( )t (z) , the time of the next 

event is generated by

H H−1
0

t =
( )0 ( )a zΨ −( ) log(u)

Ψ( )z

If we equate the conditional cumulative hazard function to − log( )u , the 

time of the next event in the proportional hazards case is generated by

t −1 ⎛ log( )u ⎞
= −H H0 ⎜ 0 ( )a

⎝ Ψ( )z ⎟⎠

γ
H t( ) = −e( /t α ) 1 0α γ> , > 0, t > 0

and inverse cumulate hazard function

) 1/
H y−1 ( ) = +α ⎡⎣log(y 1 ⎤

γ
⎦

Assume that the covariates are linked to survival by the function Ψ( )z e= β′z 

in the accelerated life model. If an NHPP is to be simulated, the baseline 

hazard function has the exponential power distribution with parameters 

α and γ , and the previous event has occurred at time a, then the next event 

is generated at time

 

 

 

 

 

 3. Example

 

 



183Statistical Methods for Data Analytics

= −( ) 1/γγ
 t e e−β ′z ⎡α ( )log aeβ α′z / log( )u ⎤ ,⎢⎣ ⎥⎦

where u is uniformly distributed between 0 and 1.

REFERENCES

Cox, D. R., and Oakes, D. (1984), Analysis of Survival Data, London: Chapman and Hall.
Leemis, L. M. (1987), “Variate Generation for Accelerated Life and Proportional Hazards 

Models”, Operations Research, 35(6), 892-894.
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6 Descriptive Statistics 
for Data Presentation

What you see is what the data says.

INTRODUCTION

Below is an extensive collection of formulas, equations, models, and templates for 

descriptive statistics for data presentation. The collection includes many familiar 

measures as well as not-often-used statistical measures.

SAMPLE AVERAGE

n
1

 x = x  
n∑ i

i=1

Application areas: quality control, simulation, facility design, productivity 

measurement

Sample calculations:
Given:

xi: 25, 22, 32, 18, 21, 27, 22, 30, 26, 20

n = 10

 ∑
10

xi = 25 + +22 32 +18 + 21+ + + + +27 22 30 26 20 = 243 

i=1

 x = =243 / 10 24.30 

SAMPLE VARIANCE

n
1

 s2 = x x−
2
 

n −1∑( )i

i=1

Application areas: quality control, simulation, facility design, productivity 

measurement

The variance and the closely related standard deviation are measures of the extent 

of the spread of elements in a data distribution. In other words, they are measures of 

variability in the data set.
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Sample calculations:
Given:

xi: 25, 22, 32, 18, 21, 27, 22, 30, 26, 20

n = 10

n − 1 = 9

10

 ∑xi = 25 + +22 32 +18 + 21+ + + + +27 22 30 26 20 = 243 

i=1

 x = =243 / 10 24.30 

S2 = −1/9{( )25 24.3
2 2

 + (22 − 24.3) + K + ( )32 − 24.3
2 = 1/9{182.10} = 20.2333 

Alternate formulas:

⎡
⎢
⎢ x 2

i −
( )∑

2 ⎤

S2 =
∑

xi ⎥
⎥n ⎢ ⎥ 

⎢ n −1 ⎥
⎢ ⎥
⎢⎣ ⎦⎥

⎡ 2

n x 2 ⎤
i i− x

 S2 ⎢
= ⎢

( )∑ ∑( ) ⎥
n n( ) ⎥ −1⎢ ⎥

⎣ ⎦

SAMPLE STANDARD DEVIATION

 s = s2  

Application areas: quality control, simulation, facility design, productivity 

measurement

The standard deviation formula is simply the square root of the variance. It is 

the most commonly used measure of spread. An important attribute of the  standard 

de viation as a measure of spread is that if the mean and standard deviation of a  normal 

distribution are known, it is possible to compute the percentile rank  associated with 

any given score. In a normal distribution,

• 68.27% of the data is within one standard deviation of the mean.

• 95.46% of the data is within two standard deviations of the mean.

• 99.73% of the data is within three standard deviations.

• 99.99% of the data is within four standard deviations.

• 99.99985% of the data is within six standard deviations (i.e., within 

Six Sigma).

}
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Figure 6.1 illustrates the deviation spread of a normal distribution. The standard 

deviation is used extensively as a measure of spread because it is computationally 

simple to understand and use. Many formulas in inferential statistics use the standard 

deviation.

SAMPLE STANDARD ERROR OF THE MEAN

s
 sm =  

n

Application areas: quality control, production planning, packaging, productivity 

assessment

The standard error of the mean is the standard deviation of the sampling distribu-

tion of the mean, where s is the standard deviation of the original distribution and 
n is the sample size (the number of data points that each mean is based upon). This 

formula does not assume a normal distribution. However, many of the uses of the for-

mula do assume a normal distribution. The formula shows that the larger the sample 

size, the smaller the standard error of the mean. In other words, the size of the stan-

dard error of the mean is inversely proportional to the square root of the sample size.

Skewness

n x∑
n

( )i − x 3

 Skewness = i=1

( )n n− −1 2( )s3
 

Undefined for s = 0 or n < 3

FIGURE 6.1 Sigma intervals in normal curve.
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Standardized Skewness

skewness
 Standardizedskewness =  

6

n

Kurtosis
n

n n( )+ −1 ∑( )xi x 4

 i 3 1n 2

Kurtosis 1 ( )−= = −  ( )n n− −1 2( )(n − 3)s4 ( )n n− −2 3( )

Undefined for s = 0 or n < 4

Standardized Kurtosis

Kurtosis
 Standardized kurtosis =  

24

n

Weighted Average

∑
n

x wi i

 Weighted average = i=1

∑
n  

wi

i=1

ESTIMATION AND TESTING

100(1 − α)%  CONFIDENCE INTERVAL FOR MEAN

s
 CI = ±x tn−1;α / 2  

n

100(1 − α)%  CONFIDENCE INTERVAL FOR VARIANCE

⎡ ( )n s− −1 2 ( )n s1 2 ⎤
 CI = ⎢ 2

,
χ χ 2 ⎥ 

⎣⎢ n n− −1;α α/ 2 1;1− / 2 ⎥⎦

100(1 − α)%  CONFIDENCE INTERVAL FOR DIFFERENCE IN MEANS

For Equal Variance

1 1
 CI = −( )x x1 2 ± tn n1 2+ −2;α / 2sp +  

n n1 2
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where

( )n s− +2 n s 2

 s 1 11 1( 2 2− )
p =   

n n1 2+ − 2

For Unequal Variance

⎡ s 2

= −( )
2 s ⎤

 CI ⎢ x x1 2 ± t 1 2
m;α / 2 + ⎥ 

⎣⎢ n1 n2 ⎦⎥

where

1 c2 ( )1− c 2

 = +  
m n1 −1 n2 −1

and

s 2
1

n
 c = 1

s 2 s 2  
1 + 2

n1 n2

100(1 − α)%  CONFIDENCE INTERVAL FOR RATIO OF VARIANCES

⎛ s 2
1 ⎞ ⎛ 1 ⎞ ⎛ s 2 1

 CI ⎟ ⎟s F2 ⎜ ⎟
1 ⎞ ⎛ ⎞

= ⎜ ,⎜  
⎠ ⎝ 2 ⎟ ⎜⎝ 2 n n1 2− −1, 1; α α/ 2 ⎠ ⎝ s F2 ⎠ ⎝ n n1 2− −1, 1; /2 ⎠

NORMAL PROBABILITY PLOT

The input data is first sorted from the smallest to the largest value to compute order 

statistics. A scatterplot is then generated where the axis positions are computed as 

follows:

 Horizontalposition = x( )i  

⎛ i − 3/8 ⎞
 Vertical position = Φ⎜ ⎟  ⎝ n +1/4 ⎠

The labels for the vertical axis are based upon the probability scale using the follow-

ing expression:

⎛ i − 3/8 ⎞
 100⎜ ⎟  ⎝ n +1/4 ⎠
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COMPARISON OF POISSON RATES

 n jj = numberof events insample  

 t j = lengthof sample j 

n
 Rateestimates: r j

j =  
t j

r
 Rate ratio:

1
 

r2

Test statistic:

⎛ ( )n n 1
n 1 2+ ⎞

⎜ 1 − −
2 2 ⎟

 z = max⎜ 0, ⎟  
⎜ ( )n n1 2+ ⎟
⎜ ⎟⎝ 4 ⎠

where z follows the standard normal distribution.

DISTRIBUTION FUNCTIONS AND PARAMETER ESTIMATION

BERNOULLI DISTRIBUTION

  p x=  

BINOMIAL DISTRIBUTION

x
  p =  

n

where n is the number of trials.

DISCRETE UNIFORM DISTRIBUTION

 â = min xi 

 b x = max i 

GEOMETRIC DISTRIBUTION

1
  p =  

1+ x
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NEGATIVE BINOMIAL DISTRIBUTION

k
  p =  

x

where k is the number of successes.

POISSON DISTRIBUTION

 β = x 

BETA DISTRIBUTION

⎡ x x1
 α ( )− ⎤= x ⎢⎣ s2

−1⎥ 
⎦

⎛
  x x( )1− ⎞β = −( )1 x ⎜ 1

s2
− ⎟  

⎝ ⎠

CHI-SQUARE DISTRIBUTION

If X1,…, Xk are k independent, normally distributed random variables with mean 0 

and variance 1, then the random variable, Q, defined as follows, is distributed accord-

ing to the chi-square distribution with k degrees of freedom.

∑
k

 Q = X 2
i  

i=1

The chi-square distribution is a special case of the gamma distribution and it is 

 represented as:

 Q  χ 2
k 

The distribution has one parameter, k, which is a positive integer that specifies the 

number of degrees of freedom (i.e., the number of Xis).

ERLANG DISTRIBUTION

α̂ = round (α̂ from Gamma)
    αβ =

x
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EXPONENTIAL DISTRIBUTION

ˆ 1β =
x

  
1

x =
β̂

Application Areas:
Common applications of the exponential distribution are for description of the 

times between events in a Poisson process, in which events occur continuously and 

independently at a constant average rate, such as queuing analysis and forecasting.

F DISTRIBUTION
  

2 4w w3 2−
 num d.f.: v̂ = ( )  

2 ( )   
s w − −2 4

2 (w ) − 2w2

 max( )1,2x
 den. d.f.: w =  

− +1 x

GAMMA DISTRIBUTION

⎛ arithmetic mean ⎞
 R = log⎜ ⎟  

⎝ geometric mean ⎠

If 0 < R ≤ 0.5772,

 α̂ = +( 2
R R−1 0.5000876 0.1648852 − 0.0544274 R  

or if R > 0.5772,

α
−

ˆ = +
1

 R R−1 2( )17.79728 11.968477 + R (8.898919 + 9.059950 R + 0.9775373 2  

 β = α /x 

LOGNORMAL DISTRIBUTION

μ ∑
n

1
  = log x

n
i  

i=1

n ∑
n

1
 α = ( )log xi − μ 

2

 
−1

i=1

)

R )
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p( )2
 Mean, ex μ α +  / 2  

2 2
 Standarddeviation, exp( )2μ α + −  ⎡exp(α ⎤

⎣ ) 1  ⎢ ⎦⎥

NORMAL DISTRIBUTION

 μ = x 

 σ = s 

STUDENT’S T

∑
n

x 2
i

 s2 = i=1  
n

2s2

 v =  
− +1 s2

TRIANGULAR DISTRIBUTION

 a = min xi 

 c = max xi 

 b x = −3 a − c  

UNIFORM DISTRIBUTION

 a = min xi 

 b x = max i 

WEIBULL DISTRIBUTION

n
 α̂ =  

⎡⎛ ⎞ a n ⎤
a

 ∑
n

1⎢ x x
 
log log ⎥⎜ ⎟⎝ β ⎠

i i i− x
⎢

i
⎥

⎣ =1

∑
i=1 ⎦

⎛ ⎞1/α̂n

⎜ x α̂
i ⎟

β̂ ⎜
∑

 = i=1 ⎟  ⎜ n ⎟
⎜ ⎟
⎜ ⎟⎝ ⎠
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CHI-SQUARE TEST FOR DISTRIBUTION FITTING

Divide the range of data into non-overlapping classes. The classes are aggregated at 

each end to ensure that classes have an expected frequency of at least 5.

Oi = observed frequency in class i 
Ei = expected frequency in class i from fitted distribution

k = number of classes after aggregation

Test statistic 

− 2
2 ∑

k ( )0 E
 x = i i

 
Eii=1

follow a chi-square distribution with the degrees of freedom equal to (k-1- # of esti-

mated parameters)

KOLMOGOROV–SMIRNOV TEST

i
D +

n = −max F x 
 { }( )

n
i

 

1 ≤ ≤i n

− i 1
Dn = −max F x 

i
 { }−( )

n  

1 ≤ ≤i n

 Dn = max{ }D D+ −
n n,  

where F x ( )i =  estimated cumulative distribution at xi.

ANOVA (ANALYSIS OF VARIANCE)

Notations
k = numberof treatments

nt = numberof observationsfor treatment t

n = =n k/ average treatmentsize

k

n =∑nt

t=1

x = th
i t i observation in treatment t

∑
n t

xi t

 xt = =treatment mean i=1  
nt
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n t

( )x xi t −
2

t

 s 2

∑
i i

t = =treatment var ance =1  
nt −1

∑
k

( )n st t−1 2

 MSE = =meansquareerror t=1  
⎛
⎜
⎝
∑

k ⎞
n kt ⎟ −

t=1 ⎠

⎛ k ⎞
 df = degreesof freedom for theerror term =⎜∑n kt ⎟ −  

⎝ t=1 ⎠

Standard Error

s 2

 
t

 
nt

Description of Equation: Standard error (pooled)
Formula:

MSE
  

nt

Interval Estimates

MSE
 xt ± M  

nt

where

Confidence interval

 M t= n k− ; /α 2 

Least significant difference (LSD) interval

1
 M t= n k− ; /α 2 

2

TUKEY INTERVAL

1
 M q=

2
n k k− , ; α  

where qn k− , ;k α = the value of the studentized range distribution with n − k degrees of 

freedom and k samples such that the cumulative probability equals 1−α .
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SCHEFFE INTERVAL

k −1
 M = F

2
k n− −1, k; α  

COCHRAN C-TEST

This follows F distribution with n − −1 and ( )n k1 ( −1) degrees of freedom.

Test statistic:

( )k C−1
 F =  

1− C

where

max s 2

 C = t

∑
k  

s 2
t

t=1

BARTLETT TEST

Test statistic:

M

 B = 10 ( )n k−  

k

 M n= −( )k log10 MSE −∑( )nt t−1 log 2
10 s  

t=1

The significance test is based on

M 1n 10
 

( )
2  

Xk

− −∑
k 1

1 ⎡ 1 1 ⎤ −

1+ ⎢ − ⎥
3 1( )k n⎣⎢ ( )t 1 N k

t=1
− ⎥⎦

which follows a chi-square distribution with k − 1 degrees of freedom.

HARTLEY’S TEST

max s 2
t

 H =
( )

 
min( )s 2

t
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KRUSKAL–WALLIS TEST

Average rank of treatment:

−
∑

nt

Ri t

 R 1
t = i=  

nt

If there are no ties, test statistic is

⎛ k
12 ⎞

 w = ⎜ ∑n R
2

t t ⎟ − +3 1( )n  
⎝ n

i=1 ⎠

Adjustment for ties:

Let uj = number of observations tied at any rank for j m= 1,2,3,...,  where m = 

number of unique values in the sample.

w
 W =

∑ ∑
m m  

u u3
j − j

1− j= =1 1j

n n( )2 −1

Significance level: W follows a chi-square distribution with k − 1 degrees of freedom.

FREIDMAN TEST

Xi t = observation in the i tth row, th column

i n= =1,2,... ..., t 1,2, k

R Xi t = rankof i t within its row

n = common treatment size (all treatment sizes must be the same for this test)

∑
n

 R Rt i= t  

i=1

average rank

∑
nt

Ri t

 R i 1
t = =  

nt

where data are ranked within each row separately.

Test statistic:

12S k( )1
 Q =

n k ( )k 2 31 ( )
−

− − ∑u −∑
 

u
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where

⎛
∑

k ⎞
2 n k2 ( )k +1

2

 S R= ⎜ i ⎟ −  
⎝ 4

t=1 ⎠

Q follows a chi-square distribution with k degrees of freedom.

REGRESSION

Notations
Y = vector of n observations for the dependent variable

X = n by p matrix of observations for p independent variables, including any 

constant term, if any

∑
n

Yi

 Y = i=1  
n

t-Values
b

 t =  
S b( )

Significance Level
t-Values follow the student’s t distribution with n − p degrees of freedom.

Adjusted R-Squared
⎛ n −1 ⎞

 1− 1 R2

⎜ ⎟⎝ n p− ⎠
( )−  

Standard Error of Estimate

 SE = MSE 

Predicted Values

 Y Xˆ = b 

Residuals
ˆ e Y= − Y 

Durbin–Watson Statistic

∑
n−1

( )e e 2
i i+1 −

 D = i=1
n  

∑e 2
i

i=1
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Mean Absolute Error

⎛ n ⎞
⎜ ei ⎟
⎝
∑

 
i=1 ⎠

 
n

Predicted Value

 Y Xˆ = b 

Standard Error of Predictions

ˆ S ( )Y = + −
diagonal elementsof MSE( )1 ( )′ ′1

 

Standard error of mean response

 ( )X −
S ( )Y′ = diagonal elementsof MSE (X′ ′X) 1 X  

Statistical Quality Control
k = numberof subgroups

nj = numberof observationsinsubgroup j

j k= 1,2,...,

xij = i jth observation insubgroup

Subgroup Statistics
Subgroup Means

∑
nj

xi j

 x i 1
j = =  

nj

Subgroup Standard Deviations

∑
nj

( )2
x xi j − j

 s i 1
j = =

( )  
nj −1

Subgroup Range

 R xj i= ≤max { }j 1 i ≤ nj − min{ }xi j 1 ≤ i ≤ nj  

X-Bar Charts

∑
k

n xi j

 x = j=1

k  

∑ni

j=1

X X X X
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⎛ k ⎞
⎜ n R
⎜ i j ⎟
⎝
∑

 R = j=1
⎟⎠

∑
k  

ni

j=1

∑
k

( )n sj j−1 2

 s j 1
p = =

∑
k  

( )nj −1

j=1

∑
k

1
 n = n  

k
i

j=1

Chart based on range:

 Upper Control Limit:  UCL = +x A2 R 

 Lower Control Limit:  LCL = −x A2 R 

Chart based on sigma:

3s
 UCL = +x p

 
n

3s
 LCL = −x p

 
n

Chart based on known sigma:

σ
 UCL = +x 3  

n

σ
 LCL = −x 3  

n

Capability Ratios
USL − LSL

 CP =  
6α 

1
 CR =  

CP
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⎛ USL − −x x LSL ⎞
 CPK = min⎜ ,

⎝ 3α α  ⎟  
3 ⎠

R Charts
 CL = R 

 UCL = D R4  

 LCL = Max( )0,D R3  

S Charts
 Control Limit:  CL = sP 

χ 2

 UCL = s
n−1;α

P  
n −1

χ 2
− α

 LCL = s
n 1;

P  
n −1

C Charts

 c u= =∑ j UCL c + 3 c  

 ∑n cj LCL = − 3 c  

where uj = number of defects in the jth sample.

U Charts

numberof defects inall samples ∑uj
 u =  

numberof units inall samples ∑nj

3 u
 UCL = +u  

n

3 u
 LCL = −u  

n

P Charts
numberof defective units

 p =  
numberof units inspected

=
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numbe ∑ p nr of defectives in all samples j j
 p =  

number of units in all samples ∑nj

3 1p p( )−
 UCL = +p  

n

3 1p p( )−
 LCL = −p  

n

NP Charts

d j
 p = ∑

∑
,  

nj

where dj is the number of defectives in the jth sample.

 UCL = +n p 3 n p( )1− p  

 LCL = −n p 3 n p( )1− p  

CuSum Chart for the Mean
Control mean = μ
Standard deviation = α
Difference to detect = Δ
Plot cumulative sums Ct versus t where

 C xt i= −∑
t

( )μ for t = 1,2,...,n 

i=1

The V-mask is located at distance

2 /⎡α β2 n 1− ⎤
 d = ⎢ 1n ⎥ Δ Δ⎣ α /2 ⎦

in front of the last data point.

Δ
 Angleof mast = 2 tan−1  

2

=
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Δ
 Slopeof the lines = ±  

2

TIME SERIES ANALYSIS

Notations
xt tor y t= =observationat time ,t 1,2,..., n

n = numberof observations

Autocorrelation at Lag k
c

 r k
k =  

c0

where

n k
1

 ck t= −∑
−

( )y y (y + −
n

t k y) 
t=1

and

⎛
∑

n ⎞
⎜ yt ⎟
⎝

 y = t=1 ⎠
 

n

1 ⎧ k−1 ⎫⎪ ⎪
 Standarderror = +⎨1 2∑r 2

n
v ⎬  

⎩⎪ v=1 ⎭⎪

Partial Autocorrelation at Lag k
θ k k is obtained by solving the following equation:

 r rj = +θ θ  
k1 j− −1 k 2 rj 2 +…+θ k k( )−1 rj k− +1 +θ k krj k−  

j k= 1,2,...,

1
 Standard error =  

n

Cross-Correlation at Lag k
x = input time series

y = output time series



204 Data Analytics

( ) c k
 r k

x y ( )
x y = =, k 0, 1± , 2± ,... 

s sx y

where

⎧ n k−

⎪ 1∑( )x x− − k
⎪ t ty y 2,...
⎪ n

( +k ) = 0,1,

=
 c k ⎨

t 1
x y ( ) =   

⎪ 1∑
n k+

( )x xt t− −(y −k y) k = −⎪ 0, 1,−2,...
n

⎩⎪ t=1

and

 S cx x= x ( )0  

 S cy y= y ( )0  

Box-Cox Computation

y + −λ 1
1

 yt
( )λ= 2

if λ
λ ( )λ − 1 0

1
1 g 1

>  

 yt = +g1 in( )y λ λ2 1f = 0 

where g = sample geometric mean (y + λ2 ).
Periodogram (Computed Using Fast Fourier Transform)
If n is odd:

 ( ) n ( )2 2 ⎡n −1⎤Ι f1 = +a b i = 1,2,...,
2

i i  ⎢⎣ 2 ⎥⎦

where

∑
n

2
 ai t= t tcos2 f

n
i  

t=1

n
2

 bi t= ∑ y tsin2 f
n

i  

t=1

i
 fi =  

n
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If n is even, an additional term is added:

⎛ 2n

( ) 1 ⎞
 Ι 0.5 = −n⎜ 1 Y

n∑( )t
t ⎟  

⎝ t=1 ⎠

CATEGORICAL ANALYSIS

Notations
r = number of rows in the table

c = number of columns in the table

fi,j = frequency in position (row i, column j)
xi = distinct values of row variable arranged in ascending order; i = 1,...,r
yj = distinct values of column variable arranged in ascending order; j c= 1,...,

Totals
c r

 R fj i= =∑ ∑j C j if j  

j= =1 1i

∑
r c

 N f= i j

i=1

∑  

j=1

Chi-Square
r c f E

 
( )χ 2 =∑ ij −

2

ij
 

Eiji=1

∑
j=1

where

R C
 E i j

ij = ~ χ 2
( )

N
r c− −1 1( ) 

Lambda

⎛ c ⎞
⎜ f R
⎜∑ max, j − max ⎟
⎝ j=1

⎟⎠
 λ =  with rows dependent 

N R− max

⎛
∑

r ⎞
⎜ f Ci,max − max ⎟
⎝

 λ = i=1 ⎠
 with columns dependent 

N C− max
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⎛ r

⎜ f fi j∑
c

,max + −max, Cmax − R
⎜ max

⎝
∑

⎞
⎟
⎟⎠

 λ = i=1 j=1
 when symmetric ( )2N R− −max Cmax

where

fi max =  largest value in row i
fmax j =  largest value in column j
Rmax = largest row total

Cmax = largest column total

Uncertainty Coefficient

U R( ) + −U ( )C U (RC )
 UR =  with rows dependent 

U R( )

U R( ) + −U ( )C U (RC )
 UC =  with columns dependent 

U C( )

⎛ U R( ) + −U ( )C U (RC )⎞
 U = 2⎜ U R( ) U ( )C ⎟  when symmetric 

⎝ + ⎠

where

r
R

U ( ) R
 R = −∑ i i

log  
N N

i=1

c

( ) ∑C j jC
 U C = − log  

N N
j=1

r c
f f

 U ( )RC = −∑ ij
og

ij f
N

i

∑ l for > 0 
N

ij

=1 j=1

Somer’s D Measure

2( )P P
 D C D−

R =  with rows dependent  
⎛ c ⎞
⎜ N C2 2− ⎟
⎜⎝

∑ j

j=1
⎟⎠

2( )P P−
 DC = C D

 with columns dependent 
⎛ r ⎞
⎜ N R2 2− i ⎟
⎝

∑
i=1 ⎠
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4( )P P
D = C D−

  when symmetric 
⎛ r ⎛ c ⎞
⎜ N R2 2− i ⎟ + −⎜ N 2 2C ⎟
⎝

∑ ∑
⎞

i 1 ⎠ ⎜ j

= =j 1
⎟⎝ ⎠

where the number of concordant pairs is

r c

 P fC i=∑ j fhk

i=1

∑  

j=1

∑
h i<
∑
k j<

and the number of discordant pairs is

 P fD i=∑
r

j

=
∑

c

i 1 j=1

∑  

<
∑ fhk

h i k j>

Eta

SS
 E RN

R = −1 with rowsdependent 
SSR

where the total corrected sum of squares for the rows is

⎛
∑

2
r c ⎞

⎜ x fi ij ⎟
r c ⎜ ⎟⎝ =

∑
− ⎠

 SSR i= −∑ x f2 i 1 j 1

ij  
N

i=1

∑
j−1

and the sum of squares of rows within categories of columns is

⎛ ⎞
⎜ ⎟

c 2r

 SS x f2RN ∑⎜ ⎛ ⎞ ⎟
= ⎜

i ij
⎟

r ⎜ ⎟  

j=1 ⎜
x f2 ⎝

∑
1 ⎠⎜

⎜⎝
∑

⎟
i=

i ij − ⎟
C j ⎟

i=1 ⎠

SS
 E 1

CN
C = −  with columns dependent 

SSC

where the total corrected sum of squares for the columns is

⎛ ⎞
⎜ y f ⎟

r c ⎜∑
r

∑
2

c

∑∑
i ij

i 1 j 1
⎟⎝

SS = −2 = = ⎠
 C ix fij  

N
i=1 j=1
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and the sum of squares of columns within categories of rows is

⎛ ⎛ ⎞ 2
c ⎞

⎜ ⎜ y 2f ⎟ ⎟

∑
r ⎜ j

c ⎝
∑

= −∑
⎜ j i ⎟ ⎟⎠

 CN ⎜ 2 =
SS yi f

j 1
j

⎜ i j ⎟  
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7 Data Analytics Tools for 
Understanding Random 
Field Regression Models*

A model is worth a thousand narratives.

INTRODUCTION

We consider here random field regression (RFR) models in which an observed out-

come variable is modeled as the realization of (typically Gaussian) process in many 

dimensions. Such models are popular choices for modeling data from a number of 

different areas of application; for example, the well-established kriging approach in 

geostatistics (Handcock and Stein, 1993; Nychka, 1999) exploits random fields to 

model the spatial pattern of mineral ore deposits. Kriging has also been applied in 

fields such as agriculture and hydrology (Cressie, 1991) and environmental monitor-

ing (Federov, 1996). More recently, RFR models have been proposed for use with 

computer experiments (Sacks et al., 1989; Currin et al., 1991; Welch et al., 1992; 

Schonlau et al., 1996; Aslett et al., 1998; Chang et al., 1999; Simpson and Mistree, 

2001; van Beers and Kleijnen, 2003; Allen et al., 2003). Empirical evidence has shown 

that RFR models can generate accurate predictions at unobserved sites. However, a 

drawback is that RFR models are difficult to interpret and to understand, especially 

in contrast to conventional regression models. In this chapter, we show that there are 

actually some close ties between random field and conventional regression models, 

and we develop some simple data analytic tools that can aid in understanding RFR 

models. We hope that our results will enhance the understanding of RFR models and 

encourage their use in applications.

We focus here in particular on computer experiments, in which a complex phe-

nomenon is explored by varying the inputs to a computer code that simulate the 

phenomenon. Such simulations are commonplace in many areas of science and 

engineering, because the great increase in computing power makes it increasingly 

cost-effective to replace actual laboratory experimentation with computer code. Our 

ideas are also valid for geostatistical and environmental applications; however, we 

think they are most useful for the high-dimensional input spaces that typify com-

puter experiments.

* This chapter is a reprint of a 2004 journal publication by David M. Steinberg and Dizza Bursztyn with 

the following citation:
 Steinberg, David M. and Dizza Bursztyn (2004), “Data Analytic Tools for Understanding Random 

Field Regression Models,” Technometrics, 46:4, 411-420, DOI: 10.1198/004017004000000419 

(https://doi.org/10.1198/004017004000000419)

https://doi.org
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Computer experiments have many features in common with physical experiments. 

The goal is typically to relate one or more output characteristics to the inputs to the 

code, and it is important to choose an effective design, as reflected in the sets of input 

conditions to the program. An important difference between computer experiments 

and physical experiments is that the former have no random variation—a replicate 

run with the same set of input conditions generates exactly the same output value. 

The lack of random error in computer experiments has provided some of the motiva-

tion for adopting RFR models for data analysis.

We describe the RFR model and some particular versions that have been proposed 

for use with computer experiments. In Section 3, we describe two representative 

examples of the use of RFR models. In Section 4, we demonstrate how RFR models 

are related to Bayesian regression models. We exploit that correspondence in Section 

5 to develop some simple data analytic tools that expose the regression model that is 

hidden away in a random field model. We apply our ideas to several examples, includ-

ing an experiment with 20 input variables and 50 observations analyzed by Welch 

et al. (1992). In Section 6, we provide some additional theory to show why the data 

analytic tools work. In Section 7, we show how our ideas relate to some special RFR 

models, and in Section 8, we provide final comments and discussion.

RFR MODELS

RFR models are used to model the relationship between a vector x of input variables 

and an output Y(x). We limit the discussion here to the case of a single output, though 

some applications will have many output variables. The general model is

∑
k

 Y ( )x f= +β β0 s s ( )x + Z ( )x + ε ( )x  (7.1)

s=1

in which the fs ( )x  are fixed regression functions, the βs are fixed unknown parameters, 

ε( )x  is a random error term, and Z(x), the departure from the linear model, is a random 

field with mean 0 and with covariance function C x( )1 2,x . In computer experiments 

and some other applications, the random error term is superfluous. In many settings, 

it is assumed that Z(x) has a constant variance σ2 so that C x( )1 2, ,x = σ 2R( )x1 2x , with 

R x( 1 2, x ) the correlation function for the field. The fixed regression terms, with the 

exception of the constant, are often not included in the model. For example, Welch et 

al. (1992) stated that including additional regression terms does not, in their experi-

ence, lead to better predictors. We explore this point further in Sections 5 and 7.

For these stochastic models, the response function Y(x) is estimated by the best linear 

unbiased predictor (BLUP) (Robinson, 1991; Currin et al., 1991; Morris et al., 1993). 

Given a design D x= { }1, ,... xn  and data Y ′
D n= ⎡⎣Y x( )1 , ,... Y x( )⎤⎦ , the BLUP of Y ( )x  is

ˆ Y ( ) ′ β βˆx f= ( )x + ′ 1 ˆc ( )x C− ( )YD − F  (7.2)

where β = ( )F C′ ′− −1 1F F C−1YD is the generalized least squares estimator of β, and we 

use the following notation:
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 f x( ) = [ ]1, f1( )x ,..., fk ( )x ′

⎛ f x′( )1 ⎞
⎜ ⎟

 F = ⎜  ⎟
⎜ ⎟
⎜⎝ f x′( )n

⎟⎠

is the n x k( 1+ ) expanded regression matrix.

 C = ≤{ }C ( )xi j, 1x i n≤ 1 ≤ j n≤

is the n × n covariance matrix of ( )Z x( )1 , ,... Z x( )n  and

 c( )x C= ⎣⎡ ( )x1,x ,...,C ( )xn ,x ′⎤⎦

is the vector of covariances between the Z’s at the design sites and the estimation 

input x.

We make the following remarks on this model:

 1. Any parameters in the covariance function can be estimated by maximum 

likelihood or cross-validation.

 2. If constant variance has been assumed, then all of the covariances in the 

foregoing equations can be replaced by correlations.

 3. If there is no random error term, then the BLUP interpolates the observed 
ˆdata, Y ( )x Yi i= ( )x .

 4. If there are random errors with constant variance σ2, then the BLUP has the 

same basic form, but throughout the equations, the matrix C is replaced by 

the matrix. M C= +σ 2I .

The covariance function plays an important role in the estimator. One general form 

of covariance function that has been used in a number of applications (see Welch 

et al. 1992; Aslett et al. 1998) has followed the constant variance assumption with a 

correlation function given by

= ∏ ( )
 R x( )x { }−λ α j

1 2, exp j jx1 − x2 j  (7.3)

where λ j ≥ 0 are constants related to the importance of the respective factors in pre-

dicting the output, and α ( )j ∈(0,2] are constants related to the smoothness of the 

output with respect to the respective input factor.

Other covariance models have also been suggested. Stein (1989) pointed out 

that the covariance in Eq. (7.3) has a sharp transition from analytical sample paths 

when α ( )j = 2 to completely nondifferentiable sample paths when α ( )j < 2. He sug-

gested an alternative class of correlation functions that do not have this property. 

Cressie (1986) described several correlation functions that are popular in kriging.
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TWO EXAMPLES

Welch et al. (1992) analyzed data from a simulated experiment with 20 input factors, 

each defined on the interval [−.5, .5]. The response was determined largely by six of 

the input factors from the formula 5X X12 / 1( )+ +1 5( )X4 − X 2
20 + X5 1+ 40X 3

9 − 5X19.  

The remaining factors made small linear contribution. They used an RFR model 

with the correlation function in Eq. (7.3). The estimated correlation function param-

eters are shown in Table 7.1.

Welch et al. (1992) presented a plot of average effects for the six dominant factors 

computed from the data and the correlation function. The plot showed the quadratic 

dependence on both X4 and X20 and the cubic dependence on X19. We apply our meth-

ods to this example in Section 5.

Schonlau et al. (1996) described an experiment to study a computer model of a 

solar collector. The goal was to relate the heat exchange effectiveness to six input 

factors (inverse wind velocity, slot width, Reynolds number, admittance, plate thick-

ness, and radiative Nusselt number). The engineers who designed the code desired 

to obtain a parametric model for the relationship. As a first stage, the random field 

model with correlation function (7.3) was fitted to the data. Plots of the main effects 

against each of the six input factors were examined and used to suggest nonlinear 

parametric functions relating the heat exchange effectiveness to each input. An addi-

tive model with these parametric functions was then fitted to the data.

BAYESIAN REGRESSION MODELS AND RANDOM FIELDS

In this section, we develop some relationship between RFR models and Bayesian 

regression. Consider the model

 Y ( )x f= +β β0 Σ s s ( )x + ε( )x  (7.4)

Here we have dropped the term Z(x), which was a key component of the random field 

model. In most applications, we will want to compensate for the lack of this term by 

adding more regression functions fs ( )x  to the model.

TABLE 7.1
Estimated Correlation Parameters for a 20-Factor, 50-Run Experiment

Factor λ̂ α̂
1 .021 2.00

4 .036 2.00

5 .000085 2.00

12 .011 2.00

19 .0030 1.70

20 .030 2.00

All others 0 0
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A Bayesian treatment of the regression model now proceeds by assigning prior 

distributions to the coefficients. We make the prior assumptions

 E{ }βs = 0 (7.5a)

 var( )β σ= 2 2
s sτ  (7.5b)

and the βs  are independent. The constant scaling factor σ 2 in Eq. (7.5b) is the vari-

ance of the experimental error, if that term is included in the model. Otherwise, it is 

an arbitrary constant. Typically, we will want to assign a vague prior distribution to 

the constant term using the well-known method of letting τ 2
0 → ∞ (see, e.g., Lindley 

and Smith, 1972). We may also want to assign vague priors to some other coefficients.

Separate the summation of regression functions into two parts, with all terms that 

have vague priors in the first sum and all terms that have proper priors in the second 

sum.

∑
k K

 Y ( )x f= +β β0 s s ( )x + ∑ βs sf ( )x + ε( )x  (7.6)

s=1 s k= +1

We denote the second sum by Z x( ) and observe that it has a probability distribu-

tion induced by the prior assumptions about the regression coefficients. For any 

x, {E Z(x)} = 0, and for any pair of points x1 and x2, the covariance of the sums is

{ }
K

 E Z x( )1 2Z x( ) = =C (x1,x2 ) σ τ2 2∑ s sf ( )x1 2fs (x ) (7.7) 

s k= +1

The Bayesian model thus leads directly to an RFR model. The particular form of the 

covariance structures is a consequence of the set of regression functions included in 

the model and the prior variances of the coefficients. Within the Bayesian paradigm, 

one can even include an infinite number of regression functions, provided that the 

terms with vague prior variances generate a regression matrix F that has full column 

rank and that the sum in Eq. (7.7) converges whenever x1 2= x .

DATA ANALYSIS: FINDING THE ASSOCIATED REGRESSION MODEL

In this section, we develop a simple data analytical tool that enables us to discover 

the Bayesian regression model associated with a given RFR model. Essentially, we 

reverse the flow of ideas in the previous section, in which we took a regression model 

as our starting point and derived a random field model from it.

Our methods are driven by the following simple idea. Suppose that we take the 

covariance function in Eq. (7.7) and evaluate it at each pair of data points, generating 

an n × n covariance matrix. We can write that matrix in the form

= ∑
K

 C fτ 2
s s fs′  (7.8)

s k= +1
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where f fs s= ( )( )x1 , ,... fs ( )xn
′. We then exploit the fact that the expansion in Eq. (8) 

is similar in form to a spectral decomposition of the covariance matrix.

Our data analysis approach is comprised of three steps:

 1. Compute the n × n covariance matrix for the design points [or the correla-

tion matrix if Z x( ) has constant variance].

 2. Compute the eigenvalues and eigenvectors of the covariance matrix.

 3. For the leading eigenvalues, use plots and regression analysis to find out 

how the associated eigenvectors are related to the input factors. Each eigen-

vector has length n, corresponding to the n data sites in the design. We treat 

each eigenvector as if it were a data vector and related it to the input factors.

The method assumes that the covariance function is fully known. In practice, one 

would first estimate any unknown parameters in the covariance function and then 

apply the method. Input factors that do not affect the covariance function [e. g., input 

factors for which λ j = 0 in Eq. (7.3)] should not be included in step 3.

We also point out that the correspondence between Eq. (7.7) and the spectral 

decomposition of the covariance matrix (7.8) is not perfect. First, Eq. (7.7) may include 

many terms, whereas the spectral decomposition will include exactly n. Second, the 

eigenvectors of the covariance matrix must be orthogonal, whereas the functions 

in Eq. (7.7) (even, say, the first n) will not generally be orthogonal. Moreover, the 

orthogonality of these vectors depends not only on the functions themselves, but 

also on the particular choice of design points. Nonetheless, we find that the spectral 

decomposition of the covariance matrix is often dominated by a small number of 

eigenvalues and that the leading eigenvectors are related to simple functions of the 

input factors. (We give further theoretical support for this observation in Section 6.) 

Thus, investigation of the leading eigenvalues and eigenvectors often provides a great 

deal of insight into an equivalent Bayesian regression model.

We now present several examples to illustrate the foregoing analysis. In all of the 

examples, we use the correlation functions in Eq. (7.3) with only a constant term in 

the fixed-effects regression model. We note that our methods are general and can be 

applied to any correlation or covariance function. We have applied the methods to 

the family of correlation functions proposed by Stein (1989) with results similar to 

those reported here.

Example 1

We begin with the simple case of a single input factor studied in a 50-run design 
with one observation located at the midpoint of each of 50 equal-width bins in 
the interval [−1, 1]. We consider the class of correlation functions in Eq. (7.3) with 
α = 2 and λ = .05 values that have been reported in empirical studies (Welch et al., 
1992). Figure 7.1 is a semilog plot of the eight leading eigenvalues, which decline 
rapidly, with most of the weight on just the first few eigenvalues. The correla-
tion matrix for this example is a Toeplitz matrix, and the exponential behavior of 
the eigenvalues is known from theoretical results (see, e.g., Tilli, 1999). Figure 7.2 
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FIGURE 7.1 The eight leading eigenvalues of the correlation matrix from a single factor 

(50-run design).

FIGURE 7.2 The four leading eigenvectors from the correlation matrix of Example 1, as 

function of the design input x.
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shows the four most important eigenvectors for this case. The leading eigenvector 
is essentially constant, and the following eigenvectors correspond almost perfectly 
to linear, quadratic, and cubic polynomials on [−1, 1]. Subsequent eigenvectors 
continue this pattern. Thus, we conclude that the FRF model, over the range of 
the data, is roughly equivalent to a Bayesian polynomial regression, with the coef-
ficients of high-degree terms downweighted heavily.  
Changing the parameters in the correlation functions (7.3) affects both the rate at 
which the eigenvalues decline to 0 and the weight on the leading eigenvalues. 
We repeated our analysis for λ = .01,.05,.5,.95 and α = 1,1.8,2. Table 7.2 presents 
results for the six largest eigenvalues in each case. Our conclusions can be sum-
marized as follows:

 1. The leading eigenvectors in all cases are roughly polynomials of increas-
ing degree.

 2. As λ increase the first eigenvalue decreases and the eigenvalues decay 
more slowly to 0, which means that the model is more complex, with 
more weight on higher degree polynomial terms.

 3. As α decreases, the eigenvalues decay much more slowly to 0, which 
means that the model becomes more complex, with more weight on the 
higher degree terms in the polynomial model.

Example 2

Now consider an example with four factors, each limited to the interval [−1, 1], 
with the same λ and α for each factor. The design is a 50-run Latin hypercube 
(McKay et al.,  1979). Figure 7.3 is a semilog plot of the eigenvalues when α = 2 
and λ = .05. The leading eigenvector is very nearly constant. Plotting the follow-
ing eigenvectors against the input factors is not very revealing in this example. 
Some simple regression analysis helps explain why. We fitted regression models, 

TABLE 7.2
The Six Largest Eigenvalues for a One-Factor, 50-Run Latin Hypercube 
Experiment for ll == ..0011,, ..0055,, ..55,, ..9955 and for αα == 1, 1.8, 2

λ α 1 2 3 4 5 6

.01 2 49.6699 .3292 .0009 0 0 0

.05 2 48.4082 1.5705 .0210 .0002 0 0

.50 2 38.6189 9.9307 1.3284 .1144 .0072 .004

.95 2 33.0830 13.1859 3.1551 .5087 .0610 .0058

.01 1.8 49.6755 .3015 .0140 .0043 .0017 .0009

.05 1.8 48.4292 1.4443 .0809 .0219 .0090 .0046

.50 1.8 38.4356 9.4297 1.5503 .3160 .1099 .0526

.95 1.8 32.5806 12.6858 3.3369 .8153 .2569 .1131

.01 1 49.6686 .2011 .0506 .0226 .0127 .0082

 .05 1 48.3764 .9735 .2510 .1124 .0635 .0408

.50 1 36.9457 6.9043 2.2580 1.0699 .6174 .4007

.95 1 29.4151 9.6032 3.7916 1.9107 1.1310 .7434
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FIGURE 7.3 A semilog plot of the eigenvalues of the correlation matrix from a four-

factor experiment with a 50-run design and a Gaussian correlation function.

TABLE 7.3
R2 Statistics from the Regressions for v36–v49 (the 15 Leading Eigenvectors, 
Excluding the First) on the Input Factors

(1) (2) (3)

Eigenvector (a) (b) (c) (a) (b) (c) (a) (b) (c)

49 .9992 .9993 .9993 .9567 .9608 .9630 .9876 .9887 .9905

48 .9992 .9992 .9993 .9527 .9537 .9644 .9825 .9879 .9903

47 .9994 .9994 .9995 .9543 .9589 .9703 .9802 .9920 .9929

46 .9992 .9993 .9994 .9417 .9489 .9660 .9051 .9797 .9832

45 0 .1813 .9995 .0049 .1704 .9734 .0827 .9165 .9228

44 0 .0382 .9998 .0097 .1047 .9749 .0015 .9370 .9388

43 0 .0582 .9996 .0132 .1020 .9700 .0138 .8480 .8681

42 0 .2993 .9996 .0047 .2842 .9717 .0024 .8592 .8637

41 0 .4518 .9996 .0126 .6065 .9675 .0072 .0506 .1226

40 0 .2949 .9993 .0059 .3325 .9513 .0080 .0804 .2225

39 0 .5556 .9989 .0001 .2604 .9542 .0104 .0344 .2122

38 0 .6780 .9977 .0019 .6470 .8229 .0047 .0741 .1995

37 0 .7848 .9988 .0093 .5559 .7309 .0019 .0159 .2152

36 0 .6525 .9983 .0107 .3383 .5400 .0033 .0266 .3248

Note: The results are given for the following cases: (1) λ = .05 and α = 2, (2) λ = .5 and α = 2, and  

(3) λ = .05 and α = 1. The R2 statistics are computed for three different models: (a) linear model, 

(b) linear model with pure quadratics, and (c) full quadratic model.

with each of the four input factors as linear explanatory variables, to the next four 
eigenvectors. Table 7.3 [column (a), variables 46–49] gives the R2 statistics from 
those regressions for the following cases: (1) λ = .05 and α = 2; (2) λ = .5 and α = 2; 
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and (3) λ = .05 and α = 1. All of the R2 statistics are above .9, and most are above 
.95. For case (1), they are all above .99. The conclusion is that the leading four 
eigenvectors span almost the same linear space as the linear components of the 
four factors. Using the same parameter values for each factor leads to a situation 
where each of these linear terms is “nearly” an eigenvector, but with very similar 
eigenvalues. As a result, the leading eigenvectors are essentially linear combina-
tions of the linear factor terms.

The subsequent eigenvectors are nearly orthogonal to the linear factor effects 
and are related to second-order terms, either pure quadratics in the input factors 
or two-factor interactions. Columns (b) and (c) give the R2 statistics from regres-
sions on linear effects and pure quadratics [column (b)] and a full second-order 
model [column (c)]. There are ten pure quadratics and two-factor interactions, so 
we proceed to analyze the next ten eigenvectors. In case (1), we find a perfect 
correspondence. Indeed, the leading 15 eigenvectors match up almost perfectly 
to a second-order polynomial with the second-order coefficients downweighted. 
In case (2), we also find a good fit for seven of the next ten eigenvectors using 
 second-order terms; however, the fit for the next three eigenvectors is less accu-
rate. In both of these cases, comparison of columns (b) and (c) shows that the 
two-factor interactions have a more prominent role in this model than the pure 
quadratics. In case (3), with α = 1, we find four eigenvectors with good fits from 
regressions on linear and pure quadratic terms, but adding two-factor interactions 
is of little value for any of this set of ten eigenvectors. Thus, use of α = 1 corre-
sponds to a model with more emphasis on additive complexity in the input factors 
but less emphasis on interactions. (See also Stein, 1999, section 2.11, which com-
ments that the random field is “locally almost additive” when α = 1.)

Our results help explain the finding of Welch et al. (1992) that there is little 
benefit in adding first-order terms in each factor to their RFR model. Any first-
order dependence is effectively included in the random field part of the model, so 
adding fixed regression terms as well is simply redundant. Moreover, our results 
show that the constant term is also included in the random field model and so also 
could be dropped, leaving a model with only the random field part and no fixed 
regressors.

Example 3

The use of RFR model is often justified on the grounds that these models provide 
good predictors. An important issue, raised by an associate editor, is that the pre-
diction function will depend on the data from the simulator, not just on the model 
parameters. The following example illustrates that the predictor is in fact a com-
bination of the potential of the random field model, which our method explores, 
and the data.

Suppose that the true response function is a simple low-degree polynomial 
in the input variable x1. Will the predictor also be a low-degree polynomial as 
a function of x1? We generated one-factor and three-factor designs (Latin hyper-
cubes) with 20 points and computed the predictor, using the correlation function 
with λ = .5 and α = 2 for all factors. For the three-factor designs, we assumed no 
dependence at all on the other factors.

With one factor only, the model potential includes, as seen in Example1, a rich set 
of low-degree polynomials. We carried out this exercise with polynomials through 
degree 4 and found that the predictor matched the true function almost perfectly.
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With three factors, the predictor does depend on the model potential that our 
methods investigate. If the covariance function is estimated, then ideally, the esti-
mation procedure should produce a covariance function that does not depend at 
all on the two superfluous factors. In that case, we have a one-factor model and 
the foregoing results again show that the predictor will almost perfectly match the 
true function. However, if all of the factors are treated symmetrically in the covari-
ance function, the situation is different. Here, as seen in Example 2, the potential 
model space is dominated by linear terms in each of the three factors (the “real” 
factor and the two inert factors) and then quadratics and two-factor interactions. 
When the dependence on X1 is linear, and hence in the model space, the predictor 
is almost perfectly linear in X1 as well. If the dependence on X1 is cubic, then the 
predictor still picks up the cubic trend, but plots of Ŷ versus X1 for fixed settings 
of X2 and X3 vary as X2 and X3 are changed. If the dependence is quartic, then the 
predictor fails to pick up the trend, and plots of Ŷ versus X1 vary substantially as 
X2 and X3 are changed.

Example 4

We consider here a model with different values of λ for each factor and a common 
value of α = 2. We used λ = .01 for X1, λ = .04 for X2, λ = .16 for X3, and λ = .64 for 
X4. Thus, X4 should be the most important factor, followed by X3, X2, and X1. The 
design, as in Example 2, is a 50-run Latin hypercube.

The six largest eigenvalues are e50 = 32.26, e49 = 9.85, e48 = 3.08, e47 = 
1.67, e46 = 1.09, and e45 =.88. The leading eigenvector is once again a constant. 
We fitted first-order regression models for each of the next four eigenvectors. The 
regression coefficients and R2 statistics are presented in Table 7.4. For v47 and v46, 
linear regression on the four input factors was not effective. However, adding qua-
dratic terms in X3 and X4 increased R2 to .976 for v47. The model for v46 requires 
quadratic and cubic terms in X3 and X4, reaching R2 of .983. The higher order terms 
in X4 and the interaction of X3 with X4 were very important in the explanation of 
v46 and v47. This example illustrates the crucial role of the scale parameters in the 
correlation function in the associated regression model. The general form of the 
correlation function alone does not determine the regression model.

TABLE 7.4
Regression Coefficients and R2 Statistics from a First-Order Regression 
Model for the Eigenvectors v46–v49, with λ = .01 for X1, λ = .04 for X2, 
λ = .16 for X3, and λ = .64 for X4

Explained Eigenvector V46 V47 V48 V49

R2 .1158 .0210 .9648 .9816

Constant .0032 .0182 .0049 .0012

X1 Coefficient .0258 −.0021 −.0002 .0096

X2 Coefficient .0765 −.0045 .0028 .0045

X3 Coefficient .0027 −.0345 .2395 -.0118

X4 Coefficient −.0125 −.0003 .0188 .2407

Note: α = 2 for all of the input variables.
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Example 5

Here we analyze the example from Welch et al. (1992) that we described in Section 3.  
We generated a 50-run Latin hypercube design for 20 factors (the same type of 
design use in the original article) and used the estimated correlation function to 
compute the correlation matrix for our 50 design points. Figure 7.4 shows the 50 
eigenvalues on a log scale. The dominant eigenvalue is equal to 49.16 and cor-
responds to an eigenvector that is almost perfectly constant. Then there is a group 
of five eigenvalues ranging from .02 to .32. The regression analyses in our step 3 

ˆinclude only the six factors, 1, 4, 5, 12, 19, and 20, that had positive values of λ. 
The results are summarized in Table 7.5 and show that the group of five eigenvec-
tors is explained perfectly by linear regressions. The largest weight is placed on 
factors 4 and 20, which have the largest estimated scale parameters and dominate 
the first two eigenvectors (see Table 7.5). Factor 5, which has by far the smallest 

ˆvalue of λ among the six active factors, plays almost no role at all in the regres-
sions. So these five eigenvectors are equivalent to linear regression on factors 1, 
4, 12, 19, and 20.

The remaining eigenvalues are all less than .002. We also modeled the eigen-
vectors for the largest of these eigenvalues by regression using only factors 1, 4, 12, 
19, and 20. First-order regression models produce very poor fits, with R2 = .2, but 
quadratic regressions have R2 values of .9 and above. The first eigenvector in this 
group is most closely associated with X 2

19, X1 X
2

4, X1 X20, and X4 . The second eigen-
vector is most closely related to X4 X20 and X 2

19, with smaller coefficients for X1 X4, 
X  X , X 2, and X 2

1 20 4 20. A slightly better fit is obtained (with R2 increasing from .90 to 
.93) by adding a linear effect for factor 5 and a cubic effect for factor 19. (Following 
the previous example, the low exponent for factor 19 suggests that higher order 

FIGURE 7.4 A semilog plot of the eigenvalues of the correlation matrix from the 20-factor 

experiment.
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TABLE 7.5
Regression Coefficients and R2Statistics from a First-Order Regression Model 
for the Eigenvectors v45–v49 on the Six Active Factors

Explained Eigenvector v45 v46 v47 v48 v49

R2 .999 1.000 1.000 1.000 1.000

x1
.083 .071 .484 .002 −.083

x4 Coefficient −.035 .157 .124 .251 .397

x5 Coefficient −.003 0 0 0 0

x12 Coefficient −.054 −.504 .037 .084 .003

x19 Coefficient .501 −.014 −.011 .010 .002

x20 Coefficient −.063 .197 −.083 .422 −.198

Note: The constant terms in the regressions were all 0 (to three decimal places) and are not shown.

terms will be most useful for this factor.) The coefficients of these additional terms 
are similar to those for the four weaker effects listed earlier. The next eigenvector 
is most closely related to X1 X20, X4 X20, and X1 X4. Adding a linear effect for factor 
5 improves the fit. 

The regression shows that further effects of most importance are the pure qua-
dratic effect of factor 19 and the quadratics associated with factors having expo-
nent 2 and large-scale factors (especially factors 4 and 20). Lesser effects are the 
linear term for factor 5 and the pure cubic for factor 19. Thus, the RFR corresponds 
to a Bayesian regression model that emphasizes the linear terms in the five main 
factors with lesser weight to certain higher order terms and the linear effect of 
factor 5.

The plots of Welch et al. (1992) showed that the fitted model does a good job 
of picking up the cubic dependence on factor 19 and the quadratic dependence 
on factors 4 and 20, despite the fact that the model itself places much more weight 
on the linear effects of these factors.

RELATING EIGENVECTORS TO REGRESSION FUNCTIONS

In this section, we sketch some theoretical ideas that suggest why the eigenvectors 

of a covariance function in an RFR model should be related to simple functions of 

the input factors from an associated Bayesian regression model. In fact, these ideas 

are essentially a discrete analog of the integral equations that are used to derive 

the Karhunen–Loève expansion of a stochastic process (see, e. g., Yaglom (1987, 

section 26.1).

We proceed from the regression model and covariance function in Eqs. (7.6) and 

(7.7), with the additional assumption that the regression functions fs ( )x  are orthonor-

mal with respect to a suitable weight function w x( ), that is, f xs ( ) f1 ,( )x w( )x dx = δ s t. 

Also, we note that the dominant terms in the regression mo
∫
del (i. e., those with large 

prior variances) will be simple functions like low-degree polynomials. Let 

(
C be the 

n × n matrix C x( )i j,x ) i = =1, ,... ...n, j 1, ,n. We would like to show that simple 
i j, ,
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functions fs ( )x  included in the regression model are “approximately” eigenvectors of 

C in the sense that if ( f fs s= ( )x1 , ,... fs ( )xn )′, then cf fs s≈ λ s. Note that

∑ ∑
n n

 ( )Cfs = =Cv u, fs u, C ( )xv ,xu fs (xu ) (7.9)
v

u= =1 u 1

The right side of Eq. (7.9) can be considered a discrete approximation to an inte-

gral over the design region with respect to a weight function w x( ) that reflects 

the density from which the design points have been sampled. For Latin hyper-

cube design, a standard recommendation for computer experiments, Owen (1994) 

derived detailed results on such approximations, with the weight function a uni-

form density. Good approximation results, again with a uniform density, will also 

hold for the good lattice point designs proposed by Fang (1980) (see also Fang 

et al., 2000). Simple functions like low-degree polynomials and low-frequency 

trigonometric functions have small total variation, and the results of Neidereiter 

(1992) show that the approximations will then be especially accurate. Applying 

the integral approximation gives

( )Cfs ≈ ∫C xv u,x fs xu w x du xuv ( ) ( ) ( )

= σ τ2 2

 
∫ ( )∑ t tf x( )v f xt ( )u fs ( )xu uw( )x dxu

= σ τ2 2∑ t tf x( )v ∫ f xt ( )u fs ( )xu w( )xu dxu

= σ τ2 2
t sf x( )v

 = σ τ2 2∫ ( )∑ t tf x( )v f xt ( )u fs ( )xu w( )xu dxu

 = σ τ2 2∑ t tf x( )v ∫ f xt ( )u fs ( )xu w( )xu dxu

 = σ τ2 2
t sf x( )v . 

The last equality derives from the fact that the functions fs ( )x  are orthonormal with 

respect to the weight function w x( ).

We thus conclude that the dominant functions in the series expansion (i.e., those 

with large prior variances), evaluated at the design points, should be nearly parallel 

to the main eigenvectors of the covariance matrix C. This property should hold, in 

particular, when the dominant functions have small total variation.
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SOME SPECIAL RANDOM FIELD MODELS

In this section, we explore the analogy between Bayesian regression and RFR models 

for two special cases. First, we show that the Gaussian correlation function [i.e., Eq. 

(7.3) in the case where α = 2] corresponds exactly to a Bayesian regression model 

with damped polynomials. Then we show how a Bayesian model for trigonomet-

ric regression leads to an RFR model in which the covariance function is a spline. 

Further expansions similar to those derived here can be found for one-dimensional 

random fields in Yaglom(1987) and Federov (1996).

GAUSSIAN COVARIANCE AS DAMPED POLYNOMIAL REGRESSION

The correspondence between the Gaussian RFR model and polynomial regression fol-

lows from the results of Steinberg (1985, 1990). Consider first the case where there is 

a single input factor. Let H xs ( ) denote the Hermite polynomial of degree s and define

( ) 1/
 H x*

s s( ) =
2

H x / 2 / ( )2s s!

The sequence of polynomials H x*
s ( ) is orthonormal with respect to the standard nor-

mal density, so that if Z N (0,1), then

 E H{ }* *
s t( )Z H ( )Z = δ s,t

Define a damped version of the polynomials by

( ) * ⎧ wx2 ⎫
 J xs s= −H ( )x exp⎨ ⎬

⎩ 2(1+ w ⎭

for 0 < W < 1.

Now assume that the random field can be represented by a series expansion

∞

 Z x( ) =∑βsJs ( )x ,

s=0

in which the higher degree polynomials are downweighted by assuming a priori that 

E{ }βs = 0, that var( )β σ 2
s = ws  (where w is the same number used in the damping 

term), and that the βs’s are independent. Under these assumptions, Z(x) is a stochastic 

process with covariance function

∑
∞

 C ( )x1 2,x = σ 2 3w J xs s( 1 2)J x( )
s=0

w
 = σ 2 2( )

⎧ ⎫⎪ ⎪
1 1− −w / 2exp⎨− ( ) ( )x x− 2

2 1− 1 2
w⎩⎪

2 ⎬
⎭⎪
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The second equality follows from the application of Mehler’s formula (Watson, 1933) 
w

and is the same as Eq. (7.3) with α = =2, λ ( ), and an appropriate matching 
2 1− w2

of the variances. Thus, this particular version of the model proposed by Welch et al. 

(1992) is equivalent to a Bayesian regression model that uses damped polynomials 

and downweights the terms of high degree. Figure 7.5 presents the plots of J x1( ) and 

J x2( ) for λ = =.2(w .3508), a case of rather weak damping. Note that within the unit 

interval, these functions are very similar in form to the second and third eigenvectors 

in the first example of Section 5.

We now extend these computations to the general case in which there are 

p input factors x1, ,... x jp and α ( ) = 2 for all j. First, we observe that the correla-

tion function (7.3) for the RFR model in this case is obtained by multiplying the 

respective one-di

{ }
mensional correlation functions for each of the factors. Let 

p

R xj j( )1 2, ex j = −xp λ ( )2

j jx1 − x2 j . Then R x( )1 2, ,x =∏ Rj (x1 2j jx ). From the 
j=1

preceding result for the one-dimensional case,

∞

 R x , ws
j j( )1 2x j =∑ j J xs j( 1 2)J xs ( j )

s=0

where .5w wj j/ ( )1− =2 λ j. Hence,

FIGURE 7.5 Plots of J1(x) and J2(x) for λ = .2 (w = .3508).
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∏
p ∞

 R( )x ,x = ∑ws
1 2 j J xs j( )1 2J xs ( j )

j=1 s=0

The terms that result from multiplying the p series are damped multivariate polyno-

mials that have the general form

⎛ ⎞
 ⎜∏w Js j( )

j ⎟ ( )x J (x )...J x J
⎜ ⎟ s s(1) 11 (1) 21 s( p) ( )1p s( p p) 2(x )
⎝ j ⎠

where d = Σ js j( ) is the degree of the polynomial. Following the same arguments 

as in the univariate case, we can also obtain this correlation function by adopting a 

model of the form

 z( )x g= Σθu u ( )x

where the functions g xu ( ) have the general form ∏ J xs j( ) ( )j  and make a priori assump-

tions that θu  N w( )0, ∏ s j( )
j  and are independent of one another. (See Steinberg, 

1990, for more details on the foregoing model.) 

TRIGONOMETRIC REGRESSION AND SPLINE COVARIANCE

Spline functions have become a popular form of nonparametric regression estima-

tion. (For a detailed account, see Wahba, 1990; for a readable introduction, see Green 

and Silverman, 1994, especially the first two chapters.) Wahba (1978) showed that 

splines can be derived as Bayes estimates for a certain prior specification.

We illustrate the link between splines and trigonometric regression by combining 

the ideas of Wahba (1978) with results of Craven and Wahba (1979) and Steinberg 

(1985). We present in detail only the case of a single input factor defined on the 

interval [0, 1].

We begin with some necessary definitions and notation. Our regression model is 

built from scaled Bernoulli polynomials, k xj j( ) = B ( )x /j!. The Bernoulli polynomials 

are defined recursively on the interval [0,1], with B x0 ( ) = 1 and subsequent polynomi-
1

als defined by dBj j+1( )x / dx = +( )j 1 B ( )x  subject to ∫ B xj+1( )dx = 0. So, for example, 
0

k x1 2( ) = −x .5 and k ( )x = .5( )x2 − x +1/6 . We also define k x2 1m m( ),x2 = −k2 x1 x2 .

Craven and Wahba (1979) studied the model Y ( )x g= +( )x ε , with 

ε i  N ( )
1 i i

0,σ 2  a random error term, and showed that the spline estimate of g x( ) 

of degree 2m −1 can be expressed using the scaled Bernoulli polynomials. Scalar 

multiplication of the covariance terms of Craven and Wahba by σ 2 / ( )nλ  (in 

their notation) puts their result in the form of our Eq. (7.2) for data with random 

= ˆ ˆerrors, g xˆ( ) f ′( )x β β+ c′( )x M −1 ( )Y − F , where f ( )x k= ( )1, 1( )x ,...,km ( )x  and 

M C= +σ 2I . The covariance function used to compute the matrix C and the vector 
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c(x) is given by C x( ), (x 1)m 1
1 2 = − − k2 1m ( )x ,x2 / (nλ). The factor nλ serves as a vari-

ance ratio, scaling the random field covariance relative to the observational error. The 
ˆ −1

estimator of the fixed regression coefficients is β = ( )F M′ −1F + F M′ −1Y , where Δ  

is a matrix of all 0’s, except for a 1 in the lower right corner.

The estimator of Craven and Wahba (1979), with the foregoing adjustment, has 

exactly the form of our Eq. (7.2) except for the matrix Δ . The effect of this matrix is 

to shrink the coefficient of k xm ( ) toward 0 and amount to assigning a proper prior dis-

tribution to this coefficient with mean 0 and variance σ 2 /(nλ). Although Craven and 

Wahba included this term in the fixed-effects part of the model, our representation in 

Section 4 would have grouped it with the terms that go into defining the covariance 

kernel of the random field.

We thus obtain a representation for degree 2m −1 spline regression in which there 

are fixed polynomials for all degrees less than m and a covariance kernel of the form 

C ( )x , /x = ⎡σ λ2

⎣ (n )⎤ ⎡⎦ k x( )k x( ) + −⎣ ( 1)m−1
1 2 m m1 2 k2 1m ( )x ,x2 ⎤⎦. Known results for 

Bernoulli polynomials (Abramowitz and Stegun, 1964, pp. 804–805) demonstrate that

∞

(− =1)m−1k x2 1m ( ),x2 2 / (2π)2m∑⎡ ( )πj x cos(2π⎣cos 2 1 2j x )
j=1

 
+ πsin( )2 j x sin(2πj x )⎤ / j2m

1 2 ⎦

Comparing this term with Eq. (7.7), we see that we have a representation of this part 

of the covariance function in terms of a Bayesian trigonometric regression model.

To summarize the results, the following Bayesian regression model on [0,1] leads 

to spline regression estimation

∞

 ∑ ∑
m

Y ( )x k= +β β0 j j s( )x + [β1, cos( )2πsm + β2,s sin(2πsx)] + ε( )x
j= =1 s 1

with the following prior assumptions. We assign diffuse prior distributions to 

β0 1, ,... βm− . Then we assign proper priors to the remaining coefficients, with mean 

0 and variances given by var( )β σ 2
m = / (nλ) and var( )β σ 2

, 2
m

t s = π/ ( )2 s n2
( λ). 

Assume, a priori, that all the coefficients are independent. The prior distributions 

depend on σ , ,λ and n only via the combined term σ 2 / (nλ).

With more than one factor, the covariance function can be obtained as a product 

of the univariate functions. This, in turn, corresponds to modeling the response func-

tion as a product of univariate trigonometric regression.

DISCUSSION

We have demonstrated that there are some close links between FRF models for com-

puter experiments and Bayesian regression models. The RFR models that have been 

proposed for use with computer experiments often have dominant components that 

are simple regression functions, like low-degree polynomials. Studying the relations 
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to standard regression can help illuminate the results of an RFR model and improve 

interpretability of the results. We have provided a simple data analysis procedure that 

helps elucidate those links. The ability to generate simple parametric models that are 

nearly equivalent to an RFR model can be helpful in promoting understanding of the 

mechanisms relating the output of a computer experiment to the inputs. This goal 

led Schonlau et al. (1996) to the idea of using the RFR model to suggest a simple 

parametric form that would match the main-effects plots from the RFR model. They 

assumed that an additive model in the input factors would be a reasonable choice. 

Our work shows that many fitted RFR models also place considerable weight on 

interactions between factors. Thus, adopting an additive parametric model will not 

always be an effective substitute for an RFR model.

It is important that we also address a more general issue – namely, what methods 

of analysis are best suited to data from computer experiments. We think that, in gen-

eral, it will be necessary to use methods with a great deal of flexibility to automati-

cally scree out unimportant factors and to capture nonlinear relationships. The RFR 

model has shown in applications that it provides such flexibility. Other approaches to 

fitting high-dimensional data, like ACE (Breiman and Friedman, 1985) and MARS 

(Friedman, 1991), may also be useful.

Standard polynomial regression does not provide the same degree of flexibility 

for discovering key factors and complex relationships. Even with a modest number 

of input factors, the list of candidate polynomial regressions grows rapidly, and most 

analyses will not check terms above a rather low degree. Further, polynomials are 

by nature global functions and cannot capture local behavior as well as methods like 

the RFR model. So, we think it is wrong to interpret our results as saying that RFR 

models can be replaced by standard regression. On the contrary, we see our results 

as a means to provide more insight into RFR models that, we hope, will encourage 

their use.

Finally, it is important to add that any modeling should attempt to account for the 

knowledge and understanding of the scientists who are generating the data. Often 

these scientists will be able to provide a base model that captures the main depen-

dence on the input factors. The data analysis should reflect such knowledge. A natu-

ral approach is to use a model with two components like that in our Eq. (7.6). The 

first term would be a (possibly) nonlinear parametric model reflecting the scientist’s 

intuition, and the second would be a residual dependence term, modeled by a flex-

ible method like RFR. We think it desirable to make the covariance structure for the 

RFR orthogonal to the parametric model. Orthogonality can be accomplished using 

the ideas in Section 7 by basing the residual dependence on a series expansion using 

functions that are orthogonal to the parametric model.
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8 Application of DEJI 
Systems Model to 
Data Integration

If there is no integration, there is no implementation.

INTRODUCTION TO DATA INTEGRATION

In business and industry, the focus is often solely on the end product. This is okay, 

provided we recognize the multitude of other factors that can impinge on that end 

product. The premise of this chapter is that any end product is a function of data 

quality, data relevance, and data integration. As such, data quality is a requirement 

for product quality. The Design, Evaluation, Justification, and Integration (DEJI) sys-

tems model is presented as a viable technique for achieving data design, data evalua-

tion, data justification, and data integration. The systems technique is a combination 

of qualitative and quantitative tools.

Organizations collect enormous amounts of data every day, but only a miniscule 

part of it is organized into a meaningful and useful form. Our overindulgence with 

data has resulted in the emergence of all sorts of data-centric pursuits nowadays, 

thereby leading to new areas, such as data mining, big data, data analytics, data 

science, and data engineering. Data is a means to an end, not an end in itself. We 

should focus equally strongly on what the data is supposed to achieve concurrently 

with what the data ought to be. It is through this connectivity or integration that the 

appropriate data will be collected for the appropriate need with the appropriate level 

of input quality. The proverbial axiom of “garbage in, garbage out” is, indeed, appli-

cable to the linking of data quality to product quality. Therefore, extra efforts must 

be directed at improving data quality so as to improve data integration to achieve 

better product quality. Good data quality is the foundation for good product quality.

As a historical context, I recall the case of late Ross Perot, the billionaire busi-

nessman, who contested as an independent candidate for the 1992 and 1996 U.S. 

presidential election. His campaign was marked by his frequent use of data analytics 

and data presentation techniques to try and get his points across. While those tech-

niques were effective and welcome in his business world, they did not have much 

impact for him in the political world. He presidential bid quickly fizzled. He was 

probably way ahead of his time in terms of using data analytics in 1992. His meth-

odology was not in alignment with what the public wanted at that time. If he were to 

run today, he might enjoy more traction. The morale of this case example is that data 

must be integrated with the views and needs of the stakeholders.
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LEVERAGING THE INPUT-CONTROL-
OUTPUT-MECHANISM MODEL

The ICOM (Input-Control-Output-Mechanism) model is a good framework for the 

methodology proposed here. The components of the model are explained as follows:

 1. Inputs. These are the raw materials that are processed and transformed 

through some activity (e.g., sheet metal, timber, rubber).

 2. Controls. Serving as transformation agents, controls provide the influence, 

direction, guideline, or instruction for how the process is expected to work 

(e.g., quality standards, customer requirements, benchmarks).

 3. Outputs.: These are the results of the activity that are ready for transferring 

to the subsequent processes (e.g., final product, table, chair, widgets).

 4. Mechanisms. These are the drivers that cause the process to operate (e.g., 

people, tools, technology, machines).

Figure 8.1 shows an illustration of the ICOM model. A specific application of the 

ICOM model to a distance learning (DL) educational program is shown in Figure 8.2. 

Based on the lockdown and social distancing caused by COVID-19, DL became a 

popular mode of delivering educational contents. Thus, a DL example is aptly 

 relevant here. The inputs to the DL process include data in diverse categories, includ-

ing the instructor’s credentials, the student’s academic background, and the academic 

FIGURE 8.1 ICOM input–process–output framework.
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program objectives. If the fidelity of the input data is high, the potential will be 

higher for an efficient and effective process. Even though the primary output of the 

process is the student’s learning outcome, there are collateral desirable outputs, such 

as an enhancement of the instructor’s repertoire of expertise and an enhancement of 

the tools of instruction (e.g., software and hardware upgrades). The mechanisms in 

this example are people, instructional equipment, and teaching infrastructure (e.g., 

lecture projection system, online technology). Other application examples can be 

constructed using the construct of the DL example.  

DATA TYPES AND FIDELITY

There are four primary types of data as summarized in Table 8.1. Every pursuit of 

quality requires data collection, measurement, and analysis. Data on a nominal scale 

is the lowest level in the types of measurements. It classifies items into categories. 

The categories are mutually exclusive and collectively exhaustive; that is, the cat-

egories do not overlap and they cover all possible categories of the characteristics 

being observed. Gender, type of industry, job classification, and color are examples 

of nominal data. Ordinal scale is distinguished from a nominal scale by the prop-

erty of order among the categories. We know that first is above second, but we do 

not know how far above. Similarly, we know that better is preferred to good, but we 

do not know by how much. In data quality assessment, the A–B–C classification of 

items based on the Pareto distribution is an example of a measurement on an ordinal 

scale. The interval data scale is distinguished from an ordinal scale by having equal 

intervals between the units of measurement. The assignment of priority ratings to 

quality objectives on a scale of 0–10 is an example of data on an interval scale. Even 

though a quality factor may have a priority rating of zero, it does not mean that the 

quality has absolutely no significance to the customer. Similarly, the scoring of zero 

FIGURE 8.2 ICOM framework applied to DL example.
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on an examination does not imply that a student knows absolutely nothing about the 

learning objectives. Temperature is a good example of an item that is measured on 

an interval scale. Even though there is a zero point on the temperature scale, it is an 

arbitrary relative measure. Other examples of interval scale are IQ measurements 

and aptitude ratings. Ratio data scale has the same properties of an interval scale, but 

with a true zero point. For example, an estimate of zero-time unit for the duration 

of a task is a ratio scale measurement. Other examples of items measured on a ratio 

scale are cost, time, volume, length, height, weight, inventory level, and number of 

COVID-19 infections. Many of the data items measured in quality management will 

be on a ratio scale.

Most quality systems have both quantitative and qualitative data. Quantitative 

data require that we describe the characteristics of the items being studied numeri-

cally. On the other hand, qualitative data are associated with attributes that are not 

measured numerically. Most items measured on the nominal and ordinal scales will 

normally be classified into the qualitative data category, whereas those measured 

on the interval and ratio scales will normally be classified into the quantitative data 

category. The implication for quality management is that qualitative data can lead to 

bias in the control mechanism because qualitative data are subject to the personal 

views and interpretations of the person using the data.

DATA COLLECTION AND SANITIZATION

For it to serve its purpose as the foundation for product quality, data must be col-

lected, characterized, and sanitized for the intended purpose. It is essential to deter-

mine what data to collect for what purposes. Data collection and analysis are the 

basic components of generating information for production processes to produce 

acceptable quality of products. The key requirements and best practice for data col-

lection include the following:

• Choosing the data

• Collecting the data

• Doing a relevance check of the data

• Performing a limit check on the data

• Assessing the critical value of the data

• Coding the data for its appropriate use

TABLE 8.1
Data Types, Characteristics, and Examples

Data 
characteristicsType of data Examples

Nominal data Classification Color, Gender, Book type, Attitude

Ordinal data Order First, Second, Low, High, Good, Better, Rough, Smooth, Happy, Sad

Interval Relative IQ, Grade Point Average, Temperature, Wealth

Ratio True Zero Cost, Light Level, Voltage, Floor Space
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• Processing the data for effective use

• Setting a control limit for data total

• Checking the data for consistency

• Using the appropriate scale of measurement for the data

• Correctly using the information generated from the data

Choosing the data involves selecting data on the basis of their relevance and the level 

of likelihood that they will be needed for future decisions and whether or not they 

contribute to making the decision better. The intended users of the data should also 

be identified. Collecting the data identifies a suitable method of collecting the data as 

well as the source from which the data will be collected. The collection method will 

depend on the particular operation being addressed. The common methods include 

manual tabulation, direct keyboard entry, optical character reader, magnetic coding, 

electronic scanner, and, more recently, voice command. An input control may be 

used to confirm the accuracy of collected data. Examples of items to control when 

collecting data are described as follows:

 1. “Relevance Check” to determine if the data is relevant for the scenario in 

question

 2. “Limit Check” to ensure that the data is within known or acceptable limits

 3. “Critical Value” to identify boundary points (i.e., control limits) for data 

values

Coding the data refers to the technique used in representing data in a form useful for 

generating information. Data quality can be improved if effective data formats and 

coding are designed into the system right from the beginning. Processing the data is 

the manipulation of data to generate useful information. Different types of informa-

tion may be generated from a given data set depending on how it is processed. The 

processing method should consider how the information will be used, who will be 

using it, and what caliber of system response time is desired. Processing controls 

should be used in compliance with the following categories:

 1. “Control Total” is used to check for completeness of the processing by com-

paring accumulated results to a known total

 2. “Consistency Check” confirms if the processing is producing the same 

results for similar data

 3. “Scales of Measurement” is used to determine what scale to use for what 

purpose. For numeric scales, it is desired to specify units of measurement, 

increments, the zero point on the measurement scale, and the range of val-

ues. This is essential for improving data quality.

Using information involves people. Automated systems can collect data, manipulate 

data, and generate information, but the ultimate usage depends on people. Human 

decision is initiated by the availability of good data. Even when good data is avail-

able, the fidelity of the human using the information correctly may be in question. 

If the decision is flawed, sometimes we blame the information and the data that 
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generated the information. But the culprit may be the human factors aspect of the 

decision process. Therein lies human elements in the data–information–decision tri-

fecta. Some of the pertinent human elements include intuition, experience, training, 

interest, and ethics. The same piece of information that is used positively in one case 

may be used adversely in another case by the same human.

The timing of data is also very important for its eventual quality potential. The 

contents, level of detail, and frequency of data can affect the quality process. Data is 

processed to generate information. Information is analyzed by the decision maker to 

make the required decisions. Good decisions are based on timely and relevant infor-

mation, which in turn is based on reliable data. Some factors that are essential for 

promoting an environment that enables data quality include the following:

• Data summary

• Data processing environment

• Data policies and procedures

• Data momentum: static or dynamic

• Data frequency: often or rarely

• Data constraints

• Data compatibility

• Data contingency

With the foregoing issues, the methodology recommended in this edition of quality 

insights is the use of a systems framework for the data quality management.

DEJI SYSTEMS MODEL FOR DATA QUALITY

You don’t inspect quality into a product. Rather, you design quality into the data that 

produces the product. The DEJI model (Badiru, 2014) for systems engineering can 

be applied to the improvement of data quality. The model provides a structured frame 

work for data design, data evaluation, data justification, and data integration as illus-

trated in Figure 8.3. Notice that the elements in the steps of the DEJI model overlap 

to some extent. This is because the stages of the model are not uniquely or brusquely 

defined. Some elements from each stage can be found in some other elements at the 

other stages. What is important is to go through the sequential processes of model. 

The most important aspect is to ensure that the data usage is integrated into the nor-

mal and prevailing business scenarios of the organization. A disconnected data set 

will degenerate to a data set of poor quality. 

Data design. This involves the concept, requirements, format, logistics, and 

other desired properties for the data needs in question.

Data evaluation. This involves using a combination of qualitative and quantita-

tive tools and techniques to assess the characteristics of the data in question.

Data justification. This involves determining why the data may be needed at 

all. There can be a huge span of data collection, but not all of it may be 

needed. Justified data requires the investment of time and resources, which 

must be allocated within the organization’s resource allocation process.
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Data integration. Data utilization must be integrated into the normal and 

prevailing business practices of the organization. The SMART principle 

requires data activities that are specific, measurable, aligned, realistic, and 

timed. If these requirements are not met, the data will be out of sync with 

the organizational process and may become counterproductive.

DATA VALUE MODEL

The value of data is proportional to its quality. If quality is improved, the value will 

be improved. A quantitative assessment of data value can provide an insight into 

data quality. A technique that is applicable to data value analysis is the project value 

model (PVM), which is an adaptation of the manufacturing system value (MSV) 

model presented by Troxler and Blank (1989). The model provides a heuristic deci-

sion aid for comparing project alternatives. Value is represented as a deterministic 

vector function that indicates the value of tangible and intangible attributes that char-

acterize the project. In the case of data quality, we can represent quality as being a 

function of several attributes as shown below:

 Q = f A( )1 2, ,A ..., A p

FIGURE 8.3 Application of DEJI model to data quality management.
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where Q = =quality, A A( )1,..., An = vector of quantitative measures or attributes, and 

p = number of attributes that characterize the data value. Examples of attributes are 

data classification, throughput, capability, productivity, and cost. Attributes are con-

sidered to be a combined function of factors, x1, expressed as

∑
mk

 A xk m( )1 2, , ,x ... x k = fi ( )xi

i=1

where { }xi = set of m factors associated with attribute A kk ( )= 1,2,..., p  and fi = con-

tribution function of factor xi to attribute Ak. Examples of factors in a data set are 

data volume, collection reliability, storage flexibility, user fidelity, level of utilization, 

data security, and data retrieval functionality. Factors are themselves considered to 

be composed of indicators, vi, expressed as

∑
n

 xi n( )v v1 2, ,...,v = zi (vi )
j=1

where {v j} =  set of n indicators associated with factor xi (i m= 1,2,..., ) and zj = scal-

ing function for each indicator variable vj. Examples of indicators are data boundar-

ies, data access, retrieve time requirement, data complexity, and storage size. By 

combining the above definitions, a composite measure of the data value (DV) can, 

conceptually, be written as follows:

DV = f ( )A1 2, ,A ..., Ap

⎧⎡⎪ ∑ ∑
m1 2⎛

= f f⎢⎨⎢ i j⎜
i

⎜⎪ = =1 ⎝
∑

n ⎞ ⎤ ⎡ m ⎛ n ⎞ ⎤
z ( )v j ⎟ ⎥ , ,⎢

⎢ i j⎜ ( )v j

j
⎟ ⎜ ⎟⎠

∑ f z ⎟ ⎥ ...
⎥ ⎥

⎩⎣ =1 ⎦ ⎣ i=1
1

⎝ j 1 ⎠ ⎦2

 ⎡ k ⎫

∑
m ⎛

∑
n ⎞ ⎤

⎢ f zi j⎜ ( ) ⎪
v

⎢
i

⎜ j ⎟ ⎥ ⎬⎟ ⎥
⎣ =1 ⎝ j=1 ⎠ ⎪⎦ p ⎭

where m and n may assume different values for each attribute. A weighting measure 

to indicate the decision maker’s preferences may be included in the model by using 

an attribute weighting factor, wi, as shown below:

 PV = f ( )w1 1A , ,w2 A2 ...,wp pA

where

∑
p

 w wk k= ≤1, ( )0 ≤ 1

k=1

,
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In addition to the quantifiable factors, attributes, and indicators that impinge upon 

the overall DV, the human-based subtle factors should also be included in assessing 

overall quality of data. Some of such factors are as follows:

• Data communication

• Data cooperation

• Data coordination

DATA QUALITY CONTROL

Data quality control, in the context of product quality control, refers to the process 

of regulating or rectifying quality attributes to bring them within acceptable levels. 

Because of the volatility and dynamism often encountered in complex production 

systems, it is imperative to embrace the following data quality control practices:

• Recognize humans as drivers of quality.

• Influence the factors that create changes to the quality baseline.

• Ensure there is an agreement for request for data changes.

• Manage the actual changes when and as they occur.

• Monitor performance to detect and understand variances from the baseline.

• Prevent incorrect, inappropriate, or unapproved data changes.

• Use earned value technique (EVT) to track factors affecting data quality.

• Document and disseminate data status.

Human communication or lack thereof can affect data quality and, subsequently, 

product quality. Communication complexity increases with an increase in the num-

ber of communication participants (Badiru, 2008). The statistical formula of com-

bination can be used to estimate the complexity of communication as a function of 

the number of communication channels or the number of participants involved in 

data communication, either verbally or in writing. The combination formula is used 

to calculate the number of possible combinations of r objects from a set of n objects. 

This is written as follows:

n!
 nCr =

r n![ − r]!

In the case of communication, for illustration purposes, we assume communication 

is between two members of a team at a time – combination of two from n team mem-

bers, that is, the number of possible combinations of two members out of a team of n 

people. Thus, the formula for communication complexity reduces to the expression 

below, after some of the computation factors cancel out:

n n( )−1
 nC2 =

2

In a similar vein, we can develop a formula for cooperation complexity based 

on the statistical concept of permutation. Permutation is the number of possible 
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arrangements of k objects taken from a set of n objects. The permutation formula is 

written as follows:

n!
 n Pk = ( )n k− !

Thus, the number of possible permutations of two members out of a team of n mem-

bers is estimated as follows:

 n P n2 = −( )n 1

Permutation formula is used for cooperation because cooperation is bidirectional. 

Full cooperation requires that if A cooperates with B, then B must cooperate with 

A. But A cooperating with B does not necessarily imply B cooperating with A. In 

notational form,

 A→ Bdoesnot necessarily imply B A→

This chapter highlights how data quality ties into product quality. Data is the “raw 

material” on the basis of which decisions are made relative to the desired product 

quality. It is best to view data from a structured systems approach, with a desired end 

goal of data integration. The chapter recommends the use of the DEJI systems model 

to achieve a structured management of data integration through the stages of design, 

evaluation, justification, and integration.
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