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Foreword

The essence of command and control in military and public security operations is
people making timely decisions in the face of uncertainty and acting on them. At
the heart of this process is the provision of decision quality information to the
decision-maker, thereby enabling timely situation awareness. This is a timeless
requirement, which has been immeasurably complicated by the overwhelming and
increasing volume of raw data and information available in the current age.

In this context, data and information fusion clearly has a critical role to play
in future command and control systems; it is a key enabler in achieving high-
quality situation awareness for optimal decision-making. Whatever the definition
used, data and information fusion is not something that happens in a vacuum, and
it should not be decoupled from the decision-making process. This is the reason
why this book has reviewed many existing models of decision-making and tried
to put in perspective information fusion with respect to the overall command and
control process.

Data fusion can be characterized broadly as the process of utilizing one or
more data sources over time to assemble a representation of aspects of interest in
an environment. The traditional roots of the data fusion community are in sensor
fusion, where the ‘‘data sources’’ are established sensors and the ‘‘aspects of interest
in the environment’’ are moving objects, each typically represented by a set of state
vectors. However, demands on the data fusion community are beginning to exceed
this narrow intent in at least two respects.

First, in the national security context, the threat of terrorism and the impetus
of network centric warfare (NCW) are expanding the ‘‘aspects of interest in the
environment’’ beyond military target tracking considerations to include issues
pertaining to: biography, economy, society, transport and telecommunications,
geography, and politics, in addition to combinations of the aforementioned. Com-
mensurately, the ‘‘data sources’’ are exceeding military sensor systems to include:
communication systems, databases, Web sites, public media, human sources, and
so forth. Moreover, the demand for this kind of capability is also emerging in the
commercial and wider social context, as advances in transport and telecommunica-
tions foster a cascading effect across organizational location, structure, function,
and change. Globalization, decentralization, and strategic alliance are creating a
need for machine based data fusion that can process more information to allow
faster decisions by fewer people. The increasing demand requires our machines to
extend well beyond sensor fusion into so-called higher-level fusion.

This effort could not have been undertaken and the results achieved without
the TTCP (The Technical Cooperation Program, http://www.dtic.mil/ttcp/) organi-
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zation and the many face-to-face workshops/meetings (three per year) and the
monthly video teleconferences devoted to the development of the individual chap-
ters for this book over the course of five years by the members of the Information
Fusion Technical Panel (TP1). In November 2006, the NAMRAD (Non-Atomic
Research And Development) Principals approved a 2006 achievement award to
the TP1 team cited as:

This award is made for a significant contribution in development of a scientific
book on ‘‘Concepts, Models, and Tools for Information Fusion’’ that is being
submitted to Artech House. Each nation has in-house programs that provided
substantially to the development of the book. Canada has extensive research activi-
ties involving models of Situation Analysis. Australia has novel research in agent
based approaches that addresses machine data fusion and mental data fusion.
The United States had broad research activities addressing information fusion
architectures, and the United Kingdom provided key personnel and programmatic
support to international research programs such as the Coalition Agents eXperiment
(CoAX). Information Fusion is of paramount importance in supporting coalition
operations in both peace and wartime, and has been recognized as a fundamental
requirement for future military and national security operations. The distinctive
accomplishments of the Concepts, Models and Tools for Information Fusion Team
reflect great credit upon themselves, their individual Defense Organizations and
The Technical Cooperation Program.

Michael Hinman
Chairman of the C3I Information Fusion Technical Panel (TP1)

Air Force Research Laboratory (AFRL), Information Directorate,
Rome, New York

February 2007
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C H A P T E R 1

Introduction

Understanding command and control (C2) is no longer an option; it is a requirement
[1]. We need to understand C2 thoroughly if we want to make significant progress
on defense and public-security transformation or succeed in twenty-first-century
operations.

Clearly, the challenges of twenty-first-century missions have increased signifi-
cantly. Today’s missions differ from traditional missions as they are simultaneously
more complex and more dynamic, requiring the collective capabilities and efforts
of many organizations in order to succeed [1]. This requirement for assembling a
diverse set of capabilities and organizations into an effective partnership is accompa-
nied by shrinking windows of response opportunity.

Simply stated, C2 is the common military term for the management of personnel
and resources [2]. This being said, a consensus has not yet been attained as to a
single complete and precise definition of the term C2. In this regard, the official
definition provided by the U.S. Department of Defense (DoD) in the United States
is often quoted. According to the DoD Dictionary of Military and Associated Terms
[3], C2 is defined as

The exercise of authority and direction by a properly designated commander over
assigned and attached forces in the accomplishment of the mission. Command and
control functions are performed through an arrangement of personnel, equipment,
communications, facilities, and procedures employed by a commander in planning,
directing, coordinating, and controlling forces and operations in the accomplish-
ment of the mission.

Beyond its definition, C2 is not an end in itself but a means toward creating
value (e.g., the accomplishment of a mission). Specifically, C2 is about focusing
the efforts of a number of entities (individuals and organizations) and resources,
including information, toward the achievement of some task, objective, or goal
[1]. How C2 (or management) is done, or may have been done, in industry and
military organizations should not be equated with why C2 (or management) is
needed or what functions need to be successfully performed to create value.

Command and control is a relatively recent term that for millennia was referred
to simply as command [2]. Command concepts both predate, and have evolved
separately from, politics and industrial management. This is because warfare is
qualitatively different from the management of other human enterprises by virtue
of its time criticality and the high cost of error. Both of these characteristics of
warfare have shaped thinking about C2.

1



2 Introduction

Although the purpose of C2 has not changed since the earliest military forces
engaged one another, the way we have thought about it, as well as the means by
which the functions of C2 have been accomplished, have changed significantly over
the course of history [1].

1.1 Traditional View of the Command-and-Control Process: The
OODA Loop

Boyd [4] introduced the observe, orient, decide, and act (OODA) loop in order to
support the analysis of pilot decision-making at a tactical level [5]. The idea,
illustrated in Figure 1.1, is that decision-making begins with observing the physical
domain. The observations are then placed in the context of other information and
prior knowledge (so that they become useful information) in order to orient the
individual, which (in turn) allows this individual to decide what is to be done and
act accordingly. The concept has proved to have considerable intuitive appeal and
has been used for decades as the basis of both analysis and training. The phrase
‘‘turning inside the enemy’s OODA loop,’’ while originating in air-to-air combat,
has become the shorthand way of understanding that the speed of the C2 process
can provide advantage in combat situations.

In the language of Alberts et al. [5], the act of observation must begin in the
physical domain, may pass through some fusion with other observations, and is
brought to the individual’s attention through the information domain. The process
of orientation occurs in the cognitive domain as the information content of the
observations is internalized and placed in the context of the individual’s prior
knowledge, experience, and training. This is seen as providing the basis for a
decision—also a cognitive activity. Finally, the decision itself must pass through
the information domain (e.g., the controls of an aircraft, the directives of a com-
mander) in order to become the basis for action.

The OODA loop has proven seductively robust and has been applied not only
to pilot’s activities in air-to-air combat, but also to organizational behavior at all
levels. However, in the view of Alberts et al. [5], this is an error. The OODA
loop both oversimplifies the command-and-control process in ways that confound
analysis and reifies military organizations, implying that they have a single mind

Figure 1.1 The OODA loop model [4].
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and make a single, coordinated decision across echelons and functions. Alberts et
al. [5] believe that the OODA loop is outdated because it fails to differentiate
crucial elements that must be considered in information-age analyses. Moreover,
the OODA loop greatly oversimplifies the joint hierarchical model underlying
military operations.

1.2 An Information-Age View of the Traditional Command-and-
Control Process

Figure 1.2 provides an information-age view of the traditional C2 process as it has
been understood for several decades. However, it uses much richer constructs than
those in the OODA loop [5]. In contrast to the logic in the simpler OODA loop
construct, which sees the output of the cognitive processes as a decision, the
information-age C2 process is understood to generate a richer product—command
intent. This choice of language has two important, direct implications: (1) the
product is much richer, and (2) more than one individual is involved.

As illustrated in Figure 1.2, given that the term command and control encom-
passes as much as it does, its elements span all of the three domains of warfare (i.e.,
physical, information, cognitive) introduced in Section 1.1. C2 sensors, systems,
platforms, and facilities exist in the physical domain. The information collected,
posted, pulled, displayed, processed, and stored exists in the information domain.
The perceptions and understanding of what this information states and means exist
in the cognitive domain. Also in the cognitive domain are the mental models,
preconceptions, biases, and values that serve to influence how information is inter-
preted and understood, as well as the nature of the responses that may be considered.
Finally, C2 processes and the interactions between and among individuals and
entities that fundamentally define organization and doctrine exist in the social
domain (not shown in Figure 1.2).

Figure 1.2 An information-age view of the C2 process. (After: [5].)
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More recently, Alberts and Hayes [1] identified the following functions associ-
ated with the command and control (or management) of a given undertaking:

• Establishing intent (the goal or objective);
• Determining roles, responsibilities, and relationships;
• Establishing rules and constraints (e.g., schedules);
• Monitoring and assessing the situation and progress;
• Inspiring, motivating, and engendering trust;
• Training and education;
• Provisioning.

These C2 functions are applicable not only to military endeavors but also to
civil-military and, indeed, civilian and industrial enterprises. Each of these functions
can be seen in the context of a particular time horizon.

In the continuity of their effort to better understand C2, Alberts and Hayes
[1] have also proposed another conceptual model of command and control, shown
in Figure 1.3.

According to the U.S. DoD Dictionary of Military and Associated Terms [3],
command is defined as

The authority that a commander in the Armed Forces lawfully exercises over
subordinates by virtue of rank or assignment. Command includes the authority
and responsibility for effectively using available resources and for planning the
employment of, organizing, directing, coordinating, and controlling military forces
for the accomplishment of assigned missions. It also includes responsibility for
health, welfare, morale, and discipline of assigned personnel.

This definition subsumes control as a part of command. However, many have
tried to draw a distinction between command and control [2]. Distinctions that

Figure 1.3 Command-and-control conceptual model. (From: [1].)
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have been drawn define one as art (command) and the other as science (control),
and as one being the bailiwick of the commander (command) and the other of the
staff (control). Hence, rather than treating C2 as a single concept, Alberts and
Hayes [1] have chosen to separate command from control to maintain the greatest
degree of flexibility. This enables them to examine each concept on its own and
combine different approaches to each in ways that have not been considered before.
Thus, they start constructing their conceptual model (Figure 1.3) with two boxes,
one representing the concept of command and the other representing the concept
of control. Together, these two boxes define the C2 space.

Prior to the commencement of an operation, intent (a command function)
needs to be established [1]. This intent can consist of merely recognizing that there
is a situation to deal with or a problem to solve. It does not require that a solution
or an approach be developed. Roles, responsibilities, and relationships may be
predetermined, or they may be established or modified to suit the circumstances
(intent and situation). The establishment of a role determines whether or not the
entity is considered part of the team or part of the environment. Likewise, rules,
constraints, and resource allocations can be predetermined or tailored to the situa-
tion.

Once an operation begins (and this dates from the establishment of intent, not
from the commencement of a response, where response can include preemptive
action), intent can change, as can roles, responsibilities, allocations of resources,
and the like [1]. All of these changes to the set of initial conditions, with the
exception of a change to intent, should be considered control functions. Changing
intent is a command function. The ability to make timely and appropriate changes
is directly related to the agility of the specific instantiation of a C2 approach. Given
the complexity of the twenty-first-century security environment and the missions
that twenty-first-century militaries are, and will be, called upon to accomplish, C2
agility is perhaps the most important attribute of a C2 approach. The establishment
and communication of the initial set of conditions, the continuing assessment of
the situation, and changes to intent are functions of command. The ability to
exercise command (the accomplishment of the functions associated with command)
is affected or influenced by, among other things, the quality of information avail-
able.

The function of control is to determine whether current or planned efforts are
on track [1]. If adjustments are required, the function of control is to make them
if they are within the guidelines established by command. The essence of control
is to keep the values of specific elements of the operating environment within the
bounds established by command, primarily in the form of intent.

Behaviors include [1]:

1. Those actions and interactions among the individuals and organizations
that accomplish the functions associated with C2 (e.g., establishing intent,
conveying intent);

2. Those that are associated with understanding or making sense of the situa-
tion and how to respond;

3. Those that are associated with the response (that is, with creating the desired
effects, such as maneuver and engagement).
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The first two types of behaviors constitute C2. The second type is a subset of
C2 called sense making, while the third type of behaviors can be referred to as
actions or execution. All are functions of an enterprise (organization or endeavor).
Both the objective of sense making and execution and how they are accomplished
are determined by command and control.

Sense making consists of a set of activities or processes in the cognitive and social
domains that begins on the edge of the information domain with the perception of
available information and ends prior to the taking of action(s) meant to create
effects in any or all of the domains. Examples are [1]:

• The employment of kinetic weapons with direct effects in the physical domain
and indirect effects in the other domains;

• The employment of psychological or information operations designed to
create direct effects in the cognitive and information domains with indirect
effects in the physical domain.

The actions involved in execution may take place in any of the domains with
direct and indirect effects in multiple domains. The nature of the effects created
by a particular action are a function of (1) the action itself, (2) when and under
what conditions the action is taken, (3) the quality of the execution, and (4) other
related actions. The selection of what actions to take and when to take them is
part of the sense-making process.

The operating environment includes everything outside of the C2 processes
and the systems that support them [5]. The physical environment (e.g., terrain,
weather) is one key dimension. Adversary forces form another. Own forces, to the
extent that they are not part of C2 processes, are also in the environment. They
represent the most controllable factors in the environment, but even they are
imperfectly controllable due to the fog and friction of war. Other, neutral forces
may also be present in the portion of the operating environment of interest. Their
potential involvement or interference must also be considered. The operating envi-
ronment also includes a host of political, social, and economic factors and actors,
ranging from refugee populations to the infrastructure (e.g., communications, trans-
portation) in the area.

Alberts and Hayes [1] state that the context of C2 can greatly vary. The tasks
at hand differ widely in nature, ranging from the creation or transformation of an
enterprise at the strategic level, to employing the enterprise in a major undertaking
at the operational level, to the completion of a specific task at the tactical level.
The nature of the resources involved varies according to the nature of the task.
Where as some can be accomplished with organic assets, others requires putting
together a large heterogeneous coalition with resources of many types.

In the past, much of the discussion about C2 focused on a single commander,
the one in charge. In fact, command and control in modern warfare is a distributed
responsibility. Actually, the C2 conceptual model depicted in Figure 1.3 is elemental,
or fractal [1]. An enterprise of the complexity necessary to undertake military and
civil-military missions will have many concurrent, nested, and even overlapping
instances of this elemental model, each one of (or collection of) which may exhibit
different C2 approaches. At the enterprise level, the functions associated with
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command will determine the number and nature of these fractals and the relation-
ships among them. Thus, if we consider Figure 1.3 to be a view at the enterprise
level, then there will be a great many little Figures 1.3 contained in the enterprise
view of the behaviors box or, for that matter, the boxes for command and for
control. Command at one level determines the conditions under which fractals
within its purview operate. There will be cases of sovereign fractals in which the
fractals are not nested but have peer-to-peer and/or overlapping relationships. In
these cases, the functions associated with C2 are achieved in a manner different
from that of traditionally nested fractals.

The conceptual model of Figure 1.3 consists of two kinds of concepts: (1)
functional, or process, concepts, and (2) concepts related to value. A generic process
view of the conceptual model is depicted in Figure 1.4.

The process view organizes functions and processes, whether past, current, or
future, into a small number of conceptual bins. The bin ‘‘Situation information’’
represents the host of information-related assets and processes that sense, collect,
process, protect, disseminate, and display information. The product of these pro-
cesses (information) provides data about the environment, including the effects of
interest. This information is used as an input to all of the other process concepts.

1.3 About This Book on Data and Information Fusion

As highlighted in the previous section, the essence of command and control in
military and public-security operations is people making timely decisions in the
face of uncertainty, then acting on them. At the heart of this process is the provision
of decision-quality information to the decision-maker, enabling timely situation
awareness (SAW). This is a timeless requirement, which has been immeasurably
complicated by the overwhelming and increasing volume of raw data and informa-
tion available in the current age.

In this context, data and information fusion (DIF) will clearly play a critical
role in future command-and-control systems; it is a key enabler in achieving high-
quality situation awareness for optimal decision-making. An initial lexicon defined

Figure 1.4 C2 conceptual model—a process view. (From: [1].)
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data fusion as a process dealing with the association, correlation, and combination
of data and information from single and multiple sources to achieve refined position
and identity estimates, in addition to complete and timely assessments of situations
and threats, as well as their significance [6]. As discussed in this book, this definition
has evolved over the years, and multiple variants have been proposed.

Whatever the definition used, data and information fusion is not something
that happens in a vacuum, and it should not be decoupled from the decision-
making process. This is why we have reviewed many existing models of decision-
making and tried to put information fusion into perspective with respect to the
overall command-and-control process.

As a discipline, data and information fusion draws together concepts from
a wide range of diverse fields, such as psychology, human factors, knowledge
representation, artificial intelligence, mathematical logic, and signal processing.
Most of these aspects are discussed in this book to varying degrees. In fact, this
book’s content can be organized into three main categories:

1. Concepts, definitions, and models (Chapters 2–5);
2. Mathematical and logical approaches (Chapters 6–9);
3. Computational aspects of information fusion (Chapters 10–12).

1.3.1 Concepts, Definitions, and Models

Chapters 2 through 5 provide the common foundation for the analysis and/or the
development of information-fusion capabilities. It does so through a review of many
concepts, definitions, and models regarding decision-making, situation analysis (SA)
and awareness, and data and information fusion.

Decision-making is involved in all aspects of our lives, and it is of particular
importance regarding command-and-control activities in military and public-
security settings. Over the years, multiple efforts have thus been deployed to better
understand and explain decision-making. As a result, the decision-making process
has been the root of several theoretical models. Chapter 2 provides a discussion
of two general classes of decision-making models: (1) the rational models, and
(2) the naturalistic models.

The term situation awareness has emerged as an important concept in dynamic
human decision-making. Chapter 3 talks about the benefits of SAW and about the
fact that as a general concept, SAW can be of interest in a very large number of
settings. It also proposes another concept, situation analysis, as an attempt to
synthesize the main notions put forward by well-established data-fusion and situa-
tion-awareness models.

Chapter 4 addresses data and information fusion. DIF is still expected to play
a crucial role in the next generation of support systems for aiding decision-makers
in military and public-security operations. Chapter 4 reviews the main models that
have been developed over the years to better understand and describe data and
information fusion. Certainly, each one of these models has value as it provides
particular insights into this important field. Hence, our purpose in describing them
is not to argue for one or the other but to give the reader a good sense of these
various perspectives, mainly to put the rest of this book into context.
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Within the last decade or so, technological development has raised new issues
and challenges regarding the design process of fusion, situation analysis, and
decision-support systems. Actually, the issues and challenges have shifted from
identifying technological possibilities and limitations to determining how these
systems must be designed to fit with human information processing.

Chapter 5 discusses various issues related to the design of technological tools
and their and insertion into the decision-making process. Supporting information
fusion, situation analysis, and decision-making in complex military and public-
security operations indeed requires balancing the human-factors perspective with
that of the system designer, as well as coordinating efforts in designing a cognitively
fitted system.

1.3.2 Mathematical and Logical Approaches to Information Fusion

Knowledge, belief, and uncertainty are three key notions of the situation-analysis
process (through data and information fusion). Belief and knowledge representation
is a crucial step needed to transform data into knowledge. The data and information
coming from the different sources must be converted into a certain language or
presented by other means (e.g., visualization) so they can be processed and used
by the human to build his mental model in order to decide and act. One great
challenge in designing a support system is to make use of the mathematical and
logical tools that can allow for measuring and reasoning about the situation using
a common analysis framework. A formalization is necessary to be able to deal
with knowledge or uncertainty, that is, a formal framework in which knowledge,
information, and uncertainty can be represented, combined, managed, reduced,
increased, and updated. Chapter 6 discusses the key notions of knowledge, belief,
and uncertainty in relation to information fusion. The objective is (1) to build a
model of the situation directly usable by the different theories of reasoning under
uncertainty, and (2) to be able to deal with both knowledge and uncertainty. The
potential theoretical frameworks available to model the situation-analysis process
can be divided into two main categories: qualitative approaches (Chapter 7) and
quantitative approaches (Chapter 8). Qualitative approaches seem better suited to
reasoning about knowledge, while quantitative approaches are better candidates
for uncertainty representation and management. Hence, a good solution for a
global modelization of the situation could be a hybrid approach (Chapter 9) mixing
quantified evaluations of uncertainty and high reasoning capabilities.

1.3.3 Computational Aspects of Information Fusion

The last part of the book (Chapters 10–12) reviews the computational implementa-
tions of information fusion. It addresses the key characteristics of the information-
fusion domain and the performance requirements they impose on information-
fusion systems. It reviews the key elements of computational infrastructure relevant
to the design and performance of information-fusion systems, including system
architecture, computer networks, software middleware, issues with information
sources, and human-computer interfaces. We also consider key concepts in
knowledge-based and artificial intelligence systems that impact higher-level fusion
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processes, including expert systems, reasoning systems, neural networks, and
computational complexity. Software architectures that can be used to implement
information-fusion systems are reviewed, as are issues associated with the black-
board and multiagent architectures as they can be applied to information-fusion
systems.
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Decision-Making Models
Jean Roy, Richard Breton, and Robert Rousseau

2.1 Introduction

Decision-making is involved in all aspects of our lives, and it is of particular
importance regarding command-and-control activities in military and public-
security settings. Over the years, multiple efforts have thus been deployed to better
understand and explain decision-making. As a result, the decision-making process
has been the root of several theoretical models. Some of these models are tagged
as ‘‘traditional,’’ by comparison with the new wave of naturalistic decision-making
(NDM) models that have been proposed more recently.

Decision-making models can be separated into two principal categories:
normative models and descriptive models. Normative models propose a norm, a
formal process that people should follow in order to reach the optimal and ideal
decision. Descriptive models include a more psychologically valid description of
the decision-making process. Researchers also often make a distinction between
two types of decision-making: analytical and intuitive decision-making. Analytical
decisions are slower, conscious, controlled, and deliberate and demand effort
and energy, whereas intuitive decisions correspond to a quick and relatively
automatic decision process [1]. Each of these types is activated under particular
kinds of circumstances and, respectively, requires distinctive strategies to be
achieved.

This chapter, based mostly on the work of Breton and Rousseau [2], does not
provide an exhaustive survey of the various decision-making models found in the
literature. Instead, the discussion is limited to two general classes of decision-
making models:

1. The rational models;
2. The naturalistic models.

The main objective is to compare the rational and naturalistic models according
to their capacity to represent the decision-making activity performed in a command-
and-control environment. Features of the models related to the consideration of
the uncertainty and time-stress factors are highlighted. Some traditional models
are briefly presented next, with a focus on the working principles of the decision-
making process.

11
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2.2 Rational Models

Rational models range from purely normative models, like the expected utility
models, to more descriptive models.

2.2.1 Expected Utility Theory

The expected utility theory (EUT) is the best-known normative model. EUT is in
fact a family of models [3]. It models the way people should behave within the
decision-making process if they follow some requirements of rational decision-
making. According to this theory, the decision-making process must be grounded
in the combined evaluation of the probability of occurrence and the value (utility)
of the different consequences and alternatives of the situation. Uncertainty is thus
represented in EUT by the probability of the occurrence of an event and the
probability of a contingent outcome. In fact, EUT is based on an unbounded
rationality principle that assumes an unlimited availability of time and information
about alternatives and outcomes. It assumes that a decider has complete infor-
mation on the consequences and probabilities associated with each possible solu-
tion. It also assumes that a decision-maker understands this information and is
able to calculate, implicitly or explicitly, the advantages and disadvantages of all
alternatives.

Formally, the choice and the decision rely on an expected value obtained from
the multiplication of the value of an alternative by its probability of occurrence.
The result is a utility function enabling a form of scaling of the various gambles
from which a decider has to make a choice. A decision-maker compares the utility
value of several alternatives and selects the one that maximizes the expected utility.
EUT is based on six principles: (1) ordering of alternatives, (2) dominance, (3)
cancellation, (4) transitivity, (5) continuity, and (6) invariance. If one (or many)
of these principles is violated during the decision-making process, then the expected
utility is not maximized. It is generally accepted that most of these principles are
often violated by humans, notably the cancellation and transitivity principles. For
instance, Lichtenstein and Slovic [4] showed that given a choice between two bets
of equal expected value, people base their choice on the probability of winning,
but if asked to set a price on how valuable the bet is, they rely on the size of the
outcome payoff. Even though EUT does not reproduce human behavior in a number
of situations, the elegance of the formal model based on probability theory has
maintained interest in that approach.

The EUT supposes that an individual will use objective probability values,
based on observed statistics, to conduct the decision-making process. Although very
sound on a theoretical basis, such statistics are often not available. Furthermore, it
is very likely that the human decision-making process will rely on more cognitive
assessments of probability. In consequence, a variant of EUT, called subjective
expected utility theory (SEUT), has been developed [5] based on the notion of
subjective values.

SEUT proposes that the decision-maker uses a subjective estimation to reach
a decision. Thus, the decision-making process concerning each alternative is the
result of the combination of the value given to a consequence by an individual,
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and the value that he or she believes to be its real probability of occurrence. It is
important to note that the decision, albeit subjective, is still the outcome of a
comparison of utility values.

The EUT and SEUT models represent the uncertainty factor using the concept
of probabilities (perhaps subjective) associated with all alternatives and outcomes.
However, it implies that the decision-maker has a complete set of all alternatives
and knows and understands the related outcomes. Thus, it may be difficult to
apply these models to situations like those encountered in command and control,
in which often all alternatives cannot be identified. Similarly, the EUT model cannot
be applied to the decision-making process in time-pressed situations since it is
implicitly assumed that the decision-maker has all the time required for a complete
analysis of all alternatives.

2.2.2 Prospect Theory

The prospect theory, a descriptive model developed by Kahneman and Tversky
[6], retains the overall structure of the EUT and the notion that the decision is
made from the selection of an option from among a set of uncertain gambles. The
most noticeable distinction is in the substitution of the concept of value for the
concept of utility, referring to a deviation in terms of gains or losses relative to a
specified neutral reference point. The value function for losses is different from
the value function for gains. The value function for losses is convex and steep, and
the function for gains is concave and shallow. Thus, it follows that the theory
predicts that a decision-maker will be ‘‘risk adverse’’ when it comes to gains and
‘‘risk seeking’’ when it comes to losses.

Prospect theory also predicts the certainty effect, according to which the reduc-
tion of the probability of an event or of a consequence by a constant factor has a
greater impact if the event is certain rather than just probable. However, this idea
has been modified to add a pseudocertainty effect that includes a more apparent
than real certainty.

Prospect theory is essentially a psychological and behavioral theory. It incorpo-
rates cognitive factors through a number of subjective assessments of parameters
of the model. The inclusion of subjective assessments reduces the amount of mental
computation required for exact probability estimates and thus makes the model
more appropriate for use in situations of limited mental resources or involving time
constraints. Like the EUT, prospect theory requires the knowledge of a complete set
of alternatives. Thus, it may be difficult to apply this theory to situations in which
all the alternatives cannot be identified. Moreover, by retaining the calculations
of values across prospects or gambles, it still requires a systematic analysis and
comparison of all known alternatives for determining a choice based on a value
criterion.

2.2.3 Regret Theory

The fundamental element of regret theory is counterfactual reasoning, which implies
the evaluation of hypothetical events using the consequences of another choice as
a reference point. This theory relies on two premises: (1) most people experience
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sensations like regret, and (2) when decision-making implies uncertainty, decision-
makers try to anticipate and account for these kinds of feelings.

2.2.4 Bounded Rationality

Another set of models, the bounded rationality models, relate to situations where
a person has to choose between a number of alternatives characterized on a number
of dimensions or cues when uncertainty about the outcome is not relevant. In these
situations, there is not a single dimension on which the options can be scaled (i.e.,
value or utility). These models, based on bounded rationality, have two basic
characteristics: (1) decisions do not follow a principle of optimization or maximiza-
tion of expected utility or value, and (2) decisions do not follow an exhaustive
analysis of all alternatives.

2.2.5 Satisfying

Simon [7] proposed that people would ‘‘satisfy’’ when making a decision, rather
than ‘‘optimize’’ as proposed by EUT. The satisfying theory, one of the first descrip-
tive models ever elaborated, has been developed in the context of organizational
decision-making even though it can be applied to individual decision-making. It
takes into account the limitation in human information processing by determining
a criterion that stops the decision process; this process does not then require an
exhaustive search before reaching a decision. Satisfying refers to the elaboration
of an aspiration level (a goal) and the selection of the alternatives that enable
reaching this goal. Decision-makers seek a satisfactory alternative rather than an
optimal one. Thus, a decision-maker chooses the alternative that fulfills the most
important needs and requirements of the situation, without wasting time on the
evaluation of each alternative to find the best one [8].

Satisfying is a simple heuristic that reduces the cost of examining all alternatives
and computing probabilities required by the rational models. However, it does
require an important amount of processing in the determination of the actual level
of aspiration that will serve as the criterion [9]. Satisfying can deal with uncertainty
implicitly since it does not require complete knowledge about a situation. It can
accommodate partial ignorance rather than vague information. Because no time
is wasted on the evaluation of each alternative, it may represent the decision-
making process in situations marked by time pressure.

2.2.6 Heuristic Multiattribute Decision Strategies

A number of heuristics, simple nonoptimal decision rules, have been proposed for
multiattribute decision-making [10]. Table 2.1 presents a selection of heuristic
strategies based on the following three principles:

1. The information is processed alternativewise or cuewise. Alternativewise
strategies process all cue information on a given alternative before going to
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Table 2.1 Most Common Strategies in Multiattribute Decision-Making

Compensatory or Cuewise or Stopping
Strategy Label Description Noncompensatory Alternativewise Rule

Franklin’s rule This strategy calculates for each Compensatory Alternativewise No
alternative the sum of the cue
values multiplied by the
corresponding cue weights and
selects the alternative with the
highest score.

Weighted pro This strategy selects the Compensatory Cuewise or No
alternative with the highest sum alternativewise
of pros. A cue that has a higher
value for an alternative than for
others is considered a pro for
that alternative. The weight of a
pro is determined by the validity
of the particular cue.

Lexicographic This strategy selects the Noncompensatory Cuewise Yes
(LEX) alternative with the highest cue

value on the cue with the highest
validity. If there is a tie, the cue
with the second highest validity is
considered, and so on.

Recognition If one of two alternatives is Compensatory Alternativewise No
recognized, and the other is not,
the recognized alternative is given
a higher value. In a set of
pairwise comparisons, the
alternative with the higher total
value is selected.

Elimination by This strategy eliminates all Noncompensatory Cuewise Yes
aspects (EBA) alternatives that do not exceed a

specified value on the first cue
examined. The procedure is
repeated until a single alternative
is left. The order is determined
by cue validity.

the next alternative. Cuewise strategies compare all alternatives on a given
cue before going to the next cue.

2. A strategy may or may not allow for compensation. A compensatory strategy
integrates information over cues. Furthermore, a given cue can be out-
weighed by other cues.

3. A strategy may have a stopping rule that makes possible the interruption
of information gathering and analysis.

Rieskamp and Hoffrage [10] report data showing that under high time pressure,
deciders tend to adopt a simple noncompensatory strategy like the lexicographic
strategy. Under low time pressure, the weighted pro strategy is adopted. Even
though it is not explicitly stated, it can be inferred that under uncertainty, noncom-
pensatory strategies are likely to be adopted since they do not require an exhaustive
search of information.
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2.3 Naturalistic Decision-Making Models

Naturalistic decision-making (NDM) can be defined as ‘‘how experienced people,
working as individuals or groups in dynamic, uncertain, and often fast-paced
environments, identify and assess their situation, make decisions, and take actions
whose consequences are meaningful to them and to the larger organization in
which they operate’’ [11]. Thus, NDM can be summarized as an individual’s
resorting to his or her experience to reach a decision in his or her sphere of activity.

Models and research in NDM are based on some particular factors that appear
to characterize and influence decision-making in natural settings. These contextual
factors are

• Nonstructured (that is, nonartificial) situations and problems;
• Uncertain and dynamic environments;
• Ill-defined, conflicting, or changing objectives;
• A decision-action-feedback cycle;
• Time pressure;
• Involvement of several individuals;
• Existence of organizational norms and objectives;
• Presence of high and potentially personal stakes.

Thus, NDM defines a very different context for decision-making than the one
proposed by traditional models, and this context is also more realistic regarding
the situations that decision-makers have to face in their professional lives [11].

2.3.1 Recognition-Primed Decision Model

Elaborated by Klein [12] (see also [13]), the Recognition-Primed Decision (RPD)
model stipulates that rather than weighting the advantages and disadvantages of
several alternatives, experienced decision-makers use their experience to evaluate
a situation and determine a solution or a possible course of action from the first
attempt. In that sense, the model can be applied to represent situations characterized
by uncertain and incomplete information and marked by time pressure.

The RPD model, illustrated in Figure 2.1, has four principal components. The
first is the recognition of the current situation, which is based on the degree of the
familiarity of the situation by comparison to one’s mental index and experience.
In RPD, recognition is applied differently than in multiattribute decisions. Recogni-
tion of a valid situation directly activates a process of evaluation. There is no
computation of a recognition index leading to a choice among a set of alternatives.
Thus, on one hand, if the situation appears unfamiliar, the decision-maker will
seek further information. On the other hand, if the situation is categorized as
familiar, the second component is applied. This second component consists of
understanding the situation in light of expectations, cues, and goals. The third
component consists of recalling relevant prototypic actions from prior experience.
The fourth component is the evaluation, through mental simulation, of the potential
and plausible consequences of each considered course of action. Each action is
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Figure 2.1 The Recognition-Primed Decision model: (a) simple match, (b) diagnosis of the situation, and
(c) evaluation of the course of action [14].

then evaluated independently, that is, not in comparison with other alternatives,
as is the case with traditional decision models. Thus, the decision-maker mentally
visualizes how the situation could potentially evolve if a particular action were
implemented.

Following the RPD model, naturalistic decision-making can be achieved at
three different levels: simple match [Figure 2.1(a)], diagnosis of the situation [Figure
2.1(b)], and evaluation of the course of action [Figure 2.1(c)]. The result of the
decision-making process for each of these levels is the implementation of the action.
However, each level includes various steps, allowing for adaptation to the complex-
ity and familiarity of the situation.

The first level (i.e., simple match) is activated when the current situation is
simple and straightforward; that is, the crucial elements of the situation, the objec-
tives, and the typical course of action to implement are easily recognized and
identified [14, 15].

The second level (i.e., diagnosis) is activated by the presence of uncertainty
concerning the situation. As diagnosis is an attempt to establish a relationship
between an event and causal factors, this process allows for the decision-maker to
define the situation and to find an explanation for it. Because the actions chosen
depend on the evaluation of the situation, diagnosis appears to be particularly
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important in situations involving uncertainty, like command-and-control settings
[8, 14].

The third level (i.e., evaluate course of action) is required for more complex
situations and requires the mental simulation of the envisaged course of action to
evaluate potential difficulties and possible solutions and, consequently, to determine
if this action must be implemented or if further evaluation is required to identify
a new course of action [14].

According to Klein [15], decision-makers use different strategies in relation to
the level involved in the decision-making process (level 2 or 3). Hence, for the
diagnosis level (i.e., level 2), strategies are grouped around a principal objective,
that is, sizing up the situation and identifying singularities. The strategy most
frequently used is feature matching that consists of the comparison between the
characteristics of the current situation and different hypotheses explaining the
nature of the situation, that is, the hypotheses resulting from the identification
process. Strategies that are related to the third level of the RPD model, those
implicated in the selection of a course of action, require a deeper elaboration from
the decision-maker because of the complexity of the situation. Thus, strategies of
the evaluate course of action level (i.e., level 3) are based on the mental simulation
of the envisaged course of action, first, to determine how it will be implemented
and executed and, second, to identify potential difficulties and possible solutions.

2.3.2 Image Theory

According to the image theory, the knowledge on which a decision-maker bases
his or her decision can be divided into three categories, or, more precisely, three
images. Beach [16] uses the term image to refer to the vision developed by a
decision-maker concerning the course of action to implement.

The first image, called the value image, is composed of the decision-maker’s
principles, that is, his or her values, ethical rules, and morals. These principles set
up a reference frame within which the chosen course of action and behavior of
the concerned individual must be situated. The second image, called the trajectory
image, represents the expectations and objectives on which the adopted behavior
is based. The objectives influencing the decision-making process are those associated
with one’s principles for one part, and those linked with the current situation for
the other part. Finally, the third image is the strategic image, which is composed
of the plans corresponding to each objective aimed at in the trajectory image.
Each plan contains a tactical aspect (i.e., the behavior to adopt in relation to
environmental characteristics and constraints) and a prospective aspect (i.e., a
prediction of the consequences of the action implemented). Decision-makers must
organize the various plans in order to prevent them from interfering with each
other in the achievement of the objectives.

According to Beach’s model, when a decision-maker is faced with a particular
situation, he or she uses contextual cues to search and recall from memory relevant
elements regarding the three images that will constitute the decision frame. This
recognition process allows the decision-maker not only to determine important
components but to obtain information about pursued aims and adopted plans in
previous situations that appear similar.
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Image theory proposes the existence of two types of decisions: (1) adoption
decisions, and (2) progress decisions. Adoption decisions concern the adoption of
new objectives or plans regarding the current situation, following the identification
of elements through the recognition process. This type of decision can be achieved
in two steps, first by determining the different available alternatives, and second
by selecting the best option (if a choice is possible). The second type of decision
(i.e., progress decisions) refers to the evolution of the plan with regard to the
achievement of the objectives. This evolution is based on the action’s anticipated
consequences and will vary in relation to the progression of the situation.

Furthermore, according to Beach, image theory also includes two decisional
mechanisms. The first, the compatibility test, includes in the comparison of each
option with the decision frame defined from the three images. This mechanism
thus evaluates the options in terms of their quality, and the option is rejected if
negative aspects (violations) exceed a particular level. The second mechanism, the
profitability test, corresponds to the quantity of consequences associated with the
action and refers to the inventory of strategies within which the decision-maker
can choose a specific strategy regarding the adopted alternative. This mechanism
is based on the postulate that each person possesses an index of strategies and that
the selected strategy will depend on three factors:

1. Characteristics of the choice (e.g., uncertainty, complexity, instability);
2. Environment (time and resources available, irreversibility of the choice,

possibility of failure);
3. The decision-maker (e.g., knowledge, strategies, expertise, motivation).

Christensen-Szalanski [17] has shown that the profitability test can be described
in terms of a SEUT model that includes the subjective utility of correct and incorrect
choices. Profitability is then represented as the difference between the expected
benefit and the expected cost.

2.3.3 Scenario Model

This model is grounded in the idea that decision-making requires the elaboration
of predictions about the consequences of particular events. The use of scenarios
permits this kind of forecast development. The scenario model implies four principal
steps. First, using as a reference point the objectives and frame within which the
decision must be reached, an individual searches his or her memory for relevant
information to build if-then propositions (causal relations). Second, these proposi-
tions are used to elaborate a cognitive network of causal relations, including both
relations that are known (through the information recalled from memory) and
those inferred. Third, the decision-maker applies a possible value to the ‘‘if’’ part
of the proposition, building as many different scenarios. Finally, the decision-maker
determines the logical consequences of each scenario, based on his or her model,
to achieve predictions [16].
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2.3.4 Argument-Driven Models

Argumentative-type models postulate that the core of decision-making processes
is the establishment of arguments for and against a given possible course of action.
Thus, according to Lipshitz’s [18] argument-driven action (ADA), the decision-
maker begins his or her evaluation of the situation based on his or her knowl-
edge and experience. Two basic mechanisms operate in ADA: matching and
reassessment.

Matching takes the form of a sequential selection of an action on the basis of
an assessment of a situation. It does not require a complete comparison of all
alternatives or an explicit consideration of the consequences of the actions. It
recognizes that selection can result from a form of pure recognition without any
reference to the consequences of the action. An action is selected based on its
compatibility with some value or rule of conduct. The selection is supported by
an argument relating the action to the ‘‘why’’ based on which it has been chosen.

Reassessment is a form of reevaluation of actions to which one is at least
committed. It often takes the form of criticizing beliefs, arguments, and even selected
action, which can lead to a modification of the selected course of action. This is
viewed as a basis for learning from errors. After this, the envisaged decision is
reexamined in light of arguments previously identified that can be applied to the
decision, with the individual being able to modify his or her decision.

Argumentative models propose that the arguments considered are not solely
selected with regard to the decision to be made but also in reference to the eventuality
of the obligation to justify the decision to a particular person or authority.

In ADA, uncertainty concerns either the nature of the situation or the required
action. Uncertainty can affect decisions by complicating the matching mechanism.
In that case, it will be difficult to provide a valid argument since the situation on
which it is based will be fuzzy or incomplete. ADA proposes that uncertainty will
be likely to interrupt the ongoing action and provoke reassessment. It will induce a
shift from automatic decisions to reflective selection. Consequently, the uncertainty
factor is adequately represented in this model. However, the argument process may
require considerable time, making its application in time-stressed situations difficult.

2.4 Other Related Cognitive Models

As they provide some additional relevant insight into the decision-making process,
this section briefly reviews two cognitive models: (1) the skill-rule-knowledge (SRK)
model, and (2) the integrated model of real-world decision-making.

2.4.1 The Skill-Rule-Knowledge Model

The SRK model, elaborated by Rasmussen [19–21], describes three distinctive levels
of cognitive control that a person may use to perform a decision task. The level
on which a person operates is a function of the complexity of the task and his or
her experience and knowledge relevant to the particular situation. Furthermore,
the three levels may be used to characterize different degrees of experience and
expertise. A novice will process at the knowledge-based level, whereas intermediate



2.4 Other Related Cognitive Models 21

learners will possess some rules gained from experience, as well as a qualitatively
different knowledge, and will then be able to operate primarily at the rule-based
level. An expert will be apt to perform at the skill-based level and, depending of
the particularities of the task, to switch between levels (e.g., if the situation is new,
he or she may switch to the knowledge-based level). Figure 2.2 presents the three
levels of cognitive control: skill-based, rule-based, and knowledge-based behaviors.
The information processed at each of these levels enters the system through the
attentional process, sensory input in Figure 2.2.

People operate at the skill-based level when they are greatly experienced with
the task; that is, they act in an automatic and subconscious manner toward raw
perceptual elements. Performance at this level of cognitive control implies stimulus-
response associations generated at a neurological level, such that attentional
resources are minimally required. The behavior is automatic, and one does not
have to process and analyze information or evaluate possible courses of action to
produce a response. Errors occurring at the skill-based levels are generally due
either to misdirected attention or to paying attention to the task (thus, discontinuing
the automatic process) [1].

If a person is familiar with the task but does not have much experience, he or
she will operate at the rule-based level. This level implies the processing of informa-
tion in terms of recognition of certain meanings and signs. These signs initiate if-
then rules acquired from past experience, linking a particular sign with a specific
action. Errors at this level come from misclassification of cues, resulting in the
application of the wrong rule [1].

The third level (i.e., the knowledge-based level) is used by people when the
situation is entirely new, so they do not have any rule collected from past experience
to apply. This level refers to analytical processing and entails the use of conceptual

Figure 2.2 Rasmussen’s SRK model of cognitive control.
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information. A person will begin by assigning signification to information. Then,
he or she will integrate all these meanings in an identification frame. Finally, these
cues will be processed in light of one’s goals in working memory, and mental
models will often be used to perform simulations and assess action plans [1]. Errors
at the knowledge-based level originate from factors associated with analytical
processing, such as limited cognitive resources (e.g., attention, working memory),
biases, heuristics, and so forth [22].

In order to enhance the description provided in this book, another view of the
Rasmussen’s SRK framework is presented in Figure 2.3.

The SRK framework is compatible with the notions of bottom-up and top-
down processing. Bottom-up processing stresses the importance of the stimulus in
the environment. Data arrive from the sensory receptors and directly influence the
perception of the information. Top-down processing stresses the importance of a
person’s knowledge and concepts in the perception process. Human knowledge

Figure 2.3 Rasmussen’s SRK framework.
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about how the world is organized helps the individual to perceive and understand
the environment. Even if these two approaches to processing are opposite in nature,
they are not incompatible. In fact, it is probable that in any perceptual process of
the environment, both are involved. Since top-down processing rests on the person’s
concepts and knowledge, this approach is compatible with the Rasmussen’s theory
of human performance. This processing approach is also related to training and
practice. Top-down processing happens if concepts and knowledge have been
previously stored in the long-term memory.

2.4.2 Integrated Model of Real-World Decision-Making

The integrated model combines various views of naturalistic decision-making into
a generic information-processing model [23]. Based on Rasmussen’s SRK model
[19–21], the cognitive control levels are expanded into an information-processing
model that reconciles several processes observed and postulated by others. Figure
2.4 illustrates the processing of information, which enters the system through
attentional resources (perceive cues in Figure 2.4). It entails three levels of processing

Figure 2.4 A generic information-processing model of naturalistic decision-making. (After: [1].)
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similar to those of the SRK model: an automatic skill-based level, an intuitive rule-
based level, and an analytical knowledge-based level [1].

The automatic skill-based level depends on the environmental cues sensed and
is influenced by selective attention. There are no other demands placed on cognitive
resources at this level. Strictly speaking, it is not really a decision-making process
since the information automatically activates a course of action, often without
the person’s even knowing consciously which element exactly generated the
response [1].

Intuitive rule-based processing, corresponding to level 1 of Endsley’s model of
situation awareness, implies a greater cognitive effort because the decision-maker
must heed a variety of information. These cues initiate rules stored in long-term
memory about the adequate association between a specific cue and a particular
course of action to be executed, in light of one’s goals. The response results from
these relations retrieved from memory; hence, a decision-maker may not be able
to explain his or her decision because reasoning, per se, is absent [24].

In a case where rule-based processing does not allow for an adequate solution,
or when there is uncertainty and no time pressure, a person may switch to the upper
analytical level (i.e., knowledge-based processing) and utilize the more evaluative
processes present at the top of Figure 2.4. This level begins with level 2 of situation
awareness, or the diagnosis in Figure 2.4. The decision-maker may move to the
third level at any point in the process (diagnosis, generation of a goal or an action,
development of a procedural plan) to achieve a deeper analysis of a situation or a
task, mainly relying on mental simulation [25]. Processing can lead to a search
for additional information from the environment, the generation of ideas and
hypotheses, and so forth. Nevertheless, knowledge-based processing does not neces-
sarily mean that several hypotheses and potential actions will be produced since,
under some circumstances, only one hypothesis and action will be considered and
executed. However, if the first hypothesis or action fails, a new one may be generated
and evaluated until one is finally selected [1].
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C H A P T E R 3

Situation Awareness and Analysis
Models
Jean Roy, Richard Breton, and Robert Rousseau

3.1 Introduction

The term situation awareness (SAW) has emerged as an important concept in
dynamic human decision-making. When experts speak about the existence of a
general phenomenon called situation awareness, most discussions are reasonably
consensual. When the same experts attempt to define this expression in concrete
words, the result is debatable.

Actually, many authors have expanded their definition of SAW by developing
models of SAW. The complexity of defining the cognitive side of SAW has led a
number of authors to develop models that are complex enough to make possible
an explicit presentation and definition of this aspect. Among these models, Endsley’s
model clearly stands out as the reference for most work done on SAW.

The concept of situation analysis (SA) synthesizes the main notions put forward
by well-established data-fusion and situation-awareness models. The resulting SA
model both defines the scope of the situation-analysis process and establishes a
comprehensive definitional, conceptual, and functional framework to facilitate the
dialogue between researchers, technologists, developers, and users of situation-
analysis and command-decision-support systems for military and public-security
purposes. Threat analysis is given a particular emphasis as this is a very important
aspect of situation analysis. While conducting command-and-control activities,
decision-makers eventually have to manage actual or potential threats to some
high-value units. Very often, the protection of such units is indeed under the
authority and responsibility of these decision-makers.

3.2 General Discussion of Situation Awareness

While the formal scientific study of SAW appeared during the 1980s, that concept
has been worded in more or less appropriate terms for centuries. As far as SAW
is a natural component of human cognitive organization, the benefit resulting from
better situation awareness can be seen as early as prehistoric times [1]. It can
participate in all aspects of life. The champion chess player needs particularly acute
SAW. The car driver must exploit all cues in a dynamic environment. Situation

27
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awareness may result in very simple, everyday decisions, such as leaving home with
an umbrella or not.

It can be argued that, historically, on most battlefields, the advantage was with
strategists who achieved better awareness of the ongoing situation. SAW was
basically concerned with strategic planning issues. While the role of SAW was
acknowledged, the scientific knowledge required to develop means to improve
SAW in a given situation was not available.

World War I was probably a turning point for the scientific study of SAW.
The availability of aircraft considerably increased the capacity to gather intelligence
on enemy positions and movements and on the effectiveness of Allied actions.
Boelke (in [2]) was one of the first to express the importance of SAW. Not only
did critical aspects of the understanding of the battlefield situation depend on
pilots’ observational abilities, but the air fight situation in itself revealed the need
to develop better SAW. Gilson [3] mentions that the advantage of the Red Baron,
in World War I, was probably based on his outstanding SAW capabilities. In that
period, SAW was not only critical for headquarters decisions; it was also critical
for individual soldiers in the field, notably those working with technology.

After World War I, the rapid developments in technology yielded important
benefits that far outweighed the increase in mental workload associated with the
operation of the new technological tools. The concern about scientific studies of
SAW was thus judged marginal up to the mid-1980s, when a 1986 report by
the U.S. Air Force, entitled ‘‘Intraflight Command, Control, and Communication
Symposium Final Report,’’ finally declared SAW ‘‘the single most important factor
where the mission effectiveness could be improved’’ [3]. This statement positioned
the U.S. Air Force as a first key stakeholder of the development of research on
SAW [4]. Soon, this concept was generally adopted in all domains of aviation,
notably the commercial airlines. Research on SAW and the application of its findings
were especially successful in piloting and air traffic control.

3.2.1 Identifying the Benefits of Situation Awareness

The first important benefit of SAW was the discovery that most errors in air traffic
control were the consequence of a failure to maintain appropriate SAW [5, 6].
Hartel et al. [5] found that SAW errors were the main cause of military aviation
mishaps. In commercial airlines, Endsley [7] reported that 88% of human errors
were related to inadequate SAW. A bad perception of needed information is present
in 76% of SAW errors, while a problem with the comprehension of the information
perceived was noted in 20% of SAW errors [8]. When a pilot neglects to check
the flaps at take off and consequently crashes, the error can hardly be attributed
to inadequate training, lack of practice (because that task has been practiced
hundred, if not thousands, of times), or scarce cognitive resources. Considering
the risk of a deadly error, such a mistake is certainly not the consequence of a
gross negligence. Inappropriate SAW has been suggested as a prime explanation
for such accidents. An improvement in SAW could lead to a reduction in costly
errors. SAW enables the development of new abilities, leading to high proficiency
levels in terms of planning, decision-making, and action. Klein [9] gives four reasons
why SAW is important:
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• SAW appears to be linked to performance.
• Limitations in SAW may result in errors.
• SAW may be related to expertise.
• SAW is the basis of decision-making.

In all cases, the focus is on the extra benefits a hyperproficient agent can derive
from taking advantage of a situation. As stated before, the SAW concept and its
measurement were initially developed in the context of explaining operator or pilot
mistakes that were otherwise hard to understand. A relative consensus emerged
about SAW’s being a helpful concept, notably to explain errors in complex and
dynamic technological environments. It is only recently, inspired by the U.S.
Twenty-First Army, that research on SAW has been seen as a major contributor
to strategic advantages on the battlefield. For the infantry, the focus of SAW is
not so much error reduction but obtaining strategic advantage in the field.

3.2.2 Situation Awareness as a General Concept in Multiple Domains

Although most recent work on SAW has been linked to aviation [1], the interest
in SAW rapidly expanded into several other fields of activity where humans have
to monitor high-tech devices in complex, dynamic, and constantly changing environ-
ments. The question was then asked, Is SAW, outside the aviation domain, just a
marginal concept?

During the last decade or so, one of the aims of most research was to include
SAW in the list of human factors as an independent entity compared to perception,
attention, working memory, or mental workload, which are the same whatever
the application field is. It was then important to investigate SAW in a large variety
of fields. If SAW had no general properties, this would limit its acceptability as a
basic human-factors concept and would consequently reduce interest in the search
for a general definition and measurement methodology.

The potential generalization of SAW is confirmed by the works of Gaba and
Howard [10]. They have described a strong analogy between SAW requirements
in aviation and anesthesiology. Both fields imply dynamism, complexity, a high
information load, a variable workload, and risk. The existence of realistic simulators
where surgical problems are replicated showed that SAW could be investigated
with the same methods in both fields [11, 12].

The results in the field of nuclear power plant process control were less fruitful.
Early work by Woods, O’Brien, and Hanes [13] suggested that SAW could be
applied with benefits to this specific field. However, their approach is at odds
with the key researches that are now considered as the base of the contemporary
conceptualization of SAW. A recent attempt to study team SAW during the normal
operations of a nuclear power plant failed because all operations were perfectly
executed [14]. The investigated situation offered no opportunity to make mistakes,
thus few opportunities to observe fluctuations in SAW.

Gugerty and Tirre [15] investigated SAW in car driving with approximately
the same techniques as those used in aviation. One can argue that driving a car
might not be fundamentally different from piloting. Their results did show that
the SAW methodology could be applied in the same way to everyday tasks as it
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has been in tasks requiring maximal human performance. Jenner et al. [16] linked
a lack of SAW to a variety of accidents investigated by the National Transportation
Safety Board in the marine, the pipeline, railroad, and aviation industries. According
to Molloy [17], surface transportation entered into the same era of automation
pitfalls that aviation had to overcome several years ago. Overconfidence in the
technology and a consequent loss of SAW is observed in investigated accidents.

Very diverse applications appeared recently. Klein [9] introduced methods to
investigate SAW that are similarly applicable to the analysis of errors in both
aviation and neonatal diagnosis of an extremely dangerous systemic infection in
newborns. The work on team SAW (e.g., [18]) yielded another important cue about
the generalization of this concept from individuals to groups. Although Endsley et
al. [19] developed two different models for individual and team SAW, both issue
from the same conceptual framework. Trafton [20] also used knowledge about
SAW to study how expert navy forecasters build their weather forecasts. Finally,
Endsley [1] added to this list the study of advanced manufacturing systems, educa-
tion, maintenance, and operator interfaces.

Thus, SAW appears to be a general concept that can be of interest in a large
number of settings. The pervasive use of computer devices for the control of various
processes or machines has produced an increase in the overall information available
to an operator and in the amount of information provided by various interface
systems. Compared to nontechnological situations, where SAW is mostly about
the perceived natural environment, technological devices also require SAW to take
into account the state and functions of the device itself. The overall increase in the
complexity of information sources in current technological environments makes
an exhaustive SAW much more difficult. The overflow of information generated
by computer systems has strengthened the need for a more systematic study of
SAW. More data does not mean more information [1]. On one hand, these computer
systems often aim at maximal exploitation of human cognitive resources in informa-
tion processing. On the other hand, if they are badly designed, they may contribute
to information overload by providing too much data and not enough information,
consequently creating a situation where too few cognitive resources are available
for information comprehension and interpretation essential to higher-level SAW.

There is another potential problem with the use of computer systems. The
automation of data acquisition, analysis, and assisted decision-making may some-
times result into a loss of SAW. For instance, the automation of the data-acquisition
process may reduce a person’s awareness of the actual state of the world. To
address this in relation to automation, the relationship between automation and
SAW was the main question discussed during the third meeting on SAW held in
Savannah, Georgia, in October 2000.

Although SAW has been a constant topic of discussion at every annual meeting
of the Human Factors and Ergonomics Society since 1993, most of the now available
works had already been published by 1995. The following years were a time of
implementation rather than fundamental research, notably at the commercial level.
At times, device designers claimed that their new products sustained better SAW.
This assumption was optimistic but often lacked sound scientific grounding. In
fact, the problems with the SAW definition and its measurement are still preventing
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the successful implementation of devices and methodologies for SAW support at
the scale that was then expected.

3.3 Defining Situation Awareness

When experts speak about the existence of a general phenomenon called situation
awareness, most discussions are reasonably consensual. In practice, a long list of
concrete examples exists to persuade people that SAW has its own reality and its
own importance. Endsley et al. [19] adopted this approach with success. When
the same experts attempt to define this expression in concrete words, the result is
debatable. At times, the definition is considered imprecise, impossible to measure,
circular, or too bound to the characteristics of a particular situation. In other cases,
it is too general and cannot be differentiated from other related concepts.

As Pew [21] pointed out, the term situation awareness shares a common history
with several psychological concepts, such as intelligence, vigilance, attention,
fatigue, stress, compatibility, or workload. For decades, all of these terms were
poorly defined. However, each became important because it attracted attention to
critical processes or mental states that were previously unknown. Ultimately, these
terms changed how we study human-factors problems, and they brought new
benefits.

As a result of the persistent, unsuccessful efforts to define SAW, Sarter and
Woods [22, p. 16] proposed that ‘‘the term situation awareness should be viewed
just as a label for a variety of cognitive processing activities that are critical to
dynamic, event-driven, and multitasks fields of practice.’’ Such a point of view
enables applied work on SAW to proceed, but in the long run can be detrimental
to the field and foremost to the development of general SAW measurement tools.
The acceptance of a precise and universal definition of SAW would bring consider-
able advantages to the field. However, unrealistic endeavors can be counterproduc-
tive and eventually ruin this new field of human factors by delaying applications
that can benefit operators in various domains. Thus, in order to assess the SAW
measurement tools currently available, it is important to address the issue of the
definition of the object these tools aim at measuring, that is situation awareness.

3.3.1 The Notion of Awareness

Browsing through some standard, everyday dictionary (e.g., Merriam-Webster),
we find that awareness has to do with having knowledge of something; this is
illustrated in Figure 3.1.

In addition to the cognition facet, awareness is also linked with the notions of
perception and understanding or comprehension. While perception is defined as
becoming aware of something through the senses, comprehension and understand-
ing are both defined as knowledge gained by grasping, with the intellect, the nature,
significance, or meaning of something.
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Figure 3.1 The notion of awareness.

3.3.2 The Notion of Situation

Once again browsing through the dictionary, we define a situation as a specific
combination of circumstances (i.e., conditions, facts, or states of affairs) at a certain
moment. We then say that a situation is a combination of situation elements. Figure
3.2 is an attempt to list some basic situation elements relevant to most military
and public-security operations and to illustrate, at a very high level, some of the
relationships between these elements. Clearly, this list in Figure 3.2 is far from
exhaustive, and a multitude of aspects must be considered in typical situations of
interest.

The partitioning, in Figure 3.2, of the situation elements into physical, meta-
physical, intentional, and social categories is inspired by Nowak [23] and his effort
to develop an appropriate conceptualization to support information fusion.

The main two basic situation elements are potentially the entity and the event.
An entity is an existing thing (as contrasted with its attributes), that is, something
that has independent, separate, self-contained, and/or distinct existence and objec-
tive or conceptual reality. An event is something that happens (especially a notewor-
thy happening). Hence, entities exist, while events occur.
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Figure 3.2 Some basic situation elements.

Physical and human resources could potentially be used to act upon the situation
and provide capabilities to the entities. The term activity refers to the notions of
action, movement, and motion. It is appropriate when something has the quality
or state of being active, that is, when something is characterized by action or
expresses action, as distinct from merely existing or having a state. A scenario is
defined as a sequence of events. The term scene is defined as a single situation in
a play. As one may think of a global situation as comprising a set of local situations,
the term scene could be used to refer to a local situation, that is, a single situation
in this set.

A group represents a number of situation elements assembled together or having
some unifying relationship, for instance, an assemblage of entities or events regarded
as a unit. Finally, the person who needs to acquire and maintain SAW, the goals
of this person, and the technological systems and the other persons supporting the
acquisition and maintenance of SAW are additional situation elements not shown
on Figure 3.2 that should typically be included to provide a description of a
situation. Once again, the discussion here is far from being exhaustive.

The dynamic relationships between the situation elements are also highly
important. A relation can be defined as an aspect or quality that connects two or
more things or parts as being or belonging or working together or as being of
the same kind. Note that relations between situation elements can themselves be
considered elements of situation (e.g., relations between the sensors, weapons, and
identity, as shown in Figure 3.2).
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3.3.3 A General Framework for a SAW Definition

Several definitions of SAW are disseminated here and there through a wide range
of papers. Jeannot [24] presents a table of definitions from Dominguez [25]. It is
an interesting starting point for a repertory of SA definitions.

In order to extract the basis for a general definition of SAW, one approach is
to start with the essential elements involved in SAW. This can be done simply with
the following illustration presenting the two basic elements in SAW: the situation
and the person.

In Figure 3.3, the situation can be defined in terms of events, entities, systems,
other persons, and so forth, and their mutual interactions. The person can be
defined according to the cognitive processes involved in SAW, or simply by a
mental or internal state representing the situation.

The simple representation illustrated in Figure 3.3 is not a model in itself. It
is a simple schema of the general elements, from both the situation and the person
sides, which should appear in a global definition of SAW.

3.3.3.1 The Person Side of SAW

From the person side, a given definition may be process oriented, focusing on the
link between the situation and the cognitive processes generating SAW. This is well
illustrated in Dominguez [25]. Her definition presents a set of four processes, or
functions, on which SAW depends: information extraction, information integration,
mental picture formation, and projection and anticipation.

Other definitions are state oriented, focusing on the link between the situation
and an internal representation of the elements present in the situation. Adam [26]
provides a clear example of a state-oriented definition that defines SAW as ‘‘know-
ing what is going on so I can figure out what to do.’’ State-oriented definitions
limit the description of the processes involved in SAW. In fact, that distinction is
on the same line as the more basic opposition between the concept of direct
perception and the indirect perception concerning the theoretical status of percep-
tion as a basic mental process. Derived from the work of Gibson [27], direct
perception is based on a number of principles, two of them being of interest for
SAW:

Figure 3.3 A simple illustration of the elements involved in SAW.
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1. All the information necessary for perception is contained in the environment.
2. Perception is immediate and spontaneous.

It follows that in order to understand perception, the priority must be on
understanding the environment. There is no need to develop theories of perception
based on inferred mental mechanisms of information processing from which percep-
tion would result. On the other hand, an information-processing approach considers
that a mental representation of the world is based on processing with specific
functions [28, 29]. That approach requires an explicit description of the processes
involved in providing humans with cognition.

This simple distinction between ‘‘process’’ and ‘‘state’’ is of considerable impor-
tance. One of the major difficulties in working with SAW is avoiding confusing
SAW knowledge with underlying cognitive processes, such as perception, memory,
attention, categorization, or decision-making. This difficulty is particularly acute
when SAW has to be measured. In agreement with Adams, Tenney, and Pew [30],
Endsley [31] limited the term situation awareness to the achieved knowledge (state)
about a situation. She proposed the expression situation assessment to designate
the cognitive processes that produce the knowledge (state).

Defining SAW as a state of relevant knowledge of which an operator is aware
is not without problems. Smith and Hancock [32] suggest defining SAW with
regard to an external goal to avoid the dead methodological introspection issue.
Introspection is a process by which people come to be attentively conscious of
their current mental state. This focused consciousness on one’s concurrent mental
state is distinct from the relatively casual, fleeting, diffuse way we are ordinarily
conscious of many of our mental states [33]. Methods based on introspection rely on
verbal reports about one’s mental states. It is now well accepted that introspection is
the result of these mental states and not a mere reflection of their current status.
Furthermore, introspection often fails to report on mental states that operate on
a more automatic cognitive level, like implicit memory or skilled performance on
which expert performance is often based. Hence, SAW cannot simply be equated
with any verbal report of the content of consciousness about a situation. According
to Smith and Hancock, ‘‘To equate SAW with momentary knowledge and mental
models is to run the risk of allowing SAW to degenerate rapidly into whatever is
inside your [skilled] head.’’ These authors also state that ‘‘to comprehend SAW
without a viable understanding of the interaction between agents and their task
environment would be virtually impossible’’ [32, p. 140]. Actually, such comments
stress the importance of considering SAW as a specific mental representation.

In the context of the development of a SAW definition, one is then left with
a double problem. On one hand, if SAW is a state, it is essential to give a precise
definition of the knowledge that defines the state. There should be a certain mapping
between a situation schema and a knowledge schema. If one is to improve SAW,
the elements of the situation critical for SAW should be specified, and the SAW
content definition should follow from these elements. On the other hand, if
SAW depends on a set of processes that are not an intrinsic part of SAW as a state,
but on which SAW depends, it becomes important to specify which processes are
essential to SAW. SAW improvement, for instance, will depend upon changes in
the operation of these processes.
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3.3.3.2 The Situation Side of SAW

From the situation side, SAW definitions can be classified as either general or
specific. On one hand, a specific definition describes the situation in terms of the
objects, actions, and variables related to the task being performed. They are detailed
and precise. Prince and Salas [34] propose a specific definition stressing very specific
elements. They define SAW as ‘‘the ability to maintain an accurate perception of
the surrounding environment, both internal and external to the aircraft, as well as
to identify problems and/or potential problems, recognize a need for action, note
deviations in the mission, and maintain awareness of tasks performed.’’ On the
other hand, a general definition will refer to the situation in abstract, nonspecific
terms. A definitely general definition is presented by Gibson and Garrett [35], who
state that SAW is ‘‘the pilot’s overall appreciation of his current world.’’

As we have argued before, it is important to distinguish both the general and
the specific definitions. Perhaps a major part of the definition problem would be
solved if the definitions were tightly bound to the sole situations or environments
in which the studied process or mental state had a real, non-negligible impact.
That is to say, SAW would only be considered in a certain set of situation conditions,
when specific definitions could be proposed.

Adams, Tenney, and Pew [30] have pointed out that SAW is not always
important. SAW is often needed in times of crisis. What makes a situation a crisis
if not the characteristics of the situation itself? On one hand, restricting SAW to
crisis situations would leave us with an efficient, specific operational definition;
on the other hand, this definition would still be lacking in terms of general proper-
ties. Thus, if the specific definition is adopted as a solution for the SAW definition
problem, one is then left with the problem of developing a useful definition.

Of course, if a new specific definition were required for every situation, efforts
to provide a general definition of SAW would be senseless. Gaba and Howard [10]
have written that SAW is as critical in anesthesiology as it is in aviation since both
environments include dynamism, complexity, a high information load, a variable
workload, and risk. Common environmental characteristics should be looked for.
One way to address this problem is to consider the situation part of the definition
as being based on the generic properties of one situation within a class of situations.
The situation elements, while lacking in some detail, would remain the same for
all situations belonging to a given class.

Pew [21, p. 34] defines a situation as ‘‘a set of environmental conditions and
system states with which the participant is interacting that can be characterized
uniquely by a set of information, knowledge, and response options.’’ Pew then
proposes that SAW should integrate, when applicable, five aspects of the situation:

1. The surrounding environment (spatial awareness);
2. The mission’s goals (e.g., ‘‘to keep current with respect to the phase of the

mission and the currently active goals that are to be satisfied’’);
3. The system (especially with complex automated systems);
4. The available physical and human resources;
5. The crew (e.g., ‘‘Each crew member must know the current activities of

other crew members so that their availability for critical tasks is known’’).



3.4 Endsley’s Model of Situation Awareness 37

The role of the general definition is then to propose constraints as far as what
can be included in a specific definition of SAW. In that view, situation takes on a
very large meaning. It includes task and mission features, as well as the other
human agents in the significant environment. Propositions like Pew’s provide the
basis for a better understanding of what is meant by situation in SAW.

3.3.4 An Analysis of SAW Definitions

To summarize the preceding discussions, one may claim that a definition of SAW
can be either process or state oriented from a person-side perspective. Also, such
a definition can be seen as general or specific from the situation-side perspective.

In order to better understand the variety of efforts deployed at defining SAW,
27 definitions have been analyzed by Breton and Rousseau through simply classify-
ing them as process oriented or state oriented, and as being general or specific [36].
Among these definitions, the three-level definition of SAW proposed by Endsley [37]
has been adopted by a majority of researchers. According to Endsley, SAW can
be defined as ‘‘the perception of the elements in the environment within a volume
of time and space, the comprehension of their meaning, and the projection of their
status in the near future.’’

At the end Breton and Rousseau’s analysis [36], the question remains as to
whether a definition of SAW should be limited to content or if it should include
the processes or functions linked to the awareness of the situation. Should SAW
include what some authors refer to as situation assessment? It is not possible to
provide an answer to that question from the strict analysis of SAW definitions.
However, many authors have expanded their definition of SAW by developing
models of SAW. In fact, the complexity of defining the cognitive side of SAW has
led a number of authors to develop models of SAW that are complex enough to
make possible an explicit presentation and definition of this aspect. Such models
are discussed in the following sections.

3.4 Endsley’s Model of Situation Awareness

A systematic analysis of SAW models is provided in Endsley et al. [19]. They
present a list of eight models, all but one of which has been developed since the
mid-1990s. They are presented as ‘‘models of how people achieve SAW in complex
domains’’ [19, p. 34]. So, the models are not necessarily formal SAW models but,
most often, are descriptions of the status of SAW in a general model of cognitive
processing, taking into account noncognitive factors affecting the development of
SAW.

Among these models, Endsley’s model [1, 31, 37] clearly stands out as the
reference for most work done on SAW. A number of other models focus on a
specific aspect of SAW but remain within the constraints of Endsley’s model. For
instance, Maggart and Hubal [38] describe SAW in the context of infantry opera-
tions. They explicitly rely on Endsley’s [31] model as a basis for describing the
specific elements of SAW in that context, while focusing on the environment,
physical or organizational, in which infantrymen operate. Similarly, Endsley and
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Jones [39] and Salas et al. [40] address the important issue of team or shared SAW
from the point of view of the Endsley’s model. Likewise, McGuinness and Foy
[41] base the development of a SAW measure on Endsley’s model, while proposing
some modifications to the original. Actually, the current status of SAW as a scientific
concept in the field of human factors owes very much to the sustained efforts by
Endsley and her collaborators.

Endsley et al. describe an extended version of Endsley’s model adapted to
infantry operations [19]. It is, by far, the most extensive SAW model currently
available. The model has two main parts: the core SAW model and the various
sets of factors affecting SAW. The first part we call the core SAW model since it
represents the processes directly responsible for SAW. The core model follows
Endsley’s proposition that SAW is a three-level mental representation: perception,
comprehension, and projection. The second, and much more elaborate, part
describes in detail the various factors affecting SAW grouped into four broad
classes: external world, task and environmental factors, individual factors, and
military domain factors. These factors include contributions from all components
of current human information-processing models, like goals, active schemas, past
experience, attentional processes, and working memory. While this makes the
model all encompassing in terms of factors affecting SAW, it does not push any
further the modeling of core SAW. In a way, the model is now very large and not
very tractable.

The model of SAW presented in Endsley [31] is thus the basis for much of the
current modeling of core SAW; it is illustrated in Figure 3.4.

The three levels of SAW from that model will be briefly described next:

• Level 1—Perception of the elements in the environment: This is the first
step in achieving SAW. It provides information about the status, attributes,
and dynamics of the relevant elements in the environment. The perception
of cues is fundamental. Without a basic perception of important information,
the odds of forming an incorrect picture of the situation increase dramatically
[42]. Level 1 SAW includes the classification of information into understood
representations. Long-term memory stores contain knowledge that enables
mental representations of the elements. Moreover, perceived elements are a
subset of elements present in the environment. The subset is under attentional
selection based on task requirements. The elements are structured into mean-
ingful events situated in time and space. These events form an important
part of level 1 awareness and make possible a dynamic mental representation
sensitive to change. That content is active in working memory, thereby
providing a basis for awareness of it.

• Level 2—Comprehension of the current situation: Endsley also states that
SAW, as a construct, goes beyond mere perception. It also encompasses how
people combine, interpret, store, and retain information. Thus, it includes
more than perceiving or attending to information; it includes the integration
of multiple pieces of information and a determination of their relevance to
a person’s goals [43]. Level 2 SAW is thus a synthesis of level 1 disjointed
elements. It provides an organized picture of the elements with a comprehen-
sion of the significance of objects and events. Such a comprehension of a
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Figure 3.4 A model of situation awareness [31, 42].

situation demands that the problem of meaning be tackled head on. Meaning
must be considered both in the sense of subjective interpretation and in
the sense of objective significance or importance. A person with situation
comprehension has been able to derive operationally relevant meaning and
significance from the data perceived [42]. Schemata or mental models stored
in long-term memory are the basis for level 2 SAW. Mental models are
complex schemata representing a given system. Level 2 SAW is then defined
as a situational model depicting the current state of the mental model.

• Level 3—Projection of future status: At the highest level of SAW, the ability
to forecast future situation events and dynamics marks decision-makers who
have the highest level of understanding of the situation. Level 3 SAW is
achieved through knowledge of the status and the dynamics of the situation
elements and the comprehension of the situation. It enables predictions about
the states of the environment in the near future. The mental model provides
a means to go from an understood situation to the generation of probable
scenarios as to the possible future states of the system. This ability to project
from current events and dynamics to anticipate future events (and their
implications) allows for timely decision-making.
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3.5 Defining and Modeling Situation Analysis

Based on the work of Roy, Paradis, and Allouche [43, 44], this section proposes
another concept, situation analysis (SA), in an attempt to synthesize the main
notions put forward by well-established data-fusion and situation-awareness
models. The model of SAW put forward by Endsley was described in Section 3.4,
and the models of the Joint Directors of Laboratories’ Data Fusion Group (JDL
DFG) [45–49] for data fusion are described in Chapter 4. In addition to clarifying
the original concepts of these models, this synthesis expands on some of these
ideas while achieving a fair depth in the level of detail of the resulting generic
description.

Particular care has been devoted to the selection of an appropriate unifying
terminology to designate the fundamental elements of SA. The proposed model both
defines the scope of the situation-analysis process and establishes a comprehensive
definitional, conceptual, and functional framework that could facilitate the dialogue
between researchers, technologists, developers, and users of situation-analysis and
command-decision-support systems for military and public-security purposes.

Although the elements of SAW may vary widely between domains, its nature
and the mechanisms used for achieving it can be described generically, at an
implementation-independent level of abstraction. In that sense, no algorithms or
techniques to achieve SA are provided here; in line with Lambert [47], we are more
interested in knowing what SA is rather than how it is done. The resulting descrip-
tion can thus be useful across multiple application areas.

Situation analysis, as described in this section, is a complex process, requiring
deep knowledge of operations, doctrine, equipment characteristics, the effects of
terrain and weather on operations and equipment, and a host of other factors,
including even such intangibles as a sense of the will of the different actors to fight.
It is a goal of this section to provide a foundation for understanding situation
analysis.

3.5.1 Situation Awareness and Decision-Making

According to Endsley and Garland [42], there is a strong link between SAW and
decision-making (DM) processes. Nevertheless, Endsley presents SAW as a stage
separate from decision-making and action in her model. SAW is described as the
decision-maker’s internal model of the state of the environment; based on that
representation, the decision-maker can decide what to do about the situation and
carry out any necessary actions. SAW is therefore represented as the main precursor
to decision-making. This is illustrated in Figure 3.5, built around Boyd’s OODA
loop. The first half of Boyd’s loop (observe and orient) gathers a number of processes
that mainly perceive, interpret, and project the status of the elements included in
the environment. These processes yield the situation awareness required to complete
the decision-making process. The second half (decide and act) of the OODA loop
decides on the best course of action with respect to the mission and supports its
implementation given the situation and the available resources.

From the perspective of Figure 3.5, a key factor determining decision quality
is SAW. However, good SAW does not necessarily produce good DM. In some
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Figure 3.5 Situation analysis and decision-making.

circumstances, the best alternative can be selected without the presence of critical
information. In others situations, bad choices can be made even with the availability
of all the information defining good SAW. However, one can claim that enhancing
SAW improves the probability of selecting the appropriate course of action in most
of situations. Consequently, the improvement of the human DM process can be
seen as highly related to the enhancement of SAW.

Other DM models are claiming the importance of SAW. Klein [50] raises the
importance of a pattern-recognition process in his Recognition-Primed Decision
(RPD) model. As discussed in Chapter 2, this model, influenced by the naturalistic
decision-making (NDM) trend, suggests that humans are rapidly selecting a satis-
fying alternative through a pattern-recognition process instead of comparing many
plausible alternatives to find the optimal one. This model is appropriate to represent
the DM process in situations characterized by factors such as time pressure, stress,
high stakes, conflicting goals, and ill-defined problems. In intelligent systems, such
as case-based reasoning (CBR) and knowledge-based and rules-based models, the
introduction of critical information is essential for the selection of the appropriate
alternatives.

3.5.2 Situation-Analysis Definition

In this perspective, we define situation analysis as a process, the examination of a
situation, its elements, and their relations, to provide and maintain a product, that
is, a state of situation awareness, for the decision-maker. As shown in Figure 3.5,
the SA process thus encapsulates that part of the overall decision-making cycle
concerned with understanding the world. There is a real situation in the environ-
ment, and the SA process will create and maintain a mental representation of it,
the situation model, in the head of the decision-maker(s).

At the highest level, making a strong parallel with Endsley’s work, the SA
process can be decomposed into four subprocesses: situation perception, compre-
hension, projection, and monitoring (note that we are talking about processes here,
not states). This is illustrated in Figure 3.6.

Situation perception has to do with the ‘‘acquisition’’ of the situation through
data and information collection with various sensors and other sources. Situation
comprehension is about further developing one’s knowledge of the situation with
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Figure 3.6 High-level view of the situation-analysis process.

respect to both its nature (i.e., the inherent character or basic constitution of the
situation) and its significance or meaning (i.e., the importance of the situation).
This subprocess must be able to grasp the nature of the situation and to derive
operationally relevant meaning and significance from the results of situation percep-
tion. Situation projection must produce estimates of future possibilities for situation
elements, based on current trends, and of the consequences, impact, or the implica-
tions of the situation. Finally, situation monitoring has to do with watching, observ-
ing, or checking the evolution of the situation in order ultimately to keep track of,
regulate, or control the operation of the SA process.

Figure 3.7 is a much more detailed functional description of the SA process than
Figure 3.6. From a data-driven perspective, it entails integrating and interpreting the
whole spectrum of source data and information, ranging from radar returns to
political factors. The SA process thus encompasses a vast range of activities, from
the detailed signal processing associated with target acquisition and tracking to
intelligence interpretation. Simply put, the process must provide answers to a great
number of questions: What? Who? How many? How big? Where? What structure?
When? What is it doing? Why? What’s the build up? What could it do? How soon?
What is outstanding? What has changed? What is delta from expectations? What is
going wrong? The SA process thus consists of numerous dependent and independent
subprocesses at multiple levels of abstraction. Every subprocess can itself be further
decomposed hierarchically into multiple subprocesses. Clearly, the set of sub-
processes included in Figure 3.7 is far from exhaustive; however, it is representative
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Figure 3.7 Detailed view of the situation-analysis process.

of most of the main subprocesses that are relevant in typical military or public-
security operations.

These SA subprocesses must be integrated and interleaved into an overall
processing flow. Regarding this issue, one should note that there are no arrows
on the diagram in Figure 3.7. Moreover, although SA is clearly a multiple-level-
of-abstraction activity, there are no explicit references to the JDL data-fusion
‘‘levels’’ in the model. According to Steinberg, Bowman, and White [45], the
data-fusion levels are intended only as a convenient categorization of data-fusion
functions. They were never intended to be, nor should they be taken as, a prescrip-
tion for designing systems; that is, do level 0 fusion first, then level 1, then level
2, and so forth. The SA subprocesses should instead be regarded as ‘‘agents’’ having
some degree of autonomy, each one interacting with its own changing environment,
which could be the external physical world, or the other agents. Hence, there is a
requirement that the SA subprocesses must, at a minimum, communicate with one
another or, ideally, cooperate with one another. Any subprocess can communicate
with any subprocess.

This is in line with the data-fusion notion of process refinement. The results
(or ‘‘states’’) of the SA subprocesses are generally correlated with each other so
that good estimation of certain states is likely to yield good estimates of other
states, provided the SA process is cognizant of the underlying correlations [51].
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The subprocesses at the higher levels of abstraction build on the results produced
by the lower levels, and they also feed back conclusions to these lower levels in
order to fill in unknowns. For example [52], entities perceived near a river (context)
might be characteristic of elements of an engineer battalion (identification) and,
because of their presence near a river and on the opposite side from the friendly
forces (context), a bridge-building mission might be inferred (intent, situation
classification/recognition).

Given the inherent data-driven bias of traditional data-fusion practitioners,
there is a natural tendency to look at Figure 3.7 through a ‘‘clockwise rotation’’
perspective, that is, starting with acquisition/collection, then going sequentially
through structured description (integration/abstraction), classification/recognition,
assessment, projection, impact, and monitoring. But it doesn’t have to be like that.
On one hand, the SA process may start anywhere; there are multiple asynchronous
entry points. On the other hand, human information processing in operating com-
plex systems is seen as alternating between data-driven (bottom-up) and goal-
driven (top-down) processing. This alternation is viewed as critical in the formation
of SAW. In goal-driven processing, attention is directed across the environment in
accordance with active goals [42]. The decision-maker actively seeks the informa-
tion needed for goal attainment, and the goals simultaneously act as a filter in
interpreting the information that is perceived. In data-driven (or stimulus-driven,
reactive) processing, perceived environmental cues are processed to form SAW and
may indicate new goals that need to be active. Dynamic switching between these
two processing modes is one of the most important mechanisms underlying SAW.

Although the discussion so far has a slight ‘‘technology flavor,’’ no particular
a priori human-machine allocation is presumed for the proposed model of SA. At
least in principle, each subprocess in Figure 3.7 could be performed by humans,
computers, or both. Clearly, the current technology alone is not sufficient to imple-
ment the SA process in computers fully. Thus, an optimal mix of human intelligence
and technology can be defined for SA. One could say that the proposed model
should enable human-factors specialists and knowledge engineers to model the
tasks, as well as the knowledge and data structures that are key ingredients in the
SA process.

3.5.3 Situation Model

The main purpose of the SA process is to assemble a representation of aspects of
interest in an environment. This is in line with the ideas of Lambert [46–48]. The
SA process thus incorporates and develops an internal situation model of itself and
the environment in which the process operates. This situational model, which the
SA process endeavors to keep up-to-date, captures a representation not only of the
various elements of the situation but also of how they relate to create a meaningful
synthesis, that is, a comprehension of the situation. There is one real world, and
the situation model is an abstraction of it [46]. Among other things, it is abstract
in the sense of being incomplete (as our attention to the world is selective) [47].

3.5.3.1 Situation-Element Acquisition

A number of sources provide data and information to the SA process at a variety
of levels ranging from sensor data, to a priori information from databases, to
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human input [53]. Hence, multiple types of dynamic and static data and information
are made available to the SA process. Source examples include sensors, prisoners,
local populace, human intelligence, reference information, and so forth. The sources
typically provide only limited observables, coverage, resolution, and accuracy [54].

In the ‘‘acquisition’’ of the situation, various separate and distinct entities,
events, or activities are perceived. It is also worth noting that some evidence comes
in group form (e.g., a raid report), or the information has to be dealt with as a
group because of sensor-resolution limitations. With respect to the environment-
perception subprocess, terrain and weather analysis is focused on their effects on
friendly and enemy capabilities to move, shoot, and communicate [51]. Given
weather and terrain conditions, execution doctrine determines how the enemy will
fight.

3.5.3.2 Common Referencing

As discussed above, data and information related to an entity, a battlefield event,
a group, and so forth, will often be reported independently via a multiplicity of
sensors or sources, each differing in coverage area, spectrum, resolution, response
time, and observable sensed [51]. Common referencing is the processing of input
reports typically to achieve a common time base and a common spatial reference
[53]. Data alignment must remove any positional or sensing geometry and timing
effects from the data and information [51]. The subprocess also transforms source
data into a consistent set of units and coordinates for further processing [53].

Finally, this subprocess could also have to deal with other important issues,
such as the alignment of different uncertainty frameworks.

3.5.3.3 Situation-Element Association

Association is a basic subprocess necessary to determine which situation elements
at the input of the SA process associate to which situation elements currently being
maintained in the situation representation (i.e., the situation model). Association
is necessary to deal with the uncertainty attached to the situation elements. A
classical example is to determine whether entity data, which have been reported
by different sources, represent the same entity or different entities; in this case, one
talks about data-origin uncertainty management.

The association process can make either hard decisions or soft decisions about
which of a number of hypotheses best describes the association of input situation
elements received from some sources with situation elements contained in the
current situation model. A hard decision is a definitive association to one, and
only one, interpretation possibility, while a soft decision allows the data to be
associated to multiple interpretation possibilities, with each candidate association
having a measure of uncertainty. The soft-decision approach typically results in
multiple association hypotheses being maintained until additional input situation
elements have been collected and there is enough information data available
to reduce the uncertainty and to substantiate or refute the prior hypothetical
associations.
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Thus, multiple-hypothesis data association (MHYDA) inherently uses later
input data to aid in evaluating prior correlation decisions. Note that ultimately,
though, a final decision has to be made. In principle, this approach should lead to
the most accurate association results. However, the computational requirements
necessitated by the ability to retain multiple interpretations of the situation represent
the main drawback of the standard (hypothesis-oriented) MHYDA algorithm [55].
To reduce (actually minimize) these computational requirements, the number of
data association hypotheses must be limited (sometimes sacrificing optimality)
through the use of hypothesis pruning and combining methods. Moreover, since
the amount of computer storage and computation time grows exponentially with
the number of situation elements for the MHYDA algorithm, the combinatorial
problem associated with forming multiple temporally continuous hypotheses can
also be significantly reduced by dividing the entire set of situation elements into
separate groups or clusters. See [56–59] for more detail about the problem of
multiple-hypothesis data association.

3.5.3.4 Situation-Element Refinement

In the presence of uncertainty for a complex environment, where an unknown
number of entities is entering the volume of interest at any time, while some others
are leaving this same volume or are being destroyed (we also include here the random
false alarms and the clutter), there is an evident requirement for an existence-analysis
subprocess. Referring to the target-tracking terminology, once tracks are formed
and confirmed (so that background and other false targets are reduced) and low-
quality tracks have been deleted, the number of targets can be estimated. Note
that the number of groups and their size are also of interest.

Situation abstraction [54], which includes both situation generalization and
situation specialization, is an interesting concept with respect to existence analysis.
Situation generalization allows bottom-up abstraction of entities, events, or groups
that are either not directly measurable or perceived or that must be inferred [54].
Situation specialization is a form of top-down reasoning where subordinate ele-
ments are deduced or inferred. Situation abstraction attempts to fill in missing
information and to develop a more complete and integrated situation representation
than is possible using reasoning based strictly on direct observables.

The kinematics-analysis subprocess assembles a representation of the kinemati-
cal properties of the situation elements maintained in the situation model. The
usual kinematics properties are the position, velocity (course, speed, angular rates,
Doppler), acceleration (maneuvers), and the attitude (pitch, roll, yaw) of an entity.
Identity analysis is the subprocess by which some level of identity of a situation
element is established, either as a member of a class, a type within a class, or a
specific unit within a type [53].

Certainly, those three subprocesses (i.e., existence, kinematics, and identity
analyses) are the aspects of information fusion that have been studied the most so
far; there is a huge body of literature readily available to the reader that covers
them in depth.
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3.5.3.5 Situation-Element Contextual Analysis

One crucial aspect of successful SA is understanding that the various assessments
optimally derive from examining the data and information from multiple contextual
viewpoints [51]. The context is the interrelated conditions in which something
exists (e.g., an entity) or occurs (e.g., an event). Hence, as we progress through it,
we desire the SA process to represent more than just measurable properties of
situation elements; relationships among them are also a key aspect of interest
[45–48].

The contextual-analysis subprocess thus develops a description of all sorts of
relationships among situation elements: physical (is composed of), spatial, temporal,
structural, organizational, perceptual, functional (involves/requires/provides),
causal, informational, and so forth. Clearly, however, we are talking here about
relationships of interest between situation elements of interest.

Given such relationships, group formation and refinement is also possible. By
forming individual situation elements into groups, further inferences on attributes,
identity, allegiance, function, and mission may be possible. Groups also form a
fundamental component of SA for inferring what tactics the total set of enemy
entities is employing.

3.5.3.6 Situation-Element Interpretation

Once an entity has been perceived, its kinematics have been determined, and it has
been identified, the decision-maker typically wants to know what the object is
doing, that is, its behavior [60]. The behavior is the particular manner in which
something bears, conducts, or comports itself. It is highly linked to the notions of
performance and action (i.e., activities). Behavior related to threat assessment can
include elements of positional information: direction, speed, and maneuvers. It can
also include operation of equipment: jamming, using radar or laser systems, opening
weapon bay doors, and releasing weapons. Not all of these aspects of behavior
are likely to be found at the same time, and the same combination of behavior
elements may have different threat connotations, depending on circumstances. Note
that besides threat assessment, behavior can be a source of information for other
SA subprocesses, such as kinematics and identity analyses.

The SA process also performs an analysis of the level of activity. For example,
an increase in the level of communications may indicate movement of units. An
increase in the level of use of active sensors may indicate abnormal activity. In
general, the monitoring of the level of activity may highlight a build up during the
development of a crisis. Decision-makers are often interested in a description of
the latest known enemy activities in an area. Lastly, note that the absence of activity
is also of interest.

3.5.3.7 Intent Analysis

Especially in military environments, account has to be taken of the intentions of
the forces concerned [60]. Intent estimation has a lot to do with interpreting or
explaining (i.e., give the ‘‘why,’’ the reason for or cause of the presence of entities
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or their behavior). The notion of intent revolves around the ideas of aim, goal,
target, objective, plan, and purpose.

More precisely, an intention is a determination to act in a certain way [44].
Given this definition, one can consider the intent formulation, that is, act in a
certain way (e.g., ‘‘sink the protected unit’’), and the intent strength, that is, the
level of determination of the player (e.g., firm intent versus weak intent). Both
aspects can be considered for intent analysis. Note that the intent formulation may
be true or false, with some confidence level attached to each, while the intent
strength can be a continuous value.

Intent analysis plays an important role in the calculation of the inherent-threat
value. Knowing the true intent of a suspect entity can greatly support the projection
of the current situation. For example, if a plane currently flying directly towards
a protected unit is positively identified as a friendly civilian aircraft, then one might
be tempted to conclude that the intent of the pilot is to pass over the protected
unit with absolutely no consequence or impact on it. In such a situation, knowing
that the true, firm intent of the pilot is actually to commit a ‘‘suicidal mission’’ is
highly critical to predict the true upcoming consequence, that is, that the aircraft
will crash into the protected unit, causing important damage.

Intent analysis also supports the plan-analysis process in the recognition of
the current plan(s) being followed by some entity. For example, knowledge of the
intent of a suspect entity may greatly decrease the size of the search space for the
various plans to be matched with the situation elements perceived about this entity.

Finally, some estimated numerical values for the intent of an entity (e.g., a
confidence on the intent formulation and a determination index) can be used as
an input in some mathematical formula for threat-value calculation. However, this
must be developed with great care since it is the consequences of actual actions
that may ultimately have an impact on the protected unit, not the intent of any
player. For example, it may happen that an entity overestimates its capabilities
and consequently develops a firm, hostile intent towards the protected unit. In
such a situation, if the true capabilities of the entity are correctly assessed as low
by the defending unit, then the inherent-threat value assigned to this entity should
also be low, even if its firm, hostile intent is well known. And the opposite is also
true. A situation may also arise where the consequence of some action, if not
stopped, will have a major impact on the protected unit, although the true intent
of the player has nothing to do with this unit. As a simple example of this, how
often have we heard a child say, ‘‘I had no intent to break this valuable thing’’?
This is often very true; the child really had no intention of breaking the thing.
Unfortunately, this child has performed an action, and the corresponding conse-
quence is there: the thing is broken. This is called collateral damage.

It is proposed that numerical values for the intent of an entity could play a
role in the threat-value calculation only when one has a poor estimate of the damage
power of an entity. In such a situation, if one knows for sure that the entity has
the firm intent of harming the protected unit, then one might be tempted to eliminate
the entity ‘‘just in case.’’

Unfortunately, intent analysis is not an easy task. Behind an intent are some
interests or desires on the part of a player. These define why the enemy will fight,
its high-level goals. They are mostly based on the perception or comprehension,
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beliefs, values, principles, and culture of the player (defining some player profile),
and these are very intangible parameters. Nevertheless, if some classification or
identity information is available, then some knowledge of an entity’s interests and
desires may be available from the intelligence process (e.g., there might be a history
of conflicts). Note that the necessary information about the capabilities and vulnera-
bilities of the entity can also be obtained from a priori intelligence data. Spatial
and temporal analyses are then performed to assess if there are favorable junctures
of circumstances or opportunities for the suspect player to achieve its goals. This
analysis of the opportunities must also take into account the constraints, such as
the rules of engagement, of the suspect player and the environmental conditions.
The latter includes the terrain and weather effects on mobility, sensors and weap-
onry, the constraints of international treaties or alliances, and so forth. Finally, it
is by evaluating and jointly processing strengths, weaknesses, and opportunities
with desire that some estimates of the intent and determination of a suspect player
can be derived.

3.5.3.8 Plan Analysis

Military operations, even those that are covert or involve surprise, are typically
guided by a plan or set of plans, because such operations are complex, involve
multiple resources and goals, and require significant coordination [51]. The red
war plan defines why, where, and when the enemy will enter into combat and with
what force structures, schedules, and operations. If this assertion is true and if the
general doctrines that guide red force actions are known to a blue force (at least
in part), then the blue force can hypothesize the use of certain red force plans and,
based on incoming multisensor data, assert the possible existence of particular red
plans and use such assertions for decision-making and action. That is, making
hypotheses (through the exploitation of doctrinal or exercise-based knowledge of
hostile behavior) about the plan of a player provides a framework for the fusion
of the data and information perceived and inferred about this player [51].

Clearly, plan recognition can be useful to infer the intent of unknown units
whose presence was previously unexplained and, more importantly, to forecast the
imminent actions of a player, leading to an eventual assessment of the threat value
of the corresponding upcoming consequences. Clearly, also, behavior analysis has
a significant role to play regarding plan analysis.

3.5.3.9 Situation Classification and Recognition

Situation classification is the systematic arrangement of situations into groups or
categories according to established criteria. It has to do with the cataloging and
sorting of situations. Multiple abstract models of situations may be available a
priori. Associated with these models may be schemata of prototypical situations.
Critical cues in the environment may be matched to such a priori schemata to
indicate prototypical situations that provide instant situation classification and
comprehension [42].

Situation recognition is the action of perceiving the situation to be something
previously known. A very familiar situation, whatever the level of danger, may
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simplify decision-making. However note that such practice may lead to mental
fixation, sometimes with deleterious or disastrous consequences (failing to foresee
massive deception or a successful surprise attack, not anticipating enemy behavior
on the battlefield, and the like) [51]. Unfamiliar situations may trigger various
actions from the SA process (e.g., tasking the data-collection sources to gather
more information).

3.5.3.10 Situation Assessment

To assess a situation is to determine its importance, size, or value. A situation
assessment is thus a quantitative evaluation that has to do with the notions of
judgment, appraisal, and relevance. While behavior analysis is about what entities
are currently doing, the capability- or capacity-analysis subprocess is about what
they can do. This includes various force-evaluation functions that will determine
what the assets of the participants (own or enemy) are. Situation assessment also
attempts to determine forces’ important intangibles: morale, psychological state,
level of training, stability under stress, strength of will, and so forth [51]. The
salience of something is its striking point or feature. The perceptual salience of
environmental cues is the degree to which they draw attention [42]. Salience analysis
must assess what is outstanding in the current situation (e.g., an exceptional event,
an entity that requires special attention).

3.5.3.11 Situation-Element Projection

This SA subprocess is necessary because one is not only concerned with what is
happening but also with what events or activities are going to happen next. The
decision-maker can never influence the present, only the future. Hence, knowledge
of the current world state is only of value as a contribution to understanding the
future. Situation-element projection must produce an estimate of future possibilities
for situation elements based on current trends and expectations. Ultimately, the
predictive capability can include story building, simulation, war gaming, engage-
ment modeling, and so forth.

3.5.3.12 Impact Assessment

Impact is defined as one thing’s force of impression on another, as an impelling
or compelling effect. There is also the notion of influence, of one thing influencing
another. According to the data-fusion model maintained by the JDL DFG, impact
assessment has to do with the estimation and prediction of effects planned, esti-
mated, or predicted actions by the participants [45]. It draws inferences about
friendly and enemy strengths, vulnerabilities, and reinforcement capabilities, cost
and utility implications of estimated situations, problems and opportunities for
operations, and so forth. Accurate impact assessment requires applying the concept
of shifting perspectives to the data and information to develop an optimum view-
point of the situation [51]. This means examining the data from each of red, blue,
and white viewpoints.
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Impact assessment includes an analysis of the interactions between action plans
of multiple players (e.g., assessing susceptibilities and vulnerabilities to estimated
or predicted threatening actions, given one’s own planned actions). Such interac-
tions are illustrated in Figure 3.8. Note that a plan typically results in a sequence
of actions from a given player. In turn, an action eventually produces some conse-
quence, disturbing the environment, which may or may not be synchronized in
time with the originating action. Ultimately, a consequence may have a large impact
on the plan of another player, forcing this player to cancel upcoming planned
actions.

Impact assessment should be implemented as a prediction function, drawing
particular kinds of inferences from the current situation representation. Impact
assessment estimates the outcome of various plans as they interact with one another
and with the environment. The impact estimate can include likelihood and cost/
utility measures associated with potential outcomes of a player’s planned actions.
Indeed, impact assessment is often about computing some cost, given an aggrega-
tion, for instance, computing the probability of killing a ship, given current and
expected relational states between the ship and other entities [45]. Note that because
Steinberg, Bowman, and White have defined situation assessment so broadly,
impact assessment is actually a subset of situation assessment in their model.
Whereas situation assessment involves estimating or predicting all types of relational
states, impact assessment involves predicting some or all of the relationships

Figure 3.8 Interaction between the plans of two players.
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between a player and his or her environment, to include interaction with other
players’ actions, given the player’s action plan and that of every other player [45].

3.5.3.13 From Desire to Consequences

Impact assessment, as formulated in the JDL DFG model, is the foundation of
threat analysis. However, the concepts presented in Section 3.5.3.12 need to be
further refined for a practical threat-analysis application to be developed. In particu-
lar, some notions, like intent, capability, opportunity, and so forth, need to be
taken into account. Planning means deciding on a course of action before acting
[51]. A plan is thus a representation of a course of action. It can be an unordered
list of goals, but usually a plan’s goals have an implicit order. Most plans have a
rich subplan structure; each goal can be replaced by a more detailed subplan to
achieve it. This is illustrated in Figure 3.9.

Figure 3.10 is a different, more complete view, putting the notion of intent in
relation to its driving factors. As previously mentioned, an intention is a determina-
tion to act in a certain way. Given an intent, a detailed formulation of a program
of action is required to achieve the goal. This is the plan, that is, the method for
achieving the desired end. Behind an intent are the player’s interests or desires. A
desire is defined as a conscious impulse toward something that promises enjoyment
or satisfaction in its attainment. This is the starting point of the process; that is,
one must have the desire to achieve something. However, mere desire is not enough.
One must also have the basic capabilities, that is, the facility or potential for an
indicated use or deployment required to achieve a goal. One must take into account
any vulnerabilities, for instance, ways one is in a position to be physically wounded
or is open to attack or damage. Finally, there might eventually be a favorable
juncture of circumstances, that is, an opportunity to achieve the goal. Only by
weighting strengths, weaknesses, and opportunities with desire will the real intent
emerge.

Figure 3.10 describes well how players go from desires to actual actions in the
environment. Because of the dynamic nature of its parameters, this process is far
from static. Desires change with time. Opportunities come and go. Capabilities and
vulnerabilities evolve with the situation. More importantly, there are interactions

Figure 3.9 Example of a generic plan-goal graph.
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Figure 3.10 From desire to consequences for a given player.

between the various players, with the actions of one player potentially having an
impact on the intent and planning process of another player. When operating in
a given environment, one can follow proactive, predictive, or reactive strategies,
or a combination of the three, regarding the activities of another player. This is
illustrated in Figure 3.11.

A good example of proactive behavior is issuing a warning. Typical warnings
are, ‘‘You are approaching our warship. Turn, or we will engage,’’ or ‘‘I will defend
myself.’’ Such warnings may be sufficient to cause other players to change their
desires and modify their current plans. One can also force the opponent into some
location that will decrease the feasibility of its planned actions, thereby removing
some opportunities that once were driving factors for this opponent.

If the desires, capabilities, and vulnerabilities of an opponent can be estimated
(e.g., from intelligence reports), along with the opponent’s opportunities (e.g., from
the situation timing and geometry), then one can predict the opponent’s intent and,
consequently, infer its possible plans or course of action. Finally, by observing the
past and current actions of a player and their consequences, one can potentially
recognize the plans of this player and then infer its intent.

3.5.4 Threat Analysis

While conducting command-and-control activities, decision-makers eventually have
to manage actual or potential threats to some protected units. By definition, a
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Figure 3.11 Strategies for dealing with suspect entity plans. (After: [61].)

threat is an expression of intention to inflict evil, injury, or damage. The focus of
threat analysis is to assess the likelihood of truly hostile actions and, were they to
occur, projected possible outcomes [51].

Typically, the situation of every entity must be evaluated to determine its degree
of threat within the context of the mission’s overall objectives. This first requires
looking at the kinematics information (e.g., closest point of approach, range, speed)
and the contextual and a priori information (e.g., lethality, doctrine, rules of
engagement, tactics, resource inventory and status) regarding entities. Thus, mostly
based on capability and intent, threat analysis generally attempts to compute some
threat value that estimates the degree of severity with which engagement events
will occur. This amounts to (1) quantitatively portraying the capability, and (2)
coupling this picture with an estimate of intent [51]. Once the hostile intent of an
entity has been clearly established, the significance of the threat is proportional to
the perceived capability of this entity to carry out that threat.

Threat and risk assessments are eventually made, forming a basis for making
decisions about the use of defensive means to maximize survivability and achieve
the mission. In this regard, it is of utmost importance for decision-makers to be
able to determine which of several threats represent the highest danger as errors,
such as prioritizing a lesser threat as a greater threat and ultimately engaging the
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wrong target, can result in dramatic consequences (damage, injury, or even death).
Clearly, threat analysis must be performed with great care.

In view of the introductory discussion above, we formally define threat analysis
as:

The analysis of the past, present and expected actions of external entities, and
their consequences, to identify menacing situations and quantitatively establish the
degree of their impact on the mission, the intents, the plans, the actions, and the
human and material assets of some valuable units to be protected, taking into
account the defensive actions that could be performed to reduce, avoid, or eliminate
the identified menace.

Introducing the notions of inherent-threat and actual-risk assessments, Figure
3.12 illustrates the threat-analysis concept and its relation to response planning.
The concept of inherent-threat assessment has to do with quantitatively establishing
the degree of impact of each upcoming consequence resulting from actions per-
formed by other players. The idea is to quantify the intrinsic level of danger or
menace (i.e., the potential for causing harm, damage, or mission failure) of a
consequence if nothing is done to prevent its happening.

As shown in Figure 3.12, the assessment of the inherent threat involves the
threat-value-calculation and threat-value-ranking subprocesses. The former is a
process (e.g., a mathematical or rule-based process) that assigns a numerical inher-
ent-threat value to a consequence, reflecting the degree of inherent threat evaluated
for the consequence according to a number of factors representing predetermined
threat criteria. For example, this value could be a number between 0 (no threat)
and 1 (the highest threat value). Threat ranking simply ranks the consequences,
for instance, from the most threatening to the least threatening, based on their
assigned threat values. Ultimately, a prioritized threat list is generated, listing the
menacing consequences to be considered for actual-risk assessment. Note that in
practice a consequence is often mixed with the entity (usually internally represented

Figure 3.12 Threat analysis and response planning.
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in a computer-based situation-analysis system as a track) that will actually produce
it. Therefore, the prioritized threat list could contain a list of entities (or tracks),
each with an attached inherent-threat value. This makes sense since eliminating a
threatening consequence often boils down to eliminating the entity that will produce
it.

The actual-risk-assessment concept takes into account the defensive actions
that can be performed to reduce, avoid, or eliminate each menace previously
identified through the inherent-threat-assessment process. It is an analysis step that
asks the following questions to fine out how easy it is to avoid or defeat each
individual threat on the prioritized threat list:

• Do we know how to tackle the problem posed by the threat?
• How many defensive options do we have to avoid or defeat the threat?
• What is the quality of each option?

Answering such questions should influence or modulate the threat value pre-
viously computed by the inherent threat-value-calculation function. The threat
value is then transformed into an actual-risk value that better reflects the actual
potential for danger. On one hand, an entity that has been assigned a very high
inherent-threat value could ultimately represent a very small risk if it is very easy
to take care of it (i.e., there are numerous, good-quality options to tackle the
problem). On the other hand, a moderate threat entity may represent a high risk
if there are no options to counter it. In the end, the actual-risk assessment process
generates a prioritized risk list as an input to the response-planning process that,
in turn, considers all of the threats and defensive options together to produce a
prioritized engagement list.

Note that from the prioritized risk list, one can also perform reaction-time and
critical-risk analyses. Concerning the former, a number of valid defensive options
might be identified for a given threat. An analysis is then performed on each option
to identify the time remaining before the option has to be initiated for the defensive
response to be valid. From this analysis, high-risk entities requiring immediate
responses can be identified. Quick reaction alerts can then be generated by the
threat-analysis system for consideration by the defending decision-makers. The
purpose of critical-risk analysis is to identify significant threats for which there are
no, or only a few, defensive options available. Actually, it performs a sort of
thresholding process on the actual-risk value to identify highly critical conditions.
Again, critical-risk alerts can be generated for consideration by the defending
decision-makers. Figure 3.13 illustrates some of the factors that influence threat
analysis.

3.5.4.1 Inherent-Threat Assessment

Inherent-threat assessment is the part of threat analysis that looks at the past,
present, and expected actions of external entities and their consequences to identify
menacing situations and quantitatively establish the degree of their impact on the
mission, intents, plans, actions, and human and material assets of some valuable
units to be protected. At this stage of the analysis, an entity should not be categorized
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Figure 3.13 Examples of threat-analysis factors. (After: [61].)

a threat or nonthreat, based on a friendly weapon’s ability or inability to engage it.
The essential step of this assessment process is the inherent threat-value calculation
function. A high-level view of the relevant elements of this function and their
relationships is provided in Figure 3.14.

As a result of past and current actions by the players in the environment, a
number of entities and events have already been perceived by the sensing system,
providing data and information to construct a basic model of the current situation.

3.5.4.2 Situation-Geometry Analysis

By coupling the results of the kinematics analysis with knowledge of the environ-
ment and the capabilities, one can establish the current situation geometry. Figure
3.15 illustrates some typical components of the situation geometry that are relevant
to threat analysis.

The threat reference point (TRP) is an important parameter, as it is the position
on which the threat assessment is based. It can be static (e.g., a fixed position
defined by a static special point) or dynamic (e.g., a friendly track or a dynamic
special point). The TRP typically depends on the defending unit’s defense role (e.g.,
point defense or supportive area defense) and the associated defense priority (i.e.,
priority is point defense, for instance of own ship in a naval operation, only, where
priority is given to point defense over supportive area defense). Other typical
geometry parameters illustrated are the sensor and weapons coverage zones, the
red weapon lethality zone, and the seeker angle (in the case of a missile). Concerning
vulnerability to fragment attacks, a keep-out range may be defined as the minimum
range within which an incoming entity must be damaged to avoid any possible
damage (from entity debris) to the protected or defending unit. The definition of
such a keep-out zone involves key issues such as small fragment impact, multiple
fragment impacts, fragment breakup and effects, blast, blast or fragment synergism,
vulnerability or lethality modeling, response of missiles to damage and their post-
damage trajectories, and so forth.
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Figure 3.14 Inherent threat-value calculation.

As is also illustrated in Figure 3.15, one is concerned not only with what is
currently happening but also with events or activities that are going to happen
next. A key parameter obtained from situation projection and often used with
threat-evaluation techniques is the closest point of approach (CPA) (see Figure
3.15). The CPA for an entity is the point at which it will be the closest to the TRP,
given current trends and expectations. Typically, for a static TRP, an assumption
is often made that the current velocity of the entity will remain constant for the
duration of the evaluation. In such a situation, the CPA is the point at which the
projection of the current course of the entity meets, at a 90° angle, the radius of
the circle centered on the TRP and with a radius long enough that the current
course of the entity is tangential to this circle. The radius of this circle, that is, the
distance from the TRP to the entity’s CPA, is called the range at CPA (RCPA).
The time to CPA (TCPA) is then the time it will take for an entity to reach the



3.5 Defining and Modeling Situation Analysis 59

Figure 3.15 Some situation-geometry and timing elements for threat analysis.

CPA if its velocity remains constant (i.e., the entity’s current distance from the
CPA divided by its current speed).

If an assumption is made that an entity reaching its CPA will simply turn 90°
toward the TRP and maintain its current speed, then a sense of the ‘‘proximity’’
of the entity to the TRP, when the entity is at its CPA, can be gained by converting
the CPA distance into time. Dividing the CPA distance by the entity’s current speed
provides an indication of the time it will take the entity to hit the TRP from the
CPA. This is referred to as the CPA in units of time (CPA IUOT). By converting
the CPA distance into units of time, one can now plot this CPA distance on the
same time-based plot as the TCPA, thereby getting a sense of the direction, relative
to the location of the TRP, of the entity’s course. The overall time before the entity
reaches the TRP, that is, the TCPA plus the CPA IUOT, is called the time before
hit (TBH). Other similar temporal parameters often mentioned are the time to go
(defined as the time before ‘‘metal hits metal’’), the time to penetrate the lethal
zone, and the weapon time to intercept the target.

3.5.4.3 Situation-Element Kinematics Smoothing Techniques

The threat-analysis process may require the use of smoothing techniques for the
estimation of the kinematics of entities in order to ensure that changes in the overall
threat or risk priority of these entities take place gradually. This is most effective
with maneuvering entities to ensure that one update will not remove from the
threat or risk list an entity that only has to be readded during a subsequent update.
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Whether the entity is an aircraft or a missile, it generally never goes in a straight
line to its target (e.g., the protected unit). Instead, it will often maneuver while
approaching the target. Hence, in order to compute meaningful threat or risk values
(very often functions of the CPA and TCPA, among other parameters) to be assigned
to each potentially menacing entity, some stabilization process is thus needed for
the kinematics situation elements maintained in the SA system situation model.
Such a process will essentially make a kinematics smoothing of the trajectory of
each entity in order to stabilize its CPA and TCPA, as well as any other time-space
parameters such as these.

Different approaches to kinematics smoothing can be considered. Mathematical
approaches try to discover an analytical expression (equation) for the trajectory.
The equation is then used to compute the equation of a straight line corresponding to
the mean direction of advance of the entity. In some situations, real-time constraints
require the use of simple methods to compute such a direction of advance. For
instance, the least-squares regression line can be computed over the points that
form the trajectory. Each time a new position of the entity is reported, a new
regression line is computed. Even if this method is simple and attractive from a
computational point of view, it may actually take more time than the analytical
expression approach before the direction of advance stabilizes. Other methods are
based on feature-extraction approaches. They attempt to extract the main features
or characteristics of the trajectory, such as sharpness, size, and changes in oscilla-
tions. These characteristics are then used to determine the direction of advance of
the entity. Neural networks are well adapted to feature extraction. Depending on
the type of network and the information used to train it, the extraction of features
can be thought of as a spatial analysis of the trajectory.

All methods of kinematics smoothing depend on a number of factors that
directly influence their performance:

• Oscillation frequency: This parameter reflects the capacity of the entity to
make sharp turns within a short period. Such sharp turns of different ‘‘forms’’
increase the difficulty of determining the main features of the trajectory.
Hence, stabilizing the direction of advance of the entity may take much
more time than that required for soft and regular turns.

• Observation frequency: The positions of the entity are usually generated
using reports from sensors such as radars. The number of reports within a
period has a direct impact on the time of stabilization of the direction of
advance. On one hand, if the trajectory is oversampled, some performance
and computational issues may arise. On the other hand, if it is undersampled,
it may be too difficult to characterize the trajectory.

• Temporal window: Whatever the method used to stabilize the direction of
advance, only a limited number of position points can be considered or one
may encounter computational limitations. Generally, one selects a temporal
window, that is, a period during which the new reported positions will be
taken into account by the stabilization process. Obviously, the larger this
window, the slower the stabilization will be. However, if this window is too
small, it will not be sufficient to characterize the trajectory, hence, to stabilize
the direction of advance.
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All of these factors must be taken into account before choosing an approach
to kinematics stabilization. For example, mathematical approaches would be
misapplied in the case of sharp and highly irregular oscillations. However, they
are well adapted to soft and regular oscillations. Neural approaches are well adapted
to irregular oscillations and uncertain data, but mathematical approaches will give
better solutions with regular oscillations.

3.5.4.4 Consequences Analysis

Getting an understanding of the consequences of the various actions performed by
the various players in the environment is a critical step in threat-value calculation.
One is concerned with identifying the nature of each consequence—for instance,
an explosion, a physical hit (‘‘metal hits metal’’), or the release of highly toxic
chemical substances—and quantifying the impact of this consequence on the mis-
sion, intents, plans, actions, and human and material assets of some valuable units
to be protected. Regarding the latter, one must establish some scale to quantify,
based on the potential for ‘‘blue losses,’’ the degree of impact of the various types
of consequences. Table 3.1 presents a very basic example of how various levels of
impact can be defined.

Identifying the nature and impact of each expected consequence requires pretty
good predictive capabilities that can include story building, simulation, war gaming,
engagement modeling, and so forth. Knowledge of an entity’s capabilities is required
for the situation-projection function. One is interested in the maneuverability of
the entity (e.g., turn rate, acceleration, thrust vector control or actuation), its
guidance mechanisms (e.g., active or semiactive or -adaptive, dual-mode seeker),
the fusing system, and so forth. One may also be interested in the weapons launcher’s
characteristics (e.g., the reload rates and stockpiles). Knowledge about the logistic
networks (e.g., levels of resupply capability), intelligence capability, communication
nets, level of training, and various other conditions may also be required. Finally,
with respect to assessing the degree of an entity’s potential impact, one is interested
in the envelope of the hostile weapons (i.e., the effectiveness zone) in terms of the
probability of hit and the lethality in terms of probability of kill or kill radius.

3.5.4.5 Inherent Threat-Value Calculation

Inherent threat-value calculation is a process (e.g., mathematical or rule-based)
that assigns an numerical inherent-threat value to a consequence, reflecting the

Table 3.1 Value of the Impact of Consequences of Actions

Impact
Scale Material Damage Human Losses Blue Planning Blue Mission

0 No damage No losses No change No impact
1 Small damage No losses No change No impact
2 Moderate damage No losses Small change No impact
3 Severe damage No losses Moderate change Mission delay
4 Moderate damage Small human losses Severe change Mission delay
5 Severe damage Severe human losses New plans required Mission abort
6 Sinking of the ship Severe human losses N/A Mission abort
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degree of inherent threat evaluated for the consequence according to the estimated
intent of the entity causing the consequence and its estimated impact. For example,
it could be a number between 0 (no threat) and 1 (the highest threat value). Based
on the results of the inherent threat-value calculation process described above, the
threat-assessment process must produce and update a prioritized threat list for
presentation to the operator and subsequent use by the actual-risk assessment
function. Threats must be ranked on the list, top to bottom, from greatest to least.
Note that presenting tracks to decision-makers in a threat list, sorted from the
most threatening to the least, is clearly in line with the cognitive demands associated
with threat evaluation.

3.5.4.6 Actual-Risk Assessment

Through the calculation of an actual-risk value, one attempts to quantify how easy
it is to avoid or defeat each individual threat on the prioritized threat list. This is
illustrated in Figure 3.16. Note that the process reuses a number of results derived
from the inherent threat-value calculation. This step of the threat analysis starts
with a review of the various defensive means available and defensive actions that
could be performed to reduce, avoid, or eliminate each threat on the prioritized
threat list. In addition to the use of classical weaponry systems (both hard kill and
soft kill), other options, for instance, changing the ship’s disposition to avoid the
threat or issuing a warning to the suspect entity to influence its intent, are also
considered and matched to the set of expected consequences. This is where the
available response time (e.g., the time until impact or until likely red weapon
release) against aggressive threats becomes a very important issue. As the reaction
time decreases, so does the number of defensive options applicable to the problem,
thereby increasing the actual risk to the protected unit.

Figure 3.16 Actual-risk calculation.
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Given all of the possible options to counter the various threats, potential
opportunities for the blue forces in terms of their ability to engage the enemy
effectively must be analyzed, requiring a quantitative evaluation of the quality of
each option in terms of its probability of success and degree of threat eradication.
Response time for the blue forces is again a big issue here. Ultimately, numerical
values regarding the number and quality of options serve as inputs to the actual-
risk-calculation function where they are used to influence or modulate the inherent-
threat value previously computed, while taking into account a quantitative assess-
ment of the value of the protected unit itself. The prior threat value is thereby
transformed into an actual-risk value that better reflects the tangible potential for
danger. An entity that has been assigned a very high inherent-threat value could
ultimately represent a very small risk if very easy to take care of (i.e., there are
numerous, good-quality options for tackling the problem). In the middle of the
spectrum, a moderate threat entity may nevertheless represent a high risk if there
are no options available to counter it.

3.5.4.7 Situation Watch

As part of situation monitoring, situation watch observes the situation’s evolution
closely. It must pay attention to changes in various aspects of the situation and
provide alerts concerning significant ones. It must keep awake and vigilant to
maintain a state of alert and continuous attention for the SA process to prevent it
from missing important entities, events, or activities. For example, monitoring the
outcome of an engagement (e.g., kill assessment) in real time is important. The
diagnostic subprocess must estimate the difference between the current perceived
situation and the projected one. For example, given predictions of enemy intentions,
situation watch must identify areas of interest that should be monitored for verifica-
tion of those predictions [51]. Subsequent observed cues can then either be bizarre,
irrelevant, unexpected, or absent (i.e., the expected is absent). Discrepancies become
the basis for requests, through the process-refinement capability, for additional
collection and for expanding the scope of the analytical evaluation [51]. In any
case, the decision-maker should be alerted to inconsistent or unexpectedly absent
activity.

3.5.5 Process Refinement

Process refinement seeks to optimize the overall SA process with respect to the
dynamic goals and restrictions of decision-makers and the process requirements
and constraints by supporting global control of both the information collection
and the analysis-process resources [52]. Goal management is clearly required for
the SA process. At any given time, decision-makers have many tasks in their queue
in various stages of completion [42]. The urgency associated with individual tasks
changes with time or the acquisition of new information. With constantly changing
priorities, information needs are also constantly changing. The manner in which
the ‘‘attention’’ of the SA process is employed in a complex environment with
multiple competing cues is essential in determining which aspects of the situation
will be processed to form SAW. The object of attentional allocation is to maximize
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the information content gleaned from the sources [51]. When not controlled or
guided by a global strategy, data and information sources act as ‘‘vacuum cleaners,’’
collecting, along with vital information, totally redundant, unnecessary, and
unwanted data and information. The analysis of massive amounts of irrelevant
data can severely burden both manual and automated SA processes. Hence, based
on recognized information deficiencies and potentially available collection assets,
process refinement generates prioritized information requirements that are sent to
the collection manager [52].

Process refinement also plays an important role in assessing the quality of the
data to be analyzed. In this regard, some assessment of enemy countermeasure
activity must be performed to better quantify the confidence the decision-maker
can place in the abstraction and assessment of the situation derived from the
multisource data and information. Attempts to disrupt SA (i.e., situation-estimating
countermeasures) involve concealment, cover, and deception (CC&D) and the
creation of ambiguity [51]. The SA process is vulnerable to CC&D at each step.
Finally, system awareness is especially important in complex, highly automated
systems. Resource awareness is needed to keep track of the state of currently
available resources, including both physical and human resources.
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C H A P T E R 4

Data- and Information-Fusion Models
Jean Roy, Dale Lambert, Frank White, Joseph Karakowski, John Salerno, and Mike Hinman

4.1 Introduction

Data and information fusion (DIF) has already received significant attention for
military applications; it is still expected to play a crucial role in the next generation
of support systems for aiding decision-makers in military and public-security opera-
tions. Indeed, DIF is a key enabler to meeting the demanding requirements of
situation analysis and decision-making in command-and-control (C2) support sys-
tems. Among the many reasons for interest in this technology, data and information
fusion:

• Provides extended spatial and temporal coverage, increased confidence,
reduced ambiguity, improved entity detection, and so forth;

• Allows for the management of large volumes of information and the correla-
tion of seemingly unrelated, overlooked, or deceptive information to present
a coherent representation of an evolving situation to a decision-maker;

• Enables the commander to cope with the complexity and tempo of operations
in modern, dynamic operational theaters.

This chapter reviews the main models that have been developed over the years
to better understand and describe data and information fusion. Certainly, each one
of these models has value as it provides particular insights into this important field.
Hence, our purpose in describing them is not to argue for one or the other but to
give the reader a good sense of these various perspectives, mainly to put the other
two parts of this book in context.

The four models being considered are the JDL data-fusion model (currently
the most widely accepted model of the data-fusion process), the visual data-fusion
model, the unified data-fusion (or lJDL) model, and, finally, the situation-aware-
ness reference model. The last three models actually resulted from different attempts
to address some perceived deficiencies of the JDL model while, at the same time,
considering the elements of Endsley’s model of situation awareness.

4.2 The JDL Data-Fusion Model

The JDL is a U.S. DoD government committee overseeing U.S. defense-technology
research and development. The data-fusion model developed and maintained by
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the JDL DFG) is the most widely used method for categorizing data-fusion-related
functions [1].

The JDL fusion model is a functional model, motivated by confusion in the
community over the many elements of fusion processes [2], was developed to
provide a common frame of reference for fusion discussions, to facilitate the under-
standing and recognition of the types of problems for which data fusion is applica-
ble, and to aid in recognizing commonality among problems and the relevance of
candidate solutions.

Much of its value derives from the fact that identified fusion functions have
been recognizable to human beings as a ‘‘model’’ of functions they were performing
in their own minds when organizing and fusing data and information. It is important
to keep this ‘‘humancentric’’ sense of fusion functionality since it allows the model
to bridge the operational fusion community, the theoreticians, and the system
developers [2]. The framework of the model has been useful in categorizing invest-
ment in automation and highlighting the difficulty of building automated processes
that provide functionality in support of human decision processes, particularly at
higher levels requiring reasoning and inference.

4.2.1 History of the JDL Data-Fusion Model

In early 1985, the Data Fusion Subpanel (DFS), now referred to as the Data-and-
Information Fusion Group (DIFG), sensed the need for coordination and communi-
cation within the data-fusion community. To bring order to the community, the
DFS focused its efforts on establishing a common language and frame of reference
for the data-fusion process. This included the development of a data-fusion taxon-
omy, lexicon [3], and model. The initial lexicon defined data fusion as follows:

Data fusion is a process dealing with the association, correlation, and combination
of data and information from single and multiple sources to achieve refined position
and identity estimates, and complete and timely assessments of situations and
threats, as well as their significance.

The first model developed by the subpanel used the taxonomy to derive the
data-fusion domain. It was a product-oriented model that used sensor data and
information from other sources to perform analysis at the three ‘‘states,’’ or stages,
of data-fusion processing to develop assessments for the commander. Sensor-
gathered data was the primary source, or input, for the correlation or tracker
algorithm. The result of this process (i.e., state 1) was combined with a priori
knowledge and other data to accomplish situation assessment (state 2). The results
of the state 2 processing were analyzed in context with the threat database to
derive state 3 and develop the assessment product for the commander.

This model was further refined to introduce the concepts of levels of processing
in lieu of data-fusion states. The levels of processing addressed by the subpanel
progressed from a heavy dependence on processing (level 1) to higher-level inference
processes (levels 2 and 3). This revised model labeled situation assessment and
threat assessment as the intelligence-analysis portion of the data-fusion process. It
was clear that the composite track file and situation database, included in the first



4.2 The JDL Data-Fusion Model 71

model, did not sufficiently portray the databases necessary to support the fusion
process. Therefore, additional products and supporting databases were incorpo-
rated in the revised model.

In this model, tracking and correlation algorithms are used with other analytical
statistical routines for object identification and position estimation. The results of
this analysis are then combined with information on enemy patterns, structures,
and other furnished intelligence using event-recognition and expert-systems tech-
niques. The situation assessment is combined with indications and warning informa-
tion to develop the threat assessment.

Another way of portraying this process, referred to as the preliminary data-
fusion model, stresses an interactive process focusing on product and report genera-
tion. Once again the correlation and tracking segment of the process is stand-alone
and results in the development of a tactical picture. This is combined with other
tactical data to generate fusion products used for the development of situation
assessments to support the decision-maker.

The subpanel’s view, in 1985, of the data-fusion research-and-development
process shows the use of the data-fusion model and ongoing research efforts as
the foundation for the generation of a data-fusion research model. The research
model is then used to develop a research-and-development plan for the services.
Data-fusion research problems were identified through the decomposition of the
data-fusion model and a survey of research efforts. This analysis was then used to
develop recommendations for joint or coordinated efforts to identify new high-
payoff programs and to further research and development in areas of technological
gaps.

Work continued in 1985 and 1986, within the subpanel, to further refine the
data-fusion model. A template approach was introduced to aid in the situation
assessment process. Here, incoming data from multiple sources could be matched
against a knowledge base containing information on known enemy operations,
activities, and courses of action. The correct association of a template with an
ongoing hostile operation would constitute a successful situation assessment.

In November 1986, Dick Baer, a DFS member, proposed a functional represen-
tation of the data-fusion process that further defined the level 1 processing as either
single- or multiple-event oriented and as processing data either from single or
multiple sources. Baer also introduced in this model the concept of intermodel and
intramodel connectivity.

In November 1987, Richard Anthony introduced some additional thoughts
and concepts for inclusion in the model. The need was identified for an expanded
model that would incorporate all elements of the existing model but be flexible
enough to accommodate other paradigms and models. The revised model would

• Support centralized or distributed control, including hierarchical;
• Support centralized or highly distributed fusion processing (physically and

spatially);
• Support a centralized or highly distributed data or knowledge base;
• Support a centralized situation representation or distributed ‘‘picture of the

battlefield;’’
• Be hierarchically organized and recursively expandable;
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• Provide a uniform framework for fusion of all intelligence;
• Allow the use of widely disparate data sources (radio frequency energy,

finished image intelligence), local processing paradigms, specialized proce-
dures, hardware, and so forth.

The Kramer/White paradigm for data fusion was subsequently introduced. This
paradigm is similar in many ways to the original model. Inputs come from multiple
sensors and sources, and the outputs support the decision-making process. It also
illustrates the two-way flow of information between the current situation represen-
tation and sensor processing, situation interpretation, and threat assessment.

Through subpanel discussions with, and feedback from, the data-fusion com-
munity, refinement of the data-fusion model has continued. Weaknesses were identi-
fied in the model’s strong focus on intelligence products and the difficulty of
mapping the data-fusion domain to C2 models. In addition, the model previously
portrayed data fusion as a sequential process; however, in some cases, threat
assessment may be performed with outputs from level 1 processing, as well as with
the level 2 situation-assessment inputs.

The DFS then discussed how the data-fusion domain fits within the C2 and
intelligence models. As applied to the intelligence model, the data-fusion domain
includes part of the collection cycle, the processing and analysis steps, and part of
the production process. This paradigm of intelligence processing is valid for each
of the intelligence nodes within the system. The results of the production process
are disseminated to the C2 nodes. In the C2 node, the data-fusion domain is
primarily oriented toward the understanding and evaluation of the data and the
environment to develop products for the decision-making process. As in the intelli-
gence model, data fusion occurs at each node within the C2 structure. Information
resulting from data-fusion processing at one node may serve as input for processing
at another node. At that time, the C2 and intelligence models were based on the
stimulus, hypothesis, option and response (SHOR) paradigm developed by Dr. Joel
Lawson of Naval Electronic Systems (NES).

Figure 4.1 shows the JDL DFS data-fusion model that was circulating around
1990. Around that time, the data-fusion domain still consisted of three levels of
fusion.

Level 1 consists of single and multisource processing. This level involves
tracking and attribute refinement achieved through sampling the external environ-
ment of interest. It deals primarily with the location and identification of enemy
forces. In level 1, tracks and reports are fused into a tactical picture. If tracks
cannot be developed through methods such as parametric characterization and
correlation, then only the reports are used. Sensor reports may originate from the
entity of interest, clutter, false alarms, or the background. In addition to sensor
reports’ inaccuracy, there is uncertainty associated with the vicinity, and one cannot
associate the observed detections to the associated entities. Numerous processing
concepts have been developed to address this uncertainty, including event recogni-
tion, tracking, identification, classification, association, and alignment.

Event recognition is research in the areas of information processing, entity
recognition, and extraction techniques. Tracking, as defined in the DFS data-fusion
lexicon, is the computational process dealing with the estimation of an object’s
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Figure 4.1 JDL data-fusion model circa 1990.
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true position based on noisy observations (measurements) of it. Tracking may
consist of filtering (estimating the position at the time of the latest observation),
smoothing (estimating the position at a point in the past), and prediction (estimating
the position at a point in the future). Identification techniques provide the true
individuality of a person, object, or phenomena. Classification uses techniques for
indexing and cataloging. Association is the process of generating, scoring, and
deciding on hypotheses of which detections or measurements under consideration
refer to the object (e.g., come from the same entity or should be associated with
the same entity) and which refer to different objects. The alternative hypotheses
may or may not be explicitly represented if, for example, decisions are made
according to heuristic rules. Lastly, alignment is the processing of entity reports
form sensors to achieve a common time base and spatial reference.

The tactical picture is then fused with referential and narrative data in an
assessment and validation structure to arrive at information products. The referen-
tial data includes technical characteristics of the operating environment, such as
force status, weapons characteristics, and geographical data. The narrative data
fused with the tactical picture includes intelligence-scenario assessments and doc-
trine.

Level 2 processing involves situation abstraction and situation assessment.
Situation abstraction is the process of constructing a tactical picture based on
incomplete observations. For example, by abstracting bits and pieces of observa-
tions a more complete picture can be generated. Situation assessment provides a
context-specific interpretation of the evolving situation. It is the process of interpre-
ting the tactical environment in terms of the blue force’s ability to engage the enemy
effectively and includes indications and warnings of enemy intentions.

Level 3 processing provides threat assessment and other higher-level intelligence
functions. It is a multiperspective (red, white, and blue force) process of developing
estimates of the vulnerability of own forces based on enemy capability and intent.

The model is fed by information from all available sources, including organic
sensor systems and national assets. Nodal interconnectivity allows information
products to be passed from node to node on the same organizational level. Nodal
intraconnectivity supports the passage of information or intelligence products
between processing levels. This allows threat assessment to be accomplished using
level 2 products from another node or, more directly, by using inputs from the
information sources in the external environment. In fact, the model permits each
of the functions in each processing level to be performed using the products of the
other functions in the same type or from other types of nodes. The functions can
be supported more directly using inputs from the external environment. Each
function is also a processing level that accesses its own supporting database or
other databases through interconnectivity and intraconnectivity.

The product of the data-fusion process is a dynamic, integrated situation repre-
sentation drawn from the blackboard concept often used in artificial intelligence
(AI). It shows the products or essential elements of information required by the
C2 decision-maker. This is a key interface in the real world and the conceptual
model avoids restricting the decision-maker to only certain data-fusion products.
It supports using C2 needs or requirements as the driver of the fusion process.
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Thus, the C2 decision-maker drives the problem and has full spectrum access to
information products vital to the C2 process.

In 1991, the subpanel added a fourth level, process refinement, to the data-
fusion model. This new level addresses the evaluation and control of the fusion
process and provides guidance for acquiring new data. The concept of this level
was introduced by the Office of Naval Technology (ONT) Data Fusion Strategy
Panel in a report titled Functional Description of the Data Fusion Process in
November 1991. In this document, the ONT panel stated that process refinement
refers to the monitoring and evaluation of the ongoing fusion process to refine the
process itself and to guide the acquisition of data to optimize results. Key functions
of this process include:

• Evaluations: Evaluation of the performance and effectiveness of the fusion
process to establish real-time control and long-term process improvements;

• Fusion control: Identification of changes or adjustments to the processing
function within the data-forum domain, which many result in improved
performance;

• Source requirement processing: Determination of the source-specific data
requirement (i.e., identification of specific sensors or sensor data, qualified
data, reference data) needed to improve the multilevel fusion products;

• Mission management: Recommendations for allocation and direction of
resources (e.g., sensors, platforms, communications) to achieve overall mis-
sion goals.

Figure 4.2 shows the JDL DFS data-fusion model that was circulating in 1991.

Figure 4.2 JDL data-fusion model circa 1991.
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We consider Figure 4.3 from Llinas and Antony [4] a good illustration of the
overall data-fusion process as per the JDL conception of Figure 4.2. It reflects the
fact that in most defense applications, data-fusion processing tends to be hierarchi-
cal in nature due to the inherent hierarchies built into defense organizations and
operations. As a result, the fusion process also progresses through a hierarchical
series of inferences at varying levels of abstraction.

Figure 4.3 also suggests the iterative, continuous nature of these inference
processes driven by the temporal character of the usual defense problem. Figure
4.4 from Antony [5] is also highly representative of this JDL conception of data
fusion.

One may have noted that process refinement, that is, level 4 processing, is not
entirely included in the data-fusion domain in Figure 4.2. This has been done on
purpose. The term resource management (RM) can be used to imply the manage-
ment of both system resources, which are used to provide input or support for
processing functionality, and tactical resources, which are used to affect the environ-
ment to achieve some tactical or strategic goal. System resources include base
systems (e.g., CPU, memory, and bandwidth) and software processes (e.g., algo-
rithm choices). Tactical resources include weapons (e.g., missiles, guns, tracking
and illuminating radars) and navigational mechanisms (e.g., control of vessel speed
and direction). In this general sense, therefore, RM extends the level 4 processing
implied by a strict adherence to the JDL data-fusion model of Figure 4.2.

The version of the model shown in Figure 4.2 has been used extensively for a
while, until Steinberg, Bowman, and White [1] presented their effort to revise
and expand this model once again, to facilitate, as they say, the cost-effective
development, acquisition, integration, and operation of multisensor and multi-
source systems. This effort involved broadening the functional model and related

Figure 4.3 Multilevel/multiperspective inferencing. (After: [5].)
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Figure 4.4 A view with multiple levels of abstraction. (From: [5].  1995 Artech House, Inc. Reprinted
with permission.)

taxonomy beyond the original military focus and integrating the data-fusion tree
architecture model for system description, design, and development. They introduce
a level 0 (subobject data assessment) into the model and also include considerations
of informational and perceptual states, in addition to the traditional physical state,
that are of interest and can be useful if the job is to estimate the state of a human
being (or any other sentient being). The last major part of that paper described
the need for an approach to standardizing an engineering design methodology for
data-fusion processes, citing the prior works of Bowman [6], Steinberg and Bowman
[7], and Llinas et al. [8], which elaborated engineering guidelines for data-fusion
processes. This version of the JDL model is potentially the most quoted version in
the contemporary literature on data and information fusion.

Around 1999, Erik Blasch proposed the addition of a sixth level to the JDL
model, level 5, built around the notion of user refinement. This level is discussed
in Blasch and Plano [9], and their definition is as follows:
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Level 5—User Refinement (an element of Knowledge Management): adaptive deter-
mination of who queries information and who has access to information (e.g.,
information operations) and adaptive data retrieved and displayed to support
cognitive decision-making and actions (e.g., altering a sensor display).

Figure 4.5 shows their proposed DIFG fusion model, a ‘‘JDL-User’’ model.
Blasch and Plano’s view is that process refinement, level 4 of the JDL data-

fusion model, covers a broad spectrum of actions, such as sensor management and
control; a limitation of level 4 is the purpose of control, be it for user needs or
system operation. Level 5, user refinement, is a modification of the JDL model
that distinguishes between machine-process refinement and user refinement [9] of
either human control actions or the user’s cognitive model. In many cases, fusion
research concentrates on the machine and fails to take full advantage of the human
not only as a qualified expert to refine the fusion process but as a customer for
whom the fusion system is designed. Without user refinement, fusion is incomplete
and inadequate, and the user neglects its worthiness.

To capture user capabilities, Blasch and Plano [9] explore the concept of user
refinement through decision and action based on situational leadership models.
They develop a Fuse-Act Situational User Refinement (FASUR) model that details
four refinement behaviors (neglect, consult, rely, and interact) and five refinement
functions (planning, organizing, coordinating, directing, and controlling). Process
refinement varies for different systems and different user-information needs. By
designing a fusion system with a specific user in mind, vis-à-vis level 5, a fusion
architecture can meet user information needs for varying situations, extend user
sensing capabilities for action, and increase the human-machine interaction.

Figure 4.5 Proposed DIFG fusion model. (From: [9].  2003 SPIE. Reprinted with permission.)
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Finally, another recent effort to continue the refinement and extension of the
JDL data-fusion model is that of Llinas et al. [2]. They first state in their paper
that the JDL model has not been reviewed in accordance with (1) the dynamics of
world events, and (2) the changes, discoveries, and new methods in both the data-
fusion research-and-development community and related information technologies.
They thus make proposals, for community discussion, regarding improvements to
the understanding of internal processing within a fusion node, extending the model
to include:

• Remarks on issues related to quality control, reliability, and consistency in
data-fusion processing;

• Assertions about the need for coprocessing of abductive, or inductive, and
deductive inferencing processes;

• Remarks about the need for, and exploitation of, an ontologically based
approach to data-fusion process design;

• Extensions to account for the case of distributed data fusion (DDF).

Along this line of thought, they discuss, among other things:

• Nodal and fusion-level processing (including remarks on the fusion ‘‘levels’’
in the current model);

• Interlevel information exchange;
• Adjudication, conflict resolution, and belief change (regarding within-level

and interlevel processing);
• Fusion-node or system-level output processing;
• Architectural issues in DDF;
• Local and network fusion algorithms.

They consider their paper an offering about issues and functions considered
important for any generalized data-fusion model description for modern-day appli-
cations, as well as a possible input to what they hope will be a communitywide
effort to establish and control a community-standard model.

Certainly, the JDL model will continue to evolve, especially through technical
interchange with members of the data-and-information-fusion community at annual
symposiums, special interest group meetings, and other technical forums.

4.2.2 Description of the Contemporary JDL Data-Fusion Model

The history provided in Section 4.2.1 shows that Steinberg, Bowman, and White’s
version [1] of the JDL model is potentially the most quoted version in the contempo-
rary literature on data and information fusion. It is briefly described here.

In their paper, Steinberg, Bowman, and White begin by revisiting the basic
definitions of data fusion. They then propose the following concise definition of
data fusion: ‘‘Data fusion is the process of combining data to refine state estimates
and predictions.’’
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They also discuss the JDL distinction between fusion levels, illustrated in Figure
4.6, which provides a way of differentiating between data-fusion processes that
relate to the refinement of ‘‘objects,’’ ‘‘situations,’’ ‘‘threats,’’ and ‘‘processes.’’

The levels in the JDL model were originally the result of a partitioning scheme
based on the combined and interdependent effects of changing levels of abstraction
and changing levels of problem-space complexity [2].

In their paper, Steinberg, Bowman, and White differentiate the levels first on
the basis of types of estimation processes that typically relate to the type of entity
for which state is estimated. If a process involves explicit association in performing
state estimates (usually, but not necessarily the case), there is a corresponding
distinction among types of association processes. They show the sorts of assignment
matrices typically formed in each of these processing levels.

The level definitions in Steinberg, Bowman, and White [1] are as follows:

• Level 0, subobject data assessment: Estimation and prediction of signal/
object observable states on the basis of pixel-/signal-level data association
and characterization. Level 0 assignment involves hypothesizing the presence
of a signal (i.e., of a common source of sensed energy) and estimating its
state.

• Level 1, object assessment: Estimation and prediction of entity states on the
basis of observation-to-track association, continuous state estimation (e.g.,
kinematics) and discrete state estimation (e.g., target type and ID). Level 1
assignments involve associating reports (or tracks from prior fusion nodes)
into association hypotheses, for which we use the convenient shorthand
‘‘tracks.’’ Each such track represents the hypothesis that the given set of

Figure 4.6 The JDL data-fusion model [1].
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reports is the total set of reports available to the system referencing some
individual entity.

• Level 2, situation assessment: Estimation and prediction of relations among
entities to include force structure and cross-force relations, communications
and perceptual influences, physical context, and so forth. Level 2 assignment
involves associating tracks (i.e., hypothesized entities) into aggregations. The
state of the aggregate is represented as a network of relations among its
elements. Any variety of relations is considered—physical, informational,
perceptual, organizational—given that it is appropriate to the given system’s
mission. As the class of relationships estimated and the numbers of interre-
lated entities broaden, Steinberg, Bowman, and White tend to use the term
situation for an aggregate object of estimation.

• Level 3, impact assessment: Estimation and prediction of effects on situations
of planned, estimated, or predicted actions by the participants, to include
interactions between action plans of multiple players (e.g., assessing suscepti-
bilities and vulnerabilities to estimated or predicted threat actions, given
one’s own planned actions). Level 3 assignment is usually implemented as
a prediction function, drawing particular kinds of inferences from Level 2
associations. Level 3 fusion estimates the ‘‘impact’’ of an assessed situation
(i.e., the outcome of various plans as they interact with one another and
with the environment). The impact estimate can include likelihood and cost
or utility measures associated with potential outcomes of a player’s planned
actions.

• Level 4, process refinement: Adaptive data acquisition and processing to
support mission objectives. Level 4 processing involves planning and control,
not estimation. Level 4 assignment involves assigning tasks to resources.

An extensive description of the version of the JDL model discussed in this
section, along with discussions of many peripheral issues that concerns this perspec-
tive of data and information fusion, can be found in [10]. Moreover, as previously
mentioned, many other aspects have also been discussed more recently in [2],
around an effort to continue the refinement and extension of the JDL data-fusion
model.

4.2.3 Fusion Versus Reasoning or Inference

Not all of the situation elements of interest to a given decision-maker are directly
observable with the typical data and information sources currently available. This
is especially true of highly abstract types of situation elements (e.g., enemy intent)
and also of the relationships between situation elements. Those aspects of interest
that cannot be directly observed must be inferred, that is, derived as a conclusion
from facts or premises or by reasoning from evidence. This is an essential aspect
of information fusion and situation analysis that will need a lot more attention in
the future. Figure 4.7 shows both notions, that is, that of a fusion processing node
and that of an inference processing node. This figure also illustrates the distinction
between redundancy fusion and complementary fusion.
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Figure 4.7 Fusion (redundancy and complementary) and reasoning or inference nodes.
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4.2.4 Data-and-Information-Fusion Node

The concept of a processing node used in the previous section has been introduced
in the framework of the JDL fusion model. Steinberg, Bowman, and White [1]
presented this concept as shown in Figure 4.8. According to this fusion-node
paradigm, the node processes the data and information provided by the sources
(or other prior fusion nodes) at the input to produce a composite, high-quality
version of information products of interest to the users (or to other, subsequent
fusion nodes) at the output.

Any data-and-information-fusion node, whatever the fusion level, contains
three main subprocesses: fusion, association, and alignment. The means for imple-
menting these functions, and the data and control flow among them, will vary
from node to node and from system to system. Nonetheless, this node paradigm
has proven to be a useful model for characterizing, developing, and evaluating
fusion systems.

The fusion per se actually happens in the ‘‘State estimation and prediction’’
box. The word ‘‘state’’ here refers to the state (actual or estimated) of any situation
elements of interest to the users (e.g., entity position, velocity, identification, behav-
ior, intent, threat value). However, although one can know very well how to
combine (or fuse) input elements from different sources to obtain a composite
product, data and information alignment and association have to be achieved first
before the fusion can be performed.

Data and information related to an entity, a battlefield event, a group, and so
forth, will often be reported independently via a multiplicity of sensors or sources,
each differing in coverage area, spectrum, resolution, response time, and observable
sensed. Alignment, or common referencing, is the processing of input reports to
achieve, among other things, a common time base and a common spatial reference
[11]. The alignment subprocess must remove any positional or sensing geometry
and timing effects from the data and information [12]. The subprocess also trans-
forms source data into a consistent set of units and coordinates for further pro-
cessing [11].

Association is a basic subprocess necessary to determine which data and infor-
mation elements at the input of the process associate to which elements currently
being maintained in the situation representation (i.e., the situation model) being
maintained by the processing node. Association is necessary to deal with the uncer-
tainty attached to the situation elements. A classic example is determining whether
entity data, which have been reported by different sources, represent the same

Figure 4.8 Any data-and-information-fusion node. (After: [1].)
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entity or different entities; in this case, one talks about data-origin uncertainty
management.

The diagram in Figure 4.9 generalizes the concept of a fusion node to that of
a situation-analysis node. It also represents a more precise version of such a pro-
cessing node as it includes the notion of a stored representation of the current
knowledge of the world (and its associated management), as well as the notion
of ancillary knowledge/information/data (KID) sources that are necessary to the
execution of the fusion and inference processes.

In particular, Figure 4.9 is a better representation of a situation-analysis node
as it allows for the easy illustration of the steps and timing for the processing of
a user request for information on the current situation (or for a projection of it),
as in Figure 4.10, or for the processing of new input elements (i.e., a situation
update), as in Figure 4.11.

4.2.5 KID Processing Tree

A very important step in the development of any situation analysis or information-
fusion system is the establishment of the KID processing tree, which makes explicit

Figure 4.9 Any situation-analysis node.
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Figure 4.10 ‘‘User’’ request for ‘‘known’’ situation elements.

and illustrates the decomposition (or partitioning) of the situation-analysis pro-
cessing into a network of multiple interconnected nodes, going from the sources
to the different products relevant and useful to (i.e., required by) the decision-
makers. Examples of such processing trees are shown in Figure 4.12. There are
single-source processing (SSP) nodes and multiple-source processing (MSP) nodes.
An important aspect is the notion of specific interfaces (I) to the sources. The
challenge here is to encapsulate most of the specificities of an application domain
into interfaces that perform the necessary processing to accept the data and informa-
tion from the very specific sources on one side and to provide standardized inputs
to generic situation-analysis and information-fusion engines on the other side.

The duality between data fusion and resource management has often been
highlighted by the JDL community [1]. This duality can be extended to include
the architectures and functionality of data fusion and resource management, leading
to the notion of a resource-management node. Figure 4.13 from Steinberg, Bowman
and White [1] shows some highly integrated fusion or management systems as part
of a multifaceted, spatially distributed, sensor or response system. Such solutions
are facilitated by the formal duality between data fusion and resource management,
resulting in the analogous processing node paradigms for the two functions. Note
that as one moves to the right of interlaced fusion or management trees, as depicted
in Figure 4.13, the fusion or management node pairs generally operate with broader
perspectives and slower response times.
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Figure 4.11 Processing of new input elements (situation update).

4.3 The Visual Data-Fusion Model

The basic visual data-fusion (VDF) model is an extension of the JDL data-fusion
model as proposed by Karakowski [13] from the U.S. Army RDECOM CERDEC
I2WD. It addresses several shortcomings of prior models:

• It maximizes relevant information with minimal information displayed.
• It tailors information-fusion system capabilities to be used by all skill levels

of users, yet able to provide increasingly sophisticated problem queries.
• It directly relates to user’s needs by responding to his or her personal percep-

tion of the problem situation; that is, it is a problem-driven system.

The basic VDF model embodies several premises, including the following:

• Information fusion is a creative problem-solving process, and the human is
its central participant.

• The primary value of information results visualized by the human as a result
of the fusion process is to assist the human in fuller perception of the problem
and possible avenues toward a solution.

• Information presented to the human should be maximally relevant to the
problem, while simultaneously minimal in number and dimensionality; in
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Figure 4.12 KID fusion- or inference-processing trees.

short, it should provide the least information needed to solve the problem
and not overwhelm the user with too much data. As part of this, the model
exclusively uses imagery as the perceptual transport for user visualization.

The basic VDF model, shown in Figure 4.14, structurally is an extension to
the JDL model, but adds a human participant integrally to it. This provides for
definition of associated verbal, conceptual, experiential, and visual interfaces. In
addition, there is a specific data-control interface for representing the relevancy of
the information requests to the fusion processes. Here, human problem input is
filtered using a complex relational representation of the associated concepts, such
as an ontology. Basic VDF model fusion levels are depicted as increasingly higher
levels of generalization of the problem situation, and learning or problem-solving
experience is a visual feedback into the model.

4.3.1 Visual Situation Awareness

Visual situation awareness (VSAW) is a functional engineering model of SAW that
utilizes individual basic VDF models as building-block elements. It extends the
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Figure 4.13 Integrated data-fusion or resource-management trees [1].

Figure 4.14 Visual data-fusion model.
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basic functionality of a single VDF model by networking these blocks into a
larger conceptual or contextual information interconnect for real work problem
understanding and solution. The building block is shown in Figure 4.15.

How is SAW generated? The VSAW model provides one approach using a
perceptual visualization of a continuously time-updated answer to specific problem
requests. The problem requests are formulated within specific physical contexts,
using individual perceptual biases, experiences, and other differences to make a
decision, understand, solve, or otherwise better interpret various information sets
as potential solutions to the stated problems. SAW then becomes a time-varying,
complex visualization of multiple concepts within multiple contexts, with varying
data and information sources.

The most important informational components of the model are: (1) problem
requests as concepts, and (2) their underlying context. A concept is loosely defined
as the generic problem to be solved. The VDF model can be considered the facilitator
of this process, assisting the human-machine complex in creative problem solving.
The concept or problem request typically takes the form of a question that represents
a statement of a problem to be solved, for instance, What and where are the current
threats near our position? or What can threaten our rear supply or reserves? Results
of linguistic queries provide single-time snapshots or a continuous or time-limited
answer to the problem or query. In Figure 4.16 illustrates, within a basic geographi-
cal context, a single problem or VDF system query for the question, What or where
is any activity which threatens my position? This is the format of a single VDF
model within a single context. It illustrates one of the simplest SAW architectures
of the VSAW model, that which solves a single-query, single-context problem in
a single instance or over time.

The framework of Figure 4.16 can be implemented by a single VDF model as
shown in Figure 4.17. The model breaks out the information-control functions of
‘‘relevant information requests,’’ interprets each specific concept and context, and

Figure 4.15 VSAW building block.
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Figure 4.16 Situation-understanding requests—single concept within a single context at a single
time.

Figure 4.17 Single VDF element as a single-concept, single-context, situation-understanding sub-
system at a single time.

continuously returns relevant information to the various fusion levels. Additionally,
the local and external databases are broken out. The local database supports
‘‘learning’’ storage, and the external database provides a playback option. System
control includes the standard data-processing functions, as well as interactivity for
context or concept formulation and feedback.

4.3.2 Distributed Visual Data-Fusion Processes

The single-context SAW can initially be extended to multiple concepts by adding
additional concepts within the current context. For example, Figure 4.18 illustrates
four concepts, each with a single (geographical) context.
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Figure 4.18 Situation-understanding requests—multiple concepts within a single context at a single
time.

In this example, within a geographical context, the following ‘‘problems’’ are
stated:

• Any suspicious enemy activity that can affect our flank;
• Threatening track vehicles near our position;
• Suspicious signal intelligence activity;
• Possible courses of action to counter our current situation.

Note that not all of these requests are ‘‘well formed,’’ but all make sense to
the problem formulator within his or her context, and hopefully he or she is in
the best position to make use of the answers. Figure 4.19 shows the implementation
using the four interconnected building blocks of Figure 4.15. Each of the concepts
within the common context is loosely connected through the external database
and provides parallel ‘‘answers’’ to each of the stated concepts.

The next step in generalizing the SAW model is to add multiple contexts, each
with one or more concepts. This is illustrated conceptually in Figure 4.20, while
its implementation using the VDF model is shown in Figure 4.21. Clearly, the
complexity has grown, both in number of interfaces and number of concepts. The
external interfaces, however, remain the same; only the internal interfaces have
become more complex.

Finally, we can illustrate the multicontext, multiconcept structure to show the
development of the problem over time (see Figures 4.22 and 4.23). This concept
or context environment illustrates the dynamic nature of SAW, which can evolve
over time.
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Figure 4.19 Multiple VDF elements as a multiple-concept, single-context, situation-understanding
subsystem at a single time.

Figure 4.20 Situation-understanding requests—multiple concepts within multiple contexts at a
single time.

4.4 The Unified Data-Fusion (l JDL) Model

The terms situation awareness (SAW), common operating picture (COP), and data
fusion (DF) are often conflated. Working for the Defence Science and Technology
Organisation (DSTO) in Australia, Lambert [14–16] has proposed a unifying con-
ceptualization as a basis for a more mature, strategic foundation for understanding
data fusion. Lambert initially called this the unified data-fusion (UDF) model. More
recently, he changed the name of this unifying conceptualization to the lJDL model
of data fusion [17]. It is described in detail in this section.

4.4.1 A View of Situation Awareness

Endsley’s account of SAW is probably dominant in academic military circles. As
the perception, comprehension, and projection components of SAW characterize
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Figure 4.21 Multiple VDF elements as a multiple-concept, multiple-context, situation-understanding
subsystem at a single time.

Figure 4.22 Situation-understanding requests—multiple concepts within multiple contexts at
discrete, multiple times.

mental attributes, SAW is understood as a mental phenomenon and, in the absence
of anthropomorphism, is understood to be about human minds. So viewed, SAW
is not a computer system or a screen display; it is a state of human awareness.
Equation (4.1) succinctly characterizes its composition and indicates that SAW is
the combined product of perception, comprehension, and projection.

SAW = Perception ∪ Comprehension ∪ Projection (4.1)
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Figure 4.23 Multiple VDF elements as a multiple-concept, multiple-context, situation-
understanding subsystem at discrete, multiple times.

Though Endsley’s account of SAW originates from observations of U.S. military
pilots, it should be emphasized that her account of SAW applies ubiquitously.

• SAW requirements exist across the strategic, operational, and tactical eche-
lons of command. For example, the prime minister; the commander, Austra-
lian theatre (COMAST); and the director of northern operations (DNO)
within the Royal Australian Air Force (RAAF) all have their own perception,
comprehension, and projection requirements.

• SAW requirements exist for enemy (red), own force (blue), neural (white),
environmental (green), and political (gray) aspects of conflict. SAW is not
solely about enemy intelligence gathering. The threat imposed by an enemy’s
intent and capability in part depends upon a perception, comprehension,
and projection of blue, white, green, and gray interests.

• SAW requirements exist across roles within a center of command. For exam-
ple, while being a cognizant contributor to J5’s own force-planning endeavors
(J5 is Military Planning and Policy), the J4 (Military, Logistics, Engineering,
and Security) retains his or her own perception, comprehension, and projec-
tion needs for understanding the particular logistical aspects of a campaign.

4.4.2 Common Operating Picture

Technologies and technological aids are often introduced to enhance the state of
human awareness, and so the advancement of SAW is:

• Partly about psychology;
• Partly about technology;
• Partly about the integration of the two.
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The development of a superior SAW capability is therefore not merely a matter
of innovative information technology, but rather a question of how innovative
information and interface technology can be applied with appropriate personal
and organizational structures to yield the requisite psychological awareness. An
innovative information capability is more than innovative information technology.

In that context, the concept of a common operating picture is often promoted
as a vehicle for facilitating SAW. The U.K. Ministry of Defense has provided the
following very broad notion of the COP [P. Houghton, private communication,
2001]: ‘‘The Joint Operational Picture (Common Operating Picture) is the total
set of information, in whatever form, which is a managed and validated view of
the history, current situation and future plans for all components of an operation.’’

The currently practiced view of the COP, however, is far less encompassing,
so some means of characterizing alternative notions of COP is advantageous. As
the COP exists to create SAW, and the creation of SAW is partly about psychology,
technology, and the integration of the two, it is possible to characterize COP
conceptions in terms of information deriving from

• Psychological processes (e.g., direct observation and cultural interpretation);
• Technological processes (such as sensors and databases);
• Integration processes (including telephones and computer interfaces).

Equation (4.2) succinctly characterizes the COP in terms of information deriving
from psychological, technological, and integration processes. It states that the
COP is the combined product of the products of psychological, technological, and
integration processes.

COP = Psychology ∪ Technology ∪ Integration (4.2)

4.4.2.1 Assessing COPs

Equations (4.1) and (4.2) allow us to assess coarsely how successfully a given set
of COP processes meets our SAW needs. The SAW we want should be delivered
by the COP information provided. Ideally, SAW = COP. The portion of SAW that
we actually obtain from a COP is represented by SAW ∪ COP. By (4.1) and (4.2):

SAW ∩ COP = (Perception ∪ Comprehension ∪ Projection)

∩ (Psychology ∪ Technology ∪ Integration)

= (Perception ∩ Psychology) ∪ (Comprehension ∩ Psychology)

∪ (Projection ∩ Psychology) ∪ (Perception ∩ Technology)

∪ (Comprehension ∩ Technology) ∪ (Projection ∩ Technology)

∪ (Perception ∩ Integration) ∪ (Comprehension ∩ Integration)

∪ (Projection ∩ Integration)

We can therefore view the portion of SAW that we obtain from a COP by
considering how well the COP addresses the nine parts of SAW ∩ COP listed
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above. To visualize this contribution, it is convenient to represent it by the nine
matrix elements of Figure 4.24.

The perception, comprehension, and projection aspects occupy the rows. They
specify the SAW aspects that we want. The psychology, technology, and integration
processes occupy the columns and identify the effect of the processes provided by
the COP. We can then assess the value of a particular conceptualization of COP
by the contribution that it makes within this matrix. Grey-scale shading can be
used to provide a visual appreciation of the contribution. Figure 4.25(a) illustrates
the case in which the COP processes contribute no SAW benefit (i.e., SAW ∩ COP
= [). Figure 4.25(b) shows the case where the COP processes fully meet our SAW
requirement; that is, SAW = COP, which ensures SAW ∩ COP = SAW.

4.4.2.2 Current COPs

The currently practiced conceptualization of COP tends to:

• View ‘‘picture’’ as some form of ‘‘dots on maps’’ integration display;

Figure 4.24 Assessing the COP contribution to situation awareness.

Figure 4.25 (a) COP delivers no SAW, and (b) COP delivers complete SAW.
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• Promote ‘‘operating’’ as involving fusion technology for ‘‘joining dots’’ to
recognize objects;

• Seek psychological unity by regarding ‘‘common’’ as the dissemination of
hierarchical fusion products to all of the distributed contributing elements.

Figure 4.26 provides a gray-scale shading for this conception of COP.
The current conceptualization of picture is essentially a ‘‘dots on maps’’ display.

In Figure 4.26, this is illustrated by a typical dot-annotated map graphic. As a
picture, these displays are designed to integrate psychology and technology and
only display entities that can be perceived by either humans or technology, such
as radars. As a consequence, they primarily address only the top-right corner of
the matrix. They tend neither to explain the behavior of the targets being represented
(comprehension) nor to present predictive consequences of that behavior (projec-
tion). The one element of the matrix that is addressed has gray shading, lighter
than that of Figure 4.25(b), because the current notion of picture is primarily
limited to the presentation of tactical surveillance information.

The current conceptualization of operating involves fusion operations being
applied to join dots (detections) to recognize targets. In Figure 4.26, this is illustrated
by associating two linked plot data structures, each representing the detection of
the same target aircraft at different times. Within the matrix, this is primarily about
perception information delivered by a back-end technology process. Consequently,
only the top-left element of the matrix is shaded. Again, this element of the matrix
is partially shaded because only tactical surveillance information is usually consid-
ered in the current context.

The current notion of common involves the dissemination of hierarchical fusion
products to all distributed battle-space elements. Figure 4.26 provides a representa-

Figure 4.26 Assessing the current conception of COP.
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tive diagram. The base of the diagram depicts assets within the battle space. Informa-
tion from these assets is used to form a recognized air picture (RAP), a recognized
maritime picture (RMP), and a recognized land picture (RLP). The outputs of these
three pictures are in turn fused into a COP that is then disseminated back to the
elements in the battle space. Again, the information being disseminated is primarily
perception information, obtained through the operating fusion process and dis-
played through pictured dots on maps. The purpose of disseminating this informa-
tion is to produce a common psychological understanding throughout the staff in
the battle space. The top center element of the matrix is therefore shaded. The
faint shading reflects the extent to which Lambert believes this approach will
achieve a common psychology in the battle space.

Under the UDF/lJDL model we see that the current conceptualization of COP
produces only a partial shading of the first row of the matrix. The current concept
of COP therefore provides poor SAW capability as it:

• Lacks comprehension and projection aspects altogether;
• Treats perception as merely a ‘‘dots on maps’’ product of surveillance assets;
• Presents a simplistic notion of common inadequate for the required sophisti-

cated operational level of command.

4.4.3 A View of Data Fusion

Lambert [15] suggests that the revised definition of data fusion [1] still retains too
much of a tracking-literature description of proceedings. The omission of reference
to data sources and time is also curious since both seem to be foundational to
any real data-fusion process. In response, Lambert [15] has offered the following
variation:

Data fusion is the process of utilizing one or more data sources over time to
assemble a representation of aspects of interest in an environment.

Lambert also sought a more unifying account of the levels of data fusion
described in [1]. Lambert [15] directed attention toward levels 1, 2, and 3 of the
JDL model by temporarily including level 0 within level 1 and by absorbing level
4 within each of the other levels. Lambert [15] provided the following revision of
the Steinberg, Bowman and White [1] definitions for levels 1, 2, and 3:

• Object fusion is the process of utilizing one or more data sources over time
to assemble a representation of objects of interest in an environment. An
object assessment is a stored representation of objects obtained through
object fusion.

• Situation fusion is the process of utilizing one or more data sources over
time to assemble a representation of relations of interest between objects of
interest in an environment. A situation assessment is a stored representation
of relations between objects obtained through situation fusion.

• Impact fusion is the process of utilizing one or more data sources over time
to assemble a representation of effects of situations in an environment,
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relative to our intentions. An impact assessment is a stored representation
of effects of situations obtained through impact fusion.

In the spirit of the equations of previous sections, (4.3) succinctly identifies the
product DF of the JDL data-fusion process with its component object, situation,
and impact assessment outcomes.

DF ≈ Obj Ass ∪ Sit Ass ∪ Imp Ass (4.3)

4.4.4 Mental Data Fusion and Situation Awareness

This unified model of data fusion can be applied in at least two ways. One approach
is to apply it as a model of mental data fusion (DFM ) to characterize the activity
performed by humans when fusing information. Figure 4.27 captures the sentiment.
Equation (4.4) expresses the interpreted JDL relationship. It states that the product
of mental data fusion is the product of mental object, situation, and impact assess-
ments.

DFM ≈ Obj AssM ∪ Sit AssM ∪ Imp AssM (4.4)

A comparison between (4.4) and (4.1) is instructive. Following Endsley’s
definition:

• Perception is about ‘‘the perception of the elements in the environment
within a volume of time and space,’’ while Obj AssM involves a stored
representation of objects. If ‘‘stored representation’’ means mental represen-
tation, then Perception ≈ Obj AssM .

• Comprehension is about ‘‘the comprehension of their meaning,’’ while
Sit AssM is a stored representation of relations between objects. Attempts
to understand meaning are many and varied but generally conceptualize
meaning in terms of either reference to the world (e.g., Russell [18]), language

Figure 4.27 JDL model as a model of mental data fusion.
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(e.g., Davidson [19]), propositions (e.g., Frege [20]), possible worlds (e.g.,
Kripke [21]) or psychology (e.g., Fodor [22]). A common thread across all
of these approaches is that they involve relations between objects. If ‘‘stored
representation’’ means mental representation, then Comprehension ≈
Sit AssM .

• Projection is about ‘‘the projection of their status in the near future,’’ while
Imp AssM involves a stored representation of the effects of situations. These
are again closely aligned, so if ‘‘stored representation’’ means mental repre-
sentation, then Projection ≈ Imp AssM .

From these three observations. it is reasonable to conclude

Perception ∪ Comprehension ∪ Projection ≈ Obj AssM ∪ Sit AssM ∪ Imp AssM

and therefore

SAW ≈ DFM (4.5)

by (4.1), (4.4), and the limited transitivity of ≈.
Equation (4.5) exposes an important unifying relationship between situation

awareness and mental data fusion, namely that mental data fusion is (essentially)
situation awareness.

The UDF/lJDL model delivers a model for SAW, with object assessments
resembling perception, situation assessments resembling comprehension, and
impact assessments resembling projection. Figure 4.28 highlights the unifying rela-
tionship between DFM , the COP, and SAW.

4.4.5 Machine Data Fusion and Situation Awareness

As a part of the COP, we can also apply the unified data-fusion model as a
framework for machine data fusion (DFm ). Figure 4.29 characterizes that applica-

Figure 4.28 Relationship between SAW, the COP, and mental DF.
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Figure 4.29 JDL model as a model of machine data fusion.

tion. Equation (4.6) expresses the machine interpretation of (4.3). It states that the
product of machine data fusion is the product of machine object, situation, and
impact assessments.

DFm ≈ Obj Assm ∪ Sit Assm ∪ Imp Assm (4.6)

Machine data fusion is about automating within a machine the mechanical,
error-prone, tedious, or prevalent aspects of human perception, comprehension,
and projection. If we confine data fusion to mean machine data fusion, and so
constrain ‘‘stored representation’’ to mean machine representation, then the JDL
model is about the technological aspects of perception, comprehension, and projec-
tion. Thus,

(Perception ∩ Technology) ≈ Obj Assm (4.7)

(Comprehension ∩ Technology) ≈ Sit Assm (4.8)

(Projection ∩ Technology) ≈ Imp Assm (4.9)

From this, we conclude,

(Perception ∩ Technology) ∪ (Comprehension ∩ Technology)

∪ (Projection ∩ Technology) ≈ Obj Assm ∪ Sit Assm ∪ Imp Assm

By distributivity, it follows that

((Perception ∪ Comprehension ∪ Projection) ∩ Technology) ≈ DFm

and then, by (4.1), we obtain

(SAW ∩ Technology) ≈ DFm (4.10)
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Equation (4.10) is significant. It tells us that within Figure 4.30, our SAW
requirements will be met if we provide DFm as the COP technology column of the
matrix. In essence, machine data fusion delivers the required technological basis
for situation awareness.

Furthermore, (4.7) to (4.9) indicate that machine situation and impact assess-
ments, respectively, provide the technological comprehension and projection aspects
of SAW otherwise absent within the current conceptualization of the COP.

Figure 4.30 highlights the unifying relationship between machine DFm , the
COP, and SAW. Figure 4.30 and the foregoing equations also highlight the fact
that machine DF still requires integration with psychology before we can secure
SAW. The UDF/lJDL model involves all nine matrix elements of Figure 4.24, and
so addresses psychological and integration issues too.

Lambert [17] provides interpretations and documents the broader endeavors
of the UDF/lJDL model, some aspects of which appear in Figure 4.31. This figure
shows the Future Operations Centre Analysis Laboratory (FOCAL) being developed
at the DSTO in Australia [17]. The FOCAL data-fusion system extends well beyond
the traditional machine sensor-fusion emphasis of the data-fusion community by
including higher-level information-fusion considerations involving both humans
and machines.

4.4.6 A View of Sensor and Information Fusion

The machine data-fusion community has tended to draw a distinction between
sensor fusion and information fusion. The term sensor fusion typically applies to
levels 0, 1, and related parts of level 4, while the term information fusion is often
used to refer to levels 2, 3, and related parts of level 4. Note that the term information
fusion has sometimes been used synonymously with the term data fusion. Within
this book, the narrower interpretation applies.

Figure 4.30 Relationship between SAW, the COP, and machine DF.
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Figure 4.31 FOCAL integration of humans and machines [17].
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We can express this division mentioned above by

DFm = SF ∪ IF (4.11)

It is a purposeful distinction. Lambert [14, 15] argues that there is a paradigm
disparity as we move from object assessments to situation assessments. Of object
assessments Lambert [15] states,

Object fusion exists because in our interaction with the world, we are inclined to
associate bundles of near-coincident observable properties with objects, and to
associate the persistence of those objects with the observed existence of those
properties under periodic review. Object assessments allegedly document persistent
objects having properties, and in a machine fusion context, these properties are
usually measurable. The level-1 fusion literature therefore tends to be numerically
based. In a radar environment, for example, signal and track processing is often
used to conclude the existence of objects associated with, inter alia, measured
range, azimuth, elevation, Doppler, radar cross section, target type and target
identity properties.

Of situation assessments, Lambert states [15]:

The emergence of the idea of a relation culminated with Ludwig Wittgenstein,
who first explicitly proposed a world of facts as the fundamental substrate, where
facts are subsequently understood as the application of relations to objects. In his
cryptic, unapologetic style, Wittgenstein launched his 1922 publication of Tractatus
Logico-Philosophicus with the words, ‘‘The world is all that is the case,’’ and then
‘‘The world is the totality of facts, not of things.’’ Wittgenstein supplanted a
view that had persisted for over 2000 years. This fundamental shift in human
conceptualization underpins the difference between ‘‘level 1’’ and ‘‘level 2’’ fusion.

Table 4.1 tabulates the conceptual disparities:

• Sensor fusion takes the world to be a world of objects with measurable
properties. It represents the world by associating vector states with objects.
Each element of the vector designates a property, while the numerical value
of each element purports to be the numerical value of that measurable
property.

• Information fusion takes the world to be a world of facts, where facts involve
the application of relations between objects. Information fusion represents
the world by using symbols to make claims about the world, which purport
to express facts.

Table 4.1 Paradigm Disparity Between Sensor and Information Fusion

Fusion Primary Concept Conceptual Origin Primary Representation

Sensor Object Aristotle Numeric
Information Fact Wittgenstein Symbolic
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To give a simple illustration, at level 1 we might observe that object ship003
has a range property and that the value of that range property is 135 km, while
object fighter002 also has the range property, but with a value of 200 km. At level
2, these observations might be fused into the symbolic sentence ship003 is closer
than fighter002. The sentence applies the binary ‘‘is closer than’’ relation to the
ship003 and fighter002 objects to claim that ship003’s being closer than fighter002
is a fact about the world.

Figure 4.30 shows that the absent technological aspects of comprehension and
projection in Figure 4.26 are provided under the JDL model by machine situation
and impact assessments. In Figure 4.32, these absent components are collectively
labeled ‘‘information fusion.’’ This suggests that automated symbolic reasoning
about facts provides the basis for machine comprehension and projection.

4.4.7 A View of Information Fusion

As shown in Figure 4.33, the practice of information fusion requires:

• Information sources;
• An information-fusion architecture;
• Domain knowledge through knowledge capture and representation.

The domain knowledge is captured and represented within the machine so that
it can provide situation and impact assessments from information sources.

The UDF/lJDL model attempts to maximize compliance between human and
machine, both in terms of ease of interaction between human and machine and in
facilitating knowledge capture and transfer between human and machine. Conse-
quently the UDF/lJDL model conceptualizes the fusion architecture as a multiagent
system of human and software agents, and it conceptualizes the behavior of the
software agents in a manner compliant with how we conceptualize the human
agents. In the case of the latter, Lambert [23] explains:

Figure 4.32 Relationship between SAW and information fusion.
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Figure 4.33 The practice of information fusion.

Humans predict and explain the behavior of other humans by ascribing mental
attitudes to them, such as beliefs, desires, expectations, fears, hopes, et cetera, and
when expressing these and other mental attitudes, the syntax of the expression
always assumes the form

<subject> <attitude> that <propositional expression>

The following examples illustrate

Fred believes that the sky is blue
Tom expects that Mary will win lotto
Mary hopes that Tom is insightful

Expressions having this syntactic form are called propositional attitude expressions
and the beliefs et cetera that they denote are technically termed propositional
attitudes. In a propositional attitude expression: the subject, e.g., Fred, expresses
which individual has the propositional attitude; the propositional expression, e.g.
the sky is blue, expresses some assertion about the world; and the attitude, e.g.
believes, expresses the kind of response the subject has toward the proposition.

From the standpoint of propositional attitudes, situation assessment is about
belief [15]:

Three kinds of belief must be considered when engineering automated situation
fusion. Environmental beliefs arise from direct observation of the world at a given
time, such as when I believe that there is a can on the desk in front of me. In
ATTITUDE, a sensor can be used to sense object assessments and create the
corresponding beliefs in an event associated with that sensor. Definition beliefs
derive from the meaning of terms, such as the belief that a son is a male child.
When using the above relation previously, we will usually implicitly take it to be
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a transitive relation.1 Such beliefs need to be explicitly included within the machine
before we turn it on. Domain beliefs, express how we presume the world to be
independently of direct observation, such as my belief that dark clouds usually
produce rain. The domain beliefs can be expressed procedurally in terms of how
something can be achieved (routines) or declaratively in terms of what is the
case (inference). Situation assessments are situations comprising beliefs which are
generated from the interaction of environmental, definition and domain beliefs.

Moreover, the beliefs about the world [24] are not oriented toward isolated
facts [15]:

When engaging the world, we rarely attend to individual facts in isolation. In
assessing a typical mental snapshot picture of the world over a limited time frame
and region, we are inclined to represent it as a collection of facts. In the early
1980s, Barwise and Perry suggested that situations were the fundamental building
blocks of our assessment of the world.

Reality consists of situations—individuals having properties and standing in
relations at various spatiotemporal locations.

Situations are essentially collections of related spatiotemporal facts, where
facts consist of relations between objects. This is a step up from Wittgenstein’s
world of facts. Here the world is a world of situations, and assessing the world
involves individuating situations. Situation assessment involves assessing situations,
not facts or objects per se.

According to Lambert [14], situations are composed of events, events are
composed of facts, and facts involve the application of relations to objects. Proper-
ties are unary relations.

From the standpoint of propositional attitudes, impact assessment is about the
effect of belief on desire [15]:

Via object assessments, situation assessments express beliefs (situations) about how
the world might be. The consequences or effects of those beliefs are important to
us, but only in as much as they impact upon what we want to be the case. This
is the essence of ‘‘level-3’’ fusion—it is about how our beliefs impact upon our
will. ‘‘Level-3’’ fusion is about the effect of situations on our intentions, and thus
interprets the world in terms of opportunities and threats, with a view toward
maintaining the satisfaction of our intent.

Mental behavior is cast in terms of routines that seek to satisfy desires given
beliefs. Lambert [25] is developing an approach to the knowledge capture of
mental routines based upon avowed propositional attitudes while problem solving.
Working with Lambert at DSTO, Nowak [26] is developing a process metaphysics
to support ontologies for representing the propositional content within these
propositional attitudes.

1. ∀x∀y∀z (((above zy) & (above yx)) ⇒ (above zx).



108 Data- and Information-Fusion Models

4.4.8 The Grand Challenges of Information Fusion

In the framework of the UDF/lJDL model described earlier, Lambert [17] identifies
a number of grand challenges of information fusion and illustrates how the FOCAL
program at DSTO is addressing them. These challenges are:

• Semantic: What symbols should be used, and how do those symbols acquire
meaning?

• Epistemic: What information should we represent, and how should it be
represented and processed within the machine?

• Paradigm: How should the interdependency between the sensor-fusion and
information-fusion paradigms be managed?

• Interface: How do we interface people with complex symbolic information
stored within machines?

• System: How should we manage data-fusion systems formed from combina-
tions of people and machines?

The epistemic challenge has been further discussed in Lambert [25], while the
semantic challenge is the focus of Nowak and Lambert [27].

Nowak and Lambert [27] show how meaning can be assigned to symbols
by formal theories with logics because they constrain the number of possible
interpretations of those symbols. Implemented examples are discussed involving
ontologies, inference engines, and agents. Concerning what symbols to use, their
paper describes experimentation with a conceptually large military scenario. Two
implementations are discussed. The first concerns an ontology and agents for
semantically fusing legacy databases. The second concerns agents that receive que-
ries through an agent grid and semantically fuse information to reply to the queries.

4.4.9 A State-Transition Data-Fusion Model

Recently, a state-transition data-fusion (STDF) model has been introduced by
Lambert [28] as an extension of the dominant sensor-fusion paradigm to provide
a unification of both sensor and higher-level fusion.

Both the JDL model and its deconstructed form (i.e., the UDF/lJDL model),
segregate object, situation, and impact fusion into amorphous blocks, without
explaining their internal mechanisms. In doing so, those models celebrate the
difference between object, situation, and impact fusion, but at the expense of
demonstrating their unity. Similarly, Lambert [14] notes that sensor-fusion repre-
sentations of the world fail to scale up to higher-level fusion. A situation assessment
of a missile targeting a communications tower will more likely resemble a symbolic
expression than a set of state vectors. Nonetheless, there is a unifying framework
for data fusion, which the STDF model introduced in Lambert [28] aims to expose.

4.5 The Situation-Awareness Reference Model

Around 2001, John Salerno from the U.S. Air Force Research Laboratory (AFRL)
initiated another effort to develop a framework combining elements from the JDL
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data-fusion model with elements from Endsley’s model of situation awareness.
Based on these two models, Salerno [29] provides his initial discussion of a concep-
tual framework for situation awareness and assessment. His intent is to provide a
roadmap for building a fusion system for situation awareness and assessment. He
states that much work has already been accomplished in this area and that he
believes it is a matter of bringing the components together and integrating them
into an overall system architecture.

He begins the discussion of his concept from the bottom up, that is, from the
data. The data is what restricts or confines our comprehension, thus projection.
From there, he presents various components that he feels are necessary in building
a situation-awareness framework, that is, acquiring perception; obtaining compre-
hension, information extraction, model-generation and learning algorithms (includ-
ing data-mining techniques), model-analysis tools, and alert notification; and
providing projection. To put things back in prospective, he finally presents a simple
process flow of the proposed components for the concept. Actually, there are two
major flows in the concept presented—a background and a ‘‘real-time’’ process.

The concept presented by Salerno is model driven; the problem with many
such concepts is the existence and construction of such models. In this perspective,
the primary focus of the background process in Salerno’s concept is to build
and nominate potential models that can be activated. Salerno believes collection,
information extraction, and data mining to be key technologies in this portion of
the concept, for if one cannot build such models, the concept will quickly fall apart.

The ‘‘real-time’’ portion of Salerno’s concept is triggered as new data or infor-
mation is provided. As this new information enters the system, it is examined for
relevancy based on standing profiles. Information that passes this stage is then
parsed to extract relevant attributes, which are sent on to determine whether the
new information is of interest. Models are compared and prioritized based on the
probability of activation. Based on this prioritization, a list of possible predictions
can then be provided.

Salerno’s initial conceptual framework is presented again in Salerno, Hinman,
and Boulware [30] with minor differences, especially in the diagram used to discuss
the process flow of the proposed components and the inclusion of some additional
discussion of knowledge-discovery issues for building long-term memory.

Salerno’s initial ideas were continuously refined between 2001 and 2004 [29–
32], and a mature version of the conceptual framework was ultimately presented
in [30], where, as a step in developing the goal of SAW, they presented a detailed
discussion of the JDL and Endsley’s models, as well as the motivation for combining
the two by using Endsley’s work to further define level 2 (situation assessment) of
the JDL model.

Using Endsley’s definition of SAW (slightly adapted ‘‘in order to enable decision
superiority’’), they drew further on the JDL model and Endsley’s model to bridge
the gap and develop a common framework for situation awareness. Essentially,
they sought to use the strengths of both models and augmented these strengths to
address shortfalls and provide more detail, relying on the JDL model for levels 0,
1, and 4, but using Endsley’s notions of perception, comprehension, and projection
(which they refer to as anticipation) as the overarching framework. In addition,
they added an initial data-requirements component to enable top-down control
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over the entire process. The common framework, called the situation-awareness
reference model, is shown in Figure 4.34 with three flows highlighted:

1. Process flow;
2. Offline processing;
3. Feedback.

The solid line displays the process flow, while the dashed line portrays the
offline processing, and the dotted line shows the feedback portion of the model.

The process commences with the analyst’s defining the problem of interest. In
many areas (e.g., indications and warning), much experience and knowledge has
been obtained through history, and various models have been developed that
document this previous experience. The analyst begins with the adaptation of an
existing model based on the specific concerns and parties involved (in terms of

Figure 4.34 Situation-awareness reference model.
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possible scenarios). This model defines the pattern(s) of interest and indirectly what
data and information must be collected in order to develop an understanding of
the situation.

The data-collection component receives the data requirements based on the
model of interest and has the intelligence to determine how and where to gather
the data, and when to request updates. It then gathers this data, wraps it in a
common document structure, and publishes it along with metadata capturing
various details, such as when the information was collected, what source the
information came from, and the format of the data. Based on the format of the
data, it may be necessary to parse it (e.g., formatted messages) or to extract relevant
entities, relationships, and events through the use of natural language extractors.
In any event, once events and relationships are obtained, a cleansing process must
remove redundant, incomplete, and ‘‘dirty’’ data. This process must also deal with
data transformations and aliases. The goal of this process is to provide evidence
that is free from errors and contains perishability and confidence estimates. This
evidence forms the perception. It should also be noted here that the collector is
continuously gathering new data based on the problem(s) at hand.

Inherently, an accurate perception depends on various types of data. For exam-
ple, information from various sensors may be vital. For this part, Salerno, Hinman,
and Boulware rely on the JDL model (levels 0 and 1) to provide them with an
interface between real-time sensor data and observable objects or events. Because
of the many limitations of computers in ‘‘understanding’’ multimedia data, they
must rely on many of the existing manual, human processes of exploitation. Here,
they rely on the disciplines of information exploitation (IE). Simply put, IE can be
considered a process to transform raw signals or data into formatted textual reports.

An example here might provide better insight into the applicability and value
of IE. Systems that automatically process imagery are rare and provide minimal
capabilities. For example, in imagery exploitation, imagery is collected, and imagery
analysts (IA) or photo interpreters (PI) exploit the imagery by analyzing current
images in the context of previous reports and other current and previous images.
One output of this process is a textual report or message describing any significant
events in the image. These reports are then disseminated throughout the intelligence
community through message-handling systems. Most of these reports are structured
for computer use. Based on this process and the state of the foreseeable future, we
focus our attention on textual input. Because of the highly formatted structure of
the reports, simple message parsers can extract useful information and insert it
into the evidence database. Meanwhile, any free-text information may be processed
by an information-extraction module that will extract the named entities, events,
and relationships.

As previously discussed, level 0/1 identifies objects and tracks. At the SAW
level, we may have to aggregate individual objects (e.g., tanks, trucks, artillery)
into clusters with a label such as ‘‘unit’’ or ‘‘division.’’ To accomplish this clustering,
experimental methods group the objects together, and templates (some call these
models) are used to label the group. In this case, the aggregated object provides
more additional knowledge about the entity than tracking individual objects them-
selves. The fact that a division, rather than a number of objects, is moving can
increase the significance of the overall concern. Another example is the aggregation
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of a number of pings in a computer network. In this case, such evidence could
indicate that an Internet Protocol sweep is occurring and that the first part of
an attack—the reconnaissance or data-gathering phase—is potentially underway.
There are many other examples where observations are derived from a collection
of evidence and must be aggregated together to produce a single overall observation
or indicator.

As new evidence is gathered, model-analysis tools are used to determine if any
parts of the target models appear. One way to accomplish this is to build a graph
from the evidence (which Salerno, Hinman, and Boulware refer to as the input
graph) and search for isomorphic instances of a particular model, or target graph.
Based on the analysis, any portions of the input graph that match the target graph
at or above a specified threshold are identified and provided to the analysts as
alerts. This portion of the process defines the comprehension portion of the model.
That is, the analyst captures knowledge gained in the past by defining the target
graph and uses this knowledge to analyze what he or she has perceived thus far.

However, in many cases, the evidence coming in is incomplete, inconsistent,
or incorrect. Before altering the status of a particular warning problem or issuing
an alert, an analyst may want to find additional information to further clarify any
inconsistencies. This is where the feedback loop comes into play. Models provide
the user with knowledge that can be used to locate additional information. An
analyst may wish to search for information that is missing from a particular model
or use the model to project or anticipate what new data might exist and where.
In addition, associated models or events may be used to locate information that
collection initially missed as a result of its configuration. Analysts could also use
current events as seeds for asking for more details pertaining to the event. Finally,
a model can also be used for input to the sensor-management system in order to
provide some intelligence as to where to look and what type of sensor to use to
gather additional data that may be helpful in resolving the nature of the current
situation.

The final thread is the offline processing portion of the system. Because the
world is constantly changing, the system must also be able to learn. While analysts
capture their experiences with manually generated models, it is often desirable to
learn models automatically from data. These models have the potential to indicate
activities, capabilities, and group memberships, and in some cases, they have outper-
formed humans. Besides learning models, such techniques can also identify addi-
tional relationships or entities that can augment existing models. This area is
depicted in Figure 4.34 as knowledge-discovery tools. This is further discussed
next.

4.5.1 Knowledge-Discovery Tools

Predictive analysis requires information about past events and their outcomes.
Much of the work in this area requires a predefined model built by subject-matter
experts or substantial amounts of data to train model-generation software to
recognize patterns of activity. To date, these models are manually intensive to
construct, validate, and interpret. Algorithms are needed to provide efficient infer-
encing, reasoning, and machine-learning procedures. Learning applications range
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from data-mining programs that can discover general rules in large datasets to
‘‘knowledge-assisted,’’ hybrid approaches aimed at accomplishing deeper levels of
reasoning and pattern identification.

As reported in [30], Witten, Frank, and Gray [33] defined data mining as the
extraction of implicit, previously unknown, and potentially useful information
from data. The idea is to build computer programs that sift through databases
automatically, seeking regularities or patterns. They go on to state that strong
patterns, if found, will likely generalize to make accurate predictions about future
data. Data-mining activities can be divided into two types: (1) identifying patterns
based on event associations, referred to as pattern learning, and (2) identifying
groups based on similar activities, referred to as community generation.

It is crucial that we thoroughly sift through archived data to look for the
associations between entities at multiple levels of resolution. Pattern-learning tech-
nologies serve to address this task by providing techniques that mine relational
data. Pattern learning can be roughly described as the process of examining the
relationships between entities in a database, the end-products of which are pre-
dictive models (statistical extrapolations) capable of describing what has been
examined in terms of an abstract mathematical formalism (usually, a graph-theo-
retic construct). Relational data presents several interesting challenges:

• Relational learning must consider the neighborhood of a particular entity,
not just a singular record.

• Most learning is predicated on (usually false) assumptions of independent
samples. Relational data does not meet this criterion.

• Data must be semistructured to make learning possible. A query language
must be developed to support the retrieval of data.

As also reported in [30], Jensen [34] states that the biggest concern in developing
a pattern learner for situation awareness is the relatively low number of so-called
positive instances, turning the pattern-learning process into an anomaly-detection
process. Problems such as these are often considered ‘‘ill posed’’ in the computa-
tional learning community, and more often than not, partially invalid assumptions
about the data must be made to correct for these conditions. If the learning process
is improperly handled, low rates of positive instances will completely confound it,
resulting in low-fidelity models, which produce high numbers of false positives
and negatives. While the challenges are significant, so too is the potential payoff.
Relational learning allows systems to exploit multiple tables in a database without
the loss of information that occurs in a join or an aggregation [35]. The resulting
discoveries may include predictive patterns that more accurately describe the world
by utilizing entities’ attributes, as well as the relationships between entities in the
learning process.

Missing and corrupted data are also prime sources of error. Numerical data
is naturally a bit easier to work with, given the fact that we can interpolate. The
lack of numerical descriptors for the type of archived data with which we often
deal exacerbates the issue of missing items. Luckily, a recent surge of research
activity in the domain of relational learning has been addressing all of these issues.
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Community generation and the class of problems it is trying to solve can be
categorized as a matter of discerning group membership and structure. Under this
topic, two types of paradigms are being investigated: one where two parties and
the activity type are given, and one where only one party and one associated event
is given. Zhang et al. [36] describe the first class as biparty and the later as uniparty.

Community-generation algorithms will typically take events and relationships
between individuals (whether implicit or explicit) and develop some correlation
between them. This correlation value defines the strength of the link. Why are
these models important to us? The models derived provide us with insights into
organizational structure and people of interest. Let us consider the first instance—
organizational structure. Suppose that we have identified two groups whose struc-
tures are shown in Figure 4.35.

We can easily see from the models shown in Figure 4.35 that there is a key
node in the model, which if removed or identified could have major impacts on
the community. In this case, it could be a key individual within an organization.
A second use of this information is the development of a behavioral model for the
group. Knowing the individuals in charge of the group and ‘‘understanding’’ their
behaviors could facilitate more advanced modeling and simulation capabilities, as
well as direct surveillance efforts.

4.5.2 Situation-Awareness Reference Model Applied to the Cyberdomain

In addition to presenting their situation-awareness reference model, Salerno, Hin-
man, and Boulware [30] also demonstrate in their paper how this framework can
be applied to a sample, well-known ‘‘monitoring’’ problem. Subsequently, they have
been researching the application of their new model to other domains, including
the asymmetric threat, tactical, and homeland security domains. In each of these
domains, the primary objective is to aid an analyst in making sense out of a glut
of raw data, that is, to aid in the understanding and awareness of a current or an
unfolding or evolving situation. Although the same basic model can be applied to
all of these domains with the same objective, each domain also has unique problems,
including the volume and format of available data and the time available to identify
the evolving situation. Salerno, Hinman, and Boulware have found that in the
strategic domain, the amount of available data is so vast, exceeding hundreds of
terabytes per day and consisting of countless pages of open-source data, sensor
data, and analysts reports, that they can’t adequately assess whether they have
accurately identified a situation or measure improvements realized by SA systems.

Figure 4.35 Community-generated models [30].
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Although the situation-awareness reference model and a lot of their conceptual
development originated in the strategic domain, Salerno, Hinman, and Boulware
have discovered over the last few years that in the cyberdomain, particularly in
the detection of network attacks, the model provides them with many distinct
advantages [31]. While by no means a simple problem, the cyberdomain is proving
to be a much more bounded problem then the strategic domain. The cyberdomain
benefits from data sources that are more structured (TCP packets, Snort or sensor
alerts, and even system log files have distinct formats or data fields), data volume
that can be restricted without losing the overall context or making the problem
trivial, and the ability to establish reliable ground truth for learning, testing, and
evaluation. From that perspective, as illustrated in Figure 4.36, they’ve adapted
the generalized situation-awareness reference model specifically to the cyberdomain.
Details about this recent work can be found in Tadda et al. [37].

Figure 4.36 Situation-awareness reference model applied to the cyberdomain [37].
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C H A P T E R 5

Situation Analysis and Decision-Support
Systems
Jean Roy, Richard Breton, and Robert Rousseau

5.1 Introduction

The characteristics inherent in the command-and-control (C2) domain in military
and public-security operations pose significant challenges to the C2 process, to the
design of future C2 systems, and to the personnel responsible for conducting this
process using these systems to fulfill their objectives. C2 is characterized by ill-
structured problems, changing and stressful conditions, technological advances in
threat technology, the increasing tempo and diversity of scenarios, and the volume,
rate, imperfect nature, and complexity of the information, among other things.
Most likely, the latter will be processed under time-critical conditions; as a conse-
quence, the risks of saturation in acquiring and maintaining situation awareness
and of making the wrong decision increase. Although human qualities such as
initiative and creativity and the notions of responsibility and accountability remain
essential, the support of the technology is clearly required to cope with such
characteristics in order to complement human capabilities and address human
limitations [1].

Such a technological perspective of C2 has led system designers to propose
solutions to overcome many of the domain problems by fitting operational plat-
forms with support systems for data and information fusion, situation analysis,
and decision-making. The main role of such systems is to help the operational
personnel to acquire and maintain the appropriate situation awareness for their
decision-making activities and to support the execution of the resulting actions.

This chapter discusses various issues related to the design and insertion of such
technological tools in the decision-making process. In the past, the lack of knowl-
edge in cognitive engineering has often jeopardized the design of helpful computer-
ized aids aimed at complementing and supporting human cognitive tasks. Moreover,
this lack of knowledge has, most of the time, created new problems regarding trust
in the designed tools and human-in-the-loop concerns. Supporting decision-making
in complex military and public-security operations indeed requires balancing the
human-factors perspective with the that of the system designer and coordinating
efforts to design a cognitively fitted system. In this regard, this chapter presents a
triad model establishing the relationship between the elements required for the
design of a system that support humans: the task, the human, and the technology.
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The model allows for the design of systems taking into account the human role in
a dynamic decision-making process like command and control.

5.2 Human Limitations

Providing as much data and information as possible about the situation(s) and the
environment is not necessarily an adequate way to support the decision-maker’s
performance. As illustrated in Figure 5.1, all this data and information may exceed
human information-processing capabilities. The human only has limited attentional
and memory resources, and only a small fraction of all the data and information
available can thus be processed (i.e., perceived and understood). Unfortunately,
many situations require that a lot of different pieces of information be considered
simultaneously, exceeding the human short-term memory and attentional resources.

The difference between the information required for optimal decision-making
and the information actually processed by humans is called the information gap.
Some of the factors related to human capabilities and limitations are further dis-
cussed next.

5.2.1 Stress

Physical factors like stress and fatigue must be considered when assessing human
skills and limitations to perform a task. According to Proctor and Van Zandt [2],
stress refers to a physiological response to unpleasant or unusual conditions. These
conditions may be imposed by the physical environment, the task performed, one’s

Figure 5.1 Information required and human limitations—the information gap.
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personality, or social interactions. Stressful situations are defined by a substantial
imbalance between the demands imposed by the environment and the human’s
capability to handle those demands successfully. Stressful situations are created by
overload and also by underload [3]. The influence of physical factors on decision-
making abilities has been investigated in the Tactical Decision Making under Stress
(TADMUS) project following the Vincennes incident (explained in [4]).

5.2.2 Attention

The human has limited resources, and these resources are generally related to
attention capacity. It seems that the attention is divided into limited pools of
resources. There is some multiplicity of nonoverlapping reservoirs [5]. The pools
are related to each specific sensory modality [6]. Hence, two different tasks can
be performed simultaneously if they refer to different pools. For instance, it is
possible to drive a car and talk with someone at the same time. However, it is
impossible to sing and talk simultaneously. This affirmation brings the concept of
serial and parallel processing. Two different tasks that refer to different pools can
be processed in parallel. However, they must be processed serially if they refer to
the same pool. In the latter situation, the workload related to the two different
tasks determines the complexity of the situation. The workload can be defined by
the demand required by the execution of a task in function of the resources available
in the pools. The workload cannot be solely defined in terms of attentional
resources.

5.2.3 Working Memory

The working memory is also involved in any attentive activity. The working memory
is the cognitive center responsible for problem solving, retrieval of information,
language comprehension, and many other cognitive operations [7]. To encode
words in the long-term memory, the human must be attentive to these words, and
the flow of the presentation of the words cannot exceed the capacity of the working
memory. Unfortunately, the storage and processing capacity of the working memory
is limited. However, these limited resources can be expanded through practice.

5.2.4 Workload and Level of Expertise

The workload related to a task is thus defined by the demands imposed by the
task in terms of attentional and working-memory resources needed. Moreover,
human performance is closely related to the workload of the task. Tasks with high
workloads can be seen as more complex than those with low workloads. However,
strategies, practice, and training can reduce the workload to a level at which enough
resources are available. The idea that mental events operate automatically after a
certain amount of practice is a well-entrenched doctrine of folk psychology, and
it has a long history in academic psychology [6]. According to Schneider and
Shiffrin [8], mental operations that are trained sufficiently are performed more
quickly and accurately. They also undergo qualitative changes. Trained operations
impose lower-capacity demands, providing more resources for concurrent mental
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activities. Trained operations are also not subject to voluntary control or conscious
awareness and require little or no mental effort.

Rasmussen [9] proposes a skill-rule-knowledge (SRK) framework including
three different levels of performance in which the automation is different. At the
skill-based level, human performance is governed by stored patterns of knowledge.
This knowledge is acquired with practice. With a specific stimulation from the
environment, a specific response is given. The link between the stimulation and
the response can be seen as a reflex that requires no effort or conscious awareness.
The second level is the rule-based level, which is applicable to tackling familiar
problems in which solutions are governed by rules (if-then-else). Processes related
to this level are mainly automatic. With new situations, the third level described
by Rasmussen is involved. The knowledge-based level deals with unfamiliar situa-
tions for which actions must be planned online, using conscious analytical processes
and stored knowledge. These processes are controlled and impose a high mental
workload. However, with practice and training, unfamiliar situations become famil-
iar and can thus be solved at the rule-based level. Moreover, with extended practice,
this knowledge can even become a reflex in specific situations (skill-based level).
Dreyfus [10] proposes five different stages to becoming an expert (novice, advanced
beginner, competent, proficient, and expert).

5.3 Technological Support for Situation Awareness and
Decision-Making

In view of the discussion above, technological support is required to cope with
human limitations when facing very complex and ill-defined problems within unco-
operative C2 environments. Even with extended practice and the use of strategies,
the human may require the support of systems; with technological developments,
it is indeed highly appealing to tackle C2 problems by providing humans with
computer-based information-fusion, situation-analysis, and decision-support sys-
tems. However, it is crucial that these systems be designed according to human
information-processing requirements. A cognitive analysis should provide an under-
standing of how the human perceives the C2 task and should define the constraints
of the environment. From such an analysis, it is crucial to identify and understand
how the human perceives a task, which processes are involved, what the human
needs are, which part of the task can and must be automated, and which part of
the task can and must be supported. Human shortfalls are thus eventually translated
into requirements for the technology community.

In particular, to support the decision-maker adequately and be compatible with
his or her information-processing capabilities, the technology must be designed to
present only the critical information required by the decision-maker to execute the
task. As an example of a problem that can be raised in providing as much informa-
tion as possible via the technology, let’s take a situation in which a human has to
detect a piece of specific, rare, and subtle information from his or her environment
without the support of any technology. This attentional task can be defined as a
vigilance task. In this situation, the human’s performance is related to his or her
ability to detect that rare and subtle information from the environment. Now, let’s
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imagine this same human having to detect that same information, but with the
support of the technology. If such technology provides too much information, the
nature of the attentional task may be shifted from a vigilance task to one of
recognition, discrimination, and selection. Instead of having to detect the critical
information, the human now has to recognize and select it from an impressive pool
of information. Thus, the difficulty of the task is no longer related to the detection
of rare and subtle information but rather to the recognition and selection of this
same information from many others plausible inputs. Both situations are very
challenging for the decision-maker, but for different reasons.

Ultimately, the information that enhances the decision-maker’s SAW and
increases the probability of an accurate decision-making process must be available
at the right moment in the situation. It must also be presented in a format compatible
with human information processing.

By comparing the mental workload imposed on the human (the critical informa-
tion to be processed) and human information-processing capabilities, one may
identify the human limitations that translate into technological requirements. Such
requirements lead to the design of a support system that is compatible with both
the information required by the C2 task and human limitations (see Figure 5.2).
The role of the support system is to bridge the gap between the demands of the
task (the workload) and human capacities [1]. As illustrated in Figure 5.2, not all
of the information required for optimal decision-making may ultimately be captured
by the technology. However, one may claim that the technological capabilities
regarding this issue often exceed the human capabilities.

Figure 5.2 Reducing the information gap with a support system.
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5.4 Task-Technology Interactions and Technological Automation

Evidently, humans and machines have different capabilities for performing various
tasks [11]. On one hand, in addition to number-crunching capabilities, computer-
based systems have great deductive capacities. However, they can hardly perform
inductive reasoning. On the other hand, the human can hardly deal with several
hypotheses at the same time but has the capacity to perform inductive reasoning.
According to Ballas et al. [12], inducing hypotheses is better accomplished by
humans, and the validation of these hypotheses is efficiently done by computer-
based aids.

Typically, technological automation changes the nature of the implication of
the human (i.e., it redefines the human contribution). With automated systems,
the human role is often mainly related to the supervision of the situation (i.e., the
role of the human shifts from a controlling one toward a monitoring one). This
new role brings new problems and issues to consider. Indeed, according to Bain-
bridge [13], the automation of processes may expand rather than eliminate problems
with the human operator. Such technological developments may increase the com-
plexity of the environment, thereby imposing higher processing demands to the
human. In fact, Bainbridge suggests that the more advanced a system is, the more
crucial the contribution of the human may be.

Bainbridge also raises an important point with automated systems. One can
only expect the operator to monitor the computer’s decisions at some metalevel
to decide whether the computer’s decisions are acceptable. If the computer is being
used to make decisions because human judgment and intuitive reasoning are not
adequate in the context, then which of the decisions are to be accepted? The human
in a monitoring role cannot handle the information-processing and decision loop
anymore. Most likely, the human will not be able to cope with the system and,
consequently, will not use it due to a lack of proper understanding or trust.

Technological automation also raises the question about which part (i.e., the
human or the system) has the authority. There is no general answer to this question.
A proposed approach is to delegate authority according to the situation. Chalmers
[14] proposes five modes of operator-system delegation. The human selects the
mode, which applies until mode transition is triggered by a new selection. It is
obvious that a good understanding of the situation is crucial to select the required
mode. Each mode implies a fixed delegation of authority for all the various sub-
processes for which automated support is available. Figure 5.3 presents these modes,
along with variations in the level of work distribution and the synergy between
the automation and the operator in these various modes.

The issues discussed above do not mean that support systems or automated
systems are not useful. However, their design, purposes, and interaction with the
human are critical. Moreover, given the nature of unpredictable events, it is crucial
that the design process start with a complete understanding of the environmental
constraints and human information processing. The technological perspective must
be seen as the solution to human shortfalls. Hence, the design process must involve
systems designers and human-factors specialists.
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Figure 5.3 Operator-system modes of operation.

5.5 Support-System Requirements: A Task/Human/Technology
Triad Model

A triad approach has been proposed by Breton, Rousseau, and Price [15] to repre-
sent the collaboration between the support-system designers and the human-factors
specialists. As illustrated in Figure 5.4, the three elements that compose the triad
are the task, the technology, and the human. In the command-and-control context,
the OODA loop represents the task to be accomplished. The design process must
start with the identification, by subject-matter experts (SMEs) within the context
of a cognitive analysis, of the environmental constraints and possibilities.

Support-systems designers are introduced into the triad via the technology
element. Their main axis of interest is the link between the technology and the
task. The general question related to this link is, What systems must be designed
to accomplish the task? Systems designers are also considering the human. Their
secondary axis of interest is thus the link between the technology and the human.
The main question of this link is, How must the system be designed to fit with the
human? However, systems designers have a hidden axis. The axis between the
human and the task is usually not covered by their expertise. From their analyses,
technological possibilities and limitations are identified. However, all environmen-
tal constraints may not be covered by the technological possibilities. These uncov-
ered constraints, called deficiencies hereafter, are then addressed as statements of
requirements to the human-factors community (see Figure 5.5). These requirements
lead to better training programs, the reorganization of work, and the need for
leadership, team communication, and so forth.

Human-factors specialists are introduced via the human element of the triad.
Their main axis is the link between the human and the task, which is the hidden
axis of systems designers. Through a cognitive analysis, they seek to understand
the interaction between the human and the task. They identify how the humans
perceive the task, what they have to do to accomplish the task, how they think,
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Figure 5.4 Task/human/technology triad model.

Figure 5.5 Human-factors requirements.
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how they apply a skill, what strategies and resources are involved, and what the
shortfalls and human limitations are. Their secondary axis of interest is the same
as that for the system designers (i.e., the human-technology link), and their hidden
axis is the link between the technology and the task, which is the main axis of
the system designers. From their analyses, human possibilities and limitations are
identified. However, all environmental constraints may not be covered by human
possibilities and resources. The uncovered deficiencies are then addressed as state-
ments of requirements to the technological community (see Figure 5.6). These
statements become the specification of which part of the task needs support or
must be automated, what the system must do, in which conditions, and how the
system must interact with the operator.

In this context, everyone involved in the design process has his or her own
field of intervention. The weakness of one is the strength of the other. The sets of
statements of requirements produced by the system designers and the human-
factors specialists are analyzed by a multidisciplinary team involving both communi-
ties. This analysis leads to one set of consolidated requirements that determines
the nature of the solution (see Figure 5.7). It is very important that both types
of specialists work in a close collaboration. Working in isolation will generate
requirements formulated by one part that are unrealizable by the other.

Within the context of military or public-security operations, unpredictable
events are expected more frequently and are often caused by intelligent sources.
The inductive capacity of the human is then required to deal with these events.
Some part of the overall system can be automated, but the technological system
must mostly be designed to support the human in his or her activities. Hence, the
solution cannot be found from a complete technological perspective or a complete
human perspective; rather, it must be a mixture of both.

Figure 5.6 Technological requirements.
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Figure 5.7 Requirements trade-off spectrum.

5.6 Cognitive Fit and Support-System Insertion into the Operational
Environment

As one can see from the previous discussion, an important challenge is to develop
a support system that, on one hand, takes advantage of all the technological
opportunities but, on the other hand, is totally compatible with the way the human
executes the decision-making task. Because of the importance of the cognitive fit
between the support system and the human, the development of this system must
include the participation of system designers and human-factors specialists. The
multidisciplinary team must identify which information is required for the optimal
execution of the task, as well as when and how it must be presented by the support
system to the decision-maker.

Answering these questions and translating them into system concepts is a step
toward the development of an effective support system. However, it may not
automatically ensure the success of the development process. One must keep in
mind that the introduction of any particular new support system in a decision-
making environment, for instance, a command-and-control environment, changes
the overall dynamic between the human and the decision-making task [15]. This
is particularly true when the new system is very different from the old one or when
it provides means to execute the task that were not available before. The availability
of such a new support system may completely redefine the way the human executes
the command-and-control process and, thus, create unpredicted problems that may
be more critical than those solved by the system. It is critical to assess the changes
brought by the new support system because, from a human-performance perspec-
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tive, the quality of the overall decision-making process can be reduced, in some
circumstances, by the introduction of this new system.

From an operational perspective, the introduction of a new support system
may also lead to other important problems. First, it is possible that the training
required for the optimal use of the new system is impossible to achieve because of
time, money, and or constraints. Second, it is possible that the expertise developed
by the decision-maker with the previous systems will become irrelevant in the
context of the new procedures brought by the new system. In this particular
situation, the introduction of the new support system may bring all of the decision-
makers back to the novice level. Third, the changes brought by the new system
may not be acceptable from a military-doctrine or rules-of-engagement perspective.

Thus, under some specific circumstances, it may happen that a solution totally
compatible with human information-processing capabilities is not acceptable from
an operational perspective. Conversely, an optimal solution from an operational
point of view may not be adequate to support the decision-maker’s performance.
Thus, another challenge facing the multidisciplinary development team is to design
a support system that is adequate from both the human-performance and the
operational perspectives.

To ensure a certain level of adequacy of the support system, the changes brought
by this new system must be validated from both perspectives. The validation of
the support system can be performed by testing procedures that are integrated into
the development process. The goal of these procedures is to answer the following
questions:

• Do we create new problems with the insertion of this particular support
system?

• Does the system really support and improve human performance?

In the following section, we outline the phases of the development process,
using the threat-analysis task as an example. Some potential problems are raised
in the execution of this task in the command-and-control environment. We also
provide a brief cognitive analysis of these problems, based on known cognitive
theories and models, and propose potential technological solutions. Obviously, we
are not addressing an exhaustive list of all potential problems, user needs, and
solutions related to this task that could be identified. The goal of this specific
example is to illustrate some of the phases of the development process. We end
the next section by providing reasons explaining the absence of a validation phase
in the development process.

5.7 Cognitive Systems Engineering

Within the last decade or so, technological development has raised new issues and
challenges regarding the design process of fusion, situation-analysis, and decision-
support systems. Actually, the type of issues and challenges has shifted from identi-
fying the technological possibilities and limitations to determining how these sys-
tems must be designed to fit with human information processing. This situation
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has contributed to the emergence of the human-factors community and the develop-
ment of engineering methods for cognitive systems.

Cognitive engineering is an interdisciplinary approach to designing computer-
ized systems intended to support human performance [16]. It encompasses the fields
of human factors, human-computer interaction, cognitive psychology, computer
science, artificial intelligence, and other, related fields. The methods of cognitive
engineering consider workers and the tasks they perform as the central drivers for
system design. These methods are quite diverse [17]. Certain methods aim to get
an understanding of users and tasks by constructing quantitative models of expert
reasoning. Other methods focus on documenting the key decisions made in the
domain and the information required to make those decisions. The aim is to develop
systems that support cognitive functions.

Questions that drive the design of fusion, situation analysis, and decision-
support systems and that are addressed by methods of cognitive engineering
include [17]:

• What are the goals and constraints of the application domain?
• What range of tasks do domain practitioners perform?
• What strategies do they use to perform these tasks today?
• What factors contribute to task complexity?
• What tools can be provided to facilitate the work of domain practitioners

and achieve their goals more effectively?

The methods of cognitive engineering have tremendous potential to impact
some of the most difficult aspects of system engineering, especially in the command-
and-control domain. In fact, it has been suggested that the only way to deal with
the increased complexities in future command-and-control systems, including the
vast amounts of available data, the pressure to make timely decisions using the
totality of that data, and reduced manpower and cost goals, is to follow a human-
centered approach to system engineering [18].

Cognitive engineering methods can be organized into five primary categories:

1. Modeling cognitive processes;
2. Modeling behavioral processes;
3. Describing cognitive and behavioral activities;
4. Modeling erroneous actions;
5. Modeling human-machine systems.

While some methods overlap multiple categories, each method is assigned to
a ‘‘primary’’ category. Bonaceto and Burns [17] further discuss these methods.

5.7.1 Information Requirements for Optimal Decision-Making

With the technological evolution, it is possible to create more powerful and sophisti-
cated technological systems that make available to decision-makers a huge amount
of data and information about situations and the environment in large-scale military
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and public-security operations. Hence, a typical problem with today’s systems is
not a lack of information but finding what is needed when it is needed [19].
Providing as much data and information as possible about a situation and its
environment is not necessarily an adequate way to support the decision-maker’s
performance. All of the data and information available is not relevant and useful
for reaching an optimal decision.

In fact, in some situations, most of the data can be seen a distraction or as
noise by the decision-maker and may thus reduce his or her level of SAW. For
instance, when a given system makes available some sources of information that
are superfluous and that bring noise or confusion to the situation, the decision-
maker still has to devote perceptual and attentional resources, which are limited,
to scan and select the relevant information from these extraneous sources of data.
The presence of these distracters may also increase the workload imposed on the
short-term memory required in the processing of multiple pieces of data.

Typically, only a small fraction of the overall data and information available
is relevant and useful for the decision-making process. The identification of the
critical information can be done through various procedures or analysis techniques
developed to identify cognitive processes.

5.7.2 Mental Models and Cognitive Fit

The situation-awareness processes described by Endsley are often initiated by the
presence of an object in the perceiver’s environment. However, such processes can
also be triggered by a priori knowledge, feelings, or intuitions. In these situations,
hypotheses related to the possible presence of an object are formulated. The per-
ceiver then initiates search processes in the environment that confirm or invalidate
these hypotheses. Note that this type of SAW is possible only if mental models
related to the possible objects are available. In her theory of SAW, Endsley clearly
presumes that patterns and higher-level elements are present, according to which
the situation can be structured and expressed. SAW can be interpreted as the
operator’s mental model of all pertinent aspects of the environment (processes,
states, and relationships).

There is a tight link between this mental model used to structure and express
situation elements and the cognitive processes involved in achieving the levels of
awareness. This link is known as the cognitive fit and requires an understanding
of how the human perceives a task, what processes are involved, what the human’s
needs are, and what part of the task can be automated or supported. This under-
standing is crucial and only achieved via a number of specialized human-factors
investigations known as cognitive engineering analyses.

Such analyses are generally conducted by the human-factors engineering
community. Human-factors engineering can be seen as the U.S. counterpart of
ergonomics. According to Preece et al. [20], cognitive ergonomics is a discipline
that focuses particularly on human information processing and computer systems.
By definition, it aims at developing knowledge about the interaction between human
information-processing capacities and limitations and technological information-
processing systems.
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The usefulness of an information system is closely related to its compatibility
with human information processing. Hence, such a system must be developed
according to human needs, especially regarding information processing. A first step
is the identification of the cognitive processes involved in the execution of a task.
Many procedures have been developed to identify those processes. Jonassen, Han-
num, and Tessmer [21] describe task analysis as a process that is performed in
many ways, in a variety of situations, and for multiple purposes. Such an analysis
determines what the performers do, how they perform the task, how they think,
or how they apply a skill.

5.7.3 Cognitive Task Analysis and Cognitive Work Analysis

Among the procedures developed to identify cognitive processes and provide, via
interviews with SMEs, the set of critical information that must be made available
to reach optimal decisions, cognitive task analysis (CTA) [22] and cognitive work
analysis (CWA) are both often put forward.

There are differences between these two procedures. A CTA is concerned
with informing the information-system design process through the application of
cognitive theories [20]. It is used to elicit and capture the knowledge and processing
used by experts in performing their jobs. A CTA often begins with high-level
descriptions of the task based on observations and interviews. However, the bulk
of the data collection occurs via in-depth interviews with SMEs.

The CWA can be seen as a broader analysis than the CTA. According to
Vicente [23], traditional task-analysis methods typically result in a single temporal
sequence of overt behavior. Such a description represents the normative way to
perform the task. Unfortunately, traditional methods cannot account for factors
like: (1) changes in initial conditions, (2) unpredictable disturbances, and (3) the
use of multiple strategies. The use of traditional task analysis brings an artifact
that will only support one way to perform the task.

Vicente proposes an ecological approach in which the three factors above are
considered. The ecological approach, which can be seen as a CWA, takes its roots
in psychological theories that were first advanced by Brunswick [24] and Gibson
[25, 26]. These researchers raised the importance of studying the interaction
between the human organism and its environment. The perception of an object in
its environment is a direct process, in which information is simply detected rather
than constructed [26]. The human and the environment are coupled and cannot
be studied in isolation. A central concept of this approach is the notion of
affordance, an aspect of an object that makes it obvious how the object is to be
used. Examples are a panel on a door to indicate ‘‘push,’’ and a vertical handle to
indicate ‘‘pull’’ [20]. When the affordance of an object is obvious, it is easy to
know how to interact with it. The environment in which a task is performed has
a direct influence on overt behavior. Hence, the ecological approach begins by
studying the constraints in the environment that are relevant to the operator. These
constraints influence the observed behavior [27].

The ecological approach is comparable to, and compatible with, Rasmussen’s
abstraction hierarchy framework. Rasmussen’s framework is used for describing
the functional landscape in which behavior takes place in a goal-relevant manner.
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This abstraction hierarchy is represented by means-ends relations and is structured
in several levels of abstraction that represent functional relationships between the
work-domain elements and their purposes. With the ecological approach, Rasmus-
sen has developed a comprehensive methodology for CWA that overcomes the
limitations of traditional CTA by taking into account the variability of performance
in real-life, complex work domains. For these reasons, the CWA seems to be
a good choice to answer questions related to understanding complex tasks like
information fusion and situation analysis for command and control in large-scale
military and public-security operations.

5.7.4 Applied Cognitive Work Analysis (ACWA)

Unfortunately, although CTA and CWA are well suited to deal with fusion, situa-
tion-analysis and decision-support issues, they are in practice very expensive to
conduct, time-consuming and, more importantly, generally inefficient from a
design-process perspective. With the latter limitations in mind, a pragmatic cognitive
systems engineering (CSE) approach, known as the Applied Cognitive Work Analy-
sis (ACWA), has been developed to bridge, in a structured, efficient, and converging
way, the gap between cognitive analysis and design [28].

This ACWA modeling method is a pragmatic adaptation of the CWA method
in order to cope with the limitations related to applying CWA. As a result, the
cost to conduct CSE analyses using the ACWA approach is reduced, and the
analysis-design efficiency is significantly improved, making easier the identification
of decision-aiding concepts suited to provide effective decision support. Figure 5.8
provides a visual depiction of the sequence of methodological steps and their
associated output artifacts, as well as an indication that the process is typically
repeated in several expanding spirals, each resulting in an improved support system.
Elm et al. [29] describe each step of this approach in detail.

5.8 Development Process of a Support System

As discussed in [1], the development process for a support system can be described
as follows (see Figure 5.9):

• Interview of SMEs in the context of a cognitive analysis (e.g., CTA, CWA,
ACWA);

• Identification of decision-making requirements through the identification of
user needs, problems, and deficiencies from the cognitive analysis;

• Use of current cognitive theories and models to understand the meaning of
these requirements from a human-factors perspective;

• Identification of technological solutions to address these requirements;
• Testing procedures to validate the technological solutions from the human-

performance and operational perspectives.

To illustrate the support-system development process, we consider, as an exam-
ple, the development of a system built to support the execution of a threat-analysis
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Figure 5.8 ACWA [29].

Figure 5.9 The support-system development process.

task by a decision-maker in the naval context. While conducting antiair warfare,
threat analysis is particularly difficult because the available information is often
incomplete or ambiguous [30]. Moreover, the uncertainty related to the information
can also be voluntarily created by an intelligent source (e.g., the enemy). Stress
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factors, such as the possibility of blue-on-blue (friendly) or blue-on-white (neutral)
engagements, social pressure, and political issues are added to make the situation
even more complex and stressful.

5.8.1 A Cognitive Analysis of the Problems

Through interviews with SMEs while conducting a cognitive analysis, some prob-
lems and deficiencies are identified. For instance, one problem, which is likely to
happen, can be reported by the SMEs and described as follows [29]:

The decision maker is rapidly overloaded by the presence of multiple entities that
are potentially threatening. In these complex situations, according to the SMEs
interviewed, it can be very difficult to perceive and recognize all the relevant
information and rank all these entities properly in function of their lethality, level
of threat, their importance, etc. The situation can become rapidly overwhelming
for the decision maker.

To design an adequate technological system supporting the SMEs in the execu-
tion of the threat-analysis task, the problem cited in the previous subsection must
be interpreted in terms of appropriate cognitive theories and models, such as the
NDM, the RPD and the SAW models. These theories and models have been devel-
oped to represent human behaviors in the execution of complex tasks, such as
situation analysis and decision-making, which are critical in a complex command-
and-control environment. Examples of such cognitive analyses proposed by the
development team could be cited as follows:

• According to the RPD model, the critical phase of the decision-making
process is the recognition of relevant features in the environment. In a
complex and dynamic environment, the decision-maker does not have time
to weigh all of the alternatives and select the optimal one. Instead, the expert
rapidly selects an appropriate course of action according to the features
immediately perceived and recognized in the environment. The quality of the
course-of-action selection process is highly related to the features-recognition
process and the level of expertise of the decision-maker. This level of expertise
is related to the amount of relevant knowledge stored in the expert’s long-
term memory. In a complex situation involving multiple potential threats,
a large number of critical features related to these potential threats must be
perceived and recognized rapidly to select an appropriate course of action.
Thus, it is likely that the attentional resources required for the processing
of these numerous features will exhaust the attentional resources available
at the moment. As a result, it is possible that some critical features required
for an optimal execution of the task will be omitted, ignored, misjudged,
or simply not perceived.

• From the perspective of the SAW model, the lack of attentional resources
results in a low level of SAW. Some critical features are not perceived;
consequently, they are not available for subsequent SAW processes, such as
the comprehension of the situation and the prediction of future states that
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lead to the selection of the course of action. As a result, the decision-maker’s
SAW level is considered to be low. Unfortunately, there is a strong link
between SAW and the quality of decision-making [19].

• The match between the features perceived from the environment and the
knowledge stored in the long-term memory of the decision-maker takes place
in the working memory. Besides this recognition process, which is well
defined by the RPD model, the working memory is also involved in some
SAW processes, such as the comprehension of the situation (level 2) and the
projection of future states (level 3). The working memory has only limited
processing capacities. Thus, this structure can be rapidly overloaded by a
situation involving multiple entities.

After an adequate cognitive analysis of the problem, the development team
must address a list of potential technological solutions to support the SMEs in the
execution of the threat-analysis task.

5.8.2 Technological Solutions

As a result of the cognitive analysis of the problem(s), user requirements are better
understood. Here again, we are not providing an exhaustive list of all possible user
requirements that could be identified following a cognitive analysis. For the purpose
of our example, only a few requirements are provided:

• The recognition process of the features must be supported.
• The workload imposed on the working memory must be reduced.

From the identification and comprehension of these requirements, some techno-
logical solutions can be proposed:

• Use different symbols and colors to improve the recognition process of
features.

• Use automated warning signals and pop-up windows to draw the expert’s
attention to relevant critical features in the environment. This will improve
the expert’s SAW level.

• Use data fusion to gather relevant features related to a given contact. This
will reduce the workload imposed on the working memory by reducing the
number of features to consider.

5.8.3 Validation of Technological Solutions

In a serious and efficient support-system development process, the technological
solutions proposed to address the user requirements are based on the results of an
‘‘in-depth’’ cognitive analysis. Consequently, one may claim that they are probably
appropriate to support the human in the execution of the task. This is likely true.
However, as mentioned above, the introduction of a new support system redefines
the overall dynamic between the human and the task and, as a result, can produce
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other problems that can be more critical than those solved by the system. It is also
possible that the support provided by the system only generates a nonsignificant
improvement in performance. In this latter situation, the marginal improvement
may not be worth the cost and time spent to insert the system into the environment.
Thus, as illustrated in Figure 5.10, before introducing the support system into the
SME environment, the development team must determine the level of improvement
generated by the technological solution and verify whether this solution creates
other problems or is compatible from an operational perspective. In other words,
the technological solution must be validated from both the human-performance
and the operational perspectives.

To determine the level of improvement to human performance generated by
the solution and its compatibility from an operational perspective, an experimental
environment must be created in which empirical evidence is obtained. Two charac-
teristics are essential to this environment:

• The experimental environment must be realistic enough to allow for the
generalization of the results to the real environment. The experimental setting
must reproduce the conditions in which the SME executes the task.

• The experimental environment must allow for a systematic manipulation of
the variables of interest. To interpret the results, the development team
must be able to establish a clear link between the observed results and the
manipulation of the variables of interest. It is important to eliminate as much
as possible the influence of any extraneous variables on the results.

For reasons such as funding and time constraints, the validation step is often
skipped in the support-system development process. In such constrained circum-
stances, the validation of the system is simply done through its use in real-world
situations. However, it can be particularly risky to bring a new support system
into the real-world environment without completely knowing its effects from the
human performance and the operational perspectives. The use of an ineffective
support system may encourage the decision-maker to bypass or ignore the inputs
from the system. In the worst case, the use of an inappropriate system may result
in dramatic consequences, such as the loss of lives.

Another important explanation for the absence of the validation process from
the support-system development process is the lack of appropriate tools to validate

Figure 5.10 The validation of technological solutions.
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the system. Field trials and laboratory settings that can be used to validate the
support system are both subject to important restrictions. On one hand, there is
a frequent complaint related to field trials about the presence of extraneous variables
that threaten the validity of the experiment. On the other hand, one can claim that
controlled procedures in laboratory settings make the experimental setting too
artificial and therefore make the results difficult to generalize to real-world situa-
tions. Results obtained in a very controlled environment can hardly be extrapolated
to an unstable and uncertain environment. For instance, display concepts developed
in laboratory settings may not be appropriate in unstable, uncertain, and ill-defined
environments such as command and control in military and public-security
operations.
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Knowledge, Belief, and Uncertainty
Anne-Laure Jousselme, Patrick Maupin, Éloi Bossé, and Dale Lambert

6.1 Introduction

Knowledge, belief, and uncertainty are three key notions of the situation-analysis
process (through data and information fusion). As discussed in previous chapters,
the two basic elements involved in situation awareness are the situation and the
person. The situation can be defined in terms of events, entities, systems, other
persons, and the like, as well as their mutual interactions. The person can be defined
according to the cognitive processes involved in situation awareness. The cognitive
process of the human must be supported to help him or her build his mental model
(understanding) of the situation. To this end, the human uses observing devices or
agents (sensors or other humans) and computers (processing) to support his or her
reasoning about the situation. Figure 6.1 illustrates the main challenge in situation
analysis. Belief and knowledge representation is a crucial step in transforming data
into knowledge. The data and information coming from the different sources must
be converted into a certain language or other information format (e.g., visualization)

Figure 6.1 Measuring and reasoning about the situation.
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so that they can be processed and used by the human to build a mental model in
order to decide and act. One great challenge in designing a support system is to
make use of the mathematical and logical tools that can allow measuring and
reasoning about the situation using a common analysis framework. This chapter
discusses the key notions of knowledge, belief, and uncertainty in relation to
information fusion.

6.2 Knowledge and Belief

Following [1], we assume that there are real situations in the world. Through
interaction with the world, people seek situation awareness by forming perceptions,
comprehensions, and projections about these situations. Hereafter, these percep-
tions, comprehensions, and projections are characterized as beliefs, where beliefs
can be understood from either a realist [2, 3] or instrumentalist perspective [4, 5].
In the previous chapters, we also proposed automated information-fusion systems
as computational systems aiming to form perceptions, comprehensions, and projec-
tions within a machine. It is convenient likewise to think of these as beliefs. These
machine-based beliefs can then also be understood from the realist or instrumental-
ist perspectives. A machine that explicitly represents its beliefs symbolically illus-
trates the realist perspective. Alternatively, a robot engineered through a
subsumption architecture [6] might be ascribed beliefs instrumentally on the basis
of its behavior, without their being explicitly represented anywhere within the
machine.

Whether explicitly or tacitly conceived, beliefs are customarily described
through sentences of the form ‘‘x believes that s ’’ (e.g., Fred believes that it is
raining), where s expresses some claim about the world and x identifies an individ-
ual having a belief attitude toward that claim. Consequently, we interpret beliefs
propositionally (without all of its Fregean connotations [7]) as mental states that
are ascribed to an individual (human or machine) and that make some truth-
functional claim about the world. Propositional expressions (e.g., SAM#1 is tar-
geting F18#7) will be used to express the propositions associated with these mental
states, while propositional attitude expressions (e.g., AEW#2 believes that SAM#1
is targeting F18#7) will be used to express the association of a propositional
belief state with an individual. To illustrate, for a machine AEW#2 that explicitly
represents its beliefs, we might:

• Identify a belief state with a belief data structure (an instance of a particular
type of data structure);

• Identify the proposition that surface-to-air missile number 1 is targeting F18
number 7 with that belief state if that data structure contains the string
‘‘SAM#1 targeting F18#7’’;

• Express the proposition that surface-to-air missile number 1 is targeting F18
number 7 through the propositional expression SAM#1 is targeting F18#7;

• Identify the association of the belief that surface-to-air missile number 1 is
targeting F18 number 7 with machine AEW#2 if machine AEW#2 has stored
the belief data structure containing the string ‘‘SAM#1 targeting F18#7’’;
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• Express AEW#2’s propositional attitude through the propositional attitude
expression AEW#2 believes that SAM#1 is targeting F18#7.

Situation awareness is usually associated with having perception, comprehen-
sion, and projection knowledge about the world. Philosophers have struggled to
produce a cogent definition of knowledge for centuries. While Plato’s ‘‘justified
true belief’’ fails to define knowledge adequately, the elements of truth, justification,
and belief in some way figure prominently in many accounts of knowledge [8].
For that reason, those elements serve as the cornerstones of the approach presented
in this book. We accept belief of s as a necessary, but insufficient, condition for
knowledge of s .

True beliefs are valued over false beliefs because they offer greater utility in
dealing with the world. Truth, like knowledge, remains a philosophically allusive
commodity, with the correspondence, coherence, pragmatist, and Tarskian theories
being among the more dominant. For our mathematical theory, we will primarily
present a Tarskian account of truth, according to which a sentence is true if, and
only if, its metalinguistic interpretation is true. Thus, in keeping with conventional
model theory [9], we might:

• Interpret the token SAM#1 as the object A(SAM#1) in the world;
• Interpret the token F18#7 as the object A(F18#7) in the world;
• Interpret the token is targeting as a set of object pairs A(is targeting), which

is the set of all targeting pairs in the world;
• Then assert that the propositional expression SAM#1 is targeting F18#7 is

true if, and only if, <A(SAM#1), A(F18#7)> ∈ A(is targeting).

If we assume that the world consist of situations that can be conceptual-
ized in terms of A(SAM#1), A(F18#7), and A(is targeting), then the truth of
<A(SAM#1), A(F18#7)> ∈ A(is targeting) is decided by whether or not it character-
izes a real situation in the world.

Conceptualization figures prominently in this formulation of truth. If we cannot
identify the object A(SAM#1), the object A(F18#7), or the set (relation) A(is tar-
geting), or whether <A(SAM#1), A(F18#7)> ∈ A(is targeting) is the case, then we
have no basis for deciding the truth of the propositional expression SAM#1 is
targeting F18#7. Of these, the relation A(is targeting) is the most interesting and
difficult to identify, for we would not ordinarily understand the concept of targeting
by thinking of all instances of something targeting something else. In practice, we
are more inclined to understand the concept of targeting by relating it to other
concepts, either by defining targeting in terms of those other concepts or by propos-
ing a collection of constraints that relate the targeting concept to other concepts.
Attempts to specify conceptualizations formally in this way have led to the recent
research activity in ontologies, and although much of this research was initially
concerned with simple conceptual taxonomies, it is now evident that richer concep-
tual specifications are required. In this way, the concept of targeting can be formally
specified through a set of formal sentences (formal theory) formed from terms for
other concepts, like time, distance, enemy, intent, and so forth, rather than by
pretending to contemplate all instances of targeting between objects.
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The ontologies-as-formal-theories approach allows us to specify what we mean
by targeting, for example. The value of this maneuver comes when we introduce
an inference relation £. An inference relation identifies rules for deducing formal
expressions from sets of formal expressions, and it is customary to write S £ t
whenever t can be deduced from S. The choice of an inference relation H is far
from arbitrary.

• An inference relation £ is sound if it is truth preserving; that is, if S £ t ,
then whenever every sentence in S is true, the sentence t must also be true.

• An inference relation £ is complete if it recovers all truthful conclusions;
that is, if whenever every sentence in S is true, the sentence t must also be
true, then S £ t .

Similarly, wherever possible it is advantageous for each formal theory S to be
consistent and complete, where:

• S is consistent if there is no t such that S £ t and S £ t .
• S is complete if for every t , S £ t or S £ t .

We are then able to determine the truth of propositional expressions, without
appealing to the interpretations of their terms, by reasoning with the inference
relation to determine what must be true. As equivalently noted in [10], by combining
some domain theory D of beliefs about the world with a theory M expressing the
meaning of the terms used in the domain theory, the consequences of D can then
be deduced as {t | (D ∪ M) £ t }. A consistent and complete theory M will ensure
that inconsistencies and ignorance in our data-fusion system derive from the
beliefs D about the world. In this way, the inference relation £ provides the
remaining element of justification. If the beliefs in D are all true, then the beliefs
in {t | (D ∪ M) £ t } must also be true; moreover, they are justified because the
inference relation £ can be used to explain why they must be true! The three
elements of belief, truth, and justification can be related in this way to provide a
concept of knowledge for our automated fusion systems. Ontologies as formal
theories will become a significant and fundamental element of the mathematical
foundation of information fusion.

6.3 Uncertainty

Uncertainty is a widely used term within the artificial intelligence and engineering
communities. However, the authors in these fields of application and research do
not always agree on the meaning of the word ‘‘uncertainty,’’ its different types, its
possible sources, its synonyms, its possible classifications, its representations, and
so forth. In this section, we explore the concept of uncertainty and related concepts,
such as imperfection, imprecision, vagueness, ambiguity, incompleteness, igno-
rance, and the like. We start with sociological points of view [11, 12], before
describing the artificial intelligence and engineering accounts of uncertainty from
the last 10 years [13–16].
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6.3.1 Bronner’s Sociological Point of View

Sociologist Gérald Bronner [11] distinguishes two kinds of uncertainty: uncertainty
in finality (or material uncertainty) and uncertainty of sense. Uncertainty in finality
is ‘‘the state of an individual that, wanting to fulfill a desire, is confronted to the open
field of the possibles’’ (e.g., Will my car start? Am I ill?). In contrast, uncertainty of
sense is ‘‘the state of an individual when a part or the whole of its systems of
representation is deteriorated.’’ Uncertainty in finality is uncertainty about goal
outcomes, while uncertainty of sense is uncertainty of meaning. In situation analysis,
agents are confronted with uncertainty of sense (data driven) from the bottom-
up perspective and with uncertainty in finality (goal driven) from the top-down
perspective. Bronner further classifies uncertainty in finality into three types,
according to one’s capacity both for uncertainty and for avoiding it:

• Situation of type I: Uncertainty does not depend on the agent and cannot
be avoided.

• Situation of type II: Uncertainty does not depend on the agent but can be
avoided.

• Situation of type III: Uncertainty is generated by the agent and can be
avoided.

6.3.2 Smithson’s Taxonomy of Ignorance

Smithson [12] proposes a taxonomy of ignorance where uncertainty appears as a
kind of ignorance, ‘‘one of the most manageable kinds of ignorance.’’ This taxon-
omy is reproduced in Figure 6.2.

Smithson interprets ignorance as nonknowledge. He initially separates igno-
rance into two categories: the state of ignorance (error) and the act of ignoring
(irrelevance). The latter corresponds to a deliberate action to ignore something
irrelevant to the problem-solving situation, whereas the former is a state (of igno-
rance) resulting from different causes (distorted or incomplete knowledge). For
Smithson, uncertainty is incompleteness in degree (as compared to absence, which

Figure 6.2 Taxonomy of ignorance according to Smithson [12].
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is incompleteness in kind) and is subdivided into three types: probability, vagueness
(being either nonspecificity or fuzziness), and ambiguity.

6.3.3 Krause and Clark’s Uncertainty Classification

Krause and Clark [13] propose an alternative typology of uncertainty to Smithson’s,
centered on the concept of uncertainty. Krause and Clark distinguish two aspects:
unary (i.e., uncertainty applied to individual propositions) and set theoretic (i.e.,
uncertainty applied to sets of propositions). Both categories lead either to conflict
(conflicting knowledge) or ignorance (lack of knowledge). As subcategories, we
find vagueness, confidence, propensity, equivocation, ambiguity, anomaly, inconsis-
tency, incompleteness, and irrelevance. This model is reproduced in Figure 6.3.

Compared to Smithson’s taxonomy, Krause and Clark’s taxonomy [13] adds
the unary–set theoretic dichotomy in order to introduce the concept of inconsistency
and to move the concept of incompleteness in the set theoretic branch.

6.3.4 Bouchon-Meunier and Nguyen’s Model

Bouchon-Meunier and Nguyen [14] propose a model for uncertainty (Figure 6.4).
They refer to uncertainty as ‘‘imperfection on knowledge’’ and denote three main
types of imperfection:

• Probabilistic uncertainty;
• Incompleteness in knowledge (e.g., belief, general laws, imprecision);
• Vague and imprecise description.

The scheme of Figure 6.4 distinguishes between the two general senses of
uncertainty. Reading the graph from right to left, uncertainty appears as a final
state (of mind) possibly caused by belief, general laws, imprecision, vagueness, or

Figure 6.3 Uncertainty model according to Krause and Clark. (After: [13].)
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Figure 6.4 Types of uncertainty according to Bouchon-Meunier and Nguyen. (After: [14].)

incompleteness. This refers to sense I, with uncertainty as a mental state. Reading
the same graph from left to right supposes that incompleteness, vagueness, and so
forth, are kinds of uncertainty, which engenders sense II, where uncertainty is a
feature of information being of many kinds.

6.3.5 Types of Uncertainty According to Klir and Yuan

The typology of uncertainty proposed by Klir and Yuan [15] is built upon the dif-
ferent existing mathematical theories of uncertainty. After a description of the
measures of uncertainty available within the theories, Klir and Yuan propose the
typology of uncertainty presented in Figure 6.5.

For Klir, uncertainty can be either fuzziness or ambiguity (two kinds of uncer-
tainty). Ambiguity can itself be either nonspecificity or discord. These four terms
can be related to some previously used terms in the other classifications: Fuzziness
is close to vagueness, discord is a synonym of conflict, and nonspecificity means
principally imprecision or generality.

Figure 6.5 Types of uncertainty according to Klir and Yuan. (After: [15].)
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In their typology, Klir and Yuan integrate the main key terms used by Smithson
(fuzziness, nonspecificity, ambiguity), as well as the set theoretical aspect introduced
by Krause and Clark (discord). In their discourse, Klir and Yuan do not mention
knowledge and thus stay at a lower level of processing (i.e., at the information
level). Indeed, they introduce the term uncertainty-based information to designate
the information obtained from a reduction of uncertainty in a problem-solving
situation.

6.3.6 Smets’s Structured Thesaurus of Imperfect Information

Instead of a typology of uncertainty, Smets [16] has built a typology of imperfection
of information. His model classifies imperfect information into three main catego-
ries (Figure 6.6):

• Imprecision: This is related to the content of the statement (informational
property, external world, negligence). Several worlds satisfy the statement.

• Inconsistency: No world satisfies the statement.
• Uncertainty: This is induced by a lack of information, by some imprecision,

ordering on the several worlds that satisfy the statement: objective (property
of the information) and subjective (property of the observer).

Smets considers imperfection to be a general term, with uncertainty being a
kind of imperfection. Uncertainty can be either objective (a property of the informa-
tion, that is, sense II) or subjective (a property of the observer, that is, sense I).
Smets’s vision confirms what we have already mentioned, that ‘‘uncertainty induces
uncertainty.’’ The uncertainty (sense I) of an individual agent can also be a cause
of imperfect information (sense II) circulating in a multiagent system. A way to
clarify this would be to adopt Smets’s vocabulary and talk about imperfect informa-
tion instead of uncertainty as a physical feature. So only imperfect information
(being of several kinds) induces uncertainty as a mental state.

Figure 6.6 Adaptation of Smets’s structured thesaurus on imperfection. (After: [16].)
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6.4 Conclusion

We have decided to adopt Smithson’s taxonomy as a basis for developing automated
fusion systems that deal with uncertainty and knowledge. Knowledge involves
belief, truth, and justification where these elements can be expressed as follows:

• The truth of a proposition can be asserted by asserting a propositional
expression s expressing the proposition.

• The stored belief, by individual x, of a proposition expressed by s can be
asserted by having Sx denote the set of stored beliefs of x and asserting
s ∈ Sx .

• The justified belief, by individual x of a proposition expressed by s , can be
asserted by having Sx denote the set of stored beliefs of x, having £ denote
the inference relation used by x and asserting Sx £ s .

So,

x believes that s if Sx £ s

while

s if s is true

Smithson’s taxonomy interprets ignorance as nonknowledge. This could rise
to formal definitions as part of an ontology for high-level fusion.
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C H A P T E R 7

Qualitative and Symbolic Approaches
Patrick Maupin, Anne-Laure Jousselme, and Éloi Bossé

7.1 Introduction

A formalization is necessary to be able to deal with knowledge or uncertainty:
a formal framework in which knowledge, information, and uncertainty can be
represented, combined, managed, reduced, increased, and updated. The objective
is: (1) to build a model of a situation directly usable by the different theories of
reasoning under uncertainty, and (2) to be able to deal with both knowledge and
uncertainty. The potential theoretical frameworks available to model the situation-
analysis process can be divided into two main categories: qualitative approaches
(such as modal logic, nonmonotonic logic, truth-maintenance systems) and quanti-
tative approaches (such as probability theory, evidence theory, fuzzy sets, random
sets, possibility theory). Qualitative approaches seem better suited to reasoning on
knowledge, while quantitative approaches are better candidates for uncertainty
representation and management. Hence, a good solution for a global modelization
of the situation could be a hybrid approach (quantitative logics, incidence calculus),
mixing quantified evaluations of uncertainty and high reasoning capabilities.

In this chapter, some logical frameworks for uncertainty and knowledge pro-
cessing are introduced. These frameworks, also called qualitative, logical, truth-
functional, and intensional [1], are all extensions of classical logic.

7.2 Classical Logic: Propositional Logic

Since the beginnings of computer science, propositional logic together with first-
order logic (also called predicate logic) has played an important role in the develop-
ment of programming languages, software, and hardware, as well as architectures.

Propositional logic and first-order logic (together known under the designation
classical logic) can be used when expert systems based on production rules cannot
deal with the complexity of the problem to solve. Propositional logic and first-
order logic require the formulation of a practical-problem in the form of a logical
theorem. As far as reasoning (deduction) is concerned, the goal is to prove this
theorem by the syntactic and the semantic tools available in these frameworks.

But reasoning is not necessarily the ultimate goal when dealing with these
frameworks. For many tasks in high-level data fusion, aggregation of information
is a very important task, and many tools are provided by classical logic. A language
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of propositions, together with a set of situations and a way of assigning a truth
value to a proposition in a situation, is called a logic.

Definition (proposition): Several meanings have been given historically to the
word ‘‘proposition.’’ Before the modern area of formal logic (i.e., before the late
nineteenth century), a proposition was a declarative sentence considered with its
meaning.

In the modern area, a proposition expresses:

1. The meaning of a sentence;
2. The fully determinate circumstance or content capable of being asserted or

expressed by a particular utterance of a sentence [2].

Propositional logic deals with propositional variables (or logic variables) that
stand for arbitrary propositions. These variables stand for hypothetical proposi-
tions, and unless a particular proposition is substituted by a variable, the latter
remain uninstantiated. The purpose of logic is to study the ways to achieve correct
modes of inference. In this section, basic notions of entailment, inference, and
grammatical concepts such as soundness, completeness, and decidability are also
defined.

Definition (entailment): In a given logic, we say that a set of propositions G

entails a proposition f , written G |= f , if f is true in every situation of G.
Definition (soundness): An inference relation £ is called sound if, for any

assertion set and any assertion set G, if G £ f then G |= f .
Definition (completeness): An inference relation £ is called complete if, for any

assertion set and any assertion set G, if G |= f then G £ f .
Definition (decidability): A set of formulas in a formal language is decidable

if there is a decision procedure for membership in it. This decision procedure is
called an algorithm, and this algorithm determines for any item whether it is a
member of the set.

A set is semidecidable if there is an algorithm that confirms, when presented
with a member of the set of formulas, that it is effectively a member of the set but
that cannot give any answer when presented with a nonmember. Propositional
logic is decidable since the truth-table method provides such a decision procedure,
but first-order logic is only semidecidable.

Definition (derivation): If R is a set of inference rules, and G is a set of formulas,
then a derivation of a formula f from the premises G is a sequence of assertions
c1 , . . . , cn , where cn is the derived assertion f , and for each c i in the derivation,
either c i is a member of G, or there exists an inference rule in R whose conclusion
is c i , all of whose antecedents occur prior to c i in the derivation.

Definition (generation by a set of rules): If there exists a derivation of f from
G under rule set R, then write G £R f . We call G £R f the inference relation
generated by the rule set R.

Definition (deduction/derivation) [3, 4]. Also designated as derivation. Typi-
cally, a deduction is a finite sequence of sentences of a logical system (see definition
below) whose last sentence is a conclusion of the sequence in which the first sentence
is an axiom and each subsequent sentence is either an axiom or follows from
previous sentences through rules of transformation. For Sayward [4], ‘‘Deduction
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is a system-relative concept. It makes sense to say something is a deduction only
relative to a particular system of axioms and rules of inference. The very same
sequence of sentences might be a deduction relative to one such system but not
relative to another.’’ It should be noted that so-called systems of natural deduction
are axiomless. It is said that proofs of theorems within a system are obtained more
easily with natural deduction, whereas proofs of theorems about a system are
obtained with more ease if this system has axioms.

Below, an axiomatization of propositional logic is presented briefly.
The set of primitive connectives is { , `}. The other operators are obtained

by definition.
Definitions:

f → c =  f ~ c

f ` c =  (  f `  c )

f ↔ c = ((f → c ) ` (c → f ))

Axioms:

R1: (f ~ c ) → f

R2: c → (f ~ c )

R3: (f ~ c ) → (c ~ f )

R4: (c → x ) → ((f ~ c ) → (f ~ x ))

Rules:

Modus ponens (MP), and

Uniform substitution (US)

7.2.1 Dealing with Uncertainty

The task of preparing knowledge for reasoning necessitates a special treatment of
exceptions. The problem is that in order to perform good reasoning, most of the
time one cannot enumerate all the possible exceptions (because the list would be
too long or simply because the agent in question is not aware of all these exceptions)
or ignore the exceptions (because the system might fail at the task). The summariza-
tion of exceptions is, for Pearl [1], a compromise between enumerating and ignoring
information and is therefore the key to reasoning under uncertainty.

As in propositional logic, it is possible to assign to each proposition a numerical
measure of uncertainty. These measures are then combined, just as truth values
are, using the same syntactic principles as propositional calculus. This is the rule-
based approach adopted by first-generation expert systems.

Boolean algebra is of no use when it comes to studying how the exceptions to
f → c interact with those of c → x , and, furthermore, produce a new set of
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exceptions to (f ` c ) → x . Since these exceptions might be dependent in some
unknown (or computationally intractable) way, as Pearl puts it, these exceptions
are ‘‘robbing us of the modularity and monotonicity that make classical logic
computationally attractive’’ [1].

The representation of knowledge in classical logic is not modular since any
update of the knowledge base (i.e., adding an exception) requires a complete
revision of the possible derivations (deductions). Some inconsistencies may arise,
requiring the addition of new propositions to existing formulas in order to restore
consistency.

Monotonicity is a very strong property of classical logic, but this property is
after all denied very often by commonsense reasoning. For Horty [5], ‘‘Monotony
states that if w is a consequence of G then it is also a consequence of any set
containing G (as a subset).’’

In other words, if G £ w , then G ∪ {f } £ w obtains also. Horty continues:

The import of monotony is that one cannot pre-empt conclusions by adding new
premises. However, there are many inferences typical of everyday (as opposed to
mathematical or formal) reasoning, that do not satisfy monotony. These are cases
in which we reach our conclusions defeasibly (i.e., tentatively), reserving the right
to retract them in the light of further information. Perhaps the clearest examples
are derived from legal reasoning, in which defeasible assumptions abound. In the
judicial system, the principle of presumption of innocence leads us to infer (defeasi-
bly) from the fact that x is to stand trial, the conclusion that x is innocent; but
clearly the conclusion can be retracted in the light of further information.

The impact of a new fact cannot be calculated ‘‘in stages’’ unless restrictive
independence assumptions are made. Incrementality is also lost (i.e., we cannot
account for the individual impact of items of evidence) unless restrictive indepen-
dence assumptions are made again. For Pearl, ‘‘uncertainty forces us to compute
the impact of the entire set of past observations to the entire set of sentences in
one global step—this of course, is an impossible task’’ [1].

This difficulty in processing uncertainty with classical logic led to the develop-
ment of numerous theoretical frameworks. Pearl [1] proposed a classification of
methods processing uncertainty, opposing semantic and syntactic approaches (or
equivalently, as Pearl puts it, intensional and extensional approaches). On the one
hand, syntactic approaches, like production systems (also known as rule-based
systems) and procedure-based systems, view uncertainty as a generalized truth-
value. And just like in the purely syntactic processing of classical logic, these
approaches ‘‘compute the uncertainty of any formula as a function of the uncertain-
ties of its subformulas’’ [1].

The semantic approach models uncertainty using concepts such as possible
worlds, situations, and state of affairs; in other words, this approach gives meaning
to uncertainty characterization. For Pearl, ‘‘Extensional (syntactic) systems are
computationally convenient but semantically sloppy, while intensional (semantic)
systems are semantically clear but computationally clumsy’’ [1].

It seems that much of the difficulty encountered in the formalization of
approaches dealing with computation and reasoning under uncertainty lie in the
reconciliation of the syntactic and semantic aspects of the problem.
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7.2.2 Calculus and Reasoning (Aggregation/Fusion)

Connectives, or logical operations, are used in proposition logic to link propositions
together, to make new propositions appear. Combinations are obtained without
any reference to the meaning of the propositions. A logical operation is a law of
the composition of propositions themselves defined by a law of composition of
their logical values.

Consider a connective acting on m propositions, where m is called the order
of this connective. A function f is then a function acting on m variables, the latter
being binary valued or Boolean. One has to determine n = 2m values of f. Since f
can itself receive two values, the evaluation of the logical operation leads to
N = 22m

possible schemes.

7.2.3 Final Remarks

The following remarks are presented to summarize our comprehensive survey of
proportional logic:

• Propositional logic is sound, complete, and decidable.
• Propositional logic, although not designed for uncertainty processing, can

be extended in numerous ways, making it fit for applications requiring
uncertain reasoning capabilities.

• Propositional logic is foundational to the domain of neural networks and
thus connectionist artificial intelligence. Since high-level data fusion is con-
cerned with parallel data processing and machine learning, it should be
interesting to investigate the relationships between aggregation and machine-
learning issues.

• It is possible to formalize propositional logic using a single connective. Is it
possible to formalize high-level data-fusion aggregative functions using the
same principle?

• The expressive power of propositional logic is not enough to be used as a
foundation for arithmetic, and thus to high-level data fusion, requiring and
extension making use of additional connective, the quantifiers. This exten-
sion will be presented in the next section on first-order logic.

7.3 Classical Logic: First-Order Logic

The pioneers of first-order logic are Boole, Frege, and Peirce, who formalized it
not only for the study of deductive arguments but also as a tool for definition and
conceptual analysis. First-order logic is an extension of propositional logic, which
is considered a subset of first-order logic. Fist-order logic thus contains all axioms
and theorems of propositional logic.

First-order logic, also called functional logic, the logic of predicates, or simply
the logic of properties and relations, is a formal theory used to reason about the
internal structure of a proposition.



156 Qualitative and Symbolic Approaches

1. Objects or individual terms are logical beings that can be linked in a
proposition.

2. Predicates are logical beings that are used to link objects in a proposition.
Predicates can act on a single object (unary) or on multiple objects (n-ary).

3. General propositions are an extension of the concept of proposition pre-
viously defined in propositional calculus, which can be described as a com-
pound of one or many objects and a unary or n-ary predicate acting on it.

As will be seen, first-order logic can be used when objects of interest have
attributes (or properties) and when it is of interest to represent and calculate
relations between different objects. It is clear, thus, that first-order logic is funda-
mental to high-level data fusion. In fact, first-order logic is used as a foundation
of most of mathematics.

Because of their expressive power, logical programming languages derived from
first-order logic (such as LISP, which is, in fact, based on lambda-calculus, a higher-
order logic, or PROLOG) are thus important tools in artificial intelligence, a domain
highly related to high-level data fusion.

Properties are propositional functions acting on a single object, for example
f (x). This function could express any of the following: x is dead, x is red, x runs,
and so forth. Relations are propositional functions acting on a multiple objects,
for example f (x, y , z). This function could express any of the following: x, y, z is
a set, x tells y to kill z, x is between y and z, and so forth. There are two methods
to construct an associated proposition using a functional proposition, namely, the
specialization of propositional functions and the quantification of propositional
functions.

Specialization consists of giving to the variables x, y, z related in f (x, y , z)
certain values xi , yj , zk taken in the domain of definition of this last function. By
this means, it is possible to write f (xi , yj , zk ), meaning that xi , yj , zk satisfy
f (x, y , z). It is common in first-order logic to call xi , yj , zk free variables.

There are two distinct ways to quantify a propositional function, namely, the
universal and existential quantifications.

1. Universal quantification
All x, all y, and all z satisfy the relation f (x, y , z), also noted

(∀x) (∀y) (∀z) f (x, y , z) (7.1)

2. Existential quantification
There is at least a x, at least a y, and at least a z that satisfies the

relation f (x, y , z), also noted

(∃x) (∃y) (∃z) f (x, y , z) (7.2)

Since fist-order logic is only an extension of propositional logic, this fact is
directly reflected in its axiomatic formalization.

The set of primitive connectives is { , `}. The other operators are obtained
by definition.
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Definitions:

f → c =  f ~ c

f ` c =  (  f `  c )

f ↔ c = ((f → c ) ` (c → f ))

Axioms:

R1: (f ~ c ) → f

R2: c → (f ~ c )

R3: (f ~ c ) → (c ~ f )

R4: (c → x ) → ((f ~ c ) → (f ~ x ))

Rules:

Modus ponens (MP)

Uniform substitution (US)

Universal elimination (UE)

Universal introduction (UI)

Since it is possible by negation of universals and existential principles to switch
between the universal and existential quantifiers, it would be redundant to add
rules for the other quantifier.

7.3.1 Dealing with Uncertainty

Historically, extensions to first-order logic for the processing of uncertain informa-
tion are rare. Most of work has dealt with the extension of propositional logic.
Léa Sombé [6] showed the limitations of this language to cope with simple problems
of reasoning under uncertainty. For instance, following Léa Sombé, wanting to
express a sentence like ‘‘Generally, students are young’’ in first-order logic would
give the obvious ‘‘All students are young;’’ formally

(∀x)Student (x) → Young (x) (7.3)

This formulation is sound if the only information available is ‘‘x is a student,’’
but it is clearly insufficient to deal with exceptions. If one wants to deal with an
exception, say, ‘‘Léa is not young,’’ then the knowledge base must be rewritten as

(∀x)Student (x) ` (x ≠ Léa) → Young (x) (7.4)

and this process must be repeated for every other incoming exception. However,
it is not realistic to express all possible exceptions. As will be shown in the section
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on nonmonotonic logics, one can used the concept of negation as failure to deal
with such problems, but this is ‘‘stepping outside the classical logic framework.’’

Another drawback of first-order logic when processing uncertain information
is that, as Léa Sombé puts it, ‘‘≠ is not provable.’’ The problem is that it is not
possible to infer from ‘‘Paul is a student’’ that ‘‘Paul is a young.’’ Indeed, ‘‘for every
case which is not a priori exceptional, in order to deduce the desired conclusions, it
is first necessary to prove that indeed it is not an exceptional case, and this is
not necessarily feasible.’’ Just like for propositional logic, the representation of
information in first-order logic is not modular. It is not possible to express in Léa
Sombé’s simple example that ‘‘some young people are students,’’ for in Léa Sombé’s
words the formula

(∃x)Young (x) → (∃y)Young (y) ` Student (y) (7.5)

is ‘‘a very poor formulation.’’ The reason is the poor expressive power of the
existential quantifier since it can hardly express anything else than ‘‘there exists at
least one x. . . .’’ But for high-level data fusion not involving inference in the logical
sense of the word, but rather involving basic arithmetic, geometrical transforma-
tions, aggregation operators, or relational algebra, first-order logic seems sufficient.

7.3.2 Calculus and Reasoning (Aggregation/Fusion)

In first-order logic, supplementary connectives are introduced in order to be able
to act on the internal structure of propositions. High-level data fusion finds a lot
of foundational concepts, such as membership relation, class of objects, and related
ideas, found in the classical-sets-theory framework. Inference in first-order logic
makes use of the rules defined for propositional logic but also makes use of special
rules for the manipulation of quantified propositions.

7.3.3 Final Remarks

The following remarks are presented to summarize our comprehensive survey of
first-order logic:

• Unlike propositional logic, first-order logic is only semidecidable. That is,
there is no decision procedure for determining if an arbitrary formula is a
theorem. By Alonzo Church’s theorem, it is possible to show that any first-
order language using a least one binary predicate symbol is doomed to see
its validity rendered undecidable.

• First-order logic is not capable of expressing the notion of transitive closure.
• It is possible to extend first-order logic since this language is only about

collections of objects or, equivalently, about the universe of discourse. A
second-order logic’s domain ranges over properties, sets, the relations of
items in the domain of discourse, or functions from the domain to itself. A
third-order logic would range over properties of properties, and so forth.
Such logics are called higher-order logics.
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7.4 Modal Logics and Knowledge Logics

Modal logic as been described as the logic of necessity and possibility, of must be
and may be. Modal logic is used to model propositional attitudes and reasoning
under uncertainty. This section on systems of modal logic will first give a definition
of the basic system of modal logic, the system K, after which are built a wide
variety of modal systems. System K itself contains propositional logic as a subset.
Thus, every theorem and axiom of propositional logic is also valid in system K
and in all systems build upon it.

The alphabet of K includes ‘‘ ,’’ ‘‘→,’’ and ‘‘h’’ for the modal operator ‘‘it
is necessary that.’’ Here the meaning ‘‘it is known that . . .’’ will be used instead
of ‘‘it is necessary that’’ and the symbol ‘‘h’’ switched to K. When appropriate,
the symbol B will also be introduced to formalize systems where statement like ‘‘it
is believed that’’ can occur.

An important feature of modal logic, and this may explain its popularity in
the communities of computer science, artificial intelligence and distributed comput-
ing, is the possibility of modeling situations and agent behavior just by selecting
the appropriate set of axioms.

7.4.1 Dealing with Uncertainty

From a practical point of view, but also seen from the angle of the designer of
humanlike machines, artificial agents based on traditional logical concepts are quite
disappointing. These agents are disappointing because they ‘‘lack’’ the usual natural
weaknesses of real agents. It is also perhaps because they lack these weaknesses that,
for certain tasks, these artificial agents are not able to achieve human performances.

Limitations in agents arise for numerous reasons [7]:

1. Agents lack awareness: As far as knowledge is concerned, an agent cannot
always give a value to a proposition, for example, if it is not even aware
of the existence of the concept denoted by the proposition.

2. Agents are resource bounded: Agents have only limited memorization capa-
bilities; in some cases, they have power-supply limitations (food, water,
electricity), and so forth, or they have only limited cognitive and computa-
tional capabilities. Agents may have limited visual or auditory acuity. Some-
times, these limitations come from the outside and are situation driven: only
a limited amount of time or money is available to do the job, and so forth.

3. Agents don’t always know the relevant rules: In mathematics or logics, this
is very frequent (as well as when it comes to cooking)!

4. People don’t focus on all issues simultaneously: As Fagin and Halpern write
[7]: ‘‘Even if a does perfect reasoning with respect to the limited number
of issues on which he is focusing in any given frame of mind, he may not
put his conclusions together. Indeed, although in each frame of mind agent
a may be consistent, the conclusions a draws in different frames of mind
may be inconsistent.’’

From a logical point of view, the set of beliefs of a real agent cannot be closed
under logical consequence [8] ‘‘since it would mean that the agent has a decision
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procedure for first-order predicate logic.’’ And there is no such decision procedure
for first-order logic, according to Church’s theorem.

The consequence of these limitations is that artificial agents, just like their
human counterparts, may only have an incomplete, imprecise, perhaps inconsistent,
set of beliefs about reality. They should thus be, like humans, in a ‘‘mental’’ state
of uncertainty. Unfortunately, the conjoint use of possible-worlds semantics and
Kripke models leads to perfect agents that are said to be logically omniscient.

7.4.2 Calculus and Reasoning (Aggregation/Fusion)

In propositional modal logic, two unary connectives (or operators) (h and ◊) are
added to propositional logic. The possibility modal connective ‘‘◊’’ can be defined
in terms of the necessity modal connective ‘‘h:’’

(◊f ) ↔ (  h  f ) (7.6)

It is interesting to note that the operators h and ◊ behave similarly to the first-
order logic quantifiers ∀ and ∃, as the definition of ◊ from h mirrors the equivalence
of ∀(x )f with

 ∃(x)  f (7.7)

The following relations also hold:

h(f ` c ) |= (hf ` hc ) (7.8)

and

(hf ` hc ) |= h(f ` c ) (7.9)

but while (hf ~ hc ) |= h(f ~ c ),the converse is not true.
Similarly, in first-order logic, one obtains

∀(x) (f ` c ) |= ∀(x)f ` ∀(x)c (7.10)

and

∀(x)f ` ∀(x)c |= ∀(x) (f ` c ) (7.11)

while ∀(x)f ~ ∀(x)c |= ∀(x) (f ~ c )but the converse is not true. The same rela-
tions can also be exposed for the existential quantifier and the necessity operator.

In the different systems, it is also possible to study the implications occurring
between the different operators.

7.4.3 Final Remarks

In a recent report, McCarthy [9], known for the introduction of circumscription
in the nonmonotonic framework, questioned the ability of modal logics to model
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human commonsense reasoning and correctly formalize the use of modalities such
as know, believe, want, and intend, or any combination of them. As the title of
his reports suggests, McCarthy [9] is skeptical about modal logics but acknowledges
the importance of modalities in formal systems.

Here are the principal questions asked by McCarthy as a challenge to propo-
nents of modal logic:

1. Many modalities: What about the case of many modalities in the same
sentence? Formalisms have been proposed, but what are their limitations?
An example of such a complex sentence could be, ‘‘Agent S knows that
agent R believes that it is possible that agent T intends to fight back.’’

2. New modalities: What about the ability of modal logic to incorporate
modalities on an ad hoc basis just as its possible to do in predicate logic?
New modalities may arise in the middle of a decision-support task, like new
political constraints on the unfolding of a given mission. For McCarthy,
‘‘human-level AI requires that programs be able to introduce modalities
when this is appropriate, e.g. have function taking modalities as values.’’

3. Knowing what: What about the fact that a theory of knowledge must be
able to treat knowing what as well as knowing that? An example of knowing
what could be ‘‘Agent S knows the range of the weapons on this frigate.’’
For the time being, modal logic of knowledge is concerned with inferences
based on knowing that. In situation analysis, it is, however, of primary
importance to model and reason about one’s own knowledge about the
situation as well as what the other agents (friend or foe) know, or might
know, about this same situation.

4. Proving nonknowledge: What about the possibility of using a variant of a
Kripke-style accessibility relation in first-order logic, rather than as a mean
to give modal logic a semantic interpreting the absence of knowledge?
Autoepistemic logic, a nonmonotonic modal logic, can be use to model ‘‘all
I know is . . .’’ which is not enough for McCarthy, since in many cases one
would rather like to express the fact the ‘‘all I know about the value of x
is. . . .’’ Instead, autocircumscription, which is a variant of circumscription,
can be used to reason about agent S, ignoring the actual state of agent R,
as well as about agent S inferring whether R ignores or not the actual state
of S.

5. Joint knowledge and learning: What about the case where several agents’
knowing something jointly implies not only that each of them knows but
that they know it jointly? McCarthy proposed a way to formalize this
situation by introducing pseudoagents into each subset of real agents, with
these pseudoagents knowing what the subset knows.

7.5 Nonmonotonic Logics

The first-order logic framework lacks expressive power. Extensions of first-order
logic were proposed, mainly by AI scientists, and one of these extensions promul-
gated the violation of a fundamental characteristic of classical logic reasoning, the
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monotonicity property. A logic is said to be monotonic if its consequence relation
|= has the following property:

If S |= f and S′ |= f then (7.12)

This property says that whenever a conclusion f is derivable from a body of
knowledge S, being a subset of a larger body of knowledge S′, then f will also
be derivable from this larger body of knowledge. From the practical point of view,
monotonicity implies that even if a body of knowledge grows, previously derivable
conclusions will still be valid, which is not very often in agreement with everyday
experience. As Niemela [10] puts it:

Human commonsense reasoning and reasoning in artificial intelligence programs
typically violates the monotonicity principle. People ‘‘jump’’ to conclusions which
they may later retract when given more information. The conclusion that the local
cafeteria is open at 2 p.m. on Friday is a typical example of conclusion that would
be retracted when given more information, e.g. that the cafeteria is under repair.

A typical problem found in database theory involves nonmonotonic reasoning.
Suppose a database contains information about available flights between two air-
ports. Imagine now a query asking whether a flight connects these two cities. If
the connection is found in the database, the reservation system will answer yes;
otherwise, the answer will be no. This no answer is in fact obtained using the so-
called closed world assumption [11], a reasoning principle stating informally that
all positive facts are given in the database under consideration. The consequence
is that all positive facts not in the database are assumed not to hold.

Similar patterns of reasoning found in the literature are the negation as failure
rule [12], which is a common negation principle used in logic programming, and
inheritance by default [13], which allows the inheritance of properties in hierarchies.
When reasoning about action is involved, the frame [14] and qualification problem
have to be solved. Diagnosis, as Reiter formalized it [15], is also a topic involving
patterns of nonmonotonic reasoning. For Morgenstern nonmonotonic logics are
the principal means to formalize plausible reasoning and ‘‘allow more general
reasoning than standard logics, which deal with universal statements’’ [16].

What makes nonmonotonic logics extremely interesting for situation analysis
is that the different formalisms proposed can implement reasoning under uncer-
tainty and knowledge. For example, reasoning under uncertainty can be dealt with
by default logic, a formalism allowing reasoning with incomplete information.
On the other hand, as the name suggests, autoepistemic logic allows a form of
nonmonotonic reasoning about belief.

Extending a discussion by Moses and Shoham [17] on defeasible forms of
knowledge, to high-level data fusion in general and to situation analysis in particu-
lar, one obtains the relationships between nonmonotonic reasoning, knowledge and
belief logics, and uncertainty formalisms. We believe that a formal triad including
nonmonotonic reasoning should be taken as a basis for the formalization of situa-
tion analysis. Moses and Shoham [17] proposed a formal connection between
knowledge and belief logics on one hand and nonmonotonic logics on the other.
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In the same paper, Moses and Shoham recall that Halpern [18] proposed a logical
setting allowing the connection between knowledge (and belief) logics and probabil-
ity theory, and that Geffner [19] and Pearl [1] made the formal connection between
probability theory and nonmonotonic reasoning.

A system of logic is called nonmonotonic when this system fails to meet the
condition that for all statements G = {v1 , . . . , vn }, f , c , if G |= f , then, for any c ,

G, c |= f (7.13)

A weak nonmonotonic logic is any logic with the following property: For some
G, f , and c ,

G |=nm f (7.14)

where |=nm stands for the nonmonotonic consequence relation, but

G, c |≠nm f (7.15)

In a strong nonmonotonic logic, for some G, f , c , where G and G ` f are
consistent, the following consequence relation:

G, c |=nm  f (7.16)

stating that the negation of f follows from the database G (or set of theorems or
axioms) updated with the piece of information f .

Another way, perhaps more practical, of understanding the difference between
a monotonic logic, like first-order logic, and a nonmonotonic logic, for example,
default logic, is by looking at the way theorems are proved. In first-order logic, a
derived theorem cannot contradict the axioms or the theorems used in the derivation
process. A theorem £ f1 derived from a set of axioms G (i.e., G |= f1) will not
contradict a theorem £ f2 derived from G ∪ £ f1 , thus preserving the consistency
of the deductive system of first-order logic. Adding new theorems to a set of
theorems thus preserves the integrity of the original theory.

In everyday life, however, in practical problem-solving situations, matters are
more complex, and one has to deal with inconsistencies, personal or occurring in
the outside world. G. A. Antonelli recalls that ‘‘A primary motivation (among AI
researchers) for nonmonotonic logic or defeasible reasoning, which is so evident
in commonsense reasoning, is to produce a machine representation for default
reasoning or defeasible reasoning’’ [20].

7.5.1 Dealing with Uncertainty

When reasoning under uncertainty, for example, using the probability theory frame-
work, the degree to which premises support a conclusion is inversely correlated to
the length of the proof. Hence, probabilistic reasoning formalizations often fail to
satisfy the cut property of first-order logic expressed previously in consequence
relations [see (7.15) and (7.16)]. Here is an example from Antonelli [20]:
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Let Ax abbreviate ‘‘x is a Pennsylvania Dutch,’’ Bx abbreviate ‘‘x is a native speaker
of German,’’ and Cx abbreviate ‘‘x was born in Germany.’’ Further, let G comprise
the statements ‘‘Most As are Bs,’’ ‘‘Most Bs are Cs,’’ and Ax. Then G supports
Bx, and G together with Bx supports Cx, but G by itself does not support Cx.
(Here statements of the form ‘‘Most As are Bs’’ are interpreted probabilistically,
as saying that the conditional probability of B given A is, say, greater that 50%.)

If one considers that the cut property is a necessary feature of a well-behaved
consequence relation, Antonelli suggests after examining his example of inductive
reasoning, that it might not be possible to expect well-behaved relations of probabi-
listic consequence. Many formalisms of nonmonotonic logic have been proposed
in order to deal with uncertainty. In the following section. the most common are
briefly discussed.

Default logic, one of the leading and most flexible formalizations of nonmono-
tonic logics is a formal system for reasoning with defaults, developed by Reiter
[21]. For Horty, ‘‘one can think of default reasoning, very roughly, as reasoning
that relies on the absence of information as well as its presence, often mediated
by rules of the general form: given P, conclude Q unless there is information to
the contrary’’ [5].

In classical logic, a typical and simple rule of inference can be expressed by
the use of a premise and conclusion pair of the form

f
c

(7.17)

expressing the idea that whenever f occurs or is established, c follows. Default
logic rather extends first-order logic using special rules having the form

f : c1 , . . . , cn
x

(7.18)

which reads ‘‘If f (the prerequisite) is believed and it is consistent to assume
c1 , . . . , cn (the justifications), then x (the conclusion) may be inferred.’’ The
usual interpretation given to consistency is related to the notion of the extendibility
of first-order logic by such default rules. It should be noted that all f ,
c1 , . . . , cn , and x are closed formulas of first-order logic; that is, these formulas
should not contain any free variables. Free variables are variables that are not
bound to any quantifier in a given expression, as in

∀xf (x, y) → c (y) (7.19)

where y is a free variable.
Formally, a default theory is a pair D = 〈W, D〉, where W stands for a set of

formulas, and D represents a set of default rules.
Niemela [10] proposed autoepistemic logic as a unified framework for nonmon-

otonic logics. For Niemela, autoepistemic logic is a modal logic with an operator L
interpreted as ‘‘is believed.’’ Autoepistemic logic was proposed by Moore [22, 23]
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in order to avoid defects encountered when using McDermott and Doyle’s nonmon-
otonic logic [24, 25]. Autoepistemic logic models the introspection capability of a
rational agent reasoning on its beliefs. Central to this process is, for Niemela,
determining ‘‘the set of beliefs of the agent given a set of sentences as the initial
assumptions or premises of the agent’’ [10].

An example of autoepistemic reasoning is Lf → f , an inference transmit-
ting (similarly to the closed world assumption) the intuitive idea that if the agent
does not believe f , then f holds.

7.5.2 Calculus and Reasoning (Aggregation/Fusion)

This part is largely inspired by Antonelli [20]. Let |=nm represent any relation
between sets of premises and single sentences. The following four properties are
satisfied by the consequence relation |= of first-order logic:

1. Supraclassicality: If G |= f , then G |=nm f
Supraclassicality requires that if w follows from G in first-order logic,

then it must also follow according to |=nm . In other words, supraclassicality
means that |=nm is an extension of the classical |= .

2. Reflexivity: If f ∈ G, then G |=nm f .
Reflexivity means that all sentences contained in G are inferable from

G (i.e., if f belongs to the set G, then f is a consequence of G). Reflexivity
is usually accepted as a rather minimal requirement for a relation of logical
consequence.

3. Cut: If G |=nm f and G, f |=nm c , then G |=nm c .
Cut is a conservation principle that states that if f is a consequence of

G, then c is a consequence of G, together with c only if it as been previously
defined as a consequence of G alone. Cut can be seen as a condition of the
length of a proof and states that the length of the proof does not affect the
degree of the support of assumptions on the conclusion. If f is already a
consequence of G, and if c can be inferred from G in conjunction with f ,
it follows then that c can also be obtained via a longer proof that proceeds
indirectly by first inferring f .

In nonmonotonic logics, the monotonicity property of the classical consequence
relation is modified and replaced by either of the following rules:

• Cautious monotony: If G |=nm f and G |=nm c , then G, f |=nm c .
• Rational monotony: If it’s not the case that G |=nm f , and moreover

G |=nm c , then G, f |=nm c .

Antonelli [20] explains and comments that:

Cautious Monotony is the converse of Cut: it states that adding a consequence f
back into the premise-set G does not lead to any decrease in inferential power.
Cautious Monotony tells us that inference is a cumulative enterprise: we can keep
drawing consequences that can in turn be used as additional premises, without
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affecting the set of conclusion. Together with Cut, Cautious Monotony says that
if f is a consequence of G then for any proposition c , c is a consequence of G if
and only if it is a consequence of G together with f . . . . Rational Monotony can
be regarded as a strengthening of Cautious Monotony, and like the latter, it is a
special case of Monotony. However, there are reasons to think that Rational
Monotony might not be a correct feature of a non-monotonic consequence relation.

7.5.3 Final Remarks

Antonelli identifies three major issues connected with the development of logical
frameworks that can adequately represent defeasible reasoning [20]:

i. Material adequacy
Material adequacy concerns the question of how broad a range of examples is
captured by the framework, and the extent to which the framework can do justice
to our intuitions on the subject (at least the most entrenched ones).

ii. Formal properties
The question of formal properties has to do with the degree to which the framework
allows for a relation of logical consequence that satisfies the above mentioned
conditions of Supraclassicality, Reflexivity, Cut, and Cautious Monotony.

iii. Complexity
The third set of issues has to do with computational complexity of the most basic
questions concerning the framework.

One should note that there are still few applications that can help to form a
quick opinion on the usefulness of the framework for specific problem-solving
situations. Nonmonotonic logic is a very important framework and an active field
of research in AI. The growing literature on the subject is an indication that high-
level data-fusion practitioners should study nonmonotonic logic paradigms and try
to make connections with reasoning and belief or knowledge updating.
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C H A P T E R 8

Quantitative Approaches
Anne-Laure Jousselme, Patrick Maupin, and Éloi Bossé

8.1 Introduction

As mentioned in the previous chapter, the potential theoretical frameworks avail-
able to model the situation-analysis process can be divided into two main categories:
qualitative approaches and quantitative approaches (e.g., probability theory, evi-
dence theory, fuzzy sets, random sets, possibility theory). Quantitative approaches
are better candidates for uncertainty representation and management. In this chap-
ter, some numerical frameworks for uncertainty and knowledge processing are
described in view of their use in the domain of information fusion for situation
analysis.

8.2 Probability Theory

Probability theory is the oldest method for quantifying uncertainty. It is the branch
of mathematics that develops models for ‘‘chance variations’’ or ‘‘random phenom-
ena.’’ The methods of probability assist us in understanding randomness and there-
fore provide us with tools for defining the measures of unpredictability or
uncertainty. Different views of the theory of probabilities emerged over the twen-
tieth century. The objective (or empirical) view opposes the epistemological view.
On one hand, classical, relative frequentist, and propensity are the three major
empirical interpretations for probabilities. On the other hand, logical relationist
(John Maynard Keynes, Rudolf Carnap) and intuitionist (Frank Ramsey’s degrees
of belief) are both epistemologic interpretations. The axiomatic approach to proba-
bility was formulated by Kolmogorov in 1933.

Let Q be the sample space of a random experiment. Q is then the set of all
outcomes for a given experiment (i.e., a collection of elements u1 , u2 , . . . called
the elementary events). To each subset A of Q is assigned a non-negative real
number P(A). This number P(A) is called the probability of the event A and must
satisfy the three following axioms:

Axiom 1: P(A) ≥ 0 (8.1)

Axiom 2: P(Q) = 1 (8.2)

169
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Axiom 3: P1 ∪
∞

n = 1
An2 = ∑

∞

n = 1
P(An ) if An ∩ Am = [ for An ≠ Am (8.3)

Axiom 3 is known as the condition of s-additivity, or simply the axiom of
additivity, and plays a crucial role in the theory of probability. For two events, it
reduces to P(A ∪ B) = P(A) + P(B) if A and B have no elements in common. These
axioms have been proposed by Kolmogorov. In its original contribution, five axioms
were present, with the first and second axioms stating that subset A belongs to a
set of subsets of Q, sQ being a field of sets containing Q.

A probability space is a 3-tuple (Q, sQ, P) where

• Q is the sample space, the set of the elementary events.
• sQ is a s-algebra of Q.
• P is a probability measure.

Let P be a probability measure (function) on Q. The probability distribution
is a mapping from Q to [0, 1] such that

p(u ) = P({u }), ∀u ∈Q (8.4)

Following the additivity axiom (8.3), if Q is a discrete, finite, nonempty set,
the probability of A can be computed by the individual probabilities of each of its
elementary events:

P(A) = ∑
u ∈A

p(u ) (8.5)

An event A is a subset of the sample space; in other words, an event is any
collection of outcomes:

A = {u ∈Q | u ∈A} (8.6)

The event that A does not occur is the complement of A, noted Ac or A or
A ′:

A = Q − A = {u ∈Q | u ∉A} (8.7)

The symbol – here denotes the substraction sets operator (the symbol ‘‘ \’’ can
also be used).

If A and B are two arbitrary events, then

P(A ∪ B) = P(A) + P(B) − P(A ∩ B) (8.8)

From axioms (8.2) and (8.3), it follows

P(Ac ) = 1 − P(A) (8.9)
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This is a very important property of probability theory. It means that once the
event A occurs at a given time, its complement A can no longer occur. In other
words, the proposition [u is A] can be either true or false (probability theory is
based on a Boolean logic).

P(A ∩ B) is called joint probability and can also be denoted by P(A, B). In
general, if we consider two distinct universes Q1 and Q2 , with their associated
probability measures PQ1 and PQ2 , then the joint probability measure is defined
by Q = Q1 × Q2 , the Cartesian product of universes Q1 and Q2 , noted
PQ1 × Q2

(u1 , u2), where (u1 , u2) is an element of the joint space Q.

The probabilistic framework enables us to introduce the key notion of condi-
tional probability. The conditional probability P(A | B), is the probability of A
being true given that B is. It is usually defined as

P(A | B) =
P(A ∩ B)

P(B)
(8.10)

on the condition that P(B) > 0. Because (8.10) is undefined when P(B) = 0, some
prefer to take this definition as a primitive, basic concept. The quantity P(A | B)
is known as the posterior probability of A, that is, the probability of A evaluated
not only in the light of background data but also given the further assumption
that evidence or empirical prediction B obtains. P(A | B) is often denoted by PB (A)
to express the probability of A when the universe Q is reduced to B. Hence, when
B is fixed, PB is an unconditional probability measure. In probability theory, no
particular significance is given to the object (A | B); this lack gave birth to the
conditional event (CE) theory, described later in this book. Note that, given (8.10),
we can compute the joint probability of two events A and B:

P(A, B) = P(A | B)P(B) (8.11)

and for three events, A, B, and C, we have P(A, B, C) = P(A | B, C)P(B | C)P(C).
Let ℘Q be a partition of Q. Thus, the total probability for a given event A of

Q is

P(A) = ∑
B ∈℘Q

P(A | B)P(B) (8.12)

In particular, P(A) = P(A | B)P(B) + P(A | B )P(B ).
Let Q be a sample space. A random variable (r.v.) X is a function from Q to

some domain D (being possibly R or any subset of it), assigning a number X(u )
to every outcome u of Q. Whenever P is a probability measure, the function X
must however satisfy the two following conditions:

1. The set {X ≤ x} is an event for every x.
2. {X = −∞} and {X = +∞} are two impossible events:

P({X = −∞}) = P({X = +∞}) = 0 (8.13)



172 Quantitative Approaches

For a random variable, P(X = x) expresses the probability of the event
{X = x} (i.e., the random variable X(u ) takes the particular value x of D).

An event A of Q can then be generated by a random variable X:

A = {X ≤ x} = {u ∈Q | X(u ) ≤ x, x ∈D} (8.14)

{X ≤ x} is not a set of numbers but remains a set of experimental outcomes (a
subset of Q). In order to keep generality, an event will be denoted by A (some
subset of the universe), defined or not defined from a random variable.

The distribution function of the random variable X is defined by

FX (x) = P({X ≤ x}) = P(X ≤ x) (8.15)

and whenever no ambiguity exists, we write FX (x) = F(x). It follows that

P(x1 ≤ X ≤ x2) = F(x2) − F(x1) (8.16)

The density function of the random variable X is then defined by

f (x) =
dF(x)

dx
(8.17)

where F is the distribution function defined by (8.15). Consequently,

F(x) = E
x2

xx

f (x) dx (8.18)

A random variable is said to be discrete (respectively continuous) if its distribu-
tion function is discrete (respectively continuous). If X is continuous, P(X = x) =
0, ∀x ∈ D. If X is discrete, P(X = xi ) = pi = P(ui ). Then, (8.17) becomes f (x) =
Sipid (x − xi ), where d (.) is the impulse function.

Let X and Y be two random variables. Thus, the marginal distributions are

FX (x) = F(x, +∞) and FY (y) = F(+∞, y) (8.19)

and the marginal densities are

fX (x) = E
+∞

−∞

f (x, y) dy and fY (y) = E
+∞

−∞

f (x, y) dx (8.20)

For the discrete case, the marginal probabilities are

pi = P(X = xi ) = ∑
j

P(X = xi , Y = yj ) and (8.21)

qj = P(Y = yj ) = ∑
i

P(X = xi , Y = yj )
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8.2.1 Dealing with Uncertainty

8.2.1.1 Representation of Uncertainty

In the Bayesian theory of probability, knowledge, belief, and uncertainty are repre-
sented by probability measures in the form of P(A). The probability of an event
is a measure of the likelihood of its occurrence. P(A) is often referred to as the prior
probability of A, that is, the probability, evaluated only against the background data
taken for granted, that A is true. P(A) = P(u ∈A) is the probability that u belongs
to A (i.e., that the event A occurs, in other words, that the proposition [u is A] is
true). In case of an empirical interpretation of probabilities, P(A) represents the
chances that the event A has to occur; in case of a subjective interpretation of
probabilities, P(A) represents our degree of belief (or degree of certainty) in the
occurrence of the event A. Whatever the interpretation we ought to give to P(A),
the theory stays unchanged, and the axioms and inference rules stay valid. However,
the results may be difficult to interpret and contrary to our intuition. Knowledge
(or certainty) about the occurrence of an event is either modeled by P(A) = 0 (the
impossible event) or P(A) = 1 (the certain event). An evidence is a certain event
because it has been observed. However, the only way to model total uncertainty
(or total ignorance) about the occurrence of a particular event is to uniformly
distribute the amount of available probability, 1, among all the possible outcomes
of the experiment, so P(ui ) = 1/N if N = |Q | is the number of possible outcomes.
This is a weakness of the theory of probability.

8.2.1.2 Measures of Uncertainty

The only measure of probabilistic uncertainty is Shannon’s entropy, defined by

H(p) = − ∑
u ∈Q

p(u ) log2(p(u )) (8.22)

where p is a discrete probability distribution (an equivalent formula exists for
continuous measures). Klir and Folger [1] prove that (8.22) is also a measure of
conflict.

If p1 and p2 are two probability densities, the Kullback-Leibler distance is
defined by

Conflict (binary):

dKL (p1 , p2) = E p2(x) log2 Sp2(x)
p1(x)D dx (8.23)

It quantifies a distance between two probability distributions and can be used
as a measure of performance.

8.2.2 Calculus and Reasoning (Aggregation/Fusion)

Two any events A and B are disjoint (or mutually exclusive) if

Disjoint events: A ∩ B = [ (8.24)

Note that disjointness is quite different from independence.
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Physic independence: Two events A and B are independent if the occurrence
of A cannot affect the occurrence of B.

The necessary and sufficient condition that A and B be stochastically indepen-
dent events is

Stochastic independence (noninteractivity):
P(A ∩ B) = P(A)P(B) (8.25)

This is not always equivalent to physical independence.
A and B are probabilistically independent if, and only if,

Probabilistic independence:
P(A | B) = P(A) and P(B | A) = P(B) (8.26)

Stochastic independence and probabilistic independence are equivalent.
A and B are conditionally independent with respect to C if, and only if,

Conditional independence:
P(A, B | C) = P(A | C)P(B | C) (8.27)

This means that, given the knowledge of C, A and B are independent. But the
stochastic independence between A and B may not hold.

Two random variables X and Y defined on two distinct universes Q1 and Q2
with their probability measures PQ1

and PQ2
are marginally independent if

Marginal independence:
PQ1 × Q2

(u1 , u2) = PQ1
(u1)PQ2

(u2) (8.28)

Classical inference: Suppose two sources of information provide two distinct
probability measures for two distinct events defined on the same universe Q. Then,
classical inference in probability theory computes the joint probability P(A, B)
from P (A) and P(B). If A and B are independent, then P(A, B) = P(A)P(B).
Classical inferential models do not permit the introduction of prior knowledge into
the calculations.

Bayes’s theorem or Bayes’s rule is the basic starting point for inference problems
using probability theory. Given the definition of conditional probability (8.10) and
noticing that A ∩ B is equal to B ∩ A, it is easy to get

P(A | B) =
P(B | A)P(A)

P(B)
(8.29)

where P(B) = SC ∈℘
Q

P(B | C)P(C), ℘Q being a partition of Q. Bayes’s theorem
is an ‘‘adjustment of subjective confidence’’ and ‘‘conditional probabilities’’ [2].
The rule of conditionalization says that when prediction B is verified, you should
give a new prior probability to P(A) (i.e., the unconditional probability) equal to
its old posterior probability relative to B. Bayes’s rule specifies how to do evidential
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reasoning (i.e., how to infer the cause B from the effect A) [2]. Bayesian inference
can be implemented as a network, leading to Bayesian networks, a concept detailed
in the next chapter, and can also be used to compute P(A, B) from P(A | B) and
P(B).

Consensus method: Suppose that each of n available sources of information
provides a probability measure Pi , i = 1, . . . , n. We affect each measure with a
weight wi representing the reliability of the source. Thus, the resulting probability
for an event A is

P(A) = ∑
n

i = 1
wiPi (A) (8.30)

where

∑
n

i = 1
wi = 1

This method is known as the consensus method [3] and belongs to the two main
methods to aggregate experts opinions (the other being the Bayesian approach).

8.2.3 Final Remarks

To summarize our survey on probability theory, here are some remarks:

1. A probability measure clearly concerns probabilistic uncertainty, also called
randomness.

2. Propositions are represented by events (subsets of a universe), which have
only two possible truth-values: true or false. This limitation of Boolean
logic led to the fuzzy-set theory and fuzzy logic.

3. The chance that this event has to be true (respectively false) is quantified
by its probability (respectively the probability of its complement).

4. The axiom of additivity plays a crucial role since refuting the truth of an
event imposes the acceptance of its complement. This limitation gave birth
to the theory of evidence.

5. Independence between random variables can significantly reduce the com-
plexity of the algorithms. This property is used to build Bayesian networks.

6. Prior probabilities are required, and their interpretation may be crucial.
Moreover, a high number of these probabilities may be difficult to obtain.

7. Probability theory seems very well adapted to problems involving indepen-
dent random variables, but such problems essentially arise at low levels of
the fusion process.

8.3 Dempster-Shafer Theory

The theory of evidence, or the Dempster-Shafer theory, was originally developed
by Dempster [4] in his work on upper and lower probabilities, then later written
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about by Shafer [5] in the famous book A Mathematical Theory of Evidence. Often
interpreted as an extension of the Bayesian theory of probabilities, the theory of
evidence offers two main advantages: (1) Uncertainty can be better represented in
its framework because the measures are defined on the power set of the universe
of discourse, instead of on the universe itself as in probability theory. This particular-
ity leads to the relaxation of the additivity axiom of the probability theory and its
replacement with a less restrictive one, a superadditivity axiom. (2) The combination
of information is well defined through Dempster’s rule of combination. This rule,
when conditions of application are respected (independence of sources), leads to
intuitive results and is a common way to fuse information coming from different
sources. What makes the Dempster-Shafer theory widely used in the artificial
intelligence area is probably its generalized aspect, many links having been estab-
lished to it.

Let Q be the frame of discernment, the set of all outcomes of an experiment,
of all hypotheses. The power set of Q, noted in general by P(Q) or 2Q in the discrete
case, is the set of all the subsets of Q. If Q = {u1 , u2 , . . . , uN } then

2Q = {[, u1 , . . . , uN , (u1 , u2), . . . , Q} (8.31)

and thus contains 2N elements.
A belief function is defined from 2Q to [0, 1], satisfying the following axioms:

Axiom 1: Bel([) = 0 (8.32)

Axiom 2: Bel(Q) = 1 (8.33)

Axiom 3: For every positive integer n, and for every collection A1 , . . . , An of
subsets of Q,

Bel(A1 ∪ . . . ∪ An ) ≥ ∑
i

Bel(Ai ) − ∑
i < j

Bel(Ai ∩ Aj ) + . . . (8.34)

+ (−1)n + 1 Bel(A1 ∩ . . . ∩ An )

Contrary to the probability measure, the belief measure is nonadditive, and
the axiom 3 [(8.3)] for probability theory is replaced by (8.34), the superadditivity
axiom. For two subsets of Q, we simply have

Bel(A ∪ B) ≥ Bel(A) + Bel(B) if A ∩ B = [ (8.35)

A basic probability assignment m is a mapping defined from 2Q to [0, 1], which
must satisfy the two following conditions:

m([) = 0 (8.36)

∑
A ⊆ Q

m(A) = 1 (8.37)
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m(A) is the belief that a particular element u of Q belongs exactly to A (the
exact belief committed to A). The belief function Bel can be deduced from m:

Bel(A) = ∑
B ⊆ A

m(B) (8.38)

A focal element is a subset A with a non-null mass, and the union of all focal
elements is the core of the belief function. In practice, a small number of focal
elements is necessary to describe a belief function.

A plausibility function Pl is defined from 2Q to [0, 1] as the dual function of
the belief function:

Pl(A) = 1 − Bel(Ac ) (8.39)

However, considering (8.38), (8.39) can be rewritten, and Pl can be directly
defined from m:

Pl(A) = ∑
A ∩ B ≠ [

m(B) (8.40)

Another function, called the commonality function noted by Q, is also some-
times used. Q is defined from 2Q to [0, 1], and the commonality numbers can be
expressed through m:

Q(A) = ∑
A ⊆ B

m(B) (8.41)

The four measures m, Bel, Pl, and Q are one-to-one corresponding, each of
them being possibly recovered from one of the others; they thus contain exactly
the same information. (A recapitulation of these transformations can be found in
Klir and Folger [1].)

A belief function Bel can be also represented by its corresponding body of
evidence, noted by (B, m), where B is an element of 2Q containing all the focal
elements of Bel, and m is the corresponding basic probability assignment. A body
of evidence is thus a series of couples (A, m(A)):

(B, m) = {(A, m(A)) | m(A) > 0 and A ⊆ Q} (8.42)

As Shafer stated, ‘‘belief functions readily lend themselves to the representation
of ignorance.’’ Indeed, complete ignorance is represented by the vacuous belief
function defined by

m(A) = H0 ∀A ⊂ Q, A ≠ Q

1 if A = Q
(8.43)

or simply m(Q) = 1.
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Bayesian belief functions (or probability functions) are a subclass of belief
functions.

A simple support belief function possesses only two focal elements, one being
Q:

m(A) = H s for A ⊆ Q

1 − s for A = Q
(8.44)

where 0 < s < 1.
A dichotomous belief function is a belief function with only three focal elements.

being A, Ac and Q. Many computation simplifications are based on the assumptions
of simple support or dichotomous belief functions (see [6–8]).

8.3.1 Other Interpretations of the Dempster-Shafer Theory

Here are some important definitions.
Upper and lower probabilities: The first interpretation of belief functions is

that introduced by Dempster [4]. The plausibility Pl and belief Bel measures are
interpreted as two bounds (upper and lower, respectively) of the probability mea-
sure, defining thus a probability interval. This multivalued mapping interpretation
is also shared by Shafer [5].

The transferable belief model (TBM): Smets and Kennes [9] introduced the
TBM as a model for quantifying belief using belief functions. Its interpretation
differs from Shafer’s according to the following points [10]:

1. The TBM consists of a two-level model: a credal level where beliefs are
entrained and a pignistic level where beliefs are used to make decisions.
Bayesian theory considers that beliefs and decisions coexist; thus, they do
not consider the credal level.

2. The TBM lies on two possible hypotheses: the open-world assumption or
the closed-world assumption. In the first case, the empty set is allowed to
have a non-null mass, whereas in the second case, its mass is restricted to
zero. Under the open-world assumption, the normalization in Dempster’s
rule of combination can thus be avoided.

3. m(A) is called the basic belief mass of A (and m, the basic belief assignment)
and is interpreted as ‘‘a part of our belief that supports A and that, due to
a lack of information, does not support any subproposition of A.’’ Bel and
Pl are then defined from m so that the mapping Bel: 2Q → [0, 1] is an
(unnormalized) belief function if, and only if, there exists an m such that

∑
A ⊆ Q

m(A) = 1 (8.45)

Bel(A) = ∑
B ⊆ Q , B ≠ [

m(A) (8.46)

Bel([) = 0 (8.47)
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The TBM is thus a model for representing beliefs not related to any probabilistic
model; it aims at quantifying personal beliefs as point values, instead of interval
values. Moreover, any connection with randomization has been eliminated. This
model owes its name to the following: Suppose that at the credal level, our belief
is represented by a mass function m. Suppose new evidence arises (such as ‘‘truth’’
is in B); then, the mass previously assigned to A is transferred to A ∩ B by
Dempster’s rule of conditioning.

Random sets: Another interpretation of belief functions has been proposed by
Nguyen [11] as an equivalent model of random sets. This probabilistic interpreta-
tion has been fully developed by Goodman, Mahler, and Nguyen [12] and by
Goodman and Kramer [13]. Because random sets appears to be good candidates
for a unification framework, able to represent most of the quantitative approaches
to uncertainty, this theory (and of course its close links to Dempster-Shafer theory)
will be discussed later in this chapter.

8.3.2 Calculus and Reasoning (Aggregation/Fusion)

Even if independence is a crucial notion, it has not widely been studied in the theory
of evidence. In his original work, Shafer [5] mentions some kinds of independence
concept, such as cognitive and evidential independence. From our knowledge, the
most relevant discussions and studies in this area are the works of Yaghlane,
Smets, and Mellouli [14]. They investigate different ways to define independence
relationships between variables in the framework of belief functions [14, 15].
Because clear examples are missing due to the quite complicated domain, we
essentially give here some intuitive definitions of the concepts, referring to
Yaghlane’s, Smets’s, and Mellouli’s papers and Shafer’s book for formal definitions.
On the other hand, Bauer [16] and Voorbraak [17] have announced the concept
of Dempster-Schafer (DS) independence, the required condition that sources to be
combined through Dempster’s rule of combination. This concept is needed in
practice to guarantee that the results given by this rule are not counterintuitive.

Here are some important definitions.
Independent frames: Two compatible frames of discernment Q1 and Q2 are

independent if no proposition discerned by one of them nontrivially implies a
proposition discerned by the other [5].

Cognitive independence: Two variables are cognitively independent with respect
to a belief function if new evidence that bears on only one of them does not change
the degree of belief for propositions discerned by the other [5].

Evidential independence: Two variables are evidentially independent if their
joint belief function is represented by the combination of their marginals using
Dempster’s rule of combination [5].

Noninteractivity: Two variables X and Y defined on Q1 and Q2 , respectively,
are noninteractive with respect to m defined on Q1 × Q2 if the joint mass can be
reconstructed from its marginals [14].

Irrelevance: In probability theory, the notion of irrelevance is equivalent to
conditional independence—knowing Y has the value y does not affect belief in X
[14].
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Doxastic independence: This kind of independence has been introduced by
Yaghlane Smets, and Mellouli [14] to specify the distinction between irrelevance
and independence in the belief function framework (in Greek, doxein means ‘‘to
believe’’). The authors give the following interpretation: ‘‘Two variables are consid-
ered doxastically independent only when they are irrelevant and this irrelevance
is preserved under Dempster’s combination rule’’ [14].

DS independence: Voorbraak [17] proposes a requirement for belief functions
to be combined with Dempster’s rule—these functions must be DS independent.
Condition to apply Dempster’s rule of combination.

Suppose that two sources provide two pieces of information represented by
two belief functions Bel1 and Bel2 or, equivalently, by their associated BPAs m1
and m2 . Here are different ways to combine these two pieces of information.

Conjunctive rule of combination: Given two BPAs m1 and m2 , the new BPA
m resulting from the conjunctive rule of combination is defined by

(m1 ` m2)(A) = ∑
B ∩ C = A

m1(B)m2(C) (8.48)

This kind of rule is usually used for two reliable sources: Source 1 and source
2 are both right. Its main inconvenience is the exponential increase in the number
of focal elements in successive combinations. Indeed, if N1 and N2 are the numbers
of focal elements of m1 and m2 , respectively, then m will have a maximum of
N1N2 focal elements. Some work has been done to reduce or control the number
of focal elements, using approximations of belief functions [16, 18–20] or using
special belief functions (simple support or dichotomous belief functions), combined
with special data structures [6–8].

Disjunctive rule of combination: Given two BPAs m1 and m2 , the new BPA
m resulting from the disjunctive rule of combination is defined by

(m1 ~ m2)(A) = ∑
B ∪ C = A

m1(B)m2(C) (8.49)

A disjunctive rule is preferred whenever one source may be unreliable. Indeed,
computing the union of sets (instead of the intersection) means that source 1 or
source 2 may be right (we don’t know which one). Of course, such a rule cannot
be used alone in an algorithm since it will never converge to any singleton, putting
more and more weight on larger and larger sets. The meanings of the conjunctive
and disjunctive rules can be found in Smets [21].

Dempster’s rule of combination: The rule proposed by Dempster for combining
two belief functions is a normalized conjunctive rule, the normalization factor
representing the conflict between the two sources. Let m1 and m2 be two basic
probability assignments. The conflict factor K(m1 , m2) between m1 and m2 is
defined by

K(m1 , m2) = ∑
B ∩ C = f

m1(B)m2(C) (8.50)

K(m1 , m2) = 0 corresponds to the absence of conflict between m1 and m2 ,
whereas K(m1 , m2) = 1 implies a complete contradiction between m1 and m2 .
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Indeed, K(m1 , m2) = 0 if, and only if, no empty set is created when m1 and m2
are combined. On the other hand, K(m1 , m2) = 1 if, and only if, all the sets
resulting from this combination are empty. To force the empty set to have a null
mass, a normalization factor must be included in the conjunctive rule of combina-
tion. The normalized conjunctive rule can be written in this case by

(m1 ⊕ m2)(A) =
(m1 ` m2)(A)
1 − K(m1 , m2)

(8.51)

where K(m1 , m2) is the conflict factor. This rule is then called orthogonal sum or
Dempster’s rule of combination. Although Dempster’s rule of combination is the
most classical (and probably the most used) rule for aggregation of belief functions
in the evidential theory framework, some precautions must be taken. In particular,
the belief functions to be combined must be DS independent; otherwise, the result
could disagree with intuition (because a piece of evidence may be taken into account
twice). Most of the criticism of Dempster’s rule of combination is based on a
misapplication of the rule (i.e., not respecting the DS independence of the sources).
Moreover, being a conjunctive rule, it is subject to exponential increase in the
number of focal elements, a problem mentioned above.

Conditioning: Suppose that we receive an evidence concerning the event B.
The knowledge that the event B occurred can then be represented by m(B) = 1.
From (8.51), and noticing that (B ∩ C = A) ≡ (B ∩ C ∩ A ≠ f ), we obtain Demps-
ter’s rule of conditioning (expressed with Pl):

Pl(A | B) =
Pl(A ∩ B)

Pl(B)
(8.52)

The same rule can also be expressed less easily with Bel:

Bel(A | B) =
Bel(A ∪ B ) − Bel(B )

1 − Bel(B )
(8.53)

This rule produces inferences that seem to be seriously wrong [22]. Smets
criticizes the fact that (8.52) is often seen as a special case of (8.51), which leads
to a ‘‘surrealistic’’ definition of conditional probability [11]. In the transferable
belief model, Dempster’s rule of conditioning is explained by the fact that when a
new evidence implying that the truth is in B (subset of A) becomes available, the
mass initially allocated to A is transferred to B. Another rule of conditioning known
as the geometric rule of conditioning has been proposed by Suppes and Zanotti
[23]:

Bel(A | B) =
Bel(A ∩ B)

Bel(B)
(8.54)

8.3.3 Dealing with Uncertainty

8.3.3.1 Representation of Uncertainty

Shafer interprets Bel(A) as ‘‘one’s degree of belief that the truth lies in A.’’ So,
Bel(A) is the total belief committed to A, Pl(A) is the total probability mass that
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can move into A, and m(A) is the belief committed exactly to A (and to no other
subset of A). The Dempster-Shafer theory is particularly suitable for representing
ignorance (and uncertainty) as it has been built for this. Total uncertainty is thus
represented by the vacuous belief function [i.e., m(Q) = 1]. This differs significantly
from the representation capacity of probability theory constrained to the uniform
distribution among the elements of Q. This theory is adapted for representing and
dealing with: (1) randomness (as it can be interpreted as a generalized Bayesian
theory), (2) nonspecificity (because the measures are defined on subsets of Q instead
of singletons), and (3) conflict (for previous two reasons combined).

8.3.3.2 Measures of Uncertainty

In the Dempster-Shafer framework, we can define two kinds of probabilistic uncer-
tainty measures:

Dissonance
E(m) = − ∑

A ⊆ Q

m(A) log2(Pl(A)) (8.55)

Confusion
C(m) = − ∑

A ⊆ Q

m(A) log2(Bel(A)) (8.56)

These both functions reduce to Shannon’s entropy when Bel is a Bayesian belief
function.

The first measure of nonspecificity is the Hartley measure defined for classical
set theory by

U(A) = log2( |A | ) (8.57)

An extension of this measure is then

Nonspecifity
N(m) = ∑

A ⊆ Q

m(A) log2( |A | ) (8.58)

Discord

D(m) = − ∑
A ⊆ Q

m(A) log21 ∑
B ⊆ Q

m(B)
|A ∩ B |

|B | 2 (8.59)

Strife

S(m) = − ∑
A ⊆ Q

m(A) log21 ∑
B ⊆ Q

m(B)
|A ∩ B |

|A | 2 (8.60)

A total uncertainty measure that takes into account both nonspecificity and
strife can be defined as NS(m) = N(m) + S(m), which means
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NS(m) = − ∑
A ⊆ Q

m(A) log21 |A |2

∑
B ⊆ Q

m(B) |A ∩ B |2 (8.61)

Other measures of uncertainty, as well as a more profound discussion of general
measures of uncertainty, can be found in [24, 25].

8.3.4 Final Remarks

Here are the final remarks for this section:

1. The Dempster-Shafer theory can be seen as an extension of the Bayesian
theory of probability in the sense that it is built on the power set of the
universe instead of being built on the universe itself.

2. The main implication is that the additivity axiom of the probabilities is
eliminated and replaced by a superadditive one on belief functions. In partic-
ular, this allows the truth to be both in A and Ac (which is impossible in
probability theory).

3. This theory deals with most of kinds of uncertainty (probability, nonspeci-
ficity, conflict), and ignorance can be well expressed by m(Q) = 1.

4. The fusion of two pieces of information is classically done by using Demps-
ter’s rule of combination. This rule must be manipulated carefully since (1)
it produces an exponential increase of the number of focal elements (a
problem for real-time applications) and (2) can lead to nonintuitive results
whenever the belief functions to be combined are not independent. When
two pieces of information present a high degree of conflict, other approaches
[26] can be considered.

5. Probability judgments in natural languages cannot be modeled, in general,
by belief functions. Rules like ‘‘if u1 is A, then u2 is B with a degree of
belief 0.4’’ cannot be directly represented in the Dempster-Shafer theory.

8.4 Fuzzy-Set Theory

The concept of fuzzy sets was first introduced by Zadeh [27]. However, Black
[28], in its paper on vagueness, was the first to develop the concept of fuzzy
membership. A fuzzy set is a more general concept of the classical crisp set, where
the membership of an element in this set is not described by a Boolean function
but by a function defined on any other set. A fuzzy set is thus a set whose boundaries
are not precise, not well defined (therefore, fuzzy). The theory of fuzzy sets is thus
a generalization of the classical theory of sets. This theory has often been compared
to probability theory [29, 30], but it appears that both theories are complementary,
rather than in competition, since they address different types of uncertainty:
vagueness (or fuzziness) for fuzzy sets and randomness for probability. Both theories
differ essentially in the fact that one is based on a Boolean logic (probability) and
the other is based on a multivalued logic (fuzzy sets). As fuzzy-set theory is a
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generalization of the classical sets concept, which is the basis of many theories,
fuzzy-set theory is currently being extended to all areas with high formal content.

Let Q be the universe of discourse. Fuzzy set A of Q is defined by a membership
function (or characteristic function):

mA : Q → L (8.62)

u ~ mA (u ) (8.63)

where L is an ordered set of membership values; generally, L is [0, 1]. mA (u ) is
the grade of membership of u in A, the degree of compatibility of x = u with
x ∈A, the degree of truth of the proposition [u is A].

The characteristic function of a classical (crisp) set assigns only two values (0
or 1) to each element of Q. Therefore, an element either belongs to the set or does
not. Probability theory has to do with crisp sets, leading thus to a Boolean logic,
whereas fuzzy-set theory leads to a multivalued logic. Whereas probability theory
concerns the belonging of a random element u of Q to a fixed set A, in fuzzy-set
theory, u is a fixed element, and A is a not well-defined subset. In fuzzy-set theory,
the question is not to determine the ‘‘most probable’’ fixed set A to which a random
element u can belong (as in probability theory); rather it is to determine the ‘‘most
true’’ fuzzy set A to which the fixed element u belongs.

A fuzzy set A is empty if, and only if,

Emptiness: mA (u ) = 0, ∀u ∈Q mA (u ) mB (u ) ≡ 0 (8.64)

Two fuzzy sets A and B are equal iff

Equality: mA (u ) = mB (u ), ∀u ∈Q (8.65)

A fuzzy set A is normal if

Normality: sup
u ∈Q

[mA (u )] = 1
(8.66)

Otherwise, it is called subnormal.
A fuzzy set A is contained in another fuzzy set B,

Inclusion: A ⊆ B ⇔ mA ≤ mB (8.67)

Let A be a fuzzy set defined on Q, and let a be a real number of [0,1]. The
a -cuts aA of A are the crisp sets such that

a-cuts: aA = {u | mA (u ) ≥ a } (8.68)

The level set is the set of all levels for a fuzzy set A and is denoted by

L(A) = {a | mA (u ) = a for some u ∈Q} (8.69)
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We also define strong a -cuts (+aA) by replacing the symbol ‘‘≥’’ with ‘‘>’’ in
(8.68). A very interesting property is that each fuzzy set can fully and uniquely be
represented by its a -cuts [29].

The scalar cardinality for a fuzzy set A defined on a finite set Q is

|A | = ∑
u ∈Q

mA (u ) (8.70)

The fuzzy cardinality is defined by

Cardinality: |Ã | = ∑
a ∈L (A)

a

| aA | (8.71)

Let Q and V be two universes. A (crisp) binary relation among Q and V is a
subset of Q × V:

Fuzzy binary relations:
R(Q, V) = {(u , v ), u ∈Q and v ∈V} (8.72)

meaning that u is associated (linked, related, connected) to v in some manner. A
fuzzy binary relation is a binary relation with degrees of strength associated to the
relation between two elements u and v . Hence, for a (crisp) binary relation, these
degrees of strength of the relation are either 0 or 1. A fuzzy binary relation is thus
a fuzzy set defined on the Cartesian product of Q × V, where an element (u , v)
may have varying degrees of membership within the relation [1]:

R(Q, V) = mQV (u , v ) = {[(u , v ), x], u ∈Q, v ∈V, x ∈ [0, 1]} (8.73)

The membership function mQV then defines the degrees of strength of the
relation between two elements u ∈Q and v ∈V. As with every relation, a fuzzy
relation can be symmetric, reflexive or transitive. If these three conditions are
respected, then it is a fuzzy equivalence relation.

A fuzzy number is a fuzzy set defined on the set of numbers (for example
Q = R) and possessing at least the three following properties:

1. A is a normal fuzzy set.
2. aA must be a closed interval for every a ∈ [0, 1].
3. The support of A must be bounded.

Fuzzy numbers are thus ‘‘numbers close to a given real number.’’ A discussion
of the application of fuzzy numbers is presented in Ma, Kandel, and Friedman
[31].

A linguistic variable is a variable whose values are linguistic terms, being fully
characterized by a 5-tuple (v, T, Q, g, m):

• v is the name of the variable.
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• T is the set of linguistic terms of v.
• Q is the universal set.
• g is a syntactic rule for generating linguistic terms.
• m is a semantic rule assigning to each linguistic term in meaning m(E) that

is a fuzzy set on Q.

8.4.1 Calculus and Reasoning (Aggregation/Fusion)

Here are some important definitions.
Disjointness: Two fuzzy sets A and B are disjoint if

mA (u )mB (u ) ≡ 0 (8.74)

Because fuzzy sets are before all sets, the notion of independence is not defined
in this theory. The only equivalent concept thus concerns disjointness.

The aggregation of the information concerning a single object and coming from
different sources (representing different fuzzy sets on the same support) into a
single fuzzy set is performed by the aggregation operations on fuzzy sets. These
operations are the generalization of the corresponding operations in classical set
theory. Although fuzzy unions and intersections are not the only aggregation opera-
tions on fuzzy sets, they capture all the associative aggregation operations on fuzzy
sets. For other (idempotent) aggregation operations, see [1]. There thus exist various
fuzzy-set theories that differ in the operations they use. The standard fuzzy-set
theory was developed by Zadeh [27], who defined the following standard operators.

Complement: The standard complement of the fuzzy set A (A ) is defined by

mA (u ) = 1 − mA (u ) (8.75)

mA (u ) is the degree to which u does not belong to A.
Intersection: The standard intersection of the fuzzy sets A and B is defined by

(A ∩ B) = max[mA (u ), mB (u )] (8.76)

The max function can be replaced by any function T being a t-norm and
define also an intersection between fuzzy sets. Some other frequently used fuzzy
intersections are

Alegraic product: T [mA (u ), mB (u )] = mA (u ), mB (u ) (8.77)

Bounded difference:
T [mA (u ), mB (u )] = max[0, mA (u ) + mB (u ) − 1] (8.78)

Drastic intersection:

T [mA (u ), mB (u )] = 5
mA (u ) if mB (u ) = 1

mB (u ) if mA (u ) = 1

0 otherwise
(8.79)
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The standard union of the fuzzy sets A and B is defined by

(A ∪ B) = min[mA (u ), mB (u )] (8.80)

However, the min function can be replaced by any function S being a t-conorm
and define also a union between fuzzy sets. Some other frequently used fuzzy unions
are

Algebraic sum:
S[mA (u ), mB (u )] = mA (u ) + mB (u ) − mA (u )mB (u ) (8.81)

Bounded difference:
S[mA (u ), mB (u )] = max[0, mA (u ) + mB (u ) − 1] (8.82)

Drastic intersection:

S[mA (u ), mB (u )] = 5
mA (u ) if mB (u ) = 1

mB (u ) if mA (u ) = 1

0 otherwise
(8.83)

The duality of union and intersection (with respect to the complement) in the
classical set theory is represented by the De Morgan Laws:

A ∩ B = A ∪ B (8.84)

A ∪ B = A ∩ B (8.85)

Even if all t-conorms and t-norms do not satisfy these laws, it is easy to
show that the standard union and intersection, the algebraic sum and product,
the bounded sum and difference, and the drastic union and intersection are dual
t-conorms and t-norms, respectively, with respect to the standard complement
defined in (8.75).

An aggregation operation on fuzzy sets performs the combination of several
fuzzy sets to produce a single one:

h: [0, 1]n → [0, 1] (8.86)

(mA1(u ), . . . , mAN (u )) → mA (u ) (8.87)

Hence,

mA (u ) = h(mA1(u ), . . . , mAN (u )) (8.88)

is the resulting aggregated fuzzy set of the aggregation operation of n fuzzy sets.
h is a bounded, monotonic, increasing, continuous, symmetric, and idempotent
function. For simplicity, let mAi (u ) by xi denote the degrees of membership.
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1. Generalized means is a class of averaging operations covering the interval
of operations ranging from min to max operations:

hb (x1 , . . . , xn ) = 1∑
n

i = 1
x b

i

n 2
1/b

(8.89)

where b = R*, and when b < 0, then xi ≠ 0. Special cases are the harmonic
mean (b = −1) and the arithmetic mean (b = 1).

2. Ordered weighted averaging (OWA) operations are defined by first ordering
the xi = mAi (u ) in decreasing order for a fixed value u. Then,

hw (x1 , . . . , xn ) (u ) = ∑
n

i = 1
wi yi (8.90)

where

∑
n

i = 1
wi = 1

and yi is thus the ith largest mAi (u ).

A full list of aggregation operations can be found in [1, 32].

8.4.2 Dealing with Uncertainty

8.4.2.1 Representation of Uncertainty

In the fuzzy-set framework, knowledge is represented by membership functions.
mA (u ) represents the degree of truth of the proposition u is A or, equivalently, the
degree to which element u belongs to the subset A. mA (u ) is also the degree to
which the constraint A is satisfied when u is assigned to A [32]. mA (u ) can also
express our belief in this proposition. This clearly corresponds to vague concepts
(i.e., concepts with ill-defined boundaries): u is allowed to belong to more than
one set with different degrees of membership. If mA (u ) = 1, then u certainly belongs
to A; if mA (u ) = 0, u certainly does not belong to A. As we saw, fuzzy-set theory
deals with vagueness (through degrees of membership) and with nonspecificity as
it is an extension of the classical theory of sets. Total ignorance about the member-
ship of u is expressed by an equivalent distribution of the membership degrees
among all possible sets to which u can belong.

8.4.2.2 Measures of Uncertainty

The measure of nonspecificity for fuzzy sets is a generalization of the Hartley
measure previously defined by (8.57):
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Nonspecificity: U(A) =
1

m+
A
E
m +

A

0

log2( | aA | ) da (8.91)

where A is a fuzzy set, m+
A is the maximum value of its membership function, and

| aA | is the cardinality of the a -cut corresponding to a , a ∈H0, m+
AJ. This function

is often called U-uncertainty.
A measure of fuzziness is defined for finite sets:

Fuzziness: f (A) = ∑
u ∈Q

(1 − |2mA (u ) − 1 | ) (8.92)

However, a generalization to infinite bounded sets is straightforward, replacing
the sum with an integral over the considered infinite bounded set. f (A) in (8.92)
is thus the sum of all local distinctions of A and its complement, measured by the
Hamming distance.

The conflict between two fuzzy sets A and B can be quantified by the degree
of subsethood of A in B:

Conflict: S(A, B) =
|A ∩ B |

|B | (8.93)

where ∩ is the standard fuzzy intersection (8.76), and | . | is the scalar cardinality
(8.70).

Another possibility is to use the Hamming distance between A and B:

d(A, B) = ∑
u ∈Q

|mA (u ) − mB (u ) | (8.94)

8.4.3 Final Remarks

Here are the final remarks for this section:

1. Fuzzy-set theory deals with vague (or fuzzy) information, especially that
issued from human language.

2. Knowledge is represented by fuzzy propositions (fuzzy sets) (i.e., fuzzy
memberships).

3. Contrary to events in probability theory, fuzzy propositions have more than
two truth values, even an infinity: the main concern of fuzzy-set theory is
thus the degree of truth of propositions such as [u is A].

4. However, fuzzy membership functions are difficult to establish. One method
is to equal them with probability densities but without forgetting their
significance.

8.5 Possibility Theory

Zadeh [33] introduced the theory of possibility based on the theory of fuzzy sets
that he presented in [27]. The main reason he advanced for this new theory is that
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imprecision is possibilistic rather than probabilistic in nature. Thus, when the
meaning of information is the main purpose, analysis must be done within a
possibilistic framework rather than a probabilistic one. The theory of possibility
and its logical counterpart (possibilistic logic) have been fully studied by Dubois
and Prade [28, 34–36]. Another possible formulation of possibility theory is that
of a branch of the theory of evidence restricting focal elements to be nested.
Possibility theory is not incompatible with probability theory but is rather a prolon-
gation of the latter, in the case where the unique probability distribution hypothesis
is not valid [35]. It is also more expressive than error intervals and less complex
than a family of probability distributions since the information can be represented
by a single possibility distribution. Possibility theory is thus a unifying framework
for incomplete data and is a tool to aggregate information coming from multiple
sources, such as expert opinions and measures from sensors or databases.

Possibility measure: Let Q be a finite universe. A possibility measure P is a
mapping from the 2Q to [0, 1] such that

P([) = 0 (8.95)

P(Q) = 1 (8.96)

P(A ∪ B) = max[P(A), P(B)] (8.97)

P(A) is the possibility that an element u of Q belongs to A.
Necessity measure: A necessity measure is the dual of P:

N(A) = 1 − P(A ) (8.98)

Possibility and necessity measures also satisfy the following implications:

N(A) > 0 ⇒ P(A) = 1 (8.99)

P(A) < 1 ⇒ N(A) = 0 (8.100)

Possibility distribution: Possibility distributions generalize the membership
functions of fuzzy sets. Let Q be a finite universe of discourse. A possibility distribu-
tion p is a mapping from Q to [0, 1] such that p (u ) = 1 for some u ∈Q. Every
possibility measure is uniquely represented by the associated possibility distribution:

P(A) = max[px (u ), u ∈A] (8.101)

We also have for the necessity measure

N(A) = min[1 − p (u ), u ∉A] (8.102)

Note that whenever Q is infinite, (8.101) and (8.102) must be replaced by

P(A) = supu ∈A [p (u )] (8.103)
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and

N(A) = infu ∈A [1 − p (u )] (8.104)

respectively. p is often noted px to specify the fuzzy variable of reference. x is a
fuzzy variable of Q, and u is a particular value of Q that x can take. p (u ) = px (u )
is the possibility degree that x = u : px (u ) = 0 means it is impossible for x to equal
u ; px (u ) = 1 means that nothing can prevent x from equaling u .

Min/max rules: The possibility measures (respectively necessity) of the union
(respectively the intersection) of two crisp sets A and B are given by

P(A ∪ B) = max[P(A), P(B)] (8.105)

and

N(A ∩ B) = min[N(A), N(B)] (8.106)

if A and BP and N can be axiomatically defined from (8.105) and (8.106).
Joint and marginal possibility distributions: Let x and y be two (fuzzy) variables

of Qx and Qy , respectively. As a joint probability distribution, a joint possibility
distribution pxy is defined on the Cartesian product Qx × Qy :

pQx Qy
(ux , uy ) = p (ux , uy ) (8.107)

The marginal distributions are then projections px and py defined by

pQx
(ux ) = max

y ∈Qy

p (ux , uy ) (8.108)

pQy
(uy ) = max

x ∈Qx

p (ux , uy ) (8.109)

8.5.1 Other Formalizations of Possibility Theory

8.5.1.1 Possibility Theory Based on Fuzzy-Set Theory

Although the concept of possibility can be defined independently, Zadeh [33]
defined a possibility distribution equal to a membership function of the correspond-
ing fuzzy set:

pA (u ) = mA (u ) (8.110)

Another notation eliminating ambiguity regarding the difference between both
measures has been proposed by Dubois and Prade [28]:

p (u | A) = m (A | u ) (8.111)
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p (u | A) is the possibility that u = x, knowing u ∈A (A is a crisp set), whereas
m (A | u ) is the degree of truth of u ∈A (A is a fuzzy set).

8.5.1.2 Possibility Theory as a Special Branch of Evidence Theory

When the focal elements of a belief function are nested (A1 ⊆ A2 ⊆ . . . ⊆ An =
Q), this belief function is called consonant (otherwise, it is dissonant) and defines
a necessity function. In the same manner, a consonant plausibility function defines
a possibility function. Thus, for a nested body of evidence (Bn , m), the associated
plausibility and belief functions correspond to possibility and necessity functions,
respectively, and satisfy the properties (8.105) and (8.106), respectively. Moreover,
every possibility measure P on Q is uniquely defined by a possibility distribution
function p by (8.104) for all A ⊆ Q. So, if a i is a fixed value of p (u ) (between 0
and 1), then let aAi denote its corresponding a -cut. Thus, it follows that

p (u ) = ∑
n

i = 1, u ∈aAi

m(aAi ) (8.112)

if we set m(aAi ) = a i − a I + 1 , i = 1, . . . , n and an + 1 = 0. Then,

p (u ) = (Bn , m) = {(aAi , m(Ai )) | i = 1, . . . , n} (8.113)

is a nested body of evidence.

8.5.1.3 Likelihood

The possibility distribution can also be interpreted as a likelihood:

P(u ) = P(A | u ) (8.114)

is the probability that x ∈A, knowing that x = u . For a better understanding of
the difference between the concepts of probability, fuzzy sets, and possibility, see
Figure 8.1.

8.5.2 Calculus and Reasoning (Aggregation/Fusion)

Noninteraction: Let x = (x1 , x2) be a binary fuzzy variable taking its values in
Q1 × Q2 . Let p be a joint possibility distribution on the set Q1 × Q2 , and px1

and
px2

be the corresponding marginals. The possibility measures associated with
px1

and px2
are noninteractive if, and only if, [37],

px (u1 , u2) = min[px1
(u1), px2

(u2)] (8.115)

where u1 ∈Q1 and u2 ∈Q2 .
Independence: Two marginals’ possibility measures are independent if, and

only if, [37],
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Figure 8.1 Differences between (a) probability, (b) fuzzy set, and (c) possibility concepts.

px1 | x2
(u1 | u2) = px1

(u1) (8.116)

px2 | x1
(u2 | u1) = px2

(u2) (8.117)

That is, the conditional possibilities are equal to the corresponding marginal
possibilities. Contrary to their probabilistic counterparts, the concepts of noninter-
action [(8.115)] and independence [(8.116) and (8.117)] are not equivalent [37].
In fact, possibilistic independence entails possibilistic noninteraction, but the reverse
is false. Possibilistic independence is thus stronger than noninteraction.

Conjunctive rule of combination: Let p1(u ) and p2(u ) be two distinct possibil-
ity distribution functions given by two distinct sources. Thus, the resulting possibil-
ity distribution function obtained by a conjunctive rule is

p ` (u ) = T [p1(u ), p2(u )] (8.118)

where T is a t-norm.
Disjunctive rule of combination: Let p1(u ) and p2(u ) be two distinct possibility

distribution functions given by two distinct sources. Thus, the resulting possibility
distribution function obtained by a disjunctive rule is

p ~ (u ) = S[p1(u ), p2(u )] (8.119)

where S is a t-conorm, such as those defined for fuzzy sets.
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Adaptative rule of combination: Let p1(u ) and p2(u ) be two distinct possibility
distribution functions given by two distinct sources. Thus, the resulting possibility
distribution function obtained by the adaptative rule proposed in [3] is

pAD (u ) = maxHT [p1(u ), p2(u )]
1 − K(p1 , p2)

, min[1 − K(p1 , p2), S[p1(u ), p2(u )]]J
(8.120)

where K(p1 , p2) is a conflict factor equivalent to that defined for Dempster’s rule
of combination. This adaptative rule of combination allows one to take into account
the reliability of the sources: If the two sources are reliable, conjunction is per-
formed; otherwise, only one of them is reliable, and disjunction is used to avoid
a big conflict. This is a way to wait for more reliable information without making
the fusion algorithm converge toward an improbable solution.

8.5.3 Dealing with Uncertainty

8.5.3.1 Representation of Uncertainty

In possibility theory, uncertainty is represented by pairs of possibility and necessity
measures, and imprecision is represented in terms of possibility distributions.
p (u ) = 1 for all u ∈Q corresponds to total ignorance (on the value of x). It is the
less informing possibility distribution. Its counterpart is the maximal informing
distribution, corresponding to p (u ) = 1 for x = u and 0 for all other u ≠ x.
P(A) = 1 means A is fully possible, whereas P(A) = 0 means A is fully impossible.

8.5.3.2 Measures of Uncertainty

Let p be a possibility distribution on Q, and aAi , i = 1, . . . , n, with n a -cuts of
p corresponding to n levels a i such that 1 = a1 ≤ a2 ≤ . . . ≤ an . We let
m(aAi ) = a i − a i + 1 . Thus, different kinds of measures of uncertainty can be defined
in the possibility theory framework.

Nonspecificity: U(p ) = ∑
n

i = 2
m(aAi ) log2S | aAi |

| aAi − 1 |D (8.121)

Conflict: S(p ) = ∑
n

i = 2
[m(aAi ) − m(aAi − 1)] log21 | aAi |

∑
n

i = 1
m(aAi )2 (8.122)

Total uncertainty:

NS(p ) = ∑
n

i = 2
[m(aAi ) − m(aAi − 1)] log21 | aAi |

2

∑
n

i = 1
m(aAi )2 (8.123)
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8.5.4 Final Remarks

Here are the final remarks for this section:

1. Possibility theory seems to be a nice framework for incomplete data pro-
cessing.

2. Even if possibility theory is based on the concept of fuzzy sets, it significantly
differs from fuzzy-set theory as it concerns uncertainty, partial ignorance,
and the quality of being ‘‘not vague.’’

3. Possibility theory is way to generalize the error-interval notion: For example,
an expert can give several error intervals around a particular value associated
with confidence levels, the intervals being as small as possible.

4. In practice, it is used to model and combine expert opinions or in databases
interrogation systems. Knowledge-based engineering systems are its main
application area, measurements being taken from subjective evaluations.
It has also been applied in pattern classification [38] or to multisource
information-fusion for satellite image classification.

5. Other applications examples can be found in [38], such as the medical
expert system DIABETO and the inference engine TAIGER.

8.6 Rough-Set Theory

In the early 1980s, Zdzislaw Pawlak introduced the rough-set theory as a ‘‘new
mathematical tool to deal with vague concepts’’ and thus as an alternative to fuzzy-
set theory [39]. The main purpose of rough-set theory is to replace uncertain and
imprecise piece of information with two imprecise but certain pieces of information.
Hence, a rough set is an approximate representation of a crisp set in terms of two
other crisp sets, whereas a fuzzy set is defined by a membership function. For an
introduction to rough-set theory, see [40–44]. Whereas Pawlak [39] pretends that
rough sets are a general class of fuzzy sets, Dubois and Prade [45] think that fuzzy
sets and rough sets concern different kinds of uncertainty: fuzziness for the former,
and undiscernability (roughness) for the latter. These two aspects of vagueness
often being present together, other kinds of sets have been proposed, namely
rough fuzzy sets and fuzzy rough sets. The rough-set approach proposes a formal
framework for the transformation of data into knowledge. Using concepts of certain
and possible membership in a class, rules for classification may be created in various
ways. An advantage of the rough-sets methodology over the Bayesian approach is
that no assumptions about the independence of the attributes are necessary, nor
is any background knowledge about the data.

Rough-set theory lies on the assumption that some knowledge about elements
of the universe we are interested in is available, for instance, in the form of a
database [46]. In the rough-set analysis, data from which information is retrieved
is gathered in a table, being possibly of two kinds: an information system or a
decision system.

An information system Is , (or an approximation space) is represented by

Is = (Q, A, {Va }, fa ) (8.124)
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where:

• Q is a nonempty finite set of objects, called a discourse.
• A is the nonempty finite set of attributes representing the characteristics of

each object.
• Va is the domain of attribute a (the set of its values).
• fa is an information function fa : Q → Va defined by each attribute a ∈A.

A subset A of Q is called a concept. A decision system DS , is an information
system for which the attributes of A can be classified into two disjoint sets: the
condition attributes (dependent attributes) C and the decision attributes (indepen-
dent attributes) D. Thus, A = C ∪ D and C ∩ D = [. In most situations, D consists
of only one element, D = d. To convert an information system to a decision system,
we must simply add a new attribute d ∈A.

Indiscernibility relation: An indiscernibility relation Ra is an equivalence rela-
tion (i.e., reflexive, transitive, and symmetric)1 and is defined for all subsets a of
A by

u1Rau2 ⇔ a(u1) = a(u2), ∀a ∈a ⊆ A (8.125)

where a(u ) denotes the value of attribute a for object u, a(u ) ∈Va . Such a relation
between two objects of Q means that they cannot be distinguished (discerned)
regarding all their considered attribute values and are thus identical. Therefore, an
indiscernibility relation expresses the limitation of our knowledge about the ele-
ments of Q. u1Rau2 means that ‘‘object u1 is indiscernible from object u2’’ (‘‘u1
is too close [or too similar] to u2 , so both elements are indiscernible’’), with respect
to the attributes in a [45]. For simplicity, we will drop the indice a of Ra when it
is unnecessary. Of course, we must keep in mind that an indiscernibility relation
is always defined for a subset of attributes a.

Equivalence class: Let R be an equivalence relation. An equivalence class, noted
R(u ) or [u ]R , is the set of all the objects of Q indiscernible from the object u :

R(u ) = ui ∈ Q | uiRu (8.126)

R(u ) (or [u ]R ) denotes the class of objects having the same description as u in
terms of attributes in a ⊆ A. The equivalence classes are also called elementary
sets. The family of equivalence classes defined by R is called the quotient set and
is denoted by Q/R. This family then forms a partition of Q.

Lower and upper approximations: The two basic operations in rough-set theory
are approximations of sets. For any subset (concept) A of Q, a lower and upper
approximation are defined with respect to R as follows:

RA = {[u ]R | [u ]R ⊆ A} (8.127)

1. Ra can also be a tolerance relation (i.e., reflexive and symmetric). If Ra is a tolerance relation, and
u1Rau2 , then u1 and u2 are called similar with respect to Ra , whereas they are referred as indiscernible
if Ra is an equivalence relation.
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RA = {[u ]R | [u ]R ∩ A ≠ [} (8.128)

Another possible notation is

R*A = {u ∈Q | R(u ) ⊆ A} (8.129)

R*A = {u ∈Q | R(u ) ∩ A ≠ [} (8.130)

Set RA consists of all the elements of Q that can be with certainty classified
to A (using the knowledge R), whereas set RA contains all the elements of Q that
can possibly be classified to A (using the knowledge R). This leads to the following
definition [41]: A set is rough with respect to R if its lower and upper approxima-
tions are different; otherwise, the set is exact (crisp).

Boundary region: The boundary region of A ⊆ Q is the difference between its
upper and lower approximations:

BNR (A) = RA − RA (8.131)

BNR (A) contains all elements of A that cannot be classified either to A or to
its complement A (using the knowledge R). If BNR (A) = [, then A is a crisp set
(with respect to R); otherwise, it is a rough set (with respect to R).

Rough membership functions: Several rough membership functions of object
u with respect to A can be defined. For example,

mR
A (u ) =

| [u ]R ∩ A |
| [u ]R | (8.132)

or

mR
A (u ) = 5

1 if u ∈RA

0.5 if u ∈ [RA − RA]

0 if u ∈Q − RA

(8.133)

However, these membership functions cannot be extended to the union and
intersection of sets like those defined for fuzzy sets [39].

Rough fuzzy sets and fuzzy rough sets: Because roughness and fuzziness are
two aspects of vagueness (i.e., different types of uncertainty) that sometimes coexist,
Pawlak defined two other kinds of sets, rough fuzzy sets and fuzzy rough sets,
combining these two aspects. This idea was extended later by Dubois and Prade
[45].

Fuzzy rough set: A fuzzy rough set is a rough set based on a fuzzy equivalence
class. Let A be a crisp subset of a universe Q, and R̃ be a fuzzy equivalence relation
on Q.2 Thus, the fuzzy rough-set approximation of A is represented by each a -cuts
of R̃:

2. We will note here R̃ to distinguish a fuzzy relation from a crisp one.
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aR̃(A) = FaR̃(A), aR̃(A)G (8.134)

Rough fuzzy set: A rough fuzzy set is a rough-set approximation of a fuzzy
set. Let Ã be a fuzzy set of Q and R be a crisp equivalence relation on Q.3 Thus,
the rough fuzzy set approximation of Ã is represented by

R(aÃ) = FR̃(aÃ), R̃(aÃ)G (8.135)

where

R̃(A) = m R̃(A) (u ) = inf{m (u ) | [u ]R } (8.136)

R̃(A) = m R̃(A) (u ) = sup{m (u ) | [u ]R } (8.137)

8.6.1 Calculus and Reasoning (Aggregation/Fusion)

Let F = A1 , . . . , An be a family of concepts of Q. Ai is said to be dispensable for
F if

∩
n

j = 1, j ≠ i
Aj = ∩

n

j = 1
Aj (8.138)

Otherwise, the concept Ai is indispensable. A family of concepts F is indepen-
dent if all of its concepts Ai are indispensable for F. Because rough-set theory
replaces a vague concept (vague set) with two crisp sets, then the classical theory
of sets can be applied for the aggregation or fusion.

Combination of concepts: Let Q be the universe and let A and B be two subsets
(concepts) of Q. Given an indiscernibility relation R, the approximations of A and
B are, respectively, the two intervals of sets [RA; RA] and [RB; RB]. The union
A ∪ B is consequently approximated by the two following bounds:

R(A ∪ B) ⊇ RA ∪ RB (8.139)

R(A ∪ B) = RA ∪ RB (8.140)

In the same way, the intersection A ∩ B is bounded by the two following sets:

R(A ∩ B) = RA ∩ RB (8.141)

R(A ∩ B) ⊆ RA ∩ RB (8.142)

Combination of knowledge: Let R = R1 , R2 , . . . , Rm be a family of knowledge
on Q. An equivalent knowledge can be computed by taking the intersection of all
the knowledge

3. Ã will denote here a fuzzy set to distinguish it from a crisp one.
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IND(R ) = ∩
m

i = 1
Ri (8.143)

IND(R ) thus represents the set of equivalence classes of indiscernible objects.

8.6.2 Links to Other Theories

8.6.2.1 Fuzzy Sets

Pawlak [39] compares fuzzy sets and rough sets. He concludes that the rough set
is a more general concept than the fuzzy set. If equality exists between the pair
(8.139) and (8.142), then rough sets reduce to fuzzy sets. Moreover, he shows that
the union and intersection of fuzzy sets (8.80) and (8.76) defined by Zadeh have
no equivalent counterpart in rough-set theory. However, this vision is not shared
by Dubois and Prade, who think that the two concepts address different kinds of
uncertainty, fuzziness and roughness (indiscernibility). Their interpretation thus
leads to the concepts of rough fuzzy sets and fuzzy rough sets.

8.6.2.2 Dempster-Shafer Theory

Skowron [47] establishes a bridge from rough sets to evidence theory. He shows
that each problem represented in rough-set theory can be also represented in
evidence theory. Let Q be a universe of discourse, A a concept of Q, and R an
equivalence relation (knowledge) on Q. Thus, belief and plausibility functions can
be defined from the lower and upper approximations of A (with respect to R):

kA = Bel(A) =
|RA |
|Q | (8.144)

kA = Pl(A) =
|RA |
|Q | (8.145)

In the rough-set framework, kA and kA are called the lower quality function
and upper quality function, respectively.

8.6.3 Dealing with Uncertainty

8.6.3.1 Representation of Uncertainty

In rough-set theory, knowledge is regarded as the ability to classify objects [48].
Pawlak [42] says that rough-set theory is a mathematical approach to imprecision,
vagueness, and uncertainty. However, according the description of the concept of
uncertainty in Chapter 6, we would say that rough-set theory mostly deals with
indiscernibility (roughness, coarseness) (whereas fuzzy sets mostly deals with
vagueness, probability theory with randomness, and so forth). Knowledge is repre-
sented by indiscernibility relations. If a knowledge R provides any information
about the concept A, then total ignorance is represented by the lower and upper
approximation sets, being [ and Q, respectively.
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8.6.3.2 Measures of Uncertainty

From our knowledge, in the rough-set framework, no measure of uncertainty
has been defined, except those related to classical sets (the Hartley measure for
nonspecificity) or to fuzzy sets (measure of fuzziness). It could be interesting,
however, to define a measure of roughness.

8.6.4 Final Remarks

These remarks conclude this section on rough-set theory:

1. This theory has a strong qualitative analysis ability, but because of the
additional quantifications, such as membership functions and its close links
with quantitative approaches, it appears in this book under quantitative
approaches.

2. Rough-set theory deals with roughness (or indiscernibility), a special aspect
of vagueness, by approximating sets by setting upper and lower bounds.

3. However, it can deal only with discrete values as it uses the granularity
structure of the given data.

4. Knowledge is then regarded as the ability to classify objects (depending on
the granularity).

5. It is a method that avoids external parameters, using only internal knowl-
edge, relying on no prior model assumptions (e.g., fuzzy sets or probabili-
ties).

6. No assumptions about the independence of the attributes are necessary, nor
is any background knowledge about the data.

7. A wide range of applications uses the ideas of the theory: Medical data
analysis, aircraft-pilot performance evaluation, image processing, and voice
recognition are a few examples. Rough-set theory is essentially used for data
analysis. This theory seems to be specially appropriate for data reduction;
discovering dependencies, similarities, differences, and patterns in data; and
extraction of hierarchy rules [48], data mining, and approximate classifica-
tion. This approach has been successfully implemented in real-life applica-
tions, such as engineering design, the analysis of hierarchy factors,
approximate classification of patients, and so on. A detailed list of implemen-
tation examples can be found in Pawlak [41]. Moreover, the rough-set
theory is used as the theoretical basis for problems in machine learning and
has inspired a variety of logical research.

8.7 Conditional Event Theory

The study of conditional events (or conditional objects) was initiated in the thirties
by De Finetti and others. Their idea was to give a mathematical and logical meaning
to conditional relationships between two events (or logical formulae) in agreement
with the theory of probability and, more specifically, conditional probability. More
recently, CE theory has been revived by some authors [12, 35, 49]. The idea remains
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to define a mathematical object, called a conditional event, such that the set of
these objects can use a Boolean algebra, in which conditional probabilities become
‘‘true’’ probability measures. The interest in developing conditional events algebras
comes mainly from the fact that rules in natural language (‘‘if B, then A’’) used
in knowledge-based or expert systems are naturally modeled by conditional events
(‘‘A given B’’). However, rules are generally modeled by the Boolean material
implication, which is incompatible with conditional probabilities. Thus, the aim
is to find a suitable mathematical framework in which (1) rules can be consistently
modeled as conditional events, and (2) standard probability theory can be extended
to these rules. A complete description of conditional event algebra and its potential
use in information fusion is available by Goodman and Kramer [13] and by Good-
man, Nguyen, and Walker [50].

8.7.1 Links to Other Theories

8.7.1.1 Probability Theory

The link between conditional event theory and probability has been already
described since CE theory is developed to provide a meaning for the conditional
object arbitrarily defined in probability theory. CE theory is an extension of proba-
bility theory around the concept of the conditional event. CE theory must thus
reduce to standard probability when conditional events reduce to ordinary events.

8.7.1.2 Fuzzy-Set Theory

Goodman, Nguyen, and Walker [50] showed that conditional event (A | B) can
be uniquely represented as a three-valued membership function defined on Q by

m (A | B) (u ) = 5
1 if u ∈A ∩ B

0.5 if u ∈B

0 if u ∈A ∩ B
(8.146)

8.7.2 Calculus and Reasoning (Aggregation/Fusion)

Because CE algebra is an extension of probability theory, independence should be
defined in the same way as in probability theory. The combination of information
(rules) is done through the connectors ‘‘`,’’ ‘‘~,’’ and ‘‘ .’’ It is thus translated
from one algebra to another. Here, we present three different CE algebras, defined
by their three connectors.

Product space conditional event algebra (PSCEA): Let (Q, sQ , P) be a probabil-
ity space (of unconditional, i.e., ordinary, events). Thus, the PSCEA is the extension
of (Q, sQ , P) denoted by (Q̂, ŝQ , P̂) where:

• Q̂ is the infinite Cartesian product of the Q,

Q̂ = Q × Q × . . . (8.147)
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• ŝQ is the s -algebra spanned by

sQ × sQ × sQ × . . . (8.148)

• A conditional event of ŝQ can be written by

(A | B) = ∪
∞

n = 1

F(B)n × A ∩ BG (8.149)

or with a recursive form

(A | B) = (A ∩ B | Q) ∪ (B)n × A ∩ B (8.150)

• P̂ is the product measure on (Q̂, ŝQ ). It can be shown that within this
algebra,

P̂[(A | B)] = P(A | B) (8.151)

SAC algebra: This algebra has been proposed by Schay [51]:

 1(A | B) = (  A | B) (8.152)

(A | B) `1 (C | D) = (  B ~ A) (  D ~ C) | (B ~ D) (8.153)

(A | B) ~1 (C | D) = (AB ~ CD) | (B ~ D) (8.154)

GNW algebra [50]: Goodman, Ngyuen, and Walker developed a conditional
event algebra based on the idea that a conditional event (A | B) is the set of the
solutions to the modus ponens equation:

(A | B) `2 B = B ∩ A (8.155)

The so-called Goodman-Nguyen-Walker (GNW) algebra has the following
logical operations:

 2(A | B) = (  A | B) (8.156)

(A | B) `2 (C | D) = (AC |  AB ~  CD ~ BD) (8.157)

(A | B) ~2 (C | D) = (A ~ C | AB ~ CD ~ BD) (8.158)

The operators of this algebra satisfy properties of commutativity, associativity,
distributivity, idempotence, the De Morgan Laws, the modus ponens equation,
and transitive logical chaining. However, this logic is not fully compatible with
conditional probability because the function (A | B) → P(A | B) is not a probability
measure, and GNW is not a Boolean algebra.
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8.7.3 Final Remarks

These are the final remarks for this section:

1. CE algebra gives a significance to the conditional event object in order to
use this object to model rules in natural language and use probability mea-
sures for their quantification.

2. CE algebra is used to manipulate and evaluate rules in knowledge-based
and expert systems, such that standard probability theory can be applied.

3. Conditional events lie at the core of the development of a computationally
tractable theory of plausible reasoning.

8.8 Random-Set Theory

The concept of random sets was introduced in the early 1970s [52, 53] as a
generalization of the random variable concept: Random sets are random elements
whose values are sets, whereas random variables are random elements whose values
are numbers. A simple example of a random set is a confidence interval. More
recently, Goodman, Mahler, and Ngyuen [12] presented random-set theory as a
unifying paradigm for most theory of uncertain reasoning. It appears that at least
probability theory, Dempster-Shafer theory, possibility theory, fuzzy-set theory,
and conditional events can be represented in the random-set framework. Hence,
such a unification offers a systematic methodology for the fusion of information
involving various types of uncertainty. On the other hand, they developed finite-
set statistics (FISST) as a ‘‘version of random set theory specifically designed to
multiple-targets multiple-sensors applications.’’ Within this approach, they intend
to put into a single probabilistic framework most of the different aspects of data
fusion, allowing most of the classical rules of probability be used in a larger universe,
the power set of this universe. Although this extension of classical point variable
statistics and probability is not yet widely studied, it remains, we think, a very
interesting candidate for a global assessment of the situation.

Random set: Let (V, sV , Prob) be a probability space, and let Q be a finite
discrete set (e.g., the universe, the frame of discernment) and P(Q) = 2Q its power
set. A random set of Q is a set-valued random element x from V to P(Q):

x : V → (Q) (8.159)

v → x (v ) (8.160)

A random set is thus a multivalued mapping from V to P(Q). Remember that
a random variable X is a (single-valued) mapping from V to R, such that X(v ) =
x ∈R. X is thus a special case of a random set.

Density function: A random set x is completely defined by its density function,
a function from P(Q) to [0, 1] defined by

f (A) = Prob({v | x (v ) = A}) = Prob(x = A) (8.161)
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and satisfying

∑
A ∈P(Q)

f (A) = 1 (8.162)

f (A) is thus the probability of the event {x = A}, that is, the probability that
the random set x takes the particular value (set) A of P(Q) ({x = A} is the set of v
such that x (v ) = A).

Distribution function: Equivalently to random variables, a distribution function
of x can be defined as

F(A) = Prob(x ⊆ A) = ∑
B ⊆ A

f (B) (8.163)

F(A) is also called a belief function as it satisfies the axioms of Shafer’s belief
functions.4 More details on this link will be given bellow. Note that {x ⊆ A} =
{v | x (v ) ⊆ A}.5

Möebius transform: Let x be a random set of Q (finite) with F as distribution
function. Then, the Möebius transform defines the density function of x from F
as

f (A) = ∑
B ⊆ A

(−1)|A − B |F(B) (8.164)

This transformation represents the counterpart of derivatives in the random-
set framework. Another approach consists of extending the concept of Radon-
Nikodým derivatives to the case of nonadditive set functions.

Finite-set statistics: Finite-set statistics [54] are an extension of practical statis-
tics to multisensor, multitarget data fusion. In this theoretical framework, basics
concepts such as expectations, covariances, densities, and the like, are defined as
direct analogs of the classical ones, except that they are defined on the power set
of the universe instead of the universe itself. Moreover, extensions of classical
estimators (e.g., maximum a posteriori, maximum likelihood, Bayesian) are built.

8.8.1 Links to Other Theories

8.8.1.1 Probability Theory

Random-set theory reduces to probability theory as soon as x is a random variable
X. Indeed, only one-element sets (singletons) have non-null probability.

8.8.1.2 The Dempster-Shafer Theory

The link between random sets and belief functions has been studied by many
authors, especially by Nguyen [11]. It appears that random-set theory is the probabi-

4. Note that we should write fX (A) or FX (A), but the subscript will be avoided when no ambiguity exists.
5. In the following, we will simply note x = A for {v | x (v ) = A}, x ⊆ A for {v | x (v ) ⊆ A} . . .
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listic interpretation of the Dempster-Shafer theory. Let x be a random set of the
finite set Q, and let m be a basic probability assignment from P(Q) to [0, 1]. Then,
m defines a density function on P(Q):

m(A) = Prob(x = A) = f (A), ∀A ∈P(Q) (8.165)

where f is introduced in (8.161). Under the closed-world assumption, m must also
satisfy SA ⊆ Qm(A) = 1 and m([) = 0. It follows that the belief function is

Bel(A) = Prob(x ⊆ A) = F(A), ∀A ∈P(Q) (8.166)

where F is introduced in (8.163), and the plausibility function is

Pl(A) = Prob(x ∩ A ≠ [), ∀A ∈P(Q) (8.167)

Finally, if m1 and m2 are two density functions on Q corresponding to the
statistically independent random set x1 and x2 , then Dempster’s rule of combina-
tion can be formulated by

m1 ⊕ m2(A) = Prob(x1 ∩ x2 = A | x1 ∩ x2 ≠ [), ∀A ∈P(Q) (8.168)

Prob(x1 ∩ x2 = [) is thus the conflict factor. The unnormalized Dempster’s
rule of combination corresponds to the intersection-independent, nonempty, ran-
dom subsets. The normalization is then a restriction to the class of nonempty,
random subsets. The only difference between the random set and Dempster-Shafer
frameworks is that in the latter each expert’s opinion is represented by a random
set, whereas in the former, the entire set of knowledge is represented by a random
set [55]. The mathematical analogy between random-set theory and the transferable
belief model has been presented by Smets [10].

8.8.1.3 Fuzzy-Set Theory

Goodman [56] makes a formal connection between random sets and fuzzy sets.
He shows how fuzzy sets can be considered equivalence classes of random sets.
Let (V, sV , Prob) be a probability space and Q be a finite space. Thus, with each
random set x from V to P(Q), we can associate a membership function X: Q →
[0, 1] of a fuzzy set on Q, such that

X(u ) = Prob(u ∈x ), ∀u ∈Q (8.169)

X(u ) is the one-point covering function of x . Conversely, if m is a membership
function of a fuzzy set on Q, then there exists a random set

x X (m ) = {u ∈Q | X(u ) ≤ m (u )} (8.170)

where X is a uniformly distributed r.v. on [0, 1]. Because X is uniform, it can be
shown that
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mx X
(m ) = m (8.171)

This connection between both theories does not mean that randomness can
capture fuzziness. However, it allows the theory of probability (through random-
set theory) to be used to manipulate fuzzy sets. Because fuzzy sets are ‘‘one-
point coverages’’ of random sets, the classical fuzzy operators have a set-theoretic
counterpart in random-set theory [57].

Another discussion on this subject can be found in Orlov [58]. In this paper,
Orlov uses the mathematically well-developed theory of random sets to support
the lack of theorems in the fuzzy-set theory. He thinks that random-set theory will
probably find new applications everywhere the fuzzy concept is used.

8.8.1.4 Possibility Theory

As a special case of the Dempster-Shafer theory, the possibility theory can be easily
linked to random-set theory.

8.8.1.5 Conditional Event Algebra

Mahler [59, 60] shows that there is at least one way to represent knowledge-based
rules in random set form. Let (A | B) be a conditional event of the GNW algebra,
A, B ⊆ Q being a finite universe, and let U be a uniformly distributed random
subset on Q, that is, Prob(u) = 1/2N, ∀u ⊆ Q, where N = |Q | . Thus, we define the
random subset xU (A | B) associated to the CE (A | B) by

xU (A | B) = (A ∩ B) ∪ (B ∪ n ) (8.172)

Hence, the correspondence between the conditional event (A | B) and its associ-
ated random set xU (A | B) is well defined:

(A | B) = (C | D) ⇔ xU (A | B) = xU (C | D) (8.173)

Moreover, xU (A | Q) = A, ∀A ⊆ Q.

8.8.2 Calculus and Reasoning (Aggregation/Fusion)

Two random subsets x1 and x2 are statistically independent if, and only if,

Prob(x1 = A, x2 = B) = Prob(x1 = A)Prob(x2 = B) (8.174)

where Prob is a probability measure on Q. This kind of independence corresponds
to independent pieces of evidence, the condition required by Dempster’s rule.

Operations on random sets: In general, usual properties, as well as usual
operations, of classical sets stay valid for random sets. For example, for all v ∈V,

Random-set complement: x (v ) = x (v ) (8.175)



8.8 Random-Set Theory 207

Random-set intersection:
(x1 ∩ x2)(v ) = x1(v ) ∩ x2(v ) (8.176)

Random-set union: (x1 ∪ x2)(v ) = x1(v ) ∪ x2(v ) (8.177)

It follows, for example,

Prob(x1 ∩ x2 = A) = ∑
X1 ∩ X2 = A

Prob(x1 = X1 , x2 = X2) (8.178)

and

Fx 1 ∪ x 2
(A) = Fx 1

(A) + Fx 2
(A) − Fx 1

(A)Fx 2
(A) (8.179)

if x1 and x2 are independent.

Minkowski addition:
x1 ⊕ x2 = {x1 + x2 | x1 ∈x1 , x2 ∈x2} (8.180)

Minkowski subtraction: x1 * x2 = {x1 | x1 + x2 ⊆ x1} (8.181)

Minkowski addition generalizes the addition in R
d (vectorial addition) and

corresponds to dilatation. Minkowski subtraction corresponds to erosion.

8.8.3 Dealing with Uncertainty

Being a general theory, random-set theory is able to represent every kind of uncer-
tainty (e.g., randomness, nonspecificity, vagueness, conflict), and the way this is
accomplished is thus described in each specific theory. Moreover, the corresponding
measures of uncertainty are defined in each theory.

8.8.4 Final Remarks

These are the final remarks on random sets:

1. Random sets provide a general framework for representing and manipulat-
ing different kinds of uncertainty and appears to be a unifying framework
in which most theories of quantitative uncertain reasoning can be justified.

2. A unified framework is helpful in combining multiple formalisms possibly
present in a large problem solver such as situation analysis [55].

3. Random-set formalism is, however, rarely used, probably due to the large
memory size it requires (2N − 1 values must be stored to completely describe
a density function of a random set defined for a universe of N elements).
For existing restrictions, we refer to the Dempster-Shafer theory, which
faces exactly the same problem.

4. The random-set framework offers justifications of basic operations on fuzzy
sets, which are mainly ad hoc [55, 58].

5. Finite-sets statistics is a tool for multiple-target, multiple-sensor tracking
[11, 54].
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C H A P T E R 9

Hybrid and Graphical Approaches
Patrick Maupin, Anne-Laure Jousselme, and Éloi Bossé

9.1 Introduction

The previous two chapters addressed the qualitative and quantitative approaches
available to model situation analysis and high-level data fusion. As already men-
tioned, qualitative approaches seem better suited to reasoning about knowledge,
while quantitative approaches are better candidates for uncertainty representation
and management. This chapter addresses hybrid approaches that can be used for
a global modelization of a situation. Such approaches (quantitative logics, incidence
calculus) mix quantified evaluations of uncertainty and high reasoning capabilities.
This chapter also includes graphical or graph-based approaches (e.g., Bayesian
networks) that support the graphical representation and propagation of knowledge.

9.2 Discussion of Quantitative Logics

Roughly speaking, logic is associated with qualitative approaches, whereas mathe-
matics is associated with quantitative approaches. Although quantitative logics
exist, being a sort of bridge between these two worlds, depending on the kind of
approach used, distinct vocabulary and symbols are used to designate equivalent
things. We think that a first step to giving a uniform overview of the theories is
to make a correspondence between both worlds. On one hand, it is familiar for a
logician to talk about a proposition (or more generally a formula) f , which implies
another proposition (or formula) c , without any reference to a particular universe
of discourse. The fact that it is raining (f ) implies that the ground is wet (c ),
written f → c . On the other hand, a mathematician will use the set-theoretic
vocabulary and talk about events, which are subsets of a universe. From a mathe-
matical (set-theoretic) point of view, the universe of discourse (frame of discern-
ment) Q is a set containing all the possible outcomes for a given experiment. An
element of Q is often called an object as it is characterized by a finite number of
attributes. If Q = {u1 , u2 , . . . ,}, u i is characterized by m features fj (u i ) can be
seen as a vector with m components u i = [ f i

1 f i
2 . . . f i

n ]T ). f1 could be the weather
condition: f1 = 1 if it is raining, f1 = 2 if it is not raining, f1 = 3 if it is sunny, and
so on. Another characteristic, f2 , could be the state of the ground: f2 = dry,
f2 = wet. From a set-theoretic point of view, it is raining refers to a subset A of
Q, and the ground is wet refers to another subset B of Q: A is the set of elements
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of Q having feature f1 equal to 2; B is the set of elements of Q having the feature
f2 equal to wet. A subset of Q is called an event.

For a logician, Q is the set of possible worlds. In general, it is referred to by
P = {f1 , f2 , . . . , fk } as the set of formulae. In a qualitative approach, a world
u i is not attached to a set of features but to a set of true formulae. A corresponds
thus to the set of worlds in which f is TRUE, and B is the set of worlds in which
is TRUE. The logical implication f → c is written then as A ⊆ B, meaning that
all the worlds u i , where f = rainy day is c TRUE, also have a wet ground
(c = wet ground is TRUE).

The extension of this example to other connectors (or set relations) is straight-
forward. Table 9.1 summarizes the main symbols and terms and their equivalences
in both languages.

9.3 Probabilistic Logic

Probabilistic logic is a logic for reasoning about probabilities (i.e., the probability
calculus on rules) of logical formulas. It has been introduced by Reichenbach [1]
and followed by Carnap [2]. More recently, this theory has been revisited by Nilsson
as a ‘‘semantical generalization of logic in which the truth values of sentences are
probability values’’ [3]. The principle of probabilistic logic lies in the fact that the
truth-values of propositions are their probability of occurrence. The purpose is
then to deal with propositional probabilities (i.e., probabilities assigned to particular
propositions or assertions). The theoretical basics remain those described in Chap-
ters 7 and 8, except that the events are replaced by logical formulas, which we
will denote by f or c . Probabilistic logic then combines logic with probability
theory and reduces to ordinary logic when the probabilities of all sentences are
either 0 or 1. This approach is based in the possible-worlds semantic. Other
approaches have been developed by Halpern [4] and Fagin, Halpern, and Megiddo
[5].

The theoretical basics of probabilistic logic are those of probability theory on
one hand and of classical logic on the other. So we refer the reader to previous

Table 9.1 Logical Versus Set-Theoretical Notions

Logical Notions Set-Theoretic Notions

Propositions f Subsets A

Conjunction ` or & Intersection ∩
Disjunction ~ Union ∪
Implication → Inclusion ⊂, ⊆
Are, Is Belonging ∈
Negation  or Complementation A

Contradiction Empty set [

Tautology T Frame of discernment Q

Knowledge Base Network

Observations Evidence
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chapters. In this part, we will essentially give the differences in notations of both
kinds of probabilities, propositional and statistical.

Propositional and statistical probabilities: We note the difference between prop-
ositional probabilities and statistical probabilities. Propositional probabilities are
probabilities assigned to particular propositions or assertions, whereas statistical
probabilities make assertions about the proportion of individuals from a particular
set that are members of some other set, such as the proportion of individuals having
a fitness equal to or higher than the average in the real population (out of all possible
populations). We may also view this as attributing a property to a proportion of
individuals in a set with a certain probability.

Random variable: A random variable is a term in a language that can take on
different values [6]. In the propositional approach, a random variable takes its
value in some set. This set of all the possible values a variable can take is called
its domain. We keep the notation of X for the random variable, and we will denote
by DX its domain (e.g., DX = R, but it can be something else). The possible values
X can take are then x1 , x2 , . . . , elements of DX . A Boolean r. v. is one whose
domain has only two values. In general, we note D = {TRUE,FALSE}, but also
D = {YES,NO}, D = {0, 1}, and so on. Rather than writing X = TRUE, we simply
write X and also X for X = FALSE.

Possible world: Let X1 , X2 , . . . be a set of random variables, and let Q be
the set of possible worlds. A possible world assigns one value to each random
variable:

u |= X = x ≡ X(u ) = x (9.1)

means that the variable X is assigned value x in the world u ∈Q. The right-hand
side of the equivalence corresponds to the notations of statistical probabilities.

Proposition and formula: A proposition is a Boolean formula made from
assignments of values to variables. For example, f = [X = x] is the proposition
that variable X has value x. It can either be true or false. A proposition is equivalent
to an event A for statistical probabilities.

Probability distribution and measure: A probability distribution is a mapping
from Q, the set of possible worlds, to [0, 1], assigning to each world a measure
between 0 and 1, such that

∑
u ∈Q

p(u ) = 1 (9.2)

The probability of a proposition is then

P(f ) = ∑
u |= f

p(u ) (9.3)

which is the sum of all the measures of the worlds in which is TRUE.
Certainty: A formula f is certain if its probability is 1.
The major difference compared with propositional probabilities is that the

statistical probability operator must specify a set of placeholder variables—we are
not talking about a particular individual but about a set of individuals.
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Statistical probability: Let f be a formula and x a vector of n objects. Then,
P(f ) is the statistical probability of f . We also need a measuring function, known
in statistics and probability theory as a random variable (see any standard reference
on probabilities). These variables are used to map individual objects (or properties
of objects) to real numbers in order to discuss these objects or properties.

9.4 Fuzzy Logic

One of the first papers proposing fuzzy logic for natural-language modeling was
written by Lakoff [7]. For a point of view arguing that fuzzy logic is nothing other
than classical logic in disguise, see Elkan [8] and the well-argued answer of Klir
and Yuan [9].

Degrees of memberships mA (u ) are truth-values x.
Standard Lukasiewicz logic Lℵ0 : This infinite-valued logic is isomorphic to

fuzzy-set theory based on standard fuzzy operators. Let x and y be truth values of
[0, 1]:

 x = 1 − x (9.4)

x ` y = min(x, y) (9.5)

x ~ y = max(x, y) (9.6)

x → y = min(1, 1 + x − y) (9.7)

x ↔ y = 1 − |x − y | (9.8)

Fuzzy propositions: The fundamental difference between classical propositions
and fuzzy propositions is in the range of their truth-values [10]. Let Q be a universe,
u an element of Q, and A and B two fuzzy sets of Q (A, B are fuzzy predicates.).
We can distinguish four types of fuzzy propositions:

1. Unconditional and unqualified fuzzy propositions: f : [u is A];
2. Unconditional and qualified fuzzy propositions: f : Prob([u is A]) is P;
3. Conditional and unqualified fuzzy propositions: f : if [u is A], then

[v is B];
4. Conditional and qualified fuzzy propositions: f : Prob([u is A ] | [v is B])

is P.

Fuzzy quantifiers: In general, these are fuzzy numbers that take part in fuzzy
propositions [9]. They are of two kinds:

1. Defined on R and characterizing linguistic terms such as about 10, much
more than 100, at least about 5, and so forth:
a. f : ‘‘There are k n’s in N such that [u (n) is A];’’
b. f : ‘‘There are k n’s in N such that [u1(n) is A1] and [u2(n) is A2];’’
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2. Defined on [0, 1] and characterizing linguistic terms such as almost all,
about half, most, and so on:
a. f : ‘‘Among n’s in N such that [u1(n) is A1], there are k n’s in N such

that [u2(n) is A2].’’

Linguistic hedges: These are linguistic terms, such as very, more or less, fairly,
extremely, and so on, used to modify fuzzy predicates, fuzzy truth-values, and
fuzzy probabilities:

f : [u is A] → Hf : [u is HA]

9.4.1 Calculus and Reasoning

In fuzzy logic, we use the generalizations of classical inference rules, such as
Generalized modus ponens

Rule: f1 : ‘‘If u1 is A, then u2 is B’’

Fact: f2 : ‘‘u1 is A1’’

Conclusion: C: ‘‘u2 is B1’’
(9.9)

Generalized modus tollens

Rule: f1 : ‘‘If u1 is A, then u2 is B’’

Fact: f2 : ‘‘u2 is B1’’

Conclusion: C: ‘‘u1 is A1’’
(9.10)

Generalized hypothetical syllogism

Rule: f1 : ‘‘If u1 is A, then u2 is B’’

Fact: f2 : ‘‘u2 is B, then is C’’

Conclusion: C: ‘‘u1 is A, then is C’’
(9.11)

9.5 Possibility Logic

Let A be a set of axioms A = {f1 , f2 , . . . , fn }. In possibilistic logic, a grade of
possibility P(f i ) and a grade of necessity N(f i ) that f i is true is assigned to each
formula of A, i = 1, . . . , n.

9.5.1 Calculus and Reasoning

Inference: Basic patterns of classical logic have been extended by possibilistic logic
[11]:

Modus ponens P(c ) ≥ N(c ) ≥ min(N(f ), N(f → c )

Modus tollens P(f ) ≤ N(f ) ≤ max(P(c ), 1 − N(f → c )
(9.12)
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9.5.2 Dealing with Uncertainty

The concept of uncertainty in possibility logic is handled this way:

N(f ) = 1 ⇒ f is TRUE

P(f ) = 0 ⇒ f is FALSE

N(f ) = 0 or P(f ) = 1 ⇒ Total uncertainty about the truth of f

(9.13)

Possibilistic logic offers an absolute reference point for expressing ignorance.

Certainty: N(f ) = 1, N(  f ) = 0

Ignorance: N(f ) = N(  f ) = 0

Ignorance cannot be modeled in probability theory, where it is approximated
by randomness. Possibility cannot model randomness.

Attach weights of uncertainty to rules ‘‘if f , then c ’’ in complete accordance
with classical logic. The quantity N(f → c ) is very close to conditional probability
measure:

N(f → c ) = N(c | f ) = 1 − P(  c | f ) (9.14)

Possibilistic logic is a quasi-qualitative calculus where numbers are compared,
not added or multiplied. Numbers are useful only to model grade, and no great
precision is required.

9.6 Incidence Calculus

Incidence calculus has been proposed by Bundy [12, 13] as a probabilistic logic
for reasoning under uncertainty. It is a method for managing uncertainty in a
numerical way. Unlike in other numerical approaches, in incidence calculus proba-
bilities are associated with a set of possible worlds rather directly with formulae.
The probability of a formula is then calculated through the incidence set assigned
to the formula. Incidence calculus itself appears to be a unification of symbolic
and numerical approaches. It can therefore be regarded as a bridge between the
two reasoning patterns [14]. Incidence calculus is used, for example, to represent
default logic and to implement assumption-based truth maintenance systems
(ATMS) [14, 15].

Possible worlds: Let Q note the set of possible worlds. A possible world is a
primitive object of incidence calculus. It can be understood as a partial interpretation
of some logical formula.

Incidence calculus theory: An incidence calculus theory is a quintuple (Q, p,
F, A, i) where

• Q is the finite set of the possible worlds, Q = {u1 , u2 , . . . , uN };
• p is a probability distribution over Q such that p(u ) is the probability of

the world u ;
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• F is the finite set of the propositions, F = {p1 , . . . , pn };
• A is the set of axioms;
• i is the incidence function assigning to each element of A, a subset of Q.

The set of all the formulae is L (F), called the language of F. A is thus a subset
of L (F).

Incidence function: An incidence function i is a mapping from to 2Q such that

i(f ) = {u ∈Q | u |= f } (9.15)

satisfying two conditions:

i(f1 ` f1) = i(f1) ∩ i(f2) and i(⊥) = [ (9.16)

i(f ) is called the incidence set of f and is thus the subset of Q containing all
the worlds u in which f is TRUE.

Lower and upper bounds: For any formula f ∈L (F), f ≠ A, we can only get
a lower bound of its incidence set

i*(f ) = ∪
(c → f ) = T

i(c ) (9.17)

and an upper bound:

i*(f ) = Q − i*(  f ) (9.18)

For any f ∈A, we have i*(f ) = i(f ).
(c → f ) = T is the semantical implication also denoted by c *** f, and in

(9.15), it means that the disjunction is performed for all c ∈L (F) such that
(c → f ) is TRUE, f ∈A. Note that (c → f ) = T ⇔ c ` f = c ⇔ i(c → f ) = Q.

Probability: Let p be a probability distribution over Q. The weighted probability
is the measure P such that

P(A) = ∑
u ∈A

p(u ) (9.19)

Equation (9.19) is thus a probability measure, and it follows that P(Q) = 1.
The probability of the formula is thus

Prob(f ) = P(i(f )) (9.20)

Equivalently, if f ∈L (F) − A, then the probabilities of its lower and upper
bound are, respectively,

Prob*(f ) = P(i*(f )) and Prob*(f ) = P(i*(f )) (9.21)
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The probabilities of the lower and upper bounds are equivalent to the belief and
plausibility functions in the Dempster-Shafer theory. The conditional probability is
defined as

Prob(f | c ) =
Prob(f ` c )

Prob(c )
(9.22)

Basic incidence assignment: Given a set of axioms A, a basic incidence assign-
ment ii is an incidence function defined on A which satisfies

ii(f ) ∩ ii(c ) = [ if f ≠ c (9.23)

and

ii(⊥) = [ and ii(T ) = Q − ∪
j

ii(f j ) (9.24)

It follows that the incidence function i can be defined from ii:

i(f ) = ∪
(c → f ) = T

ii(c ) (9.25)

It can be shown that, given an incidence calculus theory (Q, p, F, A, i), there
exists a basic incidence calculus assignment for I [14].

9.6.1 Calculus and Reasoning

Liu and Bundy [16] propose a method for combining different pieces of evidence
in the incidence calculus framework as an alternative to Dempster’s rule of combina-
tion. They show that their approach is more powerful than Dempster’s rule in the
sense that it can be use to combine non-DS-independent pieces of evidence. The
combination rule involves two steps:

1. Construction of a joint space;
2. Propagation of the information in this space.

9.6.1.1 Step 1: Two Sets of Possible Worlds

Let (Q1 , p1 , F, A1 , i1) and (Q2 , p2 , F, A2 , i2) be two incidence calculus theories
whose probability spaces are DS independent. Then, another two incidence calculus
theories can be constructed from them, say (Q, p, F, A1 , i ′1) and (Q, p, F, A2 , i ′2)
such that

• Q is the joint set of possible worlds

Q = (Q1 × Q2) − Q0 (9.26)
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with

Q0 = ∪
(f 1 ` f 2 ) = ⊥

i1(f1) × i2(f2) (9.27)

where ‘‘×’’ is the Cartesian product and ‘‘−’’ is the set subtraction operator.
An element of Q is thus a pair u = (u1 , u2).

• The new probability distribution on Q is then

p(u ) = p[(u1 , u2)] =
p1(u1)p2(u2)

1 − ∑
u ′ ∈Q0

p1(u ′1)p2(u ′2)
(9.28)

• The new incidence functions are defined by

i ′1(f1) = (i1(f1) × Q2) − Q0 , f1 ∈A1 (9.29)

i ′2(f2) = (Q1 × i2(f2)) − Q0 , f2 ∈A2 (9.30)

The principle of this step is that

if u1 ∈Q1 makes f1 ∈A1 true,

and u2 ∈Q2 makes f2 ∈A2 true,

then (u1 , u2) ∈Q makes f1 ` f2 ∈A true.

or, equivalently, if u1 ∈ i1(f1) and u2 ∈ i2(f2) then (u1 , u2) ∈ i(f1 ` f2).
However, the elements of Q that make TRUE must be taken out (these form the
set Q0).

9.6.1.2 Step 2: One Set of Possible Worlds

Let (Q, p, F, A1 , i1) and (Q, p, F, A2 , i2) be two incidence calculus theories based
on the same set of possible worlds Q, with p being a probability distribution on
Q. Given two incidence functions i1 and i2 from two observations (and their
associated sets of axioms), the joint impact of information carried by the two
theories is represented by a quintuple (Q, p, F, A, i), where

• A is the set of axioms comprising the (true) conjunctions of formulae of A1
and A2 :

A = {c | c = f1 ` f2 , where f1 ∈A1 , f2 ∈A2 , c ≠ ⊥ } (9.31)

• i (c ) is the incidence set of the formula c ∈A equal to

i(c ) = ∪
(f 1 ` f 2 → c ) = T

i1(f1) ∩ i2(f2), c ∈A (9.32)
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Also, let

i(⊥) = [ and i(T ) = Q (9.33)

Liu and Bundy have proved that (Q, p, F, A, i) is also an incidence calculus
theory [16] and that this rule obtained the same results as that of Dempster.

9.6.2 Dealing with Uncertainty

Pieces of evidence are represented by incidence calculus theories, comprising the
five elements described above. ii(T ) = Q − ∪j ii(f j ) is an alternative way to represent
ignorance.

9.6.3 Final Remarks

Let us conclude this section with the following remarks:

1. Formal relations have been established with the Dempster-Shafer theory
[17].

2. Links have been made with ATMS [14, 15]. We have proven: (a) that
managing nodes in an ATMS is equivalent to producing incidence sets of
these statements, (b) the equivalence between the justification set for a node
and the implication relation set for this node, and (c) that incidence calculus
provides a theoretical basis for constructing ATMS.

9.7 Introductory Discussion of Graph-Based Approaches

Bayesian networks appeared in the late 1970s. They were first developed to model
distributed processing in reading comprehension. A few years later, Bayesian net-
works imposed themselves as a general representation scheme for uncertain knowl-
edge. Pearl [18, 19] especially has shown that the marginal distribution for
individual nodes can be obtained by using only local computation. It is the basis
for graphical representation and propagation of knowledge. Hence, since 1986,
several architectures for exact computation of marginals using local computation
in uncertainty reasoning have emerged: In 1988, Lauritzen and Speigelhalter [20]
gave an alternative architecture for computing marginals, based on junction trees.
Jensen, Olesen, and Andersen [21, 22] modified the architecture of Lauritzen and
Speigelhalter and then expanded the case of singly connected Bayesian networks
considered by Pearl to multiple connected networks. This improved architecture
led to more efficient computations. In parallel, other authors were interested in
belief-function propagation (instead of probabilities) in graphical schemes, so simi-
lar techniques were developed for belief functions. Since 1985, the problem of
propagating belief functions in a diagnosis tree has been posed by Gordon and
Shortliffe [23]. Because their method involved an approximation, Shafer and Logan
[24] proposed an exact implementation of Dempster’s rule of combination; at the
same time, Shenoy and Shafer [25] presented a general scheme for propagating
belief functions with local computation. This last architecture is valid for certain
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kinds of trees that admit a transformation in qualitative Markov trees; it also
generalizes the computational scheme of Shafer and Logan for diagnosis trees, as
well as Pearl’s scheme for Bayesian causal trees. Led by the idea of generalization,
Shenoy and Shafer [25, 26] proposed an abstract framework for computing margin-
als in join tress. They called this framework a valuation-based system (VBS), in
which different formalisms could be considered, such as Bayesian probabilities,
belief functions, and possibilities. Some comparison of these different architectures
has yet been done [27]. It appears that the most suitable one is that proposed by
Shenoy and Shafer [28], which later became known as valuation networks (VNs)
or VBSs [29]. An overview of graphical approaches has been recently presented
by Pearl [30].

9.7.1 Basic Graph-Theoretic Notions

Here are some basic graph-theoretic notations.
Graphs: A graph (or network) is a pair G = (U, L), where U is a finite set of

nodes, and L is a finite set of links (or edges) between nodes.
Nodes: A node represents a random variable X, whose frame (domain or

universe, that is, the set of all possible states of X) is denoted by QX . Most of the
time, a node and its corresponding variable are confused. In a graph, a node is
represented by a circle. A sequence of nodes is called a path. A subset of nodes is
said to be complete if there are links between all nodes of this subset. A subset
that is maximal with this property is called a clique [20].

Links: A link (or edge) is an unordered pair of elements of a set of nodes U.
In a graph, a link is represented by an arrow or an arc (depending on whether the
graph is direct or not). A direct link is often noted A → B, for A, B ∈U. Direct
links represent causal relationships.

Hypergraph: A hypergraph is a graph whose links connect two or more nodes.
Its links are then called hyperlinks or hyperedges.

Different kinds of graphs: A graph can be any of the following:
A graph is direct (undirected) if its links have a direction (no direction). For

example, A implies B, and B does not imply A (direct), or A implies B, and B
implies A (undirected).

A graph is simply (multiple) connected if each node has only one (more than
one) incoming.

A graph is cyclic (acyclic) if it contains (does not contain) a cycle. This character-
istic is valid only for direct graphs.

Among these combinations, we note some particularly interesting and fully
used graphs: direct acyclic graphs (DAGs), causal trees, and diagnosis trees.

Trees: A tree is a graph in which every node except the root has only one
incoming link.

• A join tree is a tree whose nodes are subsets of variables such that if a
variable is in two distinct nodes, then it is in every node on the path between
the two nodes [27].

• A binary join tree is a join tree such that no node has more than three
neighbors.
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• A junction tree is a join tree whose nodes are the cliques of the triangular
moral graph.

• A triangulated graph is a graph containing no cycles of length 4 or more,
without a chord.

• A moral graph is built by making links between unconnected parents
(‘‘marrying’’ parents) of a common child and dropping its original directions.

Direct acyclic graphs: A DAG is a graph that is direct and contains no cycles.
It can, however, be simply or multiple connected. A DAG is also be called a causal
network or causal graph.

Parents-children: In a direct graph, nodes can be either parents or children,
depending on the direction of the link. For example, if A → B, A is the parent of
B, and thus B is the child (sometimes called the son or daughter) of A. A node
can have more than two parents! If every node in the graph has only one parent,
then the graph is a tree.

Causal trees: A causal tree (or a direct tree) is a simply connected DAG. It is
a tree whose links are direct, whose nodes each have only one incoming link, and
where no cycles exist.

Local computation: The main advantage of network-based (or graph-based)
approaches is the local-computational technique, which allows computing margin-
als without explicitly computing the joint.

9.8 Bayesian Networks

Bayesian networks, also called Bayesian belief networks (or simply belief networks)
or causal probability networks, became popular at beginning of the 1990s, within
the community working on the artificial intelligence probabilistic. This model of
reasoning was first introduced by Pearl [19]. A Bayesian network is a graphical
representation of the relations between the variable set used to represent the knowl-
edge of a given domain. Mathematically, this structure type is called a DAG in
which nodes represent the variables of interest, and links connecting nodes represent
causal influences between variables (i.e., their conditional dependencies). It consists
then of two parts: a qualitative part (the graph representing the dependencies
between variables) and a quantitative part (the conditional probabilities associated
with each variable). For tutorials or introductions on belief networks, see [21,
31–33].

A Bayesian network is a 3-tuple GBN = (U, L, P), where

• U = {X1 , . . . , Xn is the set of (random) variables of interest, often called
the universe. For X ∈U, QX is the frame (of discernment) of X (i.e., the set
of all possible values for X).

• L is the set of links (arcs) over U representing the conditional dependencies
between variables, such that (U, L) is a DAG.

• P is the set of the corresponding conditional probabilities.

Each variable X of U has a finite set of mutually exclusive states (QX ) and a
conditional probabilities table.
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Product space: Given a nonempty set of variables U ⊆ U, QU denotes the
Cartesian product of all the frames QX such that X ∈U, and is called the frame
for U:

QU = × {QX | X ∈U} (9.34)

where ‘‘×’’ is the Cartesian product.
Conditional probability table: The conditional probability table (CPT) is a

fixed matrix quantifying a link between two nodes, X → Y:

PY | X = {PY | X }(i, j) = {P(Y = yj | X = xi } (9.35)

for xi ∈QX and yj ∈QY . Figure 9.1 is an example of a Bayesian network: Node
D has nodes B and E as parents, and its CPT is P(D | B, E). If X does not have
any parent, then the table reduces to prior probabilities P(X = x), x ∈QX . This is
the case for nodes A and E.

Joint probability: The generalization for n random variables leads to the joint
probability:

P(U) = P(X1 , . . . , Xn ) = P
Xi ∈U

P(Xi | Xi + 1 , . . . , Xn ) (9.36)

In a Bayesian network, because of the dependencies (independencies) between
variables, (9.36) reduces to

P(U) = P
Xi ∈U

PXXi | X 1
1 , . . . , X 1

k C (9.37)

where X 1
1 , . . . , X 1

k are the parents of Xi .
Marginal probability: The marginal probability for some subset U of variables

of U, U ⊂ U

P(U) = P({X, X ∈U} = ∑
y ∈Qy , Y ∈U − U

P(U, Y = y) (9.38)

Figure 9.1 A Bayesian network.
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where k is an order sum, and k = |U − U | represents the number of variables in
U − U.

Evidence: According to Pearl [19], the incoming information can be of two
kinds:

1. Specific evidence, which includes direct observations that validate with cer-
tainty the values of some variables in the graph;

2. Virtual evidence, which are judgments based on undisclosed observations
that affect the belief in some variable in the graph.

Belief: A new evidence implies then the instantiation of the variables correspond-
ing to it, updating the conditional probabilities attached to the corresponding
nodes. The resulting belief is then

Bel(a) = P(A = a | E = e) (9.39)

Bel(a) is the belief then accorded to proposition A = a, and E is the value
combination of all instantiated variables.

9.8.1 Calculus and Reasoning

In a graph, a link represents the dependency between two variables. A missing link
between two variables means that they are independent. Because a Bayesian network
is based on probability theory, this kind of independence refers to statistical indepen-
dence.

Inference: The objective is to know the marginal distributions (or marginals,
for short) of some variables of interest, which will be computed from the conditional
tables and prior probabilities, using Bayes’s rule. Given H, a set of hypotheses,
and E, a set of evidences (observations), we can determine h ∈H given e ∈E:

P(H | E) =
P(E | H)P(H)

P(E)
(9.40)

Local computation: If there are a lot of variables in the network, the computa-
tion of the joint probability becomes intractable. However, local computation is
possible, enabling the computing of marginals without explicitly computing the
joint probability.

Bayesian inference algorithms: Algorithms based on local computations have
been proposed [20, 22]. We note two kinds of inference algorithms in Bayesian
networks:

1. Exact algorithms;
2. Approximate algorithms.

9.8.2 Dealing with Uncertainty and Knowledge

As in all graph-based approaches, the knowledge is represented by the Bayesian
network itself:
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1. The graph represents the known dependencies between variables.
2. The CPTs and prior probabilities of variables must be known to initialize

the network and compute the inferences.
3. An observation serves as an evidence to propagate the information into the

network and update the marginal probabilities.

Because the theoretical framework of a Bayesian network is Bayesian probabil-
ity theory, uncertainty is represented through probability measures.

9.8.3 Final Remarks

Here are the final remarks for this section:

1. The local-computation technique provides a solution to the problem of
computational complexity involved in joint probability distributions.

2. Main applications of Bayesian networks concern medical diagnosis, as well
as economics, genetics, statistics, and so forth. More recently, Bayesian
networks have been applied to target identification [34, 35].

9.9 Valuation-Based Systems

A valuation-based system is a general framework for the graphical representation
of systems reasoning under uncertainty. It enables the processing of uncertainty
described by different formalisms, including the theory of probabilities, the theory
of belief functions, the theory of possibilities, and so forth. This system was devel-
oped by Shenoy and Shafer [28] as a generalization of Bayesian networks and other
hierarchical evidence-based algorithms. It involves exact computation of marginals
using local computation.

A VBS consists of a 3-tuple {U, Q, V}, where

• U = {X1 , . . . , Xn } is the set of (random) variables of interest, often called
the universe.

• Q = {QX }X ∈U is a set of frames, where QX is the frame (of discernment) of
X (i.e., the set of all possible values for X).

• V = {Vi }i = 1, . . . ,m is a set of m valuations associated with each of the m links
between variables.

A valuation network is an undirected graph built like any other graph, such
as a Bayesian network. The nodes (circles) represent the variables of the problem,
and the links denote influences between variables. The valuations are represented
by diamond-shaped nodes. Figure 9.2 gives an example of a VN issued from the
transformation of the Bayesian network of Figure 9.1.

Variables: Let us call U the set of all the variables (circular nodes) of the
problem, and let X be one of these variables. We call the set QX of all the possible
values for X the frame for X.
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Figure 9.2 Example of a VN.

Configurations: Let U be a nonempty set of variables U ⊆ U, and let QU denotes
its frame. The elements of QU are called configurations of U. For example, if U is
a set of two binary variables X1 and X2, then the configurations for U are

QU = {(x1 , x2), (x1 , x2), (x1 , x2), (x1 , x2)} (9.41)

Valuations: Given a subset of variables U ⊆ U, a valuation for U represents
some knowledge about the variables in U.

V = ∪ {VU | U ⊆ U} (9.42)

If X ∈U, then we say that VU bears on X. We denote two kinds of valuations:
those defined on subsets of variables U ⊆ U and those defined for single variables
u ∈ U. Valuations are primitives in the abstract framework of VBS, and that’s why
they require no definition. Valuations can represent different formalisms, such
as probability theories, Dempster-Shafer theory, possibility theory, and so forth.
However, besides any interpretation, valuations can simply be seen as objects that
can be marginalized and combined.

Joint valuation: The combination of all the valuations is called joint valuation,
and the objective is then to compute the marginals of the joint valuation for all
the variables of interest. Shenoy and Shafer have presented an algorithm for doing
so without explicitly computing the joint valuation.

9.9.1 Calculus and Reasoning (Aggregation/Fusion)

In a graph, a link represents the dependency between two variables. A missing link
between two variables means that they are independent. Because a Bayesian net-
work is based on probability theory, this kind of independence refers to statistical
independence.

In a VBS, as in a Bayesian network, the objective is to compute the marginals
of the joint valuation for some variables of interest. Shenoy and Shafer have
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presented an algorithm for doing so, without explicitly computing the joint valua-
tion (i.e., using local computations).

Combination: Let V1 and V2 be valuations for two nonempty subsets of U,
U1 and U2 . A combination is a mapping ⊗: V × V → V, such that V1 ⊕ V2 is a
valuation for U1 ∪ U2 . The operation corresponds to the aggregation of knowledge.
For example, the basic probability assignment (BPA) combination uses Dempster’s
rule of combination [26]. The combination of all the valuations is called joint
valuation:

⊗ {V ∈V} (9.43)

Marginalization: Let U1 and U2 be two subsets of U on which valuations are
defined, such that U1 ⊆ U2 . Thus, a marginalization to U1 is a mapping

↓U1 : ∪ HVU1 | U1 ⊆ U2J → VU1 (9.44)

such that V ↓U1 is a valuation for U1 if VU2 is a valuation for U2 . Marginalization
corresponds to a coarsening of a knowledge by deleting variables. If VU is a
valuation for U (representing then some knowledge about the variables in U), and
if X ∈U is a variable of U, then the marginalization from U to U − {X} (U pruned
from the single variable X), noted as V (U {X}), represents the knowledge about
remaining variables in U − {X} implied by VU , disregarding the variable X. In
Dempster-Shafer theory, this corresponds to minimization over QX .

Axioms for combination and marginalization: The operations of combination
and marginalization must satisfy three axioms to ensure that the algorithm gives
correct answers:

1. Order of deletion does not matter.
2. Combination is commutative and associative.
3. Marginalization is distributive over combination.

Axiom 3 makes local computation possible because it states that it is not
necessary to compute ⊕ {V | V ∈V}.

Local computation: If a network has N variables with only two states in their
respective frames, there will be 2N configurations for the entire set of variables.
Hence, joint valuation with a high number of variables is not easy to compute.
Local computation is then a solution to avoid explicit computation of the joint
valuation, while allowing the computation of the desired marginals. The algorithm
has been proposed by Shenoy [26]. Shenoy shows first that the algorithm must
satisfy the three above axioms. The basic idea of this fusion algorithm is to delete
successively all variables but X, the variable for which we want to compute the
marginal. Details can be found in [26].

9.9.2 Dealing with Uncertainty and Knowledge

In a VBS, knowledge is represented by the graph itself, with its nodes (variables
of interest and their possible values) and its links corresponding to dependencies
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between variables. Moreover, the knowledge is represented by the valuations associ-
ated with the links. Two kinds of knowledge can be distinguished:

1. Generic knowledge is represented by valuations bearing on sets of variables.
In general, this kind of knowledge will not change, being provided by experts
(equivalent to a knowledge base in expert systems).

2. Factual knowledge is represented by valuations bearing on single variables.
This kind of knowledge is subject to changes according to the problem
(equivalent to a database in the expert system).

Because VBS is a general framework allowing the use of different formalisms
dealing with uncertainty, uncertainty is thus represented and managed following
the corresponding theories. Valuations thus become the carriers of uncertainty
quantifications and representations:

1. In probability theory, valuations are called probability potentials.1

2. In the Dempster-Shafer theory, valuations are called BPA potentials.2

3. In possibility theory, valuations are called possibility potentials.

According to Shenoy, using VBS for decision problems is a more efficient
method than using decision trees and influence diagrams.
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Computational Aspects of Information
Fusion
Steve Wark and Jean Roy

10.1 Introduction

As has been discussed, data and information fusion plays a critical role in achieving
situational awareness for future command-and-control systems. Information fusion
(IF) allows the commander to cope with the complexity and tempo of operations
in the modern dynamic battle space and serves an important role in asymmetric
conflict. Data and information fusion draws together concepts from a wide range of
fields: psychology, human factors, knowledge representation, artificial intelligence,
mathematical logic, and signal processing. The complex nature of IF environments,
IF sources, and IF processes is carried over into the challenging requirements for
IF systems and the computational systems needed to implement them.

This and the following chapters review the computational issues surrounding
the development of IF systems, with a focus on the higher levels of information
fusion and issues relating to an integrated IF environment rather than the specialized
issues related to multisensor fusion and control. Some of the considerations for an
integrated IF environment are:

• What are the key characteristics of the IF domain and the performance
requirements that they impose on IF systems?

• What are the key elements of computational infrastructure relevant to the
design and performance of IF systems? What are suitable system architec-
tures, computer networks, middleware, information sources, and human-
computer interfaces?

• What key concepts in knowledge-based and artificial intelligence systems
impact upon higher-level fusion processes?

• What technologies are appropriate for engineering IF systems? Are reactive
systems like subsumption architectures, neural networks, rule-based systems,
logically based systems, or case-based systems become?

• What software architectures are appropriate for IF systems? Are systems
such as blackboard architectures and multiagent systems suitable?

Moving beyond national-defense systems, a coalition information system incor-
porating information sources and systems from diverse agencies, organizations,
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sectors, or nations, will almost certainly require a heterogeneous distributed archi-
tecture. What middleware is appropriate for this, especially given that coalitions
and organizational alliances come and go and information dissemination between
participants often needs to be restricted. These issues are explored in the remaining
chapters of this book.

10.2 Information-Fusion Domain Characteristics

IF technology can be applied to information-processing tasks in any complex,
dynamic domain where information is derived from a number of sources; large
volumes of information need to be processed; tight time constraints apply; the
dimensionality of the information is high; or adaptive information collection is
required. In these cases, the goal of IF technology is to reduce the complexity to
a level manageable by a human analyst or operator. This can be achieved by, for
example, correlating information from multiple sources, extracting key information
from ‘‘noise’’ or clutter, automating the analysis processes, aggregating and
abstracting information to a higher level, or optimizing information collection. IF
technologies can be applied to diverse domains, including command and control,
intelligence analysis, strategic analysis, counterterrorism, and homeland security.

This section discusses the main characteristics of the IF domain and its conse-
quent performance requirements in order to elicit the key computational require-
ments for IF systems. The focus of this discussion will be on information fusion
for situation awareness and decision-making in the coalition command-and-control
domain, but it should be noted that many of the issues and characteristics discussed
also apply to other application domains.

Previous chapters have introduced the concept of situation analysis as a unifying
framework for situation awareness and data fusion in the command-and-control
domain, as illustrated in Figure 10.1. The key elements of this model are the
characteristics of the environment in which the situation exists, the characteristics
of the information sources and processes used for situation acquisition, and the
characteristics of the situation-analysis applications (SAAP) that support the estab-
lishment and maintenance of situation awareness for the decision-maker.

10.2.1 The Environment

IF technologies are applied to environments that are complex (hence, the need for
these technologies) and share five dominant characteristics:

• Feature rich/dense: This is true in both the spatial and temporal domains.
Large quantities and a variety of features in the environment may include
environmental clutter, routine traffic, and unintentional interference, as well
as target of interest (TOIs).1 This leads to a high frequency of events that
need to be analyzed or processed.

1. Here the term TOI is used to represent physical entities, as well as more abstract features (e.g. patterns
of activities, relationships, threats or opportunities) that may be of interest to the analyst or operator.
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Figure 10.1 Elements of the situation-analysis framework.

• Highly dynamic: Environmental clutter may change dramatically, and threats
or opportunities may emerge suddenly. The world state can change while
the IF system is processing events. Emerging TOIs need to be identified and
responded to before they are realized or other operational deadlines are
reached. TOIs may seek (or be generated) to minimize the response time
available to IF systems via countermeasures or deceptive behavior or both.

• Unpredictable: Due to nondeterministic clutter, anomalous traffic, results
of own actions, or hostile intent, the environment may not be suitable to
formal description, and TOIs may have nondeterministic properties (because
of intelligent behavior or responses, such as deception). Behaviors of entities
in the environment may not be rational due to conflicting goals or appear
not to be rational because of unknown or mistaken goals.

• Deceptive: Driven by an organized, intelligent adversary, TOIs may actively
attempt (or be generated) to exploit IF vulnerabilities, or may they adapt
(or be adapted) to counter IF-system capabilities. This is notionally different
from domain unpredictability, which may occur independently of IF-system
capabilities. IF systems need to be aware of own vulnerabilities and seek to
refine processes dynamically to counter or minimize these vulnerabilities and
their consequences.

• High risk: Due to the nature of military domains, TOIs may suddenly appear,
leaving little time to respond (e.g., as result of deception or countermeasures).
Threats posed or the consequences of errors may be disastrous or life
threatening.

This environment is important at all echelons: strategic, operational, and
tactical.



234 Computational Aspects of Information Fusion

Table 10.1 lists examples of the drivers for these characteristics that are applica-
ble to the tactical command-and-control environment.

10.2.2 The Information Sources

The information sources and processes required for situation acquisition also con-
tribute to the characteristics of the IF domain. The dominant characteristics are:

• Multisource: Accessing multiple similar or dissimilar sources, including sen-
sors and databases. IF systems attempt to maximize utilization of information
obtained from multiple sources and must identify and deal with problems
such as incestuous fusion and conflicting information from multiple sources.

• Uncertain: Because of stochastic detection processes (noise), measurement
uncertainty, biases, incomplete or inconsistent information, IF processes
must seek to extract TOIs and identify relationships of interest under these
conditions.

Table 10.1 Main Characteristics of the IF Environment

Characteristics Example in Tactical C2 Domains

Feature rich/dense Clutter (e.g., terrain, sea state, weather, wildlife)
Countermeasures (e.g., decoys, jamming, chaff)
RF interference (e.g., data links, radio, radar emitters)
Huge surveillance volume of interest (e.g., search radars, satellites)
High density of entities/activity (RF signals, sea/air traffic)
Wide variety of entities/activity (e.g., RF emitters, sea vessels)
Mixed military/civilian environment (commercial shipping/air lanes)

Highly dynamic High speed threats (supersonic missiles)
Stealthy, low-observable threats (stand-off weapons, fighters)
Close proximity of threats (littoral operations, rules of engagement)
Pop-up threats (e.g., sea-skimming missiles, cruise missiles)
Mobile targets (e.g., scud missiles)
Multiple threats (uncoordinated strikes)
Simultaneous convergence of threats (coordinated strikes)

Unpredictable Clutter
Mixed military/civilian environment
Advanced threats (new technologies)
Intelligent, adaptive threats/targets (new doctrines)
Maneuvering threats/targets (evasion)
Ill-structured problems (no formal description available)
Competing or conflicting goals (own and threat systems)

Deceptive Innovative operational concepts
Camouflage (passive)
Spoofing (false information/identification)
Countermeasures (e.g., false targets)
Exploitation of critical vulnerabilities (intelligent threats)
Deceptive maneuvering
Exploitation of rules of engagement

High risk Pop-up threats (short reaction times available)
Critical vulnerabilities
Risk of collateral damage
Risk of fratricide
Political consequences
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• Delayed: Collection latencies may be introduced by acquisition, processing,
or network delays. Delayed information may delay processing or confuse
temporal relationships. IF processes must seek to reconstruct temporal
relationships.

• Dynamic: Adaptive control of collection and analysis processes is needed to
respond to dynamic environments.

• Resource limited: Sensors and sources may have resource limitations such
as CPU, network, energy, or timing limits. IF systems may need to schedule
resource usage to remain within these limits.

Examples of these characteristics are shown in Table 10.2.

10.2.3 The Fusion Process

The situation-analysis/IF process has characteristics that allow it to deal with the
environmental and situation-acquisition processes. The main characteristics of the
analysis processes required for situation analysis and information fusion are

• Complex: The scale, depth, and interdependencies of analysis problems may
be beyond human capabilities (given time constraints).

• Heterogeneous: The system needs to be able to deal with heterogeneous
concepts, data, and TOIs.

• Robust: The system needs to be resilient in the face of a wide range of
conditions and factors.

• Intelligent: The system needs to be adaptable to changing or evolving
environments.

Table 10.2 Characteristics of Situation Acquisition in IF Domain

Characteristics Examples in Tactical C2 Domains

Multisource Shipboard radar/IFF/IRST/ESM
Sonar arrays
Cooperative Engagement Capability
Networkcentric warfare
Electronic-warfare databases

Uncertain Thermal noise (RF/IR)
Registration biases (over-the-horizon radars)
2-D versus 3-D radars
Terrain masking

Delayed Search radar (rotation rate = update rate)
UGS networks
Network delays (out-of-sequence reports)
Processing delays

Dynamic Sensor cuing
Multifunction phased array radars (MFAR)
Kalman filters

Resource limited Beam scheduling (MFAR)
CPU limits
Tactical digital information links (TADIL) bandwidth limits
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Table 10.3 presents these characteristics and the factors that contribute to
them.

10.2.4 The IF Application Perspective

The performance requirements for IF systems are determined by the characteristics
of the IF domain and the operational requirements of the application. The relative

Table 10.3 Main Characteristics of the Information Fusion Process

Characteristics Requirements/Contributing Factors

Complex Often have ill-structured problem not amenable to formal representation
Must deal with large-scale problems with large amounts of information to
process
Possess large solution space—no clearly optimal solution available
Present multiple alternatives—no unique solution path/line of reasoning
Must handle asynchronous data and information
Computational complexity of algorithms needs to be managed to ensure
timely solutions
May need to deal with multiple users
Often have distributed fusion nodes—distributed problem solving
Have distributed databases—legacy and proprietary systems
Must handle interoperability with services and coalition partners
Must deal with dynamic coalition formation

Heterogeneous Need to integrate/manipulate a variety of data
Need to deal with noncommensurate data and information types
Have a mix of diverse qualitative/quantitative information
Need to deal with multiple levels of abstraction
May need multiple interdependent analyses
Need for many independent/semidependent pieces of knowledge to cooperate
in forming a solution
Systems (and requirements) may be data driven and/or goal driven
Open system that incorporates human operators or ‘‘fusion nodes’’—user-in-
the-loop analyses
Need to deal with legacy and proprietary systems

Robust Need guaranteed (‘‘anytime’’) response
Need to perform when have unknown/unpredictable solution path
Need to be scalable to allow addition of new nodes, deal with bigger
problems
Need to evolve to adapt to changing force structures and requirements
Need intelligent failure management (graceful degradation)
Need to address security requirements

Intelligent May require hierarchical series of inferences
Will need to use multiple types of reasoning (e.g., spatial, temporal)
May need to use expert systems/rule-based systems/case-based reasoning/
blackboards
May need to employ explanation-based reasoning
May need to apply inductive or deductive reasoning
May require heuristic methods for ill-formed problems
May incorporated knowledge based systems
May need to use very abstract, symbolic, problem-solving approaches
Should cope with many diverse, specialized knowledge representations
Should be able to interface with a priori knowledge databases
Should be adaptive to deal with dynamic environment/situation acquisition
Should learn from experience
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importance of these requirements in a particular application domain dictates the
design of a suitable IF/situation-analysis architecture.

Table 10.4 lists the relative importance of requirements and the associated
criteria relevant to the performance of IF applications, which will guide the develop-
ment of a suitable IF architecture.

10.2.5 The Life-Cycle Support Perspective

For any operational system, life-cycle support and subsequent costs, whether finan-
cial or labor related, are of major importance. The key elements of life-cycle support
arise from the need to meet and maintain the performance criteria discussed in the
previous section—in particular, heterogeneity, scalability, robustness, and flexibil-
ity. Additionally, incremental growth and refinement of the IF system will be needed
to meet evolving requirements so ongoing system-development issues are also
important.

Table 10.5 lists some requirements relevant to life-cycle support for IF systems.

10.2.6 IF System Design

The development of an IF system needs to be grounded in the application domain
to which it applies. From the preceding discussion, however, it is clear that there
are some common principles of IF system design that should be applied to IF
systems in order to meet the requirements above. The system must do the following:

• Use a component-based software architecture to support scalability, ongoing
development, and system evolution;

• Incorporate distributed components, even if this only includes distributed
information sources connected to a centralized processing facility;

• Integrate heterogeneous components, including new and legacy systems;
• Be standards based to support integration, ongoing development, and system

evolution;
• Incorporate robust failure- and error-handling mechanisms;
• Incorporate mechanisms to manage information security and assurance.

IF systems tailored to particular application domains can then be built on top
of this framework, incorporating their particular functional requirements. Using
this approach, new applications can be developed rapidly by extending existing
systems.

10.3 System Architectures

The architectures needed for IF systems are shaped by the underlying computational
infrastructure in which they are implemented. As discussed in previous chapters,
IF systems can be modeled using the Joint Directors of Laboratories (JDL) model.
In this model [1], the level 0, 1, and 4 processes represent elements of the situation-
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Table 10.4 IF Performance Requirements/Criteria

Importance Requirements/Criteria

High Timeliness of solution*: This is of paramount importance in the tactical
domain. In other domains, quality of the solution may be more important than
timeliness, but in all cases some measure of timeliness appropriate to the
domain will apply.
Real-time performance*: This includes factors such as timeliness and guaranteed
performance and may be of high importance to tactical domains. In other
domains, timeliness of the solution may be the dominant requirement.
Efficient dynamic scheduling/control mechanisms*: In the tactical domain this
has high importance to ensure the timeliness of the solution in dynamic
environments, but it may be less important in other IF domains.
Efficient data/knowledge representation: This applies both to tactical domains,
where efficient computational mechanisms are required to ensure timeliness, and
to other IF domains where efficient algorithms are required to manage
computational complexity.
Scalability to large-scale problems: This will always be of high importance as
one of the main drivers for IF systems is to manage ‘‘information overload’’ in
human analysts.
Capability to deal with multiple interdependent processes: This is a similar issue
to scalability but is particular to managing multiple concurrent collection and
analysis processes, as well as the complexity of real-life problem domains (as
opposed to simplified models).
Interoperability of multiple heterogeneous technologies: Very different
computational technologies are needed to handle the various stages of the IF/
situation-analysis process, so any approach will require the integration of
different technologies.
Robustness: In all domains, failure modes must not be catastrophic and should
allow human intervention or provide controlled degradation of performance in
overload conditions and with system failure.
Trustworthiness: Operator confidence in any IF system is crucial if the
technology is to be applied effectively. This will often require transparency of
system operations to operators so that they can ‘‘drill down’’ into the system to
validate its performance against known measures.
Information security: This is always of high importance, particularly in a
coalition C2 environment where conventional security compartmentalization
may not be appropriate.

Medium Flexible prioritization, redistribution, and control of processing tasks: Given the
capability to deal with multiple interdependent processes, efficient and flexible
control of processing tasks is needed to optimize IF system performance in
dynamic environments. This is not considered a high-priority requirement here
because a human operator may usurp this functionality if no automated
mechanism is available.
Incremental refinement of solutions*: To provide robustness with partial
information or under time pressure, a partial solution may be required as
quickly as possible. Incremental refinement of the solution then allows further
deliberation/processing to improve the quality of the solution when time is
opportunistically available. In other domains where time pressure is not so
critical, the highest-quality solution may always be desired, and so greater
emphasis may be placed on criteria that contribute to an optimal solution.
Integration/manipulation of varied data types/formats/sources: Related to the
interoperability of heterogeneous technologies, IF systems will need to cope with
varied data and data sources. Standardization of data formats to achieve the
primary goal of interoperability of heterogeneous technologies may resolve this
issue. Use of standardized/common ontologies and automated translation
mechanisms will provide more scalable and dynamic interoperability of
heterogeneous data, which is particularly important in coalition environments.
Secure information distribution policies and management: In coalition C2
environments, conventional techniques may seriously impact system
performance. Metatagging of information and dynamic control of information
distribution policies between organizational, functional, and administrative
domains through automated policies would be much more appropriate to
efficient operation in a coalition IF system.
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Table 10.4 (continued)

Importance Requirements/Criteria

Lower Efficient management of a priori data and knowledge bases: IF systems in most
domains will generally require access to many diverse, and often large, data/
knowledge bases holding legacy and a priori information. Efficient IF system
performance will require intelligent management, control, and revision of these
data/knowledge bases.
Opportunistic problem-solving ability: When time is available, the system
should make good use of it. This may, for example, allow refinement of partial
solutions discussed above or allow the updating of system databases from
observed data.
Graceful degradation of system performance: This is related to IF system
robustness, but rather than requiring controlled degradation, which could be as
simple as switching to a backup system, graceful degradation of performance
with system failure or under overload conditions would provide greater
assurance of IF products.

*Particularly in tactical C2 domains.

acquisition process of the situation-analysis model described earlier involving
multisensor integration and adaptive sensor control (in the tactical C2 domain).
There are many specialized technologies relating to these processes, but this discus-
sion will be confined largely to general computational issues for information
fusion—those issues specific to levels 2 and 3 of information fusion, and how they
integrate with levels 0 and 1 (via level 4)—rather than attempt an in-depth analysis
of computational issues associated with levels 0 and 1.

In general (although not universally), at levels 0 and 1, and to some extent
level 4, fusion in the JDL model primarily involves numerical processing to extract
estimates of object characteristics and to apply parametric control signals. In con-
trast, at levels 2 and 3, fusion primarily involves symbolic processing to extract
situation and impact representations, although some work has applied numerical
estimation techniques to cluster objects using a priori templates, which is often
referred to as a ‘‘lower’’ level 2 function. The difference in the types of processing
required for the different fusion levels in the JDL model leads to significant differ-
ences in computational requirements throughout the system and across the many
different functional components.

As discussed above, IF systems may consist of many functional components,
and the architecture used to integrate these components depends on a number of
factors in the application domain. There are two fundamental models that can be
applied to IF system architecture—centralized and distributed systems, as illustrated
in Figure 10.2.

10.3.1 Centralized Systems

Centralized systems are based around a central node that handles all levels of
processing in the IF system. A centralized system can potentially provide optimal
system performance since all of the information relevant to all of the processing
tasks is available to it. However, in practice, centralized systems suffer from several
limitations, including the following:
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Table 10.5 IF Life-Cycle Support Requirements and Criteria

Importance Requirements/Criteria

High Modular, component based architecture: This is to allow incremental
development, refinement, and growth of an IF system. This is particularly
important for IF systems as the technology is still in the early stages of
development and often requires application- and domain-specific processing of
some sort.
Flexibility: The IF system should not be hardwired to a particular domain or
situation but should allow customization to tune applications to particular
domains, or even to particular situations in a domain, by the user or human
subject matter expert. This allows the IF system to be adapted to changing or
similar domains.
Interoperability with heterogeneous, including legacy, applications: The IF
system should make use of existing tools when appropriate and allow
integration with third-party applications, particularly in coalition C2
environments.
Standardized interfaces: This an important requirement to support coalition
interoperability and through-life development. Provided suitable interfaces have
been developed, many system-development requirements may be considered less
important.
Embedded performance-evaluation tools: These will allow the user to monitor,
evaluate, validate, analyze, and diagnose the behavior, dynamics, and
performance of the IF system.
Predictability: This is related to performance validation; the IF systems should
behave predictably in well-defined situations.
Documentation: Comprehensive documentation of the IF system will be
required to support the user and allow incremental refinement.
Embedded training/simulation tools: These will leverage off of embedded
performance-evaluation tools
Robustness: The IF systems should be robust to component failure, which may
arise from hardware failure, software defects, or incompatibility of new or
upgraded components.
Comprehensive licensing and support agreements: These will provide vendor
support to IF components and infrastructure, including validation of component
upgrades before integration with the IF system.

Medium Embedded self-diagnosis tools: These will allow the IF system to monitor its
own performance and alert the operator to any potential problems.
Ongoing ability to draw on a commercial skill base: This will simplify operator
training.
Availability of source code: The will allow refinement of individual components
and includes access to translations of any foreign-language code, particularly in
coalition operations
CASE/LCS tools for source code: These will allow effective use of source code
when available, including tools such as compilers, debuggers, run-time profilers,
and configuration-management and bug-tracking tools.
Code reuse/modularity: Source code should be designed to allow for easy
extension or modification (e.g., object-oriented code)
Cross-platform support: Development tools should support the ability to move
components to different operating systems. In the case of source languages and
the like, appropriate tools should be available on other platforms, and
components should not be developed in a proprietary language.
Efficient communication protocol(s): This aspect may be at odds with the
requirement for standardized interfaces (where efficiency may be sacrificed for
greater expressibility) but may be of higher importance in domains with
bandwidth or timeliness limitations.

Lower Costs: Must be affordable in terms of maintenance and support.
Platform independence: Components should be able to run on any available
platform.
Archival support: This should include datasets, data-base updates, and so forth.
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Figure 10.2 Centralized and distributed IF architectures.

• Developing a centralized system for large complex problems, such as an IF
system, is extremely difficult [2].

• Centralized systems represent potential bottlenecks [3]. A single system that
must perform all tasks can easily be overloaded and may slow operations
dramatically. Hence, centralized systems may not operate well in dynamic
domains.

• Centralized systems have a single point of failure [2, 3].
• Centralized systems are critically dependent on the communication infra-

structure between the information sources or sensors and central processing
system. Network traffic can also form a bottleneck in the system. Centralized
systems are not suited to domains that have geographically distributed infor-
mation sources or sensors because the communication overhead can be
extreme if raw data is sent to the central system for processing [3].

• Centralized systems are typically not readily scalable; it is often difficult to
add, remove, or alter components in the system [2].

The advantages of centralized systems include the following:

• Centralized systems are well suited to domains where the system tasks are
highly dependent on each other as the processing tasks cannot easily be
decomposed into subtasks across multiple systems.

• Centralized systems provide a single point of maintenance for large, complex
systems, allowing their components to be readily maintained, repaired, and
updated. They also provide a single release authority for information, simpli-
fying control of proprietary and classified information.

IF systems can use a centralized architecture when the number of sources is
tightly constrained, and all sources and processing must reside on a single platform,
such as multisensor fusion systems for operationally deployed platforms.
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10.3.2 Distributed Systems

Distributed systems consist of a collection of individual systems with some level
of processing and control devolved to each component. The IF system is the collec-
tion of these components, connected by a network of some sort. Typically, distrib-
uted systems have multiple network-connection paths between the component
systems.

A distributed system can potentially provide locally optimal performance for
its component processing subtasks but may not be able to maintain an up-to-date
global view of the IF system. Communication lags between components mean that,
in a dynamic environment, no component can know the current state of any other
component with certainty. This can lead to inconsistencies between estimates of
component states, which potentially prevent global optimality. There are a number
of models for distributed system architectures that mitigate this problem by impos-
ing organizational and management systems that seek to maintain a global view
of the IF system and coordinate activities between the components.

The advantages of distributed systems include the following:

• Development of large, complex systems is simplified by decomposing them
into smaller, distributed tasks.

• Distributed systems allow concurrent processing of multiple elements of a
task, eliminating the processing bottleneck of centralized systems.

• Distributed systems do not necessarily have a single point of failure. This
depends on the model used to manage the ‘‘global’’ view of the IF system.

• By processing data from information sources or sensors locally, distributed
systems can greatly reduce the amount of data that needs to be communicated
between components. This reduces the load on the communication network,
removing potential network bottlenecks and allowing geographically distrib-
uted information sources or sensors to process and transmit data efficiently.

• Distributed systems are readily scalable.

Issues with distributed systems include the following:
• Distributed systems are not suited to domains where the tasks are highly

dependent on each other as it becomes difficult to decompose them into
smaller, distributed tasks.

• Distributed systems that duplicate a priori information or databases can
make it difficult to maintain, repair, upgrade, and control this information.
As the distributed model allows varying degrees of component distribution,
this can be managed by ensuring that such information is encapsulated in
system components.

The distributed system architecture is well suited to IF systems that incorporate
many heterogeneous sources and processing components—such as a system that
spans all levels of the JDL model—where decomposition into subtasks (for each
level or aspect of processing) is easily achieved.



10.4 Computer Systems 243

10.4 Computer Systems

Steady advances in fabrication technologies, leading to increases in processing
speed, memory, and nonvolatile storage, have given rise to an increasing trend in
computational power. This is generally referred to as Moore’s Law [4, 5], and the
typical rate cited is that computer power doubles every 18 months. This trend is
expected to increase until at least 2016 [6], when physical limits on the transistor
density of silicon devices are expected to be reached.

10.4.1 Processing Speed

IF processes that use fast heuristic solutions will benefit greatly from predicted
increases in processing speed, allowing more to be done when time is limited. For
these types of systems, tasks that currently may not be feasible because of time
constraints may become feasible in the near future. On the other hand, while IF
tasks involving symbolic reasoning (levels 2 and 3) can benefit from increased
processing speed, the computational complexity of the problem is often the limiting
constraint, and an N-P (nondeterministic polynomial-time) hard problem with
exponentially increasing compute time will not necessarily benefit significantly
from speed increases.

10.4.2 Memory and Storage

In the past, limits on available nonvolatile storage on computers (e.g., hard disk
capacity) have meant that massive data and knowledge bases, such as geospatial
and imagery databases, were necessarily kept in large central repositories. This
simplifies maintenance and management of the information in the repository, but
access may be limited by network bandwidth and latencies. Centralized processing
of these datasets reduces network loading but suffers from the limitations discussed
above.

Increases in nonvolatile storage capacities have now made it feasible to store
massive amounts of information locally, allowing decentralized processing of this
information, which may include databases or a priori knowledge and rules for how
to process the data. In both cases, decentralization allows faster processing and
visualization ‘‘on demand’’ of large datasets but also makes it more difficult to
update and maintain these distributed data and knowledge bases. For relatively
static information, such as geospatial databases, it may not be necessary to keep
the databases updated in real time. In these cases, it may be sufficient to disseminate
updates to the databases, sourced from a central repository, as lower-priority
background processes or during system downtime.

In other cases, where information is rapidly changing or database management
is of paramount importance, a central repository of information remains necessary
and Web-portal approaches may be needed to reduce the processing footprint on
the local machine. In these cases, a simple Web interface could be used to access
information stored and processed in a central repository.

Volatile computer memory (e.g., RAM) can be a limiting factor in computer
algorithms designed for symbolic reasoning, such as automated theorem provers
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[7], which may exhaustively explore the alternatives to a problem. These systems
need to store a combinatorially large number of alternatives—either in volatile or
nonvolatile memory. Access to volatile memory is generally much faster than it is
for nonvolatile memory, so the compute time for these systems may benefit greatly
from increases in available memory.

10.4.3 Operating Systems

In a tactical C2 environment, multisensor integration (levels 0 and 1) and control
(level 4) often require proprietary, real-time operating systems that are designed
specifically for the particular sensor platforms deployed. In these systems, the
primary considerations are guaranteed behavior, system stability, and processing
speed for specialized applications. Other system requirements, such as general
system capabilities and system scalability, are less important in this context and
are often sacrificed to meet these considerations.

In other, less specialized IF systems, more generally capable, but perhaps less
stable and slower, operating systems are needed. Coping strategies such as human
intervention (e.g., restarting the application, rebooting the computer) can mitigate
losses in stability and guaranteed performance. Commercial off-the-shelf (COTS)
development tools, applications, and middleware available on common commercial
and open-source operating systems provide an important base on which to build
and extend IF functionality. The use of common operating systems also provides
a greater pool of experienced developers and users.

Specialized, niche operating systems may also be appropriate when an IF appli-
cation is hardware dependent, such as some visualization systems. In these cases,
it is desirable to ensure that appropriate software-development tools are available
to allow expansion and refinement of the IF application. Interpreted programming
languages, such as Java, that are available on a wide range of systems, provide an
alternative to common operating systems, provided that a suitable interpreter (or
virtual machine) exists for the platform. Operating system functions may then be
supplanted by programming constructs, and IF applications developed in these
languages can be run on any capable platform, giving system portability.

10.5 Networks

Computer networks are vital to modern computer systems and the IF system
architectures shown in Figure 10.2. The implementation details of the computer
network infrastructure are generally handled by middleware layers or the computer
operating system and hidden from the IF system user—and to some extent from
the developer. Only high-level network performance measures, such as network
speed (bandwidth) and network latency, should need to be considered in an IF
system. Network speed measures the total amount of data that can be transmitted
across the network, while network latency measures the time delays produced by
the network in getting data from source to target.

Computer networks connect multiple computers, each with one or more net-
work interface devices, via various network media. Network media provide the
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communications links between computers on a network and can be electrical wires,
optical fiber, or wireless (IR, RF, and microwave) transceivers connected to the
network interface devices. The type of network media used places physical limits
on the transmission bandwidth, thus on network speed. The network media used
can also introduce network latencies, from signal propagation speeds (e.g., for
satellite and transcontinental links), data loss due to poor signal-noise ratios (which
may require data to be retransmitted), and network throughput limitations imposed
by the media speed.

Network protocols define all operations in a network, such as how the hardware
accesses the network to send and receive data, how one computer addresses data
to be sent to another, what error-correction and handshaking mechanisms are used
for data transmission, and how data is structured when it is transmitted. Overheads
are associated with network protocols that reduce network speed and introduce
latencies into data transmission.

Network routing devices allow data to be sent from one network to another,
including networks that may use different architectures, media access models, or
data formats. It recognizes whether a message is meant for a machine in a local
group or somewhere else and intelligently decides how to forward a message to
its destination. This allows efficient transmission of data packets to their destination
using a distributed architecture that avoids the problems associated with centraliza-
tion. However, this does add extra network latencies, as the hardware needs to
read the data packets and transform them in some way. Networks can be as simple
as local clusters of machines in a local-area network (LAN) or as complex as the
Internet. Wide-area networks (WANs) connect physically distributed LANs via
dedicated infrastructure or using virtual private networks (VPNs) across the
Internet.

10.5.1 The Internet

The Internet is a global network of many smaller networks that have agreed to
communicate. It began as a U.S. Advanced Research Project Agency (ARPA)
research project to create a decentralized C2 system that would be robust enough to
continue functioning even if most of the network were destroyed. The Transmission
Control Protocol/Internet Protocol (TCP/IP) grew out of this project to allow data
to be broken down into packets and sent by multiple redundant routes to their
destination with no centralized control point.

Because of its ubiquity, the Internet is an attractive mechanism for providing
network connectivity between geographically distributed components of IF systems
or for allowing interoperability between coalition partners. However, data packets
on the Internet travel over many redundant paths, can be routed through many
network nodes, and may travel vast distances before arriving at their destination.
This means that network latency can be significant, so any IF system using the
Internet must have mechanisms in place to deal with this. Also, despite its military
origins, one of the biggest challenges to the military use (including information
fusion) of the Internet is assurance of information security since data packets are
routed through many uncontrolled computers before arriving at their destination
and it is not possible to track the flow of data.
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10.5.2 Virtual Private Networking

Virtual private networks allow two computers or networks to talk to each other
securely over an insecure transport media, such as the Internet (see Figure 10.3).
To do this, VPNs use a computer at each of the points connecting to the transport
media, called a point of presence (POP). Each POP encrypts a data packet and
encapsulates it in a new data packet to be sent over the transport media using a
technique called tunneling. The new packet is addressed to the appropriate POP
on the remote network and sent via the transport media. At arrival, the data packet
is authenticated, and the encapsulated packet is extracted and decrypted by the
remote POP, then forwarded to the appropriate machine on the remote network.

VPN tunneling and security protocols are used to ensure that this all happens
smoothly. VPN security protocols add complexity to VPN as they must ensure
authentication, confidentiality, data integrity, and authorized access control. Data
encryption, typically requiring a decryption key, provides VPN security. Key man-
agement and user authentication are then central to maintaining information secu-
rity with VPNs.

10.5.3 Theatre Broadcast System

The Australian Theatre Broadcast System (TBS), U.S. Global Broadcast System
(GBS), and U.K. Direct Broadcast System (DBS) are military networks designed to
provide network connectivity to multiple deployed operational platforms over a
wide operating area. In these systems, a primary high-bandwidth, one-way data
feed is broadcast from a satellite and simultaneously received by multiple receive
stations. A low-bandwidth connection is then used as a back-channel to request
information to be added to the broadcast. These systems do not generally provide
the full flow-control and error-correction capabilities of full-duplex communica-
tion, but simultaneous access by multiple receiver nodes has operational advantages
when information such as a common operating picture, or COP, needs to be
transmitted to multiple sites.

Figure 10.3 VPN between four remote sites via the Internet.
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The configuration of the Australian TBS [8] is shown in Figure 10.4. Encrypted
information is transmitted to a commercial satellite from the primary injection
point and broadcast throughout the region covered by the satellite’s footprint at
high data rates. Platforms and users within this region can receive and decrypt this
broadcast and use low-bandwidth wireless to request information. The requested
information is then scheduled into the broadcast stream. This system allows com-
mand push of information to users over the broadcast link and allows user pull
of information from theater information sources and archives. In other similar
systems, multiple dedicated satellites are used to give increased coverage and access.

Deployed platforms may also use lower-bandwidth, end-to-end communication
networks, such as tactical data links, to add information to the theater information
sources and archives. For IF systems, this makes it possible to use TBS to broadcast
shared information (e.g., COP) to distributed IF systems, which fuse this with
information from local sensors or sources and transmit the IF products back to
the theater C2 system.

10.5.4 Tactical Digital Information Links

Tactical digital information links (TADILs) are standardized military communica-
tion links used to transmit tactical data between assets or units. They typically
rely on line-of-sight between military platforms or relay stations, although some
TADILs, such ask TADIL-A/Link-11, that use high frequencies can allow communi-
cation over the horizon. TADILs are used for transmission of digital and, in some
cases, voice information. Tactical track-data and platform-status messages can be
shared using TADIL systems. TADIL-J/Link-16 offers the greatest promise for
coalition interoperability as it is to be deployed in Australia, the United States,
and NATO countries. Link-16 is a secure, jam-resistant link that supports voice

Figure 10.4 Australian TBS.
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communications and exchange of air, ground, and maritime surveillance, as well
as electronic warfare, intelligence, and platform-status data. Link-16 and other
tactical data links use Time Division Multiple Access to provide access to the
network—each participating unit is assigned regular time intervals at which to
transmit on the network.

In general, TADILs do not provide a high-bandwidth link between distributed
platforms for information fusion. Even with notionally high bandwidth of TADILs
such as Link-16, access is limited by the time slices assigned to the participating
units to meet the operational demands of distribution to many platforms.

Track data on Link-16 and other TADILs is transmitted with a track-quality
measure that represents the uncertainty associated with the track—no other infor-
mation is provided to address issues such as detection uncertainties, sensor biases,
and incestuous fusion. Fusion of tracks over TADILs is also limited by messaging
specifications—only the track with the best track quality can be transmitted over
a TADIL. There is no native format in TADILs to convey higher-level fusion
information or products; however, most TADILs employ a ‘‘free-text’’ format that
can be used as a channel for this information if a suitable protocol is applied.

10.5.4.1 Cooperative Engagement Capability

The Cooperative Engagement Capability (CEC) is a system of software and hard-
ware that allows U.S. Navy ships and aircraft to share fire-control-quality radar
data on air targets and use this data to engage targets cooperatively beyond an
individual ship’s sensor envelope. Each participating platform uses identical data-
processing hardware, algorithms, and tactical displays and transmits data to other
platforms using a dedicated high-bandwidth line-of-sight data-distribution system.
This shared sensor data is fused to produce a single integrated air picture, providing
improved situation awareness and sensor management.

The CEC system relies on common hardware and algorithms to achieve
multisensor fusion for the tactical air-defense environment. In a coalition C2 envi-
ronment, this may not always be feasible, and greater benefits may be achieved by
fusing sensor data from a heterogeneous mix of sensors. Additionally, the CEC
system does not address other tactical environments or higher-level information
fusion. However, the high-bandwidth communications technology used in CEC
and subsequent systems may be applicable in other domains, particularly those
driven by the requirements for networkcentric operations.

10.5.5 Network-Centric Warfare

Network-centric warfare [9, 10] is an increasingly important operational concept
in U.S. and coalition operations. Networkcentric warfare requires an architecture
that enables close coupling between three key elements:

• A sensor grid of sensors deployed in the air, sea, ground, space, and cyber-
space environments, as well as other information sources required by the
task at hand. The sensor grid is intended to provide a high degree of awareness
of friendly, neutral, and enemy forces and the environment in the battle
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space. This is a transient grid that is formed only for specific tasks, although
the components may well be permanently deployed.

• An information grid that provides the infrastructure for networkcentric
computing and communications, as well as the means to receive, process,
transport, store, and protect information. The information grid requires
embedded capabilities for information assurance to prevent attack and miti-
gate failures. The information grid should permit ‘‘plug and play’’ of sensors
and shooters—and IF systems. This grid should be permanently available.

• An engagement (or transaction) grid that allows the commander to plan and
execute operations in a timely and adaptive manner to achieve ‘‘lock-out’’
of enemy operations. The engagement grid tasks assets to create the necessary
effect in the battle space and dynamically retasks them as necessary.

The engagement grid is transient and formed for specific tasks.
IF systems both enable and exploit the infrastructure required for network-

centric warfare [11]. The operational architecture of the sensor grid should increase
battle-space awareness and synchronize it with military operations. Improvements
in operational performance are achieved through a combination of dynamic sensor
tasking, data fusion, and effective distribution of information over the information
grid. The sensor grid must provide dynamic sensor tasking to allow the commander
to have the operational flexibility to synchronize battle-space sensors with the
timing and tempo of operations and employ available sensors and resources in
multiple modes. To achieve this, the sensor grid must employ information fusion
to rapidly enable the commander’s situation awareness. By enabling coordination
of multiple sensors, the sensor resources can be optimized.

The information grid, as well as the flexibility required for ‘‘plug-and-play’’
operation, will also provide an enabling environment for IF systems. The ongoing
development of technologies to support networkcentric warfare should provide a
rich resource to feed into the development and operational deployment of IF systems
in the future.

10.6 Middleware

Middleware fulfils an essential function in distributed systems by providing a
common interface layer between various heterogeneous applications. Middleware
also increases portability of application code by hiding proprietary operating system
and hardware implementation details from the applications, allowing them to be
built independent of a target operating system or hardware. This section discusses
some middleware softwares that have been demonstrated in various command-
and-control and IF systems and that are likely to be important, if not central, to
future coalition IF systems.

10.6.1 CoABS/ISL

The Defense Advanced Research Projects Agency (DARPA) Control of Agent-Based
Systems (CoABS) Grid [12, 13] is middleware that enables the integration of
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distributed, heterogeneous, agent-based, object-based, and legacy systems. It has
been commercialized and offered as a COTS product called the Intelligent Services
Layer (ISL) by Global InfoTek. It includes a method-based application programming
interface (API) that allows agents and services to register, advertise their capabilities,
discover other Grid agents based on their capabilities, and send and receive mes-
sages.

The mission of the DARPA CoABS program was [12]:

To develop and demonstrate techniques to safely control, coordinate and manage
large systems of autonomous software agents. The Control of Agent-Based Systems
(CoABS) program will develop and evaluate a wide variety of alternative agent
control and coordination strategies to determine the most effective strategies for
achieving the benefits of agent-based systems, while assuring that self-organizing
agent systems will maintain acceptable performance and security protections.

There was also a strong focus on the continued use of current object-oriented
and procedural software within a new agent-driven framework. The Grid was
designed to provide a base level of standardization that enables these heterogeneous
systems to communicate. To provide this level of flexibility and generality, it is
simple to implement, adapt, and extend and nonprescriptive about higher-level
design and implementation issues. The Grid was also designed to be scalable in
terms of the number of agents on it, the number of types of agents, and the number
of different actions each agent can perform [14]. Experiments on the scalability of
the Grid [15] have verified that up to 10,000 agents can exist simultaneously on
the Grid without significantly degrading lookup performance.

The Grid is implemented in Java and extends and adds to Sun Microsystems’
Jini classes. Grid helper classes can be used to hide the complexity of the underlying
Jini classes, or the Jini classes can be used directly if more flexibility or control is
required [14]. Grid wrapper classes are used to quickly make existing systems Grid
aware. All objects on the Grid implement the service class, which enables other
services to remotely call certain of its methods. Lookup services (LUSs) act as Grid
directories. There must be at least one LUS running for services to communicate.
In order to provide robustness and scalability, multiple LUSs can exist, in which
case they share information in order to maintain equivalence.

To use the Grid, a service must register with an LUS. Helper classes simplify
this process and make it host transparent by using multicast and unicast techniques
to discover LUSs automatically. Services must also advertise their capabilities with
an LUS to make them known to all. Capabilities are represented by entry objects,
which can be any serializable object with public fields. With this implementation,
services can advertise almost any of their features, such as name, languages and
ontologies supported, architecture, physical location, goals, methods, and so forth.

The Grid enables heterogeneous systems to communicate and cooperate over
a network by building standard interfaces around new and existing code. Much
emphasis has been put on simplifying the process of making existing stand-alone
systems Grid aware. Higher-level systems are then built on the underlying Grid
infrastructure to provide more tools and resources. One extension to the Grid is
an implementation of the Knowledgeable Agent-Oriented System (KAoS) [16–19].
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Other Grid extensions, developed by various organizations, include a publish/
subscribe mechanism, advanced visualization tools, proxy interfaces that enable
the use of programming languages other than Java, GUI applications for user input
and workflow control, and a system that enables agent mobility.

The effectiveness of the CoABS grid has been demonstrated in a number of
coalition command-and-control experiments, including the Coalition Agents Exper-
iments (CoAX) [20–23] demonstrations, the Expeditionary Sensor Grid Enabling
Experiments (EEE), and the Fleet Battle Experiments (FBE).

10.6.2 Cougaar

DARPA’s Cognitive Agent Architecture (Cougaar) [24] is a software architecture
that enables distributed agent-based applications. It was developed for the DARPA
Advanced Logistics Project (ALP), and this work has been continued under the
DARPA Ultra*Log program [25]. The focus of the ALP and Ultra*Log programs
has been to develop techniques for the planning and execution of U.S. military
logistics. This is a tremendously complex planning problem, with millions of differ-
ent objects, using tens of thousands of different business processes, involving thou-
sands of different organizations with their own constraints and user requirements,
over a thousand different legacy databases and systems with different data models
and protocols. The challenge for Cougaar was to integrate these systems while
providing a robust, secure, and scaleable environment.

There are several fundamental principles underlying the Cougaar architecture:

• Composability: This entails decomposing complex problems into smaller,
maintainable components. The behavior of the aggregate entity is then the
emergent behavior of its components.

• Information hiding and encapsulation: A given component should have
access to all the data it needs and no more.

• Time-phasing: All aspects of a Cougaar problem are expected to vary over
time, as the requirements change and as a solution is executed. All informa-
tion about physical entities within Cougaar are time phased, meaning that
the timewise history of values associated with that information is maintained.

• Dynamic replanning and execution monitoring: A key operating mode of
Cougaar is planning and storing that plan in a distributed fashion throughout
all the agents. The plan is built on continual dynamic negotiation between
agents to attempt to generate a feasible and ultimately optimized cooperative
solution. As the world state changes, a solution or plan may become stale,
and Cougaar forces replanning to determine how to adjust the plan to
compensate for the changes, if possible. Further, Cougaar continually moni-
tors the plan as it is executed and forces replanning as assumptions are
modified in real time.

• Security: Cougaar is designed to contain significant commercial-grade secu-
rity mechanisms to ensure that all interagent communications are assured
to be snoop- and tamperproof. The infrastructure core software, plug-in
modules, and configuration information are designed to be certifiably intact
and secure.
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• Robustness: Applications are designed to be long-lived (running continuously
24/7/365), so many aspects of Cougaar are designed to allow the society to
survive the temporary outage of a single agent. The internal state of agents
can persist and be stored, to be resumed when the agents are restarted.
Agent communities can be defined and changed without impacting other
components, allowing dynamic reconfiguration.

• Scalability: Encapsulation, data hiding, and fine-grained information man-
agement limit the information passed between agents to the bare minimum,
supporting massive scalability. Peer-to-peer interagent communication
avoids exponential growth of interdependencies and interactions among
different agents. The plug-in architecture allows easy integration of large
legacy software systems and their representation by agents.

Cougaar is a large-scale workflow engine built upon a component-based,
distributed-agent architecture. Agents communicate with one another by a built-
in, asynchronous, peer-to-peer, message-passing protocol. Cougaar agents cooper-
ate with one another to solve a particular problem, storing the shared solution in
a distributed fashion across the agents. Cougaar agents are composed of related
functional modules, which are expected to rework the solution dynamically and
continuously as the problem’s parameters, constraints, or execution environment
change. Agents can access other services, databases, applications, and legacy sys-
tems. Plug-in interfaces include SQL, JDBC, XML, Java JNI, screen scraping, and
DLL invocations, and many are available as part of the Cougaar release [26].

Cougaar is designed to stay permanently operational once invoked, handling
an incoming stream of requirements, continually processing and trying to find
better solutions to given problems, and continually reacting to changes in resources,
requirements, and events or stimuli. With the introduction of new requirements
or stimuli, Cougaar initiates dynamic planning and execution monitoring. Tasks
are decomposed and assigned to other processing units, either in the same agent
or another agent. Downstream processing results are passed back up to higher-
level processing units, which can then aggregate or summarize this information or
react by replanning. Each task creates a channel of information flowing through
agent communities for requirements passing down and responses flowing back up.
At each point, the execution of the planned requirements is monitored, and replan-
ning may occur if a significant discrepancy is detected between the planned and
observed operations. Throughout this flow of information across the system, there
may be many negotiations among different Cougaar components to work toward
optimally satisfying aggregate requirements.

10.6.3 CORBA

The Common Object Request Broker Architecture (CORBA) [27–30] specifies a
standardized system that provides interoperability between objects in a heteroge-
neous, distributed environment and in a way that is transparent to the programmer.
Its design is based on the Object Management Group (OMG) [28] Object Manage-
ment Architecture (OMA). CORBA automates many common network-program-
ming tasks, such as object registration, location, and activation; request
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demultiplexing; framing and error-handling; parameter marshalling and demarshal-
ling; and operation dispatching. CORBA handles object references within a distrib-
uted environment and uses complex mechanisms to provide standardized interfaces
to application programs. CORBA has been widely used in distributed environments,
including the ARFL Adaptive Sensor Fusion System.

The CORBA object model defines how objects distributed across a heteroge-
neous environment can be described. The object model defines common object
semantics for specifying the externally visible characteristics of encapsulated objects
in a standard and implementation-independent way. In this model, objects provide
services to clients that can only be accessed through well-defined interfaces specified
in the OMG Interface Definition Language (IDL). A client accesses an object by
issuing a request to the object to perform services on its behalf. The implementation
and location of each object are hidden from the requesting client.

The object request broker (ORB) is central to the CORBA OMA, as everything
else depends on it. The CORBA specification [28] details the interfaces and charac-
teristics of this component. There are many different ORB products currently
available, provided by different vendors or geared to different operational environ-
ments. The ORB interoperability architecture [27] is designed to allow different
ORBs to interoperate with each other, as well as with other middleware systems
that are not CORBA compliant. In addition, separate ORBs may be desired for
administrative reasons, such as enforcement of security, or to provide a protected
test environment for product development.

CORBA introduces the higher-level concept of a domain to handle this parti-
tioning, which is essentially a set of objects separated from all other objects. Objects
from different domains need a bridging mechanism to map between domains so
that they can interact. The bridging mechanism needs to take into account any
policies in force on communication between the domains. The general ORB interop-
erability architecture is based on the General Inter-ORB Protocol (GIOP), which
specifies transfer syntax and a standard set of message formats for ORB interopera-
bility over any connection-oriented transport mechanism. GIOP is designed to
be simple and easy to implement, while still allowing reasonable scalability and
performance. The Internet Inter-ORB Protocol (IIOP) specifies how GIOP is built
over TCP/IP transports. The ORB interoperability architecture also provides for
other environment-specific inter-ORB protocols (ESIOPs), which allow ORBs to
be built for interoperability with other distributed computing infrastructures.

In addition to standard interoperability protocols, standard object reference
formats are also needed for ORB interoperability. While object references are
hidden from applications, ORBs use them to help determine how to direct requests
to objects. CORBA specifies a standard object-reference format, called the Inter-
operable Object Reference (IOR). An IOR stores information needed to locate and
communicate with an object over one or more protocols.

Most commercially available ORBs support IIOP and IORs and have been
tested to ensure interoperability. This facilitates interoperability between systems
using different ORBs but still requires that specific ESIOPs be available for inter-
operability with other non-CORBA distributed environments. If no ESIOP is avail-
able for the non-CORBA environment, an interface object can be implemented in
the ORB. As this object will deliberately not have access to the details of any clients
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or servers in the ORB, it will need to incorporate an internal bridging and brokering
mechanism to forward requests between the CORBA and non-CORBA
environments.

10.6.4 KAoS

The Knowledgeable Agent-oriented System (KAoS) [16–19] provides management
services to ensure that agent systems from diverse sources can be used safely in
operational environments. Bounds on agent behavior are defined by policies
expressed in DARPA Agent Markup Language (DAML) or Ontology Web Lan-
guage (OWL). These are declarative constraints on one or more agents that can
regulate registration, access, encryption, resource use, agent mobility, agent obliga-
tions, and agent conversations. With the appropriate semantics, agent conversation
policies can control the types, encryption, and even content of messages exchanged
between agents, providing a much needed security layer.

KAoS is based on Sun’s Java Agent Services [31] and is compatible with several
agent and middleware frameworks, including Nomads [32], the CoABS Grid [12],
Cougaar [24], and CORBA [28]. Although originally designed for agent systems,
KAoS services can also be applied to general-purpose grid environments and Web
Services.

The KAoS domain-management services allow agents to be grouped into logical
domains and subdomains to facilitate agent-to-agent collaboration and external
policy administration. Domains may represent any sort of group imaginable, from
functional, organizational, and administrative structures to dynamic task-oriented
teams with continually changing memberships. Domains can be nested indefinitely,
and depending on whether policy allows, agents may belong to more than one
domain at a time.

Policies can be applied to individual agents, agent classes, agent domains, agents
on particular hosts or Java virtual machines (JVMs), or to all agents on the network.
KAoS policy services allow specification, management, conflict resolution, and
enforcement of policies for agents. The KAoS Policy Ontologies (KPO) distinguish
between authorizations (constraints that permit or forbid some action) and obliga-
tions (constraints requiring that some action be performed or else waiving such
requirements). The DAML ontologies used to represent KAoS policies enable run-
time extensibility and adaptability of the system, as well as the ability to analyze
policies relating to entities described at different levels of abstraction. This represen-
tation facilitates careful reasoning about policy disclosure, conflict detection and
harmonization, domain structure, and concepts. The representation of classes in
ontologies allows the effects of policies to be extended automatically through their
subsumption into new classes of objects defined at a later time.

KAoS defines basic ontologies for actions, actors, groups, places, various entities
related to actions (e.g., computing resources), and policies. For a given application,
the ontologies can be further extended with additional classes, individuals, and
rules. Actors and groups of actors or other entities in KAoS may be distinguished
through explicit enumeration in some kind of registry (extensionally) or by virtue
of some common property, such as a joint goal or a given location (intentionally).
Through various property restrictions, a given policy can be variously scoped—
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for example, to individual agents, agents of a given class, agents belonging to a
particular group, or agents running in a particular computational environment
(host or JVM).

KAoS allows an administrator to browse and load ontologies, to define, decon-
flict, and commit new policies, and to modify or delete existing policies. Groups
of interdependent policies can be composed into policy sets. A generic policy editor
gives knowledgeable administrators a tool that allows fine-grained control over
any aspect of policy specification. It provides the user with a list of choices narrowed
to only those appropriate in the context of the other current selections. Other
custom editors tailored to particular kinds of policies can be incorporated into
KAoS.

The KAoS Policy Ontologies can be used for a variety of purposes, including
policy disclosure management, reasoning about future actions based on policies in
force, and assisting users of policy specification tools in understanding the implica-
tions of new policies given the current context and set of policies already in force.
Logical inference is required to determine which policies are in conflict and how
to resolve these conflicts. Given two policy dimensions of authorization and obliga-
tion in KAoS, three types of conflicts are handled:

• Being simultaneously permitted and forbidden from performing some action;
• Being both required and forbidden to perform some action;
• Being both required and not-required to perform some action.

Policy deconfliction and harmonization algorithms within KAoS detect and
resolve these conflicts. Policy precedence conditions based on a numeric priority
are used to determine which of the two policies in conflict are most important,
allowing the conflict to be resolved automatically in favor of the most important
policy. Alternatively, conflicts can be brought to the attention of a human adminis-
trator for manual resolution.

Major components of the KAoS policy and domain services architecture are

• Domain managers (DMs): These manage domain membership and are
responsible for maintaining policy consistency. They store policies in the
directory service and distribute policies to guards as appropriate. Domain
managers work together with the job transfer program (JTP) and the direc-
tory service to ensure policy consistency at all levels of the domain hierarchy.
They handle persistence and queries to the directory service. Domain manag-
ers are stateless, so one DM instance may serve multiple domains, or, con-
versely, a single large domain may require several instances of the DM to
achieve scalable performance.

• Policy directory service (PD): This acts as a secure repository for policies.
It can respond to a variety of queries from the domain manager and other
trusted entities in accordance with policy disclosure strategies. Policies in
the directory service are expressed declaratively so that some forms of analy-
sis and verification can be performed in advance and offline, permitting
execution mechanisms to be as efficient as possible.
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• Guards: These receive policies from the domain manager and interpret and
enforce them with appropriate native mechanisms within the bounds of a
computational environment. The DM maintains a mapping of guards and
the policies for which they are responsible.

• Enforcers: These components are capable of enforcing particular types of
policies on agents. New types of enforcers may be added based on the
capabilities of the underlying execution and agent platforms.

While other components of KAoS policy and domain services are generic,
enforcement mechanisms are necessarily platform specific. Enforcement mecha-
nisms built into the execution environment (e.g., operating system or JVM) are the
most powerful as they can generally be used to assure policy compliance for any
agent or program running in that environment, regardless of how the agent or
program was written. The Java Authentication and Authorization Service (JAAS)
provides a mechanism that ties access control to authentication in the JVM. Other
virtual machines (VMs), such as the Aroma VM [32], extend the JVM and provide
other resource-control mechanisms. Another enforcement mechanism takes the
form of extensions to particular multiagent infrastructures. Agents that use the
default classes do not participate in domains; as a result, they are typically granted
only very limited permissions in their interactions with domain-enabled agents.

Obligation policies required still another kind of enforcement mechanism.
Because obligations cannot be enforced through preventative mechanisms, enforcers
can only monitor agent behavior and determine after the fact whether a policy has
been followed. Two sorts of enforcers can be used for obligation policies: monitors
and enablers. Monitors simply monitor the state of an agent and either try to
diagnose and fix any problems or alternatively levy appropriate sanctions against
the agent. Enablers go beyond monitoring to facilitate or perform obligations
proactively on behalf of the agent.

The DARPA CoAX [21–23] modeled coalition military operations and imple-
mented agent-based systems to mirror coalition command-and-control structures,
policies, and doctrine. The project aimed to show that agent-based computing
offers a promising approach to dealing with issues like the interoperability of new
and legacy systems, the interoperability of coalition policies, security, recovery
from attack, system failure, and service withdrawal. KAoS provided the mechanism
for overall management of coalition organizational structures represented as
domains and policies. The CoAX experiments demonstrated how KAoS policies,
in conjunction with the Aroma VM [32], could be used to manage agent resources
via policy control and protect the coalition command-and-control system from
denial-of-service attacks. Further, they demonstrated that KAoS policies could be
used to transform and filter information released to other domains in line with
security policies [33].

Within the DARPA Ultra*Log [25] program, KAoS is being used to provide
agent policy and domain services to assure the robustness and survivability of
logistics functionality in the face of information-warfare attacks or severely con-
strained or compromised computing and network resources. KAoS is also used
within the NASA Cross-Enterprise and Intelligent Systems Programs, where
policy-based models are used to drive human-robotic teamwork and adjustable
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autonomy for highly interactive autonomous systems, such as the Personal Satellite
Assistant [34].

10.6.5 Joint Battlespace Infosphere

The Joint Battlespace Infosphere (JBI) differs from other middleware technologies
in that it is an information-management framework rather than an agent framework
or a mechanism for portable remote procedure calls. The difference is largely one
of perspective. While the other middleware frameworks focus primarily on the
functions or services provided by the computational components within a system,
JBI focuses on the discrete pieces of information or the information objects they
share. The JBI provides a flexible means to encapsulate, share, and find these
objects. The JBI vision is that by focusing on the information, rather than services,
open and extensible systems will naturally evolve.

Service-based architectures use a service to exchange information between a
provider and consumer. The consumer must, either implicitly or dynamically,
discover the appropriate information provider, agree to an exchange protocol with
the provider, establish that the credentials of the consumer permit transfer, and
establish the semantics of the content that is transferred. Not only must the format
and meaning of content be established among components sharing the information,
but often the meaning of the services themselves must be agreed upon. Furthermore,
it is difficult to capture the side effects (intended and unintended) of a service
invocation in a manner that is amenable to automated reasoning. Therefore, appli-
cations must generally rely upon compile-time human understanding. Not only is
this error-prone among loosely coupled communities of users, but it is brittle in
the face of changing service specifications.

JBI addresses these issues by establishing a general set of exchange mechanisms
based on a publish-and-subscribe paradigm. Therefore, the mechanisms themselves
have simple semantic interpretations and are static. Applications need only concen-
trate upon the format and interpretation of the information that is to be exchanged.
There are few restrictions on the richness of content that can be shared via the
publish-and-subscribe mechanisms of JBI.

The information published to JBI forms an information space that is managed
in accordance with information-management policy; this includes access-control
policy, prioritization and resource allocation policy, and information life cycle
policy (e.g., persistence, auditing, and destruction). Because the information space
is distinct from the applications that interact with it, third parties can interact with
the space to find information without the knowledge of the provider, subject to
the access-control policy of the space for that type of information. The JBI informa-
tion space is populated by information objects. Each object is of a specific type,
and its contents are described by metadata of a structure unique to that type. The
content of the information object, the payload, may be any finite object. The
information object is the fundamental unit of management; the JBI does not manage
below this level. Applications that interact with the JBI (called clients) use the
metadata to find information of interest. Specifically, they subscribe or query
for information with predicates over the metadata of information objects in the
information space. If a published information object’s metadata matches the predi-
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cate of a subscriber, the information object is forwarded to the subscriber. Aside
from a few metadata fields of ‘‘universal’’ applicability (e.g., publisher identity,
publication time, and information object type), metadata specific to a type of
information is not dictated by a platform. The community of JBI users determines
the metadata structure for the information object types they will exchange. The
JBI specifies a mechanism for extension that allows information object types to
extend other existing types.

To manage information objects effectively, JBI requires that each object be of
a specific type. Objects of the same type share the same metadata format and
generally describe similar things. Information-management policy, such as access
control, is generally determined based upon the type of information object. For
example, the set of clients that can publish and subscribe to an air tasking order
(ATO) is encoded as a policy over objects of type mil.af.ato.

Clients written to interact with the JBI are not bound to a specific implementa-
tion of JBI. One implementation of the JBI core services can be replaced with
another without modifying the clients that interact with them. To accomplish
this, applications interact with the JBI by invoking a common client application
programming interface (CAPI). There may be many different implementations of
the CAPI using different technology foundations. It is anticipated that different
implementations will be better suited to different deployment situations. The CAPI
defines the permissible interactions a client may have with the platform. Interactions
between the JBI core services and clients outside the CAPI are not permitted since
they would reduce implementation independence. The CAPI is a set of interfaces
that control how a client finds a JBI implementation, connects to it, authenticates,
creates information objects, and publishes and subscribes. In addition, it has
methods to allow a client to browse, create, and update the universe of known
information object types.

Through the CAPI, clients specify the versions of the information objects they
understand. This is important since information object schema may evolve over
time, so that clients may gradually fall out of date. To handle this situation, the
platform will not deliver to a client an object of a higher version than that which
the client requested, but the JBI core services may automatically translate a newer
version of an object into an older format to deliver to an older client.

The JBI relieves clients of many responsibilities that they currently shoulder:
implementation of dissemination mechanisms, access control, auditing, resource
allocation and prioritization, version control, and archiving. These core information-
management functions are consistently implemented and enforced by the JBI core
services. Since these functions, inconsistently implemented by applications today,
cause the bulk of interoperability problems, it is envisioned that a JBI will dramati-
cally improve the ability to exploit existing applications, develop new ones, and
gradually evolve both the information space and the clients that interact with it.

10.7 Information Sources

The information sources available to an IF system are critical to its effectiveness.
These may include real-time sensor feeds, dynamic databases of multisensor data
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or fusion products, static databases of the geographic information system (GIS)
and other a priori information, knowledge bases, Web resources, and so forth. In
the intelligence, counterterrorism, law-enforcement, and business domains, infor-
mation fusion allows the decision-maker to discover and explore patterns of behav-
ior or activity. In these domains, information sources such as search engines, Web
pages, and other Web resources may be just as, if not more, important than real-
time sensor feeds.

An IF system, as shown in Figure 10.5, needs to be able to access a heterogeneous
mix of databases as they cannot rely on a monolithic database or homogeneous
database schemas if they need to access operational, legacy, proprietary, or coalition
data stores. The ability to access and analyze dynamic Web resources is also critical.
Key enabling technologies for this domain are:

• Data access and topic filtering;
• Information extraction;
• Data mining and model generation;
• Model-analysis tools.

The dynamic database (DDB) program discussed below demonstrates a large-
scale system for storing and accessing large volumes of sensor data, making it

Figure 10.5 An IF model suitable for intelligence analysis.
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available to military commanders. Such technology can be applied to other informa-
tion sources and could be important in future IF systems.

To assist with automated access to databases by IF systems, information in
different databases may need to be tagged with metadata that describes the data,
or the databases themselves may need to be tagged with metadata that tells the IF
system how to access and process records from the database. For this to be effective,
a common, or at least systematic, metatagging scheme needs to be applied.

Similar issues and requirements arise when IF systems need to access informa-
tion from Web resources, which are often poorly controlled and have little (or
rapidly evolving) standardization. The Semantic Web attempts to resolve these
issues through standardized representation of the content of Web resources, while
other technologies, such as ‘‘Buddy,’’ from the U.S. Air Force Research Laboratory
(AFRL), seek to deal with unstructured data and to learn adaptively about changing
Web resources.

Knowledge bases are also important to IF systems as they store semantic
information that allow automated IF systems to represent and reason about the
information from the sources appropriately. IF systems should be able to deal
with heterogeneous knowledge bases and, where appropriate, automatically map
between equivalent ontologies. The CoAX experiments [22, 23] demonstrated how,
in a coalition command-and-control environment, semantic interoperability can
be maintained between different coalition systems, enabling the discovery and
utilization of distributed services [21] and, in particular, how sensor data from
disparate sources can be translated and fused using DAML [35] ontologies.

10.7.1 The Semantic Web

The goal of the Semantic Web is to provide meaning and structure to information
on the Web so that it is machine readable. This will facilitate automation of
the Web (agents searching for and processing information for the user), improve
searching and resource discovery, facilitate knowledge sharing, and improve the
answering of high-level questions [20, 36]. Using this technology, IF systems can
dynamically locate and access information sources on the Web to obtain up-to-
date, relevant, or validated information from information warehouses.

To realize the Semantic Web, information on the Web needs to be structured.
A suitable (and accepted) technology to achieve this is the Extensible Markup
Language (XML), which can tag the information on the Web with metadata
[36–40]. Meaning is provided through ontologies and a representation language
to express them. The ontology offers a set of concepts (or classes), as well as their
properties and relationships, relevant to the domain (or Web document). They
describe elements within the Web document that will allow a machine to reason
about its contents.

The concepts, properties, and relationships (terms) are identified by a universal
resource identifier (URI) [38], which is a generic set of names and addresses of
‘‘things’’ (e.g., objects and relationships) of interest (the universal resource locator,
or URL, is the most common type of URI [38]). A new term can be created by
defining a URI for it. Ontology editing environments, such as Protégé [41] and
OilEd [42], can assist in developing appropriate ontologies.
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Representation languages describe how the ontologies and their instances are
represented. The choice of representation languages must be made as a trade-off
between expressiveness and computational properties (when inferencing). The most
popular representation languages for the Semantic Web are Resource Description
Framework (RDF) [43], its extension Ontology Interchange Language (OIL)
[44, 45], and its successors DAML + OIL [46, 47] and OWL [48]. Their syntax
is based on XML, thus eliminating the need for a specialized application
parser [37].

RDF statements are sets of triples, comprising a subject, a predicate and an
object [43]. For example, to represent ‘‘Ora Lassila is the creator of the resource
www.w3.org/Home/Lassila’’ in RDF, the subject (resource) is ‘‘www.w3.org/
Home/Lassila,’’ the predicate (property) is ‘‘creator,’’ and the object (literal) is
‘‘Ora Lassila’’ [43].

As discussed above, markup languages enable the creation of arbitrary domain
ontologies that support the unambiguous description of Web content. Web Services
[49] not only provide information to the user or autonomous system but also
enable them to post information for access by other systems of users. Languages
such as the Web Service Description Language (WSDL) [50] provide a low-level
description of the messages and protocols used by Web Services. To complement
this, semantic markup languages such as DAML-S and OWL-S [51, 52] are being
developed that sit at the application level above WSDL, describing what is being
sent and why, not just how it is being sent.

DAML-S and OWL-S make Web Services machine interpretable by enabling
the following tasks [51]:

• Discovery: Locating Web Services, typically through a registry service, that
provide a particular service and adhere to specified constraints;

• Invocation: Execution of an identified service by a user, agent, or other
service;

• Interoperation: Breaking down interoperability barriers through semantics
and automatically inserting message-parameter translations between clients
and services;

• Composition: Composing new services through automatic selection, compo-
sition, and interoperation of existing services;

• Verification: Verifying service properties;
• Execution monitoring: Tracking the execution of complex or composite

tasks performed by a service or set of services, thus identifying failure cases
or providing explanations of different execution traces.

To achieve this, the DAML-S/OWL-S ontology consists of separate parts for:

• Service profiles that describe what the service provides and what it requires
from the clients. Services advertise their profiles with networkwide discovery
services that match service requests against the advertised profiles and iden-
tify which services provide the best match.

• Service process models that describe the workflow and possible execution
paths of the service, including semantic descriptions of what are essentially
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messaging APIs. Processes can be atomic, simple, or composite and have
defined inputs and outputs that can be connected to other processes. Atomic
processes are invokable in a single step, while simple and composite processes
are noninvokable abstractions of atomic processes or combinations of
processes.

• Service groundings that describe how atomic processes are to be mapped
into various messaging formats, such as those provided by the Simple Object
Access Protocol (SOAP) [53], Hypertext Markup Language, CoABS Grid
[12], and so forth. The central function of the OWL-S grounding process is
to show how the (abstract) inputs and outputs of atomic processes are to
be realized as messages in some transmittable format. Service grounding is
critical to the successful deployment of OWL-S since it provides the connec-
tion between abstract concepts in OWL-S and implementation standards
such as WSDL.

DAML-S and OWL-S are designed to be complementary to WSDL: OWL-S
provides abstract specifications to the developer with the benefits of OWL-S’s
process model and OWL’s expressiveness, while also providing the extensibility of
WSDL and its software support for message exchanges. The CoAX experiments
have demonstrated how OWL and OWL-S can be used to transform and filter
semantic data in coalition command-and-control systems [33].

SOAP [53] is another useful messaging protocol for IF systems, which, as
discussed above, can be used as a grounding for OWL-S Web Services. SOAP is a
lightweight protocol for the exchange of information in a decentralized, distributed
environment. It is an XML-based protocol that consists of three parts: an envelope
that defines a framework for describing what is in a message and how to process
it, a set of encoding rules for expressing instances of application-defined data types,
and a convention for representing remote procedure calls and responses. SOAP
can potentially be used in combination with a variety of other protocols, but typical
bindings for SOAP are currently with the Hypertext Transfer Protocol (HTTP)
and HTTP Extension Framework.

10.7.2 Buddy

The Semantic Web is an attempt to impose structure and standardized protocols
on the Web to facilitate access by automated processes. However, most resources
available on the Web today do not follow any particular standard or set of stan-
dards; rather, they are ad hoc and designed solely for human access. This means
that most Web sites are poorly structured for machine readability. Additionally,
Web sites may be poorly maintained, may contain out-of-date hyperlinks, or may
change rapidly.

This poses a challenge for automated access and analysis of these information
sources. The AFRL Buddy system was developed as a meta–search engine that can
access these Web resources. Current meta–search engines key on the common
search engines, which only accessed around 60% of the Web in 2000 and around
40% in 2001 [54], and exclude specialty or regional search engines. They may rely
heavily on Web scraping, which is very brittle to changes in the Web pages searched,
and send the same request to multiple engines irrespective of the nature of the
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request. The AFRL Buddy search engine [55] is designed to improve information
collection and to access a greater portion of the Web by accessing appropriate
specialist or regional Web sites. It uses intelligent parsing of pages to extract
information from unstructured documents to reduce brittleness to changes and to
target requests to appropriate sites.

Buddy can simultaneously query and access multiple Web-based resources and
can request multiple topics at a time using topic trees to allow a hierarchical query
that refines the search space, as shown in Figure 10.6. It uses ‘‘self-healing’’ Web
adapters to access Web sites and returns ranked responses using a unique ranking
algorithm. As well as resource discovery, Buddy can also be used for document
retrieval and has an API that allows its search kernel to be reused in other applica-
tions. Buddy can extract data from free-text and semistructured documents using
fixed keywords or tokens, entities (e.g., names, places), or events (e.g., who, what,
where, when).

Buddy has been used in several U.S. programs, including an AFRL program
to build and maintain an equipment database automatically and another program
geared toward the automatic classification and electronic archiving of free-text
(paper) documents.

10.7.3 Dynamic Database

DARPA initiated the dynamic database program in 1998 to address the escalating
problem of making the massive amounts of intelligence, surveillance, and reconnais-

Figure 10.6 Buddy meta–search engine uses topic trees for queries.
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sance data available to operational forces in actionable form. The system needed
to manage the large volume of available data from diverse sensors and sources and
to provide the multi-intelligence (INT) fusion necessary to convert sensor data into
actionable information within the time demands required to respond to emerging
threats within the targeting decision cycle.

A core element of the DDB was the database framework, known as the High
Performance Data Store (HPDS), which allowed multisensor data and National
Imagery and Mapping Agency terrain products to be ingested, automatically co-
registered, and stored in logically separate sensor history databases. This enabled
the DDB to rapidly store, index, retrieve, and share massive quantities of data
among DDB components [56]. This data includes not only sensor and foundation
data but also results of the detection, fusion, and reasoning algorithms. Therefore,
a critical part of the DDB system is a rich common object-oriented schema that
includes the raw sensor data, registration data, features, associations such as tracks,
and models of real-world entities and their environments. The DDB application
components reside on the DDB framework and conduct data mining of the co-
registered data. The architecture for the DDB, showing how multi-INT inputs are
processed to provide the information needed by the commander. is illustrated in
Figure 10.7.

Typical commercial database-management systems, used as-is, could not meet
the requirements of DDB to keep up with the constant stream of incoming sensor
data; nor were they able to index it so that spatially and temporally coincident

Figure 10.7 Architecture for DDB.
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data could be efficiently retrieved. The HPDS was built by leveraging a commercial
object database but was extended with hierarchical spatial and temporal indexes.
To make room for new data, obsolete data is efficiently purged as necessary without
significantly impacting performance.

Sensor errors, registration errors, association errors, and possible errors in
identification all contribute to uncertainty in DDB results. A rigorous representation
of uncertainty is being added to the schema, and eventually to the database query
engine itself, that will allow algorithms to reason on and combine uncertain infor-
mation correctly.

In addition, HPDS provides active database mechanisms that can trigger an
algorithm to run on new data, notify a user of a significant event, or determine
what computations must be run to answer a user’s ad hoc query. The system can
be ‘‘loosely’’ distributed across multiple locations, with data and queries selectively
replicated to support an operational environment with possibly unreliable commu-
nications networks.

Registration of many disparate data types is accomplished by using processes
and strategies that register all incoming data to a common fiducial, provide a
common geospatial coordinate system for all applications, and perform common
registration processes in a single application [57]. All DDB objects are geolocated
in four dimensions: space (latitude, longitude, and elevation) and time. Cross-
platform systematic errors are automatically removed or reduced during ‘‘back-
ground’’ processing. A registration success metric provides operators with a measure
of registration accuracy. Position knowledge of DDB objects and reference data is
continuously refined and improved over time through the use of salient features
that are observable across the sensors. Features are automatically defined and
refined as precision georegistered invariant features, which occur across multi-INT
data (e.g., road intersections, stationary rotators) and are used to make associations
across multi-INT data for error propagation and correction.

10.8 Human-Computer Interfaces

Humans are an essential component of the situation-analysis process. The goal of
IF systems is to enable situation awareness for the decision-maker, as exemplified
by the situation-analysis paradigm for information fusion. Ultimately, this requires
human-computer interfaces that effectively convey the IF products to the decision-
maker in a manner that supports human cognitive processes. Human-computer
interfaces are thus an important component of IF systems.

A major goal of IF systems is to manage massive volumes of information so
as to prevent ‘‘information overload’’ in an operator or commander. Information
overload is not just the problem of presenting the user with large volumes of
information. Humans have evolved perceptual mechanisms to deal with an environ-
ment that routinely presents massive volumes of sensory information and in which
dangers and opportunities arise rapidly. Information overload can even occur from
seemingly manageable volumes of relevant information. Studies with command-
and-control systems have shown that the performance of commanders can actually
decrease when too much apparently relevant information is available to them [58].
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The role of IF systems is then not just to reduce a flood of information to the
human but also to select the appropriate information and transform it so that it
is presented in a form that is tuned to human perceptual and cognitive processes.
This allows the IF system to complement human cognitive abilities, such as the
ability to see patterns and their implications, and to make rapid decisions based
on real-time analysis of rapidly changing information. IF systems should attempt
to complement this human ability with the computer’s ability to perform some
aspects of mathematical, statistical, and logical analysis reliably and orders of
magnitude faster than humans. This human-machine partnership requires good
displays and interaction techniques.

Trust is central to military command-and-control systems. Human participation
in the IF process is essential to allow the user to build trust in the process, particularly
when ‘‘intelligent’’ systems attempt to present abstract concepts and infer users’
intent rather than simply present raw data and execute tightly defined commands.
The appropriate use of technology to enable or reinforce trust is thus essential for
military command-and-control systems, which include IF systems. There are also
other social dimensions that need to be considered in interfaces to IF systems (e.g.,
how does the user interact and collaborate with others? How does the task physi-
cally affect the user? How does the task affect users’ morale, hence operational
effectiveness?).

10.8.1 Visualization

The NATO Research and Technology Organization’s IST-013/RTG-002 technical
team describes visualization as follows [59]:

Visualisation is something humans do. . . . Visualisation is not a data display,
however ingenious. It is one route to understanding, another route being logical
analysis. Complicated displays, such as virtual reality displays, can help visualisa-
tion, but humans can easily visualise situations and events when reading the text
of a well-written novel that has no pictures at all. The nature of the display is not
irrelevant, but it is not the whole story.

The team goes on to further describe visualization as the formation of an
internal picture of the environment, or at least the part of it that is currently
important, so as to recognize dangers and opportunities and act effectively in it.
Using this description, situation awareness can be considered the desired end-state
of visualization and the ‘‘other routes to understanding’’ mentioned above. Any
of these routes can be used to achieve situation awareness, but visualization can
be an effective route to the understanding of massive amounts of (perhaps abstract)
data by matching its representation to human perceptual and cognitive processes.

10.8.2 Human Factors

The human factors associated with human-computer interaction will be essential
to providing an effective IF system. These factors address the following questions:
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• How should the information be fused and presented so that the human can
visualize it effectively?

• How can the human control the fusion and display processes to accommodate
a dynamic environment?

• How do IF systems affect the roles of humans in a C2 system?
• What are the personnel selection and training requirements for different IF

systems and visualization schemes?
• What implications might there be on the health of the users. For instance,

what are the long-term effects of immersive 3-D displays on user perfor-
mance?

• How do particular visualization schemes perform for a user under stress?

The IST-013/RTG-002 team identifies four main classes of goals for computer-
ized visualization [59], which represent different modes of operation of the human
user and computer system. Each of these modes has different implications for IF
systems.

10.8.2.1 Monitoring and Control

In this mode, the user attempts to keep track of some aspect of the data space that
varies over time and to influence the data space through interface devices. The IF
system therefore needs to extract the appropriate features from the data space and
reliably present them so that the user can readily identify changes and the appro-
priate responses. The user must be able to specify to the IF system the features to
be monitored, which may be an abstract property of the data space, such as enemy
intent. The input interfaces must also allow the user to control the visualization
and IF processes. Monitoring and control is aimed at achieving situation awareness
of some aspect of the data space and when it is visualized.

10.8.2.2 Alerting

In this mode, autonomous systems need to monitor the data space for the occurrence
of any of a number of possible trigger conditions. When these conditions are met,
the IF system needs to suppress temporarily whatever is currently being visualized
(and is considered less important) and present the alert conditions. The user needs
to be able to define what needs to be monitored and the conditions under which
to raise an alert. The display systems need to be able to show the user that an alert
condition has occurred, together with its context, without interfering with whatever
the user is currently monitoring. The user must then be able to dismiss or defer
the alert and continue with the task at hand or to shift focus from the current task
and handle the alert. Alerting is aimed at achieving situation awareness about
aspects of the data space other than that currently being visualized, as the user is
aware that there are no alert conditions currently extant.

10.8.2.3 Searching

This mode is used when some aspect of the data space being monitored has uncer-
tainty associated with it, which may be resolved by additional information that is
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not readily apparent. To accommodate searching, the IF system must indicate what
other aspects or features of the data space are available. Displays for searching
therefore need to show how the data space is organized and how the user can
access unseen parts of the data space. Searching is aimed at improving the accuracy
of the user’s situation awareness for the currently monitored aspect of the data
space.

10.8.2.4 Exploring

This mode is used when the user wishes to learn the features of the data space to
support future monitoring and control tasks. Exploration is aimed at identifying
aspects of the data space that are likely to remain unchanged so that they can be
accessed when they are needed in the future. Exploring is aimed at improving users’
situation awareness by increasing their knowledge of the context of information
visualized in the data space.

Displays need not only to discriminate patterns and highlight relationships in
the data space, but they must also evoke some useful conceptualization. When useful
relationships can map onto topological and geometric properties, the corresponding
relationships can be represented in a 2-D or 3-D display space. Similarly, some
properties can readily be mapped to color and texture.

However, abstract information does not necessarily map cleanly to human
perceptual models. Visual metaphors are often used to represent and interact with
data in a familiar environment, such as the common desktop metaphor or a 3-D
metaphor. Abstract concepts may not be suited to visual metaphors and may be
more effectively represented symbolically or linguistically. For example, free-text
descriptions of real or fictional scenarios and events can allow the user to visualize
rich and complex worlds, potentially allowing a one-to-many mapping of the text
to the visualization. A movie generated from the same description presents a one-
to-one mapping of spatial and physical features, but the user must infer and visualize
any abstract relationships, such as personalities or political and cultural associa-
tions. The visualization of the abstract components may in fact be more difficult
once a spatial visualization has been provided.

10.8.3 Cognitive Factors

Visualization for IF systems should take advantage of human cognitive processes
and should allow for, and perhaps supplement, human cognitive limitations. For
example, human attention is time limited; a human cannot easily comprehend
relationships among more than a few things at a time; short term memory is
capacity limited; concepts once formed are hard to correct with counterevidence;
a display metaphor may be misleading when carried to an extreme.

An important issue in dynamic IF (and C2) systems is displaying what the user
wants to see in such a way so as to prime a rapid, correct understanding of new
material and, at the same time, jog the user out of persisting with false interpreta-
tions. A related issue is how to display alerts that possibly have different contexts
than the current task. The display must present the alert and context in a form
that users can readily comprehend, given that they were just involved in some other
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task prior to the alert, and it must discourage users from forming an incorrect
interpretation of the alert, thereby perhaps giving the alert unwarranted attention
or inappropriately dismissing it.

10.8.4 Presentation Systems

Presentation systems act as the interface between users and IF systems. They must
not only display information effectively but also allow the user to navigate through
the data space. They should support both visualization and logical analysis of the
data. This leads to two apparently competing factors in the design of presentation
systems—logical analysis is best done with only a few entities or relationships
considered at a time, but visualization usually requires that an extended context
be displayed to the user and is not as effective with a small number of entities or
relationships. Presentations systems that present many entities or relationships and
context for effective visualization therefore need to highlight to the user which few
are appropriate for analysis.

There are some common presentation modes available that can be used in
isolation or in combination.

Text displays can present symbolic, labeled, and linguistic data. They can be
either line based or table based, using a ‘‘screen’’ partitioned into a fixed number
of lines that are a fixed number of characters wide. This allows low-resolution
symbolic maps to be displayed on these systems. They are commonly used to
display linguistic information or as a command-line interface to applications. Input
for these systems is via a keyboard, although speech-enabled systems have also
been developed.

Speech-recognition systems allow the user to interact with the visualization
system using speech—either commands in a structured command language or less
structured conversational or extemporaneous speech. Speech-recognition systems
can be speaker dependent or speaker independent. Current speaker-dependent
systems require users to train the system to recognize their speech, but they use
very general language models in order to recognize a wide domain of spoken
language. Studies have shown that these systems perform satisfactorily when the
user dictates prepared material but less well when attempting to recognize conversa-
tional or extemporaneous speech [60]. Speaker-independent systems do not require
training of the system but are generally constrained to specific, task-oriented lan-
guage models in order to improve recognition accuracy. This is sufficient for issuing
commands or phrases using a formal command language but, again, is not suitable
for conversational or extemporaneous speech.

Text-to-speech (TTS) systems allow the automatic generation of speech from
text. This can provide an aural input channel to the user but is demonstrably slower
than reading written text (this is left as an exercise to the reader or speaker).
However, additional information can be transferred via speech through emotional
cues and word stress. Speech recognition and TTS systems allow the display of,
and interaction with, symbolic, linguistic, and labeled data.

‘‘Display’’ systems can also use other audio output—the pitch, amplitude, and
modulation of a tone or melody—to convey analogue, symbolic, and labeled data
to the user. Typically, audio signals have been used for alarms or alerts, but much
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richer information can potentially be conveyed. The main disadvantages of audio
‘‘displays’’ are that they interfere with user-to-user interaction, and unlike the visual
systems, the audio channel is not something that the human can easily ‘‘switch
off.’’

Audio spatialization can also be used to ‘‘display’’ located data in 3-D [61].
This form of audio display is often associated with virtual reality displays. 2-D
screen displays can present all commonly used data types, including 3-D data, by
using projections onto the 2-D plane of the display. They allow the display of text,
symbols, and images. Interaction with these displays typically combines use of a
keyboard and a 2-D pointing device—such as a mouse or trackball—that controls
the position of a pointer on the 2-D screen.

Desktop and windows metaphors are typically used to interact in these systems,
with selection controlled by pop-up or drop-down menus and dialog (text) boxes.
Selection of windows of interest on the screen can be done using a pointing device
or keyboard ‘‘hot-keys.’’ 2-D displays can be speech enabled to allow interaction
with selected windows. Selection of windows of interest is harder with speech
devices and relies on keyboard or pointer emulation or verbal ‘‘hot-keys.’’ Finer
selection of located data within a 2-D window is problematic with keyboard or
speech interfaces and usually relies on 2-D pointing devices.

Humans have evolved to cope with a 3-D world, and have developed perceptual
mechanisms to prevent ‘‘information overload’’ and resolve features of interest
from background clutter using depth cues (such as stereoscopic vision, object
occlusions, and head motion). Studies have shown that, in some domains, stereo-
scopic displays can be used to show around 1.6 times as much information as 2-D
displays, and up to 3 times as much information if simulated head motion is
included [62].

Virtual reality (VR) displays use left-eye/right-eye (L/R) pairs of stereoscopic
images, each generated from a slightly different perspective, to generate depth in
the fused images perceived by the user. VR displays can present all of the data
types suitable for 2-D displays, with the advantage of stereoscopic cues that can
reduce visual clutter. This allows much more effective presentation of 3-D analogue
data than 2-D displays (that must rely on 2-D projection with only perspective
and motion depth cues).

The stereoscopic systems used in VR displays only produce the images from a
fixed perspective—users cannot ‘‘look around’’ the image unless the display device
generates new stereoscopic images in response to a viewer’s change in head posi-
tion—in which case only a single user would perceive the effect correctly. In
multiuser environments this means that the 3-D effect seen by observers at other
positions will appear skewed, an effect that increases with the distance from the
design point.

VR systems can be designed to be either immersive, where users appear to be
‘‘inside’’ the display environment and the viewpoint is controlled ‘‘naturally’’ by
head-tracking systems; semiimmersive, where users appear to be inside the display
but must control the viewpoint artificially; or nonimmersive, where they appear
to be viewing the display from outside.

A number of visual display technologies are used for VR systems. Passive and
active VR systems can be used in either desktop or large-screen projection formats
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that allow large fields of view. Desktop systems generally allow only a single user
to interact with the system, while large-screen projection systems allow multiple
users. VR visual displays are often coupled with 3-D spatialized audio systems.
This can be used to enhance the perception of depth for the representation of 3-D
entities or to provide an additional sensory channel for data display [61].

VR displays can use the range of interaction devices and paradigms available
to 2-D displays but also need to include a mechanism for depth selection and
navigation. Conventional 2-D pointing devices can be used to select data intersecting
with the ‘‘line of sight’’ of the pointing device but will not be able to select
data behind the first intersection. With sparse datasets, users can manipulate their
viewpoints to ‘‘see around’’ any obstructing data.

3-D pointing devices allow the user to select any point in 3-D space directly
without needing to navigate to the required viewpoint. These devices either track
motion and orientation in 3-D space, emulating this in the virtual environment,
or use a stationary input device with 6° of freedom. Gesture-recognition and
hand-tracking systems, which use image-processing techniques [63] to allow 3-D
navigation without the need to manipulate a device, promise a natural 3-D interac-
tion paradigm.

One issue with 3-D pointing devices is that they allow the user to navigate
with 6° of freedom in 3-D space, which is an unfamiliar environment for humans
who have evolved to navigate on an essentially 2-D plane. This can make navigation
difficult, and the degrees of freedom available to the user are often constrained to
cope with this.

10.8.5 FOCAL

The Future Operations Centre Analysis Laboratory (FOCAL), shown in Figure
10.8, is a Defence Science and Technology Organisation program to explore new
paradigms in situation awareness for the Australian Defense Organisation. FOCAL
is designed to be a multiuser collaborative environment, where command teams
can share context and interact with the display, as well as with each other. FOCAL
is a semiimmersive VR system with a large, 150°, field-of-view, spherical screen,
using two sets (L/R) of three passive stereo LCD projectors with an SGI Onyx3400
providing image-generation capabilities. Thus, a large amount of screen real estate
can be used to display contextual information to users, while providing the advan-
tages of a 3-D display.

The visualization challenges faced by FOCAL include what, how, and when
information should be presented to the users to achieve effective situation aware-
ness; how a team of users can interact effectively with the display; and what the
cognitive and physiological factors associated with this environment when used in
a C2 role are. FOCAL must also address the technological challenges of how to
design suitable visualization and IF engines.

FOCAL implements a multiagent architecture based on the DARPA CoABS
[12] middleware as a model for information retrieval, processing, and fusion. For
information visualization, a model for situation awareness based on television news
services is being explored. There are three key elements to these services:
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Figure 10.8 FOCAL.

• Advisers: These provide expert commentary that conveys situation awareness
through explanation.

• Maps and diagrams: These are visual props to aid in explanation (e.g.,
weather maps, stock market charts).

• Photographs/video footage: These convey context and provide experiential
content.

FOCAL is investigating the effectiveness of this paradigm as a mechanism for
achieving situation awareness in the military domain by essentially providing these
services as software. They will be portable, accessible, and interactive—the com-
manders can then access them wherever and whenever they want to, and they can
interact with them to explore the situation at the level of detail or abstraction they
require.

As discussed above, effective interaction by a team of users with the FOCAL
system is key to its effectiveness as a collaborative C2 environment. A number of
interaction mechanisms are being explored for FOCAL:

• Traditional keyboard and 2-D pointing devices to allow users to interact
with a suite of COTS applications;
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• 3-D pointing devices, such as wands and space balls, to allow navigation in
3-D displays;

• Speaker-identification, speech-recognition, and TTS dialogue systems;
• Gaze and gesture tracking to provide a ‘‘natural’’ interface with the FOCAL

systems.

FOCAL will support a number of metaphors for user interaction and presenta-
tion, including the standard desktop and X-windows metaphors, natural-language
dialogue, and immersion in a virtual 3-D world. The latter is currently being
explored using a prototype 3-D application dubbed the Virtual Planning Room
(ViPR), as shown in Figure 10.9. This environment will allow users to immerse
themselves in the planning environment and to monitor, search, and explore the
situation data space. This will allow display of the information and context associ-
ated with situations in virtual ‘‘situation rooms’’ and facilitate the development of
military courses of action.

Users will dialogue with the FOCAL systems using various mechanisms. Integra-
tion and management of interaction with multiple users will be context sensitive
and dependent on user selection, preferences, and dialogue history. Selection of
presentation format for visualization will likewise depend on context and user
selection, preferences, and dialogue history. Dialogue and presentation management
will use software agents and user input.

10.8.5.1 Virtual Advisers

One of the key elements of FOCAL is the virtual adviser [64–66]—a real-time,
animated agent (see Figure 10.10) that will take on the role of television news
advisers, and dialogue with users through spoken natural language and TTS sys-
tems. Virtual advisers could brief the command team on a developing situation,
point out significant events for further attention, and suggest alternative courses
of action.

Figure 10.9 Prototype ViPR as a 3-D planning environment in FOCAL.
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Figure 10.10 FOCAL virtual adviser used in CoAX 2002 demonstration.

Virtual advisers can access information resources on request, and by utilizing
text, images, multimedia, and other presentation systems in FOCAL, they can
present the results to users in preferred or selected formats. By combining facial
gestures and emotional cues, virtual advisers can also convey the appropriate levels
of trust and context that are normally associated only with face-to-face interaction
between humans. These systems have been used effectively in pedagogical systems
[67, 68], but exactly what the appropriate levels of trust are in a command-and-
control environment, and what gestures and emotional cues are needed to convey
this, are ongoing research topics.

Virtual advisers allow users to search for and explore the information data
space through natural-language dialogue and also provide an alerting function rich
in context via briefings on developing situations. In combination with interaction
channels, such as gaze and gesture tracking, virtual advisers can provide a very
familiar interface to users.

10.8.5.2 Virtual Video

The software equivalent of television news video footage in FOCAL is the virtual
video system. This is still under development, but the intent is to generate animated
(re)constructions automatically (see Figure 10.11) of emerging or developing situa-
tions or the potential consequences of alternate courses of action. This program
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Figure 10.11 Animation generated by virtual video system to represent hypothetical situation.

will involve research into a number of domains, including automatic fact extraction,
formal theories of knowledge representation [69], and automated selection and
depiction of key events in a format not only suitable but interesting to users—in
essence, attempting to codify at some level the ‘‘director’s art.’’

The goal of this work is to convey contextual and experiential information to
users and to investigate the effects of immersion in this way on their situation
awareness. Key to the effective use of this tool is research into how to convey the
appropriate level of trust (or distrust) in the information presented in this way,
and how to retract information that is later identified as erroneous or misleading.
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Knowledge-Based and Artificial
Intelligence Systems
Steve Wark and Dale Lambert

As discussed in Chapter 10, IF systems that deal with high-level data fusion (i.e.,
situation and impact assessment) in the JDL data-fusion model generally rely on
symbolic (or nonnumeric) reasoning systems. This is because symbolic reasoning
facilitates reasoning with relations between objects and the effects of those relation-
ships. In this chapter, we briefly discuss knowledge-based and alternative artificial
intelligence system computational techniques that can be applied to the IF domain.

11.1 Reason

The term automated reasoning most commonly refers to the rational symbolic
manipulation of stored representations. Symbols are constructed to represent
aspects of interest in the world. Automated reasoning involves the computational
manipulation of symbols to model reasoned conclusions about those aspects of
interest.

The classical planning problem typifies the classical reasoning approach. It
involves the description of:

• An initial condition;
• A goal condition;
• A set of operators or, when parameterized, a set of operator schema.

The initial and goal conditions describe possible states of the environment,
with each state description being an instantaneous, abstract, and partial character-
ization of what the environment might be like, expressed in the spirit of the situation
calculus of McCarthy [1]. Each state is described by an axiom expressed in some
formal language L associated with a possibly implicit formal logic <L, H>, with
inference relation H ⊆ ((L × L) → L). The operator schemata are used to define
operators representing actions that transform one state into another. Each operator
schemata can be described in terms of:

• A precondition, being a state description of what the environment must be
like in order for an operator instance of that schemata to be applied;
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• A descriptor, used to identify that operator schemata;
• A postcondition, being a state description of what the environment will be

like after an operator instance of that schemata has been applied.

For operator x, the precondition of x is denoted by pre(x), and the postcondition
of x by post(x). On occasion, all three attributes of operator schemata will be
parameterized [2].

A plan for any given set of operator schema is a partial ordering of operators
instantiated from the operator schema. A plan is said to be executed whenever a
linear ordering of operators from the plan is applied to generate a sequence of
actions. The initial state description is intended to describe the environment when
plan execution commences. The goal state description is intended to describe what
that environment should be like when plan execution has completed. Formally,
the classical planning problem is the problem of producing a plan such that:

• If i is the initial condition, then there is some operator a in the plan for
which i H pre(a).

• If operator a immediately precedes operator b in the plan, then post(a) H
pre(b).

• If g is the goal condition, then plan execution will halt after operator a for
which post(a) H g.

Expressed intuitively, the classical planning problem is the task of generating
a plan, that, when executed, performs a sequence of actions that transform the
initial condition of the environment into the goal condition of the environment.
The activity of generating such a plan is called planning, and programs that under-
take this activity are called classical planners. Classical planners are further distin-
guished according to dependency, hierarchy, linearity, and conditionality.

11.2 Reaction

There is a dispute over whether externally induced reaction or internally conceived
reason is the catalyst for intelligence. The subsumption architecture of R. A. Brooks
[3–5] exemplifies the extreme reaction alternative. It consists of a vertical layering
of hard-wired finite-state machines, as shown in Figure 11.1.

Coordination within the architecture proceeds by suppression and inhibition,1

while the architecture functions as a direct sensor-to-effector mechanism. There
are no concepts, no stored representations modeling the world, no represented
plans, and no temporal reasoning, though activities are coordinated by an internal

1. Suppression occurs on the input side of a finite-state machine when the upper-level routine suppresses the
lower-level machine by seizing, for some designated amount of time, all messages sent to the latter. In
this way, higher-level machines usurp control of lower-level machine’s inputs. Inhibition occurs on the
output side of the finite-state machine when messages from the lower-level machine are inhibited for a
specific amount of time by a message from a higher-level machine. In this way, higher-level machines
prevent lower-level machines from interfering with their actions.
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Figure 11.1 Subsumption architecture.

clock. The architecture is engineered in an ad hoc, incremental fashion by guessing
which tasks should subsume others and by performing trial-and-error modifications
until the machine behaves properly. Brooks promotes this engineering strategy as
modeling evolution. The central tenets of Brooks’s moboticist position are elegantly
summarized by Kirsh [6]:

(1) Behavior can be partitioned into task-oriented activities or skills, such as walk-
ing, running, navigating, collecting cans, vacuuming, chopping vegetables, each of
which has its own sensing and control requirements which can be run in parallel
with others.

(2) There is a partial ordering of the complexity of activities such that an
entire creature, even one of substantial complexity, can be built incrementally by
first building reliable lower-level behavioral skills and then adding more complex
skills on top in a gradual manner.

(3) There is more information available in the world for regulating task-
oriented activities than previously appreciated; hence, virtually no behavioral skill
requires maintaining a world model. If you treat the world as external memory,
you can retrieve the information you require through perception.

(4) Only a fraction of the world must be sampled to detect this task-relevant
information. Smart perception can index into the world cleverly, extracting exactly
what is needed for the task control without solving the general vision problem.

(5) The hardest problems of intelligent action are related to the control issues
involved in coordinating the various behavioral abilities so that the world itself
and a predetermined dominance or preference ordering will be sufficient to decide
which activity layer has its moment in the sun.

The extreme reactionist view supplants rationalism with naturalism and
replaces the manipulation of stored representations with external interaction.

11.2.1 Neural Networks

Neural networks provide an alternative nonsymbolic reactive approach. The field
of neural networks became popular in the late 1980s early 1990s. A neural network
is a function-approximation technique that maps n-dimensional Euclidean space
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to m-dimensional Euclidean space, where m is less than or equal to n [7]. Given
a set of inputs and a desired set of outputs, a neural network can be trained to
approximate any function well. The basis for artificial neural network theory is
A. Kolmogorov’s theory of mapping neural network existence, as given in [7].
Kolmogorov’s theorem states that any continuous function f can be exactly imple-
mented by a three-layer, feed-forward neural network having n fan-out processing
elements in the first layer, (2n + 1) processing elements in the hidden layer, and
m processing elements in the top layer [7]. The theorem does not, however, state
what connections are needed from the first layer to the hidden layer or from the
hidden layer to the top layer. The theorem is mainly an assurance that a continuous
function can be mapped exactly by a three-layer feed-forward neural network. The
Stone Weierstrauss theorem states that, given the class of squashing functions, we
can uniformly approximate any continuous function [8]. This is purely an existence
theorem that allows for the use of artificial neural networks. It does not state how
to construct a neural network or how to train its weights. Neural networks contain
a set of weights that must be determined to approximate functions. To train neural
networks, techniques such as back propagation [7, 9], evolutionary programming
[10], and the extended Kalman filter [11] have been used.

A standard paradigm for a neural network is a feed-forward connection known
as the multilayer perceptron. A multilayer perceptron equation is shown in (11.1).

NNm = ∑
N

i = 1
wim * 1 fi 1 ∑

J

k = 1
Ik * wki22 (11.1)

where NNm is the mth output of the neural network, wim is the mth output weight
connected to the ith hidden node, and

fi =
2

1 + exp(−xi )
− 1 (11.2)

is the output of the ith hidden node; xi is the dot product sum of the previous
input layer’s output with the connecting weights of the hidden layer; wki is the kth
input weight connected to the ith hidden node; and Ik is the kth input feeding the
neural network.

Figure 11.2 is an example of a three-layer perceptron neural network. The
diagram shows three inputs into the first layer. The circles in the diagram represent
nodes which can have many inputs but only one output. The output of each node
in the first layer is sent to every node of the hidden layer. In the hidden layer, a
dot product sum is performed for all inputs and their corresponding weights. This
sum is then sent through the sigmoidal function to transform the linear dot product
sum into a nonlinear function that becomes the output of each node in the hidden
layer as shown in Figure 11.3.

The output of each hidden layer node is then sent to every node of the top
layer, and another linear weighted sum is performed with the corresponding weights
between the two layers. There are weights between each node that need to be
determined for a neural network to perform a correct function mapping. In order
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Figure 11.2 A neural network feed-forward architecture.

Figure 11.3 A view of a hidden layer, including the sigmoid squashing function.

to find the correct set of weights, a neural network has to be trained. Many different
types of training methods exist, such as back propagation, least mean squares
(LMS), and Hebb learning laws that determine a neural network’s set of weights
[7].

An example of a function-mapping problem is demonstrated with the exclusive-
or function. The exclusive-or function, y = f (x1 , x2), is a binary function that
contains four input-output pairs: f (0, 0) = 0, f (1, 0) = 1, f (0, 1) = 1, and
f (1, 1) = 0. Figure 11.4 represents the exclusive-or function in a 2-D grid. The
axes represent x1 , the first input, x2 , the second input, and the output, y, coming
out of the page. A hyperplane is drawn from (−1, −0.5) to (1, 2) representing a
linear sum 0 = w0 + w1a1 + w2a2 , where w0 , w1 , and w3 represent a set of
weights [7]. A hyperplane can be a line in 2-D space or an ordinary plane in 3-D
space. The hyperplane in Figure 11.4 is unable to put grid points (0, 1) and (1, 0)
on one side and (0, 0) and (1, 1) on the other. Therefore, a hyperplane alone cannot
perform the correct function mapping. Figure 11.5 represents a possible mapping
that a neural network can perform. This figure demonstrates that a neural network
can form a closed curve to encompass the desired function mapping. In Figure
11.6, the mean squared error of the neural network as it is training is plotted
versus the training iteration number. This figure showns that, by iteration 20, the
neural network’s mean squared error is at zero. This implies that the neural network
has learned and mapped the exclusive-or function exactly. Figure 11.7 shows the
neural network weights as they train over the 20 iterations. Note that by iteration
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Figure 11.4 A 2-D plot of the exclusive-or function.

Figure 11.5 A possible neural network function mapping.
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Figure 11.6 Neural network training error versus iteration count.

8, the neural network weights are in steady state, and little training occurs during
the next 12 iterations.

In terms of the computational aspects of neural networks when applied to
data-fusion process, there will not be an impact. Neural networks are incredibly
fast and can approximate any desired function needed by the data-fusion system.
Once a neural network has been trained to approximate a function, it can be
inserted into the system to execute whenever data is available. The speed of the
neural network is due to its dot product functionality. For a three-layer neural
network architecture, there will be an input vector applied to a dot product of an
input weight matrix. The dot product sums are then evaluated using a squashing
function for the hidden layer, and a final dot product of the squashing function
outputs with an output weight matrix is evaluated to form the outputs of the neural
network.

As with all function-approximation techniques, enough data needs to be avail-
able to approximate the desired function properly. Unavailability of data to train
artificial neural networks for a data-fusion system could make neural network
technology unavailable. Computationwise, there is little affect, though, for a data-
fusion system using artificial neural networks.

11.2.2 Reactive Planners

The standoff between the reactionist’s sophisticated world and the reasoner’s
sophisticated mind is complicated when hybrid strategies between the two are
acknowledged. As the first paper to seriously advance the possibility of engineering
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Figure 11.7 Input and output neural network weights versus training iteration.

intelligent machines,2 the second of Turing’s trilogy [12–14] offers some insight.
The prospect of engineering intelligent machines through the manipulation of stored
representations rested with [13], exposing the relationship between the universal
Turing machines3 of [12] and the emerging electronic digital computers of Turing’s

2. This is not to suggest the notion of intelligent machinery was conceived originally by Turing, merely that
he was the first to market the idea seriously. For example, it is widely known that John von Neumann
toyed with the notion, but ultimately embraced a pessimistic attitude toward it. It is also worth noting
that between the first two volumes of the Turing trilogy [12, 13], a number of events transpired. Of course,
one of them was the arrival of the electronic digital computer, with Turing himself at the forefront of its
development. In addition, Warren McCulloch and Walter Pitts had published ‘‘A Logical Calculus of the
Ideas Immanent in Nervous Activity’’ in 1943, a paper in which they showed that neural configurations
could be modeled by propositional logic and therefore that the central nervous system could be modeled
as a machine. That same year also marked the publication of ‘‘Behaviour, Purpose and Teleology’’ by
Arturo Rosenblath, Norbert Wiener, and Julian Bigelow. In it they exposed some of the nervous system’s
most common characteristics as ‘‘circular processes,’’ thereby reducing ostensibly purposeful activity to
feedback mechanisms. Taken together, these events suggested that if the minds were a product of entirely
physical components, then a mechanical portrayal of the mind was perhaps a legitimate one.

3. In [13] they are called ‘‘universal logical computing machines.’’
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day.4 But Turing’s vision for engineering intelligent machines favored a more
naturalist appraisal. Interaction with the world was a motivating theme, though
it was curbed to an extent in the interest of public safety [13, p. 13]:

One way of setting about the task of building a ‘‘thinking machine’’ would be to
take a man as a whole and to try to replace all the parts of him by machinery. He
would include television cameras, microphones, loudspeakers, wheels and ‘‘han-
dling servo-mechanisms,’’ as well as some sort of ‘‘electronic brain.’’ This would
be a tremendous undertaking of course. . . . In order that the machine should have
a chance of finding things out for itself, it should be allowed to roam the countryside,
and the danger to the ordinary citizen would be serious. . . . Instead, we propose
to try and see what can be done with a ‘‘brain’’ which is more or less without a
body, providing, at most, organs of sight, speech, and hearing.

Engineering an intellect would begin with the supervised learning of reactions
[13, p. 14]:

If we are trying to produce an intelligent machine, and are following the human
model as closely as we can, we should begin with a machine with very little capacity
to carry out elaborate operations or to react in a disciplined manner to orders (taking
the form of interference). Then, by applying appropriate interference, mimicking
education, we should hope to modify the machine until it could be relied on to
produce definite reactions to certain commands. This would be the beginning of
the process.

This would culminate in sophisticated search strategies [13, pp. 22–23]:

A very typical sort of problem requiring some sort of initiative consists of those
of the form ‘‘Find a number n such that . . .’’ This form covers a great many
problems. . . . We might arrange, however, to take all possible arrangement of
choices in order, and go on until the machine proved a theorem, which, by its
form, could be verified to give a solution of the problem. This may be seen to be
a conversion of the original problem into another of the same form. Instead of
searching through values of the original variable n one searches through values of
something else. In practice, when solving problems of the above kind, one will
probably apply some very complex ‘‘transformation’’ of the original problem,
involving searching through various variables, some more analogous to the original
one, some more like a ‘‘search through all proofs.’’ Further research into intelligence
of machinery will probably be greatly concerned with ‘‘searches’’ of this kind. We
may perhaps call such searches ‘‘intellectual searches.’’

Not all reactive architectures fall within the extreme reactionist scheme. In the
mid-1980s, the planning subdiscipline of classical artificial intelligence underwent
an internal struggle. To the protagonists, the classical planning problem no longer
fully expressed their ambition. The impetus for change was the inadequacy of

4. Specifically, Turing argued that the ACE computer he was working on at the time would, in effect,
constitute a universal machine if its memory capacity were infinitely extended.
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classical planners in the real world. The shortcomings are noteworthy, given the
classical planning commitment to search and reasoning through the manipulation
of stored representations.

• Classical planning is a very time-consuming exercise and is, broadly speaking,
provably both computationally intractable and undecidable.5 Planning unde-
cidability requires that we should either not plan or else plan conservatively.

• The classical planner traditionally prepares its plan, then executes it. At least
three drawbacks accompany this approach:
a. The real world will often change between the inception of plan formation

and plan execution, thereby making the plan to be executed redundant
(see [15]).

b. The classical planner operates with a superficial world model, and this
often engenders problems of robustness during execution. A more envi-
ronmentally interactive planner could potentially obviate some of the
difficulties. (See [16] for a demonstration of this point with the problem
of the DARPA autonomous land vehicle believing it has wandered into
a radio terrain mask.)

c. The requirement that all planning must precede execution necessitates
that the programmer be able to determine the effects of the robot’s actions
a priori; outside contrived blocks worlds, this is often not possible.

• Classical planners traditionally formulate their plans based on the primitive
actions the robot can perform. This is often not the best policy since many
plans are not constructed from first principles (see [15]).

• Classical planners traditionally construct their plans afresh on each occasion.
This is not only a waste of resources, but also significantly affects reactivity.
Humans seem to rely on predefined plans to at least some extent. Plan
libraries have become the norm.

• Classical planners traditionally formulate their plans blindly, without sensory
access to the external world. Consequently, the plan-formulation process is
unable to compensate for a changing environment during plan execution.

• Classical planners traditionally possess no concept of urgency and perform
no reasoning under uncertainty. They are suited only to problems in which
the world of interest is a clearly discernible product of their own actions.

Figure 11.8 identifies some of the better-known embedded architectures ema-
nating from the period. They are ordered in the figure by an increasing design

Figure 11.8 Embedded architecture continuum.

5. This, of course, depends on the representational capacity of the planner [2].
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emphasis toward reason, independently of the extent to which those additional
design facilities are actually used in any particular application.

Following the generalization of [17], it is convenient to call the collection of
related, low-level fixed architectures to the immediate right of the subsumption
architecture universal planners, after [18].6 Rather than devise plans as the need
arises, universal planners come with a ready made assortment of stored reactions
to possible situations, which are combined as the situation dictates [24, p. 52]:

A universal plan is executed by repeatedly starting at the top of the decision tree,
testing the conditions encountered on the way down, branching right or left as
appropriate, then executing the action found at the bottom. Thus, universal plans
amount to deeply nested if-then-else’s inside a do-forever.

Universal planners resemble the rapid, cyclic, perception-action character of
the subsumption architecture, but their architectures are invariably arrived at in a
more reasoned fashion through specially deployed programming language con-
structs, which may or may not be explicit in the final product. Universal planners
can accommodate very weak world models in the form of internally manipulated
state descriptions. They can also accommodate some longer-term computations
spanning several perception-action cycles.

Beyond universal planners, the architectural emphasis extends further toward
reason, with a proportional increase in both a dependency on internally manipulated
representations (world model) and the sophistication of the representation lan-
guage.7 Woodridge cites the following objections to purely reactive architectures
[37, p. 97]:

• Reactive planners without models of their environment must have sufficient
information in their local environment to determine acceptable actions.

• Reactive planners tend only to have a short-term view because they rely on
current state information only.

• Reactive planners tend not to learn from experience.
• Reactive planners often exhibit behavior that emerges from component sys-

tems, which makes it difficult to engineer them through a principled method-
ology.

• Reactive planners are difficult to engineer when they are complex systems
involving many layers.

In general, the more the architectural emphasis advances reason, the more
classical its representation becomes. Debate has raged over the extent to which
reason should dominate reaction. In proposing the procedural reasoning system

6. Though important differences are involved, we include within this general class the situated automata of
[19–23], the universal planners of [18, 24, 25], and the routine architectures of [26, 27].

7. In increasing reasoning architectural complexity, we have listed Charles Firby’s reactive action packages
[28, 29], Michael Georgeff’s Procedural Reasoning System [15, 30, 31]; Barbara Hayes-Roth’s Guardian
[32–34] with the underlying BB1 blackboard architecture developed in [35] and the ISIS schedular of [36].
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(PRS) architecture, [15] clearly distances itself from the lesser reason-based embed-
ded architectures by remarking [15, p. 677]8:

The ability to act appropriately in dynamic environments is critical for the survival
of all living creatures. For lower life forms, it seems that sufficient capability is
provided by stimulus-response and feedback mechanisms. Higher life forms, how-
ever, must be able to anticipate future events and situations, and form plans of
action to achieve their goals. The design of reasoning and planning systems that
are embedded in the world and must operate effectively under real-time constraints
can thus be seen as fundamental to the development of intelligent autonomous
machines.

As an advocate of the subsumption architecture, Brooks [5, p. 571] is critical
of more reason-oriented systems.

The idea is that the reactive system handles the real-time issues of being embedded
in the world, while the deliberative system does the ‘‘hard’’ stuff traditionally
imagined to be handled by an Artificial Intelligence system. I think that these
approaches are suffering from the well-known ‘‘horizon effect’’—they have bought
a little better performance in their overall system with their reactive component,
but they have simply pushed the limitations of the reasoning system a bit further
into the future.

Diverging opinions of just this sort prompted Kirsh [6, p. 161] to remark:

It is an open question just where to draw the line between situationally determined
activity—activity that can be initiated and regulated by smart perception action
systems—and activity that requires thought, language-like conceptualization, and
internal search.

More recently, systems like InteRRaP [38] have been proposed, which resemble
a subsumption architecture of reactive planners. InteRRaP has three layers: a
reactive behavior-based lower layer, a middle local-planning layer, and an upper
cooperative-planning layer; each layer has a world representation at a level of
abstraction.

11.3 Logical Reasoning

In more recent times, declarativist representations have been dominated by the
logicist school of thought with artificial intelligence [39, p. viii]:

We claim that AI deals mainly with the problem of representing and using declara-
tive knowledge (as opposed to procedural) knowledge. Declarative knowledge is

8. This dualist approach reflects our rational account of ourselves. Reasoning is intuitively commendable
when deliberating over the purchase of a house but seems less valuable when one has accidentally placed
a hand on a damaging hot plate. In such circumstances, one does not consciously question the logical
consequences of a cooked hand—one instinctively reacts!
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the kind that is expressed as sentences, and AI needs a language in which to
state these sentences. Because the languages in which this knowledge is originally
captured (natural languages such as English) are not suitable for computer represen-
tations, some other language with the appropriate properties must be used. It turns
out, we think, that the appropriate properties include at least those that have been
uppermost in the minds of logicians in their development of logical languages such
as the predicate calculus.

The logicist view has become prominent within artificial intelligence
[40, p. 132]:

One can look at AAAI Proceedings and IJCAI Proceedings over the past several
years to see the trend: more and more articles are not even readable unless one is
familiar with concepts like logical formulas, inference, non-monotonic reasoning,
models, quantification, unification, metalevel reasoning and the like. Knowledge
about these subjects is part of the technical apparatus that all AI researchers need
to have.

In the early days of artificial intelligence, classical logics were automated
through theorem provers. Data structures syntactically isomorphic to the formal
language expressions of the logic were employed to express formal theories, while
a collection of computational procedures were employed to automatically manipu-
late the data structures in accordance with the syntactic manipulations specified
by the logic’s deductive-inference relation. The consequence was a machine capable
of conducting automated deductive inference. Automated deduction was dominated
by the resolution method of Robinson [41], which was founded upon just two
rules of inference, factoring and resolution. Coding the deductive relation required
coding two important procedures over and above the actual factoring and resolu-
tion-inference rules:

1. A clausification procedure reduced any given first-order formula to its
Skolemized conjunctive normal form; expressed the atomic and negated
atomic elements as primitives, called literals; expressed the disjunctions of
the atomic and negated atomic elements as sets of literals, called clauses;
and expressed the conjunction of these disjunctions, being the complete
formula, as a set of clauses.

2. A unification procedure computes the most general unifier of two literals,
with a unifier being a substitutional environment which renders the two
literals identical.

The two rules of inference operate by finding the most general unifiers for
literals in clauses.

Mechanisms for allowing knowledge to guide the search process subsequently
led to rule based systems like PROLOG, with the representation language designed
to exploit the underlying shared library definition (SLD)-resolution control mecha-
nism. Unconditional knowledge is coded as facts, while conditional knowledge is
coded as rules. The nature of logicist systems has diversified beyond simple rule-
based systems. Sophisticated general theorem provers currently include first-order
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logic theorem provers like Otter, ordered semantic hyperlinking (OSHL), and
Gandalf, and higher-order logic theorem provers like Isabelle and high order logic
(HOL).

11.3.1 Decidability and Complexity

The logicist paradigm views computational systems as devices that compute logical
inference. A principal advantage of this approach over simple rule-based systems
is that it allows the system engineer to assess a system by assessing the capabilities
of the logic it defines. The engineer can consider whether the system is sound,
complete, decidable, and, if decidable, its computational complexity.

To address the issues of soundness and completeness, one has to consider both
syntactic and semantic ways of finding conclusions, given the facts. A proof is a
syntactic notion: Given the language, the symbols employed, and the set of axioms,
what can be mechanically derived from the facts? An interpretation, or model, is
a semantic notion: it associates nonlogical symbols of the language with terms of
the domain, and we say that an interpretation satisfies the sentence if it makes it
true. An interpretation that makes a sentence true is called its model, and a sentence
is valid if it is true under all interpretations (every interpretation is its model). A
logic is sound if every sentence that can be proven is true. A logic is complete if
every sentence that is true can be proven (a proof of this sentence can be found).
Given a logical system, one usually prefers that the system be both sound and
complete.

A set of sentences is decidable if there is a procedure that, given a sentence,
will decide whether that sentence is in the set of sentences. A theory (logical
system) is decidable if the set of its true sentences is decidable. A theory is finitely
axiomatizable if its true sentences are consequences of a finite set of sentences. It
is an important fact that if a theory is finitely axiomatizable and complete, then
it is decidable [42].

Given a logic, the logic is often required to be not only decidable also tractable—
not only the logic, in principle, determine whether any given sentence is true
but these determinations can be obtained reasonably quickly, using a mechanical
procedure (implemented on a computer). This procedure, or algorithm, is expected
to solve the following problem: Given the logic and a sentence, is the sentence
true? It is crucial not only that an answer can be produced for any sentence (instance
of the problem) but also that the answer is produced reasonably quickly. If an
algorithm has a polynomial time complexity (the time required to produce an
answer is a polynomial function of the length of input), then it is considered
tractable; if an algorithm has an exponential time complexity, then it is not consid-
ered good; if no polynomial time complexity algorithm has been found for a
problem, then the problem is considered intractable. The theory of NP-completeness
[43] explores the tractability of problems. It classifies many problems as NP-
complete, and such problems are generally believed to be intractable, but whether
NP-complete problems are indeed intractable (whether it is certain that no polyno-
mial time complexity algorithms can be found for them) remains an open question.
However, NP-completeness of a given problem indicates that it is as difficult to
solve efficiently (to find a polynomial time algorithm for it) as all of the problems



11.3 Logical Reasoning 293

in the NP-complete class (all of these problems are difficult and are believed to be
intractable).

11.3.2 Knowledge Representation

The main activity in the area of knowledge representation and knowledge reasoning
(KR) is to represent a domain of interest formally and to reason automatically
about the domain using the employed representation. To do this, one needs to
build a formal theory of the domain. From the logicist’s standpoint, building formal
theories (of domains) is what KR is about.

Depending on the domain, one might need a formal theory of time, space, and
space-time; a formal theory of aircraft, weapon systems, radars, and military assets;
a formal theory of agents; and so forth. Clearly, one formal theory might be built
on top of another one; for instance, a formal theory of aircraft would need to be
built on top of a formal theory of space-time (or formal theories of space and
time).

Such formal theories could be seen as ‘‘ontologies,’’ in a deep sense, of the
domains. A formal theory of aircraft can be seen as an ontology of aircraft, a
theory that explains what aircraft are, what they do, what its relevant properties
and relations are, and how to represent and reason about them. Such ontologies,
as formal theories, might differ wildly between domains in the sense that one
ontology might employ a set of conceptual (ontological) relations very different
from those employed by another ontology. For instance, a formal theory of space-
time might employ the following conceptual relations: connects, north-of, far-away,
between, before, during, and so forth (note that such relations would not be
employed in formal theories in which space and time is of no concern). The
main difficulty in building such ontologies is to decide what primitives (primitive
relations) are needed, what other relations can be defined using the primitives, and
what the logical and computational properties (soundness, completeness, decidabil-
ity, complexity) of the ontologies or the formal theories are.

As many formal theories of domains need to be built on top of formal theories
of space-time, or processes, some formal theories of space-time will be described.

An important class of ontologies, formal theories in a shallow sense, can
be singled out: taxonomies, or formal theories not much more involved than
taxonomies—let’s call them ‘‘ontologies as taxonomies.’’ Such ontologies seldom
employ other conceptual relations than subsumption (kind-of, subclass-superclass)
and, possibly, mereonomic relations (part-of, part-whole). In practice, building
such ontologies often amounts to building a hierarchy of classes (of objects of the
domain). This is the sense of the word ‘‘ontology’’ as employed when one talks
about ontologies built in XML, resource description framework (RDF), DAML +
OIL, and so forth, What is important about such ontologies is whether they are built
using ‘‘only’’ XML, using both XML and RDF, or using a logic-based extension of
RDF such as OIL—this is the question of how syntactic or semantic the approach
taken is. It seems that taking a purely syntactic approach (XML only) is highly
inappropriate. RDF provides some semantics, but is not expressive enough. There-
fore, one should really focus on semantic approaches, approaches that extend RDF
by providing logical formalisms equipped with model-theoretic semantics—after
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all, ontologies are supposed to capture (restrict) the meaning of terms, and any
purely syntactic approach fails to do this.

One good example of ontology frameworks equipped with formal semantics
is OIL, a framework built on description logics. The OIL (DAML + OIL, OWL)
approach and some alternatives will be described.

11.3.3 Ontologies as Taxonomies

Ontology languages or frameworks based on logical, formal theories are to be
preferred as they provide formal semantics, and questions of logical and computa-
tional properties of such frameworks can be properly addressed.

Three example frameworks are KIF/Ontolingua, F-logic/OntoEdit, and descrip-
tion logics/OIL.

11.3.3.1 Knowledge Interchange Format and First-Order Logic

The Ontolingua ontology environment is based on the Knowledge Interchange
Format (KIF) as its knowledge representation formalism. The main problem with
KIF is that it is based on first-order logic and is therefore undecidable (KIF even
extends beyond first-order logic; for instance, it adds a form of reification mecha-
nism, which allows the treatment of statements of the language as objects in their
own right, thereby making it possible to express statements over these statements).

To make KIF usable, one needs to restrict KIF and consider sublanguages of
KIF (so called small KIFs) that would have better computational properties than
KIF (the ‘‘big KIF’’). In the KIF community, this is called a ‘‘levels of conformance’’
problem, though to date no consensus on this has been reached. A recent proposal
[44] suggests the following:

1. There will be two specs, one for the ‘‘full’’ KIF (with sorts, namespaces,
and anything else people want), and one for Meta-KIF.

2. Each system defines syntactic conformance by providing in Meta-KIF the
(subset of the) KIF syntax it supports.

3. Each system defines semantic conformance in terms of soundness, complete-
ness, and decidability.

11.3.3.2 OntoEdit and F-Logic

OntoEdit, an ontology engineering environment, is based on the logical formalism
of F-logic, or frame logic. The current version of OntoEdit supports F-logic, resource
description framework semantics (RDFS), and OIL; it has an interface to the
Karlsruher F-Logic Inference Engine, and soon an access to FaCT (a description-
logic-based reasoner employed in OIL/OntoEdit) will be provided.

OntoEdit provides the following facilities [45]:

• The tool allows the user to edit a hierarchy of concepts or classes. These
concepts may be abstract or concrete, which indicates whether or not making
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direct instances of the concept is allowed. A concept may have several names,
which is essentially a way to define synonyms for that concept.

• Concepts may participate in binary-type relations. Attributes of concepts
are also considered to be relations. For this purpose, built-in types, such as
STRING, INTEGER and BOOLEAN, are introduced. Relations can also be
composed based on other relations.

• Relations can be ordered in a hierarchy, which allows for inheritance or
refinement of characteristics of relations. For example, the relation ‘‘has-
Room (x, y)’’ between a hotel and a room may be refined into the relation
‘‘hasDoubleRoom (x, y)’’ between a hotel and a double room, where
‘‘DoubleRoom’’ is a concept inheriting from the ‘‘Room’’ concept. Relations
are refined by imposing restrictions on values, such as in the specified exam-
ple, or on cardinality, for example, by narrowing a one-to-many relation
down to a one-to-one relation.

• Each concept and relation can be documented explicitly within the ontology.
This is especially important when exchanging ontologies. Metadata on the
ontology, such as the creator and the date of last modification, can also be
stored within the ontology. This fixed set of attributes consists of the dublic
core attributes, as well as some ontology-specific attributes.

• Transformation modules can be linked into the system, which allow transla-
tion of the ontology from its own general, XML-based storage format to a
more specific format. Currently, an F-Logic transformation module is avail-
able, and work on an RDF module is underway.

• An analysis of the ontology language employed in OntoEdit would amount
to a discussion of the F-Logic formalism—this is beyond the intended scope
of this book. Comparing F-logic to the description logics employed in OIL,
F-logic is more expressive but harder to reason with.

11.3.3.3 OIL and Description Logics SHF, SHIQ, SHOQ(Dn)

OIL (the Ontology Inference Layer or Ontology Interchange Language) and its
implementation in OilEd, a simple OIL editor, is a description-logic-based frame-
work. Although a framelike language is provided as a front end, the ontologies
one builds are really static Hayard free (SHF) or SHIQ knowledge bases. Therefore,
it is appropriate to see OIL languages as description-logic languages SHF and
SHIQ. Another emerging language is SHOQ(Dn). A short discussion on SHF,
SHIQ, and SHOQ(Dn) is provided below.

For detailed discussions on OIL and its connection with DAML, see [46, 47].
The first version of the combined DAML and OIL language was called DAML-
OIL, then renamed to DAML + OIL (but a description-logic language has not yet
been worked out for DAML + OIL). Then, OWL, the Ontology Web Language,
based on DAML + OIL, was proposed. The OWL language can be used to formalize
a domain by defining classes and properties of those classes, to define individuals
and assert properties about them, and to reason about these classes and individuals
as specified by the semantics of the language [48].

The logic implemented in FaCT, the reasoner for OIL, is based on ALC_R+,
an extension of ALC to include transitive roles [49]. For conciseness, this logic has
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been called S (due to its relationship with the proposition multimodal logic S4(m)
[50]). SHF extends S with a hierarchy of roles and functional roles (attributes),
while SHIQ adds inverse roles and fully qualified number restrictions. The SHIQ
reasoner is of particular interest, both from a theoretical and a practical viewpoint.
Adding inverse roles to SHF (resulting in SHIF) leads to the loss of the finite model
property, and this has necessitated the development of a more sophisticated double
dynamic blocking strategy that allows the algorithm to find finite representations
of infinite models, while still guaranteeing termination [51]. Moreover, when SHIF
is generalized to SHIQ, it is necessary to restrict the use of transitive roles in number
restrictions in order to maintain decidability [52]. SHIQ is also of great practical
interest as it is powerful enough to encode the logic DLR and can thus be used
for reasoning about a wide range of conceptual data models (see, for example,
[53] and extended entity-relationship (EER) schemas [54].

SHOQ(D) is a description logic derived from SHIQ, by giving up inverse roles
(the ‘‘I’’ in SHIQ) but adding ‘‘individuals’’ (the ‘‘O’’) and concrete domains (the
letter ‘‘D’’). A tableaux algorithm for SHOQ(D) has been provided, but it has not
yet been implemented. The ability to SHOQ(D) to build ontologies seems still to
be in the relatively distant future. It seems appropriate to use SHF as it is easier
to compute SHF ontologies than SHIQ ontologies and only to employ SHIQ when
the additional expressibility (inverse roles, ‘‘I;’’ qualified number restrictions, ‘‘Q’’)
is required.

Constructors for SHIQ, a logic employed by DAML + OIL, include:

• intersectionOf;
• unionOf;
• complementOf;
• toClass (\forall P.C);
• hasClass (\exists P.C);
• maxCardQ (<n P.C);
• minCardQ (>n P.C).

The set of constructors determines the expressibility of the logic, as well as the
computational costs of reasoning with it.

Regarding complexity, both SHF and SHIQ are decidable but not (theoretically)
tractable: SHF is in ExpTime (consisting of all languages with time complexity
bounded above 2p(n) for some polynomial p of the input length n), but the implemen-
tation is highly optimized and behaves well in practice. The implementation of
SHIQ is an extension of the implementation of SHF, but the employed optimization
techniques are not guaranteed to work for SHIQ. The logic SHOQ(D) has not
been implemented yet.

11.3.4 Formal Theories of Space-Time (Ontologies as Formal Theories)

At the ontological or metaphysical level, the world consists of matter distributed
in space and changing over time. It seems appropriate to have identities as ‘‘histor-
ies,’’ or processes with ‘‘temporal parts,’’ as fragments of space-time. To build a
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formal theory of, say, ships, one would build it on top of a formal theory of space-
time; a theory of space-time would be used to describe (and reason about) processes,
which are spatiotemporal fragments of (the matter of) the universe [55]. Then,
ships would be properly individuated processes: A ship is a process (a spatiotempo-
ral chunk of matter) that can stay afloat, move, communicate, shoot, approach,
attack, and so forth. It is thus clear that a theory of processes would be strongly
connected to a theory of space-time—it seems appropriate to consider a theory of
processes that are spatiotemporal processes. Many formal theories of interest (e.g.,
theories of fighting ships, aircraft, military assets or platforms, and military opera-
tions) would be built on top of a formal theory of spatiotemporal processes.

It seems clear that one needs to consider formal theories of time and space
before building a formal theory of space-time. This is not so because a theory of
space-time should be a result of ‘‘combining’’ a theory of space and a theory of
time—quite the opposite: a theory of space-time should be the most primitive, and
a theory of space and a theory of time should be derivable from the theory of
space-time. However, when building a theory of space-time, one needs to decide
upon an appropriate set of ‘‘primitives,’’ to come up with a reasonable set of
primitives that one might consider primitives employed in theories of space and
theories of time. For instance, there can be a theory of space that employs ‘‘overlap’’
as its primitive, and there can be a theory of time that employs ‘‘overlap’’ as its
primitive, indicating that maybe ‘‘overlap’’ can be used as a primitive in a theory
of space-time. But that does not mean that one will combine ‘‘spatial overlap’’
with ‘‘temporal overlap’’ to build ‘‘spatiotemporal overlap’’—quite the opposite:
‘‘spatiotemporal overlap’’ is the most ‘‘basic’’ primitive, in the sense that ‘‘spatial
overlap’’ and ‘‘temporal overlap’’ should be derivable from it.

We therefore consider some theories of time and some theories of space, com-
ment on proposals for theories of space-time, suggest a theory of space-time, and
also address theories of processes, indicating how a (nonspatiotemporal) process
theory should be extended to incorporate space-time. A comment (not much more
than that) is then made about a theory of ships—a theory of ships would be one
of a bunch of formal theories built on top of theories of spatiotemporal processes.
Indeed, Lambert [56] proposes a hierarchy of classes of formal theories encom-
passing metaphysical, physical, functional, intentional, and social levels.

11.3.4.1 Formal Theories of Time

We limit ourselves to interval structures and consider the following three theories:

• van Benthem theory (I, <, subset), where I is a set of intervals, ‘‘<’’ is a
precedence relation (the ‘‘before’’ relation), and ‘‘subset’’ is the inclusion
relation over I;

• Allen and Hayes theory (J, ||), where J is a set of temporal intervals and ‘‘||’’
is a binary relation of meeting of intervals (note that the 13 Allen’s relations
on intervals [before, starts, during] can be defined in terms of the meet
relation);
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• Tsang theory (G, <, overlap), where G is a set of intervals, ‘‘<’’ is a precedence
relation (the ‘‘before’’ relation), and ‘‘overlap’’ is an overlapping relation
on G.

For a discussion of how these theories are related to each other, see [57].
From an IF perspective, Tsang theory seems interesting as it takes as primitives

the precedence relation ‘‘<’’ (a temporal ‘‘orientation’’ relation) and the overlap
relation (a temporal ‘‘connection’’ relation). From a short discussion on theories
of space, it will be evident that ‘‘connection’’ and ‘‘orientation’’ are primitives of
interest—this means that a theory of space-time might be based on the primitives
of ‘‘connection’’ (or ‘‘overlap’’) and ‘‘orientation.’’

11.3.4.2 Formal Theories of Space

A most successful proposal for qualitative spatial reasoning is a formal theory of
space known as region connection calculus (RCC) [58]. The RCC theory is based
on a single primitive of ‘‘connection’’ between spatial regions. Other relations (such
as the eight relations of RCC-8) can be defined in terms of the connection relation.
Certainly, it seems appropriate to consider RCC when building a ‘‘connection’’-
based theory of spatiotemporal regions.

Qualitative approaches to spatial ‘‘orientation’’ need to be taken into account
if a theory of space-time is not only to ‘‘generalize’’ a theory of spatial connection
but also a temporal theory such as the Tsang theory. This indicates that a simple
theory of orientation needs to be considered in order to propose an orientation
(or orientation plus connection or overlap) theory of space-time.

11.3.4.3 Formal Theories of Space-Time

There are very few proposals for a theory of space-time. An example is the work
of Muller [59]. His theory is a theory of motion, taking space-time histories of
objects as primitive entities.

It seems that a simple theory of space-time should be based on such primitives
as ‘‘orientation’’ and ‘‘overlap’’ (or ‘‘connection’’). Such a theory would nicely
correspond to the temporal Tsang theory and a spatial theory of RCC extended
with ‘‘orientation.’’ However, there are two important notes. First, orientation by
itself is hardly enough: One employs orientation to locate entities, but to (even
qualitatively) locate them, one needs both orientation and distance; therefore, one
should add ‘‘distance’’ to ‘‘orientation’’ and ‘‘overlap.’’ Second, there are many
discouraging results regarding the decidability and complexity of spatial, temporal,
and spatiotemporal theories (see [60, 61]). It is clearly a very difficult task to come
up with a reasonable theory of space-time that is tractable, or even just decidable.
Consider the following quote [61]:

Multi-dimensional modal logics are not easy to deal with, and we need to be careful
in constructing effective and expressive spatio-temporal formalisms. For example,
the straightforward attack on the problem by means of using the Cartesian products
of frames for S4 and the flow of time (N, <) (or any other infinite linear order)
has not brought any result yet: whether the logic of such 2-dimensional frames is
decidable remains one of the challenging open problems in the field.
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11.3.4.4 Formal Theories of Processes

Lambert [55] proposes a theory of processes based on a structure (P; =, <, +, ., −,
0, 1), where

P is a set of processes (fragments of the universe);

= is an equality relation (p = q means that p and q are the same processes);

< is a fragmentation (part-of) relation;

+ is a ‘‘joint’’ (union) operation on processes;

. is a ‘‘meet’’ (intersection) on processes;

− is a complementation operation;

0 and 1 are the empty process—the bottom element of the ordered structure
(P, <)—and the universe (top) process.

The structure (P; =, <, +, ., −, 0, 1) extends a purely mereological structure (P;
<, 0, 1); however, ‘‘=,’’ ‘‘+,’’ ‘‘.,’’ ‘‘−,’’ 0, and 1 can all be defined in terms of ‘‘<.’’
Furthermore, an axiomatization can be given by providing the axioms of identity,
fragmentation, universe, unity, and separation.

A mereological theory of processes can then be extended to incorporate the
concepts of time and space by accommodating ‘‘times’’ and ‘‘spaces’’ as processes.
For instance, the time ‘‘year 2001’’ is the fragment of the whole universe that
started at the beginning of the year 2001 and ended at the end of the year 2001.
Seeing purely temporal and spatial entities as processes conceptually unifies space,
time, and processes. The next step is to add such primitives (taken from a formal
theory of space-time) as ‘‘overlap,’’ ‘‘orientation,’’ and ‘‘distance.’’

11.4 Rule-Based Reasoning

Most practitioners accept that symbolic representations are useful. For instance,
[62] argues,

The situationalists are attacking the very idea of knowledge representation—the
notion that cognitive agents think about their environments, in large part, by
manipulating internal representations of the worlds they inhabit. Let us be frank:
we think the representational hypothesis is a great idea. The reasons for being so
positive are well documented, but we have two main justifications for our enthusi-
asm. First, it accounts for much that is otherwise completely puzzling about how
cognition could happen in the physical world; second, it allows experiments and
makes empirical predictions, which have so far largely been confirmed. But one
needs to understand the key word ‘‘representation’’ in a sufficiently broad fashion.

Internal representations might not be consciously available to introspection,
might utilize ontological frameworks that are determined by social or other con-
texts, might be involved with (and have their use involved in) social practices or
any other kind of human activity, and might be involved in perceptual or motor
skills at any cognitive level. None of these are in any way at variance with the
representationalist hypothesis.
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Acknowledging the utility of symbolic representations exposes another previous
debate within artificial intelligence. In the mid to late 1960s, the emphasis in AI
shifted from search to representation [63, p. 9]9:

The most central idea of the pre-1962 period was that of finding heuristic devices
to control the breadth of a trial-and-error search. A close second preoccupation
was with finding effective techniques for learning. In the post-1962 era, the concern
became less with ‘‘learning’’ and more with the problem of representation of
knowledge (however acquired) and with the related problem of breaking through
the formality and narrowness of the older systems. The problem of heuristic search
efficiency remains as an underlying constraint, but it is no longer the problem one
thinks about, for we are now immersed in more sophisticated subproblems, e.g.
the representation and modification of plans.

This forged a number of representation schemes, including production system,
logical, procedural, semantic network, and frame-based representation schemes.
Whether representation ought to take the declarativist’s data form of ‘‘knowing
that’’ or the proceduralist’s procedure form of ‘‘knowing how’’ became a matter
of considerable debate in the early 1970s. The first part of [65] outlines the virtues
of each camp’s case. The threads of this debate extend back to the contrasting
viewpoints espoused by Minsky and McCarthy at the Dartmouth Conference.

Declarative rule-based systems, based primarily on production-system and
logical-representation schemes, became the dominant approach to encoding human
knowledge during the period. Knowledge-based systems, also called expert systems,
have been defined in terms of function and structure by well-known authors. Many
early definitions assume rule-based reasoning. Edward Feigenbaum, the leading
advocate of knowledge-based systems, a professor at Stanford and chief scientist
of the U.S. Air Force from 1994 to 1997, gave the following definition [66]:

Expert system is an intelligent computer program that uses knowledge and inference
procedures to solve problems that are difficult enough to require significant human
expertise for their solution. The knowledge of an expert system consists of facts
and heuristics. The ‘‘facts’’ constitute a body of information that is widely shared,
publicly available, and generally agreed upon by experts in the field.

As mentioned earlier, most early expert systems were rule-based systems. In
these systems, the experts’ knowledge was encoded in the form of associational
‘‘rules of thumb’’ (also referred to as heuristics) that mapped from observable
features of the problem to conclusions. They had a simple control structure and a
uniform representation of knowledge. It was recognized that these first generation
expert systems were limited in their knowledge-representation capabilities and
implicitly combined knowledge of different natures (‘‘what,’’ ‘‘how,’’ and ‘‘why’’).
This led to several problems related to knowledge acquisition, explanation, brittle-
ness, and maintainability.

9. The year 1962 is supposedly singled out because it dates the material of Feigenbaum and Feldman [64],
which summarized the search phase at that time. There is perhaps also a tinge of Carnegie–MIT rivalry
involved in choosing what is prima facie a premature date, at least from the discipline perspective.
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The main components of a rule-based expert system are the knowledge base,
inference engine, working memory, and user interface (see Figure 11.9). More
elaborate expert systems also include a knowledge-acquisition facility and some
explanation facilities.

11.4.1 The Knowledge Base

The knowledge base contains the expert system’s knowledge represented as a set
of rules and facts. Rules are used to represent heuristics, or ‘‘rules of thumb,’’ that
specify a set of actions to be performed for a given situation. Various formalisms can
be used to express rules. A production rule is a method of knowledge representation
characterized by an IF ‘‘condition THEN action’’ format. The condition part of a
rule is a series of patterns that specify the facts (or data) that cause the rule to be
applicable. The condition may be a compound of the Boolean connectives and, or,
and not. The action part of a rule is the set of actions to be executed when the
rule is applicable. An action can affect the value of working-memory variables, take
some real-world action, or potentially do other things, such as stop the production
system.

Certainty factors are sometimes used to represent the confidence one has that
a fact is true or a rule is valid.

11.4.2 The Working Memory

The working memory contains all the information about the problem that is either
supplied by the user or inferred by the system through the activation, or ‘‘firing,’’
of rules.

Figure 11.9 Components of a rule-based expert system.
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11.4.3 The Inference Engine

The inference engine is the component of an expert system responsible for drawing
new conclusions from both the current facts in the working memory and the rules
contained in the knowledge base. It automatically matches facts against patterns
and determines which rules are applicable. The process of matching facts to patterns
is called pattern matching. The inference engine selects a rule and the actions of
the selected rule are executed (which may affect the list of applicable rules by
adding or removing facts). The inference engine then selects another rule and
executes its actions. This process continues until no applicable rules remain. The
inference engine also contains methods related to various matching and conflict-
resolution strategies. Conflict resolution is a strategy for determining which rule
is ‘‘fired’’ when the conditions of several rules are satisfied. This choice will influence
the movement in the problem space and the amount of search to be made (i.e., the
effectiveness of the system as a problem solver).

The basic execution cycle of rule-based systems consists of:

1. Determining which rules match facts in the working memory;
2. Choosing a rule to apply (conflict resolution);
3. Applying the rule, which will change the working memory;
4. Going to 1.

11.4.4 Reasoning Modes

Forward-chaining (or data-driven chaining) and backward-chaining (or goal-
directed chaining) are the two main methods of running a production system.

• Forward-chaining reasoning progresses ‘‘forward’’ from the initial data
toward the final conclusion. It is used to find the solution by starting with
an assumption and working toward a final goal. According to the production
system cycle, the conditional parts of the rules are checked against the content
of the working memory, then the action parts of the suitable rules are fired.

• Backward-chaining reasoning starts with a conclusion and determines the
data needed to reach such a conclusion. It is used when there is a goal to
prove, and there is an attempt to establish the premise of that goal. It uses
a process to find the solution by searching backwards from the solution
toward the initial conditions, thus verifying the specified goal.

11.4.5 RETE Algorithm

The RETE algorithm is a well-known pattern-matching algorithm developed by
Charles L. Forgy at Carnegie-Mellon University in the 1970s. It is very good at
handling large numbers of rules efficiently. Forgy published an article about the
algorithm in 1982 [67].

This algorithm is intended to improve the speed of forward-chained rule systems
by limiting the effort required to recompute the conflict set after a rule is fired. It
comes from the observations that: (1) the firing of a rule usually changes only a
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few facts, each of which affects only a few rules, and (2) the same pattern often
appears on the left-hand side (LHS) of more than one rule.

The obvious implementation for an inference engine is to keep a list of the
rules and to continuously cycle through the list, checking each rule’s LHS against
the knowledge base and executing the right-hand side (RHS) of any rules that
apply. This is inefficient because most of the tests made on each cycle will have
the same results as during the previous iteration.

RETE is a compilation algorithm that transforms a rule set into a tree of
interrelated nodes. The internal nodes represent tests appearing on the LHS (condi-
tions) of the rules, and the leaves of the tree represent the RHS (actions) of the
rules. RETE allows for sharing tests among rules and stores information about the
object in memory that partially satisfies one or more rule conditions. This network
of nodes processes facts that are being added to, or removed from, the knowledge
base. RETE is used to implement event-driven programming more than backward-
chaining and is especially quick to react when new information is added to the
network. Only new facts are tested against any rule LHSs. Additionally, new facts
are tested against only the rule LHSs to which they are most likely to be relevant.
As a result, the computational complexity becomes linear in the size of the fact
base.

In short, the RETE constructs the tree after parsing the system rules. Data
elements enter the tree at an input node (a given condition) and follow certain
branches (between nodes) to attain termination nodes, where the production can
be launched. The data consequently encounters only rules for which it has to be
tested.

The RETE is less efficient when it is applied to large amounts of data or to
very rapidly changing data [68]. Forgy created a substantially revised algorithm
named RETE II in the 1980s. The new algorithm is as good as the original RETE
at handling large numbers of rules, but it is dramatically faster than the original
algorithm when dealing with large amounts of data or rapidly changing data.
Unfortunately, the RETE II algorithm is not available in the public domain. RETE
II is exclusively available from Production Systems Technologies.

11.4.6 Examples of Expert Systems

DENDRAL was one of the first expert systems developed by Feigenbaum at Stan-
ford University (1965). It establishes the structure of a molecule given its atomic
formula and its spectrogram mass.

MYCIN is the best-known expert system, developed in the mid-1970s at Stan-
ford by Bruce Buchanan and Edward Shortliffe, to diagnose infectious blood dis-
eases and prescribe antibiotic treatment. It then reached human-level precision.
The MYCIN program was important to the development of artificial intelligence
because it provided clear indication that the techniques being developed would be
of practical importance. MYCIN is an example of a backward-chaining approach
(i.e., it works backwards from goals to given data).

The following is a MYCIN rule example:
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IF the infection is bacteremia
& the site of the culture is one of the sterile sites
& the suspected portal of entry is the GI tract

THEN there is suggestive evidence (prob = 70%)
that the identity of the organism is bacteroides.

11.4.7 Expert-System Shells

Expert-system development environments, also called expert-system shells, have
been designed to facilitate the building of complex expert systems. The development
process is reduced to model the essential problem-solving knowledge and to write
it down with the knowledge-representation formalism provided by the shell.

The C Language Integrated Production System (CLIPS) is a well-known produc-
tive-development and -delivery expert-system tool that was developed at NASA’s
Johnson Space Center in the mid-1980s to facilitate putting expert systems to work.
The Java Expert System Shell (JESS) is a Java version of CLIPS. An interesting
aspect of JESS is that it facilitates the integration of an expert system with a Java
application through the use of Java Beans. Java Beans objects that are modified in
an application can automatically trigger rules that match these objects.

11.5 Case-Based Reasoning

The rule-based approach assumes that systems of interest operate in accordance
with principles that can be expressed by rules. Case-based reasoning challenges
this approach to software engineering. Rules are formulated by people attempting
to explain systems of interest, and the people understand those systems through
experience, not rules [69, p. 15]:

Human experts are not systems of rules, they are libraries of experiences. Further,
these libraries are adaptable. When a new experience takes place, it isn’t simply
added to a data base of prior experiences. Most experiences are like others that
have come before. A new experience relates to, modifies, replaces, amplifies, or
otherwise perturbs many of the extant prior experiences.

This leads to an experiential problem-solving paradigm [69, p. 25]:

The basic idea of case-based reasoning is simple:
A case-based reasoner solves new problems by adapting solutions that were

used to solve old problems.
This differs from rule-based reasoning, which solves problems by chaining

rules of inference together. A case-based reasoner
• finds those cases in memory that solved problems similar to the current problem,

and
• adapts the previous solution or solutions to fit the current problem, taking into

account any difference between the current and previous situations.

Aamodt and Plaza [70] describe the four basic steps of the case-based cycle,
shown in Figure 11.10.
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Figure 11.10 The CBR cycle. (After: [70].)

1. Retrieve the most similar case or cases.
2. Reuse the information and knowledge in that case to solve the problem.
3. Revise the proposed solution, based on the extent of the solution’s success.
4. Retain the parts of this experience likely to be useful for future problem

solving.

Figure 11.11 illustrates the interaction of various components used to create
a CBR system in CHEF [69, p. 181].

CBR attempts to model human experience of systems rather than capture the
logical principles or rules by which those systems operate. Proponents of CBR
contend that there is a trade-off between these approaches [69, p. 26]:

These trade-offs hold in general between rule-based and case-based reasoning. A
rule-based system will be flexible and produce nearly optimal answers, but it will
be slow and prone to error. A case-based system will be restricted to variations
on known situations and produce approximate answers, but it will be quick and
its answers will be grounded in actual experience.

CBR has been applied as an approach to level 4 adaptation of a level 2 fusion
process. This involved the selection and adaptation of a collection of ATTITUDE
[71] routines for assessing aircraft movement [72].
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Figure 11.11 CHEF CBR system. (After: [69, p. 181].)
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Steve Wark and Jean Roy

The preceding chapters have discussed the characteristics of the environments where
information fusion can be applied and the requirements these impose on IF systems.
We have also discussed aspects of the computational infrastructure relevant to the
implementation of IF systems and introduced a number of middleware systems that
can be used to provide heterogeneous, flexible, evolvable, distributed environments
suitable for coalition C2 and IF systems. In addition, we introduced computational
issues related to the information sources and user interfaces that are needed for
these systems.

In Chapter 11, we introduced some of the computational issues associated with
the knowledge-based and reasoning systems that are required to address higher
level (levels 2 and 3) data fusion in the JDL model. In essence, this addressed the
issues of how computational systems can be used to reason about a situation and
its consequences.

This chapter discusses a number of software architectures that are being used
in IF systems. This chapter does not address how IF components are connected
together, or even the particular computational algorithms used for individual IF
components; instead, it addresses the communication and interaction paradigms
used in these systems to share knowledge, build workflows, and provide (perhaps
emergent) IF capability.

The first two sections describe demonstration systems for information fusion
and the architectures they employed. The following sections describe models and
general architectures that can be used to develop IF systems.

12.1 Visual Data Fusion Computational Model

As discussed previously, the VDF model is a step to reformulating the JDL data-
fusion model [1], using an enhanced framework for a ‘‘humancentric’’ process. It
consists of interfaces, multimedia information sources, fusion processes, pattern
display, and past learning.

The VDF model has four human-to-machine interfaces: linguistic, contextual,
conceptual, and visual. Human input is primarily accomplished through spoken
or textual language [2], providing computer-assisted fusion as a computation with
words using fuzzy variables [3]. Linguistic input requests form a dynamic human-
preference model [4], representing one’s current problem-solving intentions; this
intent is limited by problem context [5] and concept reference.
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Pattern sets represent abstract image objects [6] and are primary agents of
‘‘solution’’ information transfer from machine to human in VDF. Patterns enhance
understanding by assisting concentration on essentials, while suppressing the less
relevant. They represent information abstraction or amalgamation [7], viewpoints
[8], or general impressions [6]. Pattern-set members can be made relevant to certain
phenomena within conceptual contexts by selective processing. As visual features
[9] based on complex perceptual relations, the ‘‘specific meaning’’ of some phenom-
ena to an individual is more easily perceived. For example, a human can match
patterns in one frame to another, relating concepts or viewpoints through time.
Patterns additionally provide paths to use hidden human knowledge, experience,
and intuition, all pathways to the creative process.

The extended model still lacks flexibility for problem formulation with its
closed structure. Systems implementing fusion levels, relevance, and linguistic inter-
pretation can be collectively described within a human-system cooperation para-
digm [10]. Figure 12.1 shows this evolution.

The VDF model can be decomposed into a series of interconnected submodels,
forming an approximate computational IF process. The submodels are the human
or linguistic, context, concept, and fusion-assistance processes. From a top-level
information flow viewpoint, the model can be interpreted as mappings between
image information. These mappings can be represented as data relations between
input concept, visual- or data-fusion and linguistic processes, and associated prob-
lem frames of reference (FRs):

[S –––→F G –––→DF W ′ –––→VF W]FR (12.1)

where S represents information source(s); G, W ′, W are information and fuzzy
images; F is an information search filter process; FR is the problem frame of
reference; and DF/VF represents data- or visual-fusion operations and processes.
See Figure 12.2 for a data description of the computational process.

12.1.1 Human or Linguistic Model

A human ‘‘model’’ consists of one’s predefined concepts, context, and intent. Uni-
and multimedia information is interpreted as related to predefined concepts, all

Figure 12.1 VDF model.
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Figure 12.2 Computational VDF model.

within a specific context. Both concept and context are closely related since informa-
tion is usually perceived within specific environments. Together they form a baseline
for the human VDF process model; that is, when perceiving something, we first
ascertain its environment before understanding can commence. Physical concepts
associated with ‘‘normal’’ environments give a basis for interpretation; for example,
the concept ‘‘book’’ and the context ‘‘bookshelf’’ are perceived as something to
read (e.g., for information, pleasure). Note a different perception results if context
changes from ‘‘bookshelf’’ to ‘‘under a table leg,’’ and perceived as a mechanical
structure.

12.1.2 Context

Model context frame of reference is represented in geometric terms, as general or
specific localizations directed by machine while human perceptual processes are
not modeled.

12.1.3 Concepts

Concepts and their specific environments can be represented by directed, hierarchi-
cal networks, with root concepts relating subconcepts.

12.1.4 Intent

Human intent is mathematically represented as the union of all requested linguistic
constraints [9], weighted by fuzzy qualifiers. The constraints are the specific inten-
tions of a human, interpreted within a predefined conceptual network, modulated
by fuzzy qualifiers, such as ‘‘all,’’ ‘‘some,’’ and ‘‘very.’’ Interaction between human
intent and computer is without learning, with the most recent constraint taking
precedence over prior ones. Individual sentence intent is a union of interpreted
words or groups as fuzzy terms. Overall, intent I for simple information requests
is the union of terms in one or more sentences.

12.1.5 Fusion-Assistance Processes

Fusion as a cognitive process is represented as operators on information images.
They are: (1) data, concerning the preparation of data ‘‘chunks’’ for perception or
cognition, and (2) visual, concerning processes that accent and display information
for maximum utilization of human perceptual abilities through vision.
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12.1.6 Data Fusion

Data fusion (DF) combines input information from G, modulated by the operator
‘‘*’’ (multiplication). A fusion accrual operator (FUS) transforms each pixel (see
[11]). Current data input to FUS is at each corresponding pixel (see Figure 12.3).

DF fuses the current information image G with the prior fuzzy image. The
resulting DF equation is

mDF(xG , yG ) = FmU(xG , yG ) ∩ ∪
i

mUAi(xG , yG )G (12.2)

* FUS15∪j
G(xG , yG , j) ––––→

m TZ
W ′ (xG , yG )6, HmW

old (xW , yW )J2
Equation (12.2) states that input G is transformed into fuzzy image W ′, fused with
Wold , and the result is modulated by universal and area contextual frames.

12.1.7 Visual Fusion

Visual fusion (VF) occurs primarily within a human, with interaction between
human visioperceptual systems and mapped DF patterns. A VF operator implements
assistance of perception through relevance thresholding, image processing, and
pattern color mapping.

12.1.8 Image Processing

A pattern display is the raw information for human perception. Various image-
processing functions are useful in assisting perceptual processes. For an introduction

Figure 12.3 Pixel data-fusion operator.
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to image processing, see [12, 13]. For example, from image to image, the pattern
creation and extinction can be implemented by a pattern-aging image-processing
function. Another example is the use of motion and edge detection.

12.2 Blackboard Systems

In the early 1970s, a new problem-solving paradigm, called the blackboard model,
emerged with the HEARSAY speech understanding systems to deal with complex
problems requiring more flexibility and modularity to represent domain knowledge
and reasoning. In particular, it was developed to deal with the difficult characteris-
tics of the speech-understanding problem:

• Large solution space;
• Noisy, unreliable, or uncertain data;
• Variety of input data;
• Need to integrate diverse information;
• Need for many independent or semidependent pieces of knowledge to cooper-

ate in forming a solution;
• Need to use multiple reasoning methods;
• Need for multiple lines of reasoning;
• Need for an evolutionary solution.

The main characteristics of the blackboard model [14–16] are high-level organi-
zation of information or knowledge, dynamic control, and an incremental and
opportunistic problem-solving process. The domain knowledge is segmented into
cooperating modules with their own reasoning modes that interact or communicate
via a global data structure. A control mechanism dynamically determines which
module of knowledge to apply according to the solution state, enabling opportunis-
tic reasoning.

12.2.1 Terminology and Definitions

The blackboard model corresponds to the most abstract level. The blackboard
framework is more a detailed view of the blackboard model. Blackboard shells
serve as a template for the creation of blackboard systems. A blackboard application
is a blackboard system designed for a particular task. The blackboard framework
comprises three components, as illustrated in Figure 12.4 [16]:

• A set of knowledge sources (KSs): Independent entities that contain the
knowledge needed to solve a problem;

• The blackboard data structure: a global data store that corresponds to the
working memory of rule-based expert systems;

• The control mechanism: A mechanism that reacts to any change on the
blackboard (event) to determine what actions to take next (focus of atten-
tion).
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Figure 12.4 The blackboard framework.

Blackboard systems and rule-based (production) systems share some similari-
ties. The blackboard corresponds to the production systems’ working memory, the
KSs correspond to condition-action rules, and the control strategy corresponds to
the conflict-resolution strategy. However, the biggest difference is one of granular-
ity. Production systems’ rules are all isomorphic in form and much simpler than
blackboard KSs. In fact, a KS could itself be implemented as a production system.

12.2.2 The Blackboard

The blackboard is a global data structure that serves as a medium for communica-
tion among the KSs. It is organized into levels of abstraction (conceptual classes)
and contains input data, partial solutions (called hypotheses), and, eventually,
solutions. Levels form a loose hierarchical structure in which each level can be
described as an abstraction of elements of the next lower level. Often, the levels
correspond to a particular compositional hierarchy, or part-of hierarchy. Other
relationships between levels can be supports or explains links. Objects on the
blackboard are also called nodes since they are interlinked into a network structure.
Each node can have a number of attributes, each with attached values. Often,
hypotheses are assigned credibility ratings as they are created and modified. Further-
more, the solution space can be divided into multiple dimension spaces or black-
board panels.

12.2.3 The Knowledge Sources

Knowledge sources are computational modules embodying the problem-solving
knowledge. They are often represented as procedures or sets of rules. The idea is
to split the knowledge needed by the system into separate, independent modules,
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each contributing to the solution of the problem. Thus, KSs usually use information
from one level of the blackboard and make some change(s) to another level.

KSs are self-enabling. They are responsible for knowing the conditions under
which they can contribute to the solution. So, they are enabled based on the state
of the blackboard. KSs cannot communicate with each other directly, but do so
rather via changes made to the blackboard.

A KS has two parts: (1) the KS precondition that determines when the KS can
be executed by testing the current state of the blackboard, and (2) the KS body
that encodes the computation to be performed by the KS when executed. Often,
preconditions pass information to the body to be used during execution (e.g.,
variable bindings). The body of the KS can be either a procedure or a set of
production-style rules.

The reasoning style is opportunistic in the sense that the KSs trigger when the
opportunity arises. There is no predefined reasoning scheme. Instead, the order of
execution and type of reasoning is determined at run-time based on the current
state of the system. When the changes are made to the level just above the level
being examined, the KS performs bottom-up reasoning, and when the changes are
made to the level just below, the KS performs top-down reasoning.

12.2.4 The Control Mechanism

The problem-solving behavior of a blackboard system is determined by the strategy
encoded in the control module. Because the execution of enabled KSs must be
sequentialized on computers having a single processor, and because blackboard
systems typically deal with combinatorially explosive problems, a control module
has to focus the problem-solving process. The control mechanism monitors the
changes on the blackboard and decides what actions to take next (focus of atten-
tion). It uses a control information structure that records changes made on the
blackboard (e.g., an event list). Thus, the control is event driven in blackboard
architectures.

The most basic control cycle corresponding to a method for either choosing a
single KS or ordering all the enabled KSs for execution in a series consists of the
following steps:

1. Determine which KSs are enabled.
2. Choose which of the enabled KSs are to be executed, based on some rating

function. Typically, only one will execute per cycle.
3. Execute the KS(s). This will cause changes in the state of the blackboard,

which will enable other KSs.
4. Go to 1.

The focus of attention can be either the KSs to activate next, the blackboard
objects to consider, or a combination of both. The solution is built incrementally,
and any type of reasoning step (e.g., data driven, goal driven, model driven) can
be applied at each stage of the solution formation.

The control component has to select the action with the maximum expected
value. The value of an action is determined by how much it contributes toward



318 Software Architectures

progress in problem solving relative to the computational costs of the action, where
progress is judged by how much the action reduces the remaining effort required
to meet system goals [17].

12.2.5 Hearsay-II, the First and Best-Known Blackboard System

The objective of the Hearsay-II project [18] was to design a speech-based interface
to a database of computer-science abstracts to interpret spoken commands and
queries. Hearsay-II’s input consisted of a spoken database query and the system
had to interpret the speech signal and execute the appropriate query.

The blackboard stored interpretations on eight levels, from low-level acoustical
signal parameters to high-level sentences, forming a part-of hierarchy.

The solution was built incrementally. Partial interpretations were called
hypotheses. KSs used previously introduced hypotheses about various parts of the
signal, along with knowledge of speech constraints to introduce new hypotheses
or change the strength or weight of existing hypotheses. Nodes formed a graph
made of both AND and OR links, with the OR links used to tie together mutually
inconsistent alternative hypotheses.

KSs consisted of preconditions and action parts. Preconditions were divided
into two parts: trigger and test. The trigger provided simple conditions under
which the KS might be useful. The test performed more extensive computations
to determine the appropriateness of the action component. It then recorded the set
of hypotheses identified as appropriate in a structure called the stimulus frame and
the description of the changes that would be made by the action module in a
structure called the response frame.

Hearsay-II used an agenda-based control mechanism: All possible actions were
placed onto the agenda, the actions were rated on each cycle, and the most highly
rated action was chosen for execution (see Figure 12.5). The control was performed

Figure 12.5 Hearsay II control cycle.
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by a scheduler and by a blackboard monitor. The monitor observed each change
to the blackboard, examined each KS’s precondition for activation, and passed the
KS’s identity to the scheduler. (To optimize this process, changes on the blackboard
are described as blackboard event types, and each KS provides a list of event types
in which it is interested.) The scheduler then had to select the next activity to
perform (either a test precondition or an action) by rating all actions on the agenda
based on the information provided by the stimulus and response frames. The control
mechanism in Hearsay-II was implemented as a hard-coded procedure.

12.2.6 Types of Control Strategies

Blackboard systems differ greatly in their individual control strategies [17]. The
main types of control strategies are:

• Agenda-based control (e.g., Hearsay-II, as described earlier).
• Hierarchical control using meta–knowledge sources (e.g., CRYSALIS,

ATOME). CRYSALIS uses a two-level hierarchy of control KSs (strategy
and tasks) to select the domain KSs to be executed. The strategy selects a
sequence of tasks to be executed, while task-level KSs select a sequence of
domain KSs to be executed. The strategy KS provides the coarse focus of
the system based on key blackboard hypotheses, and the task KSs provide
the fine focus of the system. In CRYSALIS, all KSs are implemented as sets
of rules, without preconditions. The CRYSALIS architecture limits opportun-
ism and context switching. This is partly due to the fact that CRYSALIS
pursues a single line of reasoning at a time. In addition, the CRYSALIS
application does not require real-time performance that would make the
ability to switch focus rapidly more critical.

• Goal-directed control (e.g., Distributed Vehicle Monitoring Test Bed). This
type of architecture uses goals to integrate data-directed and goal-directed
reasoning. It extends the Hearsay-II architecture by adding a goal blackboard
and a goal processor. The goal processor instantiates goals on the goal
blackboard whose structure mirrors that of the domain blackboard. It is
driven by three mapping functions: hypothesis to goal, goal to subgoal, and
goal to KS. New goals cause KSs that might achieve the goals to have their
preconditions checked. Goals are rated based on the ratings of the hypotheses
that stimulated their creation, the ratings of supergoals, and the blackboard
level of the goal. The use of explicit goals provides information about the
global context of an action. But goals in this context only provide an under-
standing of the immediate consequences of actions. Goal-directed blackboard
goals cannot represent complex, long-term goals.

• Blackboard-based control (e.g., BB1). The BB1 blackboard framework intro-
duces the notion of the flexible, run-time control. It extends the Hearsay-II
control through the addition of a control-planning mechanism. The control
problem is treated as a problem-solving task in itself. The control strategy is
stored on a control blackboard that has predefined levels (problem, strategy,
focus, policy, to-do set, chosen action), and control KSs are capable of
incrementally building and modifying control plans. Control KSs are treated
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like domain KSs and selected by the same scheduler. The BB1’s scheduler
uses a set of active heuristics (rating functions) to rate potential actions.
These heuristics can be changed dynamically.

The evolution of blackboard control architectures goes toward sophisticated
goal-directed control strategies, based on a detailed representation of goals and
the relationship between goals and long-term and global effects of actions, as well
as their immediate and local effects.

12.2.7 Summary of Blackboard Architectures

The main advantages of blackboard architectures are:

• They are general and flexible.
• Many various KSs can participate in forming the emerging solution.
• They use multiple reasoning strategies.
• There is no a priori commitment to the order of inferencing steps, such as

forward- or backward-chaining.
• They allow flexible switching between bottom-up and top-down reasoning.
• They allow automatic enabling of KSs. Each KS can contribute opportunisti-

cally since each has continual access to the state of the solution. Thus, the
right knowledge can be applied at the right time.

• The solution is built incrementally, piece by piece, as KSs are activated.
• They are modular.
• Knowledge is partitioned into separate KSs.
• Incorporation of different KSs to do the same task is easy, and the control

can select the best-suited KS.
• The blackboard model has proven itself useful in the context of real-time

control [19].

However, this type of architecture also has some drawbacks:

• Due to the shared aspect of data structures, representation changes may
require modifications to a number of KSs.

• During the 1990s, research was conducted on aspects that needed improve-
ment, such as performance, real-time, and parallelism.

Note that an effective control is critical in blackboard applications that involve
significant uncertainty in the data and problem-solving knowledge [17]:

How the problem is partitioned into subtasks makes a great difference to the clarity
of the approach, the speed with which solutions are found, the resources required,
and even the ability to solve the problem at all.
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12.3 Multiagent Systems

12.3.1 Agent Model

A more recent phenomenon has been the emergence of multiagent systems.
Shoham offers the following assessment of use of the term agent [20, p. 52]1:

Most often, when people in AI use the term ‘‘agent,’’ they refer to an entity
that functions continuously and autonomously in an environment in which other
processes take place and other agents exist.

Shoham’s remark identifies three key characteristics of agents:

• Embeddedness: Agents exist in an environment in which other processes
take place and interact continuously with that environment.

• Autonomy: Agents operate autonomously within their environment. They
act independently based upon their own volitions.

• Community: Agents operate within a community of other agents, which
may be human or artificial.

Collectively, these characteristics distinguish agent systems from earlier concep-
tualizations within computer science. Object-oriented systems aim to model a con-
ception of a world of objects [21, p. 167]:

One powerful design strategy, which is particularly appropriate to the construction
of programs for modelling physical systems, is to base the structure of our programs
on the structure of the system being modelled. For each object in the system, we
construct a corresponding computational object. For each system action, we define
a symbolic operation in our computational model. . . . To a large extent, then, the
way we organise a large program is dictated by our perception of the system to
be modeled.

Wegner [22] identifies three essential characteristics for object-oriented design:

1. Objects: These are the basic computational entities, composed of a local
state (often hidden) and a collection of operations permitted for that state.
The computational objects are intended to model objects (or individual
things) existing out in the world. The computational operations are intended
to model the operational properties that can occur with those objects out
in the world.

2. Classes: These define sets of possible objects. The possible objects composing
classes usually support common operations. The classes are intended to
model kinds of objects sharing common principles in the world.

3. Inheritance: This defines a class hierarchy in which some classes are defined
in terms of others. This allows for the inheritance of objects and their
operations into another class. This is intended to model an inheritance
ordering over the kinds or classes of objects genuinely resident in the world.

1. Shoham goes on to forward a more restrictive interpretation of ‘‘agent.’’
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Object-oriented systems differ from agent systems in that objects come with
no presupposition of embeddedness, and objects are typically not autonomous
[23, p. 26]:

Objects do it for free; agents do it because they want to.

Blackboard systems often provide the elements of embeddedness and commu-
nity, but without autonomy [23, p. 309]:

Blackboard systems were highly influential in the early days of multiagent systems,
but are no longer a major research activity . . . [They] were not autonomous
agents—they were more closely related to the knowledge sources in the blackboard
model—but the metaphors of cooperation and distribution are clearly evident.

In motivating the ATTITUDE multiagent system, Lambert exposes a strong
motivation for agent systems generally [24]:

The current computer science paradigm began in the 1940s with a communicative
gulf, with a human user flush with conceptualisations at one extremity and the
computer as a complex electronic switching device at the other. The current com-
puter science paradigm has sought to bridge this gulf by dragging the computer
closer to the user by embedding human conceptualisation within the machine and
then interfacing those conceptualisations to the user as if primitive thereafter. Thus,
we have seen the familiar progression of machine languages, assembly languages,
floating point arithmetic, higher-level languages, graphical user interfaces, and
speech-processing systems. If we continue to pursue this paradigm, then at the
automation limit, we would interact with the computer as if it were another user,
and we would predict and explain its behaviour in a similar manner to how we
predict and explain human behaviour.

From the software-engineering standpoint, multiagent systems aspire to the
automation limit of the current computer-science paradigm.

12.3.2 Organizational Models

The emergent behaviors of multiagent systems are not only determined by the
capabilities of each of the agents but also, and perhaps primarily, by the organization
model used for agent interaction. A number of common organization models are
shown in Figure 12.6.

In this figure, the boxes represent agents, and the circles represent particular
tasks (or functions, physical devices, or databases) in the system, which are per-
formed (or controlled) by an agent. The arrows show the direction of control
between entities in the system, and dashed lines represent cooperation between
agents. The system is defined by its three tasks. The way the agents are structured
and operate controls how these tasks are performed, hence how the system performs
to achieve its (system or global) goals. Note that, except for the centralized organiza-
tional model, all of these models are distributed multiagent systems. The system
is defined by more than one agent that cooperates or interacts with other agents
to achieve the system goals.



12.3 Multiagent Systems 323

Figure 12.6 Organizational models. (After: [25, 26].)

12.3.2.1 Centralized

The centralized organizational model consists of a single agent that controls all
tasks within the multiagent system. This model has the usual characteristics of
centralized systems, as discussed previously.

12.3.2.2 Decentralized

The decentralized organizational model consists of separate agents that control
each task required by the complete system. The system’s tasks are divided into
small, manageable tasks, each within the capability of a single agent. Therefore,
control of the system’s tasks is distributed among the collection of agents. A
decentralized system allows local optimization, performing its own task in the best
way possible, and since the agent is performing a smaller task, it can be more
responsive (i.e., there is no bottleneck).

The decentralized model has many of the advantages of distributed systems
discussed previously. However, in a truly decentralized system, no agent has a
global view of the system beyond itself, nor is there any mechanism for coordinating
the actions between the agents. Hence, when the agents’ tasks depend on each
other, decentralized systems will not operate optimally and may instead produce
anarchy.

12.3.2.3 Hierarchical

In a hierarchical organizational model, or the proper hierarchical organizational
model in Figure 12.6, the control of the tasks is distributed among separate (slave)
agents, and a single (master) agent controls the actions of the slaves. The master
provides the centralized component in the system, having a global view of the
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system. Global decisions can be made using the global information in order to
coordinate the activities of the slaves (hence, the tasks), potentially allowing for a
high degree of global optimization. The modular hierarchical structure makes it
easier to develop systems. Hierarchical models are suited to domains that also have
a hierarchical organizational structure (which are a large proportion of domains,
e.g., real-world systems); thus, mapping from the domain to the agent system is
easier.

Although the hierarchical structure is more distributed, allowing the master
agent to delegate most of the decisions to slave agents, the master agent is still a
centralized component within the system; thus, the hierarchical structure may suffer
from some of the disadvantages of the centralized organizational model. Also, the
system depends on communication for operation; hence, communication problems
between agents may cause the system to collapse.

The modified hierarchical organizational model has the same structure as the
proper hierarchical model, but the slaves can cooperate with each other. This
cooperation allows the slaves to share local information about each other, providing
them with a partial global view of the system. Using this information, slaves can
make some global decisions in order to coordinate their activities with other slaves,
providing some scope for global optimization. Since slave agents can make some
global decisions, the master agent need only supply loose control (as compared to
the master agent in a proper hierarchical system) and provide the rest of the global
decisions in the system. This system gives the slaves greater autonomy, allowing
them to react to local situations more quickly (more responsively) as they do
not have to ask the master for permission to act. Disadvantages include greater
communication requirements (hence, greater dependency on reliable communica-
tion links) and loss of control by the master (which may not always be a disadvan-
tage but may reduce optimality).

12.3.2.4 Heterarchical

The heterarchical organization model is a decentralized organization model where
each agent can cooperate with the others [25–28]. As with the modified hierarchical
organizational model, cooperation allows the agents to share local information,
giving them a partial view of the global system. Agents can then make global
decisions based on the (partial) global information they have in order to coordinate
their activities, giving this type of model a higher degree of global optimality and
coherence than the decentralized model. Large heterarchical systems can be difficult
to develop and manage, with many agents at the same level, lacking organizational
structure, trying to cooperate and produce a coordinated solution. The overhead
for each agent to communicate with other agents in large systems can be extensive
if dependency between tasks is high or a large amount of information is required
to coordinate their activities (hence, demanding greater dependency on reliable and
fast communication links).

12.3.3 Negotiation

When we have a society of agents that are self-interested (have their own selfish
goals), they may need to cooperate with other agents in order to achieve tasks that
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they cannot perform themselves or that would be more efficiently achieved by
cooperating with other agents. Negotiation between agents allows agreements to
be reached on the exchange and allocation of resources or tasks so as to increase
some utility metric [23, 29].

12.3.3.1 Game-Theoretic Approaches

Agent negotiation methods may be based on game-theory research. They specify
a protocol that the agents use to negotiate with other agents. There are two types
of negotiation domains: task-oriented domains and worth-oriented domains. In
task-oriented domains, a set of agents has a set of tasks that the agents must
achieve. They need to negotiate with others to find a way for these tasks to be
distributed among the set of agents in order to achieve their own tasks in a more
efficient manner than if they performed their own tasks themselves. In worth-
oriented domains, each agent wants to achieve some state in the environment, and
each state that it wants to achieve (or can be in) has some worth. The agents also
have joint plans, which define the actions they can perform as a group. The agent
must negotiate over joint plans to achieve the state of the environment with the
greatest worth.

In negotiation, agents have a negotiation set, which consists of all the possible
proposals that the agents can make. The protocol defines which proposals are legal
in the negotiation. Agents use strategies to determine which proposals they will
make, and agents generally do not have access to (a view of) other agents’ strategies.
There is also a termination rule that determines when an agreement has been found.
Negotiation involves a series of rounds where agents make a proposal at each
round, based on negotiation set, strategy, and protocol, until eventually (one would
hope) an agreement is reached in a particular round, which is determined by the
termination rule.

There are two popular strategies in the task-oriented domain:

1. Monotonic Concession Protocol: Each agent proposes a deal from its negoti-
ation set. An agreement is reached if an agent proposes a deal such that the
utility of its proposal for every other agent is greater than the utility of
those agents’ own proposals. If an agreement is not reached, then the agents
must go another round and propose again, but they cannot propose a deal
to any agent that is worse than the previous proposal. If an agreement
cannot be found, then the negotiation terminates, and agents perform their
own tasks (the conflict deal).

2. Zeuthen Strategy: The agent’s first proposal is its preferred deal. Whether
a particular agent should concede to a worse deal for itself is determined
by a willingness-to-risk-conflict measure, which is the difference between
the utility of the current proposal and that of the conflict deal (perform its
own tasks). Therefore, if the willingness-to-risk-conflict measure is low, the
agent does not have much to lose if a conflict deal results (over the current
proposal); hence, it will be less willing to concede.
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12.3.3.2 Argumentation

There are two disadvantages with game-theoretic approaches to negotiation [23].
First, agents cannot justify their position in the negotiation. For example, in buying
a car, a dealer may justify the high price by referring to the many features of the
car, or the buyer may justify paying less because the features are not required for
his or her purposes. Also, if an agent purchases a car for some user, then the user
may want to know why the agent paid as much as he or she did. Second, an agent’s
preferences may change during the negotiation process. If the buyer intends to buy
a particular brand of car and, during the negotiation process, discovers that the
brand of car tends to break down often, then the buyer may decide to buy a more
reliable brand of car.

In order to overcome these problems, argumentation in negotiation can be
used. An agent attempts to convince another of the truth or falsity of one or more
propositions, with justification, in order to support its case in the negotiation. An
agent can use modus ponens in its argument (A → B); that is, if you accept A,
and A implies B, then you must accept B. Arguments can be defeated by rebutting
or undercutting. Rebutting is where an agent tries to falsify the conclusion of a
given argument; for instance, with the argument A → B, an agent may rebut this
argument with C → B (if you accept C, and C implies B, then you must
accept B). Undercutting is where an agent tries to falsify the grounds of a
conclusion of a given argument; for instance, with the argument A → B, an agent
may undercut this argument with C → A (if you accept C, and C implies A,
then you must accept A).

Different types of arguments have various degrees of acceptability. For example,
the acceptability of «[ → p ~ p» (a tautological argument) is stronger than
«(p, p → q) → q» because it is not possible to construct an argument that will
defeat «[ → p ~ p». Five classes of arguments in increasing order of acceptability
are as follows (D is a set of logical formulae that may be inconsistent) [23]:

1. The class of all arguments that may be made from D;
2. The class of all nontrivial arguments that may be made from D;
3. The class of all arguments that may be made from D for which there are

no rebutting arguments;
4. The class of all arguments that may be made from D for which there are

no undercutting arguments;
5. The class of all tautological arguments that may be made from D.

The stronger the argument the agent presents in a negotiation, the better.
Rebutting an argument is a stronger defeat than undercutting an argument because
undercutting allows the agent to find another argument to support the same
conclusion [30].

12.3.3.3 Auctions (Competition)

Auctions are a useful and simple (to implement) technique for an auctioneer (agent)
to allocate a task or resource to one of a set of bidders (agents). The auctioneer
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advertises the task or resource that it wants to allocate and receives bids from the
bidders. Via some metric to determine the value of the bids (e.g., financial cost),
the auctioneer allocates the task or resource to one of the bidders.

The Contract Net Protocol (CNP) is a popular mechanism for agents to allocate
tasks and resources to a collection of agents. It uses the auction technique known
as the first-price sealed-bid auction, which consists of a single round of bidding
where bidders submit their bids for the task or resource to the auctioneer. The
task or resource is awarded to the agent that made the best bid (based on some
criteria). CNP will be discussed further in following sections.

There are other auction techniques, including

• English auctions: The auctioneer starts the auction by advertising the task
or resource and suggesting a reserve price. Bidders must bid more than the
current price, where all bids can be seen by all agents participating in the
auction. The task or resource is allocated to the bidder that provided the
bid with the highest price, which no other bidder is willing to better.

• Dutch auctions: The auctioneer begins the auction by advertising the task
or resource at some high price (above the expected price), and lowers the
price continually until a bidder makes a bid for the task or resource equal
to the current price, at which point the task or resource is allocated to this
bidder.

• Vickrey auctions: Vickrey auctions have only a single round. The auctioneer
advertises the task or resource to the bidders, and the bidders submit their
bids, which no other agent can view. The task or resource is awarded to
the bidder that provided the highest price, but the bidder only pays the price
of the second highest bid. The motivation behind Vickrey auctions is that
it makes truth-telling a dominant strategy (i.e., bidders are better off bidding
their true valuation of the task or resource). If the bidder bids more than
the task or resources true valuation, he or she runs the risk of paying more
than its true valuation. If the bidder bids less, he or she will have a smaller
chance of winning the task or resource, without changing the price he or
she will need to pay (since the bidder pays the price of the second to highest
bid).

12.3.4 Cooperative Distributed Problem Solving

Cooperative distributed problem solving (CDPS) is a very large topic that has been
studied for well over a decade. Summarizing the work of Wooldridge [23], a
definition of CDPS is as follows [31]:

CDPS studies how a loosely-coupled network of problem solvers2 can work together
to solve problems that are beyond their individual capabilities. Each problem-
solving node in the network is capable of sophisticated problem-solving and can
work independently, but the problems faced by the nodes cannot be completed
without cooperation. Cooperation is necessary because no single node has sufficient

2. This can include benevolent or self-interested agents.
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expertise, resources, and information to solve a problem, and different nodes might
have expertise for solving different parts of the problem.

There are two issues to be considered in CDPS [32]:

1. Coherence: A measure(s) of how well the multiagent system performs as a
single entity, where the measure may be quality of solution, efficiency of
resource usage, and so forth;

2. Coordination: The extent to which agents can prevent extraneous activity
(i.e., avoid conflicting or interfering with the activities of other agents).

A CDPS process has at most three stages [33]:

1. Problem decomposition and allocation: The complete problem is decom-
posed into smaller subproblems, and those are decomposed further into
smaller subproblems, until the subproblems can be solved by individual
agents. These subproblems are allocated to suitable agents to solve.

2. Subproblem solution: The allocated subproblem is solved locally by the
agents. Agents may share information to assist each other in solving their
subproblems.

3. Solution synthesis: The subproblem solutions are assembled to provide a
complete solution to the complete problem.

12.3.4.1 Task Sharing and Result Sharing

Task sharing is the process of decomposing a problem and allocating the decom-
posed parts of the problem to various (suitable) agents (i.e., CDPS process 1,
above). In a system comprising heterogeneous and self-interested agents, techniques
for task sharing include those described previously.

CNP [34] facilitates task sharing. A manager agent requiring that some task
be performed advertises the task to other bidding agents within the network. The
manager agent may broadcast the task to all agents or may limit the broadcast if
it has knowledge of which agents may be suitable candidates. The bidding agents
that receive the task announcement may submit a bid to perform the task, if they
believe they are eligible to do so, before some specified deadline. The manager
agent analyses the bids and selects the most appropriate bidding agent to perform
the task, granting that agent the task. The bidding agent awarded the task may
report back to the manager agent on the completion of the task.

Result Sharing
Result sharing is the process whereby agents share information or results to assist
others in solving their problems (i.e., CDPS process 2, above). This can increase
group performance by providing other agents a global view of the situation,
allowing agents to cross-check results, and reducing the time to produce a result
by not duplicating work [35].
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Combining Task and Result Sharing
FELINE [36] is a cooperating expert system comprising cooperating experts (agents)
that have expertise in distinct areas. Agents cooperate both to share knowledge
and to distribute subtasks. Each agent has an environment model, which contains
beliefs about itself and its environment (other agents). Each entry in the environment
model contains two attributes: skill and interests. Skill identifies the particular
agent’s domain expertise, while interests are a set of hypotheses for which the
agents require a truth value. FELINE utilizes three speech acts: request, respond,
and inform. An agent sends a request (to an agent with the expertise to derive a
solution) when it requires a truth value for a hypothesis. An agent responds when
it derives the truth value for hypothesis that was requested. An agent will inform
another of the truth value of a hypothesis if that agent is interested in the hypothesis.

FELINEallowsbothgoal-driven(backward-chaining)anddata-driven(forward-
chaining) inferencing. In goal-driven inferencing, when the agent wants to establish
the truth value of some hypothesis that is not known, it will search its environment
model to discover which agent has the skill to do so. The agent will be sent a
request and return a response with the truth value of the hypothesis. With data-
driven inferencing, if an agent receives or generates3 a new hypothesis, it searches
its environment model for agents that have an interest in the hypothesis. An inform
message is sent to the relevant agents, containing the hypothesis and the truth value.

12.3.4.2 Handling Inconsistency

Agents may have inconsistencies in their beliefs or goals. Durfee, Lesser, and Corkill
propose three approaches to deal with inconsistencies [37]:

1. Do not allow it to occur or ignore it (e.g., in the CNP, the manager agent
has the only view of the problem).

2. Resolve inconsistencies through negotiation, which is undesirable due to
the computation costs.

3. Build systems that degrade gracefully in the presence of inconsistencies. This
is the most desirable approach. Systems that behave robustly in the presence
of inconsistency are referred to as functionally accurate or cooperative
(FA/C) [38]. In FA/C systems, agents exchange high-level (partial) results
rather than raw data. Inconsistencies in the raw data may not prevent the
agent from progressing with the problem solving and may not have any
(or, at least, not a large) effect on the consistency of the high-level results
at all. Also, inconsistency (and uncertainty) is implicitly resolved during the
problem-solving process when partial results are exchanged and compared
with other partial solutions. Finally, there may be many ways to arrive at
a solution; hence, if one method fails (due to localized failures or bottlenecks
in problem solving), an alternative approach can be used.

3. It does this by inferencing over its own facts and rules.
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12.3.4.3 Coordination

Wooldridge [23] addresses the coordination problem this way:

The coordination problem is that of managing inter-dependencies between the
activities of agents: some coordination mechanism is essential if the activities that
agents can engage in can interact in any way.

There are two types of coordination relationships, positive and negative [39].
Positive relationships occur when agents’ actions (plans) complement (or overlap)
each other; hence, they can be combined to reduce the workload of the agents in
the system. This can be explicit (e.g., an agent requests help from another agent)
or implicit (e.g., an action, or a side effect of the action, that an agent performs
happens to be the same action that another agent needs to perform). Negative
relationships occur when agents’ actions conflict (interfere) with each other,
resulting in agents’ not being able to achieve their goals or making it harder
(entailing more work than originally intended) for them to achieve their goals.
Agents should be able to recognize and manage these relationships at run time in
order to coordinate their activities dynamically. Approaches to achieving this
include partial global planning, joint intentions, mutual modeling, and norms and
social laws.

Partial Global Planning
Partial global planning (PGP) [40–42] was used in the Distributed Vehicle Monitor-
ing Test Bed (DVMT), which was used to track vehicles. DVMT uses distributed
sensors to monitor vehicle paths. An agent will have access to one sensor, or a
small set of them, thus having a restricted (local) view of the system. Each agent
forms a local plan based on its own local goals and sensor data. Agents then share
their local plans to obtain a more global view of the system and alter their local
plans to coordinate their activities. A metalevel structure is used to guide the
cooperation process, deciding which information agents should share, with whom,
and when.

Decker’s generalized partial global planning (GPGP) [43] is an extension of
PGP, used in his task analysis and environment modeling system (TAEMS) test
bed. It uses five techniques for coordinating agent activities:

1. Updating nonlocal viewpoints: Agents can share no information, all infor-
mation, or some intermediate-level information.

2. Communicating results: Agents may communicate all of their results, com-
municate only those results that are essential to satisfy obligations, or send
results to those who have a registered interest in them.

3. Handling simple redundancy: If two or more agents are working on the
same problem, then one is selected at random to perform the task, and the
result is sent to the other interested agents.

4. Handling hard coordination relationships: If agents encounter negative rela-
tionships (conflicting or interfering actions), then activities are rescheduled
to resolve the problem.
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5. Handling soft coordination relationships: If agents encounter positive rela-
tionships (overlapping or complementing actions), then rescheduling (nego-
tiation) is performed to take advantage of it, and if no solution is possible,
the system takes no action.

Joint Intentions
Based on human teamwork models, a collection (team) of agents have a joint
intention [44, 45] when each agent has the same intention toward a common
goal, and they all cooperate with each other to achieve it. Joint intention implies
cooperation because agents with the same intention may not necessarily cooperate
(or act as a team). For example [46],

A group of people are sitting in a park. As a result of a sudden downpour all of
them run to a tree in the middle of the park because it is the only available source
of shelter. This may be coordinated behaviour, but it is not cooperative action, as
each person has the intention of stopping themselves from becoming wet, and even
if they are aware of what others are doing and what their goals are, it does not
affect their intended action. This contrasts with the situation in which the people
are dancers, and the choreography calls for them to converge on a common point
(the tree). In this case, the individuals are performing exactly the same actions as
before, but because they each have the aim of meeting at the central point as a
consequence of the overall aim of executing the dance, this is cooperative action.

Being part of a team implies responsibility toward other agents in the team
[44]. Therefore, for example, if one agent in the team determines that a goal (joint
intention) is not achievable, then it is responsible for informing other agents in the
team that are also working toward achieving the same goal.

When agents form a joint intention, they have a joint commitment to achieving
the common goal. The joint commitment persists among the team until it becomes
redundant. Reasons for dropping a joint commitment include: (1) the goal has
been achieved, (2) the goal can no longer be achieved, (3) or the motivation to
achieve the goal is no longer present (irrelevant) [47]. Convention [48] specifies
the conditions under which a commitment should be abandoned and how agents
should behave locally and toward each other when this occurs. It may specify that
agents that drop joint intentions (because, say, the goal can no longer be achieved)
must inform other agents in the team of this fact. If all agents adopt the convention,
then every agent knows what is expected of itself and of others in the team.

A joint intention can be considered as the common intention of a collection
of agents having a joint persistent goal (JPG) [44] (the achievement of a goal G),
while believing that all others in the team also have the JPG to achieve G. A JPG
is when all agents believe the goal G has not been achieved but is possible, and
they have a mutual persistent goal to achieve G. Until the goal G is achieved,
unachievable, or irrelevant, the goal to achieve G will persist. If an agent discovers
that the JPG has been achieved, is unachievable, or has become irrelevant, it will
have a goal of making this fact a mutual belief by informing the other agents in
the team.

Practical applications of the theory of joint intentions include ARCHON
[48–52] and Tambe’s Steam framework [53]. ARCHON is an industrial control
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system where commitments and conventions are encoded as rules in a rule-based
system, adding coordination structures in the agents’ reasoning mechanism. The
Steam framework facilitates teamwork among agents and is currently used in
military simulations and robotic soccer. Programmed in the Soar rule-based archi-
tecture, it encodes about 250 domain-independent commitment and convention
rules, which also allow for hierarchical team structures among agents.

Finally, Wooldridge and Jennings presented a four-stage teamwork-based
model of CDPS [54, 55]:

1. Recognition: An agent should recognize the potential for cooperative action
with respect to its goal(s). This occurs if an agent cannot achieve the goal
itself or if it would be beneficial for the agent not to work alone, and the
agent also believes that a group of agents can achieve the goal.

2. Team formation: The agent forms a team of suitable agents to achieve the
goal, say, by requesting assistance. This results in a group of agents with a
nominal commitment to achieving the mutual goal and also to believing
that they can achieve the goal, without knowing how they can or will
achieve it.

3. Plan formation: Agents must collectively come to some agreement on the
course of action (distributed plan) required to achieve the mutual goal, say,
by negotiation.

4. Team action: The distributed plan is executed with agents’ using a conven-
tion, such as JPG, to define the social behavior of the team members through-
out the execution.

Mutual Modeling
Coordination by mutual modeling, or ‘‘cooperation without communication’’ [56]
requires that agents have a model of the beliefs, intentions, and so forth, of other
agents in the society and that they coordinate their activities based on this model
(i.e., if an agent knows what other agents are going to do, then it can plan its own
actions to coordinate with their actions). Explicit communication is not required
for this type of coordination.

Gasser’s multiagent computing environment (MACE) system [57, 58] uses the
mutual-modeling technique. Agents in MACE contain ‘‘acquaintance models,’’
which maintain six types of information about other agents: the name of the agent,
the class that the agent belongs to (to provide organizational structure), the role
of the agent in the class, the skills or capabilities of the agent, the goals that the
agent wants to achieve, and plans as to how the agent may achieve its goals. Agents
in MACE use these acquaintance models to coordinate their activity with other
agents.

Norms and Social Laws
Agents can coordinate their activities using norms and social laws [23].

A norm is simply an established, expected pattern of behaviour; the term social
law carries essentially the same meaning, but it is usually implied that social laws
carry with them some authority.
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An example of a norm is thanking someone who performs some duty for you;
an example of social law is driving at or under the speed limit (it is a social law
because it is enforced). Agents can use norms and social laws to regulate their
behavior in social settings and thus act in a coordinated manner. Conventions are
essentially norms and social laws, defining how an agent should behave in various
situations [59].

Conventions within an agent society are defined either offline or as an emergent
property of the system. Defining conventions offline is simpler to implement and
provides greater control over the system’s functionality. An example of offline
design includes defining negotiation protocols or the CNP. Disadvantages include
the following: (1) not all system characteristics may be known at design time,
(2) agents’ goals, hence conventions, may continually change, and (3) it may be
difficult to define or predict suitable conventions for complex systems. In such
cases, allowing conventions to be defined as an emergent property of the system
may be more suitable.

In order for some norm or social law to emerge from a set of agents, the agents
need to be able to ‘‘reach a global agreement on the use of social conventions by
using only locally available information’’ [23]. Shoham and Tennenholtz [60]
studied the problem of obtaining global agreement on one of two strategies used
by agents based on local (partial) information (i.e., an agent has no global view
to see the strategies used by all other agents; it can only see the strategy of one
other agent). An agent must make a decision on which of the two strategies to use
based on the current and previous local information about strategies it has seen
other agents use. A number of different approaches for agents to update their
strategy have been proposed (see references for an evaluation/discussion) [61–63]:

• Simple majority: Agents change to the strategy that they have observed most
often.

• Simple majority with agent types: This is the same as the simple-majority
approach, except agents can see the local information of other agents of the
same type and base their decisions on the collective information.

• Simple majority with communication on success: When an agent reaches a
certain level of success with a particular strategy, local information about
its experiences with (only) this strategy is sent to agents of the same type.

• Highest cumulative reward: Each strategy has a particular associated payoff,
and the agent uses the strategy that results in the highest cumulative payoff
at the time.

12.3.4.4 Multiagent Planning and Synchronization

There are three categories of multiagent planning [35]:

1. Centralized planning for distributed plans: A centralized agent develops a
plan for a group of agents, then distributes the plan to the agents for
execution.

2. Distributed planning: A group of agents cooperatively form a centralized
plan, where each agent is an expert in different aspects of the overall plan
and contributes to its formation.
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3. Distributed planning for distributed plans: A group of agents form individual
plans and cooperate to coordinate their local plans with other agents’ local
plans.

The third category, which is the most difficult to implement and control, can
be achieved using either negotiation, if self-interested agents are present, or plan
merging, the process of collecting individual agents’ plans and generating a conflict-
free (synchronized) multiagent plan. Both Georgeff [64] and Stuart [65] have imple-
mented such systems.

12.3.5 Agent Technologies

Some technologies applied to agent-based computing, multiagent systems, and
agent infrastructure are discussed next.

12.3.5.1 Agent Communication Languages

Interagent communication is the lifeblood of multiagent systems. Agents need to
communicate with users, clients, services, and each other in order for the power
of multiagent systems to be realized. Common agent communication languages
(ACLs) are required to allow diverse agent systems to communicate and exchange
complex beliefs, plans, goals, and intentions.

The ACLs [66, 67] most widely used for agent-to-agent communication are

• Knowledge Query Manipulation Language (KQML) [68]: This was devel-
oped in the early 1990s as part of the U.S. ARPA Knowledge-Sharing Effort
and is a language and protocol for exchanging information and knowledge.

• Foundation for Intelligent Physical Agents (FIPA)–ACL [69]: FIPA is a
nonprofit organization aimed at producing standards for the interoperation
of heterogeneous software agents. The FIPA-ACL incorporates many of the
aspects of KQML.

Both of these ACLs are based on speech-act theory: messages (or performatives)
are considered communicative acts by which agents can exchange beliefs with each
other and invoke goals in other agents [66]. These systems specify a set of message
types and associated handshaking protocols for making exchanges. Message content
can be expressed in any language the agent developer deems suitable. They incorpo-
rate, advertise, publish, and subscribe mechanisms to allow agents to advertise
their capabilities and publish information for access by registered subscribers.
Messages in these languages are usually expressed as strings rather than language-
specific data structures, which makes it possible for very different agent implementa-
tions to communicate using them.

FIPA also produces higher-level specifications that describe how messages
should be exchanged for a given interaction type. The interaction types defined by
FIPA in their Interaction Protocol Library include request, query, contract net, and
auction interactions.
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As well as agent-to-agent communication, agents need to communicate with
user interfaces, other services, and clients. To achieve this, XML formats such as
SOAP and Web service definition language (WSDL) allow expressive communica-
tion to occur, but at some cost in network bandwidth and user accessibility.
User interfaces must interpret these messages before they become accessible to the
operator. KQML and FIPA-ACL also allow agents to communicate messages in
these formats by using XML as the message content language.

The CoAX experiments [70–72] demonstrated how agents and humans could
cooperate in a coalition environment, using a combination of KQML, FIPA-ACL,
and XML to provide a dynamic, adaptable, and flexible C2 system.

12.3.5.2 Matchmaker Agents

Matchmaker agents in multiagent systems are used to maintain updated repositories
of information on agents currently engaged in the system, their capabilities, and
the services that they can provide (via a publish/subscribe mechanism for example).
This removes the burden on individual agents to identify all the agents in the
system with which they may need to interact. Instead, agents need only contact
the matchmaker agent with a description of the task required, and the matchmaker
(perhaps adaptively) determines the agent most suitable for this task. Broker agents
can extend this concept by accepting the task, then assigning it to another agent
registered with the broker. The broker can prioritize and optimize task assignments,
perhaps decomposing the task into partial tasks and assigning the partial tasks to
other capable agents. This provides an effective means for mediating the interactions
between agents in an open system. The RETSINA [73] and Sensible Agents [74]
architectures are examples of agent platforms that offer such matchmaking and
brokering services.

12.3.5.3 Mobile Agents

Mobile agents are agents that can move across a network to execute on another
host platform or virtual machine. Mobile agents allow a truly distributed system,
as agents with specialist capabilities can be deployed dynamically to network nodes
that provide system resources, such as spare CPU time, fast network access, and
access to information sources or sensor feeds. This allows the deployed agents to
perform information processing that takes advantage of the available resources
and to send the information products back across the network to the clients. In
this way, mobile agents allow distributed systems to optimize system resource usage
dynamically. To be effective in this way, however, mobile agents need to be small
enough to be transmitted efficiently across the network to a remote node.

A key issue that must be addressed with mobile agents is the administratability
of these systems to protect host nodes from malicious or defective agents. This
involves consideration of issues such as authorization policies, resource usage,
monitoring, and control. The KAoS [75–79] framework has been used with the
NOMADS [80] mobile-agent system to apply policies successfully to control mobile
agents in the CoAX experiments and protect a coalition C2 system from malicious
attack [71, 81]. The CoAX experiments also demonstrated that policies can be
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used to allow mobile agents to move seamlessly from the NOMADS infrastructure
to Dartmouth’s D’Agents [82] mobile-agent infrastructure [72].

12.3.5.4 Agent Languages

Numerous agent languages and architectures are available. This section does not
attempt to survey them in detail but instead discusses some of the systems that
have been used in the areas of military and C2 systems, such as the DARPA
Ultra*Log and CoAX programs. A key point to make here is that just as any
coalition IF system will need to integrate distributed heterogeneous components,
any multiagent system that operates in this environment will also need to integrate
heterogeneous agent systems. The ability of these architectures to exploit common
ACLs and XML (to interact with Web services and users) will be critical.

ATTITUDE
ATTITUDE [24] is an agent programming language developed at DSTO, based on
an extended belief, desire, and intention (BDI) architecture that incorporates
research into multiagent reasoning, contextual reasoning, and reasoning under
uncertainty. In the BDI architecture, agents have beliefs about the world, and they
must satisfy some primary goal or intention by forming desires that are subtasks
or desirable states that the agent wishes to occur, moving the agent closer to
achieving its intention. Intentions and desires are attained using plans, or what
ATTITUDE calls routines, which are sets of instructions that tell the agent how
to accomplish certain goals (or desires or intentions). The term routine is used
because it applies to both computer science (i.e., computer-program routine) and
behavior (e.g., a person has a routine to drive a car: open the door, get in, put the
key in the ignition, and so forth). ATTITUDE has been designed specifically to
support the programming of reactive systems and for information fusion.

ATTITUDE is so named because it utilizes propositional-attitude expressions
as programming instructions to achieve its desires and intentions. Propositional-
attitude instructions have the form

<subject> <attitude> <proposition>

where

<subject> denotes an individual (agent) or group of individuals whose mental
state is being characterized (e.g., Fred, Harry);

<attitude> is the subject’s dispositional attitude toward that claim about the
world (e.g., believe, ask if believe, desire, also desire, expect, anticipate);

<proposition> is a propositional expression that describes some propositional
claim about the world (e.g., it is raining, the sky is blue, today is Monday).

Examples of propositional-attitude instructions include

Fred believe (sky is blue);

Wilma expect (it will rain);
Barney desire (new hat).
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Using these mental attitudes, we can determine how an individual will act and
behave. By applying these mental attitudes within an ATTITUDE agent, its actions
and behavior can be controlled. For example, when a software agent encounters
the instruction ‘‘Fred believe (sky is blue),’’ it will issue a message to software agent
Fred instructing him to believe that ‘‘(sky is blue).’’ Similarly, when encountering the
instruction ‘‘I believe (sky is blue),’’ it will itself attempt to believe that ‘‘(sky is
blue).’’

An important characteristic of attitude programming is that each propositional-
attitude instruction either succeeds or fails, possibly with side effects, depending
on whether the recipient agent is able to satisfy the instructional request. Computa-
tional routines for a software agent arise by linking together instructions. The
execution path selected through a network of instructions is determined by the
successes and failures of the instructions attempted along the way. The flow of
control is therefore governed by a semantics of success. ATTITUDE contains several
control structures to manage this. For example:

• Kleene star (‘‘*’’): This will continuously execute a section of the routine
until execution fails.

• Concatenate (‘‘^’’): This will concatenate a sequence of two or more proposi-
tional-attitude instructions to form a routine or part thereof. It succeeds
when all instructions inside the concatenation operator succeed.

• Exclusive union (‘‘|’’): This is used when there are alternatives to achieve a
goal. It uses two or more routines, or parts thereof, which the agent will
attempt to execute in order, and succeeds when one of the routines executes
successfully.

• Guarded exclusive union (‘‘#’’): This can be used to simulate an if-then-else
statement. A ‘‘guarded’’ statement (instruction or routine) is executed, and
if it succeeds, its corresponding routine is executed. If the guarded statement
fails, then the next guarded statement in the guarded exclusive union opera-
tor, together with its corresponding routine, is attempted, and so on. If the
guarded statement succeeds, but its corresponding routine fails, or if none
of the guarded statements succeeds, then an error statement is executed.

• Intrinsic urgency (‘‘!’’): This is used to assign a particular execution priority
to the specified section of a routine. This determines the order of execution
of propositional-attitude instructions on the ATTITUDE task agenda.

ATTITUDE beliefs can include Horn clause rules, and an inference engine
allows declarative reasoning with the beliefs in an agent’s knowledge base. This
has also been extended to include a Bayesian inference engine [83] by assigning a
set of conditional probabilities to the beliefs stored in the knowledge base.

An agent’s knowledge base in ATTITUDE can be partitioned into events, which
represent a collection of beliefs about the world over a bounded region of time
and space. For example:

John believe (sky is blue) in event ?Monday

John believe (sky is gray) in event ?Tuesday
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John has two beliefs about the color of the sky, one that it is blue and the
other that it is gray. It can be seen that the two beliefs correspond to two different
events, one event being ?Monday and the other being ?Tuesday. Events give the
user the ability to query the knowledge base in relation to certain events. Events
can be ‘‘clipped together’’ using Boolean operators to represent a scenario in the
world, and the inference engine can then be applied to this scenario. This allows
ATTITUDE to apply contextual and what-if reasoning with its beliefs, as shown
in Figure 12.7, where the assessment of the combined situation is radically different
from the assessment of the initial situation alone.

ATTITUDE can dynamically form a group of agents and use the group as the
subject for its proposition attitude instructions. This allows team behavior to be
captured and also enables ATTITUDE to perform inferences across the beliefs of
all members of a group so that, as an ensemble, they can reach conclusions that
no agent could reach individually.

ATTITUDE is implemented in an interpreted environment, which can be run
on Win32, Linux, Sun Solaris, and SGI IRIX platforms. An ATTITUDE plan file
contains the definition, routines, variables, and so forth, of multiple individual
agents. When ATTITUDE is executed, it reads and compiles these agents into a
set of internal data structures and executes an initialization routine that starts up
the appropriate agents. During execution, ATTITUDE can receive external messages
(as propositional-attitude instructions or combinations thereof) from various input
streams, which it will interpret and execute like any other instruction. Using this
mechanism, ATTITUDE agents can learn new routines and functions that are sent

Figure 12.7 ATTITUDE events can be clipped together to form scenarios.
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to them as messages. ATTITUDE can also send messages to various output streams,
which may be connected to physical effectors or sent across the network. A Java
wrapper has been developed for ATTITUDE to allow it connect to third-party
software, such as the CoABS middleware [84]. All communication across the CoABS
Grid is then done via the external messaging mechanism described above, as shown
in Figure 12.8.

JACK
JACK Intelligent Agents [85] is a framework for building and running multiagent
applications. JACK incorporates the BDI model and allows developers to create
new reasoning models to suit their particular requirements. JACK includes facilities
for the creation of intelligent team behavior through the advanced JACK Teams
model.

JACK is implemented in Java, and the JACK Agent Language extends Java
with constructs for agent characteristics, such as plans and events. JACK agents
can be run on one CPU or distributed among multiple CPUs on a local-area network,
wide-area network, or the Internet. It builds on the security model provided by
the JAVA platform to secure communications and block unauthorized access to
data. JACK agents are lightweight and take advantage of the efficient Java multi-
threading environment.

JACK is a third generation agent system, emerging from the two previous
generations of agent systems, PRS and dMARS. JACK has a small computational
footprint (JACK can run on a personal digital assistant, or PDA) and an efficient,
component-based design (to ease integration with other software). JACK provides
a set of graphical user interfaces suitable for developers and less technical users,
such as analysts and operational staff. It also includes graphical design and tracing
facilities.

Figure 12.8 Attitude multiagent architecture, showing encapsulation in Java wrapper. Individual
agents access partitions of knowledge base and plan store.
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JACK is a commercial product with commercial-product design and support
standards, with new releases about every six months.

Cougaar
As discussed in Chapter 10, Cougaar [86] is a software architecture, developed for
the DARPA Advanced Logistics Project (ALP) and the DARPA Ultra*Log programs,
that enables distributed agent-based applications [87].

Cougaar agents are based around a blackboard and plug-ins, as shown in
Figure 12.9. Cougaar agents maintain knowledge of their internal state and the
external world on the blackboard, which is handled by specialized plug-ins known
as logic providers.

The Cougaar agent model is designed to emulate the human cognitive process,
which iteratively and/or recursively invokes one of several strategies:

• Decomposing: Breaking a problem into smaller subproblems;
• Delegating: Giving a problem to another resource to solve;
• Consolidating: Taking a number of independent pieces and handling them

as a single problem;
• Monitoring: Continually checking to make sure things are proceeding as

planned and correcting or reacting accordingly;
• Gathering: Getting information from the outside world;
• Reporting: Reporting back to the outside world;
• Acting: Performing some action that impacts with real entities in real time.

Cougaar agents contain specialist plug-in templates that match to the elements
of this model:

• Task expander (decomposing): Takes a task and decomposes it into subtasks;

Figure 12.9 Cougaar agent model.



12.3 Multiagent Systems 341

• Task allocator (delegating): Allocates tasks to appropriate resources for final
handling or further disposition;

• Task aggregator (consolidating): Joins a sets of tasks into a supertasks;
• Task assessor (monitoring): Assesses the plan for consistency and forces

replanning when necessary;
• Logical data model plug-in (gathering): Reads new or changed information

from external data sources;
• User interface plug-in (reporting): Provides an external user interface;
• Execution (acting): Interacts with external entities, objects, and systems;

Cougaar plug-ins are designed to run relatively independently from the agent.
A plug-in scheduler is used to monitor the activity of the plug-ins and blackboard,
and only runs plug-ins when there is activity that is ‘‘interesting’’ to the plug-in or
a scheduled execution window occurs. As discussed previously, Cougaar also sup-
ports connections and interfaces to contemporary, legacy, and partner systems
through plug-ins. Plug-in interfaces include SQL, JDBC, XML, Java JINI, screen
scraping, and dynamic link library (DLL) invocations [88]. A plug-in API allows
access and interface to other services.

RETSINA
Reusable Environment for Task Structured Intelligent Network Agents (RETSINA)
[73] is an open multiagent system developed at the Intelligent Software Agents
Laboratory at Carnegie Mellon University that supports communities of heteroge-
neous agents. The RETSINA system (Figure 12.10) has been implemented on the
premise that agents in a system should form a community of peers that engage in
peer-to-peer interactions. Any coordination structure in the community of agents
should emerge from the relations between agents, rather than as a result of the
imposed constraints of the infrastructure itself. In accordance with this premise,
RETSINA does not employ centralized control within the multiagent system; rather,
it implements distributed services that facilitate the interactions between agents as
opposed to managing them.

The RETSINA functional architecture consists of four basic agent types:

1. Interface agents: Interact with users, receive user input, and display results;
2. Task agents: Help users perform tasks, formulate problem-solving plans,

and carry out these plans by coordinating and exchanging information with
other software agents;

3. Information agents: Provide intelligent access to a heterogeneous collection
of information sources;

4. Middle agents: Help match agents that request services with agents that
provide services.

Each RETSINA agent has separate reusable modules for communicating, plan-
ning, scheduling, and monitoring the execution of tasks and requests from other
agents, as shown in Figure 12.11.

• The communication and coordination module accepts and interprets mes-
sages and requests from other agents.
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Figure 12.10 RESTINA multiagent architecture. (After: [73].)

Figure 12.11 RETSINA agent architecture. (After: [73].)
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• The planning module takes as input a set of goals and produces a plan that
satisfies the goals.

• The scheduling module uses the task structure created by the planning module
to order the tasks.

• The execution module monitors this process and ensures that actions are
carried out in accordance with computational and other constraints.

RETSINA facilitates communication among agents of different types by using
middle (or matchmaker) agents to serve as liaisons between agents that request
services and agents that provide services. This is an important feature of the
RETSINA architecture as interactions are governed by the services that can be
provided by the agent in the system and the descriptions provided to the middle
agents, rather than by any a priori knowledge maintained by the system developer.
This makes the RETSINA model flexible, extensible, and suitable for coalition IF
systems as demonstrated in the CoAX experiments [71, 72].

Sensible Agents
The Sensible Agents architecture [74], developed by the Laboratory for Intelligent
Processes and Systems at the University of Texas, Austin, provides an environment
for heterogeneous distributed agents to operate and communicate with each other
and third-party external environments. The Sensible Agents system uses modules
to integrate domain-specific actions with domain-independent representation and
execution, as shown in Figure 12.12.

Figure 12.12 Sensible Agents architecture. (After: [74].)
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The Sensible Agents components are:

1. Autonomy Reasoner: Negotiates with other agents to form situation-
appropriate decision-making frameworks for collaborative problem solving.
This includes adaptively forming agent organizations to achieve the goal at
hand [89].

2. Action Planner: Produces plans to solve domain problems, executes actions
according to it plans, identifies conflicts with the goals and plans of other
agents, and suggests strategies to resolve them. Given that sensible agents
can dynamically change their organization structure, the Action Planner
gives agents the ability to change coordination techniques to match.

3. Perspective Modeler: Maintains the agent’s local, subjective beliefs about
itself and the world. The Perspective Modeler interprets data received from
information sources (including the self-agent’s sensors and other agents)
and changes its models accordingly, using a belief revision process based
on the source’s reputation, the certainty a source places on the data, and
the age of the data. The Perspective Modeler also maintains beliefs about
states and events external to the self-agent and predicts the actions of other
agents and the environment. This includes temporal issues, addressing the
question of how confidence in a piece of information should be discredited
or depreciated as time passes. This integration of ‘‘information-staleness’’
factors is important in weighting older, more certain data against more
recent, yet more uncertain, information.

The Perspective Modeler maintains reputation values essential for belief revision
for each information source. The reputation values maintained by the Perspective
Modeler are assessed using two methods: (1) direct trust revision, in which a
source’s reputation is revised based on its past transaction history with the agent,
using dissimilarity metrics to measure the quality of information received, and
(2) recommended trust revision, in which a source’s reputation is affected by trust
information recommended by other agents. This allows the Sensible Agents system
to evaluate the reliability of the information sources (including agent-mediated
services) available to it and introduce appropriate strategies to deal with unreliable,
uncertain, or fraudulent information. This is an important capability for IF systems
dealing with information sources with variable reliability or trustworthiness, for
instance, in coalition or public networks like the Internet.

ZEUS
ZEUS [90–92] is an open agent architecture developed by the Intelligent Systems
Research Group at British Telecommunication Laboratory. The ZEUS toolkit con-
sists of components written in the Java programming language that can be catego-
rized into three libraries:

• Agent Component Library;
• Agent building tools;
• A suite of utility agents comprising name-server, facilitator, and visualizer

agents.
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The Agent Component Library is a collection of classes that form the building
blocks of individual agents and together implement the application-independent
functionality required for collaborative agents. The library addresses the issues of
communication, representation, and coordination.

For communication, the Agent Component Library provides a performative-
based agent communication language (KQML), an asynchronous, socket-based,
message-passing system, an editor for describing domain-specific ontologies used
to provide the concepts used in the ACL content language, and a frame-based
knowledge-representation language for representing domain concepts.

For reasoning and multiagent coordination, the Agent Component Library
provides a general-purpose planning and scheduling system suitable for typical
task-oriented application domains and the cooperative problem solving inherent
to these applications, as well as a coordination engine that controls the social
behavior of an agent (i.e., when and how it interacts with other agents).

The application domain influences the functioning of the planner and coordina-
tion engines, so the Agent Component Library also provides a library of predefined,
reusable coordination protocols (e.g., contract net and various auction protocols);
a number of predefined organizational relationships (e.g., superior, subordinate,
coworker, and peer); and knowledge representation mechanisms and databases for
describing and storing the resources and competencies of an agent.

Together, the components of the Agent Component Library enable the construc-
tion of an application-independent (generic) ZEUS agent that can be customized
for specific applications by imbuing it with domain-specific resources, competencies,
information, organizational relationships, and coordination protocols.

As shown in Figure 12.13, the generic ZEUS agent includes the following
components:

• Mailbox: This handles communications between the agent and other agents.
• Message handler: This processes incoming messages from the mailbox and

dispatches them to the relevant agent component.
• Coordination engine: This makes decisions concerning the agent’s goals (e.g.,

how they should be pursued and when to abandon them). It is also responsible
for coordinating the agent’s interactions with other agents using its known
coordination protocols and strategies.

• Acquaintance database: This describes the agent’s relationships with other
agents in the society and its beliefs about the capabilities of those agents.
The coordination engine uses information from this database when making
collaborative arrangements with other agents.

• Planner and scheduler: This plans the agent’s tasks based on decisions taken
by the coordination engine and the resources and task specifications available
to the agent.

• Resource database: This maintains a list of resources owned by and available
to the agent. This database also supports a direct interface to external sys-
tems, which allows it to link dynamically to and utilize proprietary databases.

• Ontology database: This stores the logical definition of each fact type: its
legal attributes, the range of legal values for each attribute, any constraints
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Figure 12.13 Architecture of a generic ZEUS agent. (After: [93].)

between attribute values, and any relationships between the attributes of
the fact and other facts.

• Task/plan database: This provides logical descriptions of planning operators
(tasks) known to the agent.

• Execution monitor: This maintains the agent’s internal clock and starts,
stops, and monitors tasks that have been scheduled for execution or termina-
tion by the planner/scheduler. It also informs the planner of successful or
exceptional terminating conditions of the tasks it is monitoring. In order to
manage tasks, the execution monitor also has a direct interface to external
systems.

ZEUS provides an open architecture for agent development that can provide
the extensibility important for IF systems.

Others
There are many other multiagent systems currently in use, information on which
can be found at www.agentlink.org (see, for example, [94]).
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Conclusions

Data and information fusion clearly has a critical role to play in future command-
and-control systems; it is a key enabler in achieving high-quality situation awareness
for optimal decision-making. Data and information fusion is not something that
happens in a vacuum, and it should not be decoupled from the decision-making
process. This is the reason why we have reviewed many existing models of decision-
making and tried to put into perspective information fusion with respect to the
overall command-and-control process.

As a discipline, data and information fusion draws together concepts from a
wide range of diverse fields: psychology, human factors, knowledge representation,
artificial intelligence, mathematical logic, signal processing, and so forth. Most of
these aspects are discussed in this book at various levels of depth. In fact, the
contribution of this book can be organized into three main categories:

1. Concepts, definitions, and models (Chapters 2–5);
2. Mathematical and logical approaches (Chapters 6–9);
3. Computational aspects of information fusion (Chapters 10–12).

Chapters 2 through 5 provided the common foundation for the analysis and
development of IF capabilities. It does so through a review of many concepts,
definitions, and models regarding decision-making, situation analysis and aware-
ness, and data and information fusion.

Knowledge, belief, and uncertainty are three key notions in the situation-
analysis process (through data and information fusion). Belief and knowledge
representation are crucial to transforming data into knowledge. A formalization
is necessary to be able to deal with knowledge or uncertainty: a formal framework
in which knowledge, information, and uncertainty can be represented, combined,
managed, reduced, increased, and updated. Chapter 6 discussed the key notions of
knowledge, belief, and uncertainty in relation to information fusion. The potential
theoretical frameworks available to model the situation-analysis process can be
divided into main categories: qualitative approaches (Chapter 7) and quantitative
approaches (Chapter 8). Qualitative approaches seem better suited to reasoning
on knowledge, while quantitative approaches are better candidates for uncertainty
representation and management. Hence, a good solution for a global modelization
of the situation could be a hybrid approach (Chapter 9) mixing quantified evalua-
tions of uncertainty and high reasoning capabilities.

Chapters 10 through 12 reviewed the computational implementations of infor-
mation fusion. This section of the book addressed the key characteristics of the IF
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domain and the performance requirements that they impose on IF systems. It
reviewed the key elements of computational infrastructure relevant to the design
and performance of IF systems, including system architecture, computer networks,
software middleware, issues with information sources, and human-computer inter-
faces. We also considered key concepts in knowledge-based and artificial intelli-
gence systems that have an impact on higher-level fusion processes, including
expert systems, reasoning systems, neural networks, and computational complexity.
Software architectures that can be used to implement IF systems were reviewed,
as were issues associated with the blackboard and multiagent architectures as they
can be applied to IF systems.
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Data-and-information-fusion node, Decision system, 196
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machine, 100–102 Defense Science and Technology
Organisation (DSTO), 92mental, 99–100

product, 74 Dempster-Shafer theory, 175–83
belief function, 176VDF model, 314
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conjunctive rule of combination, 180Decidability, 152

Decision-making, 8 defined, 175–76
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optimal, information requirements, Dempster’s rule of conditioning, 181
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Evidential independence, 179plausibility function, 177
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Existence analysis, 46simple support belief function, 178

summary, 183 Existential quantification, 156
Expected utility theory (EUT), 12–13uncertainty and, 181–83

vacuous belief function, 177 defined, 12
subjective (SEUT), 12–13See also Quantitative approaches

Dempster’s rule of combination, 180 Expert systems
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Derivation, 152
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Diagnosis, 162 Factoring, 291
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Direct perception, 34 Filtering, 74
Finite-set statistics (FISST), 203, 204Disjoint events, 173

Disjointness, 186 First-order logic, 155–58
calculus and reasoning, 158Disjunctive rule of combination, 193

Distributed systems, 242 defined, 155
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illustrated, 242 existential quantification, 156
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Distribution function, 172, 204 pioneers, 155
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uncertainty and, 157–58architecture, 264

core element, 264 universal quantification, 156
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defined, 271

E illustrated, 272
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English auctions, 327 visualization challenges, 271
Focal element, 177Entailment, 152
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of space, 298 Game-theoretic approaches, 325
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Frame of discernment, 176 algebra, 202
Fregean connotations, 142 Graph-based approaches, 220–22
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Future Operations Centre Analysis
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trees, 221–22Fuzzy logic, 214–15

Groups, 33calculus and reasoning, 215
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fuzzy quantifiers, 214–15 Hearsay-II project, 318–19
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generalized modus ponens, 215

Heuristic multiattribute decision
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strategies, 14–15standard Lukasiewicz logic, 214
Hierarchical control, 319Fuzzy numbers, 185
Hierarchical organizational model,Fuzzy rough sets, 197

323–24Fuzzy-set theory, 183–89
Human-computer interfaces, 265–75aggregation operation, 187

cognitive factors, 268–69calculus and reasoning, 186–88
FOCAL, 271–75conditional event theory and, 201
human factors, 266–68conflict, 189
presentation systems, 269–71defined, 183
visualization, 266disjointness, 186

Human factors, 266–68fuzziness, 189
alerting, 267fuzzy sets, 184
engineering, 131intersection, 186
exploring, 268level set, 184
monitoring and control, 267nonspecificity, 189
questions addressed by, 266–67possibility theory based on, 191–92
searching, 267–68random-set theory and, 205–6

Human limitations, 120–22scalar cardinality, 185
attention, 121summary, 189
stress, 120–21uncertainty and, 188–89

See also Quantitative approaches working memory, 121
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Hypergraph, 221 environment, 232–34
Hyperplanes, 283 environment characteristics, 234
Hypertext Transfer Protocol (HTTP), grand challenges, 108

262 human-computer interfaces, 265–75
information sources, 234–35, 258–65I
integrated environment, 231

Identification techniques, 74 for intelligence analysis, 259
Identity analysis, 46 life-cycle support perspective, 237
Ignorance, Smithson’s taxonomy, 145–46 life-cycle support requirements/criteria,
Image processing, 314–15 240
Imagery analysts (IA), 111 mathematical/logical approaches, 9
Images, 18

middleware, 249–58
Image theory, 18–19

networks, 244–49
decisional mechanisms, 19

paradigm disparity, 104
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process, 235–36images, 18
requirements/criteria, 105, 238–39Impact, 50
system architectures, 237–42Impact assessment, 50–52
system design, 237defined, 51
view, 105–7implementation, 51

Information grid, 249Impact fusion, 98–99
Information sources, 234–35, 258–65Imperfection, 148
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Information system, 195–96defined, 216
Inherent-threat assessment, 55, 56–57incidence function, 217

defined, 56lower and upper bounds, 217
value calculation, 58, 61–62one set of possible worlds, 219–20

Inheritance by default, 162summary, 220
Initial set of conditions, 5theory, 216–17
Integrated model, 23–24two sets of possible worlds, 218–19
Intent, 5uncertainty and, 220

analysis, 47–49Incidence function, 217
estimation, 47–48Independent frames, 179

InteRRaP, 290Indirect perception, 34
Intersection, 186Indiscernibility relation, 196
Introspection, 35Inference, 215
Intuitive rule-based processing, 24Inference engine, 302
Irrelevance, 179Influence, 50

Information fusion
Japplication perspective, 236–37
JACK Intelligent Agents, 339–40computational aspects, 9–10, 231–75
Java Authentication and Authorizationcomputer systems, 243–44
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circa 1991, 75 policy directory (PD) service, 255
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data-and-information-fusion node, policy services, 254

83–84 use, 256–57
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fusion versus reasoning, 81–82 Kinematics smoothing
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illustrated, 80 techniques, 59–61
impact assessment, 81 Klir/Yuan uncertainty types, 147–48
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KID processing tree, 84–86 preparation for reasoning, 153
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as model of machine data fusion, 101 share, 329
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257–58 294

common client application Knowledge logics, 159–61
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Joint intentions, 331, 331–32 Kripke models, 160
Joint possibility distribution, 191
Joint probability, 171, 223 L
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Level set, 184measure, 171
Linguistic variables, 185Joint valuation, 226
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decidability, 292–93KAoS, 254–57
formal theories of space-time, 296–99defined, 254
knowledge representation, 293–94domain managers (DMs), 255
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guards, 256 See also Reasoning
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Marginal densities, 172
Marginal distributions, 172, 191
Marginal independence, 174

NMarginal possibility distribution, 191
Marginal probabilities, 172, 223–24 Naturalistic decision-making (NDM)
Matchmaker agents, 335 models, 11, 16–20
A Mathematical Theory of Evidence argument-driven, 20

(Shafer), 176 image theory, 18–19
Mental data fusion, 99–100 recognition-primed decision (RPD),
Middleware, 249–58 16–18
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CORBA, 252–54 See also Decision-making models
Cougaar, 251–52 Necessity measure, 190
Joint Battlespace Infosphere (JBI), Negation as failure rule, 162

257–58 Negotiation, 324–27
KAoS, 254–57 argumentation, 326
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Minkowski subtraction, 207 game-theoretic approaches, 325
Min/max rules, 191 Network-centric warfare, 248–49
Mobile agents, 335–36 Networks, 244–49
Modal logic, 159–61 functions, 244–45

agents, 159 Internet, 245
calculus and reasoning, 160 protocols, 245
defined, 159 routing devices, 245
summary, 160–61 tactical digital information links
uncertainty and, 159–60 (TADILs), 247–48
use, 159

Theatre Broadcast System (TBS),
Modus ponens equation, 202

246–47Möebius transform, 204
virtual private networking, 246Monitoring and control, 267

Neural networks, 281–85Monotonic concession protocol, 325
feed-forward architecture, 283Monotonicity, 154
field, 281–82Multiagent computing environment
function mapping, 284(MACE) system, 332
speed, 285Multiagent systems, 321–46
three-layer perceptron, 282agent model, 321–22
weights, 282agent technologies, 334–46
weights versus training iteration, 286CDPS, 327–34

Noninteractivity, 179negotiation, 324–27
Nonmonotonic logics, 161–66organizational models, 322–24

calculus and reasoning, 165–66planning and synchronization, 333–34
summary, 166Multiattribute decision-making, 14–15

Normative models, 11Multiple-hypothesis data association
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O calculus and reasoning, 192–94
conjunctive rule of combination, 193Object fusion, 98
disjunctive rule of combination, 193Observe, orient, decide and act (OODA)
formalizations, 191–92loop, 2–3
independence, 192–93defined, 2
joint possibility distribution, 191drawbacks, 2–3
likelihood, 192elements, 40
marginal possibility distribution, 191illustrated, 2
min/max rules, 191OntoEdit, 294–95
necessity measure, 190Ontologies-as-formal-theories approach,
noninteraction, 192144
possibility distribution, 190Ontology Interchange Language (OIL),
possibility measure, 190261, 295
random-set theory and, 206Ontology Web Language (OWL), 254,
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192Operating environment, 6
summary, 195Operator schema, 279–80
uncertainty and, 194Optimal decision-making, 130–31
See also Quantitative approachesOrganizational models, 322–24

Posterior probability, 171centralized, 323
Presentation systems, 269–71decentralized, 323
Probabilistic independence, 174heterarchical, 324
Probabilistic logic, 212–14hierarchical, 323–24

certainty, 213illustrated, 323
defined, 212

P possible world, 213
principle, 212Parents-children, 222

Partial global planning (PGP), 330–31 probability distribution and measure,
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Person, 33 propositional and statistical
probabilities, 213defined, 34
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random variables, 213Photo interpreters (PI), 111

Physic independence, 174 statistical probability, 214
Probability assignment, 176Plan analysis, 49

Plan-goal graph, 52 Probability distribution, 170, 213
Probability theory, 169–75Plausibility function, 177

Possibility distribution, 190 calculus and reasoning, 173–75
conditional event theory and, 201Possibility logic, 215–16

absolute reference point, 216 conditional independence, 174
conditional probability, 171calculus and reasoning, 215

inference, 215 crisp sets, 184
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Possibility measure, 190 joint probability, 171
joint probability measure, 171Possibility theory, 189–95

adaptative rule of combination, 194 marginal distributions, 172
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posterior probability, 171 rough-set theory, 195–200
Quantitative logics, 211–12probabilistic independence, 174

probability distribution, 170
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probability space, 170 Random sets, 179
Random-set theory, 203–7random-set theory and, 204

random variables, 171–72 calculus and reasoning, 206–7
conditional event theory and, 206stochastic independence, 174
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Dempster-Shafer theory and, 204–5See also Quantitative approaches
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distribution function, 204289–90
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fuzzy-set theory and, 205–6Production system, 300
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142 random set, 203
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definitions, 152–53 See also Quantitative approaches
Random variables, 171, 213requirement, 151
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See also Classical logic distribution function, 172
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Prospect theory, 13 prospect theory, 13
regret theory, 13–14

Q satisfying, 14
subjective EUT (SEUT), 12–13Qualification problem, 162
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combination of concepts, 198automated, 279

backward-chaining, 302 combination of knowledge, 198–99
concepts, 196case-based, 304–6

classical, 279 decision system, 196
defined, 195default, 163

defeasible, 163, 166 Dempster-Shafer theory and, 199
equivalence class, 196forward-chaining, 302

logical, 290–99 equivalence relation, 196
fuzzy rough sets, 197modes, 302

procedural system (PRS), 289–90 fuzzy sets and, 199
indiscernibility relation, 196rule-based, 299–304

Recognition-primed decision (RPD) information system, 195–96
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defined, 16 lower and upper approximations,
196–97first level, 17

illustrated, 17 rough fuzzy sets, 197, 198
rough membership functions, 197second level, 17–18

third level, 18 summary, 200
uncertainty and, 199–200Recognized air picture (RAP), 98

Recognized maritime picture (RMP), 98 See also Quantitative approaches
Rule-based reasoning, 299–304Reflexivity, 165

Region connection calculus (RCC), 298 components, 301
declarative, 300Regret theory, 13–14

Resolution, 291 expert systems, 303–4
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knowledge base, 301Resource Description Framework

Semantics (RDFS), 294 reasoning modes, 302
RETE algorithm, 302–3Resource management (RM), 76

Result sharing, 328–29 working memory, 301
See also ReasoningRETE algorithm, 302–3

RETSINA, 341–43 Rules, establishing, 5
agent architecture, 342

Sdefined, 341
functional architecture, 341 SAC algebra, 202

Satisfying, 14middle agents, 343
multiagent architecture, 342 Scalar cardinality, 185
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Search strategies, 287Structured Intelligent Network
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goal, 260Rough membership functions, 197
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38–39realization, 260

Resource Description Framework in crisis, 36
defined, 8(RDF), 261

SOAP, 262 definition analysis, 37
definition framework, 34–37Sense making, 6

Sensible Agents, 343–44 elements illustration, 34
Endsley model, 37–39components, 344

defined, 343 errors, 28
general discussion, 27–31illustrated, 343

Perspective Modeler, 344 generalization, 29
importance, 28–29See also Agent languages

Sensor fusion levels, 38–39
machine data fusion and, 100–102defined, 102

paradigm disparity, 104 measurement tools, 31
mental data fusion and, 99–100view of, 102–5

Sensor grid, 248–49 in multiple domains, 29–31
perception of elements, 38Set theoretic uncertainty, 146

SHIQ, 296 person side, 34–35
projection knowledge association, 143SHOQ(D), 296

Simple support belief function, 178 projection of future status, 39
situation side, 36–37Situation abstraction, 46

Situation analysis (SA), 40–64 superior capability, 95
technological support, 122–23applied to cyberdomain, 114–15

decision-making and, 40–41 UDF, 92–94
visual (VSAW), 87–90decision-support systems and, 119–38

defined, 27, 41 Situation classification, 49
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high-level view, 41–42 Situation elements, 32–33
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process refinement, 63–64 association, 45–46
context analysis, 47purpose, 44
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threat analysis, 53–63 illustrated, 33
interpretation, 47Situation assessment, 50

Situation-awareness reference model, kinematics smoothing techniques,
59–61108–15

conceptual framework, 109 projection, 50
refinement, 46data-collection component, 111

defined, 108–9 types, 32–33
Situation fusion, 98flows, 110

illustrated, 110 Situation-geometry analysis, 57–59
Situation model, 44–53knowledge-discovery tools, 112–14

Situation awareness (SAW), 7, 27–39 common referencing, 45
defined, 44benefits, identifying, 28–29

in car driving, 29–30 generic plan-goal graph, 52–53
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Situation model (continued) Subjective expected utility theory (SEUT),
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Subsumption architecture, 280, 281situation classification, 49
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distributed systems, 24247
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situation-element refinement, 46 Tactical Decision Making Under Stress
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Situation monitoring, 42 Tactical digital information links
(TADILs), 247–48Situation perception, 41

Situation projection, 42 Targets of interest (TOIs), 232
Task/human/technology triad model,Situation recognition, 49–50

Situations, 36–37 125–28
human factors, 125–26Situation watch, 63
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Technological automation, 124information, 148
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Software architectures, 311–46 actual-risk assessment, 55, 56, 62–63
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multiagent systems, 321–46 inherent-threat assessment, 55, 56–57
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Standard Lukasiewicz logic, 214 situation watch, 63
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Threatsmodel, 108

Static Hayard free (SHF), 295 defined, 53–54
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Trackingresponse (SHOR), 72
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filtering, 74Strategic image, 18

Stress, 120–21 smoothing, 74
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Tsang theory, 298 situation awareness view, 92–94
Universal planners, 289Turing machines, 286
Universal quantification, 156
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VUncertainty
ambiguity, 147 Vacuous belief function, 177
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Bouchon-Meunier model, 146–47 3-tuple, 225
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Dempster-Shafer theory and, 181–83 marginalization, 227

calculus and reasoning, 226–27in finality, 145
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fuzzy-set theory and, 188–89 defined, 225

illustrated, 226as imperfection, 148
Klir/Yuan types, 147–48 joint valuation, 226
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uncertainty and, 227–28200
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representation, 173, 181–82, 188, Virtual private networking, 246
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decomposition, 312common operating picture, 94–98
data fusion view, 98–99 defined, 86
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Visual data-fusion (VDF) model SAW generation, 89
single elements, 90(continued)

illustrated, 88, 312 W
image processing, 314–15

Web Service Description Languageintent, 313
(WSDL), 261, 335pattern sets, 312

Working memory, 121, 301premises, 86–87
Workload, 121visual fusion (VF), 314
World of facts, 104

visual situation awareness (VSAW),
87–90 Z

Visual fusion (VF), 314 ZEUS, 344–46
Visualization, 266 agent architecture, 346
Visual situation awareness (VSAW), Agent Component Library, 345

87–90 components, 345–46
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defined, 87 libraries, 344
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Zeuthen strategy, 325multiple elements, 92


