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Abstract: Mathematics plays a vital role in many areas of finance and provides the theories and tools
that have been widely used in all areas of finance. In this editorial, we tell authors the ideas on what
types of papers we will accept for publication in the area of mathematical finance. We will discuss
some well-cited papers of mathematical finance.

Keywords: mathematics; probability; statistics; finance; applications

Mathematics plays a vital role in many areas of finance. In particular, it provides the theories
and tools that have been widely used in all areas of finance. Knowledge of mathematics, probability,
statistics, and other analytic approaches is essential to develop methods and theories in finance and
test their validity through the analysis of empirical real-world data. For example, mathematics,
probability, and statistics could help to develop pricing models for financial assets such as equities,
bonds, currencies, and derivative securities, and propose financially optimal strategies coherently to
decision-makers according to their preferences. This section will bring together theory, practice, and
applications of mathematical finance. We discuss some of the most cited papers, as follows:

Ly et al. (2019) develop the theory on both density and distribution functions for the quotient
Y = Xy/X, and the ratio of one variable over the sum of two variables Z = X;,(X; + X») of two dependent
or independent random variables X; and X, by using copulas to capture the structures between X;
and X», and extend the theory by establishing the density and distribution functions for the quotients
Y = Xy,X; and Z = X1/(X; + X») of two dependent normal random variables X; and Xj in the case
of Gaussian copulas. Thereafter, they develop the theory on the median for the ratios of both Y and
Z on two normal random variables X; and X, and extend the result of the median for Z to a larger
family of symmetric distributions and symmetric copulas of X; and X». In addition, they introduce
the Monte Carlo algorithm, numerical analysis, and graphical approach to efficiently compute the
complicated integrals and study the behaviors of density and distribution and illustrate their proposed
approaches by using a simulation study with ratios of normal random variables on several different
copulas, including Gaussian, Student-t, Clayton, Gumbel, Frank, and Joe Copulas, and discuss the
behaviors via all copulas above with the same Kendall’s coefficient. They find that copulas make big
impacts from different copulas on the behavior of distributions, especially on median, spread, scale,
and skewness effects.

Golodnikov et al. (2019) show that CVaR linear regression can be reduced to minimize the
Rockafellar error function with linear programming. They establish the theoretical basis for the analysis
with the quadrangle theory of risk functions and derive relationships between elements of CVaR
quadrangle and mixed-quantile quadrangle for discrete distributions with equally probable atoms.
They present two equivalent variants of discretization of the integral, which resulted in two sets of
parameters for the mixed-quantile quadrangle. For the first set of parameters, the minimization of
error from the CVaR quadrangle is equivalent to the minimization of the Rockafellar error from the
mixed-quantile quadrangle. Alternatively, a two-stage procedure based on the decomposition theorem
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can be used for CVaR linear regression with both sets of parameters. They find that this procedure is
valid because the deviation in the mixed-quantile quadrangle (called mixed CVaR deviation) coincides
with the deviation in the CVaR quadrangle for both sets of parameters. In addition, they illustrate
theoretical results with a case study demonstrating the numerical efficiency of the suggested approach.

De Gaetano (2018) investigates the relevance of structural breaks for forecasting the volatility of
daily returns on BRICS countries by using the data from 19 July 1999 to 16 July 2015 to identify structural
breaks in the unconditional variance, a binary segmentation algorithm with a test. He introduces
some forecast combinations that account for the identified structural breaks and evaluate and compare
their performance by using the model confidence set (MCS). He obtains significant evidence of the
relevance of the structural breaks, in particular, in the regimes identified by the structural breaks;
a substantial change in the unconditional variance is quite evident. In addition, He finds that the
combination that averages forecasts obtained using different rolling estimation windows outperforms
all the other combinations.

Van Dijk et al. (2018) propose improved regression models to estimate calibrated parameters
(including the market variables in a real-world simulation), predict out-of-sample implied volatility
surfaces, and evaluate the impact on the solvency capital requirement for different points in time.

Korkmaz etal. (2018) introduce and study a new three-parameter Pareto distribution. They discuss
various mathematical and statistical properties of the new model to perform some estimation methods
of the model parameters, use the peaks-over-threshold method to estimate value-at-risk (VaR) by
means of the proposed distribution, and compare the distribution with a few other models to show its
versatility in modeling data with heavy tails. In addition, they present VaR estimation with the Burr x
Pareto distribution by using time series data and consider the new model as an alternative VaR model
against the generalized Pareto model for financial institutions.

The popular replication formula to price variance swaps assumes continuity of traded option
strikes. In practice, however, there is only a discrete set of option strikes traded on the market. Le Floc’h
(2018) presents different discrete replication strategies and explains why the continuous replication
price is more relevant.

Ghitany et al. (2018) propose an alternative generalization of the Pareto distribution, study its
properties, and apply their proposed model to analyze earthquake insurance data.

Nagy and Ormos (2018) introduce a spectral clustering-based method to show that stock prices
contain not only firm but also network-level information. Clustering different stock indices and
reconstructing the equity index graph from historical daily closing prices, they show that tail events
have a minor effect on the equity index structure. In addition, they find that covariance and Shannon
entropy do not provide enough information about the network, but Gaussian clusters can explain a
substantial part of the total variance.

Employing a time-varying vector autoregression with stochastic volatility, Feldkircher and Huber
(2018) compare the transmission of a conventional monetary policy shock with that of an unexpected
decrease in the term spread, which mirrors quantitative easing. They find that the spread shock works
mainly through a boost to consumer wealth growth, while a conventional monetary policy shock
affects real output growth via a broad credit/bank lending channel. In addition, they find small output
effects of a conventional monetary policy shock during the period of the global financial crisis and
stronger effects in its aftermath. Their findings imply that when the central bank has left the policy rate
unaltered for an extended period of time, a policy surprise might boost output particularly strongly
while the spread shock has affected output growth most strongly during the period of the global
financial crisis, and less so thereafter.
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Abstract: This study employs the Vector Autoregressive-Generalized Autoregressive Conditional
Heteroskedasticity (VAR-AGARCH) model to examine both return and volatility spillovers from the
USA (developed) and China (Emerging) towards eight emerging Asian stock markets during the
full sample period, the US financial crisis, and the Chinese Stock market crash. We also calculate the
optimal weights and hedge ratios for the stock portfolios. Our results reveal that both return and
volatility transmissions vary across the pairs of stock markets and the financial crises. More specifically,
return spillover was observed from the US and China to the Asian stock markets during the US
financial crisis and the Chinese stock market crash, and the volatility was transmitted from the USA to
the majority of the Asian stock markets during the Chinese stock market crash. Additionally, volatility
was transmitted from China to the majority of the Asian stock markets during the US financial crisis.
The weights of American stocks in the Asia-US portfolios were found to be higher during the Chinese
stock market crash than in the US financial crisis. For the majority of the Asia-China portfolios,
the optimal weights of the Chinese stocks were almost equal during the Chinese stock market crash
and the US financial crisis. Regarding hedge ratios, fewer US stocks were required to minimize the risk
for Asian stock investors during the US financial crisis. In contrast, fewer Chinese stocks were needed
to minimize the risk for Asian stock investors during the Chinese stock market crash. This study
provides useful information to institutional investors, portfolio managers, and policymakers regarding
optimal asset allocation and risk management.

Keywords: return spillover; volatility spillover; shock spillover; US financial crisis; Chinese stock
market crash

JEL Classification: G10; G11; G12; G15

1. Introduction

Information transmissions from both return and volatility across national equity markets are of
greater interest to both investors and policymakers, with increasing financial integration in the stock
markets all over the world (Yousaf et al. 2020). If, for example, asset volatility is transmitted from one
market to another during turmoil or crisis period (Forbes and Rigobon 2002; Diebold and Yilmaz 2009),
then portfolio managers need to adjust their asset allocations (Baele 2005; Engle et al. 2012) and financial
policymakers need to adapt their policies in order to mitigate the contagion risk. Changes in linkages
between national equity markets, especially during a crisis, can also have important implications for
asset allocations, business valuation, risk management, and access to finance.

JREM 2020, 13, 226; doi:10.3390/jrfm13100226 5 www.mdpi.com/journal/jrfm
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Several studies have examined linkages between the equity markets during the 1997 Asian financial
crisis (In Francis et al. 2001; Wan and Wong 2001; Yang et al. 2003), and the last 2008 global financial crisis
(Yilmaz 2010; Cheung et al. 2007; Kim et al. 2015; Li and Giles 2015; Lean et al. 2015; Vieito et al. 2015;
Zhu et al. 2019) and some studies, see, for example, Fung et al. (2011) and Guo et al. (2017), develop
theories to explain that crisis. However, the linkages between equity markets during the Chinese stock
market crash of 2015have been rarely examined. The Chinese stock market experienced a major crash
in 2015 (Zhu et al. 2017; Yousaf and Hassan 2019; Yousaf et al. 2020; Yousaf and Ali 2020). The CSI 300
index increased before reaching 5178 points in mid-June of 2015. Then, it took a roller-coaster ride and
dropped by up to 34% in just 20 days; Chinese stock market also lost 1000 points within just one week.
Around 50% of Chinese stocks lost more than half of their pre-crash market value. The Chinese stock
market crash affected many other commodities and financial markets, including Asian (Allen 2015)
and the US stock markets (The causes and consequences of China’s market crash 2015).

Despite the importance of the Chinese crash for international portfolio managers, few studies have
examined how it was transmitted to other national financial markets. Xiong et al. (2018) investigate
the time-varying correlation between economic policy uncertainty and Chinese stock market returns
during the Chinese crash of 2015, while Yousaf and Hassan (2019) examine the linkages between
crude oil and emerging Asian stock markets during this crisis. However, research on the linkages
between stock markets has not been investigated yet for the 2015 Chinese crash. Therefore, this
study focuses on providing useful insights about this issue for the Asian region, which has attracted
considerable attention from finance practitioners and academics due to its position as the center of
global economic activity in the 21st century!. While using the US and Chinese equity markets as the
indicators of global markets, we explore whether global investors can get the maximum benefit of
diversification by adding emerging Asian market stocks in their portfolios. In literature, several studies
have examined the linkages between the global (US and China) and emerging Asian equity markets
during the Asian financial crisis, and the US financial crisis (Yang et al. 2003; Beirne et al. 2013; Jin 2015;
Li and Giles 2015), but not in the Chinese stock market crash.

We address the above-mentioned literature gap by examining the return and volatility spillover
from the US and China to the emerging Asian equity markets during the Chinese stock market crash
by using the VAR-AGARCH model that was developed by Ling and McAleer (2003). Moreover,
we examine the ability of spillovers during the full sample period and the 2008 US financial crisis to
provide comparative insights to investors about whether the impact of the Chinese crash on equity
market spillovers was different from those in the other sample periods. Our findings show that return
spillover was observed from the US and China to the Asian stock market during the US financial crisis
and the Chinese stock market crash. Volatility was also transmitted from the US to the majority of the
Asian stock markets during the Chinese stock market crash. However, volatility was transmitted from
China to the majority of the Asian stock markets during the US financial crisis. Overall, as the return
and volatility transmission vary across pairs of stock markets and financial crises, investors have to
adjust their asset allocations from time to time to improve their profits. Therefore, we also estimate the
optimal weights and hedge ratios during the full sample period, the US financial crisis, and the Chinese
stock market crash. Our findings imply that fewer US stocks were required to minimize the risk for
Asian stock investors during the US financial crisis compared to during the Chinese crash. In contrast,
fewer Chinese stocks were needed to minimize the risk for Asian stock investors during the Chinese
stock market crash as compared to during the US crisis. Overall, our findings draw several important
implications for risk management and portfolio diversification that could be useful for investors and
policymakers related to the US and Asian stock markets.

1 Source: https://www.ft.com/content/520cb6f6-2958-11e9-a5ab-ff8ef2b976¢7.
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The rest of the paper is organized as follows: Section 2 provides the literature review. Section 3
describes the data and methodology. Section 4 reports the findings, and Section 5 concludes the
whole discussion.

2. Literature Review

The analysis of both return and volatility spillover between stock markets is crucial for investors
in designing optimal portfolios. According to modern portfolio theory, the gains of international
portfolio diversification decrease when the correlation of security returns increases and vice versa.
Michaud et al. (1996) discuss the advantages of a low correlation between the developed and emerging
markets for international portfolio diversification. Due to this trend, investors can benefit by investing
in emerging markets that are weakly interconnected with developed markets. However, this correlation
becomes higher during an economic crisis, suggesting low diversification benefits when diversification
is most required.

2.1. Linkages between US, China, and Asian Stock Markets

Many studies have been conducted to investigate the link between different stock markets during
the last three decades. Liu and Pan (1997) examine the mean and the volatility spillover from the US
and Japan to Singapore, Hong Kong, Thailand, and Taiwan. The results show that the US market is
more dominant than the Japanese stock market in transmitting return and volatility effects to four
Asian stock markets. Huang et al. (2000) investigate the link between the US, Japan, and South China
growth triangle. The US stock market significantly and dominantly affects the south Chinese growth
triangle compared to the impact of Japan on China’s stock market. The return spillover has been also
found to be significant from the US to Hong Kong and Taiwan, and from Hong Kong to the Taiwanese
stock market. Miyakoshi (2003) estimates the return and volatility spillover between the US, Japan,
and seven Asian stock markets (South Korea, Taiwan, Singapore, Thailand, Indonesia, and Hong
Kong). It finds a significant return spillover from the US to Asian markets, whereas no return spillover
is found from Japan to Asian stock markets. Moreover, the volatility spillover from Japan to other
Asian stock markets is observed to be dominant as compared to the volatility spillover from the US to
Asian stock markets.

Johansson and Ljungwall (2009) examine the association between stock markets of China,
Hong Kong, and Thailand. It reports a significant return spillover from Taiwan to China and the Hong
Kong stock market. In contrast, volatility spillover runs from Hong Kong to Taiwan and from Taiwan to
the Chinese stock market. Zhou et al. (2012) estimate the spillover between Chinese and international
(the US, the UK, France, Germany, Japan, India, Hong Kong, Taiwan, South Korea, and Singapore)
stock markets from 1996 to 2009. Before 2005, the Chinese stock market was affected by spillover
from other international markets. After 2005, volatility spillover was significantly transmitted from
China to most of the other international stock markets. Chien et al. (2015) report on the significant
financial integration between China and the ASEAN-5 (Indonesia, Malaysia, the Philippines, Singapore,
and Thailand) stock markets. Huo and Ahmed (2017) provide significant evidence of both return and
volatility effects from China to the Hong Kong equity market.

2.2. Linkages between US, China, and Asian Stock Markets during Crisis

Many studies have examined the linkages between markets during crisis periods. Yang et al. (2003)
investigate the short and long-run relationship between the US, Japan, and ten Asian stock markets,
mainly focusing on the Asian financial crisis of 1997-1998. This study reports a strengthened long-run
co-integration among these stock markets during the Asian financial crises. The degree of integration is
found to change during crises and non-crisis periods. Beirne et al. (2013) look at the volatility spillover
from developed to emerging stock markets during periods of turbulence in mature stock markets.
It finds that volatility in mature markets affects the conditional variances in emerging stock markets.
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Moreover, the spillover effect from developed to emerging markets is also changed during times of
turbulence in mature markets.

Jin (2015) examines the mean and volatility spillover between China, Taiwan, and Hong Kong.
It reveals that financial crises have a substantial and positive effect on expected conditional variances,
but also that the size and dynamics of impacts vary from market to market. Li and Giles (2015)
investigate the volatility spillover across the US, Japan, and four Asian developing economies during
the Asian financial crisis of 1997 and the US financial crises of 2008. The results revealed that there
is a presence of a volatility spillover effect from the USA to Asian developing economies and Japan.
This study also finds a bidirectional volatility spillover between US and Asian markets that occurred
during the Asian financial crisis. Gkillas et al. (2019) explore integration and co-movement between
68 international stock markets (including in the Asian region) during the US financial crisis.

Overall, several studies have examined the return and volatility spillover from the US to Asian
markets during the Asian financial crisis of 1997 and the US financial crisis of 2008. However less has
been done on both return and volatility transmission from China to the emerging Asian stock markets
during the US financial crisis and the Chinese stock market crash. Moreover, no study has examined
return and volatility spillovers from the US to the emerging Asian stock markets during the Chinese
crash. Therefore, this study addresses these above-mentioned literature gaps.

3. Data and Methodology

3.1. Data

We based our empirical investigation on daily data of accepted benchmark stock indices of nine
Asian countries and the US. The Emerging Asian stock markets include China, India, South Korea,
Indonesia, Pakistan, Malaysia, the Philippines, Thailand, and Taiwan. The emerging Asian economies
were selected from the list of countries, including the MSCI (Morgan Stanley Capital International)
emerging market index. The data of stock indices were taken from the Data Stream database. The index
is assumed to be the same on non-trading days (holidays except weekends) as on the previous trading
day, as suggested by Malik and Hammoudeh (2007) and many others.?

This study used the full sample period from 1 January 2000 to 30 June 2018 and studies the
following two sub-samples: the first sub-period from 1 August 2007 to 31 July 2010 presenting the
period with the US financial crisis; and the second sub-period from 1 June 2015 to 30 May 2018
presenting the period with the Chinese Stock market crash. We note that Yousaf and Hassan (2019)
also use similar time frames for the US financial crisis and the Chinese stock market crash. This study
followed He (2001) and many others to use three-year data for each crisis for short-run analysis.
Changes in market correlations take place continuously not only as a result of crises but also due to the
consequences of many financial, economic, and political events. Moreover, Arouri et al. (2015) have
also used the daily data covering periods shorter than three years to estimate the return and volatility
spillover between gold and Chinese stock markets in US financial crisis by applying the VAR-GARCH
model. The difference in the opening time of US and Asian stock markets was adjusted by using lags
where necessary.

In time-series data, if there are missing values, there are two ways to deal with the incomplete data: (a) omit the entire
record that contains information, (b) Impute the missing information. We used 10 series in this paper and if we wanted to
omit the missing data for one series then the data of all other nine series needed to be removed as well for that specific day.
So, if we omitted the data for days where values are missing at specific days, then we lost the data for many days, which is
not good for getting realistic results. Therefore, we followed many studies, for example, Malik and Hammoudeh (2007),
and imputed the missing data by using previous day data. Indeed, there are many methods used to impute the missing data
and every method has pros and cons, but we used this imputation method following past literature. Moreover, our missing
observations were less than one percent of overall data, therefore the imputation method should not create a larger effect
than that on results.
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3.2. Methodology

This study estimated the return and volatility transmissions using the Vector Autoregressive-
Generalized Autoregressive Conditional Heteroskedasticity (VAR-AGARCH) model proposed by
McAleer et al. (2009). Several studies have previously used the VAR-GARCH and VAR-AGARCH
model to estimate spillover between different asset classes (Arouri et al. 2011; Arouri et al. 2012;
Jouini 2013; Yousaf and Hassan 2019). This model includes the Constant Conditional Correlation
(CCC-GARCH) model of Bollerslev (1990) as a special case. The selection of the model was based
on three reasons. First, the most commonly used multivariate models are the BEKK (Baba, Engle,
Kraft, and Kroner) model and the DCC (dynamic conditional correlation) model. These models
often suffer from unreasonable parameter estimates and data convergence problems (Bouri 2015).
The VAR-AGARCH model overcomes these problems regarding parameters and data convergence.
Second, it incorporates asymmetry into the model. Third, this model can be used to calculate the
optimal weights and hedge ratios.

Ling and McAleer (2003) propose the multivariate VAR-GARCH Model to estimate the return
and volatility transmission between the different series. For two series, the VAR-GARCH model has
the following specifications for the conditional mean equation®:

Rt =u + FRt—l + e; with e = D}/th’ (1)

in which R; represents a 2 x 1 vector of daily returns* on the stocks x and y at time t, y denotes a2 x 1
vector of constants, F is a 2 X 2 matrix of parameters measuring the impacts of own lagged and cross
mean transmissions between two series, ¢; is the residual of the mean equation for the two stocks
returns series at time t, 7); indicates a 2 x 1 vector of independently and identically distributed random

vectors, and Dfl/ 2 = diag @V /hty), where Iy and h;j representing the conditional variances of the
returns for stocks x and y, respectively, are given as

2 2
h;( = Cy +aqq (e;il) +an (Efyil) + b]]hiil + h21hi/71, 2)

2 2
hty = Cy + ulz(Ef_l) + uzz(b’i/_l) + bthf_l + b22hty_1~ 3)

Equations (2) and (3) reveal how shock and volatility are transmitted over time and across the
markets under investigation. Furthermore, the conditional covariance between returns from two
different stock markets can be estimated as follows:

WY = px i x il @)
XY

In the above equation, i, refers to the conditional covariance between the returns of two stock
markets (x, y) at time t. Moreover, p indicates the constant conditional correlation between the returns
of two stock markets (x, v).

The VAR-GARCH model assumes that positive or negative shocks have the same impact on
the conditional variance. To estimate the spillover between different markets, we estimated spillover
between two stock markets by using the VAR-AGARCH Model proposed by the McAleer et al. (2009).

3 Several studies, for example, Hammoudeh et al. (2009), Arouri et al. (2011), and Dutta et al. (2018) have applied the VAR for
the conditional mean equation.

4 Stock Returns; = In (%)
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The VAR AGARCH model incorporates asymmetry in the model as well. Specifically, instead of using
Equations (2) and (3), the conditional variance of the VAR AGARCH model was defined as follows:

]’lf = Cx + allA(K;C_l)z + ﬂ21A(€;j_1)2 + bllhf_l + bn]’lty_l +a113[(€'2{_1)((€f_1) < 0))], (5)
hty =Cy+ a12A(ef71)2 + azzA(etyil)z + by, + bzzh;{l+azzB[(etyil)((eryil) < O))] (6)

t
B[(Ei’,l)((ety,l) < 0))] reveal the relationships between a market’s volatility and both positive and
negative own lagged returns, respectively (Lin et al. 2014). Equations (5) and (6) show that the

conditional variance of each market depends upon its past shock and past volatility, as well as the past

In the above equations, A(e’iJz and B[(eﬁ])((effl)<0))] as well as A(etyil)2 and

shock and past volatility of other markets. In Equation (5), (8?71)2 and (ety_l)2 explain how the past
shocks of both x and y affect the current conditional volatility of x. Moreover, 1 ; and hty_1 measure
how the past volatilities of both x and y affect the current conditional volatility of x. The parameters
of the VAR-AGARCH model can be estimated by using the Quasi-Maximum Likelihood estimation
(QMLE) and using the BFGS algorithm.’

The estimates of the VAR-AGARCH model can be used to calculate optimal portfolio weights.
This study followed Kroner and Ng (1998) to calculate the optimal portfolio weights for the pairs of
the stock market (x, y) as:

Weyt = 7 Pyt ~ Byt

_— 7
XY thy,t + hy,t ( )

0 if Wiys <0
Wyy,t = { Wxy,t lf 0< Wyy,t < 1,
1 lf Wxy,t >1

where wyy + is the weight of stock(x) in a $1 stock(x)-stock(y) portfolio at time ¢, fyy+ is the conditional
covariance between the two stock markets, /1,; and hy,t are the conditional variance of stock(x) and
stock(y), respectively, and 1-wy, ¢ is the weight of stock(y) in a $1 stock(x)-stock(y) portfolio.

It is also essential to estimate the risk-minimizing optimal hedge ratios for the portfolio of different
stocks. The estimates of the VAR-AGARCH model can also be used to calculate optimal hedge ratios.
This study followed Kroner and Sultan (1993) to calculate the optimal hedge ratios as:

hxy/t
ﬁxy,t - Er (8)

where By, ; represents the hedge ratio. This shows that a short position in the stock (y) market can
hedge a long position in the stock (x). Lastly, RATS 10.0 software is used for estimations.

4. Empirical Results

4.1. Descriptive Analysis

Table 1 reports the summary statistics of the daily returns for the US, China, and eight emerging
Asian stock markets, namely India, Korea, Indonesia, Pakistan, Malaysia, the Philippines, Thailand,
and Taiwan. The average returns of the Pakistani stock market are the highest out of these
markets, whereas the lowest returns are found in the US stock market during the full sample
period. The unconditional volatility is lower in Malaysia and the US market and is highest in the

5 Arouri etal. (2011), Sadorsky (2012), and Allen et al. (2013) use the Quasi-Maximum Likelihood estimation (QMLE) and use
the BFGS algorithm to estimate the parameters in the VAR-GARCH model.

10
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Chinese stock market. The skewness is negative in all cases, kurtosis is higher than 3 for all stocks,
and Jarque-Bera statistics do not accept the hypothesis of the normality for all stocks. Moreover,
we applied the Ljung-Box Q test for autocorrelation to the standardized residuals and squared
standardized residuals. The coefficients both Q(12) and Q?(12) were found to be signifcant for all series.
ARCH effects were also statistically significant for all series.

Table 1. Summary Statistics.

Mean Median Max Min Std. Dev.  Skewness Kurtosis Jarque-Bera Q-Stat A"II'{eStH
USA  0.00016 0.00055 0.10958  —0.09470 0.01200 -0.20353  11.57202 14802.7 2 37.24®  20642°
CHN 0.00045 0.00096 0.09401 —0.09256 0.01570 -0.31725  8.21506 5547.4° 54.64®  180.10°
IND 0.00050 0.00094 0.15990 —0.11809 0.01472 -0.22234  10.54239 11474.1° 84.622  283.89°
INDO 0.00046 0.00113 0.07623  —0.10954 0.01357 -0.85402  10.92376 13206.3 @ 154.0*  457.66?
KOR 0.00028 0.00080 0.11284 —0.12805 0.01509 -0.57337  9.64860 9149.3 2 24.06  210.02?

MYS  0.00020 0.00041 0.04503  —0.09979 0.00816 —-0.85496  13.33067 2203892 22682 26736
PAK  0.00081 0.00109 0.08507 —0.07741 0.01359 —0.34875  6.83764 3058.012 16552  594.622
PHL  0.00038 0.00055 0.16178 —0.13089 0.01309 0.23024  19.78304 56658.3 2 96402 161152
TAIW 0.00018 0.00070  0.06525 —0.09936 0.01356 —0.27454  6.59593 2659.6 2 77682 201547
THA 0.00044 0.00064 0.10577 —0.16063 0.01316 -0.70520  12.86191 19948.5 70.192  656.27 7

Notes: ? indicates the statistical significance at 1% level.

4.2. Return, Shock and Volatility Spillover Analysis

4.2.1. Stock Market Linkages between the USA and Asia from the Full Sample Period

Table 2 represents the return and volatility spillover between US and Asian stock markets
during the full sample period. The lagged stock returns were found to significantly affect the current
stock returns in all studied Asian stock markets except for Korea. This highlights the possibility of
short-term predictions of current returns through past returns in the Asian stock markets. Moreover,
the autoregressive term of the USA stock market was found to be significant as well. This depicts that
past returns help to predict current returns in the American stock market.

The estimate of return spillover from one market to another market can be estimated by using
the coefficient of lagged return of one market (i.e., the US) onto another market (i.e., India) and vice
versa. The return spillover from the USA to all Asian stock markets is significant. This implies that US
stock market prices play an important role in predicting the prices of all Asian stock markets during
the full sample period. These results are in line with the findings of Huyghebaert and Wang (2010),
which find a significant return spillover from the USA to Asian markets. This shows that the effect
of the returns of the American stock market are significantly transmitted to the Asian stock markets.
However, the return spillover from all Asian stock markets to the USA was found to be insignificant.
This implies that Asian stock market prices are not helpful in predicting the prices of the US stock
market during the full sample period.

6 We applied both Augmented Dickey-Fuller (ADF), and Phillip-Perron (PP) tests to examine the stationarity of all returns

series and found that all returns series are stationary, but we do not report these results in Table form for the sake of brevity.
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ARCH coefficient captures the shock dependence, while the GARCH coefficient captures the
persistence of volatility in conditional variance equations. The findings reveal that the sensitivity of
past own shocks (ARCH term) is significantly positive for all Asian Stock Markets in the short run.
In addition, the sensitivity of past own volatility (the GARCH term) was found to be significant for all
stock markets (including the Asian and American Markets), thus the ARCH (1) volatility model was
determined to be more appropriate in this case. The coefficient of past own volatility was than the
coefficients of past own shocks in all Asian stock markets, implying that past own volatilities are more
critical for prediction of future volatility as compared to past own shocks.

The conditional volatility of India’s, South Korea'’s, the Philippines’, Pakistan’s, and Thailand’s
stock markets was found to be significantly affected by shocks in the American stock market.
These results are similar to the findings of Syriopoulos et al. (2015), which show that past shocks in
the American market significantly affect the market volatility of India, Brazil, and Russia. Therefore,
this implies that shock in the American stock market leads to an increase in the volatility of the
majority of Asian markets. The past volatility of the American stock market significantly influenced
the conditional volatility of India’s, The Philippines’, Pakistan’s, and Thailand’s stock markets.
These results confirm the previous findings of Li and Giles (2015), which finds a significant volatility
spillover from the USA to emerging Asian stock markets. Further, Syriopoulos et al. 2015 found a
significant volatility spillover from the USA to India. In addition, the past volatility of the majority of
Asian Markets (Except for India and Taiwan) has not been significantly transmitted to the American
stock market. The asymmetric coefficients of all Asian stock markets are significant and positive,
showing that negative news (or unexpected shocks) for the American stock market has more ability to
increase the volatility of all Asian Stock markets as compared to positive news.

Besides, the asymmetric coefficient of the American stock market is positively significant,
demonstrating that negative unexpected shocks in Asian Stock markets will increase the volatility
more in the American Stock market as compared to a positive shock. Constant conditional correlation
(CCC) is positively significant for all pairs of stock markets. However, cross-market correlation is
weak in almost all pairs, indicating that investors can get substantial gains by having these pairs in the
same portfolio.

4.2.2. Stock Market Linkages between China and Asia from the Full Sample Period

Table 3 reports the return and volatility spillover between the Chinese and other Asian stock
markets during the full sample period. The current stock returns of Asian stock markets are significantly
affected by their own lagged stock returns. This highlights the possibility of short-term predictions
of current returns through past returns in the Asian stock markets. Moreover, Chinese stock returns
are also significantly influenced by their own single period lagged returns. These findings depict that
stock prices can be predicted in the short term in the Chinese stock market.

The return spillover is not significant from China to the majority of other Asian markets except for
the Indian, Philippines, and Thai stock markets. Besides, the return transmission from Asian markets
to the Chinese market is insignificant except for in the case of the Indian Stock market. Moreover,
there is a presence of bi-directional return transmission between the Indian and Chinese stock markets.
This implies that Chinese (Indian) stock market prices play an important role in predicting the prices
of Indian (Chinese) stock markets during the full sample period. The coefficient of past own shock
of all Asian markets (including China) was found to be significant; thus, past shocks affect current
conditional volatility in Asian stock markets. Besides, the sensitivity of past own volatility for all Asian
markets was found to be significant as well.
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The conditional volatility of India, Indonesia, Taiwan, and Thailand is significantly affected by
shocks in the Chinese market. Also, the conditional volatility of the Chinese market is significantly
impacted by the shocks in the Philippines, Taiwanese, and Thai stock markets. The past volatility
of the Chinese stock market has not influenced the conditional volatility of the most of the Asian
stock markets except for the Indian and Taiwanese stock markets. These findings corroborate with the
results of Zhou et al. (2012), which report a significant spillover from China to the Taiwanese stock
market. However, the past volatility of the majority Asian markets (except for Pakistan, the Philippines,
and Taiwan) significantly affected the conditional volatility of the Chinese stock market.

The asymmetric coefficients of all Asian stock markets were found to be significant and positive,
showing that negative news of the Chinese stock market has more of an ability to increase the volatility
of all Asian stock markets as compared to positive news. Moreover, the asymmetric coefficient of
the Chinese stock market is significant and positive, showing that negative news in Asian markets
(except in Indonesia) has a greater ability to increase the volatility of the Chinese market as compared
to positive news. Constant conditional correlation is positively significant for all pairs of stock markets,
but CCC is weak in majority pairs.

4.2.3. Stock Market Linkages between the USA and Asia from the US Financial Crisis

Table 4 shows the mean and volatility spillover between the USA and Asian stock markets during
the US financial crisis. In Asian Stock markets (except for South Korea), past lagged returns significantly
influenced the current returns. This highlights the possibility of short-term prediction of current
returns through past returns in the Asian stock markets. Moreover, the American stock returns were
also significantly influenced by their own single period lagged returns in the majority of cases.

The return spillover effect from the USA to all Asian markets was seen to be significant during the
US financial crisis. This implies that US stock market prices played an important role in predicting the
prices of all Asian stock markets during the US financial crisis. These results confirm the previous
findings of Glick and Hutchison (2013), who reported a significant impact of American equity returns
on Asian equity returns during the US financial crisis. Moreover, no single Asian stock market
transmitted the return effect to the American market during the US financial crisis. The sensitivity
of past own shock was significant for the majority of Asian markets other than Indonesia, Korea,
and Taiwan. The coefficient of past own shocks of the American stock market was insignificant in the
majority estimations. Besides, the coefficient of own past volatility in all Asian markets was significant
except in the Philippines.

The past shocks in the American stock market significantly influenced the conditional volatility of
Korea, the Philippines, and Taiwan during the US financial crisis. However, past shocks in most of
the Asian stock markets (Except India) have not affected the conditional volatility of the American
stock market. The effect of past volatility in the USA on conditional volatility of the Asian stock
markets (except Korea) was found to be insignificant. These results match with the findings of
Li and Giles (2015), which observe an absence of volatility spillover from the USA to emerging Asian
stock markets during the US financial crisis. Moreover, the past volatility of majority Asian stock has
not significantly affected American stock market volatility. The asymmetric coefficient of all Asian
markets is significant and positive. Moreover, the asymmetric coefficient of the US market is significant
and positive in all cases. Constant conditional correlation is positively significant for all pairs of stock
markets, but CCC is weak in majority pairs.
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4.2.4. Stock Market Linkages between China and Asia during the US Financial Crisis

Table 5 reports the return and volatility spillover between China and Asian stock markets during
the US financial crisis. The current stock returns of the majority of Asian stock markets (Except in
South Korea) are significantly affected by their own lagged stock returns. This highlights the possibility
of short-term prediction of current returns through past returns in the Asian stock markets. However,
Chinese stock returns were not significantly affected by their lagged returns during the US financial
crisis. Therefore, there is no evidence of Chinese stock price prediction being possible through lagged
values during the US financial crisis.

The return transmission effect from China to all Asian markets was insignificant during the US
financial US crisis. However, most of the Asian markets did not transmit the return effect to the
Chinese stock market other than India, Indonesia, and Malaysia. The coefficient of past own shock
was found to be significant in the majority of Asian markets except for Indonesia, Korea, and Pakistan.
The sensitivity to past own shocks from Chinese stock markets was found to be insignificant in the
majority of markets during the US financial crisis. Moreover, the sensitivity of past own volatility in all
Asian markets was significant. The past shocks of China did not influence the conditional volatility
of the majority of Asian stock markets (except India) during the US financial crisis. The conditional
volatility of the Chinese stock market was not affected by shocks in most of the Asian stock markets
(except for Indonesia and Thailand).

There is no significant evidence of volatility spillover from Chinese to Asian stock markets except
in India and Taiwan. Besides, the volatility spillover was insignificant in the majority of Asian markets
(except Indonesia, Pakistan, and The Philippines) to the Chinese stock market. The asymmetric
coefficient of all Asian markets is significant and positive. Moreover, the asymmetric coefficient of
China is asymmetric, showing that that negative news of all Asian stock markets (except Pakistan)
has more ability to increase the volatility of the Chinese stock market as compared to positive news.
Constant conditional correlation is positively significant for all pairs of stock markets. However,
CCC has a medium level in the majority of pairs.

4.2.5. Stock Market Linkages between the USA and Asia from the Chinese Stock Market Crash

Table 6 reports the mean and volatility spillover between the USA and Asian stock markets
during the Chinese stock market crash. The autoregressive term of Asian market returns (Except
Korea, the Philippines, and Taiwan) can be seen to be significant in the majority of stock markets.
This shows the short-term predictability in stock price changes in the Asian stock markets. In addition,
stock returns of the American stock market were significantly influenced by their lagged returns during
the Chinese Crisis.
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The return spillover from the USA to all Asian Stock markets was significant during the Chinese
crisis. This implies that US stock market prices played an important role in predicting the prices of
all Asian stock markets during the Chinese stock market crash. Moreover, the return spillover from
Asia to the US stock market was insignificant. The coefficient of past shock was insignificant in the
majority of Asian markets except for in India, Korea, and Malaysia. The sensitivity of past own shocks
of the USA was insignificant in most of the cases. In addition, the coefficient of past own volatility
significantly affected the conditional volatility of all Asian markets.

The conditional volatility of the majority of Asian stock markets (except Malaysia and Thailand)
was not significantly affected by the shocks in the US stock market. In addition, past shocks in most of
the Asian stock markets (Except in India and Indonesia) did not influence the conditional volatility of
the US stock market. The volatility transmission from the USA to most of the Asian stock markets
(except Malaysia, Pakistan, and Thailand) was found to be insignificant during the Chinese Crisis.
On the other hand, volatility spillover from most of the Asian stock markets to the USA stock market
was evidently insignificant.

The asymmetric coefficients of all Asian stock markets (except Korea and Malaysia) were significant
and positive, showing that negative news from the US stock market has a greater ability to increase
the volatility of all Asian Stock markets as compared to positive news. However, the asymmetric
coefficient of the US stock market is significant and positive. Constant conditional correlation was
positively significant for all pairs of stock markets. However, CCC was weak in the majority of pairs.

4.2.6. Stock Market Linkages between China and Asia from the Chinese Stock Market Crash

Table 7 reports the return and volatility spillover between Chinese and Asian stock markets during
the Chinese stock market crash. There is significant evidence that lagged returns influence the current
stock returns of Asian Stock markets (Except in Korea, the Philippines, and Taiwan). This shows the
short-term predictability in stock price changes in the Asian stock markets. Moreover, Chinese stock
market returns were not affected by their lags during the Chinese stock market crash.

The return spillover was found to be insignificant from China to all Asian markets. However,
the return spillover was found to be insignificant from the majority of Asian markets to the Chinese
market, except for India and Taiwan, during the Chinese stock market crash. The coefficient of past
own shock did not significantly influence the conditional variance of the most of the Asian stock
markets except in India, Malaysia, and Thailand. Moreover, the sensitivity to past own shock of the
Chinese stock market was insignificant during the Chinese crash. However, the sensitivity of past own
volatility was found to be significant for all Asian stock markets.

The conditional volatility of India, Indonesia, Taiwan, and Thailand was significantly affected by
the shocks in the Chinese stock market. However, the shocks in the majority of Asian stock markets
(except India and the Philippines) did not influence the Chinese stock market. The past volatility
of China significantly impacted the conditional volatility of the stock markets of India, Indonesia,
Taiwan, and Thailand. However, volatility spillover was not found from most of the Asian stock
markets (except India, Taiwan, and Thailand) to the Chinese stock market during the Chinese stock
market crash.

The asymmetric coefficients of all Asian stock markets (except Malaysia and the Philippines) were
significant and positive, showing that negative news of the US stock market has a greater ability to
increase the volatility of Asian stock markets as compared to positive news. Asymmetric coefficients
of China were significant and positive in all pairs, demonstrating that negative news for any Asian
markets except for India had a greater ability to increase the volatility of Chinese stock markets as
compared to positive news during the Chinese crash. Constant conditional correlation was positively
significant for all pairs of stock markets, but CCC was weak in the majority of pairs.
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4.3. Optimal Weights and Hedge Ratio Portfolio Implications

Table 8 indicates the optimal weights and hedge ratios for the pairs of Asia-US stock portfolios
during the full sample period, US financial crisis, and the Chinese stock market crash.” The range
of optimal weights is 0.37 for IND/USA to 0.68 for MYS/USA during the period of the full sample,
indicating that for a $1 India-USA portfolio, 37 cents should be invested in Indian stocks and the
remaining 63 cents in the US stock market. The average optimal portfolio weights vary from 0.38 for
IND/USA to 0.80 for MYS/USA during the US financial crisis and range from 0.37 for PHL/USA to
0.69 for MYS/USA during the Chinese stock market crash. Overall, the optimal weights of US stock in
Asia-USA portfolios are higher during the Chinese stock market crash compared to the US financial
crisis. This implies that investors should have maintained more US stocks in their portfolio of Asia-USA
during the Chinese stock market crash compared to the Asian stocks during the US financial crisis.

Table 9 presents the optimal weights and hedge ratios for the pairs of Asia-China stock portfolio
during the full sample period, US financial crisis, and the Chinese stock market crash.? The range of
optimal weights is from 0.56 for IND/CHN, KOR/CHN, PHL/CHN to 0.81 for MYS/CHN during the
full sample period. The average optimal portfolio weights vary from 0.53 for IND/CHN to 0.90 for
MYS/CHN during the US financial crisis and range from 0.52 for PHL/CHN to 0.82 for MYS/CHN
during the Chinese stock market crash. Overall, for the majority of Asia-China portfolios, the optimal
weights of Chinese stocks were almost equal or higher during the Chinese stock market crash and
the US financial crisis. This suggests that portfolio managers and investors should have maintained
almost the same investment in Chinese stock in their majority of the portfolio of Asia-China during
both the Chinese crash and the US financial crisis.

Table 8 presents the optimal hedge ratios for the pairs of Asia-USA stock portfolio during the full
sample period, US financial crisis, and the Chinese stock market crash. Regarding the hedge ratio,
the range of average hedge ratio is 0.04 for PAK/USA to 0.27 for IND/USA during the period of the full
sample, showing that a long position of $1 in Pakistani stocks can be hedged for a short position of
4 cents in US stocks. During the US financial crisis, the average optimal hedge ratios varied from 0.08
for PAK/USA to 0.36 for IND/USA. The average optimal hedge ratio ranged from 0.09 for PAK/USA
to 0.36 for IND/USA during the Chinese stock market crash. For the majority of pairs of Asia-USA,
the hedge ratios were lower in the US financial crisis compared with the Chinese stock market crash.
This suggests that few US stocks were required to minimize the risk of Asian stock investors during
the US financial crisis as compared to during the Chinese crash.

Table 9 provides the optimal hedge ratios for the pairs of a Asia-China stock portfolio during the
full sample period, US financial crisis, and the Chinese stock market crash. The range of average hedge
ratio is 0.04 for PAK/CHN to 0.21 for KOR/CHN during the period of the full sample. During the US
financial crisis, the average optimal hedge ratios varied from 0.03 for PAK/CHN to 0.32 for KOR/CHN.
The average optimal hedge ratio ranged from 0.09 for MYS/CHN to 0.26 for TAIW/CHN during the
Chinese stock market crash. Overall, for the Asia-China pairs, the hedge ratio was lower during the
Chinese stock market crash compared to the hedge ratios in the US financial crisis. This implies that
fewer Chinese stocks were needed to minimize the risk for Asian stock investors during the Chinese
stock market crash as compared to during the US crisis.

7 We calculated the optimal weights by using both VAR-GARCH and VAR-AGARCH models, but we reported the optimal
weights only from the VAR-AGARCH model for the purpose of brevity.

8 We calculated the optimal weights by using both VAR-GARCH and VAR-AGARCH models, but we reported the optimal
weights only from the VAR-AGARCH model for the purpose of brevity.

27



JRFM 2020, 13, 226

‘A[pandadsar ‘sonex a3pay pue syydom rewrndo aiy 0} 105o1 umﬁ pue UMS 910N

710 920 8T°0 110 600 €C0 €ro L1°0 o5
(YA 99°0 290 890 80 990 190 <990 5™
YSserD) JdIEA MD03g dSaUTyD)
610 0¢0 0 €00 €ro €0 20 1€0 um
290 99°0 790 790 060 890 €9°0 €90 5™
SISLI) [eDUeUr] S
(N0 020 o 700 600 120 STo qaro u%
650 650 990 80 18°0 950 570 990 5™
pouag ardureg [ng
NHD/VHL NHD/MIVL NHD/IHd  NHO/MIVd NHD/SAIN ~ NHD/MOM  NHD/OANI  NHD/ANI
‘sated euryD/ersy 10y soney a3pap] pue syySrop rewndQ 6 d[qeL
‘Kpanpadsar ‘sonyer 93pay pue syydram rewmndo ayj 0} 19591 n mﬁ pue :MS 22J0N
0 0 Y10 600 110 620 ST0 9¢°0 o%
€90 6¥°0 €0 70 69°0 160 770 9%°0 ns™
YserD) JdHIEA MD03S ISAUTYD)
0 qaro 600 800 110 120 810 9¢0 :mu
250 250 £L8°0 290 080 790 150 8¢0 ns™
SIS [ePUeUL] SN
L1°0 L1°0 900 00 900 20 €10 20 :w@
170 &0 o 170 890 0¥°0 170 LE0 ns™
—ucmhwm QTmENW :ﬁm
VSN/VHL VSN/MIVL VSN/IHd  VSN/MIVd VSN/SAIN VSN/MOM  VSN/OANI  VSN/ANI

'sired g /eISY 10§ sonyey 93pap] pue syydap rewndQ g ajqer,

28



JRFM 2020, 13, 226

5. Conclusions

In this paper, we extend the previous work by examining the return and volatility transmissions
from the US and China to the eight emerging Asian stock markets including India, Indonesia, Korea,
Malaysia, Pakistan, the Philippines, Taiwan, and Thailand during the Chinese stock market crash by
using the VAR-AGARCH model. Moreover, we also examine the spillovers during the full sample
period and the 2008 US financial crisis to provide comparative insights to investors about whether the
impact of the Chinese crash on equity market spillovers is different from the crashes in other sample
periods. Lastly, we also estimate the optimal weights and hedge ratios during the full period and
all sub-periods.

Our comprehensive analysis reveals that both return and volatility spillover vary across different
pairs of stock markets and during financial crises. The findings of return spillover indicate a significant
spillover from the USA to Asian stock markets during the full sample period, the US financial crisis,
and the Chinese stock market crash. This implies that US stock market prices play an important
role in predicting the prices of the majority of Asian stock markets during the full period and all the
sub-periods. However, the return spillover is not significant from China to emerging Asian stock
markets during the US financial crisis and the Chinese stock market crash, implying that Chinese stock
prices cannot be used for predicting the prices of the majority of Asian stock markets during any of the
crisis periods in our study.

Our volatility spillover analysis reveals that the volatility was transmitted from the US to the
majority of Asian markets during the full sample period and the Chinese stock market crash, but such
a conclusion cannot be drawn for during the US financial crisis. This implies that portfolio investors of
Asian stock markets could have gotten the maximum benefits of diversification by holding US stocks
in their portfolio during the US financial crisis. However, the volatility spillover was transmitted from
China to a majority of Asian markets during the full sample period and US financial crisis, but such a
conclusion cannot be reached for during the Chinese crash, implying that portfolio investors of Asian
stock markets could have gotten the maximum benefits of diversification by holding Chinese stocks in
their portfolio during the Chinese stock market crash.

Based on optimal weights results, the weights of the US stocks in the Asia-USA portfolios are
higher during the Chinese crash compared to the US financial crisis, implying that investors should
keep more US stocks in their portfolio of the Asia-USA stocks during the Chinese stock market crash,
compared to the US financial crisis. For the majority of Asia-China portfolios, the optimal weights of
Chinese stocks were almost equal or higher during the Chinese stock market crash and the US financial
crisis. This suggests that portfolio managers and investors should have maintained almost the same
investment in the Chinese stocks in their portfolio of the Asia-China majority pairs during both the
Chinese crash and the US financial crisis.

Regarding the hedge ratios, for most of the Asia-USA pairs, the hedge ratios were smaller in the
US financial crisis than in the Chinese stock market crash. This suggests that few US stocks were
required to minimize the risk for Asian stock investors during the US financial crisis as compared to
during the Chinese crash. In contrast, for the Asia-China pairs, the hedge ratio was smaller during the
Chinese stock market crash compared to that in the US financial crisis. This implies that fewer Chinese
stocks were needed to minimize the risk for Asian stock investors during the Chinese stock market
crash as compared to the US crisis. Overall, our findings provide several important implications for
risk management and portfolio diversification that could be useful for investors and for policymakers
related to the US and Asian stock markets.
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Abstract: Time series analysis of daily stock data and building predictive models are complicated.
This paper presents a comparative study for stock price prediction using three different methods,
namely autoregressive integrated moving average, artificial neural network, and stochastic
process-geometric Brownian motion. Each of the methods is used to build predictive models using
historical stock data collected from Yahoo Finance. Finally, output from each of the models is
compared to the actual stock price. Empirical results show that the conventional statistical model
and the stochastic model provide better approximation for next-day stock price prediction compared
to the neural network model.

Keywords: stock price prediction; auto-regressive integrated moving average; artificial neural
network; stochastic process-geometric Brownian motion; financial models

1. Introduction

Predicting modeling is one of the most popular mathematical methods in many fields such as
business, social science, engineering, and finance. In business, predictive modeling is also known as
predictive analytics. Among many, one of the most important applications of predictive modeling is
to predict the stock price. Modern predictive modeling can be categorized into two basic categories
such as statistical and soft computing techniques (Adebiyi et al. 2014). Autoregressive integrated
moving average (ARIMA) is one of the most popular and widely used statistical techniques for making
predictions using past observations (Meyler et al. 1998). In spite of having great popularity in making
predictions, this method has some limitations such as seasonality, non-stationarity, and other factors
(Tambi 2005). In contrast, as a machine learning method or soft computing technique, artificial neural
networks (ANNSs) are one of the most accurate and widely used forecasting models for forecasting,
pattern recognition, and image processing (Khashei and Bijari 2010). Neural network models have
become more popular in forecasting over the last decade in business, economics, and finance
(Avcr 2007). According to Khashei and Bijari (2010), ANNSs are distinguished and most effective
for predictive modeling because of their data-driven self-adaptive nature and they are universal
function approximators. The network can generalize, this means that once the network learns the data,
it can predict the unseen or future part of the data even if the given data is not smooth.

In addition to the above two methods, stochastic modeling that uses geometric Brownian motion
to predict the stock price is very popular. Brownian motion is a special type of motion of molecular
particles, first observed and described by the British-Scottish botanist in 1827. However, Louis Bachelier,
a French mathematician named this Brownian motion and proposed a model to predict stock prices
using Brownian motion in 1900. According to the geometric Brownian motion model, the returns
on a certain stock in successive, equal periods of time are independents and normally distributed
(Dmouj 2006). The equation of geometric Brownian motion has a constant volatility and drift, but in
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real-world scenario these are not constant and vary over time (Estember and Marafia 2016). Hence,
we consider time variant volatility and drift in our analysis.

There are many researchers using the three basic techniques: ARIMA, ANN, and stochastic
models to predict stock prices, which will be reviewed in the next section. However, in the literature,
there are no comparisons of using each of the three models to predict prices of one stock. Most of the
researchers compared performances of the two models ARIMA and ANN in stock price predictions,
but not all of the three methods. Therefore, in this paper, we build predictive models using all of the
above three modeling techniques and compare the models” performance for stock price predictions,
which are discussed in the subsequent sections. Section 2 represents the literature review and related
works. In Section 3, we describe the general theories for each of the methods and then build the models
specifically for S & P 500 index. In Section 4, we describe the results from each of the three models and
model diagnostics. Section 5 contains the conclusions.

2. Literature Review

Prediction has long been a popular field in mathematical science, so there is plenty of related
research in the field. The first significant study of neural network models for stock price prediction
was done by (White 1988). His predictive model was based on IBM’s daily common stock and the
training predictions were very optimistic. Thereafter, a lot of research was performed to check the
neural networks’ accuracy of prediction to forecast the stock market. Hassan et al. (2007) proposed
a fusion model by combining the hidden Markov model (HMM), artificial neural network (ANN),
and genetic algorithms (GA) to forecast financial market behavior. They found that the performance of
the fusion tool is better than that of the basic model (Hassan and Nath 2005) where they used only
a single HMM. They also indicated that the performance of the fusion model is similar to that of the
ARIMA model. Zhang and Wu (2009) proposed an integrated model improved bacterial chemotaxis
optimization (IBCO) and back propagation artificial neural network to predict the S & P 500 index.
The IBCO based back propagation (or IBCO-BP) model is less computationally complex and has better
accuracy. Khashei and Bijari (2010) found that the performance of a neural network for some real time
series is not satisfactory. Hence, using ARIMA models, they suggested a novel hybrid type of artificial
neural network. The proposed model provided better predictions for three separate actual datasets
than just the neural artificial network model. Yao et al. (1999) compared the back propagation neural
network model and ARIMA model stock index forecasting. They found that the neural network results
in better accuracy in forecasting than the traditional ARIMA models. Adebiyi et al. (2014) compared
the forecasting performance by ARIMA and artificial neural network for stock data. They analyzed
daily stock prices for the Dell Incorporation and found a superiority of the neural network model over
the ARIMA model.

Merh et al. (2010) developed a three-layer feed-forward neural network model and auto-regressive
integrated moving average model to predict the future value of the stock price and revealed that
the ARIMA models perform better over ANN models. Lee et al. (2007) did a comparative study of
the forecasting performance by neural network models and the time series model (SARIMA) for the
Korean Stock Index data. They also found ARIMA models outperforming ANN models for the stock
price prediction. Agustini et al. (2018) used several stock indexes under the Jakarta Corporate Index
to build a predictive model with Brownian motion. They found a higher accuracy for prediction
with a mean absolute percentage error (MAPE) less than 20%. Rathnayaka et al. (2014) developed a
forecasting model using the geometric Brownian motion model and compared the predictions with
the results from the traditional time series model ARIMA. They used the Colombo Stock Exchange
(CSE), Sri Lanka data to build their models and found that the stochastic model prediction is more
significant than the traditional model.

The literature shows different opinions on the relative performances of the two of the three
models depending on data. Hence, further comparative studies of all the three models can assemble
a consistent methodology for stock price prediction. In this paper, we study the comparative
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performances of the three models in predicting next-day stock prices for S & P 500 index data from
Yahoo Finance.

3. Methodology

The methodology section contains the basic four subsections. The first subsection describes the
data that were used to build the models. Then, each of the subsections describes general theories
and procedures to build the models and then how the models were fitted for a particular dataset.
The overall performance of each of the models was checked by the analysis of the residuals and
four different error measures, namely the absolute percentage error (APE), the average absolute
error (AAE), the average relative percentage error (ARPE), and the root-mean-square error (RMSE)
(Nguyet Nguyen and Wakefield 2018). The formula to calculate these errors are as follows:

)

3.1. Data

S & P 500 daily stock for the period 1 January 2015 to 31 December 2019 was used in this research.
We used the quantmod package (Ryan et al. 2020) in statistical software R, version 1.2.1335 to collect
the data directly from Yahoo Finance. Initially, the dataset contains six variables, namely daily Open,
High, Low, Close, Volume, and Adjusted Close price. Addition to the six variables, we created two more
variables, i.e., Average and Return. The Average variable is the average of daily Open, High, Low, and
Close price. All the predictive models were built to predict the Adjusted Close price for the next day
on the basis of the present day’s predictor variables. There were 63 trading days per quarter in 2019.
All the models were used to predict the next-day stock price for the last quarter of 2019. A total of 63
predictions were made.

3.2. Autoregressive Integrated Moving Average Process

3.2.1. ARIMA(p,d,q) Models

The time series analysis requires the stationarity of the data, meaning the statistical properties
such as mean, variance, and so on do not change over time. However, most of the real-world data,
like stock data, are non-stationary by nature. This non-stationarity can be taken care of by using the
Box-Jenkins ARIMA(p,d,q) approach (Makridakis and Hibon 1997). A time series {Y;} is said to follow
an Autoregessive Integrated Moving Average ARIMA(p,d,q) if the dth difference W; = V7Y, is a stationary
ARMA(p, q) process (Cryer and Kellet 1991). A generalised ARIMA(p,d, q) model can be written as

Wi =g1Wi 1+ ¢2Wra+ ...+ ¢pWip +er + 016p 1 + 022 + ... + 0get—¢,

where ¢1,¢2,...,¢p and 01,0,,...,0, are the autoregressive and moving average parameters,
respectively, and ¢’s are the white noise. The autoregression AR(p), order p, and moving average
MA(q), order g, are determined from the analysis of the autocorrelation function. The number d
indicates the number of differences applied to the time series to remove the trend. The autoregressive
parameters ¢'s and moving average parameters ¢'s are estimated from the model based on p,d, and 4.
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3.2.2. ARIMA(p,d,q) Model for S & P 500 Index

The adjusted close price of S & P 500 is a time series process {X;} that has been analysed to build
the model. The process {X;} is not a stationary process, if we see the following graphs.

Figure 1 shows an upward trend in the data. Inspecting the sample autocorrelation plot from
Figure 2, it is clear that the Auto Correlation Function (ACF) dies down very slowly and the Partial
Autocorrelation Function (PACF) cuts off at lag 1 with correlation one.
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Figure 1. Time plot of the raw data.
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Figure 2. Sample autocorrelation plot.

The slow dying-down nature of the ACF indicates that the process is non-volatile. That is,
the current value is relating with all the past values. These facts ensure the process is non stationary.
To make the process stationary, we transform the {X;} series to the {Y;} = {log X;} series and then to
anew series {W;} = {V2Y;}, where W; = Y; —2Y;_1 + Y; 5.

Figure 3 is the window plot of the second differenced log transformed stock price. From this
plot, the data looks stationary and randomized. Stationarity has been confirmed from the augmented
Dickey-Fuller test (Cheung and Lai 1995) with a p value of 0.01, where the alternative hypothesis was
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stationary. Next, the autoregressive and moving average orders p and g were determined from the
PACF and ACF plot from Figure 4.
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Figure 3. Window plot of the second differenced log transformed stock price.
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Figure 4. ACF and PACF of the second differenced log transformed stock price.

The ACEF cuts of at lag 1 which indicates that the process incorporates an MA process of order
g = 1 whereas the PACF gradually dies down. Therefore, the series W; follows an MA(1) process or
the series Y; follows an IMA(2,1) process i.e. Y; ~ ARIMA(0,2,1). Other ARIMA(p,d,q) models
were also considered in this research, as shown in Table 1. The best model has been chosen based
on the Schwarz Bayesian Information Criterion (BIC) (Neath and Cavanaugh 2012) criteria, the more
negative, the more accurate model. The reason of not choosing Akaike Information Criterion (AIC) or
Bias Corrected Akaike Information Criterion (AICc) is that those models provide over-fitting and non
significant parameters.

From Table 1, the ARIMA(0,2,1) model has the most negative BIC value which fits the data most
perfectly. The Arima function with order (p,d,q) = (0,2,1) was run in RStudio and the summary of
the model is displayed in Table 2.
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Table 1. ARIMA (p,d,q) model comparison.

Model AIC BIC AlCc

ARIMA(0,2,0) —714411 —7139.03 —7144.11
ARIMA(0,2,1) —7981.48 —7971.31 —7981.47
ARIMA(0,2,2) —7979.84 —7964.59 —7979.82
ARIMA(0,2,3) —7981.77 —7961.43 —7981.73
ARIMA(0,2,4) —7980.02 —7954.61 —7979.97
ARIMA(1,2,0) —7455.29 —7445.12 —7455.28
ARIMA(1,2,1) —7979.81 —7964.56 —7979.79
ARIMA(1,2,2) —7982.16 —7961.83 —7982.13
ARIMA(1,2,3) —7983.04 —7957.62 —7982.98
ARIMA(1,2,4) —7981.53 —7951.03 —7981.45
ARIMA(2,2,0) —7631.73 —761648 —7631.71
ARIMA(2,2,1) —7981.50 —7961.16 —7981.46
ARIMA(Q2,2,2) —7982.88 —7957.46 —7982.83
ARIMA(2,2,3) —7982.62 —7952.12 —7982.55
ARIMA(2,24) —797991 —7944.32 —7979.81
ARIMA(3,2,0) —7692.63 —7672.30 —7692.60
ARIMA(3,2,1) —7979.84 —7954.42 —7979.79
ARIMA(3,2,2) —7981.50 —7951.00 —7981.43
ARIMA(3,2,3) —7977.84 794225 —7977.74
ARIMA(3,2,4) —7978.07 —7937.40 —7977.95
ARIMA4,2,0) —7738.80 —7713.39 —7738.75
ARIMA®4,2,1) —7980.13 —7949.63 —7980.06
ARIMA(4,2,2) —7978.69 —7943.11 —7978.60
ARIMA(4,2,3) —7978.28 —7937.61 —7978.15
ARIMA(4,24) —7984.84 —7939.09 —7984.69

Table 2. ARIMA(0,2,1) model summary.

Model Arima(x = tr.stock, order = c(0, 2, 1))

MA(1) Coefficient —1.00

Standard Error 0.0027

Sigma-squared estimated as  0.0000718
Log likelihood 3992.74

AIC —7981.48
AlCc —7981.47
BIC —7971.31

ME RMSE  MAE MPE MAPE MASE ACF1

Training set error measures
0.00013 0.00846  0.00573  0.00220  0.10561 0.99516 —0.01682

The model in difference equation is given as

Wi = e; + ;1

V2Y; = e; + Oes_q

Yi —2Y; 1+ Yo =6+ 061
Y =2Yy 1 —Yi o +er+0e g (2

Finally, substituting the MA parameter § = —1 in Equation (2), the model for ¥; = log X; is
given as
Yi=2Y; 1 =Y o+e —er 1. 3)

A fixed window of 1194 past observed stock prices have been used to predict each of the next-day
prices using the model in Equation (3). Hence, the training dataset moved and the end price of the
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window was updated with the actual price. The results and diagnostics of this model are discussed in
Section 4.1.

3.3. Stochastic Model Geometric Brownian Motion

A process that generates some outcomes which are time-dependent but can not be said ahead of
time is known as a stochastic process. A stochastic process {W(t) : 0 < t < T} is a standard Brownian
motion on [0, T] if

W(0) =0
2. It has independent increments. That is, for any ty,tp,...,t,, W(t2) — W(ty), W(t3) —

W(tg)...,W(ty) — W(t,—) are independent random variables.
3. Forevery0<s<t<TW(t)—W(s)~N(O¢t—s).

A stochastic process {X(t) : 0 < t < T} is said to be a general Brownian motion with a
drift parameter  and diffusion coefficient o2 if W is a standard Brownian motion, written as
X(t) ~ BM(u,c?).

The general Brownian motion still follows first two properties of the standard Brownian motion.
However, the third property is modified as X (t) — X(s) ~ N(u(t —s),0%(t —s)) forany 0 < s < t < T.

3.3.1. Geometric Brownian Motion (GBM) Model
If X(t) ~ BM(p,0?) then X(t) satisfies the stochastic differential equation (Yang and Aldous 2015)
dX(t) = ut +odW(t), 4)

where, W(t) is the standard Brownian motion or Wiener process. If the stochastic process is defined as
X(t) =log S(t) then dS(t) = uS(t)dt + oS(t)dW (t) is the stochastic differential equation for the stock
price random process.

For a given time t > 0, the standard model for stock prediction can be given from the stochastic
differential equation by integration

S(t) = S(O)+y./otS(r)dr+z7./0t5(r)dw(r). ®)

A more explicit formula can be derived using Ito’s formula (Sevcovic et al. 2011) to the function
F(logS(t),t)

oF JF 1 9*F oF
dF = [3 + psdhs + 302 bs] dt + (058 ) aw(e),

which results

dlog S(f) = %ds(t) + %52_(]15) (dS(1))?2
= pdt + cdW(t) + % 52_(1t) (uS(t)dt + aS(H)dW(t))?

— (- %az)dt +odW(t),

For any time ¢ > 0, the differential can be written as

log S(t) =1og S(0) + (p — %az)t +oW(t)

Or, S(t) = S(0)eln—202)t+aW(t) )
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3.3.2. Geometric Brownian Motion Model for S & P 500 Index: GBM(u, 0?) Simulation

For a given time set, g = 0 < t; < fp < ... < ty, the stock price S(t) at time o, t1,...,t, can be
generated by
S(tiyr) = s(ti)g(ﬂ—%gz)(ﬂﬂ—n)-*-ﬂ (tini—t)Zis1 ?)

where Z1, Zy, ... Z, are independent and identically distributed standard normals and i = 0, (n — 1).
In our case, the time interval t; .1 —; = 1 forall i = 0, (n — 1), since we are predicting the next-day
price. Hence, the model becomes

S(ti1) = S(ty)elr—27) 0%, ®

Using the model in Equation (8), we simulate a large number of prices, and from that we take
the average to predict the next-day price. For our data, this large number is 100,000. A total of
63 predictions have been made using this model. A fixed window of 1194 past observed stock prices
have been used to predict each of the next-day prices. Hence, the training dataset moved, and the end
price of the window was updated with the actual price. The results and diagnostics of this model are
discussed in Section 4.2.

3.4. Artificial Neural Network

This section describes how an artificial neural network can be used to predict the stock price and
how to build a model based on the stock data for S & P 500 index.

3.4.1. Model Descriptions

Artificial neural network is one of the most popular machine learning techniques for nonlinear
approximations because of its ability to deal with a large number of functions with a high degree
of accuracy (Chen et al. 2003). The idea of ANN came from the structure of the animal brain,
more specifically, from the human neural system. It is based on the idea of how brain works, how the
neurons in the brain receive information from the input neurons, analyse it, and finally identify the
object or pattern. Fundamentally, the mechanism has three layers—input layer, hidden layers, and
output layer. Each layer consists of neurons or nodes. The hidden part may consist of many layers,
however, for the time series analysis and forecasting, the single hidden layer feed forward network is
the most widely used model structure (Zhang et al. 1998). A simple three layer neural network has the
following mathematical form

q P
Yi=Wo+ ) Wig(Wo,j+ Y WijYii) +e )
= i=1

where, Wi, and Wi fori=1,2,...,p, j=1,2,...,q are known as connection weights. The parameter
p and q are the number of input and output nodes respectively. The network involves an activation
function which plays a very important role because it converts the input signals to be used for the
neurons or nodes in the next layer, eventually the output neuron. The most widely used activation
functions are the logistic and hyperbolic functions (Khashei and Bijari 2010), which are shown in

Equations (10) and (11)
1

— e—X

sig(x) = 1 (10)

1—e 2

“1(,) —
tan” (x) = Tre

(11)
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Most of the modelers prefer the hyperbolic tangent function as the activation functions because of
its faster convergence, and it makes the optimization easier. Hence, we used this activation function in
our model. There is no systematic rule of choosing the number of neurons or nodes, g in the hidden
layer (Khashei and Bijari 2010). In most of the cases it is data-dependent and chosen on the basis of
trial and error.

3.4.2. Artificial Neural Network for S & P 500 Index

The model proposed for S & P 500 in this section is a three layer model—input, hidden, and the
output layer. The input layer consists of a total of seven nodes which are daily Open, Close, High, Low,
Average, Volume, and Return. The variable Average is the average of daily Open, Close, High, and Low.
The Volume was converted to million units. Daily return was calculated by this formula r; = log %,
where S; is the adjusted closed price and day one return, rp was considered zero. The output layer
has only one node that corresponds to the predicting variable Adjusted Close price. The number of
the nodes in the hidden layer was chosen based on the error measures in Equation (1) for different
combinations of the hidden nodes, which are displayed in Table 3. From this Table 3, we see that model
ANN(7-15-1) has the lowest APE, AAE, ARPE, and RMSE and the highest adjusted R? value.

Table 3. Error measures for different network structures.

MODEL R? APE AAE ARPE RMSE

7-2-1 0.3137 0.0231 7.0435 0.1118 0.3344
7-3-1 0.4158 0.0211 6412 0.1018  0.319
7-4-1 0.0422  0.028 85128 0.1351 0.3676
7-5-1 0.0368 0.0292 8.8796 0.1409 0.3754
7-6-1 03716  0.0215 6.5496 0.104  0.3224
7-7-1 0.3431 0.0226 6.8687 0.109  0.3302
7-8-1 0.3907 0.0219 6.6781 0.106  0.3256
7-9-1 0.4036 0.0212 6.4713 0.1027  0.3205
7-10-1 0.4108 0.0214 6.5237 0.1036  0.3218
7-11-1 0.5155 0.0195 59284 0.0941 0.3068
7-12-1 0.5392 0.0187 5.6802 0.0902  0.3003
7-13-1 0.4777 0.0194 5.8945 0.0936  0.3059
7-14-1 0.4676  0.0196 59702 0.0948 0.3078
7-15-1 0.6216  0.0167 5.0928 0.0808  0.2843
7-16-1 0.5701 0.0182 55382 0.0879  0.2965

The original dataset had 1257 observations, but the dataset used in this method was modified
in this way—all the predictor and predicting variables have the same length of 1256, however,
the predictor variables started from day 1 to the 1256th day and the predicting variable day 2 to
the 1257th day. Then, the dataset was divided into two parts to run the model. The test dataset
contained the last 63 actual stock prices (adjusted close) which were compared to the predicted
prices. The best model was selected on the basis of the adjusted R? and four error measures (Table 3).
The model architecture is shown in Figure 5 and the result of this model is discussed in Section 4.3.

41



JRFM 2020, 13, 181

B2

Open
Close
High
Low 01  AdClose

Average

Volume(m)

% " e
i W

DailyReturn

Figure 5. Artificial neural network architecture.
4. Results

In this section, the result of from the above three models is discussed and a window of the
predicted and actual price is shown together with a graphical presentation. Finally, we assess how our
model is performing by model diagnostics.

4.1. Autoregressive Integrated Moving Average

4.1.1. ARIMA Model Result

The model ARIMA(0,2,1) in Equation (3) produces the prediction in a logarithmic scale, which
is then converted back to the original scale by the formula Predicted Price = eP™e#icti" Total 63 trading
days have been predicted by the model and compared with the actual prices which has been shown in
Table 4 with individual prediction error calculated by the formula,

error = w % 100. (12)
actual

From Table 4, we see that the forecast errors are less than one dollar for the daily period from
12 November, 2019 to 30 December 2019, with the relative errors within the range of 0.00003 to 0.00292.
Figure 6 shows the graphical representation of the actual and predicted stock price by the model.
The black line represents the actual stock price and the red line represents the predicted stock price for
S & P 500. Figure 6 also shows that the ARIMA (0,2,1) predicted prices follow closely to the trend of
the actual prices.
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Table 4. Prediction by ARIMA(0,2,1) model.

Date Actual Predicted Error

11-12-2019  305.69 305.17 0.17
11-13-2019  305.79 305.81 0.01
11-14-2019  306.23 305.91 0.10
11-15-2019  308.45 306.35 0.68
11-18-2019  308.68 308.57 0.04
11-19-2019  308.59 308.80 0.07
11-20-2019  307.44 308.71 0.41
11-21-2019  306.95 307.56 0.20
11-22-2019  307.63 307.07 0.18
11-25-2019  310.01 307.75 0.73
11-26-2019  310.72 310.14 0.19
11-27-2019  312.10 310.85 0.40
11-29-2019  310.94 312.23 0.41
12-2-2019  308.30 311.07 0.90
12-3-2019  306.23 308.43 0.72
12-4-2019  308.12 306.36 0.57
12-5-2019  308.68 308.25 0.14
12-6-2019  311.50 308.81 0.86
12-9-2019  310.52 311.64 0.36
12-10-2019  310.17 310.65 0.15
12-11-2019  311.05 310.30 0.24
12-12-2019  313.73 311.18 0.81
12-13-2019  313.92 313.86 0.02
12-16-2019  316.08 314.05 0.64
12-17-2019  316.15 316.21 0.02
12-18-2019  316.17 316.29 0.04
12-19-2019  317.46 316.31 0.36
12-20-2019  318.86 317.60 0.40
12-23-2019  319.34 319.00 0.11
12-24-2019  319.35 319.48 0.04
12-26-2019  321.05 319.49 0.49
12-27-2019  320.97 321.20 0.07
12-30-2019  319.20 321.12 0.60

4.1.2. ARIMA Model Diagnostics

The performance of the ARIMA(0,2,1) model was assessed by the analysis of the four error
measures state in Equation (1) and the residuals plot, which is depicted in Figure 7 and those four
error measures are tabulated in Table 5.

Table 5. Prediction error by ARIMA(0,2,1) model.

MODEL APE AAE ARPE RMSE
ARIMA(0,2,1) 0.0044 1.3651 0.0217 0.1472

From the results in Table 5, we see that all the error measures are comparatively very low to the
actual prices, this indicates that the model is performing better in its prediction. From Figure 7 it is
clear that the residuals do not follow any special pattern, they are a randomized plot. Correlations in
the few lags are significant. Overall, the model fits very well to predict the stock price.
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Figure 6. ARIMA (0,2,1) model prediction.
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Figure 7. ARIMA(0,2,1) model residual analysis.

4.2. Stochastic Model

4.2.1. Stochastic Model Result

The model proposed in Equation (8) requires the calculation of 63 distinct values of the means u
and standard deviations ¢ of the daily returns. Both of the parameters were calculated on the basis
of the same number of returns each time. Predicted values, actual values, and individual errors are
shown in Table 6, and the errors were calculated by the same formula (12) used in the previous model.
The results in Tables 5 and 6 are almost the same except at some points. Thus, Figures 7 and 8 are
almost identical.

Figure 8 displays the graphical representation of the actual and predicted stock prices from the
stochastic model. The black line represents the actual stock price and the green line represents the
predicted stock price for S & P 500 index.
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Table 6. Prediction by geometric Brownian motion.

Date Actual Predicted Error

11-12-2019  305.69 305.17 0.17
11-13-2019  305.79 305.81 0.01
11-14-2019  306.23 305.91 0.10
11-15-2019  308.45 306.35 0.68
11-18-2019  308.68 308.59 0.03
11-19-2019  308.59 308.80 0.07
11-20-2019  307.44 308.71 0.41
11-21-2019  306.95 307.58 0.21
11-22-2019  307.63 307.06 0.19
11-25-2019  310.01 307.74 0.73
11-26-2019  310.72 310.15 0.18
11-27-2019  312.10 310.86 0.40
11-29-2019  310.94 312.23 0.41
12-2-2019  308.30 311.09 0.90
12-3-2019  306.23 308.43 0.72
12-4-2019  308.12 306.36 0.57
12-5-2019  308.68 308.25 0.14
12-6-2019  311.50 308.82 0.86
12-9-2019  310.52 311.63 0.36
12-10-2019  310.17 310.64 0.15
12-11-2019  311.05 310.30 0.24
12-12-2019  313.73 311.21 0.80
12-13-2019  313.92 313.88 0.01
12-16-2019  316.08 314.06 0.64
12-17-2019  316.15 316.21 0.02
12-18-2019  316.17 316.27 0.03
12-19-2019  317.46 316.31 0.36
12-20-2019  318.86 317.59 0.40
12-23-2019  319.34 319.00 0.11
12-24-2019  319.35 319.47 0.04
12-26-2019  321.05 319.51 0.48
12-27-2019  320.97 321.20 0.07
12-30-2019  319.20 321.11 0.60
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Figure 8. Stochastic model geometric Brownian motion prediction.

4.2.2. Stochastic Model Diagnostics

The performance of the stochastic model was assessed by the analysis of the four error measures
stated in Equation (1) and the residual plot which is depicted in Figure 9 and the calculation of the
four different error measures, as shown in Table 7.
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Table 7. Prediction error by geometric Brownian motion.

MODEL  APE AAE ARPE RMSE

GBM 0.0044 1.3341 0.0212  0.1455

Standardized Residuals Plot

Standardized Residuals
Standardized Residulas

T T T T
Oct 01 Oct17 MNov04 MNov20 Dec09 Dec 26

Date

Q-Q Plot of Standerdized Residuals

norm quantiles

Figure 9. GBM model diagnostics.

The standardized residual plot is random and the mean passes through the zero line. A few of the
residuals at the lower end are outside of the band in the Q-Q plot of the residuals. Still, both of the

plots depict the approximate normal behavior of the

4.3. Artificial Neural Network
4.3.1. ANN(7-15-1) Results

Both of the training and test datasets were converted to normal and the prediction was converted
. The model required approximately 7000 steps
with an error of 0.1972. Actual prices, predicted prices, and the corresponding errors are displayed in

back to the original scale by inverse transformation

Table 8.

residuals.

Table 8. Prediction by ANN (7-15-1) model.

Date Actual

Predicted Error

11-12-2019  305.69
11-13-2019  305.79
11-14-2019  306.23
11-15-2019  308.45
11-18-2019  308.68
11-19-2019  308.59
11-20-2019  307.44
11-21-2019  306.95
11-22-2019  307.63
11-25-2019  310.72
11-27-2019  312.10
11-29-2019  310.94
12-2-2019  308.30
12-3-2019  306.23
12-4-2019  308.12
12-5-2019  308.68

302.13 1.17
302.52 1.07
302.26 1.30
302.39 1.97
303.56 1.66
304.19 1.43
303.54 1.27
302.52 1.44
302.86 1.55
305.06 1.82
305.81 2.02
306.38 1.47
306.02 0.74
303.59 0.86
301.63 211
304.03 1.51
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Table 8. Cont.

Date Actual Predicted Error

12-6-2019  311.50 304.28 2.32
12-9-2019  310.52 306.05 1.44
12-10-2019  310.17 306.07 1.33
12-11-2019  311.05 305.23 1.87
12-12-2019  313.73 305.55 2.61
12-13-2019  313.92 306.48 2.37
12-16-2019  316.08 306.73 2.96
12-17-2019  316.15 307.56 2.72
12-18-2019  316.17 308.05 2.57
12-19-2019  317.46 308.40 2.85
12-20-2019  318.86 308.04 3.39
12-23-2019  319.34 306.20 411
12-24-2019  319.35 308.94 3.26
12-26-2019  321.05 309.71 3.53
12-27-2019  320.97 310.31 3.32
12-30-2019  319.20 309.93 2.90

The predicted errors in Table 8 are much higher than those in Tables 5 and 6. Precise comparisons
of the three models are given in the next section. The graph associated with this result is displayed in
Figure 10. The black line represents the actual stock price and the blue line represents the predicted
stock price for the S & P 500 index. From the graph, it is clear that the model is working better at the
beginning of the prediction interval.
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Figure 10. ANN(7-15-1) prediction.

4.3.2. ANN(7-15-1) Model Diagnostics

The performance of the neural network ANN(7-15-1) was assessed by the analysis of the four error
measures stated in Equation (1) and the standardized residuals plot, which is depicted in Figure 11,
and the calculation of the four different error measures are shown in Table 9.

Table 9. Prediction error by ANN(7-5-1) model.

MODEL APE AAE ARPE RMSE
ANN(7-15-1)  0.0167 5.09279 0.08084 0.28432
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Figure 11. ANN(7-15-1) model diagnostics.

The standardized residual plot does not show normal behavior. The error increases in an
exponential shape as the predicting interval increases.

4.4. Comparison

In this section, the combined output from the three models above is discussed. Table 10 shows a
sample of the empirical results obtained from the models and Figure 12 displays the result graphically.

Table 10. Sample results from the models—ARIMA(0,2,1), GBM(y, 0?), and ANN(7-15-1).

Date Actual ARIMA GBM ANN

11-12-2019  305.69 305.17  305.17 302.13
11-13-2019  305.79 305.81  305.81 302.52
11-14-2019  306.23 30591 30591 302.26
11-15-2019  308.45 306.35  306.35 302.39
11-18-2019  308.68 308.57  308.59 303.56
11-19-2019  308.59 308.80  308.80 304.19
11-20-2019  307.44 308.71  308.71 303.54
11-21-2019  306.95 307.56  307.58 302.52
11-22-2019  307.63 307.07  307.06 302.86
11-25-2019  310.01 307.75  307.74 303.50
11-26-2019  310.72 310.14  310.15 305.06
11-27-2019  312.10 310.85  310.86 305.81
11-29-2019  310.94 312.23 31223  306.38
12-2-2019  308.30 311.07  311.09 306.02
12-3-2019  306.23 308.43  308.43 303.59
12-4-2019  308.12 306.36  306.36  301.63
12-5-2019  308.68 308.25  308.25 304.03
12-6-2019  311.50 308.81  308.82 304.28
12-9-2019  310.52 311.64  311.63 306.05
12-10-2019  310.17 310.65  310.64 306.04
12-11-2019  311.05 310.30  310.30 305.23
12-12-2019  313.73 311.18 31121 305.55
12-13-2019  313.92 313.86  313.88 306.48
12-16-2019  316.08 314.05  314.06 306.73
12-17-2019  316.15 316.21  316.21 307.56
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Table 10. Cont.

Date Actual ARIMA GBM ANN

12-18-2019  316.17 316.29  316.27 308.05
12-19-2019  317.46 316.31  316.31 308.40
12-20-2019  318.86 317.60  317.59 308.04
12-23-2019  319.34 319.00  319.00 306.20
12-24-2019  319.35 31948  319.47 308.94
12-26-2019  321.05 319.49 31951 309.71
12-27-2019  320.97 321.20  321.20 310.31
12-30-2019  319.20 32112 321.11  309.93

From Figure 12 it clear that that ARIMA(0,2,1) model’s output and GBM model’s output are very
close, sometimes they coincide, whereas the output from the ANN(7-15-1) model gets far from the
actual points as time increases.
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Figure 12. Prediction by all three models against the actual stock price.

Looking at the error measures in Table 11, it is clear that the ARIMA model and stochastic model
perform better than the neural network model for predicting the next-day stock price.

Table 11. Error measures comparison from the three models.

MODEL APE AAE ARPE RMSE
ARIMA(0,2,1) 0.00438 1.33476 0.02119  0.14556
GBM 0.00438 1.33426 0.02118 0.14553

ANN(7-15-1)  0.01672  5.09279 0.08084 0.28432

5. Conclusions

This study represents a comparative study of three financial models ARIMA, ANN, and
Geometric Brownian Motion to predict the next-day stock prices. Results obtained from the analysis
of the S & P 500 index show that the conventional statistical model ARIMA and the stochastic
model-geometric Brownian motion model perform better than the artificial neural network models
for short term next-day stock price prediction. The results are in contradiction with the results in
Khashei and Bijari (2010), which concluded that the ARIMA was no better than the ANN model in time
series predictions. However, their proposed hybrid ANN model outperformed the traditional ANN
and the ARIMA models. Furthermore, our results are similar to the conclusions in Merh et al. (2010)
and Lee et al. (2007) which stated that ARIMA models outperform ANN models for stock price
predictions. On the other hand, Rathnayaka et al. (2014) found that the stochastic model prediction is
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more significant than the traditional ARIMA model. In fact, on the basis of our results, the ARIMA
model and the stochastic model produce almost the same results. Thus, for short term prediction
using the time series data, the ARIMA model and the stochastic model can be used interchangeably.
For the ANN models, further studies, hybridization of existing models, and adding more independent
variables can improve the neural network models in predicting stock prices. One model can work
better than other models with particular time series data. Therefore, researchers or investors should
examine some different models to predict the prices of each stock to find the best prediction model.
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Abstract: This study uses the BEKK-GARCH model to examine the return-and-volatility spillover
between the world-leading markets (USA and China) and four emerging Latin American stock
markets over the global financial crisis of 2008 and the crash of the Chinese stock market of 2015.
Regarding return spillover, our findings reveal a unidirectional return transmission from Mexico to
the US stock market during the global financial crisis. During the crash of the Chinese stock market,
the return spillover is found to be unidirectional from the US to the Brazil, Chile, Mexico, and Peru
stock markets. Moreover, the results indicate a unidirectional return transmission from China to
the Brazil, Chile, Mexico, and Peru stock markets during the global financial crisis and the crash of
the Chinese stock market. Regarding volatility spillover, the results show the bidirectional volatility
transmission between the US and the stock markets of Chile and Mexico during the global financial
crisis. During the Chinese crash, the bidirectional volatility transmission is observed between the
US and Mexican stock markets. Furthermore, the volatility spillover is unidirectional from China to
the Brazil stock market during the global financial crisis. During the Chinese crash, the volatility
spillover is bidirectional between the China and Brazil stock markets. Lastly, a portfolio analysis
application has been conducted.

Keywords: return spillover; volatility spillover; optimal weights; hedge ratios; US financial crisis;
Chinese stock market crash

JEL Classification: G10; G11; G12; G15

1. Introduction

The information transmissions (return and volatility) across equity markets are of greater interest to
investors and policymakers with increased financial integration all over the world. For example, if asset
volatility is transferred from one market to another during turbulence or crisis, then portfolio managers
need to adjust their asset allocation (Bouri 2013; Syriopoulos et al. 2015; Yousaf and Hassan 2019) and
financial policymakers need to change their policies to reduce the contagion risk (Yang and Zhou 2017).
The linkages between equity markets, especially during a crisis, can also have important implications
for asset allocations, portfolio diversification, asset valuation, hedging, and risk management.

In the literature, several studies have examined the linkages between equity markets during
the Asian crisis of 1997 (In et al. 2001; Chen et al. 2002; Chancharoenchai and Dibooglu 2006;
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Li and Giles 2014; Gulzar et al. 2019) and the global financial crisis (Tasdemir and Yalama 2014;
Bekiros 2014; Mensi et al. 2016; Gamba-Santamaria et al. 2017). However, the linkages between equity
markets are rarely examined during the crash of the Chinese stock market in 2015. The Chinese stock
market crashed in 2015 (Han and Liang 2016; Ahmed and Huo 2019; Yousaf and Hassan 2019). The CSI
300 index had reached up to 5178 points until mid-June in 2015. Then, it took roller-coaster ride and
dropped up to 34% in just 20 days, also losing 1000 points within just one week. Around 50% of the
Chinese stocks lost more than half of their pre-crash market value. This crash adversely affected the
many other financial markets around the globe (Fang and Bessler 2017). Despite the importance of the
Chinese crash to international portfolio managers, only Ahmed and Huo (2019) examined the volatility
transmission between the Chinese and Asian stock markets during the crash of the Chinese stock
market in 2015. The empirical research remains surprisingly limited on the area of linkages between
equity markets during the crash of the Chinese stock market.

The US and China are the most significant trading partners of the emerging Latin American
economies. From 2000 to 2017, the trade volume of China (US) is increased by 21 (2.5)-fold with
emerging Latin American economies. The trade volume of leading economies grew at a different rate
with the emerging Latin American (LA) economies; thus, spillover can also be changed between the
China-LA and US-LA pairs during the last two decades. Johnson and Soenen (2003) also suggest that
trade increases the financial integration between countries’ stock markets. Previously, several studies
have examined the spillovers between the US and Latin American stock markets (Meric et al. 2001;
Arouri et al. 2015; Ben Rejeb and Arfaoui 2016; Cardona et al. 2017; Gamba-Santamaria et al. 2017;
Ramirez-Hassan and Pantoja 2018; Yousaf and Ahmed 2018; Fortunato et al. 2019; Coleman et al. 2018).
However, the linkages between the China and Latin American stock markets have not yet been
explored, especially during the global financial crisis and the crash of the Chinese stock market.

Based on the above-mentioned literature gaps, this study aims to examine the return and volatility
spillover between the world-leading (the US and China) and emerging Latin American stock markets
during the full sample period, the global financial crisis, and the crash of the Chinese stock market.
Additionally, this study estimates the optimal weights and hedge ratios during all the sample periods.

Our study makes the following contributions to the literature. First, regarding return spillover,
the findings reveal a unidirectional return transmission from Mexico to the US stock market during
the global financial crisis. During the crash of the Chinese stock market, the return spillover is found
to be unidirectional from the US to the Brazil, Chile, Mexico, and Peru stock markets. Moreover,
the results indicate a unidirectional return transmission from China to the Brazil, Chile, Mexico,
and Peru stock markets during the global financial crisis and the crash of the Chinese stock market.
Regarding volatility spillover, the results show the bidirectional volatility transmission between the
US and the stock markets of Chile and Mexico during the global financial crisis. During the Chinese
crash, a bidirectional volatility transmission is observed between the US and Mexican stock markets.
Furthermore, the volatility spillover is unidirectional from China to the Brazil stock market during the
global financial crisis. During the Chinese crash, the volatility spillover is bidirectional between the
China and Brazil stock markets.

The contributions of this study are four-fold. First, this study provides a comprehensive analysis
of spillover between the world-leading and emerging LA stock markets during the crash of the Chinese
stock market. Second, it contributes to the literature of the China-LA stock markets by examining the
spillovers during the global financial crisis. Lastly, the BEKK-GARCH model is applied to estimate the
spillovers, optimal weights, and hedge ratios, which provide better statistical properties compared to
the many other GARCH models. The rest of the paper is organized as follows: Section 2 provides
a review of the literature. The empirical method is described in Section 3. Section 4 consists of the
data and the preliminary analysis. The empirical results are reported in Section 5. Finally, Section 5
concludes the discussion.
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2. Literature Review

Markowitz’s modern portfolio theory can describe the relationship between different stock markets
in order to build an optimum portfolio. The rationale behind this concept is to combine risky assets
with less risky or risk-free assets in the portfolio (Markovitz 1959). For example, the leading stock
market shows a higher volatility during the financial crisis, and as a result the portfolio investors need
to diversify their portfolios by investing in weakly integrated emerging stock markets. Therefore, an
analysis of risk transmission between different equity markets is essential for portfolio managers to
identify opportunities for portfolio diversification across markets and over time.

Over the past decade, there has been a growing body of literature examining the information
transmissions (return and volatility) between the US and LA stock markets during the crisis
and non-crisis periods. Meric et al. (2001) report significant co-movements between the US
and LA (Brazil, Argentina, Chile, and Mexico) stock markets during the period 1984-1995.
Ferndndez-Serrano and Sosvilla-Rivero (2003) report the cointegration across the US and LA equity
markets. Sharkasi et al. (2005) investigate the spillover across the US and Brazil stock markets.
They provide evidence of co-movements between the US and Brazil stock markets.

Diamandis (2009) investigates the linkages and common trends between the US and four Latin
American (Argentina, Brazil, Chile, and Mexico) stock markets. Because the four Latin American
countries initiated a phase of financial liberalization in the late 1980s and early 1990s, this study also
explores whether the removal of foreign-exchange controls had any effect on the potential linkages.
Firstly, this study finds that the US stock market is partially integrated with four LA stock markets.
Secondly, the five stock markets have four significant common permanent components/trends which
influence their system in the long run. Thirdly, the results indicate significant short-term deviations
from standard stochastic patterns during the 1994-1996 Mexican crisis and the 2001 financial crisis.

Beirne et al. (2013) use the tri-variate GARCH-BEKK model to estimate the volatility transmission
from mature markets to 41 emerging (including 8 Latin American) stock markets. The volatility
transmission is observed to be significant from many mature markets to the emerging stock markets.
Additionally, there is evidence of changes in the parameters of volatility spillovers during turbulent
or crisis periods. Graham et al. (2012) estimate the integration between the US and 22 emerging
equity markets and find evidence of strong co-movements across the US, Brazil, and Mexico equity
markets. Hwang (2014) examined the spillover between the US and LA equity markets during the
global financial crisis. The study found that the integration between the US and LA equity markets
became stronger during the global financial crisis.

Using the VAR-GARCH model, Arouri et al. (2015) estimate the return and volatility transmissions
between the US and LA (Brazil, Argentina, Mexico, Chile, and Columbia) stock markets from 1993
through to 2012. The return spillover is seen to be significant from the US to the Argentina, Mexico,
and Colombia stock markets. It also provides evidence of a volatility transmission from the US to a few
LA stock markets. Syriopoulos et al. (2015) use the VAR-GARCH model and find that the return and
volatility spillover is significant between the US and BRICS (Brazil, Russia, India, China, and South
Africa) equity markets (at the sectoral level). Mensi et al. (2016) reveal the strong dynamic correlation
between US and BRICS equity markets during the global financial crisis of 2008.

Ben Rejeb and Arfaoui (2016) examine the volatility transmission between developed (US and
Japan) and emerging (Latin American and Asian) stock markets using standard GARCH models and
a quantile regression approach. This study reveals a significant presence of volatility transmission
in these markets. The volatility transmission is seen to be closely associated with the crisis period
and geographical proximity. A lower and upper quantiles analysis shows that interdependence
between markets decreases during a bearish trend, while it increases during bullish markets. Using the
GARCH model, Bhuyan et al. (2016) observes return and volatility transmissions from the US to BRICS
stock markets.

Al Nasser and Hajilee (2016) provide evidence of short-run integration between developed (US,
UK, and Germany) and emerging stock markets (Brazil, Mexico, Russia, China, and Turkey). However,
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in the long run, the cointegration is only found to be significant between Germany and emerging Asian
stock markets. Gamba-Santamaria et al. (2017) examine the directional volatility transmission between
the US and the four LA stock markets (Brazil, Chile, Mexico, and Columbia) using the framework of
Diebold and Yilmaz (2012). Brazil is found to be the net volatility transmitter for most of the sample
period, whereas Columbia, Chile, and Mexico are the net receivers of volatility. Moreover, the US stock
market is observed to be the net transmitter of volatility to the four LA stock markets. Besides this, the
magnitude of volatility transmission is increased from the US to LA stock markets during the global
financial crisis of 2008.!

Yousaf and Ahmed (2018) study the influence of the US and Brazil on the Mexico, Argentina,
Chile, and Peru stock markets by using GARCH in a mean approach. The study concludes that the
return effects are dominantly transmitted from the US to the Mexico, Argentina, Chile, and Peru stock
markets. Moreover, the volatility transmission is found to be dominant from Brazil to the Mexico,
Argentina, Chile, and Peru stock markets. Cardona et al. (2017) use the MGARCH-BEKK model to
estimate the volatility transmission between the US and the six LA stock markets (Brazil, Argentina,
Mexico, Chile, Peru, and Colombia). They report the significant volatility transmission from the US to
all LA stock markets. Moreover, only Brazil transmits volatility effects to the US stock market.

Ramirez-Hassan and Pantoja (2018) provide evidence of co-movements between the returns of
the US and six LA stock markets after the global financial crisis of 2008. Fortunato et al. (2019) provide
evidence of return transmission from the US to the Brazil, Chile, Columbia, Mexico, and Peru equity
markets. Coleman et al. (2018) find the co-movements between the US and LA (Brazil, Chile, Mexico,
Peru, Venezuela, and Argentina) stock markets. Su (2020) reports the dominant risk transmission from
the G7 (US, Japan, UK, Germany, France, Italy, and Canada) countries to the BRICS (Brazil, Russia,
India, China, and South Africa) stock markets.

However, fewer studies have examined the spillovers between the China and Latin American
stock markets during the crisis and non-crisis periods. Garza-Garcia and Vera-Judrez (2010) study the
impact of US and Chinese macroeconomic variables on the stock markets of Brazil, Mexico, and Chile.
The macroeconomic variables (the US and Chinese) are observed to be integrated with the LA stock
markets. Additionally, the US macroeconomic variables Granger affect the Brazilian and Mexican stock
markets. On the other hand, the Chinese macroeconomic variables Granger affect the stock markets of
Mexico and Chile.

Horvath and Poldauf (2012) find that the Chinese stock market is weakly correlated with the Brazil,
Australia, Canada, Germany, Japan, Hong Kong, South Africa, Russia, US, and UK stock markets.
Sharma et al. (2013) apply the VAR model to examine the linkages between the BRICS (Brazil, Russia,
India, China, and South Africa) stock markets. This study finds a return transmission from Brazil
(India) to the Russia, India (Brazil), China, and South Africa equity markets. Moreover, the return
transmission is only observed from China to the Russian stock market. Bekiros (2014) looks at the
contagion effect between Brazil, Russia, India, and China by using several multivariate GARCH models.

Our study is different from the study of Gamba-Santamaria et al. (2017) in the following aspects. Gamba-Santamaria et al. (2017)
examine the volatility spillover between the US and four Latin American markets (Brazil, Chile, Mexico, and Columbia)
during the US financial crisis, whereas our study is examining the volatility as well as return spillover between the leading
(US and China) markets and four Latin American markets (Brazil, Chile, Mexico, and Peru) during the US financial
crisis and the crash of the Chinese stock market. More specifically, firstly our study examines the return as well as
volatility spillovers, whereas Gamba-Santamaria et al. (2017) examine the directional volatility spillovers. Second,
our study is examining the spillovers between two world-leading (the US and China) markets and four LA markets,
whereas Gamba-Santamaria et al. (2017) examine the spillovers between US and four LA markets. Third, our study is
focusing on the spillovers during the global financial crisis and the crash of the Chinese stock market in 2015, whereas
Gamba-Santamaria et al. (2017) examine the spillovers during the US financial crisis. Fourth, our study is using the
BEKK-GARCH model, whereas Gamba-Santamaria et al. (2017) employ the approach of Diebold and Yilmaz (2012). Lastly,
our full data sample is from January 2001 to May 2020, whereas Gamba-Santamaria et al. (2017) use the sample period from
January 2003 to January 2016. Apart from the differences, the study of Gamba-Santamaria et al. (2017) is very beneficial for
understanding the linkages among the US and LA stock markets.
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This study concludes that there exists a higher integration between Brazil, Russia, India, and China
after the global financial crisis.

Ahmad and Sehgal (2015) estimate the volatility of the BRIICKS (Brazil, Russia, India, Indonesia,
China, South Korea, and South Africa) stock markets by using the Markov regime-switching (MS) in
the mean-variance model. It suggests that investors should allocate investment in the China, Russia,
and India emerging stock markets. While investigating the relationship between the Chinese and
foreign stock markets (US, Brazil, India, and Germany), Cao et al. (2017) reported a bi-directional
causality between the China and foreign stock markets. Previous work does not provide evidence of
return and volatility spillover between leading (US and China) and Latin American stock markets
during the global financial crisis and the crash of the Chinese stock market. Therefore, this study
addresses the above-mentioned literature gaps.

3. Data and Methodology

In this section, we will discuss the data and methodology used in our paper. We first discuss
the data.

3.1. Data

This study uses the daily data of benchmark stock indices of the US (S&P 500); China (SSE
Composite Index); and four emerging LA stock markets—namely, Brazil (IBOVESPA index), Chile
(IPSA index), Mexico (S&P/BMV IPC Index), and Peru (S&P/BVL Peru General TR PEN Index).
The data of stock indices are taken from the Data Stream database. The index is assumed to be the
same on non-trading days (holidays except weekends) as on the previous trading day, as suggested by
Malik and Hammoudeh (2007), and Ali et al. (2020).

This study uses the full sample period from 1 January 2000, to 29 May 2020, and studies the
following two sub-samples: the first sub-period from 1 August 2007, to 30 July 2010, presenting the
period with the US financial crisis; and the second sub-period from 1 June 2015, to 31 May 2018,
presenting the period with the Chinese stock market crash. We note that Yousaf and Hassan (2019)
also use similar timeframes for the global financial crisis and the crash of the Chinese stock market.
This study follows He (2001) to use three-year data for each crisis for a short-run analysis. Changes in
the market correlations take place continuously, not only as a result of the crises but also due to the
consequences of many financial, economic, and political events. This study uses the same time for
both the crisis periods to make the coefficient comparable. The difference in the opening time of the
China and LA stock markets has been adjusted in the estimations.

3.2. Methodology

The econometric specification used in this study has two components. First, a vector
autoregression (VAR) with one lag is used to model the returns.? This allows for autocorrelations and
cross-autocorrelations in the returns. Second, a multivariate BEKK-GARCH model is used to model the
time-varying variances and covariances developed by Engle and Kroner (1995).3 BEKK-GARCH has the
attractive characteristics that the conditional covariance matrices are positive definite (Chang et al. 2011).
Several studies have used the BEKK-GARCH model to estimate the spillover between different asset
classes; see, for example, Chang et al. (2011), Sadorsky (2012), Beirne et al. (2013), Chang et al. (2017),
Cardona et al. (2017), and Sarwar et al. (2020). Moreover, we will estimate the optimal weights and
hedge ratios using the BEKK-GARCH model.

The number of lags is selected on the basis of the AIC and SIC criteria.

3 We apply the BEKK-GARCH model on the valuable suggestion of a respected reviewer.
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This study aims to examine the return and volatility spillover between the stock markets, and
thus we firstly focus on return spillover. For any pair of two series, the following are the specifications
for the conditional mean equation:

Ry = u+o Ri_1 + e withe; = Htl/zm. 1)

R = (R;‘ , Rty )/ is the vector of returns on the stock market indices x and y at time ¢, respectively; @

is the 2 X 2 matrix of parameters, measuring the impacts of own lagged and cross mean transmissions
’

between two series; ¢; = (ef, ety ) is the vector of error terms of the conditional mean equations for the

two series at time t; 1y = (r];‘, T]fy )’ indicates a sequence of independently and identically distributed

X Xy
L t

HY  HY
series of x and y. In addition, Htl/ Zisthe2 x 2 symmetric positive definite matrix.

The full BEKK-GARCH, which imposes positive definiteness restrictions for H;, is given by:

random errors; and H; = ( ) denotes the conditional variance-covariance matrix of return

H; = C'C+ A'ei1¢, A+ B'Hi1B, @)

where A and B are (1 X n) coefficient matrices and C’C is the decomposition of the intercept matrix. Each
element (i,j)th in H; depends on the corresponding (i j)th element in (et,le;_l) and H;_;. Accordingly,
past shocks and volatility are allowed to directly spill over from a market to another, and they are
captured by the coefficients of the A and B matrices. More specifically, the BEKK-GARCH matrices can
be expanded as follows:

2 2
W = Ce+ a,z((effl) + 2axaycel_ el |+ ajx(e,{l) + B+ 2By + PRk 3)

X X 2 X, 2 he X
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The BEKK-GARCH parameters are estimated by the maximum likelihood method using the BFGS
algorithm. In addition to the return and volatility spillover, we also compute the optimal weights and
hedge ratios for each pair of stocks.

The conditional variance and covariances are used for calculating the optimal portfolio weights
and hedge ratios. This study follows Kroner and Ng (1998) in calculating the optimal portfolio weights
of different pairs of stock markets:

WY
t
Xy v’
Bt =21 + k)

Xy _
w,” =

(6)
Xy
0If w,” <0
wfy = w’tYy,IfO < wfy <1
Xy
LIf wy” >1
where wfy is the weight of stock(x) in a $1 stock(x)-stock(y) portfolio at time t; hfy is the conditional
covariance between the two stock markets; /1f and hty are the conditional variance of stock(x) and stock(y),

respectively; and 1 — wfy is the weight of stock(y) in a $1 stock(x)-stock(y) portfolio. As suggested by
Kroner and Sultan (1993):

[
Xy Ut
o W @)

where ﬁfy represents the hedge ratio. This shows that a short position in the stock (i) market can hedge
a long position in stock (x).
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4. Empirical Results and Implications

In this section, we will discuss our empirical results and implications. We first discuss our
preliminary analysis.

4.1. Descriptive Statistics

Table 1 reports the summary statistics of the daily returns for the US; China; and four emerging
LA stock markets—namely, Brazil, Chile, Mexico, and Peru. Among them, Brazil and Peru have
the highest mean return, and the US has the smallest mean return during the full sample period.
On the other hand, Chile has the smallest standard deviation, while Brazil has the largest standard
deviation. Thus, Peru provides the highest mean return, with a relatively smaller risk in the LA stock
markets. Overall, the skewness is significantly negative, the kurtosis is significantly higher than three
for all stocks, and the Jarque-Bera statistics reject normality hypothesis for all series, inferring that all
the returns are negatively skewed and fat-tailed. Moreover, Table 1 also confirms that there are 1%
significant autocorrelation and ARCH (autoregressive conditional heteroskedasticity) effects for all
returns. We also apply both Augmented Dickey—Fuller (ADF) and Phillip—Perron (PP) tests to examine
the stationarity of all the returns and exhibit the results in Table 2. The table indicates that all the series
are 1% significant, inferring that all the returns are stationary.

Table 1. Summary statistics.

Markets Mean Std. Dev. Skewness Kurtosis J-B Stat Q-Stat ARCH
us 0.00016 0.0124 —0.364 *** 14.045**  27181.3 **  56.584 *** 548.40 ***
CHN 0.00040 0.0155 —0.330 *** 82116 *** 6121.9 *** 60.119 *** 189.01 ***
BRAZ 0.00047 0.0183 —0.403 ***  9.6439 *** 9937.1 *** 24.957 *** 686.82 ***
CHIL 0.00030 0.0105 —0.878 *** 19.883 ***  37,432.8 ***  148.49 *** 180.34 ***
MEXI 0.00024 0.0128 —0.086 * 8.3698 ***  6403.18 ***  108.33 *** 173.49 ***
PERU 0.00047 0.0133 —0.549 **+* 15441 ** 346053 ***  290.64 *** 796.97 ***

Notes: US—United States of America; CHN—China; BRAZ—Brazil; MEXI—Mexico; CHIL—Chile. Q-stat denotes
the Ljung-Box Q-statistics. ARCH test refers to the LM-ARCH test. ***, * indicate the statistical significance at 1%
and 10%, respectively.

Table 2. Unit root tests

ADEF (t-Test) Phillips-Perron Test

Markets None Constant ai‘;“;::ﬁ; None Constant ai(;n,;zzzg
Us —79.73 *** —79.94 *** —79.96 *** —80.00 *** —80.01 *** —80.05 ***
CHN —32.44 *** —32.48 *** —32.49 **+* —69.97 **+* —69.89 *** —69.88 ***
BRAZ —72.04 **+* —72.08 *** —72.08 *** —72.03 *** —72.08 *** —72.08 ***
CHIL —33.59 *** —33.64 *** —33.67 *** —63.11 *** —63.11 *** —63.10 ***
MEXI —50.70 *** —50.73 *** —50.73 *** —63.67 *** —63.68 *** —63.68 ***
PERU —31.06 *** —31.12 *+* —31.15 *** —61.82 *** —61.75 *** —61.64 ***

Notes: US—United States of America; CHN—China; BRAZ—Brazil; MEXI—Mexico; CHIL—Chile;
ADF—Augmented Dickey Fuller. *** indicate the statistical significance at 10%, respectively.

4.2. Return and Volatility Spillover between the US and LA Stock Markets

We turn to apply the BEKK-GARCH model to examine the return and volatility spillovers between
the US and LA stock markets in the full sample period, the global financial crisis, and the crash of the
Chinese stock market and exhibit the results in Tables 3-5. We note that the 1% significant autocorrelation
and ARCH effects for all returns, as shown in Table 1, justify the use of the BEKK-GARCH model in
our analysis.
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Table 3. Estimates of BEKK-GARCH for the US and Latin American stock markets during the full
sample period

Brazil and US Chile and US Mexico and US Peru and US
Coefficient p-Value  Coefficient p-Value  Coefficient  p-Value  Coefficient  p-Value
Panel A. Mean Equation
Uy 0.075 *** 0.000 0.098 * 0.062 0.058 *** 0.000 0.047 *** 0.000
@11 —0.031 ** 0.036 0.007 0.722 0.038 ** 0.027 0.137 *#** 0.000
12 0.023 *** 0.005 0.000 0.938 0.021 0.109 -0.019 0.185
I 0.056 *** 0.000 0.062 *** 0.000 0.051 *** 0.000 0.058 *** 0.000
D1 0.055 ** 0.028 0.117 *** 0.000 0.050 *** 0.005 0.081 *** 0.000
2553 —0.077 *** 0.000 —0.057 *** 0.001 —0.071 *** 0.000 —0.042 *** 0.006
Panel B. Variance Equation
11 0.219 *** 0.000 2.496 *** 0.000 0.117 *** 0.000 0.161 *** 0.000
1 0.069 *** 0.004 0.124 *** 0.009 0.050 *** 0.006 0.056 *** 0.003
(o) 0.118 *** 0.000 0.042 0.571 0.124 *** 0.000 0.122 #** 0.000
an 0.225 *** 0.000 0.003 0.562 0.264 *** 0.000 0.309 *** 0.000
ap —-0.014 0.319 0.001 0.611 0.008 0.609 0.004 0.836
any 0.036 0.421 0.151 ** 0.026 -0.026 0.390 0.010 0.541
ax 0.338 *** 0.000 0.341 *** 0.000 0.314 *** 0.000 0.300 *** 0.000
P11 0.966 *** 0.000 0.701 *** 0.000 0.959 *** 0.000 0.942 *** 0.000
P12 0.005 0.158 —0.003 0.400 0.005 0.349 —0.002 0.789
Pai —-0.101 ** 0.050 0.095 0.203 0.090 ** 0.043 —0.004 0.538
Bn 0.933 *** 0.000 0.944 *** 0.000 0.938 *** 0.000 0.947 *** 0.000
Panel C. Diagnostic Tests
LogL -16,174.1 -21,397.4 -13,816.1 —14,378.1
AIC 6.789 8.588 5.970 6.370
SIC 6.799 8.635 6.017 6.417
Q1[20] 30.320 * 0.065 1.791 0.720 19.075 0.517 328.759 * 0.031
Q[20] 18.920 0.527 19.184 0.510 19.493 0.490 17.728 0.605
Qi[zo] 29.942 0.182 0.004 0.659 34.776 ** 0.021 30.071 0.198
Q3[20] 27.782 0.115 22.616 0.308 25.161 0.185 33.181 0.146

Notes: US, United States of America; CHN, China; BRAZ, Brazil; CHIL, Chile; MEXI, Mexico. Variable order is the
Latin American stock market (1) and China (2). In the mean equations, u denotes the constant terms, whereas @1,
denotes the return spillover from the Latin American stock market to the US stock market. In the variance equation,
¢ denotes the constant terms, & denotes the ARCH terms, and  denotes the GARCH terms. In the variance equation,
ayy indicates the shock spillover from the Latin American stock market to the US stock market, whereas 1, denotes
the long—term volatility spillover from the Latin American stock market to the US stock market. Number of lags
for VAR is decided using the SIC and AIC criteria. JB, Q(20), and Q?(20) indicate the empirical statistics of the
Jarque-Bera test for normality, Ljung-Box Q statistics of order 20 for autocorrelation applied to the standardized
residuals, and squared standardized residuals, respectively. Values in parentheses are the p-Value. ***,**, * indicate
the statistical significance at 1%, 5%, and 10%, respectively.

Tables 3-5 report the return and volatility spillovers between the US and LA stock markets during
the full sample period, the global financial crisis, and the crash of the Chinese stock market, respectively.
Referring to coefficients @11 and @, in Panel A, the results show that the lagged returns significantly
influence the current returns in the US and the majority of LA stock markets during the full sample
period, the global financial crisis, and the crash of the Chinese stock market. It highlights the possibility
of the short-term prediction of current returns through past returns in the US and the majority of
the LA stock markets. Our results are consistent with the findings of Syriopoulos et al. (2015) and
Arouri et al. (2015), which observe a significant impact of past returns on current returns in the US
and LA stock markets.
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Table 4. Estimates of BEKK-GARCH for US and Latin American stock markets during the global
financial crisis.

Brazil and US Chile and US Mexico and US Peru and US

Coefficient ~ p-Value  Coefficient  p-Value  Coefficient  p-Value  Coefficient  p-Value

Panel A. Mean Equation

i 0.101 * 0.068 0.113 *** 0.000 0.055 0.246 -0.014 0.744
@11 —0.044 0.450 0.118 *** 0.001 0.023 0.680 0.138 *** 0.000
12 0.021 0.581 0.019 0.440 0.096 ** 0.043 -0.009 0.770

1’3 0.019 0.665 0.046 0.361 0.064 0.144 0.029 0.518
D1 0.040 0.578 0.020 0.308 0.020 0.707 0.063 0.107
2553 —0.128 *** 0.007 —0.164 *** 0.000 —0.188 *** 0.000 —0.100 *** 0.003

Panel B. Variance Equation

11 0.271 ** 0.044 0.287 *** 0.000 0.218 ** 0.017 0.291 *** 0.000
1 0.098 0.546 0.040 0.417 —0.035 0.730 0.173 *#** 0.000
[ee) 0.129 ** 0.039 0.153 *** 0.000 0.000 0.799 0.109 *** 0.007
an 0.421* 0.069 0.483 *** 0.000 0.117 0.220 0.453 *** 0.000
ap 0.139 ** 0.022 —0.055 0.333 —0.104 * 0.057 0.087 0.255
an —0.237 0.128 —0.020 0.550 0.249 *** 0.000 —0.088 0.581
axn 0.138 0.145 0.292 *** 0.000 0.295 *** 0.000 0.226 *** 0.002
B 0.902 *** 0.000 0.841 *** 0.000 1.063 *** 0.000 0.896 *** 0.000
B2 -0.041* 0.082 0.051 ** 0.034 0.218 *** 0.001 —0.034 0.197
B2 0.071 0.482 0.024 * 0.083 —0.183 *** 0.000 0.014 0.687
B 0.990 *** 0.000 0.937 *** 0.000 0.797 *** 0.000 0.969 *** 0.000

Panel C. Diagnostic Tests
LogL —2766 —2438.432 —2514.181 —2804.767
AIC 7.792 7.026 7.132 8.025
SIC 8.018 7.253 7.359 8.251
Q1[20] 15.405 0.753 15.396 0.753 15.749 0.732 18.138 0.578
Q2[20] 19.980 0.459 22.469 0.316 25.023 0.201 19.998 0.458

Qi[ZO] 23.671 0.257 17.388 0.628 15.064 0.773 13.734 0.844
Q3[20] 37.237 ** 0.011 45.203 *** 0.001 33.878 ** 0.027 37.570 *** 0.010

Notes: US, United States of America; CHN, China; BRAZ, Brazil; CHIL, Chile; MEXI, Mexico. Variable order is the
Latin American stock market (1) and China (2). In the mean equations, u denotes the constant terms, whereas @1,
denotes the return spillover from the Latin American stock market to the US stock market. In the variance equation,
¢ denotes the constant terms, & denotes the ARCH terms, and  denotes the GARCH terms. In the variance equation,
ayy indicates the shock spillover from the Latin American stock market to the US stock market, whereas 1, denotes
the long-term volatility spillover from the Latin American stock market to the US stock market. Number of lags
for VAR is decided using the SIC and AIC criteria. JB, Q(20), and Q?(20) indicate the empirical statistics of the
Jarque-Bera test for normality, Ljung-Box Q statistics of order 20 for autocorrelation applied to the standardized
residuals, and squared standardized residuals, respectively. Values in parentheses are the p-Value. ***,**, * indicate
the statistical significance at 1%, 5%, and 10%, respectively.

Regarding the interdependence of returns in the mean equation (see coefficients @1, and @y; in
Panel A), the results indicate the unidirectional return spillover from the US to the majority of LA stock
markets during the full sample period and the crash of the Chinese Stock Market. They imply that the
past US returns can be used to predict the current returns of the LA markets during the full sample
period and the crash of the Chinese Stock Market. These results are consistent with the previous
findings of Arouri et al. (2015), who find the unidirectional return spillover from the US to the LA stock
markets. Moreover, the return transmission is also significant from the Brazil to the US stock market
during the full sample period. In contrast, the return transmissions are not found to be significant
between the US and the majority of the LA stock (except Mexico) markets during the global financial
crisis. These results suggest that the US (LA) stock returns are not useful in predicting the returns in
the majority of the LA (US) stock markets during the global financial crisis. The results also reveal a
unidirectional volatility spillover from Mexico to the US stock market during the global financial crisis.

Based on the variance equation (see coefficients of a1; in Panel B), the results show that the
conditional volatility of the majority of LA stock markets depends on their past shocks during all the
sample periods. In addition, the coefficients of the past own shocks (a2, ) are highly significant for
the US in all the sample periods. Besides this, the sensitivity of past own volatility (811 and f) is
significant for the US and LA stock markets during all the sample periods. These results are consistent
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with the findings of Syriopoulos et al. (2015), which find that the past own volatility is a significant
determinant of the future volatility of BRICS countries (including Brazil). Further, the coefficients of
past own volatility are higher compared to the coefficients of the past own shocks in the US and LA
stock markets, suggesting that the past own volatilities are more critical for the prediction of future
volatility than the past own shocks during all the sample periods.

Referring to the coefficient a1, and ay; in Panel B, the past shocks of the US stock market
significantly influence the conditional volatility of just the Chile stock market during the full sample
period. During the global financial crisis, the shock transmission is unidirectional from Brazil to
the US and bidirectional between the US and Mexican stock markets. Moreover, the conditional
volatility of the Mexican stock market is significantly affected by the US during the crash of the Chinese
stock market.

Table 5. Estimates of BEKK-GARCH for the US and Latin American stock markets during the crash of
the Chinese stock market.

Brazil and US Chile and US Mexico and US Peru and US

Coefficient  p-Value  Coefficient  p-Value  Coefficient  p-Value  Coefficient  p-Value

Panel A. Mean Equation

i 0.090 0.105 0.030 0.210 0.013 0.585 0.088 ** 0.029
211 —0.047 0.172 0.077 * 0.082 —0.032 0.469 0.076 * 0.089
D12 0.016 0.302 -0.035 0.134 0.002 0.937 —0.025 0.550

I 0.064 *** 0.004 0.075 *** 0.001 0.072 *** 0.001 0.061 0.158
[255) 0.129 * 0.064 0.120 *** 0.001 0.137 *** 0.000 0.086 * 0.093
[25%) -0.066 ** 0.040 -0.052 0.112 —0.059 * 0.083 —0.050 * 0.085

Panel B. Variance Equation

o 0.268 *** 0.005 0.361 *** 0.004 0.599 *** 0.000 0.159 * 0.066
o1 0.151 ** 0.017 0.011 0.720 0.164 *** 0.000 0.117 0.122
o) 0.124 * 0.076 0.186 *** 0.000 0.124 0.150 0.089 0.790
ap 0.196 *** 0.001 0.522 *** 0.001 0.434 *** 0.000 0.278 ** 0.011
an 0.008 0.821 -0.024 0.326 0.033 0.298 0.142 0.331
an 0.023 0.744 -0.028 0.648 -0.115* 0.052 0.019 0.850
an 0.430 *** 0.000 0.421 *** 0.000 0.381 *** 0.000 0.313 0.416
P 0.958 *** 0.000 0.686 *** 0.001 —0.359* 0.077 0.949 *** 0.000
P2 —0.008 0.571 0.018 0.411 —0.068 *** 0.000 -0.042 0.464
Bai 0.013 0.697 0.076 0.227 0.528 *** 0.000 —-0.014 0.766
P 0.880 *** 0.000 0.879 *** 0.000 0.915 *** 0.000 0.917 *#** 0.000

Panel C. Diagnostic Tests

LogL —2078 —1582.556 —1545.033 —1733.842

AIC 5.759 4.585 4.429 4.891

SIC 5.986 4.812 4.655 5.118
Q4[20] 21413 0.373 33.001 ** 0.034 21.955 0.343 31.804 ** 0.045
Q2[20] 24.907 0.205 24713 0.213 24.601 0.217 25.783 0.173
Q2[20] 6.942 0.897 85.117 *** 0.000 29.827 * 0.073 16.276 0.699
Q%[ZO] 8.249 0.890 9.945 0.969 10.383 0.961 8.909 0.984

Notes: US, United States of America; CHN, China; BRAZ, Brazil; CHIL, Chile; MEXI, Mexico. Variable order is the
Latin American stock market (1) and China (2). In the mean equations, i denotes the constant terms, whereas @1
denotes the return spillover from the Latin American stock market to the US stock market. In the variance equation,
¢ denotes the constant terms, a denotes the ARCH terms, and § denotes the GARCH terms. In the variance equation,
ayy indicates the shock spillover from the Latin American stock market to the US stock market, whereas 1, denotes
the long-term volatility spillover from the Latin American stock market to the US stock market. Number of lags
for VAR is decided using the SIC and AIC criteria. JB, Q(20), and Q%(20) indicate the empirical statistics of the
Jarque-Bera test for normality, Ljung-Box Q statistics of order 20 for autocorrelation applied to the standardized
residuals, and squared standardized residuals, respectively. Values in parentheses are the p-Value. ***,**, * indicate
the statistical significance at 1%, 5%, and 10%, respectively.

Regarding the cross-market volatility spillover (see coefficients f1, and f21 in Panel B), the results
indicate that the volatility transmission is unidirectional from the US to the Brazil and Mexican stock
markets during the full sample period. In contrast, the results reveal the bidirectional volatility
transmission between the US and two LA stock markets (Chile and Mexico), whereas there was
unidirectional volatility transmission from Brazil to the US stock market during the global financial crisis.
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These results are in contrast with the findings of Wang et al. (2017), which report an insignificant volatility
spillover between the US and Brazil stock markets during the global financial crisis. The considerable
trade volumes between the US and two LA stock markets (Brazil and Mexico) explain the volatility
linkages between the stock markets of the concerned countries. Johnson and Soenen (2003) also suggest
that trade increases the financial contagion effects between the stock markets of concerned countries.
From the Latin American region, Mexico is the biggest trading partner of the US; therefore, volatility
linkages are also observed between Mexico and the US stock market during the global financial crisis.
These findings suggest that portfolio investors can get the maximum benefit of diversification by
making a portfolio of US and Peru stocks during the global financial crisis. Lastly, a bidirectional
volatility transmission is observed between the US and Mexican stock markets during the crash of the
Chinese stock market. It implies that portfolio investors can diversify risk by making a portfolio of the
US and LA stock markets (except Mexico) during the crash of the Chinese stock market.

4.3. Return and Volatility Spillover between China and the LA Stock Markets

Tables 6-8 represent the return and volatility transmissions between China and the LA stock
markets during the full sample period, the global financial crisis, and the crash of the Chinese stock
market. The difference in the opening time of the China and LA stock markets has been adjusted
where necessary in the estimations. Referring to the coefficient @11 in Panel A, the results indicate that
the lagged returns of the majority of LA stock markets (except Brazil) largely determine their current
returns during the full sample period and the crash of the Chinese stock market. During the global
financial crisis, the past returns significantly affect the current returns of the Chile and Peru stock
markets. This implies that the past returns can be used for the short-term prediction of the current
LA stock returns. These results confirm the previous findings of Arouri et al. (2015). Referring to the
coefficient @, in Panel A, the lagged returns significantly influence the current returns in the Chinese
stock market during the full sample period. In contrast, the current returns of the Chinese stock market
are not influenced by their past returns during the global financial crisis and the crash of the Chinese
stock market. This implies that the past returns cannot be used for the short-term prediction of the
current Chinese stock returns during the crisis period.

Based on the cross-market return spillover (see the coefficients @1, and @ in Panel A), the results
reveal the unidirectional return transmissions from China to the majority of LA stock markets during
all the sample periods. These results contradict the previous findings of Aktan et al. (2009) and
Sharma et al. (2013), who report the insignificant impact of the Chinese stock returns on the Brazilian
stock returns. In addition, the return transmission is also significant from Brazil to China during the
crash of the Chinese stock market.

From the variance equation (see coefficients a1; and apy Panel B), the findings show that the
lagged shocks significantly influence the conditional volatility of the China and LA stock markets
during all the sample periods. Referring to the coefficients f11 and o, the results show that the current
conditional volatility depends on their past volatility in the China and LA stock markets during the
all sample periods. The critical finding is that the coefficients of past own volatility are seen to be
higher compared to the past own shocks. This difference suggests that past own volatilities rather
than past shocks are more important for the prediction of the current volatility in the China and LA
stock markets.

Refer to the coefficients a1 and ap; in panel B, the shock transmission is unidirectional from
Brazil and Peru to the Chinese stock market, whereas bidirectional shock transmission is observed
between the China and Mexican stock markets during the full sample period. The results reveal that
the past shocks in the Brazil and Mexican stock markets significantly affect the conditional volatility of
the Chinese stock market during the global financial crisis. On the other hand, the shock spillover is
insignificant between China and the majority of the LA stock markets during the crash of the Chinese
stock market.
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Table 6. Estimates of BEKK-GARCH for the China and Latin American stock markets during the full
sample period.

Brazil and China Chile and China Mexico and China Peru and China

Coefficient ~ p-Value  Coefficient  p-Value  Coefficient  p-Value  Coefficient  p-Value

Panel A. Mean Equation

i 0.076 *** 0.001 0.047 *** 0.000 0.038 *** 0.004 0.050 *** 0.000
@11 0.033 ** 0.050 0.205 *** 0.000 0.101 *** 0.000 0.234 *** 0.000
12 0.013 0.208 0.020 0.190 0.014 0.213 0.015 0.287

1’3 0.044 *** 0.008 0.042 ** 0.026 0.050 *** 0.000 0.039 ** 0.045
D1 0.132 *** 0.000 0.036 *** 0.000 0.075 *** 0.000 0.053 *** 0.000
2553 0.037 *** 0.005 0.041 ** 0.019 0.036 ** 0.011 0.042 *#** 0.009

Panel B. Variance Equation

11 0.283 *** 0.000 0.186 *** 0.000 0.138 *** 0.000 0.219 *** 0.000
1 0.009 0.699 —0.001 0.956 0.009 0.721 -0.013 0.500
[0} 0.118 *** 0.000 0.121 *** 0.000 0.115 *** 0.000 0.108 *** 0.000
an 0.273 *** 0.000 0.347 *** 0.000 0.279 *** 0.000 0.394 *** 0.000
ap —-0.023 * 0.059 0.013 0.490 —0.037 *** 0.002 —0.024 * 0.057
an 0.000 0.899 0.001 0.950 0.021 * 0.087 —0.002 0.920
axn 0.250 *** 0.000 0.243 *** 0.000 0.240 *** 0.000 0.237 #** 0.000
B 0.948 *** 0.000 0.919 *** 0.000 0.954 *** 0.000 0.904 *** 0.000
B2 0.015 ** 0.040 —0.002 0.741 0.009 *** 0.003 0.015 *** 0.007
B2 0.002 0.814 0.002 0.726 —0.004 0.283 0.001 0.840
B 0.966 *** 0.000 0.968 *** 0.000 0.969 *** 0.000 0.970 *** 0.000

Panel C. Diagnostic Tests

LogL —19,187.432 —15,839.650 —-17,037.161 —16,739.334

AIC 7.720 6.599 7.002 7.045

SIC 7.767 6.646 7.049 7.092
Q120] 21.935 0.344 19.993 0.458 17.078 0.648 72.725 *#* 0.000
Q2[20] 82.861 *** 0.000 78.794 %% 0.000 83.815 *** 0.000 80.555 *** 0.000
Qi[zo] 26.742 0.133 8.890 0.984 26.056 0.187 18.240 0.572
Q5[20] 22.787 0.299 22412 0.319 25.134 0.196 25.146 0.196

2

Notes: US, United States of America; CHN, China; BRAZ, Brazil; CHIL, Chile; MEXI, Mexico. Variable order is the
Latin American stock market (1) and China (2). In the mean equations, u denotes the constant terms, whereas @1,
denotes the return spillover from the Latin American stock market to the Chinese stock market. In the variance
equation, ¢ denotes the constant terms, @ denotes the ARCH terms, and $ denotes the GARCH terms. In the
variance equation, @y, indicates the shock spillover from the Latin American stock market to the Chinese stock
market, whereas f1, denotes the long—term volatility spillover from the Latin American stock market to the Chinese
stock market. Number of lags for VAR is decided using the SIC and AIC criteria. JB, Q(20), and Q?(20) indicate
the empirical statistics of the Jarque—Bera test for normality, Ljung-Box Q statistics of order 20 for autocorrelation
applied to the standardized residuals, and squared standardized residuals, respectively. Values in parentheses are
the p-Value. ***,**, * indicate the statistical significance at 1%, 5%, and 10%, respectively.

Based on the cross-market volatility spillover effects (see coefficients f1, and 1 in Panel B),
the results demonstrate that there is unidirectional volatility transmission from Brazil, Mexico, and Peru
to China during the full sample period. These volatility transmissions can be explained through the
considerable trading volumes between China and two Latin economies (Brazil and Mexico) during the
full sample period. During the global financial crisis, the volatility effects are transmitted from the
China to Brazil stock markets. Therefore, the majority of LA stock markets provide an opportunity to
diversify the risk of Chinese equity portfolios during the global financial crisis. Lastly, the volatility
spillover is bidirectional between the China and Brazil stock markets during the crash of the Chinese
stock market. Due to the crash of the Chinese stock market, the slowdown of the Chinese economy
also affected its major trading partner Brazil and its stock market; therefore, volatility linkages are also
observed between China and Brazil. These findings propose that the portfolio investors of Chinese
stock markets can get the maximum benefit of diversification by adding Mexico, Chile, and Peru stocks
in their portfolios during the crash of the Chinese stock market.
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Table 7. Estimates of BEKK-GARCH for the China and Latin American stock markets during the global
financial crisis.

BRAZIL and China Chile and China Mexico and China Peru and China

Coefficient p-Value  Coefficient p-Value  Coefficient p-Value  Coefficient p-Value

Panel A. Mean Equation

i 0.106 * 0.081 0.116 *** 0.001 0.035 0.476 0.014 0.773
11 0.029 0.465 0.195 *** 0.000 0.034 0.340 0.211 *** 0.000
D12 —-0.003 0.938 —-0.073 0.189 —-0.034 0.424 —-0.023 0.554

U2 0.044 0.590 0.001 0.987 0.090 0.285 0.030 0.731
o731 0.186 *** 0.000 0.030 * 0.083 0.101 *** 0.000 0.103 *** 0.000
Doy 0.032 0.422 0.022 0.572 0.033 0.431 0.027 0.488

Panel B. Variance Equation

11 —-0.201 0.105 0.142 ** 0.025 0.127 *** 0.008 0.344 *** 0.000
1 0.134 0.577 1.932 *** 0.000 0.134 0.479 0.081 0.250
2 0.143 0.385 0.000 0.920 0.195 ** 0.037 0.163 * 0.098
an 0.297 *** 0.000 0.408 *** 0.000 0.253 *** 0.000 0.477 *** 0.000
ap —0.041 0.409 —0.108 0.124 —0.041 0.392 —0.005 0.902
an —0.069 * 0.089 0.007 0.686 0.060 ** 0.020 —0.031 0.215
an 0.188 *** 0.001 0.316 *** 0.000 0.209 *** 0.000 0.181 *** 0.000
B11 0.947 *** 0.000 0.893 *** 0.000 0.960 *** 0.000 0.870 *** 0.000
B12 0.006 0.580 0.021 0.130 0.003 0.820 0.005 0.777
P21 0.028 * 0.085 0.047 0.260 —-0.009 0.292 0.005 0.515
B2 0.977 *** 0.000 —-0.259 0.143 0.972 *** 0.000 0.979 *** 0.000

Panel C. Diagnostic Tests

LogL —3318.981 —2879.180 —-3090.113 —-3166.538

AIC 8.973 7.826 8.388 8.689

SIC 9.200 8.052 8.614 8.915
Q1[20] 14.730 0.792 11.805 0.923 17.935 0.592 17.407 0.626
Q2[20] 30.922 % 0.056 32.099 ** 0.042 30.614 * 0.060 31.335*% 0.051
Q?[20] 22.021 0.339 12.016 0.916 14.074 0.827 9.990 0.968
Q%[ZO] 28.559 0.127 37.567 0.161 26.806 0.141 28.213 0.104

Notes: US, United States of America; CHN, China; BRAZ, Brazil; CHIL, Chile; MEXI, Mexico. Variable order
is the Latin American stock market (1) and China (2). In the mean equations and u denotes the constant terms,
whereas @1, denotes the return spillover from the Latin American stock market to the Chinese stock market. In the
variance equation, ¢ denotes the constant terms, & denotes the ARCH terms, and  denotes the GARCH terms. In
the variance equation, aj; indicates the shock spillover from the Latin American stock market to the Chinese stock
market, whereas f1, denotes the long-term volatility spillover from the Latin American stock market to the Chinese
stock market. Number of lags for VAR is decided using the SIC and AIC criteria. JB, Q(20), and Q?(20) indicate
the empirical statistics of the Jarque—Bera test for normality, Ljung-Box Q statistics of order 20 for autocorrelation
applied to the standardized residuals, and squared standardized residuals, respectively. Values in parentheses are
the p-Value. ***,**, * indicate the statistical significance at 1%, 5%, and 10%, respectively.

Table 8. Estimates of BEKK-GARCH for the China and Latin American stock markets during the crash
of the Chinese stock market.

BRAZIL and China Chile and China Mexico and China Peru and China

Coefficient p-Value  Coefficient p-Value  Coefficient p-Value  Coefficient p-Value

Panel A. Mean Equation

Uy 0.055 0.282 0.039 * 0.063 0.008 0.765 0.059 * 0.087
D11 0.036 0.292 0.181 *** 0.000 0.077 ** 0.017 0.229 *** 0.000
D12 0.043 ** 0.048 0.026 0.350 0.012 0.791 0.033 0.333
U 0.022 0.495 0.020 0.474 0.020 0.420 0.022 0.410
Doy 0.105 *** 0.001 0.057 *** 0.001 0.074 *** 0.000 0.062 *** 0.003
D 0.032 0.360 0.040 0.228 0.039 0.255 0.026 0.470
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Table 8. Cont.

BRAZIL and China Chile and China Mexico and China Peru and China

Coefficient p-Value  Coefficient p-Value  Coefficient p-Value  Coefficient p-Value

Panel A. Mean Equation

pl 0.055 0.282 0.039 * 0.063 0.008 0.765 0.059 * 0.087
D11 0.036 0.292 0.181 *** 0.000 0.077 ** 0.017 0.229 *** 0.000
1o 0.043 ** 0.048 0.026 0.350 0.012 0.791 0.033 0.333

U2 0.022 0.495 0.020 0.474 0.020 0.420 0.022 0.410
D1 0.105 *** 0.001 0.057 *** 0.001 0.074 *#** 0.000 0.062 *** 0.003
Do 0.032 0.360 0.040 0.228 0.039 0.255 0.026 0.470

Panel B. Variance Equation

(&3] 0.915 *** 0.000 0.232* 0.057 0.390 *** 0.000 0.259 *** 0.009
Co1 0.126 *** 0.001 0.049 0.132 0.033 0.553 0.089 ** 0.045
%) 0.000 0.865 0.000 0.799 0.058 0.237 0.051 0.320
ap 0.334 *** 0.000 0.452 *#** 0.004 0.405 *** 0.000 0.345 *** 0.004
ap —-0.043 0.159 0.096 ** 0.021 -0.017 0.778 0.006 0.934
az 0.051 0.336 0.005 0.845 —-0.069 0.394 0.054 0.182
axn 0.236 *** 0.000 0.208 *** 0.000 0.229 *#** 0.000 0.256 *** 0.000
B11 0.691 *** 0.000 0.844 *** 0.000 0.751 *** 0.000 0.890 *** 0.000
P12 —-0.069 * 0.071 —-0.065 0.109 —-0.032 0.662 —-0.032 0.410
B -0.072* 0.056 0.005 0.525 0.031 0.260 —-0.012 0.404
Bn 0.968 *** 0.000 0.978 *** 0.000 0.974 #** 0.000 0.965 *** 0.000

Panel C. Diagnostic Tests

LogL —2506.043 —1947.155 —2014.255 —2107.485

AIC 7.227 5.934 5.989 6.295

SIC 7.454 6.160 6.216 6.521
Q1[20] 21.462 0.370 29.255 * 0.083 24.444 0.224 23.882 0.248
Q2[20] 23.562 0.262 27.467 0.123 24.664 0.215 26.564 0.148
Q2[20] 10.480 0.959 61.006 *** 0.000 15.298 0.759 14.951 0.779
Q%[20] 21.376 0.375 27.907 0.112 25.661 0.177 20.186 0.446

Notes: US, United States of America; CHN, China; BRAZ, Brazil; CHIL, Chile; MEXI, Mexico. Variable order
is the Latin American stock market (1) and China (2). In the mean equations and i denotes the constant terms,
whereas @1, denotes the return spillover from the Latin American stock market to the Chinese stock market. In the
variance equation, ¢ denotes the constant terms, a denotes the ARCH terms, and  denotes the GARCH terms. In the
variance equation, a1 indicates the shock spillover from the Latin American stock market to the Chinese stock
market, whereas f815 denotes the long-term volatility spillover from the Latin American stock market to the Chinese
stock market. Number of lags for VAR is decided using the SIC and AIC criteria. JB, Q(20), and Q?(20) indicate
the empirical statistics of the Jarque—Bera test for normality, Ljung—Box Q statistics of order 20 for autocorrelation
applied to the standardized residuals, and squared standardized residuals, respectively. Values in parentheses are
the p-Value. ***,**, * indicate the statistical significance at 1%, 5%, and 10%, respectively.

4.4. Optimal Weights and Hedge Ratio Portfolio Implications

In the above-mentioned results, volatility transmission is observed between the several pairs of
stock markets during the different sample periods. Thus, investment in these pairs of stock markets
reduces the benefit of diversification. Therefore, the risk transmission across stock markets push
investors to adjust their asset allocation and to hedge their portfolio risk over time. For this reason,
this study estimates the optimal weights and hedge ratios.

Tables 9 and 10 report the optimal weights for the pairs of LA-US and LA-China during all the
sample periods. The findings reveal that the optimal weight is 0.11 for BRAZ/US during the full
sample period, revealing that for a $1 portfolio in Brazil-US, 11 cents should be invested in the Brazil
stock market and the remaining 89 cents in the US stock market. The interpretations of all the optimal
weights are not interpreted here for the sake of brevity. For the LA-US portfolio (see Table 9), the results
show that the average optimal weights are seen to be higher in the global financial crisis and the
crash of the Chinese stock market as compared to the full sample period. For the LA-US portfolio,
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the investors are suggested to allocate a higher proportion of investment in LA stocks during the global
financial crisis and the crash of the Chinese stock market. For the pair of LA-China (see Table 10),
the results show that the optimal weights are higher during the global financial crisis and the crash of
the Chinese stock market compared to the full sample period. For the LA-China portfolio, investors
should increase their investment in LA stocks during the global financial crisis and the crash of the
Chinese stock market.

Table 9. Optimal weights and hedge ratios for Latin America (LA)/US

BRAZ/US CHIL/US MEXI/US Peru/US

Full Sample Period
whl 0.11 0.51 0.29 0.27
prd 0.93 0.63 0.25 0.28
US Financial Crisis
whl 0.17 0.77 0.49 0.41
pry 0.94 042 0.77 0.56
Chinese Stock Market Crash
whl 0.09 0.54 0.46 0.39
pry 0.98 0.34 0.59 043

Note: wau and ﬁ,Lu represent the optimal weight and hedge ratio for the LA-US pair. L and U in superscripts denote
the Latin American and US stock markets, respectively.

Table 10. Optimal weights and hedge ratios for LA/China

Header = BRAZ/CHN CHIL/CHN MEXI/CHN Peru/CHN

Full Sample Period
whC 0.41 0.70 0.61 0.63
ﬁ[fc 0.14 0.07 0.07 0.08
US Financial Crisis
wkC 0.53 0.81 0.68 0.63
pLc 021 0.09 0.15 0.13
Chinese Stock Market Crash
wtC 043 0.68 0.64 0.64
i 023 0.11 0.07 0.11

Note: w,LC and ﬁfc represent the optimal weight and hedge ratio for LA-China pair. L and C in superscripts denote
the Latin American and Chinese stock markets, respectively.

It is also essential to estimate the risk-minimizing optimal hedge ratios for portfolios of different
stocks. Referring to Table 9, the optimal hedge ratio range is 0.93 for BRAZ/US during the full sample
period, showing that a $1-long position in Brazil stocks can be hedged for 93 cents with a short position
in the US stocks. The interpretations of all the optimal hedge ratios are not interpreted here for the
sake of brevity. For the LA-US portfolio (see Table 9), the average optimal hedge ratios are found to be
higher for most of the pairs during the global financial crisis and the crash of the Chinese stock market
compared to the full sample period. It implies that less LA stocks are needed to minimize the risk of
US stock during crisis periods compared to the full sample period. For the LA-China portfolio (see
Table 10), the optimal hedge ratios are also higher during both crises, which implies that the lesser LA
stocks are required to minimize the risk of the Chinese stock market during both crises compared to
the full sample period.

5. Conclusions

This study examines the return and volatility spillover between the world-leading (the US and
China) and emerging Latin American (Brazil, Chile, Mexico, and Peru) stock markets during the full
sample period, the global financial crisis, and the crash of the Chinese stock market. Moreover, this study
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also estimates the optimal weights and hedge ratios during all the sample periods. The BEKK-GARCH
model is applied to estimate the return and volatility spillover between the stock markets.

Regarding return spillover, the results reveal a unidirectional return spillover from the US to the
majority of the LA stock markets during the full sample period and the Chinese crash. This implies
that the US stock market prices play an important role in predicting the prices of the majority of LA
stock markets during the full sample period and the Chinese crash. During the global financial crisis,
the return transmissions are not significant between the US and the majority of Latin American stock
markets. This implies that the prices of the US (LA) stock markets do not contribute to the role of
price discovery in the LA (US) stock markets during the global financial crisis. For the China-LA
nexus, the results reveal a unidirectional return transmission from China to Brazil, Chile, Mexico,
and Peru stock markets during all the sample periods. Thus, the Chinese stock returns can be useful in
predicting the returns of the LA stock markets.

Regarding the volatility spillover between the US and LA stock markets, the results reveal the
bidirectional volatility transmission between the US and two stock markets of Chile and Mexico, as well
as the unidirectional volatility transmission from Brazil to the US stock market during the global
financial crisis. During the Chinese crash, a bidirectional volatility transmission is observed between
the US and Mexican stock markets. This implies that portfolio investors can diversify risk by making a
portfolio of the US and LA stock markets (except Mexico) during the crash of the Chinese stock market.

Regarding the volatility spillover between the China and LA stock markets, the volatility spillover
is unidirectional from the China to Brazil stock markets during the global financial crisis. Therefore,
the majority of the LA stock markets provide an opportunity to diversify the risk of Chinese equity
portfolios during the global financial crisis. During the Chinese crash, the volatility spillover is
bidirectional between the China and Brazil stock markets. These findings propose that the portfolio
investors of the Chinese stock markets can get the maximum benefit of diversification by adding
Mexico, Chile, and Peru stocks to their portfolios during the crash of the Chinese stock market.
These findings are also important because understanding the stock market volatility behavior can play
a vital role during the valuation of derivatives and for hedging purposes. Moreover, policymakers
should consider the “prices and volatilities of the world-leading stock market” as one of the critical
factors while devising the policies to stabilize their emerging financial markets.

Based on optimal weights, investors are suggested to allocate a higher proportion of investment
to the LA stocks in the LA-US portfolio during the global financial crisis and the crash of the Chinese
stock market. For the LA-China portfolio, investors should increase their investment in the LA stocks
during the global financial crisis and the crash of the Chinese stock market. Based on hedge ratios,
less LA stocks are needed to minimize the risk of the US and Chinese stocks during the periods of
both crises compared to the full sample period. Overall, these findings provide useful information
for policymakers and portfolio managers regarding optimal asset allocation, diversification, hedging,
forecasting, and risk management.

This study employs the BEKK-GARCH model to examine the linkages between the world-leading
countries and the emerging Latin American stock markets. Extensions could include other models to
examine the return and volatility spillover—for example, cointegration and causality (Lv et al. 2019;
Demirer et al. 2019), Copulas (Ly et al. 2019a, 2019b; Yuan et al. 2020), Stochastic Dominance
(Chiang et al. 2008; Abid et al. 2014; Guo et al. 2017, Wong et al. 2018), and many others. See,
for example, Chang et al. (2018), Woo et al. (2020), and the references therein for more information.
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Abstract: Observed international diversification implies an investment home bias (IHB). Can bivariate
preferences with a local domestic peer group rationalize the IHB? For example, it is argued that
wishing to have a large correlation with the Standard and Poor’s 500 stock index (S&P 500 stock
index) may induce an increase in the domestic investment weight by American investors and, hence,
rationalize the IHB. While this argument is valid in the mean-variance framework, employing bivariate
first-degree stochastic dominance (BFSD), we prove that this intuition is generally invalid. Counter
intuitively, employing “keeping up with the Joneses” (KU]) preference with actual international data
even enhances the IHB phenomenon.
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1. Introduction

The investment home bias (IHB) is well documented. For example, the US equity market accounts
for about 35% of the world equity market, yet about 75% of Americans’ equity investment is allocated
to the US market. Hence, the US equity IHB is in the magnitude of 40%. For most commonly employed
utility functions, the univariate expected utility maximization also does not support the relatively large
domestic investment weight; hence, the IHB puzzle emerges. It is advocated that the bivariate expected
utility maximization rationalizes partially or fully the IHB. In this study, we employ the “keeping
up with the Joneses” (KU]J) preference, where the investor’s wealth and the peer group’s wealth
are the two attributes of this utility function, analyzing the peer effect on the empirically observed
IHB phenomenon.

The basic idea and the intuition of the KUJ argument for rationalizing the IHB phenomenon
is as follows: suppose that you know your univariate utility function and that, for a given joint
distribution of returns corresponding to the various international markets, you derive with this utility
function the optimal investment weights in the domestic market as well as in the foreign markets
under consideration. Furthermore, suppose that the optimal domestic investment weight is, say, p%.
Now, suppose that you decide to consider, in addition to the joint distribution of returns, one more
factor: you also want the performance of your portfolio to be as close as possible to the performance
of a certain local stock index. For example, the American investor wants the return on her portfolio
to be as close as possible to the return on the S&P 500 index, which, for simplicity of the discussion,
is assumed to be the peer’s portfolio (the same analysis applies to any other local stock index). Thus,
if the investor benefits from having a relatively large correlation with the S&P index, she may have an
incentive to increase the domestic investment weight (which generally increases the correlation with
the S&P stock index, and if the domestic investment weight is 100%, this correlation is +1) beyond
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what is obtained by a maximization of a univariate expected utility function. Therefore, employing
KUJ preferences may rationalize the THB.!

Indeed, Lauterbach and Reisman (2004) use the KUJ preference prove that the IHB is rationalized by
incorporating the peer effect. However, they use the mean-variance model with some approximations
to achieve this result. We analyze in this paper the impact of incorporating the peer effect on the IHB
in the most general bivariate expected utility case, not relying on the mean-variance framework and
where no approximations of the various mathematical formulas are employed. We define the precise
conditions, which guarantee the IHB rationalization, by adding the peer effect. We find that, in this
unrestricted analysis, the appealing intuitive explanation of the IHB rationalization by the peer effect
is generally wrong. Thus, we conclude that one should seek other economic explanations for the
observed IHB phenomenon. For some interesting economic suggestions, see Coeurdacier and Rey
(2013) and Berriel and Bhattarai (2013)? or other behavioral explanations.

We employ in this study distribution-free bivariate first-degree stochastic dominance (BFSD),
with no assumptions on the shape of the bivariate preferences and no approximations. We prove that,
despite the above appealing intuition of the peer effect on the optimal domestic investment weight,
using the bivariate preferences, the IHB may increase or decrease relative to the univariate optimal
domestic investment weight. Moreover, we demonstrate with actual international data that adding the
peer effect, counter intuitively, even intensifies the IHB from the American investor’s point of view.
Hence, the IHB still exists.

The structure of the rest of this paper is as follows. Section 2 provides a brief literature review.
Section 3 presents bivariate first-degree stochastic dominance (BFSD) rule and the implied theoretical
results. We analyze the various factors affecting the IHB and show that bivariate preferences rationalize
the IHB phenomenon only in a limited and unrealistic case. Section 4 is devoted to the commonly
employed KU]J preferences, which is a specific set of all the bivariate preferences. We show empirically
that the peer effect with KU]J preferences even enhances the IHB puzzle. Section 5 concludes.

2. Literature Review

Vanpée and DeMoore (2012) show that the IHB exists in virtually all countries. The magnitude of
the IHB phenomenon is relatively large, characterizing various periods, assets, and countries. While
about three decades ago the American investment in the local market was more than 90%, implying a
very large IHB, in recent years the IHB phenomenon has been mitigated, yet it is still about 40%. When
it comes to fixed-income assets, the home bias is even larger. This phenomenon is not unique to the US
and characterizes many capital markets (for a report on the ITHB in various countries, regarding equity
and fixed-income assets, see (Philips et al. 2012)). Actually, there is evidence that the home bias is even
worse than reported (see Baxter and Jermann 1997).

Researchers have analyzed various possible key explanations for the IHB. It is agreed that some
portion of the domestic overinvestment may be induced by international trade barriers, foreign exchange
risk, and regulation, as well as by a domestic peer group effect. However, with the increase in the
rapid flow of information and market efficiency observed over the last few decades, the trade barriers,
including possible asymmetrical information, have drastically declined. This may account for the
observed slight decrease in the domestic overinvestment phenomenon. However, since 1998, the equity
IHB of American investors has stabilized at about 40% (see Levy and Levy 2014).

Note, we analyze whether the peer effect increases the optimal domestic weight, which partially or fully rationalizes the IHB.
The reason is that it is possible that the peer effect increases the optimal domestic weight by, say, 1%, but the IHB is, say, 40%,
a case where other factors are needed to explain the observed IHB. In our study, we find empirically that the peer effect even
enhanced the THB; hence, the distinction between partial and full IHB rationalization is irrelevant.

They consider portfolio diversification when macroeconomic factors are incorporated into a two-country general equilibrium
model, called the “Open Economy Financial Macroeconomics” model. They conclude that, with this equilibrium model,
the home bias is less of a puzzle. Berriel and Bhattarai (2013) also suggest a macroeconomic model (related to the positive
association between government spending and return on local stocks) to explain the home bias.
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While most empirical studies analyze the IHB at the country level (see French and Poterba 1991;
Tesar and Werner 1995), Kang and Stultz (1997), who study the IHB puzzle in Japan, analyze it at the
individual firm level, showing that foreign investors hold disproportionally more Japanese shares
of firms in the manufacturing industries, large firms, and firms with good accounting performance.
Similarly, Dahlquist and Robertsson (2001) identify the characteristics of Swedish firms that attract
foreign investors. Lewis (1999), who analyzes the effect of each economic factor that is considered
as a barrier for efficient international diversification on the IHB, concludes that the trade barriers
cannot explain the magnitude of the existing IHB. Therefore, the IHB puzzle is still an interesting
research topic.?

Obviously, if the IHB does not incur economic loss, it does not constitute an economic puzzle.
Indeed, the intensity of the IHB economic cost changes over time. Levy (2016) analyzes the trend
in the IHB phenomenon over time. Moreover, he distinguishes between the economic home bias
(EHB), which measures the economic loss in terms of the differences in the certainty equivalent of
two alternative international diversification strategies (with and without a home bias) and the IHB,
which simply measures the deviations between the optimal international investment weights and
the actual investment weights. He reports that, while the EHB was very large in the past, in the
last 15 years, the EHB from the American investment point of view has become negligible, despite
the existence of about 40% IHB. This reduction in the EHB is induced by the increasing trend in
the international correlations. Thus, it seems that for the American investors the IHB is not a major
economic puzzle. However, he also reports that for other countries, e.g., France, the EHB is still very
large, and the economic puzzle exists. Moreover, in recent years, we have trend reversal in correlations,
and a decrease in the average correlation between various markets has been recorded. As a result of this
trend reversal, the EHB has recently increased, even for American investors. Thus, for most countries
and with the recent trend reversal in correlation also for the US, the IHB still constitutes an economic
puzzle that needs an explanation. The employment of the KUJ preference, namely incorporation of the
peer effect, is considered as one of the promising paths in explaining the IHB puzzle.

We employ in this paper a bivariate preference. Generally, with bivariate preference, the two
variables can take many forms, e.g., wealth and health, climate and income, etc. Our study deals
with investment choices. Hence, the two variables are the individual’s wealth and the peer group’s
wealth. The peer group’s wealth can be the return on a certain domestic portfolio, and in our case,
as mentioned above, we assume, for the simplicity of the discussion and without loss of generality,
that it is the return on S&P 500 stock index.

The common view is that the relevant bivariate utility function has a positive cross derivative
(we will elaborate on this issue below) and that investors want, among other things, the performance
of their portfolio to be as close as possible to the performance of the peer’s portfolio, i.e., a large
correlation with the S&P stock index is desired.* Therefore, we focus our analysis on the positive
cross-derivative case. Obviously, despite the desire for having a relatively large correlation with the
S&P index, the investor will shift from a portfolio with a small correlation to a portfolio with a large
correlation, only if the bivariate expected utility increases by such a shift. We turn to analyze the
conditions under which indeed such shift takes place, namely that the IHB can be rationalized with the
peer effect.

It is interesting to note that, even in a case in which there are no transparent trade barriers, there is a tendency to invest in
firms that are geographically located close to the investor’s location. This phenomenon is well documented within the US
(see Coval and Moskowitz 1999, 2001; Huberman 2001). This indicates that the home bias is a complex phenomenon that is
not easy to explain with conventional economic factors.

Tsetlin and Winkler (2009) advocate that correlation aversion prevails. However, in their model, the two attributes of the
bivariate preference directly affect the utility of the decision maker, for example, income and quality of life. In our model,
the two attributes are different: the individual’s wealth and the peer group’s wealth. As relative wealth may affect the
individual’s utility, it is advocated in the literature that, when some conditions hold, correlation loving prevails.
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3. Bivariate First-Degree Stochastic Dominance (BFSD) and the IHB

We would like to stress at the outset that most of the mathematical formulas given in the first
part of this section are not new and exist in the literature, albeit in different forms and in different
connotations. However, we use these mathematical results, to the best of our knowledge for the first
time to analyze the peer effect with KUJ preferences on the IHB phenomenon.

3.1. The Sufficient Conditions for BFSD Implying the IHB Rationalization

Consider an individual with a bivariate preference U(w, wp), where w denotes the return on the
selected international portfolio by the investor under consideration, and w, denotes the return on
the peer’s portfolio. We compare two bivariate investment portfolios, F and G, where the domestic
investment weight in portfolio F is larger than the domestic investment weight in portfolio G (we will
elaborate later on the selected portfolios, F and G). Our aim is to examine the conditions under which F
dominates G by BESD with the above bivariate utility function, where we first assume two assumptions
on the preferences: GU(w, wp)/ dw = Uy > 0 (monotonicity) and 9° U(w, wp) /dwdwy, = Uyp 2 0 (later
on we consider also Uy, < 0, a case usually not considered in KU]J economic research but emerges as
important to our analysis). There is no constraint on the derivative (9U(w, wp) /9wy, = Up, which can be
negative, zero, or positive.5 If such dominance exists, then all investors, regardless of the precise shape
of the bivariate preference, will switch from G to F. Hence, the optimal domestic investment weight
increases, and therefore the peer effect rationalizes the IHB phenomenon.

Note that the main ingredient of the KUJ preference is that the cross derivative (Ui, ) is positive,
implying that the individual’s marginal utility increases with an increase in the peer group wealth
(see Ljungqvist and Uhlig 2000). Therefore, as explained before, it seems that the investor with a
positive cross derivative would incline to overinvest domestically, as she prefers her wealth to be
positively correlated with the peer’s wealth. While the above intuitive explanation is appealing, in the
following proposition, it is formally shown that generally only under some specific conditions, indeed
a positive cross derivative is tantamount to correlation loving, where correlation loving implies that,
by increasing the domestic investment weight, the bivariate expected utility increases. Namely, if the
conditions required in the proposition are intact, the investor increases her bivariate expected utility by
overinvesting domestically (relative to the optimal univariate expected utility maximization optimal
domestic investment weight), and by doing so, the correlation increases. Thus, if the proposition
required conditions hold in practice, we have by the KU]J preferences a rationalization of the IHB,
and the IHB puzzle may vanish. As we explain below, in practice, the required conditions for IHB
rationalization are not intact. Before stating the proposition, we need the following definition:

Definition 1. Definition of correlation loving (CL): The investor is CL if and only if, by increasing the correlation
between her portfolio and the peer’s portfolio, the expected bivariate utility increases.

Hence, CR investors who maximize the bivariate expected utility would increase the domestic
investment weight relative to the optimal univariate expected utility weight.

Note that a negative sign implies jealousy, and a positive sign implies altruism (see Dupor and Liu 2003).

Numerous studies suggest replacing the univariate expected utility analysis with the expected bivariate utility analysis with
various definitions of the two variables: past and present consumption, consumption of the individual, and consumption of
the peer group, the wealth obtained by the individual and the opponent in an ultimatum game, and so forth. For studies
that assume that the utility is derived not from the absolute wealth (or consumption) of the individual but from the relative
wealth (or consumption), in which the wealth’s position relative to the peer group plays an important role, as well as for
other factors that do not affect the classic univariate expected utility but affect the bivariate expected utility, see, for example,
Abel (1990), Constantinides (1990), Bolton (1991), Rabin (1993, 1998), Gali (1994), Campbell and Cochrane (1999), Bolton and
Ockenfels (2000), Dupor and Liu (2003), Zizzo (2003), and Demarzo et al. (2008).
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Proposition 1. Suppose that the investor faces two alternate bivariate prospects, F(w,wy) and G(w, wy),
where w as well as wy can take only two different outcomes. As there are only two outcomes, they can be
rearranged to have either a correlation of +1 or a correlation of —1. Diversification between w and wy is not
allowed, implying that the marginal distributions are identical (namely, Fy, = Gy and Fy, = Gy, regardless
of the outcomes arrangement; see, for example, Table 1). Under these specific conditions, the investor with a
bivariate preference is CL if and only if the cross derivative is positive, namely Uyp > 0. Specifically, under the
conditions of the proposition, with CL, the prospect with a correlation of +1 yields a higher bivariate expected
utility than any other possible prospect. (For proof, with some other notation, see (Eeckhoudt et al. 2007)).

Thus, if the conditions of the proposition were intact, the American investor who likes her
investment performance to be as close as possible to the S&P index would have a higher expected utility
by increasing the domestic investment weight. Actually, under the conditions of the proposition, having
a correlation of +1 with the S&P index is optimal, implying that investing 100% domestically is optimal,
which creates a negative IHB puzzle (because in practice less than 100% is invested domestically).
In short, if the conditions of Proposition 1 are intact, we have:

CLe Up>0 (1)

Note that investing more intensively domestically, hence increasing the correlation between the
investor’s portfolio and the peer’s portfolio, generally does not imply CR as defined above. The reason
is that, with investment in practice, by increasing the domestic investment weight, although the
correlation increases, generally, other parameters of the portfolio may also change, the marginal
distributions may change (hence, the conditions of the proposition are violated), and the bivariate
expected utility may decrease.

Therefore, the American investor may decide not to decrease the domestic investment weight,
despite the desire to have large correlation with the S&P index. However, by the above definition,
the investor is CL only if, after considering all effects, the bivariate expected utility increases.

However, note that, by Proposition 1, the marginal distributions are kept unchanged, and the
correlation can take only the extreme values of either +1 or —1. This is because in Eeckhoudt et al. (2007)
original proposition, each variable can get only two possible values. Hence, by reordering these values,
the marginal distributions are kept unchanged. Also, diversification between w and wp is not allowed,
because if it is allowed, the marginal distribution of the individual’s wealth, w, generally will not
be kept constant. Thus, the statement given in Proposition 1 is suitable to some choices, where the
variables are, for example, wealth and health, with only two outcomes (say, bad and good health,
high and low income, etc.). As we shall see below, with international diversification, we have more
than two outcomes corresponding to each prospect, and diversification is allowed. Hence, the marginal
distributions generally change when the selected diversification changes. Therefore, a positive cross
derivative in our analysis does not necessarily imply CL. As a result, we may even obtain an IHB
phenomenon enhanced with bivariate preferences relative to the univariate IHB, despite the fact that a
positive cross derivative is assumed.

Let us turn now to the conditions for BFSD of the distribution of returns of the portfolio with
the IHB over the distribution of returns with no IHB. The two portfolios that we compare, F and G,
have bivariate density functions, denoted by f(w,wp) and g(w,wp), respectively. As we focus on
the possible IHB rationalization, it is assumed, as explained before, that F stands for a portfolio with
an IHB, that is, the domestic weight in this portfolio is larger than the corresponding weight in G.
Thus, if the domestic investment weight in G is equal to the optimal theoretical univariate expected
utility maximization domestic weight (say, the international market portfolio), the BFSD of F over G
implies that the peer effect rationalizes the IHB phenomenon, as all investors would prefer F over
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G.7 Assuming that 82(w, wp)/ dwdwy) = Uy > 0 with KUJ preference® to explain various observed
economic phenomena is very common. As seen in Proposition 1, this assumption is an important
ingredient also needed to rationalize the IHB phenomenon, so long as the conditions of Proposition 1
hold. Therefore, we examine the role of the cross derivative on the BFSD relation. To examine possible
rationalization of the observed IHB with KUJ preferences, we extend the expected utility univariate
analysis to the bivariate expected utility analysis by adding the peer effect.

The expected bivariate utility of portfolios F and G is given by:

Erl = fﬂw yz:” U(w,wp)f(w,wp)dwdwp

W @
w LW
EcU = j;ﬁ %P U(w,wp)g(w, wp)dwdwp

where w and w denote the minimal and maximal values of w (which can be —co and co); similarly, w),
and wp denote the minimal and maximal values of wp. Thus,

Ty
A= EFU-EgU = f f U(w, wp)[f(w, wp) - g(w, wp)]dwdwp
w w,
L s
Integrating by parts the above equation with respect to both variables yields:

A= EpU—EqU = [ [ Upa[F(w, wp) - G(w, wp)]dwdwy + [ Uy [G(w)~
_ = =
F(w)ldw+ [ Up[G(w,) - F(wp)dw, ©)
=p
=A+B+C

where A; denotes the expected utility difference corresponding to the ith investor, F(w, wp) and G(w, wp)
are the two bivariate cumulative distributions, F(w) = F(w, @p) is the marginal cumulative distribution

function of w, F (wp) =F (ﬁ, wp) is the marginal cumulative distribution function of wp, and Uy, Uy,
and Uj; denote the partial derivatives: U; = dU/dw, U, = dU/Jdwp, and Ujp = 22U/ dwdwp,
respectively. For the derivation of Equation (3) with slightly different notations, see Levy and Paroush
(1974, p. 131) and Atkinson and Bourguignon (1982, pp. 185-86).° Note that, as the marginal utility of
the peer’s portfolio is identical under the various investment strategies (with and without intensive
domestic investment). Namely, we have G(wp) = F(wp), therefore term C in Equation (3) is equal to
zero. Thus, the rest of the paper relate only to terms A and B.

Let us first analyze the relation between Equation (3) (with C = 0) and the conditions given
in Proposition 1. If each of the two random variables, w and wj, has only two possible different
outcomes, the correlation is either +1 or —1. Also, when diversification between w and wp is not
allowed, the marginal distributions are equal (namely, G(w) = F(w), see also the example given in

Obviously, we have a different optimum portfolio for each utility function, but, as we shall see below, the analysis is intact,

independent of the assumed preference.

8 The KUJ and CUJ literature is very extensive; hence, we mention here only a few of these studies. Abel (1990) and Gali (1994)
use this bivariate framework to explain optimal choices. Ljungqvist and Uhlig (2000) examine the role of tax policies in
economics with CUJ utility functions. Campbell and Cochrane (1999) assume that the preference is a function of the relative
consumption, when the individual’s consumption is measured relative to the weighted average of the past consumption
of all individuals. In these models, when the peer group’s variable (e.g., consumption) is a lagged variable, the model is
commonly called the CUJ model, and when the individual’s variable and the peer group variable relate to the same time
period (e.g., return on investment), it is commonly called the KUJ model. In this paper, we analyze the optimal portfolio
investment decision in the KUJ set-up.

9 Note that Equation (2) is reduced to the well-known univariate formula employed to derive the FSD rule, where U, = U, = 0.

For more details, see Hadar and Russell (1969) and Hanoch and Levy (1969). Although we focus in this paper on FSD,

one can assume risk aversion and employ stronger investment rules; for example, see Rothschild and Stiglitz (1970) and

Levy (2015).

78



JRFM 2020, 13, 94

Table 1. Hence, in this specific case also term B is equal to zero, and we are left with term A. If F
represents the +1 correlation and G the —1 correlation, we must have with the two outcomes case that
F(w, wp) > G(w, wp) (see example 1 in Table 1. Hence, in this case by Equation (3), with B = C = 0, the
condition Uy, > 01is a sufficient condition for dominance of the joint distribution with the +1 correlation
over the joint distribution with the —1 correlation (see Equation (3)).10 It is easy to verify that, in this
specific case, Ujp > 0 is a necessary and sufficient condition for dominance.!! Thus, Equation (3) is
perfectly consistent with Proposition 1, so long as the conditions given in the proposition are intact.
However, Equation (3) corresponds to the general case, as it covers the more realistic scenarios where
more than two outcomes are possible. Diversification is allowed, and the marginal distributions are
not necessarily equal, hence term B is not necessarily equal to zero. As we shall see in this general and
realistic case, U, > 0 is neither a necessary nor a sufficient condition for dominance. We turn now to
analyze the possible dominance of the portfolio with the IHB over a portfolio with no IHB in the most
general case.

To examine possible rationalization of the IHB phenomenon with bivariate preferences, let us first
take a deeper look at the marginal distributions corresponding to the international diversification issue
analyzed in this paper. Returning to Equation (3), note that, as mentioned above, it is reasonable to
assume that the third term on the right-hand side of Equation (3), term C, is equal to zero, as the investor
in the capital market generally cannot affect the peer group investment decision; hence, the peer’s
group marginal distribution is identical under F and G. This condition conforms to the requirement in
Proposition 1, even in the case where more than two outcomes exist. This is a reasonable assumption
with the investment choices that we analyze in this study but not with ultimatum games in which
the individual decision affects the opponent’s outcome. Moreover, in the portfolio investment case,
this term is equal to zero, regardless of whether the peer group portfolio is domestic or international.
Thus, regarding the issue that we investigate in this paper (investment with a particular stock index as
the peer group’s portfolio), as advocated above, the sign of the derivative U, is irrelevant. Namely,
term C = 0 and there is no need to assume jealousy (U, < 0) or altruism (U > 0) to obtain our results
corresponding to the portfolio investment case. Thus, as for the analysis of the IHB, term C is equal to
zero, and Equation (3) is reduced to:

Aj=A+B. (4)

However, note that generally we cannot assume that also term B is equal to zero, as by changing
the diversification strategy, we change the marginal distribution of the individual’s wealth. Thus,
with international portfolio diversification, the condition of equal marginal distributions (see term B of
Equation (3)) required by Proposition 1 does not hold.

To be able to determine whether the peer effect induces an increase in the optimal domestic
investment relative to the univariate expected utility optimal domestic investment weight, we need to
be more specific regarding the definitions of portfolios F and G under consideration. We examine here
the possible existence of BFSD by considering the two specific portfolios with direct implication to the
THB issue analyzed in this paper. These two portfolios are denoted by F4 and Gy, as defined below.

Definition 2. Gy is the portfolio with the international market weights. If the American investor holds this
market portfolio, she would invest 35% (which is the weight of the American market in the world market)
domestically; hence, the IHB does not exist. Distribution F 4 stands for the actual aggregate portfolio held by the
American investors. Namely, the actual domestic weight held by the American investor is 75%; hence, holding
this portfolio implies an IHB of 40%.

Actually, it is required to have at least one strict inequality with the distribution functions as well as with the cross derivative
to avoid the trivial case of having A; = 0. In the rest of the paper, when we write such inequalities, we always mean that
there is at least one strict inequality, but to avoid a complex writing, we will not write it down everywhere.

If Uy, < 0, in some range, one can always find a bivariate preference, such that outside this range the cross derivative is close
to zero; hence, A; is negative. Therefore, to guarantee that A; is non-negative, the cross derivative cannot be negative.
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Assuming that term C is equal to zero, and rewriting Equation (4) in terms of the above two
portfolios, we obtain:

Ai=Ep,U- EGMU = JZ” fjuu[FA(w, wp) - GM(w, wp)]dwdwp

©)
f Uy [Gpr(w) = Fa(w)]dw = A+ B

Suppose that without the peer effect the market portfolio is optimal. If A; > 0, the ith investor
under consideration who considers also the peer effect prefers the actual portfolio to the market
portfolio; hence, the investor increases the bivariate expected utility by increasing the domestic
investment weight. However, to have BFSD and IHB rationalization, we need to have that A; > 0 for
all investors i = 1, 2, ... n, regardless of the precise shape of their preferences. A few conclusions,
some of them in contradiction to the common view regarding the role of the cross derivative, can be
drawn from Equation (5).

First, if Uy, > 0 is assumed (as needed in Proposition 1 to justify the rationalization of the IHB),
we find that there is no BFSD; hence, in this setting there is no IHB rationalization. The reason is
that if Uyp > 0, term A of Equation (5) is positive only if F4 (w, wp) > GM(w, wp), but this implies that
Fy(w, ) = Fp(w) > G(w, ) = G(w), and therefore, term B is negative. The sum A + B may be
negative, implying that there is no BFSD.

Surprisingly, in contrast to Proposition 1, the condition Uj, < 0 may allow BFSD; hence, it may
allow IHB rationalization. We have BFSD and IHB rationalization with Uj, < 0 if the following two
conditions hold:

FA(w, wp) < GM(w, wp) (6a)

Fa(w) < Gu(w) (6b)

But as condition (a) implies condition (b), unlike the positive cross-derivative case, these two
conditions can simultaneously hold. Therefore, if condition (a) on the joint distribution holds, both terms
A and B are positive (with Ujp < 0) and therefore A; > 0fori=1,2,... n

Example 1. The marginal distributions and the BFSD.

In this example, we demonstrate the relation between the BFSD and the positive cross derivative
in the case where the conditions of Proposition 1 are intact, and then we demonstrate the more realistic
case, where the marginal distributions are not kept constant; hence, BESD does not exist, despite the
positive cross-derivative assumption.

Suppose that the S&P index return wy is equal to 3 or 4, each outcome with an equal probability
of 0.5. We consider investing in either portfolio F or portfolio G, both yielding return w of either 2
or 5 with equal probability of 0.5. However, F has a correlation of +1 with the S&P index (with joint
returns of (2, 3) with a probability of 0.5 and joint returns of (5, 4) with a probability of 0.5). G has a
negative correlation of —1 with the S&P index with joint returns of (2, 4) with a probability of 0.5 and
joint returns (5, 3) with a probability of 0.5 (see Table 1). All other joint probabilities are equal to zero.
Denoting the joint distribution corresponding to the correlation +1 by F4 and the joint distribution
corresponding to correlation —1 by Gy, we have with the above example with the joint probabilities
the following relationship:

F A(w, wp) > GM(w, wp) for all values (w, wp) (7)
with at least one strict inequality (see lower part of Table 1 Part a), e.g.,

Fa(2,3) = 05> Gu(2,3) =0,
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and it is easy to verify that with the marginal distributions, we have:
Gm(w) = Fa(w)

e Guoy) = Fafon)

for all possible values(all marginal cumulative distributions get the values of 0.5 at the lower outcome
and 1 at the larger outcome). Therefore, the conditions of Proposition 1 are intact and terms B and C of
Equation (3) are equal to zero and we are left only with term A; hence, if the cross derivative is positive,
the joint distribution yielding (2, 3) and (5, 4) dominates the joint distribution (2, 4) and (5, 3) for all
bivariate preferences with a positive cross derivative. Thus, term A of Equation (3) is positive, and term
B is equal to zero; hence, we have BFSD of the joint distribution with correlation +1 over the joint
distribution with correlation ~1. So far, this example conforms to the conditions given in Proposition
1 and provides the IHB rationalization by adding the peer effect, so long as the cross derivative is
positive. Let’s turn to another example, where one of the conditions of Proposition 1 is violated.

Table 1. Joint Probability and Joint Cumulative Probability Functions Corresponding to the two
Examples Given in the Text.

Correlation +1 Correlation —1

Part (a): The First Example Given in the Text
The Probability Functions

Fa Gm
w\wy 3 4 w\wy 3 4
2 0.5 0 2 0 0.5
5 0 0.5 5 0.5 0
The Cumulative Bivariate Probability Functions
w/wp 3 4 w/wp 3 4
2 0.5 0.5 2 0 0.5
5 0.5 1 5 0.5 1

Part (b): The Second Example Given in the Text

The probability Functions

w/wy 3 4 w/wy 3 4
2 0.5 0 2 0 0.5
5 0 0.5 10 0.5 0
The Cumulative Bivariate Probability Functions
w/wp 3 4 w/wy 3 4
2 0.5 0.5 2 0 0.5
5 0.5 1 10 0.5 1

Make now the following change in the previous example: the outcomes with the —1 correlation
are 2 and 10 with equal probability of 0.5 rather than 2 and 5 as we have in the previous example. Thus,
we simply replaced the outcome 5 by outcome 10 (see Table 1 Part b). All the other outcomes are kept
unchanged. Thus, under the choice with a correlation of —1, we have the joint outcomes of (2, 4) or
(10, 3) with an equal probability of 0.5, and with the choice corresponding to correlation +1, we have as
before the joint outcomes (2, 3) or the outcomes (5, 4) with an equal probability of 0.5. It is easy to
verify that as before, also with this change we have:
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FA(w, wp) > GM(w, wp) 8)

with at least one strict inequality, e.g.,
Fa(2,3) =05 > Gum(2,3) =0.

Hence, if the cross derivative is positive, term A of Equation (5) is also positive. However, with this
change, the marginal distribution of the individual wealth also changes, and as cumulative distribution
of (2, 10) is located to the right of the cumulative distribution of (2, 5), namely, Gy (w) < Fa(w) for all
values w, and there is at least one strict inequality, e.g., Gy(w = 5) = 0.5 > Fa(w = 5) = 1, see Table 1
Part b (this means that the univariate prospect A dominates prospect M by FSD'?); hence, term B of
Equation (5) is negative. Therefore, A + B may be positive, zero, or negative, and we do not have
BFSD, and as a result, the IHB cannot be rationalized in this case, despite the assumed positive cross
derivative. Actually, it is easy to find a specific bivariate preference with Uj; — 0 and U, very large
such that A + B < 0, implying that F does not dominate G.

Finally, even if we stick to the original set of numbers by diversification of say, 0.5 in each asset
(w and wp), the marginal distribution of the individual’s wealth becomes either 2.5 =0.5 x 2 + 0.5 X 3
or4.5=0.5 x5+ 0.5 x 4 (with equal probability) in the case of a correlation of +1, and either 3 = 0.5 x 2
+0.5x40r4=0.5x5+0.5x3 (with an equal probability) in the case of correlation of —1 (see Table 1
Part a). Thus, allowing diversification between the two variables the marginal distribution of w is
not kept constant, and the conditions required by Proposition 1 are violated, and once again, we do
not have BSFD, even where the cross derivative is positive. Moreover, by changing the investment
weights, we change the marginal distribution of w. Hence, we do not have BFSD of the +1 correlation
joint distribution over the —1 correlation joint distribution.

In sum, with the first example, we have IHB rationalization if diversification is not allowed. In the
second example, we do not have IHB, even if diversification is not allowed, let alone if it is allowed.
We show below that the case given in Table 1 Part b, where the marginal distributions are not kept
constant, conforms to actual stock market data; therefore, KUJ with a positive cross derivative does not
rationalize empirically the IHB phenomenon.

3.2. Discussion

We analyze above the dominance condition between two specific portfolios, one with an IHB and
one without an IHB. If indeed these are the two portfolios considered by all investors, assuming a
positive cross derivative, we do not have dominance of the portfolio with the IHB over the portfolio
with no IHB. Thus, a positive cross derivative is not a sufficient condition for BESD. However, with a
negative cross derivative, we may have dominance and, therefore, may obtain IHB rationalization
by incorporating the peer effect. The existence of such IHB rationalization depends on the joint
distribution of the investor’s selected portfolio and the peer’s portfolio. If all investors consider
the same two portfolios (the market portfolio and the actual portfolio defined above), and if the
condition F4 (w, w,,) < GM(w, wp) holds, we have IHB rationalization, so long as the cross derivative is
negative. However, generally there is no reason to assume that with actual data this condition is intact.
Therefore, we generally do not have IHB rationalization with the above two portfolios, regardless of
the sign of the cross derivative.

12 Generally, if F(x) < G(x) for all values x and there is at least one strict inequality, we say that F dominates G by first degree

stochastic dominance (FSD).
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In the above analysis, we consider two specific portfolios. In practice, not all investors hold
these two portfolios, and each investor has her optimal univariate portfolio and her optimal bivariate
portfolio. In this realistic case, only if we have for all investors the optimal domestic investment
weight whereby the bivariate utility function is larger than the optimal domestic investment weight
corresponding to the univariate framework, we have an IHB rationalization. As such case cannot be
analyzed without the information on the preferences of all investors, we analyze below the peer effect
on the IHB with the commonly employed KU]J preferences.

4. The IHB with Some Specific KUJ Preferences

We proved above that unless the marginal distributions are kept unchanged with a positive cross
derivative, we do not have BFSD, and with a negative cross derivative, the required condition is
unlikely to hold; therefore, generally we do not have IHB rationalization, regardless of the sign of the
cross derivative. However, it is possible that, despite not having dominance which corresponds to all
possible bivariate preferences, for some important and commonly employed KU] preferences (but not
for all bivariate preferences, as we do not have BFSD), with various risk aversion parameters, the peer
effect may induce an increase in the domestic investment weight relative to the univariate optimal
domestic investment weight. As we shall see below, this is not the case and also the KU]J preferences
empirically do no rationalize the IHB.

The procedure for testing the peer effect with KU]J preferences is as follows: We first solve with
actual data for the optimum diversification with a univariate preference for various degrees of risk
aversion and then solve for the optimum diversification with a KU]J preference with a similar form of
the univariate preference but with the incorporation of the peer effect. Using this two-step analysis,
we measure the marginal peer group effect on the optimal domestic investment weights. It is shown
below empirically that, with the commonly employed KU]J preference with a positive cross derivative,
adding the peer group effect does not rationalize the home bias phenomenon. Moreover, the optimal
domestic investment weight with the KU]J preference (with a domestic peer group) is found to be
even smaller than the optimal domestic investment weight with no peer group effect. Thus, despite
the assumed positive cross derivative, which under some conditions implies CL, we find empirically
that, counter intuitively, the IHB phenomenon is even enhanced when the peer effect is incorporated.
Thus, shifting from univariate utility function to the bivariate utility function with peer effect does not
rationalize the IHB and other explanations are called for. Let us elaborate.

4.1. The Optimal Diversification with a Univariate Utility

The empirical analysis given in this section is done from the American investor’s point of view.
Thus, all the returns are in dollar terms. Similar analysis can be done from other points of view.
With a univariate CRRA utility function, we have:

U(w) = [w'™%/(1 - a)], witha > 0. 9)
With n available international assets, we solve for the vector of the investment proportions p
(where 0 < p; < 1), which maximizes the following expected utility: -

n-1

Ell(pusyus +pay2 + (1= Y pu)yn) ™/ (1= )]} (10)
i=1

where yyys is the rate of return on the US index (a random variable), and y; is the return on foreign
market i, wherei = 2,3,..... n, and there are n stock indices, the US index plus n — 1 foreign indices.
Let us specify the corresponding bivariate preferences employed in this study.
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4.2. The KU]J Preferences (for a > 1)

We discuss below various bivariate functions with a positive cross-derivative, which are natural
extensions of the myopic univariate reference. We first employ the bivariate utility suggested by
Abel (1990). As this function has a positive cross derivative only for a > 1, we also employ a slightly
different preference that conforms to the KUJ requirement for the whole range of the risk aversion
parameter (@ > 0). Abel suggests a general bivariate formula that, under some conditions for the
various parameters, reduces to:

U(w, wp) = [w/w};}lw/(l —a) wherea > 0 andy > 0. (11)

With y = 0 this function is reduced to the univariate CRRA function. Hence, this is a neutral
extension to the univariate myopic function. Thus, this bivariate preference is a natural extension of the
univariate CRRA function, U(w) = [w!~%/(1 - a)], which is commonly employed in economic research
(see (Merton and Samuelson 1974)) to the bivariate case, in which the peer group effect is incorporated
into the analysis. Note also that, when wy, is constant, Equation (11) collapses to Equation (9). As we
wish to have monotonicity with regard to w and a positive cross derivative (because with positive cross
derivative there is an appealing intuition for an increase in the domestic investment weight), let us
examine these two derivatives. Monotonicity always exists with this function, because:

Uy = (w/wh) “w,) = w’“w;y“*“) >0.
The cross derivative, which is given by:
_ —a, —y(1-a)-1
Up =-y(1-a)ww, ,

is positive only for a > 1. Thus, we have a KUJ preference with a positive cross-correlation for a > 1.
It is worth mentioning that with this function we also have jealousy, namely, U, = dU/dw, < 0.

Generally, in economics, the range of the risk aversion parameter is @ > 0. To avoid the above
constraint on a (namely a > 1), we also employ the following function:

U(w,wp) = [w'=*/(1-a)][wy P/ (1~ B)] with < 1. (12)

With this preference, the cross derivative is positive for all values @ > 0, as required by the
myopic preference. Once again, when wj, is constant, this function collapses to the univariate myopic
preference (multiplied by a positive constant). The partial derivative with respect to w of this bivariate
function, given by dU/dw = Uy = w”"wll;ﬁ /(1-pB) =0, is positive only for < 1 and for any value a.
As we assume monotonicity in the numerical solution to the optimum investment, we take the § <1
constraint into account.

The cross-derivative is positive for the whole range of relevant parameters:

+ 5 0.

22U/ dwdwp = Uyy = ww,

It is easy to see that, with this function, U, may be negative, zero, or positive, depending on
whether « is larger than, equal to, or smaller than 1. Therefore, with this function, we allow for jealousy
as well as altruism.

Let us write down the equations employed in the derivation of the optimal investment weights with
the various preferences. With n available international assets, we solve for the vector p (wWhere 0 < p; < 1),
which maximizes the expected utility. For the preference suggested by Abel (see Equation (11)), we have:

n-1

Ellpustus +p2va +-.-.(1= Y pudyal /@)} /(1 =)} (13)
i=1
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and with the KU]J preference given by Equation (12) we have:

n—-1

El(pusyus +paya + (1= Y p)yn) ™/ (1= )] [yus /(1= B)]), (14
i=1

where s is the return on the US index (a random variable), and y; is the return on foreign market i,
wherei =2,3,..... n, and there are n stock indices, the US index plus 1 — 1 foreign indices.

4.3. Data and Results

The purpose of the empirical analysis given below is to examine the peer effect with some specific
preferences on the IHB phenomena with actual data in the case where BFSD does not necessarily exist.
It is not intended to find the optimal investment portfolio for investment, a case where statistical
adjustment should be made in the empirical distribution, which is very noisy

We employ the 11 countries’ actual ex-post joint distribution to analyze the peer group effect on the
domestic investment weight from the American investor’s point of view.!3 Obviously, the empirical
distributions of return of all countries are not identical, and the marginal distribution of the various
diversified portfolios under consideration are not identical; hence, the conditions of Proposition 1
are not intact; hence, the BFSD does not exist with positive cross derivative. Yet, it is possible that,
with some specific bivariate preferences, the domestic investment weight increases. Thus, we examine
whether the above two specific KUJ preferences with a positive cross derivative explain the IHB,
despite the fact that we do not have BFSD. We use in the empirical study annual rates of return taken
from the Bloomberg MSCI stock indices.

We report the optimum investment weights corresponding to Abel’s bivariate preference function
(see Equation (13)). The results corresponding to the bivariate function given by Equation (14) are very
similar, so for brevity sake they are not reported here in detail. Both forms of the bivariate functions
reveal the same surprising results: the commonly employed KUJ preference with a positive cross
derivative induces a decrease rather than an increase in the US investment weight. Thus, the adding
the peer effect does not rationalize the IHB.

Table 2 reports the results obtained using Abel’s preference (see Equation (13)). The table employs
the actual 25-year historical data (see Appendix A for the annual rates of return of the 11 countries for
the years 1988-2012 and Appendix B for the correlation matrix). Recalling that, for y = 0, the bivariate
function is reduced to the univariate CRRA function, we see that, by adding the KU]J peer group effect
with the domestic peer group, the US investment weight decreases quite sharply.

Table 2. The US optimal investment weights in the US market with Abel’s bivariate preferences with
empirical data for the period 1988-2012.

o

y (CRRA Univariate Preference y = 0) 0.5 1 2
1* 0.00 0.00 0.00 0.00
2 0.49 0.39 0.29 0.13
5 0.95 0.82 0.72 0.57

*Only for @ > 1 do we have a KU]J preference with Uy, > 0. We also have with this function U; > 0 (monotonicity)
and Uy < 0 (jealousy).

13 We are aware of the large potential statistical errors involved in the derivation of the optimal investment weight with

historical data (see Britten-Jones 1999; Levy and Roll 2010). However, the goal of this empirical analysis is not to derive the
optimal investment weights for ex-ante investment purposes but rather to demonstrate that, with empirical data covering 11
international markets and 25 years, it is possible that, with some commonly employed KU]J preferences with a positive cross
derivative, the peer group effect induces a decrease rather than an increase in the domestic investment weight, which is in
contradiction to the equal marginal distribution case and to the economic intuition.
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Specifically, with the 11 countries for & = 2, we find with no peer group effect (a univariate
utility function) that the optimal investment weight in the US is 0.49. Employing Equation (13)
(Abel’s preference), we find that the domestic investment in the US decreases rather than increases.
For example, for a« = 2 and y = 1, the US domestic weight decreases from 0.49 to 0.29. The same
is true for the other KUJ preference suggested in this study. Employing Equation (14), we find that
with the KU]J domestic peer group effect, for « = 2 and g = 0.5, the optimal investment weight in
the US decreases from 0.49 with no peer group effect to 0.39 with the peer group effect (this figure is
not reported in a table). Thus, with the KU] preference with a positive cross derivative, adding the
domestic peer group effect decreases rather than increases the optimal US investment weight. Hence,
with these specific KUJ preferences, we cannot rationalize the home bias empirically, which confirms
the assertion that a positive cross derivative and CL are generally not equivalent. With a positive
cross derivative, the investor wishes to increase the correlation by increasing the domestic investment
weight but may not do it because other parameters (e.g., mean return) may induce a decrease in the
bivariate expected utility by such action. Thus, if all investors have CRRA preference with various risk
aversion parameters, the IHB is even intensified with the peer effect, despite the fact that a positive
cross derivative implies that, other things being held unchanged, the American investor wants her
portfolio to be as close as possible to the S&P stock index.

We turn now to examine whether incorporating the peer effect with a negative cross derivative

P
wl—a

may increase the optimal domestic investment weight. We employ the function [§=]/ [%]
(with @ < 1and § < 1). Itis easy to verify that the derivative with respect to w is positive (monotonicity)
and that the cross derivative is negative. Once again, counter intuitively, we find that with this bivariate
utility function with a negative cross derivative, the optimal domestic investment weight of the
American investor in the US increases rather than decreases, due to the peer effect. For example,
for &« = 2and y = 0.5, we obtain with this function that the domestic investment weight increases from
0.49 to 0.54. Therefore, we conclude that, with historical data, a positive cross derivative is neither
sufficient (see Proposition 1) nor necessary (as demonstrated empirically with a preference with a

negative cross derivative) for IHB rationalization.

5. Concluding Remarks

Itis well documented in the literature that, in the univariate expected utility framework, the optimal
international diversified portfolio generally reveals an investment home bias (IHB), which constitutes
a major economic puzzle. In another research strand, it is suggested that investor’s welfare is generally
determined by relative wealth, relative consumption, relative success in investment, and so on, leading
to the development of the bivariate expected utility paradigm, in which keeping up with the Joneses
(KU]J) and catching up with the Joneses (CU]J) preferences are probably the most widely employed
preferences in the bivariate framework. In this study, we combine these two research strands by
investigating whether switching from a univariate preferences framework to multivariate preferences
framework enables the rationalization of the empirically observed IHB phenomenon.

As with the bivariate preference, with a positive cross derivative, other things being held constant,
the investor wishes the performance of her portfolio to be as close as possible to the performance of
a certain local stock index (the peer effect), it is suspected that with a peer effect the investor tends
to overinvest domestically (relative to the univariate expected utility domestic optimal investment
weight). Hence, the employment of the bivariate preference with a positive cross derivative may
rationalize the IHB. We find, theoretically and empirically, that this intuitive explanation is misleading.

While it is proven in the literature that, under some approximation, employing the mean-variance
framework with a peer effect indeed rationalizes the IHB, we show in this paper that for unrestricted
preferences not confining the analysis to the mean-variance model, counter intuitively, the IHB cannot
be rationalized by the peer effect, even when the cross derivative of the bivariate preference is assumed
to be positive.
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We employ the bivariate first-degree stochastic dominance (BFSD) rule and prove theoretically
that bivariate preferences with a positive cross derivative rationalizes the observed IHB, only in the
unrealistic case in which the marginal distributions of all possible portfolio under consideration are
identical. Of course, this does not hold in practice, as not all international markets are identical,
and therefore also the marginal distributions of various selected diversified portfolios are not identical.
Thus, even with peer effect, overinvesting domestically may be an inferior investment strategy,
hence the IHB cannot be explained by the peer effect.

With actual empirical international stock market data (obviously, with unequal empirical marginal
distributions), we find that the commonly employed KU]J preference with a positive cross derivative,
which intuitively implies a desire to increase the correlation by overinvesting domestically, decreases
rather than increases the domestic investment weight, hence the peer effect even enhances the IHB
puzzle. Moreover, once again counter intuitively, we find that, with a bivariate preference with a
negative cross derivative, the optimal domestic investment increases. Thus, a positive cross derivative
is neither necessary nor sufficient for IHB rationalization.

In sum, employing a general bivariate utility function with peer effect, with no constraints on
the preference employed, generally cannot rationalize the empirically observed IHB. Employing the
commonly employed specific KUJ bivariate preferences also does not rationalize the IHB. As the IHB
is an empirical fact, to rationalize this phenomenon, one needs to seek other explanations and other
research strands, as the intuitive explanation of the peer effect for rationalizing the ITHB phenomenon
is misleading.
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Abstract: Recently, a large number of empirical studies indicated that individual equity options
exhibit a strong factor structure. In this paper, the importance of systematic and idiosyncratic
volatility and jump risks on individual equity option pricing is analyzed. First, we propose a new
factor structure model for pricing the individual equity options with stochastic volatility and jumps,
which takes into account four types of risks, i.e., the systematic diffusion, the idiosyncratic diffusion,
the systematic jump, and the idiosyncratic jump. Second, we derive the closed-form solutions for
the prices of both the market index and individual equity options by utilizing the Fourier inversion.
Finally, empirical studies are carried out to show the superiority of our model based on the S&P
500 index and the stock of Apple Inc. on options. The out-of-sample pricing performance of our
proposed model outperforms the other three benchmark models especially for short term and deep
out-of-the-money options.

Keywords: equity option pricing; factor models; stochastic volatility; jumps
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1. Introduction

Most of the existing literature studies on option pricing are for index options, and there
are very few about equity options. One approach to modeling equity options is to employ the
state-of-the-art model in the index option literature, a stochastic volatility model with jumps (see,
for example, Bates 1996, 2000; Bakshi et al. 1997; Dulffie et al. 2000; Eraker et al. 2003; Broadie et al. 2007;
Christoffersen et al. 2012; Andersen et al. 2015; Bardgett et al. 2019), but to ignore any underlying
factor structure.

In Bakshi and Kapadia (2003a), the research results indicated that the volatility risk premium is
negative in index options by examining the statistical properties of delta hedged option portfolios,
i.e., a portfolio of a long call option position hedged by a short position in the stock. On the one hand,
stock returns have a significant market component; the emergence of market volatility risk premiums
is bound to have an impact on individual equity option pricing. On the other hand, from the economic
point of view, the risk neutral distributions of individual equities are systematically different from
the market index. Thus, it is necessary to explore how volatility risk is priced in individual equity
options, which also can produce additional insights into the pricing structure of individual equity
options (see Bakshi et al. 2003). As is well known, the beta of a stock represents the sensitivity of the
risk of the individual equity with respect to the systematic risk of the market and is very useful for
portfolio construction in the capital asset pricing model. Therefore, under the assumption that stock
returns include a market component and an idiosyncratic component, Bakshi and Kapadia (2003b)
developed a factor model for equity option valuation and investigated the pricing of market volatility
risk in individual equity options. Their empirical results showed that volatility risk premiums in
equity options are smaller than in index options.
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Afterwards, Fouque and Kollman (2011) proposed a continuous-time capital asset pricing
model (CAPM) where the dynamics of the market index have a stochastic volatility driven by
a fast mean reverting process. Moreover, they derived the analytical approximation pricing
formulas for both the market index and individual equity call options using a singular perturbation
method. Meanwhile, a calibration method for the beta parameter was also presented based on
the estimated model parameters of both the market index and individual equity option prices.
Subsequently, Fouque and Tashman (2012) extended the constant beta-parameter factor model of
Fouque and Kollman (2011) by considering a piecewise-linear relationship between the individual
asset and the market index and proposed a regime switching factor model for the pricing market index
and individual equity options. Supposing that stock return is linearly related to market index return in
terms of the beta parameter, Carr and Madan (2012) developed a factor model for individual equity
option pricing under a purely discontinuous Lévy process via fast Fourier transform, in which the
variance gamma process for the dynamics of both the market index and stock was taken as an example
for illustration. By supposing a continuous-time CAPM with Lévy processes, Wong et al. (2012) also
derived analytical solutions to the index and equity options and explored the corresponding static
hedging with index futures. Christoffersen et al. (2018) empirically studied the equity volatility levels,
skews, and term structures by using equity option prices and principal component analysis. The results
indicated that the equity options had a strong factor structure, and then, they developed an equity
option pricing model with a CAPM factor structure and stochastic volatility, which allowed for mean
reverting stochastic volatility for the dynamics of both the market factor and individual equity.

Recently, Xiao and Zhou (2018) proposed a GARCH-jump model for individual stock returns that
took into account four types of risks: the systematic and idiosyncratic jumps and the systematic and
idiosyncratic diffusive volatility. By using a dataset consisting of the S&P 500 index and 15 individual
stock prices, their empirical results indicated that idiosyncratic jumps were a key determinant of
expected stock return.! Instead of using only stock returns, Kapadia and Zekhnini (2019) used
both stock and option data to decompose the four risk premiums associated with systematic and
idiosyncratic diffusive and jump risks and also documented that idiosyncratic jumps are important
determinants of the mean returns of a stock from both an ex post and ex ante perspective.

Motivated by the above mentioned insights, we propose to price individual equity options in
stochastic volatility jump-diffusion models with a market factor structure, which can be seen as a
generalized version of Christoffersen et al. (2018). Specifically, in our proposed model, the individual
equity prices are driven by the market factor, as well as an idiosyncratic component that also has
stochastic volatility and jump. Due to the model belonging to the affine class, we derive the closed-form
solutions for the prices of both the market index and individual equity options by utilizing the Fourier
inversion. In addition, we provide the empirical results to test the pricing performance of the proposed
factor model based on the S&P 500 index and the stock of Apple Inc. (AAPL) on options. Toward
this end, we empirically compare the pricing performance of the proposed model with those of
the other three classical two factor stochastic volatility models being taken as benchmark models.
Empirical results presented here confirm that the equity option pricing model considering systematic
and idiosyncratic volatility and jump risks may offer a good competitor to the models of Bates (2000),
Christoffersen et al. (2009), or Christoffersen et al. (2018) for some other option markets.

The remainder of the paper proceeds as follows. In Section 2, we present a novel factor
model for equity option valuation and derive the corresponding closed-form solutions. In Section 3,

In fact, the work of Xiao and Zhou (2018) is a complement to the recent studies that disentangle the four types of risks
in equity premiums, such as Bégin et al. (2020), who developed a GARCH-jump model in which an individual firm’s
systematic and idiosyncratic risk have both a Gaussian diffusive and a jump component. Their empirical results showed
that normal diffusive and jump risks have drastically different effects on the expected return of individual stocks by using
20 years of returns and options on the S&P 500 and 260 stocks.
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empirical studies are carried out to show the pricing performance of our proposed model. Finally,
some conclusions are stated in Section 4.

2. Equity Option Valuation

In this section, we introduce a general class of stochastic volatility models with jumps for the
dynamics of both the market factor and individual equity prices and derive closed form solutions to
the prices of the European equity call and put options.

2.1. Model Description

Consider a filtered probability space (Q), F, Q) with information filtration {F; }o<;<7 satisfying
the usual conditions (increase, right-continuous, and augmented), where Q is a risk neutral measure.
We model an equity market consisting of N firms with a single market factor, I; (usually approximated
by a market index in practice). The individual stock prices are denoted by St fori=1,2,...,N.
For the sake of convenience, we ignore the superscript i, and denote (S;);>¢ the pricing process of an
individual stock. Investors also have access to a risk free bond that pays a return rate of r. To start,
the market factor I; evolves under a risk neutral measure Q as:

?i = rdt + \/Vi W] , + /R(ey —1)Ny(dt, dy), (1)
- .
AV = k(0 — Vig)dt + o/ Vi dWy (2)

where I;_ stands for the value of I; before a possible jump occurs, y € R = R\ {0}, Vj; is the variance
of market factor, f; denotes the long run variance, x; captures the mean reversion speed of Vj; to
01, 01 measures the volatility of volatility, 2x;6; > 1712 to ensure that the process V;; remains strictly
positivez, W]I/t and W2I,t are correlated standard Brownian motions, i.e., the innovations to the market
return and volatility are correlated with correlation coefficient p;, Cov (dWll,,, dWZI,t> = pdt, and
Ny(dt,dy) = Ny(dt,dy) — vy(dy)dt is a compensated jump measure, where N (dt,dy) is the jump
measure and the Lévy kernel (or density) v, (dy) satisfies [, min(1,y%)vy(dy) < co.

Furthermore, we separate the effects of the market factor on individual equities’ returns into
two types of risks: the systematic diffusive volatility and jump. More specifically, the diffusive
random variation of individual equities’ returns is dependent on the Brownian motion that drives
market returns through the coefficient ;7. In addition, the discontinuous movements in the market
return can also trigger jumps in individual equities” returns through the coefficient B, Therefore,
the individual equity prices are driven by the market factor, as well as an idiosyncratic component that
also has stochastic volatility and jump, whose process under a risk neutral measure Q follows:3

s,

—rdt+  Bagr/VigdW], + /R (Pt — V)N (dt,dy) +  /VedWS,
——— — ————

Systematic diffusive Systematic jump Idiosyncratic diffusive (3)
+ [ (eF =Rt de),
Idiosyncratic jump
AVs = xs(0s — Vs 1)dt + 05/ Vs idW5,, 4

One can refer to Assumption 2.1 of Cheang et al. (2013) and Cheang and Garces (2019) for a more detailed explanation.
Obviously, our proposed model for the dynamics of the market factor and individual equity prices is an extension of
Christoffersen et al. (2018). In fact, our model also can be regarded as a further generalization of Cheang et al. (2013) and
Cheang and Garces (2019) by taking into account the factor structure.
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where S;_ stands for the value of S; before a possible jump occurs, € R = R\ {0}, Vs, is the
idiosyncratic variance of individual equity, 85 denotes the long run idiosyncratic variance, kg captures
the mean reversion speed of Vs ; to 05, s measures the volatility of idiosyncratic variance, 2xsfs > 17%
to ensure that the process Vi ; remains strictly positive®*, Wls/ and Wi ; are correlated standard Brownian
motions, i.e., the innovations to the idiosyncratic return and volatility are correlated with correlation
coefficient pg, Cov (dWﬁ b dW;t) = psdt, but they are independent of Brownian motions in the
market factor, i.e., Cov (det,deI,t) = 0fori,j =1,2,and Nz (dt,dy) = N (dt,d¢) — ve(d)dt is a
compensated jump measure, where Ng(dt, d¢) is the jump measure and the Lévy kernel (or density)
ve(dg) satisfies [ min(1,&2)ve(dE) < oco.

2.2. Characteristic Function

In order to be able to derive the pricing formulas for the European call and put equity options,
we are particularly interested in the characteristic function of the logarithm asset price. Given the
dynamics of the underlying asset price under the Q measure, we consider the conditional characteristic
function of log-asset price X7 = In St given the market information up to time t, which is denoted by
@(x,v1,0p,t, T; ¢):

@(x,v1,02,t,T; ) = EQ [ei¢XT|Xt =x, V=01, Vs = Uz]

i o],

where E(t@ [] denotes the condition expectation under the Q measure, t < T,and i = v/—1.

Lemma 1. Suppose that the market factor Iy and individual equity price Sy are driven by Equations (1) and (3),
respectively. Then, the conditional characteristic function of log-asset price Xt = In St is given by:

@(x,01, 02,1, T $) = exp {A(7)x + B(r)vn + C(r)v2 + D(T)}, ©)
where:
A(T) =g,
B(r) = i"’ﬁdif;’ml —d { 1_— ed:T:|
i 1—giem®

Ks —iposps —dy | 1— et
C(1) =
(T) Ug [1 _ gze’dﬂ

— |3 iPBjumpy _ 1 _ ; Biumpy _ P 1 _; S _
D(x) = |igr + /R (e Y 1 — iy (e juny 1)) vy (dy) +/R (e 1-i¢p (e 1)) ve(de) | T
I I
SO0 ipparionpr —dy) T — 200 L 81T
+ 012 |:<K1 1‘P,deff‘71PI d]) T—2In 1_ @
KsBs . 1 —gzeidz.r
LELCH Y —d)T-2In- 8¢ |
+ (7% |:(KS 1470'5p5 2) T n 1_ @

K1 — ipBairro1pr — d
Kr — ipBaifrorpr +di’

81 =

4 One can refer to the Assumption 2.1 of Cheang et al. (2013) and Cheang and Garces (2019) for a more detailed explanation.

96



JREM 2020, 13, 16
ks — iposps — da
Ks — i¢05p5 + dzl
: 2o o 2
(I‘PﬁdffoIPI - KI) + Bairor (i + 92),
dy = \/ (igasps — xs)? +o3(ig + ¢2),

andt =T —t.

82 =

d

Proof. To obtain the conditional characteristic function of log-asset price Xt = In St, we first take the
following transformation by using the Itd lemma for Equation (3):

1 _
dInS; = ( 5d,ffv,t S Vi = /R (eﬁww - 1) vy (dy) — /R (eé - 1) v¢(d§)> dt
+ Baigp/VidWL y + Bjumyp /RyNy(df, dy) + / Vs dW;, + /R ENg(dt, dg).

The Feynman—Kac formula states that ¢(x, vy, vy, t, T; ¢) is governed by the following partial
integro-differential equation (PIDE):

5} 1
% = { ﬁdszVIt S Vst —/ (eﬁ”‘””’y— 1 / ( Vé (d) } @
92 o} 92
2 9 <P 2, <P
+§ (ﬁd,-ffvl—i-vz) ol +K1(91—U1)a E(T a
I 1, P P P
+xs(0s — vz)av2 + 50502 202 + Baiffo1prv axov; T O5PsU255, @)

+ /R [9(x + Bjumpy, 1, V2, £, T; ¢) — @(x, 01,02, £, T; ¢)] vy (dy)

+ /R lp(x+ ¢, v1,02,t, T; ) — @(x, 01, 02,8, T; )] Ve (dE),
@(x, 01,02, t, T; )= = X,

Due to the affine structure of our model, we postulate ¢(x, vy, v2,t, T; ¢) admitting the form of (6).
Substituting Equation (6) into the above PIDE (7) gives the following system of ordinary differential
equations (ODEs) for A(7), B(t), C(7), and D(71):

JA(T)
oT

ag(:) :*‘713 (1) + [ﬁdifolﬁlA( )—Kz} B(t) - lgdsz[ (1) - Az(r)],

=0,

a%(:) E‘TSCZ( 7) + [o5ps A(T) — k5] C(T) — { (T )*AZ(T)},
P = AT+ 00B(0) 4 ksoC(0) + [ APt 1= A (P 1)y )

+/ Co1- A() (& 1)) ve(ag),

where the boundary conditions are given as A(0) = i¢ and B(0) = C(0) = D(0) = 0.
By solving the above ODEs, we can obtain the characteristic function (6). [
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Lemma 2. Suppose that the market factor I; is driven by Equation (1). Then, the conditional characteristic
function of log-market factor Zt = In It is given by:

P(z,v1, 1, T;9) = EC [31¢ZT|Zt =z Vi = Ul]

- _ _ (©))
= exp {A(1)z+ B(t)v; + D(7)},
where:
A(t) =i¢,
— i _ _ ,—dt
B(r) = ML= 1001P1 =4 {1 edT},
o7 1—ge
i _ op—dtT
D)= [igr+ [ (& —1=ip (e = 1)) vy (dy) T+;2?{(K1—i¢mp1—d)r—21n11§eg ,
I3
Ky —igorpor —d
g M iporpr—d

K[ — igblT]p[ +d’
d =/ (igorpr — x1)? + 02(igp + ¢2),

andt=T—t
Proof. Similar to the proof of Lemma 1, we can easily verify the above results. [

2.3. Valuation of the European Index and Equity Options

Once the characteristic function is found, it is straightforward to calculate the prices of European
options by using Fourier inversion. Let C(S¢, T, K) and P(S;, T, K) be the prices of the European equity
call and put options at time t with strike price K and maturity T under the risk neutral measure Q,
respectively. Then, these option prices are determined by:

C(Si,T,K) = e ""E2 [max (St — K, 0)]

and:
P(S:, T,K) = ¢ ""EZ [max(K — Sr,0)]

where 7 = T — t is the time to maturity.
Theorem 1. Suppose that the market factor Iy and the individual equity price S; are driven by

Equations (1) and (3), respectively. Then, the prices of the European equity call and put options with strike price
K and maturity T = T — t are given by:

C(S, T,K) = SIT; (st, T, K; Baifs, ﬁjum,,) —Ke "I (st, T, K; Baifsr ﬁjum,,) )

and:

P(Str T, K) =Ke T [1 =11 <Sh T,K; lgdiff/ ﬁjump)} -5t [1 —1L (Str T,K; ﬁdiff/ ﬁjumpﬂ (10)

where the risk neutral probability distribution functions ITy and T1, are defined by:

1 e e e Ky, vy, 09,8, T p — 1)
Hl <St/ TIK;ﬁdiffr.B]'M)np) = E + 7'(St /0 R |: 14) dCP
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and:

i¢

where ¢(x,v1, v, t, T; ¢) is the conditional characteristic function of In St, which can be seen in Equation (6),
and R[] indicates the real part of a complex number.

+oo e 9Ky (x vy, 00,8, T;
Ty (St T, K; Baigs. Bjump ) = + / { USRI YT ) P

Proof. In order to get the pricing formulas of the European equity call and put options, let us first
introduce a change of measure from Q to Q by the following Radon-Nikodym derivative:

dQ _ 1St
dQ S
We denote the conditional characteristic function of X; = InSt under the Q measure by
@(x,v1,02,t, T;¢). Then, §(x,v1, 02, t, T; ¢) can be expressed as:
§(x, 01,2, 1, T; p) = EQ [ei"’XT]

_ Eﬁf@ I:e—r(T—t)%eisz-p}
t
7r(T7t)7xE(9 [ei(zpfi)XT]

—r(T—t)—x

¢(x, 01,00, t, T; ¢ —1).

Thus, the price of a European equity call option C(S;, T,K) can be calculated by utilizing
@(x,v1,02,t, T;¢) and §(x, vy, v2,t, T; P):

C(S:,T,K) = e ""EZ [max(St — K, 0)]
= e ER [Stls 2k — KeER (15,5
= S [1(s,5k) ] — Ke "B [1s,21]
=582 {1{X721n1<}] — Ke""EQ [1{XT21nK}]

= 51T (St, T,K; ﬁdifpﬁjump) —Ke "I, <5t, T, K; Baiff, .Bjump) .

Once the conditional characteristic function ¢(x, v1, v, t, T; ¢) is obtained, we can easily calculate
the probability distribution functions IT; <St, T,K; ﬁdiff/ ,Bjump) and Il (St, T,K; .Bdiff/ ,Bjump>
according to the Lévy inversion formula:

+oo | em0INKG(x vy, 00,8, T;
H] (St,T K .Bdlffrﬁ]ump —‘,— / |: ¢( l¢l 2 (P):| d¢
and: 1
Foo e 0InKy(x, 01, 0,1, T;
Il (S[,T K; ﬁd,ﬁ,ﬁﬂ,mp + / { o i¢1 2 47)} i,

A similar approach can be used to derive the pricing formula for the European equity
put option. [

In a similar way, we also can present the pricing formulas for the European index call and
put options.
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Theorem 2. Suppose that the market factor I is driven by Equation (1). Then, the time t prices of the European
index call and put options with strike price K and maturity T = T — t are given by:

C(I,T,K) = I (I, T,K) — Ke”""I1, (I, T, K) (11)

and:
P(I;, T,K) = Ke™"" [1 = Iy (I, T,K)| — It [1 =TTy (I, T, K)] (12)

where the risk neutral probability distribution functions Iy and I, are defined by:

_ 1 e 1T gt e 0nKy(z u ¢ T —i

and: )
e Ky(z,01,t, T; )

i

where Y(z,v1,t, T; ¢) is the conditional characteristic function of In I, which can be seen in Equation (8).

- 1 1 e
Hﬂmtm:5+;A m{ }m,

3. Empirical Studies

In this section, we empirically compare the pricing performance of our proposed model with those
of the classical two factor stochastic volatility models, such as Bates (2000) (two variance SVmodel
with price jumps, 2-SVJmodel), Christoffersen et al. (2009) (two-variance SV model, 2-SV model), and
Christoffersen et al. (2018) (two-variance SV model with a single market factor, 2-FSVmodel), being
taken as benchmark models.

3.1. Data Description

We used the S&P 500 index (SPX) to proxy for the market factor and AAPL as the individual
equity. We employed the delayed market quotes on arbitrary date 8 May 2019, which was the last
date available at the time of writing, as the in-sample data to calibrate the risk neutral parameters,
and those on 9 May 2019 were used for the out-of-sample test. We used mid-quotes to represent the
option prices. To eliminate the sample noise in raw option data, we adopted some filtering rules
commonly used within the related literature: (i) we omitted those options with fewer than seven days
and more than 365 days to maturity; (ii) all observations with zero trading volume were discarded;
(iii) all options with implied volatility equal to zero and larger than 1.0 were discarded. In addition,
for the convenience of the empirical analysis in the following, we only considered the sample data
of the index call options and individual equity call options with the same expiration date. Thus, we
focused only on ten maturities slices, namely on the maturities of 24 May 2019, 31 May 2019, 7 June
2019, 14 June 2019, 21 June 2019, 19 July 2019, 16 August 2019, 20 September 2019, 18 October 2019,
and 17 January 2020.

After these filters, we had a total of 401 observations for the S&P 500 index call option on
8 May 2019. The individual equity option sample contained 233 call options on 8 May 2019 and 264
call options on 9 May 2019, respectively. Due to the life of an option being usually less than one year,
we chose the three month U.S. Treasury Bill Rate to substitute for the risk free interest rate. All of the
data were downloaded from the Chicago Board Options Exchange (http:/ /www.cboe.com/).

3.2. Parameter Estimation

Our proposed model allowed a general distribution for jump components of the market factor
and individual equity price and thus could be easily introduced to the special cases such that the jump
components follow the compound Poisson process of Merton (1976) and Kou (2002), etc. For different
types of Lévy kernels, different forms of our model can be presented. In order to keep consistent with
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Bates (2000) for comparative analysis, in the following, we assumed that the jump components of the
dynamics for the market factor and individual equity followed compound Poisson processes and the
jump magnitude was drawn from the log-normal distribution of Merton (1976). Thus, the Lévy kernels
for the market factor and individual equity, respectively, are given by:

1 (vy—m)?
vy(dy) = Ap exp {2 }dy (13)
\/2m6? 267
and:
1 (& —ns)’
ve(dg) = As exp {z}d(f, (14)
\/ 2763 265

where Aj, for j = I, S, denotes the jump intensity, y1; is the mean of the jump size, and J; is the variance
of the jump size. Then, the integrals I;, for i = 1,2, 3, in Lemmas 1 and 2 can be calculated as follows:

L= A {eiqvﬁjxm,,,w%sfazﬁﬁm,,é% g (Eﬁ]ump#ﬁ%ﬁ?umpé? _ 1)} )
L = As [eifl’Hs—%szf’ﬁ —1—ip (g#s+%‘5§ - 1)] ,

and
L=\ {eiww—%qﬁzé? —1—ip (3#1+%5§ _ 1)] .

Based on Theorems 1 and 2, we employed a two step calibration procedure (see, for example,
Wong et al. 2012; Christoffersen et al. 2018) to estimate the model parameters. First, we calibrated
the market index dynamic ®; based on the S&P 500 index option price alone. Second, we used the
equity option price to calibrate the individual equity dynamic ®g conditional on estimates of ®;.
Consider the situation in which an investor wants to hedge his or her equity position with index
options and hedging horizon T. For brevity, we further suppose that the investor observes index
option prices and equity option prices both with maturity T, the same as hedging horizon. Specifically,
the dataset contains M; index option prices C(I;, T, K;), fori = 1,2,..., M;, and N; equity option prices
C(S[, T, K]), fOI‘j = 1,2, ceey Nt.

In the calibration process, the risk neutral model parameters were backed out by minimizing a
loss function capturing the fit between the theoretical model and market prices. We employed the
root mean squared errors (RMSE) as the objective function. The first step calibrated the risk neutral
parameters for the index process, which are calibrated by:

1 M

. (0]
RMSE(1) = argmin | — Y | Cimarker (It T, Ks) = Cohogy (It T, K0 |
o\ Mi = ,

2
, (15)

where C; yarket (It, T, K;) is the market price of the index call option contract from the sample and
Ci% odel (It T, K;) represents the model price calculated using Equation (15) and the vector of model
input parameters ©7.

The second calibrated the beta and the parameters for the idiosyncratic risk:

N 2
’

. 1 )
RMSE(S) = argném\j — Z [erma,ket(st, T, K]') — Cj,rflodfl(st’T’ K]')
S

16
N & (16)
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where C; yarket (St, T, K;) is the market price of the equity call option contract from the sample and
Cﬁft oder (5t. T, K;) represents the model price calculated using Equation (13) and the vector of model
input parameters Qg.

On the basis of the above calibration method, Table 1 presents the risk neutral parameter estimates
across various model specifications. Note that the values of the diffusive beta B4 and jump beta By
for our proposed model were 0.3891 and 0.8429, respectively. The corresponding value of B; ff for
the 2-FSV model was 0.2457. Obviously, both our proposed model and the 2-FSV model showed that
AAPL tended to have a relatively low exposure to diffusive market movements. However, the jump
exposure coefficient f,,,, = 0.8429 indicated that the AAPL had a strong exposure to market jumps,
which meant that the factor structure of the jumps was much stronger than the one of the diffusive
movements. The reason for this result may be related to the sample data we selected. If we can get
more sample data in the future, we will do an in-depth analysis. Moreover, we also can see that the
values of correlation p were strongly negative for four models, capturing the so-called leverage effect
both in the index and individual equity.

Table 1. Estimated parameters. Note: This table shows the average of the estimated parameters
obtained by minimizing the root mean squared pricing errors between the market price and the model

price for each option on 8 May 2019. Standard errors are reported in parentheses .

Our 2-FSV 2-SV 2-SVJ
Parameters
SPX AAPL SPX AAPL AAPL AAPL
Vio/Vip 0.0133 0.0119 0.0239 0.0181
(0.0000) (0.0000) (0.0002) (0.0001)
Vs0/ Va0 0.0470 0.0514 0.0197 0.0176
(0.0000) (0.0000) (0.0002) (0.0002)
K1/% 0.2496 0.2929 0.3489 0.4064
(0.0212) (0.0148) (0.0118) (0.0311)
Ks /K2 0.2454 0.1504 0.4131 0.4108
(0.0288) (0.0797) (0.0729) (0.0171)
0;1/6, 0.2820 0.3066 0.3314 0.2817
(0.0181) (0.0317) (0.0534) (0.0348)
0s/6, 0.2303 0.3683 0.2447 0.3415
(0.0190) (0.0590) (0.0365) (0.0423)
o/ oy 0.3472 0.3932 0.1615 0.1898
(0.0127) (0.0137) (0.0081) (0.0106)
og/0n 0.1496 0.1640 0.2206 0.1970
(0.0056) (0.0135) (0.0386) (0.0059)
A1 0.0450
(0.0017)
Ag 0.3413 0.3065
(0.2463) (0.1194)
U 0.1657
(0.0599)
is 0.0889 0.0333
(0.0391) (0.0042)
o 0.0850
(0.0113)
s 0.0679 0.0534
(0.0078) (0.0013)
Baiff 0.3891 0.2457
(0.0381) (0.0983)
Bjump 0.8429
(0.8091)
o1/p1 —0.9290 —0.8498 —0.9222 —0.7445
(0.0063) (0.0080) (0.0096) (0.0297)
0s/p2 —0.9926 —0.8938 —0.7673 —0.7817
(0.0001) (0.0469) (0.1632) (0.0549)
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3.3. Pricing Performance

In this subsection, we present the empirical results for the calibrated models. In order to investigate
the impacts of the systematic and idiosyncratic volatility and jump risks on equity option pricing,
we took the 2-FSV, 2-SV, and 2-SV] models as benchmark models to evaluate the pricing performance
of our proposed model.

Figures 1-10 exhibit the predicted prices of the four model specifications and market prices listed
on 9 May 2019, with 11, 16, 21, 26, 31, 51, 71, 96, 116, and 181 trading days to expiry, respectively.
Here, the predicted prices (out-of-sample pricing) were calculated by the in-sample calibration
parameters reported in Table 1. One can clearly observe from the left panels of Figures 1-10 that the
option prices obtained by theoretical models were generally closer to the market prices for different
strike prices. To further investigate the pricing performance of the four models, the right panels of
Figures 1-10 show the relative price differences (relative errors) between the theoretical model prices
and market prices.”> For simplicity, we refer to a call option as deep out-of-the-money (DOTM) if
S5/K < 0.90; out-of-the-money (OTM) if 0.90 < §/K < 0.97; at-the-money (ATM) if 0.97 < §/K < 1.03;
in-the-money (ITM) if 0.97 < S/K < 1.10; and deep in-the-money (ITM) if 1.10 < S/K. Moreover,
we considered options less than 60 days to expiration as short term; options with 60-120 days to
expiration as medium term; and options larger than 120 days to expiration as long term. For the
options with 11, 16, 21, 26, 31, and 51 trading days to expiry, the relative pricing errors produced by
our proposed model were all significantly lower than those of 2-FSV, 2-SV, and 2-5V] models in the
case of DOTM options, while the relative errors of all models were slightly higher.

It is also worth noting that the pricing performance of the stochastic model with jump behavior
was much better than that of the model without jump in the case of deep out-of-money. For the options
with 71, 96, 116, and 181 trading days to expiry, we did not find the same conclusions as the above short
term options. In conclusion, the pricing performance of equity option valuation model considering
market and idiosyncratic volatility and jump risks was significantly improved for short term and
DOTM options.

In-sample, T=May 24, 2019 Out-of-sample, T=May 24, 2019
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Figure 1. The comparison of predicted prices of four model specifications and market prices on
9 May 2019, with maturity T = 24 May 2019.

The relative error is defined by W % 100%, where Cyoge1 and Cypgrker denote the theoretical model option prices
markel
and the real market prices, respectively.
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Figure 2. The comparison of predicted prices of four

Relative Error
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Figure 3. The comparison of predicted prices of four model specifications and market prices on
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Figure 4. The comparison of predicted prices
9 May 2019, with maturity T = 14 June 2019.
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Figure 5. The comparison of predicted prices
9 May 2019, with maturity T = 21 June 2019.
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07 In-sample, T=July 19, 2019 ] Out-of-sample, T=July 19, 2019
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Figure 6. The comparison of predicted prices of four model specifications and market prices on
9 May 2019, with maturity T = 19 July 2019.
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Figure 7. The comparison of predicted prices of four model specifications and market prices on
9 May 2019, with maturity T = 16 August 2019.
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0.25 In-sample, T=September 20, 2019 o Put-of-sample, T=September 20, 2019
Our model [ Our model N
—+——2-FSV model b 0.35 - —+——2-FSV model
—6— 2-SV model ) —6— 2-SV model
0.2 |—*—2-SVJ model —#— 2-SVJ model
0.3
5015/ 1 5 0.25
i i
2 2 02
© ©
[0} L | [0}
c 01 T 0.15
0.1
0.05 /|
0.05
@® SR
0 e
140 160 180 200 220 240 260 160 180 200 220 240 260

Strike Price Strike Price

Figure 8. The comparison of predicted prices of four model specifications and market prices on
9 May 2019, with maturity T = 20 September 2019.
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Figure 9. The comparison of predicted prices of four model specifications and market prices on
9 May 2019, with maturity T = 18 October 2019.
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Figure 10. The comparison of predicted prices of four model specifications and market prices on
9 May 2019, with maturity T = 17 January 2019.

To summarize the model calibration results, we also adopted the RMSE as a measure of the
goodness of fit. Table 2 reports the out-of-sample pricing errors for the four models across different
maturities. Note from Table 2 that our proposed model generally outperformed the other three models
in terms of out-of-sample pricing errors. In fact, the same was true for in-sample, whose pricing errors
were generally lower than those of the out-of-sample. We will not repeat them here. To measure
the extent to which a model was better or worse than another, we defined the improvement rate
as the relative differences between the pricing errors from the benchmark model and our proposed

model, i.e.,
RMSEbenchmark — RMSEr

RMSEbenchmark

where RMSE,;; and RMSE,;cjark denote the RMSE implied by our model and benchmark model,
respectively. A positive (or negative) value of improvement rate meant that our model yielded lower
(or higher) pricing errors than benchmark model, implying that the pricing performance of the former
was better (or worse) than that of the latter by a percentage of that value.

From the last column of Table 2, we can see that our model was superior to the 2-SV] model
across different maturities, which meant that it was necessary to consider the market factor structure
in equity option pricing. From the third last column of Table 2, the improvement rate indicated that
our model slightly outperformed the 2-FSV model in terms of short term options, but was worse than
that of both medium and long term. In spite of this, our empirical study presented here could at least
illustrate that the equity option pricing model considering systematic and idiosyncratic volatility and
jump risks may offer a good competitor of the models of Bates (2000), Christoffersen et al. (2009), or
Christoffersen et al. (2018) for some other equity option markets.

Improvement rate = x 100%
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Table 2. Out-of-sample pricing errors. Note: This table shows the out-of-sample pricing errors across
different maturities. Pricing errors are reported as the root mean squared errors (RMSE) of option
prices for four models.

RMSE Improvement Rate
Our 2-FSV  2-8V  2-SV]
Maturity Ourvs. 2-FSV  Our vs. 2-SV  Our vs. 2-SV]
24 May 2019 0.2573  0.2574 0.2596 0.2707 0.0373% 0.8803% 4.9568%
31 May 2019 0.2507 0.2508 0.2564 0.2652 0.0392% 2.2499% 5.4846%
7 June 2019 0.2343 02347 0.2527 0.2474 0.1764% 7.2947% 5.3044%
14 June 2019 0.1992  0.2041 0.2261  0.2099 2.4278% 11.9155% 5.0858%
21 June 2019 0.1824 0.1827 0.1873 0.1916 0.1399% 2.5963% 4.7934%
19 July 2019 03256  0.3301 0.3326 0.3383 1.3434% 2.0948% 3.7368%
16 August 2019 0.2856 02835 0.2879  0.2922 —0.7573% 0.7946% 2.2384%
20 September 2019  0.3177 0.3159 0.3162  0.3222 —0.5932% -0.4851% 1.4002%
18 October 2019 0.1185 0.1180 0.1215 0.1272 —0.4458% 2.4886% 6.8593%
17 January 2020 0.4882 0.4882 0.4893  0.4943 —0.0071% 0.2182% 1.2201%

4. Conclusions

In Christoffersen et al. (2018), the issues of the equity volatility levels, skews, and term structures
were investigated by using equity option prices and the principal component analysis method.
Their empirical results indicated that the equity options had a strong factor structure, and then,
they developed an equity option pricing model with a CAPM factor structure and stochastic volatility.
In addition, jumps in stock returns of individual firms were triggered by either systematic events or
idiosyncratic shocks. Some recent studies indicated that idiosyncratic jumps were a key important
determinant of expected stock; see, for example, Xiao and Zhou (2018), Kapadia and Zekhnini (2019)
and Bégin et al. (2020).

Motivated by these insights, we developed a novel model for pricing individual equity options
that incorporated a market factor structure, which could be seen as a generalized version of the work
by Christoffersen et al. (2018). Specifically, in our model, the individual equity prices were driven by
the market factor, as well as an idiosyncratic component that also had stochastic volatility and jump.
Due to our model belonging to the affine class, we derived the closed-form solutions for the prices of
both the market index and individual equity options by utilizing the Fourier inversion. In addition,
we provided the empirical results to test the pricing performance of our proposed factor model based
on the S&P 500 index and the AAPL stock on options. Toward this end, we empirically compared
the pricing performance of our proposed model with those of the other three classical two factor
stochastic volatility models being taken as benchmark models. The out-of-sample pricing performance
of equity option valuation model considering market and idiosyncratic volatility and jump risks
was significantly improved for short term and DOTM options. In conclusion, the empirical results
presented here at least confirmed that the equity option pricing model considering systematic and
idiosyncratic volatility and jump risks may offer as good competitor of the models of Bates (2000),
Christoffersen et al. (2009), or Christoffersen et al. (2018) for some other option markets.
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