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Preface to the Second Edition

One-and-a-half decades after the first edition, a lot of progress has been made in the
application of string compactification. More realistic models have been built, more
unified aspects of string theory have been understood, and more mathematical tools
have become available. We now understand better the position of the orbifolded
string theories in the moduli space and their connections to other constructions.
Previously known symmetries are rederived from stringy and geometric effects.
The landscape scenario has been heavily used in understanding the smallness of
the cosmological constant.

To meet the recent development, we completely rewrote Chaps. 8, 9, 10, 11, 15,
and 16. We formally define the string theory on non-prime orbifolds by adding hon-
est calculations in Chaps. 8 and 9. A complete understanding on the superpotential
is now available, whose fundamentals are described in Chap. 10. In Chap. 15, we
use new mathematical tools to understand the physics in orbifold singularities. We
include a detailed explanation of flavor symmetry in Chap. 16. A new development
in F-theory compactification is briefly included in Sect. 17.4. We have also tried to
make the whole book more coherent and the exposition clearer.

This book was originally designed to be a toolkit on the compactification of
the heterotic string. So, we provide more ready-made formulae. We hope that this
revision helps everyone to more deeply understand the unified aspects of string
theory and practically build more realistic models.

We are grateful to Stefan Groot Nibbelink, Hirotaka Hayashi, Tatsuo Kobayashi,
Bumseok Kyae, Seung-Joo Lee, Hans-Peter Nilles, Felix Plöger, Stuart Raby, Sául
Ramos-Sánchez, Michael Ratz, Soo-Jong Rey, Patrick K. S. Vaudrevange, Akin
Wingerter and Piljin Yi, for helping us learn and clarify ideas.

Seoul, Republic of Korea Kang-Sin Choi
Seoul, Republic of Korea Jihn E. Kim
May 2020

v



Preface to the First Edition

Using the successful standard model of particle physics but without clear guidance
beyond it, it is a difficult task to write a physics book beyond the standard model
from a phenomenological point of view. At present, there is no major convincing
inner-space-related experimental evidence against the standard model. The neutrino
oscillation phenomena can be considered part of it by including a singlet field in the
spectrum. Only the outer-space observations on matter asymmetry, dark matter, and
dark energy hint at the phenomenological need for an extension, yet the theoretical
need has been with us for almost three decades, chiefly because of the gauge
hierarchy problem in the standard model.

Thus, it seems that going beyond the standard model hinges on the desirability
of resolving the hierarchy problem. At the field theory level, it is fair to say that the
hierarchy problem is not as desperate as the nonrenormalizability problem present
in the old V–A theory of weak interactions on the road to the standard model.
An extension beyond the standard model can easily be ruled out as witnessed in
the case of technicolor. However, a consistent framework with supersymmetry for
a resolution of the hierarchy problem has been around for a long time. Even its
culprit “superstring” has been around for 20 years, and the most remarkable thing
about this supersymmetric extension is that it is still alive. So, the time is ripe
for phenomenologists to become acquainted with superstring and its contribution
toward the minimal supersymmetric standard model in four spacetime dimensions.

This book is a journey toward the minimal supersymmetric standard model
(MSSM) down the orbifold road. After some field theoretic orbifold attempts in
recent years, there has been renewed interest in the physics of string orbifolds and it
is time to revisit them. In this book, we take the viewpoint that the chirality of matter
fermions is essential toward revealing the secrets of Nature. Certainly, orbifolds are
an easy way to get the chirality from higher dimensions.

Strings and their orbifold compactification are presented for the interests of
phenomenologists, sacrificing mathematical rigor. They are presented in such a way
that an orbifold model can be constructed by applying the rules included here.
At the end of Chap. 10, we construct a Z12 orbifold that contains all imaginable
complications. Also, we attempt to correct any incompleteness in the rules presented
before in the existing literature. In the final chapter, we tabulate the simplest
and most widely used orbifold Z3 with N = 1 supersymmetry, completely in
the phenomenological sense of obtaining three families. These tables encompass

vii



viii Preface to the First Edition

all noteworthy models available with two Wilson lines. As three Wilson line Z3
orbifolds do not automatically give three families, these tables in a practical manner
close a chapter on Z3 orbifolds.

This book is not as introductory as a textbook, nor is it as special as a review
article on a superstring topic. Instead, we aim at an interim region, so that a
phenomenologist can read and directly commence building an orbifold model.

We thank Kyuwan Hwang for his help in constructing the Z3 orbifold tables. We
are also grateful to Kiwoon Choi, Ki-Young Choi, Luis Ibañez, Gordy Kane, Hyung
Do Kim, Jewan Kim, Seok Kim, Tatsuo Kobayashi, Bumseok Kyae, Oleg Lebedev,
Andre Lukas, Stefan Groot Nibbelink, Hans-Peter Nilles, Fernando Quevedo, Stuart
Raby, Michael Ratz, and Hyun Seok Yang, for providing valuable suggestions in the
course of writing this book.

Seoul, Republic of Korea Kang-Sin Choi
Seoul, Republic of Korea Jihn E. Kim
November 2005



Conventions

Mostly, we adopt the conventions of Green, Schwarz, and Witten [2]. We use nor-
malization α′ = 1

2 for closed strings, but sometimes it is made explicit if necessary.
We denote worldsheet time and space coordinates as τ and σ , respectively. The left
movers of worldsheet fields are functions of τ + σ and their oscillators are tilded
like α̃n. The right movers are functions of τ − σ and their corresponding oscillators
are untilded.

We denote the spacetime coordinates as follows:

xM = (xμ, xm, xI ), (0.1)

where Greek indices μ = 0, 1, 2, 3, . . . denote noncompact and lower Latin m

denote compact dimensions. If we do not compactify, then the full string lies along
μ = 0, . . . , 9 directions. Upper Latin indices are for the current algebra. A torus is
made by modding out the translations:

xm ∼ xm + 2πRemi ,

where xm are orthogonal coordinates and the shape is determined by emi .
Sometimes, it is useful to complexify the coordinates

za = 1√
2
(x2a + ix2a+1), zā ≡ za = 1√

2
(x2a − ix2a+1),

where za, zā, a = 2, 3, 4, ā = 2̄, 3̄, 4̄ for holomorphic and antiholomorphic
complex indices, respectively. They are complexification of xi such that z2, z2̄

directions are spanned by coordinates x4, x5. The gauge space index, the uppercase
Latin in xI , I = 10, . . . , 25, remains untouched.

A three-component twist vector φ = (φ2 φ3 φ4) parametrizes the point group
action of orbifolds. When necessary, we also include the noncompact component as
φ = (φ1;φ2 φ3 φ4).

For the zero point energy, it is renamed c = −a, c̃ = −ã to cope with the
literature.

ix
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1Introduction and Summary

During and since the second half of the twentieth century, enormous progress has
been made in understanding our universe in terms of fundamental particles and their
interactions, namely in the language of quantum field theory. The advent of the
standard model (SM) of particle physics has been the culmination of quantum field
theory in all its full glory. The beginning of this successful particle physics era
was opened with the unexpected discovery of parity violation in weak interaction
phenomena [1] and the Brout–Englert–Higgs–Guralnik–Hagen–Kibble particle (the
Higgs boson in short) closed the discovery series of the SM particles in 2012 [2, 3].

It had long been known that weak interactions change the electromagnetic
charge, i.e. electron (e) to electron type neutrino (νe), neutron (n) to proton (p).
But, until the mid-1950s it had never occurred to the leading minds [4] that “parity
might be violated,” chiefly because the atomic and nuclear transitions did not
reveal any such possibility before that time. For nuclear transitions, both weak and
electromagnetic phenomena contribute but at that time there were not sufficient
data to fully conclude on the nature of parity operation in weak interactions [1].
For atomic transitions, the fundamental interaction is of electromagnetic origin
and the experimental confirmation of parity conservation in atomic phenomena
convinced most physicists that parity is conserved in the universe. In hindsight,
parity conservation should have been imposed only on electromagnetic interactions,
as the discovery of parity violation in weak interactions started a new era for weak
interactions. There is still no experimental evidence that strong and electromagnetic
interactions violate parity. Therefore, we know that parity violation in weak
interactions is at the heart of making our universe as it is now, because the SM
assumes from the outset the existence of massless chiral fields.1

Soon afterward, the parity violating weak interactions were neatly summarized
as a four fermion (charged current)× (charged current) (CC×CC) weak interaction

1Massless compared to the Planck mass MP .

© Springer Nature Switzerland AG 2020
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where the charged current JCC
μ is of the “V–A” type [5, 6],

Hweak = GF√
2
JCC†μ(x)JCC

μ (x), (1.1)

where

GF � 1.1664× 10−5 GeV−2. (1.2)

The “V–A” charged current of weak interactions indicates three important aspects:
(1) only the left-handed fermions participate in the charge changing weak interac-
tions, (2) the CC weak interaction has only one coupling constant GF compared
to 34 couplings of Fermi’s β decay interactions [7], and (3) being current, the
fundamental interaction at a deeper level may need a vector boson. Here, we note
that the chirality nature of weak interactions discovered through the CC weak
interaction is still the mystery among all mysteries of particle physics in the search
for a fundamental theory at a very high energy scale using the low energy SM.
Several years after this effective low-energy (CC)× (CC) four-fermion interaction
was proposed, a modest attempt via a more fundamental interaction through a heavy
spin-1 charged intermediate vector boson (IVB) W±

μ was put forth [8]. The charged
IVB coupling to the charged current was given by

g

2
√

2
JCC
μ Wμ + h.c. (1.3)

The mass of Wμ was supposed to be heavy so that the four-fermion interaction
mediated by the IVB is weak compared to the strong interaction scale, i.e. MW �
1 GeV. However, this IVB idea had several problems which have since been resolved
by the SM of particle physics.

As far as currents are concerned, the first prediction of the SM was the existence
of the weak neutral current (NC) [9–11] in addition to the old CC observed in the β

decay phenomena. The weak NC introduces another parameter known as the weak
mixing angle sin2 θW in the SM determined around [12],

sin2 θW � 0.233. (1.4)

A spin-1 field coupling to the fermion current had already been known in
electromagnetic interactions, i.e. the photon Aμ coupling to the electromagnetic
current through eψ̄γ μψAμ. This electromagnetic interaction can be formulated in
terms of U(1) gauge theory [13], where one uses the covariant derivative Dμ instead
of the ordinary partial derivative ∂μ,

∂μ −→ Dμ ≡ ∂μ − ieAμ
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which introduces the minimal gauge coupling of Aμ to charged fields. In quantum
mechanics, the additive conservation of electromagnetic charge implies a global
U(1) symmetry and generalizing it to a local U(1) leads to the above covariant
derivative. This is our first example of how a bigger symmetry might be discovered
from a representation of matter, i.e. starting from the electron in the above example
of quantum electrodynamics.

Consider the generalization of this gauge principle to the IVB. Since the IVB
changes the electromagnetic charge, we must start from a defining state in the
Hilbert space which contains at least two components differing by one unit of the
electromagnetic charge. This doublet is a kind of matter which, in the doublet
representation, necessarily introduces a non-Abelian gauge group. This is our
second example in which matter can indicate a bigger symmetry. In general, one
can introduce the covariant derivative using the non-Abelian gauge fields Ai

μ(i =
1, 2, · · · , NA), with the size NA (e.g. 3 for SU(2)) dependent upon the matter
representation. Yang and Mills were the first to show that a consistent construction
along this line needs nonlinear couplings between gauge fields.

In the late 1960s the standard model of particle physics was constructed,
employing the non-Abelian gauge group. The group structure is SU(2)×U(1) [9–
11], and the covariant derivative is

Dμ = ∂μ − igT iAi
μ − ig′YBμ, (1.5)

where T i(i = 1, 2, 3) are the SU(2) generators and Y is the electroweak hyper-
charge generator. The Gell-Mann–Nishijima type definition of the electromagnetic
charge is Qem = T3 + Y . All leptons and quarks are put into left-handed doublets
and right-handed singlets, and the charged current IVB mediation violates parity
symmetry by construction from the outset. For example, the left-handed electron
and its neutrino are put into a doublet lL = (νe, e)TL , where L(R) represents

the left(right)-handed projection L = 1+γ5
2 , or ψL = 1+γ5

2 ψ . Since the quarks
carry the additional degree called color coming in three varieties, the first family
(lL, eR, qL, uR, dR) contains 15 two-component chiral fields. In addition, these 15
fields repeat three times, making a total of 45 chiral fields, all of which have been
observed in high energy accelerators.

The representations of the SM are written in such a way that the intermediate
vector boson W+ transforms the lower elements of l and q to their upper elements.
For example, eL to νeL and dL to uL, and hence there exists the coupling

g√
2
ν̄eγ

μ 1+ γ5

2
eW+

μ .
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For each representation, we can assign the Y quantum number to match the
electromagnetic charges of the fields in the representation through the following
formula:2

Qem = T3 + Y. (1.6)

Thus, the standard model is certainly left (L)–right (R) asymmetric in that the
interchange L↔ R does not give the original representation. This is called a chiral
theory.3 In a chiral theory, one cannot write down a mass term for the fermions.
Under the SM gauge group SU(2)×U(1)Y , for example, one cannot write down a
gauge-invariant mass term for e(l = 2− 1

2
, eR = 1−1 where the weak hypercharges

are written as subscripts in the usual way). The SM is designed such that chiral
fermions can obtain mass after the gauge group SU(2)×U(1)Y is spontaneously
broken down to U(1)em, and then one has to consider only the gauge invariance of
the unbroken gauge group U(1)em. This makes it possible to write

−meēe = −me(ēReL + ēLeR).

This way of rendering mass to SM chiral fields is assumed throughout this book,
and the fundamental question is how such chiral fields arise in the beginning. For
spontaneous symmetry breaking leading to G → H ,4 one needs a singlet member
under the Lorentz group and a singlet under the unbroken gauge group H , but there
should also be a non-singlet under G. In the Hilbert space, such a member as a
fundamental field is a neutral scalar transforming nontrivially under both SU(2)
and U(1). The simplest such representation is a spin-0 Higgs doublet with Y = 1

2
[10, 11],

φ =
(
φ+
φ0

)
. (1.7)

A more complicated mechanism for spontaneous symmetry breaking is the use of
a composite field which is a neutral scalar transforming nontrivially under both
SU(2) and U(1)Y . The simplest such composite field is one that assumes a new
confining force, the so-called techni-color confining around the TeV scale, and
composites of techni-quarks realize this idea [15,16]. This neutral scalar component
can develop a vacuum expectation value (VEV) which certainly breaks G but leaves
H invariant. Breaking the gauge symmetry through the VEV of scalar fields is the
Higgs mechanism [17–20]. The SM is a chiral theory based on SU(2)×U(1)Y with
the above Higgs mechanism employed.

2lL has Y = − 1
2 , eR has Y = −1, qL has Y = 1

6 , uR has Y = 2
3 , and dR has Y = − 1

3 .
3The converse is not necessarily true; the SU(2)L×SU(2)R×U(1) model is L − R symmetric but
chiral [14].
4In the above example, G = SU(2)×U(1)Y and H =U(1)em.
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Below the spontaneous symmetry breaking scale, the unbroken gauge symmetry
is H , and the gauge bosons of G corresponding to G/H obtain mass of order (gauge
coupling)× (VEV). This process applied to the SM renders three IVB (W±, Z)
masses at the electroweak scale: MW � 80 GeV, MZ � 91 GeV. Of course, the
photon Aμ remains massless. The success of the SM is not only giving W± and Z0

mass but also making the photon massless, which amounts to the electromagnetic
charge operatorQem annihilates the vacuum:Qem|VEV〉 = 0 [21]. The origin of the
fermion masses in the SM is not from the SU(2)×U(1)Y invariant mass term, which
cannot be written down anyway, but originates from the gauge-invariant Yukawa
couplings of the fermions with the spin-0 Higgs doublet [10]. Then, fermion masses
are given by (Yukawa couplings) · (VEV). Therefore, a variety of fermion masses is
attributed to the variety of the Yukawa couplings.

One can glimpse that the essence of the above description of nature in terms of
the SM is that the theory is chiral until the SM gauge group is spontaneously broken
at the electroweak scale,

vew � 246 GeV. (1.8)

Since the fundamental theory may be given at the Planck scale

MP = 1.22× 1019 GeV√
8π

= 2.44× 1018 GeV, (1.9)

our chief aim in the construction of the SM is to obtain the correct chiral spectrum
from a fundamental theory such as from string theory given near the Planck scale.
As we move toward a chiral theory from an ultra-violet completed theory, the parity
violating weak interaction phenomena guide us to the SM. In this sense, how parity
violation is realized in the SM is a key in breaking the chirality. The simplest
SM introduces parity violation in the definition of the SM. Another school adopts
“spontaneous” breaking of parity symmetry, starting with the so-called left–right
symmetry [22]. In terms of simple group, the prototype chiral model is the SU(5)
grand unified theory (GUT) by Georgi and Glashow [23].

In the search for a fundamental theory, two approaches can be taken. One
can be the accumulation of low energy observed evidence and the building of a
theoretically satisfactory gigantic model describing all these phenomena. This is a
bottom-up approach in which the model cannot be excluded experimentally and is
hence physically sound. The other approach is to find a theoretically satisfactory
model given near the Planck scale and compare its low-energy manifestation with
experimental data. This is known as the top-down approach. Sometimes, the bottom-
up approach is mingled together with the top-down approach because a fundamental
theory can never be achieved using the bottom-up approach alone. In any case,
one needs guidance for such a theory. From the theoretical point of view, the best
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guidance is the symmetry principle. Before the discovery of the Higgs boson5 in
2012, the top-down approach has gained momentum. But, after the Higgs discovery,
physics related to the Higgs boson is so accurate and ample enough that the first goal
is to establish what particles are there just above a few TeV region. Nevertheless,
above tens of TeV region the symmetry guided top-down approach might be the
available theoretical track.

Looking back at the construction of the SM, it started from matter representation
|�〉 in the Hilbert space where |�〉 symbolically stands for the L-handed electron
doublet l and the R-handed electron singlet eR . If we include quarks also in the
matter, |�〉 will include them as well. In this Hilbert space, operations by the
weak charge and the electromagnetic charge are treated in a similar fashion, thus
the SM is dubbed with the phrase, “unified theory of weak and electromagnetic
interactions.” The key point to observe here is the role of matter representation
|�〉. It is the representation on which symmetry charges act. In this book we will
generalize this symmetry concept, and adopt the unification theme: unify all the
matter representations if it is possible.

The first top-down approach toward a more fundamental theory beyond the SM
was the GUT. In one attempt, among the representations in |�〉 the lepton doublet l
and the charge conjugated field dcL of the R-handed dR quark are unified into a single
representation [23]. Other SM representations are grouped together. This attempt
succeeded in unifying the SM group into a simple group SU(5). Another early
attempt was to combine the quark doublet q and the lepton doublet l together into
a single representation [14]. Then, the remaining SM representations are matched
together with the attempted extended gauge group. This attempt succeeded with
a semi-simple group SU(4)× SU(2) L× SU(2)R×U(1). It follows that, in these
GUTs the strong and electroweak couplings are necessarily the same when the
unification is valid.

Apparently, the strong, weak, and electromagnetic couplings observed at low
energy are not the same at the electroweak scale, and at first glance this idea of
unification with the identical gauge couplings seems to contradict the observed
phenomena. However, the size of the coupling constant looks different at different
energy scales of the probing particle. This is due to the fact that a renormalizable
theory intrinsically introduces a mass scale μ, and the energy dependence of
the coupling is described by the renormalization group equation. Therefore, one
can construct a GUT such that the gauge couplings are unified at a scale, say
at MGUT, which is supposed to be superheavy so that the electroweak coupling
and the strong coupling constants are sufficiently separated at the energy scales
(∼100 GeV) probed by the current accelerators [24]. For a significant separation
through logarithmic dependence, one needs an exponentially largeMGUT [24] which
should be smaller than the Planck mass so that gravitational corrections might be
insignificant. Here, we should not forget that the construction of the simplest SU(5)

5In this book, we use this simple word instead of the correct Brout–Englert–Higgs–Guralnik–
Hagen–Kibble boson (BEHGHK boson).
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was possible after realizing that one can collect all the pieces of the 15 Chiral
fields with one kind of chirality, i.e. in terms of the L-handed fields.6 These GUTs
render the SM fermions below the GUT symmetry breaking scale so that massless
SM fermions can survive down to the electroweak scale. Even though GUTs are
basically top-down approaches, they have one notably testable prediction: a proton
decays at the experimentally verifiable level with the proton lifetime with the current
lower limit of τp > 1033 s.

Another attempt can be Kaluza–Klein (KK) [25, 26] type higher dimensional
theories. But a naive torus compactification of the internal spaces leads to vectorlike
fermions (the heavy KK mode and the vectorlike fermions), implying no massless
fermions at low energy.

There are several good reasons to go beyond the SM. Probably, the most
important reason for the extension is to understand the family problem why the
fermion families repeat three times. Of course, an extension to understand the
family problem must retain the good chiral property. The family problem has been
considered with both global and gauge horizontal (or family) symmetries. However,
the horizontal symmetry must be broken since different families obviously have
different mass scales. If it were a global symmetry, we would expect Goldstone
bosons (familons) after the spontaneous global symmetry breaking. If it were a
gauge symmetry, we would expect flavor changing phenomena at some level and
one has to be clever enough to forbid gauge anomalies. In general, these horizontal
symmetries are very complicated if not impossible. If a horizontal gauge symmetry
is considered, it is better to unify it in a GUT-like gauge group so that even the
horizontal gauge couplings are also unified with the other gauge couplings. In this
respect, the grand unification of families (GUF) has attracted some attention [27].
However, in contrast to GUTs, the grand unification of families in four dimensions
(4D) has not produced any conspicuous predictions which can be tested. They are
hidden at the unknown super heavy mass scales.

Even though the 4D gauge theories with spontaneous symmetry breaking are
very successful, as witnessed by the success of the SM, there exists a fundamental
problem in 4D gauge models. The problem lies with the introduction of a specific
set of representations for the fermions and Higgs fields in the SM, or in GUTs, or
in GUFs. Let us call this the representation problem, and it becomes more acute
when one tries to understand it together with the family problem. The specific
choice of chiral representations in the GUTs or in the SM cannot be answered in
a 4D gauge theory framework. For example, if we try to embed three families in
a spinor representation of a big orthogonal group such as in SO(18), there would
remain a question, “Why is there only one spinor in SO(18)?” On the other hand,
the group representation for the spin-1 gauge fields is uniquely fixed by the adjoint
representation. There is no other choice. If the matter representation is determined

6About the same time as this theory was put forth, the concept of supersymmetry was born from
similar knowledge of Weyl spinors.
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as uniquely as the gauge boson is, then the representation problem would be
understood.

Even if we go beyond 4D, the representation problem in field theory is still
not understood. The only constraint for matter representations is the anomaly
cancellation, which does not fix the representation uniquely. Therefore, the theory
must be more restrictive than field theory to understand the representation problem.

In this respect, string theory, either bosonic or fermionic, is one alternative
to pursue. But to have matter (the spin- 1

2 fermions), we can only consider the
fermionic string or superstring, which is possible in 10D. This superstring theory
is far more restrictive than higher dimensional field theories. To apply it to the 4D
phenomenology, we must hide the six extra dimensions.

It is known that there are two ways to hide the extra dimensions, one is by the
so-called compactification and the other is by introducing a warp factor as in the
Randall–Sundrum type-II model [28]. This book is restricted to compactification.

Consider the simplest extra dimensional generalization, i.e. to 5D. If one
compactifies the extra dimension, the original 5D fields split into 4D fields. The
effective 4D fields might be massive, but massless fields might also exist. Consider,
for example, a 5D theory with spin-2 graviton (gMN(M,N = 0, 1, 2, 3, 4)) only
in 5D. By compactifying the fifth dimension on a circle, one obtains the well-
known KK spectrum. At low energy the massless modes are a spin-2 graviton
(gμν(μ, ν = 0, 1, 2, 3)), a spin-1 gauge boson (gμ4), and a spin-0 dilaton (g44).
The spin-1 gauge boson and spin-0 dilaton were originally components of 5D
graviton. The compactification radius R determines the masses of the KK modes
(integer) × R−1. If one introduces a massless 5D fermion (8 real components in
ψL or in ψR) in addition, then by compactifying on a circle S1 one obtains two
4D Weyl fermions at each KK level as shown in Fig. 1.1b. If the representation
is vectorlike (in 5D, both 4D ψL and 4D ψR should be introduced), then it is a
general strategy to remove them at a high energy scale due to interactions unless

Fig. 1.1 KK mode spectrum
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some symmetry forbids such a large mass. So, if two Weyl fermions with opposite
quantum numbers are matched at each level, they are removed at high energy. In
this sense, two lowest level fermions of Fig. 1.1a with zero KK mass can obtain a
superheavy mass. Thus, the naive compactification on a circle would not allow a
chiral spectrum at low energy. Our hope is to obtain a chiral fermion at low energy
through a mechanism in which there remains an unmatched Weyl fermion as shown
in Fig. 1.1b. However, it has been proven that if the gauge bosons originate from the
gravity multiplet gMN(M,N = 0, 1, 2, 3, · · · ,D) in D dimensions, then a chiral
theory such as that shown in Fig. 1.1b does not arise at low energy [29]. Therefore,
the KK idea, even though beautiful, is not relevant for a low-energy chiral theory
like the standard model.

If 4D SM gauge bosons arise from gauge bosons in higher dimensions, then a
realization of Fig. 1.1b does not arise from a simple torus compactification on a
circle S1. To arrive at Fig. 1.1b, one must impose careful boundary conditions on
the 5D fermion wave functions such that some parts of the spectrum are removed.
So, we consider the orbifold, which achieves this idea beautifully, by modding out
S1 by some discrete group such as Z2.

We observed that the SM gauge bosons must arise from spin-1 gauge bosons in
higher dimensions, not from the higher dimensional gravity multiplet. This leads us
to the consideration of higher dimensional gauge theories. These higher dimensional
gauge fields are required to contain the SM gauge bosons. In higher dimensions, we
also introduce fermions which contain the three SM families. Since we introduce
these fermions, one has to worry about the gauge anomaly if D = even. Then the
gauge anomalies [30] and gravitational anomalies [31] in even dimensions must
be taken into account. As mentioned above, however, the higher dimensional field
theories do not explain the representation problem except for the requirement of
having no anomaly.

In the mid 1980s a breakthrough was made in the search for higher dimensional
theories. To introduce fermions, N = 1 supersymmetry must be considered. Green
and Schwarz observed that in 10D no anomaly appears if the gauge group is SO(32)
or E8 × E8 [32]. Basically, these large gauge groups are required to cancel any
anomaly arising from the 10D gravitino. The 10D gravitino carries 496 units of
anomaly. If one wants to cancel the gravitino anomaly by gauge fermions, the gauge
group must match the dimension of the adjoint representation as 496. SO(32) and
E8 × E8 fulfil this requirement. In addition, the second rank antisymmetric tensor
field BMN is required. Soon, the heterotic string theory was constructed and these
large gauge groups are realized as the oscillation modes of the closed strings and
winding modes [33, 34].

This string motivated 10D N = 1 gauge field theory introduces fermions as
superpartners of the gauge bosons which form the adjoint representation of the
gauge group. An adjoint representation is a real representation. If one naively
compactifies on a torus, say a six dimensional torus T6, the real representation
keeps the reality and one cannot obtain chiral fermions in 4D. To reach at the
phenomenologically successful SM, it is of utmost importance in extra dimensional
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field theory to obtain chiral fermions after compactification. Under torus compact-
ification, the 10D N = 1 supersymmetry becomes N = 4 supersymmetry in
4D. Supersymmetries with N ≥ 2 introduce vectorlike fermions in 4D which
are not needed at the electroweak scale. If one must introduce a supersymmetry
to understand the gauge hierarchy problem, the only allowable one in 4D is the
N = 1 supersymmetry. Therefore, the first set of criteria is to keep only N = 1
supersymmetry after compactification and to allow chiral fermions. In orbifold
compactification, which is the main subject of this book, the requirement for the
N = 1 supersymmetry in 4D usually allows chiral fermions.

Phenomenologically, the E8 × E8 heterotic string has been discussed much
more than the SO(32) heterotic string. The 15 chiral fields of the SM plus one
more chiral field are embeddable in a spinor representation of SO(10). The adjoint
representation of the SO(32) group cannot contain the spinor representation of
SO(10). Thus, making a reasonable spectrum after compactification from the
SO(32) heterotic string is not the obvious first step. On the other hand, the adjoint
representation of E8 contains the spinor representation of SO(10), and it would seem
easy to classify the SM fermions through spinor representation of SO(10) (or for that
matter, in terms of 10⊕ 5̄ of SU(5)). For this reason, we will restrict our discussion
to the E8 × E8 heterotic string only.

Suppose that 10D compactifies as M10 → M4 × B6, i.e. to a flat 4D Minkowski
space M4 times a compact 6D internal space B6. Candelas et al. have shown that the
condition for the N = 1 supersymmetry in 4D is to require the SU(3) holonomy of
the internal space [35]. This SU(3) symmetry can be embedded in the gauge group
also. Spaces with SU(N) holonomy are called the Calabi–Yau spaces. In the example
considered in Ref. [35], one obtains a 4D N = 1 supersymmetric model with the
gauge group E6×E′8. The net number of chiral fermions of the E6 sector are 36
copies of 27. Each 27 of E6 contains one family of the SM. Thus, this Calabi–Yau
space gives too many families. Nevertheless, it provides an example of how one
obtains chiral fermions and N = 1 supersymmetry in 4D. Actually, Calabi–Yau
manifolds are rather complicated spaces.

For reducing the N = 4 supersymmetry down to N = 1, a simpler method
known as orbifold was introduced by Dixon, Harvey, Vafa, and Witten [36–38].
The orbifold method uses discrete groups on top of torus compactification. For a
given 6D internal torus, all possible discrete group actions have been classified.
Generically they do not act freely. The fixed points lead to singularities of the
quotient space which is called an orbifold. The orbifold singularities can be
eliminated by cutting out the fixed points and gluing them in smooth “disk-like”
surfaces such that the resulting smooth space has SU(3) holonomy. Therefore, an
orbifold can be considered a singular limit of a good manifold such as the Calabi–
Yau. To a low-energy observer, therefore, the orbifold is as good as the Calabi–Yau
space. Another merit of the orbifold is that compactification through orbifolding can
be systematically found.

The chief merit of the orbifold is that it allows chiral fermions at low energy,
even though one starts to compactify with such a simple idea as a 6D torus. The
existence of chiral fermions is at the heart of the standard model construction and,
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hence, the making of our universe as it is now before chemistry and biology were
able to play their roles.

Among nine orbifolds cited in [37], Z12−I can be considered to be the simplest
one because there are only three fixed points. The simple looking Z3 orbifold is not
so simple in the sense that it has 27 fixed points. But, the Z3 can be considered as the
center of the holonomy group SU(3) of the Calabi–Yau space, which is needed to
have N = 1 supersymmetry in 4D [35]. Most studied non-prime orbifolds Z6−II
[39] and Z12−I [40] have Z3 in one two-torus. In a Z3 orbifold with up to two
Wilson lines,7 the spectrum is always a multiple of 3 which was the main motivation
for extensive studies in the early days of orbifold construction of SMs [41, 42].

The models obtained by the orbifold compactification can be considered as 4D
string models, but their roots are in 10D superstring. There is another method of
obtaining a 4D superstring model, using free fermionic formulation [43]. However,
the free fermionic formulation lacks the geometrical interpretation present in the
orbifold compactification. Yet there exists another method using self-dual lattices
[44].

There are a few important issues in the current SM:

(1) Flavor phenomenology,

(2) Strong CP problem,

(3) Three chiral families, (1.10)

(4) Gauge hierarchy.

Since the representation 248 of the 10D heterotic string group E8 × E8 is big
enough, (3) can be an easy solution from the compactification, which is one of
the main objectives of exploring the orbifold technique here. The issue (1) is the
data fitting to the Cabibbo–Kobayashi–Maskawa (CKM) [45, 46] and Pontecorvo–
Maki–Nakagawa–Sakata (PMNS) matrices [47], which is not pursued here except
introducing the weak CP violation phase from compactification. The issue (2) must
be a consequence of compactification. The issue (4) is the Higgs boson related one.
Our book is to understand this gauge hierarchy problem from the supersymmetry
perspective.

In the next chapter, we start out our journey by reviewing how the successful
chiral field theory known as the SM was achieved. In Chap. 3, we present the
general concept on orbifold. Then, we introduce field theoretic orbifolds in Chap. 5.
The basics on string theory is presented in Chap. 6. In Chap. 7, we start to present
orbifolding of the 10D string theory. In Chap. 8, a more formal introduction to
string orbifold, with necessity from modular invariance. After introducing the
partition function, we explain how the formulae for the massless states and Kaluza–

7A Wilson line is a closed line integral along the direction tangent to a gauge field,
∮
dxμAμ. A

famous example is the Aharonov–Bohm phase. In this book, it is meant as a closed line integral in
the compactified space,

∮
dxiAi .
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Klein spectra are derived from the partition function. We also briefly review the
discussions on the stringy threshold corrections to gauge couplings. Discussion on
twisted strings in non-prime orbifold is added, especially on the behavior in the
higher twisted sectors in non-prime orbifold. Then, we continue to discuss orbifolds
using the Jacobi theta functions, Yukawa couplings, and group theoretic properties
of the twisted sector spectra. In Chap. 10, interactions on orbifolds are presented.
In Chap. 13, a gross view of orbifold phenomenology is presented. In Chaps. 14–
15, we present several orbifold constructions at the level that a devoted reader
can construct his own model. They include Z12−I ,Z6−II , and Z2 × Z2. Here,
GUTs from orbifolds, especially from Z12−I are discussed. In Chap. 15, Calabi–
Yau spaces are discussed. Since the flavor problem is the last hurdle to overcome in
string compactification, we review phenomenology on flavor physics in Chap. 16.
In Chap. 17, we present four other methods attempting to obtain the SM from
superstring, the fermionic construction, magnetized brane and intersecting brane
models. In Appendix A, we present some relations of Jacobi theta functions, used
in Chaps. 10, 12, 13, and 14. Here, we list useful tables for model building which
include the orbifolds with N = 1 supersymmetry, the degeneracy factor and
vacuum energy needed for orbifold construction, and the conditions on Wilson lines.
Finally, some useful numbers in group theory are presented in Appendix A.
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2StandardModel and Beyond

2.1 The StandardModel

The standard model (SM) consists of the confining color gauge theory SU(3)
for strong interactions and the spontaneously broken electroweak gauge theory
SU(2)L×U(1)Y . In this subsection, we introduce the SM, concentrating on the issues
relevant for our string orbifold construction and phenomenological issues after the
discovery of the Higgs boson [1, 2].

The symmetry principle is the heart of particle physics. It has its origins
in Heisenberg’s SU(2) isospin, and flourished in the 1960s under the name of
SU(3)flavor. The triple tensor product of the fundamental representation 3 of
SU(3)flavor gives

3⊗ 3⊗ 3 = 1⊕ 8⊕ 8⊕ 10.

The low lying octet baryons, p, n,�, and �, are assigned to one 8 of the above
representation. This classification works also for spin-0 and spin-1 mesons, 3 ⊗ 3̄ =
1⊗8. This old SU(3)flavor classification was very successful in classifying low lying
hadrons, and the basic ingredients 3 for all these classifications are called quarks; up,
down, and strange quarks, 3 = (u, d, s)T [3].1 The quarks were assumed to carry
spin- 1

2 because three quarks make up spin- 1
2 baryons and quark–antiquark pairs

make up integer spin mesons. This development in probing the subnuclear structure
was probably the cornerstone of the discovery of the standard model, but a few more
new ideas needed to be added. First, a new degree of freedom, color, was introduced.
Second, local groups were considered. Third, the flavor group became bigger with
discoveries of more quarks, c, b, t . And fourth, the SU(3)flavor was understood to be
nothing but 1 GeV is the strong interaction scale compared to the relatively small

1G. Zweig also introduced SU(3) triplets, see [4].
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Fig. 2.1 The Young tableaux
for 56 of SU(6)

current quark mass scale of three flavors of quarks, 3 = (u, d, s)T . As for the
electroweak interaction, only a part of SU(3)flavor is useful for localized (gauged)
symmetry.

The introduction of color degrees of freedom was motivated from the old
SU(6) classification of hadrons. This old SU(6) is a generalization of the above
Gell–Mann’s flavor SU(3)flavor together with the rotation group SU(2). For the S-
wave composites, the representations of the rotation group are just spins. Thus,
the fundamental representation 6 of SU(6) is composed of the direct product
representation of the flavor triplet, i.e. u, d, s quarks, and the spin doublets, | ↑ 〉 and
| ↓ 〉, 6 = (u↑, u↓, d↑, d↓, s↑, s↓)T . Following Gell–Mann, one may try to classify
low lying hadrons in terms of tensor products of 6 and 6, but in the case of SU(6) we
note that different spin representations can come in one SU(6) representation. For
mesons, we consider 6⊗ 6̄ = 1⊕ 35 = 1s=0 ⊕ (8s=0 + 3s=1 + 24s=1), where we
indicated the spin s as subscripts. Thus, the representation 35 of SU(6) consists of

the pseudoscalar meson octet (π,K±,K0,K
0
, η), the vector meson singlet (∼ φ),2

and the vector meson octet (ρ,K∗±,K∗0,K
∗0
,∼ ω). This appears to work rather

well.
However, as for baryons, we expect

6⊗ 6⊗ 6 = 20⊕ 56⊕ 70⊕ 70′. (2.1)

We may try to embed the low lying baryons, the baryon octet (p, n,�,�) and
the baryon decuplet (�

(I= 3
2 )
, Y ∗(I=1), �

∗
(I= 1

2 )
, �(I=0)), where isospin I is shown as

subscript, in one representation of (2.1). Indeed, the representation 56 can house all
these low lying baryons since the baryon octet is spin- 1

2 and the baryon decuplet
is spin- 3

2 . This appears to work as well. But the 56 of SU(6), namely the Young
tableaux given in Fig. 2.1, is completely symmetric under any exchange of its
composite 6.
Since we interpreted 6 as a spin- 1

2 quark, the notion that a pair of spin- 1
2 objects

must anticommute under their exchange is grossly violated by 56. This symmetry
problem was found earlier in the prediction of �− particle [5]. It is basically the
completely symmetric wave function of �− ∼ s↑s↑s↑ under any exchange of its
constituents s↑. One cannot resolve this dilemma without the introduction of a new
degree of freedom [6]3 which is named color in modern theory.

Thus, one assumes that baryons made of three quarks must be completely
antisymmetric under the exchange of the color index. The complete symmetric

2The symbol ∼ implies that the singlet–octet mixing has to be considered.
3The violation of the spin–statistics relation was noted earlier [5, 7].
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property of 56 of SU(6) then becomes a fortune instead of a disaster when combined
with this completely antisymmetric property of color exchange, and the spin–
statistics theorem is satisfied. In other words, the baryon wave function must behave
as �baryon ∼ εαβγ q

αqβqγ , where αβγ are the color indices, 1, 2, 3, or red, green,
yellow, respectively. Since a baryon is supposed to be made of three quarks, we need
just three indices for color, and εαβγ q

αqβqγ must be a singlet under transformation
in this new color space. Then we conclude that the new color space is SU(3).4 The
gauge theory of color SU(3) is called quantum chromodynamics, or simply QCD.
The gauge bosons of this SU(3)-color are called gluons Ga

μ (a = 1, 2, · · · , 8). The
reason why only the color singlet states appear as low lying hadrons is the key issue
among QCD problems, and is known as the confinement problem. Over the last
four decades, strong interactions have successfully been described by QCD. After
the initial introduction of SU(3) as the color interaction with integer-charged quarks
[6], however, the present day QCD is based on the fractionally charged quarks with
unbroken SU(3)color [8–11] as proven by the π0 → 2γ decay rate.5

The flavor group we considered for SU(3)flavor is now generalized as SU(6)flavor
since there exist at least 6 quarks, u, d, c, s, and t, b. The weak interaction gauges
only a part of this SU(6)flavor since it is known that different families exhibit exactly
the same kind of tree level charged current (CC) weak interactions. Concerned with
the CC weak interactions, the leptons are not different from quarks. Therefore,
for gauge interactions it will be enough to consider just the first family doublets,
(νe, e)

T and (uα, dα)T . Now the electroweak gauge group is taken as SU(2)×U(1)
to unify the electromagnetic interaction with the weak interaction [12–14], resulting
in the unified theory aptly named the electroweak theory. In the electroweak theory,
the interactions are known to be chiral; only the left-handed fields participate in the
CC interactions, which was the famous old “V-A” theory introduced in the previous
chapter. Thus, the electroweak representation of leptons and quarks is asymmetrical
under the chirality exchange, L↔ R,

lL ≡
(
νe

e

)
L

, eR , qL ≡
(
uα

dα

)
L

, uαR, dαR, (2.2)

where α runs over the three color indices and the weak hypercharges Y for the
representations are

Y (lL) = − 1
2 , Y (eR) = −1, Y (qL) = 1

6 , Y (uαR) = 2
3 , Y (dαR) = − 1

3 . (2.3)

4Note that it cannot be SO(3) since SO(3) does not allow complex representations the needed
property for the existence of both quarks and antiquarks.
5With a judicious symmetry breaking of SU(3)color, one can obtain integer-charged quarks. For
pure strong interaction phenomena, e.g. for QCD β functions, only the electromagnetic charges of
quarks do not matter.
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The electromagnetic charge is given by Qem = T3 + Y . The chirality of the
left-handed doublet and the hypercharge Y are customarily written explicitly as
subscripts in the electroweak group, SU(2)L×U(1)Y . The gauge sector of this
theory has two gauge couplings, the SU(2)L coupling g and the U(1)Y coupling
g′ as shown in Eq. (1.5). The ratio of these couplings defines the weak mixing
angle tan θW = g′/g. The group SU(2)L×U(1)Y is spontaneously broken down
to U(1)em, and three gauge bosons obtain mass. These massive spin-1 gauge bosons
W± and Z0 are considered as the mediators of the weak force. If the spontaneous
symmetry breaking occurs only through the vacuum expectation value (VEV) of
Higgs doublet(s), the tree level ratio of these masses is related to the weak mixing
angle by

sin2 θW = 1− M2
W

M2
Z

. (2.4)

The same weak mixing angle appears in neutral current (NC) neutrino scattering
experiments,

GF√
2
ν̄μγ

α(1+ γ5)νμ
∑
i

(q̄iQZ(1+ γ5)qi + q̄iQZ(1− γ5)qi) , (2.5)

where QZ = T3−Qem sin2 θW . Phenomenologically, sin2 θW can be determined by
several independent processes. It turned out that experimentally determined sin2 θW
is close to the relation (2.4). Thus, any deviation from the tree level relation obtained
for the doublet breaking is important and for this purpose we introduce another
phenomenologically important parameter ρ defined by

ρ = M2
W

M2
Z cos2 θW

. (2.6)

ρ becomes 1 at tree level if the spontaneous symmetry breaking occurs only through
the vacuum expectation value (VEV) of Higgs doublet(s). The experimentally
determined weak mixing angles from the gauge boson mass ratio and the weak
NC experiments coincide. The coincidence of these mixing angles given in (2.4)
and (2.5) and the ρ parameter being close to 1, implies that the electroweak
symmetry breaking occurs through VEVs of a Higgs doublet(s). Large electron–
positron (LEP) collider experiments at CERN decisively confirmed this Higgs
doublet condition. The dominant loop contribution to ρ parameter is from the
heavy top quark [15]. The global fit, including the radiative corrections, gives ρ =
1.00039±0.00019 from a global fit [16] and sin2 θW (MZ)

lept = 0.23101±0.00052
from a compilation of leptonic data shown in Fig. 2.2 [17].
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Fig. 2.2 Comparison of the measured sin2 θW in the muon and electron channels [17]

The electroweak representation given in Eq. (2.2) repeats three times, thus we
say that there are three families of fermions plus a doublet of Higgs bosons:

(
νe

e

)
L

, eR ,

(
uα

dα

)
L

, uαR, dαR

(
νμ

μ

)
L

, μR ,

(
cα

sα

)
L

, cαR, sαR

(
ντ

τ

)
L

, τR ,

(
tα

bα

)
L

, tαR, bαR

H1 =
(
H 0

H−
)

(2.7)

which make up the needed matter spectrum of the SM at low energy. The standard
model is a gauge theory SU(3)×SU(2)×U(1) with the representation (2.7). For
nonzero neutrino masses observed by underground detectors, one usually introduces
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SU(3)×SU(2)×U(1) singlet fields at high energy scale(s). The SM is understood to
include this possibility of singlet neutrino introduction.

Naively, one may think that three families seem to be too much for the construc-
tion of our universe, chiefly made of e, p, and n. But there exist Sakharov’s three
conditions to generate nonzero baryon number in the universe starting from a baryon
symmetric universe: (1) the existence of baryon number violation, (2) the baryon
number violation must accompany C and CP violation, and (3) these symmetry
violating interactions occurred in the nonequilibrium phase. So for our existence
in the universe, CP violation seems to be necessary. The SU(2)L×U(1)Y gauge
theory needs three families to introduce a physically meaningful complex phase,
i.e. CP violation, basically via Yukawa couplings [18], after the spontaneous
symmetry breaking of SU(2)L×U(1)Y . Even though the CP phase from the
complex Yukawa couplings of the SM turned out to not be the CP phase for
the baryogenesis, still many physicists considered the baryogenesis as a powerful
argument for the CP violation and hence for three families. One may introduce
more Higgs doublets to have CP violation from the Higgs potential, but certainly
the CP violation from the Yukawa couplings is one possibility. Experimentally,
the weak CP violation by Yukawa couplings seems to be the dominant source
[16]. One of the most important problems in particle physics is understanding why
there appear three families of fermions as shown in (2.7), which is known as the
family problem or flavor problem. Note that the seemingly innocuous introduction
of color 3’s (also 3̄’s) and weak 2’s in Eq. (2.7) has simplicity, and probably hides a
profound implication in the construction of the SM from superstring theory.

The SM gauge group is SU(3)×SU(2)×U(1) where the color group SU(3) is
unbroken and the electroweak group SU(2)L×U(1)Y is spontaneously broken. Non-
Abelian gauge theories are known to be asymptotically free if the matter content is
not too large [9,10]. QCD is asymptotically free if the number of quarks is less than
16.5 in the one loop estimation. So, at high energy, the QCD coupling αc becomes
small and QCD is perturbatively calculable. On the other hand, at low energy of E ≤
1 GeV, QCD becomes strong and all complications due to its strong nature occur,
such as the chiral symmetry breaking and confinement. A complete understanding
of non-perturbative nature is needed to know the effects of QCD at low energy.
One such non-perturbative phenomenon is given by the instanton solution of non-
Abelian gauge theories [19]. The instanton solution recommends the use of the so-
called θ -vacuum [20, 21]. In the θ -vacuum, one must consider the CP violating
interaction, (g2

c θ̄/16π2)TrGG̃, where G is the gluon field strength and G̃ is its dual.
However, we know that CP violations have been observed only in weak interaction
phenomena, not in strong interactions. This restricts θ̄ phenomenologically, from the
observed upper bound of the neutron electric dipole moment, θ̄ < 10−10. So, “Why
is θ̄ so small?” becomes a good theoretical problem in the SM: the strong CP
problem [22, 23]. At the level of the SM with (2.7), this strong CP problem is not
understood.
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In this preceding concise review of the SM, we have already exposed three
fundamental problems of the SM,

• Coupling unification problem: Why are there three different gauge couplings, or
three factors of SU(3)×SU(2)×U(1) in the SM?

• Family problem: Why are there three families?
• Strong CP problem: Why is θ̄ so small?

This book is devoted to some theoretical developments regarding the coupling
unification problem and the family problem from the currently popular fundamental
theory, superstring. The strong CP problem can probably be understood from the
introduction of a very light axion, also from superstring, however this is outside the
focus of this book.

The number of fields in one family appearing in Eq. (2.2) is 15, and since we have
represented them as L- and R-handed fields, these are 15 chiral fields. In Lagrangian
formulation, one can use a field ψ or its charge conjugated field ψc. For L- and R-
handed quantum fields, ψL = 1+γ5

2 ψ and ψR = 1−γ5
2 ψ , the charge conjugated

fields have the opposite chiralities, for example, (ψR)
c = (ψc)L, which can easily

be checked from the definition of the charge conjugation operation on the Weyl
fields ψL,R . So rather than using Eq. (2.2), let us use only one chirality of the L-
handed fields,

lL ≡
(
νe

e

)
L

, ecL , qL ≡
(
u

d

)
L

, ucL, dcL, (2.8)

where color multiplicity must be understood for the quarks, and c refers to the
charge conjugated field, i.e. Y (ec) = 1, Y (uc) = − 2

3 , Y (d
c) = 1

3 . This is a simple
rewriting of the 15 chiral fields of Eq. (2.2). Note that it is simpler to view all
fermions on the same footing, e.g. as left-handed (L), as we have done here. For
spin-0 scalars, we do not have such a distinction in terms of chirality.

Chirality seems to be the essential property constructing our universe where the
SM fields live long in a vast space. Understanding the chirality of the SM fermions
is the overriding theme of this book.

In the SM spectra, Eq. (2.7), there is a spin-0 boson doublet H1. Spontaneous
symmetry breaking by 〈H1〉 �= 0 renders all the particles of the SM masses, and the
final comer in the serial search of new particles was the Higgs boson h at 125 GeV
appeared at the LHC of CERN in 2012. Parametrizing the Higgs potential in terms
of λ and μ2 as

V (H1) = λ

4
(H†

1H1)
2 + μ2

2
H†

1H1 + constant, (2.9)

vew =
√

2|μ2|
λ

, (2.10)
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where the electroweak scale VEV, 〈H1〉 = (vew/
√

2, 0)T , is given for μ2 < 0. From
the strength of the Fermi constant GF, vew is numerically 246 GeV. Since the mass
of the Higgs boson is

√
2|μ| = √λ vew in our parametrization, 125 GeV mass of the

Higgs boson implies λ � 1
4 at the electroweak scale. λ = 1

4 is large, which helps
toward a positive β function. Due to the large top Yukawa coupling, λ decreases
as E increases. So, if λ is smaller than a certain value, the positive contribution to
the β function from λ is not enough and λ turns to negative above certain energy
scale. Above this energy scale, vacuum decays, which led to the problem on vacuum
stability. So, the SM gives a lower limit for the Higgs boson mass from the vacuum
stability. In Fig. 2.3, we show the evolution of λ for a few parameters of the SM
[24].

For the flavor phenomenology in the SM, we may try to understand the CKM
and the PMNS matrices from string compactification. For the parametrization of
these matrices, it is advantageous if the determinants of these unitary matrices are
real [25] in which case the CP violation barometer Jarlskog determinant [26] is

Fig. 2.3 Evolution of λ [24]



2.1 The Standard Model 23

J = |ImV13V22V31|. For a real determinant, VCKM is close to

V =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

0.974395
+8.6794× 10−5i

,
0.22481

+5.66× 10−6i
,

1.41× 10−3

−3.33× 10−3i
,

−0.224672
−1.416× 10−4i

,
0.97352

−7.46× 10−5i
,

4.23× 10−2

+5.32× 10−6i

8.132× 10−3

−3.24× 10−3i
,
−4.151× 10−2

−7.42× 10−4i
,

0.99910
−4.502× 10−5i

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

(2.11)

from which we obtain J = 3.16× 10−5 which can be compared to the value J =
3.18 × 10−5 given in [16]. For the PMNS matrix, data are not accurate enough
to present with a sufficient accuracy. But we note that the CP phase in the PMNS
matrix got a lot of attention. It will be a reasonable success if the matrix (2.11) is
obtained from string compactification.

In Fig. 2.4, we present all the particles of the SM at the electroweak scale.

Fig. 2.4 Particles in the SM where those in the gray disk are massless and all the other particles
obtain mass by the Higgs mechanism. Spins are 0, 1, and 1

2 , respectively, in the annuli from the
center. Helicities are denoted by triangle for L-handed and bullet for R-handed. Neutrinos have
only the L-handed helicity. There are 45 chiral fermions



24 2 Standard Model and Beyond

2.2 Grand Unified Theories

The history of particle physics, quantum field theory, and quantum mechanics
has been the extension of the realm of symmetry operation in Hilbert space. In
the previous section, we have explored this extension of symmetry. Considering
only the first quark family members u and d , Heisenberg’s isospin symmetry
is the unification of individual u and d (or proton and neutron) in one doublet
representation of the rotation operation in an extended (internal) symmetry space,
i.e. the isospin space. In the previous section, we further extended the isospin space
to (isospin)×(color). This extension was applied to matter fields which can be the
bases of the Hilbert space. Thus, we put forward the following in this discussion,

The Theme of Unification “Put all the matter fields on equal footing in an
extended space.”

Under this unification theme, the standard model SU(3)×SU(2)×U(1) with 15
chiral fields in (2.8) is not fully unified yet. From the unification theme, we may
put the 15 chiral fields in 15 of SU(15). However with rank 14, this is too large and
also has a theoretical problem of having a gauge anomaly. If the 15 chiral fields
are extended to 16 chiral fields, by adding one SU(3)×SU(2)×U(1) singlet field,
one can find an SO(10) gauge theory with a spinor representation.6 This perfectly
agrees with our unification theme, and also does not have the gauge anomaly. In this
SO(10) unified theory, there is only one gauge coupling since all the chiral fields are
put in a single representation. In other words, the gauge groups SU(3)×SU(2)×U(1)
are unified in SO(10).

The unified theories of electromagnetic, weak, and strong forces are called grand
unification theories (GUTs). Georgi and Glashow looked for the minimal rank gauge
group which unifies SU(3)×SU(2)×U(1) in one simple group, unifying SU(3) and
SU(2), but allows the possibility that there may be more than one representation.
Indeed, they succeeded in finding the minimal unification group SU(5) where the
15 chiral fields of (2.8) are grouped together but still split into two [28],

5F =

⎛
⎜⎜⎜⎜⎜⎝

dc

dc

dc

νe

−e

⎞
⎟⎟⎟⎟⎟⎠

L

, 10F =

⎛
⎜⎜⎜⎜⎜⎝

0 uc −uc u d

−uc 0 uc u d

uc −uc 0 u d

−u −u −u 0 ec

−d −d −d −ec 0

⎞
⎟⎟⎟⎟⎟⎠

L

. (2.12)

6H. Georgi found this SO(10) model several hours before the SU(5) [27].
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The Higgs doublet H1 in (2.7), which is actually H2 ∼ iσ2H∗1, is unified into 5H
with a new color triplet of scalars, h,

5H =

⎛
⎜⎜⎜⎜⎜⎝

h1

h2

h3

H+
H0

⎞
⎟⎟⎟⎟⎟⎠
. (2.13)

The rank of SU(5) is 4 which is the same as that of SU(3)×SU(2)×U(1). Thus,
to break SU(5) down to SU(3)×SU(2)×U(1), one needs a Higgs field which can
have a VEV in the center of SU(5), in order not to reduce the rank. The simplest
such choice is an adjoint Higgs field 24H . The next simple choice is 75H . Let us
introduce 24H only for the GUT symmetry breaking, and let its VEV be VU . Then,
below the scale VU , the effective fields are only those in the SM and the colored
scalar h. The heavy fields we introduce in this minimal GUT at the scale VU are the
so-called X and Y gauge bosons each with mass MX = MY = 1

2g5VU , where g5 is
the unification coupling constant, and twelve real Higgs fields originally introduced
in 24H . From (2.12) one can see that X and Y gauge bosons couple to a lepton
and a quark, and hence are called “lepto–quark” gauge bosons, and also to two
quarks uu or ud , rendering them “di-quark” gauge bosons. Therefore, the lepto–
quark gauge bosons mediate proton decay, and their masses should be extremely
heavy, MX,Y ≥ 1015 GeV.

The prototype SU(5) GUT model classifies the 15 chiral fields neatly in 10F⊕5F .
But a more important implication is that the electromagnetic charge is quantized,
3Qem(u) + 3Qem(d) + Qem(e) = 0, i.e. Qem(p) = −Qem(e). This is possible
because quarks and leptons are put in the same representation.

Another equally important implication is that the gauge coupling is unified at the
GUT scale MX,Y . The running of gauge coupling constants below the GUT scale is
[29],

8π2

g2
i (MZ)

= 8π2

g2
U (MU)

+ bi ln
MU

MZ

, (2.14)

where we can assume MU = MX and gU is the SU(5) coupling at the unification
point MU , and bi are the coefficients of β functions of the gauge groups, SU(3),
SU(2)L and U(1)Y ,

b1 = + 3
5 TrY 2δFB,

b2 = − 11
3 · 2+ 2

3

∑
j l(Rj (SU(2)L))δFB, (2.15)

b3 = − 11
3 · 3+ 2

3

∑
i l(Ri(SU(3)))δFB,
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where

Tr T a
RT

b
R = l(R)δab, (2.16)

is the index of representation R. For example, l(fund. representation) =
1
2 , l(adj. representation) = N for SU(N) groups. In these formulae, l is normalized
for a chiral fermion; thus δFB = 1 for L and R fermions and summed over
L and R. For complex bosons δFB = 1

2 , and for real bosons δFB = 1
4 . Also,

every generator, including the U(1) generator, is normalized for (2.16) to be 1
2 for

the fundamental representation. If the electroweak hypercharge is embedded in
a GUT group, the hypercharge is properly normalized. The proportionality of the
electroweak hypercharge generator Y to the normalized U(1) generator T24 in SU(5)
is parametrized by the normalization constant C,

Y = CT24, with C2 = 5

3
, (2.17)

where

T24 =
√

3

5

⎛
⎜⎜⎜⎜⎜⎝

− 1
3 0 0 0 0

0 − 1
3 0 0 0

0 0 − 1
3 0 0

0 0 0 1
2 0

0 0 0 0 1
2

⎞
⎟⎟⎟⎟⎟⎠
=

√
3

5
Y. (2.18)

Since the gauge interaction gives g′Y = g1T24, we note that g1 = Cg′. We can
calculate the weak mixing angle (2.4)

sin2 θ0
W = g′2

g2
2 + g′2

= 1

1+ C2
(2.19)

with g1 = g2 = g3 = g5 = gU , by running the bare values down to the electroweak
scale, as we will see in the following section. Since Qem = T3 + Y , and using the
fact that the index (2.16) is independent of a, we arrive at the handy result [29],

sin2 θ0
W = Tr T 2

3

Tr Q2
em

. (2.20)
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Note that we have assumed that all the SM fields belong to complete multiplets over
which the trace is taken. If some fields fail to form a multiplet, the relation is no
longer valid. As an exercise, we note the following for Ng families of fermions of
(2.8),

b3 = −11+Ng
2
3 · 1

2 (1uL + 1dL + 1ucL + 1dcL) = −11+ 4
3Ng

b2 = − 22
3 +Ng

2
3 · 1

2 (3(u,d)L + 1(νe,e)L) = − 22
3 + 4

3Ng

b1 = Ng
3
5 · 2

3

{
2
(
− 1

2

)2

(νe,e)L
+ 1ecL + 2 · 3

(
1
6

)2

(u,d)L
+ 3

(
− 2

3

)2

ucL

+3
(

1
3

)2

dcL

}
= 4

3Ng,

where in the subscript of each number we show the representation contributing to
that number. Except for the gauge bosons, a complete multiplet (2.8) gives the same
contribution to bi , i.e. 4

3Ng . Thus, the necessary differentiation of the weak SU(2)
coupling and the QCD coupling is implementable in the GUT from the gauge boson
contributions [29]. Which GUT actually succeeds in fitting the electroweak data is
the key issue in building the GUT model.

In Fig. 2.5, we present a schematic behavior of the running of gauge couplings
from the GUT scale MU down to the electroweak scale MZ . For a sufficient
separation of α3 and α2 at the electroweak scale, we need a large logarithm, or

MU

MZ

≥ 1012. (2.21)

Fig. 2.5 Running of gauge couplings
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Fig. 2.6 Dimensional
transmutation

A good theory must explain this huge number, which is the gauge hierarchy
problem [30].

The gauge hierarchy problem consists of two parts: (1) “How are two different
scales implied by (2.21) introduced?” and (2) “Given those two different scales,
are quantum corrections safe to guarantee the hierarchy of (2.21)?” This book is an
exploration of bigger theories originally motivated to answer the gauge hierarchy
problem, and hence we will come back to this gauge hierarchy question again
and again. Supersymmetry was used to answer the second problem, forbidding
the quadratic divergence of the Higgs mass [31]. For the first problem, recently a
solution has been found with a confining SU(5)′ in the hidden sector [32].

An exponential function of a reasonably large number can introduce a huge num-
ber. So, the best way to understand the gauge hierarchy problem is to introduce an
exponential function. Dimensional transmutation of dimensionless gauge couplings
α can introduce an exponentially small mass. When a dimensionless coupling α is
given, the renormalization group evolution of α finds a mass scale, where α becomes
order 1 as shown in Fig. 2.6, whose scale is defined as the coupling �, having the
mass dimension. It is used in asymptotically free theories, i.e. for non-Abelian gauge
theories. In QCD, �QCD is determined around 300 MeV. In this way, the techni-
color idea was introduced to have the electroweak scale around 3 TeV, exponentially
smaller than the GUT scale [11, 33]. The techni-color idea, extended to extended-
techni-color [34] to have a flavor hierarchy, failed miserably and the SUSY idea
has been tried several decades since 1981 [31] for the hierarchy solution. But, the
SUSY solution so far has been satisfied merely with the stable hierarchy, i.e. once
the hierarchical parameters are introduced then the solution is stable. Recently, a
model for dynamical breaking of SUSY has been found which can lead to a gigantic
step toward the gauge hierarchy solution [32].

Note that there is one merit to having the large hierarchy (2.21). Since there exist
the super heavy X and Y gauge bosons, the proton decay rate is proportional to
M−4

X , giving the proton lifetime for the dominant mode as [35, 36]

τ (p→ e+ + π0) = O(103 − 104)

(
MX

mp

)4 1

mp

, (2.22)
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where mp is the proton mass.7 Thus in fact, a large hierarchy is needed from
the requirements of proton longevity and differentiation of strong and electroweak
couplings. The current experimental bound on the above partial lifetime is 1.6 ×
1033 years [37].

We note that there also exists the colored scalar h in 5H , in Eq. (2.13). This
colored scalar h triggers proton decay through Yukawa couplings 10F 5F 5H and
10F 10F 5H . Even though the Yukawa couplings of the first family is O(10−6),
mixing with heavier families introduces larger Yukawa couplings for proton decay
through h exchanges. Thus, h in 5H and h in 5H must be removed at the GUT
scale. Below the GUT scale, there must survive three families of fermions and a
Higgs doublet (H1 and/or H2).8

The unification theme of our discussion does not stop at the minimal GUT,
SU(5). As noted before, SO(10) is much nicer than SU(5) from the standpoint of
the unification theme. However, SU(5) is favorable for two reasons. First of all,
SO(10) requires several intermediate steps in the process of breaking it down to
SU(2)L×U(1)Y , and hence it is more complicated. These intermediate steps are

SO(10) −→

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

SU(5)GG

SU(5)′ × U(1) [flipped SU(5), or anti− SU(5)]
SU(4)× SU(2)L × SU(2)R [Pati− Salam]
SU(4)× SU(2)× U(1)
SU(3)× SU(2)× SU(2)× U(1)

(2.23)

Secondly, even though SO(10) is superior to SU(5) in terms of the unification
theme, it still cannot include three families in one spinor representation 16. SU(5) is
favorable because it is minimal. We need to unify families in the GUT scheme. This
family unified GUT is an obvious generalization of GUT from the unification theme,
“Find a bigger space where all matter fields can be put into a single representation of
a GUT group.” Georgi formulated the family unification with the hypothesis [38],

• Survival hypothesis: If a GUT group G breaks down to a subgroupGsub at a scale
MG, all real representations of Gsub are removed at the scale MG. The surviving
fermions are complex representations of Gsub.

Therefore, the search of chiral theories is reduced to the problem of finding
groups which allow complex representations. Of course, the full complex fermionic
representation(s) should not lead to gauge anomalies. In string theory, every physical
parameter is calculable in principle and we may not need the survival hypothesis.

7Note that GeV−1 � 0.658 × 10−24 in natural units.
8The bold faced notation for the color triplet and weak doublet implies that they are not
representing one particle. Separating these is the doublet–triplet splitting problem.
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So, because of the anomaly problem, an obvious possibility in 4D is to look for
complex representations in groups other than SU(N). There are only two classes
which achieve this objective,

SO(4n+ 2) : with spinor representation 4n

E6 : with the fundamental representation 27. (2.24)

Again, the E6 model [39] houses only one family. As noted before the 16 of SO(10)
houses one family. Therefore, for the family unification we are left with SO(14),
SO(18), etc., in the above category of (2.24). If SO(14) breaks down trivially to
SO(10) at a scale M14, then below M14 the SO(14) spinor 64 reduces to 2(16⊕ 16)
of SO(10) which is real under SO(10) and hence, removed at the scale M14 by the
survival hypothesis. There remains no family. However, if SO(14) directly breaks
down to SU(3)×SU(2)×U(1) in a skewed way, there can survive light fermions
[40], but they are not of the form given in (2.7). This is the reason why the study
of SU(N) groups is necessary. But for the anomaly cancellation, here we cannot
build a model with one fermion representation. One interesting GUT model with
three SU(5) families in which SU(N) representation appears only once is the SU(11)
model [38]

SU(11) : ψαβγ δ ⊕ ψαβγ ⊕ ψαβ ⊕ ψα,

where the SU(11) indices α, β, etc., are anti-symmetrized. Generalizing the single
appearance of irreducible representations to relative primes for the multiplicities of
the representations, there can be numerous GUT models with three SU(5) families
after the application of survival hypothesis [41, 42].

So far, we have only discussed simple gauge groups for GUT. But one may
consider semi-simple groups for grand unified models. In fact, the Pati–Salam
model SU(4)×SU(2)L×SU(2)R [43] was considered before SU(5). But there is no
rationale that gauge couplings of SU(4) and SU(2) are unified above some scale.
An intermediate group can be between a real GUT at MU and the SM at MZ . Even
though this model does not achieve gauge coupling unification, it puts quarks and
leptons in the same representation and therefore can be called a GUT. Namely in 4
of SU(4), a quark triplet and a lepton are put together and hence the lepton is called
the fourth color. Therefore, the possibility of proton decay exists in principle, but
in one version of the Pati–Salam model where SU(4)×SU(2)L×SU(2)R is unified
to SU(4)×SU(4), the rate is much more suppressed since the nontrivial operator
for proton decay appears only at dimension nine operators, instead of dimension
six operators shown above in SU(5) [44]. So the breaking scale of SU(4) can be
much lower than that of the SU(5) GUT. Another interesting factor group for GUT
is SU(5)×U(1) the so-called flipped SU(5) or anti-SU(5). This factor group is not
semi-simple. Here also, the SU(5) coupling and U(1) coupling are not unified, but
can be called a GUT since quarks and leptons are put in the same representation. It
can be a subgroup of SO(10) [45].
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If a semi-simple group is considered as a GUT, then a discrete symmetry must
exist for the exchange of factor groups, thus guaranteeing the equality of gauge
couplings. The most interesting GUT in this category is the so-called trinification,
SU(3)×SU(3)×SU(3), with the representation

27tri = (3, 3, 1)⊕ (1, 3, 3)⊕ (3, 1, 3). (2.25)

This model cannot separate out any SU(3) and hence there exists an exchange
symmetry of gauge groups, and the three SU(3) gauge couplings are unified above
the unification scale MU . In the trinification, quarks and leptons are not put in the
same representation, but still it is called a GUT because gauge couplings are unified.
In many aspects, the trinification model is very similar to the E6 model.9

In this book, we will discuss mainly the SU(5) model, the SO(10) model, the
Pati–Salam model, the flipped SU(5) model, and the trinification model. We attempt
to resolve family unification with a new method appearing in the compactification
process.

2.3 Supersymmetry

2.3.1 Global Supersymmetry

Supersymmetry is probably the most spectacular symmetry ever since the discovery
of isospin. It can be introduced in many different ways. In our search of an enlarged
symmetry of matter spectrum, we note that the SM spectrum (2.7) includes Higgs
scalars also. Surprisingly, the chiral (L-handed) lepton doublet l and H1 have the
same quantum numbers except for the spin. Even though it is not necessary, we may
try to put a chiral fermion and a complex scalar in a bigger Hilbert space so that they
belong to the same representation, in our pursuit of unification.10 Due to the fact that
the spectrum (2.7) contains spin-0 particles, we open up the possibility of unifying
fermions and bosons. The new space is called superspace [47] and the supercharge
Q is the generator for the transformation of fermions to bosons and vice versa,

Q|F〉 = |B〉, Q|B〉 = |F〉. (2.26)

From the definition of supercharge in (2.26), we note that Q must be spinorial
because both Q|B〉 and |F〉must transform like a spinor under rotation. The spinorial
charge Q has two components since our motivation for unification started so that L-
handed leptons in (2.7) could be obtained from complex scalars by operating Q. So,
Q transforms like a L-handed Weyl fermion. Here follows the chirality which we

9For trinification references, see [46].
10Phenomenologically however, the Higgs fields are known to not be in the same representation as
the chiral lepton doublet in the supersymmetrized version.
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need desperately for the scalars, and if we succeed in this F and B unification, that
alone can be a merit. The Lorentz algebra SO(3,1) is the same as SU(2)×SU(2);
thus the Lorentz group SO(3,1) can be locally viewed as SU(2)×SU(2). The Weyl
fermion transforms as (2, 1) or as (1, 2) under SU(2)×SU(2). Let (2, 1) be the L-
handed field and (1, 2) be the R-handed field. The indices for SU(2)L are denoted as
undotted α = {1, 2} and the indices for SU(2)R are named as dotted α̇ = {1, 2}.11

Since Q transforms like a L-handed Weyl spinor, its commutation relation with the
angular momentum generator is

[Jμν,Qα] = −i(σμν)βαQβ. (2.27)

For the R-handed Weyl fermions and their accompanying complex scalars, the
supercharge must transform nontrivially under SU(2)R. Let us call this supercharge
Q which changes the dotted indices,

[Jμν,Qα̇] = −i(σμν)
β̇
α̇Qβ̇ . (2.28)

In fact, Q is the charge conjugated of Q, since as we have seen in the previous
section of this chapter, L changes to R and vice versa under charge conjugation. The
total number of complex components in Q and Q is four. Thus, we can form the
following representation for the supercharge,

Q =
(
Q

Q

)
. (2.29)

There exists the famous no-go theorem by Coleman and Mandula [49] which says
that the fermion–boson symmetry and the spacetime symmetry cannot be unified in
a naïve way, just by making the internal space bigger, i.e. making the Lie group
bigger. Supersymmetry escapes this Coleman–Mandula theorem by not making just
the Lie group bigger, but by introducing an algebra outside the Lie algebra. It is
called the graded Lie algebra where one adds anti-commutators for some generators.
For supercharges Q and Q, one introduces the following anti-commutators:

{Qα,Qβ̇} = 2(σμ)αβ̇Pμ (2.30)

{Qα,Qβ } = 0, {Qα̇,Qβ̇} = 0. (2.31)

With the space translation generators Pμ, one introduces commutators as in
Eq. (2.28),

[Pμ,Qα] = 0, [Pμ,Qα̇] = 0, [Pμ, Pν] = 0. (2.32)

11See, for example [48].
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Indeed, this expansion of symmetry by introducing anti-commuting supercharges
is known to be possible and the fermion–boson symmetry introduced in this
way is supersymmetry. The parameter for the supersymmetry transformation, ε,
must transform like a spinor under rotation so that Qε transforms like a scalar.
Supersymmetry (SUSY) was introduced in 1971 [50], but the linear realization
(2.26) of supersymmetry, what we use today, is due to the work of Wess and Zumino
[51].

The time component of the algebra (2.30) gives the Hamiltonian in terms of
supercharges

H = P 0 = 1

4
(Q1Q1 +Q1Q1 +Q2Q2 +Q2Q2) (2.33)

which implies that the energy eigenvalues are nonnegative. If supersymmetry is
unbroken, the supercharges annihilate the vacuum |0〉, and the vacuum energy is
zero,

Global SUSY : Evac ≥ 0, equality for unbroken SUSY. (2.34)

The supersymmetry we have discussed above is N = 1 supersymmetry. If we
introduce more supercharges, they define extended supersymmetry, N = 1, 2, · · · .
For example, for N =2 the total Sz interval between (Sz)max and (Sz)min is 2 · 1

2 = 1
because one application of a supercharge changes spin by a half unit. Not to include
spin greater than 2, thus we obtain N =8 as the maximum extended supersymmetry.
In the remainder of this section, only N = 1 supersymmetry is considered, where
the introduction of chirality is possible.12

Although we do not use superfield formalism [47] here, we list its powerful
constraints on the form of Lagrangian. Introducing an anti-commuting coordinate
θα (α = 1, 2) and θ̄α̇ (α̇ = 1, 2), one can also introduce a quantum field as a
function of x, θ , and θ̄ . A polynomial of θ includes only three terms, 1, θ , and θ2. A
similar polynomial results from θ̄ . In view of the SU(2)L×SU(2)R property of the
Lorentz group (viz. Eqs. (2.27), (2.28)), θ (θ̄ ) is a doublet under SU(2)L(SU(2)R).
For fermions, we introduce an L-handed chiral field ψ , which is a singlet under
SU(2)R. This ψ can make a singlet of SU(2)L (viz. 2 × 2 = 1 + 3), by taking
the antisymmetric combination with θ, θψ ≡ εαβθ

αψβ where εαβ is the Levi-
Civita tensor of SU(2)L. Thus, SU(2)L singlets can be a scalar function of φ(x) and
spin 1

2 · spin− 1
2 , which is denoted as �, a function of the forms θψ(x) and F(x)θθ .

12For example, for N =2 matter fermions are located at Sz = 1
2 and Sz = − 1

2 with the same
gauge quantum number. These Sz = ± 1

2 representations form a vector-like representation under
the gauge group.
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A (L-handed) chiral superfield �(x, θ) is defined as a function of θ only; thus a
chiral superfield has expansion13

�(x, θ) = φ(x)+ θαψα + θαθβεαβF
2. (2.35)

The chiral superfield � contains a spin-0 boson and a spin- 1
2 fermion. A superfield

containing both θ and θ̄ has more degrees. Here, it is possible to introduce a spin-1
boson in the superfield V , with the reality condition V = V †. V (x, θ, θ̄ ) is called a
vector superfield. This superfield formalism is quite useful in analyzing the form of
allowed actions. As a result, first the globally supersymmetric Lagrangian is known
to depend only on three functions K,W, and f :

1. Kähler potential K(�,�∗), a Hermitian function, determines mainly the kinetic
terms.

2. Superpotential W(�), a holomorphic function, determines the potential V (�).
3. Gauge kinetic function fab(�), a holomorphic function, is the coefficient of

gauge kinetic terms.

In particular, the scalar potential is always positive definite

V (φ, φ∗) =
∑
i

∣∣∣∣∂W(φ)

∂φi

∣∣∣∣
2

+ 1

2
fabD

aDb, (2.36)

where we replaced the superfield � with its scalar field φ and Da = GiT
aj

i φj is the
D-term. This is another expression of Eq. (2.34). Second, there is the following non-
renormalization theorem. Because of the holomorphicity, the superpotential W(�)

does not receive loop corrections other than those of wave function renormalization,
at all orders of perturbation theory. Also, the gauge kinetic function fab(�) does not
receive higher order correction beyond one loop order.14 These are quite restrictive
compared to non-supersymmetric models.

2.3.2 Local Supersymmetry, or Supergravity

In this subsection, we introduce some formulae which are needed in later chapters.
Thus far, we have considered the global supersymmetry where the parameter ε

for supersymmetry transformation is independent of xμ. If supersymmetry is the
symmetry of the action, it must be severely broken since the superpartner of the
electron has not been discovered up to 1 TeV [16]. If the global supersymmetry is
broken at the scale MS , the vacuum energy must be of the order M4

S , in view of

13Similarly, from the consideration of SU(2)R an R-handed chiral field �†(z̄) can be given.
14The gauge kinetic function includes the anomaly term which is complete by one-loop order [52].
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(2.34), and the cosmological constant problem phenomenologically excludes global
supersymmetry from square one. There is no escape from this problem in the global
SUSY case.

This leads us to the necessary introduction of gravity through the localization
of the supersymmetry parameter, ε(x). The resulting theory is supergravity. If the
vacuum energy problem is not resolved in supergravity as well, then this would
be just an academic exercise. Fortunately, supergravity allows the possibility of
introducing a zero cosmological constant after supersymmetry breaking [53].

In the supergravity Lagrangian, K and W appear with a single function G

G(φ, φ∗) = −3 log(−K/3)+ log |W |2 (2.37)

where we set the Planck mass MP = 1. The oddly looking coefficients are for
convenient calculations. The function (2.37) has a symmetry

3 log(−K/3)→ 3 log(−K/3)+ h(φ)+ h∗(φ∗),

W → e−hW.
(2.38)

Covariant and contravariant indices are used for holomorphic and antiholomorphic
scalars, respectively. The Kähler metric of the (sigma model) target space is defined
as

Gi = ∂G

∂φi
, Gi = ∂G

∂φ∗i
, Gi

j =
∂2G

∂φi∂φ∗j
. (2.39)

Then, the bosonic Lagrangian is given by

e−1L = L√
g
=− 1

2
R +Gi

jDμφiD
μφ∗j + 1

4
Re(fab)F

a
μνF

bμν

+ 1

8
Im(fab)ε

μνρσF a
μνF

b
ρσ + V (φ, φ∗)

(2.40)

with the following scalar potential [54, 55]

V (φ, φ∗) = eK
[
(G−1)j

i
DiW

∗DjW − 3|W |2
]
+ 1

2
fabD

aDb, (2.41)

where

DiW = ∂W

∂φi
+ ∂K

∂φi
W, DiW

∗ = ∂W∗

∂φ∗i
+ ∂K

∂φ∗i
W∗, (2.42)

and on-shell D-term

Da = GiT
aj
i φj . (2.43)
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In contrast to the global supersymmetry case (2.36), here the superpotential is not
positive definite.

The supersymmetry breaking condition can be read from the transformation laws
of fermionic fields. For supersymmetry breaking, only their scalar component(s) can
assume VEV that does not violate the Lorentz symmetry,

δε� ∼ −eG/2 1

W∗DiW
∗ε − 1

8

∂fab

∂φ∗j
λaλbε (2.44)

δελ ∼ i

2
g Re f−1

ab Gi(Tb)
j
i φj ε. (2.45)

The right-hand side of (2.44) is called the F-term of � . Supersymmetry can be
broken if the F-term is nonvanishing, either by (1) the first term assuming VEV or
(2) the second term through the gaugino (λa) condensation by some strong force.
The supersymmetry breaking scale for Case (1) is

M2
S = eG/2 1

W∗DiW
∗, (2.46)

and a similar expression holds for Case (2).
Supergravity formulated with an AdS curvature � < 0 has a negative vacuum

energy �. With a broken SUSY, a positive constant, (viz. ((2.34), (2.41))), is added
to �, making it possible for the vacuum energy in the broken phase to be made zero,
V0 = 0. For example, if the SUSY is broken by the nonzero F term only, then the
flat space condition requires, G0kG

k
0 = 3. In this flat limit, the gravitino mass is

m3/2 = MP e
G0/2, (2.47)

where MP is the Planck mass, 2.44 × 1018 GeV. Thus, supergravity saves us from
the disaster of a huge cosmological constant. But, it must be remembered that we
achieved the flat space by a fine-tuning, since the initial curvature �, with which we
formulated the theory, is an arbitrary number.

Now let us introduce the N = 1 supergravity for the matter content (2.7). The R-
handed fields are understood to be the charge conjugated L-handed fields as in (2.8).
The Yukawa couplings are contained in the cubic terms of the superpotential W .
Since all fields in (2.7) have superpartners, we do not bother to distinguish between
the complex scalars and L-handed fermions. In the superpotential W , the fields
denote the first component, i.e. scalar component. The scalar partners of fermions
in (2.7) are called sfermions, e.g. squark, selectron, and sneutrino. On the other
hand, the fermionic partners of (2.7) scalars carry the suffix “ino,” e.g. Higgsinos.
Supersymmetrization of Higgs bosons require the Higgsinos to be L-handed so
that they can couple to other L-handed fields. We said before that scalars do not
have a left- or right-handed distinction. But, here we change this statement. Scalars
in supersymmetric theory have chiralities which are determined by the chirality
of their fermionic partner. If we consider gauge bosons, their fermionic partners
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(s = 1
2 ) are called gauginos, e.g. gluino, wino, zino, photino, and bino. Here, bino

means the partner of the U(1)Y gauge boson Bμ. To give mass to an electron, we
can consider a superpotential, lLecLH1. Down-type quarks can obtain mass by the
term, qLdcLH1, however, up-type quarks cannot obtain mass by H1. They need the
Y = + 1

2 Higgsino doublet H2. Unlike the case without supersymmetry, iσ2H∗1
cannot serve for the up-type quark mass since the charge conjugated field is R-
handed and W does not allow couplings of both chiralities. Therefore, we need
another L-handed Higgs doublet H2 for the up-type quark masses, qLucLH2. It is
also needed to cancel the gauge anomaly since we considered the complex fermion
through supersymmetrization of H1. The addition of H2 makes the representation
H1 ⊕ H2 real under SU(3)×SU(2)×U(1). The N = 1 supersymmetric gauge
model with the spectrum given in (2.7) and with the addition of H2 is the minimal
supersymmetric standard model (MSSM). Namely, the Higgs sector becomes a bit
bigger

MSSM � H1 ⊕H2. (2.48)

So far, we have taken the strategy of extending the symmetry and ultimately
introducing supersymmetry. Supersymmetry helps in solving some important prob-
lems as well, such as the second gauge hierarchy problem. One way to phrase the
gauge hierarchy problem is, “Why is the mass of the electroweak Higgs boson H1 so
much smaller than the mass of the GUT Higgs boson 24H?” If we start from a small
ratio for these masses for H1 and 24H , the radiative corrections should not destroy
this smallness. With supersymmetry, indeed this stability problem is understood
because the relevant Yukawa couplings and quartic couplings are related. Both kinds
of couplings are related by the superpotential W . As depicted in Fig. 2.7, boson
loops positively contribute and fermion loops negatively contribute to the Higgs
boson mass so that the quadratic divergence is cancelled. Thus, the second gauge
hierarchy problem is understood with a SUSY extension. This leads to the MSSM
being a serious contender for interactions around the TeV scale. If the MSSM were
to solve the gauge hierarchy problem, the divergence problem of the Higgs boson
mass should only be forced a few TeV above the upper region of the electroweak
scale. If the SUSY breaking scale MS is raised any more than a few TeV, there will
be a wide range of energy scales, from MZ to MS , where SUSY is not helpful for
the stabilization of the Higgs boson mass. With MS > 100 TeV, it is called the little
hierarchy problem.

Fig. 2.7 Fermion and boson loops cancel the quadratic divergences
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In the MSSM, the superpartners of the three families must be raised to the
SUSY scale MS since they have not yet been discovered. This is realized by
making the supersymmetry spontaneously broken. If it is broken softly, then only
soft SUSY breaking masses appear below the scale MS . Soft masses are the
non-supersymmetric scalar masses and the gaugino masses. These soft SUSY
breaking parameters can be given if the SUSY breaking mechanism is known. One
popular scenario is the gravity-mediated SUSY breaking where soft masses at the
electroweak scale are given as functions of the gravitino mass, m3/2. For a review,
see [55].

2.3.3 SUSY GUT

This leads us to the obvious unification, the supersymmetrized GUT or SUSY GUT.
Again, the simplest SUSY GUT is SUSY SU(5) [56]. The matter content 10F and
5F are supersymmetrized. Also, two Higgs representations are needed, one housing
H1 and the other housing H2,

5H =

⎛
⎜⎜⎜⎜⎜⎝

h1

h2

h3

H+1
H0

1

⎞
⎟⎟⎟⎟⎟⎠
, 5H =

⎛
⎜⎜⎜⎜⎜⎝

h1

h2

h3

H0
2

H−2

⎞
⎟⎟⎟⎟⎟⎠

(2.49)

which are all L-handed fields. Here, h4 and h5 form the Higgs doublet H1, and
h4 and h5 form the Higgs doublet H2. To break the GUT group, we also need
a L-handed adjoint Higgs field 24H . Then, we can consider a renormalizable
superpotential

W = m5
T

H 5H + 5
T

H24H5H + Tr243
H +MTr242

H , (2.50)

where all fields are L-handed, m and M are GUT scale masses, and the couplings
have been suppressed. After assigning a huge VEV to 24H , we need to make H1 and
H2 survive to the electroweak scale and h and h escape at the GUT scale. This can
be done by a fine-tuning of the couplings in the above superpotential. For example,
the above superpotential ends up requiring the following form after assigning a VEV
m1 to 24H ,

5
T

H

⎛
⎜⎜⎜⎜⎜⎝

m+ 2m1 0 0 0 0
0 m+ 2m1 0 0 0
0 0 m+ 2m1 0 0
0 0 0 m− 3m1 0
0 0 0 0 m− 3m1

⎞
⎟⎟⎟⎟⎟⎠

5H .
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One must fine-tune m and the VEV of 24H m1 so that m = 3m1, in order to obtain
the electroweak Higgs doublets H1 and H2. This is the problem of separating H1
and H2 from the triplets h and h, which is known as the doublet–triplet splitting
problem. It is one of the most difficult hierarchy problems in SUSY models.

Assuming the following extremely simplified symmetry breaking pattern,

SU(5) −→ [SU(3)× SU(2)× U(1)]SUSY at MU,

−→ [SU(3)× SU(2)× U(1)]non−SUSY at MSUSY,

−→ SU(3)× U(1)em at MZ, (2.51)

we can estimate how much the gauge couplings are differentiated at the electroweak
scale MZ. Conversely, given the experimentally measured couplings at the elec-
troweak scale, we can check whether or not they meet at the unification point MU .
The current situation is shown in Fig. 2.8 with the one-loop evolution of gauge
couplings. Originally, with crude data on αc [57] they do not seem to meet [58].
However, with the LEP data on αc [16] they meet within the experimental error
bounds [59–61]. Thus, SUSY GUT models with the MSSM spectrum below MU

seem to have some truth to them.
So far in the last few decades, supersymmetry has been the most popular

scenario for the solution of the gauge hierarchy problem, and is the reason why
the phenomenological aspects of MSSM have been so vigorously studied. But the
MSSM has some serious theoretical problems related to the following issues;

• 15(+1) chiral fermions in one family,
• number of fermion families ≥3, probably exactly 3,
• N = 1 supersymmetry,

Fig. 2.8 Running of gauge couplings of Fig. 2.5 with one-loop beta function and experimental
inputs. We used MZ = 91.187 GeV, MS = 103 GeV, MU = 1.4 × 1016 GeV. α−1

1 (MZ) =
1/0.01681, α−1

2 (MZ) = 1/0.03358, α−1
3 (MZ) = 1/(0.1200 ± 0.0028), and sin2 θW (MZ) =

0.231 [16]
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• gauge hierarchy,
• doublet–triplet splitting,
• one pair of Higgsinos, H1 and H2,
• the hypercharge quantization, sin2 θW � 3

8 at GUT scale,
• absence of strong CP violation,

as well as more detailed questions such as that pertaining to the hierarchies of
Yukawa couplings related to Eq. (2.11). The Yukawa hierarchy problem is probably
the most important issue at the TeV scale, which will likely be verified by future
high energy experiments. In this book, however, we focus on searches of theoretical
structures with which all or some of the above problems can be understood.

2.4 Extra Dimensions

2.4.1 Field Theory

In the 4D quantum field theory framework, we exhausted most possibilities of
unification which are not obviously excluded by experimental data. This leads us to
extending spacetime itself to higher dimensions, by adding extra dimensions to the
familiar 4D model. In fact, the addition of extra dimension(s) beyond 4D is an older
idea than any of the extensions we have discussed so far, and was first addressed by
Kaluza and Klein in the 1920s [62,63]. Trying to interpret a photon as a gauge field
in the metric, Kaluza said that, “· · · such an interpretation of Fμν is hardly supported
unless otherwise one makes an extremely odd decision of a new fifth dimension of
the world.” If we are to introduce extra dimensions, they must be cleverly hidden
from us. The Kaluza–Klein (KK) idea is to compactify extra dimensions to such a
small scale that the resolution power of 4D observers cannot see the structures of
the extra dimensions. This is the famous compactification idea. Kaluza’s excuse of
introducing the extra dimensions was to view gravity and electromagnetism on the
same footing. But Kaluza’s view of gμν and Aa

μ on the same footing has failed in fact
because of the chirality problem. Our excuse for introducing six extra dimensions,
is to the unification of families.

Starting in the late 1990s, extra dimensions were studied in the quantum
field theory framework. The chief motivation for the field theoretic study was to
understand the gauge hierarchy problem with extra dimensions.

Arkani-Hamed, Dimopoulos, and Dvali (ADD) [64] introduced a TeV scale
fundamental mass M5 for gravity with extra dimensions, where the full extended
space is called bulk. ADD assumed a flat bulk. The electroweak scale quantum
fields are confined to a 4D boundary called the brane. Our perception of a huge
4D Planck mass MP is blamed for the large size of the extra dimensions compared
to the Planck scale. This idea works even for extra dimensions as large as 100 μm
because of poor gravity experiments at small scales. This idea is designed to answer
the gauge hierarchy problem by introducing only TeV scale masses M5 and MZ in
the Lagrangian, i.e. the hierarchy problem is not there from the outset. On the other
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hand, Randall and Sundrum (RS) considered the AdS bulk, i.e. with a negative bulk
cosmological constant. In the RS-I model with two brane boundaries [65], the SM
fields are put on the SM brane, B2, where the brane tension is negative while there
exists another brane, B1, where the brane tension is positive. If the distance between
these two branes is d in the 5D example, by two fine-tunings the mass parameters
at the SM brane are ∼M5e

−kd where k is the mass determined by M5 and the 5D
cosmological constant �5. Thus, the relevant mass parameters at the SM brane can
be exponentially small compared to the fundamental mass M5 ∼ MP , and d of
O(100M−1

5 ) can give the electroweak scale. This is an attractive proposal for an
exponential hierarchy, but serious cosmological problems arise from putting the SM
fields in the negative tension brane [66]. Furthermore, from our theme of unification,
this proposal can be at best just one side view of the full structure.

The ADD and RS-I proposals use the old compactification idea. Randall and
Sundrum proposed another idea of cleverly hiding extra dimensions even though
they are not compactified. It is the RS-II model [67] where only one positive tension
brane is placed at y = 0 which is the brane for the SM fields. Again, the effect
of gravity falls off exponentially e−k|y| in the bulk and the deep bulk (|y| > k−1)
is effectively hidden from us. Since all the fields (the SM fields and GUT fields)
are put at the same brane, the RS-II model does not give a rationale for the gauge
hierarchy solution. Most likely, this RS-II may be a way to understand the more
serious hierarchy problem, the cosmological constant problem, through self-tuning
solutions [68].

2.4.2 String Theory

Quantum field theory in four spacetime dimensions (4D) has a limited ability to
unify all forces in Nature even though its favorite baby, the SM, is known to be
very successful phenomenologically below the electroweak scale ∼100 GeV. The
SM has 19 free parameters (gauge couplings and flavor parameters such as given
in Eq. (2.11)) which are tuned such that all the observed electroweak data are
explained; at present this tuning is known to be possible without a major discrepancy
with the data. But the SM does not explain why the 19 parameters take those
phenomenologically required values. This is the uniqueness problem of why the SM
takes the specific set having those required values out of numerous other possible
sets. One can envision the existence of a truly unifying fundamental theory which
is sometimes called the theory of everything (TOE). Nature may not allow such
a theory. However, if such a theory exists, one should be able to calculate those
parameters of the SM. We have observed that such a unification is possible in
GUTs for the case of gauge couplings. In addition, 4D quantum field theory at
present cannot incorporate gravity in the scheme because of its inability to treat the
divergences appearing in quantum gravity. At the very least, these two problems,
the uniqueness problem and the quantum gravity problem, hint to another theory
beyond the 4D quantum field theory for TOE if it indeed exists.
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String theory can be a candidate for TOE, at least for answering the above
problems. As for the uniqueness problem, it has only one parameter, the string
tension α′−1. If everything works out fine, then all the SM parameters are calculable
in principle. As for the gravity problem, all string theories include closed strings
which contain an excitation responsible for gravity. Removal of infinities in string
theory can be explained after exploiting the one loop amplitude. Intuitively, one can
imagine that string is better behaved than a point particle theory because string is an
extended object. String theory with α′−1 ∼ 1 GeV2 was initially considered for the
theory for strong interactions15 before the development of QCD. But we know that
strong interaction is due to the confining SU(3)c gauge theory. If string is useful for
physics at all, it must be for gravity with α′−1 ∼ M2

P [70, 71].
In quantum mechanics (the first quantization), identical particles are treated by

the permutation symmetry which is put in by hand. This is similar to declaring that
all 0.511 MeV mass fermionic particles in the universe are identical. They are the
identical particle, electron. Quantum field theory (the second quantization) gives
a cute interpretation for the existence of identical particles in Nature, i.e. why an
electron on Earth is identical to an electron in Andromeda Galaxy. Quantum field
theory assumes that in the universe there is only one electron quantum field ψe.
Both the electron on Earth and the electron in Andromeda are created by the same
quantum field ψe and hence they cannot be different kinds of particles. But why
are there so many quantum fields in the SM? String theory answers this question
by saying that there is only one string field X in the universe (in bosonic string).
Different modes of excitations correspond to different quantum fields and string
theory can explain the existence of different kinds of particles in Nature. In this
sense, string theory contains the basic logic for TOE.

One predictive power of string theory is that it fixes the number of spacetime
dimensions where it lives. Bosonic string theory, which is the simplest string
theory of all, is possible only in 26 spacetime dimensions (26D). But, quarks and
leptons, which are fermions, are not present in the 26D bosonic string theory. To
incorporate fermions, one considers superstring theory which is possible only in ten
spacetime dimensions (10D). In the above determination of the number of spacetime
dimensions, the quantum idea for string at the level of the first quantization is used
for a consistent string theory. Still the second quantization of string is not yet fully
developed if it is even needed at all. String theory used in particle physics is the
first quantized version. At present, it is not known what kind of bonus on the theme
of unification will reveal if one succeeds in further generalizing the first quantized
string theory. Superstring theories accompany supersymmetry. Because quarks and
leptons are present, it is better for the fundamental dimension of spacetime to be
10D rather than 26D if string is the fundamental object in the universe, and with this
logic supersymmetry is essential at the fundamental level in 10D. But the spacetime
around us seems to be 4D and we must find a way out from 10D to 4D. A useful
way to obtain 4D is by compactifying six extra dimensions so that its smallness
is not perceived by us. The main aim of this book is to discuss this process of

15See, for example [69].
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Fig. 2.9 Closed and open strings

Fig. 2.10 M-theory vacua

compactification, using orbifolds. Here, the question why we live in 4D is not
answered theoretically. Simply, we use the fact that our universe is 4D. But there
exists a cosmological argument that 4D extended to become large while the extra
six dimensions did not [72].

There are several superstring theories in 10D. Strings come in two varieties,
closed strings and open strings as shown in Fig. 2.9.

One cannot construct an open string only theory since A and B of the open string
in Fig. 2.9 can be joined together to give a closed string. Thus, any superstring theory
must contain closed strings and string theory with closed strings can be a theory for
gravity.

As for the uniqueness problem, superstring does not satisfy this criterion as
was hoped in the beginning. Namely, the number of possible superstring theories
is not one. It is known that there exist five 10D superstring theories which are
distinguished by what kind of string(s) is used: Type-I, Type-IIA, Type-IIB [73],
SO(32) heterotic, and most importantly E8×E′8 heterotic string [74–76]. However,
in the mid-1990s string duality was found, in which different superstrings are related
by duality. In fact, six theories (five 10D superstrings and one 11D supergravity)
are related by duality, which is pictorially shown in Fig. 2.10. The six theories are
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considered to be located at specific corners of their mother theory called the M-
theory. At present, we do not know in detail how the M-theory looks.

Among these, the E8×E′8 heterotic string has attracted the most attention [77–80]
since the group is sufficiently large and the symmetry breaking chain E8 → E6 →
SO(10)→ SU(5) is the desirable one, at least at the level of classification of the
15 chiral fields. As noted in Sect. 2.2, the spinor 16 of SO(10) correctly houses the
15 chiral fields. Regarding the doublet–triplet splitting problem of Sect. 2.3, it was
found that a Z3 orbifold compactification does not introduce the extra color triplets
h and h, thus solving the doublet–triplet splitting problem [81]. In addition, string
theory has very rich structures, possibly solving all the problems listed in Sect. 2.3.

Even though string theory escapes the two fundamental problems we mentioned
earlier, it still must explain all the 19 parameters of the SM if it is really the TOE.
Therefore, in string theory the search for the MSSM is of utmost importance.
But, this dream has not been realized experimentally so far at 1–2 TeV region.
Superpartners of SM particles, if they exist, are expected to appear above a few TeV
region (≈MS) which introduces a small hierarchy between vew and the mass scale
MS of SM superpartners. When we consider MS and vew, the naturalness criteria
suggest to satisfy the tree level minimization condition,

M2
Z

2
= M2

Hd
− tan2 β M2

Hu

tan2 β − 1
− μ2 (2.52)

where M2
Hd

and M2
Hu

are the (mass)2 coefficients of the Higgs doublets Hd and

Hu in the potential V, tanβ = 〈H 0
u 〉/〈H 0

d 〉, and μ is the Higgsino mass term in
the superpotential. Starting with a positive M2

Hu
at the ultimate unification scale,

it becomes negative at the electroweak scale, triggering the electroweak symmetry
breaking. The degree of fine-tuning is to look at how severely the above relation
is violated in terms of the naturalness parameter �ew [82, 83]. In the community,
�ew � 100 are looked for at present.

String theory has to be tested by experiments for it to be a good physical
theory. But the size of string for gravitation is considered to be extremely small
(∼10−31 cm) if another large parameter is not introduced.16 In this case, it is
impossible to see ‘string’ by exciting it, and hints of string can come only indirectly.
Such hints are the SM forbidden processes, e.g. proton decay, some level of flavor
changing neutral current processes, etc. But these SM forbidden processes at low
energy are discussed basically by effective field theory and hence they cannot
pinpoint their origin, even if discovered, to string or GUTs for example. In this
sense, we are in dilemma of proving the existence of “string.” Maybe, the best we
can hope is that string theory gives a consistent framework for the appearance of the
SM. On this road of consistency check supplied with some prejudice on the gauge

16Ref. [64] considers the possibility of a large extra dimension.
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Fig. 2.11 The chirality of a massless particle in even dimension 2n embedded in a higher odd
dimension 2n+ 1: (a) D = 4, (b) D = 5, and (c) opening the cylinder of (b)

hierarchy problem, we anticipate the first experimental window to string at a little
hierarchy scale as verification of a supersymmetric standard model.

2.4.3 Compactification

We conclude this lengthy chapter by showing qualitatively that if we start with extra
dimensions, then the chiral fields necessary at the electroweak scale need some kind
of orbifold-like compactification.17

The chirality is given by (1± 2n+1)/2 in even spacetime dimensions, 2n.
Consider the chirality in 4D. In Fig. 2.11a, we consider an arrow in 2D (i.e. one
space dimension), which can be considered a Sz = 1

2 .18 In one space dimension,
the arrow can be put in either of two ways, as shown with the solid arrow and
the dashed arrow in Fig. 2.11a. They are different. But if the arrow came from a
torus compactification from 3D (i.e. two space dimensions), it is in fact Fig. 2.11b.
It appears that the 2D directions are different in the compactified case 2.11b, but
in fact by opening up the compactified dimension as in Fig. 2.11c, we note that the
solid arrow can be transformed to the dashed arrow by a 3D rotation. Stated in terms
of Weyl spinors in 4D, ψL(solid) and ψR(dashed), the Weyl spinor ψL cannot be
transformed to ψR . But if these are embedded in 5D, a 5D rotation transforms one to
the other, which means that they can belong to the same representation in 5D. Thus,
a 5D spinor contains two 4D Weyl spinors, ψL and ψR . The rigorous mathematical
statement on this situation can be found in any textbook on superstring.19 This

17Some manifolds such as the Calabi–Yau have singular limits which become orbifolds.
18The angular momentum can be given from 4D, and the directions in 2D become helicities in 4D.
19See [84].
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Fig. 2.12 A 2D torus moded out by Z2 × Z
′
2: (a) 2D torus, (b) the moded torus with fixed points

and fixed lines, and (c) untwisted (dashed closed loop) and twisted (dashed arc A-A′) strings

shows that even if we start from a chiral theory in higher dimensions, a naïve torus
compactification washes out the chirality in 4D, since we must pass through 5D in
the process.

To obtain chirality, one must twist tori. Because of the simplicity in drawing
figures in 2D, consider two internal dimensions compactified on a 2D torus as shown
in Fig. 2.12a. For the torus compactification Fig. 2.12a, x ≡ x + l and y ≡ y + l,
there is no chiral fermions left in 4D as discussed above. So, an attempt should be
made to mode out the torus by a discrete group. In Fig. 2.12b, we show the Z2×Z

′
2

moding: x ≡ −x and y ≡ −y. Then, there are four fixed points under the shifts and
reflections, shown as bullets in Fig. 2.12b. Using the shift and reflection symmetries,
it is sufficient to consider the fundamental domain which is shown as the white
square in Fig. 2.12b. The fixed points are at the corners of the fundamental domain.
This geometry most probably with fixed points is called an orbifold.20 Closed strings
moving in this geometry can be untwisted or twisted as shown in Fig. 2.12c.

The untwisted string is obviously closed. The twisted string in Fig. 2.12c does
not appear closed at first glance, but it is in fact closed around the fixed point in
the orbifold geometry since A and A′ are identical, which can be shown by the
allowed shifts and reflections. Thus a string appears just sitting around that fixed
point. The spacetime dimension of fixed points are 4D. We have seen that 4D does
not necessarily require that a 4D Weyl fermion accompany the opposite chirality
partner. Since a 4D chiral field (the effective field for a string) sitting at a fixed point
can be present without its chiral partner at the same fixed point, it is possible to have
a chiral theory with orbifold geometry after compactification. But the final effective
4D theory must be free of gauge anomalies, which means that the sum of untwisted
and twisted sector fields together give an anomaly-free theory. Therefore, as for
the untwisted fields also, they can carry an anomaly, i.e. they can be chiral. This
happens because the moding group Z2×Z

′
2 keeps only a half of two massless Weyl

20Some orbifolds do not have fixed points.
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fields in the compactified 4D, or in other words, a half of the massless spectrum
is projected out from the Hilbert space. In string orbifolds, it is unambiguously
determined which chiral fields should be at the fixed points and which should be
in the bulk [78–80]. Unlike string orbifolds, there is no guiding principle in field
theoretic orbifolds, “how to put the chiral fields at the brane and in the bulk,” except
for the condition of total anomaly cancellation. For field theoretic orbifolds, the
argument is the same as the above until we try to put localized fields at the fixed
points and some in the bulk. One can consider the dashed curves of Fig. 2.12c as the
same altitude points of the wave function sitting at the fixed point. In field theoretic
orbifolds, one extra dimension (5D) has been considered extensively. On the other
hand, in closed string theory with one compactification scale, it is difficult to achieve
an effective 5D theory.

In this book, we aim to explore the most probable orbifold compactification
toward the MSSM from the E8×E′8 heterotic string. To obtain three families, the
moding discrete group Z3 has been considered in detail in Vol. I. In Vol. II, the Z3
orbifold is discussed as an easy example and we discuss Z12−I in some detail. We
focus to present all model-building toolkits for everyone’s use.

In Chap. 3, we give the definition of orbifolds. Then, before presenting the full-
fledged string theory orbifolds, we will introduce the orbifold in field theory in
Chap. 5 in order to first present a general understanding of orbifolds. Recently, field
theoretic orbifolds have been studied extensively, after showing that the doublet–
triplet splitting is also possible in the field theoretic orbifold compactification.
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3Orbifold

We introduce orbifold geometry. An orbifold is obtained from a manifold by identi-
fying points under a discrete symmetry group. Roughly speaking, this identification
is done by cutting the points related by symmetry and gluing the resulting edges.
We are familiar with this cutting and gluing when we make a cone from a disc.

Later, we will define field and string theories on orbifold. By associating the
orbifold symmetry, we can introduce a projection restricting the wavefunction.
Thus, we may break large symmetry of the UV complete theory to obtain a realistic
model. One important application is selecting exclusive chirality, whose importance
is emphasized in Chap. 1. We may also break supersymmetry and gauge symmetry,
so we may design a model close to the Standard Model. We will also meet another
orbifold of the moduli space of the modular group.

Orbifold allows fixed points, which are invariant under the symmetry action.
They are singular, but string theory is well-defined on the fixed points. Moreover,
states can be localized on such fixed points. They may explain the family structure
and give rise to interesting interaction.

Most of the times, we are interested in toroidal orbifolds, that is, a torus modded
out by rotation by 2π/N compatible to the torus. We will construct it from Euclidean
space. After defining orbifolds in an abstract form, we will consider some examples
and try to understand the geometrical meaning of them. The references [1–3] contain
extensive treatments on this topic.

3.1 Orbifold Geometry

An orbifold is obtained by modding out a manifold M by its discrete symmetry
subgroup G

M /G. (3.1)
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By modding, we regard two points x ∈M and gx (g ∈ G) as the same point. This is
done by assigning an equivalence relation between two elements related by actions
of G. Roughly speaking, an orbifold is formed from a manifold by identifying
points following the symmetry. We first look into one of the simplest orbifolds of
torus. Then, we obtain toroidal orbifold by further orbifolding by discrete rotation
compatible to the torus.

3.1.1 Torus

The most familiar example of orbifold is torus. The one dimensional torus is a circle
T 1 = S1, obtained by identifying the coordinate in the real space R

x ∼ x + 2πR, (3.2)

where R is the radius. Formally, it may be rephrased as in (3.1) that the torus is
obtained by modding out a real line by integer

T 1 = R/Z, (3.3)

because any coordinate differs by an integer multiple 2πR is regarded same.
We may also form a two dimensional torus T 2 by similar identification as (3.2).

However, a two-torus is more than a direct product of two circles S1×S1, because in
general the two directions x1 and x2 may neither be orthogonal nor are of the same
length. A convenient parameterization is to let the coordinate dependence fixed

xi ∼ xi + 2πR, i = 1, 2

and parameterize the geometry in the basis vectors. To reflect this, we introduce real,
orthogonal coordinates xm,m = 1, 2 in R

2 and basis vectors having components
ei = (emi ),m = 1, 2 and its inverse eim so that

xi ≡ xmeim, m = 1, 2.

This means that we define T 2 = R
2/�2 using the lattice

�2 = {m1e
1 +m2e

2 |m1,m2 ∈ Z}. (3.4)

The actual radii Ri of the circles are related by the lengths of the vectors ei

R1 = R|e1|, R2 = R|e2|,
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and the shape of torus is described by a complex structure

iU ≡ |e
2|
|e1|e

iφ. (3.5)

with the angle φ between the two basis vectors. In the complex coordinates, the two
basis numbers are related as e2 = iUe1. We say the tori are equivalent if the defining
lattices are equivalent. Two equivalent but different bases can be made identical by
an appropriate linear combination of the bases. We shall come back to this issue
later.

We can generalize this to a d dimensional torus by

T d = R
d/�, (3.6)

where the lattice � is now d dimensional

� =
{

d∑
i=1

mie
i
∣∣∣mi ∈ Z

}
. (3.7)

In coordinates, the torus is made by identification

xi ∼ xi + 2πR. (3.8)

Here, again the coordinate periodicities are fixed as in (3.4), the actual geometric
information is contained in the basis. Started with a natural orthonormal coordinate
system R

d , the lattice is generated by basis vectors ei, i = 1, 2, . . . , d having
components ei = (emi ),m = 1, 2, . . . , d . Inverting this, we have emi and its inner
product makes the metric

Gij ≡ emi e
n
j δmn ≡ ei · ej . (3.9)

Note that this has the same structure of the metric tensor constructed from
vielbeins. We can switch between the vectors in the lattice and orthogonal space
by multiplying emi or its inverse eim. Thus, the definition (3.8) can be rewritten as

xm ∼ xm + 2πRemi , i = 1, 2, . . . , d, (3.10)

Therefore, the volume of torus is

VolT d = (2πR)d
√

detG. (3.11)

The torus is flat in the sense that we have a constant metric and the curvature scalar
vanishes.
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3.1.2 Toroidal Orbifold

We are interested in general action transforming a point x in R
d as

g : xm → θmnx
n + vm (3.12)

with summation convention. We may compactly write it as

gx = (θ, v)x = θx + v. (3.13)

The set of such actions forms a space group S having the following properties
[2]:

(θ, v)(ω, u) = (θω, v + θu),

(θ, v)−1 = (θ−1,−θ−1v).[
(θ, v)(ω, u)

]
(ρ,w) = (θ, v)

[
(ω, u)(ρ,w)

] (3.14)

with the identity element (1, 0).
It looks the same as the Euclidean or the Poincaré group. However, we will only

consider a discrete rotation. We define point group P as the subgroup of SO(d) of
rotation generated by θ . An order N of the rotation is the minimum natural number
satisfying

θN = 1. (3.15)

This is isomorphic to the cyclic group ZN . The point group is therefore

P = {1, θ, . . . , θN−1}. (3.16)

We may have more than one generators if the rotation is done on a part of the tori
of T d .

We define a toroidal orbifold by modding out Rd by the space group action S

O = R
d/S. (3.17)

Restricting the space group S to translational {(1,miei), i = 1, 2, . . . , d}, we
obtain the lattice �, and the resulting orbifold is torus T d/�. Throughout this book,
we will make an orbifold by modding out torus by the above rotation θ . Then, we
need a modified point group that is compatible with the torus. For instance, a rotation
by θ at the origin should be the same as another rotation by θ at e1. For this, we
observe that for every θ there is a unique vector v making (θ, v) an element in S, up
to translation � defining the torus. To see it, compare two elements with the same θ

(θ, v)(θ, u)−1 = (θ, v)(θ−1,−θ−1u) = (1, v − u). (3.18)
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Then, v− u should belong to the lattice �; otherwise, the product is not compatible
with torus. Thus, we may label the point group action by θ only. This generalized
point group is defined as

P = S/� (3.19)

and commute with �. Thus, the toroidal orbifold is

O = R
d/(�× P) = T d/P. (3.20)

Fundamental Region
A set of images due to the action like S is called orbit. On the above orbifold, all
the orbits of S on the covering space R

d are identified as the same point. Hence,
the name orbifold is given. This (co)set of points is called fundamental region or
fundamental domain. So, the fundamental region contains exactly one point from
each of the orbit. There is no unique way to take a fundamental region; however,
every choice should form the same orbifold.

The volume of an orbifold is defined by that of the fundamental region. We can
show

V (T d/ZN) = V (T d)/N. (3.21)

We can think of the geometry of orbifold by gluing the boundaries of the
fundamental region.

3.1.3 Fixed Points and Conjugacy Class

An action is free if there is a unique inverse. For instance, a rotation is not free
because rotation by different angle leaves the origin invariant and its inverse is not
well-defined. Formally, if an action g is free, gx = x means g = 1. Also, a general
space group action in S is not free because it is a rotation possibly accompanied by
a lattice translation identifying different points.

As a result, an orbifold has fixed points. A fixed point f is an invariant point
under the space group action h ≡ (θk, v)

f = hf = θkf + v. (3.22)

In other words, this fixed point is invariant under the point group action θk up to a
lattice translation v.

Since S is a discrete group, the orbifold R
d/S inherits the flatness of Rd as long

as the action is free. On the fixed point, it is not flat anymore and we have deficit
angle. Because of this, an orbifold cannot be a manifold.
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This supplementary translation v is unique and has one-to-one correspondence
to the fixed point f through (3.22)

v = (1− θk)f. (3.23)

If it can be inverted, that is, when

det(1− θk) �= 0,

we may represent a fixed point by the element of space group (θk, v). Otherwise,
there is a fixed torus (in two or more real dimensions) rather than fixed points. For
example, in the T 2/Z2 case, we may complexify the coordinate and θ is represented
by a number −1. We have θ2 = 1, and the resulting action is trivial, so we have
invariant torus.

Now, the question is how many different fixed points are there on the orbifold.
We have redundancy. For a given fixed point,

f ′ = θ lf + u ≡ gf (3.24)

is the equivalent fixed point, because

g = (θ l, u) ∈ S

in (3.24) is also an element of the space group S used for identification. We may
rewrite the above relation as

f ′ = gf = ghf = ghg−1gf = ghg−1f ′. (3.25)

So, the same fixed point is specified by another space group element ghg−1. We
say h is conjugated by g ∈ S. We define the conjugacy class of h by assigning
equivalence relation under conjugation

[h] = {ghg−1| g ∈ S}. (3.26)

The conjugacy class is a more fundamental concept than the fixed point.
We take examples. Consider an action of translation by (1, v0). Using (3.14), one

can easily check that

(ω, u)(1, v0)(ω, u)
−1 = (1, ωv0). (3.27)

Therefore, the conjugacy class of (1− v0) is

[(1, v0)] = {(1, ωv0)| ω ∈ P}, (3.28)

which provides the set of basis of the lattice compatible with the point group.
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Next, consider a general element (θk, (1 − θk)f ) and its conjugation by an
arbitrary element (θ l, u)

(θ l, u)
(
θk, (1− θk)f

)
(θ l, u)−1

= (
θ lθkθ−l ,−θ lθkθ−lu+ θ l(1− θk)f + u

)
= (

θk, (1 − θk)(θ lf + u)
)
.

(3.29)

Note that the rotational element θk is not affected by the conjugation (3.29). It means
that there is one-to-one correspondence between the fixed point f and the conjugacy
class

[(θk, (1− θk)f )] = {(
θk, (1− θk)(θ lf + u

)∣∣ θ l ∈ P, u ∈ �
}
. (3.30)

This set is sometimes loosely denoted as

(
θk, (1− θ)(θ lf +�)

)
. (3.31)

The expression (3.31) will be extensively used in calculating quantities related with
fixed points. Consequently, the fixed points are represented by these conjugacy
classes, called cosets. In other words, we have unique set of distinctive fixed points
if we mod out the fixed points in the ambient space by the conjugacy classes.

3.2 One Dimensional Orbifolds

One dimensional orbifold has been extensively studied in the context of field
theoretical orbifold, which is the main theme of Chap. 5.

3.2.1 S1/Z2 Orbifold

The simplest example of nontrivial orbifold is S1/Z2. Let us choose Z2 action as
the reflection with respect to the origin

y → −y. (3.32)

It follows that πR + y and πR − y are also identified because

πR + y → −πR − y → πR − y, (3.33)

with the last relation coming from the definition of S1. In other words, we make the
orbifold S1/Z2 by identifying the opposite points of S1 with respect to vertical axis
of S1 drawn in 2D as shown in Fig. 3.1. Here, we have two fixed points y = 0 and
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Fig. 3.1 Two possible S1/Z2 orbifolds. (a) Z2 action is defined by reflection y → −y. Fixed
points at y = 0, πR are denoted by bullets. (b) Z′2 action is defined by translation y → y + πR.
Two points 0, πR are again identified, and there is no fixed point

y = πR. Equivalently saying, we have a finite interval [0, πR]. This interval is the
fundamental region; fields can move within this interval [0, πR].

3.2.2 Another Modding

There is another Z′2 symmetry action on S1, i.e. the rotation by π ,

y → y + πR. (3.34)

It is also viewed as a translation by a half of the original interval. It is of order two
because twice the action is an identity.

The Z
′
2 action is freely acting on the circle S1 and the resulting orbifold has no

fixed points. The topology of this orbifold is again the circle with circumference
reduced to the half πR.

Sometimes, this orbifold is called RP
1, meaning the real, projected interval in

one dimensional plane. Although it is one dimensional, we can introduce two real
numbers (x, y) and identify coordinates up to a scale

(x, y) ∼ (λx, λy). (3.35)

Since coordinates are the same up to a scale factor λ, we may fix the scale as R.
Also, because λ = R and λ = −R lead to the same point, we can equivalently mod
it out by Z2 action (3.34).
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Fig. 3.2 S1/(Z2 × Z
′
2)

orbifold. It has two fixed
points at y = 0, πR

2 . The
thick arc is the fundamental
region

3.2.3 S1/(Z2 × Z
′
2)Orbifold

We construct an S1/(Z2 × Z
′
2) orbifold by modding out S1 by one rotation θ and

one translation e as

θ : y →−y, θ2 = 1 (3.36)

e : y → y + πR, e2 = 1. (3.37)

The resulting geometry is drawn in Fig. 3.2. We may think of virtual axes in this
figure. The action theta is a reflection around the vertical axis passing thru the
origin, and the second action e generates translation by πR. Combining them, the
action eθ (acting on the right) gives rise to the reflection around the horizontal axis

y
θ−→ −y e−→ πR − y. (3.38)

Therefore, we have a new fixed point at y = πR/2 under the combined action. We
do not count the identical points y = πR, y = −πR/2 because the fundamental
region is now [0, πR/2].

We can understand this orbifold using two Z2 reflections. For this, we introduce
a new coordinate y ′ = y + πR/2. Then, the action h ≡ eθ becomes a reflection
around the horizontal axis in Fig. 3.2. Thus, we can form an equivalent S1/(Z2×Z

′
2)

orbifold generated by two reflections

g : y → −y, g2 = 1 (3.39)

h : y ′ → −y ′, h2 = 1. (3.40)

This is the most complicated example in one dimension. Whatever (or more
complex) discrete group ZN we use in 1D, the effect is essentially the same.
Everything reduces to two cases we have considered above. At best, the length of
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interval reduces to 2πR/N . Nevertheless, when we consider a field or string living
on this orbifold, we can associate a more complicated ZN action for the field or
string to satisfy. This is a profitable aspect of orbifold when we try to break many
symmetries.

Also, combining more than one Z2 actions P and Z
′
2 actions T , one obtains the

same orbifold as in the previous example because they commute

θe = eθ. (3.41)

Thus, the Z2 and Z2 × Z
′
2 orbifolds discussed above are all the orbifolds in one

dimension.

3.3 TwoDimensional Orbifolds

In two dimensions, we start to see nontrivial geometry of orbifold. They are the best
complicated orbifolds that we are able to visualize. We can see also hints on the
crystallographic classification.

3.3.1 T 2/Z2 Orbifold

It will be convenient to complexify the coordinate

z = x1 + ix2.

Two basis vectors define two dimensional torus T 2

z ∼ z + em, i = 1, 2, (3.42)

where unit vectors em are not necessarily orthogonal nor of unit length.
We may consider, for example, the orthogonal basis vectors

e1 = 2πR1, e2 = 2πR2i. (3.43)

Orthogonal because the ratio of the two basis vectors, as complex numbers, has the
phase i. Eventually, we make a T 2/Z2 orbifold by the identification

z ∼ −z, (3.44)

meaning that θ = −1. Note that this action does not relate the lengths of the basis
vectors. In terms of coordinates a1, a2, this action can be expressed as

a1e1 + a2e2 → −a1e1 − a2e2. (3.45)
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Fig. 3.3 The T 2/Z2 orbifold
in the z = x1 + ix2 plane.
The orbifold fixed points are
denoted by bullets. The
shaded is one choice of the
fundamental region. The
physical space may be taken
as the two-sided rectangle
formed by folding the boxed
region along the line between
1
2 e2 and 1

2 e1 + 1
2 e2 and then

gluing together the touching
edges

e1

e2

0 1
2e1

1
2e2

1
2e1+

1
2e2

This orbifold is depicted in Fig. 3.3. We have four fixed points

0,
1

2
e1,

1

2
e2,

1

2
e1 + 1

2
e2, (3.46)

which are marked with bullets in Fig. 3.3. In view of (3.31), we can label fixed points
by the following space group elements:

(θ, 0), (θ, e1), (θ, e2), (θ, e1 + e2), (3.47)

with which we come back to the original fixed points.
We can take the fundamental region as the box and inside surrounding 0, 1

2e1,
1
2e1 + e2, e2. This choice is not unique, and we have many equivalent ones (see
Exercise). For example, we can take another box surrounding 0, e1, e1 + 1

2e2,
1
2e2.

In any case, the resulting geometry is the same.

Complex Structure
Recall that we had the complex structure iU = iR2/R1 in the sense that we had
e2 = ie1. In the case of T 2/Z2 orbifold, any complex structure is allowed. If the
complex structure is transformed by PSL(2,Z), we have the same orbifold. It is a
symmetry group, and we expect target space modular invariance.

If we take a different complex structure, we have a different torus and a different
orbifold. For example, we may take iU = iR2/R1+ 1

2 we have e2 = 2πiR2+πR1.
The Z2 action z → −z is still compatible to the lattice. Then, we have different
orbifolds: they have different fixed points having different complex coordinates.
Unlike the above case, the intuitive “folding picture” does not work for a general
iU .
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The fixed points are now at different locations. However, they are still expressed
by the same coordinates (3.46). See the reflection structure (3.45). They are also
parameterized by the same space group elements (3.47).

Note that although we can do a Z2 reflection along any directions x1 → −x1

and x2 →−x2, we do it simultaneously in the two directions.

3.3.2 T 2/Z3 Orbifold

Now, consider the T 2/Z3 orbifold. The point group is Z3 and is generated by
rotation θ by an angle 2π/3. It can represented as θ = e2πi/3 in the complex plane.

We also take the complex structure same as the point group element iU = θ , so
that the two basis vectors e1 and e2 are related as

e2 = e2πi/3e1 (3.48)

forcing equal lengths |e1| = |e2|. This is a requirement for the compatibility of
orbifolding. The unit lattice is depicted in Fig. 3.4a. The basis vectors are the root
vectors of SU(3), and hence it is called the “SU(3) or A2 lattice”. This amounts
to fixing two of three parameters of Gij in (3.9) except the overall size of torus
R1 = R2.

It follows the relations

θe1 = e2, θe2 = −e1 − e2. (3.49)

So, we obtain the matrix form of the twist in the e1, e2 basis

θ =
(

0 −1
1 −1

)
. (3.50)

Fig. 3.4 (a) Z3 orbifold is formed by identification of two edges of SU(3) torus. Three fixed
point are marked by ◦,×, •. The region inside the lightly dashed parallelogram is the fundamental
region. (b) The covering space of Z3 orbifold. Any two adjacent equilateral triangles form a
fundamental region. The unit lattice is a hexagon and respects the Z3 symmetry
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The fixed points are marked by ◦,×, • as shown in Fig. 3.4. They have
coordinates

f◦ = 0, fx = 1

3
(2e1 + e2), f• = 1

3
(e1 + 2e2).

They are invariant points under the space group action. Also, they are invariant under
the point group action, up to lattice translation �. For example,

θf× + e1 = 1

3
(−e1 + e2)+ e1 = 1

3
(2e1 + e2) = f×.

We can always convert the fixed point to the unique space group element using
(3.23). For example,

e1 = (1− θ)
1

3
(2e1 + e2).

Using space group elements, we denote the fixed points as

◦ : (θ, 0), × : (θ, e1), • : (θ, e1 + e2). (3.51)

From (3.30), fixed points belonging to the same conjugacy class (3.31) are equiva-
lent. That is, they may be different in the covering space Rd but are identified as the
same point on R

d/S. One may lie outside the fundamental region but can be moved
into the fundamental region by conjugation by S. For instance, a lattice translation
by (1−θ)� in the translation part of (3.51) gives always the equivalent fixed points.

We have another twisted sector. The second twisted sector is generated by θ2 =
e4πi/3 = e−2πi/3, which is the same amount of rotation but in the opposite direction.
We can see that the lattice is also compatible to this action, in the sense that the basis
vectors are mapped to another linear combination of basis vectors. Thus, we expect
the same properties as discussed above for this θ2 twisted sector also.

3.3.3 Geometry of Orbifold

The orbifold is formed by identifying points under the point group P. This is
achieved by folding the fundamental region of Fig. 3.4 and gluing the edges. This
leads to a “ravioli” (or “pillow”)-type manifold that has a similar topology as S2.
However, we have singular points, so the topology is not the same. The fixed points
are clearly singular in the sense that the curvature diverges on them. Therefore,
an orbifold is not a manifold in general. However, in later chapters we will see
that fields and strings have well-defined behaviors at the fixed points. Also, we
will see that there is well-defined resolution procedure that replaces the fixed
points with smooth geometry without losing “good” properties such as unbroken
supersymmetry.
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Fig. 3.5 The orbifold is formed by identifying points under the point group P. This is achieved
by folding the fundamental region of Fig. 3.4 and gluing the edges to form a ravioli

Fig. 3.6 T 2/Z6 orbifold is defined on a G2 lattice by θ = e2πi/6. Each twisted sector has a
different number of fixed points

However, the folding, rather than identification, is somewhat misleading. As
discussed in the torus case, there is no change of curvature and it is everywhere
flat with constant Gij . This situation is depicted in Fig. 3.5.

3.3.4 T 2/Z6 Orbifold

So far, we have dealt with the examples in which the basis vectors of covering torus
obey the point group, for example, θe1 = e2. However, this is not mandatory, since
the generalized point group P action in (3.17) is defined up to lattice translation.
In other words, it is only necessary that the lattice generated by basis vectors
should be compatible with the space group action. A good illustration is provided by
T 2/Z6 orbifold. We make T 2 using the G2 lattice of Fig. 3.6, for which the complex
structure iU = √3e5πi/6. The basis vectors are related as

e2 =
√

3e5πi/6e1. (3.52)
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Note that the basis vectors are not of equal lengths |e2| =
√

3|e1| and angle between
them is φ12 = 5π/6. From this torus, we make an orbifold under the identification
given in (3.52)

z ∼ e2πi/6z. (3.53)

We can readily check that

θe1 = 2e1 + e2 = e2 + (e1 + e2), (3.54)

so that the space group action is compatible.
The fixed points are shown in Fig. 3.6 for three twisted sectors. For the first

twisted sector, θ , there is only one fixed point, the origin. In the second twisted
sector, θ2, the action is equivalent to Z3 generated by θ2 = e2πi/3, and we have
three fixed points which can be read from Fig. 3.4b. In the third twisted sector, the
action is equivalent to Z2 generated by θ3 = eπi and there are four fixed points as
in the case of Fig. 3.3.

Equivalent Lattice
Let us see what Eq. (3.54) means. If we define

e2′ = e1 + e2, (3.55)

we see that, by 2π/3 rotation, θ2e1 = e2′. This is the defining condition for the
SU(3) lattice as we saw in the previous subsection. The G2 lattice generated by
e1 and e2 and SU(3) lattice generated by e1 and e2′ are the same. Therefore, the
resulting orbifold is the same, as is clear from Fig. 3.7.

This can be done by target space modular transform

iU ′ = iU + 1 = √3e5πi/6 + 1 = e2πi/3,

e2′ = iU ′e1 = (
√

3e5πi/6 + 1)e1 = e2 + e1.

Fig. 3.7 The G2 lattice is the same as the SU(3) lattice. Fixed points on the e2 axis of the G2
lattice are the same, up to shifts, as the fixed points of the SU(3) lattice
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We have PSL(2,Z) invariance under the target space complex structure. They are
compatible to the above space group actions with the point group Z3 and Z6.
The reason for taking a specific orbifold is that the name of lattice contains the
information of the order. We will see that the Coxeter elements of SU(3),G2 are,
respectively, e2πi/3, e2πi/6 having the orders 3 and 6.

3.4 Classifying the Space Group

We classify the space group. It is done by classifying lattices compatible to the
twists. As seen in two dimensions in Sect. 3.3.3, there are only four possible twists φ
compatible with lattices forming crystals. In general, there are only limited number
of lattices and twists in a given dimension. The systematic analysis is done in [4–6].

3.4.1 Crystallography

Now, the question is to find out how many lattices are allowed in two dimensions.
We have already considered the SU(3) and G2 lattices. This question can be restated
in another form: using only one kind of tile, how many polygon types are allowed
for tiling the two dimensional space. The lattice point is defined by vertices of
tiles, where the adjacent tiles meet. The tile is well-filled only if at the vertex the
sum of the angles of a polygon equals exactly to 2π . In other words, every vertex
should have n-fold rotational symmetry Dn. A n-gon have a side angle π − 2π/n.
Decomposing such polygon as n isosceles triangles and using the fact that the angles
of a triangle sum up to π , one can easily show that the filling condition becomes

N

(
π − 2π

n

)
= 2π. (3.56)

Equation (3.56) admits only four solutions N = 2, 3, 4, 6 for which n = ∞, 6, 4, 3,
respectively. This situation is depicted in Fig. 3.8. Therefore, by discrete rotations
we can have only four kinds of orbifold lattices in the two dimensional torus.

Fig. 3.8 There are only four possible crystals (tilings) in two dimensions; thus, there exist four
two dimensional orbifolds. Each figure is invariant under two-, three-, four-, and sixfold rotations
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3.4.2 Finding Lattices for a Given Twist

We want to classify orderN irreducible lattices in various dimensions. They provide
building blocks of higher dimensional orbifolds. We can generate the basis vectors
of the lattice by iteratively rotating a vector α1. We define other basis vectors as

αi+1 ≡ θαi, i = 1, . . . , N − 2. (3.57)

To guarantee order N , or θN = 1N , we require det θ = ±1 and the final vector eN
should be rotated to the linear combination of the other vectors

θαN ≡ α0 = v1α1 + v2α2 + · · · + vNαN, (3.58)

where vi are integers and

θα0 = α1. (3.59)

In other words, we can represent the twist in the square matrix [5, 7, 8]

θ =

⎛
⎜⎜⎜⎜⎜⎝

v1

1 v2

1 v3
. . .

...

1 vN

⎞
⎟⎟⎟⎟⎟⎠
, (3.60)

where the empty elements represent zero. We can solve these constraints and
classify the irreducible lattices. We list the results (vi) in Table 3.1. Most of them
are the Coxeter lattices, but we also find exceptions. The order 3 dimension 4 lattice
[SU(3)2] and the order 8 dimension 6 lattice [SU(4)2] are further identified by
permutation of the lattices, so irreducible [5].

3.4.3 Coxeter Group

Since we are modding out the torus by generalized point group P, the unit lattice
should form regular polytopes and the orbits of the basis vector form the vertices of
them. Such symmetry group is called Coxeter group [9]. We will discuss the Coxeter
group in more detail in Chap. 12.

It is a reflection group of finite order, generated by a special element, Coxeter
element w in (12.71). The vertices are generated from one basis vector e as

{e,we,w2e, . . . wg−1e}. (3.61)
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Table 3.1 Representation of
the irreducible twists for
various orders up to twelve
and dimensions up to six

Dim. Order Lattice The last column (vi ) of θ

1 2 SU(2) (−1)

2 3 SU(3) (−1,−1)

4 SO(5) (−1, 0)

6 G2 (−1, 1)

3 4 SU(4) (−1,−1,−1)

6 SO(7) (−1, 0, 0)

4 3 [SU(3)2] (−1, 0,−1, 0)

8 SO(9) (−1, 0, 0, 0)

12 F4 (−1, 0, 1, 0)

5 6 SU(5) (−1,−1,−1,−1,−1)

8 SO(10) (−1,−1, 0, 0,−1)

6 7 SU(6) (−1,−1,−1,−1,−1,−1)

8 [SU(4)2] (−1, 0,−1, 0,−1, 0)

12 E6 (−1,−1, 0, 1, 0,−1)

The last vectors provides the last column vector in
the representation matrix (3.60). The corresponding
twist vector can be found in Table 3.2. The lattices
[SU(3)2], [SU(4)2] are irreducible: see the main text

(We should make a good enough choice of vector e such that wc �= 1, c < g, and
the above elements spans g dimension.) Its order is called the Coxeter number g
(12.12)

wg = 1. (3.62)

Most of them are identical to the Weyl groups of Lie groups and are denoted by the
same symbols.

The twist (3.67) is naturally made of Coxeter elements. Diagonalizing w in the
complex basis (3.64), we obtain a twist vector of order g. The number of real
dimensions the twist acts is nothing but the rank of the Lie group. For example,
the SU(3) lattice is generated by the Coxeter element (3.50), which is diagonalized
as e2π/3 and provides the twist 1

3 (1) in this complex dimension. It turns out that
the entries of the twists are 1

g
(ca − 1), a = 1, . . . , g/2 for even g, where ca are

the dimensions of the Casimir invariant, shown in Table 12.2. If g is odd, always
the last entry is 1′

2 . For instance, the Casimir invariants for SU(n) and E6 are,
respectively, 2, 3, 4, . . . n + 1 and 2, 5, 6, 8, 9, 2. We can check that they make the
twists in Table 3.2.

Each Coxeter group provides a building block of the four or six dimensional
twist vector. They are tabulated in Table 3.2, in which the primed element (which
is always 1′

2 ) needs another primed element of another Coxeter group to form a
complete entry 1

2 . For instance, SU(4) × SU(4) Coxeter group can make the twist
vector 1

4 (2 1 1). If we completely classify the lattices, they should give us all the
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Table 3.2 Coxeter groups, labelled by the name of the Lie group having the equivalent Weyl
reflections

Cox. no. Groups and twists

2 A1 : 1
2 (1

′)
3 A2 : 1

3 (1)

4 A3 : 1
4 (2

′ 1), B2 : 1
4 (1)

5 A4 : 1
5 (2 1),H2 : 1

5 (1)

6 A5 : 1
6 (3

′ 2 1), B3 : 1
6 (3

′ 1),D4 : 1
6 (3 1),G2 : 1

6 (1)

7 A6 : 1
7 (3 2 1)

8 A7 : 1
8 (4

′ 3 2 1), B4 : 1
8 (3 1),D5 : 1

8 (4
′ 3 1)

9 A8 : 1
9 (4 3 2 1)

10 A9 : 1
10 (5

′ 4 3 2 1), B5 : 1
10 (5

′ 3 1),D6 : 1
10 (5 3 1),H3 : 1

10 (5
′ 1)

11 A10 : 1
11 (5 4 3 2 1)

12 A11 : 1
12 (6

′ 5 4 3 2 1), B6 : 1
12 (5 3 1),D7 : 1

12 (6
′ 5 3 1),

E6 : 1
12 (5 4 1), F4 : 1

12 (5 1)

We do not have Cns because they are identical to Bns. The rank of the group is the dimension of the
lattice. Their actions provide irreducible building blocks of the twists, which are also displayed.
The Coxeter numbers determine the order of twists. A primed element 1′

2 should be combined
with another primed element to form a twist 1

2 in the complex space

possible combinations of twists (see Exercise). However, H2 and H3 cannot for a
lattice; see below.

Then, we apply the supersymmetry condition (3.73) to form twist vectors in four
and six dimensions. For instance, we could make SU(4) × SU(2) Coxeter group
with twist vector 1

4 (2 1), but this is not allowed by the supersymmetry condition
(3.73).

3.4.4 Coxeter Lattice

Although we distinguish the Coxeter groups as the above sense, once we form lat-
tices, different groups may form identical lattices. It is because a linear combinations
of one basis set can make another. We have seen this in the T 2/Z6 example in
Fig. 3.7. It turns out what remain are ADE-type lattices

�An, n ≥ 1, �Dn, n ≥ 4, �E6, �E7 , �E8 . (3.63)

We can show the following redundancies:

�C3 = �A3 = �D3 ,

�Cn = �Bn = �Dn, n ≥ 4,

�G2 = �SU(3),

�F4 = �SO(8).
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Note the same dimensions and different orders among groups in each identity. In
denoting the lattice, as in Table 3.4, we still distinguish the Coxeter groups to show
the order and dimension. Note that although H2,H3 makes regular polytopes of
pentagon, icosahedron, respectively, they can make neither periodic lattices nor
lattices with a single tile.1

3.5 Six Dimensional Orbifold T 6/ZN

Our main interest will be to obtain four dimensions from ten dimensional heterotic
string. It is done by compactifying and hiding six internal dimensions d = 6, which
is the case we mainly discuss here. However, we may also have an intermediate
orbifold that spans a part of the internal dimension.

First, we complexify the orthogonal coordinates

za ≡ x2a+2 + ix2a+3. (3.64)

In this convention, z1 = x4 + ix5, z̄1̄ = x4 − ix5, so that the index a = 1, 2, 3
covers m = 4, 5, 6, 7, 8, 9 directions. Here, iUa are of complex structure (3.5)

�d = {ea, iUae
a, i = 1, 2, 3}. (3.65)

We will specify later the directions of ea in concrete cases. That is, we do not
necessarily take one of ea as a unit vector in the xi direction. We do not let ea to be
orthogonal. For the moment, the only constraint is that they span six dimensional
real dimensions. We define a six-torus T 6 by modding out R6/�d . That is, we
identify

za ∼ za + ea, za ∼ za + iUae
a, a = 1, 2, 3. (3.66)

The point group action θ ∈ P has a representation in complex numbers as done
in the above examples. In six dimensions, it is diagonalized as

θ = diag(e2πiφ1, e2πiφ2 , e2πiφ3), (3.67)

along the direction of the lattice defined in (3.65). We form T 6/ZN orbifold from
the above T 6 by modding out further by actions of P

za ∼ e2πiφa za, a = 1, 2, 3, no summation, (3.68)

up to lattice translation. The most convenient choice of the complex structures is
to identify the eigenvalues (3.68) as iUa = e2πiφa . However, it is not obligatory as

1They can form aperiodic quasi-crystals, by Penrose tiling.
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long as they are compatible

θei =
6∑

j=1

nje
j , nj integers. (3.69)

That is, as long as the basis vectors are integrally closed under the space group
action. We will see shortly that there are in general more than one bases compatible
with the same point group action.

The point group action (3.67) defines the twist vector

φ = (φ1, φ2, φ3). (3.70)

For six dimensional orbifold, we define three component vectors parameterizing the
rotation. For the point group action θ with order N , we require θN = 1 restricting
each Nφa an integer. Sometimes, we apply this in the eight dimensional light-cone
coordinate. In that case, we add the “zeroth” component φ0 = 0 to have

φ = (φ0;φ1, φ2, φ3).

Then, we consider irreducible building blocks of twist vector [5]. The point group
action P should take a basis vector into linear combination of the basis vector as
(3.69). A twist is said to be reducible if it is decomposed into block diagonal form.
In Table 3.2, irreducible twists are shown. By combining the twists, we can make six
dimensional twists. To make order three twist in six dimensions, we need to employ
two dimensional twists 1

3 (1). An order seven twist can only exist in six dimensions.

3.5.1 Supersymmetry Constraint

For a complete discussion, we borrow one physical concept although we are
interested in the geometry in this chapter. For the fields living in the orbifold, we
impose the condition for supersymmery for many phenomenological reasons.

When we compactify six dimensions, ten dimensional supersymmetry generators
can be decomposed into

Q(10) = Q(4) ⊗Q(6). (3.71)

Choosing one chirality, the six dimensional part Q(6) transforms as 4 of SO(6) =
SU(4). Because the remaining parts Q(4) become the four dimensional generators,
the dimension 4 counts the number of supersymmetries.2 Its spinorial representation
in three two-tori is represented by |s〉 = |s1 s2 s3〉 = | ± 1

2 ,± 1
2 ,± 1

2 〉 with even

2Later, we will use breaking 4 of SU(4) to 3 of SU(3) to have N = 1.
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number of minus signs (see the next chapter). Under point group, it transforms as

Q(6) → exp(2πis · φ)Q(6).

The invariant component corresponds to the unbroken supersymmetry generator.
For N ≥ 1 supersymmetry, we need at least one solution. With the SU(3) rotational
freedom, we choose 4D generator and call it R-vector

s = (+ 1
2 ,− 1

2 ,− 1
2

) ≡ r. (3.72)

We require the invariance

φ1 − φ2 − φ3 = 0. (3.73)

The number of solutions, N , counts the number of unbroken supersymmetry
generators from orbifold compactification.

On the spacetime spinor ψ , the twist acts as

ψ → e2πi
∑

Jaφaψ, (3.74)

where Ja are the rotation generators on the spinor that we will see in the next chapter.
A spinor acquires a minus sign when it is rotated by 2π . The order N condition is
extended, so that

N
∑
a

φa = 0 mod 2. (3.75)

We relaxed the condition to even integers because the superstring has fermionic
coordinates on which we perform the same action. Then, the order of twist is the
same as that of the fermions.

The results are tabulated in Table 3.3 up to d = 4 and Table 3.4 up to d = 6. The
resulting orbifolds preserve, respectively, N = 2 and N = 1 supersymmetries
in terms of four dimensional supercharges. The upper limits of the orders are,
respectively, 6 and 12. For one twist, it is possible to have more than one lattices.

Another way of making a point group is to combining two point groups of N =
2 supersymmetry. In other words, we can take two twists in Table 3.3. The resulting

Table 3.3 Possible four
dimensional orbifolds with
N = 2 supersymmetry

Order Coxeter lattice φ χ

2 SU(2)4 1
2 (1 1) 16

3 SU(3)2 1
3 (1 1) 9

4 SO(5)2 1
4 (1 1) 1

6 G2
2

1
6 (1 1) 1

They also provide a building block of
T 6/(ZM × ZN) orbifold
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Table 3.4 Possible six
dimensional orbifolds
allowing for N = 1
supersymmetry

P Coxeter lattice Twist(s) χ

Z3 SU(3)3 1
3 (2 1 1) 27

Z4 SU(2)2 × SO(5)2 1
4 (2 1 1) 16

SU(2)× SU(4) × SO(5)

SU(4)2

Z6-I SU(3)× G2
2

1
6 (2 1 1) 3

[SU(3)2] × G2

Z6-II SU(2)× SU(6) 1
6 (3 2 1) 12

SU(3)× SO(8)

SU(2)× SU(3) × SO(7)

SU(2)2 × SU(3) × G2

SU(2)2 × [SU(3)2]
Z7 SU(7) 1

7 (3 2 1) 7

Z8-I SO(9)× SO(5)∗ 1
8 (3 2 1) 4

[SU(4)2]
Z8-II SU(2)2 × SO(9) 1

8 (4 3 1) 8

SU(2)× SO(10)∗

Z12-I E6
1

12 (5 4 1) 3

SU(3)× F4

Z12-II SU(2)2 × F4
1

12 (6 5 1) 4

Z2 × Z2 SU(2)6 1
2 (1 1 0), 1

2 (1 0 1) 32

Z2 × Z4 SO(5)× SU(2)2 × SO(5) 1
2 (1 1 0), 1

4 (1 0 1) 16

Z3 × Z3 SU(3)3 1
3 (1 1 0), 1

3 (1 0 1) 27

Z2 × Z6-I G2 × SU(2)2 × G2
1
2 (1 1 0), 1

6 (1 0 1) 4

Z2 × Z6-II G2 × SU(3) × G2
1
2 (1 1 0), 1

6 (2 1 1) 3

Z4 × Z4 SO(5)3 1
4 (1 1 0), 1

4 (1 0 1) 8

Z3 × Z6 G2 × SU(3) × G2
1
3 (1 1 0), 1

6 (1 0 1) 3

Z6 × Z6 G3
2

1
6 (1 1 0), 1

6 (1 0 1) 1

The lattice within the [ ] bracket involves further modding by
outer automorphisms and thus is irreducible. On each line, the
lattice has the same order of the entries of the twist vectors, except
ones with asterisk (*). The point group is P, and the number of
fixed points is χ . Z2 × Z3 is missing because it is identical to
Z6-II

orbifold is T 6/(ZN×ZM). Since each twist preserves supersymmetry and commute,
various combinations of them make good twists.

3.5.2 T 6/Z3 Orbifold

The T 6/Z3 orbifold is specified by a twist vector φ

φ =
(

2

3

1

3

1

3

)
≡ 1

3
(2 1 1). (3.76)
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This is the only possible order N = 3 twist in six dimensions. Also, the only
possible lattice choice is SU(3)×SU(3)×SU(3) as in Table 3.2. Note that although
we made the six dimensional lattice by direct product of two dimensional ones, the
orbifold is not. It is because the Z3 action (3.76) cannot be reduced to the product
of two dimensional ones Z3 × Z3 × Z3.

The geometry is described by the metric Gij . The shape of the lattice is fixed
R1 = |e1|R = |e2|R = R2, iU = e2πi/3, thus φ12 = 2π/3. It fixes some parameters
of two-torus, as in the two dimensional case, but not inter-torus parameters. Now,
with the symmetric matrix G it takes the form

R2G =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

R2
1 ∗ ∗ ∗ ∗ ∗

− 1
2R

2
1 R2

1 ∗ ∗ ∗ ∗
R1R3 cosφ13 R1R3 cosφ23 R2

3 ∗ ∗ ∗
R1R3 cosφ14 R1R3 cosφ24 − 1

2R
2
3 R2

3 ∗ ∗
R1R5 cosφ15 R1R5 cosφ25 R3R5 cosφ35 R3R3 cosφ45 R2

5 ∗
R1R5 cosφ16 R1R5 cosφ26 R3R5 cosφ36 R5R5 cosφ46 − 1

2R
2
5 R2

5

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

(3.77)

with the redundancy as (3.78). Some angles are related as follows:

cosφ23 = − cosφ15 − cosφ14, (3.78)

cosφ24 = cosφ13, (3.79)

and we may find similar relations involving φ25, φ26, φ45, φ46. Thus, we are left
with nine independent parameters

R1, R3, R5, φ13, φ14, φ15, φ16, φ35, φ36. (3.80)

The fixed points are

(θ,

6∑
i=1

miem),

with

(mi,mi+1) = (0, 0), (1, 0), (1, 1), i = 1, 3, 5.

3.5.3 Holonomy

The orbifold naturally leads to the notion of holonomy group. From a given point
of orbifold, we can transport a tangent vector along a closed loop, taking back to
the original point. Then, because of geometry, the vector rotates by some amount.
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Fig. 3.9 The ZN orbifold
has a holonomy group ZN .
Transporting a vector, we
have an N-fold rotation as the
effect of identification (bold
arrows)

A successive transformation rotates such vector further, and these rotations form
a group. The holonomy group of a manifold or orbifold is defined as a group
containing all the possible rotations under the transport.3

We see that, for the orbifold formed by the group P, this P itself is a holonomy
group. Consider the ZN example. When we parallel transport vector once around a
fixed point, it rotates by an angle 2π/N because of the identification. See Fig. 3.9.
All the possible rotations form a discrete group ZN generated by 2π/N rotation,
which is nothing but the defining group ZN . The converse is also true: a toroidal
orbifold can also be defined in terms of a discrete holonomy group P.

The condition on the ZN action from the supersymmetry (3.73) can be translated
into that the manifold should have a ZN holonomy. In fact, we will see that as long
as the holonomy group P belongs to SU(3), we preserve N = 1 supersymmetry.
All ZN groups of Table 3.4 are subgroups of SU(3). They will be discussed along
with the Calabi–Yau manifold in Chap. 15.

3.5.4 Homology, Number of Fixed Points

We briefly discuss homological cycle, which is further explained in Sect. 15.1. Think
of a circle on the torus along around one, say e1, direction. This path is wound so
cannot be contractible to a point. The winding path is a topological notion, since
deforming the path does not change the winding number. We regard this equivalent
set of closed paths as homological cycle. Since it is one dimensional, we refer it to
one-cycle. Its winding number is an integer. For a d dimensional torus T d , we have
d independent 1-cycles which are parameterized by d integer numbers. We have

H1(T
d,Z) = Z

d .

3The Levi-Civita transportation does not change the length, the “norm” of tangent vector. The
name “holo-” means that the whole “holo-” group preserves the norm.
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We have seen that there is a non-contractible loop in the torus along the direction
of basis vectors. We can consider higher n dimensional cycles, or p-cycles. In the
torus, they are combinations of one-cycles. We have (dp) such hyperplanes and the
winding is also generalized to covering number. We have

Hp(T
d,Z) = Z

(dp), p = 0, . . . , d.

In the orbifold case, we have another kind of non-contractible cycle around the
fixed points. We have another kind of closed path, up to a point group element used
in the identification. When we contract this loop, it is wound around the fixed point
but cannot be shrunk into a point outside the fixed point. Later, we deal with this by
smoothening the fixed points.

A point group action θ ∈ P shuffles among p-cycles. Let θp be a (dp) × (dp)

matrix representation for this θ . For instance, θ1 = θ shuffles the basis vectors. The
Lefschetz fixed point theorem states that the number of fixed points is counted by
the following alternating sum [1, 2, 10]:

χ =
d∑

p=0

(−1)p Tr θp = det(1− θ). (3.81)

The action of θ ∈ P takes a basis into another integral linear combination of
the basis, and θ has a matrix representation with integral entries. Thus, (3.81) is an
integer. We may express θ in the diagonal, complex basis (3.67) then

χ = det(1− θ) =
d/2∏
a=1

(1− eπφai)2 =
d/2∏
a=1

4 sin2(πφa), (3.82)

with the index a running over the complexified compact dimensions. This relies on
the twist vector φ only, regardless of the form of torus, i.e. the lattice.

We may obtain the number of fixed points in the higher θj , j > 1 twisted sectors

χ(j) = det(1− θj ) =
∏
a

4 sin2(jπφa),

as long as it does not vanish. If we include noncompact dimensions, or fixed tori
than points, then the eigenvalue in this direction is ejφaπi = −1 making χ = 0. In
Tables 3.3 and 3.4, we list examples of orbifolds and their χ .
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Exercises

� Exercise 3.1

(a) Show that tori having the same complex structure are similar.
(b) Show that, up to overall size, equivalent tori are related to each other by the

modular transformation PSL(2,Z)

iU → aiU + b

ciU + d
, ad − bc = 1, (3.83)

with all the entries as integers and we neglect overall sign of iU .

� Exercise 3.2 A half-cylinder having the boundary as this orbifold is known as
cross-cap. What is the topology of the complete cylinder with both boundaries being
cross-caps?

� Exercise 3.3 Can the following be the fundamental region of T 2/Z2 discussed
above?

� Exercise 3.4 Show that combination of twists in Table 3.2 leads to twists with
order N = 2, 3, 4, 5, 6, 7, 8, 9, 10, 12, 14, 15, 18, 20, 24, 30 up to six dimensions.

� Exercise 3.5 We shall show that complete twists of order 4 in four dimensions

1

4
(j1 j2), j1, j2 = 1, 2, 3

can be generated by those in Table 3.2.

(a) Show that a certain twist is a multiple of another.
(b) Using the fact that each entry of the twist is defined modulo one, show that some

twists are related.
(c) Show that the independent twists in the sense of (a) and (b) can be made of three

twists from A1, A3, B2.

� Exercise 3.6 Construct twists and lattices of T 8/ZN preserving one eights of the
supersymmetry.

� Exercise 3.7 Show (3.79) and (3.78). Find similar redundancies involving
φ25, φ26, φ45, φ46.
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4Spinors

In this chapter, we introduce spinor properties in higher dimensions. We need
the spinor properties in higher dimensions extensively toward obtaining 4D chiral
fermions. Therefore, let us define spinors in arbitrary dimensions and study their
key properties related to our phenomenological needs. Also we summarize massless
supersymmetry multiplets in various dimensions.

4.1 Spinors in General Dimensions

We define spinors in various dimensions by naturally extending Dirac spinors. They
have different properties depending on the number of dimensions.

4.1.1 Rotation and Vector

The group SO(4) is defined as four dimensional isotropic rotation. Its generator Jab
has the following components:

[Jab]jk = −i(δajδbk − δbjδak). (4.1)

It has (ab) element−i and (ba) element+i and generates rotation around a-b plane.
Exponentiating it we have the familiar form for the rotation matrix.

It satisfies the following commutation relation:

[Jab, Jcd ] = i(δacJbd + δbdJac − δbcJad − δadJbc). (4.2)

It defines a vector vj , which transforms as

vj → v′ j = [eJabθab ]j kvk. (4.3)
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It is straightforward to extend the above 4D rotational symmetry to an arbitrary
d dimensional rotation. Simply, the a, b running is extended to 1, . . . , d and the
resulting group is called SO(d).

There is another important group similar to SO(d): the Lorentz group denoted as
SO(1, d − 1). In the Lorentz group, the definition of inner product is given by the
metric

ηab = diag(+1,−1,−1, . . . ,−1). (4.4)

Now, the angular momentum commutation relation becomes

[Jab, Jcd ] = i(ηacJbd + ηbdJac − ηbcJad − ηadJbc). (4.5)

In what follows, mostly we will deal with the Lorentz group since we are interested
in the spacetime spinors, and we can switch to the rotation group SO(d) if needed
simply by replacing ηs of (4.5) to δs of (4.2).

Note that the index a of (4.5) runs the number of spacetime dimensions.
The representation v in (4.3) is called the “vector representation” which has the
dimension d .

4.1.2 Spinors in General Dimensions

Another Set of Generators
There exists another kind of “rotational” generators satisfying the same commuta-
tion relation, Eq. (4.5). Consider the familiar case in four dimensions. Although the
entire argument will be basis independent, we work in the chiral basis of gamma
matrices of the standard textbooks [1, 2]

γ 0 =
(

0 12

12 0

)
, γ i =

(
0 σ i

−σ i 0

)
, i = 1, 2, 3, (4.6)

expressed in terms of the conventional Pauli matrices σ i and the 2×2 identity matrix
12. If we define

Sμν = i

4
[γ μ, γ ν], (4.7)

Sμν satisfies the commutation relation (4.5), replacing Jμν by Sμν . Sometimes this
group is referred to as Spin(1,3) and it is a double covering group of SO(1,3). Later
we will extend it to an arbitrary dimensional Lorentz group SO(1, d − 1).

A Dirac spinor is defined to be the object transforming under the SO(1, d − 1)
group as

ψα → ψ ′α = [eSabθab ]αβψβ. (4.8)
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The Dirac spinor is reducible under the transformation (4.8). Let us define the γ 5

matrix in 4D as

γ 5 = −iγ 0γ 1γ 2γ 3 =
(−12 0

0 12

)
, (4.9)

where only the last equality is dependent on the choice of basis. The projections
1±γ 5

2 choose only the upper or lower two-entries,

ψL = 1

2
(14 − γ 5)ψ, ψR = 1

2
(14 + γ 5)ψ (4.10)

which are named as “left-handed” (L-handed) and “right-handed” (R-handed)
spinors, respectively. One can check that γ 5 commutes with all the Lorentz group
generators, [γ 5, Sμν ] = 0. Therefore, one can decompose the Dirac spinors into
two Weyl spinors according the eigenvalues of γ 5. In other words, each ψL and
ψR(≡ (ψc)L) transform independently. These are the 4D Weyl spinors.

How can one generalize the 4D spinor to five dimensions? First, note that we
need one more gamma matrix because one dimension is increased. The essential
property of gamma matrices in d dimensions is the following anti-commutation
relation known as the Dirac–Clifford algebra:

{M,N } = 2ηMN , M and N = 0, 1, 2, . . . , d − 1. (4.11)

Fortunately if we define five dimensional gamma matrices as

μ = γ μ, 4 = −iγ 5 (4.12)

they satisfy the relation (4.11). We adopt the convention that the upper case
roman character M = 0, . . . , 4 is used for a higher dimensional index. In effect,
we introduced five independent gamma matrices, each with a “vector” index,
which satisfy the Dirac–Clifford algebra. These five gamma matrices define five
dimensional spinors with which a 5D Dirac equation can be written.

The same extension cannot be applied to six dimensions because we have no
independent sixth 4× 4 gamma matrix. We should double the size of matrices. For
an even d , by direct products of gamma and Pauli matrices, we obtain d dimensional
gamma matrices out of d − 2 dimensional ones

μ = γ μ ⊗ σ 3, μ = 0, . . . , d − 3,

d−2 = iI ⊗ σ 1,

d−1 = iI ⊗ σ 2,

(4.13)
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where γ μ are the gamma matrices in d − 2 dimensions and I is the unit matrix of
the same size. They form generators acting on spinors as done in (4.7), we extend
the group to Spin(1, d − 1).

By a similarity transformation, we can choose the chiral basis in d dimensions.
In the chiral basis, the chirality operator is defined as

 = −i(d−2)/201 . . . d−1 =
(

1 0
0 −1

)
. (4.14)

The Weyl spinors are the eigenstates of (4.14) with eigenvalues ±1, and the L- and
R-handed Weyl spinors are given as in Eq. (4.10).

Finally, the gamma matrix (4.14) provides the (d + 1)-th component of the (d +
1)-dimensional Lorentz group.

Spinorial Basis
It is most useful to work in the spinorial basis [3, 4]. We can regroup gamma
matrices into ladder operators,

0± = 1

2
(0 ± 1),

a± = 1

2
(i2a ± 2a+1), a = 1, . . . , (d − 2)/2.

(4.15)

Then the anti-commutation relation becomes

{ã+, b̃−} = δãb̃, ã = {0, a} (4.16)

while the other anti-commutators vanish. So, we can represent it as a direct product
of number- d2 2× 2 matrices. Now, we have the direct product of number- d2 spin- 1

2
systems whose eigenstates are represented by a set of respective Sz eigenvalues

|s0, s1, . . . , sd/2−1〉. (4.17)

This is the standard method for the construction of spinor states. We can define the
“lowest state” by the state annihilated by all the annihilation operators

ã−| − − · · · −〉 = 0, (4.18)

where + and − denote + 1
2 and − 1

2 , respectively. Now we can construct a tower of
states by acting the creation operators on the “lowest state”

|s0, s1, . . . , sd/2−1〉 =
d/2−1∏
ã=0

(ã+)sã+
1
2 | − − · · ·−〉. (4.19)
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Note that the eigenvalues of the chirality operator  in (4.14) are

2d/2s0s1 . . . sd/2−1 . (4.20)

Therefore, the positive (negative) chirality representation has even (odd) number of
− 1

2 eigenvalues. The Lorentz transformation can be written simply as

|si〉 → e2πi
∑

sj θj |si〉, (4.21)

where θj = θ2j,2j+1, with j = 0, . . . , d
2 − 1. For example, the spinor 16 of SO(10)

has irreducible representation1 with even (or odd depending on conventions) number
of − 1

2 s,

| + + +++〉
| − −+++〉, (and 9 more permutations)

| − − −−+〉, (and 4 more permutations).

(4.22)

Majorana Spinors
In four dimensions, the charge conjugation matrix C satisfies

C−1γ μC = −γ μ�, (4.23)

and the charge conjugated spinor is

ψc ≡ C ψ
� = Cψ∗. (4.24)

The charge conjugated spinor ψc satisfies the Dirac equation with the opposite
charge from that of ψ . Note that the 4D rotation matrix transforms as C−1SμνC =
−Sμν�. Now let us extend the charge conjugation matrix to arbitrary dimensions.
First we note that the eigenvalue si is real. Therefore, the eigenvalues of the
following operators are either real or pure imaginary:

C1
0 = 35 . . . d−1,

C2
0 = C1,

(4.25)

where C1 or C2 is taken as the charge conjugation matrix. We check that

C−1SMNC = −SMN�, (4.26)

1The dimension of the representation is the same as that of SO(1,9).
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with C being either C1 or C2. From this, we see that spinors ψ and C ψ
�

transform
the same under the Lorentz group, therefore the Dirac spinor is self-conjugate. On
the other hand, the chirality matrix transforms as

C−1C = (−1)(d−2)/2∗. (4.27)

For d = 2 (mod 4), the chirality of each Weyl representation is not changed under
the charge conjugation, i.e. each Weyl field is its own conjugated field. For example,
in these dimensions a left-handed Weyl spinor transforms again into a left-handed
one under the charge conjugation. In detail, for a left-handed Weyl spinor we have
ψ = ψ , i.e.  = 1. Multiplying C on the complex conjugated relation, we obtain

C∗ψ∗ = Cψ∗ → C∗C−1Cψ∗ = Cψ∗ = ψc = ψc, (4.28)

where we used the relation (4.27) and the last equality of (4.28) shows that  = 1
for ψc also in d = 2 (mod 4). In these d = 2 (mod 4) dimensions, the chirality
remains so strongly under charge conjugation and hence it appears that the anomaly
cancelation in d = 2 (mod 4) dimensions needs more care. Especially, there is a
potential danger of gravitational anomalies. On the other hand, for d = 0 (mod 4)
each Weyl spinor is the charge conjugated one of the other Weyl spinor.

The Majorana condition defines a Majorana spinor

ψ = ψc → ψ = Cψ∗ = C(Cψ∗)∗ = CC∗ψ (4.29)

whence we obtain the condition CC∗ = 1 to have a Majorana spinor. Using
the properties of gamma matrices, we obtain the following conditions in even
dimensions:

C1C
∗
1 = (−1)(d−2)d/8, C2C

∗
2 = (−1)(d−2)(d−4)/8. (4.30)

In odd dimensions, we have C−1μC = (−1)(d−1)/2μ� and they satisfy (4.26).
Therefore, the Majorana condition can be consistently imposed in d = 2, 3, 4, 8, 9
dimensions mod 8. The above results are summarized in Table 4.1.

Sometimes we call the spinor pseudo-Majorana if the Majorana condition is
satisfied by C2.

Symplectic Majorana Spinors
In five and six dimensions, we cannot have Majorana spinors because of the
conditions (4.30). In five dimensions, the minimal spinor is Dirac, while in six
dimensions it is Weyl. Both of these are four-component complex spinors which
is identical to the four dimensional Dirac spinor and can be formally decomposed
into four dimensional Weyl spinors

(
ψ1

ψ̄2

)
.
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Table 4.1 Spinors in various dimensions

Dim. d Majorana condition Weyl Majorana–Weyl Min. rep.

2 Yes Self Yes 1

3 Yes 2

4 Yes Complex 4

5 No 8

6 No Self 8

7 No 16

8 Yes Complex 16

9 Yes 16

10 Yes Self Yes 16

11 Yes 32

12 Yes Complex 64

Same patterns are repeated by the period 8. A spinor in d dimensions has real components 2�d/2�.
Further Majorana and/or Weyl condition reduces the number of components by a half. This table
is valid for SO(1, d − 1)

Here ψ1, ψ̄2 are respectively left and right-handed and the bar in ψ̄2 indicates the
chirality. From 4D viewpoint, they are related by the SU(2) R-symmetry in 4D
supersymmetry.

We introduce the symplectic Majorana condition between a pair of a component
spinors

ψc
1 = −ψ̄2, ψc

2 = ψ1, (4.31)

using the charge conjugation (4.24). This is generalized to symplectic (pseudo)
Majorana by introducing antisymmetric matrix

ψi = �ij (ψj )c (4.32)

with

�ij = −�ji, (�ik)∗�jk = −δij . (4.33)

We may verify that the five dimensional case (4.31) satisfies �ij = εij . They are
useful in constructing supersymmetry in d = 5, 6, 7 dimensions [5, 6].

Invariants
By sandwiching gamma matrices between spinors, we form SO(d) or SO(1, d − 1)
tensor representations

ζ�C−1μ1μ2 . . . μmχ, (4.34)
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where we note that ζ�C−1 transforms like ζ̄ . It is reducible and decomposed
into antisymmetric tensors. We will encounter these tensors when we consider the
SO(10) GUT Lagrangian and supersymmetry algebra related with D-branes.

It is easily understood that a gamma matrix converts two spinorial indices to one
vectorial one


μ
αα̇ (4.35)

and the square of gamma matrix is proportional to the unit matrix

(μ)2 ∝ 1 (4.36)

in the spinor basis. Therefore, sandwitching gamma matrices between a pair of
spinors with the same (opposite) chirality, only those with even (odd) numbers of
vector indices survive.

As an exercise, note that 16 · 16 coupling in SO(10) contains ζ�C−1μ1μ2μ3χ

transforming like a tensor of 120 dimensions and ζ�C−1μ1μ2μ3μ4μ5χ transform-
ing like a tensor of 126 dimensions.

The number of independent μ1μ2μ3 for the vector indices μi is
(10

3

) = 120. For
spinors, we consider 2d/2 × 2d/2 real matrices. Then, we observe that multiples of
gamma matrices

μ1μ2...μd ≡ [μ1μ2 . . . μd ] , (4.37)

where the indices inside the square bracket are antisymmetrized, provide a complete
set of bases for 2d/2×2d/2 real matrices. We can verify it by counting the number of
independent matrices of the form (4.37), 1+(

d
1

)+(
d
2

)+(
d
3

)+· · ·+(
d
d

) = 2d/2×2d/2.
A general 2d/2 × 2d/2 matrix has the same number of independent elements and
hence matrices (4.37) form a complete set. Since

(
d
k

)
matches

(
d

d−k
)
, for the state(

d
k

) = (
d

d−k
)
, the dimension of representation μ1μ2...μd is 1

2

(10
5

) = 126. These are
useful to form a seesaw neutrino mass matrix in SO(10).

Matrices with the number of indices greater than d/2 are related to those with
less indices by the relation

μ1...μs = − i−k+s(s+1)

(d − s)! εμ1...μdμs+1...μd , (4.38)

whose four dimensional counterpart is familiar. Taking Dirac spinors on both sides,
we have decomposition

2d/2 × 2d/2 = [0] + [1] + · · · + [d], (4.39)
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where [m] denotes antisymmetric tensor with m indices. In even dimensions, for
Weyl spinors with the same chiralities, we follow a similar step to arrive at

2d/2−1 × 2d/2−1 = [1] + [3] + · · · + [d/2], d/2 odd,

2d/2−1 × 2d/2−1 = [0] + [2] + · · · + [d/2], d/2 even.
(4.40)

For those with different chiralities,

2d/2−1 × 2d/2−1 = [1] + [3] + · · · + [d/2], d/2 even,

2d/2−1′ × 2d/2−1 = [0] + [2] + · · · + [d/2], d/2 odd.
(4.41)

Adding the numbers in Eqs. (4.40) and (4.41), we obtain (4.39).

4.2 Supersymmetry Multiplets

We review massless multiplets of supersymmetry in five and six dimensions,
focusing on the symmetry associated with orbifold actions. The massive multiplets
can be obtained by merging massless ones by Higgs mechanism [6].

4.2.1 Five Dimensions

The minimal spinor thus the minimal SUSY generator in five dimension has eight
real components. The supermultiplets can be understood in terms of N = 2
supersymmetry multiplets in four dimensions. There are three important multiplets:

1. Vector multiplet. Denoting the multiplet using the SO(3) little group and Sp(1) �
SU(2) R-symmetry group

V = {AM(3; 1),�(1; 1), λ(2; 2)},

where we use the symplectic Majorana notation (4.31) λ ≡ (λ1, εij λ̄2)
�. It is

composed of one vector multiplet and one chiral multiplet in four dimensions

V = {vv = (Aμ, λ2), vc = (A5 + i�, λ1)}. (4.42)

We observed earlier that Aμ and A5 are decoupled in 4D. The latter forms
a complex field with �. The 5D SU(2) R-symmetry becomes the SU(2) R-
symmetry in four dimensional N = 2 supersymmetry. Thus still there are
symplectic Majorana relation λL and −λR .
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Fig. 4.1 Decomposition of N =2 multiplets into N = 1 multiplets

2. Hypermultiplet

H = {hR = (φ1, ψL)R, ĥR̄ = (φ2, ψ̄R)R̄}. (4.43)

It is composed of two N = 1 chiral multiplets, for each being charge conjugate
to the other. Since the two submultiplets have opposite chiralities and complex
conjugation representations, dimensional reduction on a circle gives vectorlike
multiplets. They also form a doublet under the SU(2) R-symmetry, satisfying the
symplectic relation ψL and −ψR .

3. Gravity multiplet

{Gμν(5; 1)+ Bμ(3; 1)+ ψμ(4; 2)}.

These are shown in Fig. 4.1. There are two directions for supersymmetry transfor-
mation which are denoted as real lines and dashed lines, respectively.

Since the supersymmetry generators commute with all the other symmetries of
Lagrangian, we expect that the transformation properties under the space group are
the same for the components of a supermultiplet. But we note from (5.42) that the
transformation is different for the fields with the opposite chirality. Since an N = 1
multiplet has a definite chirality, we conclude that in terms of N = 1, all the
multiplets have the same transformation properties, including the project action P

for the orbifold.

4.2.2 Six Dimensions

We briefly comment on some properties of six dimensional supersymmetries
for later use. Mostly the unique properties rely on the nature of spinors in six
dimensions, i.e. the result of the above section.
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The minimal spinor, a six dimensional Weyl spinor, is the same as the four
dimensional Dirac. Thus we have the same minimal supersymmetry as in five
dimensional case. We can similarly define chirality operator as in (4.14)

 = 012345.

Under charge conjugation, the chirality does not change. The supersymmetry is
also chiral. According to classification of Nahm we also have (NL,NR) =
(1, 0), (2, 0), (1, 1), (2, 2), (4, 0) supersymmetry theories, up to chirality redefini-
tion [7]. We have Sp(NL)× Sp(NR) R-symmetry.

The minimal supersymmetry is (1, 0) supersymmetry. We have four kind of
multiplets. They have massless multiplets represented by SO(3,1) little group which
is isomorphic to SU(2)×SU(2). Since it has R-symmetry Sp(1) � SU(2), it would
be also convenient to denote the multiplets by its quantum number SU(2)×SU(2)×
Sp(1):

1. The gravity multiplet is decomposed to gravity and half-hypermultiplet.

gMN(3, 3; 1)+ ψM(2, 3; 2)+ B+MN(1, 3; 1).

Here and in what follows M,N = 0, 1, 2, 3, 4, 5, μ, ν = 0, 1, 2, 3, 4. They are
decomposed into 5D N = 1 multiplets:

{Gμν(5; 1)+ Bμ(3; 1)+ ψμ(4; 2)} + {ψ(2; 1)+ φ5(1; 2)}.

We defined φ ≡ g55 and the vector field Bμ ≡ B+μ5 is called graviphoton. Note
the last line of the above decomposition, which is just a half of the hypermultiplet
(4.43). In six dimensions, a real representation like 2 of SU(2) or 56 of E7 may
form a half-hypermultiplet.

2. Tensor multiplet becomes the vector multiplet:

B−MN(3, 1; 1)+�(2, 1; 2)+�(1, 1; 1).

They are decomposed into a vector multiplet

{Aμ(3; 1)+ φ(1; 1)+ ψ(2; 2)},

where we defined Aμ ≡ B−μ5. Since the 5D vector multiplet can have non-
Abelian structure, we also find that the tensor multiplet may also have non-
Abelian structure. However the rank-two field B−MN can only have U(1)
symmetry so non-Abelian structure cannot be easily described by Lagrangian.
Indeed, it admits brany description. This multiplet contains anti-self-dual rank-
two tensor B−μν . Its source is string, sometimes called M-string. It is a string



90 4 Spinors

stretched between two M5-branes. The inter-brane distance is parametrized by
the scalar � in the same multiplet [8, 9].

3. Vector multiplet

AM(2, 2; 1)+ λ(1, 2; 2)

also becomes the vector multiplet (4.42)
4. Hypermultiplet

ψ(2, 1; 2)+ φ(1, 1; 4)

becomes the complete hypermultiplet in 5D (4.43).

The gaugino and the gravitino are chiral and its charge conjugation cannot trans-
form into the ones with the opposite chirality, thus the theory has a potential chiral
and gravitational anomalies. Especially, gauginos contribute to chiral anomaly.

In 6D (1, 1) supersymmetry, we have two parity conserving copies of the above.
We have Sp(1)× Sp(1) R-symmetry:

1. Gravity multiplet

Gμν(3, 3; 1, 1)+ ψμ(2, 3; 2, 1)+ B+μν(1, 3; 1, 1)

+ B−μν(3, 1; 1, 1)+ ψ̄μ(3, 2; 1, 2)+ φ(1, 1; 1, 1)

+ Aμ(2, 2; 2, 2)+ λ(1, 2; 1, 2)+ λ̄(2, 1; 2, 1).

2. Vector multiplet

Aμ(2, 2; 1, 1)+ λ(1, 2; 2, 1)+ φ(1, 1; 2, 2)+ λ̄(2, 1; 1, 2).

Noting that the R-symmetry is isomorphic to the SO(4) local rotational symmetry
of T 4, this theory is obtained by compactifying N10D = 1 supersymmetry in
ten dimensions on T 4. Ten dimensional gravity and vector multiplets become
respectively (1, 1) gravity and vector multiplets.

In 6D (2, 0) supersymmetry, we have Sp(2) � SO(5) R-symmetry

1. Gravity multiplet: Gμν(3, 3; 1)+ ψμ(2, 3; 4)+ B+μν(1, 3; 5)
2. Tensor multiplet: B−μν(3, 1; 1)+ ψ(2, 1; 4)+ φ(1, 1; 5)

There is no vector multiplet. This SO(5) R-symmetry can be understood as internal
symmetry of M-theory compactified on T 5. It is one of the mysterious and
interesting supersymmetry.

We have (2, 2) and (4, 0) supersymmetries which contain gravitons only [6].
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5Field Theoretic Orbifolds

If one starts from higher dimensional spacetime than four, it is necessary to obtain
an effective four dimensional (4D) theory by hiding the extra dimensions. The idea
is that, if these extra dimensions are small enough, the experiments performed so
far in four dimensions could not have probed the such space.

We perform dimensional reduction of scalars, gauge bosons, and fermions, first
on torus and then on orbifolds. The study of orbifold is started from the dilemma
that the simple torus compactification does not allow chiral fermions in 4D. Even
though the orbifold started its appearance in physics in string theory, its physics can
be studied at field theory level also and in fact it is easier. So, before presenting the
orbifold study in string theory [1], we introduce field theory on orbifolds first. It also
provides low-energy description in the point particle limit.

We show that, with the orbifolded internal space, it is possible to have chiral
fermions in an effective 4D low-energy theory. However, we also consider other
possibilities for obtaining 4D chiral fermions using background scalar and magnetic
flux. Also we can embed the nontrivial boundary conditions of the orbifolds into the
space of unification group and break symmetries. Thus, after the work of Kawamura,
the investigation of the field theory on orbifolds got a great deal of interest to obtain
4D chiral fermions toward a realistic construction of the standard model (SM) [2–
13]. The anomaly structure of these theories on singular manifold has been also
analyzed [14–18] and all the models considered above are anomaly free.

5.1 Fields on Orbifolds

We review the behavior of various fields on orbifolds. First we study the Kaluza–
Klein (KK) reduction on a circle. Then we see how some zero modes are projected
out by associating the global symmetry with the space group actions of orbifolds.

© Springer Nature Switzerland AG 2020
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Lecture Notes in Physics 954, https://doi.org/10.1007/978-3-030-54005-0_5
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5.1.1 Scalar Fields

We begin by studying a complex scalar field living in flat five spacetime dimension.
It is described by action

S =
∫

d5xηMN∂M�∗∂N�. (5.1)

We employ the five dimensional metric ηMN = diag(+1,−1,−1,−1,−1), where
we index the entire five dimensions (5D) by the uppercase Latin characters and our
four spacetime dimensions by Greek characters: xM = (xμ, x4),M = 0, 1, 2, 3, 4.
Sometimes we parametrize the extra dimension by y ≡ x4.

Toroidal Compactification
Let us form a circle S1 by identification

y ∼ y + 2πR. (5.2)

This breaks the Lorentz group SO(1,4) down to SO(1,3); thus the y dependence
decouples and we may write the coordinate xM = (xμ, y). The action becomes

S =
∫

d4xdy(∂μ�
∗∂μ�− ∂y�

∗∂y�). (5.3)

In the last line we evaluated the metric ηyy = −1 instead of raising the indices.
We first find the eigenstates f (n)(y) of the operator (∂y)2

(
d2

dy2 +M2
n

)
f (n)(y) = 0. (5.4)

They form the complete basis

1

2πR

∫ 2πR

0
dyf (n)∗(y)f (m)(y) = δnm. (5.5)

Here L is the length of the fundamental domain, which in this case is the circumfer-
ence 2πR. The first factor in the integrand in (5.5) has complex conjugation, so the
eigenfunctions admit phases. If take them all real, we can make mode expansion for
the a scalar in the same way. We assume for the moment that the field � obeys the
periodicity (5.3). A complete set of eigenfunctions satisfying these is

{
f
(0)
+ = 1, f

(n)
+ (y) = √2 cos

ny

R
, f

(n)
− (y) = √2 sin

ny

R
, n = 1, 2, . . .

}
.

(5.6)
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All of them have the eigenvalues

Mn = n

R
, n = 0, 1, 2, . . . . (5.7)

We have an additional relation to make (5.6) complete

1

2πR

∫ 2πR

0
dy sin

my

R
cos

ny

R
= 0. (5.8)

Then we make mode expansion

�(x, y) = �
(0)
+ (xμ)+√2

∞∑
n=1

(
�

(n)
+ (xμ) cos

ny

R
+�

(n)
− (xμ) sin

ny

R

)
. (5.9)

Plugging this back to the original action (5.3), and using the completeness relation
(5.5), we obtain

S =
∫

d4x

[
∂μφ

(0)∗
+ ∂μφ

(0)
+ +

∞∑
n=1

(
∂μφ

(n)∗
+ ∂μφ

(n)
+ − n2

R2 φ
(n)∗
+ φ

(n)
+

)

+
∞∑
n=1

(
∂μφ

(n)∗
− ∂μφ

(n)
− − n2

R2
φ
(n)∗
− φ

(n)
−

)]
.

(5.10)

To make the kinetic function canonical, we have redefined
√

2πR�(n)
± ≡ φ

(n)
± . The

resulting field has the correct dimension as well.
As a result, we have a tower of scalar fields with the nonnegative masses Mn =

|n|/R given in (5.6). Notably, we have the unique massless complex scalar φ
(0)
+ ,

called zero mode. We have a pair of complex scalars φ(n)
+ , φ

(n)
− for each nonzero n.

We may visualize the spectrum as in Fig. 1.1a, where one of ψL or ψR is replaced
by �. In the small radius limit R → 0, these massive modes become heavy and
decouple. In the low-energy limit, some lowest modes n below the interested energy
scale � (� n/R) are relevant.

Up to Global Symmetry
The invariance of the action under the translation (5.2) does not imply that the field
itself is invariant under (5.2). It is sufficient to be invariant up to a global symmetry
of the action

�(x, y + 2πR)→ e2πiRc�(x, y). (5.11)
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Note that Rc is defined modulo 1 and can always be made 0 ≤ c < 1/R. Then, the
mode expansion is changed as

�(xμ, y) = 1√
2πR

∞∑
n=0

(
�

(n)
+ (xμ) cos

(ny
R
+ cy

)
+�

(n)
− (xμ)i sin

(ny
R
+ cy

))
,

(5.12)

where we put a phase i in front of the sine function for convenience. Thus the mass
of φ(n) is shifted to

M2
n =

( n

R
+ c

)2
, n = 0, 1, 2, . . . (5.13)

If we can assign different phase c to different fields, for example, to bosons and
fermions, the noninvariant field is projected out so that we can break supersymmetry
[19]. We will see that we have more degrees of freedom such as global or gauged
symmetry, and we have much freedom to choose the phase.

Fields on Orbiolds
Now we compactify the fifth dimension on the S1/Z2 orbifold as discussed in
Chap. 3 and shown in Fig. 5.1. The point group is Z2 generated by the action

θ : y →−y. (5.14)

This impose an additional boundary condition θ

�(x,−y) = η�(x, y), (5.15)

Fig. 5.1 S1/Z2 orbifold. The
fundamental region [0, πR] is
surrounded by fixed points
(bullets)
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where η is an eigenvalue. It becomes a parity η = ±1 from the consistency of
Z2, η2 = 1. This will affect the choice of the basis functions, which are solution to
(5.4).

For the even case η = 1, the modes are expanded by orthonormal basis

{
f (0)(y) = 1, f (n)(y) = √2 cos

ny

R
, n = 1, 2, . . .

}
, (5.16)

satisfying (5.4) and (5.5). This time, the size of the fundamental region is L = πR.
We have

�(xμ, y) = √2
∞∑
n=0

�
(n)
+ (xμ) cos

ny

R
. (5.17)

As a result, we projected out half of the tower. The spectrum is visualized in
Fig. 1.1b, as the ψL column.

We can alternatively take the parity odd η = −1 giving the expansion

�(xμ, y) = √2
∞∑
n=1

�
(n)
− (xμ) sin

ny

R
. (5.18)

We draw the spectrum as the ψR column in Fig. 1.1b.
We obtain the four dimensional action similar to (5.10). The KK tower become

half. Note that the zero mode exists only for the even eigenfunction �
(0)
+ (x).

Because we see only the lowest mode in the low-energy limit, we can explain the
absence of some fields, by assigning an appropriate parity η in (5.15).

Bulk and Branes
We call the five dimensional space as bulk. We sometimes assume a hypersurface
at the fixed points of y which are called branes. We use the word p-brane for the
p spatial-dimensional objects. In the example of Fig. 5.1, they are 3-branes because
the spatial dimensions of y = 0 and y = πR are three.

The word “brane” originates from Dirichlet brane (D-brane) [20], which we will
shortly review in Chap. 17. It has the following features

• Charge. An extended supersymmetry naturally possesses spatially extended
objects with central charge.

• Tension. It has tension, positive or negative, thus acts as a source of gravity.
• Field localization. In string theory, an open string can end at the brane thus its

low- energy state looks as localized field.
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A priori, orbifold fixed points do not have these properties but are made to mimic
them by hand. There are some known mechanisms for localizing fields.1

5.1.2 Gauge Fields

Similar features obtained above are shared by gauge fields. Consider an Abelian
gauge field AM in the flat spacetime with the action

S = − 1

4g2
5

∫
d5xηMNηPQFMP FNQ

= − 1

4g2
5

∫
d4xdy

(
FμνF

μν − 2(∂μAy − ∂yAμ)(∂
μAy − ∂yA

μ)
)
.

(5.19)

As before, the minus sign in the last term comes from the metric ηyy = −1. We have
omitted a gauge fixing term. The gauge field appearing here enters in the covariant
derivative as

DM = ∂M − iAM, (5.20)

which is different from the one in (1.5): here we absorbed the gauge coupling. The
resulting action (5.19) is convenient to track the gauge coupling dependence, since
the five dimensional gauge coupling g5 only appears as overall normalization. It
has a dimension of (length)1/2 thus nonrenormalizable. It should be completed by a
theory like string theory.

We may couple this gauge field to the above scalar theory as

S =
∫

d4xdy(DM�)∗DM�, (5.21)

The total action inherits the invariance under the gauge transformation

�(xμy)→ eiα(x
μ,y)�(xμy), (5.22)

Aμ(x
μ, y)→ Aμ(x

μ, y)− ∂μα(x
μ, y), (5.23)

Ay(x
μ, y)→ Ay(x

μ, y)− ∂yα(x
μ, y), (5.24)

if the phase is also periodic α(xμ, y + 2πR) = α(xμ, y).

1Localization of gravity in the warped background is discussed in Ref. [21] and of gauge fields in
Ref. [22].
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Compactification on Circle S1

We compactify the y-direction on a circle as before by identification y ∼ y + 2πR.
As a consequence of the broken 5D Lorentz symmetry, here Ay is decoupled to
become a scalar in the 4D effective theory. We can expand as

Aμ(x, y) = A
(0)
+μ(xμ)+

√
2
∞∑
n=0

(
A
(n)
+μ(xμ) cos

ny

R
+ A

(n)
−μ(xμ) sin

ny

R

)
,

A5(x, y) =
√

2
∞∑
n=0

(
A
(n)
+y(xμ) cos

ny

R
+ A

(n)
−y(xμ) sin

ny

R

)
.

(5.25)
This time, the gauge field is real, so we impose the orthogonality condition similar
to (5.5). However, the fundamental region is the whole circle, so we have different
normalization. Again, for each nonzero n, we have a pair of vectors A(n)

+μ,A
(n)
−μ and

a pair of real scalars A(n)
+y,A

(n)
−y .

Integrating out y gives

S = −2πR

4g2
5

∫
d4x

[ ∞∑
n=0

(
F

(n)
+μνF

(n)μν
+ + F

(n)
−μνF

(n)μν
−

)

− 2
∞∑
n=0

(
∂μA

(n)
+y −

n

R
A
(n)
+μ

) (
∂μA

(n)
+y −

n

R
A
(n)μ
+

)

− 2
∞∑
n=0

(
∂μA

(n)
−y −

n

R
A
(n)
−μ

) (
∂μA

(n)
−y −

n

R
A
(n)μ
−

) ]
.

(5.26)

The normalization determines four dimensional coupling

g2
4 =

g2
5

2πR
,

making it dimensionless. We observe that there is no zero mode scalar. The nonzero
modes n �= 0 gauge fields acquired the masses n/R by absorbing scalars A

(n)
y via

the Higgs mechanism. For these, we may define massive gauge fields by fixing
A
(n)
μ + (R/n)∂μA

(n)
y → A

(n)
μ , removing the degrees of freedom A

(n)
y . It is possible

because the gauge transformation parameter, a five dimensional real scalar, obeys
the same periodicity and can be also reduced in the same way and we have as many
gauge symmetry as the number of KK towers. The spectrum of the tower A(n)

μ is

visualized as in Fig. 1.1a, where we take ψL,ψR as two polarizations of A(n)
μ .

If we observe infinite tower of gauge fields with the same quantum number except
the regular masses (5.6), it is explained by one compact extra dimension whose size
is proportional to the gauge coupling.
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This discussion can be readily generalized to non-Abelian gauge fields. In this
case, the zero mode A

a(0)
+y becomes a complex scalar in the adjoint representation

with the index a. In what follows, we will use the matrix notation for non-Abelian
gauge fields,

AM ≡ AA
MT A, (5.27)

FMN ≡ ∂MAN − ∂NAM − i[AM,AN ]. (5.28)

Compactification on S1/Z2 Orbifold
As in the case of scalar field, a discrete symmetry associated with the orbifold action
forces the fields to be eigenstates of the associated action, and only the zero mode
in the even eigenstates survives.

To be concrete, consider the S1/Z2 orbifold again by the identification θ :
y ∼ −y. Because a non-Abelian gauge field (5.27) transforms as the adjoint
representation, we associate the point group action θ with the symmetry action P

(now a matrix) in the group space as

Aμ(x,−y) = PAμ(x, y)P
−1, (5.29)

but also note that

Ay(x,−y) = −PAy(x, y)P
−1, (5.30)

�(x,−y) = P�(x, y). (5.31)

These symmetries are correlated, because under which the Lagrangian should be
invariant. Taking care of the covariant derivative, the transformation property of the
Ay should be the same as that of ∂y , while that of Aμ is the same as that of ∂μ.
Hence, we have the minus sign in (5.30).

As an example consider gauge symmetry breaking of SU(3) down to SU(2) ×
U(1). The generators of SU(3) are the Gell-Mann matrices λa

λ1 =
⎛
⎝0 1 0

1 0 0
0 0 0

⎞
⎠ , λ2 =

⎛
⎝0 −i 0
i 0 0
0 0 0

⎞
⎠ , λ3 =

⎛
⎝1 0 0

0 −1 0
0 0 0

⎞
⎠ ,

λ4 =
⎛
⎝0 0 1

0 0 0
1 0 0

⎞
⎠ , λ5 =

⎛
⎝0 0 −i

0 0 0
i 0 0

⎞
⎠ , λ6 =

⎛
⎝0 0 0

0 0 1
0 1 0

⎞
⎠ ,

λ7 =
⎛
⎝0 0 0

0 0 −i
0 i 0

⎞
⎠ , λ8 = 1√

3

⎛
⎝1 0 0

0 1 0
0 0 −2

⎞
⎠ .

(5.32)
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If we take P such that

λa → PλaP−1 = +λa, a = 1, 2, 3 and 8,

λâ → PλâP−1 = −λâ, â = 4, 5, 6, 7.
(5.33)

The generators λ1, λ2, and λ3 belong to the SU(2) subgroup and λ8 belongs to U(1).
The corresponding gauge fields A(0)a

+μ λa/2 are expanded by even functions and have
zero modes, providing generators of the unbroken symmetry SU(2) × U(1) in the
low-energy theory. This is achieved if we take

P = ± diag(1, 1,−1), (5.34)

which differ by overall sign. Restating the relation (5.33), the unbroken generators
satisfy

[λa, P ] = 0, (no summation) (5.35)

as in the breaking by an adjoint Higgs field.
Consider a scalar � in the fundamental representation 3. Under SU(3) →

SU(2) × U(1), it branches into 2 and 1. Under θ , this � transforms as (5.31). For
the choice of+ sign, the doublet 2 component is invariant and survives. For− sign,
the singlet 1 survives.

This is explicit symmetry breaking. From (5.25) we see that, if an element of
±P is odd (even), the corresponding field Aμ(Ay), the corresponding tower is

completely removed. We also have a tower of states from A
(n)
y including the zero

modes. Each combination (A4(n)
y +iA

5(n)
y , A

6(n)
y +iA

7(n)
5 ) transforms as (2, 1) under

the SU(2)× U(1).
This SU(3) model had been a candidate for unification of the electroweak

symmetry SU(2) × U(1) but ruled out by wrong prediction of unified coupling.
However, if we consider extra dimensions, this is possibly revived [17, 23].

Symmetry Restoration at a Fixed Point
Another point to note is the symmetry behavior at the fixed point y = 0 and πR.
The operator P breaks gauge symmetry. The matrix valued gauge field AM(x, y)

has the following expansion in terms of small y

AM(x, y) = AM(x)+ fMN(x)y
M +O(y2), (5.36)

where fMN is simply a function of x. At a fixed point with a finite y, y = πR,
AM(x, y) is not invariant under the change y → −y, i.e. under P . But at the
fixed point y = 0, AM(x, y) = AM(x) and the transformation under P leaves
the SU(3) symmetry intact. In a field theoretic orbifold, this is a general feature: at
the origin y = 0 the gauge symmetry is unbroken. On the other hand, at the fixed
point with a finite y the gauge symmetry is a broken one if P breaks the symmetry.
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Fig. 5.2 The fundamental region of Fig. 5.1. Symmetries at the fixed points are shown

It is schematically shown in Fig. 5.2. The effective gauge symmetry below the KK
compactification is the common union of the symmetries at the fixed points(SU(3)
and GSM). In the above example, the common intersection is the SU(2)× U(1).
For the bulk, one may consider the bulk symmetry as SU(3) since the symmetry is
broken only by the boundary conditions. But, the massless gauge bosons in the bulk
do not form a complete SU(3) multiplet due to the boundary conditions, and hence
one can consider the bulk symmetry as SU(2)× U(1). This example shows that one
may find the effective 4D gauge symmetry by studying the massless gauge bosons
in the bulk or by picking up the common union of the symmetries respected at the
fixed points.

5.1.3 Fermions

Five Dimensional Spinors
We briefly review the properties of five dimensional spinors along the line discussed
in Sect. 4.1.2. The 5D gamma matrices are defined in terms of four dimensional ones
μ = γ μ

0 =
(

0 12

12 0

)
, i =

(
0 σ i

−σ i 0

)
, i = 1, 2, 3, (5.37)

with Pauli matrices σ i and unit matrix 12. The product of 4D gamma matrices

y = 0123 =
(
i12 0
0 −i12

)
(5.38)

provides the fifth, because they satisfy the anti-commutation relation

{M,N } = 2ηMN15, M,N = 0, 1, 2, 3, 4, (5.39)

and we have four component spinor. The minimal spinor in five dimension has eight
real components, which is presented in Table 4.1. The action is

S =
∫

d5x�(x, y)
[
iM(∂M − iAM)−m(y)

]
�(x, y), (5.40)
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where we allowed y dependence of mass m for a later use. There are two Lorentz
invariant bilinears: The Dirac mass term �� and the symplectic Majorana mass
term ��1 C5�2 with the five dimensional charge conjugation matrix C5 = 024.

Mode Expansion
It is important to note that the fifth gamma matrix is proportional to the four
dimensional chirality operator defined in (4.9)

y = −iγ 5. (5.41)

The four dimensional mass is the eigenvalue of the Dirac operator iy in the fifth
direction. Its eigenstate should be that of the chirality operator at the same time. So
we decompose the KK modes into the γ 5 eigenstates

γ 5�
(n)
L = −�(n)

L ,

γ 5�
(n)
R = �

(n)
R .

(5.42)

They become Weyl fermions in four dimensions. This sign difference should be
compensated by different harmonic functions f (n)

L (y), f
(n)
R (y) satisfying

(
d

dy
+m(y)

)
f
(n)
L (y) = −Mnf

(n)
R (y), (5.43)

(
d

dy
−m(y)

)
f
(n)
R (y) = +Mnf

(n)
L (y), (5.44)

1

L

∫ L

0
dyf

(n)
L,R(y)f

(m)
L,R(y) = δm+n,0. (5.45)

As in (5.5), the last integration is done for fLfL or fRfR; That between fL and
fR is zero. In fact, there is supersymmetry relating the basis functions with those in
the bosonic case. If we act (d/dy −m(y)) operator on both sides of Eq. (5.43), we
obtain the quadratic relation (5.4) used in the bosonic case.

Consider the case without bulk mass m(y) = 0. Both f
(n)
L (y) and f

(n)
R (y) are

solutions to the equation (5.4). So we take the set (5.6) for f (n)
L . We relate them to

f
(n)
R using the relations (5.43) and (5.44). So we have

{
f
(0)
L+(y) = −f (0)

R+(y) = 1, f
(n)
L+(y) = −f (n)

R+(y) =
√

2 cos
ny

R
,

f
(n)
L−(y) = f

(n)
R−(y) =

√
2 sin

ny

R
, n = 1, 2, . . .

}
, (5.46)
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givingMn = n/R. Note also that if the KK mass is zero, this does not apply, because
the y-differentiation makes a constant vanish. Thus we have the mode expansion

Ψ (xμ, y) =
∞∑
n=0

(
Ψ

(n)
L+(x

μ)− Ψ
(n)
R+(x

μ)
)
f
(n)
L+(y)+

∞∑
n=1

(
Ψ

(n)
L−(x

μ)+ Ψ
(n)
R−(x

μ)
)
f
(n)
L−(y).

(5.47)

We have a tower of four dimensional Dirac spinors with masses Mn = n/R,

n = 0, 1, 2, . . . . Like in the case of the complex scalar, we have a pair of states
for each chirality and each n. In Eq. (5.48), the zero mode has both left- and right-
handed Weyl fermions; If charged, they should have the same representation thus
the zero mode content is parity symmetric and is not chiral in the simple toroidal
compactification.

Plugging them to the action (5.40) and integrating over y, we have the four
dimensional action

S = ∫
d4x

∑∞
n=0

[∑
χ=L,R

∑
α=+,− ψ

(n)

χα(x
μ)iγ μ∂μψ

(n)
χα (x

μ)

−2Mn

(
ψ

(n)

L+(xμ)ψ
(n)
R−(xμ)+ ψ

(n)

R+(xμ)ψ
(n)
L−(xμ)

) ]
, (5.48)

with the usual redefinition ψ
(n)
L/R,±(xμ) =

√
2πRΨ (n)

L/R,±(xμ) and the gamma
matrix relations (5.37). Be warned that the zero modes exist only for positive parity
states, ψ(0)

L+(xμ) and ψ
(0)
R+(xμ).

As is well known, the mass term can be formed by fermions of different chirality.
What is new here is also the mass terms are possible only between the fields with
the opposite parity. Since the charge conjugate in four dimension exchanges chirality
and charge, we may write the mass term as

−Mn

(
ψ

(n)

L+(xμ)ψ
(n)
R−(x

μ)+ ψ
(n)

R+(xμ)ψ
(n)
L−(x

μ)ψ
(n)

L−(xμ)ψ
(n)
R+(x

μ)+ ψ
(n)

R−(xμ)ψ
(n)
L+(x

μ)
)
.

Finally, we may redefine four dimensional Dirac spinors

ψ(n) =
(
ψ

(n)
L+

ψ
(n)
R−

)
, ψ ′(n) =

(
ψ

(n)
L−

ψ
(n)
R+

)
,

and we may rewrite the action (5.48 ) suggesting the decoupling

S =
∫

d4x

∞∑
n=0

[
ψ

(n)
(xμ)

(
iγ μ∂μ −Mn

)
ψ(n)(xμ)+ ψ

′(n)
(xμ)

(
iγ μ∂μ −Mn

)
ψ ′(n)(xμ)

]
.
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Z2 Action on Fermions
Consider now the dimensional reduction of the fermions on the S1/Z2 orbifold. The
point group action is θ : y → −y, while leaving xμ invariant. Consider the kinetic
term first. For a Dirac spinor �(x, y), the inverted one �(xμ,−y) does not satisfy
the Dirac equation. We should rearrange the components as M�(x, y) so that the
newly obtained spinor satisfies the Dirac equation. This translates to finding a matrix
M satisfying

M†0yM−1 = −0y, M†0μM−1 = 0μ. (5.49)

We see that

M = −ηiy = ηγ 5 (5.50)

satisfies the condition (5.49). We may allow a parity η = ±1. It is no coincidence
that the transformation matrix is the 4D chirality operator.

Therefore, under the Z2 action, the associated projection condition leads to

�(x,−y) = ηγ 5�(x, y). (5.51)

When we extend this to non-Abelian symmetries, the set of phase η becomes a
projection matrix P as before

Aμ(x,−y) = PAμ(x, y)P
−1, (5.52)

�(x,−y) = Pγ 5�(x, y). (5.53)

It follows that the constant mass term is not allowed by Z2, although the Lorentz
invariance allows it. It is because under the inversion of y, the Dirac mass term
acquires a minus sign,

�(x,−y)�(x,−y)→−�(x, y)γ 5†γ 5�(x, y) = −�(x, y)�(x, y), (5.54)

where we used the fact γ 5†0 = −0γ 5†. Instead, we can use a kink type mass

m(−y) = −m(y) (5.55)

which can arise from a soliton background of scalar field.
The solution to the fifth component of the Dirac equation at the orbifold fixed

points y = 0, πR for normalizable fermion wave functions

f
(0)
L,R(y) = NL,R exp

(
∓

∫ y

0
dzm(z)

)
, (5.56)

where L,R are, respectively, correlated to −,+. Thus only the left-handed fermion
can have normalizable zero mode NR = 0. The zero mode has a definite chirality.
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For example, if the background scalar has a linear profile m(y) = 2a2y to have a
constant energy density, the left-handed zero mode becomes

ψL =
√
a

(π/2)1/4 e
−a2y2

. (5.57)

Then the fermion wave function is localized at y = 0.

Orbifold Leads to Chiral Theory
As before, consider the S1/Z2 orbifold under identification by (5.14). The field is
forced to be an eigenstate of the action (5.14), and the eigenvalues are opposite for
L- and R-handed Weyl fields. Choosing η = +1, Eq. (5.42) restricts the left-handed
spinor to be the even eigenstate. Therefore, we have

Ψ (x, y) = Ψ
(0)
L (x)+

∞∑
n=1

Ψ
(n)
L (x) cos

ny

R
+

∞∑
n=1

Ψ
(n)
R (x) sin

ny

R
. (5.58)

Comparing with the simple toroidal compactification result (5.47), we have zero
mode only for the left-handed spinor. Therefore, we obtain a chiral theory from the
orbifold condition. For η = −1 we have a right-handed zero mode.

5.1.4 Graviton

Finally, we review the original idea of Kaluza and Klein. Consider five dimensional
action

S = − 1

2κ2
5

∫
d5x

√
det ĜR(5), (5.59)

where R(5) is the Ricci tensor made of the five dimensional metric ĜMN . We
compactify the y-direction on the circle of radius R as in (5.2). The metric ĜMN

can is decomposed as

ĜMN =
(
Gμν + AμAν Aμ

Aν G44

)
, (5.60)

giving the metric

ds2 = ĜMNdx
MdxN = Gμνdx

μdxν +G44(dx
4 + Aμdx

μ)2. (5.61)
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Note that Ĝμν is different from Gμν . Now we observe that there is the position-
dependent translational symmetry in the metric,

x ′4 = x4 + λ(xμ), (5.62)

A′μ = Aμ − ∂μλ(x
μ). (5.63)

That is, the isometry of the interspace became the four dimensional gauge symmetry.
In this case we have U(1) gauge symmetry. Plugging the metric with G44 = e−2σ ,
we have the four dimensional effective action

S = −2πR

2κ2
5

∫
d4xe−σ

(
R + 1

2e2σ FμνF
μν + 2∂μσ∂

μσ

)
. (5.64)

We have four dimensional gravity plus U(1) gauge theory and scalar theory.
Compactification of many dimensions yield as many Abelian gauge bosons and

a generalized isometry to (5.62) might even lead to a non-Abelian gauge group,
whose possibility will not be pursued here.

What happens to a five dimensional scalar field φ(xM)? We perform the
decomposition (5.9). For simplicity we take the limit G̃44 = 1 and Gμν = ημν .
Plugging the metric (5.61) into the equation of motion ∂M∂Mφ = 0, we observe
that a “covariant derivative” is appearing,

S =
∫

d4x

∞∑
n=−∞

((
∂μ + i

n

R
Aμ

)
φ(n)∗(∂μ − i

n

R
Aμ

)
φ(n) − n2

R2 φ
(n)∗φ(n)

)
.

(5.65)

The lesson we learn from this example is that the momentum n/R in the
compact dimension plays the both role of charge and mass. Compactification of
more dimensions leads to as many Abelian gauge fields An

μ = Gμn. We will see
shortly that, because of the stringy effect, in the string theory we have more gauge
fields carrying momentum as internal quantum number like n; therefore they act like
charged boson W± in the non-Abelian gauge group.

Evidently, the remaining (D−1) dimensional part of the Einstein–Hilbert action
still has the general covariance and hence gives rise to the Einstein gravity. This is
what Kaluza and Klein originally obtained [24,25] as a unification of the U(1) gauge
theory and gravity. The main difficulty for the KK theory to be a realistic model for
particle physics is that it is hard to fit m/R as charge and mass at the same time. In
string theory, this can be overcome because there is universal shift of the mass in
the form of zero point energy. Thus we can obtain charged massless fields. Masses
of elementary particles can be given by Higgs mechanism.
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5.2 Realistic GUT Models

GUTs in extra dimensions may shed light on some difficult issues of GUTs when
they are compactified to a 4D SM. In this section, we discuss some attempts on
extra dimensional GUTs. The well-known GUT groups SU(5) and SO(10) will be
discussed in Sect. 5.2.1 for 5D and Sect. 5.2.2 for 6D, respectively, not because these
groups depend on the number of dimensions but because we want to introduce two
GUTs in an economical way. The dimension restricts the GUT group representations
only for cancelling the gauge anomalies.

5.2.1 SU(5) GUT in Five Dimension

We study the SU(5) GUT model in Ref. [2] to solve doublet-triplet splitting
problem.

AMore Z2 Action
We compactify the fifth direction on the S1/(Z2×Z

′
2) orbifold, studied in Sect. 3.2.

It is obtained by modding out S1 by two Z2 point group actions

g : y → −y, h : y → πR − y. (5.66)

We may also define y ′ = πR/2−y and consider an equivalent action h : y ′ → −y ′.
This situation is drawn in Fig. 5.3.

For each action, we may associate boundary conditions. For a bulk complex
scalar field φ(x, y), we have

g :φ(x, y)→ ηφ(x,−y),
h :φ(x, y ′)→ η′φ(x,−y ′). (5.67)

Fig. 5.3 S1/(Z2 × Z
′
2)

orbifold. Fixed points at
y = 0, πR

2 are denoted by
bullets. The thick arc is the
fundamental region
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We call η and η′ the parities of the field φ(x, y) under the Z2 × Z
′
2 actions. This is

extended to fermions as

g :�(x,−y) = ηγ 5�(x, y), η = ±1,

h :�(x, πR − y) = η′γ 5�(x, y), η′ = ±1.
(5.68)

If it belongs to the same hypermultiplet, it should have the same parities.
We consider the eigenstates under these parities (η, η′). The complete set of

functions satisfying (5.43) and (5.43) are

{
f
(2n)
++ (y) = cos

2ny

R
, f

(2n+1)
+− (y) = cos

(2n+ 1)y

R
,

f
(2n+1)
−+ (y) = sin

(2n+ 1)y

R
, f

(2n+2)
−− (y) = sin

(2n+ 2)y

R
, n = 0, 1, . . .

}
.

(5.69)

We have mode expansions

φ++(xμ, y) =
∞∑
n=0

�
(2n)
++ (xμ) cos

2ny

R
, (5.70)

φ+−(xμ, y) =
∞∑
n=0

�
(2n+1)
+− (xμ) cos

(2n+ 1)y

R
, (5.71)

φ−+(xμ, y) =
∞∑
n=0

�
(2n+1)
−+ (xμ) sin

(2n+ 1)y

R
, (5.72)

φ−−(xμ, y) =
∞∑
n=0

�
(2n+2)
−− (xμ) sin

(2n+ 2)y

R
. (5.73)

Note that only φ++ can have a zero mode, allowing a massless 4D field in the
effective low-energy theory. It survived both of projections.

A technical note on compactification. The functions in (5.69) are not mutually
orthogonal if we integrate their product over the fundamental region [0, πR/2]. We
define the modes from the integration over the whole circle [0, 2πR). For example,
the (++) mode comes from the expansion

φ
(2n)
++ (xμ) ≡ 1

πR

∫ 2πR

0
dy cos

2ny

R
�(xμ, y), (5.74)

having the mass Mn = 2|n|/R. Note that the mass Mn are different for distinct
eigenfunctions.
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Model
The 5D N = 1 supersymmetry was reviewed in the previous chapter. Here, we
introduce the minimal content of the supersymmetric SU(5) GUT in 5D [26].

• One vector multiplet V in the bulk, transforming as 24 of SU(5)

V = {(Aμ, λ
2), (A4 + i�, λ1)}, (5.75)

for gauge bosons.
• Two hypermultiplets H(1), H (2) in the bulk for Higgs bosons. They transform as

5 and 5

H(1) = {H5 ≡ (H
(1)
1 , ψ

(1)
L ), Ĥ5 = (H

(1)
2 , ψ

(1)
R )}

H(2) = {Ĥ5 ≡ (H
(2)
1 , ψ

(2)
L ),H5 = (H

(2)
2 , ψ

(2)
R )}.

(5.76)

• Three generations of matter multiplets �5 + �10 at the fixed point y = 0,
transforming as 5+ 10.

Note that the gauge symmetry at the fixed point y = 0 is SU(5) as commented
before. The projection associated with orbifold imposes boundary conditions and
hence some bulk fields are projected out at low energy. We will design such
projections to remove unwanted fields. The matter fields located at the fixed point(s)
remain intact. The gauge-invariant action is given by

S =
∫

d5xL (5) + 1

2

∫
d5xδ(y)L (4), (5.77)

where the Lagrangian for the Yang–Mills and Higgs in the bulk ,

L (5) = L (5)
YM +L (5)

H ,

L (5)
YM = − 1

2g2
5
TrF 2

MN + Tr|DM�|2 + Tr(iλ̄iMDMλi)− Tr(λ̄i[�,λi ]),

L (5)
H = |DMH

(s)
i |2 + iψ(s)

MDMψ(s) − (i
√

2ψ(s)λ
iH

(s)
i + h.c.)

− ψ(s)�ψ(s) −H
†i
(s)�

2H
(s)
i − 1

2
g2

5

∑
m,A

(H
†i
(s)(σ

m)
j
i T

AH
(s)
j )2, (5.78)

and that for matter fields at the fixed point y = 0,

L (4) ≡
∑

3 families

∫
d2θ̄d2θ

(
�

†
5
e2VAT A

�5 +�
†
10
e2VAT A

�10

)

+
∑

3 families

∫
d2θ

(
yuH5�10�10 + ŷuĤ5�10�10
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+ydH5�5�10 + ŷdĤ5�5�10

)
+ h.c.,

where λi = (λiL, ε
ij λ̄Lj )

T , DM is the covariant derivative (5.20) and g5 is a 5D
gauge coupling constant, σm are Pauli matrices, the T A are SU(5) generators,
VAT A is an SU(5) vector multiplet.

Projections
To break symmetry, we associate the actions (5.66) with projectors

g → P, h→ P ′. (5.79)

It can be checked that the two actions g and h commute; thus we require that the
associated actions P and P ′ also commute. This is achieved if we take both P and
P ′ diagonal

P = diag(1, 1, 1, 1, 1), (5.80)

P ′ = diag(−1,−1,−1, 1, 1). (5.81)

The SU(5) gauge symmetry is broken down to that of the standard model
(SM) gauge group, GSM = SU(3)×SU(2)×U(1). As seen in (5.33) the boundary
condition acts differently on the SU(5) generators T A(A = 1, 2, . . . , 24),

P ′T AP ′−1 = T a, T A ∈ GSM (5.82)

P ′T ÂP ′−1 = −T Â, T Â ∈ SU(5)/GSM. (5.83)

Now consider supersymmetry. As studied before, once we determine a projection
P for one field, the property for the rest fields are completely fixed by the invariance
of the action under gauge and supersymmetry [27, 28]. The SU(2)R symmetry
exchanges ψL and −ψR , and does λL and −λR . So the projection acts as

h(x,−y) = Ph(x, y)

ĥ(x,−y) = −P ĥ(x, y)

vv(x,−y) = Pvv(x, y)P
−1

vc(x,−y) = −Pvc(x, y)P
−1,

(5.84)

in notation of (4.42) and (4.43). Therefore, all component fields in N = 2
multiplets have definite transformation properties which include the parity.
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Componentwise they have the form

φ1(x,−y) = Pφ1(x, y)

ψL(x,−y) = PψL(x, y)

φ2(x,−y) = −Pφ2(x, y)

ψR(x,−y) = −PψR(x, y)

Aμ(x,−y) = PAμ(x, y)P
−1

λ2(x,−y) = Pλ2(x, y)P
−1

A5(x,−y) = −PA5(x, y)P
−1

�(x,−y) = −P�(x, y)P−1

λ1(x,−y) = −Pλ1(x, y)P
−1.

(5.85)

The same holds true for P ′.
Note that two supercharges of N = 2 have the opposite chirality. Seen in both

equations above, any projectorP acts differently on each supercharge because of the
relation (5.42): it inevitably breaks a half of supersymmetry. In four dimensions, the
vector multiplet always survives regardless of the overall sign. The chiral multiplets
with +1 eigenvalue survive. Overall, we have N = 1 supersymmetry. It is explicit
symmetry breaking: there is no asymptotic limit of symmetry restoration.

In Table 5.1, we list the parity assignments and the mass spectrum of the KK
modes of the bulk fields. Each Higgs multiplet in H5(Ĥ5, Ĥ5,H5) is divided

into the SU(3)-color triplet HC(ĤC̄, ĤC,HC̄) and the SU(2)-weak doublet
Hu(Ĥd, Ĥu,Hd). Note that only Hu and Hd have zero modes. All the color triplet
fields have masses of order the KK scale, ∼1/R. Thus the doublet-triplet splitting
problem of SU(5) is nicely resolved by assigning the boundary conditions given in
Eq. (5.85).

Let us scrutinize the roles of two projections in (5.79). Why do we need two
discrete symmetries? As seen in Sect. 5.1.2, P ′ alone might break gauge symmetry
down to SM gauge group GSM , as seen in the Z

′
2 parity in Table 5.1. It also breaks

a half of the supersymmetries because it chooses only fermions of one chirality
in each supermultiplet, for example, choosing λ2a but not λ2â [8]. Clearly this is
not sufficient, because the unwanted fields still persist, for example, charged scalars
Aâ
μ(3, 2) and triplet Higgs ĤC (3̄, 1) and so on, which are not observed and possibly

mediate rapid proton decay. Therefore, we need another projection P to make them
heavy and solve the doublet-triplet splitting problem

As discussed at the end of Sect. 4.2.1, each projection P or P ′ breaks a half
of N = 2 supersymmetries down to N = 1. Their common intersection is also
N = 1. It is also observed that the full SU(5) group remains intact at the origin
y = 0, as seen before, because the projection is not acted at this point. However,
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Table 5.1 The Z2 × Z
′
2 parities and the KK masses, in units of 1

R
, of the orbifolded SU(5) bulk

fields

4D fields Quantum numbers Z2 × Z
′
2 Mass

A
a(2n)
μ , λ2a(2n) (8, 1) + (1, 3)+ (1, 1) (+,+) 2n

A
â(2n+1)
μ , λ2â(2n+1) (3, 2) + (3̄, 2) (+,−) 2n+ 1

A
a(2n+2)
5 , �a(2n+2),λ1a(2n+2) (8, 1)+ (1, 3)+ (1, 1) (−,−) 2n+ 2

A
â(2n+1)
5 , �â(2n+1),λ1â(2n+1) (3, 2) + (3̄, 2) (−,+) 2n+ 1

H
(2n+1)
C (3, 1) (+,−) 2n+ 1

H
(2n)
u (1, 2) (+,+) 2n

Ĥ
(2n+1)
C̄

(3̄, 1) (−,+) 2n+ 1

Ĥ
(2n+2)
d (1, 2) (−,−) 2n+ 2

Ĥ
(2n+1)
C (3, 1) (−,+) 2n+ 1

Ĥ
(2n)
u (1, 2) (−,−) 2n+ 2

H
(2n+1)
C̄

(3̄, 1) (+,−) 2n+ 1

H
(2n)
d (1, 2) (+,+) 2n

in the bulk there is only GSM and the dimensional reduction yields only this gauge
group.

5.2.2 SO(10) GUT in Six Dimension

We discuss the next simplest GUT SO(10) in 6D [7,9,18]. One interesting feature of
6D SO(10) is that each fixed point respects different gauge groups. In this case the
low-energy effective theory is the common intersection of the groups respected at
each fixed point. This is the generalization of the symmetry breaking we discussed
in the previous subsection and has more complex structure. This kind of the common
intersection as the gauge group appears in string orbifold also.

SO(10) GUT
Group theoretically, the SO(10) has some merits over the SU(5) except not being
the minimal one. Firstly, the fifteen chiral fields are put in a single representation
16 together with an SU(5) singlet neutrino and realizes our theme of unification.
Second, since it contains an SU(5) singlet neutrino in the spinor 16 of SO(10),
it is possible to introduce small Majorana neutrino masses through the see-saw
mechanism [29,30]. Of course, one can introduce SU(5) singlets in the SU(5) GUT
and introduce a similar see-saw mechanism, but in the SO(10) GUT the see-saw
neutrino mass is related to other couplings dictated from the SO(10) symmetry.
Third, because the top and bottom quarks are put in the same representation 16, it is
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possible to relate their masses, i.e. the so-called top-bottom unification is possible.
Thus, it seems that the SO(10) GUT has its own merit to study [31–33].

To break SO(10) down to GSM(×U(1)) just by orbifolding, we need to go beyond
five dimension for the following reasons. With a single projection P we can break
SO(10) down to one of its maximal groups only, thus cannot directly go to GSM.
We need at least two projections. Also, if we want the doublet-triplet splitting from
orbifold, one needs more projections. Thus we need at least three projections. As
seen in Sect. 3.2, the discrete group on a circle can be at most Z2 × Z2. Moreover,
if we use the second Z2 action to break gauge group further, there remain unwanted
massless fields from A5 components of the vector multiplet [18]. These do not form
a complete representation of GUT groups. Thus the gauge coupling unification may
not be accomplished.

In addition, two extra dimensional compactification shows the essential features
of compactification in still higher dimensions. In the following chapters on the string
compactification, we encounter more internal dimensions to be compactified. These
features include the localization of gauge groups and matter spectra at fixed points
due to the presence of Wilson lines.

Subgroups of SO(10)
Before presenting a full orbifold model, let us recapitulate the group theoretical
aspects of SO(10). As pointed out in Sec. 2.2, the interesting rank 5 subgroups of
SO(10) are

(i) SU(5)×U(1), where SU(5) is the Georgi–Glashow (GG) group [26]
(ii) SU(4)c×SU(2)L×SU(2)R, the Pati–Salam (PS) group [34]

(iii) SU(5)′×U(1)X, the flipped SU(5) (flipped SU(5)) group [35].2

Of course, the differences arise in the way of embedding matter contents. In
Table 5.2 the sixteen chiral fields are classified under these three cases. All these
groups can be obtained when one nontrivial Z2 boundary conditions are imposed.

Since GSM is a subgroup of each Cases (i), (ii), and (iii), GSM can be a common
union of them. Consider for example, the quark doublet q and the lepton doublet l.
Both of these complete the PS representation (4, 2, 1) under the PS group. However,
they belong to two different representations under the GG-SU(5). So, we must split
10F and 5F so that q and l themselves become a complete representation. It is most
easily achieved from chopping off 5F so that l is split. Then, 10F is also split to
produce q . When we chop off 5F into 3 ⊕ 2, the unbroken group is GSM. For the
part of the PS group, the fourth color is separated from the remaining three colors
to produce q and l. This means that the common intersection of the SU(5)GG×U(1)
and the PS group is GSM × U(1). In this way, one can confirm that the common

2The flipped SU(5) is the flipped SU(5) in field theory models. In string compactifications in
Chaps. 13 and 14, we will use the word anti-SU(5) [36] instead of flipped SU(5), to stress the
needed antisymmetric representations.
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Table 5.2 The chiral fields
are L-handed

GSM Fields GG-SU(5) PS 422 Flipped SU(5)

q (3, 2) 10F (4, 2, 1) 10F
uc (3, 1) 10F ( ¯4, 1, 2) 5F
dc (3, 1) 5F ( ¯4, 1, 2) 10F
l (1, 2) 5F (4, 2, 1) 5F
ec (1, 1) 10F ( ¯4, 1, 2) 1F
N (1, 1) 1F ( ¯4, 1, 2) 10F

Note that the discrete Z2 element of SU(2)R exchanges
up and down type quarks and leptons, thus this relates
GG-SU(5) and flipped SU(5)

intersection of any two columns of Table 5.2 contains GSM. If we considered the PS
group and the flipped SU(5) group, then the common intersection is again GSM ×
U(1). Similarly, the common intersection of SU(5)GG×U(1) and the flipped SU(5)
is GSM× U(1).

The subgroup structure of the SO(10) can be understood more clearly when
we classify the 45 generators T a [9, 18]. They are represented by imaginary and
antisymmetric (thus Hermitian) 10×10 matrices. To deal with SU(5) subgroup, the
standard convention is to embed U(n) group into SO(2n). Then, it is convenient to
write these imaginary and antisymmetric generators as direct products of 2× 2 and
5× 5 matrices, giving

SO(10) : 12 ⊗ A5, σ 1 ⊗A5, σ 2 ⊗ S5, σ 3 ⊗A5 . (5.86)

Here 12 and σ1,2,3 are the 2 × 2 unit matrix and the Pauli matrices; Sn and An are
real and symmetric n×n matrices, and imaginary and antisymmetric n×n matrices,
respectively. It is easily checked that the surviving generators are fifteen S5s and ten
A5s. The U(5) subgroup of SO(10) is then generated by

U(5) : 12 ⊗ A5, σ 2 ⊗ S5 (5.87)

whose total number is 25 the number of U(5) generators. Excluding U(1) generator
σ 2 ⊗ 15, the rest forms the generators of SU(5), which are traceless under this
convention.

It is useful to denote the matrix in the 3-2-3-2 block highlighting the 2× 2 block
structure [33]. Writing our 2×2 σ space in the {i, 5+i} coordinates, 10×10 SO(10)
generators can be written as

M =
(
A+ C B + S

B − S A− C

)
10×10

(5.88)
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where A,B, and C are antisymmetric and S is symmetric. For example, we have

12 ⊗ A5 =

⎛
⎜⎜⎝

A3 AX 0 0
−A�X A2 0 0

0 0 A3 AX

0 0 −A�X A2

⎞
⎟⎟⎠ ,

σ 1 ⊗ B5 =

⎛
⎜⎜⎝

0 0 B3 BX

0 0 −B�X B2

B3 BX 0 0
−B�X B2 0 0

⎞
⎟⎟⎠ .

The unitary transformation is given by

U = 1√
2

(
15 i15

i15 15

)
. (5.89)

Under the unitary transformation, M transforms to

M ′ =
(
A− iS B − iC

B + iC A+ iS

)
10×10

. (5.90)

In this case, the 24 SU(5) generators are A and traceless S. The U(1) generator of
U(5) is

ISU(5) =
(

15 0
0 −15

)
10×10

(5.91)

which belongs to M ′ up to a phase.

Projections With one of the following projections Pi we can break SO(10) to one
of them3

PGG ≡ σ 2 ⊗ 15, (5.92)

PF ≡ σ 2 ⊗ diag(1, 1, 1,−1,−1), (5.93)

PPS ≡ 12 ⊗ diag(1, 1, 1,−1,−1). (5.94)

3In Ref. [18], PGG, PF, and PPS are represented as P2, P3, and P4, respectively.
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In the above notation, we may also write as

PGG =

⎛
⎜⎜⎝

0 0 −i13 0
0 0 0 −i12

i13 0 0 0
0 i12 0 0

⎞
⎟⎟⎠ ,

and so on. The unbroken generators satisfy the condition (5.35)

[T a, P ] = 0. (5.95)

We assigned the name of the projectors according to the resulting subgroup. In what
follows we treat each subgroup separately.

Georgi–Glashow SU(5) The above choice of SU(5) embedding is the Georgi–
Glashow type, because in the conventional basis, the hypercharge generator Y ∝
T 24 is diagonal and its eigenvalues are proportional to that of 5 of GG-SU(5)
embedding.

By embedding the SM gauge group into this U(5), we can divide the 5 × 5
matrix further by choosing the first three indices 1, 2, 3 for the SU(3)c and the last
two indices 4, 5 for the SU(2)L. Then, A3, S3, A2, and S2 contain the SM group
generators. The total number of these are 13 out of which the identity generator is
not belonging to the SM gauge group. The remaining 12 generators are those of the
SM. Now, let us denote the left-over pieces of A5 and S5 as AX and SX. Then, the
generators of the Georgi–Glashow SU(5)GG×U(1) subgroup can be grouped as

SU(5)GG × U(1) : 12 ⊗ A3, 12 ⊗ A2, 12 ⊗AX

σ 2 ⊗ S3, σ
2 ⊗ S2, σ

2 ⊗ SX.
(5.96)

The total number of generators in Eq. (5.96) is 25.

Pati–Salam SU(4)×SU(2)×SU(2) The Pati–Salam group is obtained as

SO(10) → SO(6)× SO(4) � SU(4)× SU(2)× SU(2).

It means that the SO(10) generators are partitioned into blocks of dimensions 6 and
4 and the diagonal blocks survived, i.e. the SO(6)×SO(4) generators remain, which
is equivalent to the PS group. The PPS of (5.94) can be denoted as 16 ⊗ (−14) and
yield the ones we want, by a similar relation as (5.33). The resulting generators of
the Pati–Salam group SU(4)c×SU(2)L×SU(2)R are given by

PS 422 : (12, σ
1, σ 3)⊗A3, σ 2 ⊗ S3

(12, σ
1, σ 3)⊗A2, σ

2 ⊗ S2,
(5.97)
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where the first line lists the SU(4) generators and the second line lists the
SU(2)×SU(2) generators. Here the total number of generators is 21.

Flipped SU(5)′×U(1) Consider the SU(2)R rotation generated by T3R of the PS
group. Rotating by angle π flips the signs of the last two entries in PF . Thus, we
have PF = PPSPGG. This rotation flips the representations of SU(5)GG are flipped
to those of the flipped SU(5):

ecL ↔ N

dcL ↔ ucL

from which the name “flipped” has been coined.
If the U(1) part is not the identity as given in Eq. (5.93), then traceless Qem

in SO(10) must contain the U(1)X piece in the flipped SU(5), i.e. U(1)X ∈
flipped SU(5). Here, the commutators of σ 2 ⊗ diag(1, 1, 1,−1,−1) with the
generators σ 1 ⊗ AX and σ 3 ⊗ AX are nonvanishing but put again in the set. Note
that there are two nonvanishing factors [σ 2, σ1,3] and [diag(1, 1, 1,−1,−1), AX].
If we assign one, for a nonvanishing commutator, we end up with + for the two
commutator factors; thus the flipped SU(5) gauge bosons carry the + parity. The
surviving generators are the following [34, 36].

SU(5)F × U(1)′X : 12 ⊗ A3, 12 ⊗ A2, σ 1 ⊗ AX

σ 2 ⊗ S3, σ
2 ⊗ S2, σ

3 ⊗ AX.
(5.98)

Here also, the total number of generators is 25.

SM as the Common Intersection It can be clearly seen from the above decom-
positions that the intersection of any combination of two of the GG-SU(5), flipped
SU(5), and PS 422, is GSM× U(1), whose common generators are

12 ⊗A3, 12 ⊗ A2,

σ 2 ⊗ S3, σ
2 ⊗ S2,

(5.99)

which are underlined in Eqs. (5.96, 5.98, and 5.97). The common intersection of
these SO(10) subgroups is shown schematically in Fig. 5.4. The U(1) generator in
the common intersection is σ 2 ⊗ 15.

Because the Cartan subalgebra always commutes with all the projectors, as in
(5.95), we need another method to reduce the rank 5 of SO(10) down to the rank
4 of the SM. One way is to employ the Higgs doublet. For example, 5D SO(10)
models can be considered even if one Z2 is used for the rank preserving breaking
SO(10)→SU(4)×SU(2)×SU(2) and eventually to GSM is realized by the VEV of
Higgs 〈( ¯4, 1, 2)〉.

Another method is to employ continuous Wilson lines, where the orbifold actions
do not commute and hence the projections do not commute. Therefore, some Cartan
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Fig. 5.4 The common
intersection of SO(10)
subgroups

subalgebra do not remain invariant so that the rank is reduced. This is explained in
Sect. 12.4.2.

T 2/Z2 Orbifold and Gauge Symmetries at Fixed Points
We compactify two dimensions y1, y2 on T 2/Z2 orbifold considered in Sect. 3.3.
The torus T 2 are made by identification

ym ∼ ym + emi . (5.100)

The point group is a Z2 generated by

θ : (y1, y2)→ (−y1,−y2). (5.101)

The 6D N = 1 SO(10) gauge multiplet can be decomposed into 4D N = 1 SUSY
multiplets as in (4.42): a vector multiplet V and chiral adjoint multiplet �. The bulk
action is given by

S =
∫

d6x

{
1

4g2 Tr

[∫
d2θW αWα + h.c.

]
(5.102)

+
∫

d4θ
1

g2
Tr

[
(
√

2∂† +�†)e−V (−√2∂ +�)eV + ∂†e−V ∂eV
]}

,

where V = V aT a,� = �aT a , and ∂ = ∂5 − i∂6.
We associate translations ei with the phase phases Ti . That is,

V ("y + ei) = TiV ("y)T −1
i , (5.103)

�("y + ei) = Ti�("y)T −1
i . (5.104)
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Now, we require a consistency condition. Successive transportation by e1, e2, −e1,
and −e2 move a point to the same point,

V (y) = T −1
2 T −1

1 T2T1V (y)T −1
1 T −1

2 T1T2, (5.105)

thus we have

T2T1 = T1T2. (5.106)

The projection matrices (5.93) and (5.94)

T1 = PGG, T2 = PF. (5.107)

satisfy the condition (5.106) because they are all diagonal. With the action θ we
associate the identity Z = 12 ⊗ 15,

V (−"y) = ZV ("y)Z−1, (5.108)

�(−"y) = −Z�("y)Z. (5.109)

Note that Z does not belong to the SO(10) generators (5.86) since it is real and
symmetric, breaking the symmetry.

At the fixed points on the orbifold, certain gauge transformation parameters are
forced to vanish. Remember that the 5D Z2 example in Eq. (5.36) at the fixed point
y = 0 leaves the SU(5) symmetry intact. But at the fixed point y = πR, the Z2
transformation leaves only the SM group GSM invariant.

This observation is also applicable in the present 6D case. The matter contents
and interactions located at the fixed points O, A, B, and C of Fig. 5.5 respect different
gauge symmetries. At O, the full SO(10) gauge symmetry is respected.

Recall that in (3.30) and (3.47), we have labelled fixed points by space group
actions

O : (θ, 0), A : (θ, e1), B : (θ, e2), C : (θ, e1 + e2). (5.110)

Considering the fixed point A, under action θ we are forced to move along e1 to
come back to the original point A in the covering space. The vector field transforms
as

θ : V (πR, 0) = V (−πR, 0)

e1 : V (πR, 0) = PGGV (−πR, 0)P−1
GG,

where T1 = PGG. From (5.35), generators commuting with PGG survive and the
others are projected out; thus the gauge symmetry at A is SU(5)GG×U(1). Similarly,
at the point B we have the projector PF and preserve SU(5)F × U(1)X. At C, one
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Fig. 5.5 The T 2/Z2 orbifold in the (y1, y2) plane. The orbifold fixed points are denoted by bullets
and localized groups at each fixed point are indicated. The fundamental region is the rectangle

must apply both e1 and e2 translations after Z2 action. The projector is T2T1 =
PFPGG = PPS from Eqs. (5.92) and (5.93). The gauge symmetry is the PS group
SU(4)c×SU(2)L×SU(2)R.

From Eqs. (5.108 and 5.109) one notes that the 4D N = 1 supersymmetry is
preserved at each fixed point.

We could have taken T1 = PPS and T2 = PGG. Then, the fixed point A preserves
SU(4)c×SU(2)L×SU(2)R, and the fixed point B preserves SU(5)GG ×U(1). The
unbroken gauge group is the GSM×U(1) as before. This is so because geometrically
the four fixed points are equivalent and the different choice of projectors is
equivalent to renaming the fixed points.

5.3 Local Anomalies at Fixed Points

We noted that an effective 4D theory obtained by compactifying the 5D theory
on a circle is parity symmetric and anomaly free. Therefore, possible obstruction
of gauge symmetry can be present only at fixed points. In this respect, the
U(1) gauge anomaly in 5D theories compactified on an S1/Z2 orbifold was first
discussed in Ref. [14]. They considered a single bulk fermion with unit charge and
imposed chiral boundary conditions. The anomaly—defined as the five dimensional
divergence of the current—lives entirely on the orbifold fixed points,

∂MJM = 1

2
[δ(y)+ δ(y − πR)]Q(x, y), (5.111)

where JM is the 5D fermionic current

JM = ψM�, (5.112)
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and

Q(x, y) = 1

16π2Fμν(x, y)F̃
μν(x, y), (5.113)

is the 4D chiral anomaly in the external gauge field AM(x, y) in (5.19). We noted
that the effective 4D anomaly is absent when the localized anomalies cancel

∫
dy∂MJM = 0 #⇒ Q(x, πR) = −Q(x, 0).

But if any anomaly is present in 4D, it must be localized at the fixed points. So, if
Q(x, 0) is nonzero, then the only possibility is that it is proportional to δ(x) which
is not allowed. Therefore, for the Z2 case the absence of 4D anomaly is sufficient to
ensure Q(x, 0) = 0 and hence the consistency of the higher dimensional orbifold
theory.

For the orbifold S1/(Z2 × Z
′
2) defined in (5.67), this phenomenon does not

persist. Despite the fact that the orbifold projections remove both fermionic zero
modes, gauge anomalies localized at the fixed points were found [15],

∂MJM = 1

4
[δ(y)− δ(y − πR/2)+ δ(y − πR)− δ(y − 3πR/2)]Q(x, y),

(5.114)

for gauge fields having the odd parity as the boundary conditions. Even if the 4D
effective theory is anomaly free because anomalies cancel after integration over the
fifth dimension, it is possible that the gauge invariance is broken at the fixed points,
spoiling the consistency of the 5D theory. Thus, the full 5D anomaly structure must
be checked for the models with S1/(Z2×Z

′
2). The anomaly structure of the Abelian

gauge theory with arbitrary boundary condition on 5D orbifold is analyzed in Refs.
[16]. For the non-Abelian gauge theory, Ref. [17] discussed the anomaly structure
and the cure by Chern–Simons terms in detail.

Now we calculate (5.114). Take the five dimensional space R4 × S1/(Z2 × Z
′
2).

Consider a 5D Dirac fermion in it, coupled with a U(1) external gauge field. The
action of this U(1) gauge theory is the sum of (5.40) and (5.19). The two orbifold
projections act on the spacetime points as

g : y →−y, h : y → πR − y, (5.115)

as in (5.67). For the 5D spinor, the following boundary condition is imposed:

g : �(x,−y) = ηγ 5�(x, y), η = ±1

h : �(x, πR − y) = η′γ 5�(x, y), η′ = ±1.
(5.116)

We consider the eigenstates under these parities (η, η′). The γ 5 matrix in Eq. (5.116)
distinguishes the parities of two 4D Weyl spinors in � and allows only one Weyl
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spinor for having zero mode (the + parity). Notice that a 5D bulk mass term
m�†0� is forbidden unless m has a nontrivial profile in the bulk with parities
(−−).

The complete set of functions satisfying the boundary conditions

f++ =
√

2 cos
2ny

R
, f+− =

√
2 cos

(2n+ 1)y

R
,

f−+ =
√

2 sin
(2n+ 1)y

R
, f−− =

√
2 sin

(2n+ 2)y

R
,

(5.117)

where n = 0, 1, . . . for all,
Even though the 5D current (5.112) is classically conserved, it may have a local

anomalous divergence at quantum level. One can rewrite the action (5.40) as a
collection of 4D massive Dirac fermions by expanding � in terms of the complete
set formed by the solutions of free Dirac equation in 5D as in (5.47). The KK modes
f
(n)
L,R are those in Eqs. (5.70–5.73).

Using the orthogonality of the KK modes, the action (5.40) can be written as

S =
∫

d4x

[∑
n

ψ
(n) (

iγ μ∂μ −Mn

)
ψ(n)

−
∑
n,m

(
j
μ
LmnA

L
μmn + j

μ
RmnA

R
μmn − ij5mnA5mn

)
,

]
(5.118)

where Mn are the mass eigenvalue in (5.43) and (5.44). We define a tower of four
dimensional gauge fields

AL
μmn =

1

πR

∫ L

0
dyf

(m)
+− (y)f

(n)
+−(y)Aμ(x, y), (5.119)

AR
μmn =

1

πR

∫ L

0
dyf

(m)
−+ (y)f

(n)
−+(y)Aμ(x, y), (5.120)

Aymn =
1

πR

∫ L

0
dyf

(m)
L (y)f

(n)
R (y)Ay(x, y), (5.121)

where L,R are correlated. We also have chiral and mixed currents

j
μ
Lmn = ψ

(m)

L γ μψ
(n)
L (5.122)

j
μ
Rmn = ψ

(m)

R γ μψ
(n)
R (5.123)

jymn = ψ
(m)

L ψ
(n)
R − ψ

(m)

R ψ
(m)
L . (5.124)
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Using the symmetry (5.24), we may choose the gauge A5 = 0. Using the well-
known result for the 4D anomalous divergence of chiral current in 4D gives the
relations [14]

∂μj
μ
Lmn = i

[
ψ

(m)

L Mmψ
(n)
L − ψ

(m)

R Mnψ
(n)
R

]
− 1

16π2

∞∑
k=1

FL
μνmkF̃

Lμν
kn (5.125)

∂μj
μ
Rmn = i

[
ψ

(m)

R Mmψ
(n)
R − ψ

(m)

L Mnψ
(n)
L

]
+ 1

16π2

∞∑
k=1

FR
μνmkF̃

Rμν
kn , (5.126)

where FL,R
μmn are the field strengths of AL,R

μmn. On the other hand, the 5D current can
be expanded in terms of the 4D currents

Jμ(x, y) =
∑
m,n

[
f
(m)
R (y)f

(n)
R (y)j

μ
Rmn(x)+ f

(m)
L (y)f

(n)
L (y)j

μ
Lmn(x)

]
. (5.127)

J y(x, y) = −i
∑
m,n

f
(m)
L (y)f

(n)
R (y)j

y
mn(x). (5.128)

Noticing that at the classical level, using (5.43) and (5.44),

∂yJ
y =

∑
mn

i
[
Mn

(
f
(m)
+− f

(n)
+− − f

(m)
−+ f

(n)
−+

)
ψ

(m)
(
−γ 5

)
ψ(n)

]
(5.129)

the divergence of the 5D current can be expressed by

∂MJM = 1

2
Q

∑
n

(
f
(n)
+−(y)f

(n)
+−(y)− f

(n)
−+(y)f

(n)
−+(y)

)
, (5.130)

with Q defined in (5.113) It should be stressed that in deriving (5.130) one tacitly
assumed that Eq. (5.129) is still valid at the quantum level and all the quantum
effects are encoded in Eqs. (5.125) and (5.126). To discuss the complete anomaly
structure, one should also consider the parity anomaly.

The sum over the KK modes in (5.130) can be computed using the completeness
property of the mode functions [14]. For the case of (++) parity, consider

πR�(y, y ′) ≡
∞∑
n=1

f
(n)
L (y)f

(n)
L (y ′)−

∞∑
n=1

f
(n)
R (y)f

(n)
R (y ′), (5.131)

which reduces to the last factor of Eq. (5.130) if we set y = y ′. Here we defined
f
(n)
++(y), f

(m)
−− (y) in Eq. (5.69). Because the f

(m)
L (y) functions are odd while the

f
(m)
R (y) are even, we can write

�(y,−y ′) =
∑
m≥0

f
(m)
R (y)f

(m)
R (y ′)+

∑
m>0

f
(m)
L (y)f (y ′)(m)

L . (5.132)
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Since f (m)
R (y) and f

(m)
L (y) form a complete set of functions with periodic boundary

conditions in the interval [0, πR), (although they are still normalized in the interval
[0, 2πR]). The sum of the eigenfunctions in the complete set is a delta function

�(y,−y ′) = 1

2

∞∑
n=−∞

δ(y − y ′ − nπR), (5.133)

which leads to the expression, by setting y ′ = −y,

�(y, y) = 1

2

∞∑
n=−∞

δ(2y − nπR) =
∞∑

n=−∞

1

4R
δ(y/R − nπ/2). (5.134)

Using this method for the case of Z2×Z
′
2 orbifold, various choices of the fermion

parity lead to

�(++)(y) = −�(−−)(y) = 1

4R

∞∑
n=−∞

δ(y/R − nπ/2), (5.135)

�(+−)(y) = −�(−+)(y) = 1

4R

∞∑
n=−∞

(−1)nδ(y/R − nπ/2), (5.136)

where + and − denote the parities of Z2 and Z
′
2. In particular, if the fermions have

opposite parities (+,−) and (−,+), one recovers Eq. (5.114).
With a similar calculation, one find for the case of S1/Z2,

f (+)(y) = −f (−)(y) = 1

2R

+∞∑
n=−∞

δ(y/R − nπ), (5.137)

which reproduces Eq. (5.111).
For a consistent quantum theory, there should not appear any fixed point anomaly.

In this regard, note that the above fixed point anomalies can be always cancelled by
adding appropriate Chern–Simons terms in the bulk and some fermions at the fixed
point(s) [17, 37].

Bulk and Local Anomalies in Six Dimension
The automatic cancellation of bulk anomaly in 5D is not maintained in 6D. In
even dimensions, chiral anomalies can be present. The gauge anomalies in even
dimensions were studied by many groups, notably by Frampton and Kephart [38].
In 6D, the chiral anomaly arises from box diagrams. So, the 4D intuition that N of
SU(N) carries −1 unit of the anomaly of N does not work in 6D. In 6D, unlike
in 4D, orthogonal groups can have gauge anomalies. Usually, in even dimensions
the N = 1 theory can be made anomaly free by adjusting bulk matter contents by
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hand. Although it is possible to remove the SO(10) gauge anomalies in 6D in this
way [9], it is desirable to have some guidance for cancelling the gauge anomaly.
For an effective 4D theory, the orbifolding has been used in this chapter. One
method to remove the gauge anomalies is to consider parity symmetric N = 2
SUSY theory [9]. Even if the 4D gauge anomaly is cancelled in this way, the local
anomaly cancellation has to be checked carefully as we will discuss later. Another
method is to form a complete representation of higher rank gauge group for which
the anomaly cancellation is guaranteed. In 6D, exceptional groups can be used for an
automatic absence of gauge anomalies as SO(4N+2) groups with complex fermion
representations do in 4D [39].

For the localized anomaly we have the same result as in five dimensions [40]: the
anomaly freedom implies the cancellation of localized anomalies at the fixed points.

Exercises

� Exercise 5.1 Check the signs in (5.3).

� Exercise 5.2 Another convenient set of eigenfunctions satisfying (5.4) and (5.5)
is

f (n) = einy/R, M2
n =

n2

R2 , n = 0,±1,±2, . . . . (5.138)

(1) Explain that the negative mode numbers n are allowed.
(2) Expand the modes

�(x, y) =
∞∑

n=−∞
�(n)(xμ)einy/R, (5.139)

and use the completeness relation (5.5) and plug them back to the original action
(5.3) to obtain

S =
∫

d4x

∞∑
n=−∞

(
∂μφ

(n)∗∂μφ(n) − n2

R2 φ
(n)∗φ(n)

)
,

=
∫

d4x

[
∂μφ

(0)∗∂μφ(0) +
∞∑
n=1

(
∂μφ

(n)∗∂μφ(n) − n2

R2 φ
(n)∗φ(n)

)

+
∞∑
n=1

(
∂μφ

(−n)∗∂μφ(−n) − n2

R2 φ
(−n)∗φ(−n)

)]
. (5.140)
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(3) Show that this is the same result as (5.10). Also it is more convenient to show
the Sherck–Schwarz relations (5.12) and ((5.13).

� Exercise 5.3 Show that, if the scalar �(xμ, y) were real, we should have
�(n)(xμ) = �(−n)(xμ) and count the states with n ≥ 0. Using this, expand the
gauge field

Aμ(x, y) =
∞∑

n=−∞
A(n)
μ (xμ)einy/R,

and show that it gives the same result as (5.26).
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6Quantization of Strings

Starting from this chapter, we discuss string theory for particle physics. Our
emphasis will be, starting from string theory, understanding low-energy physics
described by the Standard Model (SM). As summarized in Chap. 2, the SM is
a chiral theory for fermions, and hence obtaining a chiral spectrum from string
theory is of utmost importance. This goes with string theory with fermions, i.e.,
superstring rather than bosonic string. Superstring is written in ten spacetime
dimensions(10D) but the effective quantum field theory of the SM is in four
spacetime dimensions(4D), and the extra six dimensions(6D) must be cleverly
hidden from the 4D observers. For hiding these extra dimensions, we follow the
compactification scheme via orbifolds introduced in Chap. 3 and applied to quantum
field theory in Chap. 5. It will be exploited fully in string theory in the subsequent
chapters. In this chapter, we introduce basics in string theory.

There are excellent books on string theory [1–4]. In this spirit, we attempt to
excerpt the key formulae of string theory in this chapter which will be used in the
subsequent chapters for constructing 4D string models.

6.1 Bosonic String

Besides its own interesting points, bosonic string is a building block of all string
theories. We discuss quantization and modular invariance of the partition function
that can be easily generalized to superstrings.
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6.1.1 Action and Its Invariance Properties

We begin with an example of relativistic point particle. One successful form for the
action with the Poincaré invariance is

S = m

∫
dτ

√
ẊμẊμ, (6.1)

where the dot denotes d/dτ . We parametrized τ along the world line. Physically
there should be no dependence on τ thus it has reparametrization invariance
X′μ(τ ′(τ )) = Xμ(τ) and we can easily check indeed it is. Varying (6.1) with respect
to δXμ gives

δS = m

∫
dτ u̇μδX

μ,

where uμ = Ẋμ/
√
ẊνẊν is the D-velocity. The equation of motion is u̇μ = 0

which is a free particle motion. We can identify m as the particle mass.
Consider another form of the action, by introducing world-line metric e(τ ),

S′ = 1

2

∫
dτ

(
1

e
ẊμẊμ + em2

)
(6.2)

which has the Poincaré invariance. The invariant volume element in the world line
is e(τ )dτ . Variation of (6.2) with respect to e(τ ) relates

e2 = ẊμẊμ

m2

and the action S′ of (6.1) reduces to the original action S of (6.2). We feel much
better for the latter form because it is quadratic in Xμ and successfully describes the
massless limit.

Let us extend the above discussion to the string. Strings propagate in spacetime
manifolds, sweeping out an area. The world volume swept out by a string is a two
dimensional surface for whose coordinates we introduce τ and σ . The spatial extent
of the string is defined to, in a suitable definition of the parameter σ ,

0 ≤ σ ≤ π. (6.3)

We will treat bosonic degrees Xμ, (μ = 0, 1, 2, · · · ,D− 1) as D displacements
defined on a worldsheet parametrized by τ and σ . On this worldsheet, we introduce
a metric hαβ(τ, σ ). Thus, we introduce the following action of type (6.2) for the
relativistic string:

S = T

2

∫
dτdσ

√−h hαβημν∂αXμ∂βXν, (6.4)
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where h = dethαβ and T is string tension having dimension of mass squared. Here,
we can write a worldsheet action in analogy with the relativistic point particle action
in the world line, and one can write Eq. (6.4) blindly and start from there. The action
(6.4) has the following symmetries:

1. General covariance (worldsheet) which implies that the action is invariant under
the reparametrization of coordinates

τ → τ ′(τ, σ ), σ → σ ′(τ, σ ).

Therefore,

X′μ(τ ′, σ ′) = Xμ(τ, σ ),

h′γ δ(τ ′, σ ′) =
∂σα

∂σ ′γ
∂σβ

∂σ ′δ
hαβ(τ, σ ) .

(6.5)

Due to the reparametrization invariance on the worldsheet, we can deal with two
dimensional general relativity.

2. Weyl invariance (worldsheet) under the local scaling,

X′μ(τ, σ ) = Xμ(τ, σ )

h′αβ(τ, σ ) = e�(τ,σ )hαβ(τ, σ ) ,
(6.6)

which holds only in two dimensions.
3. Poincaré invariance (target space),

X′μ = �μ
νX

ν + aμ. (6.7)

Therefore, we have a unitary representation under Poincarè algebra and the state
is labelled by momentum, spin, and internal quantum numbers.

The standard way of quantizing the system having gauge symmetry is to fix the
gauge and use the gauge condition as a constraint. In this regard, one can remind the
Coulomb gauge condition ∇ · A = 0 in Maxwell’s theory.

There are three degrees of freedom for the symmetric tensor hαβ . Using
reparametrization invariance, we can fix hαβ as

hαβ = eϕηαβ, (6.8)

called the conformal gauge. Plugging (6.8) into (6.4), the ϕ dependence disappears
due to the two dimensional nature of the worldsheet. The resulting action is

S = T

2

∫
d2σ

(
Ẋ2 −X′2

)
=

∫
d2σL , (6.9)
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where dot and prime represent derivative with respect to τ and σ , respectively.
This makes our later analysis easy although the following considerations make it
nontrivial:

• We should note that either the scale invariance or the reparametrization invari-
ance is broken in quantum theory. Fortunately, there is no anomaly in a critical
dimension (for example D = 26 in the bosonic string case).

• Riemann and Roch theorem tells us about fixing of hαβ . It is always possible
to fix gauge (6.8) in the tree Feynman diagram (topologically it is reduced to
a sphere). However, in the loop diagrams there remain non-fixable degrees in
general. The one-loop case will be discussed in Sect. 6.1.4.

• Even if we succeed in fixing gauge hαβ , there is a residual symmetry, which will
be discussed in the following subsection.

The string equations are obtained by varying with respect to Xμ. Besides the
surface term we have

∂α∂
αXμ =

(
∂2

∂τ 2 −
∂2

∂σ 2

)
Xμ = 0. (6.10)

As is familiar, the solution of this partial differential equation is separated into two
independent ones

Xμ(τ, σ ) = X
μ
R(τ − σ)+X

μ
L(τ + σ). (6.11)

Therefore, it is useful to introduce the light-cone variables σ± = τ ± σ .
Then, Eq. (6.10) becomes ∂+Xμ

R = ∂−Xμ
L = 0; thus we have chiral scalars

in two dimensions. This contributes to gravitational and Weyl anomalies in two
dimensions.

This is complemented by the constraint, that the variation with respect to hαβ

vanishes,

Tαβ ≡ 2

T
√−h

δS

δhαβ

∣∣∣∣
hαβ=ηαβ

= −∂αXμ∂βXμ + 1

2
ηαβ∂

γXμ∂γXμ = 0,

(6.12)

which defines the worldsheet energy-momentum tensor. It corresponds to the Gauss
law constraint ∇ · E = 0 in Maxwell’s theory, originating from A0 = 0 which in
turn corresponds to Eq. (6.8).
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Being symmetric tensor, this Tαβ seems to have three independent constraints.
However, the scaling invariance (6.6) is translated to the traceless condition of the
energy-momentum tensor

TrTαβ = ηαβTαβ = T00 − T11 = 0, (6.13)

and only two constraints are independent. In view of (6.11), it is convenient to define

T++ ≡ 1

2
(T00 + T01) = −1

4
(Ẋ +X′)2 = −∂+Xμ

L∂+XμL,

T−− ≡ 1

2
(T00 − T01) = −1

4
(Ẋ −X′)2 = −∂−Xμ

R∂−XμR.

(6.14)

The constraint equation (6.12) becomes

T++ = T−− = 0. (6.15)

As in the quantization of gauge theories, we use these as constraint equations on
physical states.

The boundary condition is to abolish the surface term contributions,

T

∫
dτ

∂Xμ

∂σ
δXμ

∣∣∣π
σ=0

= 0. (6.16)

Closed Strings
The following boundary condition satisfying Eq. (6.16) specifies the closed string:

Xμ(τ, σ + π) = Xμ(τ, σ ). (6.17)

(In fact, we also need hαβ(τ, σ + π) = hαβ(τ, σ )). Let us try to solve the equation
of motion, consistent with this condition. We have mode expansion

X
μ
R(τ − σ) = 1

2
xμ + α′pμ(τ − σ)+ i

√
α′
2

∑
n�=0

1

n
αμ
n e
−2in(τ−σ), (6.18)

X
μ
L(τ + σ) = 1

2
xμ + α′pμ(τ + σ)+ i

√
α′
2

∑
n�=0

1

n
α̃μ
n e
−2in(τ+σ), (6.19)

where the index n runs over all the integers except 0. It is useful to define the Regge
slope α′ and the string length scale �s as

α′ ≡ 1

2πT
≡ 1

2
�2

s . (6.20)
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This is the only free parameter of the string theory and will be related to
experimentally observable quantities in Chap. 11. What will be more useful is the
(anti-)holomorphic derivatives

∂−Xμ
R(τ − σ) = �s

∞∑
n=−∞

αμ
n e
−2in(τ−σ), (6.21)

∂+Xμ
L(τ + σ) = �s

∞∑
n=−∞

α̃μ
n e
−2in(τ+σ). (6.22)

Here we include the zero modes, which are naturally defined as

α
μ
0 = α̃

μ
0 =

√
α′
2
pμ. (6.23)

Now let us quantize Xμ. First we treat them as operators. The conjugate
momentum to Xμ is

"μ(τ, σ ) = δL

δẊμ

= T Ẋμ. (6.24)

The first quantization of string leads to the following equal τ commutators:

["μ(τ, σ ),Xν(τ, σ ′)] = T [Ẋμ(τ, σ ),Xν(τ, σ ′)] = iδ(σ − σ ′)ημν (6.25)

with others vanishing. They lead to the following commutators for the center-of-
mass variables and oscillator mode operators:

[xμ, pν ] = −iημν, (6.26)

[αμ
m, α

ν†
n ] = −mδmnη

μν, (6.27)

[α̃μ
m, α̃

ν†
n ] = −mδmnη

μν, (6.28)

with the other commutators vanishing. Using the Hermiticity of Xμ, operators α, α̃
with negative indices are related to positive indices by

(αμ
n )

† = α
μ
−n, (α̃μ

n )
† = α̃

μ
−n. (6.29)

The worldsheet Hamiltonian becomes

H =
∫ π

0
dσ(Ẋ ·"−L )

=
∑
n�=0

(α−n · αn + α̃−n · α̃n)+ α′p · p + c̃ + c,
(6.30)
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where the dot product means the sum over μ and the worldsheet Lagrangian
density cL is defined in (6.9). Since αn and α−n do not commute, we have the
ordering problem. We reserved normal ordering constant c and c̃. We also have the
momentum generating translation along the σ direction

P =
∫ π

0
dσX′ ·"

=
∑
n�=0

α̃−n · α̃n −
∑
n�=0

α−n · αn + c̃ − c.
(6.31)

In fact we have an unwanted state of negative norm

‖α0−m|0;p〉‖2 < 0

due to the opposite sign in the commutation relation along the time direction.1 This
negative norm state is pathological and we should decouple these states. It turns out
that such unphysical degrees are decoupled when the constraint is appropriately
imposed, as we encounter in the Gupta–Bleuler formalism in QED [5, 6]. The
remaining part of this section is devoted to removing such an ambiguity.

Open Strings
The open string has the Neumann boundary condition

∂Xμ

∂σ
= 0, at σ = 0, π. (6.32)

Technically, we can make an open string by XR(σ + π) = XL(σ),XL(σ + π) =
XR(σ). Then we can use the above closed string formula by setting αμ = α̃μ. We
have

Xμ = xμ + 2α′pμτ + i
√

2α′
∑
n�=0

1

n
αμ
n e
−inτ cos(nσ). (6.33)

It has the same quantization

[xμ, pν ] = −iημν, [αμ
m, α

ν
n] = −mδm+n,0 ημν. (6.34)

The Hamiltonian becomes

H = −1

2

∑
n�=0

α−n · αn − α′p · p. (6.35)

1Because of the mostly negative metric convention, we define the norm of a state ‖|φ〉‖2 as−〈φ|φ〉.
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Traditionally, it has been the end of the story. Because of δXμ in the boundary
term (6.16), the Dirichlet boundary condition

Xμ(σ = 0) = X
μ
0 , Xμ(σ = π) = Xμ

π , (6.36)

where RHSs are constant vectors, is also allowed for some directions. Although it
breaks the Lorentz symmetry, we have only that symmetry in four dimensions. So
we can allow for such boundary condition for the extra dimensions.

6.1.2 Conformal Symmetry and Virasoro Algebra

In this section we will consider the so-called old covariant quantization. In the
worldsheet point of view, string theory is a two dimensional theory, which has an
infinite-dimensional local conformal symmetry, generated by the Virasoro algebra
[7]. Thanks to this symmetry, we may have a quantum theory of string since many
ambiguities disappear.

Residual Symmetry
We have discussed in the covariant gauge where the worldsheet metric was chosen
as hαβ = ηαβ . But still there remains a gauge freedom. We can further fix the gauge,
exhausting all the gauge freedom, as in the unitary gauge in field theory. This fixing
guarantees that we do not expect any unphysical states.

This residual gauge freedom can be seen as follows. After choosing a covariant
gauge, any combined reparametrization of Eqs. (6.5) chosen in the following way

∂αξβ + ∂βξα = −�ηαβ (6.37)

is consistent with the Weyl scaling (6.6). Under this, the angle between two vectors
is preserved and thus it is called conformal symmetry. It seems to be peculiar, but it
is consistent with the infinite number of conserved quantities in the covariant gauge,
following from ∂−T++ = 0. This is always satisfied when we transform coordinates
such that

σ+ → σ̃+(σ+), σ− → σ̃−(σ−). (6.38)

It turns out that the generators for this local transformation are the energy–
momentum tensors T++, T−−, respectively, in (6.14). Since it is local, it is useful to
expand it in terms of the Fourier components, by substituting the mode expansions
(6.18, 6.19),

Lm = T

2

∫ π

0
dσ−e2imσ−T−− = −1

2

∞∑
n=−∞

αm−n · αn , (m �= 0), (6.39)

L̃m = T

2

∫ π

0
dσ+e2imσ+T++ = −1

2

∞∑
n=−∞

α̃
μ
m−nα̃μn , (m �= 0) (6.40)
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which are called Virasoro operators [8]. We have defined the Virasoro operators for
m �= 0. For m = 0, we have again the ordering problem as in (6.30). We define
L0, L̃0 as normal ordered products : :,

L0 ≡ −1

2

∞∑
n=−∞

: α−n · αn :≡ −1

2
α0 · α0 −

∞∑
n=1

α−n · αn

L̃0 ≡ −1

2

∞∑
n=−∞

: α̃−n · α̃n :≡ −1

2
α̃0 · α̃0 −

∞∑
n=1

α̃−n · α̃n.
(6.41)

This definition of L0 and L̃0 differs by a normal ordering constant from the one
having the ambiguity by using (6.39) and (6.40) with a brute force substitution m =
0. These constants are the same as c̃ and c defined in the Hamiltonian (6.30) and the
momentum (6.31)

H = L̃0 + c̃ + L0 + c, (6.42)

P = L̃0 + c̃ − L0 − c. (6.43)

Virasoro Algebra
Using the commutation relation (6.39) for m+ n �= 0, we obtain

[Lm,Ln] = 1

4

⎡
⎣ ∞∑
p=−∞

αm−p · αp,
∞∑

q=−∞
αn−q · αq

⎤
⎦ = (m− n)Lm+n.

For n = −m �= 0, we may allow a central term as [Lm,L−m] = 2mL0 +
A(m)δm+n,0, catching the “anomaly,” that is, the quantum effect from the zero point
energies. Using Jacobi identity, one can show that [1]

A(m) = D

12
m(m2 − 1).

Here D = ημνη
μν counts the number of worldsheet bosons.

This is the Virasoro algebra [8], whose general form is

[Lm,Ln] = (m− n)Lm+n + C

12
m(m2 − 1)δm+n,0, (6.44)

where C, the D above, is the central charge. We have the same algebra for the
left-moving operators L̃m, which are independent from the right-moving operators
[Lm, L̃n] = 0.
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Physical States, Level Matching, andMass Shell Condition
Now, we apply the constraint Eqs. (6.15). In quantum mechanics, we might treat
them as operators and impose on physical states |ϕ〉 in the Hilbert space

T++|ϕ〉 = 0, T−−|ϕ〉 = 0 (too strong). (6.45)

However, this is a too strong condition with which no nontrivial physical states sur-
vive. Instead, we employ a milder constraint, as in the Gupta–Bleuler quantization
[5, 6]. Namely, impose vanishing conditions only for non-negative components

Lm|ϕ〉 = L̃m|ϕ〉 = 0 , for m > 0

(L0 + c)|ϕ〉 = (L̃0 + c̃)|ϕ〉 = 0.
(6.46)

The mass shell condition follows from the last condition, since L0 contains pμ

(6.23)

M2 = p · p = 2

α′
α0 · α0 = 2

α′
α̃0 · α̃0. (6.47)

This means, we need matching between the left and right movers

L0 + c = L̃0 + c̃, (6.48)

at the operator level.
Putting the mass shell condition (6.47) to the defining relation (6.41), we have

1

4
α′M2 =

∞∑
n=1

α−n · αn + c =
∞∑
n=1

α̃−n · α̃n + c̃. (6.49)

It is convenient to define the oscillator number

Ñα =
∞∑
n=1

α̃−n · α̃n

Nα =
∞∑
n=1

α−n · αn.
(6.50)

The level matching condition (6.48) becomes Ñ = N. Since it relates the left and
right movers, we may separate the mass condition of open string theory into the
form

M2 ≡M2
L +M2

R, (6.51)

M2
L =M2

R, (6.52)
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1

2
α′M2

L ≡
∞∑
n=1

α−n · αn + c = N+ c, (6.53)

1

2
α′M2

R ≡
∞∑
n=1

α̃−n · α̃n + c̃ = Ñ+ c̃. (6.54)

For the open string, we put αn = α̃n in (6.51) and obtain

α′M2 =
∞∑
n=0

αi−nαi
n +

1

2
c. (6.55)

6.1.3 Light-ConeGauge

Here we will consider quantization in the light-cone frame. Although we discard the
manifest Lorentz invariance(although not lost) of the theory, we can easily obtain the
spectrum explicitly. Due to the residual gauge freedom, we can solve the constraint
equation (6.14) explicitly in this light-cone frame, to leave only physical degrees.

In the previous subsection, we observed that there is a residual gauge freedom
(6.38). Under it, τ = 1

2 (σ
+ + σ−) transforms as

τ̃ = 1
2 [σ̃+(τ + σ)+ σ̃−(τ − σ)]. (6.56)

For τ̃ , this is nothing but a general solution (6.11) of the wave equation (6.10),
(∂2

σ − ∂2
τ )τ̃ = 0. So any linear combination of string coordinates Xμ can be a

solution up to a multiplicative and an additive constant.
What choice will be the most useful one? We will show that, by a suitable

choice we can solve the constraint equation (6.14) fully to leave only the physical
(transverse) degrees of freedom. It is done by introducing the following light-cone
coordinates:

X± ≡ 1√
2
(X0 ±XD−1). (6.57)

In this coordinate,2 ηij = diag (−1,−1, . . . ,−1) with (i, j = 1, 2, . . . ,D − 2),
η+− = 1, and η−+ = 1, thus the inner products look as

v ·w = v+w− + v−w+ − viwi . (6.58)

2We will denote the transverse coordinates by roman indices i, j . The remaining two coordinates
can be called X±, or τ̃ , σ̃ .
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Now, using the gauge freedom let us set τ̃ to a spacetime direction as τ̃ = X+/p++
(constant). In other words, we choose

X+(τ, σ ) = x+ + �sp
+τ̃ , (6.59)

and p+ is interpreted as the conjugate momentum to x+. Stated differently, the
oscillator coefficients α+n are chosen to be zero for n �= 0. It amounts to making
the worldsheet time direction and X+ coincident in the infinite p+ limit; thus this
gauge choice is called the light-cone gauge. From (6.14) the constraint equations
(Ẋ ±X′)2 = 0 becomes

Ẋ− ±X′− = 1

2p+�2
s

∑
i

(Ẋi ± X′i )2. (6.60)

Thus, in the light-cone gauge Xi are the only dynamical degrees.
We are left to specify the closed or open string boundary conditions. Here we

will consider the closed string case, since the open string case is obtained therefrom
by the doubling trick. We have mode expansion for X−,

X− = x− + p−τ + i�s

∑
n�=0

(
1

n
α−n e−in(τ−σ) +

1

n
α̃−n e−in(τ+σ)

)
. (6.61)

Inserting this into (6.60) and comparing both sides term by term, we can solve
α−n , α̃−n in terms of αi

n, α̃
i
n

α−n =
1

2p+�s

(
D−2∑
i=1

∞∑
m=−∞

: αi
n−mαi

m : + : α̃i
n−mα̃i

m : +(c + c̃)δn0

)
. (6.62)

In particular, the identification p− = α−0 gives the mass shell condition,

1

2
α′M2 = 1

2
α′p2 = 1

2
α′

(
2p+p− −

∑
i

pipi

)

=
D−2∑
i=1

∞∑
n=1

(
αi−nαi

n + α̃i−nα̃i
n

)
+ c + c̃,

(6.63)

where we used (6.62) in the second equation. We have the same result as (6.51),
provided the following is met. First, we agree that the oscillators are only excited
along the physical directions with the index i. Second, we interpret c and c̃ be
the vacuum constants (6.39) and (6.40). For each n, we have [αi

n, α
i−n] = n and



6.1 Bosonic String 141

[α̃i
n, α̃

i−n] = n. Since we have (D − 2) physical degrees,

c + c̃ = (D − 2)
∞∑
n=1

n = (D − 2)ζ(−1) = −D − 2

12
. (6.64)

The formally divergent sum is calculated by an analytic continuation of the Riemann
zeta function ζ(s) =∑∞

n=1 n
s to give [9]

ζ(−1) = − 1

12
. (6.65)

We will justify this prescription by requiring the modular invariance shortly.
Let us discuss the spectrum. Consider first open string. From the mode expansion,

we construct a tower of physical states. Because of the Poincaré invariance in
the target space, we have the unitary representation in terms of mass, spins, etc.
With oscillators, we define the ground state that is annihilated by all the oscillator
annihilation operators,

pi |0; k〉 = ki |0; k〉,
αi
m|0; k〉 = 0, m > 0,

(6.66)

where kμ is the eigenvalue of the momentum operator pμ.
Note that we have c = −(D − 2)/24 from (6.64). The condition for vanishing

Lorentz anomaly fixes D = 26 by “no-ghost” theorem [10, 11], thus c = −1. Here
we just present a heuristic argument. In the light-cone gauge of open strings, all
string excitations are created by operating transverse oscillators αi−n on the vacuum.
The ground state |0〉 is a tachyon since the eigenvalue of M2 is c < 0. As known
in the Higgs potential, this signals that this vacuum is not the true vacuum, which
requires a study of string field theory. Here, we ignore this tachyon problem. Then
consider the first excited state

αi
−1|0〉. (6.67)

It has (D−2) components (i = 1, 2, . . . ,D−2) and is a vector representation of the
transverse rotation group SO(D−2). Its mass is 1

4α
′M2 = 1+c = 1−(D−2)/24. If

we require the Lorentz symmetry in D dimensions, it should be massless. Therefore,
we have

D = 26, c = −1.

For the closed string, we define the ground state as the tensor product

|0〉L ⊗ |0〉R,
α̃i
m|0〉L = αi

m|0〉R = 0, m > 0.
(6.68)
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Fig. 6.1 (a) τ defines a torus bounded by the parallelogram. The subsequent figures show those
modified by T (b), and by T ST (c) which is conformally equivalent to the one by S

According to (6.53, 6.54), the first excited states are massless states

α̃i
−1|0〉L ⊗ α

j

−1|0〉R. (6.69)

By the same argument, and the level matching condition (6.52), we have D = 26
and c = c̃ = −1. We can decompose this as symmetric traceless, trace, and
antisymmetric parts. They provide gravitonGij , dilaton φ, and antisymmetric tensor
Bij . They are the massless representation of the Lorentz group SO(1, 25).

Note that although we will not employ the covariant quantization, it is proven
equivalent to the light-cone quantization [1]. Therefore, without confusion we will
conveniently use the covariant Lorentz indices μ, ν instead of the physical degree
indices i, j .

6.1.4 Partition Function andModular Invariance

The most important consistency condition that we will inspect every time later is the
so-called modular invariance, emerging from one-loop amplitude. Let us calculate
the partition function, or Euclidianized one-loop vacuum-to-vacuum amplitude,

Z =
∫
[Dh][DX]e−SE(h,X). (6.70)

Its Feynman diagram is torus. This torus is described by one complex number
τ = τ1 + iτ2, called the modular parameter,3 or in the case of torus, complex struc-
ture. It is made by identifying the opposing sides of a parallelogram parametrized
by 1 and τ , as shown in Fig. 6.1a. Without loss of generality we can fix τ2 > 0. For
example, τ = i corresponds to a rectangle.

3The modular parameter should not be confused with the worldsheet coordinate τ = σ 0.
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The problem arises from the measure [Dh] in (6.70). We cannot maintain the
covariant gauge hαβ = ηαβ globally maintaining the original periodicity [12]: the
residual degree of freedom is embedded in τ so that at best we may have the form

ds2 = |dσ 1 + τdσ 2|2. (6.71)

Such non-fixable parameter(s) is called modulus and its number is determined by
topology.

The string loop amplitude should be invariant for the equivalent torus. Its
equivalence class is generated by reparametrization of τ , belonging to the modular
transformation PSL(2,Z),

τ → aτ + b

cτ + d
, a, b, c, d ∈ Z, ad − bc = 1. (6.72)

It is generated by two elements,

T : τ → τ + 1, S : τ →−1/τ. (6.73)

They satisfy the relations S 2 = (ST )3 = 1. Under T the torus is deformed
as Fig. 6.1b. The role of S is not transparent, but the T ST generates the
transformation τ → τ/(τ + 1) which corresponds to Fig. 6.1c, which is equivalent
to S up to rescaling. Note that it exchanges worldsheet time σ 0 and space σ 1

direction.
As in the Faddeev–Popov gauge fixing in gauge theories, we should divide

the measure by the redundancy. We should restrict the integration region to the
fundamental region C

1/PSL(2,Z),

|τ | > 1, |τ1| < 1
2 , τ2 > 0 (6.74)

as shown in Fig. 6.2. This is an orbifold having fixed points at τ = i and τ =
e2πi/3. With the field theory analogy, the loop amplitude has the ultraviolet diverges
when the region goes to Im τ → 0 [12], which is absent due to the nature of the
string being an extended object. In the point particle limit, where the torus shrinks
to a circle, this becomes a loop diagram, which is responsible for the chiral and
gravitational anomalies. It turns out that its low-energy limit is anomaly free since
anomaly comes from the failure of its regularization.

The resulting one-loop amplitude has the form

Z = V

∫
dτdτ̄

(Im τ )2
Z (τ, τ̄ ). (6.75)

We will not consider constant volume factor V . We form such field theory on a torus
[12] by a field theory on a circle, evolving the Euclidian time by 2πτ2 and translating
in the σ direction by 2πτ1, and then gluing the ends together. They are generated
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Fig. 6.2 The fundamental region is bounded by the bold lines and arc. Two lines are identified.
Two fixed points are shown as •(i) and o(e2πi/3)

by the worldsheet Hamiltonian (6.42) and the momentum (6.43), respectively. Thus,
we have

Z (τ, τ̄ ) = Tr
[

exp(2πiτ1P − 2πτ2H)
]

(6.76)

= Tr
[
qL̃0+c̃ q̄L0+c

]
, (6.77)

where

q = exp(2πiτ). (6.78)

An immediate consequence is that invariance under T requires that the worldsheet
momentum is zero and this is nothing but the level matching condition (6.48) in
most general form.

Let us calculate it for the bosonic string case. From (6.41), L̃0 and L0 are
separated into continuous (center of momentum) and discrete (oscillator) parts. In
the light-cone gauge we have 24 physical degrees of freedom; For each degree of
freedom, it is

Z (τ, τ̄ ) ≡
∫

dk

2π
e−πτ2k

2
∞∏
n=1

∞∑
Nn,Ñn=0

qnÑn+ n
2 q̄nNn+ n

2 , (6.79)
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where nÑn = α̃i−nα̃i
n and nNn = αi−nαi

n for fixed i (no summation). The continuous
part is the Gaussian integral

∫
dk

2π
e−πτ2k

2 = (4π2τ2)
−1/2. (6.80)

The oscillator part is a geometric sum. For the q-sum, we have

∞∏
n=1

∞∑
Ñn=0

q
n
2+nÑn =

∞∏
n=1

q
n
2

∞∑
Ñn=0

qnÑn (6.81)

= q−
1
24

∞∏
n=1

(1+ qn + q2n + . . . ) (6.82)

= q−
1
24

∞∏
n=1

(1− qn)−1 (6.83)

≡ η(τ)−1, (6.84)

which is the definition of Dedekind eta function. Note that the zeta function regular-
ization (6.65) provides consistent modular invariance. Performing q-expansion, we
see that each coefficient of qE counts the number of states with the energy E.

The right mover is equivalent to the left one, except the antiholomorphic
argument τ → τ̄ . With 24 identical such physical degrees of freedom, we have
finally

Z (τ, τ̄ ) = [Z (τ, τ̄ )]24 =
[
(4π2τ2)

−1/2|η(τ)|−2
]24

. (6.85)

One can verify that this is invariant under the modular transformations (exercise),

T : η(τ + 1) = eiπ/12η(τ) (6.86)

S : η(−1/τ) = (−iτ )1/2η(τ). (6.87)

6.2 Superstring

Now let us introduce supersymmetry in the string, which leads to superstring theory.
Many important features of superstring rely on supersymmetry. Historically, before
the linear realization of spacetime supersymmetry in four spacetime dimensions,
supersymmetry was introduced in string theory first in two dimensional worldsheet
[13, 14].

For our purpose, it will suffice to restrict our discussion to the Neveu–Schwarz–
Ramond (NSR) formalism. It has only the worldsheet supersymmetry manifestly,
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but indeed has the spacetime supersymmetry also when we introduce an appropriate
projection. As in the previous section, here we will consider the light-cone
quantization also.

6.2.1 Worldsheet Action

In addition to the bosonic fields Xμ(τ, σ ), μ = 0, 1, . . . ,D−1, let us also introduce
the same number of fermionic fields �μ(τ, σ ) in the worldsheet. We choose two-
component Majorana fermions. The action

S = 1

4πα′

∫
d2σ

(
∂αX

μ∂αXμ + i�
μ
ρα∂α�μ

)
(6.88)

is invariant under the two dimensional global supersymmetry in the worldsheet,

δXμ = ξ̄�μ, δ�μ = −iρα∂αX
μξ. (6.89)

The two dimensional gamma matrices are taken as

ρ0 =
(

0 −i
i 0

)
, ρ1 =

(
0 i

i 0

)
, (6.90)

for which the algebra is

{ρα, ρβ } = 2ηαβ12, (6.91)

where 12 is the unit matrix. Since we chose purely imaginary gamma matrices, the
Dirac operator is real and so are the components of Majorana spinors �∗ = � . In
(6.88), we formed a Lorentz scalar with � ≡ �†ρ0.

We see that the fermion �μ has the same vector index as the boson Xμ and
has the same SO(D − 1, 1) Poincaré invariance. It seems strange that the fermion
transforms as a vector, defying the spin-statistics theorem. However, from the
worldsheet point of view, the vector transformation property is the symmetry of
target space and hence it is merely an internal symmetry. Without violating the spin-
statistics theorem, it is a spin half fermion on the worldsheet but interestingly we will
see that it can be either boson or fermion in the spacetime.

For our purpose, there is no need to construct an explicit action with
reparametrization invariance or local supersymmetry. It turns out [2] that the action
(6.88) is understood as gauge fixed form of local supersymmetric one, as in the
bosonic case. Thus we only need to take care of additional constraint. The Euler-
Lagrange equations are

∂α∂
αXμ = 0, iρα∂α�

μ = 0. (6.92)
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They are to be supplemented by the constraints: the vanishing worldsheet energy-
momentum tensor

Tαβ =− ∂αX
μ∂βXμ − i

4
�̄μ(ρα∂β + ρβ∂α)�μ

+ 1

2
ηαβ

(
∂γX

μ∂γXμ + i

2
�̄μργ ∂γ�μ

)
,

(6.93)

and the vanishing worldsheet supercurrent

Jα = 1

2
ρβρα�

μ∂βXμ, (6.94)

whose spatial integral gives supersymmetry generatorQα . They are superpartners of
each other, which is natural because two successive supersymmetry transformations
generate a translation which is generated by the energy-momentum tensor.

It is convenient to rewrite the fermionic part of the action (6.88) as

SF = i

2πα′

∫
d2σ(�

μ
L∂−�μL +�

μ
R∂+�μR) (6.95)

with

�μ =
(
�

μ
R(τ − σ)

�
μ
L(τ + σ)

)
. (6.96)

This is possible because in two dimensions, a Majorana fermion is further decom-
posed to the left and right handed Majorana–Weyl fermions �L,�R satisfying

∂−�μ
L = 0, ∂+�μ

R = 0. (6.97)

The boundary conditions come from the vanishing boundary term

[
�Lδ�L −�Rδ�R

]π
σ=0

= 0. (6.98)

For closed string, since it has two �s with one variation, the surface term goes
away if the solution is periodic or antiperiodic. So we may have

�
μ
L(τ, σ + π) = (−1)ν�μ

L(τ, σ ),

�
μ
R(τ, σ + π) = (−1)ν�μ

R(τ, σ ).
(6.99)

The periodic boundary condition ν = 0 is called the Ramond (R) boundary
condition, and the antiperiodic boundary condition ν = 1

2 is called the Neveu-
Schwarz (NS) boundary condition. Therefore, we have four sets of possible
boundary conditions. We will see that the spacetime supersymmetry requires that
the theory should contain all the four sectors.
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For the open string, we have

�
μ
L(τ, 0) = �

μ
R(τ, 0),

�
μ
L(τ, π) = (−1)ν�μ

R(τ, π).
(6.100)

Due to chiral symmetry, we may fix the relative signs in the first line.

Super-Virasoro Algebra
For the closed strings, the boundary conditions R or NS are imposed independently
for the left and right movers �L and �R. The mode expansion goes as

�
μ
R =

∑
r∈Z+v

ψμ
r e
−2ir(τ−σ),

�
μ
L =

∑
r∈Z+v

ψ̃μ
r e
−2ir(τ+σ),

(6.101)

where v = 0 for R and v = 1/2 for NS.
From the action (6.95), the canonical momenta corresponding to �L,R are

i
2π�L,R, whence the canonical quantization of the fermionic degrees,

{�μ
L(τ, σ ),�

ν
L(τ, σ

′)} = {�μ
R(τ, σ ),�

ν
R(τ, σ

′)} = −2πδ(σ − σ ′)ημν,
(6.102)

{�μ
L(τ, σ ),�

ν
R(τ, σ

′)} = 0, (6.103)

leads to the following anti-commutators for the oscillators

{ψμ
r ,ψ

ν
s } = {ψ̃μ

r , ψ̃
ν
s } = −δr+s,0 ημν (6.104)

with the anti-commutator of left and right movers vanishing. Since the left and right-
moving states are identical, we will deal with the right movers in what follows. The
expressions for left movers are easily obtained when we replace (�L, ψ̃r , τ − σ)

with (�R,ψr, τ + σ). For r = s = 0, the ψ
μ
0 has the commutation relation

{ψμ
0 , ψ

ν
0 } = −ημν. (6.105)

This is the 10D gamma matrices if we define μ as

μ = i
√

2ψμ
0 . (6.106)

Thus, the R sector corresponds to the fermionic sector in 10D spacetime. On the
other hand, the NS sector corresponds to the bosonic sector in 10D spacetime.

Here also, we will consider the closed strings only. We have seen that the bosonic
Virasoro algebra was introduced from the constraint equations. In the fermionic
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case also, the super-Virasoro algebra arises from constraint equations, Tαβ = 0 and
J α = 0. They are

T++ = −∂+XL · ∂+XL − i

2
�L · ∂+�L = 0, (6.107)

T−− = −∂−XR · ∂−XR − i

2
�R · ∂−�R = 0, (6.108)

J+ = �L · ∂+XL = 0 (6.109)

J− = �R · ∂−XR = 0. (6.110)

Here and in the sequel, the dot product means contraction of the spacetime index μ.
As in the bosonic case, the Virasoro operators are defined as, for m �= 0,

Lm ≡ 1

π

∫ π

0
dσe2imσT−−

= −1

2

∑
n∈Z

αm−n · αn + 1

2

∑
r∈Z+ν

(m
2
− r

)
ψm−r · ψr.

(6.111)

Again, we need the normal ordering for the m = 0 case as

L0 ≡ −1

2

∑
n∈Z

: α−n · αn : −1

2

∑
r∈Z+ν

r : ψ−r · ψr : +c (6.112)

with the zero point energy c. Similarly, the L̃m operators are defined from T++. For
the supercurrent, the Fourier components of the right movers are

Gr =
√

2

π

∫ π

0
dσe2irσ J− =

∑
n∈Z

α−n · ψr+n, r ∈ Z+ ν. (6.113)

Also, a similar generators G̃r are obtained from J− for the left mover.
These generate the super-Virasoro algebra that can be written with Gs and Ls.

For the NS sector we have

[Lm,Ln] = (m− n)Lm+n + D

8
m(m2 − 1)δm+n,0, (6.114)

[Lm,Gr ] =
(m

2
− r

)
Gm+r , (6.115)

{Gr,Gs} = 2Lr+s + D

2

(
r2 − 1

4

)
δr+s,0. (6.116)



150 6 Quantization of Strings

For the R sector,

[Lm,Ln] = (m− n)Lm+n + D

8
m3δm+n,0 (6.117)

[Lm,Gn] =
(m

2
− n

)
Gm+n, (6.118)

{Gm,Gn} = 2Lm+n + D

2
m2δm+n,0. (6.119)

All the same relations hold for the left mover operators. We see that the Ln has
the same Virasoro algebra (6.44) except the central charge C = 3D/2. It is
accounted for by an antiholomorphic boson ∂−XR and Majorana–Weyl fermion�R ,
contributing 1 and 1

2 for each dimension, respectively.
For the physical states, we require the constraint equations

NS : (Ln + δn0cNS)|φ〉 = 0, n ≥ 0; Gr |φ〉 = 0 , r > 0

R : (Ln + δn0cR)|φ〉 = 0, n ≥ 0; Fm|φ〉 = 0 , m ≥ 0, (6.120)

where cNS and cR are the zero point energy to be determined shortly. Similar
relations hold for the left movers.

6.2.2 Light-ConeGauge

To draw physical degrees only, we take the light-cone gauge as done in the bosonic
case. Taking the light-cone coordinate, we choose the same form for X+ as given in
(6.59),

X+(σ, τ ) = x+ + p+τ̃ .

All the steps are the same as presented throughout (6.18–6.24). By supersymmetry
transformation (6.89) we have δX+ = ξ̄ψ+ = 0 and fix

ψ+ = 0. (6.121)

Then we solve the constraint equations,

p+∂+X−L = ∂+Xi
L∂+X

i
L +

i

2
�i

L∂+�
i
L, (6.122)

p+∂−X−R = ∂−Xi
R∂−X

i
R +

i

2
�i

R∂−�
i
R, (6.123)

1

2
p+�−L = Xi

L∂+�i
L, (6.124)

1

2
p+�−R = Xi

R∂+�i
R, (6.125)
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for X− and �− in terms of Xi and �is. Using the same method as done in the
bosonic case, we obtain the oscillators α− in terms of αi

n, ψi
n as

α−n = α−n (X)+ 1

2p+
D−2∑
i=1

∞∑
r=−∞

(
r − 1

2
n

)
: ψi

n−rψi
r : +

c

2p+
δn,0, (6.126)

where the first term on the RHS is from the bosonic part of the action (6.62). Also
for the fermionic degrees, we have

ψ−r =
1

p+
D−2∑
i=1

∑
s∈Z+ν

αi
r−sψi

s . (6.127)

As in the bosonic case, we want to check the hidden Lorentz invariance for the
generators,

Mμν =
∫ π

0
dσ

[
(XμPν − XνPμ)+ (�μPν

� −�νP
μ
�)

]
(6.128)

which should satisfy the Lorentz algebra,

[Mμν,Mρσ ] = i(ημρMνσ + ηνσMμρ − ημσMνρ − ηνρMμσ ). (6.129)

The additional pieces are provided by the fermionic superpartners. Thus, the
generator for the Lorentz group has another piece K ,

Mμν = −Mνμ =M
μν
0 +Kμν, (6.130)

where M−i
0 is the part contributed by bosonic coordinate only. The mixed commu-

tator [M,K] should vanish. For the transverse degrees Mij , it is straightforward
to verify the Lorentz algebra. The check for the Lorentz algebra in the light-cone
gauge is needed for those involving the lightlike coordinates. Thus, we find

[M−i ,M−j ] = −1

(p+)2

∞∑
i=1

(αi−nα
j
n − α

j
−nαi

n)(�n − n), (6.131)

where

�n = n

(
D − 2

8

)
− n

2

(
cNS + D − 2

16

)
, (6.132)
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where aNS is the normal ordering constant in the NS sector. Since the Lorentz
algebra (6.129) gives [M−i ,M−j ] = 0, we need �n = n for Lorentz symmetry,
i.e., for a consistent NSR string we must require

D = 10, cNS = −1

2
. (6.133)

This provides another proof of relations among Lorentz symmetry, conformal
anomaly, and consistent spacetime dimensionD. Recall that for each physical boson
we have the contribution − 1

24 to c by (6.64). In the NS sector, we have ν = 1
2 and

each fermion has − 1
48 . With the bosonic oscillator we have − 1

16 to have the result
(6.133). So we have the relation (6.133). In the Ramond sector, we have ν = 0. By
supersymmetry, we have the (negative) same contribution + 1

24 for each fermion in
the R sector. There is cancellation

cR = 0. (6.134)

Finally, we get the mass shell conditions following the same method of bosonic
string:

M2 = M2
R +M2

L, (6.135)

supplemented by the level matching condition

M2
R =M2

L. (6.136)

With the oscillator numbers

Nψ ≡
∞∑

r∈Z+ν
rψi−rψi

r , (6.137)

Ñψ ≡
∞∑

r∈Z+ν
rψ̃i−r ψ̃i

r , (6.138)

and the bosonic ones in (6.50), we obtain

1

2
α′M2

R = Nα + Nψ + c, (6.139)

1

2
α′M2

L = Ñα + Ñψ + c̃. (6.140)

The difference between NS and R sectors is the following. First, we have,
respectively, ν = 0 and ν = 1

2 in the oscillator numbers (6.137 ) and (6.138).
And, the zero point energies c in (6.139) and (6.140) are different.
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6.2.3 Spectrum and GSO Projection

The states are constructed by piling up oscillators in the Fock space. We will
consider a single right mover, which is exactly the same as the left mover.

NS Sector
Consider the NS sector ν = 1

2 in (6.99), in which the oscillator number is half-
integer. The lowest state is the ground state |0〉NS defined as

αi
m|0〉NS = ψi

r |0〉NS = 0, m, r > 0. (6.141)

From the mass shell condition (6.139), it is tachyonic since the mass is 1
8M

2 = − 1
2 ,

which is undesirable. We may project out this state if we introduce a G-parity,

G = (−1)F , F =
∞∑

r=1/2

ψi−rψi
r (6.142)

with fermion oscillator number F , and mod out the non-invariant state. Acting on
the “ground state,” we have

G|0〉 = −|0〉, (6.143)

so that it is projected out. The first excited states are

ψi
−1/2|0〉, (6.144)

which are massless. They carry the transversal SO(8) vector index i, and therefore
form a massless representation of SO(1,9). This means, the NS states become
bosonic states in the spacetime sense. Applying a few more oscillators, we
immediately meet the following problem. The Fock space has a tower of states,

|ϕ〉 = ψ
i1−r1

ψ
i2−r2
· · ·ψin−rn |0〉. (6.145)

For ψik−rk satisfying the worldsheet fermionic relation (6.104), exchanging two fields
yelds extra factor (−1), which is not desirable for statistics of spacetime bosons. So
again, we require the even number of excitations n ∈ 2Z.

This projection in the Fock space has been formulated by Gliozzi et al. [15] and
is known as the GSO projection,

1− (−1)F

2
, (6.146)

with which we can project out massive and higher spin states as well.
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R Sector
In the R sector ν = 0, the ground state is defined as that annihilated by all the
positive operators

αi
m|0〉R = ψi

m|0〉R = 0, m > 0. (6.147)

The zero point energy cR = 0; thus the lowest state is massless and this sector is
tachyon-free. The commutation relation (6.104) {ψμ

0 , ψ
ν
0 } = −ημν implies that ψμ

0
behave as gamma matrices (6.106). In the light-cone gauge, defining

ψi±
0 = 1√

2
(ψ2i

0 ± iψ2i+1
0 ), i = 1, 2, 3, 4, (6.148)

they satisfy the algebra of harmonic oscillators

{ψi+
0 , ψ

j−
0 } = δij , (6.149)

with other (anti)commutators vanishing. We have spinorial representation that
we saw in the previous chapter. Therefore, each represents the creation (+) and
annihilation (−) operator of the spin- 1

2 system. Thus, we can build up the spinorial
state denoted as

|s1 s2 s3 s4〉, (6.150)

where each si can assume ± 1
2 . We define the ground state of the algebra4 (6.149),

by one annihilated by all the annihilation operators

ψi−
0 |0〉R = 0, i = 1, 2, 3, 4. (6.151)

With this vacuum we can make the following 16 massless states:

|0〉R = | − 1
2 − 1

2 − 1
2 − 1

2 〉
ψi+

0 |0〉R = | 12 − 1
2 − 1

2 − 1
2 〉

ψ
i1+
0 ψ

i2+
0 |0〉R = | 12 1

2 − 1
2 − 1

2 〉
ψ

i1+
0 ψ

i2+
0 ψ

i3+
0 |0〉R = | 12 1

2
1
2 − 1

2 〉
ψ

i1+
0 ψ

i2+
0 ψ

i3+
0 ψ

i4+
0 |0〉R = | 12 1

2
1
2

1
2 〉,

(6.152)

4This Fock space is different from the one constructed by the algebra (6.104).



6.2 Superstring 155

where the underline means possible permutations. They make up spacetime
fermions. Especially, we can define the chirality operator

 = ψ1ψ2 · · ·ψ8 = 24s1s2s3s4, (6.153)

which gives  = +1 or  = −1, respectively, for even or odd numbers of − 1
2 in

s1s2s3s4. Accordingly such states are called spinorial 8s of SO(8) for  = +1 and
conjugate sponorial 8c of SO(8) for  = −1.

Then, we encounter a problem if we require the spacetime supersymmetry, since
we have too many R states compared to those in the NS sector. To match, we
introduce another GSO projector in this R sector

1+ (−1)F

2
, (6.154)

with fermion number in the R sector given as, similarly to (6.142),

F =
∞∑

m=1

ψi−mψi
m, (6.155)

or in the s basis,

 =
4∑

i=1

si = 0, mod 2. (6.156)

We can choose , which can be called the chirality, as we wish. We can check that
we have the same number of fermions in the R sector as bosons in the NS sector.
Furthermore, every state matches at the full massive level.

Partition Function
We may understand the necessity of the GSO projection, by calculating parti-
tion function for superstring. The procedure is the same as before, discussed in
Sect. 6.1.4. The alteration is that the generators L0 and L̃0 of (6.112) now contain
fermionic parts in addition, and we have eight physical degrees of freedom.

Consider first the NS sector, defined by the boundary condition (6.99). The
fermionic oscillator can be either occupied or unoccupied, so the traces become

Tr qNψ =
8∏

i=1

∞∏
r=1/2

1∑
Nr=0

qr/2+rNr =
8∏

i=1

q1/16
∞∏
n=1

(1+ qn−
1
2 ) (6.157)

= q1/2
∞∏
n=1

(1+ qn−1/2)8, (6.158)

Tr(−1)F qNψ =
∞∏

r=1/2

Tr(−1)F qrψ−r ·ψr =
∞∏
n=1

(1− qn−1/2)8, (6.159)
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where we renamed the dummy variable as r + 1
2 = n. The zero point energy will

be calculated in the next chapter. We also make use of the calculation in the bosonic
part Tr qNα

in (6.81). For the NS sector, we have

ZNS(τ ) = Tr
1− (−1)F

2
qNα+Nψ

= 1

2
q−1/2

∞∏
n=1

(1− qn)−8

[ ∞∏
n=1

(1+ qn−1/2)8 −
∞∏
n=1

(1− qn−1/2)8,

]

where

N =
∞∑
n=1

α−n · αn +
∞∑
r= 1

2

8∑
i=1

Nr , Nr ≡ ψi−rψi
r . (6.160)

Also, we included the vacuum energy of the NS state (6.141). Here and in the sequel
we omit the continuous part (6.80).

Similarly, we have the R sector, defined in (6.98), partition function,

ZR(τ ) = 16 Tr
1+ (−1)F

2
qN, (6.161)

where

N =
∞∑
n=1

(α−n · αn + nψ−n · ψn). (6.162)

The multiplicity 16 reflects the degeneracy of the ground states (6.152). After the
GSO projection, it becomes 8. For massive states, the chirality operator commutes
with ψi

n operators with n �= 0, and the corresponding pairs of states are cancelled
out. Using the results given above, we obtain

ZR(τ ) = 8
∞∏
n=1

(1− qn)−8(1+ qn)8. (6.163)

These functions can be rewritten in terms of modular forms

ZR(τ ) =
ϑ

[
1/2
0

]4

2η12 +
ϑ

[
1/2
1/2

]4

2η12 , (6.164)

ZNS(τ ) =ϑ
[0

0

]4

2η12
−

ϑ
[

0
1/2

]4

2η12
. (6.165)
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Here, we define Jacobi theta function as

ϑ
[
α
β

]
(τ ) = η(τ)e2πiαβqα

2/2−1/24
∞∏
n=1

(1+ qn+α−1/2e2πiβ)(1+ qn−α−1/2e−2πiβ),

(6.166)

and Dedekind eta function is defined in (6.84). We can make q-expansion

ϑ
[

1/2
1/2

]
(τ ) = 0, (6.167)

ϑ
[

1/2
0

]
(τ ) = 2q1/4(1+ q2 + q6 + q12 + q20 + · · · ), (6.168)

ϑ
[

0
0

]
(τ ) = 1+ 2q + 2q4 + 2q9 + 2q16 + · · · , (6.169)

ϑ
[

0
1/2

]
(τ ) = 1− 2q + 2q4 − 2q9 + 2q16 + · · · . (6.170)

The factor 2 in (6.168) and hence the factor 8 in (6.161) naturally come from the
factor (1+ qn−1) = 2 for n = 1. Miraculously, we have ZNS = ZR as an “abstruse
identity” by Jacobi [9]

ϑ
[

1/2
0

]4
(τ )− ϑ

[
1/2
0

]4
(τ )− ϑ

[
0
1/2

]4
(τ ) = 0, (6.171)

which can be checked term by term in the above expansion. It means that, for given
energy, the number of states in the R and NS sectors are the same. This relation is
a necessary condition for the existence of spacetime supersymmetry. We construct
explicit string models with the GSO projection, having the supersymmetric spec-
trum.

Spin Structure
The theta function is a modular function. Its useful property is well-defined
transformation

T : ϑ
[
α
β

]
(τ + 1) = eiπ(α

2−α)ϑ
[
α

α+β− 1
2

]
(τ ), (6.172)

S : ϑ
[
α
β

]
(−1/τ) = (−iτ )1/2e2πiαβϑ

[
β
−α

]
(τ ). (6.173)

This means

T : ϑ[1/2
0 ] → eπi/4ϑ[1/2

0 ], ϑ[00] ↔ eπi/4ϑ[01/2]
S : ϑ[00]/η→ ϑ[00]/η, ϑ[01/2]/η↔ ϑ[1/2

0 ]/η.
(6.174)
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With antiholomorphic right movers, the whole partition function is made invariant.
Therefore, we cannot make a nontrivial modular invariant theory with only one of
four sectors. The consistency forces modular invariance.

We can reinterpret the above result as follows (again, we neglect the continuous
part). We decompose the partition functions (6.164) and (6.165) as follows:

ZNS = Z NS
NS +Z R

NS, ZR = Z NS
R +Z R

R , (6.175)

where

Z NS
NS ≡ Tr qL0(NS) = ϑ[00]4

2η12 , (6.176)

Z NS
R ≡ Tr qL0(R) = ϑ[1/2

0 ]4
2η12

, (6.177)

Z R
NS ≡ Tr(−1)F qL0(NS) = ϑ[01/2]4

2η12 , (6.178)

Z R
R ≡ Tr(−1)F qL0(R) = ϑ[1/2

1/2]4
2η12

= 0, (6.179)

where L0(NS, R) is the Virasoro operator constructed with the NS and R oscillators.
F in Eq. (6.177) is the NS sector F number (6.142) and F in Eq. (6.179) is the R
sector F number (6.155).

Their transformation properties are summarized in Fig. 6.3. We have the right
number of degrees of freedom that cancels the factor arising fromT transformation.
For S transformation, the nontrivial τ dependence of ϑ(τ) is the same as that of
η(τ). Thus, by dividing η(τ) we expect some linear combination of these give a
modular invariant partition function.

As discussed below (6.73), the S transformation exchanges the two boundary
conditions along the worldsheet directions σ 0 and σ 1. In view of Eq. (6.174), it
indicates that we may assign R or NS boundary conditions in the τ direction.
For instance, the partition function Z NS

R in (6.177) is defined by the R boundary
condition but is transformed into Z R

NS defined by NS condition. This means, in fact
Z NS

R in (6.177) has the NS boundary condition along the τ direction.
The GSO projection has an effect of taking into account both boundary condi-

tions, which is referred to as spin structure [16]. This is required when we consider
loop amplitudes. The partition function corresponds to the one-loop amplitude. The

Fig. 6.3 Modular
transformation of spin
structures. Solid line denotes
T and dashed S

Z NS
NS Z R

NS Z NS
R Z R

R
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Fig. 6.4 When a fermion is
transported around a cycle in
the non-simply connected
Feynman diagram, it acquires
an ambiguous phase, which is
remedied by the GSO
projection

corresponding Feynman diagrams are not simply connected (having genera), and
there is a subtlety in defining boundary conditions for fermions living on them.
The situation is depicted in Fig. 6.4. When rotated once around a closed cycle, a
boson remains invariant, i.e., with no extra phase. However, a fermion acquires an
ambiguous phase, where there are two possibilities. The GSO projection projects
out consistently one of them [2].

6.2.4 Superstring Theories

Now we are ready to define superstring theories. Let us investigate massless states,
formed by the following left and right movers. Recall that when we perform the
GSO projection in the R sector (6.154) for each mover, we have two choices of
chirality . Since only the relative chirality matters, we have the following two
choices:

Type IIA: (8v ⊕ 8c)⊗ (8v ⊕ 8s),

Type IIB: (8v ⊕ 8c)⊗ (8v ⊕ 8c).

We expand the tensor product as in (4.40). What they have in common in both
theories are the products

NSNS : 8v ⊗ 8v = 35v + 28+ 1, (6.180)

NSR : 8c ⊗ 8c = 56s + 8s, (6.181)

which correspond to graviton Gμν , antisymmetric tensor Bμν and dilaton φ, and
their superpartners gravitino ψμ and dilatino λ. The selection of chirality in the
Ramond sector of either mover leads to different spectrum. First consider choosing
the different chirality L = 1, R = −1. From (4.40), the resulting spectrum is

RR : 8c ⊗ 8s = 56v + 8v, (6.182)

RNS : 8c ⊗ 8v = 56c + 8c. (6.183)
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In the RR sector, we have a vector Cμ and rank three antisymmetric tensor field
Cμνρ . The RNS sector completes the supersymmetric multiplet: another set of
dilatino and gravitino with opposite chirality. Therefore the theory is non-chiral
and automatically anomaly free. This field content is that of type IIA supergravity,
so we name the corresponding string theory as Type IIA string theory. We have
N = (1, 1) supersymmetry in ten dimensions generated by 32 real supercharges.
The name comes from the supergravity theory having the same spectrum, namely
type IIA (N = 2, 32 supercharges) supergravity.

If we select the same chirality L = R = 1, from (4.41), we obtain Type IIB
string theory, whose massless spectrum is

RR : 8s ⊗ 8s = 35c + 28+ 1, (6.184)

RNS : 8s ⊗ 8v = 56s + 8s. (6.185)

The RR antisymmetric tensors are scalar C0, rank-two Cμν tensors plus a rank four
self-dual tensor CSD

μνρσ self-dual. The theory is now chiral. Not only we have two
gravitinos of the same chirality but also the self-dual tensor is chiral. We can check
that their anomaly cancels. The resulting supergravity is IIB and has N = (2, 0)
supersymmetry in ten dimensions.

We have also ten dimensional string theories with lower supersymmetry, type I
and two heterotic strings, which will be discussed below.

6.3 Heterotic String

The later part of this book will be devoted to compactification of heterotic string
theory [17] which we introduce here. It describes the gauge group directly by
assigning charge along the string. Such charge comes from the momentum-winding
from compactifying higher dimensions. The consistent theory leads to the gauge
group as either SO(32) or E8 × E8 with the dimension 496, which is expected
after the work of Green and Schwarz [18]. They showed that in the ten dimensional
supergravity theories with these gauge groups the gravitational and gauge anomalies
are miraculously cancelled. Soon afterward, the heterotic string theory was found
[17].

6.3.1 Non-Abelian Gauge Symmetry

We now discuss how non-Abelian gauge symmetry naturally arises in the string
theory. We may obtain ten dimensional theory plus gauge theory of rank sixteen by
compactifying the sixteen left-moving bosonic degrees on the torus. In Sect. 5.1.4,
we reviewed Kaluza–Klein theory, which explains the origin of gauge theory from
gravity. On top of this, stringy behavior may enhance the gauge symmetry.
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Toroidal Compactification of String
We first compactify one dimension of 26D bosonic string theory as in (5.2). Let us
call this direction x25 and we identify

x25 ∼ x25 + 2πR. (6.186)

As in the point particle case (5.11), the wave function eip
25x25

(in the center-of-mass
frame) should be single-valued, obeying the same periodicity of (6.186). It leads
quantization of the momentum p25.

p25 = m

R
, m = integer. (6.187)

A characteristic feature of a closed string is that its winding around torus is

X25(τ, σ + π) = X25(τ, σ )+ 2πL25. (6.188)

The winding modes are also quantized, viz. (6.186),

L = nR, n = integer. (6.189)

A negative n corresponds to the reverse direction of winding. Winding numbers are
good quantum numbers preserved by string interactions.

The mode expansion obeying these conditions reads

X25(σ, τ ) = x25 + 2α′p25τ + 2Lσ

+ i

√
α′
2

∑
n�=0

1

n

[
α25
n e−2in(τ−σ) + α̃25

n e−2in(τ+σ)] . (6.190)

It is decomposed to the right and left movers

X25
R = x25

R +√2α′p25
R (τ − σ)+ i

√
α′
2

∑
n�=0

1

n
α25
n e−2in(τ−σ), (6.191)

X25
L = x25

L +√2α′p25
L (τ + σ)+ i

√
α′
2

∑
n�=0

1

n
α̃25
n e−2in(τ+σ), (6.192)

where

x25 = x25
L + x25

R ,

√
2α′p25

R = α′p25 − L = α′m
R
− nR,

√
2α′p25

L = α′p25 + L = α′
m

R
+ nR.

(6.193)
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Observe that p25
L and p25

R are dimensionless and contain the contribution from the
winding. Now the above equations change the mass shell conditions such as (6.53)
and (6.54) to

1

2
α′M2

L =
1

2

(
p25
L

)2 + Ñ− 1,

1

2
α′M2

R =
1

2

(
p25
R

)2 + N− 1.

(6.194)

They are supplemented by the level matching condition (6.52),

1

2
M2 = M2

L = M2
R, (6.195)

which is equivalent to

N− Ñ = 1

2
(p25

L )2 − 1

2
(p25

R )2 = mn. (6.196)

Let us denote the string ground state as

|kL〉L ⊗ |kR〉R, (6.197)

where |kL,R〉L,R are annihilated by all the positive oscillators and the eigenstates
of the momentum operators

√
2pL|kL〉L = kL|kL〉L,

√
2pR|kR〉R = kR|kR〉R . At

generic value of R, only the massless states are those with Ñ = N = 1, n = m = 0,

α̃
μ
−1|0〉L ⊗ αν−1|0〉R.

They correspond to graviton, dilaton, and antisymmetric tensor. In particular, the
states

α̃
μ
−1|0〉L ⊗ α25−1|0〉R

α̃25
−1|0〉L ⊗ α

μ
−1|0〉R

(6.198)

correspond to two U(1) gauge bosons. It has the right vector index and they
correspond to the KK states of Gμν and Bμν as in (5.61). In the field theory case we
expected one gauge field Aμ from Gμν , but in the string case there is an additional
one from Bμν .

This shows how string theory evades the problem of the Kaluza–Klein (KK)
theory. As discussed in Sect. 5.1.4, the KK theory relates the mass and charge of a
particle, predicting heavy mass of the compactification scale. In string theory, the
zero point energy coming from the normal ordering is negative and exactly cancelled
by the energy of the first excitations, giving rise to gauge fields. They are massless
in the effective field theory and their masses are given by Higgs mechanism.
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Gauge Symmetry Enhancement
Exchanging the momentum m in (6.187) and the winding n in (6.189) gives the
same spectrum if we also invert the radius

m↔ n, R↔ α′

R
. (6.199)

This is called T -duality and believed to the property of the string theory. It means
that physics is the same for a moving string in a large radius and winding string in a
small radius.

For a critical radius

R = √α′, (6.200)

the dimensionless momenta (6.193) are integrally quantized as

√
2pR = m− n,

√
2pL = m+ n, (6.201)

(the factor
√

2 is the length of the root vector of the SU(2).) so that we have four
more massless states

α̃
μ
−1|0〉L ⊗ |2〉R, m = 1, n = −1,

α̃
μ
−1|0〉L ⊗ | − 2〉R, m = −1, n = 1, (6.202)

|2〉L ⊗ α
μ
−1|0〉R, m = 1, n = 1,

| − 2〉L ⊗ α
μ
−1|0〉R, m = −1, n = −1.

All of them carry the vector indices, so that they become gauge bosons. We find that
the states in (6.198) are Cartan subalgebra and the states in (6.202) have the quantum
number of ladder operators. Thus the gauge group is enhanced to SU(2) × SU(2).
Note that these even quantized momentapL, pR can satisfy the mass shell condition
(6.196). We also have charged matter states m = ±2, n = Ñ = N = 0, and
m = Ñ = N = 0, n = ±2, carrying no Lorentz index.

6.3.2 Compactifying Several Dimensions

Generalizing the above result, let us compactify the extra d dimensional space on a
torus T d = R

d/, as discussed in Sect. 3.1.1. Here  is the lattice as in (3.7)

 =
{

d∑
I=1

nI e
I
∣∣∣ nI ∈ Z

}
. (6.203)
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The nontrivial geometry is described by the basis vectors eI = (eIM),M =
1, 2, . . . , d . Defining their inverse vectors eI such that eIMeMJ = δIJ , we may
understand the torus geometry using the orthogonal coordinates in R

d ,

xM ∼ xM + 2πReMI .

The description becomes simpler in the torus coordinate xI = xMeIM ,

xI ∼ xI + 2πR, I = 1, 2, . . . , d. (6.204)

So, the winding (6.188) is naturally extended as

XI (τ, σ + π) = XI (τ, σ )+ 2πLI . (6.205)

The vector LI on a lattice  is an integer

LI = nIR, nI = integer. (6.206)

Also, the momentum pI is quantized for the same reason of the single valuedness
of eip·x . Being conjugate to x, the momentum lattice is spanned in the dual lattice

∨ =
{∑

nI e
∨I

∣∣∣∣
d∑

I=1

eIMe∨IN = δMN, nI ∈ Z, eI ∈ 

}
(6.207)

with basis vectors e∨I = (e∨IM ). Then, pI are quantized in the dual lattice ∨

pI = mI

R
, mI = integer. (6.208)

We have similar mode expansions as (6.191), and (6.192) and mass conditions as
(6.194). We know how to quantize the string in the orthonormal space. So we come
back to this space with the indices M,N, . . . from the lattice space with the indices
I, J, . . . . The quantization condition (6.26) reads

[xM, pN ] = iδMN . (6.209)

We write the center-of-mass coordinates and momentum as in (6.193) as

xM ≡ xML + xMR ,

√
α′pM

R ≡ α′pM − LM = α′pI e∨MI − LI eMI = α′m
I

R
e∨MI − nIReMI ,

√
α′pM

L ≡ α′pM + LM = α′pI e∨MI + LI eMI = α′m
I

R
e∨MI + nIReMI .

(6.210)
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Naturally, we require that the left-moving momentumpM
L and the center of mass xML

are independent hence commute with right-moving ones. This implies the following
commutation relation:

[
xML , pN

L

]
=

[
xMR , pN

R

]
= i

2
δMN . (6.211)

6.3.3 Heterotic String

As the word heterotic (“hybrid vigor”) implies, the heterotic string has different
worldsheet theories for the left and right movers. This possibility arises because
left and right movers of the closed string behave independently, as in (6.11).
Conventionally we define the heterotic string as

a closed string with (NL,NR) = (0, 1) worldsheet supersymmetries on the left and right
movers, respectively.

Which one is called left is a matter of convention. The left mover is that of
26 dimensional bosonic string and the right mover is that of the 10 dimensional
superstring. Also we may think of other heterotic strings with different number of
worldsheet supersymmetries [4].

We have the action for the heterotic string as

S = 1

4πα′

∫
d2σ(∂αXμ∂

αXμ + ∂αXI ∂
αXI + i�

μ
R∂+�μR). (6.212)

Here, the indices run μ = 0, 1, . . . , 9 and I = 1, . . . , 16. Alternatively, we may
unify Xμ and XI as XM and let the index run as M = 0, . . . , 26. We have only the
R-moving Majorana–Weyl fermions �μR defined in (6.95).

With the extra sixteen bosonic degrees only in the left-moving sector, the absence
of right movers in XI make things nontrivial. For this, we treat the right movers as
auxiliary fields and eliminate them by imposing constraints,

(∂τ − ∂σ )X
I = 0. (6.213)

It is hard to think of momentum and winding. Also it is difficult to quantize.5

pI
R = 0. (6.214)

5Using Dirac bracket [19] we may obtain we may quantize the momentum and winding.
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So we use the result of the previous section with d = 16 and impose the constraint
(6.214). Then, the momentum and the winding are forced to be identified; thus the
massless momentum becomes

pI
L = 2pI ≡ PI , (6.215)

with the usual commutation relation (6.209).
For proper quantization, the length-squared of this vector P 2 ≡ P · P should be

integer quantized. In terms of the basis vectors, all the inner products in (6.206)
should be integers. If the metric is integral, we call also the lattice integral. If
we further want the level matching condition, the lattice should be even. If all the
diagonal elements GII are even the matrix is symmetric GIJ = GJI . Finally, we
apply the constraint condition of (6.214), so that

α′
16∑
I=1

mI

R
e∨MI =

16∑
I=1

nIRe
M
I . (6.216)

This condition is so restrictive that it is only satisfied by self-dual lattice  = ∨
with the critical radii R = √

α′ for all I . We expect gauge symmetry will be
enhanced beyond U(1)16. Of course, finite radius is meaningful only when the
dimensions are compact.

We will see shortly that even and self-dual Euclidian lattices exist when the
number of dimensions is a multiple of 8. We define lattices k as

k =
{
(n1, n2, . . . , nk), (n1 + 1

2 , n2 + 1
2 , . . . , nk + 1

2 )
∣∣∑ ni ∈ 2Z

}
, (6.217)

with integers ni . They are weight lattices of the SO(2k). They are decomposed into
four sublattices, or conjugacy classes, as displayed in Table 6.1.

In eight dimensions, there is a unique even and self-dual lattice 8. This is called
E8 lattice because it is coincident with �E8 in (3.63). In sixteen dimensions, we have
two such lattices

8 × 8, 16. (6.218)

The former is a direct product of the two and can be called E8 × E8 lattice. The
latter is called Spin(32)/Z2 lattice. The Spin(32) is the double covering group of

Table 6.1 The four
conjugacy classes of SO(2n)
group

Symbol Vector Constraint

0 (n1, . . . , nn)
∑

ni even

v (n1, . . . , nn)
∑

ni odd

s (n1 + 1
2 , . . . , nn + 1

2 )
∑

ni even

c (n1 + 1
2 , . . . , nn + 1

2 )
∑

ni odd
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SO(32) and its lattice contains all four conjugacy classes in Table 6.1. We mod
out the state by

∑
ni even condition, so that the Spin(32)/Z2 lattice contains even

classes 0 and s. In this book, without confusion we just stick to the name SO(32).
In 24 dimensions, there are 24 lattices classified by Niemeier [20].

Spectrum and Current Algebra
As before, let us choose the light-cone gauge. For the left mover, we use the 26D
bosonic string compactified on 16D torus,

1

2
α′M2

L =
1

2

16∑
M=1

(PM)2 + Ñ− 1, (6.219)

where

Ñ =
∞∑
n=1

(
8∑

i=1

α̃i−nα̃i
n +

16∑
M=1

α̃M−nα̃M
n

)
, (6.220)

and sixteen dimensional vector (P I ) belongs to one of the lattices (6.218). We
labelled 16 bosons I = μ− 9 = 1, . . . , 16. We construct Fock states on the ground
state.

The right mover is that of ten dimensional superstring, discussed in Sect. 6.2. The
mass shell condition is (6.139)

1

2
α′M2

R = Nα + Nψ + c, (6.221)

where

NS : ν = 1

2
, c = −1

2
, (6.222)

R : ν = 0, c = 0. (6.223)

A complete state is the tensor product of the left and right-moving states. The
mass of string is given as

M2 = M2
L +M2

R, (6.224)

with

M2
L = M2

R. (6.225)

Let us find out the lowest lying states. From (6.219), it seems to be the ground
state with P 2 = 0, Ñ = 0

|0〉L ⊗ |0〉R
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to have 1
2α
′M2

L = −1. However, this state is projected out by (6.241). Also there is
no right-moving state from (6.221) satisfying the level matching condition (6.225).
Thus, this state is projected out, and this theory is tachyon-free.

The right movers allow the following lowest mass states:

ψ
μ
−1/2|0〉R (NS), ψ0|0〉R (R). (6.226)

Noting the spacetime index, the NS states provide bosonic states and the R states
provide fermionic states, forming together superpartners. Combined with massless
left movers, they give rise to low-energy fields. We will present bosonic states:

• Ñ = 1 and P 2 = 0 of the following kinds:

α̃
μ
−1|0〉L ⊗ ψν

−1/2|0〉R. (6.227)

They make up graviton Gμν , dilaton φ, and the antisymmetric tensor Bμν .
• For Ñ = 1 and P 2 = 0, there are states carrying internal index I

α̃I−1|0〉L ⊗ ψ
μ
−1/2|0〉R, (6.228)

which provide sixteen U(1) generators AμI of the Cartan subalgebra HI . They
are vectors with the single spacetime index μ in 10D.

• Ñ = 0 and P 2 = 2 states of the form

|P 〉L ⊗ ψ
μ
−1/2|0〉R, (6.229)

where P belonging to the lattice (6.218). For 8, the possible forms of P are

(±1 ± 1 0 0 0 0 0 0
)
(0 0 0 0 0 0 0 0),([

1
2

1
2

1
2

1
2

1
2

1
2

1
2

1
2

])
(0 0 0 0 0 0 0 0),

(0 0 0 0 0 0 0 0)
(±1 ± 1 0 · · · 0

)
,

(0 0 0 0 0 0 0 0)
([

1
2

1
2

1
2

1
2

1
2

1
2

1
2

1
2

])
.

(6.230)

The underline means permutations of the corresponding entries and the square
bracket means even flips of signs. They are root vectors of E8 × E8. We know
that E8 roots 248 can be made by giving a suitable commutation relation between
the adjoint 120 and the spinorial 128 of SO(16)

248 = 120+ 128. (6.231)
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Indeed some sum of the two roots in (6.230) are contained the same set thus the
algebra is closed and make a single representation. For 16, P vectors are

(±1 ± 1 0 · · · 0) (6.232)

with 16 entries. They are the adjoint 496 of SO(32).

The effective theory made out of these fields is the minimal ten dimensional
supergravity coupled to the corresponding Yang–Mills gauge group [21, 22]. We
will study the resulting effective action in more detail in Sect. 11.1.

Current Algebra
The massless spectrum is not sufficient to show the group property, although they
are indeed the roots of the algebra. This is because they do not show the relations
among them. It turns out that the vertex operators have the exact properties we want
in this regard. We claim [23–25] that the vertex operators of the massless roots and
weights considered above are

HI(z) = ẊI
L(z), (6.233)

EP (z) = cP : exp[2iP ·XL(z)] :, (6.234)

where P is now interpreted as the root vectors and cP is ±1 determined by the
commutation relations among them. As a simple check, assume “zero modes” of
the above operators

HI
0 (z) = PI , EP

0 =: e2iP ·XL(τ+σ) : . (6.235)

Then by the commutation relations coming from (6.211), we have

[HI
0 ,H

J
0 ] = 0,

[HI
0 , E

P
0 ] = PIEP

0 .
(6.236)

This is nothing but the relations between generators of a simple Lie algebra, between
the Cartan subalgebra and ladder operators.

6.3.4 Bosonization and Fermionization

In two dimensional field theory there is equivalence between bosons and fermions,
with which we may describe the above string theories in alternative forms. This
relation is clearly seen by the partition function.
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Partition Function
In the heterotic string theory, the modular invariance condition determines the gauge
group structure. Here, we require the modular invariance for the gauge degrees
of freedom. The oscillator part is decoupled and given by eta function. Thus
the partition function contains the contribution from the dimensionless momenta
(6.193)

Z (τ, τ̄ ) = |η(τ)|−2d
∑
p∈�∗

∑
L∈�

q
1
2p

2
Lq̄

1
2p

2
R

= |η(τ)|−2d
∑
p∈�∗

∑
L∈�

exp

[
−πτ2

(
α′p2

R2 + L2R2

α′

)
+ 2πiτ1p · L

]
,

(6.237)

where the square of the vector is calculated by the metric in (6.206). It is the Cartan
matrix, presented in Table 12.3.

Under T , the function (6.237 ) acquires the phase 2πi( 1
2p

2
L − 1

2p
2
R). Thus it is

invariant if

pL · pL − pR · pR = even. (6.238)

We also call the corresponding lattice even lattice. To see the invariance under S ,
we use the Poisson resummation formula

∑
L∈

e−πa(L+p)2
e2πiY ·(L+U) = (vol)−1a−D/2

∑
p∈

e−π(p+Y )2/ae−2πip·U ,

(6.239)

where U and Y are some vectors and vol is the volume of the unit cell in �. Since
the momentum and winding are exchanged and the radii are inverted, we need the
critical radii. The resulting lattice is the self-dual lattice

 = ∨. (6.240)

Therefore, for the modular invariance, we need the even and self-dual lattice.
Let us construct the 8, in (6.217) partition function. Observing the lattice

structure, we can sum over the lattice by introducing a projection,

Z E8(τ ) = 1

η(τ)8

∑
P∈8

qP
2/2 (6.241)

= 1

η(τ)8

⎛
⎜⎝ ∑
{nj∈Z}

1+ (−1)
∑

nj

2
q

1
2

∑
n2
j +

∑
{rj∈Z+1

2 }

1+ (−1)
∑

rj

2
q

1
2

∑
r2
j

⎞
⎟⎠ ,
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where j runs from 1 to 8 so that the sum in the second line runs over nj ∈ Z, rj ∈
Z+ 1

2 for all j . In the fermionic construction, this projection corresponds to the GSO
projection. Observing the regular pattern, it can be reexpressed in a fancy form,

Z E8(τ ) = 1

2η(τ)8

(
ϑ

[
0
0

]8
(τ )+ ϑ

[
0
1/2

]8
(τ )+ ϑ

[
1/2
0

]8
(τ )+ iϑ

[
1/2
1/2

]8
(τ )

)
,

(6.242)

where we have included iϑ[1/2
1/2] = 0 by taking into account of the last term in

(6.241). Here, the Jacobi theta function (6.166) admits alternative definition

ϑ
[
α
β

]
(τ ) =

∑
n∈Z

q(n+α)2/2e2πi(n+α)β.

We can check that Z E8 is invariant under modular transformations. The T
transformation gives rise to a nontrivial phase −iπ/4 when α = 1/2, so only
the theta function with the power 8k with integer k leaves the partition function
invariant. This is the reason why we have even and self-dual Euclidian lattices in 8k
dimensions. Under the S , the term shuffles each other as in (6.174).

The complete E8 × E8 partition function is the square of the single one

Z 8×8 = (Z E8)2.

It can be generalized to the SO(32) case also. Observe that the eight dimensional
lattice is formed by (6.241) whose indices nj run over from 1 to 8. Running from
1 to 16, we have a sixteen dimensional lattice. Remarkably, it is known that there
is only one modular invariant function of sixteen dimensions [9, 26]; therefore the
E8 × E8 and SO(32) partition functions are the same

Z 8×8 = Z 16 . (6.243)

This partitioning corresponds to giving boundary conditions simultaneously to some
parts, as we have constructed the original heterotic string theory.

Bosonic Description of Superstring
Using the method for obtaining the partition function for 8 in (6.241), we can
rewrite the partition functions of the right-moving superstring (6.164) and (6.165)
as

ZR(τ ) = 1

η12(τ )

∑
s∈�0

qs
2/2, (6.244)

ZNS(τ ) = 1

η12(τ )

∑
s∈�s

qs
2/2, (6.245)



172 6 Quantization of Strings

where �0 and �s are the lattices consisting of the conjugacy classes in Table 6.1,
respectively. The η−12 part is the partition function of 12 worldsheet bosons as in
(6.85). Before we had 8 bosons and 8 fermions in the worldsheet, which means that
8 fermion is replaced by 4 bosons. Note that they carry 4-component momentum-
winding s, which makes sense when the corresponding dimensions are compact. In
two compact dimensions, two Majorana–Weyl fermions are equivalent to one chiral
boson.

The zero point energy can be read off from η−12, giving c = 12 ·
(
− 1

24

)
= − 1

2 ,

therefore the right mover mass is

1

2
α′M2

R =
s2

2
− 1

2
= 0. (6.246)

In later calculations, we will employ these bosonized right movers, because it
transparently shows massless spectrum and its chirality. All the massless vectors
s satisfy the mass condition s2 = 1. They are the three fundamental weights of
SO(8)

8v : ±(1 0 0 0)

8s : ([+ + ++])
8c : ([− + ++])

(6.247)

where +,− means 1
2 ,− 1

2 , respectively, the underline means permutations and the
square bracket means possible even flips of signs. All of these can be transformed
into each other by the triality relation. In the spacetime, an 8v is the spacetime boson
and one among 8s and 8c is chosen by the GSO projection to be its partner as the
spacetime fermion.

Note that (6.244) and (6.245) take the same form in the bosonic description. In
particular, the GSO projections for NS (6.146) and R (6.154) sectors are unified in
(6.241). These spinorial representations are unified to a momentum vector; 8v is NS
and 8s,c is R states and we can show that there exists one-to-one correspondence
between 8v and 8s,c, due to supersymmetry.

Fermionic Construction of the Heterotic String
Some readers may feel unsatisfactory in that we have introduced different spacetime
dimensions for the left and right movers. Alternatively, we may introduce 32
fermions instead of 16 bosons in ten dimensions as we have seen just before. The
mode expansion is the same as (6.101),

λI =
∑

r∈Z+v
λIr e

−2ir(τ+σ) (6.248)

with v = 0, 1/2 for periodic and antiperiodic boundary conditions, respectively.
The quantization and the mass conditions are the same.
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In fact, it is an equivalent choice, since in two (worldsheet) dimensions, two
holomorphic fermions play the role of one holomorphic boson. Their conformal
dimension, correlation functions, and spectrum are the same. These 32 real fermions
λI have an O(32) internal symmetry. As we have done to fermionic strings, we
introduce the GSO projection (6.146 and 6.154) on these fermions also via the
operator

(−1)F , F =
∞∑

r=1/2

λI−rλIr . (6.249)

States with the odd number of fermionic oscillators are projected out. Actually this
projection has a counterpart in the bosonic string theory. It is equivalent to our
choosing of (

∑
PI = even only) in (6.217).

Since there are two kinds of boundary conditions on each fermions, we have
essentially two choices for possible theories. One is that we can assign the same
boundary conditions on all of them. This leads to the SO(32) gauge group. Here we
briefly present the other less straightforward case yielding the E8×E8 group. Divide
the 32 fermions into two partitions, say n and (32 − n) fermions for the R and NS
fermions. We know that for each degree of freedom, the zero point energy is 1

24 and
1

48 for the R and NS fermions, respectively. With 24 bosonic degrees of freedom,
we have the following total zero point energy−a with

aNSNS = 8

24
+ n

48
+ 32− n

48
= 1, (6.250)

aNSR = 8

24
+ n

48
− 32− n

24
= n

16
− 1, (6.251)

aRNS = 8

24
− n

24
+ 32− n

48
= 1− n

16
, (6.252)

aRR = 8

24
− n

24
− 32− n

24
= −1, (6.253)

where 8
24 is from the eight bosonic coordinates of 10D. (Note that considering the

right mover, we specify three boundary conditions on a state.) For the NSR or RNS
sectors to have massless states, we require n = 16, otherwise it reduces to a theory
with the same boundary conditions for all the movers.

First, noting that −aNSNS = −1, we can find massless states in the NSNS states
with

λI−1/2λ
J
−1/2|0〉, (6.254)
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which split into the following three cases

I = 1, . . . , 16, J = 1, . . . , 16 (120, 1)

I = 1, . . . , 16, J = 17, . . . , 32 (16, 16)

I = 17, . . . , 32, J = 17, . . . , 32 (1, 120).

We should apply the GSO projection. Since we have partitioned the fermions into
two sectors, we will see that a reasonable choice is to use an independent projection
for each sector

(−1)F1, (−1)F2 . (6.255)

In this NSNS case, both partitions are in the NS sector; thus the GSO projection
(6.146) is applied. The (16, 16) has an odd fermion number since the number
operator FA,A = 1, 2 acts on the first 16 indices and the last 16 indices separately,
and hence is projected out. Note that the Cartan subalgebra is contained in (6.254).

In addition, we have aRNS = 0 in the RNS sector. These become spinorial
massless states, in view of (6.152) with eight sis,

|s1s2 · · · s8〉, spinorial made of λI0, I = 1, . . . , 16. (6.256)

They lead to the states

(256, 1) = (128s, 1)+ (128c, 1).

Again the GSO projection should be applied.

(−1)F , F =
∑

si mod 1.

The fermions are partitioned into sixteen R and sixteen NS, therefore (6.154) and
(6.146) are separately used. They project out one, say (128c, 1), and there remains
(128s, 1). By a similar reasoning applied to the NSR sector, we obtain (1, 128s).
They all belong to one E8 × E8 multiplet

(248, 1)+ (1, 248). (6.257)

The currents (6.233) and (6.234) are generated by

T a = T a
IJ λ

I λJ (6.258)

where a = 1, . . . , d is the adjoint index.
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6.4 Open Strings

Finally, we discuss open strings. With the discovery of Dirichlet brane, the most
interesting physics comes from the open string sector [27].

6.4.1 Charged Open Strings

We briefly discuss another possibility of describing group degrees of freedom by
open strings. Recall that the heterotic string has uniform charge distribution along
the closed string, whose local relation is given by (6.236).

Alternatively, we can assign charges on both ends of an open string. This was
the original idea of introducing string in 1960s attempted for describing strong
interactions. We assign a new degree of freedom at each end labeled by indices i

and j as shown in Fig. 6.5a, called the Chan–Paton factors. As a representation, we
introduce an n× n matrix λaij . A string state with momentum k can carry an adjoint
index a,

|k, a〉 =
n∑

i,j=1

|k, ij 〉λaij . (6.259)

In the open string Feynman diagram, in and out states have definite Chan–Paton
factors. For example, the four-point tree level diagram has ends with the same
indices, as shown in Fig. 6.5b.

Summing up all the possible states, the amplitude is proportional to the trace of
the products λa ,

λ1
ij λ

2
jkλ

3
klλ

4
li = Trλ1λ2λ3λ4.

Generally, the amplitude is invariant under a global U(n) transformation

λa → UλaU−1

Fig. 6.5 (a) Assigning the charges on both ends. (b) The four point tree level diagram
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under which the endpoint(×) transforms as a fundamental–anti-fundamental repre-
sentation, n and n. This U(n) is the worldsheet global symmetry. Now in the target
space, this is coordinate(Xi) dependent and hence is escalated to a local symmetry.
This is in fact the general argument in string theory: in string theory every symmetry
is a local symmetry, i.e., there is no global symmetry. Similarly, when we consider
unoriented strings we can also describe SO(n) and Sp(2n) groups.

6.4.2 Dirichlet Brane

The T -duality in (6.199) exists and the open string theory possesses such duality as
well [28].

(pL, pR)↔ (pL, pR). (6.260)

This means

(XM
L ,XM

R )↔ (XM
L ,−XM

R ), (ψM
L ,ψM

R )↔ (ψM,−ψM
R ). (6.261)

In the dual space, the Neumann boundary condition (6.32) becomes the Dirichlet
boundary condition: the open string endpoints should be placed in some specific
hypersurfaces. This object at the hypersurfaces is understood as Dirichlet brane,
or D-brane in short. The location of D-branes is the eigenvalue of the Chan–Paton
factor.

On it the open string dynamics can be understood alternatively as the dynamics
of D-branes.

In the beginning, Type II theory was defined as a theory of closed strings.
However, inserting D-branes is also consistent: away from the brane the massless
spectrum contains closed and oriented strings only. However, the D-brane is an
object for an open string to be attached: near the brane open strings emerge. In
the presence of D-branes, only “unoriented” half of the N = 8 supersymmetries
Q̃ +Q of Type II is conserved. In the T -dual picture without the brane, where the
D-brane is present,

Q̃α + PQα, (6.262)

where P = ∏
Pm is a parity action and the product is over the real dualized

dimension.
The D-brane is a Bogomol’nyi–Prasad–Sommerfield (BPS) state. Supersymme-

try guarantees some stable configurations, even nonperturbertively. With one brane,
a string with both ends at the brane, the resulting massless state is charged under
U(1). BPS state guarantees the stability when more than one branes are coincident.
Alternatively we can check that there is no force between parallel D-branes; by
the worldsheet supersymmetry NS–NS force(containing gravitational attraction) is
cancelled by the R–R force. Now there is a symmetry enhancement: a string can
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Fig. 6.6 String stretched
between two D-branes,
describing U(1) × U(1). An
open string ending on the
same brane gives massless
gauge boson. An open string
stretched between different
branes has charges ±1,∓1
giving rise to massive W±
bosons. If they become
coincident, the gauge
symmetry is enhanced to
U(2), making W bosons
massless. We can generalize
it to U(n) with n slices

end at different branes, whose 4D positions are the same, i.e., the same xμ as
explained in the caption of Fig. 6.6. It is like a charged boson W±. With n coincident
branes, the resulting symmetry is extended to U(n). An open string ends between
two different D-branes, whose ends have different orientations, so we can assign
opposite charges. This corresponds to the charge of W± bosons.

Its dynamics is described by Dirac–Born–Infeld action,

S = −Tp
∫

dp+1ξ Tr e−�
√
− det(Gab + Bab + 2πα′Fab). (6.263)

Expanding to the quadratic order in α′FMN , it reduces to (p+1)-dimensional Yang–
Mills action,

Sp = −Tp(2πα′)2

4gs

∫
dp+1x TrFMNFMN (6.264)

with a potential of transverse scalar degrees. Here Tp and gs are the tension and
Type II string coupling fixed by the vacuum expectation value (VEV) of dilaton.
Therefore, the YM coupling is

g2
p+1 = gsT

−1
p (2πα′)−2. (6.265)

Every BPS object has a conserved charge, seen by the supersymmetry commu-
tation relations. We have seen in Sect. 6.2.4 Type II string theories have various RR
tensors. Like a vector field sourced by a charge carried by point particle, they are
sourced by membranes. Type IIA and Type IIB theories contain (p+ 1)-form fields
Cμ1···μp+1 with p + 1 being odd and even, respectively. They couple to the D-brane
as

∫
Cμ0···μpdx

μ0dxμ1 . . . dxμp,
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where the integration is over the p + 1 dimensional world volume spanned by the
Dp brane. So Type IIA and Type IIB theories have Dp-brane with p even and odd,
respectively.

6.4.3 Type I String

Consider type IIB string, which is parity symmetric. We may mod out the string
states by worldsheet parity reversal

� : σ → −σ (6.266)

and make an unoriented string theory. This is orbifold action on the worldsheet
Hence projects out non-invariant states. The open string arises in the twisted sector
under the parity reversal (6.266). Exchanging the left and right movers corresponds
to exchanging two indices of the rank 2 fields; thus the antisymmetric tensor Bμν is
projected out. The fundamental string should be source to this tensor but in this time
it is missing. It decays, with the lifetime inversely proportional to the string coupling
constant. In the weakly coupled limit, this open string is long lived. The graviton
Gμν and the dilaton φ are invariant. However, in the RR sector, anticommuting
worldsheet fields multiply an additional minus sign when exchanged, thus the RR
tensor of rank two only Cμν survives the projection. This should be sourced by
another open string. This open string is the D1-brane. Thus the field content is again
that of N = 1 supergravity in ten dimensions.

Calculation of one-loop diagram shows potential divergence from tadpole dia-
gram and it is cancelled by 16 spacetime filling D-branes or D9-branes. This �

also projects out U(n) gauge group and makes it real, and reflects the D-branes
with respect to the end of the interval. Thus we have SO(32) gauge group in the
bulk. This defines Type I string theory. We have seen embedding U(n) in SO(2n)
in Sect. 5.2.2. Unoriented string can end between a D-brane and its mirror brane,
filling in the multiplets.

In the open string sector, massless degrees of freedom are gauge bosons,
described by the Chan–Paton factors attached at both ends. Consistency of one-
loop diagrams imposes a certain condition called the Ramond–Ramond tadpole
cancellation [29]. It fixes the gauge group completely as SO(32).

6.4.4 Duality of Strings

Two string theories, type IIA and type IIB, are T -dual to each other. They are
different guises of a single, unified theory.

It is known that type IIA supergravity is obtained from dimensional reduction of
the eleven dimensional supergravity on a circle. The size of the circle is proportional
to the IIA string dilaton eφ . The latter contains the rank three antisymmetric tensor
field CMNP , whose source is (2 + 1)-dimensional brane. We also have a higher
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M9 M9M5

Fig. 6.7 M2-branes stretched between two M9-branes, in the heterotic M-theory picture. Shrink-
ing it along radial direction gives an open string shown in Fig. 6.6. Taking the zero interval
length shrinks it along the longitudinal direction, making the heterotic string. An M2-brane ending
between M9 and M5-branes is called E-string. An M2-brane ending between two M5-branes is
called M-string

dimensional theory whose compactification on the same circle gives the IIA string
theory. It is called M-theory and that 2-brane is promoted to M2-brane. By Hodge
duality, we have magnetic source for this 3-form field, which are M5-branes. Various
D-branes can be understood as being obtained from dimensional reduction of M2
and M5-branes [4]. The string coupling is proportional to eφ , where φ is the type
IIA dilaton, so we may define M-theory as strongly coupling limit of IIA string. An
M2-brane can end on two M5-branes, providing the source for anti-self-dual tensor
field B−μν in the six dimensional supersymmetry.

Compactifying M-theory on an interval, or S1/Z2 orbifold discussed in 3.2, we
obtain strongly coupled heterotic string [30, 31]. The size of the extra dimension is
again proportional to the heterotic string dilaton eφ (Fig. 6.7).

We have seen at Sect. 5.3 the anomaly is localized at the ends of the interval. The
ten dimensional gravitational anomaly is equally localized at each end. Thus each
has a 9-brane, which we call M9-brane, harboring E8 worldvolume gauge theory.
The E8 × E8 heterotic string is charged under the both, hence understood as M2-
brane stretched between these two M9-branes (Fig. 6.7, the upper brane).

M5-branes become 5-branes in the heterotic string, providing magnetic source
for the antisymmetric tensor field Bμν = Cμν11′, where we labelled the M-theory
direction as another “11th” direction different from that of IIA theory. We can
calculate a variant of partition function, elliptic genus, including the effect of the
M5-branes. Without background gauge field, the modular invariance of the elliptic
genus gives that we need 24 M5-branes [32]. Likewise we have E-string that
is M2-brane stretched between the M9-brane and M5-brane (Fig. 6.7, the lower
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brane). This is the source for the tensor multiplet in the six dimensional (1, 0)
supersymmetry, whose scalar component parametrizes the distance between the M9
and M5-branes. We may understand dynamics of string theory as a low-energy limit
of M-theory. Its moduli space is schematically drawn as in Fig. 2.10.

Exercises

� Exercise 6.1 Verify that the partition function (6.85) is invariant under the
modular group.

� Exercise 6.2 To avoid overcounting, we need to define the fundamental region
(6.74) precisely. Show that the fundamental region of the SL(2,Z) modulus τ is
one satisfying all of the following

|τ | > 1, −1

2
< τ1 ≤ 1

2
, −1

2
< τ1 < 0 ⇒ |τ | > 1, τ2 > 0.

� Exercise 6.3 By introducing orthonormal coordinates as in (6.206), express the
momentum states (6.202) and the mass condition (6.194) and the level matching
condition (6.196).
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7Strings on Orbifolds

Heterotic string possesses very rich symmetries. It naturally describes SO(32) and
E8 × E8 gauge group, by uniform charge on the closed string. Also it has sixteen
real (N = 4 in four dimension) supersymmetries. We would say that it also has
enough number of spacetime dimensions, 10, to explain our spacetime. However,
these symmetries are too large from the phenomenological point of view, by the
criteria discussed in Chap. 2. In weakly coupled string theories, it is better if a big
gauge group is given already so that the standard model (SM) gauge group SU(3)×
SU(2)×U(1) can be embedded there.

By compactifying down to four dimension and relating such symmetries with
spacetime properties, we can break them. Here we will deal with the easiest
and intuitive compactification scheme, the orbifold compactification, such that the
resulting four dimensional theory has gauge symmetry of the standard model and
only four (N = 1) supersymmetries. Alternatively, on the way to the SM we may
meet the grand unified theory (GUT). In this process, the chiral nature of the SM
fermions should result, which is one of the most mysterious puzzles of the Planck-
scale physics.

In this chapter, we quantize the string on orbifold and calculate the spectrum. We
associate point group action with shift vector. We will turn on Wilson lines whose
shift vectors are associated with translational elements. We will mainly focus on
prime orbifold. More formal construction as well as discussion on nonprime orbifold
will be done in the next chapter. There are many good treatments on this topic [1,2],
as well as the original paper [3, 4].

7.1 Twisted String

A closed string is characterized by the boundary condition

Xμ(σ + π)μ = Xμ(σ).

© Springer Nature Switzerland AG 2020
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Fig. 7.1 Strings on T 2/Z2 orbifold, defined by an identification (x, y) ∼ (−x,−y). The shaded
region depicts the fundamental region and dotted border bounds the covering torus. (a) An
untwisted closed string. (b) A closed string winding around torus. (c) A twisted string localized at
the fixed point ex . It is associated with the space group action (−1, 2ex)

A normal closed string is drawn in Fig. 7.1a. Contrary to the point particle, a string
has spatial extent so that it may behave differently in a topologically nontrivial
space. A closed string on a torus, defined in Eq. (3.6),

T 6 = R
6/�

can wind a non-contractable cycle as we have seen in (6.188). The boundary
condition becomes

X(σ + π)i = X(σ)i + 2πRLi,

where the index i is for the orthogonal coordinates and Li are the winding numbers
forming vector in Λ, as in Eq. (6.205). It is shown in Fig. 7.1b.

We may further mod out the torus to have orbifold

T 6/ZN ≡ T 6/P,

as we have done in Chap. 3. The point group P is generated by rotations θ , which is
a cyclic group ZN . We have identification

za ∼ θabz
b (7.1)

up to a lattice translation. From now on, we will suppress the spacetime indices.
θ is diagonalized and we call the exponents of the components twist vector φ ≡
(φ1, φ2, φ3). The generalization to arbitrary even dimensions is straightforward.
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On this orbifold, we have a closed string modulo an action (θk, v) ∈ S in (3.12)
since the space is identified under S,

Z(σ + π) = θkZ(σ)+ v. (7.2)

We call such string twisted string. If none of the eigenvalues of θk are 1, there is
one-to-one correspondence between a space group element (θk, v) and a fixed point

f =
(

1− θk
)−1

v. (7.3)

We learned in Chap. 3 that the twisted string is labelled by conjugacy class [(θk, v)].
That is, all the states labelled by

(ω, u)
(
θk, v

)
(ω, u)−1, (ω, u) ∈ S, (7.4)

should be treated equivalent.
With the defining element θ , we can broadly classify the twisted sectors using

θk , k = 1, . . . , (N − 1), calling each set, respectively, the kth twisted sector. This
situation is depicted in Fig. 7.1. We call k = 0 sector and string, respectively, the
untwisted sector and untwisted string.

A string in the untwisted sector freely moves in the bulk, whereas a string in the
twisted sector is localized at the fixed point.

7.2 Mode Expansion and Quantization

We now perform mode expansion and quantize twisted strings. The modification is
that the mode number is fractional on the orbifold to satisfy the boundary condition
(7.2).

7.2.1 Bosonic Left and Right Movers

From (7.2), the worldsheet boson in the kth twisted sector acquires the phase

Za(σ + π) = e2πikφa

Za(σ )+ va.

We take components of the twist kφa = ka/N . In this book, we have the
convention 0 < ka/N < 1 in the first twisted sector. If the component of the
twist vector does not lie on this interval, we may add an appropriate integer. If kφa

is an integer, the mode expansion is the same as that of the untwisted string, viz.
Eqs. (6.18) and (6.19). This happens on the fixed torus; the translational symmetry
is recovered and thus the string component can have momentum as well.
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The following mode expansions have the desired phases:

Za
R(τ − σ) = f a

R +
i

2

∑
n∈Z

αa
n−ka/N

n− ka/N
e−2i(n−ka/N)(τ−σ),

Za
L(τ + σ) = f a

L +
i

2

∑
n∈Z

α̃a
n+ka/N

n+ ka/N
e−2i(n+ka/N)(τ+σ),

(7.5)

where we used the convention α′ = 1
2 . Using Zā = [Za]∗, we also have

Zā
R(τ − σ) = f ā

R +
i

2

∑
m∈Z

αā
n+ka/N

n+ ka/N
e−2i(n+ka/N)(τ−σ),

Zā
L(τ + σ) = f ā

L +
i

2

∑
m∈Z

α̃ā
n−ka/N

n− ka/N
e−2i(n−ka/N)(τ+σ).

(7.6)

Here, the center of mass is at the fixed point f a = f a
L + f a

R , obtained in (7.3). The
twisted string does not have a momentum.

We quantize the string by assigning commutation relations of the oscillators

[
α̃a
n+ka/N , α̃b̄−m−ka/N

]
=

(
n+ ka

N

)
δabδmn, (7.7)

[
αa
n−ka/N, α

b̄
−m+ka/N

]
=

(
n− ka

N

)
δabδmn. (7.8)

Therefore we have creation operators

α̃ā−n−ka/N (n ≥ 0), αā−n+ka/N(n ≥ 1), αa−n−ka/N (n ≥ 0), α̃a−n+ka/N(n ≥ 1).

Also we define a ground state |σk〉 ≡ |σk〉L ⊗ |σk〉R as one annihilated by all the
annihilation operators, for all a,

αa
n−ka/N |σk〉R = 0, n ≥ 1,

α̃a
n+ka/N |σk〉L = 0, n ≥ 0,

αā
n+ka/N |σk〉R = 0, n ≥ 0,

α̃ā
n−ka/N |σk〉L = 0, n ≥ 1.

(7.9)

We may understand more properties of these ground states in Sect. 6.3.
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The fractional mode numbers make the following things nontrivial.

1. The number operator

Ñ =
4∑

a=1

Ña +
4∑

a=1

Ñā +
16∑
I

ÑI , (7.10)

where each

Ña =
∑

n+ka/N>0

α̃ā−n−ka/N α̃a
n+ka/N,

Ñā =
∑

n−ka/N>0

α̃a−n+ka/N α̃ā
n−ka/N,

ÑI =
∞∑
n=1

α̃I−nα̃I
n,

can have fractional eigenvalue. For example, an excited state α̃1−1/3|σ 1
1 〉L has a

fractional oscillator number Ñ = 1
3 .

2. When we rewrite (7.5) componentwise, we see that, under the point group action
θ , each oscillator transforms as

αa
n−ka/N → e−2πika/Nαa

n−ka/N ,

α̃a
n+ka/N → e2πika/N α̃a

n+ka/N,

αā
n+ka/N → e2πika/Nαā

n+ka/N,

α̃ā
n−ka/N → e−2πika/N α̃ā

n−ka/N .

(7.11)

Later it will be necessary to use a vector ρL (ρR), whose a-th component
counts the number of the excited oscillators along a-th directions in the left
(right) mover. We have a convention that a holomorphic component has +1 and
antiholomorphic −1. For instance, the state with oscillator excitations has the
vector

|ϕ〉L ≡
(
α̃1−2/3

)2
α̃2−1/3α̃

3̄−1/3|σk〉L : ρL = (2, 1,−1).

Then, the above phase can be easily represented as

|ϕ〉L → e2πiρL·φ|ϕ〉L. (7.12)
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We can similarly define ρR from the right-moving oscillators. Also the ground
state acquires a phase

|
∏

σk〉L → e−πikφ2 |
∏

σk〉L (7.13)

that we will prove in the next chapter.
3. The zero point energy c̃, the sum of the normal ordering constant, is changed. To

obtain it, we need a generalized Riemann zeta function that is regularized as

f (η) = 1

2

∞∑
n=0

(n+ η) = − 1

24
+ 1

4
η(1− η), (7.14)

for each real, bosonic degree of freedom with 0 ≤ η ≤ 1. We will derive it in
Appendix A. For the bosonic left movers, we have the zero point energy

c̃ = 2
3∑

a=0

f (φa)+
16∑
I=1

f (0). (7.15)

The factor 2 in the first term comes from the definition (3.68), so that we rotated
pairwise. We verify that the untwisted string has c̃ = −1. The fermionic states
have the contributions with the same magnitude but with the opposite sign.

7.2.2 Fermionic Right Movers

For the superstring right movers, we have the fermionic degrees ψM . Spacetime
supersymmetry requires that the phases of XM

R and ψM are the same. We need

ψa(σ + π) = e2πi(kφa+v)ψa(σ ), (7.16)

where v = 0 for R and v = 1
2 for NS states. As before, we consider the compact

dimensions with the holomorphic and antiholomorphic indices a and ā, respectively.
However, this traditional distinction becomes meaningless due to the orbifold twist.
What is previously called the NS state is just shifted further from the R state by the
extra phase −1.

The mode expansions are, using the same convention as before,

ψa
R =

∑
r∈Z+v

ψa
r+ka/Ne

−2i(r+ka/N)(τ−σ),

ψā
R =

∑
r∈Z+v

ψā
r−ka/Ne−2i(r−ka/N)(τ−σ).

(7.17)
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Thus, we have the following modified anti-commutation relations:

{
ψa
r+ka/N ,ψb̄−r−ka/N

}
= (

r + k
N

)
δabδmn, (7.18)

{
ψa
r−ka/N,ψ

b̄
−r+ka/N

}
= (

r − k
N

)
δabδmn. (7.19)

We may define the ground states in the same way as the bosonic ones. The oscillator
numbers now have the bosonic part which is similar to (7.10). The oscillator
numbers of the fermionic part is

NF =
4∑

a=1

∑
r+ka/N>0

(
r + ka/N

)
ψā−r−ka/Nψa

r+ka/N

+
4∑

a=1

∑
r−ka/N>0

(
r − ka/N

)
ψa−r+ka/Nψā

n−ka/N ,

(7.20)

where r ∈ Z+v. Consequently, we have the following modified zero point energies,

c = 2
4∑

a=1

f (φa)− 2
4∑

a=1

f (φa + v) . (7.21)

For the untwisted superstring, c = − 1
2 and 0 (where φi = 0) for the NS and R

states, respectively.
For a practical calculation, we will use the bosonized description for the right

movers. Recall that the right mover of heterotic string is the same as that of Type
II string, as we have seen in Sect. 6.3.3. Also we replaced eight fermions by four
bosons sa, a = 0, 1, 2, 3, so that we have 12 bosons in total. We have the spinorial
8s in the R sector and the vector 8v in the NS sector.

For the twisted string, we have the right movers

|s + kφ〉R, (7.22)

where N(k) =∑
a N(k)

a and

R : s = ([+ + ++]),
NS : s = (±1 0 0 0).
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The twist does not affect the oscillators of the bosonized fermions but shifts the
momentum as s → s + kφ. So we have the zero point energy for the right movers,

c = 4f (0)+ 2
3∑

a=0

f (kφa). (7.23)

This is tabulated in Appendix A. Comparing between Eqs. (7.15) and (7.20), we
observe

c = c̃ − 1

2
. (7.24)

The resulting mass shell condition becomes (7.38).
The spacetime Lorentz representation is still encoded in the s vector, which is

now unified. Under the point group action θk, each state transforms as

(∏
α
)
|s + kφ〉R → e−2πi[(s+kφ+ρR)·φ− k

2φ
2] (∏α

)
|s + kφ〉R, (7.25)

where
∏

α is defined in the notion of Eq. (7.13). This is essentially the same as
(7.33), including the phase from the ground state. The overall minus sign in the
exponent reflects that the state is right moving. There is also an offset phase k

2φ
2

from the ground state. Note that this phase is exactly the same as that of the bosonic
one, so there is a complete cancellation.

7.2.3 Shifting

We have another way to make an orbifold, by translational elements that we may
call shifting. We formed a torus T d by modding out Rd by this symmetry encoded
in the lattice. We may consider a further action on the torus

V : xi → xi + 2πvi, (7.26)

where each component vi is an integer multiple of R/N , where we took the
coordinate so that 2πR is the periodicity in all the directions. Certainly, it is an
action of order N and defines an orbifold T d/ZN , as seen in Sect. 3.2. The operation
(7.26) is free, and there is no fixed point.

Apart from the usual untwisted string, there is a twisted string up to the shift
(7.26)

Xi(σ + π) = Xi(σ)+ 2πRLi + 2πRvi, (7.27)

with no summation over i. Although this is equivalent to (7.26), we have displayed
some possible contribution from string winding Li . This is a generalization of
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winding: it completely closes the string on the modded torus along the smaller
circumference 2π/N . Formally, the mode expansion is same as (6.191, 6.192) with
L replaced by L+ v,

Xi = xi + piτ + 2
(
Li + vi

)
σ + i

2

∑(
1

n
α̃i
ne
−2in(τ+σ) + 1

n
αi
ne
−2in(τ−σ)

)
,

and therefore the same are quantization, mass condition, and so on. For the defining
element (7.26), we have a number of twisted sectors shifted by kv with k =
1, . . . , N − 1.

We are mainly interested in the case where the shift (7.26) acts on the current
algebra described by extra sixteen bosons XI

L. We have only left movers, so we
should act the shift in an asymmetric manner

XI
L(σ + π) = XI

L(σ)+ πRLI + πRkV I . (7.28)

Here, we use uppercase letter for those variables of the current algebra. The missing
factor 2 in the last term is due to the fact that XI are only the left movers, which
hence has no geometric interpretation. To implement this situation, we formally
assume the presence of right movers as done before. Then, the mode expansion
goes like

XI
R = xIR +

(
1

2
PI − LI

)
(τ − σ)+ i

2

∑ 1

n
αI
ne
−2in(τ−σ), (7.29)

XI
L = xIL +

(
1

2
PI + LI + kV I

)
(τ + σ)+ i

2

∑ 1

n
α̃I
ne
−2in(τ+σ). (7.30)

Again we impose the “absence of right mover” constraint as in (6.214) 1
2P −L = 0.

Like the original heterotic string, this forces the current algebra to be non-Abelian
so that we need a critical radius R = 1/

√
α′ = √

2. Then, the mode expansion
becomes

XI
L = xIL +

(
PI + kV I

)
(τ + σ)+ i

2

∑ 1

n
α̃I
ne
−2in(τ+σ), (7.31)

with the new momentum

P → P + kV . (7.32)

Combining with the spacetime degrees of freedom, the mass shell condition
becomes (7.37).

By V , a state |P + kV 〉L transforms as

|P + kV 〉L → e2πi[(P+kV )·V− 1
2 (kV )·V ]|P + kV 〉L. (7.33)

There is a vacuum phase − k
2V

2, since we have associated the twist with the shift,
so we have essentially the same contribution as (7.13).
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7.3 Embedding Gauge Group

To obtain the four dimensional world, we should make six dimensions out of ten
compact and small. We compactify heterotic string on the six dimensional orbifold.
Then, the modular invariance condition becomes nontrivial and relates this compact
space with the internal gauge symmetries, resulting in some projections. This will
provide boundary conditions to break the gauge group and obtain a chiral theory.

7.3.1 Associating Shift

We associate the action θ on T 6 with a translation by a shift vector V on the group
lattice T 16

G,L,

θ −→ (1, V ). (7.34)

This is an embedding of the orbifold action in the group space. The resulting total
orbifold is

O = T 16
G,L/V × T 6/P, (7.35)

where V is the shifting (7.26) and P is the generalized point group action. It is
not the direct product of two sets of tori, but the actions θ and (1, V ) are done
simultaneously (Fig. 7.2).

This is the simplest setup in the sense that we use only the translational modding
V on the gauge lattice and use the symmetric modding P on the left and the right

Fig. 7.2 We associate point action θ with lattice shift V in the group space, that is, by doing them
simultaneously. Then, the momentum state |P 〉 has a different boundary condition and breaks the
group
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movers. We may also mod out the T 16
G,L by a point group action. Shifting on the

gauge lattice in (7.28) is quite general due the following theorem [5]:

Every inner automorphism of finite order can always be represented by a shift vector.

We will study automorphisms in Sect. 12.4. The lattice defining these tori is the
group lattice. A point group action takes one weight to another and thus is an
inner automorphism. Since the E8 group has only inner automorphisms, all of its
subgroups can be obtained by shift vectors. If we have more than one embeddings,
we cannot simultaneously transform all the embeddings into the shifts.

With θ, V defining the orbifold O , we have twisted sectors in which we associate
θk with kV . This leads us to the quantization discussed in Sect. 7.2. We have the
complete states by combining left and right movers

(∏
α̃
)
|P + kV 〉L,⊗

(∏
α
)
|s + kφ〉R, (7.36)

with simplified notation for the oscillator excitations. We have the mass shell
condition

L̃0(kV, kφ)+ c̃(k) = (P + kV )2

2
+ Ñ(k) + c̃(k) = 1

2
α′M2

L, (7.37)

L0(kφ)+ c(k) = (s + kφ)2

2
+ N(k) + c(k) = 1

2
α′M2

R, (7.38)

1

2
M2 = M2

L = M2
R, (7.39)

where c̃(k) and c(k) depend on the twist, given in Eqs. (7.15) and (7.21). The total
states satisfy the mass shell condition M2 = 0 in (7.37). We have such twisted
sectors associated with kφ and kV with k = 1, 2, . . . , N−1 as well as the untwisted
sector k = 0 (or the twisted sector k = N). Since string mass is proportional to the
length stretched, the lowest mass state is shrunk and localized on the fixed point f .

Since we have embedded the point group action into the action in the current
algebra, we need to keep invariant states under these actions. We have

(∏
α̃
)
|P + kV 〉L → e2πi[(P+kV )·V+ρL·φ− k

2 (V
2−φ2)] (∏ α̃

)
|P + kV 〉L,

(7.40)(∏
α
)
|s + kφ〉R → e−2πi(s+kφ+ρR)·φ

(∏
α
)
|s + kφ〉R. (7.41)

Here, ρL and ρR vectors parametrize the oscillators (7.11), and we have vacuum
phase.



194 7 Strings on Orbifolds

7.3.2 Modular Invariance

The consistency condition of the heterotic string theory comes from the modular
invariance of the partition function. It is invariant under the transformation of the
modular parameter τ = τ1 + iτ2 in (6.72), generated by

T : τ → τ + 1, S : τ → −1/τ, (7.42)

as in (6.73).1

In the construction of heterotic string, modular invariance on the current algebra
direction constrains the group to E8 × E8 or SO(32). The spacetime part is
independently modular invariant.

By orbifolding, each part loses its own modular invariance; however, we pair
them up, by relating as (7.34), to make the whole theory invariant. This introduces
projection condition and twisted sectors. Here, we sketch the procedure for obtain-
ing constraints, postponing the proof to the next chapter.

S Invariance
A twisted string has the boundary condition (7.2), or in terms of a space group
element h,

Z(τ, σ + π) = hZ(τ, σ ). (7.43)

Orbifolding introduces a projection. We have seen, in Sect. 6.2.3, that we should
consider spin structure for a well-defined spin for worldsheet fermions on a torus.
It led us to introduce the GSO projection. The R and NS sectors are further divided
into two subsectors with extra boundary conditions. The boundary condition (6.99)
formally looks the same as a Z2 boundary condition from orbifolding. We may
generalize it to ZN orbifolds. This phase can be understood as the eigenvalue of the
space group action g ∈ S, which we will show in the next chapter. This is equivalent
to assigning another boundary condition

Z(τ + 2πτ2, σ + πτ1) = gZ(τ, σ ). (7.44)

We say that such a field belongs to the (g, h)-twisted sector. Thus, even in the
untwisted sector, we should also specify the boundary conditions in the τ direction.
Also, once we introduce orbifold projection, we also need twisted sectors.

Under general finite transformation τ → aτ+b
cτ+d of (6.72), the boundary condition

goes like

(h, g)→
(
hdgc, hbga

)
. (7.45)

1The reader would not confuse the notation with that for the worldsheet time direction.
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In particular,

T : (h, g)→ (h, hg), (7.46)

S : (h, g)→
(
g, h−1

)
. (7.47)

This will shuffle various (g, h)-twisted sectors.

T Invariance
The condition from the T invariance provides a guideline for choosing the shift
vector V for a given orbifold geometry described by φ.

The real axis is identified with σ , so that the T generate a shift in the σ

direction whose operator is generated by the worldsheet momentum in (6.43) . The
exponentiated form is

U(σ) = exp
[
2i

(
L̃0 + c̃ − L0 − c

)
σ
]
. (7.48)

Since the closed string has no preferred origin, these levels should match modulo an
integer

L̃0 + c̃ − L0 − c = 0 mod 1. (7.49)

Using L̃0+ c̃ from (7.37) and L0+ c from (7.38), it is easy to see that the oscillator
number N is a multiple of 1

N
, and the zero point energy and (P+V )2 are multiples of

1
N2 . In general, it is not possible to make sum of them integer to satisfy the relation

(7.49). Thus, a necessary condition is imposed to make the 1
N2 dependence to be an

integer multiple of 1/N ,

(P + V )2 − (s + φ)2 = 0 mod
2

N
.

Since we are in the even and self-dual lattice, P 2+2P ·V is a multiple of 2/N . The
same holds for 1− s2 − 2s · φ. Thus, it leads to

N

3∑
a=1

φ2
a = N

16∑
I=1

V 2
I mod 2. (7.50)

In effect, we have only considered the transformation T N , taking an (h, g)-twisted
sector to (h, hNg), to be invariant.
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We required the condition of definite orders (3.75)

N

3∑
a=1

φa = 0 mod 2. (7.51)

The shift vector is compatible to the point group if it has the same or less order,
similar to (3.75)

N

16∑
I=1

VI = 0 mod 2, (7.52)

where the modulo 2 condition is reserved for spinorial states, e.g. in the E8 × E′8
theory.

Once these conditions (for the first twisted sector) are satisfied, so are the
relations for the kth twisted sectors kV, kφ for any integer k. The condition for the
modular invariance is a necessary condition. We show that this is also the sufficient
condition in the next chapter.

Hilbert Space on Orbifold
In reality, the gauge symmetry is broken, and we may obtain matter states. This
will give rise to a more general string theory in four dimensions. In particular, the
unbroken gauge boson comes from the untwisted sector. The massless condition is
P 2 = 2. The solutions P here become root vectors. Gauge transform adds them to
weights of the matter. During this, the state should not acquire a nontrivial phase, so
that the root vectors should not carry such a phase in (7.33)

P · V = 0 mod 1. (7.53)

For the right mover, since the space group action does not affect the untwisted
components, we always have singlets

R : (±1 0 0 0), NS : ±(+,+,+,+).

For the entire state to be invariant, the gauge current left movers should combine
with multiplicity 1. So, we always have a vector multiplet.

The rest of the states which do not satisfy the condition (7.53) become matter
states. In the untwisted sector, we have P · V �= 0 mod 1 with P 2. This means
that the matter states are obtained from the branching of the previously adjoint
representation. In twisted sectors, the solutions P + kV from (7.37) become weight
vectors as quantum numbers carried by matter fields. Combined with the right
mover that we see next, a complete state surviving projection is what we observe
in low energy. We have introduced twisted sectors and required invariance under
the generalized GSO projection. Note that a state may not be necessarily invariant
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under the projection, but a linear combination of states at different fixed points may
be invariant. We will examine such states in the next chapter.

7.4 The Standard Embedding

The most famous example employs the T 6/Z3 orbifold, discussed in Sect. 3.5. It is
specified by a twist vector (3.68)

φ =
(

2
3

1
3

1
3

)
.

We choose the standard embedding, that is, the orbifold action that is associated
with the shift

V = φ (7.54)

with other degrees is not touched. That is, the shift vector is specified by

V =
(

2
3

1
3

1
3 0 0 0 0 0

)
(0 0 0 0 0 0 0 0) . (7.55)

This satisfies modular invariance condition (7.50) by construction.

7.4.1 Untwisted Sector

The untwisted states are a part of the original states invariant under the point group
action θ and associated shift V . It is not necessary that each left and right mover
itself be invariant, but only the combined state should be invariant. By the structure,
we see that (7.55) leaves the second E8 intact; thus, our concern is the first E8.
Through this example, we will display the vectors and the representation for the
first E8.

Left Mover
The left mover in the untwisted sector has zero point energies c̃(0) = −1. From
(7.37), we see that massless states satisfy either

|P 〉L, P 2 = 2, or α̃M−1|P 〉L, P 2 = 0.

Depending on the orbifold projection, these are divided into the left movers for
gauge and matter fields.
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Gauge Fields The massless states satisfying P · V = integer of (7.53) include2

± (0 1 − 1 0 0 0 0 0)

± (1 1 0 0 0 0 0 0)

and permutations of the underlined elements. With the two Cartan generators, linear
combinations of αI−1|0〉, I = 1, 2, 3, they form the root vectors 8 of SU(3). We may
choose the simple roots as (−1 − 1 0 0 0 0 0 0) and (0 1 − 1 0 0 0 0 0), since we
can generate all the roots from them. The inner product shows that indeed the group
is SU(3).

The remaining vector satisfying the condition (7.53) is the roots of E6.

(0 0 0 ±1 ± 1 0 0 0)

± (−++[+ +++−])

where the square brackets denote even sign flips. Here, the plus and minus represents
+ 1

2 and− 1
2 , respectively. We can check that, together with the remaining six Cartan

generators, they form the 78 of E6.
Therefore, the unbroken gauge group is SU(3)× E6 × E′8.

Matter Fields Now, we come to matter representation. States satisfying P ·V = 1
3

are

(+ + − [+ + + + −])
(− − − [+ + + + −])
(0 1 0 ±1 0 0 0 0)
(−1 0 0 ±1 0 0 0 0)
(1 −1 0 0 0 0 0 0)
(0 − 1 − 1 0 0 0 0 0).

(7.56)

Under a Z3 rotation, these acquires a phase α ≡ e2πi/3. We can check that with an
aid from the root vectors these form the weight vectors (3, 27) of SU(3)× E6.

We have other states fromP ·V = 2
3 modulo 1. Their weight vectors are precisely

−P for the above states: −P · V = − 1
3 = 2

3 mod 1. They acquire phase α2. The
resulting states are (3, 27). They become the CPT conjugates to the above states.

2In the following vectors, if we flip the signs of the first entries we may easily notice regular
patterns. Nevertheless, we employ this convention because the form manifestly show the group
theoretical origin of the standard root and weight vectors, shown in Table 12.1.
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RightMover
The right movers are supersymmetric, and the lowest modes come from the
worldsheet fermions. As in the previous chapter, we bosonize these fermions. In this
description, all the bosons are periodic, and we have vanishing zero point energy.
Thus, all the states |s〉R satisfy s2 = 1. Under the point group action, the state
acquires a phase

|s〉R → e−2πis·φ|s〉R, (7.57)

where φ = 1
3 (0; 2 1 1).

In the R sector, the weights s are spinorial representation (6.247).

3 : (+−+−), (++++), ∼ α1, (7.58)

3 : (−++−), (−−−−), ∼ α2, (7.59)

1+ 1 : (++−−), (−−++), ∼ α0. (7.60)

We have the NS sector, whose states have integral entries

3NS : (0 1 0 0), (0 0 −1 0), ∼ α1, (7.61)

3NS : (0 − 1 0 0), (0 0 1 0), ∼ α2, (7.62)

1NS + 1NS : (1 0 0 0), (−1 0 0 0), ∼ α0. (7.63)

We see that the two sectors are connected by the supercharge

sR + r = sNS, (7.64)

where r is the R-vector defined in (3.72)

r =
(
− 1

2 ; 1
2 − 1

2 − 1
2

)
. (7.65)

It is the relation between the spacetime bosons and the fermions.

Combined States and Chirality
The complete state is made by combining the left and right movers. We have vector
multiplet

|8, 1〉L ⊗ |1+ 1〉R, |1, 78〉L ⊗ |1+ 1〉R, αI−1|0〉L ⊗ |1+ 1〉R. (7.66)

The R states with half-integral entries describes gaugino and fermions. The NS
states with integral entries describe gauge bosons and fermions

P ∈ (8, 1)+ (1, 78) of SU(3)× E8, s ∈ 1+ 1. (7.67)
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In (7.57), φ acts on the last three components s1, s2, s3 of s, while the noncom-
pact component s0 remains untouched. For R-states, we interpret s0 as the four
dimensional helicity. Our convention is that s0 = + 1

2 ,− 1
2 are, respectively, right-

and left-handed.
For the matter, we have Z3 invariant states

|3, 27〉L ⊗ |3〉R, |3, 27〉L ⊗ |3〉R, (7.68)

|3, 27〉L ⊗ |3NS 〉R, |3, 27〉L ⊗ |3NS〉R. (7.69)

Note that the state |3〉R has weight vectors (7.59). Hence, the |3, 27〉L ⊗ |3〉R
multiplet has four dimensional helicity s0 = − 1

2 , which is left-handed in our
convention. It is not complete state under Lorentz group, and the antiparticle is
missing. We can easily see that the number of real degrees of freedom for the
|3, 27〉L state is the same as the number of vectors P , which is 3 × 27. We need
complex representation but half of the degrees is missing. The rest of the state comes
from the state |3, 27〉L⊗|3〉R . It is the CPT conjugate to the previous state, having
the opposite helicity, time flow, and complex conjugate representation.

So the two states in (7.68) form the complete representation. The resulting
spectrum is chiral. They have the same chirality, although CPT conjugates have
the opposite helicities. We say we have a left-handed Weyl fermion in (3, 27)−. (It
is not to be confused with string left movers.) In four dimensions, we may instead
call it right-handed with the complex conjugate charge (3, 27)+.

Likewise, the two states in (7.69) are CPT conjugates to each other, forming
the complete complex scalar. They form the chiral multiplet.

Counting all the states, we have the SU(3)× E8 vector multiplet and

3(3, 27)−

as N = 1 chiral multiplet in the untwisted sector. The multiplicity three in the
untwisted sector matter is due to this triplet, due to |3〉R and |3〉R in Eq. (7.68).

We also have massless states from the remaining oscillators α̃M−1. We can
decompose index M = (μ, a, ā). From (7.11), we see that the invariant states are

αa
−1|0〉L ⊗ |s〉R,

a = 1, 2̄, 3̄, s ∈ 3, 3NS,

a = 1̄, 2, 3, s ∈ 3, 3NS.

(7.70)

They are moduli fields Gab̄,Gāb, Bab̄, Bāb. We will see later that they are naturally
combined. Those with noncompact four dimensional index μ

α
μ
−1|0〉L ⊗ |s〉R, s ∈ 1+ 1, 1NS + 1′NS. (7.71)
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are not affected, forming four dimensional graviton and antisymmetric tensor field.
The dilaton is inherited from that of ten dimensions with the scaling from the
internal volume.

7.4.2 Twisted Sector

In the twisted sector, as discussed in Eq. (7.10) and below, there are some modifica-
tions to oscillator numbers, phases, and zero point energies.

Left Mover
The zero point energy is shifted by f (η) of Eq. (7.14) for each real bosonic degree
of freedom. With twist φ = (0; 2

3 ,
1
3 ,

1
3 ) on the complex degrees, we have vacuum

energy from Eq. (7.15)

c̃ = 16f (0)+ 2f (0)+ 4f
(

1
3

)
+ 2f

(
2
3

)
= − 2

3 , (7.72)

and the level matching condition becomes

1
4M

2
L = 1

2 (P + V )2 + Ñ− 2
3 . (7.73)

We need massless state M2
L = 0.

• Without oscillator Ñ = 0, the massless states |P + V 〉 are

(
2
3 − 2

3 − 2
3 05

)
,

(
− 1

3 0 0 ±1 04
)
,

(
1
3 − 1

3 − 1
3 [+ + ++−]

)
.

They transform as (1, 27) by the above root vectors. The state acquires a GSO
phase

e2πi(P+V )·V = 1, (7.74)

up to the phase form the twisted vacuum.
• From the mode expansion of the twisted states (7.6), there are fractional

oscillators α̃a
−1/3 with Ñ = 1

3 . So, there are additional massless states

α̃a−1/3|P + V 〉L, a = 1, 2̄, 3̄, (7.75)



202 7 Strings on Orbifolds

with P + V satisfying 1
2 (P + V )2 = 1

3 ,

(
2

3

1

3

1

3
05

)
,

(
−1

3
−2

3

1

3
05

)
,

which form (3, 1). Since a assumes 1, 2̄, 3̄, they transforms as a triplet under the
holonomy group Z3; thus, the multiplicity is 3. The state acquire phases α from
α̃−1/3 and α2 = e2πi(P+V )·V from |P + V 〉L, so that the state (7.75) is invariant.
Again, we neglected the vacuum phase.

RightMover
We have the same twist on the right movers. Again, we will use the bosonized
right movers, among which only the original eight bosons get twisted, while the
four bosonized fermions have no twists (which are reflected in the weight vectors).
Accordingly the zero point energy is

c = 6f (0)+ 2f
(

2
3

)
+ 4f

(
1
3

)
= − 1

6 .

One may check that it is always satisfied c = c̃ + 1/2. Resorting to the mass shell
condition

M2
R

4
= (s + φ)2

2
+ N− 1

6
, (7.76)

we find two massless states with N = 0

s + φ =
(
− 1

2
1
6 − 1

6 − 1
6

)
,
(

0 − 1
3

1
3

1
3

)
.

They correspond to (twisted) R and NS states, respectively, in the sense that s is
belonging to the conjugacy classes 8s and 8v in (6.247). In the spacetime, they are
superpartners to the others, as it should be. We verify that the phase

e−2πi(s+φ)·φ = 1 (7.77)

saves the state which survives the GSO projection. The resulting spectrum has the
negative (left-handed) chirality, with untwisted matter defined from P · V = 1

3 .
In the above calculation, the phases for left and right movers vanished indepen-

dently, but this is not necessary in general. Only the combined state should have
vanishing phase. Moreover, there might be a nontrivial “vacuum phase” that cannot
be calculated by operator method here, which we will meet in Eq. (8.61) in Chap. 8.
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The second twisted sector is obtained by the shift vector 2V . It is equivalent to
−V up to a lattice translation. From the relation (P − V )2 = (−P + V )2, the
state vectors in this twisted sector P − V are the minus of the first twisted sector.
The right movers are twisted by 2φ � −φ, which provides the opposite (positive)
helicity states. They are the CPT conjugates with the opposite helicities and the
complex conjugate of the states in the first twisted state. However, it is nontrivial to
check that the total phase is invariant (see Exercise).

(We present an example of how the massive oscillators are formed. The lowest
massive oscillator states are in the form

αa
−2/3|0〉, a = 1̄, 2, 3, 3,

αa
−1/3α

b
−1/3|0〉, a, b = 1, 2̄, 3̄, 6,

(7.78)

and have the oscillator number Ñ = 2
3 . The holonomy quantum number is the

representation of the point group Z3.)

7.4.3 Need Improvement

Summing up, we have obtained SU(3)× E6 gauge group with the matter fields

3(3, 27)

in the untwisted sector and

27(1, 27)+ 81(3, 1)

in the first and the twisted sector. They are all four dimensionalN = 1 supergravity
multiplets, with left-handed fermions. We also have moduli fields. In the E6 GUT,
each 27 contains one complete family, so we have 36 chiral families.

It is a nontrivial check for the anomaly cancellation of the SU(3) part between
chiral fermions from the untwisted and twisted sectors. There are 27× 3 = 81 3s in
the untwisted sector and 81 3̄s in the twisted sector. E6 is anomaly free. Thus, there
is no gauge anomaly. In addition, there is no gravitational anomaly. Shortly we will
see that in the presence of more than one shift vector, there still does not exist any
anomaly. This is a generic feature of the orbifold theory with modular invariance,
although there are only proofs [6–8] for the case of toroidal compactification on
self-dual lattices. In some models, at most there exists an anomalous U(1) which is
cancelled by the generalized Green–Schwarz mechanism [9].

In most cases, the number of generations is a multiple of three, which originates
either (1) from the right movers forming a 3 under the point group or (2) from
the number of fixed points 27. Thus, the Z3 orbifold is a natural candidate giving
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three generations. The model presented above needs a further symmetry breaking
because:

1. There are too many generations, 36 copies of 27 of E6.
2. The gauge group SU(3)×E6 is still too big, predicting unobserved gauge bosons

and charged matter fields. One may be satisfied at this stage as having obtained
a GUT model. However, we do not have appropriate representations to break E6
down to the SM gauge group.

3. All the twisted sectors have the same spectrum, because we have no way of
distinguishing them. If we can distinguish them in some way, they give different
spectra at different fixed points. Then, we may have different Yukawa couplings
for different family members and thus can provide the observed SM mass
hierarchy.

In the following section, we introduce Wilson lines. They introduce more shift
vectors breaking the gauge group further. Also Wilson lines distinguish fixed points
for them to have different spectra.

7.5 Wilson Lines

A Wilson line is a background gauge field that cannot be gauged away due to the
non-simply connected topology of the space under consideration. It is characterized
by a loop in the space that cannot be shrunk into a point. A torus has such non-
simply connected circles that are inherited by a toroidal orbifold. We may associate
their translations defining the torus with more shift vectors and break symmetries
further.

7.5.1 Shifts Associated with Translations

Consider a constant gauge field Ai(x) = Ai . Locally, it is a pure gauge

Ai(x) = −iU−1(x)
∂U(x)

∂xi
, U(x) = exp

(
iAix

i
)
, (7.79)

and can be eliminated by gauge transformation U(x)

Ai(x)→ Ai(x)+ iU−1(x)
∂U(x)

∂xi
= 0. (7.80)

Globally, it is not possible to gauge away a constant gauge field, if the geometry
is non-simply connected. We consider circles on the torus, which partially define
the orbifold. The gauge parameter U(x) does not obey periodicity,

U
(
xi + 2πR

)
= U

(
xi

)
exp(2πiAiR) �= U

(
xi

)
, (7.81)
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which means that the ungauging cannot be done uniformly over the entire circles,
unless Ai is an integer multiple of 1/R.

Alternatively, we force the gauge field to vanish by the passive transformation
for the charged fields

ψ(x)→ U−1(x)ψ(x) = e−iAix
i

ψ(x). (7.82)

Then, it is unavoidable that the wave function ψ(x) acquires a phase e−2πiAiR

once we circle around the xi direction. This phase in Eq. (7.82) is interpreted as
the Scherk–Schwarz phase in Eq. (5.11).

For general (non-constant) gauge field, the gauge-invariant object of this effect
is called the Wilson line,

Wi = exp

[
i

∮
Ai ·Hdxi

]
no summation over i, (7.83)

where the dot product means

Ai ·H ≡
16∑
I=1

AI
i H

I .

This leads us to define the Wilson line shift vectors

aIi ≡
1

2π

∮
AI
i dx

i no summation. (7.84)

Like the shift vector (7.28), each ai is a 16-component vector with the gauge index
I suppressed. The index i = 1, . . . , 6 runs over the lattice direction defining the
torus. The relation (7.81) shows that each component of aIi is defined modulo 1.

Let us now associate the Wilson line with such a translation. In effect, the state
acquires a phase when we move around ei

|P 〉 → Wi |P 〉 = exp(2πiai · P)|P 〉. (7.85)

This is nothing but a shift vector associated with translation

(1, ei) −→ ai. (7.86)

To be concrete, it is realized as in (3.10),

Xm(σ + π) = Xm(σ)+ 2πRemi , i = 1, . . . , 6, (7.87)

with emi being the mth component of the basis vector labelled by i. The label means
that the vector ei spans the ith lattice and hence torus. Coming back to the original
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point by (6.205), we associate the effect of Wilson line with the following in the
group space

XI
L(σ + π) = XI

L(σ)+ πRaIi I = 10, . . . , 25,

as in (7.28). This gives rise to the shift in the momentum space

PI → PI + 2πRaIi . (7.88)

From now on, again we will suppress the index I .
This restricts the boundary condition of the wave function and thus is used to

break the gauge group. It is the well-known Hosotani mechanism [10]. Here, we
associate the translation with the additional shift vector ai . The shifting does not
touch the Cartan subalgebra, so the total rank is not changed.

Compatibility of Wilson Lines
Wilson lines should be compatible with the lattice. For example, we can show it for
the T 6/Z3 case as

θe1 = e2 implies a1 = a2, (7.89)

θe2 = −e1 − e2 implies a2 = −a1 − a2, (7.90)

where we may relax the equalities between ai’s up to lattice translation. Combining
them, we obtain3

3a2 = 3a1 ∈ �.

That is, we have one independent Wilson line, and it is discrete of order 3. The
rest of directions have similar conditions. Denoting the same vector up to lattice
translation using the sign “≈,” we may denote the conditions as

3a3 ≈ 3a4 ≈ 0, 3a5 ≈ 3a6 ≈ 0.

There is no more relation relating, e.g. a1 and a3. So, there can exist three
independent Wilson lines on T 6/Z3 orbifold.

This guarantees that each conjugacy class has well-defined shift

[(
θk, v

)]
=

{(
θk,

(
1− θk

)
u+ θ lv

)
,
(
θ l, u

)
∈ S

}
, (7.91)

3It is possible that 3a2 − 3a1 ∈ �, but there is no observable effect here.
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because the Wilson lines along u, v directions are, respectively, the same as those of
θku, θ lv directions. Thus, the actions (7.28) and (7.86) commute and the association
(7.92) is well-defined.

We will generalize it to nonprime N in the next chapter. In general, the
compatibility also depends on the choice of the lattice. The order of Wilson lines
is in general not the same as that of the point group.

7.5.2 The Combination: Local Twists at the Fixed Points

We have a combined homomorphism of (7.28) and (7.86) to have

(
θk,

6∑
i=1

miei

)
−→ kV +

6∑
i=1

miai, (7.92)

with the shift in the momentum space

P → P + kV +
6∑

i=1

miai. (7.93)

The conjugacy classes for different fixed points, in (3.30), have different
translational parts in general. So far, there is no way to distinguish a specific fixed
point. Now, Wilson lines associated with the translations affect the spectrum. The
fixed points are not equivalent and can be distinguished, improving Condition 3.

How can we obtain the mass shell condition and projection? Recall that each
fixed point is parametrized by the space group element (θk,mie

i). The converse is
true: for every space group element, we have independent fixed points if we consider
reducible elements. Thus, the mass shell condition becomes

1

2
α′M2

L =
(P + kV +∑

i miai)
2

2
+ Ñ+ c̃(k), (7.94)

noting that mi parametrize the specific fixed point. We suppress the current algebra
index, so P,V, ai are 16 dimensional vectors. Again, c̃(k) is the zero point energy
from the internal field oscillators; thus, it remains the same as that without the
Wilson line.

Under the space group action, also the state acquires the phase. To fully
understand it, we need the complete partition function. Alternatively, we consider
the following local picture.

Around each fixed point (θj ,mie
i), the situation is like we have a noncompact

orbifold

R
6/S � R

6/Zn, S =
{(

θj ,mie
i
)k}

. (7.95)
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That is, the point group is generated by θj with the effective order n such that
(θj )n = 1 and k = 0, 1, . . . , n− 1.

We associate the point group action with the “local shift vector”

(
θj , 0

)
→ V ′ = kV +

∑
i

miai. (7.96)

We have the localized state at this fixed point satisfying the same mass shell
condition (7.94) and obtain the phase by replacing kV → kV ′

exp 2πi

[(
P + kV +

∑
i

miai

)
·
(
kV +

∑
i

miai

)
− (s + kφ + ρR − ρL) · φ

−1

2

(
kV +

∑
i

miai

)
·
(
kV +

∑
i

miai

)
+ 1

2
kφ · φ

]
.

(7.97)

In the vicinity of this fixed point, we have non-localized “untwisted sector.” We
have the projection playing the role of (7.40) from (7.97)

P ·
(
kV +

6∑
i=1

miai

)
= integer. (7.98)

With this in mind, we modify the modular invariance condition (7.50) to

φ2 =
(
kV +

∑
miai

)2
, mod 2/N, (7.99)

where the vector indices are suppressed.
Note that all the space group elements (θj ,mie

i)k refer to the same fixed point.
Conversely, the fixed point (θj ,mie

i) may be equivalent to another fixed point in
the lower-order twisted sector. For instance, in the T 6/Z4 orbifold we may have
(θ2, e1 + e2) = (θ, e1). Then, we regard the state from (θ2, e1 + e2) as second
twisted sector and do not overcount the state. This justifies the point group in (7.95).

7.5.3 Projection Conditions in the Bulk

Let us come back to the global geometry T 6/ZN . The corresponding orbifold
theory can be obtained by patching all those theories on the local geometries (7.95)
together.

Gauge Group The unbroken gauge symmetry in the bulk geometry, that is, in the
untwisted sector, is the common intersection of the “untwisted sectors” of the above
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local models. Imposing the projection condition (7.98) for all i gives the following
equivalent conditions for the root vectors P :

P · V = integer,

P · ai = integer, for all i.
(7.100)

Therefore, Wilson lines ai further break gauge symmetry from V , improving
Condition 2 [11].

Untwisted Matter In Sect. 7.4, we have considered in detail the matter fields for
the case without Wilson lines. With Wilson lines, any V +∑

i miai is a local shift
vector. Therefore, for the untwisted matter we require for the weight vectors P :

P · V �= integer,

P · ai = integer, for all i.
(7.101)

Thus, the matter fields also receive further projection from the Wilson lines. It
branches the representation of the original theory with V into those of the new
theory with ais, improving Condition 1.

Modular Invariance We conclude with another form of the modular invariance
equivalent to (7.99)

φ2 − V 2 = 0 mod 2/N,

a2
i = 0 mod 2/N,

2V · ai = 0 mod 2/N, for all i,

2ai · aj = 0 mod 2/N, for all i, j with i �= j.

(7.102)

This is convenient because independent objects are restricted.

7.5.4 Z3 Example

We construct a toy SU(5) model on a T 6/Z3 orbifold. With the point group action
θ , we associate a shift vector

V =
(
− 2

3
1
3

1
3

1
3

1
3 0 0 0

)(
− 2

3 0 0 0 0 0 0 0
)′
. (7.103)

Although this vector V preserves the SU(5), this shift vector yields the unbroken
gauge group SU(9) × SO(14)′ × U(1)′, due to gauge symmetry enhancement that
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made SO(16) into E8.4 We need a nonzero entry for the second E′8 direction to
satisfy the modular invariance condition.

To break the gauge symmetry further, we turn to a Wilson line along, say, the e1
direction along the first torus, with a shift

a1 =
(

0 0 0 0 0 0 0 2
3

) (
0 1

3
1
3 0 0 0 0 0

)′
(7.104)

This should be compatible with the point group, θe1 = e2, so we need a2 = a1. We
can verify that these shift vectors satisfy the modular invariance condition (7.102).

The resulting group is

SU(5)× SU(2)1 × SU(2)2 ×U(1)2 ×
[
SU(2)× SO(10)×U(1)2

]′
,

identified by the gauge fields satisfying the conditions in (7.100). We can obtain
matter spectrum in the untwisted sector (U) using the rule (7.101). The resulting
spectrum is listed on the first row of Table 7.1.

We have three inequivalent twisted sectors by V, V +a1, V −a1, which we call,
respectively, T0, T1, T2. Each has nine equivalent fixed points. The center of mass
of twisted string is at the fixed point. There are three fixed points ◦, •,× in the first
torus, depicted in Fig. 7.3. By the space group element, they return to the original
point, so we can parametrize the fixed point. The origin ◦ remains invariant and is
parametrized by (θ, 0). The point× needs e2 translation after the point group action

Xi×(π) = (θX×)i (0)+ e2. (7.105)

So, we associate (θ, e2) with the fixed point ×. Similarly, we may associate the
point • with the element (θ, e1+ e2). The corresponding shift vector is V +a1+a2.
In this Z3 case, it is identical to V + 2a1 � V − a1.

The mass shell condition (7.94) of the twisted sector spectrum is

M2
L

4
= (P + V +m1a1)

2

2
+ Ñ− 3

2
, m1 = 0, 1,−1.

The zero point energy only depends on the twist θ , not the translations along e1 and
e2. All the states have Ñ = 0 and survive the generalized GSO projection condition
(7.97). They are again tabulated in Table 7.1.

All the matter fields are left-handed, by appropriate charge conjugation. With
the help of some singlet fields with nonzero VEVs, this example can yield three
complete generations of 10 and 5. But we lack matter field with the adjoint
representation 24 for breaking SU(5) down to the SM.

4We will sometimes put a prime (′) to distinguish the original group as E8 × E′8.
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Table 7.1 Spectrum of the SU(5) model

Sector State vector Representation

Gauge (1 − 1 03 03)(08) (24, 1, 1; 1, 1)0,0,0,0

±(05 12 0)(08) (1, 3, 1; 1, 1)0,0,0,0

(05 1 − 1 0)(08) (1, 1, 3; 1, 1)0,0,0,0

(08)(0 1 − 1 05) (1, 1, 1; 3, 1)0,0,0,0

(08)(03 ±1 ± 1 03) (1, 1, 1; 1, 45)0,0,0,0

U0 (1 04 ±1 0 0)(08) 3(5, 2, 2; 1, 1)1,0,0,0

(−12 03 03)(08) 3(10, 1, 1; 1, 1)−2,0,0,0

(08)(−1 0 0 ±1 04) 3(1, 1, 1; 10, 1)0,0,0,−1

(08)(− 1
2

1
2 − 1

2 [ 1
2

4 − 1
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The underline means permutations and the square bracket [ ] means permutations up to even
numbers of minus sign changes. They are all left-handed in four dimensions

Fig. 7.3 We may associate a
translational element with a
Wilson line shift. Taking the
closed path, the localized
string is affected by the
Wilson line along this
direction
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It is nontrivial check that we have no SU(5) anomaly: the contribution from
the twelve 5 is cancelled by those from three 10 from U and nine 5 from T0. We
have four U(1) groups. There is a potential anomalous U(1) among them that can be
cancelled by the Green–Schwarz mechanism. We will come back to this in Chap. 13.

In the above model, we have obtained three generations of quarks and leptons
from the untwisted sector, due to the multiplicity coming from the right mover. In
Z3 orbifold, we have another natural way to have three generations. They are from
as many fixed points, if we turn on Wilson lines along two independent directions,
say in e1 and e3.

Exercises

� Exercise 7.1 Obtain the modular invariance condition (7.50) from the fermionic
construction.

� Exercise 7.2 In the standard embedding in Sect. 7.4.1, we may choose simple
roots of SU(3) differently. What other choices are possible? Are they all equivalent?
If not, how many inequivalent choices are?

� Exercise 7.3 We may choose the complex structure τ = e2πi/6 for the A2 lattice.

(a) Show that this is also compatible to the point group action θ = e2πi/3.
(b) Obtain the condition for the Wilson lines associated with this lattice vectors.

� Exercise 7.4 Show that the second twisted sector of the standard embedding
has automatically invariant phase, if the CPT conjugate states in the first twisted
sector are invariant. Discuss that we need modular invariance condition for this.
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8Formal Construction

Modular invariance of the partition function is an important guiding principle of
orbifold construction. In the construction of heterotic string in Sect. 6.3.3, we have
required separate modular invariance in the sixteen internal and the ten dimensional
spacetime dimensions. This yielded E8×E8 and SO(32) heterotic strings. If we relax
this to be invariance in the entire 26 dimensions, we may have a more general theory.
One fruitful result was the discovery of SO(16) × SO(16) heterotic string without
supersymmetry [1], but its applicability is much more profound, leading us to a
huge class of orbifold models. Furthermore, allowing different orbifolding in the
right mover, we can have asymmetric orbifolds.

In this chapter we define a more formal string theory on orbifold. Again the
modular invariance is the only guiding principle. We have been focusing on the
T 6/ZN orbifold with prime N , but we can generalize the discussion to non-prime
one. The explicit partition function will provide the proof on the orbifold rules
presented in the previous chapter. Phases of twisted ground states can be obtained.
Using the modular forms we can construct theories that do not admit geometric
interpretation. Also we apply this to threshold correction. Many references are
available [2–5].

8.1 The String Hilbert Space

We also extend the discussion to more general cases, non-prime orbifolds and factor
orbifolds: ZN with a non-prime N and ZN × ZM .

8.1.1 ConsideringModular Invariance

Now we are ready to define orbifold Hilbert spaces and partition functions [6].
Consider a complexified worldsheet boson Z. The geometry of orbifold requires
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for a string to be closed up to space group action h = (θ, v) ∈ S,

Z(σ + π) = hZ(σ) = θZ(σ)+ v. (8.1)

It appears that, for every h there is an independent Hilbert space. However, there is
redundancy. Because S is non-Abelian group, some different elements are regarded
as equivalent. Consider an additional action g ∈ S on (8.1),

gZ(σ + π) = ghZ(σ) =
(
ghg−1

)
gZ(σ). (8.2)

Since Z and gZ are identified, the twisted state specified by ghg−1 should be
equivalent to the one specified by h. The reader may recall that this is the notion of
conjugacy class [h], discussed in Sect. 3.1.3. Therefore, the Hilbert space is specified
by the conjugacy class

H[h] =
{
Z |Z(σ + π) = hZ(σ), h ∼ ghg−1, g, h ∈ S

}
. (8.3)

Given a twisted string by h, we keep the invariant states under g ∈ S. They
should commute with h, otherwise the invariance does not make sense. A set of
such commuting elements to h are called centralizer C(h). We are led to define a
generalized GSO projector making linear combination and an invariant state

Pg = 1

|C(h)|
∑

g∈C(h)

g, (8.4)

where |C(h)| is the order of the centralizer. By summation, we mean the linear
superposition of the quantum states.

Summing up, a modular invariant theory is formed in the following way. We want
to consider a given worldsheet theory compactified on orbifold defined by a space
group element h ∈ S.

1. Include the h-twisted strings for all h ∈ S as in (8.1). The corresponding
conjugacy class defines h-twisted sector.

2. For each element g ∈ C(h), keep only the g-invariant states by projection (8.4).

Via the twisted mode expansion (7.5), we have Virasoro generators L̃0(h) and L0(h)

made of the fields twisted by h. The resulting partition function has the form

Z (τ, τ̄ ) =
∑
h∈S

Z h(τ, τ̄ ) (8.5)

=
∑
h∈S

⎡
⎣ 1

|C(h)|
∑
g∈S

Tr
(
gqL̃0(h)+c̃q̄L0(h)+c

)⎤⎦ , (8.6)
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where

q = e2πiτ (8.7)

is the modular parameter defined in (6.77). The g gives rise to a phase. This
procedure is equivalent to introducing another twisted boundary conditions for the
other worldsheet direction as in (7.44)

Z
(
σ 1 + 2πτ1, σ

0 + 2πτ2

)
= gZ(σ, τ ).

Later we will call this sector as (h, g)-twisted sector.
For the Z2 orbifold with the representation g = −1, this is similar to giving

boundary condition for the worldsheet fermions. The latter gives rise to the spin
structure which is projected by GSO projector, which is formally the same as the
operator Pg . We also have seen that, in the fermionic construction of the current
algebra, the condition for even lattice has the same form as the GSO projection.
Hence we may call the projection (8.59) generalized GSO projection.

Under the modular transformations, the partition function becomes

T : Z (h,g) → Z (h,hg), (8.8)

S : Z (h,g) → Z (g,h−1). (8.9)

Thus we can calculate the entire partition function from the chain of modular
transformation. Since this chain is closed due to the finiteness of the action of S,
by construction, the total partition function Z (τ, τ̄ ) is invariant under the modular
transformation. The h = 1 case is our definition of the untwisted sector. The
summation is illustrated in Fig. 8.1.

In this book, we consider a toroidal orbifold, that is, a torus modded out by a
point group θ = e2πiφaJa ∈ P. Since a point group is Abelian, we have independent
Hilbert space for each θk ∈ P and all the elements belong to the centralizer

Fig. 8.1 Summing over the
spin structure is extended.
The phase ambiguity is
resolved by the generalized
GSO projection g
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|C(θk)| = |ZN | = N . Then we mod out the spectrum by the generalized GSO
projector

Pθl =
1

N

N−1∑
l=1

θ l. (8.10)

The above partition function takes the form

Z (τ, τ̄ ) =
N−1∑
k=0

[
1

N

N−1∑
l=0

Tr
(
θ lqL̃0(h)+c̃ q̄L0(h)+c

)]
(8.11)

= 1

N

N−1∑
k=0

N−1∑
l=0

Z (θk,θ l)(τ, τ̄ ) (8.12)

=
N−1∑
k=0

Z θk (τ, τ̄ ). (8.13)

8.2 Building Blocks of Partition Functions

With the above tools we may construct a modular invariant partition function.

8.2.1 Bosonic String

In this section we will calculate the partition function, which contains all the
necessary information on the spectrum. The generalized GSO projection condition
will be derived, which contains the vacuum phase in nonstandard embedding. Still,
the Jacobi elliptic function is a useful tool [7, 8] for studying such a property. First
we consider the simplest modular invariant theory of bosonic string on orbifolds as
a toy model. The same building block will be used when we construct the heterotic
string partition function.

Untwisted Sector
We first calculate the partition function that only includes bosonic degrees of
freedom. From the formal definition in the previous section, the untwisted sector
states are contained in the k = 0 term in (8.13)

Z X
θ0(τ, τ̄ ) = 1

N

N−1∑
l=0

Z X
(θ0,θ l)

(τ, τ̄ ). (8.14)
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For this, we use the untwisted generator L0(1) and we project onto a θ l invariant
state

Z X

(θ0,θ l)
(τ, τ̄ ) = Tr

(
θ lqL̃0(1)+c̃q̄L0(1)+c

)
. (8.15)

First, consider one complex dimension za and the states generated by the
operators from its mode expansion. We have a unique ground state |0〉 with the
zero point energy− 1

12 . If we act an oscillator along this direction, the next ones are
H = − 1

12 + 1 states α̃a
−1|0〉 and α̃ā

−1|0〉, whose θ l eigenvalues are, respectively,
e2πilφa and e−2πilφa , from (7.11). In this way we can construct the states and the
corresponding terms in the partition function1

Z a(τ ) = q−
2
24
(
1+ qe2πilφa + qe−2πilφa + . . .

)
(8.16)

= q−
2
24

∞∏
n=1

(
1− qne2πilφa

)−1(1− qne−2πilφa
)−1

. (8.17)

We can collect these into a modular form, that is, a combination of the ϑ-function
in (6.166) and η-function in (6.84). We use the relation

1

η
ϑ

[
1/2
1/2+lφa

]
= eπi/2eπilφa q

1
12

∞∏
n=1

(
1− qne2πilφa

) (
1− qn−1e−2πilφa

)

= −2 sin(lπφa)q
1
12

∞∏
n=1

(
1− qne2πilφa

) (
1− qne−2πilφa

)
.

(8.18)

In the last line, we factored out the factor containing qn−1 to obtain

Z a(τ ) = −2 sin(lφaπ)
η(τ )

ϑ

[
1
2
1
2+lφa

]
(τ )

. (8.19)

1We denote the holomorphic partition function as Z , antiholomorphic as Z and combined Z .
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The contribution for the right mover is just the complex conjugation, Z
ā
(τ̄ ) =

[Z a(τ )]∗. Gathering all for the number d/2 of complex dimensions, we have

Z X
(θ0,θ l)

(τ, τ̄ ) =
d/2−1∏
a=0

Z a(τ )Z
ā
(τ̄ )

= χ(θ l)

∣∣∣∣∣∣∣∣
d/2−1∏
a=0

η(τ)

ϑ

[
1
2
1
2+lφa

] (τ )
∣∣∣∣∣∣∣∣

2

.

(8.20)

We defined the prefactor that we call the formal number of fixed points under the
θ l twist

χ(θ l) ≡
d/2−1∏
a=0

4 sin2(lφaπ), (8.21)

to be justified shortly. The reason we introduced this is the contrary. It is a
normalization factor from the definition of theta function, to make the overall
coefficient of the partition function (8.16) to be 1, because there is no degeneracy in
the untwisted sector. Nevertheless, it will be related to the number of fixed points in
the θ l twisted torus.

We do not perform orbifolding in the noncompact dimensions, thus the corre-
sponding twist vector component, say φ0 is zero. This apparently makes sin(lφ0π)

and hence χ(θ l) vanish. However, the net partition function (8.19) does not depend
on sin(lφ0π), as seen in Eq. (8.18). Thus it is finite in the limit lφa = 0,

lim
lφ0→0

−2 sin(lπφ0)η(τ )

ϑ

[
1
2
1
2+lφ0

]
(τ )

= 1

η2(τ )
, (8.22)

so that Eq. (8.19) reduces to the case without orbifolding, as discussed in Sect. 6.1.4.
This argument also holds true if a certain direction is invariant under the twist lφa ≡
0 mod 1. Also the uncancelled, remaining prefactor χ(θ l) in (8.21) automatically
takes into account only the orbifolded directions. Note that this does not see whether
the space is compact or not, so in the noncompact case we need to put the factor from
continuous momentum 2π

√
τ2 by hand.

We define the number of fixed points under the twist θ l as

χ̃(θ l) =
∏
a

4 sin2(lφaπ), (8.23)

where the index a runs over non-fixed tori.
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Twisted Sectors
We can derive the partition functions of the twisted sectors from successive modular
transformations of the untwisted ones. This does not only prove the requirement
of the twisted states but also fix the normalization coefficients, which explains the
multiplicities of states.

Let us apply the modular transformation. The transformation S takes (1, θ l)
states to those of (θ l, 1), as in (8.9). The latter belongs to the θ l-twisted sector.
Indeed

Z X

(θl ,θ0)
(τ, τ̄ ) = χ

(
θ l

)
∣∣∣∣∣∣∣∣∣

3∏
a=0

η(τ)

ϑ

[ 1
2 + lφa

1
2

]
(τ )

∣∣∣∣∣∣∣∣∣

2

= χ
(
θ l

)
qc̃q̄c

∣∣∣∣∣
3∏

a=0

∞∏
n=1

(
1− qn+lφa

)−1 (
1− qn−1−lφa

)−1
∣∣∣∣∣
2

.

(8.24)

For convenience we fix the physical dimension d = 8 from now on. The definition in
terms of partition function on the last line fits well with the previous one, Eq. (8.20).
The zero point energy c̃ = c is modified to the correct value

c = − 4

24
+ 1

4

3∑
a=0

(lφa)(1− lφa),

as in (7.15), according to the regularization (7.14) (up to subtraction by integers in
lφa). The factor

√−iτ is common to eta and theta functions so that they cancel.
Expanding the above equation further, we have

Z X

(θl ,θ0)
(τ, τ̄ ) (8.25)

= χ
(
θ l

)
qc̃q̄c

(
1+ qlφa + q1−lφa + . . .

) (
1+ q̄1−lφb + q̄ lφb + . . .

)
.

Every term for any n in (8.24) surves, with the overall coefficient χ(θ l). Therefore,
we have the degeneracy factor coinciding with the number of fixed points (3.82). In
the untwisted sector, this factor set the overall degeneracy to 1.

Further transformations give any twisted states with any projections. Applying
T transformation m times to the (θk, 1) state, we obtain

Z X
(θk,θ0)

(τ +m, τ̄ +m) = Z X
(θk,θmk)

(τ, τ̄ ).
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Z(θ 0,θ 0) Z(θ 0,θ) Z(θ 0,θ 2)

Z(θ ,θ 0) Z(θ ,θ) Z(θ ,θ 2)

Z(θ 2,θ 0) Z(θ 2,θ) Z(θ 2,θ 2)

Fig. 8.2 Modular transformation of the Z3 orbifold partition functions. Solid line denotes T and
dashed S . It is drawn on a “torus” so that, for instance, T takes Z(θ,θ2) to Z(θ,θ0) and S takes
Z(θ0,θ2) to Z(θ2,θ0). Except (θ0, θ0) sector, every sector is connected

In the particular case k = 1, we have Z X
(θ,θm)(τ, τ̄ ). We can easily see from its

expansion in q , each field has the multiplicity χ(θ). The complete twisted sectors
and their transformations are shown in Fig. 8.2.

We can obtain the Z X
(θ2,θ)

function from Z (θ,1) from (8.24) by successive
transformations S ,T ,

Z X
(θ2,θ)

(τ, τ̄ ) = χ(θ)

∣∣∣∣∣∣∣∣∣

3∏
a=0

η(τ)

ϑ

[ 1
2 + 2φa
1
2 + φa

]
(τ )

∣∣∣∣∣∣∣∣∣

2

. (8.26)

Although the corresponding states belong to the second twisted sector, the prefactor
is not χ(θ2), but χ(θ) from that of the first twisted sector. The number of fixed
points χ(θ2) is always a multiple of χ(θ), because the latter counts the number of
fixed points under the rotation of a smaller angle. Thus the latter counts the number
of simultaneous fixed point under θ2 and θ . We express this as

χ(θ) ≡ χ
(
θ2, θ

)
.

We can show that the twisted sectors (θk, θ l) are related to the above by chain of
transformations, if k and l are relative prime. The prefactor becomes

χ(θ) = χ
(
θk, θ l

)
gcd(k, l) = 1.
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Z(θ 0,θ 0) Z(θ 0,θ) Z(θ 0,θ 2) Z(θ 0,θ 3)

Z(θ ,θ 0) Z(θ ,θ) Z(θ ,θ 2) Z(θ ,θ 3)

Z(θ 2,θ 0) Z(θ 2,θ) Z(θ 2,θ 2) Z(θ 2,θ 3)

Z(θ 3,θ 0) Z(θ 3,θ) Z(θ 3,θ 2) Z(θ 3,θ 3)

Fig. 8.3 Modular transformation of the Z4 orbifold partition functions, in the same format as
Fig. 8.2. There are three connected sectors, containing (θ0, θ0), (θ1, θ0), (θ2, θ0) sharing the same
coefficients χ(θk, θ l)

For example, in the Z4 orbifold, the component for (θ2, θ2) cannot be obtained by
the above chain of the modular transformations (see Fig. 8.3). It is only obtained
from Z (θ0,θ2), having the factor χ(θ2), by S and T transformations. Thus we
have

χ
(
θ2

)
= χ

(
θ2, θ2

)
.

Definitely, it is the “simultaneous” number of fixed points under θ2 and θ2.
All the twisted partition functions related by modular transformation have

the same coefficients. Generalizing above, for (θk, θ l)-twisted sector is related
to (θ0, θm) with m = gcd(k, l). Thus χ(θk, θ l) = χ(θm) is the number of



224 8 Formal Construction

simultaneous fixed points under θk and θ l twists [3, 4]. Therefore, the most general
bosonic partition function is

Z X

(θk,θ l)
(τ, τ̄ ) = χ

(
θk, θ l

)
∣∣∣∣∣∣∣∣∣

3∏
a=0

η(τ)

ϑ

[ 1
2 + kφa
1
2 + lφa

]
(τ )

∣∣∣∣∣∣∣∣∣

2

= χ
(
θk, θ l

)
Z X

(θk,θ l)
(τ )Z

X

(θk,θ l)(τ̄ ).

(8.27)

Note that we included noncompact spacetime degrees X (there are two more in
the light-cone gauge).

Z X

(θk,θ l)
(τ ) =

3∏
a=0

η(τ)

ϑ

[ 1
2 + kφa
1
2 + lφa

]
(τ )

, (8.28)

with a similar definition for the antiholomorphic part.
Our functions have the desired transformation property (8.8) and (8.9) thanks to

T : Z X
(θk,θ l)

(τ + 1) = eπi[(kφ)2+ 1
3 ]Z X

(θk,θk+l )(τ ), (8.29)

S : Z X
(θk,θ l)

(
−1

τ

)
= e−2πiklφ2

Z X
(θl,θ−k)(τ ). (8.30)

Since they give rise to only phases, the complete Z X
θk
(τ ), containing only the

combinations |Z X
(θk,θ l)

|2, is invariant.

The Number of Simultaneously Fixed Points
Since θ0 means no rotation, all the fixed points χ(θk) are by default the common
fixed points, χ(θ0, θk) = χ(θk). We have seen that

χ
(
θk, θ0

)
= χ

(
θ0, θk

)
=

∏
a

4 sin2(kφaπ). (8.31)

Under S , the following are related

χ
(
θk, θ l

)
= χ

(
θN−k, θ l

)
= χ

(
θk, θN−l

)
= χ

(
θN−k, θN−l

)
, (8.32)
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where we used θN = 1. Thus we can limit k and l to lie in the range 1, . . . , [N/2].
In this range, we find

χ
(
θk, θ l

)
= χ

(
θm

) =∏
a

4 sin2(mφaπ), m = gcd(k, l). (8.33)

This is again a formal expression. We have seen that, if we have fixed torus we have
formally sin(kφaπ) = 0 but this is to be cancelled by the same contribution from
the theta function in the denominator.

8.2.2 Current Algebra

For the partition function for the current algebra, we also require modular form. A
lesson from the first definition of theta function in (6.166) is that the lattice shift by
1
2 in (6.217) is realized as a shift in the argument of the theta function. The shift
vector V plays the same role as the twisted sector. We assume that it is given by
heterotic string before orifolding; it is 8 ⊕ 8 for E8×E8 and 16 for SO(32). We
consider a gauge group G of the rank r . The corresponding partition function is

Z G
(kV,lV )(τ ) =

1

2

∑
α,β

r∏
I=1

η
αβ
kl

1

η(τ)
ϑ

[
α+kVI

β+lVI

]
(τ ). (8.34)

Here, α and β can assume 0 (R states) and 1
2 (NS states), as seen in (6.176)–(6.179).

First, consider the bosonic expression using the momentum P ,

Z G
(V,W)(τ ) =

∑
q

1
2 (P+V )2+Ñ− 16

24 e2πi(P+V )·W, (8.35)

we need

Z G
(V,W)(τ ) =

1

2η8

∑
{nI }

q
1
2

∑
(nI+VI )

2
e2πi

∑
(nI+VI )WI

(
1+ (−1)

∑
nI

)

+ 1

2η8

∑
{nI }

q
1
2

∑
(nI+ 1

2+VI )
2
e2πi

∑
(nI+ 1

2+VI )WI

(
1+ (−1)

∑
nI

)
,

(8.36)

with sum over all the possible integers, {nI (I = 1, · · · , r)}.
However, in the definition of theta function,

ϑ
[
α+VI

β+WI

]
(τ ) = q

1
2 (nI+VI+α)2

e(nI+VI+α)(β+WI ),
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for each term with β = 1
2 , we have a unwanted factor

(−1)
∑

(VI+α) = eπi
∑

(VI+α) = e2πiβ(
∑

VI+α).

Since α = 1/2 if we have the partition function as a product of 4k(k ∈ Z) theta
functions, we have no α dependence. Using the last form, we can put this factor for
the β = 0 case. Setting

η
αβ
kl = e−2πiαβkVI (8.37)

removes them. Also, r is the rank of the gauge group: r = 8 for E8 and r = 16 for
Spin(32)/Z2. For E8×E8, we make the convention

Z G
(kV,lV )(τ ) =

⎛
⎝1

2

∑
α,β

η
αβ
kl

8∏
I=1

1

η
ϑ

[
α+kVI

β+lVI

]⎞⎠
⎛
⎝1

2

∑
α,β

η
αβ
kl

16∏
I=9

1

η
ϑ

[
α+kVI

β+lVI

]⎞⎠ (τ ),

(8.38)
so that the partition function behave in the same way for both the gauge groups,
using the same rank 16 shift vector.

The structure is best understood in the sum form of the theta function

Z G
(kV,lV )(τ ) =

∑
Ñ

∑
P∈�G

q
1
2 (P+kV )2+Ñ− r

24 e2πi(P+kV )·(lV ), (8.39)

where �G is the root lattice of the gauge group. The function (8.34) transforms as

T : Z G
(kV,lV )(τ + 1) = e−πi((kV )2+ 1

3 )Z G
(kV,(k+l)V )(τ ), (8.40)

S : Z G
(kV,lV )

(
−1

τ

)
= e2πiklV 2

Z G
(lV ,−kV )(τ ). (8.41)

For the oscillator contribution, we used

∑
P q

1
2P

2

q
r

24 (1− q)16
=

∑
Ñ

∑
P

q
1
2P

2+Ñ−1.

The q− r
24 comes from the contribution of the untwisted zero point energy, − 1

24
for each bosonic degrees of freedom. Although it is not possible to factor out the
oscillator on RHS, the infinite sum can be. Each factor (1−q)−1 = 1+q+q2+· · ·
provides the oscillator contributions in the corresponding Cartan subalgebra.
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8.2.3 Right-Moving Fermions

There are worldsheet fermions which are superpartners of the right-moving bosons.
Their partition function is obtained as in Eqs. (6.164) and (6.165), with the twist
vector

Z
ψ

(θk,θ l)(τ̄ ) =
1

2

∑
α,β

e−2πiαβ
3∏

a=0

1

η∗(τ̄ )
ϑ

[
α+kφa
β+lφa

]∗
(τ̄ ), (8.42)

with the spin structures. Note the essentially same form of the group partition
function (8.34). The gauge sector admits a description in the fermions. The
worldsheet fermions in the right mover can also be equivalently described by
bosons. The transformation can be suggestively expressed as

T : Z ψ

(θk,θ l)(τ̄ + 1) = eπi(k
2φ2+ d

24 )Z
ψ

(θk,θk+l )(τ̄ ), (8.43)

S : Z ψ

(θk,θ l)

(
−1

τ̄

)
= e−2πiklφ2

Z
ψ

(θl,θ−k)(τ̄ ). (8.44)

8.3 Heterotic String

Now we combine all the above partition functions to form the that of heterotic string
on orbifold [9–11]. We derive the modular invariance condition and the generalized
GSO projector.

8.3.1 The Full Partition Function of Heterotic String

The full partition function of heterotic string on orbifold is obtained by combining
all the above expressions,

Z (τ, τ̄ ) = 1

N

N−1∑
k=0

N−1∑
l=0

Z (θk,θ l)(τ, τ̄ ), (8.45)

Z (θk,θ l)(τ, τ̄ ) = ηk,lχ
(
θk, θ l

)
Z G

(θk,θ l)
(τ )Z X

(θk,θ l)
(τ )Z

X

(θk,θ l)(τ̄ )Z
ψ

(θk,θ l)(τ̄ ).

(8.46)

That is, the partition function is still decomposed into those of (θk, θ l)-sectors.
Under the modular transformation, we have

T : Z (θk,θ l)(τ + 1, τ̄ + 1) = e−πik2(V 2−φ2)Z (θk,θk+l )(τ, τ̄ ), (8.47)
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S : Z (θk,θ l)

(
−1

τ
,−1

τ̄

)
= e2πikl(V 2−φ2)Z (θ l ,θ−k)(τ, τ̄ ). (8.48)

As a result, each term of different (k, l) acquires a different phase (8.48). The overall
partition function is not guaranteed to be invariant. The only way to remove it is to
have the phase satisfying

ηkle
−πik2(V 2−φ2) = ηk(k+l),

ηkle
2πikl(V 2−φ2) = ηl(−k).

(8.49)

One can check that a simple solution is

ηkl = e−πikl(V 2−φ2). (8.50)

This means the ground state in the k-th twisted sector is linear combined as

|σk〉 =
∑
l

e−πikl(V 2−φ2)|σkl〉 (8.51)

and has a “vacuum phase”

θ |σk〉 = eπik(V
2−φ2)|σk〉. (8.52)

This cannot be seen in the operator formalism, discussed in Chap. 7. Especially in
the case of nonstandard embedding, this phase is nontrivial.

This is a necessary condition for the shape of the partition function. This
fixes the relative phases with respect to another. However, the entire partition
function still acquires a nontrivial phase and we need a more condition. Successive
transformations of T by N times in (7.46) change the boundary condition to

T N : (h, g)→
(
h, hNg

)
= (h, g), (8.53)

returning to the original one. From the phase (8.47), invariance requires for the
corresponding partition function to be well-defined for arbitrary k, we should have

N

16∑
I=1

V 2
I −N

3∑
a=0

φ2
a ≡ 0, mod 2, (8.54)

reproducing the modular invariance condition (7.50). If we fermionize the gauge
coordinates, the latter condition for un-orbifolded case N = 1 reproduces the GSO
projection. We have no nontrivial contribution underS transformation, becauseS 2

cancels the overall phase.
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This condition relates two quantities from the different spaces, one V from the
current algebra and the other φ from spacetime. Also this condition miraculously
relates the anomaly cancellation from different contributions: the information on the
multiplicity and the number of fixed points are contained in Z X and the information
on the chiral representations is contained in Z GZ ψ in Eq. (8.46).

Expecting Asymmetric Orbifold
We have been considering symmetric orbifold, for which we applied the same twist
in the left and right movers. It is evident that the bosonic part of the partition function

Z X
(θk,θ l )

(τ )Z
X

(θk,θ l )(τ̄ ) =
∣∣∣Z X

(θk,θ l )
(τ )

∣∣∣2

does not give rise to a phase under modular transformation. However, the gauge and
fermionic parts

Z G
(kV,lV )(τ )Z

ψ

(θk,θ l )(τ̄ )

are not automatically invariant. The modular invariance condition (8.54) makes this
and the full partition functions invariant. Thus the condition connects holomorphic
and antiholomorphic. The (k, l) twisted sectors are transformed in the same way for
every degrees of freedom, S invariance is universal.

Note that

Z X
(θk,θ l)

and Z
ψ

(θk,θ l )(τ̄ ) (8.55)

transform exactly in the same way under modular transformation. This is because,

the former has the theta functions ϑ
[

1/2+kφ
1/2+lφ

]
in the denominator and the latter has

its complex conjugates in the numerator.
So, alternatively, we can construct an orbifold theory by relaxing the common

left and right-moving bosonic states so that they are asymmetrical.

Z (θk,θ l)(τ, τ̄ ) = ηk,lZ
L
(θk,θ l)

(τ )Z
R

(θk,θ l)(τ̄ )

Z L
(θk,θ l )

(τ ) = Z G
(θk,θ l )

(τ )Z X
(θk,θ l )

(τ ) (8.56)

Z
R

(θk,θ l )(τ̄ ) = Z
X

(θk,θ l )(τ̄ )Z
ψ

(θk,θ l)(τ̄ ). (8.57)

By requiring independent modular invariance on Z L
(θk,θ l)

(τ ) and Z
R

(θk,θ l)(τ̄ ). In
this case, we may have different twists on the different movers but we do not have
geometrical interpretation of the space. We will construct asymmetric orbifold in
Sect. 12.5.
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8.3.2 Generalized GSO Projections

Due to orbifolding, a state survives if it is invariant under the space group action.
Without Wilson lines, it should be invariant under θ projection. Or, a linear
combination of more than one states can. In the latter case, the multiplicity of the
states may not be coincident with the number of fixed points. We have constructed
the partition function by inserting the projection operator. Thus, we may extract
invariant states under the orbifold from the partition function.

We extract the spectrum in the θk twisted sector that is invariant under θ . In the
absence of Wilson lines, we expand the partition function into the twisted sectors

Z θk (τ, τ̄ ) = Tr
(
Pθkq

L̃0(θ
k)+c̃q̄L0(θ

k)+c) . (8.58)

For each state, normalized as in (8.27), the phase sum becomes projection operator,

Pθk =
1

N

N−1∑
l=0

χ̃
(
θk, θ l

)
�(θk,θ l). (8.59)

The phase operator is given by

�(θk,θ l) =
(
�θk

)l
, (8.60)

where

�θk = exp 2πi

[
(P + kV ) · V − (s + kφ + ρR − ρL) · φ − k

2

(
V 2 − φ2

)]

(8.61)

and ρL and ρR are the oscillator numbers of the holomorphic and antiholomorphic
left movers in the internal group space, respectively, defined in (7.12). We included
vacuum phase Eq. (8.50) as well. We will come back to cases with Wilson lines, in
the next section.

The coefficient in Eq. (8.59) is given as

χ̃
(
θk, θ l

)
=

⎧⎪⎪⎨
⎪⎪⎩
χ
(
θk, θ l

) [
χ

(
θk

) �= 0
]
,

χ
(
θk, θ l

)/∏
a 4 sin2(kφaπ)

[
χ

(
θk

) = 0, l �= 0
]
,∏

b 4 sin2(lφbπ)
[
χ

(
θk

) = 0, l = 0
]
,

, (8.62)

which is essentially the same as χ(θk, θ l) in (8.33), as the first line shows.
Depending on the twisted sector, we need a correction because there is a cancellation
when kφa is an integer. For example, in the case of Z4 orbifold 2φ = 1

2 (2 1 1), the
component 2φ1 is an integer. Under this twist the corresponding direction is intact
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and has a fixed torus. The corresponding factor 4 sin2(kφ1π) formally vanishes, but
is cancelled by the same factor in the ϑ-function in the denominator, as in (8.18).
It is not a coincidence that the denominator contains the same factor because it is
obtained by the S transformation which contained exactly the same factor χ(θ).
The resulting overall factor is

3∏
a=2

4 sin2(φaπ) =
∏3

a=1 4 sin2(φaπ)∏1
b=1 4 sin2(φbπ)

= χ
(
θk, θ l

)
∏1

b=1 4 sin2(φbπ)
, (8.63)

where a does not run over the invariant directions, including a = 1 (it runs orver
a = 2, 3). Thus we remove the corresponding factor as in the second line, in which
the product index a runs over vanishing factor. Recall that this resulted in χ̃(1, θ l) =
1 in the untwisted sector. In the last line, we have the number of fixed points χ(θk)
with the same kind of correction, letting b runs over nonvanishing factors. Thus we
may interpret as

χ̃ (θk, θ l) = (the number of simultaneous fixed points under θk and θ l , on twisted tori by
θk ).

Note the following asymmetry χ̃ (θk, θ l) �= χ̃(θ l, θk) unlike the symmetry of
χ(θk, θ l). For the prime orbifoldsZ3 andZ7, simply χ̃(θk, θ l) = χ(θk, θ l) = χ(θ).
For the first twisted sector of the general orbifold, we have χ̃(θ, θ l) = χ(θ, θ l) =
χ(θ). These numbers are most frequently used in real calculation, so we tabulated
them in Appendix A.

The role of the generalized GSO projector is twofold. First, like in the GSO
projector, some states satisfying the mass shell condition may not be invariant
under this projector hence should be removed. Also, the multiplicity of the states
are determined by its coefficients. This is nontrivial in the non-prime orbifold. For
example, in the Z4 orbifold, the partition functions of (θ2, 1), (θ2, θ2), and (1, θ2)

are shuffled by modular transformations. Only particular linear combinations are
invariant under θ . We shall meet further examples in detail in the next chapter.

8.3.3 Partition Function of theZ3 Orbifold

We construct the partition function for the Z3 orbifold. We can see explicitly how
it transforms under the modular transformations and extract the generalized GSO
projection. For simplicity, we assume the standard embedding.

The partition function for the (θk, θ l)-twisted sector is decomposed as

Z (θk,θ l )(τ, τ̄ ) = Z E8
(kV ,lV )(τ )Z

E′8
(kV ,lV )(τ )Z

X
(θk,θ l)

(τ )Z
X

(θk,θ l)(τ̄ )Z
ψ

(θk,θ l)(τ̄ ),
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where

Z E8
(kV ,lV )(τ ) (8.64)

=
∑
α,β

e−2πiαI·(βI+φ)
ϑ

[
α+kV1

β+ 2
3 l

]
ϑ

[
α+kV2

β+ 1
3 l

]
ϑ

[
α+kV3

β+ 1
3 l

]
ϑ

[
α+kV4
β

]
. . . ϑ

[
α+kV8
β

]

2η8 ,

Z
E′8
(kV ,lV )(τ ) = Z E8

(0,0)(τ ), (8.65)

Z X
(θk,θ l )

(τ ) =
(
− sin

π

3

)3 η

ϑ

[
1
2+ 2

3 k

1
2+ 2

3 l

]
ϑ

[
1
2+ 1

3 k

1
2+ 1

3 l

]
ϑ

[
1
2+ 1

3 k

1
2+ 1

3 l

] , (8.66)

Z
X

(θk,θ l)(τ̄ ) =
[
Z X

(θk,θ l)
(τ )

]∗
, (8.67)

Z
ψ

(θk,θ l )(τ̄ ) =
∑
α,β

e2πiαI·(βI+φ)
ϑ

[
α+ 2

3 k

β+ 2
3 l

]∗
ϑ

[
α+ 1

3 k

β+ 1
3 l

]∗
ϑ

[
α+ 1

3 k

β+ 1
3 l

]∗
ϑ

[
α
β

]∗
2η∗4 ,

(8.68)

where we used Eqs. (8.34) and (8.27) and I = (1, 1, 1, 1). The second E8 is not
shifted so we use the original partition function in (6.242). There is no factor η0,1
so that the ground state is invariant under the twist.

Untwisted Sector
Let us analyze the untwisted sector k = 0. The most comprehensible form is when
we represent Z G as the sum and the rest as the product representations

Z(θ0,θ l)(τ ) =
∑

P∈8⊕8,Ñ
q

1
2P

2+Ñe2πiP ·(lV )

q
∏∞

n=1(1− qn)2(1− αlqn)3(1− α2lqn)3
, (8.69)

Z(θ0,θ l)(τ̄ ) =
∑

s,N q̄s
2/2e−2πis·(lφ)

q̄1/2
∏

n(1− q̄n)2(1− α2l q̄n)3(1− αl q̄n)3 , (8.70)

where α = e2πi/3. Here P s belong to E8×E8 lattice 8 ⊕ 8. The overall factor
q−1 comes from 24 bosonic degrees of freedom and contributes to the zero point
energy. Also the overall factor q−1/2 comes from 8 bosonic and fermionic degrees
of freedom.

The numerator shows the mass shell condition with the projection and the
denominator shows the oscillator contributions from the eight physical spacetime
dimensions in the light-cone gauge. The factor (−2 sin π

3 )
3 is cancelled by the

prefactor in ϑ[1/2
1/2+lφa ] in (8.27).
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We are interested in the massless states, which are provided by P 2 = 2, s2 = 1.
The denominator also contribute because the leading the expansion is

1

q
∏

n (1− qn)2 (
1− αlqn

)3 (
1− α2lqn

)3 = q−1 +
(

2+ 3αl + 3α2l
)
+O(q).

We can extract the generalized GSO projector

Pθ0 = 1

3

2∑
l=0

(
�(θ0)

)l
,

with

�(θ0) = e2πi[Ñ+P ·V−s·φ].

The only way to have nonvanishing projection is �(θ0) = 1, then all the three terms

have the unit phase giving overall multiplicity Pθ0 = 1. Otherwise Pθ0 = 1
3 (1+α+

α2) = 0 showing that they are projected out.
The massless states are counted by the coefficients of q0, which satisfy P 2 = 2

or P 2 = 0 with one excited oscillator Ñ = 1. They are subject to the projection
condition

P · V − s · φ = 0 mod 1. (8.71)

Once this is satisfied, then all the (θ, θ l) satisfy the invariance condition.
Gauge bosons satisfy P · V ≡ 0. To satisfy (8.71) we also need s · φ = 0. The

right movers contributing to q0 term in the expansion
∏
(1− q̄n)2 = (1+2q̄+ . . . ).

The contribution is 1
3 + 1

3 + 1
3 = 1 for each helicity.

We have also nontrivial contribution from matter states from P · V ≡ 1
3 mod 1

and s ·φ = 1
3 mod 1, so that Pθ0 = 1. The CPT conjugates come from P ·V ≡ 2

3
mod 1 and s · φ = 1

3 mod 1.
The current algebra component can be expressed as a product representation,

Z E8
(0,lV )

(τ ) =
∑
α,β

q−
1
3

8∏
I=1

∏
n

(
1+qn+α−

1
2 e2πi(β+lVI )

)(
1+qn−α−

1
2 e−2πi(β+lVI )

)
.

(8.72)

Each product over I is contributed from a complexified Weyl fermions, thus we have
16 fermions for each E8. The spin structure then corresponds NS and R sectors. Each
combines to the right mover with nontrivial phase.
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Twisted Sector
Here, the multiplicity 27 is not cancelled so that with the right mover we have 27
“fixed points.” In the asymmetric orbifold, this multiplicity is not correlated with
the right movers.

Again, we represent Z G in the sum and the rest in the product representations

e−πilV 2
Z(θ,θ l)(τ ) = −3

√
3

∑
P,Ñ q(P+V )2/2+Ñ− 2

3 e2πil
[
(P+V )·V−V 2/2

]
∏

n (1− qn)2 (
1− qn−1/3α2l

)3 (
1− qn−2/3αl

)3

eπilφ
2
Z(θ,θ l)(τ̄ ) = −3

√
3

∑
s,N q(s+φ)2/2− 1

6 e2πil
[
(s+φ)·φ−φ2/2

]
∏

n (1− q̄n)2 (
1− q̄n−1/3αl

)3 (
1− q̄n−2/3α2l

)3 .

From the above equation we briefly show how to read off the twisted sector mass
shell condition 1

2 (P+V )2+Ñ−c̃ given in (7.73), as well as the projection condition

Pθ = 1

3

2∑
l=0

27
(
�θ0

)l
,

with

(
�θ0

)l = e
2πil

[
Ñ+(P+V )·V−(s+φ)·φ− 1

2V
2+ 1

2φ
2
]
.

The denominator has the expansion

q−2/3
(

1+ 3q1/3α + 9q2/3α2 + · · ·
)
.

Besides the zero point energy factor q−2/3 giving c̃ = − 2
3 , these terms correspond

to 3 oscillators of Ñ = 1
3 and 9 oscillators of Ñ = 2

3 , as shown in Eq. (7.78). In the
product expression of the ϑ function, the power of q corresponds to the oscillator
number Ñ and their coefficient is the multiplicity times the phase. The leading term
1 is projected out since we have no left movers with the same mass.

We have the following equivalent summation expression, viz. Eq. (6.166),

Z(θ,θ l )(τ ) = −3
√

3

∑
P q(P+V )2/2− 3

2 e2πi(P+V )·(lV )

∑
s q

(s+φ)2/2− 1
2 e2πi(s+φ)·(lφ)

. (8.73)

The bosonic left mover has a fixed vector s = (−1, 0, 0, 0). Now we can read off
the phase of a state as exp[(P + V ) · lV − (s + φ) · lφ]. With the overall phase ηkl
we can obtain the vacuum phase (8.52).
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Modular Invariance
Let us check modular invariance. Under T ,S , those with different spin structure
and twists are shuffled. For the first, each ϑ[1/2

łφa
] and ϑ[1/2

+1/2+lφa ] acquires a phase

eπi/4, while ϑ[0β ] and ϑ[0β+1/2] acquire no extra phases. It is cancelled due to the
power 8 of the theta functions. This is not the case for the denominator giving
rise to (e−iπ/4)3 of the theta functions is cancelled by the phase of eta functions
(e−πi/12)15.2 Under S , (6.173), we learn that ϑ/η combination does not yield
nontrivial

√−iτ .
Then we see that T takes (θk, θ l)-twisted sectors to (θk, θk+l ) sectors, as

promised. Under S , two arguments in the theta function are interchanged, exchang-
ing (1, θ l) and (θ−l , 1) twisted sectors. The latter is equivalent to that of (θ3−l, 1).
This is displayed in Fig. 8.2.

Appendix

Modular forms are building blocks of the modular invariant partition functions.
We deal with modular transformations of the theta functions with general shifts.
We need to consider spin structure, which divides the twisted sectors into four
subsectors.

Under T , the theta functions transform as

ϑ
[
kVI

lVI

]
/η→ e

−πi
[
(kVI )

2+kVI+ 1
12

]
ϑ

[
kVI
1
2+(k+l)VI

]
/η, (8.74)

ϑ

[
kVI
1
2+lVI

]
/η→ e

−πi
[
(kVI )

2−kVI+ 1
12

]
ϑ

[
kVI

(k+l)VI

]
/η, (8.75)

ϑ

[
1
2+kVI

lVI

]
/η→ e

−πi
[
(kVI )

2− 1
4+ 1

12

]
ϑ

[
1
2+kVI

(k+l)VI

]
/η, (8.76)

ϑ

[
1
2+kVI

1
2+lVI

]
/η→ e

−πi
[
(kVI )

2− 1
4+ 1

12

]
ϑ

[
1
2+kVI

1
2+(k+l)VI

]
/η. (8.77)

The first is accompanied by extra transformation

ϑ
[
α
β

]
= e−2πiαϑ

[
α
β+1

]

Under S , we have

ϑ
[
kVI

lVI

]
/η→ e2πi(kVI )(lVI )ϑ

[
lVI−kVI

]
/η, (8.78)

2In the denominator there are seven ηs times extra eight ηs from Z E8 .
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ϑ

[
kVI
1
2+lVI

]
/η→ e2πi(kVI )(lVI+ 1

2 )ϑ

[
1
2+lVI

−kVI

]
/η, (8.79)

ϑ

[
1
2+kVI

lVI

]
/η→ e2πi(kVI− 1

2 )(lVI )ϑ

[
lVI
1
2−kVI

]
/η, (8.80)

ϑ

[
1
2+kVI

1
2+lVI

]
/η→ e2πi(kVI− 1

2 )(lVI+ 1
2 )ϑ

[
1
2+lVI

1
2−kVI

]
/η. (8.81)

So we understand how the states with different spin structures are shuffled.
The third and the fourth transforms exactly same as the bosonic. To have uniform

transformations yielding the same phase, the number of products should be a
multiple of four. This is satisfied by rank 8k gauge current algebra, including 8
and 16. For spacetime fermions, one complexified fermion is counted by the above
function so we need 16k dimensions.
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9Non-prime Orbifolds

Armed with the tools from the partition functions that we considered in the previous
chapter, we are now ready to deal with most general toroidal orbifolds. We consider
the so-called non-prime orbifold, that is, T 6/ZN orbifold with N non-prime or
T 6/(ZN × ZM).

Unlike prime-order cases, we have non-triviality in the higher twisted sectors.
One is from the geometry of fixed points of different orders and the physics of
GSO projections. Also, we have more than one choice of lattices, yielding different
condition for the Wilson lines. We calculate spectrum of some model, using both
projector and conjugacy classes. Finally we consider conditions on Wilson lines
and the generalized GSO projectors. The resulting spectrum is rich enough to build
realistic models.

9.1 The Geometry of Non-prime Orbifold

After carefully examining T 6/Z4 orbifold with SU(4)× SU(4) lattice, we consider
the standard embedding on it. It shall show how the twisted fields are organized.

9.1.1 T 6/Z4 Orbifold

Novel features in the T 6/ZN orbifolds with non-prime N , or non-prime orbifold
include

• There can be different choices of the twist for the same order N .
• The orbifold with the same point group allows for different lattices.
• The fixed points of θk-twisted sector k > 1 are not invariant under θ defining the

orbifold.
• We may have a fixed torus, whose direction is invariant under θk .
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K.-S. Choi, J. E. Kim, Quarks and Leptons From Orbifolded Superstring,
Lecture Notes in Physics 954, https://doi.org/10.1007/978-3-030-54005-0_9

237

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-54005-0_9&domain=pdf
https://doi.org/10.1007/978-3-030-54005-0_9


238 9 Non-prime Orbifolds

As a prototypical example of non-prime orbifold, we consider T 6/Z4 orbifolds
specified by a twist vector

φ = 1

4
(2 1 1). (9.1)

It has 16 fixed points in the θ -twisted sector and 16 fixed points in the θ2-twisted
sector not counting those points in the former. This is topological property fixed by
the point group of (9.1). Their actual location depends on the choice of the lattice.
There are three lattices compatible to the Z4 action as shown in Table 3.4. Among
them, we discuss two lattices SU(2)2 × SO(5)2,SU(4)× SU(4) in detail.

SU(2)2 × SO(5)2 Lattice
First consider the “most orthogonal” Coxeter lattice

SU(2)× SU(2)× SO(5)× SO(5),

which is depicted in Fig. 9.1, with the fundamental region shaded.
The action of θ is intuitively understood as π, π/2, π/2 rotations on the two-tori,

as the φ shows. We take the basis ei , i = 1, . . . , 6 satisfying the relation

θe1 = −e1, θe2 = −e2,

θe3 = e4, θe4 = −e3,

θe5 = e6, θe6 = −e5.

(9.2)

e1

e2

e3

e4

(θ ,0) (θ 2, e3)

(θ , e3)(θ 2, e4)

e5

e6

Fig. 9.1 T 6/Z4 orbifold with the SU(2)2 × SO(5) × SO(5) lattice. We have relations (θ2, 0) =
(θ, 0)2, (θ2, e3 + e4) = (θ, e3)2. Shaded is one possible choice of the fundamental region
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This can be expressed by a matrix

θ =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

−1
−1

−1
1

−1
1

⎞
⎟⎟⎟⎟⎟⎟⎟⎠
, (9.3)

where the empty entries are zero.
To see the representation of θ in the ei basis, we may complexify the basis

e1 = e1 + iU1e
2,

e2 = e3 + iU2e
4,

e3 = e5 + iU3e
6.

(9.4)

The SU(2) lattices are essentially one dimensional, so the corresponding complex
structure iU1 can be any. The relations (9.2) fix iU2 = iU3 = i. The above definition
fixes the form of the metric

Gij = ei · ej =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

A ∗ ∗ ∗ ∗ ∗
∗ B ∗ ∗ ∗ ∗
∗ ∗ C 0 ∗ ∗
∗ ∗ 0 C ∗ ∗
∗ ∗ ∗ ∗ D 0
∗ ∗ ∗ ∗ 0 D

⎞
⎟⎟⎟⎟⎟⎟⎟⎠
, i, j = 1, 2, . . . , 6,

while starred entries unfixed, as long as the metric is symmetric Gij = Gji .
Consider the first twisted sector. We have det(1− θ) = 16 fixed points

(θ, 0), (θ, e1), (θ, e2), (θ, e1 + e2),

(θ, e3), (θ, e1 + e3), (θ, e2 + e3), (θ, e1 + e2 + e3),

(θ, e5), (θ, e1 + e5), (θ, e2 + e5), (θ, e1 + e2 + e5),

(θ, e3 + e5), (θ, e1 + e3 + e5), (θ, e2 + e3 + e5), (θ, e1 + e2 + e3 + e5).

(9.5)
We see that along the e1, e2 direction, we have two fixed points and on each of the
remaining torus, we have two.

We consider the second twisted sector by θ2. Since the (12) direction becomes
fixed torus, we have det(1 − θ2) = 0. Removing this 2 × 2 block and letting the
resulting matrix θ ′, we have det(1 − θ ′2) = 16 showing that we have sixteen fixed
points in the (3456) plane.
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The classes (9.5) are equivalently expressed as the classes in the θ2 twist

(
θ2, 0

)
,
(
θ2, e3 + e4

)
,
(
θ2, e5 + e6

)
,
(
θ2, e3 + e4 + e5 + e6

)
(9.6)

are invariant under the θ as well. For example,

(
θ, e3

)2 =
(
θ2, θe3 + e3

)
=

(
θ2, θ3 + θ4

)
. (9.7)

The remaining 12 points are not θ -invariant, but there are pairs always related by
θ ∈ P. For instance,

(θ, 0)
(
θ2, e3

)
(θ, 0)−1 =

(
θ2, e4

)
,

(θ, e3)
(
θ2, e4

)
(θ, e3)

−1 =
(
θ2, e3

)
.

(9.8)

So they belong to the same conjugacy class. We have six conjugacy classes

[
(θ2, e3)

]
,
[
(θ2, e5)

]
,
[
(θ2, e3 + e5 + e6)

]
,

[
(θ2, e3 + e4 + e5)

]
,
[
(θ2, e3 + e5)

]
,
[
(θ2, e4 + e5)

] (9.9)

There are some degrees of redundancy as in (9.7). The last entry (θ2, e4 + e5) �
(θ2, e3 + e6) is not redundant to the others. Each conjugacy class forms order two
orbit.

In general, each conjugacy defines the centralizer of the space group S to the
generalized point group element θ ∈ P

C(θ) =
{
[(θ2, v)] | (θ, u)(θ2, v)(θ, u)−1 = (θ2, v), ∃u ∈ �

}
. (9.10)

SU(4) × SU(4) Lattice
The SU(4)× SU(4) lattice has the representation

θ =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

−1
1 −1

1 −1
−1

1 −1
1 −1

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

(9.11)

We name the basis vectors αi , since they are identical to the root vectors and we
need to distinguish them from those of SU(2)×SO(5) lattice. However they are not
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normalized so that the metric becomes

Gij = αi · αj =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

2A −A 0 ∗ ∗ ∗
−A 2A −A ∗ ∗ ∗

0 −A 2A ∗ ∗ ∗
∗ ∗ ∗ 2B −B 0
∗ ∗ ∗ −B 2B −B
∗ ∗ ∗ 0 −B 2B

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

with the starred entries unfixed, as long as Gij = Gji . Note that two diagonal 3× 3
block is proportional to the SU(4) Cartan matrix.

Let us focus on the first SU(4) lattice forming T 3. The bases are the simple roots
α1, α2, α3 satisfying the relations

θα1 = α2, (9.12)

θα2 = α3, (9.13)

θα3 = α0 ≡ −α1 − α2 − α3, (9.14)

θα0 = α1, (9.15)

showing θ4 = 1. The basis vectors are not orthogonal. Here α0 in (9.14) is defined
from the lowest root. These four roots are schematically displayed in Fig. 9.2. They
are all identified on the resulting orbifold.

We have again det(1− θ) = 16 invariant fixed points, because each T 3 contains
4 fixed points. The first three-torus that we consider has four fixed points

0,
1

4

(
3α1 + 2α2 + α3

)
,

1

2

(
α1 + α3

)
,

1

4

(
α1 + 2α2 + 3α3

)
.

α1

α3

α2

α0

Fig. 9.2 The three simple roots of SU(4) spanning T 3 compatible with the Z4 twist θ . With the
lowest roots α0 = −α1−α2−α3 the vectors become more symmetric under the rotation by θ . The
designated angles are π/2 and all the others are 2π/3. Under the twist θ2, the dashed line becomes
invariant and forms a fixed circle
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The symmetry becomes clearer if we denote them by conjugacy classes

[(θ, 0)] : θ0 = 0, (9.16)
[
(θ, α1)

]
: θ 1

4

(
3α1 + 2α2 + α3

)
= 1

4

(
−α1 + 2α2 + α3

)
,

(9.17)
[
(θ, α1 + α3)

]
: θ 1

2

(
α1 + α3

)
= 1

2
(α2 + α0) = −1

2

(
α1 + α3

)
,

(9.18)
[
(θ, α1 + α2 + α3)

]
: θ 1

4

(
α1 + 2α2 + 3α3

)
= 1

4

(
−3α1 − 2α2 − α3

)
.

(9.19)

We may also show

(
θ, α2

)
∈

[
(θ, α1)

]
,

(
θ, α1 + α2

)
∈

[
(θ, α1 + α3)

]
,

which reflect the identification (9.12)–(9.15).
Noting that θ rotates α1 + α3 by π

θ
(
α1 + α3

)
= α2 + α0 = −

(
α1 + α3

)
,

in fact 0 and 1
2 (α

1 + α3) are also invariant under Z2.
Taking the highest representation, 1

2 (α
1+2α2+α3), a successive subtraction by

α2, α1, α3 reproduces the fundamental weight of the SU(4), however, two of them
are identified by the twist. With equal four root vectors in the second three-torus, we
have 4× 4 = 16 fixed points in total.

We have θ2-twisted sector making use of the following:

θ2α1 = α3, (9.20)

θ2α2 = α0, (9.21)

θ2α3 = α1, (9.22)

θ2α0 = α2. (9.23)

We note that the combination

θ2
(
λ(α1 + α3)

)
= λ

(
α1 + α3

)
, (9.24)

is invariant under θ2, for any λ ∈ R. In the lattice they are redundant so we may
limit the range as 0 ≤ λ < 1. The space S : λ(α1 + α3) spans a fixed circle. In
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effect we form T 3/Z2 � T 2/Z2 × S orbifold by identifying the opposite points
with respect to the axis S. For the whole T 6/Z4 orbifold, S2 � T 2 becomes a fixed
torus.

Returning back to the previous T 3/Z2, we have also four fixed points

(
θ2, 0

)
: θ20 = 0, (9.25)

(
θ2, α1 + α2

)
: θ2 1

2

(
α1 + α2

)
= 1

2

(
α3 + α0

)
= −1

2

(
α1 + α2

)
,

(9.26)
(
θ2, α2 + α3

)
: θ2 1

2

(
α2 + α3

)
= 1

2

(
α0 + α1

)
= −1

2

(
α2 + α3

)
,

(9.27)
(
θ2, α1 + 2α2 + α3

)
: θ2 1

2

(
α1 + 2α2 + α3

)
= 1

2

(
α3 + 2α0 + α1

)

= −1

2

(
α1 + 2α2 + α3

)
.

(9.28)

Since 1
2 (α

1+α3) is invariant, no lattice translation is necessary and the correspond-
ing point belongs to the conjugacy class [(θ2, 0)]. We can also check that 1

2 (α
2−α1)

belongs to the conjugacy class [(θ2, α2+α3)]. We see (θ, α1)2 = (θ2, θα1+α1) =
(θ2, α2 + α1), so that (θ, α1) and (θ2, α1 + α2) are the same fixed points. Lastly,
we have only two points in the fundamental region, while others are outside; they
are in the fundamental region of the T 3/Z2 orbifold, though.

The two Z2 fixed points are not invariant under θ but they are exchanged by it

θ
1

2

(
α1 + α2

)
= 1

2

(
α2 + α3

)
,

θ
1

2

(
α2 + α3

)
= 1

2

(
α3 + α0

)
= −1

2

(
α1 + α2

)
,

(9.29)

possibly accompanied by a lattice translations. There are also uniqueZ2 fixed points

1

2

(
α2 + α3

)
,

1

2

(
α1 + 2α2 + α3

)
= 1

2

(
α2 − α0

)
, (9.30)

which lie in the fundamental region of θ , but become redundant in θ2. Including
the second three-torus, we have 4 × 4 = 16 such fixed points. This arises because
there is a fixed torus T 2 left invariant under the action θ2, but it has order two twist
under θ .
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Fig. 9.3 The relation
between SU(4) and
SU(2) × SO(5) lattice. The
former is primitive and
generates the latter. The three
basis vectors are all
orthogonal

α1

α3

α2

α0

e1e3

e4

To have the twist eigenstate of (9.1), we introduce a complexified basis

e1 = r1

(
α1 + α3 + (β1 + β3)t

)
,

e2 = r2

(
α1 + α2 − (α2 + α3)i

)
,

e3 = r3

(
β1 + β2 − (β2 + β3)i

)
,

(9.31)

where t can be any complex number and r1, r2, r3 are real numbers. We can show
that they are eigenstates with eigenvalues −1, i,−i, respectively, without need of
lattice translation.

Relation Between SU(4) and SU(2) × SO(5) Lattices
The same twist realizes two different lattices SU(4) and SU(2)× SO(5). We study
the relation between them.

Using the SU(4) root vectors α1, α2, α3, we can form the SU(2) × SO(5) basis
vectors

e1 = r1

(
α1 + α3

)
, e3 = r3

(
α1 + α2

)
, e4 = r3

(
α2 + α3

)
. (9.32)

The corresponding vectors are shown in Fig. 9.3. At least they are orthogonal.

e1 · e3 = e1 · e4 = e3 · e4 = 0,

as desired for the SU(2)× SO(4) lattice. But they cannot be equivalent on torus.
If we want for e3, e4 to have length 2, we may fix r3 = 1. Then, the coordinate

of the fixed point 1
2 (e

3+ e4) = 1
2 (α

1+2α2+α3) is equivalent to 1
2e1 up to a lattice

translation by α2. This means that the fixed point for the SU(2) × SO(5) lattice is
not. Although they share the same basis vector, the orbifolding made space different.



9.2 Strings on Non-prime ZN Orbifolds 245

To see this further, we note further for r3 = 1

α1 = 1

2r1
e1 + 1

2
e3 − 1

2
e4,

α2 = − 1

2r1
e1 + 1

2
e3 + 1

2
e4,

α3 = 1

2r1
e1 − 1

2
e3 + 1

2
e4.

The translation by αi in the SU(4) is not in the SU(2) × SO(5). They are not
compatible. They are independent lattices.

9.2 Strings on Non-prime ZN Orbifolds

Now we come back to physics and consider string theory on T 6/ZN orbifold, with
non-prime N .

9.2.1 Eigenstates of Point Group Element

We require the physical state to be invariant under the point group action θ ∈ P
defining the orbifold. This statement is meaningful only when the state under
consideration has definite transformation property under θ . Namely, we require it
to be eigenstate of θ [1].

Consider a state in the k-th twisted sector. We calculate the massless spectrum
using the formulae (7.37) and (7.38)

∣∣∣P + kV
〉
L
⊗

(∏
α
)∣∣∣ s + kφ

〉
R
≡

∣∣∣ (θk, v) 〉
, (9.33)

where we displayed only the spatial information using the conjugacy class. They
are further subject to the generalized GSO projection. Under the point group action
θ l ∈ P, the state acquires the phase

∣∣∣(θk, v)〉→ (
�θk

)l∣∣∣ (θk, v) 〉
. (9.34)

We require that this state must be invariant, �θk = 1. However, this only makes
sense if the state |ϕ〉 is an eigenstate under the point group.

Consider a fixed point f in the θk-twisted sector

(
θk, v

)
, θkf + v = f, v ∈ �. (9.35)
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Such fixed point is θ -eigenstate if it is the common fixed point under θk and θ . In
this case, there exists v0 such that (θk, v) = (θ, v0)

k . Then it is invariant under any
θ -conjugation.

(θ, u)
(
θk, v

)
(θ, u)−1 = (θ, u)(θ, v0)

k(θ, u)−1 =
(
θk, v

)
.

In a general a state k > 1 is not an eigenstate of θ . If a state is located at a non-fixed
point, conjugation by θ

(θ, 0)l
(
θk, v

)
((θ, 0)−1)l =

(
θk, θ lv

)
. (9.36)

We generate other fixed point states that are not in the fundamental region of θ

but that of θk . Let the order of this conjugation be L = |[(θ, v)]|. This is purely
geometric property. Thus it is given by the number of non-invariant fixed points at
a given direction a

L =
[
χ(θ)/χ(θ, θ l)

]
a
. (9.37)

If there are more directions we have

least common multiplet
(
[χ(θ)/χ(θ, θ l)]a, [χ(θ)/χ(θ, θ l)]b

)
. (9.38)

We can always make an eigenstate of θ by linearly combining all the conjugates

|(θk, v)l〉 = 1√
L

(
|(θk, v)〉 + γ−l |(θk, θv)〉 + · · · + γ−(k−1)l|(θk, θk−1v)〉

)
,

(9.39)

where the phase γ satisfies

γ L = 1. (9.40)

Since the total number of states should be invariant after linear combination, we
have L possible linear combinations, l = 1, 2, . . . , L. It is the eigenstate of θ , with
the eigenvalue γ l :

θ |(θk, v)l〉 = 1√
L

(
|(θk, θv)〉 + γ−l |((θk, θ2v)〉 + · · · + γ−(k−1)l|(θk, v)〉

)

= γ l |(θk, v)l〉.
(9.41)
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The information on γ is contained in the multiplicity factor χ̃(θk, θ l) in (8.62)
counting the number of simultaneous fixed points. See the example below. If γ = 1,
then the corresponding linearly combined states have the same phase as θ -invariant
state without linear combination. This should be because γ = 1 states have θ

eigenvalue 1 and thus invariant. The coefficient of the projector Pθ2 already take
into account the multiplicity of these θ -invariant states.

9.2.2 The Spectrum of T 6/Z4 Orbifold Model

Finally we take an example. Consider the Z4 orbifold (9.1) with the standard
embedding [2]

V = 1

4

(
2 1 1 05

) (
08

)
.

This also provides a general enough example for non-prime orbifolds. We take
SU(2) × SO(5)2 lattice because we can see the structure of the lattice more
intuitively. The six basis vectors ei, i = 1, . . . , 6 satisfy the relations in (9.2).

We obtain the root vectors from the rule P · V = integer in (7.53), so that we
identify the gauge group

E6 × U(1)2 × E′8.

In the untwisted sector, we have left-handed matter fields transforming as

2(27, 2)+ 2(1, 2)+ (27, 1)+ (27, 1).

All the states are neutral under the E′8, so we omit the corresponding information.
They all have appropriate right movers making the whole states invariant under Z4.

Twisted Spectrum: Operator Method
In the first twisted sector k = 1 we have zero point energy c̃ = 2f ( 1

2 ) + 4f ( 1
4 ) +

18f (0) = −11/16 and the states

∏
(α̃a−n)|P + V 〉L

with the following highest weight vectors satisfy the mass shell condition

(27, 1) : Ñ = 0, (P + V ) =
(
− 1

2
1
4

1
4 1 04

) (
08

)
,

(1, 2) : Ñ = 1
4 , (P + V ) =

(
− 1

2
1
4 − 3

4 05
) (

08
)
,

(1, 1) : Ñ = 1
2 , (P + V ) =

(
1
2

1
4

1
4 05

) (
08

)
.
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It is sufficient to present for the, since the whole representation is obtained
by successive subtractions by simple roots. The oscillator-excited states carry
the internal index a. For Ñ = 1

4 excitation, the state carries a = 2, 3

giving multiplicity 2. For Ñ = 1
2 , we have four states from the excitations:

α̃1−1/2, α̃
2−1/4α̃

2−1/4, α̃
2−1/4α̃

3
−1/4, α̃

3
−1/4α̃

3
−1/4.

The right mover has the zero point energy c = 2f ( 1
2 )+4f ( 1

4 )+6f (0) = −3/16
and from the mass shell condition we obtain the states

|s + φ〉R,

with

(s + φ) =
(
− 1

2 0 − 1
4 − 1

4

)
(R),

(s + φ) =
(

0 − 1
2

1
4

1
4

)
(NS).

From this we interpreted the state has −1 helicity for the untwisted sector states.
Combining the states, we obtain �θ = 1. We have the projection operator,

from (8.59),

Pθ = 1

4

(
16+ 16�θ + 16�2

θ + 16�3
θ

)
. (9.42)

With CPT conjugates provided by the third (=N − k) twisted sector result in

64(27, 1), 32(1, 2), 16(1, 1). (9.43)

Now consider the k = 2 twisted sector, whose effective twist is 2φ = 1
2 (2 1 1).

Because the first entry is integral, we expect that there is a fixed torus with vanishing
χ(θ2). From the mass shell condition, we have

|Ñ, P + 2V 〉L
(27, 1) : Ñ = 0, (P + 2V ) =

(
1 − 1

2 − 1
2 05

) (
08

)
,

(27, 1) : Ñ = 0, (P + 2V ) =
(

1 1
2

1
2 05

) (
08

)
,

(1, 1) : Ñ = 0, (P + 2V ) =
(
−1 − 1

2 − 1
2 05

) (
08

)
,

(1, 1) : Ñ = 0, (P + 2V ) =
(
−1 1

2
1
2 05

) (
08

)
.
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Appearance of complex conjugate representations seems natural because now the
k = 2 twisted sector is the same as the (N − k) = 2 twisted sector. The chirality is
however determined after combining with the right movers. We obtain ground states

|s + 2φ〉R
− : (s + 2φ) = 1

2 (−1 1 0 0),

+ : (s + 2φ) = 1
2 (1 − 1 0 0).

They are combined to have multiplicity according to the GSO projector

Pθ2 = 1

4

(
16+ 4�θ2 + 16�2

θ2 + 4�3
θ2

)
(9.44)

Applying this, we obtain the following states:

Left mover Right mover �θ2 Pθ2

(27, 1), (1, 1) − 1 10

(27, 1), (1, 1) + −1 6

(27, 1), (1, 1) − −1 6

(27, 1), (1, 1) + 1 10

We have indeed �θ2 = 1 for these states to multiplicity 10 to each |27, 1〉L ⊗
|−〉R and |27, 1〉L ⊗ |+〉R . Since they are CPT to each other, there are five Weyl
fermions transforming (27, 1) in four dimensions. The same holds true for the pair
|27, 1〉L⊗|+〉R and |27, 1〉L⊗|−〉R having multiplicity 6. Thus we have 4D states,
all with the left chiralities

5(27, 1)+ 5(1, 1)+ 3(27, 1)+ 3(1, 1) (9.45)

Twisted Spectrum: Geometric Method
We can understand the multiplicity of the twisted states reflected in the geometry. In
the k = 1 twisted sector, the first torus has four fixed points, and each of the second
and the third torus has two fixed points. So we have 2 × 2 × 4 = 16 fixed points
in total. This is directly translated to the multiplicity of the states in (9.43). All the
states are invariant under the projection �θ , thus survive.

In the k = 2 sector, there is non-triviality. To understand the geometric
distribution, we decompose (9.44) as

Pθ2 = 1

4

(
4+ 4�θ2 + 4�2

θ2 + 4�3
θ2

)

+ 1

4

(
6+ 6�θ2 + 6�2

θ2 + 6�3
θ2

)
+ 1

4

(
6− 6�θ2 + 6�2

θ2 − 6�3
θ2

)
.

(9.46)
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Note that, in each term, all the coefficients are the same up to phases. Their sum

4+ 6+ 6 = 16

is going to be the number of the fixed points.
Indeed, in the k = 2 sector, the two-torus spanned by e1 and e2 is an invariant,

“fixed torus” and the remaining four-torus has 4 × 4 = 16 fixed points. Among
them, only 4 of them

| (θ2, 0
)〉, | (θ2, e3 + e4

)〉, | (θ2, e5 + e6
)〉, | (θ2, e3 + e4 + e5 + e6

)〉 (9.47)

are invariant under the θ as well. This number is reflected in the coefficient 4 in the
first term of (9.46). They survive if they acquire no phase �θ2 = 1. This multiplicity
explains the contribution in the first line of (9.46). Considering CPT conjugates
in the same k = N − k = 2 twisted sector, we have invariant states

2(27, 1)+ 2(1, 1),

which have right-handed chirality in four dimensions.
The remaining 12 points are not invariant but can be pairwise combined to make

eigenstates under θ as in (9.39). Each pair is related to one of the conjugacy classes
in (9.9). Using (9.37) we find each conjugacy class forms order L = 2 orbit and

γ 2 = 1. (9.48)

The expression for the states is

|
(
θ2, v

)
l
〉 = 1√

2

(
|(θ2, v)〉 + γ |(θ2, θv)〉

)
, (9.49)

with (θ2, v) can be one of (9.9). We have two possible phase γ = ±1 from (9.48),
which are also the eigenvalues of the whole state |(θ2, v)l〉, l = 0, 1. If �θ2 = ±1,
the γ = ±1 combination survives, respectively. They contribute to the two terms in
the second line of (9.46). The overall contribution becomes

1

4

(
12+ 12�2

θ2

)
= 6.

Since the order of the conjugacy class is L = 2, we always have �2
θ2 = 1. Taking

into account CPT conjugates, we have three such 4D fields with right-handed
chirality for each quantum number

3(27, 1)+ 3(1, 1)+ 3(27, 1)+ 3(1, 1).
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Collecting all the states, we can explain the spectrum (9.45). We can also locate
where the twisted fields are distributed.

9.3 Strings on ZN × ZM Orbifolds

Referring to Table 3.3, there is another way to have N = 1 supersymmetry in four
dimensions. Namely, we may act two N = 2 twists in different directions, such
that the common intersection becomes N = 1 [3]. For example, we can choose
φ = 1

3 (1 1 0) and ψ = 1
4 (1 0 1) in Table 3.3. This results in a new type of orbifold

of “order” 12, considering all the possible combinations.
We have a number of features in ZN × ZM orbifolds.

• We have two independent twists, thus as many projections. This means that a
twisting and projecting elements are not identical any more. Local model picture
does not work anymore.

• Modular invariance does not completely fix the relative phases. We may have
discrete torsion [4].

• Taking into account CPT conjugates we may fix chirality to be, say, left-
handed. In ZN orbifold, all the left chiral fields appear in the same twisted sector,
not the inversely twisted sector. Then some state appears in a twisted sector and
some appears in the inversely twisted sector. For this, we take a convention of
displaying only the left-handed fields. Instead we need to show all the twisted
sectors including the inversely twisted sectors [5].

9.3.1 Combination of Twists

The point group for the ZN × ZM orbifold is

P = {θj1ωj2, j1 = 0, . . . , N − 1, j2 = 0, . . . ,M − 1} (9.50)

so that we have NM twisted sectors. We have defining elements of order N,M ,
respectively, denoted by twist vectors

θ = diag
(
e2πiφ1, e2πiφ2, e2πiφ3

)
, ω = diag

(
e2πiψ1, e2πiψ2, e2πiψ3

)
.

(9.51)

Then we choose the lattices. For each two-torus direction, the minimal order is
determined by the minimal eigenvalue of θj1ωj2 . It is not necessarily determined
by (j1, j2) = (1, 0) or (0, 1). For instance, for Z2 × Z3 with φ = 1

2 (1 1 0), ψ =
1
3 (1 0 1), the order of the first torus six is determined by φ + 2ψ = ( 1

6
1
2

1
3 ). We

should take the corresponding lattice G2.
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Now we construct string theory on ZN × ZM orbifold. For each j1, j2 of above,
we associate the twist with a shift in the group space

j1φ + j2ψ −→ j1V + j2W. (9.52)

The modular invariance condition is basically the same as Eq. (7.50) coming
from (7.49) [6],

(Nφ)2 = (NV )2 mod 2N,

(Mψ)2 = (MW)2 mod 2M,

(Mφ) · (Mψ) = (MV ) · (MW) mod 2M.

(9.53)

As always, the untwisted sector spectrum is invariant combinations of the left and
the right movers. In this case, every state has the transformation property (αk, βl)

under two orbifold actions.
In the presence of Wilson lines, we have further conditions [6]

(Niai) · (NiV ) = 0 mod 2Ni,

(Niai)
2 = 0 mod 2N,

(Nij ai · Nij aj ) = 0 mod 2Nij , i �= j,

(9.54)

where Ni are the orders of Wilson lines ai displayed in Table 9.3 and Nij =
gcd(Ni,Nj ) are the common orders.

The resulting group is the intersection of the unbroken groups of each action,
because two projection conditions (7.53) should be simultaneously satisfied,

P · V = integer, P ·W = integer. (9.55)

9.3.2 Partition Function and Discrete Torsion

The way we define a theory on ZN × ZM orbifold is different from that on ZN

orbifold. In particular, the projection condition is different.
The partition function is made of the building blocks

Z θj1ωj2 ,θk1ωk2 (iU, īU) = Tr
(
θj1ωj2qL̃0(θ

k1ωk2 )+c̃ q̄ L̃0(θ
k1ωk2 )+c) . (9.56)

In the untwisted sector we relate (1, 1) and (1, θ), (1, ω) which is S -transformed
into (θ, 1), (ω, 1). However these are not related to (θ, ω), so that the coefficients
of the corresponding partition functions are not fixed. We may let them free [3, 4]

Z = 1

MN

∑
j1,j2

∑
k1,k2

ε
(
θj1ωj2, θk1ωk2

)
Z θj1ωj2 ,θk1ωk2 (τ, iU) (9.57)
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but they are subject to consistency conditions from two-loop amplitude [4]

ε(g, hh′) = ε(g, h)ε(g, h′), (9.58)

ε(g, h)ε(h, g) = 1, (9.59)

ε(g, g) = 1. (9.60)

Without loss of generality, we may set

ε(θ, ω) ≡ ε, εN = 1. (9.61)

and solve them to find

ε
(
θj1ωk1 , θj2ωk2

)
= εj1k2−j2k1 . (9.62)

We may freely choose discrete torsion ε = 1, α, . . . , αN−1. All of the modes give
consistent anomaly free vacua.

The twisted sector spectrum is obtained by using the shift vectors (9.52),

1

4
M2

L =
(P + j1V + j2W)2

2
+ Ñ+ c̃j1,j2 = 0,

1

4
M2

R =
(s + j1φ + j2ψ)2

2
+ N+ cj1,j2 = 0,

1

2
M2 = M2

L = M2
R,

(9.63)

where the zero point energies are calculated as before by the effective twist j1φ +
j2ψ . We have generalized GSO projection conditions

exp2πi

[
(P + j1V + j2W) · (k1V + k2W)− (s + j1φ + j2ψ + ρR − ρL)

· (k1φ + k2ψ)− 1

2
((j1V +j2W) · (k1V +k2W)− (j1φ + j2ψ) · (k1φ+k2ψ))

]
.

(9.64)

Note that the R-charge vector becomes R = s+ j1φ+ j2ψ +ρR −ρL. This should
hold true for every k1, k2, because both of the following GSO projection conditions
should be satisfied

(
P + 1

2 (j1V + j2W)
)
· V − (ρR − ρL + 1

2 (j1φ + j2ψ) · φ = 0 mod 1,

(9.65)

(P + 1
2 (j1V + j2W)) ·W − (ρR − ρL + 1

2 (j1φ + j2ψ) · ψ = 0 mod 1.
(9.66)
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Note that we have stronger condition than T 6/ZN type orbifold. In particular,
local model picture does not hold any more, for which the projection condition
should also be written by j1V + j2W for fixed j1 and j2, but here we have
independent k1 and k2. It follows that the change of the shift vector by a lattice vector
∈  does not have the same projection condition. Thus it does give an equivalent
model any more. The change of the shift vectors by lattice translations

(V ,W)→ (V +�V,W +�W), �V,�W ∈ , (9.67)

consistent with the modular invariance conditions

Vi ·�Vi = 0 mod 1, i = 1, 2,

V ·�W +�V ·�W = −�V ·W mod 2.
. (9.68)

Plugging these, the new phase condition reduces to a choice of a discrete torsion
[6],

e2πi(j1k2−j2k1)V ·�W ≡ εj1k2−j2k1 . (9.69)

9.3.3 Z3 × Z3 Example

Let us illustrate with the simplest Z3 × Z3 example with the standard embedding.
The twists vectors are

φ = 1
3 (1 1 0), ψ = 1

3 (1 0 1)

and the shift vectors are

V = 1
3

(
1 1 06

) (
08

)
, W = 1

3

(
1 0 1 05

) (
08

)
.

The modular invariance condition (9.53) is automatically satisfied. The unbroken
gauge group is obtained from (9.55)

E6 ×U(1)2 × E′8

In the untwisted sector, each αi
−1|0〉R transforms differently under the action

θ and ω. Thus the untwisted sector is divided into three subsectors, calling
Uα,1, U1,α, Uα2,α2 . Since we have two projections (9.65) and (9.66), each state |P 〉L
selectively combines to the right mover, depending the value P · V and P ·W .

We have eight twisted sectors θj1ωj2, j1 = 0, 1, 2, j2 = 0, 1, 2. States in Tj1.j2

pair up states in TN−j1,M−j2 by CPT conjugation. Most of the twisted sectors
six dimensional, in the sense that they have one fixed torus, and the other four-torus
have 9 fixed points for each. All of them have the same zero point energy c̃ = −7/9.
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Table 9.1 All the
multiplicities come from the
number of fixed points

Sector States

Uα,1 27
U1,α 27
Uα2,α2 27
T1,0 9 · 27 + 9 · 27+ 18 · 1+ 27 · 1+ 36 · 1
T2,0 CPT conjugate to T1,0 states

T0,1 9 · 27 + 9 · 27+ 18 · 1+ 27 · 1+ 36 · 1
T0,2 CPT conjugate to T0,1 states

T1,1 27 · 27
T1,2 9 · 27 + 9 · 27+ 18 · 1+ 27 · 1+ 36 · 1
T2,1 CPT conjugate to T1,−1 states

T2,2 CPT conjugate to T1,1 states

The exceptions are the T1,1 and T2,2 twisted sectors, which has the effective twist
φ+ψ = 1

3 (2 1 1). Since it has the same effective shift as theZ3 orbifold, we have the

same zero point energy. From the mass shell condition (P+j1V+j2W)2/2+Ñ+c̃ =
0, we can calculate the massless spectrum. We display the resulting spectrum in
Table 9.1.

9.4 Wilson Lines on General Orbifolds

Finally, generalizing the discussion on prime orbifolds, we seek the condition for
Wilson lines and related GSO projections.

9.4.1 Constraints onWilson Lines

As we saw in Sect. 7.5, discrete Wilson lines are required to be consistent with the
space group. Thus the order is determined by the compatibility with the space group.

Recall that in the Z3 orbifold we are forced to identify Wilson lines in two
directions in a SU(3) lattice, e.g. a1 = a2 modulo a lattice vector, because of lattice
symmetry e2 = θe1. From the relation of conjugacy class (3.30), the boundary
conditions (θ, v0) and (θ, v0 + (1− θ)�) describe the equivalent fixed points, thus
we set Wilson lines along v0 and θv0 same,

av0 ≈ aθv0, (9.70)

where the sign “≈” means the equivalence up to a lattice translation. In general
orbifold, this constraint becomes stronger [1]. Since the Wilson lines are turned
along a basis defining lattice, the relations among them are lattice dependent, as
seen in Table 9.2.
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Table 9.2 Constraints on Wilson lines for ZN orbifold

P Lattice Order Condition

Z3 SU(3)3 3a1 ≈ 0, 3a3 ≈ 0, 3a5 ≈ 0 a1 ≈ a2, a3 ≈ a4, a5 ≈ a6

Z4 SU(2)2 × SO(5)2 2a1 ≈ 0, 2a2 ≈ 0,
2a3 ≈ 0, 2a5 ≈ 0

a3 ≈ a4, a5 ≈ a6

SU(2) × SU(4) × SO(5) 2a1 ≈ 0, 4a2 ≈ 0, 2a5 ≈ 0 a2 ≈ a3 ≈ a4, a5 ≈ a6

SU(4)2 4a1 ≈ 0, 4a4 ≈ 0 a1 ≈ a2 ≈ a3, a4 ≈ a5 ≈ a6

Z6-I SU(3) × G2
2 3a1 ≈ 0 a1 ≈ a2

[SU(3)]2 × G2 3a1 ≈ 0 a1 ≈ a2 ≈ a3 ≈ a4

Z6-II SU(2)× SU(6) 2a1 ≈ 0, 6a2 ≈ 0 a2 ≈ a3 ≈ a4 ≈ a5 ≈ a6

SU(3)× SO(8) 3a1 ≈ 0, 2a5 ≈ 0 a1 ≈ a2, a3 ≈ a4 ≈ 0, a5 ≈ a6

SU(2) × SU(3) × SO(7) 2a1 ≈ 0, 3a2 ≈ 0 a2 ≈ a3, a4 ≈ a5 ≈ a6 ≈ 0

SU(2)2 × SU(3)× G2 3a1 ≈ 0, 2a3 ≈ 0, 2a4 ≈ 0 a1 ≈ a2, a5 ≈ a6 ≈ 0

SU(2)2 × [SU(3)2] 3a1 ≈ 0, 2a3 ≈ 0, 2a4 ≈ 0 a1 ≈ a2, a5 ≈ a6 ≈ 0

Z7 SU(7) 7a1 ≈ 0 a1 ≈ a2 ≈ a3 ≈ a4 ≈ a5 ≈ a6

Z8-I SO(9) × SO(5)∗ 2a1 ≈ 0, 2a6 ≈ 0 a1 ≈ a2 ≈ a3 ≈ a4, a5 ≈ a6

[SU(4)2] 4a1 ≈ 0 a1 ≈ a2 ≈ a3 ≈ a4 ≈ a5 ≈ a6

Z8-II SU(2)2 × SO(9) 2a1 ≈ 2a2 ≈ 2a3 ≈ 0 a3 ≈ a4 ≈ a5 ≈ a6

SU(2) × SO(10)∗ 2a1 ≈ 0, 2a2 ≈ 0 a2 ≈ a3 ≈ a4 ≈ a5 ≈ a6

Z12-I E6 3a1 ≈ 0 a1 ≈ a2 ≈ a3 ≈ a4 ≈ a5 ≈ a6

SU(3) × F4 3a1 ≈ 0 a1 ≈ a2

Z12-II SU(2)2 × F4 2a1 ≈ 2a2 ≈ 0

They depend on the choice of the lattices, classified in Table 3.4. Conventions of shift vectors are
given in (3.4) and the lattices follow the same orders. The sign “≈” means equivalence up to lattice
translation. The order of F4 and G2 Coxeter group is 1, so that we cannot turn on nontrivial Wilson
line. On each line, the lattice has the same order of the entries of the twist vectors, except ones with
asterisk (*)

We classified the space group in Sect. 3.4. We used the Coxeter lattice as a
building block. Each of them has a specific order, we have from (3.57)

aα1 ≈ aα2 ≈ · · · ≈ aαN . (9.71)

A successive translation gives rise to successive gauge transformation of the Wilson
lines, we have

aaα+bβ = aaα + baβ. (9.72)

Specific to Coxeter group is the definition of the extended root (3.58)

aαN ≈ a∑N
i viαi

≈
N∑
i

viaα1 ≈ aα1

N∑
i

vi, (9.73)
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Table 9.3 Constraints on Wilson lines for ZN × ZM orbifold

P Lattice Order Condition

Z2 × Z2 SU(2)6 2a1 ≈ 0, 2a2 ≈ 0, 2a3 ≈ 0,
2a4 ≈ 0, 2a5 ≈ 0, 2a6 ≈ 0

Z2 × Z4 SO(5)× SU(2)2 × SO(5) 2a1 ≈ 0, 2a3 ≈ 0,
2a4 ≈ 0, 2a5 ≈ 0

a1 ≈ a2, a5 ≈ a6

Z3 × Z3 SU(3)3 3a1 ≈ 0, 3a3 ≈ 0, 3a5 ≈ 0 a1 ≈ a2, a3 ≈ a4, a5 ≈ a6

Z2 × Z6-I G2 × SU(2)2 × G2 2a3 ≈ 0, 2a4 ≈ 0

Z2 × Z6-II G2 × SU(3)× G2 3a3 ≈ 0 a3 ≈ a4

Z4 × Z4 SO(5)3 2a1 ≈ 0, 2a3 ≈ 0, 2a5 ≈ 0 a1 ≈ a2, a3 ≈ a4, a5 ≈ a6

Z3 × Z6 G2 × SU(3)× G2 3a3 ≈ 0 a3 ≈ a4

Z6 × Z6 G3
2

For conventions, see Table 9.2

where we used (9.71). It determines the order of Wilson lines

Laα1 ≈
(

1−
N∑
i

vi

)
aα1 ≈ 0. (9.74)

This orders are N, 2, 4, 3, 1, 1, respectively, for SU(N),SO(2n + 1),SO(2n),E6,

F4,G2, which are coincident with the determinant of the corresponding Cartan
matrix. Non-Coxeter lattices [SU(3)2], [SU(4)2] has order 3, 4, respectively. The
result is shown in Table 9.2. If the effective order is 1, we cannot turn on nontrivial
Wilson line. We also displayed similar conditions for ZN × ZM Wilson lines in
Table 9.3.

For example, consider the T 6/Z4 orbifold defined on the SU(4)× SU(4) lattice.
Considering one of the SU(4) lattice, we have a fixed point

(
θ, α1

)
. (9.75)

Since
(
θ, α2

)
,
(
θ, α3

)
,
(
θ, α0

)

can be obtained by conjugation of (9.75), they should have the same Wilson lines
up to lattice translation. It follows that

aα1 = aα2 = aα3 = aα0 = a−α1−α2−α3 . (9.76)

The relations tell us that we have

aα1 ≈ a−α1−α2−α3 ≈ −3aα1 .
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The same condition should apply to other directions, thus

4aα1 = 4aα2 = 4aα3 ∈ �. (9.77)

This is easily generalized to SU(N) and the order of Wilson line N .
Now consider the SO(5) lattice with the basis vectors e3, e4. From the defining

relation (9.2), we have

ae3 ≈ ae4 ≈ a−e3 ≈ a−e4 . (9.78)

In particular the first and the third imply

ae3 ≈ −ae3,

and the same for ae4 . Thus we have effective order two

2ae3 ≈ 2ae4 ≈ 0. (9.79)

This is generalized to SO(2n+ 1) and the order of Wilson line is 2. Considering all
directions, we have

2a1 ≈ 0, 2a2 ≈ 0, 2a3 ≈ 2a4 ∈ �, 2a5 ≈ 2a6 ∈ �. (9.80)

9.4.2 Conjugacy Class

A twisted string is specified by conjugacy class, containing the information about
the rotation and translation in the space group. We have seen that the conjugacy
class for the element (θ2, e3) is

(
θk,m3e

3 +m4e
4
) (

θ2, e3

) (
θk,m3e

3 +m4e
4
)−1

=
(
θ2, 2m3e

3 + 2m4e
4 + θke3

)
.

(9.81)

and
[
(θ2, e3)

]
=

{(
θ2, (2m3 + 1)e3 + 2m4e

4
)
,
(
θ2, 2m3e

3

+(2m4 + 1)e4
)
|m3,m4 ∈ Z

}

=
{(

θ2,±e3
)
,
(
θ2,±e4

)
,
(
θ2,±e3 ± 2e4

)
,
(
θ2,±2e3 ± e4

)
, . . .

}
(9.82)
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All the twisted strings by the elements in (9.82) should be regarded as the same
twisted string. It follows that, for the [(θ2, e3)]-twisted strings, the translation by 2e3

and 2e4 should be neglected. Note the order two relation (9.79). This is consistent
with the fact that additional translations by integral multiples of ±2e3,±2e4 define
the same conjugacy class. Therefore we have effectively order 2 Wilson lines.

9.4.3 Generalized GSO Projection

Consider a model with shift vector V and Wilson lines ai . We employ summation
convention. In the (θk,miei)-twisted sector, the spectrum satisfies the mass shell
conditions (7.94)

1

4
M2

L =
(P + kV +miai)

2

2
+ Ñ+ c̃(k),

1

4
M2

R =
(s + kφ)2

2
+ N+ c(k),

1

2
M2 = M2

L = M2
R.

We may understand all of these in terms of local shifts V ′ = kV +miai .
The spectrum is also subject to generalized GSO projection

P(θk,miei)
= 1

|C|
∑

(θh,liei )∈C
χ̃(θk,miei; θh, liei)Δ(θk,miei ;θh,liei ), (9.83)

where |C| is the order of the centralizer of (θk,miei), defined by commuting
elements

C(θk,miei) =
{
(θh, liei)

∣∣∣ [(θk,miei), (θ
h, liei)] = 0

}
. (9.84)

Its element and (θk,miei) have the common fixed points. In prime orbifolds, |C| is
the order multiplied by the number of fixed points. However in nonprime orbifolds,
different elements may belong to the same conjugacy class and hence we have
smaller |C|.

The phase is obtained by the operator

Δ(θk,mi;θh,li ) = exp 2πi
[
(P + kV +miai) · (hV + liai)

−(s + kφ + ρR − ρL) · (hφ)
−1

2
(kV +miai) · (hV + liai)+ 1

2
(kφ) · (hφ)

]
. (9.85)
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Here the dot product is understood if we treat P,V, ai as vectors in the current
algebra direction and s, φ as ones in the internal space.

Note that the function χ̃ (θk, θ l) in (8.62) counted the number of common fixed
points under the two point groups. The degeneracy of the point group is broken
because the space group distinguishes different fixed points. We find the number of
simultaneous fixed points under the two space groups as

χ̃(θk,miei; θh, liei ) =
{

1 (θk,miei), (θ
h, liei) have a common fixed point,

0 otherwise.
(9.86)

Of course, we consider the orbifolded directions only and do not count the fixed
torus directions.

In the absence of Wilson lines ai = 0 for all i, the projector reduces to
Δ(θk,mi ;θh,li) → Δh

θk
, as in (8.61). Also, we neglect the translation part in the space

group, so C = {θh}, |C| = N . We recover the GSO projector without Wilson lines
(8.59).

We can do a similar analysis for ZN × ZM type orbifolds [1]. We may modify
the projector (9.64) by replacing

j1V + j2W → j1V + j2W +miai (9.87)

Exercise

� Exercise 9.1 Show that the above T 6/(Z3 × Z2) orbifold is in fact equivalent to
T 6/Z6 − II orbifold by proving the following.

1. Calculate all the effective twists and the shifts.
2. In each twisted sector, show the Z6−II projection can be uniquely decomposed

into those of Z3 and Z2.
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10Interactions on Orbifolds

In the effective field theory approach, we have constructed Lagrangian guided by
symmetry, for a given spectrum. Since we have the first principle of string theory, we
can not only obtain the spectrum but also calculate interaction operator. It turns out
that many stringy effects can enhance or suppress the interaction. Stringy selection
rules forbid some couplings, and they provide origin of symmetries in the field
theory.

In this chapter, we derive low energy theory taking into account stringy effects.
First, we calculate the Yukawa interaction, which is of utmost importance in
understanding the low energy physics [1–3]. Conformal field theory on the world-
sheet provides powerful tool. Then, using the dimensional reduction [4, 5] and the
symmetry matching [6, 7], we will construct Kähler potentials and gauge kinetic
functions. Most of the stringy interaction is contained in the higher dimensional
Lagrangian, for which supersymmetry is strong enough to constrain the interactions.
The stringy version of nonrenormalization theorem tells us a lot on the form of the
action.

Pedagogical reviews on this topic are Refs. [8, 9]. We will use the coordinates
z = e2i(τ−σ) and thus ∂ ≡ ∂z.

10.1 Conformal Field Theory on Orbifolds

The heterotic orbifold theory also predicts feasible forms for superpotentials, among
which we are interested in the Yukawa couplings. In this section, we will take the
strategy of calculating string amplitude and compare the supergravity action giving
rise to it. There is a very powerful method using conformal field theory [2, 3].
The main discussion will be on the calculation of three-point correlation functions.
This low-level method is universally applicable to any string theory, including
intersecting brane (see Sect. 17.2). From three point functions, we can extract

© Springer Nature Switzerland AG 2020
K.-S. Choi, J. E. Kim, Quarks and Leptons From Orbifolded Superstring,
Lecture Notes in Physics 954, https://doi.org/10.1007/978-3-030-54005-0_10

263

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-54005-0_10&domain=pdf
https://doi.org/10.1007/978-3-030-54005-0_10


264 10 Interactions on Orbifolds

relative strengths among possible couplings. Then, we will sketch the procedure
for obtaining four point functions which will give the absolute normalization.

Knowledge on Kähler potential, whose form we will seek in the next chapter
section, is required to have the absolute normalization of physical Yukawa cou-
plings. However, the qualitative result such as relative strengths will not change.
This conformal field theory method can also be applied to any other string theory,
e.g. intersecting brane models [10].

10.1.1 Conformal Field Theory

We use conformal symmetry to facilitate the calculation.

Vertex Operators
Consider an interaction diagram for closed strings with external “in” and “out”
states, as shown in Fig. 10.1. Its complicated form can be simplified by using
the rescaling (6.6), δhαβ → (δ�)hαβ with a suitable δ�(τ, σ ). We can make
the diagram into a sphere by shrinking external legs into points. This drastically
simplifies the calculation.

Locally, this is viewed as transforming a closed string propagation diagram (a
cylinder) into a sphere. It is done by a holomorphic transformation

w→ z = ew, w ≡ τ + iσ. (10.1)

We can easily check that the state from the infinite past (τ → −∞) corresponds
to that on the point at the origin. During the transformation, all the information on
the state |ϕ〉 should be kept. Therefore, we are led to have a corresponding local
operator Vϕ(z, z̄) at the point. The simplest case is the one carrying no particular
quantum number: the tachyon. Since it is an eigenstate of the spacetime translation,
it carries a momentum as

: eik·X : (10.2)

Fig. 10.1 With a suitable transformation, the |in〉 or |out〉 state can shrink into a single point,
keeping the quantum numbers. Especially, a state becomes an operator, and the mass is converted
into the conformal weight



10.1 Conformal Field Theory on Orbifolds 265

with the understanding of normal ordering.
Now, let us define the conformal weight h as

V ′(z′) =
(
∂z′

∂z

)h

V (z). (10.3)

Naively speaking, it shows the scale transformation behavior. From now on, we will
concentrate on the left mover only with the argument z, since the same can be copied
to the right mover also. For example, the fields ∂nαX and : eik·X : have conformal
weights n and−k2/4, and so on. Locally, we measure the conformal weight h of an
operator O from the operator product expansion (OPE) of the energy–momentum
tensor

T (z)O(w, w̄) ∼ hO(w, w̄)

(z−w)2 + ∂wO(w, w̄)

z −w
. (10.4)

It turns out that the information on the mass of a given state is converted into
the conformal weight. The vertex operator will be inserted into the path integral
as

∫
d2z
√−hVφ . Since it should also be conformally invariant, d2z

√−h has
conformal weight −2 under the transformation (10.3). Therefore, Vφ should have
the conformal weight of two, h = 2. If V is for the tachyon (10.2), we have

− α′k2

4
= −α′M2

4
= 2. (10.5)

Using the correspondence

∂nXμ ↔ α̃
μ
−n,

∂̄nXμ ↔ α
μ
−n,

(10.6)

we may form the vertex operator of graviton. Carrying spin two, we need a second
rank tensor index. The vertex operator remains invariant under the worldsheet
transformation. Thus, we obtain

: ∂αXμ∂
αXνe

ik·X : (10.7)

Since each ∂X carries conformal weight 1, the total conformal weight is

1+ 1− k2

4
= 2,

and it reduces to k2 = 0. The graviton should be strictly massless (Fig. 10.2).
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z2
f2

z1

f1

z3
f3

Fig. 10.2 The scattering string diagram is a sphere with the twist vertex operators attached at a
number of points. These points are mapped to fixed points of the orbifold in the target space

Yukawa Coupling and Higher Order Generalization
For Yukawa couplings, we need three-point correlation functions. The correspond-
ing tree-level string diagram is the “sphere” with a number of external legs. The
external legs of the sphere representing the “in” and the “out” state particles are
shrunken at some points, as shown in Fig. 10.1, and the quantum numbers are
contained in the vertex operators. Technically, this is not enough to determine
overall normalization, so we also need to calculate a related four-point correlation
function.

In this section, we employ a covariant approach with the full Lorentz group
SO(1, 9), instead of light cone [2, 3]. Thus, we should take into account the confor-
mal ghost ϕ. It is known that, from anomaly cancellation for ghost currents, the sum
of ghost charges equals −2 for the sphere diagram. The renormalizable Yukawa-
type interaction, i.e. boson–fermion–fermion coupling (BFF ), is calculated from a
correlation function

〈
V−1V− 1

2
V− 1

2

〉
≡

∫
[DZ] . . . [Dϕ]e−SV−1V− 1

2
V− 1

2
, (10.8)

where the bracket represents path integration over all the relevant variables,
including ghosts, and the subscripts denote their charges. The form of the vertex
operator V will be evident shortly. These BFF interactions are in the effective
Lagrangian, from which we can deduce the superpotential. Higher order interactions
of type BnFF are given by

Z ≡
〈
V−1V− 1

2
V− 1

2
V0 · · ·V0

〉
(10.9)

with vertex operators of ghost charge 0. We shall shortly increase the ghost charge
by picture-changing operation, so there is no essential difference between V−1
and V0.
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10.1.2 Vertex Operators for Interactions

We proceed to construct pertinent vertex operators. It has one-to-one correspon-
dence with the state and thus encodes all the information about the spectrum.

Untwisted Fields
Heterotic string has 26 bosonic left movers and supersymmetric 10 right movers.
The general vertex operator has the form

Vq(z, z̄) = geqϕ(z̄)ei
∑26

M=1 k
M
L XM

L (z)ei
∑10

N=1 k
N
R XN

R (z̄)eis
aHa(z̄). (10.10)

We conventionally write this as

Vq(z, z̄) = geqϕ(z̄)eik
μ
LX

μ
L(z)eik

μ
RX

μ
R(z̄)eiP

IXI (z)eis
aHa(z̄). (10.11)

We need a ghost field ϕ(z̄) in the covariant formalism with the charge q [1–3]. g
is the closed string coupling. The factor eik·X(z,z̄) ≡ eik

μ
LX

μ
L(z)+ikμRXμ

R(z̄), with only
spacetime degrees of freedom, indicates that the vertex operator carries lightlike
momentum k. The complex field Ha(z̄), a = 0, 1, 2, 3, 4, is the bosonization of the
right-moving worldsheet fermions.

From conformal field theory of ghosts, the NS (spacetime boson) and the R
(spacetime fermion) states have −1 and − 1

2 ghost charges, respectively. Therefore
for bosonic states,

V−1(z, z̄) = g eis·Heik·Xe−ϕeiP ·F . (10.12)

Thus, it has s = (±1 0 0 0 0), as the vector representation 10 of SO(10).
See (6.247). For fermions

V− 1
2
(z, z̄) = g eis·Heik·Xe−

1
2ϕeiP ·F , (10.13)

where s = ([ 1
2

1
2

1
2

1
2

1
2 ]) with even numbers of minus signs, which constitute the

spinorial representation 16. The conformal weights for the operator (10.13) are

hV−1 =
P 2

2
+ k2

L

2
= 2

2
+ 0 = 1, (10.14)

h̄V−1 =
s2

2
+ k2

R

2
− 1

2
1(1− 2) = 2

2
+ 0+ 1

2
= 1. (10.15)

The conformal weight for the ghost with charge q is

hqφ = −1

2
q(q + 2). (10.16)
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To calculate nonrenormalizable interaction (10.9), we should make a zero charge
vertex operator. We perform the picture-changing operation [3, 11]

V0(z, z̄) = lim
ω̄→z̄

eϕ(ω̄)J−(ω̄)V−1(z, z̄), (10.17)

where

J− = ∂̄Xμψμ + ∂̄Z
ā
ψā + ∂̄Zaψa (10.18)

is the right-moving worldsheet supercurrent (6.109). Therefore, we have the follow-
ing zero charge vertex operator:

V0(z, z̄) = geik·X
(
ikνψνe

is·H + ∂̄XM
)
eiP ·F . (10.19)

Here, the k-dependent extra term is the connection in the worldsheet sigma model.
In the zero momentum limit k → 0, it is simply

V0 = ∂̄XM,

which has the same Lorentz transform property as (10.12). We have apparent
discrepancy for Lorentz index in the first and second terms, which we will discuss
shortly.

Twist Fields
We may also have twisted states in the correlation function in general. We construct
vertex operators for the twisted field. The twisted boundary condition brings about
a number of changes. First, the ground state is also twisted, so that we have the
corresponding operator. It reminds us of a familiar problem with the fermionic
vertex operator. A spin half fermion is characterized by the double-valued function,
ψ(e2πiz) = −ψ(z). To make a vertex operator, we introduce “spin fields” S(z) and
S̃(z) obeying OPE

ψ(z)S(0) ∼ z−1/2S̃(0), (10.20)

where the ∼ means that both sides are the same up to irrelevant regular terms. This
should be realized by local fields, because the position of singularity is independent
of z. S(0) and S(∞) are interpreted as making cuts running between 0 and∞. This
z1/2 is double-valued function, and for single-valuedness, we introduce the covering
space, called Riemann sheets [1]. When we transport z once around 0, we cross the
branch cut, the coordinate can be thought to be in a different space. This is what we
do in the complex analysis when we have a multiple-valued function.
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The two-point correlation function now contains spin fields

〈S(∞)ψ(z)ψ(w)S(0)〉 = −1

2

1

z −w

(√
z

w
+

√
w

z

)
. (10.21)

Although it has different global structure to the one without spin fields,

〈ψ(z)ψ(w)〉 = −1

2

1

z−w

in the z→ w limit, or locally, both behave the same. Surveying conformal weights,
one notes that it reproduces the mass shell condition [2, 3]. With the spin fields, the
theory is not local any more. This is the reason why we introduced GSO projection
to make the theory local.

Precisely, the same action is done to bosons by a Z2 twisting Z(e2πiz) = −Z(z).
We may introduce a double-valued “twist field” σ(z) and an “excited twist field”
τ (z) performing the same action on the bosonic field

∂Z(z)σ (0) ∼ z−1/2τ (0). (10.22)

This is naturally generalized to ZN twist fields σk and τk (from now on, it is
understood that the order N is implicit),

∂Z(z)σk(0) ∼ zk/N−1τk(0). (10.23)

Encircling z once around 0, it acquires a phase e2πik/N and we subtract−1 to make
the power singular.

Here, the reason for acquiring a phase is not due to the spin statistics, but to
the property of geometry. For patching to a single-valued space, we introduce a
covering space, which is exactly how we made the ZN orbifold. The multi-valued
function zk/N gives the correct orbifold phase. The twisted ground state (7.9) is now
interpreted as

|σk〉 = σk(0, 0)|0〉, (10.24)

with the untwisted ground state |0〉. Therefore, the relation (10.23) can be extracted
when we consider the (complexified) mode expansion, (7.5). Consider, for example,
the ∂Z part, where only the holomorphic left movers are relevant. By the definition
of the ground state, α̃a

m+k/N s with m ≥ 0 annihilate the ground state (10.24).
Therefore, among excited states, the most singular part is

∂Z|σa
k 〉 = ∂Zσa

k (0, 0)|0〉 ∼ − i

2
zk/N−1α̃a

k/N−1|σa
k 〉 ≡ zk/N−1τak (0, 0)|0〉,

(10.25)
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where we could also extract the excited twist field τk , with the suggestive name.
Their conformal weights are

hσk = 1
2

k
N
(1− k

N
), hτk = 1

2
k
N
(3− k

N
). (10.26)

In the similar manner, we obtain

∂Z(z)σk(0, 0) ∼ zk/N−1τk(0, 0),

∂Z(z)σk(0, 0) ∼ z−k/Nτ ′k(0, 0),

∂̄Z(z̄)σk(0, 0) ∼ z̄−k/N τ̃ ′k(0, 0),

∂̄Z(z̄)σk(0, 0) ∼ z̄k/N−1τ̃k(0, 0),

(10.27)

where the twist fields are in general functions of both coordinates ω and ω̄. The
excited twisted fields, τ, τ ′, etc., are related with others with slightly different
conformal weights. Also, we have similar expressions for σ−k . Again, to avoid non-
locality we need to introduce generalized GSO projection.

The whole vertex operator for a right mover in the j th twisted sector has the form

V−1 = ei(P+jV )·F ei(s+jφ)·Heik·Xe−ϕ
∏
a

σ a
jφa ,

with s being vectorial 10 and

V− 1
2
= ei(P+jV )·F ei(s+jφ)·Heik·Xe−

1
2ϕ

∏
a

σ a
jφa ,

with s being spinorial 16. Here, φ is the twist vector, jφ = (
2j
3

j
3

j
3 0 0) for Z3

example, and σ is the twist field. We have calculated s already, e.g. in (7.58–7.60)
in the Z3 example (note that the twisted sector H -momentum is not s, but s +
kφ). Note also that the untwisted sector has various massless solutions of (6.246)
as H -momentum, depending on what Lorentz components they have. However, in
the twisted sector there is essentially a unique solution, because a specification on
orbifold determines it. We have tabulated them in Table 10.1.

We can similarly construct higher order twist operators. However, as in the
construction of wave function in Sect. 9.2.2, there might be twist fields that are not
eigenstates of point group action θ ∈ P in the higher twisted sectors. If a twisted
sector has fixed tori, we can make a physical twist field as an eigenstate of θ by
forming a linear combination

1√
l

(
σk,f + γ−1σk,θf + γ−2σk,θ2f + · · · − γ l+1σk,θl−1f

)
. (10.28)
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Table 10.1 H -momenta (s + kφ) of twisted fields θk in various ZN orbifolds. The twisted fields
are chosen to give L-handed fermions in four dimensions. The fields are in the NS sector in the
(−1)-picture. These are the solutions of (7.38) in our convention on twist given in Table 3.4

Orbifold θ1 θ2 θ3 θ4 θ5 θ6

Z3
1
3 (-1 1 1)

Z4
1
4 (-2 1 1) 1

2 (0 1 1)

Z6-I 1
6 (-4 1 1) 1

3 (-1 1 1) (0 1 1)

Z6-II 1
6 (-3 2 1) 1

3 (0 2 1) 1
2 (-1 0 1) 1

3 (0 1 2)

Z7
1
7 (-4 2 1) 1

7 (-1 4 2) 1
7 (-2 1 4)

Z8-I 1
8 (-5 2 1) 1

4 (-1 2 1) 1
2 (-1 0 1) 1

8 (-1 2 5)

Z8-II 1
8 (-4 3 1) 1

4 (0 3 1) 1
8 (-4 1 3) 1

2 (0 1 1) 1
4 (0 1 3)

Z12-I 1
12 (-7 4 1) 1

6 (-1 4 1) 1
4 (-3 0 1) 1

3 (-1 1 1) 1
2 (-1 0 1)

Z12-II 1
12 (-6 5 1) 1

6 (0 5 1) 1
4 (-2 1 1) 1

3 (0 2 1) 1
12 (-6 1 5) 1

2 (0 1 1)

Orbifold θ7 θ8 θ9 θ10

Z12-I 1
12 (-1 4 7) 1

4 (-1 0 3)

Z12-II 1
3 (0 1 2) 1

6 (0 1 5)

The same argument applies to the twisted left movers. For example, consider
the state (3, 1) in the standard embedding of Z3. The massless state (7.75) is
formed with the aid of oscillator α̃i

−1/3; therefore, we expect the fractional oscillator

contribution ∂Zi/∂z̄1/3. Therefore, we have

V i = ei(P+V )·F ∂z̄1/3Z
ieik·Xσ1. (10.29)

It carries the spacetime index i and plays an interesting role in understanding
geometry. However, (27, 1) has no oscillator

V = ei(P+V )·F eik·Xσ1. (10.30)

10.2 Selection Rules

The Lagrangian and observable should be gauge invariant. From the invariance
properties, we deduce the following selection rules arising from the properties of
the internal space [1–3,12]. Without calculating couplings explicitly, we can quickly
check whether a term with given fields survives or not.
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10.2.1 Space Group Invariance

We first consider a selection rule from the space group. Let θ be the twist defining
the toroidal orbifold. In view of (3.30), every twisted state in the θk twisted sector
is specified by a conjugacy class (3.29)

v ∈ { (
θk,

(
1− θk

) (
θ lf + ui

)) }
. (10.31)

This means, any of ui ∈ �, l = 0, 1, . . . , N
k
− 1 gives the same fixed point in the

fundamental region (which is usually meant by f ).
The transformation property of a correlation function is also given by that of

the product of the elements given in (10.31). The amplitude is nonzero only when
the product is (1, 0). Consider a three-point correlation function. Its space group
property is determined by the product

(
θk1 , v1

)(
θk2, v2

)(
θk3, v3

)

=
(
θk1+k2+k3 , v1 + θk1v2 + θk1+k2v3

)

= (1, 0),

(10.32)

where the last equality is the requirement.
We may use the selection rule, for two given twisted fields, to find the space

property of the third twisted field.

• Invariance of the rotational part gives the condition for ki

k1 + k2 + k3 ≡ 0 mod N, (10.33)

because θ is of order N . This is also called point group selection rule.
• Using the specific form (10.31) (for the moment, take l = 0 for each vi ), we have

(
1−θk1

)
(f1+u1)+θk1

(
1−θk2

)
(f2+u2)+θk1+k2

(
1−θk3

)
(f3+u3)= 0.

(10.34)

It turns out that if this holds for l = 0, it also holds for any l.

The translation part can be further simplified using θk3 = θ−k1−k2 from (10.33)
as

f1−f3+u1−u3+θk1(f2−f1+u2−u1)+θk1+k2(f3−f2+u3−u2) = 0. (10.35)

This is the condition for forming a triangle A1A2A3 using the side vectors
−−−→
A3A1 =

(f1 − f3 + u1 − u3),
−−−→
A1A2 = θk1(f2 − f1 + u2 − u1),

−−−→
A2A3 = θk1+k2(f3 − f2 +
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Fig. 10.3 The triangle
surrounded by the three fixed
points
Ai = fi + ui, i = 1, 2, 3

A1 A3

A2

2πk1φ 2πk3φ
f1+u1 − f3 − u3

u3−u2), depicted in Fig. 10.3. The angles are Ai = 2πkiφ with φ the component of
the twist in this direction. The modulo condition in the point group selection alone
allows the sum of the angle to be multiple of π admitting any polygon. However,
the translational part (10.35) restricts it to be the triangle.

A triangle is uniquely formed if we know two angles and one side in between.
In this respect, the condition (10.35) seems overconstrained. However, one side is
defined by difference of two fixed points, say (f1+u1) and (f2+u2), fixing the third
means the condition for just one complex number f3 + u3. Therefore, a collection
of three fixed points does not always make an invariant Yukawa coupling.

Without loss of generality, we can set u3 = 0. Note that letting k = gcd(k1, k2),
we can show that (1−θk) always divides (1−θk1+k2) and the result is still the entire
lattice �. Then, we can solve (10.34)

u1 ∈ u2 + (1− θk)−1(1− θk1+k2)�, (10.36)

which further restricts v.
In prime orbifolds, the space group selection rule completely determines the third

fixed point given two fixed points. In non-prime orbifolds, there are number of fields
formed by linear combination like (10.28) in the higher twisted sector than first. In
fact, the above selection rule is satisfied by a set of fixed points (θki , (1−θki )θ li (fi+
ui)). If the selection rule holds for one set of (l1, l2, l3), all the couplings from the
same conjugacy classes satisfy the rule.

Suppose that the coupling satisfy the rule (10.34), or in the special case
(l1, l2, l3) = (0, 0, 0). It is enough to consider the space part and show that

(
1− θk1

)
θ l1(f1 + u1)+ θk1

(
1− θk2

)
θ l2(f2 + u2) (10.37)

+θk1+k2
(

1− θk3
)
θ l3(f3 + u3) = 0,

where li = 0, 1, 2, . . . , N/ki − 1, i = 1, 2, 3. Take k = gcd(k1, k2). Having no
eigenvalue, we may multiply (1− θk)−1. Using

θ l
(

1+ θ + · · · + θL−1
)
=

(
1+ θ + · · · + θL−1

)
, l = 0, 1, . . . L− 1,

(10.38)
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we may reduce all of this to (l1, l2, l3) = (0, 0, 0). It means that the linear
combination (10.28),

|fi〉γ =
N/ki−1∑
l=0

γ−l |θ lfi〉,

made out of θ l has the same transformation property, and hence the linear
combination can be really treated as a single field.

An important consequence is that this makes Yukawa couplings non-diagonal
if we have such nontrivial conjugation. If k3 comes from higher twisted sector θk ,
for given two fields at f1, f2 we may have more than one field allowed by Yukawa
couplings.

For a given invariant set of fixed points satisfying (10.35), what happens if we
replace one fixed point by lattice translation

f1 + u1 → f1 + u1 + λ1, f2 + u2 → f2 + u2 + λ2, λ1, λ2 ∈ �?

Then, the condition (10.34) is modified, so that we need to find a new f3 + u3 + λ3
satisfying

(
1− θk1

)
λ1 +

(
1− θk2

)
λ2 =

(
1− θk1+k2

)
λ3 = 0.

As long as the eigenvalue of θ is not 1, after dropping the common factor
(1 − θgcd(k1,k2)), we can always find a lattice vector λ3. Recall that the inclusion
and modification of u1 mean that we allow the fixed point f1 + u1 not lie in the
fundamental region. Thus, we have many selection rules. Shortly, we see that we
have as many instanton contributions.

The exception arises that we have the eigenvalue of some power of θ is 1, when
we have fixed torus. Some term in (10.34) vanishes, and we have less constraint. We
will see concrete examples shortly.

We may easily generalize the space group selection rule involving L-point
correlation function, for given twisted fields transforming

(
θki ,

(
1− θki

)
(fi + ui)

)
. (10.39)

The rotational part is

L∑
i=1

ki ≡ 0 mod N, (10.40)
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and the translational part is

L−1∑
i=1

θ
∑i−1

j=1 ki
(

1− θki
)
(fi + vi) = 0,

or
L−1∑
i=1

θ
∑i−1

j=1 ki (fi+1 − fi + vi+1 − vi) = 0.

(10.41)

10.2.2 Lorentz Invariance

String theory provides more fundamental explanation on origin of symmetry and
charges. Many of them turn out to be the conservation of momentum. The state
containing the vertex operator eik·X carries the momentum k, where XM(z, z̄) is the
worldsheet boson carrying the spacetime index M .

Gauge Invariance
The gauge degrees of freedom are represented by FI (or XI ) whose coefficients
P s are also conserved. Momentum vectors in the directions of self-dual radii are
nothing but the weight vectors of the gauge group. Thus, the gauge invariance is
the consequence of the momentum conservation. That is, the gauge invariance is
realized as Lorentz invariance.

R-Symmetry in Each Sublattice
The same is true for the fermionic right movers of the heterotic string. The
worldsheet fermions are represented by Ha(z̄) by bosonization. The coefficients
(s + kφ) play the role of momentum, previously called the H -momentum. We note
that this is nothing but a weight vector of the Lorentz group. Thus, the vanishing
sum would imply the invariance under the Lorentz group.

In fact, H -momentum is not a well-defined notion. We have an explicit expres-
sion in terms of the worldsheet fermions

eis
a·H(z̄) � ψa(z̄).

It should be noted that here each of

s1 = (1, 0, 0), s2 = (0, 1, 0), s3 = (0, 0, 1),

is a vector (not the ath component of a vector s). Thus, the operator eis
a ·H also

behaves like a spacetime Lorentz vector with a holomorphic index a. We may define
sā = −sa , so that eis

ā·H behaves antiholomorphic vector. Using these, we can
check that J− in (10.18) is indeed an invariant operator under the spacetime Lorentz
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symmetry. Thus, the transformation properties of the vertex operators before (for
instance (10.12)) and after the picture changing (10.19) should be the same.

This leads us to introduce new conserved charges [12, 13],

Ra = sa + kφa + ρa
L − ρa

R, (10.42)

where ρa
L and ρā

R are the numbers of holomorphic and antiholomorphic oscillators,
respectively, in the ath direction, defined in (7.12). Namely, Ra can be interpreted as
the generalized number of holomorphic minus antiholomorphic Lorentz indices in
the ath direction. Note that always the combination (10.42) appears in the spacetime
part of the GSO projector (8.61).

This quantity (10.42) is vector, so every component should be independently
conserved. We defined the point group action θ by a simultaneous rotation in
the sublattices (sub-two-tori). This means, in each sublattice has the invariance.
We have the well-defined transformation rules for oscillators and fermions under
rotation in the sublattices as given in (7.11) and (7.57). Their vertex operator version
is

ρa
R = −1 : ∂nZa → e+2πiφa ∂nZa, (10.43)

ρa
L = +1 : ∂̄nZa → e+2πiφa ∂̄nZa, (10.44)

ρa
R = +1 : ∂nZā → e−2πiφa ∂nZā, (10.45)

ρa
L = −1 : ∂̄nZā → e−2πiφa ∂̄nZā, (10.46)

ei(s+kφ)·H(z̄) → e−2πi(s+kφ)·φei(s+kφ)·H(z̄), (10.47)

where n is an arbitrary integer and there is no summation in each formula. Note that
the right movers get rotated in the opposite directions, as in (10.42). Note that all the
coefficients in front of φ is the weight of the Lorentz group, and it is readily checked
that the charge (10.42) is invariant combination under these transformations.

Remarkably, the Lorentz symmetry in the internal space can be interpreted as a
discrete R-symmetry in the sense of conventional supersymmetric field theories. It
is because the supercharge, (2.26), can be written as [14]

Q =
∫

dz̄

2πi
e−

1
2ϕ(z̄)S(z̄)eir ·H(z̄), (10.48)

where S is the spin field (10.20) and hence accompanied by the R-vector r =
( 1

2 ,− 1
2 ,− 1

2 ) in (3.72) and − 1
2 ghost charge. The spin field S(z̄) exchanges a boson

and a fermion. From the H -momentum transformation (10.47), we also have

Q→ e−2πiraφa

Q, a not summed.
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In the orbifold compactification, the continuous R-symmetry is broken into a
discrete symmetry

SU(4) � SO(6)→ Z
N1 × Z

N2 × Z
N3

, (10.49)

because of the rotations (10.43)–(10.47). Their orders are determined by the twist
vector φ. We define Na to be the order of θ along the ath direction. So, we have
Naφa ∈ Z. For example of Z6-II orbifold specified by φ = 1

6 (3 2 1), we have
(N1, N2, N3) = (2, 3, 6).

Since each vertex operator has well-defined transformation under the R-
symmetry,

V → e−2πiRaφ
a

V , a not summed (10.50)

and the same for the corresponding low energy field. So, in the low energy field
theory, we can mimic this rule by imposing a discrete symmetry. Now, count all the
fields as scalars or chiral superfields, so that they are all in the (−1)-picture. Then,
the superpotential should satisfy the relation

∑
R1 + 2r1 = 0 mod N1,

∑
R2 + 2r2 = 0 mod N2,

∑
R3 + 2r3 = 0 mod N3,

(10.51)

where the summation is over the fields forming the product. We have contribution
2r because, from (10.9), it is natural to have two fermions and it is done by picture
changing involving r as in (7.64).

10.3 Three-Point Correlation Function

We calculate the three-point correlation function of the form (10.8) [1–3,15,16]. Up
to overall normalization, it completely determines Yukawa coupling quantitatively.
We will enjoy simplification that is special in the three-point correlation function for
the pedagogical reason. Nevertheless, for generalization to higher order orbifold, we
take general strategy [2, 17–19].

Consider the classical action

S = 1

2πα′

∫
d2z

(
∂Za∂̄Z

ā + ∂̄Za∂Z
ā
)
. (10.52)
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In the path integral, the worldsheet field is decomposed into classical and quantum
parts

Z = Zcl + Zqu, (10.53)

and thus the correlation function factorizes as

Z = Z qu ·
∑
{Zcl}

exp(−Scl). (10.54)

The classical part Zcl satisfies the equation of motion

∂∂̄Zcl = ∂∂̄Zcl = 0

from the classical action given in (6.88). It is going to be described as the local
minimum of Euclidian action. It is instanton in the sense that it quantifies the
difficulty of tunneling between two vacua.

The integration of X,H and ghosts leads to the well-known Virasoso–Shapiro
amplitude. The nontrivial part involves a correlation between twist fields

Z ≡ 〈
σk,f1(z1, z̄1)σl,f2(z2, z̄2)σN−k−l,f3(z3, z̄3)

〉
, (10.55)

where the subscripts k and fi denote the twist k/N and the fixed point, respectively.
As shown in Fig. 10.2, we map worldsheet point zi to the target space fi . This
arises for each two-torus, embedded in the complex plane, but the calculation can
be independent for each torus, so we suppressed the Lorentz index. The space group
selection rule determines, for nonvanishing twists, the relation between fixed points,
which is (10.34) in the case at hand, so hereafter we will suppress the fixed point
indices fi .

10.3.1 The Classical Part

The classical solution satisfies the equation of motion, so that ∂Zcl, ∂Zcl are
holomorphic and ∂̄Zcl, ∂̄Zcl are antiholomorphic. It should reflect the phase change,
or monodromy. For instance, if a twisted field belonging to (θ, v) is located at the
origin of the worldsheet, the boundary condition

Z
(
ze2πi, z̄e−2πi

)
= e2πik/NZ(z, z̄)+ v.
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It means when we travel by encircling the worldsheet point z1, the worldsheet boson
should acquire the phase e2πik/N . This behavior at z1, z2, or z3 is as in (10.27), so
we have

∂Zcl = a(z− z1)
k/N−1(z− z2)

l/N−1(z− z3)
−(k+l)/N ,

∂̄Zcl = b(z̄− z̄1)
−k/N(z̄ − z̄2)

−l/N(z̄− z̄3)
(k+l)/N−1,

(10.56)

where we kept the most singular parts. The local properties are encoded in the
powers of these ansatz. With SL(2,C), we can fix all the three points and without
loss of generality we may send z3 → ∞. We may consider a case with k + l > N

making ∂̄Zcl divergent. So, we discard this solution by setting b = 0.
We may determine the coefficients a by considering the global property.

Transporting around a contour C encircling a number of fixed points gives rise to
a translation v in the target space, if the product of the corresponding space group
element is (1, v)

�CZcl =
∮
C

dz∂Zcl +
∮
C

dz̄∂̄Zcl = v. (10.57)

This holds true if C encircles the multiple points of branch cuts, in which the
translational element is given from the product of space group elements. As
explained, the twist fields σk(z1) and σl(z2) introduce a branch cut running between
the points z1 and z2, which makes a non-simply connected topology. In this simplest
three-point correlation function, we can take a very special contour.

From the definition (10.53), the quantum part satisfies the condition

∮
C

dz∂Zqu +
∮
C

dz̄∂̄Zqu = 0. (10.58)

That is, the global monodromy from the holomorphic part is the opposite to that
of the antiholomorphic part. We will consider the symmetric orbifold, in which the
antiholomorphic degrees of freedom is just complex conjugates

∂̄Zcl = (∂Zcl)
∗, ∂Zcl = (∂̄Zcl)

∗. (10.59)

Now, consider a closed contour C as depicted in Fig. 10.4 that encircles z1
clockwise, z2 counterclockwise, z1 counterclockwise, and again z2 clockwise. This
“Pochhammer loop” C crosses each branch cut inside one and outside once, we
have no net monodromy. This requires the so-called global monodromy condition.

In the target space, the corresponding transport gives rise to the series of actions
(acted from the right)

s2s
−1
1 s−1

2 s1
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z2•

z1•
z3•

Fig. 10.4 (Left) There are two independent choices of contours for a three-point function. Due
to twisted field, we have branch cut in the target space. Note that each ellipse represents a
Pochhammer loop on the right. (Right) Pochhammer loop Ci encircling two branch points zi and
zi+1: whichever direction whatever orders the branch cuts have, the nontrivial loop goes in and out,
respectively, exactly once

where

s1 = (ω1, (1− ω1)(f1 + v1)),

s2 = (ω2, (1− ω2)(f2 + v2)).

The net effect is the translation because

s2s
−1
1 s−1

2 s1 =
(

1,
(

1− ω−1
1

)
(1− ω2)(f2 − f1 + v2 − v1)

)
. (10.60)

Since v2 − v1 is again a lattice vector, we may hereafter call it v. Recall that v is a
complex number for a two dimensional lattice �. The net effect is the translation.
With ∂Zcl given in (10.56) and ∂̄Zcl = 0,

∮
C

dz∂Zcl =
(
1− e−2πik/N)(

1− e2πil/N)
(f2 − f1 + v). (10.61)

Here, we use the eigenvalue ω1, ω2 as e2πik/N, e2πil/N , respectively. Therefore,
the classical solution Zcl is parameterized by lattice translation �, implied in v

in (10.60); the summation of (10.54) is over entire �.
Using the SL(2,C) transformation, we can always fix z1 = 0, z2 = 1, z3 = ∞.

Because z3 →∞, the factor depending on z3 is decoupled. Now, plug the classical
solutions (10.56) into the LHS (10.61). We shrink the contour, so that we have only
the transport between z1 and z2 (two round trips) and small circles at each z1 and z2
(Exercise). Then, the integral becomes

∮
C

dz∂Zcl =
(
1− e−2πik/N)(

1− e2πil/N)

× a(−z3)
−(k+l)/N

∫ 1

0
dz zk/N−1(z− 1)l/N−1.

(10.62)
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Dropping the common factor, we obtain

f2 − f1 + v = a(−z3)
−(k+l)/N

∫ 1

0
dz zk/N−1(z− 1)l/N−1

= a(−z3)
−(k+l)/N 

(
k
N

)


(
l
N

)


(
k+l
N

) .

(10.63)

Thus, we can express a in terms of f2−f1+v to obtain the classical solution (10.56).
Inserting this into the action (10.66), we have

Scl = 1

2πα′

∫
d2z|∂Zcl|2

= |a|2|z3|−2(k+l)/N

2πα′

∫
d2z|z|2k/N−2|z− 1|2l/N−2.

(10.64)

We use Kawai–Lewellen–Tye (KLT) relation [20]

∫
C

d2z|z|2p|z−1|2q = − sin(πq)
∫ 1

0
dξξp(1−ξ)q

∫ ∞

1
dηηp(1−η)q, (10.65)

showing that a closed string amplitude can be decomposed into doubling of open
string amplitude.

We finally obtain

Scl = 1

2πα′
|f2 − f1 + v|2 sin kπ

N
sin lπ

N

2 sin (k+l)π
N

, (10.66)

where we used (z)(1 − z) = π/ sin(πz). Plugging it again into (10.54), we can
completely determine the size of Yukawa coupling up to the normalization, where
the sum is over (10.60).

Selection Rules and Area Rule
It seems odd that we could completely calculate the action considering only one
contour, although there are other independent contours. For instance, taking another
loop C′ encircling z1 and z3, we should be able to obtain a in terms of f3 − f1 + v′
from a similar equation to (10.63). This seems to overconstrain the classical
solution, but we must have a unique action (10.66). In fact, we have used the above
space group selection rules. If we consider an arbitrary twist k1 = k, k2 = l, k3
without fixing k3, consideration of two independent contours C and C′ should fix

k3 = −(k + l),
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Fig. 10.5 The area rule summarizes the interaction. The Yukawa coupling is governed by an
instanton describing virtual formation of close string from three twisted strings. Its amplitude, or
the possibility of forming the instanton, is exponentially suppressed by the area of triangle formed
by the corresponding fixed points. The process is possible when the sum of the quantum numbers
of the three strings is the same as that of a closed string

proving the point group selection rules. Also, the spatial part gives

|f2 − f1 + v|
sin k+l

N
π

= |f3 − f1 + v′|
sin l

N
π

= |f3 − f2 + v′′|
sin k

N
π

,

with appropriate lattice v′ and v′′. Eliminating sine functions, we have

θk+l (f3−f2+u3−u2)+θk(f2−f1+u2−u1)+f1−f3+u1−u3 = 0, (10.67)

which is nothing but the translational part of the space group selection rule (10.34).
Note that the action (10.66) is nothing but the area of an unique triangle, with angles
kπ/N and lπ/N and a side |f2 − f1 + v| between them.

Also, we can take the integration contour C encircle all the vertex operators.
There should be neither net rotation nor global monodromy for the whole amplitude.
Thus, we have the above relation.

The classical action becomes the area of the triangle formed by the fixed points
fi + ui divided by coupling α′. The path integral is exponentially suppressed. This
is instanton effect. Normally, massless twisted strings can be localized at the fixed
points, but they can form a virtual closed string as a fluctuation suppressed by α′.
The difficulty of such formation is proportional to the area of the triangle. The
process of semi-classically solving the equation of motion (10.56) and plugging
it back to action is in fact the Wentzel–Kramers–Brillouin (WKB) approximation
describing instantons. Also, the selection rules state that twisted strings can form a
closed string only if the sum of their quantum numbers is the same as that of the
closed string (Fig. 10.5).

The quantum part Zqu is a constant for the three-point function. Because of
conformal symmetry, any three points z1, z2, z3 can be mapped to 0, 1,∞ as above
and the correlation function is completely fixed.
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10.4 Four-Point Correlation Function

We turn to the calculation of four-point correlation function

〈
σk1,f1(z1, z̄1)σk2,f2(z2, z̄2)σk3,f3(z3, z̄3)σk4,f4(z4, z̄4)

〉
. (10.68)

This determines the next order couplings to the Yukawa and fixes the normalization
of Yukawa couplings. Also, we shall see that it exhibits the modular property clearly
[16, 21, 22]. Unlike the previous three-point correlation function, we can calculate
the quantum part. We briefly sketch the steps of general strategy and the results
[2, 3, 17].

10.4.1 The Classical Part

The forms of the classical solutions are fixed by branch structure as in the case of
three-point function

∂Zcl(z) = aωk(z),

∂̄Zcl(z̄) = b(ωN−k(z))∗,
(10.69)

where k ≡ (k1, k2, k3, k4) and

ωk(z) ≡ (z− z1)
k1/N−1(z− z2)

k2/N−1(z− z3)
k3/N−1(z− z4)

k4/N−1. (10.70)

Unlike the previous three-point correlation function, both functions in (10.69)
contribute finitely, so that both a and b are nonvanishing.

Using the same method as before for the three-point functions, we fix a and
b using the global monodromy condition. We need to consider two independent
Pochhammer loops, assuming that the correlation function is allowed by the
selection rules. We take one C1 encircling z1, z2 and another C2 encircling z2, z3

∮
Ci

dz∂Zcl +
∮
Ci

dz̄∂̄Zcl =
(

1− e−2πiki/N
) (

1− e2πiki+1/N
)
(fi+1 − fi + v).

(10.71)

Again, with SL(2,C) we fix z1 = 0, z3 = 1, z4 = ∞. In the three-point function,
we have seen that the factor involving z4 is decoupled and to be cancelled by the
same contribution from a and b. This happens in the four-point function. We only
need to define

ω̃k(z) ≡ zk1/N−1(z− x)k2/N−1(z− 1)k3/N−1.
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Then, we only need to evaluate

fi+1 − fi + v = aFi + bF̄ ′i ,

where we define

Fi =
∫ zi+1

zi

dzω̃k(z), F̄ ′i =
∫ z̄i+1

z̄i

dz̄(ω̃N−k(z))∗.

For the above fixing, these can be expressed in terms of hypergeometric function,
summarized in Appendix. We can obtain a and b by solving the equation:

(
f2 − f1 + v2 − v1

f3 − f2 + v3 − v2

)
=

(
F1 F̄ ′1
F2 F̄ ′2

)(
a

b

)
. (10.72)

Plugging the classical solution into the action, we have

S = 1

4πα′
(
|a|2I (x)+ |b|2I ′(x̄)

)
, (10.73)

where

I (x) =
∫
C

d2z |ω̃k(z)|2

= sin
k2π

N
F2F̄1 − sin

(k2 + k3)π

N
F3F̄1 − sin

(k1 + k2)π

N
F0F̄2

+ sin
k2π

N
F1F̄2

(10.74)

can be calculated by using KLT relation again [20]. We can express F0 and F3 in
terms of F1 and F2. Thus, we have

I (x) = c11|F1|2 + c12F1F̄2 + c∗12F̄1F2 + c22|F2|2,

where

c11 = sin(πk1/N) sin(π(k2 + k3)/N)

sin(πk4/N)
,

c12 = eπik2/N sin(πk1/N) sin(πk3/N),

c22 = sin(πk3/N) sin(π(k1 + k2)/N)

sin(πk4/N)
.

(10.75)

We obtain a similar expression for I ′(x̄) = ∫
C
d2z |ω̃N−k(z)|2 by replacing ki/N →

1− ki/N and x → x̄.
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Fig. 10.6 A quadrilateral
ABCD. Its area is given by
the difference of the areas of
the triangles EBC and EAD

B C

DA

E

In the path integral, we integrate over x. Since the action is positive definite, we
have a minimum at

F2

F1
= f3 − f2 + v3 − v2

f2 − f1 + v2 − v1
,

making b = 0 and the solution becomes purely holomorphic. We have saddle-point
approximation

Scl,min= 1

2πα′

[ |v14|2
2

sin(πk1/N) sin(πk4/N)

sin(π(k1+k4)/N)
− |v32|2

2

sin(πk2/N) sin(πk3/N)

sin(π(k2+k3)/N)

]
.

(10.76)

This is the area of the quadrilateral. As shown in Fig. 10.6, it is understood as the
difference between two triangles.

However, the translation part is now restricted to the intersection of v1 and v3
regions. Therefore, we restrict the summation region

v ∈
(

1− θk
)(

f2 − f1 − T1 + 1− θ l

1− θgcd(k,l)
�

)
, (10.77)

where T1 is, again, a lattice vector satisfying the space group selection rule,

(
1− θk

)
(f2 − f1 − T1)+

(
1− θ l

)
(f4 − f3 − T2) = 0. (10.78)

10.4.2 The Quantum Part

We can calculate the quantum part Zqu using the so-called stress tensor method
[2, 3, 17, 23]. The energy–momentum “stress” tensor T (z) has the OPE

T (z)σk(w) ∼ hσkσk(w)

(z− w)2 +
∂wσk(w)

z −w
, (10.79)
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with the conformal weight for the twisted field hσk given in (10.26). The idea is to
calculate the correlation function by multiplying

σk1(z1) on the left and σk3(z3)σk4(z4)(z− w) on the right

to both sides of Eq. (10.79) and taking the expectation value. Replacing k = k2, w =
z2, we have a differential equation for the quantum part of (10.68)

∂z2 logZqu = lim
z→z2

(
z − z2

Zqu
〈T (z)σk1(z1)σk2(z2)σk3(z3)σk4(z4)〉qu − hσk

z− z2

)
.

(10.80)

We can also know the OPEs for T and σ s. Since T (z) is the normal ordered
version of the free Lagrangian, having the OPE,

− 1

2
∂zZqu∂zZqu ∼ 1

(z−w)2 + T (z), (10.81)

it is useful to define a “Green’s function,”

g(z,w) ≡

〈
− 1

2∂zZqu∂wZquσk1(z1)σk2(z2)σk3(z3)σk4(z4)
〉
qu

Zqu
. (10.82)

Now, the problem is translated to calculating g(z,w), thus T , and solving this dif-
ferential equation. We also know the OPEs between ∂zZ and σk , etc., from (10.27).
This means that we have following limits:

g(z,w) ∼ (z− zi)
ki/N−1, as z→ zi , i = 1, 2, 3, 4,

∼ (w − zi)
−ki/N as w→ zi, i = 1, 2, 3, 4.

(10.83)

All with the coefficient 1. We can guess that the function having the desired property
is proportional to ωk(z)ωN−k(ω) of (10.70). Thus, we have

g(z,w) = ωk(z)ωN−k(w)

⎡
⎣∑

i<j

aij
(z − zi)(z− zj )

∏
k �=i,j (w − zk)

(z −w)2 + A

⎤
⎦ ,

(10.84)

and a constant A depending on zi, z̄i . We should also have the behavior as in
Eq. (10.81) as we take z→ w

g(z,w) ∼ 1

(z−w)2 , as z→ w, (10.85)
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determining

∑
i<j

aij = 1. (10.86)

To have no residue in z − zi , we also need

4∑
j=1

aij = 1− ki

N
, (10.87)

where we define aji ≡ aij for j > i. Using (10.81), we can calculate the OPE
between T and σ s and hence the differential equation (10.80)

∂z2 lnZqu = ∂z2

∑
i<j

[
aij −

(
1− ki

N

)(
1− kj

N

)]
1

z2 − zj

+ A∏
i �=k(z2 − z1)(z2 − z3)(z2 − z4)

.

The undetermined constant A is again determined by the global monodromy
condition. Because the classical part in (10.53) took the spatial translation vi
in (10.71), the remaining quantum part has a condition

∮
Ci

dz∂Zqu +
∮
Ci

dz̄∂̄Zqu = 0. (10.88)

Note that ∂Zqu is contained in the function g in (10.82). For ∂̄Zqu, we introduce an
auxiliary function containing it

h(z̄, w) ≡

〈
− 1

2 ∂̄Zqu∂wZquσk1(z1)σk2(z2)σk3(z3)σk4(z4)
〉
qu

Zqu
.

We may solve it using the same method to obtain

h(z̄, w) = (ωN−k(z))∗ωN−k(w)B,

in which the constant B should be determined by global monodromy condition.
Then, we have an equivalent condition to (10.88)

∮
Cl

dzg(z,w) +
∮
Cl

dz̄h(z̄, w) = 0. (10.89)
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We took z4 →∞, we have ω̃. Also, we have dominant contribution from (z− z4),
and we have only ai4 term

ωN−k(w)A

∮
Cl

ωk(z)dz+ωN−k(w)B

∮
Cl

(ωk(z))
∗dzd̄z+

∮
Cl

∑
i

ai4(z−zi )ωk(z)dz.

From two contours C1 and C2, we obtain

A =
(
k4

N
− a13

)
x − a12 −

(
1− k2

N

)
k4

N

[
G1∂xG

′
2 −G2∂xG1

]
/J.

Inserting A into Eq. (10.84), we finally have

Zqu = C(detF)−1(−x̄)x−(1− k1
N )(1− k2

N )(x − 1)−(1−
k2
N )(1− k3

N )x̄−
k1
N

k2
N (x̄ − 1)−

k2
N

k3
N ,

(10.90)

with a normalization constant C.

10.4.3 Factorization and Normalization

Now, we can determine the normalization [2, 3, 15]. When we move z2 → z4, or
x →∞, we have the OPE

σN−k(z2)σN−l (z4) ∼ cij (z2 − z4)
hσ2N−k−l−hσN−k−hσN−l σ2N−k−l (z4). (10.91)

Therefore, the four-point correlation function (10.68) factorizes to the sum of
three-point functions. Again, the three-point function is completely determined by
standard OPE as

Z (x, x̄) ∼ |x|−h|z∞|−h′
∑
f

Y k
f2,f4,f

(
Y k
f1,f3,f

)∗
, (10.92)

where the sum is over the fixed points, and h, h′ are some combinations of conformal
weights. It is interpreted as the sum of the products of Yukawa couplings, because
they are

Y k
f2,f4,f

= lim|x|→∞ |x|
hσk 〈σk,f2(x,x̄)σl,f4(1,1)σ−k−l,f (0, 0)〉 (10.93)

and we can compare it with the known result on the three-point function. Here, hσk
is the conformal weight of σk in (10.14).
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Then, we can normalize the correlation function. When we move z2 to z1,
we have a similar OPE as (10.91) and the entire correlation function becomes
essentially two-point correlation function

σk+l (z1)σN−k−l (z4) � 1 · |z|−hk+l .

So, we can obtain the absolute normalization of (10.90)

C = 2π
√

detGij ≡ 2πA�, (10.94)

where A� is the area of two-torus.

10.4.4 Modular Property

So far, we have considered one complex dimension, suppressing the spatial index.
For T d/ZN orbifold, we can multiply the contribution from d/2 two-tori. For the
Z3 orbifold, we have only θ1θ1θ1 coupling, so that k = l = 1. Inserting them
into (10.52), we obtain the same coefficients and the resulting contribution to the
action along the ath direction is

Sacl =
√

3

8πα′
∣∣f a

2 − f a
1 + ua

∣∣2 , a = 1, 2, 3, (10.95)

where u = (u1, u2, u3) is any lattice vector. The total action becomes the exponent,
and we have the Yukawa coupling

Yθ1θ1θ1 = gsN
∑

v∈(1−θ)(f1−f2+�)

exp

(
−
√

3

8πα′
∑
a

∣∣f a
2 − f a

1 + ua
∣∣2
)
, (10.96)

where the full numerical coefficient is given in (10.99)

N = V
1/2
�

33/46(2/3)

8π33(1/3)
.

We may reflect the contribution from the spacetime metric. In the next chapter,
we shall see that we may understand the index contraction in (10.52) in terms of

metric, viz. ∂Za∂̄Z
a = Gab̄∂Z

a∂̄Z
b
. Then, we can write the classical action and

hence the Yukawa coupling like

Yθ1θ1θ1 = gsN
∑
u∈Z6

exp
[
−2π(f1 − f2 + u)�M(f1 − f2 + u)

]
, (10.97)
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where we defined Mij =
√

3
16π2α′Gij . We perform the sum over v ∈ Z

6, and the
result is the Jacobi theta function

Yθ1θ1θ1 = gsNϑ
[
f1−f2
0

](
0,

M

4π2i

)
. (10.98)

One may expect the target space modular invariance (11.49), and indeed
multiplying all the two-torus contributions, the final result turns out to be

Y
k,l
fa,fb,fc

= gYM

⎡
⎣ d/2∏
j=1

2πA�,jkj ,lj

⎤
⎦

1/2 ∑
v∈�d

exp
(
−πv† ·Mv

)
, (10.99)

where we regard v = (v1, . . . , vd/2) as a complex vector. The summation range is
restricted as in (10.36),

v ∈ τ1 − τ2 + 1− θk+l

1− θgcd(k,l)
�, (10.100)

and

k,l =


(
1− k

N

)


(
1− l

N

)


(
k+l
N

)


(
k
N

)


(
l
N

)


(
1− k+l

N

) . (10.101)

The universal normalization is given by the string coupling gc, the area of internal
manifold, and the order-dependent factor in Eq. (10.99). For N = 3, we have 1,1 �
0.13, for N = 6, 2,3 � 0.10 and for N = 12, 2,3 = 0.1, 3,4 = 0.12.

If we have an invariant plane, we have no sum. A coupling θ1θ2θ3 from the Z6-I
orbifold has the form:

Sacl =
1

4πα′
sin (2πφa) sin (3πφa)

sin (πφa)
|va |2,

where

v ∈ (f2 − f3 +�).

We have φ = ( 2
6

1
6

1
6 ). The coefficients are the same 1

4πα′
√

3 for a = 1, 2. Since the
θ3 twist makes the a = 1 plane invariant, we have no contribution on this plane. We
limit the vector in the second and third planes. We have

Yθ1θ2θ3 = N
∑

u∈(f2−f3+�)⊥
exp

(
− 1

4πα′

((
u1

)2 +
(
u2

)2
))

, (10.102)
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where the lattice (f2−f3+�)⊥ means that it is limited to the orbifolded directions.
We may generalize the above calculation to higher order coupling cases.

Essentially, the holomorphic part is straightforwardly extended. There needs more
generalization for the antiholomorphic part. The result is described by multi-variable
generalization of hypergeometric function [17, 24–27].

CP Phase
The above result can be extended, including antisymmetric tensor background.
When we include contributions from antisymmetric tensor field as in (11.26) and
Wilson lines, it leads to a modification

|v|2 → T + A · Ā
ReU

(
|v|2 − 2 Re v Im v ImU

)
. (10.103)

Neglecting Wilson lines A = 0 and letting U modulus U = 1, it amounts to a
simple modification; |v|2 becomes T |v|2 times a number dependent on the volume
of torus. It is because T modulus (11.45) unifies the metric and the antisymmetric
tensor field which together describes the volume. For example, for the SU(3) lattice

it is (2π)2√
3
T |v|2. Therefore, we expect that the Yukawa coupling has the target space

modular transformation property (11.49) [16, 21, 22]. As explained, the U modulus
gets a fixed VEV if the orbifold action is not compatible with the rotation by π .

10.5 Phenomenology of Yukawa Couplings

We deal with concrete examples and see how the above selection rules apply to
construct realistic models.

10.5.1 Couplings inZ3 Orbifold

We first study the properties of Yukawa and higher order couplings, starting with a
Z3 orbifold example [28]. We will generalize to general orbifold later [28, 29].

Selection Rules
Many couplings are forbidden by the selection rules. Under the point group,
untwisted U and twisted fields T transform as

U1, U2, U3 : 1, T1 : θ,

where the subscripts of U denote the Lorentz indices. One immediately sees that,
at tree level the coupling for tadpole T and masse UT, T T is not allowed. Thus,
from the point group selection rule (10.33), the order of twisted fields should be a
multiple of three.
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Constraint from the R-symmetry invariance along each sublattice is also strong.
Consider for simplicity fields without oscillators, in which theR-symmetry becomes
H -momentum found in Table 10.1,

U1 : (−1, 0, 0),

U2 : (0, 1, 0),

U3 : (0, 0, 1),

T1 : 1
3 (−1, 1, 1).

For couplings Uk
1U

l
2U

m
3 T n, the condition (10.51) applies

(−k − n
3 , l + n

3 ,m+ n
3

) ≡ (−1, 1, 1) mod (3, 3, 3). (10.104)

We can check that the solutions are only of the following two types:

U
3p+1
1 U

3q+1
2 U3r+1

3 T 9s, U
3p
1 U

3q
2 U3r

3 T 9s+3, (10.105)

where p, q, r, s are nonnegative integers.
The allowed lowest-order interactions are

U1U2U3, T1T1T1, (10.106)

while the couplings of forms U,UU,UT T ,UUT are not allowed, either. There-
fore, we see that the mass can be given by Higgs mechanism up to by radiative
correction, which is suppressed by string unification scale. Thus, we expect a
solution of the μ-problem since UU and T T terms for the Higgs masses are
forbidden (see Sect. 13.8). Also, there is no order 4 and 5 coupling. The importance
of nonrenormalizable operators depends on the singlet VEVs.

The Lorentz invariance rule simply implies the local symmetry under both the
gauge group and the spacetime Lorentz group. Also, fields with excitation are
constrained. In the standard embedding, (1, 27) contains no derivative, but (3, 1)
does due to the oscillator mode αa

−1/3. Therefore, the (3, 1)
n

vanishes unless n is a
multiple of 3.

Now, let us look into how twisted fields are arranged to form invariant coupling.
Recall that we have 27 fixed points and hence as many T1 fields. According to the
Lorentz invariance rule, in each sublattice the term should be invariant. In terms of
fixed point, the rule translates into the following. Denoting the different fixed points
of Fig. 7.3 as

• : (θ, 0).

◦ : (θ, e1) = (θ, (1− θ)f◦)) ∼ (θ, e2) = (θ, (1− θ)θf◦),

× : (θ, e1 + e2) = (θ, (1− θ)f×) ∼ (θ, 2e1).



10.5 Phenomenology of Yukawa Couplings 293

The rule for the translational part (10.34) simplifies. The translational part of the
space group (10.34) becomes

(1− θ)(f1 + u1)+ θ(1− θ)(f2 + u2)+ θ2(1− θ)(f3 + u3) = 0.

The fixed points are invariant by construction θ lf2 + u2 as f2 + u′2. So, we have
equivalently

(1− θ)(f1 + u1)+ (1− θ)(f2 + u2)+ (1− θ)(f3 + u3) = 0.

We can drop the common factor (1− θ)

(f1 + u1)+ (f2 + u2)+ (f3 + u3) = 0. (10.107)

So, for a given (f1 + u1), (f2 + u2) we can uniquely determine f3 + u3. Also, for
the same fixed points if we change u1 to another lattice vector u′1 = u1 + λ, still we
can always find a new u′3 = u3 − λ satisfying the selection rule.

Solving the constraint, we have the following kinds of combinations only for the
couplings:

• ◦ ×, • • •, ×××, ◦ ◦ ◦ (10.108)

and some permutations in each two-torus. In other words, if we choose two fixed
points, the third fixed point is determined. Thus, the number of such combinations
is 27× 27 = 729, but we will see that the actual possibility reduces.

Mass Hierarchy
Consider the Z3 and a coupling of purely untwisted fields UUU or a coupling of
twisted sector all sitting at the same fixed points θ1θ1θ1. If we use one of them as
Higgs field and give a VEV, then the remaining two fields have the degenerate mass.
Due to this fact, it is in general hard to explain the quark mass hierarchy with this
simple model of U matter only [30].

For the twisted sector fields θ1θ1θ1 located at the different fixed points, we have
a very fruitful interpretation of the quark mass hierarchy in terms of geometry. The
Yukawa coupling for θ1θ1θ1 type is totally determined by the given twist and the
shape of lattice.

The space group selection rule (10.34) constrains the fixed points to be all at the
same point or all at the different points in each sublattice

(f1)a = (f2)a = (f3)a, a = 1, 2, 3,

or

(f1)a �= (f2)a �= (f3)a �= (f1)a, a = 1, 2, 3,
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up to a lattice translation. So, for each a we should satisfy one of the above
conditions. There are only eight possible vectors f1 − f2

(0, 0, 0, 0, 0, 0),(
1
3 ,

2
3 , 0, 0, 0, 0

)
,
(

0, 0, 1
3 ,

2
3 , 0, 0

)
,
(

0, 0, 0, 0, 1
3 ,

2
3

)
,

(
1
3 ,

2
3 ,

1
3 ,

2
3 , 0, 0

)
,
(

1
3 ,

2
3 , 0, 0, 1

3 ,
2
3

)
,
(

0, 0, 1
3 ,

2
3 ,

1
3 ,

2
3

)
,

(
1
3 ,

2
3 ,

1
3 ,

2
3 ,

1
3 ,

2
3

)
,

(10.109)

depending on how the three fields are distributed. From this, we note that among
729 possible couplings only 14 of them are independent.

The Yukawa coupling is given in (10.97)

Yθ1θ1θ1 = gsN
∑
u∈Z6

exp
[
−2π(f1 − f2 + u)�M(f1 − f2 + u)

]
.

For simplicity, we take that each two-torus is orthogonal to others, by setting all the
angles to be π/2 in (3.80), in which case the matrix M can take the simple form

M =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

T1 − 1
2T1

− 1
2T1 T1

T3 − 1
2T3

− 1
2T3 T3

T5 − 1
2T5

− 1
2T5 T5

,

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

(10.110)

with other entries being zero. Tis given in (10.110) measure the length of unit lattice

ImTi =
√

3
16π2R

2
i associated with �.

We can expand the exponential form (10.97) in powers of λi = 3e−2πTi/3, which
explains the exponential suppression along the distance between two fields. In the
simplest case, setting all Tis equal to T we have a mass hierarchy 1, λ, λ2, and
λ3 [31]. As a bottom-up approach, we can try to put some fields on some specific
fixed points to explain the observed mass hierarchy. However, from the top-down
approach, namely beginning with E8×E8 theory down to the SM, it is very hard
just using renormalizable couplings to compromise with phenomenological needs.
The Higgs field is located at the fixed point f1 and M is a 6× 6 matrix, taking into
account the VEV and couplings. The appearance of f1 − f2 accounts the fact that
the Yukawa couplings are dependent on two fixed points by (10.108).
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Table 10.2 Renormalizable
vertices in the ZN orbifold

Orbifold Pure unt. Pure twisted Mixed

Z3 U1U2U3 θ1θ1θ1

Z4 U1U2U3 θ1θ1θ2 θ2θ2U3

Z6-I U1U2U3 θ1θ2θ3, θ2θ2θ2 θ3θ3U3

Z6-II U1U2U3 θ1θ2θ3, θ1θ1θ4 θ2θ4U3, θ
3θ3U2

Z7 U1U2U3 θ1θ2θ4

Z8-I U1U2U3 θ1θ2θ5, θ2θ2θ4 θ4θ4U2

Z8-II U1U2U3 θ1θ1θ6, θ1θ3θ4, θ2θ3θ3 θ2θ6U3, θ
4θ4U3

Z12-I U1U2U3 θ1θ2θ9, θ1θ4θ7, θ2θ3θ7 θ3θ9U2, θ
6θ6U2

θ2θ4θ6, θ4θ4θ4

Z12-II U1U2U3 θ1θ3θ8, θ1θ1θ10 θ2θ10U3, θ
4θ8U3

θ3θ3θ6, θ2θ5θ5 θ6θ6U3

θn and Ui denote the number of twists and the number of (spacetime
Lorentz symmetry) SO(10) vector components, respectively. Some
allowed coupling by the space group selection may not be allowed
by Lorentz invariance. In the literature, sometimes θ i is also written
as Ti

10.5.2 Yukawa Couplings in ZN Orbifolds

In Table 10.2, we have listed possible renormalizable couplings arising from general
ZN orbifolds, satisfying the above selection rules [29, 32]. θn means a twisted field
belonging to the nth twisted sector fields, and Ui means the untwisted fields with a
nonzero spacetime Lorentz SO(10) vector component in the ith direction.

In general orbifolds, properties of Yukawa couplings are different from those
of the Z3 case discussed above. For example, in the Z4 orbifold the space group
selection rule does not forbid “mixed” T TU -type couplings, as long as both twisted
fields belong to the second twisted sector. However, the main difference is that,
in the general ZN orbifold, the renormalizable couplings would have off-diagonal
components [29]. We consider two orbifold examples, Z4 and Z6-I.

Z4 Orbifold
Consider a Z4 orbifold coupling θ1θ1θ2. The coupling transforms under the space
group

(
θ, (1− θ)(f1 + u1)

)(
θ, (1− θ)(f2 + u2)

) (
θ2,

(
1− θ2

)
θ l(f3 + u3)

)
,

where we should consider l = 0, 1. The translational part requires

(1− θ)(f1+u1)+ θ(1− θ)(f2+u2)+ θ2
(

1− θ2
)
θ l(f3+u3) = 0. (10.111)
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Having no zero eigenvalue, we may multiply (1− θ)−1 on both sides to have

f1 + u1 + θ(f2 + u2)+ θ2+l (1+ θ)(f3 + u3) = 0. (10.112)

We may put eigenvalue θ = diag(−1, i, i). We may write (10.112) componentwise

f 1
1 + u1

1 − f 1
2 − u1

2 = 0, (10.113)

f a
1 + ua1 + if a

2 + iua2 − il(1+ i)
(
f a

3 + ua3
) = 0, a = 2, 3. (10.114)

The condition (10.113) states that the first two fields should sit at the same point in
this direction. The third field can be at any place because it sees the first direction
untwisted torus. The other components simply state that they add up to a lattice
vector along the a = 1, 2 directions. In (10.114), we have nontrivial condition. We
have symmetric property that holds for any l = 0, 1

il(1+ i) = 1+ i. (10.115)

So, we always have two solutions il(f a
3 + ua3) for any lattice elements ua1, u

a
2.

Therefore, if the selection rule (10.111) is satisfied by any fixed element for a
fixed value of l, it holds for any l. So, we need to check only one of the cases.
For instance, two fixed points denoted by (θ2, e1) = (θ2, (1 − θ2) 1

2e1) and
(θ2, e2) = (θ2, (1 − θ2) 1

2e2) belong to the same conjugacy class, so they indicate
the same fixed points. If one of the points satisfies the selection rule, the other must.
Also, since there are two different fields satisfying the same selection rules, we may
have off-diagonal component in the Yukawa matrix.

In the Z4 orbifold, we have the coupling

Yθθθ2 = N
∑

v∈(f2−f3+�)⊥
exp

(
− 1

4π
v�Mv

)

= Nϑ

[
f23

0

] [
0,

M

4πi

]
,

(10.116)

with a symmetric matrix

M =

⎛
⎜⎜⎝

R2
1 0 ∗ ∗

0 R2
1 ∗ ∗

R1R3 cosφ13 −R1R3 cosφ14 R2
3 0

R1R3 cosφ14 R1R3 cosφ13 0 R3

⎞
⎟⎟⎠ .

Z6-I Orbifold
Not only the pure twisted ones but also the mixed ones are restricted by the Lorentz
group selection rules, from the H -momentum conservation. For the example of Z6-I
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orbifold, although all the following satisfy the point group rule

θ1θ2θ3 : (−1, 1, 1),

θ2θ2θ2 : (−1, 1, 1),

θ1θ1θ4 :
(
− 4

3 ,− 1
6 ,− 1

6

)
,

the θθθ4 coupling is forbidden by the R-invariance.
Consider the space group selection rule. We see that the θ2θ2θ2 coupling is

essentially the same as the θ1θ1θ1 coupling in Z3 orbifold (exercise). It is not related
to the fixed torus, θ1θ2θ3 does. The coupling transforms under the space group as

(θ, (1− θ)(f1 + u1))
(
θ2,

(
1− θ2

) (
θ lf2 + u2

)) (
θ3,

(
1− θ3

) (
θmf3 + u3

))
.

l = 0, 1, m = 0, 1, 2.

The translational part needs

(1− θ)(f1 + u1)+ θ
(

1− θ2
) (

θ lf2 + u2

)
+ θ3

(
1− θ3

) (
θmf3 + u3

) = 0.

Multiplying (1− θ)−1 and using θ(θ lf2 + u2) = θ l
′
f3 + θu′2, etc., we have

f1 + (1+ θ)f2 +
(

1+ θ + θ2
)
f3 ∈ �. (10.117)

Again, if one coupling with a particular combination l,m satisfies the relation,
couplings with any l,m satisfy the relation.

The coupling θ2θ2θ2 is essentially the Z3 coupling

Yθ2θ2θ2 = N
∑

v∈(f1−f2+�)⊥
exp

(
−2πv�Mv

)

= Nϑ
[
f1−f2
0

](
0,

M

4πi

)
,

(10.118)

but with different choice of the lattice SU(3)×G2
2. Thus, we need R4 =

√
3R3, etc.

We have the moduli, which is symmetric matrix, M =
√

3
16π2α′

M =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

R2
1 ∗

− 1
2R

2
1 R2

1
R2

3 ∗ ∗ ∗
− 3

2R
2
3 3R2

3 ∗ ∗
R3R5 cosφ35

√
3R3R5 cosφ45 R2

5 ∗√
3R3R5 cosφ36 3R3R5 cosφ35 − 3

2R
2
5 3R2

5

⎞
⎟⎟⎟⎟⎟⎟⎟⎠
,
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where the empty entries are zeros and cosφ45 = −
√

3 cosφ35 − cosφ36.

We have nontrivial Yukawa coupling formed by θ1θ2θ3. It is

Yθθ2θ3 = N
∑

v∈(f1−f2+�)⊥
exp

(
−
√

3

4πα′
v�Mv

)

= Nϑ
[
f1−f2
0

](
0,

M

4πi

)
.

(10.119)

We have moduli

M =

⎛
⎜⎜⎝

R2
1 ∗ ∗ ∗

− 3
2R

2
1 3R2

1 ∗ ∗
R1R3 cosφ13 −R1R3(3 cosφ13 +

√
3 cosφ14) R2

3 ∗√
3R1R3 cosφ14 3R1R3 cosφ14 − 3

2R
2
1 R2

3

⎞
⎟⎟⎠ .

The case study of a complete ZN Yukawa coupling was done and tabulated in
Ref. [29]. However, we should be careful on the summation range of the lattice
vector, restricted by (10.36) [16], as we have seen before.

10.5.3 Toward Realistic Yukawa Couplings

Texture
One of the important question in the flavor physics is what is the minimal number
of nonzero entries. Since Yukawa matrix is basis dependent, some elements and
mixing angles can be derived from other elements.

The most famous model for the Yukawa couplings is provided by the Weinberg–
Fritzsch ansatz [33, 34]

M =
⎛
⎝0 A 0
A 0 B

0 B C

⎞
⎠ , |A| * |B| * |C|, (10.120)

which naturally explains the Cabbibo angle and the quark mass hierarchy

sin θC ∼
√
md/ms. (10.121)

In the following, we try to show that this form is impossible in string models [35].
In the prime order orbifolds, we can prove it easily. We note that the KM mixing

can arise from the off-diagonal term(s) of mass matrix in three complex dimensions.
It is noted that in the Z3 and Z7 orbifolds, i.e. in the prime orbifolds, there do not
appear off-diagonal terms among renormalizable couplings. This would imply the
mass degeneracy of all the fields arising from the Higgs mechanism, and no CP
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phase. Still in some cases, for example, θ2θ2θ2 coupling in the Z6-I orbifold, also
the third fixed point is determined by the space group selection rule. However, in the
non-prime orbifold, for instance, the θθ2θ3 coupling in the Z6-I orbifold can have
off-diagonal components.

The following explanation is called as “box closing rule” [35]. If we have a
subblock filled except one entry, it should be always completely filled

[ ×
× ×

]
→

[× ×
× ×

]
. (10.122)

This is because if the three entries on LHS should satisfy the space group selection
rule in the original matrix, and it can be shown that the blank position (1, 1) also
satisfies the rule, thus we should fill the blank position. This rule shows that at
the renormalizable level, we cannot obtain the matrix of the Weinberg–Fritzsch
type (10.120). However, we may use the fact that off-diagonal terms can appear
from nonrenormalizable couplings.

Fortunately, we have an alternative version [28, 35] naturally emerging from
string theory, and it also explains angles in terms of mass ratios

M =
⎛
⎝ε a b

ã A c

b̃ c̃ B

⎞
⎠ , (10.123)

while those with lowercase letters are very small compared with |A| * |B|,
to explain large masses for the third family members. To take this form, only
A,B should emerge from renormalizable operators, while others from nonrenor-
malizable ones for them to get suppressed. This also explains the Cabbibo angle
relation (10.121) and qualitatively gives natural ratios of fermion mass scales.

Non-prime orbifolds allow off-diagonal terms even in the renormalizable cou-
plings. In Table 10.2, we see that there can be more than one coupling.

To conclude, the nonrenormalizable couplings are very crucial ingredients for
having realistic Yukawa interactions as shown in [12, 36, 37].

Constructing Flat Direction
Although renormalizable operators in odd-order orbifolds are diagonal, we can
form off-diagonal entries using nonrenormalizable operators. If some mechanism
breaks the gauge symmetry and the SM nonsinglet fields develop VEVs, then
we can fit nonrenormalizable off-diagonal entries and fit the mass matrix toward
realistic couplings [12,36,37]. Of course, this idea can also be applied to non-prime
orbifolds. This method is very useful in the top-down approach. Accompanying this
method, there possibly arises the Fayet–Iliopoulos term generated by the anomalous
U(1), breaking several unwanted U(1)s.
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Appendix

Hypergeometric Functions

The hypergeometric functions are building blocks of four-point correlation func-
tions. They are given as

F1(x) =
∫ x

0
dzω̃k(z) = (−1)−(k2+k3)/Nx−1+(k1+k2)/N (10.124)

× B
(
k1
N
, k2
N

)
2F1

(
k1
N
, 1− k3

N
; k1+k2

N
; x

)
, (10.125)

F2(1− x) =
∫ 1

x

dzω̃k(z) = −(−1)−k3/N(1− x)−1+(k2+k3)/N (10.126)

× B
(
k2
N
, k3
N

)
2F1

(
k3
N
, 1− k1

N
; k2
N
+ k3

N
; 1− x

)
, (10.127)

F̄ ′1(x̄) =
∫ x̄

0
dz̄(ω̃N−k(z))∗ = F1(ki → N − ki, x → x̄), (10.128)

F̄ ′2(1− x̄) =
∫ 1

x̄

dz̄(ω̃N−k(z))∗ = F2(ki → N − ki, x → x̄). (10.129)

Some functions are related

F0 =
∫ 0

−∞
dzω̃k(z) = eπi(1−k4/N)B

(
k4
N
, k1
N

)
2F1

(
k4
N
, 1− k2

N
; k1
N
+ k4

N
; 1− x

)
,

(10.130)

F3 =
∫ ∞

1
dzω̃k(z) = B

(
k3
N
, k4
N

)
2F1

(
k4
N
, 1− k2

N
; k3+k4

N
; x

)
, (10.131)

and are expressed in terms of hypergeometric function

2F1 (a, b; c; x)=
∞∑
n=0

(a)n(b)n

(c)n

xn

n! , (10.132)

with the Pochhammer symbol (q)n = (q + n)/(q). We also define

F0(1− x) = sin(πk3/N)

sin(πk4/N)
(10.133)

×eiπ(k3+k4)/N

[
sin(π(k2 + k3)/N)

sin(πk1/N)
eik2π/NF1(x)+ F2(1− x)

]
,
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F3(x) = sin(πk1/N)

sin(πk4/N)
(10.134)

×eiπ(k2+k3)/N

[
F1(x)+ sin(π(k1 + k2)/N)

sin(πk1/N)
e−ik2π/NF2(1− x)

]
.

Exercises

� Exercise 10.1 Show (10.62).

� Exercise 10.2 The rule for the translational part (10.34) simplifies. The transla-
tional part of the space group (10.34) becomes

(1− θ)(f1 + u1)+ θ(1− θ)(f2 + u2)+ θ2(1− θ)(f3 + u3) = 0.

We see that (θ, (1 − θ)(f2 + u2)) belongs to the same conjugacy class as (θ, (1 −
θ)(θ lf2+θ lu2)), (l = 0, 1, 2), indicating the same fixed point f2. So, we can always
write θ lf2 as f2. So, we have equivalently

(1− θ)(f1 + u1)+ (1− θ)(f2 + u2)+ (1− θ)(f3 + u3) = 0.

� Exercise 10.3 Show that the θ2θ2θ2 coupling is essentially the same as the
θ1θ1θ1 coupling in Z3 orbifold.
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11Effective Action

We consider four dimensional action reflecting the symmetry of the internal
manifold. The observed four spacetime dimensions should be the effective ones,
since string theory is defined in ten dimensions and the extra dimensions hide as
small compact space.

First, in Sect. 11.1, starting from ten dimensional supergravity coupled to gauge
fields, we use dimensional reduction and the symmetry matching, we obtain the
four dimensional action [1, 2]. It provides a nice way to construct four dimensional
supergravity action reflecting large symmetry related to internal manifold. We can
track which physics may originate from higher dimensional theory with unified field
contents.

Stringy effect appears in combination with the geometry of the extra dimensions.
The geometric parameters of internal geometry become moduli fields, that is, scalar
fields in four dimensions and they parameterize flat directions in supersymmetric
theory. The symmetry of the internal space, enhanced by string nature, constrains
the moduli dependence in the Kähler potential, superpotential and gauge kinetic
function. This shall be considered in Sect. 11.2. The fate of such fields has important
implication on dynamical compactification and cosmology.

What is special in the orbifold compactification is the presence of the twisted
strings. In the previous section, we calculated correlation functions directly with
string theory and matched the corresponding Yukawa couplings and its higher order
generalizations, reflected to superpotential. Using the same technique, with the help
of the target space modular properties, we can also extract information on Kähler
potentials in Sect. 11.3 [3, 4].
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11.1 Dimensional Reduction

Dimensional reduction of the ten dimensional supergravity Lagrangian on torus T 6

gives N = 4 supergravity Lagrangian in four dimensions [5, 6]. The internal sym-
metry SO(6) is identical to the R-symmetry of the four dimensional supersymmetry.

In the end we need N = 1, so we break the R-symmetry or equivalently the
internal symmetry by imposing stronger invariance. For instance, it can be the SU(3)
holonomy of Calabi–Yau manifold or the ZN holonomy of orbifolds [1, 2]. That is,
we associate the charged fields with holonomy and keep the invariant Lagrangian
under the combined one. In this way, we can obtain the untwisted sector fields or
the bulk fields inherited from ten dimensional ones.

11.1.1 Dimeansional Reduction

We begin with the ten dimensional N = 1 (16 real supercharges) supergravity
coupled with non-Abelian gauge fields. The bosonic Lagrangian is

L√
G(10)

= 1

2κ2
10e

2�

[
R(10) + 4∂M�∂M�− 1

2
ĤMNP Ĥ

MNP

]

− 1

2g2
10e

2�
trv FMNFMN,

(11.1)

where R(10) is the Ricci scalar made of 10D metric G
(10)
MN , G(10) = | detG(10)|,

and κ2
10 is the 10D gravitational constant to be fixed shortly. We use the matrix

notation for the gauge field as in (5.27). The trace is normalized in units of the
vector representation of SO(n). The ten dimensional supersymmetry is restrictive
enough to completely determine the full action [7, 8].

We have overall dilaton coupling e−2� in the “string frame.” The field strength
of the antisymmetric tensor field BMN is defined as

ĤMNP = ∂[MBNP ] − κ2
10

g2
10

(
ωMNP + ω

grav
MNP

)
,

with the Chern–Simons form

ωMNP = trv

(
A[MFNP ] − 2

3
A[MANAP ]

)
, (11.2)

which is required by supersymmetry. We have Abelian gauge symmetry

δAM = ∂Mλ− i[AM, λ], δBMN = κ2
10

g2
10

trv(λ∂[MAN]). (11.3)
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We will later see that, for anomaly cancellation, we have a similar three-formω
grav
MNP

made of Ricci tensor, fixing κ2
10/g

2
10 = α′/4 [9]. Also if coupled, from the condition

of anomaly cancellation the gauge group is determined as SO(32) or E8×E8 [10]. It
is the low-energy limit α′ → 0 of the heterotic strings with the same gauge groups.
Taking SO(32) gauge group instead of E8× E8, this provides the low-energy action
of Type-I and heterotic string theories, with field redefinition

GIMN = e−�hGhMN, �I = −�h, FMNP = ĤMNP , (11.4)

where F̂MNP is the field strength for the rank-2 RR tensor field containing also the
Chern–Simons terms.

Field Reduction
Now we compactify the internal space and obtain the four dimensional theory. We
first take the extra six dimensions as a torus T 6 and generalize it. We decompose the
metric as follows. It is convenient to use the vielbein and its inverse [11, 12]

eAM =
(
eaμ An

μE
a
n

0 Em
α

)
, eMA =

(
e
μ
a −eνaAm

ν

0 Em
a .

)
. (11.5)

This means we have the metric

G
(10)
MN = eAMeBNηAB =

(
Gμν + Aa

μAνa An
μ

Aνm Gmn.

)
, (11.6)

with the spacetime metric Gμν = eaμe
b
νηab and the internal metric Gmn = eame

b
nδab.

We omit in what follows the Kaluza–Klein U(1) fields Aμn and similar ones from
Bμn, because they are not invariant under the holonomy and to be projected out.1

The only gauge field is those inherited from the ten dimensional fields.
We have contracted Lorentz indices in (11.1) using G

(10)
MN . We assume so-

called the cylindrical condition that all the fields have no dependence on the
internal direction. However, it should be that they should be consistent with the

ten dimensional equation of motion. We have
√

detG(10)
MN =

√
detGmn

√
detGμν .

R(10) = R + 4∂μφ∂μφ − 1

4
GmnGpq∂μGmq∂

μGnp, (11.7)

where the 4D Lorentz indices are contracted by the four dimensional metric Gμν .
Integrating out the internal space, we have the six dimensional volume V =
(2π�s)6√detGmn, which provides a suppression factor for the four dimensional

1They become a triplet under the SU(3)h holonomy group below and with the above non-Abelian
gauge fields, we have enhanced global symmetry [11].
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dilaton φ

1

e2φ ≡
√

detGmn

e2� , (11.8)

with the string length defined below Eq. (11.1). We have the physical four dimen-
sional gravitational constant

κ2
10e

2φ ≡ κ2 = 8πGN, (11.9)

where we define κ2
10 ≡ 1

2 (2π)
7α′4 [9].2

So, we can measure the 4D gravitational coupling κ in the form of the Newton’s
constant GN , assuming there is a mechanism stabilizing the dilaton.

Likewise we obtain the physical gauge coupling

g2
YM ≡ g2 ≡ g2

10e
2φ. (11.10)

And the gauge field is decomposed as3

trv FMNF
MN = trv FμνF

μν + 2 trv FμnF
μn, (11.11)

where

Fμν = DμAν −DνAμ (11.12)

Fμn = DμAn. (11.13)

Here we assumed that we have only simple unbroken group. If we have more
than one such groups, we have as many field strengths having the same form. The
normalization and the gauge coupling of each gauge group are the same if we take
the trace over the vector representations.

Finally, the three-form field strength is decomposed as

ĤMNP Ĥ
MNP = HμνρH

μνρ + 3HμnpH
μnp + 3HμνpH

μνp +HmnpH
mnp,

(11.14)

2The combination κ10e
� is proportional to the tension of D1-brane or D-string. We have SL(2,Z)

symmetry exchanging it with the fundamental Type I/II string. This convention introduces no extra
factor. The dilaton normalization is fixed by the ratio e� = T /τD1 where T is the fundamental
string tension (6.20) and τD1 is the D1-string tension. Then we may convert type I string coupling
to the heterotic string using the relation (11.4).
3We neglect the Kaluza–Klein U(1)’s, otherwise we should convert FMN to those in the tangent
space and obtain lower dimensional ones by multiplying enμ and EM

α .
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where

Hμνρ = ∂[μBνρ] − α′

4
trv

(
A[μFνρ] − 2

3
A[μAνAρ]

)
,

Hμnp = ∂μBnp − α′

4
trv

(
(DμAn)Ap − AnDμAp

)
,

Hmnp = −α′

6
trv Am[An,Ap],

(11.15)

and we assume that every field has no dependence on the internal dimensions.

SU(3) and Z3 Invariant Action
Regarding the internal index m as that of the holonomy SO(6), we may keep
invariant states. This gives N = 4 supergravity action. We are interested in the
effective action from orbifold construction (and Calabi–Yau that we meet later) that
realizes N = 1 supersymmetry. To this end, we first consider SU(3)h holonomy
group. We embed it to one of the E8 gauge groups, by identifying SU(3)h Ricci
tensor with SU(3) field strength. Then, the unbroken gauge group is the commutant
to the embedded group, E6.

We may rearrange the gauge bosons of the E8 in the representations of SU(3)×
E6 :

248 → (8, 1)+ (1, 78)+ (3, 27)+ (3, 27).

The zero modes of the “off-diagonal” components become charged scalars in four
dimensions. They are going to describe the matter sfermions. They are complex
representations, so we complexify the gauge field

B1 = 1√
2
(A4 + iA5), B2 = 1√

2
(A6 + iA7), B3 = 1√

2
(A8 + iA9).

The corresponding generators T a
x are also obtained by linearly combining the E8

generators, where a, x are, respectively, the SU(3) and E6 indices. We could use the
same index as the spacetime index because of the embedding. We will later see that
if the internal manifold is Kähler, in Sect. 15.1.2, holomorphic and antiholomorphic
indices do not mix.

The charged scalar field Qx carries the

Ba =
∑
x

T a
x Q

x, SU(3) holonomy, no summation over a. (11.16)

There is no summation over a if the SU(3) is broken. The Qx
a field carries the SU(3)

index a and E6 index x. We have

Tr T a
x T

b
y T

c
z = εabcdxyz, (11.17)
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where dxyz is totally symmetric invariant of E6. If we start instead with the SO(32)
gauge group, then we have no nonvanishing tensor corresponding to dxyz for any
subgroup. This means that we cannot have down-type Yukawa coupling from
perturbative string.

We identify the SU(3) holonomy group with the SU(3) gauge subgroup of E8.
The four dimensional gauge fields are untouched but we have only unbroken gauge
group SU(3)×E6×E8. Thus Qa transform as (3, 27), sfermions unifying the sqarks,
sleptons, and Higgses. Some of the field strengths change as

Hμab̄ = ∂μBab̄ −
α′

2
i trv

(
(DμQa)Q

∗̄
b
−QaDμQ

∗̄
b

)
,

Habc = εabcdxyzQ
x
aQ

y

bQ
z
c,

Fab = tr[Qa,Qb],
Fab̄ = tr[Qa,Qb̄].

(11.18)

The last two gives the scalar potential. Habc and Fab contribute to the superpotential
and Fab̄ contributes to D-term potential.

The Einstein frame gμν ≡ e−2φGμν has the desired normalization for the
Einstein–Hilbert term. Since the Ricci scalar contains the second derivative of the
metric, it introduces extra kinetic term for the dilaton R → R − 6∂μφ∂μφ to
make the overall sign desirable. The resulting four dimensional Lagrangian becomes
[1, 13, 14]

L√
detg

= 1

2κ2

[
R − 2∂μφ∂μφ − 1

2
e−4φHμνρH

μνρ

− 1

2
Gab̄Gcd̄

(
∂μGad̄∂

μGb̄c + ∂μ

(
Bad̄ − i

α′

2
trv QaQ

∗̄
d

)

× ∂μ
(
Bb̄c − i

α′

2
trv Q

∗̄
b
Qc

))]

− 1

4g2

[
trFμνF

μν + trDμQ
∗DμQ+ V (Q)

]
.

(11.19)

Here, we changed the normalization for the trace to that of fundamental represen-
taion trv T

aT b = 2 trT aT b. V (Q) is the scalar potential of the charged scalars Q
that we obtain later.

In the orbifold compactification, we need some modification. First, the holonomy
group is Z3 and it is the center of SU(3) proportional to identity, thus we recover
the gauge group SU(3) × E6. Since the Q transform as the full (3, 27), now the
decomposition

Ba =
∑
x,a

T a
x Q

x
a, Z3 holonomy, summation over a, (11.20)
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now includes the summation over a. We have the same field contents and they
become the untwisted sector field. We also have twisted sector fields, which should
also contribute both Kähler and superpotential. We will calculate these contribution
later in this chapter.

11.2 General Backgrounds

In the construction of heterotic string, we obtained 10 dimensional theory by com-
pactifying 26 dimensional left movers. To do this, we formally assumed that we have
both left and right movers in 26 dimensions, or setting d = 16 in Sect. 6.3.2, and
eliminated the latter by assigning the constraint of “no right movers” (6.214). This
means, we may compactify any bosonic string theory, symmetric and asymmetric,
using the same techniques. In principle, we can compactify more dimensions (or
even all the dimensions except our four) to obtain various gauge groups. In this
section, we consider such general compactification. We also introduce general
background field including the metric and antisymmetric tensor.

Modular Invariance
For consistent theory, we required modular invariance. Even with general back-
ground, we see here that we have essentially the same condition of even and
self-dual lattice. For this, we study the lattice generated by the dimensionless
momenta.

For constructing vertex operators with momenta, as in (10.2), we define dimen-
sionful momenta

kLi ≡
√
α

2
pLi, kRi ≡

√
α

2
pRi . (11.21)

Consider OPE of two vertex operators of bosonic strings

: eikL·XL+ikR ·XR : (z) : eik′L·XL+ik′R ·XR : (0)
∼ zpL·p′Lz̄pR ·p′R : ei(kL+k′L)·XL+i(kR+k′R)·XR : (0).

(11.22)

Here and from now on, the dot product means the product using the metric tensor.
Encircling one state once around the other state, the RHS acquires the phase

e2πi(pL·p′L−pR ·p′R) [15,16]. We should not observe such phase in local theory, so we
require

p ◦ p′ ≡ pL · p′L − pR · p′R ∈ Z. (11.23)

We need an integral lattice. In the original construction of heterotic string, we
took 16 extra dimensions and eliminated the right movers. In d < 10 noncompact
dimensions, we have other contributions from right movers also carrying momenta.
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The lattice now is Lorentzian. We still need even and self-dual lattice. Typical one
is k,k with k ∈ Z. Thus we may have in general modular invariant lattice if we
compactify d further dimensions, the left and right movers in the same way. The
resulting space has the signature (26− d, 10− d).

11.2.1 Moduli Space

We may find a modular invariant lattice satisfying the above condition. Consider a
representative lattice 0. By the Lorentz transformation � ∈ O(26− d, 10− d,R),
we can span all the possible lattice �0 (meaning acting � on all the points in the
lattice 0). This is an over-counting, however, because from the Hamiltonian (the
mass shell condition (6.224)) rotations in the left and right movers �′ ∈ O(26 −
d,R)×O(10− d,R) are independent symmetries so that these symmetries lead to
equivalent ones. Modding out by such equivalent classes, we have a group space of
symmetries of moduli space,

O(26− d, 10− d,R)

O(26− d,R)×O(10− d,R)
. (11.24)

In fact, we have another equivalent class that leaves 0 invariant, by shuffling the
lattice vectors. It is denoted conventionally as

O(26− d, 10− d,Z). (11.25)

The resulting moduli space is obtained from (11.24) by a further modding
by (11.25). This symmetry contains (11.49), generalzing the axionic symmetry
and T -duality.

We can understand what it means, by taking the d = 4 example. From the left
movers, we expect the group of rank 26 − d = 22. From the right movers, one
obtains U(1)6 which is not enhanced any more due to p2

R = 0 for the right movers.
The number of parameters is counted as

22 · 6 = (22+ 6)(22+ 6− 1)

2
− 22 · 21

2
− 6 · 5

2
.

It indicates that the fields in this space can be identified as the Kaluza–Kelin modes
of graviton, antisymmetric tensor and gauge fields: 1

2 6(6+ 1) from Gij , 1
2 6(6− 1)

from Bij , and 6 ·16 from AI
i corresponding to the Wilson lines. Vacuum expectation

values (VEV) of moduli such as 〈Gij 〉 describe the geometry. They are called moduli
field and determine geometry of the compact space. They span 22 · 6 dimensional
moduli space. A certain phase of low-energy theory corresponds to some special
point in the moduli space. In the construction of heterotic string, a special point of
the critical radius was chosen to enhance the gauge symmetry.
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Target space metric of the low-energy action takes into account of the above
symmetry as a footprint.

11.2.2 Narain Compactification

So far we have assumed the background as orthonormal Minkowski spacetime
without antisymmetric tensor field. We may consider a non-orthonormal internal
space described by metric Gij as in (3.9) and the backgroundBij [15,16]. It can be
implemented by plugging them into the worldsheet action,

S = 1

2πα′

∫
dσdτ

(
Gij ∂αX

i∂αXj + εαβBij ∂αX
i∂βX

j
)
, (11.26)

with the contraction by worldsheet metric understood as in Chap. 6. Since the
momentum and the winding are properties of zero modes, we do not consider the
oscillators at this moment

Xi = 2Liσ + 2qi(τ ),

recalling that we had qi(τ ) = 2α′piτ in (6.190). For more general momenta, so we
describe the center-of-mass motion by general function qi(τ ). As done in (6.206),
we have quantized winding number

Li = niR, ni ∈ Z. (11.27)

Indeed, if there is no such winding, Xi is single-valued and the second term
in (11.26) is a total derivative ∂α(εαβBijX

i∂βX
j ) [16]. Plugging them into (11.26),

we have

S = 1

πα′

∫
dτ

(
Gij q̇

i q̇j −Gijn
injR2 + 2Bij q̇

injR
)
.

The canonical momentum is

πi = ∂L

∂q̇i
= 1

πα′
(

2Gij q̇
j + 2Bij n

jR
)
, (11.28)

where in the compact dimension this momentum should be quantized as in (6.208),

α′pi = α′
∫ π

0
πidσ = mi

R
, mi ∈ Z. (11.29)

Inverting the metric gives

q̇j = α′m
j

R
− 2Bj

kn
kR,
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where we can raise and lower spacetimes with the metric, for example, mj =
Gnpmp. Thus enables us to generalize the dimensionless momenta (6.193)

√
α′pi

R ≡ q̇ i − Li = α′m
i

R
− (Bij +Gij )njR,

√
α′pi

L ≡ q̇ i + Li = α′m
i

R
− (Bij −Gij )njR.

(11.30)

The mass formulae (6.219) become

1

2
α′M2

L =
1

2
Gijp

i
Lp

j

L + Ñ− 1,

1

2
α′M2

R =
1

2
Gijp

i
Rp

j
R + N− 1,

(11.31)

and the level matching condition (6.225) becomes

N− Ñ = Gij (p
i
Lp

j
L − pi

Rp
j
R) = nim

i = 0. (11.32)

To sum up, when we quantize involving the metric and the antisymmetric tensor, we
may shift the momentum as in (11.30) and do all the inner product using the internal
metric.

We can do the similar thing for the Wilson line AI
i to have the above result, by

adding the term [15, 16]

εαβAI
i ∂αX

i∂βX
I . (11.33)

Again, we impose a constraint for the absence of the right mover (6.213). This
affects the quantization and using Dirac bracket we can find the following result
[16] become

pi
R = α′m

i

R
− (Bij +Gij )njR − α′m

I

R
Ai
I −

1

2
α′Ai

IA
j
I nj , (11.34)

pi
L = α′miR − (Bij −Gij )njR − α′m

I

R
Ai
I −

1

2
α′Ai

IA
j

I nj , (11.35)

PI = 2pI = 2α′miR + AI
jn

j , . (11.36)

∗ ∗ ∗
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Knowing these expressions, we can explicitly construct the even and self-dual
lattice of signature (26 − d, 10 − d) containing the background gauge fields [17].
Take a reference lattice 0 spanned by the following basis vectors:

ki = (0, 1
2e
∨i; 1

2e
∨i ),

k̄i = (aJi ,−bjie∨j − 1
4a

K
j aKi e∨j + ei; −bjie∨j − 1

4a
K
j aKi e∨j − ei),

�α = (f I
α ,− 1

2f
K
α aKi e∨i; − 1

2f
K
α aKi e∨i ).

(11.37)

They have the same product as in (11.23) as the one without the background gauge
fields AI

m = Bmn = 0, although they are

W(A) ≡ exp

⎡
⎣1

2

⎛
⎝ 0 AI

n −AI
n′

−AJ
m −Bmn Bmn′

−AJ
m′ −Bm′n Bm′n′

⎞
⎠
⎤
⎦

=
⎛
⎝ δIJ

1
2A

I
n − 1

2A
I
n

− 1
2A

J
m δmn − 1

2Bmn − 1
8A

K
mA

K
n

1
2Bmn′ + 1

8A
K
mA

K
n′

− 1
2A

J
m′ − 1

2Bm′n − 1
2A

k
m′A

K
n δm′n′ + 1

2m′n′ + 1
8A

K
m′A

K
n′

⎞
⎠ .

(11.38)

Finally, we parameterize the background metric Gmn, which parametrize the
angles and the radii. This is done to the unit vectors

ei → e′i = e−αmnei (11.39)

which is represented as boosts

exp

⎛
⎝0 0 0

0 0 αmn′
0 αm′n 0

⎞
⎠ =

⎛
⎝δIJ 0 0

0 coshαmn sinhαmn′
0 sinhαm′n coshαm′n′

⎞
⎠ . (11.40)

The T -duality transformation is contained here. For each complex plane, a judicious
choice of αmn takes the radius |ei | = R to |e′i | =

√
α′/R. This can be generalized

to larger duality symmetry. For special values of αmn,Bmn,A
I
m the lattice 0 is

invariant although the basis vectors are shuffled. This is what we called O(26 −
d, 10− d,Z) in (11.25).

11.2.3 Moduli Fields

The moduli fields discussed above play an important role in low-energy physics and
cosmology. Before discussing their dynamics in Sect. 11.1, we briefly inspect some
properties that can be deduced from the above symmetries.
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We consider again the example of the two-torus T 2 with coordinates y1, y2.
Rewriting the action (11.26) using holomorphic coordinates, we have

S = 1

2πα′

∫
d2z

[
G11∂Y

1∂̄Y 1 +G22∂Y
2∂̄Y 2 +G12

(
∂Y 1∂̄Y 2 + ∂̄Y 1∂Y 2

)

−iB12

(
∂Y 1∂̄Y 2 − ∂̄Y 1∂Y 2

)]
.

(11.41)

The metric tensor Gij for the internal geometry becomes a number of scalars in
four dimensions. By the supersymmetry, it forms a chiral multiplet; thus should be
a part of complex scalar. We collect the target space bosons in terms of a complex
field

iU = R2

G11

(
G12 + i

√
detG

)

= R2 |e2|
|e1|e

iφ12 .

(11.42)

Here φ12 is the angle between the two basis vectors e1 and e2 and we have G12 =
e1 · e2. It provides a natural basis for the complexification

Z = Y 1 + iUY 2, (11.43)

so that U is the complex structure introduced in (3.5). Thus we have

S = 1

2πα′

∫
d2z

(
T ∂Z∂̄Z∗ + T ∗∂̄Z∗∂Z

)
. (11.44)

Here the field responsible for the volume pairs up with the B-field

iT ≡ R2

α′
(B12 + i

√
detG)

≡ b12 + i
A

4π2α′
,

(11.45)

which is called the Kähler modulus, where R and A are the radius and the volume
of torus and the determinant is over the two dimensional metric G. Remarkably, in
string dynamics, the antisymmetric tensor field B is also responsible for the volume.
In view of discussion below (11.26), a winding string should be able to measure the
size of the torus. Also note that it has a discrete (due to (11.28)) shift symmetry, the
axionic symmetry

bij → bij + 1, (11.46)

known to be present to the all orders of perturbation expansion.
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Target Space Modular Group
We can rewrite the internal metric as

ds2 = Re T

R2 ReU

∣∣∣dY 1 + iUdY 2
∣∣∣2 = Re T

R2 ReU
dZdZ, (11.47)

in the similar fashion as (6.71). We expect that these moduli acquire VEV’s
dynamically to spontaneously generate the geometry.

In the previous example, there are modular symmetries

iT → aiT + b

ciT + d
, iU → a′iU + b′

c′iU + d ′
(11.48)

with integer parameters satisfying ad− bc = a′d ′ − b′c′ = 1. They form a modular
group

PSL(2,Z)× PSL(2,Z)� Z
2
2. (11.49)

The two PSL(2,Z)s act in the same way to modular transformation on the torus
parameter τ but this time act on the target space.

They unify the axionic symmetry and T -duality. For example, the symmetries
iT → iT + 1 are the axionic symmetry (11.46). iT → −1/(iT ) correspond to
simultaneous T -duality along y1 and y2 directions. We have similar interpretation
for those acting on U . The last two Z2’s in (11.49) are known as the special case of
“mirror symmetry” and correspond to exchanging T ↔ U or T ↔ U∗ and orbifold
action.

11.2.4 Duality Between Two Heterotic String Theories

We have T-duality between SO(32) and E8×E8 heterotic string theories. Compact-
ifying the SO(32) theory on a circle and turn an Wilson line along it

a9 = 1
2 (1

8 08).

This breaks the gauge group to SO(16)×SO(16). This group is also obtainable from
E8 ×E8 theory on a circle with a Wilson line

a′9 = 1
2 (2 07)(2 07).



316 11 Effective Action

Now we focus on the neutral states under SO(16) × SO(16), or PI = 0. We
have massless states when n9 ≡ 2n is an even number. Plugging back into (11.34)
and (11.35) and also Wilson lines above we obtain the momentum is

p9
L,R =

m+ 2n

R
∓ 2nR

α′
,

p′9L,R =
m′ + 2n′

R
∓ 2n′R′

α′
,

(11.50)

where m9 ≡ m and restored dimensionful parameter R and α′. The primed quantity
is of E8 × E8. Exchanging R ↔ R′/4 and (m + 2n, n) ↔ (n′,m′ + 2n′), so that
(p9

L, p
9
R)↔ (p′9L ,−p9

R). We have the same spectrum. Note that now the radius does
not have the critical value of R = √α′.

The duality should hold for the full spectrum, because their partition functions
are the same as in (6.243). It is interesting to see that we may think of a unified
theory with a current algebra containing both SO(32) and E8 × E8 [17].

W(A) = exp

⎡
⎣1

2

⎛
⎝ 0 A9 −A9

−A�9 0 0
−A�9 0 0

⎞
⎠

⎤
⎦ (11.51)

by W(A′9) and RW(A)R, we may relate between them.
By this chain of dualities, all the superstrings in ten dimensions with 16

supersymmetries are related.

11.3 Supersymmetric Action and Twisted Fields

As discussed in Sect. 2.3, the N = 1 supergravity Lagrangian in four dimensions
is obtained from the Kähler potential, the superpotential and the gauge kinetic
function. We rearrange the above Lagrangian accordingly. This clearly shows the
modular properties, which is strong enough to accommodate the twisted fields
and obtain higher order corrections. We consider effective action now taking into
account moduli field of the full orbifold.

11.3.1 Kähler Potential

Let us go back to the above dimensional reduction. If we introduce the complex
field of the holomorphic coupling

S = e−2φ + ia, (11.52)
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(we will identify the complex part a in Sect. 11.3.3) and the Kähler moduli

Tab̄ = gab̄ + i

(
Bab̄ − i

α′

2
trv(QaQ

∗
b)

)
, (11.53)

all the kinetic terms are compactly written as

2κ2Lkin√
g
= R − ∂μS∂

μS∗

2(Re S)2 −
∂μTad̄∂

μT ∗
cb̄

2 Re Tab̄ Re Tcd̄
. (11.54)

Noice the formal similarity of the two fields and the corresponding kinetic terms. We
have a model-independent axion a and model dependent axions Bab̄, depending on
details of compactification. Although it is natural to complexify these, the kinetic
term for the S field contains e−4φ , we should have only this part in the Kähler
potential. The kinetic terms in (11.54) are reproduced by the Kähler potential

κ2K = − log(S + S∗)− log det
(
Tab̄ + T ∗

ab̄
− α′ trv QaQ

∗̄
b

)
. (11.55)

In general, the Kähler potential can be Taylor-expanded in terms of matter fields
Qα

κ2K =κ2Kgeom(�,�∗)+ Zαβ̄(�,�∗)QαQ
∗
β

+ Zαβ(M,M∗)(QαQβ +Q∗αQ∗β)+ . . . ,
(11.56)

where � denotes the general moduli like S, T ,U and the ellipsis contains higher
order terms in Qα . The flavor index α is not necessarily related to the spatial index
a in general. Except the first term, we have no dependence on the holomorphic
coupling S. We shall also show Zαβ = 0.

Further loop expansion gives

Kgeom = − log(S + S∗)+ K̂(M,M∗)+ V (1)(M,M∗)
8π2(S + S∗)

+ V (2)(M,M∗)
64π4(S + S∗)

+ . . . ,

(11.57)

where now the moduli M involves only T ,U, not S, and

Zᾱβ = Z
(0)
ᾱβ (M,M∗)+ Z

(1)
ᾱβ (M,M∗)

8π2(S + S∗)
+ Z

(2)
ᾱβ (M,M∗)

64π4(S + S∗)
+ . . . . (11.58)

The dependence of S+S∗ is due to the axionic symmetry (11.97) that we see shortly.
The explicit calculation is possible for the standard-embeddings of Calabi–Yau

manifold and orbifolds [3]. A consequence is that, after the canonical normalization,
every matter interaction involves also the moduli fields. Their leading order
contribution give the coupling strengths, and higher order terms gives interactions.
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The Geometrical Part fromOrbifolds
We calculate the Kähler potential for the moduli fields [13, 18–21]. For toroidal
compactification, we have the following generic form:

κ2K̂ = − log det(Tab̄ + T ∗
ab̄
)−

h2,1∑
m=1

log(Um + U∗m), a, b = 1, 2, 3, (11.59)

where h2,1 is for the moment understood as the number of unfixed complex
structures. We shall define the numbers h2,1 and h1,1 in Chap. 15.

There are three cases for six dimensional toroidal orbifolds T 6/ZN, T
6/(ZN ×

ZM), depending on the factorization of the internal dimensions and the fixing of the
complex structure. The first is the Z3 orbifold, for which all the complex structure
moduli are fixed thus h2,1 = 0. There are h1,1 = 9 unfixed Kähler moduli, as shown
in (10.110) and defined in (11.53). The moduli space (11.24) becomes more special

M =
[

SU(3, 3)

SU(3)× SU(3)× U(1)

]
T

. (11.60)

The Kähler potential (11.59) with h2,1 = 0 reflects this symmetry.
In the second case, all the Kähler moduli vanish except diagonal ones Ta ≡ Taā ,

having h1,1 = 3. For Z7,Z8,Z12, etc., all the complex structure is fixed h2,1 = 0
since all the Coxeter basis are related. For Z6−I,Z8, we have one (in our convention
the first) fixed torus so h2,1 = 1. In this case we may also label the complex structure
U1. For Z2 ×Z2 we have three fixed tori so that h2,1 = 3. In this case we may label
the complex structure as Ua, a = 1, 2, 3. They have the same target space symmetry

M =
[

SU(1, 1)

U(1)

]3

T

×
[

SU(1, 1)

U(1)

]h2,1

U

,

log det(Tab̄ + T ∗
ab̄
) = −

3∑
a=1

log(Ta + T ∗a ).
(11.61)

Still m denotes the complexified torus. Depending on the structure of orbifold, m =
1 may label 2nd or 3rd torus. The classical symmetry SU(1, 1)/U(1) is isomorphic
to SL(2,R).

The last case is Z6-II and Z4, where we have one fixed torus while in the unfixed
direction we have unfixed angles, so that we have h1,1 = 5. The complex structure
for Z6-I is completely fixed h2,1 = 0 but we have unfixed for Z4 so that h2,1 = 1

M =
[

SU(1, 1)

U(1)
× SU(2, 2)

SU(2)× SU(2)× U(1)

]
T

×
[

SU(1, 1)

U(1)

]h2,1

U

,

log det(Tab̄ + T ∗
ab̄
) = log(T1 + T ∗1 )

− log det(Tab̄ + T ∗
ab̄
) a, b = 2, 3.

(11.62)
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Matter Dependence
Now we consider the matter fields that we collectively write Qα . The Kähler
potential

κ2Kmatter ≡ Zαβ̄QαQ
∗
β (11.63)

provides the metric of the target space. For convenience we consider the case (11.61)
where we have diagonal Kälher moduli Ta ≡ Taā .

Dimensional reduction (11.55) has shown that for the untwisted field, we have

Zαβ = δαβ

3∏
a=1

(Ta + T ∗a )−1
h2,1∏
m=1

(Um + U∗m)−1. (11.64)

We had h2,1 = 0 We know that the kinetic term should be invariant under the
modular group.

This is valid when the Qα are untwisted matter fields because it is obtained from
dimensional reduction of gaugino. We also need such transformation for the twisted
fields. The symmetry of the target space is strong enough to constrain the form of
Kähler potential. We may assume that the Kähler potential for the twisted matter
fields has a similar form as (11.64),

Zαβ = δαβ

3∏
a=1

(Ta + T ∗a )n
a
α

h2,1∏
m=1

(
Um + U∗m

)lmα . (11.65)

Thus Qα transforms under the modular transform (11.48) as

Qα → ϒβ
αQβ

3∏
a=1

(icaTa + da)
naα

h2,1∏
m=1

(ic′mUm + d ′m)l
m
α , (11.66)

where ϒ is the unitary matrix having dependence on the moduli. This transform
makes the total Kähler potential (11.63) and the gauge kinetic term invariant. We say
that Qα is a modular form of weights naα and lmα with a = 1, . . . , 3,m = 1, . . . , h2,1.

Untwisted fields are always associated with a two-torus, so it carries an internal
index like Qb, b = 1, 2, 3. Their modular weights are deduced from the dimensional
reduction result

nab = −δab . (11.67)

Recall that the superscript a is associated to the moduli Ta . If there survives U

moduli along the b-th directions, the complexification of Qb field along those
directions gives

lab = −δab . (11.68)
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Calculating Metter Kähler Potential
We will calculate the modular weights for the twisted fields. Interestingly, we may
relate them with the generalized H -momenta or R-charges. Recall that the above
modular weights basically counts the oscillator numbers and the R-charges are
generalization of the H -momenta including the oscillators.

Zab̄ =
∏

(Ta + T ∗a )Ra−1. (11.69)

where

naα = Ra − 1. (11.70)

Note that for the untwisted sector field, we have Ra = 1 if it has the spacetime index
a.

Following [22], we calculate the matter Kähler potential (11.65) by considering
scattering amplitude between two matter and two moduli fields. Using the Kähler
potential (11.56), the field theory calculation gives

A (0)
QFT(Mā,Q∗ᾱ ,Qβ,Mb) = κ2 su

t
ZᾱβGāb + s

Zᾱβ

∂M
a
∂Mb

− s
∂Zᾱγ

∂M
a

(
Z−1

)γ δ̄ ∂Zδ̄β

∂M
a ,

(11.71)

where s = (k1+ k2)
2, t = (k2+ k3)

2, u = (k1+ k3)
2 are Mandelstam variables and

Gāb = κ−2∂ā∂bKgeom.
This amplitude can also be obtained from the string calculation

A (0)
string(M

∗ā,Q∗ᾱ ,Qβ,M
a) = g2

s

∫
d2z〈Qα|T VM∗ā (w)VMa (z)|Qβ〉. (11.72)

Here the vertex operators for the moduli fields are given as

VT b = eikμX
μ

∂X
b
(
∂̄Xb + 1

2
kμψ

μψb

)
,

VT ā = eikμX
μ

∂Xa

(
∂̄X

a + 1

2
kμψ

μψ
a
)
,

VUb = eikμX
μ

∂Xb

(
∂̄Xb + 1

2
kμψ

μψb

)
,

VUā = eikμX
μ

∂X
a
(
∂̄X

a + 1

2
kμψ

μψ
a
)
.

(11.73)

Firstly, the index structure simplifies. Since the moduli come from the untwisted
sector, the only space group quantum numbers come from the matter fields. As we
see in Fig. 11.1, there is a Lorentz frame where a single matter field flows and is
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Fig. 11.1 Scattering of two moduli and matter fields yielding the matter Kähler potential

scattered by the moduli fields. Thus we have α = β. Thus all the quantum number
of the moduli fields should be conserved including a = b.

Consider then the left movers first. The vertex operators for the moduli fields
are given in (10.19). The OPE for the momentum part is nothing but the Virasoro–
Shapiro amplitude w−s/8z−u/8(z −w)−t/8. The oscillator part gives

〈Qα |T ∂Xa(w)∂X
a
(z)|Qα〉L

= wk/Nz1−k/N
[
(k/N)w + (1− k/N)z

(z−w)2 + 1− k/N

z
Na
α +

k/N

w
N

a

α

]
,

(11.74)

where the state Qα is excited by Na
α and N

a

α oscillators as in (7.12).
For the right movers, we have the bosonic and the fermionic contributions

〈Qα|T VM∗ā (w)VMa (z)|Qβ〉R = w̄−s/8z̄−u/8(z̄− w̄)−t/8

× 〈Qα|T ∂̄Xa
(w)∂̄Xa(z)+ t

8
Tψμ(w̄)ψμ(z̄)|Qβ〉R.

(11.75)

The bosonic part is the complex conjugation of that of the left movers (11.74). The
fermionic contribution is similarly obtained as

〈Qα|Tψμ(w̄)ψμ(z̄)|Qβ 〉R = 1

w̄ − z̄

(
w̄

z̄

)k/N

, (11.76)

where we should replace the power k/N with 1 when R = k/N for all the twisted
sectors and 0 for untwisted sector states with lI �= i and 1 for untwisted sector states
with lI = a.

Plugging all the results into (11.72), we obtain

A (0)
string(T

ā,Qα∗,Qβ, T
b) = 1

8
g2
s δabδIJ

( su
t
− snaI + sO(s, t, u)

)
, (11.77)
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with

Ra
I =

{
k/N + ρa

R − ρa
L, for twisted states,

δba, for untwisted states.
(11.78)

Note that this is exactly the R-charge introduced in (10.42).
For the calculation of the complex structure Ui , we modify some of the above.

The right mover is identical. So we replace ∂Xa,Na
I , k

a/N with ∂X
a
, ρa

L − ρa
R ,

respectively. We have

A (0)
string(U

ā,Qα∗,QJ ,U
b) = 1

8
g2
s δabδIJ

( su
t
− snaI + sOO(s, t, u)

)
,

(11.79)

with the above Ra is replaced witt R
a
.

Using (11.65), we can calculate the corresponding string diagram

A (0)
string(M

ā,Qα∗,Qβ,M
b) = κ2δābδᾱβ

( su
t
− snaβ + sO(s, t, u)

)
,

→ κ2GābZᾱβ

( su
t
− snaβ + sO(s, t, u)

)
.

(11.80)

Here naβ are the modular weights in (11.66) for the moduli fields Ta . For the moduli
Um, we may replace naβ with lmβ . In the last line, we have changed from the canonical
normalization of the Qβ to same normalization as the moduli fields. The amplitude
agrees except the terms proportional to s, so we equate them

(
Z−1∂ā∂bZ − Z−1∂āZZ

−1∂bZ
)α
β
= ∂ā(Z

−1∂bZ)
α
β

= −κ2Gābδ
α
βn

a
β

= − δābδ
α
βn

b
β

(Mb +M∗
b )

2 .

(11.81)

Solving this for T and U moduli, we have

Zᾱβ =
∑
γ

F ∗̄αγ Fβγ

∏
a

(Ta + T ∗a )n
a
α

∏
m

(Um + U∗m)l
a
α . (11.82)

Here Fβγ are some non-degenerate matrix whose components are holomorphic
functions of the moduli. They parameterize the choice of the reference coordinate
system, so we may rotate as Fβγ = δβγ .
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We cannot have Zαβ in the Kähler potential because scattering between holo-
morphic fields gives purely holomorphic amplitude. It only contributes to the
superpotential we consider next.

11.3.2 Superpotential

The superpotential is a holomorphic function of superfields. In view of the matter
superfields Qα (using the same notation as the scalar fields) we may expand the
superpotential as

W = μαβ(T ,U)QαQβ + χαβγ (T ,U)QαQβQγ + . . . , (11.83)

where the ellipsis denote higher order couplings of Qα and we collectively denoted
the gauge group indices by α, β, γ . The coefficients are holomorphic functions of
the geometric moduli. We have no dependence on S because the gauge coupling is
1/(S + S∗).

For instance, the scalar potential V (Q) of the above dimensionally reduced
Lagrangian (11.19)

V = eκ
2K

[
Zαβ̄(DαW)(Dβ̄W)− 3κ2|W |2

]
+ g2

8

∑
α

(
Kαq

A
α Qα + Q̄ᾱq

A
ᾱ Kᾱ

)2
,

(11.84)

can be compactly written by the superpotential

W = εabcdxyzQ
x
aQ

y
bQ

z
c, (11.85)

where the coefficients are given in (11.17). In particular, Habc, Fab, F
2
āb give

the W,DαW,KαqQα terms, respectively. Here Zαβ̄ is the inverse of the Kähler
metric (11.65). This inheritance again works only for the untwisted fields. For
general (un)twisted fields, we may calculate the N-point coupling as done in the
Chap. 10. We may supersymmetrize the result to obtain the superpotential.

Consider again the PSL(2,Z) modular symmetries on each ath complex plane.
Since K → K + log |caTa + da|2 should be Kähler and G = K + log |W |2 is
invariant, we have

W → W(icaTa + da)
−1, a = 1, 2, 3, (11.86)
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up to a phases. The overall superpotential W is a modular form of weight −3 for
the factorizable tori case. We have a similar relation W → W(icmU+dm)−1,m =
1, . . . , h2,1, for the complex structures. Therefore the Yukawa coupling should
transform as

χIJK(T )→ χIJK(T )
∏
α

3∏
a=1

(icaTa + da)
−1−naα

h2,1∏
m=1

(icmUm + dm)
−1−laα .

(11.87)

Non-renormalization theorem restrains the coefficient from perturbative correc-
tion. We cannot make a holomorphic polynomial in T field in (11.55) obeying the
axionic symmetry, the superpotential cannot receive perturbative corrections to all
orders of sigma model expansion. Because it does not depend on S modulus which
appears in the string coupling as Re S = 1/gs, there is no correction from string
perturbation. This is the stringy version of the non-renormalization theorem [23].
There is no self-coupling of moduli S, T ,U ; thus they remain in flat directions,
which explains the name “moduli fields.” A non-perturbative correction of the gauge
coupling to the holomorphic coefficient χαβγ (T ) has a form ∼ e−aS , which may
preserve the axionic symmetry. We have seen that they are exponentially suppressed
following the area rule, still obeying modular symmetry (11.49).

We can take into account the mirror symmetry T ↔ U if there is a U field
present.

11.3.3 Gauge Kinetic Function

We have seen that the four dimensional gauge coupling is given by the real part of
the S modulus (11.52)

e−2φ = g−2 = Re S, (11.88)

where g is the four dimensional coupling defined in (11.10) at the string scale M2
s .

For toroidal compactification, this is the coupling of the gauge group inherited from
the 10D theory. If we break it using geometry of background gauge fields, at tree
level, all the four dimensional gauge groups {GA} arise from the breaking of the
10D gauge group and all of their couplings are unified

1

g2
A

= kA Re S. (11.89)

Here kA are the level of the Kac–Moody algebra that we see in Sect. 12.6. We show
that this is generalized to holomorphic gauge coupling whose imaginary part is the
axion. We have only one-loop correction due to non-renormalization theorem

fA = kAS + 1

16π2
f
(1)
A (M). (11.90)
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Antisymmetric Tensor and Axion
In four dimensions, the rank-two antisymmetric tensor field has one real degree of
freedom. It is dual to a pseudoscalar

Hμνρ = 1

6
εμνρσ e4φ∂σ a. (11.91)

Note that this includes the metric implicitly εμνρσ = √gεμνρσ . The pseudoscalar a
is called the model-independent axion since it does not depend on the details of the
compactification. Equivalently, we may employ a as the Lagrangian multiplier for
the Bianchi identity (11.133) [24]

− 1

4κ2

∫
d4x

√
ge−4φHμνρH

μνρ

+ 1

4κ2

∫
d4xaεμνρσ

[
∂[μHνρσ ] + α′

4

(
trv FμνFρσ − trv RμνRρσ

)]
,

(11.92)

where the normalization for the second line is chosen to make the interaction
dimensionless. We may check that the equation of motion for Hμνρ becomes the
dual transformation (11.91). Integrating out H , we obtain

1

4κ2

∫
d4x

√
ge4φ(∂μa)

2 − 1

4g2

∫
d4x

√
g trv FμνF

μν

+ 1

16π2

∫
a (trv F ∧ F − trv R ∧ R) . (11.93)

By canonical normalization, we have the axion decay constant

FMI = g2

192π5/2κ
. (11.94)

We have supersymmetric description

∫
d4xd2θSW αWα + h.c.. (11.95)

We have a universal gauge kinetic function [22]

fAB = kASδAB, (11.96)

Since it is diagonal, we define fA = fAA. We see also there is symmetry

a → a + 1, or iS → iS + 1. (11.97)
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One-Loop Correction
The gauge kinetic function (11.96) is model independent, because all the gauge
groups come from that of heterotic string. The traditional non-renormalization
theorem applies and there is only one-loop correction, because of the holomorphy
of fAB . The running gauge coupling at the scale μ from Ms is

16π2

g2
A(μ)

= kA
16π2

g2 + bA log
M2

s

μ2 +�A, (11.98)

where �A is threshold correction. The universal coupling g also receives correction
�univ

A depending on the moduli

1

g2 = Re S + 1

16π2�
univ. (11.99)

If a transformation mixes the charged fields, we have Konishi anomaly

fA → fA − 1

4π2

∑
a

αa
A log(icaTa + da)− 1

4π2

∑
m

αm
A log(icmUm + dm),

(11.100)

where we have the so-called modular anomaly coefficients

αa
A =

∑
Rα

l (Rα)
(
1− 2naα

)− C(GA),

αm
A =

∑
Rα

l(Rα)
(
1− 2lmα

)− C(GA),

(11.101)

and naα, l
m
α are the modular weights (11.70). What is the form of gauge kinetic

function giving rise to this? A holomorphic function transforms in this way is the
Dedekind eta function (6.84), thus we find [22],

fA = kAS −
3∑

a=1

αa
A

4π2
log η(iTa)−

h2,1∑
m=1

αm
A

4π2
log η(iUm)+ pA, (11.102)

where pA are modular invariant holomorphic functions of the moduli.
The one-loop effective gauge coupling, dependent on moduli field, in SUSY [25]

and SUGRA [26] is [22]

16π2

g2
A

= 16π2 Re fA + bA log
M2

s

μ2

+ cAK + 2C(GA) log g−2
A

(
μ2

)
−

∑
Rα

l(Rα) log detZeff
Rα

(
μ2

)
,

(11.103)
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where bA = ∑
nRα l(Rα) − 3C(GA), cA = ∑

nRα l(Rα) − C(GA), l(Rα) is the
index of the representation of Rα introduced in (2.16) and C(GA) is the quadratic
Casimir of the adjoint of GA. The total correction is

�A + kA�
univ =−

∑
a

αa
A log |η(iTa)|4(Re Ta)

−
∑
m

αm
A log |η(iUm)|4(ReUm)+ RepA.

(11.104)

The last term RepA is in general dependent on the moduli, but for factorizable
orbifold, it is constant [22].

Threshold Correction
For estimating gauge coupling constants [27], we assume that the masses of the
fields taking part in the running are the same as the unification scale MU. By the
decoupling theorem, we can neglect massive fields heavier than the running scale.
However, around the unification scale the effects of mass differences become sizable
because the masses themselves are of order of the unification scale MU. We should
take into account this effect which is known as the threshold correction [28, 29].

We calculate the stringy threshold correction �a by string one-loop amplitude
we considered in Chap. 8, Eq. (6.75),

�a =
∫

d2τ

τ2
[Ba(τ, τ̄ )− ba], (11.105)

integrated over the PSL(2,Z) fundamental region (6.74). The modular invariant
amplitude Ba is just a partition function (8.6) weighted by the squared charge
generator Q2

a ,

Ba(τ, τ̄ ) =
∑
h∈P̄

⎡
⎣ 1

N

∑
g∈P̄

Tr(Q2
a g q

L̃0(h)q̄L0(h))

⎤
⎦ . (11.106)

It is analogous to the field theory case where ba is given by the trace of the squared
charge generators over the charged fields leading to − 11

3 TrQ2
a . In the field theory

limit, note that τ2 → ∞, and Ba(τ, τ̄ ) reduces to ba , to match the low-energy
running (11.98).

In the orbifold theory, we can calculate �a explicitly. The important result
obtained in Refs. [29, 30] is that the only nontrivial threshold correction emerges
in the twisted sector having fixed tori or twisted sectors with N = 2 local
supersymmetry. The moduli describe the geometry of the torus, but if the twisted
sector fields are localized at the fixed points, so that they cannot see the torus
geometry. However, if a twisted sector contains an invariant torus, it can see the
geometry of the torus and contributes the threshold correction. The moduli can
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freely move in this direction, thus has the corresponding coordinate dependence.
Then it would be that the untwisted fields should contribute the threshold correction,
but their contribution is cancelled by strong (N = 4 in 4D) SUSY. As a corollary,
the Z3 orbifold having no fixed torus receives no threshold correction except for a
trivial constant correction of order 5%.

Thus we need to consider twisted sectors having fixed tori. For instance, consider
the second twisted sector of the Z4 orbifold of Sect. 9.2.2. Here, we have a twist
2φ = 1

2 (2 1 1) � 1
2 (0 1 1). The first two-torus remain untouched. This twisted

sector has effective order 2 and the twist 2π forms Z2 point group. We call Da the
little subgroup of P leaving the ath complex plane invariant. For the above Z4, we
have D1 = Z2,D2 = D3 = 1. For the Z6−II orbifold, the twist vector is ( 1

2
1
3

1
6 ).

The little groups are D1 = Z3,D2 = Z2,D3 = 1. For cases where this factorization
is not possible, see [31].

The result is simply,

�a = −
∑

moduli

∑
i

bia
Ni

N
log

[
|η(Ti)|4 Re Ti

]
+ log

[
|η(Ui)|4 ReUi

]
+ ca,

(11.107)

where ca is a constant term, N ′ is the order of the subsector action (2 for the second
twisted sector of the above Z4 example), and η is the Dedekind eta function (6.84),
a regular customer in the modular form. All the moduli fields have the same
dependence [29].

The most important issue is whether this threshold correction is large enough to
fill the gap between grand unification scale and string scale (or the Planck scale). In
a large T limit, from the asymptotic behavior of eta function, it behaves as

�a ∼
∑
i

bia
N ′

N

π(T + T ∗)
6

. (11.108)

However, it seems that the threshold correction alone is not enough to make the three
couplings meet at the string scale. But, we note that in field theoretic calculation of
the running we must take into account the above string threshold corrections which
are present near the string scale (Fig. 11.2).

The Final Form
We may separate the contribution from the universal and non-universal pieces

αi
A = bN =2

A (i)
N ′

N
+ kAδ

GS
A . (11.109)
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Fig. 11.2 A view on the threshold correction

This makes the gauge kinetic function non-invariant. Plugging this to (11.101), we
may obtain δGS

A . The final Kähler potential has the form [20]

κ2K(1) = − log

(
S + S∗ + kAδ

GS
A

4π2

[ 3∑
a=1

log |η(iTA)|4 Re Ta

+
h2,1∑
m=1

log |η(iUA)|4 ReUa

])
.

(11.110)

Consider the Z3 orbifold with diagonal moduli Ta for simplicity. We have no
N = 2 plane thus no contribution bN =2

A . From (11.101), we see that the coefficient
is the same for a = 0. For the standard embedding, using the spectrum obtained in
Sect. 7.4, we obtain

αa
E6
= αa

SU(3) = αa
E8
= −30, (11.111)

verifying the universality of the anomalous U(1). For other embedding we may
verify δGS

A is universal but we may have different values of αa
A. Fpr tje Z4 orbifold,

the twist vector is ( 1
2

1
4

1
4 ). The only little group is D1 = Z2. We have

α3
A = kAδ

1
GS +

1

2
bN =2
A , α

2,3
A = kAδ

2,3
GS .

We have δ1
GS = 0. For the Z6−II orbifold, we have δ1

GS = 0 but δ2,3
GS �= 0.
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11.3.4 No-scale Structure

One feature of the effective potential from superstring is that the potential takes
the no scale form [32, 33]. In the example of T 6/Z3 orbifold, all the two-tori have
the same geometry, therefore all the volume moduli are the same Tab̄ = T δab.
Therefore, we have the Kähler potential (11.55) of a form

K = −3 log
[
T + T ∗ − h(Aa,Aā)

]
− K̃(Sn, Sn∗). (11.112)

and the superpotential W , not depending on T ,

W = W1(A
a)+W2(S

n). (11.113)

Here, we consider a general form for matter field function h(Aa,Aā) and S moduli
K̃(Sn, Sn∗). It is important to note that the coefficient −3 of the first term has
a consequence of cancelling some terms from the −3|W |2 term. Plugging K

into (2.41), it has the form [32, 33]

V = 1

3(T + T ∗ − h)3

(
N−1

)i
j

(
∂W

∂Ai

)(
∂W∗

∂A∗j

)

+ (G−1)nm(DnW)(DmW)∗, (11.114)

where

Ni
j = ∂2h

∂Ai∂A∗j
.

Here, Gn
m and Na

b are positive definite. Even if we include the D-term scalar
potential, (the last term in (2.41)), the scalar potential (11.114) is positive definite
and has the minimum at zero. This is similar to the global supersymmetry case, but
the minimum does not correspond to the supersymmetry preserving one, since in
view of Eq. (2.44)

δε�
i ∼ DiW = − 3

|T + T ∗ − h|
∂h

∂Ai

W (11.115)

need not vanish. It is better to have the zero minimum of the scalar potential
with broken supersymmetry. This helps fitting with the almost zero cosmological
constant [34].

Without S, the supersymmetry breaking scale MSUSY (2.46) and the gravitino
mass m3/2 (2.47) are not determined at tree level, which is then generated by
radiative corrections. Because of this absence of scale parameter, it is called no
scale supergravity. This scale invariance property is the characteristic feature in the
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string interactions [1]. However, the supersymmetry transformation of the S field
relates gravitino mass to the supersymmetry breaking scale.

This no-scale structure is tracked to the ten dimensional action, which in turn
originates from the scale invariance structure of string [1].

11.4 Shift Vector

We have learned that the projection associated with orbifold symmetry imposes a
boundary conditions on the fields and thus breaks some symmetries.

Suppose that we have SO(2n) gauge field AM on which the following projector
is acting:

P = diag
(
e2πiV1H

1
, . . . , e2πiVnH

n
)
, (11.116)

where {HI } is the Cartan subalgebra of the SO(2n). Beside of these, the remaining
generators of a Lie Algebra can make linear combinations and becomes ladder
operators Eα satisfying

[HI,Eα] = αIEα. (11.117)

Here α are vectors having the components (αI ) are called roots of the SO(2n). We
have unbroken generators, this generator satisfies the (5.35), or

PEαP−1 = e2πi[V IHI ,Eα ]Eα = e2πiV I αI

Eα, (11.118)

where we used Baker–Campbell–Hausdorff formula. Thus the generators Eα of the
unbroken gauge groups satisfy the relation

α · V = integer, (11.119)

where the dot product is the summation in (11.118). Indeed, the field theory with
extra dimensions provides a low-energy limit of string theory. Historically the
doublet–triplet splitting from orbifold, discussed in Sect. 2.3.3, was observed long
time ago in string orbifolds in this way.

11.5 Anomaly Cancellation

The field theory limit of heterotic string is ten dimensional supergravity coupled
with non-Abelian gauge fields. Here we show that gauge and gravitational anomalies
can be cancelled by the rank 16 gauge groups E8 × E8 or SO(32) [35]. The mixed
anomaly can be cancelled with the participation of the antisymmetric gauge field
BMN by the Green–Schwarz mechanism [10]. This motivated to the discovery of
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heterotic string theories based on the same gauge group [36], which takes two
corners of the moduli space in Fig. 2.10.

11.5.1 Anomaly Polynomial

Anomaly is expressed as a failure of classical current conservation. The non-
conserved source is the nonvanishing change G(λ) of the effective action under
the gauge transformation λ. It satisfies Wess–Zumino consistency condition [37]

δλ1G(λ2)− δλ2G(λ1) = G([λ1, λ2]). (11.120)

This can be solved by the gauge-invariant polynomial in the field strength. For
gauge anomaly it is field strength Fμν and for the gravitational one it is Riemann
tensor Rμν , regarding the internal Lorentz index as gauge index of SO(D) in D-
dimension, which are all contracted with the generator of the corresponding algebra.
If the polynomial ID satisfies the conditions

ID+2 = dID+1 (11.121)

δID+1 = dI 1
D, (11.122)

we can solve the condition (11.120). It will be useful to use Î = i(2π)D/2I .
As an example, we consider ten dimensional anomaly [35].

• For the n Majorana–Weyl fermions, we have

Î8(F,R) =− TrF 6

1440
+ TrF 4 trR2

2304
− TrF 2 trR4

23040
− TrF 2

(
trR2

)2

18432

+ n trR6

725760
+ n trR4 trR2

552960
+ n

(
trR2

)3

1327104
.

(11.123)
• For the Majorana–Weyl 56, we have

Î56(R) = −495 trR6

725760
+ 225 trR4 trR2

552960
− 63(trR)3

1327104
. (11.124)

• For the rank-two self-dual tensor, we have

ÎSD(R) = 992 trR6

725760
− 448 trR4 trR2

552960
+ 128

(
trR2

)3

1327104
. (11.125)
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For heterotic string, we have one gravitino, n = 1 dilatino and n = dim g

gauginos, all of which are Majorana–Weyl. The sum of anomaly polynomial is

Î = Î56(R)− Î8(R)+ Î8(F,R)

= 1

1440

(
−TrF 6 + 1

48
TrF 2 TrF 4 − 1

14400
(TrF 2)3

)

+ (dim g − 496)

(
trR6

725760
+ trR4 trR2

552960
+ (trR2)3

1327104

)

+ Y4X8

768
,

(11.126)

where

Y4 = trR2 − 1

30
TrF 2 (11.127)

X8 = trR4 +
(
trR2

)2

4
− TrF 2 trR2

30
+ TrF 4

3
−

(
TrF 2

)2

900
. (11.128)

The second line of (11.126) contains F only and yield pure gauge anomaly.
Likewise the third line contains R only and gives pure gravitational anomaly
contribution. It suggests that a gauge group of dimension 496 may cancel the
anomaly [10]. There is a unique simple group SO(32) whose dimension is 496.
For SO(n), we have

TrT 2 = (n− 2) trn T
2,

TrT 4 = (n− 8) trn T
4 + 3(trn T

2)2,

TrT 6 = (n− 32) trn T
6 + 15 trn T

2 trn T
4,

(11.129)

where n is the vector representation of SO(n). Also, if we have n = 32, the
second line of (11.126) for the pure gauge anomaly, vanishes. It comes from SO(32)
heterotic and type I strings.

We also have semisimple group E8 × E8, with dimension 248 + 248 = 496. It
satisfies

TrT 4 = Tr T 2

100
,

TrT 6 =
(
TrT 2

)3

7200
.

(11.130)

Thus it makes the second and the third lines vanish. It arises from E8×E8 heterotic
string.
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It can be shown that there is no other non-Abelian gauge groups satisfying the
above. An Abelian group U(1) can have trivial anomaly cancellation if we have
appropriate number. However, there is no consistent top-down construction from
string theory.

The only remaining one is the last term in (11.126). It is factorized and this
property is important in every dimension. We have a counterterm in the Lagrangian
[10]

B ∧X8, (11.131)

where B is the antisymmetric tensor field that is always accompanied by the metric
tensor.

The Green–Schwarz mechanism cancels the anomaly. It satisfies the Wess–
Zumino consistency condition and the total anomaly polynomial vanishes. Under
the gauge transformation, we have

δA = dλ

δω = d*

δB = Tr(λdA)− 1

30
tr(*dω).

(11.132)

We have the Bianchi identity for the antisymmetric tensor field,

2

α′
dH = d2B + trR2 − 1

30
TrF 2 = Y4, (11.133)

where d2B = 0. Here we used the fact that the trace over vector representation of
SO(n) is converted to that of the adjoint representation of E8,

trv T
2 = 1

30
TrT 2.

Thus the counterterm (11.131) cancels the anomaly polynomial in the last term of
Eq. (11.126).

11.5.2 Elliptic Genus

If the holomorphic partition function has modular invariance, we have anomaly-free
low-energy field theory. A heterotic string in 8m+ 2 dimensions with the self-dual
lattice in the bosonic sector is anomaly free. The heterotic string is the special case
m = 2. The anomaly polynomial is generated by elliptic genus [Schellekens and
Warner].
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The absence of anomaly can be shown in another way, which is more appropriate
to orbifold [38–40]. We tweak the partition function to elliptic genus, we may extract
information on anomaly, we do not consider the full spectrum. We just consider the
partition function for the left mover, which we require holomorphic and modular
invariant. We twist the partition function and define elliptic genus

Z T 2(τ ) = TrR(−1)F qL̃0+c̃ q̄L0+cyJ
∏
a

xKa
a , (11.134)

where the trace is over the R sector, q is the modular parameter (6.78), and Ka are
the global charges. Because of the worldsheet fermion numberF of the right movers
spacetime supersymmetric pairs cancel and giving the left-moving zero modes. It is

Z T 2(τ ) = 1

16π4 Â(R)Z
E8
(kV ,lV )(τ )Z

E8
(0,0)(τ )Z

X
(θk,θ l)

(τ ). (11.135)

The Dirac genus (15.69) counts the “the number of fixed points” under the
twisting (8.32). The next factor P(q, F ) is the generating function for Chern
characters.

If we take all φa = 0, we have the partition function for the untwisted heterotic
string, multiplied by the Dirac genus. For nonzero φa we formally have the partition
function for the untwisted sector. It is understood that it is the partition function with
a general background. The trick is we replace

φa → R.

The anomaly generating function is expanded in even powers of q . The field
theory contribution is contained in the constant term of q .

It is invariant under T . Under S , we have

A(q(−1/τ), τ−1F, τ−1R) = τ−4m exp

[
i

4πτ

(
− 1

8π2 trR2 + 1

8π2CA

TrF 2
)]

.

(11.136)

This means that the A is modular function of weight two. Since all the theta function
involved here is holomorphic for Im τ > 0, If the Bianchi identity holds, the only
poles of C(q) occur at q = 0. Since there is no modular form of weight two, the
constant term in q is zero. This means that there is no anomaly.

Chiral fields in even spacetime dimensions can lead to anomalies. They are
spinors and antisymmetric tensor fields that is self-dual or anti-self-dual under
Hodge duality.

We have experienced that anomaly cancellation is a hint of larger symmetry: for
example, chiral anomaly cancellation of the SM is automatically implemented when
we consider GUTs such as SU(5), SO(10), etc. Although the resulting low-energy
theory is chiral, the whole combination resulting from the fields of the GUT groups
cancel the anomaly.
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In the field theoretic orbifold, there are arbitrariness: the number of dimensions,
the gauge group, and so on. We cannot determine which fields should live in the
bulk or at the fixed points, either. The only consistency condition is the anomaly
cancellation.

Construction from string theory is more restrictive and predictive. We always
obtain anomaly-free theory if we obtain it by compactifying string theory, satis-
fying global consistency condition. In the orbifold compactification it is modular
invariance of the holomorphic partition function [41]. It regularizes the divergence
of one-loop diagram in a gauge-invariant way. In the field theory limit we have no
divergent one-loop diagram, from where we may have potential anomaly.

Once we parameterize the symmetry breaking using a single vector V in (11.118)
determining gauge symmetry breaking, it also determines matter spectrum in the
bulk and the fixed points without arbitrariness.
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12Algebraic Structure

In gauge theory, we understand matter and gauge fields by transformation under
Lie algebras. We have seen that string theory naturally realizes such algebra. In
heterotic string, momentum-winding quantum numbers provide representation of a
state. Considering massive states and twisted states, this algebra is generalized it to
the affine Lie algebra. It is generalized to twisted Lie algebra that describes twisted
sector spectrum, which is a special feature in orbifold theory. Thus, it is crucial to
understand the structure of the algebra.

We break gauge symmetry of string theory by modding out the symmetry of
a given algebra, which forms automorphism. The shift vectors parameterize such
automorphism and hence breaking of the symmetry. If we have more than one
automorphism actions, in general we cannot express the information using the shift
vectors and they can reduce the rank. We can understand the patterns of symmetry
breaking so that the classification become possible. This general method is also used
to construct asymmetric orbifolds.

12.1 Lie Algebra

We briefly review basic facts on Lie algebra, following Ref. [1].

12.1.1 Lie Algebra

A Lie algebra g is defined by generators T a satisfying the commutation relation

[T a, T b] = if abcT c, (12.1)

with the structure constants f abc specifying the algebra. The number d of the
involved generators is called dimension of the algebra g, which is also denoted
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K.-S. Choi, J. E. Kim, Quarks and Leptons From Orbifolded Superstring,
Lecture Notes in Physics 954, https://doi.org/10.1007/978-3-030-54005-0_12

339

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-54005-0_12&domain=pdf
https://doi.org/10.1007/978-3-030-54005-0_12


340 12 Algebraic Structure

as dim g. The following Cartan–Weyl basis is useful. There is a set of commuting
generators {Hi}, called Cartan subalgebra (CSA)

[HI,HJ ] = 0, I, J = 1, . . . , r. (12.2)

Here r , the rank, is an invariant of the algebra, independent of the choice of the
CSA. After separating CSA, the remaining generators EP satisfy the relation

[HI,EP ] = PIEP , I = 1, . . . , r. (12.3)

That is, every generator is an eigenstate of the adjoint operator by CSA elements

adA B = [A,B]. (12.4)

The vector P = (P I ) defines root vectors, or simply roots. It is convenient to
consider the space of roots.

Root vectors are generated by linear combinations of simple roots αi, i =
1, . . . , r . We display the simple roots of some Lie algebras in the orthogonal
representation in Table 12.1. Note that each αi is a vector of rank r with suppressed
index in the sense of (12.3) and we may define an inner product. The structure of
the Lie algebra in (12.1) is equivalently contained in the Cartan matrix

Aij ≡ 2αi · αj

αj · αj
= 2

|αi |
|αj | cos θij , (12.5)

where θij is the angle between the two root vectors αi and αj . Note that the
definition is asymmetric. We may define dual root

α∨ = 2α

α · α (12.6)

and make it more systemic Aij = αi · αj∨.
A state transforms under the Lie algebra. For each EP in (12.3), we always have

E−P . We can normalize as

[EP ,E−P ] = P ·H ≡ HP . (12.7)

They form a set of ladder operators. The Cartan matrix tells us the relative steps of
ladder operations. To deal with this, it is useful to define the fundamental weights
�j

αi∨ ·�j ≡ δij . (12.8)

The fundamental weights of some algebras are shown in Table 12.1. From (12.8),
the extended root is always α0 ≡ −�1.
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Table 12.1 Simple roots of Lie algebras in the orthogonal representations

Algebra Simple roots Fundamental weights

An−1

SU(n)

α1 = (1,−1, 0, 0, . . . , 0, 0)

α2 = (0, 1,−1, 0, . . . , 0, 0)

α3 = (0, 0, 1,−1, . . . , 0, 0)
.
.
.

αn = (0, 0, 0, 0, . . . , 1,−1)

�1 = 1
n
(n − 1,−1,−1, . . . ,−1,−1)

�2 = 1
n
(n − 2, n− 2,−2, . . . ,−2,−2)

�3 = 1
n
(n − 3, n− 3, n− 3, . . . ,−3,−3)

.

.

.

�n = 1
n
(1, 1, 1, . . . , 1, n − 1)

Dn

SO(2n)
α1 = (1,−1, 0, 0, . . . , 0, 0)

α2 = (0, 1,−1, 0, . . . , 0, 0)

α3 = (0, 0, 1,−1, . . . , 0, 0)
.
.
.

αn−1 = (0, 0, 0, 0, . . . , 1,−1)

αn = (0, 0, 0, 0, . . . , 1, 1)

�1 = (1, 0, 0, 0, . . . , 0, 0)

�2 = (1, 1, 0, 0, . . . , 0, 0)

�3 = (1, 1, 1, 0, . . . , 0, 0)
.
.
.

�n−1 = (+,+,+, . . . ,+,−)
�n = (+,+,+, . . . ,+,+)

E8 α1 = (0, 1,−1, 0, 0, 0, 0, 0)

α2 = (0, 0, 1,−1, 0, 0, 0, 0)

α3 = (0, 0, 0, 1,−1, 0, 0, 0)

α4 = (0, 0, 0, 0, 1,−1, 0, 0)

α5 = (0, 0, 0, 0, 0, 1,−1, 0)

α6 = (0, 0, 0, 0, 0, 0, 1,−1)

α7 = (+,−,−,−,−,−,−,+, )
α8 = (0, 0, 0, 0, 0, 0, 1, 1)

�1 = (1, 1, 0, 0, 0, 0, 0, 0)

�2 = (2, 1, 1, 0, 0, 0, 0, 0)

�3 = (3, 1, 1, 1, 0, 0, 0, 0)

�4 = (4, 1, 1, 1, 1, 0, 0, 0)

�5 = (5, 1, 1, 1, 1, 1, 0, 0)

�6 = ( 7
2 ,+,+,+,+,+,+,−)

�7 = (2, 0, 0, 0, 0, 0, 0, 0)

�8 = ( 5
2 ,+,+,+,+,+,+,+)

+ and − denote in the spinor forms filling 8 entries, respectively, 1
2 and − 1

2

The fundamental weights provide another complete basis {�i} which is called
the Dynkin basis. A vector in the Dynkin basis will be denoted by a square bracket
[ ]. We have highest weight states, and the ladder operator takes one state into
another. Every highest weight representation has integral nonnegative entries in the
Dynkin basis. Thus, we can associate the nodes of the Dynkin diagram with tensoral
representations. For instance, �1,�n of SU(n) corresponds to the fundamental
weights n,n, respectively.

From (12.8), we see that the inverse Cartan matrix

A−1
ij = �i ·�j (12.9)

plays the role of a metric tensor. Multiplying αj and contracting the j index, we
have

�i = A−1
ij αj . (12.10)

It provides the components of the simple roots for fixed i in Dynkin basis, which
is convenient basis for obtaining irreducible representations from a highest weight
vector.
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Fig. 12.1 Dynkin diagrams
of finite dimensional simple
Lie algebras. Numbers
indicate the order of the
corresponding simple roots.
Solid nodes correspond to
short simple roots

An

Bn

Cn

Dn

E6

E7

E8

F4

G2

1 32 4 5 6

7

8

1 32 4 5

6

7

1 32 4 5

6

1 2

1 32 4

1 2

1 n-2 nn-1

1 n-2 nn-12

1 n-2 nn-12

n

n-1n-2

2

It is useful to picture the above information in Dynkin diagrams. It is set of nodes
representing the roots and they are connected by one or more lines. The number
of lines connecting ith and j th nodes is the minus of the Cartan matrix. All the
possible ladder operations are classified, and we have shown all the possible Dynkin
diagrams in Fig. 12.1 and extended diagrams in Fig. 12.2 with the Coxeter labels
below the nodes.

Because the Cartan matrices are asymmetric in general, we have also asymmetric
Dynkin diagrams. To have the above cosines (12.5), some roots have different
lengths. In Fig. 12.1, solid nodes correspond to the short nodes. Thus, a single line
represents 120◦ between the simple roots connected to the line. In A,D,E type
algebras, all the roots have the same length and all the connecting lines are single
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Fig. 12.2 Extended Dynkin
diagrams of simple Lie
algebras. They are also
Dynkin diagrams of the
so-called untwisted affine Lie
algebras [1]. The numbers
inside the nodes are dual
Coxeter numbers which are
mostly the same as Coxeter
numbers, but some are
different, which are expressed
in italicized numbers. The
numbers outside are the
ordering, and the extended
root is the zeroth
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lines. Such algebras are called simply laced. For these, we can fix α · α = 2, so
that they are self-dual α∨ = α and we can forget about the dual roots. The angles
135 and 150◦ between simple roots are represented by the double and triple lines,
respectively. The ratio of simple roots connected to the double (triple) line is

√
2

(
√

3) among which the smaller simple root is represented by a solid node.
For each algebra, there is a unique, highest root

θ ≡
r∑

i=1

aiα
i ,

2

θ · θ θ ≡
r∑

i=1

a∨i αi∨, (12.11)

determined by positive integers ai called the Coxeter labels. We have displayed the
Coxeter labels below the nodes of the Dynkin diagrams in Fig. 12.2. The sums

g ≡ 1+
r∑

i=1

ai, g∨ ≡ 1+
r∑

i=1

a∨i (12.12)

are called the Coxeter number and dual Coxeter number, respectively. We can define
similarly the dual Coxeter number using the dual Coxeter labels. Especially, the dual
Coxeter number coincides with the quadratic Casimir

2g∨δab = f acdf bcd . (12.13)

These information are displayed in Table 12.2.
This highest root provides an extended root α0 ≡ −θ . Its inner products with

the original simple roots give the extended Dynkin diagram shown in Fig. 12.2.
In view of (12.12), it is natural to define a0 = 1. We can easily find a maximal
subalgebra using the extended Dynkin diagram. The simple roots and the extended
root are linearly dependent, and projecting out one of them gives a maximal regular
subalgebra of the original algebra E8. However, it is known that there are five

Table 12.2 Some characteristic number of Lie algebras g

g dim g g∨ g I Casimir dims.

An−1 n2 − 1 n n n 2, 3, . . . , n

Bn n(2n + 1) 2n− 1 2n 2 2, 4, . . . , 2n

Cn n(2n + 1) n+ 1 2n 2 2, 4, . . . , 2n

Dn n(2n − 1) 2n− 2 2n− 2 4 2, 4, . . . , 2n− 2, n

E6 78 12 12 3 2, 5, 6, 8, 9, 12

E7 133 18 18 2 2, 6, 8, 10, 12, 14, 18

E8 248 30 30 1 2, 8, 12, 14, 18, 20, 24, 30

F4 52 9 12 1 2, 6, 8, 12

G2 14 4 6 1 2, 6

g∨ and g are (dual) Coxeter numbers. I is the index or the determinant of the Cartan matrix
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exceptions to this rule on “maximality”: when one projects out the third root of
F4, the third root of E7, and the third or the fifth or the sixth root of E8 [1, 2].

12.1.2 Affine Lie Algebra

We have seen that the group generators, Eqs. (6.233) and (6.234), are represented by
vertex operators [3]. The operator product expansion between two currents is given
as

ja(z)jb(0) ∼ kδab

z2 + if ab
c

z
jc(0). (12.14)

By ja is triangularly decomposed to HI ,Eα , and E−α . The current can be expanded
as

ja(z) =
∞∑

n=−∞

jan

zn+1 (12.15)

to give

[jam, jbn ] = if ab
cj

c
m+n +mδm+n,0δabK, (12.16)

where a = 1, 2, . . . , d with the dimension of the adjoint representation d . This
extended algebra is called the affine Lie algebra or the Kac–Moody algebra. The
zero mode of this algebra m = n = 0 reduces to the simple Lie algebra.

We have introduced two additional generators. One is the central element K ,
commuting with all the generators

[K, jan ] = 0, (12.17)

whose eigenvalue k is called the level of the algebra. The other is the grade D,
whose eigenvalue is the Kaluza–Klein mode number, and satisfies the following
commutation relations

[D, jan ] = njan , [D,K] = 0. (12.18)

Without the central extension, we just have replicas of the simple Lie algebra. In
our formulation, the relative normalization is fixed as k = 1 if we identify z−1

coefficient as the structure constant f abc of Lie algebra with normalization (12.12).
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Fig. 12.3 3 of SU(3) in the k = 2 level. The highest weight is ([1 0]; 2, 0). We obtain all the
weights by applying −α1 = ([−2 1]; 0, 0) to obtain ([−1 1]; 2, 0) and then applying −α2 =
([1 − 2]; 0, 0) to obtain ([0 − 1]; 2, 0)

With the central extension, now we have another ladder operator Tn with n �= 0,
raising and lowering the grade number n. In addition, the elements of the Cartan
subalgebra are not mutually commuting

[HI
n ,H

J−n] = δIJ nK . (12.19)

The Cartan subalgebra elements also raise and lower the eigenvalues of D by nk.
Since the generators (H0;K,D) are mutually commuting, we can consider their

simultaneous eigenvector (λ; k, n). As usual, we define the inner product as

(λ; k, n) · (λ′; k′, n′) = λ · λ′ + kn′ + k′n. (12.20)

With this definition, still the gauge generators belong to the k = 0 level. For the
simple SU(3) case, it is illustrated in Fig. 12.3.

12.1.3 Twisted Algebra

The twisting (7.2) makes the algebra also twisted

ja(σ + π) = ωja(σ ) = e2πiηa ja(σ ) (12.21)

with Nηa = Z. This is an automorphism, so that it preserves the commutation
relation (12.47). For inner automorphism, we will see shortly that we may always
write this automorphism using the shift vector, e.g., ηI = V I for the first twisted
sector, while other components of ηa vanishing. We may generalize it to any twisted
sectors and those in the presence of Wilson lines. Hence, we have the twisted affine
Lie algebra [1, 4]

[jam+ηa , jbn+ηb ] = if abcj c
m+n+ηa+ηb + (m+ ηa)δm+n+ηa+ηb,0δabK. (12.22)

Having Cartan subalgebra as the maximal set of commuting generators of the
modes with n = 0, we have a tower of generators with the modes with n �= 0 as
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well. Then, we shift the grade

D̃ = D − η ·H0 (12.23)

for these modes to have

H̃ I
n = HI

n + ηI δn,0K. (12.24)

The level operator K commutes with all the others and hence is not changed. With
the rest of the generators, we make ladder operators as

Ẽα
n = Eα

n+η·α. (12.25)

The newly defined (tilded) operators satisfy the same commutation relations (12.16).
That means, the twisted algebra is isomorphic to the untwisted algebra. The adjoint
representations are not affected by η. Thus, the gauge group is that of the common
untwisted sector. However, the weights are shifted by η.

12.2 Matter Fields

We study properties of matter fields. Their charges are understood by representation
theory. Other physical properties such as mass and spin are described by conformal
field theory.

12.2.1 Highest Weight Representations

The matter spectrum can be understood in terms of the highest weight representa-
tion. That is, a multiplet state |�〉 is annihilated by all the raising operators

Eα
0 |�〉 = 0, for all α > 0, (12.26)

HI
n |�〉 = 0, for all n > 0. (12.27)

The last equation is also the requirement for the highest weight along the direction
of D. For example, for the untwisted matter (3, 27), the highest weight vector is
represented as [10][100000] in the SU(3)×E6 Dynkin basis. It is annihilated by all
the simple roots, among which the nontrivial conditions are

Eα1|[1 0][1 05]〉 = 0 (12.28)

Eα3|[1 0][1 05]〉 = 0 (12.29)
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where we used the original name of E8 simple roots. Then, by successive sub-
tractions of simple roots, according to Cartan matrices, we list all the states in
the representation. In fact, this can be obtained by the branching rule, since they
come from the adjoint 248 of E8. So, in principle we have the untwisted sector
representations by reading off the branching tables [3].

Can we do the same for the twisted sector fields? That should be, because they
transform under the untwisted gauge group. Looking at the (12.24) we see that the
CSA of grade zero (n = 0) is shifted by the twist ηI , which we identify with the
local shift vector kV +miai . It follows that their eigenvalues, the weight vectors P ,
are shifted by this. They form representations

|P + kV +miai〉, (12.30)

where the state is in the kth twisted sector and we have Wilson lines miai .
For example, the vectors forming (3, 1) in the twisted sector are charged under
SU(3)×E6 and obtained from

(− 1
3

1
3 − 2

3 05) −→
−α1

(− 1
3 − 2

3
1
3 05) −→

−α0
( 2

3
1
3

1
3 05), (12.31)

where α0 is now one of the simple roots of the SU(3) subgroup. The weight (08)

without oscillator αI−1 belongs to the E8 lattice but is not a root. This implies that
this representation does not come from branching of an adjoint like 248. In obtaining
this representation, we just resorted to the twisted mass shell condition (7.73), and
it seems that we have another representation something like 248, whose broken
representation gives such state as (3, 1). We will see in the next section that this is
easily understood when we use the algebra in a twisted form.

12.2.2 Integrability and No-adjoint Theorem

It is sufficient to consider the highest weight vector only, of a form

� =
r∑

i=1

ti�i, (12.32)

with nonnegative integers ti . In the “ket” state notation, it is |�̂〉 ≡ |�; k, n〉 of
(12.19). Looking at the eigenvalue in the (α0; 0, 1) direction, we have

Ĥ (α0; 0,1)|�̂〉 =
(
α0 ·�+ k

)
|�〉, (12.33)

where α0 is the extended root we discussed before.
In analogy with the simple harmonic oscillator algebra, one can see that the

eigenvalues of Ĥ are nonnegative integers. In the simple Lie algebra, note that the
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eigenvalues of � · θ are already integers. Therefore, the eigenvalue for level k is a
nonnegative integer, which translates into the so-called integrability condition

k ≥
r∑

i=1

aiti ≥ 0 ,

or, using the extended root,

k = t0 +
r∑

i=1

aiti , (12.34)

where t0 is a nonnegative integer. It is noted that for the level one(k = 1) algebra
only a few can satisfy this condition because ai ≥ 1. As shown in Fig. 12.1, for
the SU(n) algebra the Coxeter label corresponding to every fundamental weight1 is
always 1; thus, every antisymmetric representation �i , with the dimension

(
n
i

)
, is

possible. However, for the other groups ai = 1 is possible only for the outer most
nodes of the Dynkin diagram. For E6, for example, �1 and �6 have ai = 1. In other
words, 27 and 27 can satisfy the k = 1 condition.

A corollary of this observation is the “no-adjoint theorem” that the adjoint
representation, needed for breaking the SU(5), SO(10), and E6 GUTs, cannot satisfy
this condition. Look at Dynkin diagrams of Fig. 12.1. The highest weight vector
for the adjoint representation of SU(n) is �1 + �n−1, and hence it has the sum
of the Coxeter level greater than 1: a1 + an−1 = 2 > 1. For SO(n), the adjoint
representation n(n− 1)/2 is �2, and the level is a2 = 2. For the other groups, the
adjoint representations have the Coxeter label greater than 1.

When k > 1, this constraint is relaxed; however, there exists some upper limit
for dimension of a highest weight. We will come back to this point later.

12.2.3 Mass and ConformalWeight

The Virasoro operators for group degree of freedom are constructed by the Sugawara
method [5]. Consider a biproduct of the current

: jj (z1) :≡ lim
z2→z1

(
ja(z1)j

a(z2)− kd

z2
12

)
. (12.35)

1Completely antisymmetric representation in this case.
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We may show the following OPE using (12.14) [6]

: jj (z1) : jc(z3) ∼ (k + g∨)θ2

(
jc(z3)

z2
13

+ ∂jc(z3)

z13

)
, (12.36)

which is nothing but the OPE between T (z1) and jc(z3) up to normalization. Here,
θ is the highest root. Thus, we have (k + g∨)θ2T (z) ≡: jj (z) :. Mode expansion
(6.40) gives

L̃n = 1

θ2(k + g∨)
∑
m∈Z

d∑
a=1

: jam+nja−m :, (12.37)

where k is the level defined below Eq. (12.17) and g∨ is the dual Coxeter number
in (12.12). This normalization gives the same Virasoro algebra as (6.44) with the
central charge c = kd/(k + g∨). So, we have the minimal nonnegative eigenvalue
of Hamiltonian operator L̃0 as

[L̃m, j
a−n] = njam−n. (12.38)

It means that the eigenvalue of L0 is n, or the eigenvalue D.
Consider again the highest weight |�〉 defined by (12.26) and (12.27). Being

normal ordered L̃0 is proportional to
∑d

a T
a

0 T
a

0 , which is the Casimir operator
C2(G),

C2(G) = (�+ 2ρ) ·�, (12.39)

where ρ ≡∑
�i [1]. Since � is given by Eq. (12.32), Eq. (12.37) becomes

L̃0|�〉 = (�+ 2ρ) ·�
2(k + g∨) |�〉 = 1

2(k + g∨)
∑
i

(ti + 2)�i ·
∑
j

tj�j |�〉.

Thus, the eigenvalue is given by

h� = 1

2(k + g∨)

r∑
i,j=1

(ti + 2)tjA
−1
ij , (12.40)

with A−1
ij in (12.9). Consider a special case where a state carries a single fundamen-

tal weight � = �i without oscillator at level k = 1. In this case, using (12.12) we
obtain

h�i =
1

2
�2

i =
1

2
A−1
ii (no summation of i). (12.41)
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Considering kth twisted sector, the mass shell condition (12.33) for a state is
translated into

1

4
M2

L =
(P + kV )2

2
+ Ñ+ c̃ = h� + c̃ = 0. (12.42)

In other words, from this condition we can find the highest weight state having the
above h�. This is the only mass condition of all the possible combinations of h�
satisfying this condition is the highest weight spectrum. The conformal weight h of
|�〉 appears as

L̃0|�〉 = (h� + c̃)|�〉 = [ 1
2 (P + kV )2 + c̃]|�〉. (12.43)

The problem of finding states satisfying the mass shell condition (12.33) is
converted to the finding h� satisfying it [7]. Although it looks like a nontrivial task,
only a few � can satisfy the above condition, because of the integrability (12.34).

We are usually in a situation where a gauge group g (like E8 × E8 or SO(32)) is
broken down to

⊕
h. For each simple group h, the inverse Cartan matrix (Ah

ij )
−1

is completely determined as in Table 12.3, independent of the basis. If a state has
the conformal weight of each simple algebra as h�h in (12.41), since the conformal
weight is additive, we may replace the h� in (12.41) as the sum over the whole
algebra

h� =
∑

h�h . (12.44)

If it satisfies the mass shell condition (12.42), then its highest weight is given by the
sum of the fundamental weights

P + kV =
∑

�h
i =

∑
(Ah)−1

ij αj , (12.45)

where Ah is the Cartan matrix for the subgroup h, but now αj is a simple root of g.
For example, we can understand the (3, 1) representation of (12.31) in the twisted

sector, in terms of the highest weight representation. From Eq. (12.42), we should
have h� = −c̃ = 2

3 . Since the oscillator αi
−1/3 has conformal weight 1

3 (from

Ñ = 1
3 ), we expect that 1

3 comes from the 3 of SU(3) with as many multiplicity.

Indeed, by reading the inverse Cartan matrix 1
2 (A

A2)−1
11 = 1

3 presented in Table 12.3,
we obtain the corresponding highest weight representation (here P + V )

P + V = (AA2)−1
1j α

j = (− 1
3

1
3 − 2

3 05)(08), (12.46)

where αj are the E8 simple roots. This result agrees with the one obtained in
Sect. 7.4.2.
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Table 12.3 The Cartan and the inverse Cartan matrices of Lie algebras

Algebra Cartan matrix Aij Inverse Cartan matrix A−1
ij

An−1
⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

2 −1 0 · · · 0 0
−1 2 −1 · · · 0 0
0 −1 2 −1 · · · 0

. . .

0 0 0 · · · −1 2 −1
0 0 0 · · · 0 −1 2

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

1

n

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

n− 1 n− 2 n− 3 · · · 2 1
n− 2 2n− 4 2n− 6 · · · 4 2
n− 3 2n− 3 3n− 3 · · · 6 3

. . .

2 4 6 · · · 2n− 4 n− 2
1 2 3 · · · n− 2 n− 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

Dn

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

2 −1 0 · · · 0 0 0
−1 2 −1 · · · 0 0 0
0 −1 2 · · · 0 0 0

. . .

0 0 0 · · · 2 −1 −1
0 0 0 · · · −1 2 0
0 0 0 · · · −1 0 2

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

1

2

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

2 2 2 · · · 2 1 1
2 4 4 · · · 4 2 2
2 4 6 · · · 6 3 3

. . .

2 4 6 · · · 2n− 4 n− 2 n− 2
1 2 3 · · · n− 2 n

2
n−2

2
1 2 3 · · · n− 2 n−2

2
n
2

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

E6
⎛
⎜⎜⎜⎜⎜⎜⎜⎝

2 −1 0 0 0 0
−1 2 −1 0 0 0
0 −1 2 −1 0 −1
0 0 −1 2 −1 0
0 0 0 −1 2 0
0 0 −1 0 0 2

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

1

3

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

4 5 6 4 2 3
5 10 12 8 4 6
6 12 18 12 6 9
4 8 12 10 5 6
2 4 6 5 4 3
3 6 9 6 3 6

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

E8
⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

2 −1 0 0 0 0 0 0
−1 2 −1 0 0 0 0 0
0 −1 2 −1 0 0 0 0
0 0 −1 2 −1 0 0 0
0 0 0 −1 2 −1 0 −1
0 0 0 0 −1 2 −1 0
0 0 0 0 0 −1 2 0
0 0 0 0 −1 0 0 2

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

2 3 4 5 6 4 2 3
3 6 8 10 12 8 4 6
4 8 12 15 18 12 6 9
5 10 15 20 24 16 8 12
6 12 18 24 30 20 10 15
4 8 12 16 20 14 7 10
2 4 6 8 10 7 4 5
3 6 9 12 15 10 5 8

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

12.3 Automorphism

The actions we performed in the previous chapters are characterized by a set of shift
vectors V, a1, a2, . . . . These actions are understood as automorphisms, which we
will discuss here.

12.3.1 Shift Vector

An automorphism ω of an algebra g is an isomorphism from g to itself (hence the
prefix auto). In other words, it preserves the commutation

ω([x, y]) = [ω(x), ω(y)] (12.47)

for x, y ∈ g, and the mapping is a one-to-one correspondence. Roughly speaking,
it is a permutation among the roots. An order N of an automorphism is defined to
be the minimum integer such that ωN becomes identity. We are interested in a finite
automorphism, where N is a finite number. If an automorphism is generated by the
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algebraic elements of g itself, by adjoint operation, then the automorphism is called
the inner automorphism; otherwise, it is outer.

By linear combinations with complex coefficients, we can always decompose g
into eigenstates of the automorphism ω

g =
N−1⊕
k=0

gk, (12.48)

where each gk is a subalgebra with eigenvalue e2πik/N ,

ω(x) = e2πik/Nx, x ∈ gk. (12.49)

In general, we can make a state into a definite eigenstate gk by forming a linear
combination

xk = 1

N

N−1∑
j=0

e−2πikj/Nωj (x), (12.50)

for which we can show ω(xk) = e2πik/Nxk. With this form, we will encounter
another way of breaking the gauge group.

This provides a way to obtain matter representations from an adjoint of the
unified group by modding out by automorphism ω. The representation gauge fields
come from the invariant subgroup g0. Matter representations come from eigenstates
gk .

There is an important theorem that a finite inner automorphism is always
represented by the shift vector (12.21). The key idea is that, for the invariant algebra
under ω, i.e. g0 of g, we can always find the elements of the Cartan subalgebra of
g, invariant under ω. A sketch of the proof is as follows. They are some special
linear combinations of elements of g, such that they commute each other and form
a maximal Abelian subalgebra of g(0). It implies that ω(Eα) is still eigenstate with
respect to HI , since

[HI,ω(Eα)] = [ω(HI ), ω(Eα)] = ω([HI ,Eα]) = αIω(Eα). (12.51)

Because there is only one Eα corresponding to the root α, ω(Eα) should be
proportional to Eα up to a phase. Evidently, this ω is mapped by adHI ·ω where
adA B is defined in (12.4) and the phase is determined by a linearly combined CSA.
Thus, we define the shift vector V , introduced in (7.50), as

ω = exp

(
2πi

r∑
I=1

V I adHI

)
, (12.52)

where each NV I is an integer.
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Example

We consider automorphism of SU(3) and how it affects the algebra. For this, it is
natural to complexify the Lie algebra by defining the generators using the Gell-
Mann matrices (5.32) as

H± ≡ λ3 ± iλ8,

E±ρ1 ≡ λ1 ± iλ2,

E±ρ2 ≡ λ4 ± iλ5,

E±ρ3 ≡ λ6 ± iλ7,

(12.53)

Using the commutation relation (12.3),

[H±, E±ρi ] = ±ρiE±ρi , i = 1, 2, 3, (12.54)

where the signs are correlated here and in what follows. This means that we have
roots

ρ1 =
√

2, ρ2 = 1√
2
+ 3√

6
i, ρ3 = 1√

2
− 3√

6
i, (12.55)

where we can take two of them as simple roots and the rest being the negative sum
of the two. We took the normalization ρ2 = 2. The fundamental representation 3 is
a set of states |di〉 with weights

d1 = 1√
2
+ 1√

6
i, d2 = − 2√

6
i, d3 = − 1√

2
+ 1√

6
i. (12.56)

We verify that the roots are differences of weights.
Consider inner automorphism generated by

T a → wT a, w ≡ e2πi/3. (12.57)

It is an order 3 action. This implies, from (12.54),

[e±2πi/3H±, e±2πi/3E±ρi ] = ±(e±2πi/3ρi)e
±2πi/3E±ρi . (12.58)

All the weights are also rotated as

wρ1 = ρ2, wρ2 = ρ3, wρ3 = ρ1, (12.59)

wd1 = d2, wd2 = d3, wd3 = d1. (12.60)
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Since the Cartan subalgebra is not invariant as in (12.58), we are tempted to say
that the rank is reduced. However, we have invariant linear combinations of the roots

H ′± ≡ E±ρ1 + E±ρ2 + E±ρ3 , (12.61)

where the signs are correlated. These provide another CSA of a rank two algebra

SU(2)×U(1). (12.62)

The other CSA elements are projected out and the resulting gauge group becomes
smaller.

We have linear combinations of these other CSA elements form a state trans-
forming line α = e2πi/3 and α2

E′± ≡ E±ρ1 + α2E±ρ2 + αE±ρ3 ,

E′′± ≡ E±ρ1 + αE±ρ2 + α2E±ρ3 .
(12.63)

We may verify that each of E′± and E′′± form a doublet under each SU(2) in (12.62).
There is another doublet formed by {H+,H−}.

For the weights, we have invariant combination forming the generators

|d1〉 + |d2〉 + |d3〉, (12.64)

{|d1〉 + α2|d2〉 + α|d3〉, |d1〉 + α|d2〉 + α2|d3〉}. (12.65)

The first and the second, respectively, form a singlet and a doublet under the SU(2).

12.3.2 Weyl Group

Regarding automorphism as shuffling the roots, obvious actions are reflections.
Consider a reflection σα of a root P with respect to the plane perpendicular to a
root α,

P → σαP = P − 2
α · P
α2 α = P − (α∨ · P)α. (12.66)

This is readily extended to weight space thus to shift vectors. Being a reflection,
we have σα = σ−α = σ−1

α . We see that these reflections form a group, called Weyl
group. Like the root system, every Weyl reflection is decomposed into product of
fundamental reflections σαi with respect to simple roots αi , but not every element
of Weyl group is a reflection. Also, each Weyl reflection acts as an automorphism
since it just permutes the roots.

A Weyl reflection in orthogonal bases will provide a good example. With Weyl
reflections, we can understand many operations on the weight lattices and also on
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the shift vectors. For instance, Weyl reflections of P with respect to the roots of the
type (1,−1, 06),

P = (P1, P2, . . . , P8)→
= (P1, P2, . . . , P8)− [(1,−1, 06) · (P1, P2, . . . , P8)](1,−1, 06) (12.67)

= (P2, P1, . . . , P8),

correspond to exchanging two components. This statement can be generalized. With
respect to the roots of the type (1, 1, 06), the Weyl reflections give

(P1, P2, . . . , P8)→ (−P2,−P1, . . . , P8). (12.68)

Then, if we apply both actions together, we have the result that two elements just
obtain minus signs.

What will be the case when we apply Weyl reflections on the half-integral
elements? In general, it results in a quite complicated action. Fortunately, it is known
that three such actions are redundant to two actions up to integral reflections. This
fact is crucially used when we check an equivalence between two shift vectors.
Later, we will see that the Weyl reflection of affine Lie algebra accompanies
a translation. Thus, we confirm that all the symmetries are generated by Weyl
reflections.

Weyl refection is inner automorphism, because it is generated by generator
themselves σα = exp[iπ(Eα + E−α)/2], so that

σαH
Iσ−1

α = HI − αI α ·H. (12.69)

Since the Weyl group is a group of reflections, we can always rearrange the roots
to have bases of simple roots from an initially given set of simple roots. The only
remaining ambiguity is rearranging simple roots within themselves. This cannot be
arbitrary but should be in the way that preserves the relations between the simple
roots. That is, it is a symmetry that leaves the Cartan matrix or the Dynkin diagram
invariant. Therefore, we have

Automorphism of g = (Symmetries of Dynkin diagram) � (Weyl group).
(12.70)

For example, the simple SU(n) Dynkin diagram possesses a Z2 symmetry along the
vertical axis, which corresponds to a complex conjugation. We also have complex
conjugation in the SO(2n) case, which corresponds to a Z2 reflection along the long
axis of the Dynkin diagram. Some extended diagram has an enhanced symmetry.
For example, the extended E6 has the order 3 permutation symmetry S3, and the
extended SU(n) Dynkin diagram is a regular n-gon, so we have Dn symmetry.
Since the E8 Dynkin diagram has no symmetry, the only automorphism is the Weyl
reflections.
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There is a special element, called the Coxeter element, defined by the product of
all the fundamental reflections

w =
∏

σαi , (12.71)

where αi are the simple roots. Although its form is also dependent on the lattice
choice, it has a definite order, which turns out to be the Coxeter number g given
in (12.12), i.e. wg = 1 [1]. For the SU(n), we have g = n and can show that the
coxeter element is 2πi/n rotation.

12.4 General Action on Group Lattice

We consider a point group action in the current algebra space T 16
G,L. Like shift vector,

this point group also mods out the lattice to break the gauge group. In general, such
actions do not commute, so some of the Cartan generators are also projected out.

12.4.1 Point Group Embedding

In Chaps. 5 and 6, we have broken a group by associating the space action θ with a
translation V in the group space, as in (7.27),

(θ, v)x −→ (1, V )X = X + V.

The most general possibility is that with an automorphism on the group space * [8],

(θ, v)x −→ (*, V )X = *X + V. (12.72)

As with the shift vector (7.53), the unbroken gauge group is obtained by the
invariance condition under this action. We have matter fields that are also given
definite transformation properties under this unbroken group.

Therefore, we can form a point action * on the group lattice, by a suitable
product of Weyl reflections. In fact, then the form and, in particular, the order of
* are dependent on the choice of lattice.

For the adjoint representation, every element x has a corresponding state labeled
by a root vector |x〉. For the heterotic string, all the states begin from roots, and thus
the above action is applicable. The action is defined by a bracket relation y|x〉 =
|[y, x]〉. The string states can be treated in this way. In this case, the group sum +
is a linear superposition of the states, which is clearly understood in terms of vertex
operators (6.234) and (6.233).

For an action w, the invariant states with the invariant right movers become
gauge bosons. The non-invariant states with suitable right movers form matter
representations.
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Fig. 12.4 SU(3) roots and weights of 3

Z3 Example: E8 × E8 Through SU(3)8

We associate the order three point group of the T 6/Z3 orbifold with an automor-
phism of the E8 × E8 [8]. Since the only group with an order three Coxeter element
is SU(3), we consider a multiple embedding made by a product of (12.71). This is
useful, because the elements of E8 can be understood by those of SU(3)4. Here, the
248 branches into four adjoints,

(8, 1, 1, 1), (1, 8, 1, 1), (1, 1, 8, 1), (1, 1, 1, 8)

which constitute 32 states, including Cartan subalgebra, and eight kind of multi-
fundamentals in the form

(3, 3, 3, 1), (3, 3, 1, 3), (3, 1, 3, 3), (1, 3, 3, 3), (complex conjugates), (12.73)

which are 216 states. All the SU(3)s are equivalent, seen by a suitable complex
conjugation 3 ↔ 3 (exercise).

Analogously to the spacetime twisting, it is convenient to use complexified
coordinates. Each element can be represented as a vector in the weight space. For
example, the roots (8, 1, 1, 1) are represented by CSA αI−1|0〉L, I = 1, 2, and root
vectors |±ρi, 0, 0, 0〉L, i = 1, 2, 3, with ρi in (12.55). It satisfies ρ2 = 2. Weights of
(3, 3, 3, 1) are the eight dimensional vectors of the form |da, db, dc, 0〉L with each d

being the SU(3) weight in (12.56). Those corresponding to 3̄ have the opposite sign.
Their lengths are chosen such that d2

a + d2
b + d2

c = 2. They are shown in Fig. 12.4.
It is another way of representing the same E8, resulting to the same lattice 8 in a
different basis.
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Fig. 12.5 E8 is decomposed into four SU(3)s. We associate Z3 action θ with the rotation on the
first three SU(3) lattices by 2π/3. It is realized by products * = w1w2w3 of the SU(3) Coxeter
elements wa in the ath torus

The modular invariance condition again restricts the possible automorphisms.
Essentially, it comes from (7.49), by the way of guaranteeing massless states. Now,
a crucial difference is that we have a point group action * on the group space; thus,
states got twisted by * cannot have a momentum contribution to mass (but possibly
has a fractional oscillator number). To guarantee a massless state, the total number
of action w on the eight SU(3) lattices should be a multiple of three [8]. These
possibilities are listed in Table 12.7.

Gauge Group
We act the Coxeter element on the first three SU(3)s of eight SU(3)s of E8 × E8

* = w1w2w3,

where wa, a = 1, 2, 3, is the SU(3) Coxeter element in the ath torus. We draw the
situation for the first E8 in Fig. 12.5.

As we have seen in quantization of string on orbifolds in Sect. 7.2, oscillator
states having definite transformation under * are

αA−1|0〉L ≡ (α2A−1
−1 + iα2A−1)|0〉L, A = 1, 2, 3, (12.74)

αĀ−1|0〉L ≡ (α2A−1
−1 − iα2A−1)|0〉L, Ā = 1̄, 2̄, 3̄, (12.75)

αI−1|0〉L, I = 7, 8. (12.76)

The states in the first, the second, and the third lines, respectively, transform as
α ≡ e2πi/3, α2, 1. Like in the previous example, although the first Cartan generators
are projected out, the rank is not reduced, but there are new states invariant under *
among the momentum-winding states. They are

| ± ρA
1 〉L + | ± ρA

2 〉L + | ± ρA
3 〉L (12.77)

for each SU(3) A = 1, 2, 3 with the roots ±ρi’s in (12.55). So, we have as many
surviving states, forming CSA, so that the rank is not reduced. Their vertex operators
are

V �: eiρA1 Z1 + eiρ
A
2 Z1 + eiρ

A
3 Z1 : (12.78)
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up to coefficients, where ZA = X2A−1 + iX2A,A = 1, 2, 3. Note that they form a
g0 subalgebra containing invariant states

g0 = {|P 〉 + |*P 〉 + |*2P 〉}. (12.79)

Consider then the charged generators. First, the states (3̄, 3, 1, 3) are represented
by weight vectors (−da, db, 0, dd). Each da, db, dd can be any of dis in (12.56).
Under the action *, the first two entries da, db are changed. We make an invariant
state by forming a linear combination of the form (12.79)

|(−da, db, 0, dd)〉L + |(−wda,wdb, 0, dd)〉L + |(−w2da,w
2db, 0, dd)〉L,

(12.80)

using (12.60), with an arbitrary dd . So, we have 3 · 3 · 3/3 = 9 such choices. We
have also 9 complex conjugates.

Similarly, the representation (3, 3, 3, 1) has 9 invariant combinations

|(da, db, dc, 0)〉L+|(wda,wdb,wdc, 0)〉L+|(w2da,w
2db,w

2dc, 0)〉L, (12.81)

and as many complex conjugates.
Collecting all the states in (12.73) along with the Cartan generators, we have

8+ 78 states which form the adjoint representation of

SU(3)× E6.

Untwisted Matter
Now, consider matter states in the untwisted sector. In Z3 orbifold, there are only
ones belong to grade one subalgebra g1 in (12.50)

g1 = {|S〉 = |P 〉 + α2|*P 〉 + α|*2P 〉}. (12.82)

They transform like

*|S〉 = |*S〉 = α|S〉.

For (3̄, 3, 1, 3), we can make a g1 state

|(−d1, d2, 0, dd)〉 + α2|*(−d2, d3, 0, dd)〉 + α|*2(−d3, d1, 0, dd)〉
= |(−d1, d2, 0, dd)〉 + α2|(−d3, d1, 0, dd)〉 + α|(−d2, d3, 0, dd)〉.

(12.83)

We obtain 9 combinations, whose vertex operators are, as deduced from (12.78)

V �: ei(−d1,d2,0,dd)·Z + α2ei(−d3,d1,0,dd)·Z + αei(−d2,d3,0,dd)·Z : .
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We have as many states in the representation (3, 1, 3, 3), (1, 3, 3, 3). Also, we have
nine combinations from (3, 3, 3, 1). We also obtain similar states from the complex
conjugations.

Similarly, we have the following states:

|(±ρ1, 0, 0, 0)〉 + α2|(±ρ2, 0, 0, 0)〉 + α|(±ρ3, 0, 0, 0)〉, (12.84)

where the signs and permutations are correlated. We have 6 such states. With three
oscillator states (12.74), we have 81 states in total, forming (3, 27).

Twisted Sector
We considered a twist in the current algebra direction (12.72),

XI (π) = (*X(0))I + V I , (12.85)

where we allowed for a translation by lattice vectors of E8. This looks like a space
group action; however, with only the left movers the action is not well-defined. We
can introduce auxiliary right movers, make the lattice symmetric and project out the
right movers again. Then, we have a well-defined meaning for the orbifolding action.
In this way, we may define the fixed points arising from (12.85). After removing the
right movers, the number of fixed points reduces to its square root

nf =
√

9 = 3. (12.86)

Alternatively, we may just read off this factor from the partition function as given in
(8.59). In the spacetime, we also have a similar action as (12.85) and the number of
fixed points is 27.

Since we twist gauge degrees of freedom as well, the zero point energy is c̃ =
12f (0)+ 4f ( 2

3 )+ 8f ( 1
3 ) = − 1

3 . The mass shell condition becomes

1
4M

2
L = 1

2P
2 + Ñ− 1

3 . (12.87)

Note that the twisted string in the current direction cannot have a nontrivial
momentum. The only nonvanishing components in PI are for I = 7, 8 and we have
fractional oscillators in the A = 1, 2, 3, 1̄, 2̄, 3̄ directions. The resulting spectrum is
summarized in Table 12.4.

Table 12.4 Twisted sector states for the “standard” Z3 orbifold by automorphism

State Group spc. mult. Spacetime mult. Representation

|0, 0, 0, dd 〉 3 27 Part of 27(1, 27)
αA−1/3|0〉 3 27 Part of 27(1, 27)

αa
−1/3|0〉 3 27 · 3 27 · 3(3, 1)

Only the left movers are shown. dd can be any six SU(3) weights
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The oscillator contributions for P 2 = 0 and Ñ = 1
3 make up the state of a

form α
M+
−1/3|0〉L, where M+ is a holomorphic index. If M+ becomes a spacetime

holomorphic index M+ = a, the corresponding state transforms as 3 under the
holonomy group, so we have three copies of the state at each spacetime fixed point.
It is important to note that there are three fixed points in the group space, providing
the representation (3, 1).

The remaining oscillators in the group space αA−1/3|0〉 with M+ = A = 1, 2, 3

give nine states because of the fixed points. Considering the state with P 2 = 2/3
and Ñ = 0, we have the possibility of P = (0, 0, 0,±dd). These six states with the
multiplicity 3 in the current algebra fixed points make 18 states out of (1, 27). With
the above nine states, these make the complete (1, 27) at each spacetime fixed point.
As before, we obtain a CPT conjugate states in the second twisted sector.

Total Spectrum
We combine the above left-moving states with the right movers and perform the
generalized GSO projection. The model has gauge group SU(3) × E6. We have
three (3, 27)s in the untwisted sector and 27[3(3, 1) + (1, 27)], which is anomaly
free. We see that this model is identical to that with the shift vector with the standard
embedding, considered in Sect. 7.4. We see that, if we take the Cartan subalgebra
using (12.76) and (12.77), the rest of the states provides the eigenstates under this
CSA and can parameterize the symmetry breaking with the shift vector used in
Sect. 7.4.

12.4.2 Reducing the Rank by Orbifolding

We have seen that, solely the automorphism embedding * in (12.85) in the group
space gives a spectrum that is equivalently described by a shift vector. When we
have more than one such actions, generally they do not commute. Then, if the Cartan
subalgebra is not invariant under all such actions, the rank is reduced [8]. This is the
case when we include the Wilson line of the type (1, v)→ (1, a), so that

(*, 0)(1, a) �= (1, a)(*, 0). (12.88)

This means (*,*a) �= (*, a). In other words, this happens when the rotated
Wilson line is not equal to the original: *a �= a. In this case, this Wilson line is not
subject to any order N condition, that is, the strength of Wilson line 〈a〉 is free. For
this reason, we call it continuous Wilson line. Note that in a specific decomposition
like (12.73), the possible Wilson line shift ai is provided by weight vectors of the
unbroken group. In this case, it is the translation part in Eq. (12.85). When a vector
a is invariant under a rotation *, they can be treated as independent shift vectors,
and even the action * can be converted into an equivalent shift vector V .
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As always, the modular invariance condition for the additional Wilson lines
(7.99) should be checked. We note that only the part of a invariant under * fulfills
this condition, whereas the non-invariant part does not.

The rank reduction is important in the process of obtaining the SM. In addition
to the above mechanism of rank reduction by the non-commuting point rotation and
the Wilson line shift, there are simpler field theoretic methods. For example, we can
use the Higgs mechanism via VEVs of some massless fields in the spectrum and
also the Fayet–Iliopoulos term generated by the anomalous U(1).

12.5 Asymmetric Orbifold

So far, the twisting (7.2) acted equally on the left and right movers. We may relax
this condition and have a different twisting on each mover. We may take asymmetric
orbifold

O = T 16
group,L/V × T 6

L/P̄1 × T 6
R/P̄2. (12.89)

We decomposed the six dimensional torus into two pieces, although the geometry of
torus is not decomposable. It only means that the string has independent symmetries
on the left and the right movers.

x0 . . . x3 x4 . . . x9 x10 . . . x25

Left (θL, φL) (*, V )

Right (θR, φR)

We can even think of an action θL ⊕* acting on the whole left movers. This is
an asymmetric orbifold [9].

12.5.1 Extending Group Lattice

We take six dimensional radius to the critical one R = 1/
√

2 to enhance the rank of
group to 16+ 6 = 22. We can choose any group which has rank 22. Let us fix such
extra lattice coming from the rank 6 part to that of SU(3)3. It corresponds to fixing
Gij as

〈Gij 〉 = 1

4

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

2 −1
−1 2

2 −1
−1 2

2 −1
−1 2

⎞
⎟⎟⎟⎟⎟⎟⎟⎠
, (12.90)
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where we understand that the empty entries are zero. In view of Eqs. (11.34, and
11.35), we want to simplify the mass shell condition. The choice for Bij is

〈Bij 〉 = 1

4

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

0 −1
+1 0

0 −1
+1 0

0 −1
+1 0

.

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

(12.91)

We can always choose pRi = 0 by assigning relations between mi and ni . This is
the constraint that in the original construction of heterotic string we have no right
mover. The mass shell condition is

M2
L

4
= P 2

2
+ p2

L

2
+ Ñ− 1 = 0,

M2
R

4
= p2

R

2
+ N− 1

2
= 0.

(12.92)

As always, P is the momentum in the group space, and pL is the momentum in the
compact dimension. Besides the solution P 2 = 2, p2

L = 0, we have another class
of solutions with P 2 = 0, p2

L = 2, which has the form pL = (ρ, 0, 0) with the
SU(3) roots ρ. They form the roots of the SU(3)3. For the right mover, we do not
have invariant state

bi− 1
2
|0〉R

where signs are correlated. We have the same situation as in the previous subsection
and obtain the same kinds of twisted states. We have an enhanced gauge group

E8 × E8 × SU(3)3 × U(1)6

with rank 22+ 6, where rank 6 comes from right movers whose generators take the
form of Eq. (12.77),

Example

Consider asymmetric orbifolds such that left movers are untwisted and right movers
are twisted by Z3. Then, under the Z3 action θ , let the lattice get twisted as

|P,pL, pR〉 → exp(2πiP · V )|P,pL, θpR〉. (12.93)
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In Eq. (12.93), we have explicitly shown the spacetime momenta pL, pR, because
here they are treated equally with P . Therefore in the untwisted sector, the invariant
L-moving states with α

μ
−1|0〉 and |P 〉 with P · V = integer make up the adjoint

representation. It breaks E8 down to E6×SU(3). Including the original SU(3)3

adjoint αi
−1|0〉 and |pL, pR〉 with p2

L = 2, p2
R = 0, N = 1, we have

E6 × E8 × SU(3)4 ×U(1)6

with the same matter representation as in the standard Z3 case.
In the twisted sector, the mass shell condition becomes

M2
L

4
= (P + V )2

2
+ p2

L

2
+ Ñ− 1 = 0 ,

M2
R

4
= p2

R

2
+ N− 2

3
= 0 . (12.94)

Note that we have no twist on the left mover, thus no shift on the zero point energy.
While P can become the original vectors in the E8 × E8 lattice, the pL can assume
the SU(3) roots ρ and weights d with d2 = 2/3 in particular. The relevant spectrum
is listed in Table 12.5. The right mover has the same spectrum as in the standard Z3
case, since the twisting and hence the zero point energy are the same.

12.5.2 Symmetrizing Lattice

The asymmetric orbifold suffers from some ambiguities such as in defining the
notion of fixed point. Here, we give up the geometric meaning since, for example,
we cannot imagine fixed points present only on the left mover. The cure comes from
introducing a mirror lattice to make the theory symmetric and Euclidian; then, after
a consistent calculation we project out the right movers. This was the idea from
which the heterotic string was first formulated.

Let us begin with the original, even and self-dual lattice p,q (think of (p, q) =
(22, 6)). To treat all the coordinates equally, consider a Euclidianized lattice denoted
by ̃p,q , by treating the R-handed part in the same way as the L-handed part.
Then, it is not self-dual any more. Nevertheless, for vector (p1, p2) ∈ ̃p,q , vector

Table 12.5 Spectrum of the asymmetric Z3 orbifold acted on the right mover only

State Representation

Untwisted sector

Ñ = 0, n2 = 0, P 2 = 2 3(27, 3; 1, 1, 1)
Twisted sector

Ñ = 0, p2
L = 0, (P + V )2 = 2 (27, 3; 1, 1, 1)

Ñ = 0, p2
L = 2

3 , (P + V )2 = 4
3 (27, 1; 3, 1, 1)+ (27, 1; 3, 1, 1)

Ñ = 0, p2
L = 4

3 , (P + V )2 = 2
3 (1, 3̄; 3, 3, 1)+ (1, 3; 3, 3, 1)+ (1, 3; 3, 3, 1)

The underline denotes permutations. The twisted sector has multiplicity 1
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(p1,−p2) belongs to the dual lattice since it comes from the Euclidianization. We
will consider windings on 1

2 ̃
p,q and momenta on its dual lattice. They have the

form for momenta p = 2(k1,−k2) and windings w = 1
2 (k3, k4) with (k1, k2) and

(k3, k4) belonging to ̃p,q .
Now, let us construct a symmetrized lattice p+q;p+q , whose element consists

of momenta (11.34,11.35),

(pL;pR) = ( 1
2p − Bw +Gw; 1

2p − Bw −Gw), (12.95)

where we renamed the quantized momenta m and windings n as p and w,
respectively, and for brevity we suppressed the vector and matrix indices. It is
convenient to consider the 1

2p part only in pL in scalar products. So, we choose
Bij such that,

e · Be = e ·Ge, mod 2, (12.96)

as we did just above. Gij is already fixed by orbifolding. The unit lattice of ̃p,q is
ei . Gij has the Lorentzian signature, having + sign for p entries (thus Bw = Gw)
and − for q Entries (thus Bw = −Gw). Then, vectors (pL;pR) span a Euclidian
lattice p+q;p+q with elements of the form

(k3, k2 − k4; k3 − k1,−k4). (12.97)

They are generated by vectors having the form

(k1, 0; 0,−k2), (0, k2; −k1, 0). (12.98)

In other words, we have a well-defined projection to select just one of them to make
the asymmetric lattice

p,q � (k1, k2) ≡ (k1, 0; 0,−k2). (12.99)

For the oscillators, we use only the first p left-moving and the last q right-moving
ones.

Number of Fixed Points
Since ̃ is a Euclidian lattice, we can define the number of fixed points without
ambiguity [9]. Let I denote an invariant sublattice of ̃ by the operation θ , and let
N be the sublattice orthogonal to I . Every fixed point xf satisfy (1 − θ)xf = v by
virtue of Eq. (3.22). Also, for every w ∈ I we have (1 − *)w = 0. It follows that
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v · w = 0, which means that the fixed points lie in N . We find the number of fixed
points as

n
symm
f = N

(1− θ)̃
, (12.100)

in view of Eq. (3.30).
Since we have the mirror twin of the original asymmetric lattice, we may

reasonably define the number of fixed points as [9]

n
asymm
f =

√
n

symm
f . (12.101)

In the group lattice, we have the same result just by replacing θ with *. This
reasoning can be easily generalized to the twisted sector.

Although this has a direct geometric interpretation, it is hard to apply in the
practical sense. Rather we use a simple formula

n
asymm
f =

√
det(1− θ)

|I∗/I | . (12.102)

Here, det(1 − θ) is the number of fixed points of invariant lattice I (assuming it is
symmetric lattice), given by Lefschetz fixed point theorem (3.82). I∗ is dual lattice
to I , generated by fundamental weights. |I∗/I | is called index of I in I∗, and it is
inverse of the volume of unit lattice I .

They are the same because |N∗/(1−θ)N∗| = det(1−θ) and (1−θ)p,q = (1−
θ)N∗ hold [9]. Its interpretation is simple as follows. By modular transformationS ,
untwisted sector goes to twisted sector, which has a number of fixed points we are
counting. There appears an extra factor |I∗/I | as a volume difference factor of the
partition function. From (12.10), we observe that it is given by

|I∗/I | = detA, (12.103)

where A is Cartan matrix for the root system generating I . When I is semi-simple
and/or contains Abelian group, detA is simply the product of simple subgroup
determinants.

In the example discussed in Sect. 12.4.1, we have rotated three SU(3) subgroup
of visible E8, counting SU(3) fixed points for three lattices, we have det(1−θ) = 27.
Now, we check invariant lattice I . There remains one SU(3) lattice in this E8 and
thus detASU(3) = 3. The hidden sector E8 is untouched, so there is no fixed points,
and detAE8 = 1 as the famous self-dual lattice. Therefore, we have

n
asymm
f =

√
27

3
· 1

1
= 3.

We can verify the number of fixed points in Table 12.6. Note that detAE6 = 3.



368 12 Algebraic Structure

Table 12.6 Possible Z3 shift vectors for each E8 sector, in the Dynkin basis [si |s0] and in the
Cartan–Weyl basis 3V

Case [si |s0] 3V Group Number of w

0 [00000000|0] (08) E8 0

1 [01000000|0] (2 1 1 05) SU(3)×E6 3

2 [00000001|0] ( 3
2

1
2

7
) SU(9) 4

3 [10000000|1] (1 1 06) E7×U(1) 2

4 [00000010|1] (2 07) SO(14)×U(1) 1

The number of SU(3)s under the Coxeter action w given in Eq. (12.71) is also listed. The convention
on fundamental weights is presented in Table 12.1

Equivalence to Symmetric Orbifold
In the literature, the asymmetric orbifold is used not only for those with the
asymmetric orbifolding action but also for those with the radius of the compact
internal space taking the critical value R = √α′, as introduced in the beginning of
this subsection. With the critical radius, we have the extra gauge group SU(3)3. Of
course, this critical radius is not necessary for asymmetric orbifolds.

However then, there is no way of distinguishing whether this is the compactified
internal space or the original gauge group space. It is just a matter of assigning
coordinates. Note that we have used the Coxeter action for breaking the gauge
group, e.g. breaking SU(3) in Sect. 12.4.1. We can use the same trick for breaking
SU(3)st arising from spacetime in asymmetric orbifold. Indeed, if we do exchange
one of SU(3)s from group space and SU(3)st, we have a situation that there appears
a symmetric orbifold with three Coxeter elements with SU(3)3 in the group space.
Also, the number of fixed points and the mass shell condition is the same, as it
should be.

12.6 Group Structure

An apt reader might have noticed that the massless spectrum from untwisted sector,
resulting from breaking by shifts, obeys the branching rule of Lie algebra. We
will observe here its group theoretical origin. In particular, if there is an Abelian
algebra in the unbroken algebra, there are some subtleties, which is cured only by
understanding the group structure.

Moreover, we are interested in the massive states also. Interestingly, they still
form the representations of a certain algebra, which we will discuss here. In usual
case, we neglected them, because they have mass of order 1/α′ so that decoupled
in the low energy limit. Nevertheless, these massive states are relevant for the
following reasons.

In the twisted sector, we have observed that the spectrum does not belong to the
untwisted sector spectrum, since it is in a different Hilbert space. For example, there
appears a state like P = (14 04)(08) not belonging to E8 × E8 roots since P 2 �= 2.
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It belongs to the root lattice. These states appear to be mixed with massive states
because the twisting (7.2) and the shift P → P+V give massless states, like (7.73).
We will see that this originates from just isomorphic algebra in P + V basis [7].

In this section, we will also show that there cannot be an adjoint matter
representation from the level one algebra. Thus, the higher-level algebra must
be used if the adjoint Higgs of SU(5), SO(10), or E6 GUTs are used for gauge
symmetry breaking. It can be obtained by projecting out some components of
massive states with P 2 > 2 to P 2 = 2 states [9–11].

There are good references for the topics discussed in this section [1, 13].

12.6.1 Classification of the Gauge Group

The information on group breaking is entirely contained in the shift vector V . By
representingV in the Dynkin basis, we can track the group theoretical origin. Armed
with it we can have a deeper understanding of its structure and handily classify all
the possible breaking.

Shift Vector
The shift vector of the Z3 example given in Sect. 7.4 is

V = 1

3
(�2)(0), (12.104)

where

�2 = (2 1 1 05), (12.105)

which can be read from Table 12.6. Then, by definition of the fundamental weights,
the condition (7.53) for unbroken roots is satisfied for every (simple) root except
α2. The remaining root vectors make up the root system of the unbroken algebra
SU(3)×E6 (Fig. 12.6). This is Cartan’s general procedure of obtaining the maximal
subalgebra and explains why the untwisted sector spectrum obeys the branching
rule. We can generalize this method as follows.

Denoting the shift vector in terms of the fundamental weights in the Dynkin
basis,

V = 1

N

r∑
i=1

si�i = 1

N
[si], (12.106)

we can always satisfy the following condition [14]:

N = s0 +
r∑

i=1

aisi , s0, si ∈ Z≥0 (12.107)
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Fig. 12.6 With a further breaking with a Wilson line, we just apply the same rule to the subgroups

Fig. 12.7 Some shift vectors (here V = 1
3�5) are redundant to the “standard form” (V = 1

3�2)

with nonnegative integers s0, si . Surveying the condition (7.53), one observes that
it is sufficient to consider only simple root vectors since any root vector is made of
successive addition of simple roots. Now, consider a product

V · αi = 1

N

r∑
j=1

sj (α
i ·�j) = 1

N
si. (12.108)

If si = 0, then the condition (7.53) is satisfied. If not, the corresponding ith
root is not a root of the unbroken group. The unbroken group is obtained from
the extended Dynkin diagram: remove this ith circle from the extended Dynkin
diagram. However, the Cartan generators are invariant, so that the rank is preserved
as in the original group.

Since all the numbers are nonnegative in the condition (12.107), only a finite
number of set of integers [si] can satisfy it. The same applies to the other E′8. For
the Z3 orbifold, there are therefore only five cases shown in Table 12.6.

What happens for the shift vector not satisfying (12.107), for example V =
1
3 (�5)(0)? �5 = (5 1 1 1 1 1 0 0) is given in Table 12.1. Then, it is redundant,
and it can be explicitly checked that it yields again SU(3)×E6 [14]. The α seems to
be projected out; however, there is another “simple root” α = α3 + 2α4 + 3α5 +
2α6+α7+α8 connected to α8 and α2. With a number of Weyl reflections, this shift
becomes V = 1

3 (�2)(0), satisfying (12.107). This situation is depicted in Fig. 12.7.
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Table 12.7 The only modular invariant combinations without Wilson lines, breaking E8 × E8

Combination Group No. of fixed points

0× 0 E8×E′8 1

1× 0 SU(3)×E6×E′8 3

1× 1 SU(3)×E6×SU(3)′×E′6 9

2× 3 SU(9)×E′7×U(1)′ 9

3× 4 E7×U(1)×SO(14)′×U(1)′ 1

The numbers in the first column are from Table 12.6. We used prime to discriminate two E8’s,
which can be exchanged. The number of fixed points in the group space emerges when we mod
by the point group action *, not by the shift vector

So far, we have just analyzed the pattern of symmetry breaking in terms of group
theory. Combining with another E′8, the modular invariance condition (7.50) restricts
possible combinations. The only possible cases are those presented in Table 12.7.

WithWilson Lines
We can generalize the above Dynkin diagram technique in the presence of Wilson
lines. We have more shift vectors providing additional projection conditions (9.85).
One may expect that the unbroken group is the common intersection of the groups
obtained by the shift vector V and Wilson lines ai , which is not true however. The
unbroken group is the common intersection of the fixed point gauge groups which
are given by V +∑

miai .
At every stage, we begin with the unbroken Dynkin diagram and apply essentially

the same rules as explained in [14]. Here, we just summarize the following results:

1. Break the group according the rule above (12.107).
2. For a further breaking, apply the same rule to each subgroup, now with the dual

Coxeter labels a′i of the subalgebra

N = s′0 +
r∑

i=1

a′is′i . (12.109)

This will give a possible shift vector corresponding to the Wilson line.
3. However, we cannot satisfy the previous condition with these new s′i at this stage.

We relax the rule of step 1, by

N = s′0 +
r∑

i=1

ais
′
i , mod N. (12.110)

4. Iterate the procedure.
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12.6.2 Abelian Charge

Recall that under the shift (12.106) the Cartan generators {HI } remain invariant,
even when their roots are prevented by the condition (12.106). This means that
in the unbroken group, their linear combination

∑
I q

I
i H

I plays the role of the
U(1)i generator and the rank is preserved. The corresponding charge generator that
projects the state vector (12.30) to give the U(1) charge is

qα · (P + kV +miai). (12.111)

We will fix the normalization later. All the Abelian generators are orthogonal to shift
vector

qα · V = 0, qα · ai = 0, for all α, i, (12.112)

and each other

qα · qβ = 0, for all α, β. (12.113)

For instance, the SU(5) model considered in Sect. 7.5.4 with shift vectors

V = (− 2
3

1
3

1
3

1
3

1
3 0 0 0)(− 2

3 0 0 0 0 0 0 0)′,

a1 = (0 0 0 0 0 0 0 2
3 )(0

1
3

1
3 0 0 0 0 0)′,

leaves four U(1) groups with the generators

(1 1 1 1 1 0 0 0)(0 0 0 0 0 0 0 0), (12.114)

(0 0 0 0 0 0 0 1)(0 0 0 0 0 0 0 0), (12.115)

(0 0 0 0 0 0 0 0)(1 0 0 0 0 0 0 0), (12.116)

(0 0 0 0 0 0 0 0)(0 1 1 0 0 0 0 0). (12.117)

We can easily understand that they are all proportional to the component of shift
vectors. The exception is (12.114), which in fact reflects the symmetry of the
unbroken SU(5).

We can easily generalize that the Abelian generators are proportional to the
fundamental weights used (corresponding to si �= 0) in the shift vector (12.106),

qi ∝ �i (12.118)
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if the extended root of the original algebra is projected out s0 �= 0. This is true
because qi should be orthogonal to the rest of the (simple) roots; otherwise, this
vector would be the root vector of the corresponding non-Abelian group. We use
the same index i since we have one-to-one correspondence between �i and U(1)
subgroups. If the extended root survives s0 = 0, we can always find the following
Abelian generators q (as many as the number of Abelian groups in the fixed point
algebra). By making linear combinations between the fundamental weights used in
the shift vector (12.106), allowing the negative coefficient we have

q ∝
∑

s′i�i, s′i ∈ Z (12.119)

satisfying

q · θ = 0,

for it should be orthogonal to the extended root−θ of the original algebra.
The normalization of qi is related to the level k and determined by normalization

of the current ja(z) [15]. The corresponding vertex operator in this direction is
qi · ∂zX and has a different coefficient from (12.14). From (12.14), by fixing
normalization of f abc, as in (12.13), the relative normalization of the z−2 term
should be k = q2

i in this direction. For Abelian groups, the structure constants
vanish, and the normalization has to be fixed in another way. However, at the
compactification scale of an orbifold, this U(1) generator is embedded in E8 × E8
and thus has a definite normalization

q2
i = k (12.120)

to 1, as discussed before. The conformal weight for a state is

hQi = 1
2Qi

2 = 1
2 (qi · P)2. (12.121)

Comparing to the similar relation (12.41), we can determine the U(1) charged piece
of vector P . Interestingly, it is also proportional to qi: The other parts of P are
fundamental weights of the unbroken non-Abelian group, which should not be
charged under this U(1),

qi · P = qi · r, r ∝ �i ∝ qi. (12.122)

This means that we can decompose the shift vector into completely disconnected
parts. The resulting state vector is

P =
∑

A−1
ij αj∨ + r. (12.123)
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The normalization of q is fixed by (12.121). In general, states may be charged under
more than one U(1)s: then, the vector is simply the addition of each U(1) part.

There are potential anomalous U(1)s. Since they are embedded in the original
group SO(32) or E8 × E8, they can be rearranged to one U(1). This is cancelled by
the Green–Schwarz mechanism, if the U(1) charges of the whole spectrum satisfy
a specific “universality” condition. It also fixes normalization [15–17], and our
normalization gives the correct answer. Using this [18, 19], if we have at least one
anomalous U(1), the GS mechanism fixes the normalization in four dimensional
theory, regardless of the origin of group breaking, which in this case is orbifolding.

This is the only way to find Abelian generator systematically. The information
is extracted, from which Cartan subalgebras became Abelian generators after
symmetry breaking.

Example
Consider the T 6/Z3 example with the shift vector

V = 1
3 (2 07)(1 1 06) = 1

3 (�7)(�1).

We can check that the modular invariance condition is satisfied and the resulting
gauge group is SO(14)×U(1)×E7×U(1). The two U(1) generators are q7 =
1
2 (�7; 0) and q ′1 = 1√

2
(0;�1) by the normalization (12.120). Note that this gives

the correct normalization [17] for the Green–Schwarz mechanism. In view of the
branching rule, in the untwisted sector we obtain

3(14)(1)+ 3(64)(1)+ 3(56)(1)+ 3(1)(1). (12.124)

In the twisted sector, the zero point energy is still c̃ = − 2
3 . The SO(14) vector

with h14 = 1
2 alone cannot be massless but should have other components to fulfill

the mass shell condition. The missing mass is provided by other vectors r7 and r ′1
charged under U(1)s.

The corresponding highest weight vector has the form

P + V =
∑
j

(ASO(14))−1
1j α

j + r7 + r ′1. (12.125)

The first term is �1 of SO(14). The r7 and r ′1 are also proportional to (�7)(0) and
(0)(�1), respectively. They are completely fixed by the condition

hQ = 1

2
(q7 · r7)

2 + 1

2
(q ′1 · r ′1)2 = 1

6
, (12.126)



12.6 Group Structure 375

and the generalized GSO projection condition. The resulting vector is

P + V = (0 1 06)(08)+ (− 1
3 )(1 07)(08)+ 1

3 (0
8)(1 1 06), (12.127)

and charged as (14)(1). The Lorentz 3 of SU(3) (by αi
−1/3) can contribute h = 1

3 ,
and it provides another charged state, (1)(1). In addition, there is a state which
is a singlet under the whole non-Abelian group (1)(1). They all have multiplicity
χ = 27.

12.6.3 Complete Spectrum of SO(32) String

The group structure of SO(32) is particularly simple. It is because there are
roots with integral elements only. Hence, the Weyl reflection, which is the only
meaningful automorphism, rearranges their positions and signs only, by (12.67) and
(12.68). As a consequence, the shift vectors are classified only by the number of
elements. Any vectorial shift can be brought to the following form:

V = 1

2N

(
0n0, . . . , NnN

)
, with

N∑
k=0

nk = 16, (12.128)

and lead to the symmetry breaking pattern

SO(32)→ SO(2n0)× U(n1)× . . .× U(nN−1)× SO(2nN). (12.129)

We employ a subscript to make the distinction between the various factors, for
example, U(nk) = U(1)k × SU(nk) and U(1)0 = SO(2n0) when n0 = 1. Of
course, these shift vectors should satisfy conditions on the modular invariance and
the evenness of the sum.

Looking at the mass shell condition, we conclude that only a few kinds
of representations can appear. The result is tabulated in Table 12.8. All U(n)
representations are totally antisymmetric k-form tensor representations of the vector

Table 12.8 The twisted matter of SO(32) orbifold models: the k-form representations [n]±k of

U(n) and the vector 2n and spinor 2n−1± representations of SO(2n)

Ṽ Group Repr. Weights Prop.

Ṽ = 0 SO(2n) [2n]k (±1k, 0n−k) k = 0, 1

0 < |Ṽ | < 1
2 U(n) [n]αk α(1k, 0n−k) α = ±

k ≥ 0

Ṽ = 1
2 SO(2n) 2n−1

α (− 1
2
k
, 1

2
n−k

)− ( 1
2
n
) α = (−)k

For the three cases, 1
2 (P + Ṽ )2 are k

2 , k
(

1
2 + αṼ

)
+ 1

2nṼ
2, and n

8 , respectively
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n or its complex conjugate n, denoted by [n]+k and [n]−k , respectively. (In particular,
[n]±0 = 1, [n]+1 = n, [n]−1 = n, and [n]k = [n]n−k .) The representations of SO(2n)
that arise are the fundamental representation [2n]k or the spinor representation
2n-1
α of α = ± chirality. The index k = 0, 1 is used to simultaneously treat the

fundamental and the singlet representation. In the SO(32) heterotic string case, we
can explicitly prove the no-adjoint theorem by showing that only the weights, whose
entries in the Dynkin basis does not exceed level k, can appear.

Using these representations, we can identify the irreducible twisted states. The
vectorial weights give rise to representations of the form

R = ( [2n0]k0 , [n1]α1
k1

, . . . , [nm-1]αm-1
km-1

, 2nm-1
αm

)
, (12.130)

where αa = ±, k0 = 0, 1 and ka ≥ 0. The mass contribution of this state reads

M2
L

4
= k0

2
+

m−1∑
a=1

ka

(1

2
+ αaṽp a

)
+ 1

2
(ṽp)

2. (12.131)

The GSO projection on the vectorial weights require that

1− αm

4
+ 1

2

m−1∑
a=0

ka ∈ 2Z. (12.132)

So, all we need to do is to solve these linear equations. As a result, we obtain
general spectrum, including twisted sector, which is presented in [20].

12.6.4 Higher-Level Algebra

In the ordinary setup of string embedding, only the level 1 algebra is allowed,
because the whole normalization is fixed by (12.13). The relative normalization of
z−2 term in (12.14) should be k = 1 [6]. To have an adjoint representation based
on SU(5), SO(10), or E6, evading the no-adjoint theorem (12.34), we should have
higher-level algebra k ≥ 2.

Although the normalization is fixed from the beginning, we can modify the
theory by embedding the group into a larger group and changing the GSO projection
to have a different normalization [10]. We take one heuristic example of level
2 SU(2)2 algebra from two SU(2)1’s, where the subscript denotes the level of
algebra [21]. Let us call them SU(2)A × SU(2)B and form root space orthogonal
to each other. Simple root vectors αA and αB of both groups have length squared
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Fig. 12.8 The level 2
algebra SU(2)2 is obtained by
projecting to symmetrical
currents from two level 1
groups [SU(2)1]2

two as before. Projecting the root vectors of each group by keeping symmetrical
combinations

jv(z) = jA(z)+ jB(z), (12.133)

we have another SU(2)2. Since they come from the same group, so that jv have
twice the length, thus they lead to a new normalization k = 2. It is easily viewed
in the root space depicted in Fig. 12.8. The •’s indicate the original roots of each
SU(2)s. After applying some suitable GSO projection (dashed line), we have new
SU(2) roots o having length squared 1.

This shows a typical regular diagonal embedding, gk ⊂ gk
1. In this notation, the

example in the preceding paragraph is SU(2)2 ⊂SU(2)2
1. However, there is another

kind of embedding such as SU(2)4 ⊂SU(3)1 or SU(2)28 ⊂G2 [1].
Beginning with E8 × E8 and SO(32), a limited number of semi-simple groups

can be obtained. In other words, an embedding into an algebra with rank r > 16 is
impossible, when we require level 3 algebra (E6)3 diagonally embedded in (E6)

3.
Most embeddings in these semi-simple groups are introduced in [1]. A systematic
analysis is done in [10], and there are some models in such higher-level algebra
realizing SO(10) [12] and E6 [10]. Also, there is a very powerful model-independent
criterion on SO(10) GUT from higher-level algebra [10]. A more detailed study
revealed more strong constraint: although 126 of SO(10) is a tensor representation
and thus is not ruled out by the no-go theorem, there is no way to obtain it [10]. This
representation 126 is needed to allow see-saw neutrino masses purely from SO(10)
representations and R-parity as well.
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Exercises

� Exercise 12.1 Show that all the SU(3) subgroups in E8 are equivalent. That is,
the representation (12.73) has manifest permutation symmetry of three entries, if we
fix one SU(3) and make a suitable complex conjugation.

� Exercise 12.2 Using the symmetry of Dynkin diagrams (12.1) and (12.2), find
the outer automorphism of simple and affine Lie algebras.
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13Orbifold Phenomenology

We are now ready to use the toolkits we have studied and build concrete models.
After describing the construction procedure, we review some generic phenomeno-
logical features from string constructed model.

13.1 Model Building

Usual orbifold construction takes the following procedure.

1. Choice of orbifold and shift vector: We choose an orbifold and take a shift
vector. The orbifold geometry is determined by a space group, as summarized
in Table 3.4. It determines the order of shift vector associated with the point
group. The space group determines possible configurations of Wilson lines and
hence the distribution of matter fields. We choose a shift vector guided by Grand
Unification, since with only the shift vector, we cannot have the Standard Model
(SM) gauge group. Shift vectors are classified in Ref. [1], however, we may
simply apply the Dynkin diagram strategy discussed in Sect. 12.6.1.

2. Choice of Wilson lines: We take Wilson lines associated with the translational
elements of the space group to break the gauge group further. At this stage,
we completely fix the low-energy gauge group. We may have the SM at the
string scale. Alternatively, we may obtain a GUT. A set of Wilson lines may
be equivalent and redundant.

3. Spectum check: We quantize strings on orbifold and find the spectrum and check
anomaly cancellation. We may check whether we obtain desirable spectrum of
quarks and leptons, as discussed below. We need also Higgs multiplets. We may
obtain the universal anomalous U(1). If we obtained the SM group, we need to
make sure that the hypercharge is not anomalous.

4. Vacuum configuration: Usually we have bunch of singlets of the SM or GUT
group, which make the superpotential very convoluted. Applying the selection

© Springer Nature Switzerland AG 2020
K.-S. Choi, J. E. Kim, Quarks and Leptons From Orbifolded Superstring,
Lecture Notes in Physics 954, https://doi.org/10.1007/978-3-030-54005-0_13

381

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-54005-0_13&domain=pdf
https://doi.org/10.1007/978-3-030-54005-0_13


382 13 Orbifold Phenomenology

rules discussed in Sect. 10.2 and generating superpotential terms, we need to
assign singlet VEVs to have effective normalizable potentials. This breaks
unwanted Abelian and non-Abelian gauge symmetries and generates Yukawa
couplings. First, we apply the selection rules to generate possible superpotentials.
Then we check SUSY consistency F and D flat conditions.

These are all the data to construct realistic models, which is strikingly simple.
Especially the localized fields at the orbifold fixed points are not arbitrary but com-
pletely fixed as a consequence of modular invariance. It gives us the flavor symmetry
reflecting the geometrical distributions. Detailed examples will be discussed in the
next chapter.

Finally we compare the obtained model with experimental data. Here is an
incomplete list which are needed from superstring:

• Three families of chiral fermions and Higgs: The string constructed model must
allow three families of quarks of leptons. Also we have observed Higgs scalar,
which must also be obtained.

• Hypercharge quantization: If the fifteen chiral fields are put in a GUT without
exotic particles, the gauge coupling constants measured at MZ evolve to meet
at the GUT point with the GUT scale weak mixing angle of sin2 θ0

W � 3
8 . This

kind of GUT has an appropriate hypercharge quantization. Some GUTs allow
automatic hypercharge quantization.

• Gauge coupling unification: The Georgi–Quinn–Weinberg mechanism suggests
that the running gauge couplings are unified at a scale close to the Planck scale.
We may have the Standard Model gauge group or an intermediate GUT groups.

• Flavor problem: Three families in GUTs from superstring must lead to correct
mass and/or mixing angle relations.

• μ-problem: In addition to the scale problem of μ in the minimal supersymmetric
standard model(MSSM), there is the problem on removing the color-triplet
partners of Higgs doublets Hu and Hd .

• Proton longevity problem: Generic models beyond the standard model like SSMs
or GUTs allow rapid nucleon decays. The proton longevity problem in SUSY
models was noted right after SUSY was applied to the gauge hierarchy problem.
Because scalar partners of colored quarks exist, they can trigger proton decay
by a dimension-3 term, ucdcdc, in the effective superpotential W . This was
resolved by introducing an R-parity [2]. Even if this dimension-3 term is absent,
a dimension-4 term1 such as qqq� in the effective superpotential is problematic
[3].

If we arrive at a consistent model, we may also learn what the constructed model
predicts.

1Below, we will call this “dimension-5” term in the Lagrangian L , or simply “dimension-5 term.”
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13.2 String Unification

13.2.1 Gauge Coupling Unification

String theory provides unification relations without intermediate field-theoretical
GUT. It is due to the unified group of the string theory.

In ten dimension, we have a simple relation between string g10 and gravitational
κ10 constants [4]

g2
10 =

4κ2
10

α′
. (13.1)

Here, the inverse string tension α′ ∼ M−2
s measures the string size and can be

considered as the mass of the lightest massive string excitation [5]. It is fixed by
supersymmetry and extra term responsible for Green–Schwarz mechanism and also
by calculating three point correlation functions of gravitons and gauge bosons. This
relation still holds when we reduce the space dimensions by compactifying the
internal space, as in (11.8),

kAg
2
A = g2 = 4κ2

α′
, (13.2)

where kA is the level of affine Lie algebra for a gauge group labelled by A.
Phenomenologically, the unification scale is around (2–3)×1016 GeV [6–8]. The

standard folklore has been that it is better to be realized around the string scale Ms .
Although they are very close, it still differ by a factor of O(10), assuming order
one g10. Many ideas are suggested to remedy this discrepancy, including threshold
correction, shown in Eq. (11.107). Also it is noted that the Type II construction can
pull down the string scale, as we will see in Chap. 17.

The relation (13.2) is the basis for claiming unification of gauge couplings
without any intermediate GUT. For instance, if we obtain an SU(3)×SU(2)×U(1)
model with the gauge couplings g3, g2, g1, respectively, at the scale Ms , we have
the relation

k3g
2
3 = k2g

2
2 = k1g

2
1 = g2 = 32πGN

α′
, (13.3)

where k3, k2, k1 are the levels of SU(3), SU(2), and U(1) algebras, respectively,
at the compactification scale. Although the level is defined for non-Abelian gauge
group, we always obtain a U(1) as a subgroup of the unified group predicted by
string theory. So we may define its level as in (12.120). Also we usually take
different normalization for the hypercharge

Cg′ ≡ g1
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as in (2.18).
Unless we need an adjoint Higgs scaler, discussed in Sect. 12.6.4, we have always

k = 1. Therefore, the relation

g1 = g2 = g3 = g, (13.4)

reduces to the conventional one [9]. Here GN is the Newton’s constant obtained in
(11.9).

Note that, determination of gauge couplings at the compactification scale is not
so trivial because there is a small difference between the compactification scale and
the Planck scale.

13.2.2 Standard-LikeModels

Even though one obtains factor groups such as those in the SM, there is a possibility
that the couplings are unified at the string scale, as in (13.4). Thus, it is not a bad
idea to obtain a (supersymmetric) SM directly via some orbifold compactification
of string theory.

Soon after orbifold compactification was introduced, the first model building
attempt was to try SU(3) × SU(2) × U(1)Y from T 6/Z3 orbifold [10, 11]. This
class of models is known as standard-like models. For instance, consider a model
with three Wilson lines [14],

V = 1

3
(1 1 1 1 2 0 1 1)(1 1 0 0 0 1 1 2),

a1 = 1

3
(1 1 1 2 1 0 0 0)(0 0 0 0 0 2 0 0),

a3 = 1

3
(0 0 0 0 0 0 0 2)(1 1 1 2 0 0 0 1),

a5 = 1

3
(0 0 0 0 0 0 0 2)(0 1 1 0 0 0 0 0).

(13.5)

It gives the gauge group SU(3)×SU(2)×U(1)13.
All orbifold models toward this objective used the following type of shift vector

and Wilson line(s) [10, 12–15],

V = 1

3
(1 1 1 1 2 · · · )(· · · )

a1 = 1

3
(1 1 1 2 1 · · · )(· · · ),

(13.6)

where · · · are chosen to satisfy the modular invariance conditions discussed in
Chap. 7 but not to enhance SU(3) and SU(2) to some larger groups. A kind of
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skewing results in the SU(5) group space, as implied by the first five entries of
Eq. (13.6), along with many extra particles beyond those of the SM. Even though
we ambitiously began without the need for the adjoint representation of some GUT
group, we may have reached the limitation of the standard-like models.

The standard-like models require the following features toward a supersymmetric
standard model.

• It must already contain the SM gauge group SU(3)×SU(2)×U(1)Y , i.e. there is
no need for breaking a unified group by an adjoint representation to obtain the
SM.

• Fifteen chiral fermions with the correct electroweak hypercharges are contained
in the spectrum.

• Three families are in the spectrum.
• There must exist at least a (pair of) Higgs doublet(s) H1 (and H2 for the case of

supersymmetry) for the electroweak symmetry breaking.

Supersymmetry may be added to this list. Because of the three families requirement,
Z3 orbifold models with two Wilson lines are helpful from the outset. In some
orbifold models, it is possible to exclude extra colored scalars [10, 11], which
achieves the doublet-triplet splitting. But a standard-like model has some flaws since
it is not quite a supersymmetric standard model yet for the following reasons.

• It contains too many extra U(1)s which have to be broken.
• There are too many extra chiral fields with exotic electroweak hypercharges.
• There are too many Higgs doublets (a minimum of six) in Z3 orbifold models

with two Wilson lines. It is hoped that with three Wilson lines, there is a
possibility to obtain just two Higgs doublets in the twisted sector; however, such
a model has not been found yet.

Later, higher order orbifolds are used to construct models having the SM or the
GUT gauge groups. There it is easier to see the unification structure. It is because
the shift vector alone can break large part of the E8. For instance, in the Z6 orbifold
models, using the Dynkin diagram strategy in Sect. 12.6.1, we may easily obtain
traditional unification groups along the En chain as

E6 ×U(1)2 : V1 = 1

6
(�1 +�2),

E6 × SU(2)× U(1) : V2 = 1

6
�2,

SO(10)× SU(2)×U(1)2 : V3 = 1

6
(�2 +�7),
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where the fundamental weights of E8 in Table 12.1 are used.2 The common
intersection of the V1 and V3 is the exact SO(10). We may associate one with the
point group and the other with the Wilson line. With the help of the shift vectors

SU(5)× SU(2)2 : V4 = 1

6
(�1 +�6),

SO(14)× U(1) : V5 = 1

6
(�6 +�7),

we can easily obtain the SU(5) and the SM gauge group.

13.3 U(1) Charges

U(1) gauge group plays an interesting role. Its normalization is key to understanding
the unification. Also there is a unique feature of anomalous U(1). This is related to
axion and strong CP problem.

13.3.1 Hypercharge

To distinguish the SM chiral fields among the plethora of fields, one has to identify
the U(1) quantum numbers. Many U(1)s arise from the left-over Cartan sub-
algebras, and all the U(1) charges are determined at the compactification scale.
Among them, identifying the hypercharge U(1)Y in the SM is of utmost importance.
The method of obtaining U(1) generators is described in Sect. 12.6.2. The essential
feature is that they are proportional to the linear combinations of shift vectors and
can be made to be orthogonal to each other. The OPE fixes the normalization of
hypercharges to be, Eq. (12.120),

q2
i = k = 1. (13.7)

As an example, consider the Wilson lines of the standard-like model (13.6),
which contains the gauge group SU(3)×SU(2)×U(1) and a number of other U(1)s.

In this model, the untwisted sector has the following weights for quark doublets:

Pu = (1 0 0 1 0 0 0 0)(08)′,

Pd = (1 0 0 0 − 1 0 0 0)(08)′.
(13.8)

2We may also have other shift vectors yielding an SO(10), but they do not follow the En unification
chain.
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We find that the following basis vectors gives the charges of the quark doublets

q1 = 1√
3
(1 1 1 0 0 0 0 0)(08)′ (13.9)

q2 = 1√
2
(0 0 0 1 − 1 0 0 0)(08)′ (13.10)

which are properly normalized as in (13.7). We identify the hypercharge generator
qY as

qY = − 1√
3
q1 + 1√

2
q2. (13.11)

One verifies that the corresponding generator is nothing but Y of Eq. (2.18). The up
and down quark representations appear in the right places as in (2.12). Indeed, it
gives rise to the desired hypercharges

u : qY · Pu = 1
6

d : qY · Pd = 1
6 .

(13.12)

It seems that we should look for the hypercharge with a clever insight. However,
the regular pattern inherits a structure of the unified group SU(5). One is easily
convinced that the above weight vectors of quark doublet (13.8) is a part of
representation 10 of SU(5)

(1 − 1 0 0 0 03)(08). (13.13)

Indeed, without Wilson line vector a in (13.6), the unbroken group contains SU(5).
Without such a unified group, we cannot expect the desired charge pattern for
quarks and leptons. However, since the problem arises if some fields are outside
the complete multiplet such as 5 or 10 of SU(5), the hypercharge quantization is
not the same as that of the SU(5) GUT. Not only this kind of model cannot give the
desired hypercharge, but also gives rise to “exotic” particles having strange charges.

13.3.2 Weak MixingAngle

The U(1) charge normalization is an important issue. The sizes of the gauge
couplings become the same if we compare CgY , g2, g3, with C = √

5/3. In fact,
this value of C is predicted if we break the SU(5) unification group and identify the
hypercharge as in (2.18). This holds true if we embed the Standard Model group
in larger E-series unification group, like SO(10),E6,E8. This normalization can be



388 13 Orbifold Phenomenology

expressed in terms of the weak mixing angle, whose value at the GUT scale is given
in Eq. (2.19) [9],

sin2 θ0
W = 1

1+ C2 . (13.14)

The discussion of the weak mixing angle is somehow intricate, since the
spectrum of heterotic string is described by the affine Lie algebra with diverse
twisted sectors. In standard-like models, we have no simple picture of conventional
grand unification. For example, the convenient form (2.20) cannot be used here.

The untwisted sector is described by zero modes which is simple Lie algebra, and
the spectrum pattern is rather simple. So, if there is no matter fields from the twisted
sector, then the particle spectrum is essentially given by the original 248+ 248′ of
E8 × E8. In this case, the U(1) charges are determined at the string scale just by
the branching rule since the non-Abelian groups and the U(1) groups come from the
same E8×E8. Nonzero roots of E8×E8 are defined to have (length)2 = 2. The U(1)s
come from the center and basically they are defined by the sixteen independent Qs
of the previous subsection or by any sixteen independent combinations.

After determination of hypercharge by surveying the spectrum,

qY = Cqu = 1√
2

∑
A

cAqA, (13.15)

where qu is the unified generator having the normalization (12.120) and the factor
1/
√

2 comes from the normalization convention l(fund) = 1
2 . Here, cSU(2) = 1

2 and
cSU(3) = − 1

3 . Since all the qis are orthonormal C2 = l−1 ∑
A c2

A, and from (13.14)
we have

sin2 θ0
W = 1

1+ 2
∑

A c2
A

. (13.16)

For example, consider the case where the SU(5) space is spanned by the first
five entries of (13.5). Then, the electroweak hypercharge is given only by two U(1)s
(13.11),

C2 = 2( 1
2 + 1

3 ) = 5
3 , sin2 θ0

W = 3
8 . (13.17)

Of course, this result is due to the fact qY in (13.11) has the desirable structure. The
desirable U(1) charges for unbroken subgroup and spectrum will be obtained if it
belongs to the chain of the E type unification group SU(5)⊂E8. It amounts to the
unification assumption(here the GUT group as E8) and the bare weak mixing angle
is related to the untwisted sector spectrum by (2.20).

After the U(1) normalization from the untwisted sector is known, one looks for
the locations of the SM fields. The gauge group and charge assignments are not
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changed even if there are fields in the twisted sector. The problem is that whether a
set of given fields belongs to a GUT multiplet belonging to a unified group.

To see more how it works, let us consider the above model (13.5). In this example,
three quark doublets are in the untwisted sector, yet the lepton doublets are in
the twisted sectors. If all the SM fields were in the untwisted sector, then one
could be sure that sin2 θ0

W = 3
8 . However, the model (13.5) has the possibility of

sin2 θ0
W �= 3

8 . To show it explicitly, one has to identify these SM fields and express

their electroweak hypercharges in terms of the above normalized (length = √
2)

U(1) charges. We obtain

qY = − 32
75

√
3
2q1 + 13

50q2 − 19
25

1√
2
q4 + 23

25
1√
2
q7 + 52

25
1√
2
q8 + 21

25
1√
2
q12 (13.18)

leading to C2 = 5353
375 . Thus, we obtain sin2 θ0

W = 375
5728 ∼ 0.0655. Another example

is the model discussed in Ref. [15] where qY = 1
3q1− 1

2q2+q4. By the same method
we employed above, this model gives C2 = 11

3 , and hence, sin2 θ0
W = 3

14 .
In general, most standard-like models have a small sin2 θ0

W . From the preceding
discussion, it is obvious that sin2 θ0

W = 3
8 requires C2 = 5

3 which is possible if qY
is given with the form seen in (13.11), with q1 and q2 only. If extra pieces appear
beyond (13.11), then C2 > 5

3 and sin2 θ0
W is smaller than 3

8 . But this statement
is not valid if the coefficients of q1 and q2 are more complicated than those given
in Eq. (13.11). A simple flipped SU(5) model may be given with a hypercharge
Y = − 1

3q1 + 1
2q2 +∑

i≥3 xiqi with at least one nonvanishing xi to have e+ in an

SU(5) singlet representation. In this case, sin2 θ0
W < 3

8 , which usually happens with
extra charged singlets. On the other hand, it will be extremely lucky if nonvanishing
xis conspire to give sin2 θ0

W = 3
8 with more complicated coefficients in front of q1

and q2.
Note that we cannot use the simple formula (2.20) in general. To recapitulate how

it is obtained, the basic reason stems from the unification assumption where the ratio
g2/g′2 is traded for Tr Y 2/Tr Ỹ 2. This formula is very powerful only when we know
the spectrum of the model under the unification assumption. Of course, in GUTs
such as SU(5), only the knowledge of the fundamental representation is needed
and hence, this formula is already very powerful. But in standard-like models the
formula is not necessarily helpful.

13.3.3 Anomalous U(1)

The rank-two antisymmetric tensor field BMN , required by ten dimensional super-
gravity, plays an important role in anomaly cancellation in ten dimensions. After
compactifying 10D down to 4D, as seen in Chap. 11, we obtain a number of
pseudoscalars.
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In four dimensions, the component Bμν,μ, ν = 0, . . . , 3, is equivalent to and is
dualized to a pseudoscalar, as in (11.91),

F1∂
μaMI = 1

96π2 ε
μνρσHνρσ . (13.19)

This aMI is the model-independent (MI) axion. In this case, the MI axion survives
as a physical degree for which the axion constant Fa is around 1016 GeV [16].

We have the Green–Schwarz counterterm, as in (11.131). After dimensional
reduction, under the background geometry and gauge field, we may have four
dimensional effective action [17–19]

∫
B ∧X8 →

∫
d4xεM1M2...M10BM1M2FM3M4

∫
K

d6x〈FM5M6FM7M8FM9M10〉

→
∫

d4xεμνρσBμν(∂ρAσ − ∂σAρ)M,

(13.20)
where M is the above expectation value up to a numerical factor. Thus Aσ transfers
one derivative of Fρσ to Bμν in Fig. 13.1a. We will calculate this background con-
tribution in Chap. 15. The corresponding Feynman diagram is shown in Fig. 13.1a.

In general we have many U(1) gauge groups. In practice we found most of
them anomalous. However, under such transformation, the antisymmetric tensor
Bμν transforms as

δB = 1

30
Tr(λdA)− tr(*dω). (13.21)

Fig. 13.1 The Green–Schwarz mechanism gives rise to gauge boson mass via Stückelberg
mechanism, making the symmetry global
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This is accompanied by the gauge transformation for the YM and graviton. In 4D,
the ten dimensional group is broken, and the transformation (13.21) must be that of
a U(1) gauge boson. Thus it cancels the anomaly of the form

Î6 =
(
− 1

30
TrF 2 + trR2

)
∧ F. (13.22)

Integration by part, and by dual transformation (13.19), we obtain the coupling
MAμ∂

μaMI. This means, we obtain the mass term for the gauge boson

1

2
M2(∂μaMI + Aμ)

2. (13.23)

The gauge boson acquires mass by eating the model-independent axion and both
of them are removed at low energy. Note that this Lagrangian is different from the
covariant derivative of a scalar, used in Higgs mechanism. This symmetry breaking
is called Stückelberg mechanism. The resulting U(1) is called the (pseudo)-
anomalous U(1). As we have seen, there is no actual anomaly. We are left with
global symmetry. The corresponding diagram is Fig. 13.1b. This is consistent with
the fact that the gauge transformation has no effect

aMI → aMI + λ. (13.24)

We may modify the Kähler potential reflecting this [20]

K = − log(S + S∗ − δGSVX), (13.25)

where VX is the vector superfield for the U(1)X. This is supersymmetric version
of the above Stückelberg mechanism: the chiral superfield S is eaten by the vector
superfield VX. The gauge transformation

VX → VX + 1

2
i(�−�†) (13.26)

is undone by the transformation

S → S + 1

2
iδGS�. (13.27)

We can calculate [18]

δGS = 1

192π2
√
kA

tr qA. (13.28)
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It generates a Fayet–Ilipoulos term in the Lagrangian, so that the resulting D-term
potential is

1

S + S∗

∣∣∣∣δGS 1

(S + S∗)2 +
∑

qAα |qα|2
∣∣∣∣
2

. (13.29)

The effect is the same for every U(1) gauge group. There is only one anomalous
U(1) in the following sense, as Eq. (13.19) shows only one such pseudoscalar field.
In the orbifold compactification, in general we get many U(1)s and more than one
U(1)s can have nonvanishing anomalies. We may always redefine their charges by
linear combinations without changing the normalization: q ′A = αqA − βqB, q

′
B =

βqA + αqB with α2 + β2 = 1. All the anomalous charges qA for each U(1)A obey
the following relations:

1

kA
trA l(R)qA = 1

3
tr q3

A =
1

24
tr qA = 8π2δGS, (13.30)

where the trace trA is over fundamental representation of a and l(R) is the index of
the representation R, defined in (2.16). This means, by linear combination [21] we
should have universal relations

1

3
tr q3

A = tr qAq2
B. (13.31)

The hypercharge of the SM stays as gauge symmetry so it should not be
anomalous. From the above universality, the hypercharge generator qY should have
no component along such anomalous U(1) generated by qA, so we demand them to
be orthogonal

qY · qA = 0.

13.4 Three Families

We briefly discuss the potential origin of three families. String theory enables us to
understand the number of families and their flavor structure in terms of the internal
geometry.

13.4.1 The Number of Fixed Points

Untwisted sector fields carry spacetime index, thus are labelled as U1, U2, and U3.
The choice of orbifold relates some of them. For instance, Z3 orbifold always gives
three repeated matter fields. However, we have a problem in quark masses that we
discuss shortly.
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In Z3 orbifold models, the chiral fermions arise naturally in multiples of three if
we use two Wilson lines, because we have equal field contents in three set of fixed
points. Other orbifolds having such order three substructure have the same feature.
It was argued long ago that three families might arise from Z6 = Z3 × Z2 orbifolds
[12]. Also, a Z12−I orbifold model, we may have the same Wilson lines in three
twist sectors. If Wilson lines are to not break such degeneracy, we need a condition

P · a = same for all the Z3 subsectors. (13.32)

We observe that if three families of the quark doublets (3, 2) appear in the
untwisted sector and its hypercharge is correctly given, then the resulting spectrum
will lead to three generations. It is because global consistency condition, which is
stronger than anomaly cancellation, restricts the spectrum to have as many quark
singlets. Indeed, this was shown in cases with three Wilson line models of Refs.
[14, 22].

There is a potential problem, however, on the mass spectrum with all the families
from the same (un)twisted sector [11,23]. If the quark singlets also appear from the
untwisted sector, then we have undesirable relation mc = mt [24], not overcoming
the flavor problem listed in the beginning of this chapter. It is better for the
quark doublets to appear from twisted sectors. Usually it is difficult to break the
degeneracy. Therefore, for fitting the observed flavor data, it is necessary for the
model to forbid a degeneracy.

If all three families appear from different twisted sectors in three Wilson line
models, it will be of great interest because any degeneracy among families can be
avoided. For example, it was pointed out in Eq. (10.97) that the Yukawa couplings
can be exponentially suppressed, e−lij where lij is proportional to the distance
between the fixed points fi and fj housing two respective chiral fermions. This
can be a geometrical understanding of the quark mass hierarchy [23].3

There is another interesting option. If we have two generations in twisted sectors
and one generation in the untwisted sector, we may understand the nature of the
third generation [27–29]. If we have a Z2 symmetry subgroup of the point group,
then it is natural to have a doublet.

Since the untwisted sector matter fields are branched from gauginos of ten
dimensional non-Abelian gauge field, we may have natural unification between the
top quark Yukawa coupling and the unified gauge coupling [30].

13.4.2 Number of Internal Dimensions

We may also relate the number of internal dimensions with the number of families
[23]

(the number of families) = (the number of internal dimensions)/2 = 3.

3In intersecting brane models also, the geometrical interpretation can be considered [25, 26].



394 13 Orbifold Phenomenology

Each untwisted matter field carries the Lorentz index for the internal space, so
the number of complex internal dimensions is related to the multiplicity. Also, the
Z2×Z2 orbifold has three twisted sectors, as shown relating the number of complex
internal dimensions to the multiplicity. The point group is generated by two Z2 with
the twists ( 1

2 ,
1
2 , 0) and (0, 1

2 ,
1
2 ). We have in fact three twist sectors, because we

also have a point group element ( 1
2 , 0, 1

2 ), that is the combination of the two. Each
twisted sector has the same geometrical structure, so we naturally have multiplicity
three. Models along this line are [28, 29, 31].

This idea has been put forward by stringy flipped SU(5) model with so-called
the Antoniadis–Ellis–Hagelin–Nanopoulos (NAHE) set and its follow-ups. They are
standard-like models where the fermionic construction of 4D string was employed
[32–36], which will be briefly reviewed in Sect. 17.1. As noted there, we have a
set Z2 × Z2 boundary conditions, parameterized by the twist vectors b1, b2 and we
also have the combined twisted sector b3 = b1 + b2 [37]. Although it is difficult
to visualize the symmetry geometrically, the construction results in three twisted
sectors with the same structures [38]. Of course, to have more realistic model, we
need several more boundary conditions that does not ruin the Z2 × Z2 symmetry. It
must be supplied with other conditions like (13.32).

13.4.3 Family Symmetry

In Eq. (13.6), if we do not introduce aI1 , then we obtain a GUT group SU(5). If there
is non-adjoint Higgs field mimicking aI1 for breaking SU(5), then that will do the
job of obtaining the factor SU(3)×SU(2). In the SU(5) space, it introduces 4 and 5
indices together, and hence a fundamental representation4 with 4 and 5 indices will
do the job. A GUT not needing an adjoint representation for the GUT breaking to
the SM is called anti-SU(N) [41]. Anti-SU(5) [42] is usually called “flipped SU(5)”
[43, 44].

A similar situation is encountered in the family unification GUT with skewing
of the SO(4n + 2) group space. Since it is intuitive to understand why these
kinds of skewing lead inevitably to queerly charged particles, let us consider the
spinor representation 64 of SO(14) [39]. When SO(14) breaks down to SU(5), the
branching rule of 64 is 2·(10 + 5 + 1 + 10 + 5 + 1), i.e. there are two families of
SU(5) but with a vectorlike form, so no chiral family results at low energy. In terms
of the SM quantum numbers, these vectorlike representations are

(
νe

e

)
L

,

(
u

d

)
L

,

(
νμ

μ

)
L

,

(
c

s

)
L

,

(13.33)(
ν′e
e′

)
R

,

(
u′
d ′

)
R

,

(
ν′μ
μ′

)
R

,

(
c′
s′

)
R

,

4An extended definition of fundamental can be completely antisymmetric representation, �[αβ··· ]
where α, β, · · · are SU(N) indices [39, 40].
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where we have not shown 32 SU(2)-singlet charge-conjugated fields with the same
chiralities(L for the charge-conjugated unprimed singlets and R for the primed
ones). The aforementioned skewing raises the electromagnetic charges by one unit
for the right-handed e′ family and lowers them by one unit for the right-handed μ′
family, which is allowed in the SO(14) model. These shifts give [39, 40],

(
νe

e

)
L

,

(
u

d

)
L

,

(
νμ

μ

)
L

,

(
c

s

)
L

,

(13.34)(
τ+
ν̄τ

)
R

,

(
q5/3

t

)
R

,

(
E−
E−−

)
R

,

(
b

q−4/3

)
R

.

The model (13.34) gives three standard lepton families and two standard quark
families, with the rest being queer states. In particular, t and b, even though their
electromagnetic charges coincide with those in the SM, do not belong to the same
doublet, which was proven wrong by the decay modes of b in models with t and b

in different doublets [45]. Also, there appear queerly charged particles, E−−, q5/3,
and q−4/3.

As in the above skewed model, in most standard-like models from string
compactification, the appearance of queer particles is ubiquitous, which is one of
the reasons these models are not called standard but called standard-like.

13.5 Discrete Symmetries

13.5.1 Global and Discrete Symmetries

There is a belief that there does not exist global symmetries in string theory. It is
not conserved by Planck scale suppressed operators from gravitational interactions,
including the black hole formation and evaporation and wormhole effects [46].
Because a black hole has “no-hair” it cannot carry a global charge. Therefore, the
global charge of a field thrown into a black hole is not conserved. Most of all, the
remarkable prediction from string theory is that there is no global symmetry except
that corresponding to the model-independent axion [47]. Any global symmetry
introduced in the worldsheet is lifted to a gauge symmetry. It is because in the target
space, this symmetry is coordinate (X) dependent and becomes the local symmetry
as discussed in Chap. 17.

In contrast to global symmetries, discrete “gauge” symmetries are possible in
string theory as a subgroup of continuous symmetries of string theory. Such discrete
charge survives well below the Planck scale. In supersymmetry, the R parity is
(−1)3B−L, and is sometimes traced back to a part of gauge symmetry such as Pati–
Salam group or trinification or SO(10). If so, then it would be a good quantum
number, too.
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There are “fundamental” discrete symmetries in quantum field theory. The parity
P is the inversion of spatial direction. It exchanges helicities of fermions. From
discussions below Eq. (1.6), P is not a good symmetry, and the resulting theory is
called a chiral theory. As can be deduced from the definition, Eq. (4.22) and below,
the charge conjugation operation C conjugates the gauge charges. Still C is not a
good symmetry in the SM. Also, time reversal T is not a good symmetry, but there
is the renowned CPT theorem that any local, Lorentz invariant quantum field
theory preserves the product CPT .

The discrete symmetries C ,P , and T can be a part of gauge symmetry, or
Lorentz symmetry in higher dimensional theory [48]. It is possible if the spacetime
dimensions are 8k + 1, 8k + 2, and 8k + 3 so that Majorana fermions and invariant
gauge groups such as E8 or SO(4n) are allowed. These naturally arise in the string
theory framework. In terms of weights P , charge conjugation operation C amounts
to changing PI →−PI . Consequently, in the bosonic description, it has the form

XI → −XI , I = 1, 2, . . . , 16. (13.35)

This is the property of spacelike (extended version of four dimensional) P
operation

XM → XM, M = 0; 4, 6, 8,

XM →−XM, M = 1, 2, 3; 5, 7, 9.
(13.36)

Note that the 4D part(M = 0, 1, 2, 3) is the familiar parity operation. The
above C and P operations are the elements of proper Lorenz transformation
SO(1,9)×SO(16), thus they are gauge symmetries. This means that the symmetries
are exact and survives even if nonperturbative and gravitational interactions are
considered. Therefore, its breaking (for example, the CP violation) must be
achieved spontaneously if introduced at the 10D heterotic string level. We cannot
do a similar reasoning for T , but at least perturbatively it is a good symmetry in
string theory.

Besides P being four dimensional inversion in M = 1, 2, 3 directions, we can
freely choose the inversions in extra dimensions, as long as the transformation is
proper. However, taking fermions into account, it turns out that the choice of (13.36)
is unique, otherwise it does not commutes with the GSO projection. In terms of
complexified coordinates, it corresponds to complex conjugation.

13.5.2 R-Parity

Baryon (B) and lepton (L) numbers, being global, are broken. The degree of
breaking depends on compactification models. We start with B and L conserving
dimension-4 operators, which has led to the R-party conservation. In standard-like
models from string, a vacuum with R-parity was explicitly shown to exist first in
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Fig. 13.2 A diagram for
�B �= 0 without R parity.
The cubic couplings in this
diagram break R-parity

[49]. The standard R-parity or Z2R , however, have been known to be dangerous for
the proton longevity due to the dimension-5 operators [3, 50]. Without R parity, a
dangerous dimension-5 operator appears as shown in Fig. 13.2 [51].

Without R-parity, forbidding dimension-5 B vioalting operators involves con-
sidering all standard-like model singlets which can obtain GUT scale VEVs in
principle. Therefore, it will be economic if the model contains some kind of
R-parity. Dimension-5 B violating operators and the μ term are required to be
suppressed but dimension-5L violating Weinberg operator needs to be allowed [52].
The relevant dimension-5 proton decay and neutrino mass operators are

W�B ≡ qqq�, (13.37)

Wν mass ≡ ��HuHu, (13.38)

where the subscripts q, �, and Hu denote matter field doublets and up-type Higgs
doublet, respectively.

Separately from these, the μ-problem must be resolved [53, 54].

13.5.3 CP Violation

Whatever four dimensionalCP is given from a string theory, its observed violation
can be realized as the choice of vacuum in the process of compactification. The
symmetry (13.36) is not preserved in the presence of background field as in
(10.103), such as antisymmetric tensor field B or T modulus. Generically, it can be
block-diagonalized and one can easily verify that it is not preserved under (13.36).
Showing its dependence on Wilson line A is nontrivial. It turned out [55] that, by
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continuous Wilson lines, CP is not violated in the standard embedding case,
because the space group selection rule associates the gauge group action to make
the interaction term invariant. Also it is argued that discrete Wilson lines can violate
that symmetry.

Strong CP
The effective strong CP parameter

θ̄ = θQCD + arg detMquark (13.39)

is the coefficient of gluon topological term

θ̄

32π2F
a
μνF̃

a μν, (13.40)

where F̃ a μν = 1
2ε

μνρσF a
ρσ , and θQCD is the parameter introduced at the scale,

presumably at a GUT scale, below which QCD becomes an exact confining gauge
symmetry. Mquark is the quark mass matrix(including heavy quarks) needed for
describing the electroweakCP violation. The observed absence of neutron electric
dipole moment [56] gives a bound on θ̄

|θ̄ | < 10−10 (13.41)

which is the basis for questioning the strong CP problem, “Why is the observed
value of θ̄ so small?” [57] The true indication of the strong CP solution can be
accessed only after a realistic MSSM from superstring is found.

Here at field theory level, we list the following three types [58] for solutions of
the strong CP problem, which need some kind of symmetry. Indeed, all of these
are implementable in superstring.

• The axion solution: It has been already commented briefly in Sect. 13.3.3 and
will be discussed more in Sect. 13.6.3. The so-called invisible axion solution
needs a very light axion [59] derivable from the Peccei–Quinn global symmetry
[60] at an intermediate scale.

• The massless up-quark solution: The massless up-quark solution can be
addressed in orbifold compactification, just by observing det .Mquark = 0 from
the spectrum obtained by orbifold compactification [24]. The problem is whether
this leads to a phenomenologically viable mass matrix or not [61–63]. At the 4D
field theory level, this solution also has an axial global U(1) symmetry for the
phase shift of the massless up-quark, which is unbroken however.

• The set-θ -zero solution: The set-θ -zero solution sets θQCD = 0 at the tree
level, presumably by a symmetry, and requires that loop corrections to θQCD

are sufficiently small. As we have done in the orbifold compactification, discrete
symmetries can be introduced in string theory. So in principle, the Nelson–Barr
type solution with the discrete CP symmetry is realizable in string theory.
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Among the set-θ -zero solutions, the Nelson–Barr type solutions [64,65] attracted
some attention recently. The Nelson–Barr type solution needs heavy vectorlike
quarks. At this heavy scale, CP is spontaneously broken and the source for the
weak CP violation is introduced this high scale. Below this spontaneous CP
violation scale which is above the electroweak scale, the Yukawa couplings become
complex due to the introduction of CP violation. The massless up-quark solution
makes the vacuum angle unphysical. The axion solution chooses θ̄ = 0, via the
axion potential. Since the weak CP violation seems to prefer the Kobayashi–
Maskawa type weak CP violation, then the Nelson–Barr type, massless up-quark
and the axion solutions are the allowable ones. But, the spontaneous CP violation
at the electroweak scale is not favored.

The set-θ -zero solution needs a discrete CP symmetry so that the θQCD of QCD
is vanishing at the bare Lagrangian level. Assuming a CP invariant Lagrangian,
the discrete CP symmetry chooses the weak CP violation as a spontaneously
broken one. Here, the spontaneous CP violation is not at the string scale but at
a much smaller scale. Then, θQFD is calculable below the scale of the spontaneous
CP violation, and is required in order to have the limit (13.41). Both the massless
up quark solution and the axion solution need a global symmetry U(1)PQ where
the divergence of the corresponding current, which is proportional to (13.40) is
nonvanishing.

Another method to gain a strong CP solution in string models is an accidental
PQ symmetry [66]. There can be discrete symmetries in string models which may
allow a PQ symmetry up to some level, for example, up to dimension 9 operators
in the superpotential. Then the θ̄ parameter is within the limit 10−10. This model
is similar to the Nelson–Barr type in that discrete symmetries are used. String
constructions of these types of solutions may contain both features.

Electroweak CP
Electroweak CP violation is implemented by complex phases in the Yukawa
couplings, which are not invariant under CP . The CKM type complex Yukawa
couplings can introduce the needed electroweak CP . In general texture, there is a
basis independent CP measure, called the Jarlskog invariant [67, 68]

J ∝ Im det[YuY u†, Y dY d†], (13.42)

or more succinctly just by looking at the CKM matrix V for detV = 1 [69],

J = |ImV31V22V13|. (13.43)

String models are constructed in 10D(8k + 2 = 10) and hence they provide the
possibility that the elecroweak CP can be a discrete gauge symmetry [70] where
the covering continuous symmetry is the 10D Lorentz symmetry times the 10D
gauge symmetry. Or it can appear as a subgroup of continuous symmetries of string
theory. Whatever four dimensional CP is given from a 10D theory, the observed
electroweak CP violation can be realized as the choice of vacuum in the process



400 13 Orbifold Phenomenology

of compactification of 10D string models. So the phenomenological consideration
of the elecroweak CP violation reduces to the study of Yukawa couplings and the
flavor problem from string models. The above KM type complex Yukawa couplings
can introduce the needed electroweak CP .

The Nelson–Barr type introduction of electroweak CP violation is possible
with this discrete gauge symmetry spontaneously broken below 1010 GeV so that it
is consistent with the CP violation in the kaon system [48]. But one drawback is
that one introduces another small mass parameter here.

13.6 “Invisible” Axion from String

13.6.1 ’t Hooft Mechanism

The ’t Hooft mechanism states, “If a gauge symmetry and a global symmetry
are broken by one complex scalar field through the Higgs mechanism, then the
gauge symmetry is broken and a global symmetry remains unbroken” [71, 72]. It
is obvious that the gauge symmetry is broken because the gauge boson obtains mass
by the Higgs mechanism. The original continuous symmetry U(1)gauge×U(1)global
introduces two continuous parameters α(x) and β for tht symmetry transformations
on the fields,

φ → eiα(x)Qgauge+iβQglobalφ, (13.44)

where Qgauge and Qglobal are the generators of the transformations. Redefining
the local parameter as α′(x) = α(x) + β, the generator for the surviving global
symmetry is

Q′global = Qglobal −Qgauge. (13.45)

If there is no gauge symmetry to be broken by a VEV of the scalar VEV, then
a global symmetry is broken by the VEV. In the compactification of 10D string
models, there appear many U(1) gauge symmetries as we will show in the next
chapter. If compactification introduces U(1)n gauge symmetries at the GUT scale,
then we need at least n independent scalar VEVs before considering breakdown
of a global symmetry. This is fundamental making a global symmetry survive
below the GUT scale. In this regard, note that if compactification introduces an
anomalous U(1) gauge symmetry discussed in this section, then the gauge symmetry
U(1)anom is broken. Was there a global symmetry in string compactification? The
needed continuous parameter direction in string compactification is aanom, which
serves as the longitudinal degree of the anomalous gauge boson. What happened to
the original global direction aanom? It survives as a global symmetry by the ’t Hooft
mechanism, first used in [14] for an “invisible” axion from string.

In the literature, the Fayet–Iliopoulos terms (FI-term) for U(1)anom have been
discussed extensively. In the hierarchical scheme, the VEVs of scalars are assumed
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to be at the GUT scale, somewhat smaller than the string scale. Even if one adds the
FI-term for U(1)anom, |φ∗Qaφ− ξ |2 with ξ * M2

string, it breaks a gauge symmetry
U(1)anom and a global symmetry, not just the global symmetry alone. So, the ’t Hooft
mechanism works here also. Then, one can consider the global symmetry U(1)anom,
surviving down from string compactification.

If U(1)anom survives as a global symmetry by the ’t Hooft mechanism, the
surviving global charge generator is given in Eq. (13.45). The matter fields in string
compactification do not carry a charge corresponding to Hμνρ . Thus, the surviving
global charge or the PQ charge is negative of the original U(1)anom charge which
belonged to E8 × E8. The PQ charge example is given, for example, in [73].

13.6.2 DomainWall Number of “Invisible” Axion

So, it is definite to list the PQ quantum numbers for the “invisible” axion from string.
Cosmological effects of “invisible” axion are to the cold dark matter energy density
and domain walls in the Universe. If the “invisible” axion is not tuned to satisfy
these cosmological constraints, then the model does not work for our Universe and
must be discarded.

It has been noted that the domain wall number NDW in axion models must be
effectively 1 [75]. There are two mechanisms to fulfil NDW effectively 1 [76, 77].
The strategy with the Goldstone boson direction was discussed in [78], for which the
global U(1)anom in string compactification is repeated in Fig. 13.3a. Since NDW =
1 in the MI-axion direction [79] (α1 in Fig. 13.3a), the red dash arrow direction
identifies all vacua. In Fig. 13.3b, it is re-drawn on the familiar torus. The red arrows
show that α2 shifts by one unit for one unit shift of α1. In this case, all the vacua are
identified and we obtain effectively NDW = 1. In Fig. 13.3b, the green lines show
that α2 shifts by two units for one unit shift of α1. If N2 is even, then we obtain
NDW = 2 since only halves of N2 are identified by green lines.

To find out NDW from compactification, we consider all the VEVs of scalar fields
needed for generating the SM gauge group. In this case, we consider the maximum
number, dividing all the U(1)anom quantum numbers of the scalar fields, as NDW.

13.6.3 String Perspective

In Sect. 13.3.3, the anomaly cancellation by the Green–Schwarz mechanism has
been discussed. The QCD axion from the PQ symmetry has its root on the global
anomaly with QCD gauge bosons U(1)PQ-SU(3)c-SU(3)c. Therefore, the potential
for the QCD axion derives from the anomalous term.
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Fig. 13.3 The MI-axion example of [74]: (a) the standard torus identification, and (b) identifica-
tion by the winding direction in the torus

We have the model-independent axion, by taking the dual of the second rank
antisymmetric tensor in the transverse direction Bμν , as (Eq. (13.19)). Taking the
divergence, we obtain

∂2aMI = 1

32π2F1

(
trRμνR̃

μν − 1

30
TrFμνF̃

μν

)
, (13.46)

which shows that aMI is an axion with the decay constant F1. F1 has been estimated
as [16],

F1 � g̃2

192π5/2MP ∼ 1.5× 1015 GeV, (13.47)

which is too large compared to the allowed axion window, 1010–1012 GeV [57].
In (11.55), we have seen that the imaginary part of T modulus have the axionic

shift symmetry and hence more additional pseudoscalars can appear depending on
the compactification scheme. They are four dimensional scalars and zero modes
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of Bij . In generic Calabi–Yau compactification, the second Hodge number counts
these massless modes as in (15.32)

h0,2 = h2,0 = 0 , h1,1 ≥ 1, (13.48)

where the inequality is valid for all Kähler manifold due to the Kähler two from.
Then, the coupling (13.40) is possible due to the Green–Schwarz term. These
pseudoscalars are called the model-dependent axion [79]. For h0,2 = h2,0 = 0, and
h1,1 = 1, there exists one more axion aMD , and the axion couplings in a Calabi–Yau
compactification are calculated as [80]

1

32π2F1
aMI (F F̃ + F ′F̃ ′)+ 1

32π2F2
aMD(F F̃ − F ′F̃ ′), (13.49)

where F2 is the decay constant of the model-dependent axion. It is again at the
compactification scale. Axions in M-theory have been discussed in Ref. [81].

Nevertheless, it has been argued that even if the model-dependent axions are
introduced, the worldsheet instantons would make them massive by generating a
superpotential violating the shift symmetry of the model-dependent axions [47,82].

The axion solution seems to have a problem because there is no global symmetry
except that corresponding to the model-independent axion Hμνρ ∼ ∂μBνρ [47, 82].
The problem with the model-independent axion is that its decay constant is at a GUT
scale [16]. But, as discussed in the ’t Hooft mechanism, one global symmetry U(1)
can survive down to low energy in models with the anomalous U(1)X [14, 22]. This
U(1)X can be used also for the massless up-quark solution.

Sometimes, accidental global symmetries can appear from string compactifi-
cation, leading to light pseudoscalars. In the literature, these have been discussed
extensively under the name of axion-like particles (ALPs) [83, 84].

13.7 Phenomenology on Electroweak CP

The main ingredients for Yukawa couplings from string compactification are string
selection rules and their moduli dependence. Therefore, it is crucial to know how
such moduli are stabilized to have nontrivial complex phases.

Although highly model dependent, many properties are known for renormaliz-
able interactions having only the T modulus dependence, thanks to the target space
modular properties (11.49). In Sect. 10.5.3 we discussed the structure of Yukawa
couplings and will summarize it again in Sect. 16.3. In the simplest Z3 orbifold, at
the renormalizable level the mass matrix is always diagonal by the selection rules,
therefore we cannot expect nontrivial phases. By the standard procedure, a number
of phases can be absorbed by redefining fermion fields

Yu → U†YuV u, Yd → U†Y dV d, (13.50)
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where matrices U,V u,d are unitary matrices. From Table 10.2, we observe that
Yukawa couplings have a similar structure for prime orbifolds and for some non-
prime orbifolds. In non-prime orbifolds, nontrivial CP phase can emerge at the
renormalizable level [85]. In the simplest case, where the dependence is only from
T moduli, there is always vanishingCP phase when Im T = ± 1

2 as a consequence
axionic symmetry in (11.55). In general, we expect that the boundary of fundamental
region has such properties, if the Jarlskog parameter is invariant under the moduli
transformation, but the proof is tricky [85]. This interval includes fixed point at
T = eiπ/6 of PSL(2,Z) action (11.49) which can be likely the extremum of the
potential of the T modulus. An analysis was done [86] by assuming empirical form
for a superpotential having the desired modular properties.

Of course, the possibility of nonrenormalizable interactions are always open,
whose strength can still be sizable. In general, a scalar can acquire a VEV with
a nontrivial phase. It is also related to supersymmetry breaking and the above
discussion could not take into account supersymmetry breaking effects. There is
a scenario proposing that some charged scalars acquire VEVs and F terms have
complex phases from the FI-term (13.29) generated by the GS mechanism [87].

The ultimate goal for electroweak phenomenology from string is to obtain
the CKM matrix shown in Eq. (2.11) from discrete symmetries allowed in the
compactification.

� Exercise 13.1 Show that the index of fundamental representation of SU(N) is 1
2 .

13.8 Theµ-Problem

As discussed in Chap. 2, we introduce two Higgs doublets, Hu (Y = + 1
2 ) and

Hd (Y = − 1
2 ), in supersymmetric standard models. Therefore, we can introduce

a dimension 2 term −μHuHd in the superpotential. For the electroweak symmetry
breaking at the TeV scale, μ needs to be as small as the electroweak scale. The μ-
problem [53] is, “Why is μ so small even though the SUSY μ term is allowed at
the GUT scale?” In the standard-like models from superstring, there are two issues
related to the μ-problem. How come only one pair of Higgs doublets, out of several
Higgs doublets from string compactification, survives down to the electroweak
scale? It has been argued that some kind of symmetry is needed for this [88].
One such symmetry is the PQ symmetry such that the PQ charge of HuHd is not
vanishing. With a SM singlet(s) Si , if the PQ charge of SiSj is the opposite that
of HuHd , then a nonrenormalizable superpotential 1

MP
HuHdSiSj can generate the

needed electroweak scale μ by the intermediate scale VEV of SiSj which is the
so-called Kim–Nilles mechanism [53]. So, in string compactification we attempt to
answer the above two questions.

One can also obtain the electroweak scale μ from the Kähler potential [54].
Indeed, such a scenario was shown to be realizable from Z3 orbifold [89]. With
Z3 orbifolds, the bare mass term HuHd is not allowed because UU (with untwisted
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sectors fields U ) and T T (with twisted sectors fields T ) are not allowed as discussed
in Chap. 8.5 But, among the UUU and T T T type couplings, one U or T can
develop a GUT scale VEV, 〈U〉UU , and 〈T 〉T T , in which case μ is of order the
GUT scale. Assuming that the Planck scale Higgsino mass term is forbidden in the
superpotential, then the μ term is generated if the Kähler potential mixes Higgs
doublets with neutral scalars which acquire the GUT scale VEVs [89], which is a
Giudice–Masiero mechanism.

Another attempt for the electroweak scale μ term is by strong dynamics at the
intermediate scale, as suggested in [22].
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14String Unification

In this chapter, we discuss grand unified theories (GUTs) from the E8×E′8 heterotic
string and present the resultant phenomenological implications. We take concrete
example a flipped SU(5) model on Z12−I orbifold. In Chaps. 7–12, we discussed in
length the theoretical framework for orbifolded superstrings.

14.1 Requirements for GUTs

In Chap. 13, required viewpoints were presented for the various aspects of standard-
like models from orbifold compactification. These are required also in GUTs from
string compactification. Here, we list them again, adding more requirements by
extending standard-like models to GUTs.

The requirement for three families is the same. GUTs differ from standard-like
models basically in two aspects, one is a merit on charge quantization and the other
is a shortcoming arising from spontaneous gauge symmetry breaking. In ordinary
GUTs, the charge quantization, Qem(p) = −Qem(e), has been considered to be
a merit that cannot be false. Before the advent of gauge theories, the hypothesis
on conserved vector current (CVC) was considered to be the basis for this charge
quantization. Certainly, loop effects do not alter once the charge quantization
relation is given. GUTs give this charge quantization relation by not requiring extra
charged particles in the first family. But string compactification introduces exotics
and the rationale for the charge quantization is not so strong. Nevertheless, there
still exists the charge quantization in string compactification even with exotics, in the
sense that exotics have definite fractional charges. For spontaneous gauge symmetry
breaking, there appears the gauge hierarchy problem in GUTs.

• If a supersymmetric standard model(SSM) is obtained via the interim GUTs, we
should pay attention to the requirements added for GUTs, especially on GUTs
with r ≥ 5 and the doublet–triplet splitting problem. If a SSM is obtained via
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interim GUTs, it goes without saying that the model unifies gravity with all the
elementary particle forces.

• When we consider GUTs, the colored scalar partner of Higgs doublets Hu and
Hd can trigger proton decay also. Since the R-parities of the members in 5 and
5̄ are the same, the dimension-3 superpotential term is managed to be forbidden,
but dimension-4 term cannot be forbidden. Therefore, the color-triplet partners
of the Higgs doublets must be superheavy such that proton lifetime bound is
satisfied. That is the reason we consider the doublet–triplet splitting.

• Adjoint problem: The affine Lie algebra or Kac–Moody algebra with level k = 1
does not allow an adjoint representation as discussed in Chap. 12. Thus, to break
a string derived GUT group from level 1 algebra down to the SM, one needs a
GUT group with rank r ≥ 5 since the VEV of an antisymmetric representation
needed to break the GUT to the SM reduces the rank.

• Proton longevity problem: In GUT the problem related to rapid nucleon decay
appears in a different angle. The gauge bosons of GUT that is lying outside the
Standard Model group can mediate dimension via dimension six operator. Also,
if we embed Higgs bosons in unified multiplets, colored partners can also give
rise to nucleon decays.

• E-chain of unification: We restricted our discussion to the E8 × E′8 heterotic
string, chiefly because breaking the chain of E8 down to the SU(5) or SU(3)3

goes through the intermediate 27 of E6. This is an important observation since
the fifteen chiral fields (2.8) of the standard model(SM) are contained in the
fundamental representation 27 of E6 or in the spinor representation 16 of SO(10).
By restricting ourselves to only this chain, we can automatically achieve the
correct charge assignments, coming from 16 of SO(10). On the other hand, if
the intermediate step cannot contain 27 of E6, it is most probable that exotically
charged particles(exotics) would appear.1

This argument utilizes matter only from the untwisted sector. For SO(32)
heterotic string, we may obtain spinorial representation for SO(10) unification
group [1, 2]. Recently, SU(9)×SU(5) GUT was obtained from SO(32) heterotic
string via Z12−I orbifold [3].

14.2 GUTs from Z12−I Orbifold

In early 1980s, consideration of unification discussed in Chap. 2 led to the SUSY
SU(5) [4,5] which needed an adjoint Higgs representation. From 10D string models,
it is difficult to acquire such an adjoint representation. So, to break a GUT to the SM,
a SUSY anti-SU(5) is needed with the Higgs spectrum 10 ⊕ 10 supplied. Namely,

1Exotics can come in two varieties: chiral exotics and vectorlike exotics. The more dangerous
chiral exotics has the problem to be observed below the electroweak scale.
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in string compactification the gauge coupling unification with SUSY suggested in
simple group SU(5) [6] is modified to anti-SU(5) [7].2

In this section, we construct a Z12 orbifold model in detail. The chief motivation
considering this complicated example is to exercise a model building with many
possible ingredients we discussed in the previous chapters.

The point group Z12−I takes the shift vector of Table 3.4 as

φ =
(

5
12

4
12

1
12

)
. (14.1)

Let us look for anti-SU(5) models on it. First, we introduce a method of using
Dynkin diagrams. Next, we discuss an example with a Wilson line not to allow
some degeneracy of matter fields.

14.2.1 Without aWilson Line

There are two interesting E8 shift vectors [8] allowing SU(5) groups, which are
shown below as Table 14.1. For an anti-SU(5), we need just SU(5) since there appear
many U(1)s to produce U(1)X of anti-SU(5) in models from string compactification.

We illustrate Case (i) of Table 14.1 to familiarize with the Dynkin diagram
technique. Let us try to include SU(5). For a possibility of three families, let us also
include SU(3).3 From the Dynkin diagram technique, we find that one possibility is
choosing a4+ 2a7+ a8 = 12 where ais are the Coxeter labels of simple roots αi . In
Fig. 14.1, we strike out α4, α7, and α8, and obtain the remaining SU(5) and SU(3)
Dynkin diagrams. Now, let us obtain the shift vector. Choosing the shift vector as
V = 1

12 (�4 + 2�7 +�8) (See Appendix A), we have a Z12 orbifold with

v = 1
12

(
21
2

3
2

3
2

3
2

3
2

1
2

1
2

1
2

)
(· · · ).

By Weyl transformations, we can transform v to

v′ = 1
12

(
21
2

3
2

3
2

3
2

1
2

1
2

1
2

3
2

)
(· · · )

≡ 1
12

(
21
2

3
2

3
2

3
2

1
2

1
2

1
2

51
2

)
(· · · ),

where a lattice shift is applied in the last line. Now let us Weyl-reflect v′ with respect
to the plane orthogonal to α7 with α7 · v′ = 15

12 ,

v′′ = v′ − 2α7·v′
α2

7
α7 = v′ − 15

12α7

2Instead of flipped SU(5), here we use the word “anti-SU(5)” to stress the need for the
antisymmetric representation 10 ⊕ 10 for the GUT breaking.
3The SU(3) degeneracy is not broken at this level. It must be broken spontaneously.
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Table 14.1 Two shift vectors for SU(5)

E8 shift E′8 shift 4D gauge group

(i) ( 1
4

1
4

1
4 − 1

4
1
2

1
3

1
3

1
3 ) (· · · ) SU(5)×SU(3)×U(1)2 × · · ·

(ii) ( 1
2

5
12

5
12

5
12

1
6

1
12 0 0) (· · · ) SU(5)×SU(3)×U(1)2 × · · ·

Fig. 14.1 The SU(5)×SU(3) subgroup of E8. The Coxeter labels are shown inside circles. The
Coxeter labels of α4,7,8 are 5, 2, and 3, respectively

= 1
12 (3 9 9 9 8 8 8 18)(· · · )

= 1
12 (3 − 3 − 3 − 3 − 4 − 4 − 4 − 6)(· · · ).

Weyl reflections of the above shift lead to Case (i) up to extra negative signs. They
are again removed by Weyl reflections. Thus, let us consider the following for
Case (i) of Table 14.1, with the E′8 shift included,

V =
(

1
4

1
4

1
4
−1
4

1
2

1
3

1
3

1
3

) (
1

12
1
12

1
3 0 0 0 0 0

)
, (14.2)

which satisfies the modular invariance condition of Eq. (7.50),

12(V 2 − φ2) = 8 ≡ 0 mod 2. (14.3)

Gauge Group from Untwisted Sector
From the above Dynkin diagram construction of the shift vector, it is obvious that
SU(5)×SU(3) results from the first E8. Here, let us observe this explicitly. Among
the original E8 × E′8 roots P with P 2 = 2, we seek the ones satisfying (7.53)

P · V = 0 mod 1. (14.4)

These form the E8 gauge multiplets shown in Table 14.2.
In Table 14.2, we have the same convention as in the previous chapter. There

are 6 momentum-winding states (nonzero roots) in the first row and adding two
oscillators we have the adjoint 8 of SU(3). The rest of Table 14.2 has 20 nonzero
roots which form the adjoint representation of SU(5) together with four oscillators.
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Table 14.2 Root vectors in untwisted sector satisfying P · V = 0

Vector Number of states Representation

(0 0 0 0 0 1 − 1 0) 6 8 of SU(3)

(1 − 1 0 0 0 0 0 0) 6 24 of SU(5)

(1 0 0 1 0 0 0 0) 3

(−1 0 0 − 1 0 0 0 0) 3

(+ + + + + + + +) 1

(− − − − − − − −) 1

(− + + − + + + +) 3

(− − + + − − − −) 3

The underlined entries allow permutations. The + and − in the spinor part denote 1
2 and − 1

2 ,
respectively

The remaining 2 oscillators out of 8 generate U(1)2. These, coming from E8, form
the adjoint representations of SU(5)×SU(3)×U(1)2.

Let us take two simple roots of SU(3) as

αa = (0 0 0 0 0 1 − 1 0 ), αb = (0 0 0 0 0 0 1 − 1) (14.5)

and four simple roots of SU(5) as

α1 = ( 1 −1 0 0 0 0 0 0 )

α2 = ( 0 1 −1 0 0 0 0 0 )

α3 = ( 0 0 1 1 0 0 0 0 )

α4 = ( − − − − − − − − ).

(14.6)

Then, the highest weights of some representations are

3 : ( 0 0 0 0 0 1 0 0 )

3 : ( 0 0 0 0 0 0 0 −1 )

24 : ( + − − + − − − − )

5 : ( 1 0 0 1 0 0 0 0 )

5 : ( − − − − − − − − )

10 : ( + + + + − − − − )

10 : ( 0 0 −1 1 0 0 0 0 )

(14.7)

In the same way, we obtain the gauge group SO(10)×SU(2)×U(1)2 from the other
E8 sector.
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Matter from Untwisted Sector
From the untwisted sector, the massless fields satisfy P 2 = 2. Those with P ·V ≡ 0
mod 1 are the gauge multiplets. The massless matter fields are those with

P · V ≡ k

12
mod 1, k = 1, 2, . . . , 11.

We will consider only k = 1, 2, . . . , 6, since the CT P conjugates of kth twisted
sectors appear in 12− kth twisted sectors. We obtain the following spectrum.

Sector Highest weight P Representation

U (0 0 0 0 0 0 0 0)(1 0 0 1 0 0 0 0) (1, 1; 10, 2)
(1 0 0 0 0 1 0 0)(0 0 0 0 0 0 0 0) (10, 3; 1, 1)
(0 0 0 0 0 0 0 0)(0 0 1 1 0 0 0 0) (1, 1; 10, 1)
(0 0 0 1 0 1 0 0)(0 0 0 0 0 0 0 0) (5, 3; 1, 1)
(0 0 0 0 0 0 0 0)(0 − 1 − 1 0 0 0 0 0) (1, 1; 1, 2)
(+ + + + + + − −)(0 0 0 0 0 0 0 0) (5, 3; 1, 1)
(0 0 0 0 0 0 0 0)(− − + + + + + +) (1, 1; 16, 1)
(+ + + − − + − −)(0 0 0 0 0 0 0 0) (1, 3; 1, 1)

The chirality is discussed in Sect. 7.4.1. The massless states in the Neveu–
Schwarz sectors are s = (±1, 0, 0, 0) and we may obtain the corresponding
Ramond sector field by adding the r vector as sR = sNS + r . Below, we discuss
the Ramond states. The left and the right mover states generate phases under the
point group transformation.

Let us define α = e2πi/12. For k = 1 or P ·V = 1
12 , the left movers obtain a phase

α. We need an extra phase α−1 from the right movers, which is accomplished by
e−2πis̃·φ where φ = 1

12 (5 4 1) and s = (.+−+). It is left-handed (See Table 14.5).
The four dimensional chirality is read of from the s0 components of right mover,
denoted as (s0, s1, s2, s3). We make it a convention for s = − 1

2 to left-handed. For
k = 4, s = (. + +−) provides the needed α−4; thus it is left-handed. For k = 5,
s = (⊕+++) provides α−5; thus it is right-handed.

α from the right movers is provided by s = (⊕−+−) which thus will couple to
k = 11. It is right-handed. α4 from the right movers is provided by s = (⊕−−+)
which will couple to k = 8. It is right-handed. α5 from the right movers is provided
by s = (⊕ − −−) which will couple to k = 7. It is left-handed. These give the
antiparticle spectra of those obtained in the previous paragraph.

So far we considered six chirality operators from 8 of the Ramond sector. There
are two more chirality operators: s = (⊕ + ++) and s = (. − −−). These from
the right movers do not provide any phase; so they must couple to the k = 0 (or
k = 12) sector. In fact we considered them already in obtaining the gauge sector
which is chosen as left-handed through s = (.−−−).
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Table 14.3 Summary of
massless matter from the
untwisted sector

P · V [SU(5) × SU(3)]chirality
5
12 (10, 3)L
4
12 (5̄, 3)L
1
12 (5̄, 3)L ⊕ (1, 3)L

Table 14.3 summarizes matter from the untwisted sector. Note that for P ·V = 5
12

the original R-handed field is changed to the charge conjugated L-handed field in
Eq. (14.3).

Twisted Sector
The Z12−I with the twist vector φ = 1

12 (5 4 1) has three fixed points in the prime,
i.e., θ1-, θ2- and θ5- twisted sectors. This is because it has three fixed points in the
second torus since it is the same as Z3, and for the first and the third torus the origin
is the only fixed point. For the other non-prime-order twists such as k = 4 and 6,
counting the number of massless states involves a more complicated nonvanishing
projector Pk , Eq. (8.59).

The masslessness condition for left movers is

(P + kV )2

2
+ Ñ+ c̃ = 0 (14.8)

with the zero point energy c̃ given in (7.15). In each twisted sector, c̃ has the value

2c̃ =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

210
144 , k = 1; 192

144 , k = 4

216
144 , k = 2; 210

144 , k = 5

234
144 , k = 3; 216

144 , k = 6.

(14.9)

On the other hand, the right mover masslessness condition leads to

2N+ (s + kφs)
2 = 2c = 2c̃− 1 (14.10)

which are

2c = 11
24 ,

1
2 ,

5
8 ,

1
3 ,

11
24 ,

1
2 , (14.11)

for k = 1, 2, . . . , 6, respectively.
The number of zero modes in the twisted sector are given by projector

Pm = 1

N

∑
χ̃(θm, θn)�(θm)

n, (14.12)
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where � is the phase of the specified twisted sector and χ̃(θ i, θj ) is the number of
simultaneous fixed points on nontrivial tori (8.62) of the internal space both given
in Chap. 8. Table 14.4 summarizes matter from the twisted sector. In the θ6 sector,
we omitted, except in the first row, hidden sector representations (−12 − 2 05) and
(02 − 2 05) which provide CPT conjugate to each other.

The generalized GSO projector (14.12) gives the multiplicity. For the prime
orbifoldZ3, the multiplicity is just 1

3 (1+�+�2) which can be either 1 (for � = 1)
or 0 (for � = e±2πi/3). So in Sect. 7.4.2 it was sufficient to count those with the
vanishing phase. But for non-prime orbifolds such as Z12, the multiplicity (14.12)
is nonvanishing even if � were not 1. Only for θ1, θ2, and θ5 twists, the multiplicity
is given by the vanishing � phase.

Since the calculation is straightforward even though tedious, here we show only
the θ4 twist in detail. The case of θ4 includes all possible complications one can
anticipate. The θ4 twist vectors are

4φ =
(

2
3 ,

1
3 ,

1
3

)

4V ≡
(

1 1 1 − 1 2 4
3

4
3

4
3

) (
1
3

1
3

4
3 0 0 0 0 0

)
.

(14.13)

In the θ4-twisted sector, the mass shell condition (14.8) becomes (P +4V )2+2Ñ =
2c̃ = 4

3 . We have solutions constituting the representation (1, 3̄)L in Table 14.5. One

of the components is ÑL = 0, P = (05 ∼ −2 ∼ −1 ∼ −1)(0 ∼ 0 ∼ −2 ∼ 05) is
massless.

Now consider the masslessness condition for the right movers. From (14.11), we
need (s + 4φ)2 + 2N = 1/3. We obtain N = 0, s = (. −3

2
−3
2 −). It shows that

the chirality is left-handed.
The GSO projection is given when combined with the right movers. We have for

the above P and s,

(P + 4V ) · V − (s + 4φ) · φ − 4

2

(
V 2 − φ2

)
= 3

4
. (14.14)

We use the number of simultaneous fixed points (8.62),

χ̃(θ4, 1) = 27, χ̃ (θ4, θ1) = 3, χ̃(θ4, θ2) = 3, χ̃(θ4, θ1) = 3,

χ̃(θ4, θ4) = 27, χ̃(θ4, θ5) = 3, χ̃(θ4, θ6) = 3, χ̃(θ4, θ7) = 3, (14.15)

χ̃(θ4, θ8) = 27, χ̃(θ4, θ9) = 3, χ̃(θ4, θ10) = 3, χ̃(θ4, θ11) = 3.

Therefore, we obtain

Pθ4 = 1
12

{
3(1+�4 +�8) · [8+ 1+�(1+�+�2)

]}
(14.16)

which becomes 9, 6, 6 for � = 1,−1,±i, respectively, and 0 for the other cases.
We can calculate the spectrum in the same way. The result is shown in Table 14.4.
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Table 14.4 Matter fields from twisted sectors. All the states are L-handed in four dimensions

Sector Highest weight (P + kV ) Representation

U (0 0 0 0 0 0 0 0)(1 0 0 1 0 0 0 0) (1, 1; 10, 2)
(1 0 0 0 0 1 0 0)(0 0 0 0 0 0 0 0) (10, 3; 1, 1)
(0 0 0 0 0 0 0 0)(0 0 1 1 0 0 0 0) (1, 1; 10, 1)
(0 0 0 1 0 1 0 0)(0 0 0 0 0 0 0 0) (5, 3; 1, 1)
(0 0 0 0 0 0 0 0)(0 − 1 − 1 0 0 0 0 0) (1, 1; 1, 2)
(+ + + + + + − −)(0 0 0 0 0 0 0 0) (5, 3; 1, 1)
(0 0 0 0 0 0 0 0)(− − + + + + + +) (1, 1; 16, 1)
(+ + + − − + − −)(0 0 0 0 0 0 0 0) (1, 3; 1, 1)

T1 1
12 (3 3 3 9 − 6 4 4 4)(1 1 4 0 0 0 0 0) 3(5, 1; 1, 1)
1

12 (−3 − 3 − 3 3 12 − 2 − 2 − 2)(1 1 4 0 0 0 0 0) 3(1, 1; 1, 1)
1

12 (3 3 3 − 3 − 6 4 4 − 8)(1 1 4 0 0 0 0 0) 3(1, 3; 1, 1)
1

12 (−3 − 3 − 3 3 0 10 − 2 − 2)(1 1 4 0 0 0 0 0) 3(1, 3; 1, 1)
1

12 (9 − 3 − 3 3 0 − 2 − 2 − 2)(1 1 4 0 0 0 0 0) 3(5, 1; 1, 1)
T2 1

12 (0 0 0 0 − 6 2 2 2)(2 2 − 4 12 0 0 0 0) 3(1, 1; 10, 1)
1

12 (0 0 0 0 − 6 2 2 2)(2 − 10 − 4 0 0 0 0 0) 3(1, 1; 1, 2)
1

12 (0 0 0 0 − 6 2 2 2)(2 2 8 0 0 0 0 0) 6(1, 1; 1, 1)
T3 1

12 (9 − 3 − 3 3 − 6 0 0 0)(3 − 9 0 0 0 0 0 0) 2(5, 1; 1, 2)
1

12 (3 3 3 − 3 0 6 − 6 − 6)(3 − 9 0 0 0 0 0 0) (1, 3; 1, 2)
1

12 (−3 − 3 − 3 3 6 0 0 0)(3 3 12 0 0 0 0 0) (1, 1; 1, 1)
1

12 (−3 − 3 − 3 3 6 0 0 0)(3 3 0 12 0 0 0 0) (1, 1; 10, 1)
1

12 (−3 − 3 − 3 3 6 0 0)(0 3 3 − 12 0 0 0 0 0) 2(1, 1; 1, 1)
1

12 (−3 − 3 − 3 3 6 0 0 0)(3 − 9 0 0 0 0 0 0) 2(1, 1; 1, 2)
T4 1

12 (0 0 0 0 0 4 4 − 8)(4 − 8 4 0 0 0 0 0) 6(1, 3; 1, 2)
1

12 (0 0 0 0 0 4 4 − 8)(4 4 − 8 0 0 0 0 0) 6(1, 3; 1, 1)
T6 1

12 (6 − 6 − 6 6 0 0 0 0)(−6 − 6 0 0 0 0 0 0) 2(5, 1; 1, 1)
1

12 (6 − 6 − 6 6 0 0 0 0)(6 6 0 0 0 0 0 0) 4(5, 1; 1, 1)
1

12 (6 6 6 6 0 0 0 0)(−6 − 6 0 0 0 0 0 0) 3(5, 1; 1, 1)
1

12 (6 6 6 6 0 0 0 0)(6 6 0 0 0 0 0 0) 2(5, 1; 1, 1)
1

12 (0 0 0 0 − 6 6 6 − 6)(−6 − 6 0 0 0 0 0 0) 4(1, 3; 1, 1)
1

12 (0 0 0 0 − 6 6 6 − 6)(6 6 0 0 0 0 0 0) 2(1, 3; 1, 1)
1

12 (0 0 0 0 6 6 − 6 − 6)(−6 − 6 0 0 0 0 0 0) 2(1, 3; 1, 1)
1

12 (0 0 0 0 6 6 − 6 − 6)(6 6 0 0 0 0 0 0) 3(1, 3; 1, 1)
T7 1

12 (3 3 3 − 3 0 − 2 − 2 − 2)(7 − 5 − 8 0 0 0 0 0) 3(1, 1; 1, 2)
1

12 (−3 − 3 − 3 3 − 6 4 4 4)(−5 − 5 4 0 0 0 0 0) 3(1, 1; 1, 1)
1

12 (3 3 3 − 3 0 − 2 − 2 − 2)(7 7 4 0 0 0 0 0) 3(1, 1; 1, 1)
1

12 (3 3 3 − 3 0 − 2 − 2 − 2)(−5 − 5 4 0 0 0 0 0) 6(1, 1; 1, 1)
T9 1

12 (3 3 3 9 6 0 0 0)(9 − 3 0 0 0 0 0 0) (5, 1; 1, 2)
1

12 (−3 − 3 − 3 3 0 6 6 − 6)(9 − 3 0 0 0 0 0 0) 2(1, 3; 1, 2)
1

12 (3 3 3 − 3 − 6 0 0 0)(−3 − 3 12 0 0 0 0 0) (1, 1; 1, 1)
1

12 (3 3 3 − 3 − 6 0 0 0)(−3 − 3 0 12 0 0 0 0) 2(1, 1; 10, 1)
1

12 (3 3 3 − 3 − 6 0 0 0)(−3 − 3 − 12 0 0 0 0 0) (1, 1; 1, 1)
1

12 (3 3 3 − 3 − 6 0 0 0)(9 − 3 0 0 0 0 0 0) 3(1, 1; 1, 2)
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Table 14.5 + and − denote
+ 1

2 and − 1
2 , respectively, and

⊕(.) is R(L)-handed

1
2χ s̃ = (r + ω̃) s̃ · φs (s̃ + φ̃) · φs � phase Multiplicity

⊕ + + + 5
12

19
12 − 1

12 · 2π 0

⊕ + − − 0 14
12

1
3 · 2π 0

⊕ − + − − 1
12

13
12

5
12 · 2π 0

⊕ − − + − 4
12

10
12

2
3 · 2π 0

. − − − − 5
12

9
12

3
4 · 2π 6

. − + + 0 14
12

1
3 · 2π 0

. + − + 1
12

15
12

1
4 · 2π 6

. + + − 4
12

18
12 0 · 2π 9

Note that (P + Ṽ ) · V − 1
2m(V 2 − φ2

s ) = − 1
2 → 1

2

Note that in the θ(6) twisted sector, states are self-conjugate under the CT P ,
which is always the case in the θ(N) twisted sector in a Z2N orbifold model. In
calculating the multiplicity, we have to consider the Z2 symmetry in the θ(N) twisted
sector, i.e. dividing by 2. In our case of θ(6) twisted sector, there appears another
factor 2 coming from the hidden sector multiplicity 2. It is shown only in the first
line of the θ(6) twisted sector of the twisted sector table. In the θ6 twisted sector, the
CT P conjugate of an L mover should be an R mover. Still the spectrum can be
chiral because the projection may select one chirality.

In Table 14.6 we summarize the observable sector fields except singlets. Adding
the representations from the untwisted sector, Table 14.3, we can easily check that
there do not exist any non-Abelian anomalies of SU(5) and SU(3). Even though we
have not shown explicitly, there does not exist any gauge anomalies except for one
U(1) anomaly which is cancelled by the Green–Schwarz mechanism.

14.2.2 AModel with aWilson Line

Not to introduce any degeneracy, we must employ the full information on the Wilson
lines. So, instead of introducing SU(5) directly, we first introduce SO(10) from the
shift vector.

Table 14.6 Summary of
massless observable matter
from the twisted-sectors, all
in the L-handed. The
multiplicity may come from
either the number of fixed
points or non-Abelian charge.

Sector Representation

T1 3(5, 1)+ 3(5, 1)+ 3(1, 3)+ 3(1, 3)
T2 no observable matter

T3 4(5, 1)+ 2(1, 3)
T4 18(1, 3)
T6 6(5, 1)+ 5(5, 1)+ 6(1, 3)+ 5(1, 3)
T7 no observable matter

T9 2(5, 1)+ 4(1, 3)
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Fig. 14.2 Fixed points in Z12−I orbifold. The three fixed points are distinguished in the (67)-torus
by the Wilson lines

V =
(

0, 0, 0, 0, 0; −1
6 , −1

6 , −1
6

) (
0, 0, 0, 0, 0; 1

4 ,
1
4 ,
−2
4

)′
. (14.17)

Then we turn on Wilson line to break this group down to SU(5). Among the lattices
of the Z12−I orbifold, shown in Fig. 14.2, we have SU(3) lattice of order three
orbifold along the (67) direction. We turn on a Wilson line along this direction

a =
(

2
3 ,

2
3 ,

2
3 ,

2
3 ,

2
3 ; 0, −2

3 , 2
3

) (
2
3 ,

2
3 ,

2
3 ,

2
3 , 0; −2

3 , 0, 0
)′
. (14.18)

The resulting gauge group is SU(5)×SU(5)′×SU(2)′×U(1)7 [9].
To remove degeneracies completely toward a successful flavor phenomenology,

all fixed points should be distinguished. Because the number of fixed points is
minimum in Z12−I orbifold as shown in the first table in Appendix A, it can be
considered as the simplest example in phenomenological application. Indeed, Model
(14.18) contains possible ingredients to answer the questions listed in the beginning
of this chapter.

Since the method to obtain massless spectra was considered in detail in
Sect. 14.2.1, in this subsection we restrict just to three twisted sectors T 0

4 (for

matter fields),4 T3 (for 10−1 ⊕ 10+1), and T
0,+,−

1 (for the hidden SU(5)′ fields) to
acquaint with the case of the Wilson line addition.

Let us recapitulate the generalized GSO projection presented in Sect. 9.4.3. The
phase associated with the orbifold is

*k =
∑
i

(NL
i −NR

i )φ̂i+ (P +kVf ) ·Vf − (s+kφ) ·φ− k

2
(V 2−φ2), (14.19)

4Sectors in θ(4) are distinguished by Wilson lines: T 0
4 = V, T +4 = V +a, T −4 = V −a. The visible

sector families arise in T 0
4 .
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where φ̂j = φj and φ̂j̄ = −φj . Concretely, the multiplicity in the twisted sector T f
k

is5

Pk(f ) = 1

12 · 3
11∑
l=0

χ̃ (θk, θ l)ei 2πl *k , (14.20)

where f (= {f0, f+, f−}) denote twisted sectors associated with kVf = kV,

k(V + a), k(V − a).
For k = 0, 3, 6, 9, Pk(f0) = Pk(f+) = Pk(f−). Thus we only need to

calculate one of them, say Pk(f0) and multiply three. We require in addition,

P · a = 0 mod integer in the sector,

12(P + V
0,+,−
k ) · a = 0 mod integer in k = 3, 6, 9 sectors. (14.21)

Note that the four entry s and the three entry s̃ with the relation s = (⊕or.; s̃)
such that ⊕ or . is chosen to make the total number of minus signs even. For
the subsector f = 0, i.e. for T k

0 (useful for T 0
4 and T 0

1 ), from the masslessness
condition, 2c̃k =∑

i (N
L
i )φ̂i + P · V + k

2V
2, we have

*0
k =

∑
i

(NL
i −NR

i )φ̂i + P · V − s · φ + k

2
(V 2 − φ2) (14.22)

=
∑
i

(NL
i −NR

i )φ̂i + P · V − s · φ + k

12
. (14.23)

Twisted Sector T 0
4 In the sector θ(4), the degeneracy factors of Appendix A are

χ̃(θ4, θj ) =
{
j = 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11

27, 3, 3, 3, 27, 3, 3, 3, 27, 3, 3, 3 .
(14.24)

With φ of Eq. (14.1) for right movers, note that 4φ is
(

20
12 ,

16
12 ,

4
12

)
which is

equivalent to
(

2
3 ,

1
3 ,

1
3

)
. Locally its Z3 twist. The mass shell condition is s2

0 + (s̃ +
4φ)2 = −2c = 1

3 , i.e. (s̃ + 4φ)2 = 1
12 with (s0)

2 = 1
4 , which is satisfied by

s̃ = (−−−) and s0 = −.
For matter fields in T 0

4 without oscillators, we insert P · V = − 1
4 for k = 4 in

Eq. (14.23),

*0
4(matter) = −s̃ · φ + 1

12
. (14.25)

5In Eq. (14.20), if we use the denominator 12 instead of 36, then we must use 9 1 1 1 9 1 1 1 9
1 1 1 instead of 27 3 3 3 27 3 3 3 27 3 3 3 in the k = 4 row of Z12−I for the table χ̃(θk, θ l) in
Appendix A.
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So, we choose s = (.; s̃), i.e. it is L-handed, and obtain *0
4(matter) = 1

2 . Now, the
multiplicity given in Eq. (14.20) is

P0
4 =

1

36

(
27 · eiπ ·0 + 3 · eiπ ·1 + 3 · eiπ ·2 + 3 · eiπ ·3 + 27 · eiπ ·4

+ 3 · eiπ ·5 + 3 · eiπ ·6

+ 3 · eiπ ·7 + 27 · eiπ ·8 + 3 · eiπ ·9 + 3 · eiπ ·10 + 3 · eiπ ·11
)

= 2. (14.26)

Thus, two families appear from T 0
4 . GUTs are simple in counting families.

In T 0
4 , consider P = (1 0 0 0 0; 1 1 1)(08)′, satisfying (P +4V )2+2c̃ = 0, which

gives P · V = − 1
2 . It has the quantum number of Hu. We insert P · V = − 1

2 for
k = 4 in Eq. (14.23) to obtain

*0
4(Higgs) = −s̃ · φ + −2

12
. (14.27)

Since 4φ is ( 2
3 ,

1
3 ,

1
3 ), the masslessness condition is the same as above, s =

(.;− −−), i.e. it is left-handed (L-handed), and we obtain *0
4(Higgs) = 1

4 . Thus,
the multiplicity of Hu is given by Eq. (14.20)

P0
4 =

1

36

(
27 · eiπ ·0 + 3 · eiπ · 1

2 + 3 · eiπ · 2
2 + 3 · eiπ · 3

2 + 27 · eiπ · 4
2 + 3 · eiπ · 5

2

+ 3 · eiπ · 6
2 + 3 · eiπ · 7

2 + 27 · eiπ · 8
2 + 3 · eiπ · 9

2 + 3 · eiπ · 10
2 + 3 · eiπ · 11

2

)

= 2. (14.28)

Again, we obtain P = 2. These were used for the Higgs fields in [10], but Higgs
from T6 was employed in [11].

Twisted Sector T3: 10b−1 + 10+1 The degeneracy factors in T3 are

χ̃(θ3, θj ) =
{
j = 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11

4, 1, 1, 4, 1, 1, 4, 1, 1, 4, 1, 1
. (14.29)

From Eq. (14.19), the generalized GSO phase is

*3 =
∑
i

(
NL
i − NR

i

)
φ̂i − s̃ · φ + P · V + 1

4
. (14.30)
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We have the weight vectors

10−1 : P + 3V = (+++−−; 03)(05; −1
4 , −1

4 , +1
2 )′, P · V = 1

4 (14.31)

101 : P + 3V = (++−−−;−1 − 1 − 1)(05; 7
4 ,

7
4 ,− 14

4 )′, P · V = − 1
4 .

(14.32)

For these, (P + 3V ) · a = 0 mod integer. We can also use Eq. (14.30) to obtain
multiplicities for massless 10−1 and 101,

s (NL
i −NR

i )φ̂i, s̃ · φ, P · V, *3, Multiplicity

(⊕| + −−) : 0, 0
12 ,

+1
4 (10−1)

+6
12 , 0

(⊕| − +−) : 0, −1
12 ,

+1
4 (10−1)

+7
12 , 0

(⊕| − −+) : 0, −4
12 ,

+1
4 (10−1)

−2
12 , 0

(.| − ++) : 0, 0
12 ,

+1
4 (10−1)

+6
12 , 0

(.| + −+) : 0, +1
12 ,

+1
4 (10−1)

+5
12 , 0

(.| + +−) : 0, +4
12 ,

+1
4 (10−1)

+2
12 , 0

(14.33)

s (NL
i −NR

i )φ̂i , s̃ · φ, P · V, *3, Multiplicity

(⊕| + −−) : 0, 0
12 ,

−1
4 (101)

0
12 , 2

(⊕| − +−) : 0, −1
12 ,

−1
4 (101)

+1
12 , 0

(⊕| − −+) : 0, −4
12 ,

−1
4 (101)

+4
12 , 1

(.| − ++) : 0, 0
12 ,

−1
4 (101)

0
12 , 2

(.| + −+) : 0, +1
12 ,

−1
4 (101)

−1
12 , 0

(.| + +−) : 0, +4
12 ,

−1
4 (101)

−4
12 , 1

.

(14.34)

P · V = + 1
4 does not lead to a massless field but P · V = − 1

4 leads to massless
pair, L-handed 101 and R-handed 101. Because the quantum numbers of 101 are
the opposite of those of 10−1, the R-handed first and third rows in (14.34) on 101
can be called L-handed 10−1. Thus, we obtain three L-handed pairs 3(10−1 ⊕ 101)

from T3.

Twisted Sector T 0
1 : Chiral Matter 10 ′ of Hidden SU(5)′ In T1, we have

χ̃(θ1, θj ) =
{
j = 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11

3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3
. (14.35)
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In T 1, we have from (14.23),

*1 =
∑
i

(NL
i −NR

i )φ̂i − s̃ · φ + P · V + 1

12
. (14.36)

State 10b′ Consider

P = (05;
(−1

6

)3

)

(
−1 03 0; +1

4

−1

4

+1

2

)′
⊕

(
05;

(−1

6

)3
)

×
(

1

2

1

2

−1

2

−1

2
0; +1

4

−1

4

1

2

)′
, (14.37)

for which P · V is −2
12 . Without oscillators, the masslessness condition is satisfied

for

s (NL
i −NR

i )φ̂i, s̃ · φ, P · V, *1, Multiplicity

(⊕| − +−) : 0, −1
12 ,

−2
12 , 0, 1

. (14.38)

It is a R-handed field with U(1)KK charges Q18,20,22 = (−1,+1,−1). It is listed in
the first row in Table 14.7.

State (5, 2)′ Considering

P = (05; −1

6

−1

6

−1

6
)(+1 03 0; +1

4

−1

4

+1

2
)′

(05; −1

6

−1

6

−1

6
)(0 0 0 0 − 1; +1

4

−1

4

+1

2
)′, (14.39)

we obtain an SU(5)′ quintet 5′. Another quintet is

(
05; −1

6

−1

6

−1

6

)(+1

2

−1

2

−1

2

−1

2
0; +1

4

−1

4

+1

2

)′
(

05; −1

6

−1

6

−1

6

)(+1

2

+1

2

+1

2

+1

2
0; +1

4

−1

4

+1

2

)′
. (14.40)

For these, P · V is −2
12 . These are listed as (5

′
, 2′) in Table 14.7.
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Table 14.7 U(1) charges of SU(5)′ fields

RX(T
0,+

1 )⊕,. State(P + kV 0,±) QR Q18 Q20 Q22

10b′0(T
0
1 )R (05; −1

6
−1
6
−1
6 )(−1 03 0; +1

4
−1
4
+1
2 )′ +1 −1 +1 −1

(05; −1
6
−1
6
−1
6 )(+1

2
+1
2
−1
2
−1
2 0; +1

4
−1
4
+1
2 )′

(5′, 2′)0(T
0

1 )R (05; −1
6
−1
6
−1
6 )(+1 03 0; +1

4
−1
4
+1
2 )′↑ +1 −1 +1 −1

(05; −1
6
−1
6
−1
6 )(0 0 0 0 − 1; +1

4
−1
4
−1
2 )′′↓

(05; −1
6
−1
6
−1
6 )(+1

2
−1
2
−1
2
−1
2
−1
2 ; −1

4
−3
4 0)′′↑

(05; −1
6
−1
6
−1
6 )(+1

2
+1
2
+1
2
+1
2
−1
2 ; +3

4
+1
4 0)′′↓

5b′0(T
+

1 )R (05; −1
6
−1
6
−1
6 )(−1

2
+1
2
+1
2
+1
2 0; +1

4
−1
4
−1
2 )′ 0 +1 +1 +1

(05; −1
6
−1
6
−1
6 )(0 0 0 0 +1

2 ; −1
4
+1
4 0)′

5b′−5/3(T
+

1 )R ((+1
6 )5; −1

3
+1
3 0)(−5

6
+1
6
+1
6
+1
6
+1
2 ; −1

12
−1
4 0)′ −4 −1 −1 +1

((+1
6 )5; −1

3
−1
3 0)(+1

3
+1
3
+1
3
+1
3 0; −1

12
+1
4
−1
2 )′

SU(2) doublets are denoted as up and down arrows

Twisted Sector T +1

State 5b′0 In the sector T +1 , we consider

V + a =
(

2

3
,

2

3
,

2

3
,

2

3
,

2

3
; −1

6
,
−5

6
,
+1

2

)(
2

3
,

2

3
,

2

3
,

2

3
, 0; −5

12
,
+1

4
,
−1

2

)′
(14.41)

for which we consider the phase (14.19),

*+1 =
∑
i

(NL
i − NR

i )φ̂i − s̃ · φ + P · V + + 1

2
· 62

12
. (14.42)

With P =
(

05; −1
6
−1
6
−1
6

) (−1
2
+1
2
+1
2
+1
2 0; +1

4
−1
4
−1
2

)′
, we obtain P ·V+ = +10

12 .

An ingenious lattice shift of the vector P + V+1 =
(

2
3 ,

2
3 ,

2
3 ,

2
3 ,

2
3 ; −1

3 ,−1, 1
3

)
(

1
6 ,

7
6 ,

7
6 ,

7
6 ,
−1
6 , 0,−1

)′
gives (P + V +1 )2 = 210

144 , and the magnitude of the

masslessness condition is satisfied. Then, we obtain the following multiplicity:

s (NL
i −NR

i )φ̂i, s̃ · φ, P · V, *1, Multiplicity

(⊕| + ++) : 0, +5
12 ,

+10
12 , 0, 1

. (14.43)

It is a R-handed field with U(1)KK charges Q18,20,22 = (+1,+1,+1). It is listed in
Table 14.7.

State 5
′
−5/3 Similarly, we obtain a charged quintet 5

′
−5/3(T

+
1 )R from the sector

T +1 .
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14.2.3 Doublet–Triplet Splitting

With the simplest and most widely used level k = 1, gauge couplings are unified. If
one goes beyond k = 1, then the resulting spectrum must be much more abundant
and would not be a minimal model. Models with differing ki do not unify coupling
constants. Therefore, it has been hoped that a reasonable SSM can be obtained at
the level k = 1. In this spirit, the initial motivation was to obtain the factor group
SU(3)×SU(2) directly by compactification.

But GUTs are attractive in many ways. The Higgs doublets Hu and Hd contained
in some representations of a GUT model must accompany their color partners. As
commented earlier, low scale colored scalars are dangerous since they can easily
make proton decay very fast. So the color-triplet partners of Hu and Hd must
be made superheavy. This doublet–triplet splitting problem in SUSY SU(5) was
addressed in field theoretic orbifold in Chap. 4, with the discrete group Z2 × Z

′
2 in

5D space. In 5D, the internal space y is split into two branes (at y = 0 and πR) and
the bulk in between. At the y = 0 brane, the full SU(5) is respected. At the y = πR

brane, the discrete projectors P associated with Z2 and P ′ associated with Z
′
2 are

imposed

P = diag(1 1 1 1 1) (14.44)

P ′ = diag(1 1 1 –1 –1). (14.45)

The S1/Z2 × Z
′
2 orbifold breaks SU(5) to the SM and Higgs 5 and 5 are split into

massless Hu and Hd plus their superheavy color partners [12]. This is the realization
of a doublet–triplet splitting in a 5D field theory model.

In string orbifold, the standard-like models have a potential to have it achieved
already if there is no colored triplets beyond the SM spectrum. Indeed, Example 3 of
Ref. [13] achives the doublet–triplet splitting. But in GUTs from string orbifold, the
problem needs to be resolved. We find, however, that in anti-SU(5) models there is a
base to address this problem. This is because the symmetry breaking fields 10+1 and
10−1 have nonvanishing VEVs in the (45) direction, 〈�45

2 〉 = 〈�∗1,45〉 �= 0. Consider

first the Higgs quintet 5. The 10 · 10 · 5 coupling related to Hd is 1012
1 1034

1 H 5 is
vanishing and Hd is massless. On the other hand 1012

1 1045
1 H 3 leads to a colored

Higgsino mass term for �̃12
2 · H̃ 3 to be of order 〈1045

1 〉. Similarly, for the Higgs

quintet 5, we can make the colored Higgsino mass term for �̃∗1,12 · ˜̄H3 to be of order
〈�∗1,45〉. But, this solution works only if there is no contribution to the Higgsino mass

term, H̃uH̃d . If there is a mass term in the superpotential of the form 5 · 5 = HH̄ ,
this doublet–triplet solution does not work. This is the issue discussed in Sect. 13.8,
and realistic doublet–triplet splitting from GUTs can be easily realized in anti-SU(5)
models.
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14.2.4 U(1) Charges

To distinguish the SM chiral fields among the plethora of fields, one has to identify
the weak hypercharge U(1)Y . If the first five entries of P are anti-SU(5) indices,
with the first three for color SU(3) and the next two for the weak SU(2), the weak
hypercharge is proportional to

qY ∝ (2 2 2 –3 –3 n6 n7 n8)(n9, · · · , n16)
′. (14.46)

If all of n6, . . . , n16 are zero, then we obtain sin2 θ0
W = 3

8 . If any of n6, . . . , n16 is
nonzero, then sin2 θ0

W < 3
8 .

Model (14.18) leads to the rank 9 non-Abelian gauge group SU(5)×SU(5)′×
SU(2)′. There are 7 U(1)s. Besides of the above hypercharge, we have six other
generators

q1 = (05; 12, 0, 0) (08)′,

q2 = (05; 0, 12, 0) (08)′,

q3 = (05; 0, 0, 12) (08)′, (14.47)

q4 = (08) (04, 0; 12,−12, 0)′,

q5 = (08) (04, 0; −6,−6, 12)′,

q6 = (08) (−6,−6,−6,−6, 18; 0, 0, 6)′.

We can always make only one of them anomalous U(1)X by change of basis [11],

14.2.5 U(1)R Identification

As discussed in Sect. 2.3, supergravity in 4D has three functions, superpotential
W(z), gauge kinetic function f (z), and Kähler potential K(z, z∗). In the global
SUSY case, the Lagrangian contains

∫
d2ϑ(W + f (z)(λa)2) plus 1

2 (D
a)2 where

λa are chiral gaugino superfields and (Da)2 is the D-term. Since (Da)2 is real, we
consider just

∫
d2ϑ(W + f (z)(λa)2) to look for the complex functions. Since the

integrand is complex, this can be matched by the complex d2ϑ , i.e. let there be a
symmetry

R-symmetry : ϑ → ei αRϑ. (14.48)

For (14.48) to be a symmetry, W and gauginos transform as

W → ei 2αRW, (14.49)

λa → ei αRλa. (14.50)
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This phase transformation is called R-symmetry, U(1)R. The R-charge of the ϑ’s 0th

power component of a superfield is usually used as the R-charge of the superfield.
For example, gauginos carry 1 unit of R-charge and gauge fields carry 0 unit of R-
charge. If a chiral field z carries R-charge Rz, its fermionic partner carries R-charge
Rz − 1.

For U(1)R in supergravity, we consider gravitino also. The Kähler potential
K(z, z∗) contains a physical parameter describing gravitino mass. So, in supergrav-
ity SUSY is described in the broken phase and U(1)R is effectively broken. The
degree of breaking is from the knowledge of SUSY breaking scale.

Since matter fields z and λa carry U(1)R charge, its origin can be from U(1)EE and
U(1)KK, and in general it can be a linear combination of them,

QR =
∑
i

liQ
i
EE + l18Q

18
KK + l20Q

20
KK + l18Q

22
KK, (14.51)

where U18
KK − U20

KK are U(1)’s from U(1)KK.6

14.2.6 Discrete Symmetry Z4R

In Sect. 13.5.2, we discussed a need for introducing a kind of R-parity toward
proton longevity, forbidding the dimension-5 operator Eq. (13.37). This has to be
considered together with the neutrino mass generation since the leading neutrino
mass operator appears at the same dimension-5 level [14]. At the dimension-5 level,
the μ term also appears [15]. So, these two operators must be considered together
with the μ problem.

In string compactification, U(1)anom appears frequently. In this regard, Lee
et al. considered the anomaly coefficients in SUSY field theory and found that
U(1)EE alone cannot be used to suppress the μ term [16]. We adopt their conclusion
on Z4R that the needed R-parity is a subgroup of a U(1)R symmetry. So, let our
U(1)R be a linear combination of U(1)EE and U(1)KK.

In supergravity, an intermediate scale MI generates the electroweak scale vew as
∼M2

I /MP. Then, the μ term and vew can be economically generated at the same
scale [17]. Also, for a multiple appearance of Higgs pairs, the democratic mass
matrix, by some kind of fine tuning, always guarantees at least one massless pair of
Higgs doublets [18]. So, we may consider the cases of discrete groups Z4,Z6,Z8,
and Z12 of Ref. [19].

Let us consider the following operators, relevant for the dimension-5 proton
decay and neutrino mass operators in an anti-SU(5) model,

W�B ≡ 10 10 10 5 (14.52)

6Even if the KK U(1)’s are projected out, the U(1)’s from U(1)EE are affected by these. In a sense,
the other combination is considered to be projected out and Eq. (14.51) survives.
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Wν mass ≡ 5 5 5Hu 5Hu, (14.53)

where the subscripts m and H denote matter fields and Higgs fields, respectively.
If an operator is present in the superpotential, U(1)KK transformations of the fields
of an operator is cancelled by the transformation of the anti-commuting variable ϑ .
Under certain normalization, the superpotential is required to have +2 units of the
U(1)KK charge.

Consider the bullet of Fig. 14.3 whose charge is 0. Since the rotation angle of
variable ϑ can be taken as the negative of the previous transformation, −2 units of
the U(1)KK charge must be allowed also as illustrated in Fig. 14.3. Let both charge
±2 scalars develop VEVs, but the charge 0 scalars do not. In this case, we have a Z4
symmetry −2 ≡ +2, i.e. minimally we require Z4R symmetry when we consider
the global transformation of ϑ . The Z4R quantum numbers can be labelled as those
in green color, and the black number assignment is identical to those of green colors.

Under Z4R , the superpotential W leading to proton decay operator and the μ

term are required to carry +4 ≡ 0 units which are then forbidden by U(1)R, and
the superpotential for neutrino mass operator carries +2 units which is allowed by
U(1)R. These can be satisfied with the matter charges +1 and the Higgs charges 0,
for example. In string compactification, the realization may be more complex
because one must take into account the sectors where these fields appear.

The R-parity Z4R is a discrete subgroup of U(1)R,

U(1)R ⊂ U(1)EE ⊗ U(1)KK (14.54)

which is obtained by VEVs of U(1)R charge 4n · (integer) fields, including n = 0
and ±1. If any n = 0 fields do not develop a VEV, then (4n + 2) · (integer) fields,
including n = 0 and ±1, will do the job. In any case, superpotential carries +2
(modulo 4) units of U(1)R charge. On the other hand, the integrand under d2ϑ d2ϑ̄

carries +4 (modulo 4) units of U(1)R charge.
The scale of μ can be considered in the model, forbidding the operator of

Eq. (14.52) but allowing the operator of Eq. (14.53). These are checked for Model
(14.18) in Ref. [11].

Fig. 14.3 Z4R quantum numbers in the region [−2,+2]. Numbers in the region [0, 4] are shown
in the brackets
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14.2.7 A Z6 Orbifold Model

We present an example model of Ref. [20]. It is constructed on a T 6/Z6−II orbifold
with shift vectors

V = 1

6
(2 − 3 − 3 0 0 0 0 0)(3 − 1 − 3 − 3 − 3 − 3 − 3 3)

a1 = 1

6
( 3

2 − 3
2 − 3

2 − 3
2 − 3

2
3
2

3
2

3
2 )(6 − 6 − 15 − 9 − 3 − 15 − 9 9)

a3 = 1

6
(−3 − 3 1 1 1 1 1 1)(0 0 0 0 0 0 0). (14.55)

Here, a1 is order two and a3 is order six. The resulting gauge group is SU(3) ×
SU(2)× U(1)× SO(8)× SU(2)× U(1)7 where the first three corresponds to the
SM groups.

14.2.8 Other UnifiedModels

There is a unified model based on the Pati–Salam group [21]. It takes the Z6
orbifold, to insert a Z2 symmetry so that the recent 5D field theoretic orbifolds
using Z2 discussed in Chap. 5 are derivable from string construction. Here, different
scales of tori are necessarily introduced since one is trying to achieve intermediate
5D physics.

Exercises

� Exercise 14.1 Show that the states with nonvanishing multiplicities in Table 14.5

do not satisfy the mass shell condition M2
R = 0 but s =

(
., −3

2 , −3
2 ,−

)
satisfies

the mass shell condition.

� Exercise 14.2 Prove that the chirality of the θ1-twisted sector in Sect. 14.2.1 is
−1, i.e. left-handed.
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15Smooth Compactification

An important class of manifolds permitting N = 1 supersymmetry in four
dimension are the Calabi–Yau manifolds [1]. For a gauge hierarchy solution
supersymmetry is desirable. For the chiral nature of the SM fermions it is restricted
to minimal supersymmetry.

Orbifold may be regarded as the singular limit of Calabi–Yau manifold. We have
a standard mathematical tool for resolving singularity to recover a smooth manifold
geometry. In defining the topology, the resolution is necessary. For instance, the
Euler number of an orbifold is defined by that of the resolved orbifold. We may
understand this procedure in many ways. We construct explicit resolution in the non-
compact geometry. Also, we can more easily deal with the geometry algebraically.
The latter approach is powerful enough since most quantities are topological.

We take inductive approach: after dealing with concrete examples, we generalize
the results in more abstract mathematical objects without rigorous proofs. Many
features of Calabi–Yau manifold are shared by orbifold. A detailed treatment is
given in Refs. [1–3], especially on K3 manifold in Ref. [4], differential geometry and
index theorem in Ref. [5], and on special holonomy in Refs. [6, 7]. For differential
geometry and algebric geometry, we refer to [3, 8]. For toric geometry, see [9–11].

15.1 Calabi–YauManifold

We study dimensional reduction further by considering again the ten dimensional
effective action (11.1). To examine the condition of supersymmetry breaking, we
need to look at the transformation properties of fermions, the gravitino ψM , gaugino
χa , and dilatino λ. It is because their superpartners, the scalars, can develop VEV
to break supersymmetry. We present them schematically

δψM =
(
∂M + 1

4
(ωMNP − 1

2
HMNP )

NP

)
ε(10)

(
xM

)
(15.1)
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δλA = MNFA
MNε

(10)
(
xM

)
(15.2)

δχ =
(
M∂M�− 1

12
MNPHMNP

)
ε(10)

(
xM

)
, (15.3)

up to four fermion terms. Here, the gamma matrices are antisymmetrized, e.g.
PQ = [P Q]. Also, ε(10) is the SUSY parameter which is Majorana–Weyl
fermion in ten dimensions. In this book, we set HMNP = 0,� = constant and
Gμν = ημν .

Throughout this book, we have used implicitly the notion of complex manifolds.
It is more than a convenience, since the holonomy group SU(n) and its subgroup,
the point group of the orbifold, act on complex representations.

15.1.1 Geometry Breaks Supersymmetry

In the setup HMNP = 0, the conditions for the gravitino reduce to

∇Mε(10)
(
xM

)
= 0. (15.4)

That is, the covariantly constant spinor equation with respect to the metric connec-
tion. It is purely a geometric condition.

Next, let us compactify six dimensions. We can decompose the parameter ε(10)

under the spacetime group SO(6)× SO(1, 3) ⊂ SO(1, 9)

ε(10)
(
xM

)
= η

(
ym

)⊗ ε
(
xμ

)⊕ η∗
(
ym

)⊗ ε∗
(
xμ

)
, (15.5)

where η(ym), ε(xμ) are, respectively, 6D and 4D SUSY parameters. The ten
dimensional chirality operator is decomposed into four and six dimensional ones

(10) = (4)(6), (6) = 45 · · ·9. (15.6)

Once we fix the ten dimensional one, the chiralities of six dimensions and four
dimensions are correlated

(4)ε(10) = (6)ε(10) = ±ε(10). (15.7)

This amounts to the branching

16 → (4, 2)+ (4, 2),

and the chiralities are correlated. The number of invariant components of 4 leaves
the same number of 4D supersymmetries.
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We define holonomy of a manifold M as the rotation group of the spinor η(ym)
under arbitrary transportaion with the metric connection, around a closed loop. A
general holonomy of d dimensional real manifold is SO(d). We consider special
holonomy as a proper subgroup of SO(d). For instance, if the holonomy group is
SU(3) ⊂ SO(6) � SU(4), a general transportation rotates only three components
of η(ym) in a suitable basis. Then, we always have one invariant component

4 → 3+ 1, (15.8)

and one-fourth of the SUSY is preserved. Starting from heterotic string, we have
N = 4/4 = 1 SUSY in 4D and this is what we require for the chirality. A manifold
admitting an SU(n) holonomy is called Calabi–Yau manifold.

Also note that this unbroken supersymmetry condition, or the special holonomy
condition, is just continuous version of Eq. (3.73). To study holonomy, we review
properties of complex manifolds.

15.1.2 ComplexManifold

We first complexify the spacetime. In flat space, complex coordinates are naturally
introduced as

za ≡ 1√
2

(
y2a−1 + iy2a

)
, zā ≡ za ≡ 1√

2

(
y2a−1 − iy2a

)
. (15.9)

Without introducing imaginary number, we can also complexify real dimensions.
The block-diagonal matrix defined on a point

J =

⎛
⎜⎜⎜⎜⎜⎝

0 −1
1 0

0 −1
1 0

. . .

⎞
⎟⎟⎟⎟⎟⎠

(15.10)

satisfies J 2 = −1n. We can verify that it is diagonalizable to J a
b = iδab, J

ā
b̄ =−iδab in the complex basis {za, zā}. This complexification is nothing but decompo-

sition of an SO(2n) vector representation into an SU(n) fundamental representation.
Every vector, spinorial, and antisymmetric representation of SO(2n) can be decom-
posed under suitable tensor products of fundamental n and anti-fundamental n of
SU(n). The example of SO(10)→ SU(5) is presented in Eq. (5.86) in Chap. 5 and
below.

We may think of a tensor J (xm), called almost complex structure, that has the
same components J (xm) = J at a point xm. In terms of holonomy singlet spinor
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η(y) in (15.4),

Jm
n(y) = Gmpη†(y)pnη(y). (15.11)

We can check that this is the desired complex structure from the singlet property
of η. At one point, every real, traceless, and SU(3) invariant tensor can be always
adjusted to have the form (15.10). The problem is whether we can do this at all
the other points in a local neighborhood. It would be nice to think about a similar
consideration about flatness. In Riemannian geometry, we have a criterion, where
a manifold is locally flat: it is so if its Riemann tensor vanishes. For the complex
structure, we have a similar counterpart, called Nijenhuis tensor

Np
mn ≡ J q

m

(
∂qJ

p
n − ∂nJ

p
q

)− Jp
n

(
∂qJ

p
m − ∂mJ

p
q

)
.

If this vanishes, then the almost complex structure becomes (15.10) by the
Newlander–Nirenberg theorem [8]. Not every almost complex manifold admits
a complex structure, e.g. S4 does not admit a complex structure [6].

Kähler Manifold
The metric of a form Gab = Gāb̄ = 0 always gives a positive definite norm. Then,
the manifold is called Hermitian.

We can construct two forms out of metric by contracting the complex structure
kij = GikJ

k
j . This makes a metric tensor into a differential-(1, 1)-form called the

Kähler form. In the complex basis, it is

kab̄ = −iGab̄ = −kb̄a, kab = kāb̄ = 0. (15.12)

When the metric is Hermitian and the Kähler form is closed,

d k = 0, (15.13)

where d is the exterior derivative, and the manifold is called Kähler manifold. Since
d = ∂ + ∂̄, it implies

∂k = ∂̄k = 0. (15.14)

Since k is a total derivative in the holomorphic and antiholomorphic derivative, G
of (15.12) is obtained from a single function K called Kähler potential

Gab̄ = −∂a∂b̄K . (15.15)

This is an important feature. As a consequence, the nonvanishing connection is
either purely holomorphic or antiholomorphic

a
bc = Gad̄∂bGcd̄ , ā

b̄c̄
= Gād∂b̄Gc̄d . (15.16)
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This means that a holomorphic (or an antiholomorphic) index transforms again
into a holomorphic (or an antiholomorphic) one. Thus, an n-(complex) dimensional
Kähler manifold admits a U(n) holonomy.

Calabi–YauManifold
We want SU(n) holonomy from the discussion in Sect. 15.1.1. Since we have a U(n)

holonomy in the Kähler manifold, we may seek a further condition making the U(1)
part trivial.

Note that the U(1) generator of SO(2n) is nothing but the almost complex
structure J in (15.11). Therefore, given an SO(2n) generator M , we can extract
the U(1) part as Tr JM . Viewing the Riemann tensor as a matrix Rnq with the local
SO(2n) rotational indices

Rm
npq = (Rnq)

m
p, (15.17)

we see that the Ricci tensor is the U(1) part. So, the Ricci-flat condition

Rmn = 0 (15.18)

makes the U(1) part trivial. The first Chern class is defined as the Ricci tensor with
a suitable normalization. Thus, the Ricci flatness means vanishing first Chern class.
A Kähler manifold with vanishing first Chern class is called Calabi–Yau manifold.
In other words, the Calabi–Yau (CY) manifold admits an SU(n) holonomy.

In the Calabi–Yau manifold, we have invariant tensor η(ym) in (15.5). We can
show an (n, 0) form

�m1...mn = η�(y)m1...mnη(y). (15.19)

We can show that this form is covariantly constant

∂̄� = 0. (15.20)

In this standard, the torus T n satisfies the above because it trivially satisfies
Rmnpq = 0 everywhere. So, most of the time we demand a stronger definition that
the holonomy should not bigger than SU(n). This means that the manifold should
not be reduced to the product involving a sub-torus.

15.1.3 Mode Expansion

We need harmonic forms, zero-mode solutions to harmonic equation. We briefly
summarize the Hodge theory on classifying harmonic forms and its geometric dual.
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Homology and Cohomology
We are mainly interested in the mode expansion and we need harmonic forms
with zero eigenvalues. They have redundancy under gauge transform. Cohomology
provides a good way of counting them.

We first consider a submanifold and introduce a boundary operator δ. We say
a submanifold C is closed if it has no boundary, or annihilated by the operator δ,
δC = 0. The boundary δD of a submanifold D is called exact. It has no boundary
δδD = 0, and therefore δ2 = 0 and the boundary operator is said nilpotent. A
homology class of p-cycles Hp is defined as

Hp = closed p-chain

exact p-chain
. (15.21)

We may deform a cycle to another if they form the boundary of a higher dimensional
chain.

There is a similar notion in differential forms. For the real differential operator d,
F is closed form if dF = 0 and is exact if it is expressed as F = dA. Every exact
form is closed, and d is nilpotent d2 = 0. A closed form is locally exact by Poincaré
lemma [8], but not globally. We can define the cohomology class of p-form Hp as

Hp = closed p-form

exact p-form
. (15.22)

Namely, it is the closed class of differential p-forms, not overcounting those
connected by gauge transformation, F[p] ∼ F[p] + d�[p−1]. We call its dimension
Betti number bp. Since all the points are homologous and there is only one volume
form, we have b0 = bm = 1.

It is de Rham’s theorem [9] that establishes the one-to-one correspondence
Hp(M) � Hp(M) between a p-cycle c[p] and a p-form ω[p] because there is a
unique real number for the integral

∫
Cp

ω[p]. (15.23)

Their dimensions are the same as well bp = bp. Finally, in m dimensions, we have
Poincaré duality Hp(M) = Hm−p(M) between p-form ω[p] and (m − p)-cycles
C[m−p]

∫
C[p]

ω[p] =
∫
M

ω[m−p] ∧ ω[p]. (15.24)

Thus we may define Poincaré dual form ω[m−p] of ω[p]. Thus we have bp = bm−p.
This also naturally defines the intersection number between homology cycles

C[p] · C[m−p] =
∫
M

ω[m−p] ∧ ω[p]. (15.25)



15.1 Calabi–Yau Manifold 437

A

B
B

Fig. 15.1 Homology one-cycles on a two-torus. The cycles A and B are different, but B and B ′
are homologous

We should assume that the two cycles should intersect transversally: the intersection
should have lower dimension than that of each. Consider a two-torus and two
different 1-cycles A,B on it. Their transversal intersections are points. We deform
one of the cycles and make them intersect more times. However, this makes the
intersection number invariant if we add (+1) if they meet in the right-hand rule
and (−1) in the left. We may show that this is invariant under the deformation [13]
(Fig. 15.1).

We have complex generalization of the cohomology, called Dolbeault cohomol-
ogy. We have complex differential operators ∂ and ∂̄ generate holomorphic and
antiholomorphic indices. They are nilpotent ∂2 = ∂̄2 = 0. Naturally, we can
think of the (p, q) form having p and q holomorphic and antiholomorphic indices,
respectively, and similarly the closed and exact forms. We define p, q cohomology
class as

H
p,q

∂ = ∂-closed (p, q)-form

∂-exact (p, q)-form.
(15.26)

In this case also, we have the de Rham counterpart homology Hp,q . Therefore,
hp,q ≡ dimHp,q is the same as hp,q ≡ dimHp,q . As in the de Rham cohomology,
we have h0,0 = hn,n = 1.

The complex conjugation takes

Hp,q � Hq,p. (15.27)

This is isomorphism and so the resulting dimensions are the same hp,q = hq,p. We
have Serre duality, a generalized Hodge star in Dolbeault cohomology [14, 15]

Hp,q � Hn−q,n−p, (15.28)
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which is in n dimensional complex manifold. Using the complex conjugation, we
also have Hp,q � Hn−p,n−q . Finally, we have holomorphic duality converting
(p, 0)-form into (n − p, 0) by multiplying the three form and take the Poincare
dual. Thus, Hp,0 � Hn−p,0.

An invariant property of a complex manifold is the dimensions hp,q (which is
not topological). These numbers form the Hodge diamond. The Euler number is

χ =
∑
p,q

(−1)p+qhp,q . (15.29)

We have connected the geometric quantity (in the left-hand side) with characteristic
quantities of gauge fields defined on the manifold (in the right-hand side).

The above properties hold for any compact complex manifolds. If the manifold
is Calabi–Yau, some numbers are further fixed. Since a CY n-fold has the nowhere-
vanishing (n, 0) form, we have hn,0 = h0,n = 1. The first homology is related to the
fundamental class of the topology. It means that the number of 1-cycle is the same
as the number of non-contractable cycle. We strictly require the holonomy of the
Calabi–Yau manifold SU(n), not a subgroup, and we have no torus factor b1 = 0.
Thus, h1,0 = h0,1 = 0. Using the holomorphic duality, we have hn−1,0 = h1,0 =
h0,n−1 = 0.

K3Manifold
The simplest nontrivial Calabi–Yau manifold has two complex dimensions. The
only nontrivial Hodge number is h1,1 = 20. There are many way to obtain this. For
instance, we may write the algebraic equation and impose the vanishing first Chern
class condition. We may do this for just one case, thanks to the theorem that there is a
unique manifold called K3, in the sense that all the K3 manifolds are diffeomorphic
to each other, that is, they are connected by maps preserving differentiation structure
[4].

h0,0

h1,0 h0,1

h2,0 h1,1 h0,2

h2,1 h1,2

h2,2

=

1
0 0

1 20 1.
0 0

1

(15.30)

Therefore, we have b2 = 22 and the Euler number is 24. The harmonic forms ωi in
H 1,1(K3) have intersection number [4]

∫
ωi ∧ ωj = Aij , (15.31)

where Aij is the same as the inverse metric of the lattice 8×8×1,1×1,1×1,1.
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Calabi–Yau Threefold
Now, we turn to threefold. Nontrivial numbers are h2,1 = h1,2, h1,1 = h2,2. They
are summarized in the Hodge diamond

h0,0

h1,0 h0,1

h2,0 h1,1 h0,2

h3,0 h2,1 h1,2 h0,3

h3,1 h2,2 h1,3

h3,2 h2,3

h3,3

=

1
0 0

0 h1,1 0
1 h2,1 h2,1 1 .

0 h1,1 0
0 0

1

(15.32)

Since Kähler form kab̄ is (1, 1) form, we have at least h1,1 ≥ 1. In many cases, we
have h1,1 = 1.

The elements in H 2,1 correspond to the number of parameters describing
deformations of complex structure Gij δJ

j
k , as in (15.11). The H 1,1 elements

describe the deformations of the Kähler structure δJab̄.
Finally, there is mirror symmetry relating a string theory on Calabi–Yau manifold

X and another one on mirror manifold X̌, whose Hodge numbers h1,2 and h1,1 are
exchanged .

15.2 Standard Embedding

As in the orbifold case, we break the group by relating a holonomy action in
the compact space (a generalized point group action of the orbifold case) with a
background gauge group. The space action of Calabi–Yau threefold belongs to the
SU(3) holonomy.

Let us choose the standard embedding, that is, to identify the spatial rotation with
that in the group space. Understanding the Riemann tensor as the field strength for
the SO(n) transformation as in (15.17), we take

Rmn = Fmn. (15.33)

This naturally breaks E8×E8 into the commutant to SU(3)

E6 × E8.

15.2.1 Mode Expansion

The SU(3) part does not survive. Nevertheless, it is useful to consider taking
into account the SU(3) part via branching. The (248, 1) + (1, 248) branches
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into

(Qa)
x
b : (3, 27, 1), (Qā)

x̄

b̄
: (3, 27, 1), (Qa)b̄ : (8, 1, 1),

AA
μ : (1, 78, 1)+ (1, 1, 248).

(15.34)

Again, the first entries pretend as representations of the gauge group but are of the
SU(3) holonomy group. Their indices are attached, in addition to the Lorentz index
M . Since 3 and 27 are correlated, we suppressed indices of the latter.

Now, we make the Klein reduction of fields on the Calabi–Yau manifold. The
basic strategy is the same as in the toroidal and orbifold case discussed in Sect. 5.1.
We can decompose the Laplacian and the Dirac operator into our 4D spacetime part
(xμ) and the 6D internal space part (ym)

∇M∇M = ∂μ∂
μ + ∇m∇m, (15.35)

M∇M = μ∂
μ + m∇m, (15.36)

where the covariant derivative∇m contains the gauge and metric connections. Then,
we mode expand fields φ in terms of the complete eigenstates of the harmonic
operators in the internal space1

φ =
∑

φ4(x
μ)ω(yi). (15.37)

Note however that unlike in Sect. 5.1, we expand here only zero eigenstates. Here,
the harmonic forms ω are the solution of the Laplace equation, (∂ + ∂̄)2ω = 0, or
equivalently

∂ω = ∂̄ω = 0. (15.38)

The harmonic forms are the bases of homology cycle Hp,q . All of them have the
zero eigenvalues, and we may have multiple number of zero modes.

Now, let us consider the standard embedding. Consider first the field transform-
ing as (3, 27). As in (15.12), the one represented as Ai,b̄ is a (1,1) form; therefore,
we have a similar mode expansion

Qa,b̄ =
h1,1∑
p=1

Q[p](xμ)ω[p]
ab̄

(yi). (15.39)

1In general, m∂
m and μ∂

μ do not commute. However, we can multiply a suitable gamma matrix
to make them commute. Even, for the consideration of the zero modes of m∂

m, the eigenvalue
vanishes and so there is no such ambiguity.
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Here, Q[p] has no spatial index. In four dimensions, we have h1,1 hypermultiplets
27. The “Kähler” moduli Tab̄ of (3.77) are also of (1,1) form; therefore, it has the
same mode expansion and the same number of zero modes.

Next, consider (3, 27), denoted by (Qa)bx . This is not a differential form because
the indices a and b are symmetric. We can make it a differential form using the
covariantly constant (3, 0) tensor

Qa,d̄ē = Qa,bG
bc̄�c̄d̄ē. (15.40)

Then, we have the following mode expansion:

Qa,d̄ē =
h1,2∑
p=1

Q[p](xμ)ω[p]
ad̄ē

(yi). (15.41)

Therefore, the number of hypermultiplets (3, 27)s is h1,2. The same argument
applies to the complex structure moduli Uab, yielding the same number of zero
modes.

Since we have h1,0 = 0, there are no zero modes for Qa,x .

15.2.2 Number of Generations

We know that 27 of E6 houses one complete family, including a pair of Higgs
doublets, as discussed in 2.24. Because of the Survival Hypothesis, every pair of
27 and 27 can form a mass term around the unification scale; thus, they decouple at
low energy if there is no symmetry forbidding it to happen. Thus, the net number of
families is the difference |h2,1 − h1,1|. It is remarkable to see, by the definition of
Euler number χ in Eq. (15.29),

Number of families : |h2,1 − h1,1| = |χ |
2

. (15.42)

The number of families reduces to the topological property. This relies on the
assumptions that (1) the Survival Hypothesis (SH) holds,2 (2) one representation,
here 27, houses a complete family, and (3) as seen in (15.34), the field transforming
as 27 carries the internal space index a of the special holonomy SU(3). In particular,
the last condition is violated in the presence of Wilson lines. A typical construction
of Calabi–Yau manifold gives a very large Euler number of order 100, so that we
need a further sophistication. The one constructed by Tian and Yau gives |χ | = 6 to
allow three families [16].

2One may envision that this SH is evaded by a stringy calculation, for example, in cases where
a mass term cannot be formed. But, massless 27 must be made heavy around or above the
electroweak scale; so, the number of chiral families is still |χ |2 .
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15.2.3 Wilson Lines

With the embedding (15.33), we do not have a realistic model, for the same reason
as in the orbifold case. We need a further symmetry breaking. Still there is another
object, Wilson line, related with non-contractible cycles dealt in Sect. 7.5.

Unfortunately, Calabi–Yau manifold has no isometry. If we have a Killing vector
∇(mξn) = 0, then the Eq. (15.73) tells us that this vector should be harmonic form.
This contradict that there is no harmonic 1-form h1,0 = h0,1 = 0. However, it is
possible to have a discrete symmetry with which we may mod out the manifold.
This enables us to turn on the Wilson lines and at the same time reduce the Euler
number that is related to the number of generations.

We generalize the Wilson line U as the object associating one-cycle (instead
of translational symmetry that the torus possesses) with the action in the group
space. As in the orbifold case, the Wilson line should satisfy the consistency
condition (15.53). This condition is exhausted by the identification of the SU(3)
in the group space and the holonomy group, leaving the field strength F of the other
group E6 being zero. This is exactly the situation, where the Wilson line emerges.

To be compatible with the standard embedding, we do not touch on the SU(3)
subgroup associated with the holonomy group, but consider the unbroken E6. As an
example, let us work in the SU(3)C × SU(3)L × SU(3)R basis which is one of the
maximal subgroups of E6. Consider a matrix acting on the generator of this group.
Specifically, we choose U of (7.83) as

U = 13 ⊗
⎛
⎝β

β

β−2

⎞
⎠⊗

⎛
⎝γ

δ

(γ δ)−1

⎞
⎠ , (15.43)

where α, β, . . . are the unit roots of 1. Since only the commuting generators
of (15.34) survive, this breaks E6 down to

SU(3)× SU(2)×U(1)3.

It contains the desired standard model group, with extra two U(1) groups. The order
of Wilson line should not exceed that of the orbifolding V .

We may go on to turn on more Wilson lines and choose another CY manifold to
find a realistic model. There have been endeavors along this line [17].

15.3 General Embedding

We want to turn on more general background gauge field which may lead to
realistic gauge group like GUT or the SM groups. If the background gauge field
belongs to larger gauge group, we can obtain smaller unbroken group. We study the
requirement for this gauge bundle and construct more realistic models.
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15.3.1 Background Gauge Field

First, we study the condition for the background gauge field.

Hermitian Yang–Mills Equations
So far, we have studied the conditions imposed on the geometry of compact man-
ifold M . Taking into account gauge fields on M , we need more supersymmetric
conditions on these. The condition for gaugino (15.2) reads

mnFmnε =
(
abFab + āb̄Fāb̄ + 2ab̄Fab̄

)
ε = 0. (15.44)

Due to Hodge, we decomposed the two-form Fmn into, respectively, (2, 0), (0, 2)
and (1, 1) parts. Since the Kähler manifold does not mix holomorphic and antiholo-
morhic indices, each term should separately vanish

Fab = Fāb̄ = 0, (15.45)

gab̄Fab̄ = 0. (15.46)

The first equation in (15.45) states that locally the field strength is a pure gauge

Aā = −iU−1∂āU, (15.47)

with a gauge transformation matrix U(za, zā). Globally, the transition function is
holomorphic

Aā → UAāU
−1 + iU−1∂āU (15.48)

among different patches, for which we have the stanadrd patchability in the
manifold. A similar antiholomorphicity holds for Aa hence Fāb̄. In the standard
embedding of Sect. 15.1.3, this is automatically satisfied since we have identified
the gauge connection with the spin connection which is holomorphic.

The second Eq. (15.46) is called Hermitian Yang–Mills equation. This general-
izes the self-dual equation for instantons in four dimensions. So, we call the group
that the background gauge field belongs to structure group. To be specific, consider
the case where M is a Kähler manifold of complex dimension n, with the Kähler
form J . We can show that, for a U(1) part, it can be converted into

trF ∧ J ∧ J = 0. (15.49)

Locally, we can always make this vanish with a suitable choice of gab̄, globally not.
Noting that c1(V ) ≡ i trF/(2π), the global condition is that the integral

∫
M

c1(V ) ∧ J ∧ J ≡ deg(V ) (15.50)
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over the compact manifold is a topological invariant, and easily one might see that
F is a topological invariant, the first Chern class. We call it degree because, in the
case of dimCM = 2, the algebraic degree of the defining equation is dual to that of
the line bundle.

We also define slope [18, 19]

μ(V ) ≡ deg(E)

rank(E)
. (15.51)

A vector bundle E is stable,3 if and only if for any subsheaf S of E satisfy the
inequality

μ(S) ≤ μ(V ). (15.52)

Sometimes, the stable condition means the one without equality, while this relaxed
condition is called semistable. By the theorem of Donaldson and that of Uhlenbeck
and Yau [6, 22, 23], any stable bundle of satisfying (15.45) also satisfy (15.46)
and vice versa. This is analogous condition for D-flatness. Roughly speaking, the
stability condition means the vector bundle is not reducible [19].

The consistency condition comes from the Bianchi identity for the antisymmetric
tensor field H (11.133)

Trv R
2 − Trv F

2 = 0. (15.53)

Here, Trv is the trace over the vector representation, and as before we mean the
product of differential forms as the wedge product. If we have semisimple groups

E8×E8, we mean Trv F
2 = Trv F

2
1+Trv F

2
2, with the background field strengths of

the two E8s. We may convert this trace with that for the adjoint using Trv = 1
g∨ Tradj,

where g∨ is the dual Coxeter number of the group g, displayed in Table 12.2.
The above conditions (15.33) naturally remind us of the relation between the

space twist and the shift vector (7.50). It also follows that (15.53) corresponds to
the modular invariance condition (7.50). Certainly, this Calabi–Yau case is the more
general and continuous version. The correspondence is studied in Refs. [24, 25].

15.3.2 Spectrum

We can rephrase the above discussion in terms of characteristic classes, following
Ref. [26]. For a choice of the structure groupG, the unbroken group is its commutant
H in E8 × E8. All the generators in H commute with all the generators in G.

3This is called μ-stability in the literature, because the ratio is called μ-slope . There is another
kind of stabilities, which are mostly equivalent [20, 21].
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Considering the breaking E8 → G×H , the adjoint branches as

248 → (adjH , 1)+ (1, adjG)+
∑

R

(R,R′). (15.54)

Although the representations of G do not survive, they serve tracking tools for the
number of zero modes of H .

The Bianchi identity (15.53) is expressed as

ch2(F )− ch2(R) = 0. (15.55)

For the Calabi–Yau, we have c1(F ) = 0, which we assume in the sequel, thus
ch2(F ) = −c2(F ).

The ten dimensional gaugino satisfies Dirac equation and dimensionally reduced
to four dimensional chiral fermions.

The zero mode is by definition the eigenstates of the Dirac operator �D in
the gauge background of G. The solution of the Dirac operator �D is a charged
wavefunction transforming as vector bundle and at the same spacetime tensors with
Lorentz indices.

The cohomology Hr(X,V ) contains harmonic r-forms having the value in V .
If R′ is a rank r totally antisymmetric tensor product ∧rV , then the zero mode
belongs to the cohomology Hr(X,∧V ). We expand the spinors in the harmonic
basis of Hk(X,V ). We have seen that the 3 part of the field (3, 27) transforms as
the vector bundle V under the structure group SU(3). The four dimensional zero
modes become

H 0(X,OX)⊗ 78,H 1(X, adV )⊗ 1,

H 1(X,V )⊗ 27, H 1(X,V ∗)⊗ 27.

We learned that in the standard embedding we identified the background gauge
field with background connection. Thus, V adds the indices of (1, 1)-form as
in (15.40), and V ∗ is adds one antiholomorphic index as in (15.39)

H 1(X,V ) � H 2,1(X), H 1(X,V ∗) � H 1,1(X). (15.56)

Thus, the number of generations is given by the difference of their dimensions

−n27 + n27 = −h2,1 + h1,1, (15.57)

which is obtained in (15.42).
We also consider a nonstandard embedding. Taking the structure group SU(5)⊥×

E8, the unbroken group is the commutant SU(5). We have branching, under SU(5)×
SU(5)⊥,

248 → (24, 1)+ (1, 24)+ (10, 5)+ (5, 10)+ (10, 5)+ (5, 10). (15.58)
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Now, focus on the structure group SU(5)⊥. The vector bundle V transforms as 5,
and the tensor product 10 transforms as V ∧V , which we also denote as ∧2V . The
spectrum and the corresponding number of zero modes are

H 0(X,OX)⊗ 24, n24 = 1,

H 1(X, adV )⊗ 1, n1 = h1(adV ),

H 1(X,∧2V )⊗ 5, n5 = h1(∧2V ),

H 1(X,∧2V ∗)⊗ 5, n5 = h1(∧2V ∗),

H 1(X,V )⊗ 10, n10 = h1(V ),

H 1(X,V ∗)⊗ 10, n10 = h1(V ∗).

In this nonstandard embedding, we cannot relate the vector bundle-valued coho-
mology with that of ordinary cohomology. So, we have to have the number of
generations as

−n10 + n10 − n5 + n5 = −h1(V )+ h1(V ∗)− h1(∧2V ∗)+ h1(∧2V )

= 2h0(V )− 2h1(V )+ 2h2(V )− 2h3(V ),

(15.59)

where we used hk(V ∗) = −hk(V ) and inserted h0(V ) = h3(V ) = 1.

15.3.3 Index Theorem

We have seen that the number of generation is the half of the Euler number. Euler
number is a topological invariant in the sense that it is invariant under continuous
change of geometry. De Rham’s theorem relates this to cohomology: the zero
eigenstates of an operator, in this case Dirac. Can we have also topological invariant
from the operator side? The affirmative answer comes from the index theorem by
Atiyah and Singer.

We consider Dirac operator in the internal space. We saw in (15.7) that the
chirality of six and four dimensional spinors is correlated. We know that the Klein–
Gordon operator H = ∇m∇m in (15.35) is the square of the Dirac operator
i �D ≡ m∇m in (15.36). We check

[(6), H ] = 0, {(6), �D} = 0.

This means that the operator i �D flips the chirality of the eigenstate φ and the
resulting i �Dφ is also the eigenstates of H . Note that this argument only applies to
nonzero eigenstate of �D since the zero mode is annihilated. However, the following
quantity, called index, as difference of the numbers of zero eigenstates of left and
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right movers,

indexR′ i �D = nR′ − nR
′ (15.60)

is invariant. Here, the subscript means that the covariant derivative is with respect
to the representation R′ of the structure group. In the previous example, it is the
SU(3) structure group. We also observe that in four dimensions, charge conjugation
changes R′ to its conjugate R

′
and exchange chirality as well, therefore n+ ↔ n−

and indexR
′ �D = −indexR′ �D. It follows that the real representation is not counted,

but only complex representation 3, and thus 27 (correlated!) is counted.
Using Atiyah–Singer index theorem, we can calculate the index in terms of

a characteristic classes [27, 28]. For an “elliptic” operator D on m dimensional
complex manifold with covariant derivative taking values in V , we have [5, 8]

ind(V ,D) = (−1)m(m+1)/2
∫
M

ch
(⊕r (−1)rEr

) Td(TMC)

e(TM)

∣∣∣∣
vol

. (15.61)

The quantities in the integrand are to be defined soon. Only the 2n-forms will be
extracted for the manifold M of the n complex dimensions.

Let us apply this to Dirac operator. From the commutation relation of gamma
matrices (4.16), we may associate the Gamma matrices with creation and annihila-
tion operators [3]

d = ã+Da, d∗ = ã−Da, (15.62)

where ã± are ladder operators for the spinorial states introduced in (4.16). From
this, we can verify that the Dirac operator i �D = im∂m is nilpotent. The zero
modes belong to the cohomology Hr(X,V ). That is, it contains the complete zero
eigenstates under the Dirac operators. Like the Euler characteristic (15.29), we may
also define an alternating sum of the dimensions of the homologies

χ(V ) ≡
6∑

r=0

(−1)rbr(V ) =
∑
p,q

(−1)p+qhp,q(V ). (15.63)

For example, considering the SU(n) vector bundle on Calabi–Yau threefold, we
have c1(V ) = c1(M) = 0. So,

∫
M

ch(V )Td(M) =
∫
M

(
n− c2(V )+ 1

2
c3(V )

)(
1+ 1

12
c2(M)

)

= 1

2

∫
M

c3(V ) = 1

2
χ(V ),

(15.64)

where in the last line we evaluate six-forms.
In the standard embedding, we identified the vector bundle with the tangent

bundle of the manifold, and we have cr(V ) = cr (M) and χ(V ) = χ , as is
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well-known. As expected, this result is exactly the same as in the orbifold case we
discussed in Sect. 7.4. For the standard embedding case of Sect. 7.4, being Calabi–
Yau manifold, tracking the Hodge numbers gives h1,1 = 72, h2,1 = 0. Therefore,
we have the correct number of families, |χ |/2 = 36.

Also, it makes general enough statements that the origin of chirality in four
dimensions is geometry and/or background gauge fields.

Characteristic Classes
We have seen that many quantities like the number of generalization are topological
and obtained by generalization of Euler theorem. At the heart lies index theorem,
which states that the number of zero modes of a given operator is given by
topological number, which is given by characteristic class. An integer quantized
number of zero modes minus anti-zero modes is given by integral of a polynomial
made of gauge-invariant field strengths.

The building block is the Chern class

c(V ) = det

(
1+ iF

2π

)
, (15.65)

which is the generating function for the rth Chern classes

c(V ) ≡
∑

cr (V ), (15.66)

where

c0(V ) = 1

c1(V ) = iF

2π

c2(V ) = 1

2

1

(2π)2 (tr iF ∧ iF − tr(iF ) ∧ tr(iF )) ,

...

cn(V ) = 1

(2π)n
det(iF ).

Note that it is generalization of monopole and instanton numbers.
We may compute anomaly polynomial using index theorem [27, 29, 30].

• Gauge anomaly polynomial counts the number of zero modes of the Dirac
operator

ind i �Dm+2 =
∫

chl+1(F ), (15.67)
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where chi is called Chern character

ch(F ) ≡ tr exp
iF

2π
=

∑ 1

j ! tr

(
iF

2π

)j

. (15.68)

We can further define nth Chern characters as

ch(F ) ≡
∑

chj (F ),

where

ch0 = rank g

ch1 = c1

ch2 = 1

2

(
c2

1 − 2c2

)

ch3 = 1

6

(
c3

1 − 3c1c2 + 3c3

)
.

• Gravitational anomaly for Weyl fermions is generated by Dirac genus [27,29,30]

Î1/2(R) = Â(R) =
2k+1∏
i=1

1
2xi

sinh 1
2xi

. (15.69)

Â(V ) = 1− 1

24
p1(V )+ 1

5760

(
7p2

1 − 4p2

)
(V )+ . . . ,

where

pj (V ) = (−1)jc2j .

• A gravitino has spin 3/2, which is obtained by tensor product between spin 1/2
and vector. However, we also need to extract spin 1/2 component. The resulting
gravitational anomaly is generated by

Î3/2(R) = Â(R)

⎛
⎝2

2k+1∑
j=1

cosh(xj )− 1

⎞
⎠ (15.70)

• The rank-two antisymmetric tensor anomaly is generated by Hirzebruch L-
polynomial

L(x) =
k∏

j=1

xj

tanh xj
. (15.71)
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• The zero modes of Dirac operator are counted by Todd class

Td(E)=
n∏
1

xi

1− e−xi =1+1

2
c1(E)+ 1

12
(c1(E)2+c2(E))+ 1

24
c1(E)c2(E)+· · · .

(15.72)

15.4 Relation to Orbifold

We review the relation between orbifold and smooth Calabi–Yau manifold. They
are related to blow-ups.

The four dimensional manifolds T 4/ZN with N = 2, 3, 4, 6 are related to the K3
manifold by “blowing-up” the singularities. This should be due to the uniqueness
of K3. Naively, this correspondence is understood by excising around the apex of
the cone and replacing it with a “well-patched” smooth manifold, that we will see
shortly (Fig. 15.2).

Blowing Up
In this four dimensional space, we can solve the Ricci-flat constraint. From (15.4),
the integrability condition becomes

[∇m,∇n]η = 1

4
Rmn

pqpqε = 0. (15.73)

It is certain that if not Ricci–Flat there is an additional piece proportional to Tr JR
in (15.18). Since a chiral spinor satisfies ε = ε, the constraint becomes the self-
dual equation

Rmnpq = 1
2ε

abcdRmn
pq. (15.74)

Fig. 15.2 Blow-up of orbifold singularity (a). This is performed (b) by cutting around the singular
fixed points and (c) replacing them with a smooth manifold, which is also modded out by the same
Z2
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We may check that the Eguchi–Hanson space with the following metric is a
solution [31, 32],

ds2 =
(

1−
(a
r

)4
)−1

dr2 + r2
(

1−
(a
r

)4
)
σ 2

3 + r2
(
σ 2

1 + σ 2
2

)
, (15.75)

where we parameterized the line element by radial variable r > 0 and these Euler
angles (θ, φ,ψ), with 0 ≤ θ < π, 0 ≤ φ < 2π, 0 ≤ ψ < 4π,

σ1 = − sinψdθ + cosψ sin θdφ

σ2 = cosψdθ + sinψ sin θdφ

σ3 = dψ + cos θdφ.

(15.76)

This looks like a strange convention, but we can easily check that this is a
differential form version of the Pauli matrix satisfying Maurer–Cartan equation
σa ∧ σb = 2εabc d σc. We verify that σ 2

1 + σ 2
2 is the metric of two-sphere d�2

2 =
dθ2 + sin2 θdφ2 and σ 2

1 + σ 2
2 + σ 2

3 is that of three-sphere S3.
The metric (15.75) has one parameter a corresponding to the radius of two-cycle.

Let us look at the local property near r = a. Parameterizing r ≡ a + ε2/a we have

ds2 = dε2 + ε2(dψ + cos θdφ)2 + a2d�2
2 (15.77)

in the limit ε → 0. Locally (neglecting dφ) we see that the space looks like
R2(ε, ψ) × S2(θ, φ) whose Euler number is that of the two-sphere. However, the
angular variable ψ has wrong periodicity 4π instead of 2π . This becomes smooth
at r = a, if we mod out by a Z2 action ψ → 4π − ψ . In the original coordinates,
this action identifies the antipodal points to make S3/Z2. This is the original Z2
action on C

2/Z2 orbifold. Also, the curvature drops as 1/r as r → ∞, and the
resulting geometry is asymptotically locally Euclidian (ALE). Therefore, this space
is well-glued that we can cut out the small cone around the fixed point of C2/Z2
and replace it with this space. A more generalized series of solutions are found,
providing blow-up C2/ singularities, where  is the discrete subgroup of SU(2).

Euler Number
Here, we focus on the case of T 4/Z2 orbifold. The easiest criterion for the
equivalence comes from topology. The Euler number becomes [1]

χ = χ(M)− χ(F)

N
+ χ(N), (15.78)

with the notation to be understood as the following. The original two-torus is
everywhere flat and thus has the Euler number χ(M) = 0. We cut out discs, which
has Euler number χ(D2) = 1, at sixteen fixed points. Because of modding with
ZN , the region for integration to calculate the topological number on the orbifold is
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reduced to 1/N of the torus integration region, and thus it is divided by N . N = 2 is
the order of orbifold action. Shortly, we will see that the patched region corresponds
to a smooth manifold of sphere with Euler number 2; so χ(N) = 2. We therefore
have

χ(T 4/Z2) = 16χ(C2/Z2) = 16
(
− 1

2 + 2
)
= 24,

in accord with (15.30). For non-prime N , we need more than one resolution. For
instance, consider T 4/Z4 that we have seen in Sect. 9.1. It has four order 4 fixed
points. Not overcounting these, among twelve order two fixed points, we have six
invariant combinations. So effectively, we have six Z2 fixed points. The total Euler
number is

χ
(
T 4/Z4

) = 6
(
− 1

2 + 2
)
+ 4

(
− 1

4 + 4
)
= 24,

In general, for Z� fixed point, we may generalize the above to define

χ
(
C

2/Z�

)
= −1

�
+ �. (15.79)

Putting appropriate number dj of the ZN/j fixed points, we may verify that

24χ
(
T 4/ZN

)
=

∑
j∈N/Z

djχ
(
C

2/ZN/j

)
= 24. (15.80)

We may understand the Euler number as follows. The trivial zero cycle (point)
and four cycle (volume) determines, respectively, h0,0 = h2,2 = 1. We have
4 · 3/2 = 6 independent two-cycles, dual to d ym ∧ d yn. Also, each blow-up
contributes as H 1,1 cycles, so there are 16 more elements in H 1,1. Therefore, there
are 24 relevant parameters in total, which coincides with the Euler number we
obtained above.

15.5 Algebraic Description

We describe the above orbifolds and their resolutions using algebraic geometry.
In addition to topological numbers, we may also calculate the size of the Yukawa
coupling from intersection theory.

Usually, the Calabi–Yau manifold is described by algebraic variety, that is, a (set
of) polynomials in the projective spaces and, with them, the shape deformations are
readily countable [3]. They are all Kähler and the metric is well-known [14].

Thus, if we have vanishing first Chern class, we have Calabi–Yau manifold. It is
known that if the order of the defining equation, which should be homogeneous, is
n+2, we have c1 = 0 [15]. Thus, we may describe Calabi–Yau n-fold using degree
n+ 2 homogeneous polynomial in CP

n+1.
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15.5.1 A,D,E Singularity

The local geometry of a fixed point of the T 4/ZN orbifold is a non-compact Calabi–
Yau twofold C

2/ZN . Taking the local coordinate (a, b) where the singularity lies at
(0, 0), we have the point group action

(
z1

z2

)
→

(
α 0
0 α−1

)(
z1

z2

)
, α = e2πi/N . (15.81)

Faithful coordinates that are invariant under the transformation are

x = zN1 , y = zN2 , z = z1z2,

satisfying the equation

P(x, y, z) ≡ xy − zN = 0. (15.82)

This is regarded as defining equation for the in C
2/ZN in a C3 with the coordinates.

We know this geometry is singular because the gradient is zero at the singular point,
so that the slope at this point is not well-defined

P(0, 0, 0) = 0, (∂xP, ∂yP, ∂zP )|(0,0,0) = (0, 0, 0), N ≥ 2.

15.5.2 Resolution

We resolve C2/Z2 orbifold singularity following Refs. [33, 34].
We deal with described except (z1, z2) = 0 by the twist ( 1

2 ,
1
2 ). We resolve this

singularity by introducing a new coordinate x and impose scaling

C
∗ : (z1, z2, x) ∼

(
λ1z1, λ

1z2, λ
−2x

)
. (15.83)

Under the monodromy x → e−2πix, at the patch λ−2x = 1, the coordinate acquires
the phase as in the T 4/Z2 orbifold.

Formally, we defined the resolution

Res
(
C

2/Z2

)
=

(
C

2 − {(0, 0)}
)
/C∗. (15.84)

We remove the singular point, introduce extra coordinates, and mod out appropri-
ately. Then, the non-singular points in the original space remain the same. The
previously singular point is accessed by x = 0, then we have P1 described by

(z1, z2) ∼ (λz1, λz2). (15.85)
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This is what we meant by replacing a singular geometry by P
1. We name this an

exceptional divisor

E ≡ {x = 0} (15.86)

because it newly appeared after blow-up. This is to be contrasted with ordinary
divisors

Di ≡ {zi = 0}, i = 1, 2, (15.87)

which are present before blowing up. The blown-up geometry has the same
dimension. The location in the exceptional divisor depends on the approaching angle
in the bulk space.

The defining functions, z1 for D1 and z2 for D2, are related by rational function:
indeed z1/z2 is the rational function on the C

2. This is tracked by the scaling
in (15.85). We also have scaling 1 : −2 between D1, E or D2, E. Thus, we have
linear equivalence relations∼

D1 ∼ D2, 2Di + E ∼ 0. (15.88)

After blowing-up we remove the origin. Thus, the original divisor {z = 0} does not
contain the origin. We do proper transform, meaning that we fill up the origin to
make D1 again closed. At this point, each Di, i = 1, 2 intersects E at one point

D1 · E = D2 · E = 1. (15.89)

Using the linear equivalence relations (15.88), we obtain the self-intersection
numbers

D2
1 = D2

2 = −
1

2
, E2 = −2. (15.90)

In what follows, we may denote divisors, line bundles, and the first Chern class
using the same notation. It is known that for every divisor there is a dual line bundle.
So, we denote the line bundle and the field strength with the same symbol. For
example, have the vanishing first Chern class

c1(T ) = E +D1 +D2 ∼ 0, (15.91)

where we used the relation (15.88). We also find the Euler number is

c2(T ) = D1 ·D2 + E ·D1 + E ·D2 = −1

2
+ 1+ 1 = 3

2
, (15.92)

which agrees with (15.78)
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By associating the spin connection with the vector bundle, we take

F = D1V
IHI (15.93)

That is, the shift vector is associated with the line bundle dual to D1. The Bianchi
identity becomes

1

2
V 2 =

∫
trF 2

V =
∫

trR2 = 1

2
6.

Recall that the components of V are half-integers. This V is a local shift vector at
the fixed point of the C2/Z2 orbifold. We may construct the full orbifold T 4/Z2 by
patching sixteen local orbifolds, as done in Sect. 15.4.

Dimensional Reduction
In low dimensional theory, the condition

dH = 0

provides the global consistency condition guaranteeing anomaly cancellation.
Under background gauge field F and geometry R, we may consider fluctuations
obtain four dimensional anomaly polynomial in lower dimensions. We may show
that if one satisfies the Bianchi identity (11.133), we may have anomaly-free
spectrum. We take an example of SO(32) heterotic string on C

3/Z3 with the shift
vector [33] Eq. (11.133) that looks similar to modular invariance condition. We will
see the connection in Chap. 15.

V = 1

3

(
0n0 1n1 , 2n2

)
.

We have the modular invariance condition

V 2 = 6. (15.94)

The anomaly polynomial is expanded

Î =(iF )3
(
− 1

36
tr[H 3

V (iF )3] + 1

9 · 32
tr[H 3

V iF ] trR2
)

+ 2iF trR2
(

1

9 · 32
tr[HV (iF )3] − 1

9 · 256
tr[HV iF ] trR2

)
.

(15.95)

We have

Î 6 = 1

6
tr

(
1

2
NV (iF )3

)
− 1

48
tr

(
1

2
NV iF

)
trR2, (15.96)
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where we have the number operator

NV = 1

6

(
−1

3
H 2

V + 1

)
HV .

15.5.3 Classification

The geometry (15.82) we have just analyzed is called the A1 singularity. We will see
soon that the resolved geometry has the same connectedness structure as the Dynkin
diagram, so that we name the singularity with the same name of the An−1 algebra.
It is generalized to C

2/, where  is a discrete subgroup of the holonomy group
SU(2).

We need the resolution that preserves the vanishing the first Chern class. This
non-discrepancy is called crepant. The crepancy is converted [34] to the condition
that the adjacent blown-up spheres Ei,Ei+1 should intersect at one point and each
sphere should have the self-intersection

Ei ·Ei+1 = 1, E2
i = −2. (15.97)

The self-intersection number is defined as in (15.90). If we blow up A,D,E

singularity, we may show that the self-intersection of the P1 divisor is−2. The two-
spheres from the blow-up has the same intersection structure to a Lie algebra. This is
known as the McKay correspondence. Thus, the resolution should be simply laced.
that is, A,D,E type. The intersection matrix is the same as the Cartan matrix of the
Lie algebra. The resolved equation is displayed in Table 15.1. There we used the fact
that the same geometry is described by the changed coordinates as xy → x2 + y2.

Table 15.1 A,D,E singularities

Name Equation Generator

An y2 = x2 + zn+1

(
α 0

0 α−1

)

Dn y2 = x2 + zn−1

(
α2 0

0 α−2

)
,

(
0 1

−1 0

)

E6 y2 = x3 + z4 D4,
1√
2

(
ε7 ε7

ε5 ε7

)
, ε = e2πi/8

E7 y2 = x3 + xz3 E6,

(
ε 0

0 ε7

)

E8 y2 = x3 + z5 E7,−
(
η3 0

0 η2

)
, 1
η2−η3

(
η + η4 1

1 −η − η4

)
, η = e2πi/5

We may regard each as an algebraic surface in C
3 described by the corresponding equation. They

are regarded as the orbifold C
2/, where  is a discrete subgroup of SU(2) generated by the

corresponding generators
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Two divisors are linearly equivalent if the defining equations for the two divisors
are the same up to multiplication of a rational function Shafarevich. The same
holds for the dual objects of holomorphic line bundles that are the same if we have
holomorphic transition function that is rational function in the common intersection
Griffiths and Harris. Linear equivalence relation is similar to homologous relation
in most of cases. Well-known difference is that on a sphere P

1 all the points are
linearly equivalent, but on a torus T they are not, although they are homologous.

We may also deform the singularity to make it smooth

xy = (z− c)(z− d).

A similar analysis as above shows that it is not singular at any point. While the
resolution breaks A,D,E singularity like the adjoint Higgs mechanism. However,
the deformation changes the structure. In terms of the analogy, similar to Higgs
mechanism, it breaks the SU(2) algebraic structure to S[U(1) × U(1)], where
the unimodular condition is imposed to a diagonal matrix formed by two U(1)
generators.

Sometimes, the singularity is not fully resolved by one blow-up. We may further
blow up until the geometry becomes completely smooth.

15.5.4 Toric Geometry

In the above example, the most important data in the resolution are scaling relation
of the coordinates, as in (15.83). It determines the intersection numbers of the cycles
in the end. Also, such scalings can be redefined so they are the objects in linear
algebra. Thus it is useful to draw these data in space and we may study the resulting
geometry. This leads us to toric geometry, using homogeneous coordinates. It also
on the graph now only shows the scaling but also the requirement of resolution. We
follow the discussion in Ref. [35].

C
2/Z2 Orbifold

First, we convert the above data of the C
2/Z2 resolution, discussed in Sect. 15.5.2,

into that of toric geometry. The twist vector φ gives the condition for the basis
vectors {va = (via)} defining the toric diagram

φav
i
a = 0 mod 1. (15.98)

For the C2/Z2, we choose φ = ( 1
2

1
2 0), so

1

2
vi1 +

1

2
vi2 ≡ 0 mod 1. (15.99)

We find a particular solution

v1 = (2, 0), v2 = (0, 2). (15.100)
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Fig. 15.3 Toric diagrams for
the C

2/Z2 orbifold (a) and its
resolution (b). The original
geometry with the divisors
D1 and D2 is singular so we
resolved the geometry by
introducing E. Here, Figure
(b) contains two cones with
bases D1E and D2E. The
collection of cones forms a
fan

D1

D2

(a)

D1

D2

E

(b)

These vectors are going to be related to the ordinary divisors D1,D2 in (15.87),
respectively. The resulting diagram, shown in Fig. 15.3. The dimension of toric
diagram at this stage should be the same as the complex dimension d/2 of the
original manifold. A ray made by each vector is semi-infinite line and make an
edge. Then, a linear combination with non-negative coefficients makes a face. The
collection of faces make the entire diagram, fan.

Blowing up by the exceptional divisor introduced a new coordinate x with the
scaling (15.83). Let us make a column matrix containing these powers as

Q =
⎛
⎝ 1

1
−2

⎞
⎠ . (15.101)

This introduces a new vertex w satisfying

v1 + v2 − 2w = 0. (15.102)

The actual coordinate is

θ : w = 1

2
v1 + 1

2
v2 = (1, 1). (15.103)

We also note that the coefficients of the RHS are the twist vector. It is known that the
resulting geometry is smooth if all the cones separately span the Zd/2 lattice [9,10].
We see that the original orbifold {v1, v2} cannot span the Z2 lattice because the odd
coordinates are not spanned. With the vertexw, each cone {v1, w} and {v2, w} spans
the entire Z2 lattice. We saw that the resulting geometry (15.84) is smooth.

We may introduce a matrix summarizing this. First, we make a matrix P by
stacking all the vertex vectors (15.100) and (15.103) vertically. We may denote the
name of each row by the corresponding divisor. Then, we also make a matrix Q

as (15.102) by stacking the coefficient vectors horizontally (in our case, we have
only one vector, but in general we have more if we have more scaling relations).
Since the number of rows of P and Q matrices are the same, the number of current
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divisors at hand, then we write a combined matrix

(P |Q) =
⎛
⎝D1 2 0 | 1
D2 0 2 | 1
E 1 1 | −2

⎞
⎠ . (15.104)

In particular, the Q submatrix gives us the linear equivalence relation (15.88).
We have such relations whenever a linear combination of rows of Q subvectors
make another row of Q. Most importantly, we can read off the intersection number.
In Fig. 15.3b, each cone gives intersection number 1. Thus, we reproduce the
intersection number (15.89). Using the matrix (15.104), we may also obtain the
relation D1 ·E = D2 ·E.

C
3/Z6−I Orbifold

We apply the construction to a more nontrivial case of C3/Z6−I, which provides the
local fixed points of T 6/Z6−I orbifold. The orbifold has the scaling

(
z1, z2, z3

)
→

(
e2πi·4/6z1, e2πi/6z2, e2πi/6z3

)
.

We take the vertices of the toric diagram by solving the equation

4

6
vi1 +

1

6
vi2 +

1

6
vi3 = 0 mod 1. (15.105)

Each vector has three components labelled by i = 1, 2, 3. We find a particular
solution

v1 = (0, 1, 1), v2 = (−1,−2, 1), v3 = (1,−2, 1).

They form vertices of the toric diagram and the dimension is three. Instead of
drawing the whole cones, we have shown the base plane in Fig. 15.4a. The resulting
fan has only one cone.

Fig. 15.4 Toric diagram for
the C

3/Z6−I orbifold (a) and
its resolution (b). Since the
space is three dimensional,
we need three dimensional
diagram; however, all the
vertices lie on the z = 1 plane

D1

D2 D3

(a)

D1

D2 D3

E1

E2

E3

(b)
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We see that the geometry is singular, because not every cone {v1, v2}, {v1, v3},
{v2, v3} spans Z3 lattice. In fact, none. We fill in vertices E1, E2, E3 corresponding
to the vertices

θ : w1 = 4

6
v1 + 1

6
v2 + 1

6
v3 = (0, 0, 1), (15.106)

θ2 : w2 = 2

6
v1 + 2

6
v2 + 2

6
v3 = (0,−1, 1), (15.107)

θ3 : w3 = 3

6
v2 + 3

6
v3 = (0,−2, 1). (15.108)

Again, we note that these correspond to Z6,Z3,Z2 singularities, respectively. The
resulting toric diagram is drawn in Fig. 15.4b.

From this, we may find linear equivalence relations. There are many linear
relations that are redundant so we want to find “minimal” relations. We may find
them using the method [35, 36]. First, we consider intersections between two cones
and find non-common vertices. The fan has six cones. Denoting each cone without
mentioning the apex at the origin, we have

S1 = 〈D3, E2, E3〉, S2 = 〈D3, E2, E1〉, S3 = 〈D1, E1,D3〉,
S4 = 〈D2, E2, E3〉, S5 = 〈D2, E2, E1〉, S6 = 〈D2, E1,D1〉.

(15.109)

Considering S3∪S6, we have non-common divisors D2 and D3. We can find a linear
relation from the above definition 4D1 +D2 +D3 − 6E1, which always has for the
non-common divisors coefficient 1. In this way, we find

S1 ∪ S2 = {D3, E1, E2, E3}, E1 − 2E2 + E3 = 0,

S1 ∪ S4 = {D2,D3, E2, E3}, D2 +D3 − 2E3 = 0,

S2 ∪ S3 = {D1,D3, E1, E2}, D1 − 2E1 + E2 = 0,

S2 ∪ S6 = {D2,D3, E1, E2}, D2 +D3 + 2E1 − 4E2 = 0,

S3 ∪ S6 = {D1,D2,D3, E1}, 4D1 +D2 +D3 − 6E1 = 0,

S4 ∪ S5 = {D2, E1, E2, E3}, E1 − 2E2 + E3 = 0,

S5 ∪ S6 = {D1,D2, E1, E2}, D1 − 2E1 + E2 = 0,

(15.110)

where we underlined non-common divisors. Among these relations, we extract the
simplest relations, that is, the ones with minimal coefficients. They are

D1 − 2E1 + E2 = 0,

D2 +D3 − 2E3 = 0,

E1 − 2E2 + E3 = 0,
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called the Mori generators. We take the coefficients as column vectors

Q1 = (0, 1, 1, 0, 0,−2)�,

Q2 = (1, 0, 0,−2, 1, 0)�,

Q3 = (0, 0, 0, 1,−2, 1)�,

and form the Q matrix by stacking them horizontally. The Mori generators span
Mori cones Qi in the original space, which is the space of the effective curves. By
effective we mean that a curve C has nonnegative intersections with all the divisors
C ·D ≥ 0 for all the divisors, including exceptional.

Using the above information, we can write down the matrix (P |Q) as above

(P |Q) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

D1 0 1 1 | 0 1 0
D2 −1 −2 1 | 1 0 0
D3 1 −2 1 | 1 0 0
E1 0 0 1 | 0 −2 1
E2 0 −1 1 | 0 1 −2
E3 0 −2 1 | −2 0 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

(15.111)

What we have done is to find the scaling relations between all the ordinary and
exceptional coordinates

(C∗)3 :
(
z1, z2, z3, x1, x2, x3

)

→
(
λ2z

1, λ1z
2, λ1z

3, λ−2
2 , λ3x

1, λ2λ
−2
3 x2, λ−2

1 λ3x
3
)
. (15.112)

We define the resolution as

Res
(
C

3/Z6−I

)
= (C3 − F)/

(
C
∗)3

. (15.113)

Here, the excluded points form the set

F = {(z3, x2) = 0, (z3, x1) = 0, (x1, x3) = 0, (z1, z2) = 0}.

From the Q submatrix, we read off the intersection numbers. Each element gives
the intersection between Di (or Ei) and Ci . For instance, from Q1 we find C1 ·D2 =
C1 ·D3 = 1, C1 ·E3 and the others vanish. Since E1 and E3 are not adjacent vertices,
we knowE1·E3 = 0. Using linear equivalence relations, the following identification
gives the correct intersection numbers:

C1 = E2 · E3,

C2 = D3 ·E1 = D2 · E1,
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C3 = D3 ·E2 = D2 · E2,

E1 · E2 = C1 + 2C3,

D3 · E1 = C1 + 4C2 + 2C3.

We obtain triple intersection numbers as shown in Table 15.2. For instance, D3 ·E1 ·
E1 = C1 ·E1 + 4C2 · E1 + 2C3 ·E1 = −6.

Finally, we comment on triangulation . In this simple example, the six cones are
uniquely defined as (15.109), as seen in the diagram, Fig. 15.4b. However, other
orbifolds such as Z6−II has more than one way to define cones. Its toric diagram is
spanned by the vectors

v1 = (0, 1, 1), v2 = (1,−1, 1), v3 = (−2,−1, 1),

w1 = (0, 0, 1), w2 = (0,−1, 1), w3 = (−1, 0, 1), w4 = (−1,−1, 1),
(15.114)

as drawn in Fig. 15.5. There are five different choices of set of cones. This choice
is called triangulation, as the diagram clearly shows. Each choice is equally
good, giving smooth manifold. However, different triangulation leads different
set of intersection numbers, affecting quantitative difference in the resulting four
dimensional models (Fig. 15.5).

Table 15.2 Triple
intersection numbers of the
resolved C

3/Z6−I orbifold

D1 D2 D3 E1 E2 E3

D1 · E1 4 1 1 −6 0 0

D2 · E1 1 0 0 −2 1 0

D2 · E2 0 0 0 1 −2 1

D3 · E1 1 0 0 −2 1 0

D3 · E2 0 0 0 1 −2 1

E1 · E2 0 1 1 2 −4 0

E2 · E3 0 1 1 0 0 −2

Fig. 15.5 There are five different triangulations in the toric diagram of the resolved Z6−II
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So far, we have done toric resolution for the non-compact orbifold C
d/2/ZN . We

may study toric geometry on the global orbifold T d/ZN as discussed in Ref. [35].

15.6 Dynamics of the Geometry

Recall that geometrical parameters become dynamical fields, or moduli fields. The
role of the fields from graviton Gmn is evident, but it was not clear what determines
the geometry of the fixed points. It turns out that the localized matter field also
plays the role of the moduli field, controlling the blown-up geometry. Remarkably,
the geometry is caught by gauged linear sigma model (GLSM) [37]. We follow Refs.
[38, 39] to discuss the dynamics.

In most of the string compactification, we have (2,0) worldsheet supersymemtry.
Let θ+ be the corresponding Grassmannian variable. Here, we describe the current
algebra using 16 complexified fermions. We write the target space variable za, a =
1, 2, 3 and the current algebra λA. The former belongs to a chiral fermion. The
current algebra form a Fermi multiplet.

We will also gauge the The H -momenta of sa that are promoted to the U(1)
charges for the fields za .

The two dimensional action

S =
∫

d2σd2θ+
(
i

4
�aD�a − 1

4
�A�

A

+ 1

2e2
FAFA

)
+

∫
d2σd2θ+ρ(�)FA + h.c.. (15.115)

The most important scalar potential comes from D-term

V =
∑
A

e2
A

2

(∑
i

qi |zi |2 − bA

)
. (15.116)

For each U(1)A, the Fayet–Illiopoulos parameter bA is given by the complexified
axio-dilaton ρA = bA + iβA.

We have two global consistency conditions

∑
A

Qα
AQ

α
B =

∑
a

qaAq
a
B, for all A,B, (15.117)

∑
a

qaA = 0 for allA. (15.118)

So, not every field can take part in the sigma model.
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We consider SO(32) heterotic string compactified on T 6/Z3 orbifold with a shift
vector

V = 1

3

(
2 1 1 013

)
.

Without Wilson lines, we have equally distributed spectrum on 27 fixed points. This
means that compactification on C

3/Z3 yields the spectrum

1

27
[3(3, 26)1 + 3(3, 1)−2] + 3(3, 1)0 + (1, 26)1 + (1, 1)−2. (15.119)

The fractional multiplicity reflects that the corresponding states come from the bulk.
It is shown that we cannot make use of (1, 1)−2 or 3(3, 1)−2 for blowing up, because
it cannot satisfy anomaly cancellation condition (15.117) [38]. We may include the
fields (3, 26)1, (3, 1), (1, 26)1.

Finally, we investigate a C
3/(Z2 × Z2) model to see various different partial

resolutions [38]. We have seen that some orbifold have different selection of trian-
gulation, giving different intersection numbers. We see that they are all controlled
by VEV of fields.

With the shift vectors, φ1 = (0 1
2

1
2 ), φ2 = ( 1

2 0 1
2 ), φ3 = ( 1

2
1
2 0) ≡ φ1 + φ2 we

consider the standard embedding. We have three twisted sectors and hence there can
be up to three resolutions. We have coordinate superfields �s. We should introduce
three U(1) gauge group. The scalar potential is

V = e2
1

2

( |z2|2 + |z3|2
2

− |x1| − b1

)2

+ e2
2

2

( |z1|2 + |z3|2
2

− |x2| − b2

)2

+ e2
3

2

( |z1|2 + |z2|2
2

− |x3| − b3

)2

,

(15.120)

where as before za, a = 1, 2, 3 are the coordinates of C3 associated with the divisors
Da = {za = 0} and xr, r = 1, 2, 3 are those of the exceptional divisors Er = {xr =
0}. The exceptional divisor Er can exist only when br ≥ 0. It is because otherwise
we have br < 0 and xa = 0 that cannot make the potential V in (15.120) vanish.
We may consider a curve, for example, the intersection between D1 and E1. Setting
z1 = x1 = 0, we obtain

V = e2
1

2

( |z2|2 + |z3|2
2

− b1

)2

+ e2
2

2

( |z3|2
2
− |x2| − b2

)2

+ e2
3

2

( |z2|2
2
− |x3| − b3

)2

. (15.121)
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Fig. 15.6 Toric diagrams for
the C

2/(Z2 × Z2) orbifold
and its resolutions [38].
Besides these six
triangulations, we have eight
more triangulations. The
existence of the curve can be
determined by parameters
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The first term can vanish only if b1 ≥ 0. The rest terms of the potential are
minimized if

|x2|2 + |x3|2 = b1 − b2 − b3 ≥ 0, (15.122)

in other words b1 ≥ b2 + b3. This is the condition for the existence of the curve
D1E1. Likewise, we may investigate the existence of points, which is related to
the intersection numbers. The resulting geometry has various phases, shown in
Fig. 15.6.

15.7 Non-perturbative Vacua

We may understand the effect of the shift vector associated with orbifold in terms
of instanton background. In six dimensions.
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15.7.1 Instanton Background

In the field theory, the phenomenon described by a shift vector is an instanton
background. Each fixed point is locally C

d/ZN and is regarded as singular limit
of the corresponding AN+1 ALE space [5]. Then, there can be a nontrivial flat
connection at the infinity, whose breaking is described by the shift vector. Collecting
them, we have “the bulk,” described by the common intersection of such symmetry
breaking. The shift vector (13.6) has eigenvalues of the generator of the group at
hand, SO(32) or E8×E8 [40]. At each order N fixed point, we have ni eigenvalues
i/N [24, 40]

kZN
= 1

8π2

∫
ZNALE

trF 2 = kZN ,U + kZN,T, (15.123)

where we have instanton number from the flat background

kZN,U =
N−1∑
i=0

i(N − i)

2N
ni, (15.124)

where ni are the numbers of eigenstate component in the vector bundle and thus
the second contribution in (15.123) is the usual second Chern class from the flat
connection from the infinity. We also have an integer number

kZN,T = integer, (15.125)

counting the “instanton number” in the twisted sectors. In field theory, we may put
arbitrary fields on this fixed point; however, in string theory this number is fixed by
the modular invariance condition.

Here and in what follows, the integration is done over the AN−1 ALE space. An
integer KN is determined by the field contents on this ALE space, which becomes
twisted field in the orbifold picture. It is the shift vector that contains exactly this
information, thus we have another equivalent expression to (15.123),

kZN
= KN + N

2

16∑
I=1

VI (1− VI ). (15.126)

We may interpret that KN is the index of the localized fields at the tip of the ALE
space.

Now, we wish to collect all the fixed point contributions to make that of the total
T 4/ZN . We know the multiplicity dj of ZN/j invariant fixed points. We can express

the Euler number in terms of the shift vector in the j -th twisted sector φ(j)
a

24 = 1

8π2

∫
trR2 =

∑
j∈N/Z

dj
N

j

(
N

j
+ 1

) 2∑
a=1

φ
(j)
a

(
1− φ

(j)
a

)
. (15.127)
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Therefore, we have the total instanton numbers

kU = 1

8π2

∫
TrF 2

U =
∑

j∈N/Z

dj
N

2j

16∑
I=1

V
(j)
I

(
1− V

(j)
I

)
. (15.128)

kT = 1

8π2

∫
TrF 2

T =
∑

j∈N/Z

djKN/j . (15.129)

Here, again V
(j)
I is jVI subtracted by an appropriate integer to lie it in the

interval [0, 1]. This establishes the relationship between the modular invariance
condition (7.50) and Bianchi identity (11.133). In the presence of Wilson lines, the
degeneracy from dj disappears and we have independent contribution from local
shift vectors at each fixed point. This establishes the relation between the Bianchi
identity and modular invariance condition.

For a Z3 shift vector of a form V = 1
3 (0

n0 1n1 2n2), we have contributions at
each fixed point

kZ3 = K3 + 3 · 1

2
· 1

3
· 2

3
· (n1 + n2). (15.130)

Thus, in the bulk we have

k = 9K3 + 3n1 + 3n2. (15.131)

For a spinorial shift vector of the form V = 1
6 (1

n+ 3n∗), we have

kZ3 = K3 + 3 · 1

2

(
n+

1

2
· 1

2
+ n∗

3

2
· 3

2

)
. (15.132)

For a Z4 shift vector of a form V = 1
4 (0

n0 1n1 2n2 3n3), we have

kZ4 = K4 + 4 · 1

2

(
2

4
· 2

4
· n2 + 1

4
· 3

4
· (n1 + n3)

)
, (15.133)

kZ2 = K2 + 2 · 1

2

(
0 · 4

4
· n2 + 1

2
· 1

2
· (n1 + n3)

)
. (15.134)

Here, the integral components in 2V , counted by n2, are replaced by zero. The total
instanton number is

k = 4kZ4 + 6kZ2 = 4K4 + 6K2 + 2n2 + 3n1 + 3n3, (15.135)

which reproduces (15.126).
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With these, we can connect the Bianchi identity with the modular invariance
condition (15.53). Integrating this over K3, we have

0 = 24− kU − kT . (15.136)

This cancels six dimensional SO(2n0) gauge anomaly, with the chiral matter
(n1 + nN−1, 2n0) under SU(n1 + nN−1, 2n0) (or (2n1, 2n0) of SO(2n1, 2n0) for
Z2)

(2n0 − 8)− n1 − nN−1 − kT = 0, (15.137)

as long as the total instanton numbers should satisfy the condition (15.80)

k = kU + kT = 24.

It is because we can show the following using
∑

ni = 16 and (15.126)

kT = 24− kU

= −8+ 32− 2
N−1∑
i=1

ni − n1 − nN−1

= −8+ 2n0 − n1 − nN−1.

(15.138)

This proves the relation (15.137). The reason is that the total instanton number is
related to the unbroken gauge group. Here, the only unbroken part is SO(2n0).

In understanding the consistent vacua, the SO(2n0) anomaly plays an important
role. In six dimension, the chirality of gaugino in the vector multiplet is always
opposite to the fermions in the hypermultiplets, so that the matter contents are
constrained by anomalies. Six dimensional gauge anomalies can be cancelled, up
to Green–Schwarz mechanism, if the anomaly polynomial has vanishing trF 4 term
[40]. From the contributions of gaugino

TrF 4
SO(2n) = (2n− 8) trv F

4
SO(2n) + 6

(
trF 2

SO(2n)

)2
, (15.139)

TrF 4
SU(n) = 2n trF 4

SU(n) + 6
(

trF 2
SU(n)

)2
, (15.140)

we see that we need (2n − 8) vectors and 2n fundamentals, respectively, to cancel
SO(n) and SU(n) anomalies. Other representations may contribute, as we have
summarized the decomposition in the Appendix A.
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15.7.2 Non-perturbative String Vacua

Lastly, we study the small instanton transition and apply it to orbifold vacua [25,41].
Some gauge background can undergo transition and becomes instantons. This means
by exchange of such instantons, vacua that has been regarded as different can in fact
be connected. Also, we may obtain non-perturbative generalization of the modular
invariance condition.

Note that the Bianchi identity can be understood as the magnetic equation of B
field

dH = 0 = d2B + 1

2
trv R

2 − 1

2
trv F

2, (15.141)

with the last two term being sources. We also note that the instanton number k

is integrally quantized. Remembering that instantons are parameterized by size,
position, and global transformations. In particular, if some of instantons shrink to
zero size, the field strength becomes delta functions

dH = 0 = d2B + 1

2
trv R

2 − 1

2
trv F

′2 −
∑

δ(4)(y − yi), (15.142)

where some of the component from F are emitted so we have F ′, and y is the
collective notation for the internal coordinates. This can be also regarded as the
pointlike source in this space. Including the remaining space, this source describes
5-branes that are natural magnetic sources for the rank two tensor field BMN Indeed
there is a phase transition between the instanton number of 5-branes [42]. If we have
such phase transition in SO(32) heterotic string, it becomes 5-branes. SO-group is
anomalous in six dimensions, as before, there should be a local source of anomaly
cancellation. It is provided by gauge theory localized on 5-branes. If we have n

coincident 5-branes, there is Sp(2n) localized gauge theory on the worldvolume,
where in our convention Sp(1) = U(2). In E8 × E8 gauge group; however, there is
no anomaly and in fact there is no extra anomaly cancellation from the 5-branes. We
have discussed in Sect. 6.4.4 that we have eleven dimensional theory in the strong
coupling limit. These 5-branes can move into the bulk in the eleven dimensions and
promoted to M5-branes. One interesting feature is that now the M2-brane can end
on M5-branes.

If we go back to the original orbifold limit, emitting instanton reduces the shift
vector. In other words, some components of the shift vector becomes the instantons.
Decomposing

V = V1 + V2, (15.143)

the emitted instanton components are described by V2, which describes also the
recovered part.
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The mass shell condition changes. Consider the twisted sector of a perturbative,
modular invariant theory parameterized by V . Expanding the mass shell condi-
tion (7.37), we have

1

4
M2

L =
(P + V1)

2

2
+ Ñ+ P · V2 + V1 · V2 + 1

2
V 2

2 + E0

= (P + V1)
2

2
+ Ñ+ E0 +�E0.

(15.144)

We may regard this formula as the mass shell condition for the twisted sector for a
daughter vacuum with V1, with instantons emitted. Then, the extra piece originating
from V2 becomes a non-perturbative correction in the zero-point energy

�E0 ≡ V1 · V2 + 1

2
V 2

2 . (15.145)

A part of instantons described by the shift vector V2 “condensates” in the CFT
description. We assumed P · V2 = 0 because we want �E0 is a constant in the
new, daughter vacuum, not depending on P .

The spectrum can still be calculated using the same CFT in the presence of 5-
branes, using the same mass shell conditions and level matching condition M2

L =
M2

R = 0 as those of the perturbative case [25, 41]. Since the inclusion of heterotic
5-branes does not affect the internal geometry of orbifold, we have no change in the
spacetime part, including that of the right mover.

We can also have modified, generalized GSO projector (8.61) in the presence of
heterotic 5-branes. Since the terms involving V are modified as

(P + V ) · V − 1

2
V 2 = (P + V1)

2 − 1

2
V 2

1 +
1

2
V 2

2 + V1 · V2

= (P + V1)
2 − 1

2
V 2

1 +�E0,

(15.146)

where again P ·V2 = 0 is assumed. Therefore, we have modified, generalized GSO
projector (8.61) for a non-perturbative shift vector V taking into account heterotic
5-branes

e
2πi

(
(P+V )·V−(s+φ+ρL−ρR)·φ− 1

2 (V
2−φ2)+�E0

)
. (15.147)

The extra phase is simply expressed by �E0. The 5-branes can only affect the CFT
on the fixed point only quantitatively.

As a toy model, we consider transition from a perturbative vacuum of G =
U(8)× SO(16) with the shift vector V = 1

3 (1
8 08) to a non-perturbative vacuum of
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G1 = U(2)× SO(28) with the shift vector V1 = 1
3 (1

2 014). The shift vector V of G
is decomposed into V1 of G1 and an extra V2 as

V = V1 + V2 = 1

3

(
12 014

)
+ 1

3

(
02 16 08

)
. (15.148)

Upon phase transition, the small instanton components described by V2 is going to
become heterotic 5-branes. Therefore, we are left with the remaining componentV1,
describing a non-perturbative vacua with the gauge group G1.

The shift vector V1 gives rise to a vacua whose gauge group is U(2) × SO(28)
with untwisted matter (2, 28)+3(1, 1). When instantons shrink, they are embedded
in the structure groupZ3 ⊂ U(1)×SU(2) with the instanton number kU = 3n1 = 6.
It can be emitted and become as many 5-branes.

In the twisted sector, on top of the usual zero-point energy

E0 = −1+ 2 · 1
2 · 1

3 ·
(

1− 1
3

)
= − 7

9 ,

there is modification as in (15.145),

�E0 = 0+ 1
2

(
1
3 (1

6 010)
)2 = 18

54 . (15.149)

Plugging these into the mass shell condition (15.144), we find the spectrum shown
in Table 15.3. There is no charged representation. Since there is no SO(28) vector
or spinor, thus no instanton contribution comes from the twisted sector kT = 0.

Table 15.3 Some vacua of
SO(32) string on T 4/Z3
orbifold

Shift vector V Untwisted kU

Group Twisted kT

Heterotic 5 localized n
1
3 (1

2 014) (2, 28; 1) + 2(1, 1; 1) 6

U(2)× SO(28) × Sp(18) 9(1, 1; 1) + 18(1, 1; 1) 0
1
2 (1, 28; 36) + (2, 1; 36) 18

1
3 (1

2 014) (2, 28) + 3(1, 1) 6

U(2)× SO(28) 9(2, 28) + 63(1, 1) 18

No state 0
1
3 (1

8 08) (8, 16) + (28, 1) + 2(1, 1) 24

U(8)× SO(16) 9(28, 1) + 18(1, 1) 0

No state 0

The parameters kU, kT, n are, respectively, instanton num-
bers in the untwisted and twisted sectors, and the number
of heterotic 5-branes
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It is also interesting to compare this model with a perturbative model, having the
same shift vector. In general, non-perturbative models cannot satisfy the modular
invariance condition, but with the modification

(P + V )2

2
+ Ñ+�E0 − (s + φ)2

2
− N+ 1

2
= 0 mod 1. (15.150)

Since each term is proportional to 1/N , we expect their cancellation gives an integer
sum, expect the V 2 and φ2 terms. Thus, we require the modified modular invariance
condition

V 2

2
+�E0 − φ2

2
≡ 0 mod

1

N
. (15.151)

OtherManifolds
According to Berger [43], a simply-connected, irreducible, and nonsymmetric
manifold of dimension d , with Riemannian metric, is uniquely classified according
to Table 15.4. In our heterotic string case, the Calabi–Yau threefold is our main
interest in compactifying heterotic string, since it leaves N = 1 SUSY in four
dimensions. In view of string duality, unified theories require more dimensions,
implying more compact dimensions and different special holonomies. For example,
M- and F-theories are living in eleven and twelve dimensions, thus we introduce
manifold of G2 and SU(4) holonomy, respectively. The other side of the coin is that
we can see string duality when we compactify merely one or two dimensions in
these generalized theories.

Flux Compactification
Recently, lots of studies are done under nontrivial H �= 0 configurations, generally
referred to as “flux compactification.” In this case, Table 15.4 is not the complete
list any more. This is so because if we turn on the fluxes then this special holonomy
condition for unbroken supersymmetry does not hold. However, there is another
condition compensating this. A more general analysis is reviewed in Ref. [44].

Table 15.4 The Berger
classification on holonomy
group of a simply-connected,
irreducible, and
nonsymmetric manifold of
dimension d with Riemannian
manifolds [6, 43]

Real dimension Holonomy group Type

d SO(d) Orientable

2n ≥ 4 U(n) Kähler

2n ≥ 4 SU(n) Ricci-flat, Kähler

4n ≥ 8 Sp(n)×Sp(1) Einstein

4n ≥ 8 Sp(n) Ricci-flat, Kähle

7 G2 Ricci-flat

8 Spin(7) Ricci-flat
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Exercise

� Exercise 15.1 Show that the An−1 singularity (15.82) is smooth for n = 1.
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16Flavor Physics

“Who ordered muon?”, put forward after the discovery of muon (with the already
known electron), was the culminating phrase on the flavor problem or the family
problem. Muon behaved exactly in the same way in the QED and weak interactions
except for their mass difference. This difference in masses is one of the flavor
problems.

Not only in masses but also the way they interact is the key in the flavor puzzle.
The first observation on this was noticed from the SU(3) symmetry of the currents
before the advent of quark flavors, u, d , and s. The corresponding SU(3) charges,
Fi (i = 1, 2, . . . , 8), are generators of the SU(3) transformation,

� → eiαiFi�. (16.1)

If we pick up a proper direction, say 2×2 matrix X, i.e. FX = diag(X, 1) rearranged
with the first two rows and columns for X, the unitary transformation can be written
as diag(cosαX, 1) + diag(sin αX iσy, 1). The rank-2 group SU(3) has two Cartan
subalgebras generated by the isospin T3(= F3) and strangeness S(= 2Y − B),
with the octet charges shown in Fig. 16.1. Since there are two charge+1 operators,
the transformation (16.1) can include + charge operators as ei(απF1+i2+αKF4+i5+··· ),
which therefore includes

U � i(απF1+i2 + αKF4+i5)+ · · · , (16.2)

with α2
π + α2

K = 1, or tan θC = αK/απ in terms of the Cabibbo angle θC [1].
Cabibbo compared the proton and � decay rates with the muon decay rate. Muon
and electron do not have isospin and strangeness quantum numbers and the unitary
transformation on them must be just a phase, i.e. it transforms as 1 under SU(3)
transformation. This observation was made before any of the quark models was
suggested. But with the SU(3) transformation on hadrons, the neutral operators
F6±i7, together with F3 and F8, must be included also in Eq. (16.2), which is

© Springer Nature Switzerland AG 2020
K.-S. Choi, J. E. Kim, Quarks and Leptons From Orbifolded Superstring,
Lecture Notes in Physics 954, https://doi.org/10.1007/978-3-030-54005-0_16
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Fig. 16.1 Eight generators of SU(3). The horizontal axis is the eigenvalue of F3 and the
vertical axis is the eigenvalue of Y = S+B

2 ∼ (strangeness plus baryon number). Change of
electromagnetic charges by the operations is shown with the red color

dangerous at that time because the strangeness changing neutral processes were not
observed.

With the quark model, we introduced a L-handed weak doublet,

(
u

d cos θC + s sin θC

)
L

(16.3)

which introduces a strangeness changing neutral current. This was resolved by the
GIM mechanism, introducing the second doublet [2]. This was done before the
discovery of the charm quark c. But in the unitary transformation in the form of
Eq. (16.1), without any reference to quarks, one has to increase the symmetry group
to SU(4). The third family quarks were discovered in 1978 and 1995 [3, 4].

In the leptonic sector, neutral processes were difficult to identify experimentally
even though neutrino–antineutrino oscillation was suggested before as a possibility
[5]. In 1962, the muon-type neutrino was discovered, completing the discovery of
the second family of leptons [6], before any theoretical needs were proposed. Now
flavor physics in the leptonic sector is parametrized by the MNS matrix.1 Charged
lepton τ was discovered in 1975 [7], and its partner ντ was seen directly in 2000 [8].

In the standard model(SM), flavor physics is studied by the charged cur-
rents(CCs). Here, the CCs are left-handed(L-handed) but the currents, basically
being of gauge interactions, are properly defined in the basis where all fermion
masses are diagonalized. This introduces the Yukawa couplings by which all the

1The 3×3 neutrino mixing matrix is responsible for the oscillations between neutrinos and we use
MNS. To write PMNS, we must use 6×6 matrix. But, we use the standard convention PMNS even
for the 3× 3 matrix.
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SM fermions acquire masses by the Higgs mechanism. Therefore, we should study
Yukawa couplings to pinpoint the origin of flavor physics.

For the L-handed fermions of the SM spectra, Eq. (2.7), we can unitarily
transform by a 3× 3 unitary matrices, U and V , on the three members of � . In this
Chapter, we will use U for acting on the L-handed fields and V for acting on the
R-handed fields. Let the Yukawa coupling matrices Y (u,d,ν,e) be given for the mass
matrices of up-type quarks, down-type quarks, neutrinos, and Qem = −1 leptons,
respectively. By the standard procedure, a number of phases can be absorbed by
redefining fermion fields, for example,

Y (u,d,ν,e) 0 → U(u,d,ν,e)†Y (u,d,ν,e) 0V (u,d,ν,e), etc. (16.4)

on the Yukawa coupling matrices

L (u,d,ν,e)
Y = ū

(u,d,ν,e) 0
R Y (u,d,ν,e)0q0

L, (16.5)

where superscript 0 refer to the original form and those without it is in the
diagonalized mass bases,

�(u,d,ν,e) = (U or V )(u,d,ν,e)�(u,d,ν,e) 0. (16.6)

In flavor physics from string compactification, our objective is to present the
form Y (u,d,ν,e)0 of Eq. (16.5). Most easily, one may study just the renormalizable
couplings. But, the possibility of nonrenormalizable interactions is always open,
whose strength can still be sizable in string compactification. So, Y (u,d,ν,e)0 are the
ones including sizable nonrenormalizable interactions also.

At field theory level, some continuous and discrete symmetries were proposed in
the past but in string compactification there has not been any accepted scenario yet.
We take the viewpoint that any suggestion is not enough if it fails in explaining even
in just one component of the CKM and MNS matrices. So, let us begin by listing
the experimentally determined CKM and PMNS matrix elements.

The CKM and PMNS matrices are given by2

VCKM = (U(u))(U(d))† (16.7)

VPMNS = (U(ν))(U(e))†, (16.8)

where U(u,d) and U(ν,e) are diagonalizing unitary matricies of L-handed quark and
lepton fields, respectively.

2The usual definition in Ceccucci et al. on the CKM matrix [9] is the same as ours but the definition
on the PMNS matrix in S. Petcov [9] is the opposite to ours.
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16.1 Data on Flavor Physics

16.1.1 CKMMatrix

The CKM data in the PDG book is present by fitting to an approximate unitary
matrix [10], which is not adequate in calculating the Jarlskog determinant because
they did not use an exact CKM matrix. Since we try to determine the phase, we must
use a parametrization where at least three elements do not contain the phase such
that three real angles are determined. Therefore, we determine three real angles,
using the exact Kim–Seo (KS) form [11] which will be discussed in Sect. 16.2.1.
We will use the (11), (12), and (21) elements of V , which are3

(11) = 0.97420± 0.00021, (12) = 0.2243± 0.0005, (21) = −0.218± 0.004.

Let us define the experimentally determined error bars of θ1,2,3 and αKS
4 as

θ1 = θ̄1 + δ1, θ2 = θ̄2 + δ2, θ̄3 + δ3, αKS = ᾱKS + δKS. (16.9)

Then, we obtain

θ̄1 = 13.0432o, θ̄2 = 14.9964o, θ̄3 = 6.3541o, (16.10)

δ1 = ±0.0533o, δ2 = ±4.017o, δ3 = ±2.364o. (16.11)

To determine the CP phase αKS, we use the formula for the Jarlskog angle.
Since the shape of the Jarlskog triangle is the same in any parametrization, the
CP violation error will be the same in any parametrization. So, for the error
bars of J , i.e. δJ , we use the PDG value. The PDG gives δJ /J = 0.15/3.18 =

1
21.2 . If the formula gives | sin ᾱKS| > 1, we use ᾱKS = 90◦. Since J �
1
8 sin 2θ̄1 sin 2θ̄2 sin 2θ̄3 sin θ̄1(sin αKS), applying small errors in Eq. (16.11), we
obtain δ(sin αKS) = − 1

21.2 = −0.04717 and δ(cosαKS) = 0.28402, leading to
δαKS = 16.5◦. Therefore, we obtain the following numerical data on VCKM using

3T. Gerson and Y. Nir in [9].
4These parameters will be defined later in Eq. (16.24).
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the error propagation method, which is useful for the KS form since all the first row
elements are real [12],

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0.97420± 0.00021 , 0.22430± 0.00137 , 0.02498± 0.00926

−0.2180± 0.00419 ,

+0.93524± 0.01653

−i(0.02864± 0.00144) sinαKS

+(0.02864± 0.00144) cosαKS

,

+0.10415± 0.00321

+i(0.25717± 0.05522) sinαKS

−(0.25717± 0.05522) cosαKS

−i(0.05840± 0.01529) sinαKS

−(0.05840± 0.01529) cosαKS

,

−0.10690± 0.00339

+i(0.25054± 0.05234) sinαKS

+(0.25054± 0.05234) cosαKS

,

+0.96001± 0.01709

+i(0.02790± 0.01037) sinαKS

+(0.02790± 0.01037) cosαKS

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

(16.12)

In addition, we obtain J = 1.364+0.599
−0.599 × 10−3 which is considered as the

experimentally determined value. The Jarlskog triangles of the quark sector are
shown in Fig. 16.2.

16.1.2 Neutrino Oscillation and PMNSMatrix

Most data on flavor physics in the hadronic sector are from meson decays, thanks
to the formation of K, D, and B mesons due to the confining QCD. On the other
hand, leptons do not carry color by definition and in the leptonic sector there is no
counterpart of “meson” of the hadronic sector. At best for the counterpart, we can
consider processes involving two leptons, which is known as neutrino oscillation.
Neutrino flavors (denoted by α, β, etc.) of energy E (in eV units) oscillate in

Fig. 16.2 The Jarlskog triangle: (a) the usual layout in the PDG book, (b) the layout given in [13].
In (b), the invariant J is given by c1c2c3s

2
1 s2s3 sinα in terms of the KS parametrization
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vacuum as

P(να → νβ) = δαβ − 4
∑
i>j

Re(U∗αiUβiUαjU
∗
βj ) sin2[1.27�m2

ij (L/E)]

+2
∑
i>j

Im(U∗αiUβiUαjU
∗
βj ) sin2[2.54�m2

ij (L/E)], (16.13)

where indices i, j denote the mass eigenstates, andL is the path length (in km units).
Formulae for oscillation in matter involve more parameters [14,15]. The mostly used
formulae for neutrino oscillation for the T2K experiments of the νμ beam from the
KEK are its survival probability

P(νμ → νμ) � 1−
(

cos4 θ13 sin2 2θ23 + sin2 2θ13 sin2 θ23

)
sin2

(
�m2

31
L

4E

)
,

(16.14)

and its conversion probability to νe

P (νμ → νe) � sin2 2θ13 sin2 θ23
sin2[(1− x)�]

(1− x)2

+α cos(δ +�) sin 2θ12 sin 2θ13 sin 2θ23
sin[x�]

x

sin[(1− x)�]
(1− x)

(16.15)

+O(α2),

where the vacuum oscillation parameters α and � and the matter oscillation
parameter x are given by

α =
∣∣∣∣∣
�m2

21

�m2
31

∣∣∣∣∣ , � = �m2
31 L

4E
, x = 2

√
2GFNeE

�m2
31

, (16.16)

in terms of mass squared differences �m2
ij = m2

i −m2
j .

The 2019 fit [16, 17] using the PDG parametrization of the PMNS matrix
obtained ±1σ mass squared differences in the normal (NH) and inverted (IH)
hierarchies as (Fig. 16.3)

NH and IH : �m2
21 = 0.755+0.020

−0.016× 10−4 eV2, (16.17)

and

NH : �m2
31 = 2.50+0.03

−0.03 × 10−3 eV2,

IH : �m2
31 = 2.42+0.03

−0.04 × 10−3 eV2. (16.18)
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Fig. 16.3 m1,m2, and m3 vs. the lightest neutrino mass. (a) NH. (b) IH

The fit [17, 18] gives almost the same PMNS angles for the NH and IH mass
squared differences, and hence these PMNS matrices are taken to be the same
here. The leptonic data is not accurate enough in particular on the phase, i.e.
δ = 241o+115o

−68o for NH, and δ = 266o+61o

−58o for IH. The Jarlskog determinant is
about 3.5 × 10−2 sin δPMNS in both cases, which ranges [−3.5,+0.3] × 10−2 for
NH and [−3.5,−1.6] × 10−2 for IH. The neutrino data is not accurate enough to
pinpoint the value δPMNS.

We first determine three real angles, adopting the unitarity condition, for which
we need just three data points. In fact, the familiar global analyses are actually
overfitting. Because of the large uncertainty on the phase, we refrain from presenting
error bars. Then, from the values of [17], we obtain

(11) = 0.6612, (12) = 0.3154, (16.19)

but in the PDG parametrization there is no other element without the phase,
involving the first two family members. We try to use the absolute value of (21)
element. Let us take the range δPDG = [225◦, 315◦] and [45◦, 135◦]. Now, from
these experimental (11), (12), and (21) elements of VPMNS, we can determine three
real angles using the KS parametrization

NH, IH :

⎧⎪⎪⎨
⎪⎪⎩

*̄1 = 35.3948◦
*̄2 = 39.1733− 55.9735◦ for δPDG = 225◦ − 315◦
[*̄2 = 39.1733− 55.9735◦ for δPDG = 45◦ − 135◦]

*̄3 = 14.6965◦,

(16.20)

where we used δPDG near 3π
2 and π

2 . For an illustration, we take δPDG = 3π
2 , i.e.

*̄2 = 30.9◦ and obtain the following.
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Fig. 16.4 A possible
leptonic Jarlskog triangle

As an illustration, we use three real angles *1,2,3 determined from δPDG = 3π
2 ,

i.e. for *2 we choose the median *̄2 = 47.4633◦. Thus, we obtain [12],

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0.81518+0.01174
−0.00978 , 0.56026+0.01707

−0.01423 , 0.14695+0.08925
−0.07438

−0.39158+0.01371
−0.01475 ,

+0.53308+0.02423
−0.02085

−i(0.186939+0.11121
−0.09203) sin α�KS

+(0.186939+0.11121
−0.09203) cos α�KS

,

+0.13982+0.08188
−0.06726

+i(0.71274+0.03291
−0.02853) sin α�KS

−(0.71274+0.03291
−0.02853) cos α�KS

−i(0.42679+0.02029
−0.01895) sinα�KS

−(0.42679+0.02029
−0.01895) cos α�KS

,

−0.17152+0.10217
−0.08463

+i(0.58101+0.02637
−0.02268) sin α�KS

+(0.58101+0.02637
−0.02268) cosα�KS

,

+0.653943+0.03034
−0.02636

+i(0.15239+0.08883
−0.07281) sin α�KS

+(0.15239+0.08883
−0.07281) cos α�KS

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

(16.21)

In this case, we obtain J � 3.34×10−2| sin α�
KS| from any one out of the six possible

products of the form given in (16.25). Comparing this KS value with the previous
PDG value 3.5× 10−2 sin δPDG, we have a relation | sin α�

KS| � 0.56 | sin δPMNS|. If
we take the initial central value of the T2K experimental range [19], i.e. δT2K =
270◦, we can draw the leptonic Jarlskog triangle as shown in Fig. 16.4. This is
because both |α�

KS| � 30.9◦ and |δ̄T2K| � 90◦ must belong to the corner angles
of this triangle. The Jarlskog triangle of the lepton sector is shown in Fig. 16.4.

Note that for cosα�
KS � 0, the absolute values of V KS

PMNS is somewhat close to a
tri-bimaximal form.

16.2 Theories on Flavor Physics in Field Theory

In the SM, we need at least three families of quarks and leptons,

(
u′α
dα

)
L

,

(
c′α
sα

)
L

,

(
t ′α
bα

)
L

(16.22)
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ucαL, dcαL, ccαL, scαL, tcαL, bcαL

(
ν′e
e

)
L

,

(
ν′μ
μ

)
L

,

(
ν′τ
τ

)
L

(16.23)

ecL , μc
L, τ cL

Nc
1 , Nc

2 , Nc
3 ,

where the observed heavy 3rd family members are colored red, and the primed fields
are mixtures of mass eigenstate fields. There are 15 Weyl fields in one family. By
adding Nc

3 to these, we have the representation 16 of SO(10). Because we will
remove the flavor changing neutral current (FCNC) effects, flavor physics in the
SM is described by CCs based on Eqs. (16.22) and (16.23). With the definition
of Eq. (16.22) without the red colors, Eq. (16.3) corresponds to u′ = u cos θC −
c sin θC and c′ = u sin θC + c cos θC in Eq. (16.22). Here, we choose the forms of
Eqs. (16.22) and (16.23) because it is better to start with the bases of diagonalized
Qem = −1 leptons. In this chapter, we use the Kim–Seo (KS) form for the CKM
matrix of Eq. (16.22) [11],

V KS =
⎛
⎜⎝

c1, s1c3, s1s3

−c2s1, c1c2c3 + s2s3e
−iαKS , c1c2s3 − s2c3e

−iαKS

−s1s2e
+iαKS , −c2s3 + c1s2c3e

+iαKS , c2c3 + c1s2s3e
+iαKS

⎞
⎟⎠ ,

(16.24)

where ci and si are cosines and sines of three real angles θi (i = 1, 2, 3) and αKS is
the CP phase δCKM. The KS form is written such that the elements in the 1st row
are all real, which makes it easy to draw the Jarlskog triangle with one side sitting
on the horizontal axis. Furthermore, the (21) element is real and hence it is possible
to determine three real angles from the experimental values of (11), (12), and (21)
elements. For the PMNS matrix of Eq. (16.23), we use another four parameter set,
*i (giving corresponding Ci and Si ) and α�

KS.
If future data are not consistent with the representations given in Eqs. (16.22),

(16.23), physics beyond the standard model (BSM) is needed. To find out the
BSM contribution just above the electroweak scale, some discrepancy with the SM
parametrization (16.22), (16.23) has to be observed.
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16.2.1 Electroweak CP Violation

After the discovery of the electroweakCP violation in the neutral K meson decays
[20] and from the recent B meson decays,5 its final form in the SM has settled to a
kind of Kobayashi–Maskawa form [21]. There can be numerous ways to parametrize
the mixing angles with three families, which have led to a unique invariant for the
weak CP violation. It is the Jarlskog determinant J which is twice the area of
the triangle shown in Fig. 16.2. The original form of J is given by two elements of
VCKM and two elements of V ∗CKM, which counts two sides of the triangle. One such
side length is shown as the horizontal segment in Fig. 16.2(b) as V11V

∗
13. Referring

these figures, one notices that one of the three angles, α, β, or γ can be used for the
area of the triangle. For the parametrization in the PDG book γ is chosen, and for
the KS parametrization [11] α is used for the area (Fig. 16.3).

But a simple form, readable from the 3× 3 CKM matrix itself [13] is given by

J = |ImV31V22V13|, after making Det.V real, (16.25)

which is the KS form of J . The CKM matrix given in the PDG book has a real
determinant and the parametrization given in [11] also leads to a real number. The
triangle in Fig. 16.2b uses the product of the 1st and 3rd columns, V KS

i1 V KS∗
i3 for

which the three sides are given by i = 1, 2, 3. There are two more ways to make
triangles, V KS

i2 V KS∗
i1 and V KS

i3 V KS∗
i2 . The shapes of the other triangles are completely

different from that of Fig. 16.2b but the invariant phase α also appear there. All these
triangles give the identical value for J . Thus, J is not a process dependent value but
a theory dependent value. If we pick up the triangle V KS

i2 V KS∗
i1 , two side lengths are

|V12V
∗
11| � λ and |V22V

∗
21| � λ where sin θC = O(λ). Therefore, the third length is

O(λ4−5) since J ∼O(λ5−6). This implies that one angle in the CKM matrix must be
close to 90◦, which is shown in Fig. 16.5. This angle is α in the fat triangle Fig. 16.2b
and also in the thin triangle 16.5. α is the invariant angle in the quark sector, and it is
proper to assign a unique name in the SM, δCKM. The small side has a length at most
O(λ4), which implies that two angles are close to 90◦. Namely, from trigonometry,
if we have two long sides of length λ and λ+O(λ4), the angle between them, ε, is
given for λ � 0.225 by [12]

cos ε = 1−O(λ3)+ · · · � 0.9886 → ε � 8.65o. (16.26)

One among α, β, and γ must be αKS, and ε cannot be αKS since there is no angle
close to 0 among them. The shape of this thin triangle is shown in Fig. 16.5, with an
exaggrated ε.

5See, T. Gerson and Y. Nir in [9].
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Fig. 16.5 The Jarlskog triangle with the horizontal axis V KS
12 V KS ∗

11

In terms of the KS angles θ1,2,3 and αKS, the Jarlskog determinant JKS is given
by

JKS = 1

8
| sin 2θ1 sin 2θ2 sin 2θ3 sin θ1 sin αKS|. (16.27)

The same formula also holds in the leptonic sector by replacing θ1,2,3 → *1,2,3 and
αKS → α�

KS.
In the leptonic sector, we define the KS form for the PMNS matrix with

parameters*i and the invariant phase α�
KS. The comments made for the quark sector

also apply here, i.e. J in the lepton sector are the same for all three Jarlskog triangles
of leptons and α�

KS ≡ δMNS is the unique invariant lepton phase. Since we take
the basis where Qem = −1 leptons are in the mass eigenstate, the diagonalization
procedure of lepton masses is on the neutrino masses. At the renormalizable
Lagrangian level, there is no mass term of the neutrinos in the lepton doublets in
Eq. (16.23).

The effective dimension 5 neutrino mass operators initially defined in terms of 0

superscripts of Eq. (16.6) are given by

Lν = �0T C−1M0
ν �

0, (16.28)

where C is the charge conjugation matrix and M0
ν is the neutrino mass matrix. In

the seesaw model, it is proportional to the square of the VEV of Hu and suppressed
by the singlet neutrino mass,

M0
ν =

〈Hu〉2
MN

Y 0, (16.29)

where Y 0 is a dimensionless 3×3 matrix. Since �(ν) 0 = U(ν)†�(ν) from Eq. (16.6),
in the mass eigenstate basis Eq. (16.28) becomes

Lν = νT U(ν)∗C−1M0
νU

(ν)†ν. (16.30)
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Thus, U(ν)∗ and U(ν)† diagonalize M0
ν ,

U(ν)∗M0
νU

(ν)† =
⎛
⎝m1, 0, 0

0, m2, 0
0, 0, m3

⎞
⎠ (16.31)

The ansatz for the so-called tri-bimaximal mixing is [22]

∼

⎛
⎜⎜⎜⎝

√
2√
3
, 1√

3
, 0

− 1√
6
, 1√

3
, − 1√

2

− 1√
6
, 1√

3
, 1√

2

⎞
⎟⎟⎟⎠ (16.32)

but the recent determination of VPMNS in Eq. (16.21) is not close to the tri-bimaximal
form. On the other hand, the approximate form of VCKM takes the form

∼

⎛
⎜⎜⎝

1 0 0

0 1 0

0 0 1

⎞
⎟⎟⎠ (16.33)

which is consistent with the data given in Eq. (16.12).
The original 3× 3 neutrino mass matrix contained 18 parameters. It is diagonal-

ized to 3 parameters by 9 parameter matrix U(ν)†. Note that all 9 parameters can be
used since Eq. (16.31) does not cancel any phase unlike in the quark case. Out of 18
original parameters, there will remain 9 independent parameters which are counted
as 3 masses and 4 PMNS angles and two more. These two more are named as two
Majorana phases, say δN2 and δN3, which is usually written as a two parameter
diagonal matrix VMaj which has the real determinant for Eq. (16.2) to be applicable.
Thus, the full electroweak lepton currents are parametrized by

V lept = VPMNSVMaj, (16.34)

where

VMaj =
⎛
⎝e−i(δN2+δN3) 0 0

0 eiδN2 0
0 0 eiδN3

⎞
⎠ , (16.35)

which derives from the heavy neutrino masses of N1, N2, and N3 implied by Eq.
(16.29). These Majorana phases do not contribute to the Jarlskog triangle [See
Exercise 16.2]. The leptonic Jarlskog triangle for δT2K = 270o, viz. Eq. (16.21),
is shown in Fig. 16.4. In this case, the invariant CP phase is α�

KS, i.e. any leptonic
Jarlskog triangle contains the angle α�

KS.
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Table 16.1 Definition of
lepton numbers in Type-II
leptogeneses

�L Hu Hd hu,d N N

L +1 −2 +2 0 −1 +1

VEV × inert inert vew{sβ , cβ} × ×
We introduced an inert Higgs Hu carrying L = −2 with
zero VEV and singlet leptons N carrying L = +1

16.2.2 B andLGeneration

In the Universe, the global quantum numbers can be generated from the initially
vanishing global quantum numbers if Sakharov’s three conditions [23] are suitably
applicable. One condition is that there should be C and CP violation at the time
when the generation process is active. Here, the baryon (B) and lepton (L) number
generations are of our interest. Baryon number generation called baryogenesis was
initially studied in GUT models [24, 25] at the GUT time scale in the Universe
evolution, which was not favored because of the back reaction equilibratingB and B

at the GUT time scale. The nonequilibrium conditions in baryogenesis [26] triggered
by heavy particle decays were considered under the names, leptogenesis [27] and
Q genesis [28]. Especially, leptogenesis attracted a great deal of attention because
heavy neutrinos can be easily added in GUT models as shown in Eq. (16.23). Here,
the needed CP violation parameter is not the one in the SM, δPMNS, but those
arising from the heavy neutrino sector δN1 and δN2 . This idea of leptogenesis was
discussed extensively.6

But, there is a mechanism that the CP parameter of the electroweak scale
can contribute in some leptogenesis models. Type-II leptogenesis [30] introduces
more fields, especially scalar doublets which do not develop any VEV. Here, we
briefly comment on the Type-II leptogenesis since it introduces δMNS and also the
model incorporates all the needed conditions of the global number generation in the
Universe. In the example of Table 16.1 [31], the lepton numbers for several fields are
defined. We need an inert Higgs doubletHu carrying L = −2 and singlet leptons N
carrying L = +1. Anyway, the fields Hu,d and N introduced at high energy scale
are not visible at low-energy scale. The lepton number is violated at the high energy
scale by the heavy neutrino mass term. Let the lightest among the heavy neutrinos
be N0. For the lepton number generation, both L violation and CP violation are
needed. So, interactions conservingL are N0 �Lhu, N0 �LHu, N0 N0, HuHd, · · · ,
and interactions violating L are h∗uHu, N0 N0, N0N0, · · · . In Type-II leptogenesis
the needed L violation is given by spin-0 bosons.

In the decay scenarios, two decay channels are required and both L and CP
violation occurs on the left-hand side of the cut diagram,7 which is known as the
Nanopoulos–Weinberg theorem [32]. In Type-II leptogensis case, therefore, the

6See, for example, Fukugita and Yanagida [29].
7One can form a loop diagram by attaching (a)† on the right-hand sides of (b), (c), and (d). The cut
line is the line connecting two points attaching (a)†.
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Fig. 16.6 Feynman diagrams interfering in the N0 decay: (a) the effective tree diagram with
possible insertions of VEVs of the SM singlet fields Xn�j , (b) diagrams containing δMNS, (c)
the wave function renormalizable diagrams, and (d) the vertex diagrams. eiδ0 is a Majorana phase
of VMaj

same mother particle N0 has two decaying channels with different lepton numbers,
and the model satisfies the Nanopoulos–Weinberg theorem as shown by Fig. 16.6a
and b. For reference, we show diagrams of the Type-I leptogenesis [27] in Fig. 16.6a,
c, d [33].

How can we pinpoint that leptogenesis employs δMNS? Since leptogenesis uses
all the phases in V lept, it is virtually impossible if we do not have any information on
the Majorana phases δN2 and δN3 . If any independent phenomena proves that there
is at most one Majorana phase [34], then δPMNS must contribute to leptogenesis and
predicts that there are additional particles as suggested in Table 16.1.

16.2.3 Discrete Symmetries

The first example of discrete symmetries applied to the flavor problem was
permutation symmetry S3 by Pakvasa and Sugawara [35]. In the calculable solutions
of the strong CP problem, CP itself was used in most cases and S3 was also
used as discussed in Sect. 13.5.3 [36].

But, the main arena of applying discrete symmetries is in the flavor problem,
which started with the parameter θC and became popular in recent years in
explaining the PMNS matrix. The approximate form of the PMNS matrix as shown
in Eq. (16.32) questions for some discrete symmetries. On the other hand, the
approximate form of the CKM matrix as shown in Eq. (16.33) do not question such
a symmetry but proposes an expansion in terms of a small number [37].

The discrete symmetry can be Abelian or non-Abelian. Both are required to be
subgroups of continuous groups because we need a kind of discrete gauge symmetry
to avoid cosmological problems [38].

Typical Abelian discrete groups are Zn groups which are usually taken as
subgroups of U(1). Because the Cabibbo angle is about π

12 , the dodeca symmetry
was considered for the quark mixing matrix [39, 40] and extended for the lepton
mixing matrix [41].
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Most discrete symmetries studied for the flavor problem are non-Abelian, which
is extensively reviewed by a Japanese group [42,43]. The mother gauge group must
be non-Abelian, as SU(3) is the mother gauge group of �(3n2)8 and �(6n2) [45].
�(27) was used for the PMNS matrix [46, 47]. Most non-Abelian discrete groups
applied for neutrino mixing are subgroups of SU(3). The subgroup�(6n2) of SU(3)
contains the familiar S3 for n = 1 and S4 for n = 2. Before considering A4 ⊂ S4,
let us briefly list some references on dihedral groups Dn.

All Dn groups are non-Abelian apart from D1(Z2) and D2(Z2 × Z2). Group
theory of dihedral groups is discussed in [48] and D7 and D14 are applied to the
quark mixing in [49]. The number 14 can be roughly guessed from the magnitude
of π/θC � 13.8. But to fit to the PMNS matrix, much effort is needed. From a Z6−II
orbifold compactification, the discrete symmetry D4 is shown to be possible [50].
But such D4 cannot be obtained from Z12−I orbifold since it does not have a 180◦
or 90◦ rotation in a two-torus as one can see the number of fixed points discussed in
Chap. 5.

The use of permutation symmetry S3 [35] can be said “obvious” colloquially
in a sense because three families have the same gauge interactions. Nevertheless,
the representation of S3 does not contain 3, but 2 and 1. This fact is the basis of
S3 toward the bimaximal mixing of νμ and ντ [51, 52]. Except in the bimaximal
mixing in one column of the PMNS matrix, the other angles are not fixed with
S3. Somehow, representation 3 is needed to have a permutation symmetry of three
objects. S4 contains representation 3 and indeed it was used for neutrino masses
[53, 54]. To have a bimaximal part one has to massage the model. Permutation of 4
objects has 4! (=24) elements. If we use only half of these, namely by choosing only
cyclic permutations and discarding anti-cyclic permutations, we have 12 elements.
Recently, it was shown that A4 is predicted with three identical elements in the
PMNS matrix [55]. One may guess that this choice have one column to contain 2 to
realize the bimaximal mixing. Then, one column (say the 2nd) is exactly permutable
giving the identical numbers, and another column (say the 3rd) containing 2 is
exactly permutable with two identical numbers and one zero. Indeed, this half
elements of S4 was used in the Yukawa couplings and the potential to obtain tri-
bimaximal mixing [56, 57]. It can be identified with the group A4 which acts as
the discrete rotation of a regular tetrahedron in three space dimensions. A regular
tetrahedron ABCD is shown in Fig. 16.7. Changing vertices gives 4! ways. The
reflection over the facing plane gives another 24 which are identical to the original
set. So, these 24 can be distinguished by the order, i.e. cyclic ones and anti-cyclic
ones. One such anti-cyclic permutation is shown by the red color. Namely, half
of them has one definite cyclic property. These 12 elements with a definite cyclic
quantum number are the permutations defined by the double covering group A4.
Usefulness of A4 rather than S4 can be guessed from the maximally parity violating
interactions of the L-handed light neutrinos. Somehow the geometrical meaning of
the tetrahedron incodes the L-handed chirality of three light neutrinos. Of course,

8Mathematical techniques are discussed in Luhn et al. [44].
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Fig. 16.7 A regular
tetrahedron ABCD.
Reflecting only point A over
the plane BCD gives an
anti-cyclic shape A′CBD

we should include the effects of Higgs fields for the full interactions of neutrinos, but
the SM also obtains the maximally parity violating interactions from the effects of
Higgs fields. So, Higgs fields must be given with certain cyclic quantum numbers. In
this spirit, phenomenology on neutrino masses has been studied in nunerous papers
based on A4 symmetry [56, 58–66].

Related to the field theory orbifold of Chap. 5, Refs. [67,68] showed a possibility
that A4 appears as the remnant of the reduction from 6D to 4D spacetime symmetry.

To connect the PMNS matrix to the CKM matrix, there must be relations between
quarks and leptons. One obvious connection is the quark and lepton unification, i.e.
the A4 applications as performed in GUTs [59, 69, 70]. For this purpose, it is better
to take bases such that both the lower components of Eqs. (16.22) and (16.23) are
diagonalized, or vice versa, such that the currents coupled to W+

μ are given by

+ g2

2
√

2

(
ū0 c̄0 t̄0

)
L
γ μ(1+ γ5)

⎛
⎝d

s

b

⎞
⎠

L

W+
μ

+ g2

2
√

2

(
ν̄e ν̄μ ν̄τ

)
L
γ μ(1+ γ5)

⎛
⎝e

μ

τ

⎞
⎠

L

W+
μ , (16.36)
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which is the reason that we mixed the upper components of Eqs. (16.22) and (16.23).
In this bases, it was simple to count the number of independent variables as done in
the end of Sect. 16.2.1. Both in the anti-SU(5) and SU(5) GUTs, (e, μ, τ )T appears
in (51, 52, 53)

T and (ν̄e, ν̄μ, ν̄τ ) appears in (5̄1, 5̄2, 5̄3). Similarly, (d, s, b)T appears

in (101, 102, 103)
T

. The anti-SU(5) Yukawa couplings for the Qem = − 1
3 quarks

are of the form 10iC−1Y
(d)
ij 10j ·5Hd . For the Qem = −1 leptons, they are of the form

1̄iC−1Y
(d)
ij 5j · 5Hd where 1̄ contains e, μ, and τ . 5Hd containing the electroweak

doublet Higgs Hd gives mass to Qem = − 1
3 quarks and Qem = −1 leptons. We

chose that the mass matrices of these lower component fermions are diagonalized.
The Qem = + 2

3 quarks obtain mass by 5iC−1Y
(u)
ij 10j · 5Hu , and neutrinos obtain

mass by 10iC−1Y
(ν)
ij 10j · 5Hu5Hu

M2
GUT

10HGUT where 10HGUT breaks the anti-SU(5) down

to the SM gauge group. Since both neutrinos and u quarks are in 10i , basically
Y
(ν)
ij and Y

(u)
ij relate the PMNS and CKM matrices. Depending on the discrete

symmetries restricting Y
(ν)
ij and Y

(u)
ij , the way they are related is given.

In the literature, the so-called quark–lepton complementarity was suggested to
achieve the phenomenological relation [71, 72],

θsol + θC � 33o + 13o � π

4
, (16.37)

where θsol is the solar neutrino mixing angle between νe and νμ. As given in
Eq. (16.39), (16.40), VCKM is given by U(u)U(d)†, and VPMNS is given by U(ν)U(e)†,
leading to U(e) = U(ν)V

†
PMNS and U(d) = U(u)VCKM. Our GUT realation is U(d) =

U(e)†
both of which are diagonalized. The quark–lepton complementarity put an

ansatz VCKMVPMNS = U(u)†U(ν), and it is possible to obtain the relation (16.37).
In fact, our scheme of diagonalized U(d) and U(e) gives the same relation. Flavor
symmetries can be introduced in extended GUTs also. Recently, flavor matrices with
an A4 symmetry in an anti-SU(5) model have been studied [73] [More references
on Yukawa couplings in string theory can be found here].

16.2.4 Continuous Symmetries

Continuous horizontal (family) symmetries were also considered. For three families,
SU(3) and SO(3) can be considered. For SU(3) if gauged, one has to consider
anomalies in addition, which makes it tedious to work out and just we present a
relatively recent reference here [74] where the relation (16.37) was also discussed.
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16.3 Flavors from String Compactification

At the current stage of the SM, the most appealing theoretical issue is understanding
the flavor puzzle. Therefore, in this last chapter, we present several issues in the
flavor problem. In Sect. 16.1, we summarized the flavor data at some length and
presented the results in particular in the matrix forms so that a possible string
compactification can be compared to the quark and lepton flavor matrices presented
in Eqs. (16.12) and (16.21).

One flavor puzzle has been, “Why are there three quark and lepton families?”
This problem on the number of families is usually framed in GUTs in field theory
because a GUT introduces the same number of families in the quark and lepton
sectors. This issue has been discussed in Chap. 14. The condition for the number of
families is the absence of anomalies.

From string theory, the most advanced search obtaining three families is in the
orbifold compactification of the heterotic string E8×E′8. Chiefly because of the lack
of an adjoint representation of a GUT group at the level-1 construction, standard-
like models with three SM families have been looked for as discussed in detail in
Chap. 13.

For GUT groups from orbifold compactification, it has been noted that anti-
SU(5) GUT is promising because a kind of fundamental representations, the
antisymmetric tensors 10 and 10, can achieve spontaneous symmetry breaking of
SU(5)×U(1) down to the SM gauge group SU(3)×SU(2)×U(1). Distinguishing a
string SM from string GUT from experimental data will be very difficult. Even
if proton decay is observed in the future, one cannot pinpoint easily it to “O,
a GUT theory has shown up,” because the dimension-5 B violating operators in
SUSY SMs can trigger a similar proton decay rate also. If it is so difficult to
distinguish phenomenologically a GUT from the SM, how can we convince string
compactification has been realized?

As is the case in every issue for models with Planck scale string tension, string
compactification aims at best for a consistent framework toward the electroweak
SM. Maybe, one can go a step further than just obtaining three families. It is at
the place of reasonably fitting to the data presented in Eqs. (16.12) and (16.21). For
this purpose, three family GUT models are preferred because of smaller number of
Yukawa couplings in SUSY GUTs than in SUSY SMs.

The numbers which are useful for data fitting in string compactification are the
fundamental Yukawa coupling matrices, Y (u,d,ν,e) 0, shown in Eq. (16.5),

Y (u,d,ν,e) 0 = U(u,d,ν,e)Y (u,d,ν,e)V (u,d,ν,e) †, (16.38)

from which, using the L-hand matrices U(u,d,ν,e) only, the CKM and PMNS
matrices are obtained as shown in Eqs. (16.39) and (16.40). In our set-up,Qem = −1
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leptons andQem = − 1
3 quarks are taken as mass eigenstates. So, we take U(d,e) = 1

and V (d,e) = 1. In the same set-up, therefore, we have

U(u) = VCKM (16.39)

U(ν) = VPMNS, (16.40)

and

Y (u) 0 = VCKMY (u)V (u) †, (16.41)

Y (ν) 0 = VPMNSY
(ν)V (ν) †, (16.42)

where Y (u) and Y (ν) are proportional to the mass eigenvalues. In the NH for
neutrinos, therefore, we take Y (u), Y

(ν)
NH, and Y

(ν)
IH as

M 2
3
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0, 0,
mν3
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⎞
⎟⎠ . (16.43)

Now, there is a freedom to write R-hand unitary matrices V (u) and V (ν). It is the
problem of matching which R-handed fields are matched to which L-handed fields.
In the standard-like models, there are too many possibilities. Even in the anti-SU(5)
GUT, there are several possibilities. The common scenario is

ucL, ccL, tcL

↓ ↓ ↓ (16.44)

dL, sL, bL

in which case we can write V (u) = 1. A similar consideration applies to V (ν) also.
For Y (u) given in Eq. (16.43), we have the following Y (u) 0 to be determined at

the compactification scale [12],

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1.216+0.276
−0.146 · 10−5 , (1.647± 0.028) · 10−3 , (2.500± 0.925) · 10−2

−2.722+0.620
−0.332 · 10−6 ,

+(6.866± 0.154) · 10−3

+(2.102± 0.596) · 10−4 e−iα,
+(0.104± 0.003)

−i(0.257± 0.0552) e−iα

−(7.291+2.526
−0.425) · 10−7 eiα,

−(7.848± 0.239) · 10−4

+(1.839± 0.385) · 10−3 eiα,

+(0.9600± 0.0171)

+(0.0028± 0.0010) eiα

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(16.45)

where α = αKS.
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16.4 CP Violation from String

All couplings of 4D effective fields after compactification are determined by giving
VEVs to all the moduli fields. Therefore, 4D couplings are generated spontaneously.
In this sense, symmetry breaking can be of spontaneous in origin. However, it is
proper to define the coupling constants first and talk about spontaneous symmetry
breaking. This is achieved only after inserting the VEVs of moduli fields.

In Ref. [75], it has been shown that four dimensional CP can be a discrete
gauge symmetry in theories with dimensional compactification, if the original
number of Minkowski dimensions equals 8k+1, 8k+2, or 8k+3, with the condition
of inner automorphism. Among Lie groups, this condition is satisfied only for E8,
E7, SO(2n+ 1), SO(4n), Sp(2n), G2, and F4.

The superstring dimension 10D belongs here. Anyway, if CP turns out to be
a discrete symmetry from string compactification, it must be a consistent discrete
symmetry, i.e. the discrete gauge symmetry included, without a need to resort to
Ref. [75].

� Exercise 16.1 Without using the quarks, such as Eq. (16.3), show that there is no
strangeness changing neutral current effects with Cabibbo’s original idea but with
SU(4) currents.

� Exercise 16.2 Using the KS form for the CKM matrix, Eq. (16.24), prove that
any Jarlskog triangle in the quark sector has one angle as δCKM.

� Exercise 16.3 Show that the MNS matrix V lept of Eq. (16.35) gives the same
Jarlskog determinant as in the case with no Majorana phases,

J = 1

8
sin 2*1 sin 2*2 sin 2*3 sin*1 sin δMNS. (16.46)

� Exercise 16.4 Obtain the matrix given in Eq. (16.20), using the angles given in
Eq. (16.21) for *̄2 = 30.9o.

� Exercise 16.5 List the other possibilites, beyond (16.44), of matching R-handed
quarks to L-handed quarks.
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17Other Constructions

In this book, we emphasized the chiral nature of the SM. The orbifold construction
has been discussed toward obtaining three family models from the E8×E8 heterotic
string. But there are other methods also for obtaining 4D string models. Among
these, we review very briefly on the fermionic construction and the intersecting
brane setup. Since obtaining three families is one of the most important objectives
going beyond 4D, we discuss three other constructions, fermionic construction,
intersecting brane models, and F-theory, up to the point of introducing the possibility
for three families as the first step to realistic model buildings.

17.1 Fermionic Construction

We focused on the bosonic description so far. On the other hand, there exists
an equivalent fermionic description: in two dimensions, two (anti)holomorphic
Majorana–Weyl (MW) fermions, λ1(z) and λ2(z), are equivalent to one periodic,
(anti)holomorphic boson ∂X(z). Since the observed spacetime is four, we may
compact all the other dimensions on torus and treat all the field democratically. The
resulting fermions are 44(= 2 ·(26−4)) left movers. The right mover is superstring,
so for each dimension, we have one holomorphic boson and one MW fermion, or
equivalent, three MW fermions, so that there are 18(= 3 · (10− 4)) right movers.

With the critical radius
√
α′, the symmetry is enhanced to

SO(44)×U(1)6.

In the right mover, we cannot make the self-dual lattice or modular invariant
partition function, so at best we may have U(1)6. Note that fermions in the
noncompact dimensions should be considered as well.

We may regard the orbifolding as simply assigning nontrivial boundary condi-
tions. In this context, the E8 × E8 heterotic string in 10D is the first example of
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fermionic construction: we partitioned 32 fermions into two sets of 16 fermions
each and assigned different boundary conditions. That was the only way of modular
invariant sets with 32 fermions. With more and more fermions, the number of
possibility grows in a geometrical progression.

17.1.1 Rules

Conventionally we define the twist vector W = (wi) as wi = 1 − Vi , where Vi is
the shift vector as before

λi(2π) = eπi(1−wi)λi(0). (17.1)

The fermions are Majorana–Weyl thus assumes wi = 1 or 0 only, corresponding to
Ramond (R) or Neveu–Schwarz (NS) sector, respectively. We will later complexify
them and generalize the boundary condition. Now we have vectors with 20 + 44
entries and name the twisted sector with them. We divide the vector using a bar;
The standard convention is to place the right mover boundary conditions on the left
side of the bar,

(w1 w2 · · · w20|w̃1 w̃2 · · · w̃44). (17.2)

The nontrivial restrictions are the GSO projection and the modular invariance.
These conditions are extracted in a most straightforward way from the partition
function [1–3]. We just present the rules in their simplest forms [4] and explain their
origins:

1. Modular invariance: For two sectors specified by the twist vectors W1 and W2,
then there must exist a sector specified by

W1 +W2. (17.3)

We define the sum modulo 2 by the periodicity of wi as in (17.1), thus 1 +
1 = 0. This seems contradictory, since two successive peroidic (R) boundary
condition give antiperiodic (NS) one. However, this take into account of the spin
structure considered in Sect. 6.2.3: the extra phase eπi is needed for the periodic
(R) boundary condition in the τ direction.

In addition, like the untwisted sector discussed in Chap. 5, we require that
there exist a trivial sector, or an untwisted sector, where all the fermions are
subject to the NS or the R boundary condition,

(020|044), (120|144). (17.4)
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The former is redundant because the vector

W0 = (120|144) (17.5)

gives rise to it by the condition (17.3).
2. GSO projection: The Gliozzi–Scherk–Olive (GSO) projection projects out half

of the spinors of definite chirality. Before orbifolding it is defined by (6.146),
(6.154). Now in the presence of many shift vectors, we have an additional rule: if
there are the coinciding Ramond boundary conditions “1” between two sectors,
in each sector we just project out half of the corresponding spinors. Which half
we project out is our freedom of choice. In the literature, it is called the choice of
correlation coefficient of the GSO projection. We will show this in the following
examples.

3. Triplet constraint: For the right movers, the fermionic worldsheet energy-
momentum tensor is

TF = 2i
2∑

μ=1

ψμ∂z̄X
i + i

6∑
i=1

λi1λ
i
2λ

i
3. (17.6)

The first term comes from the noncompact two dimensions in the light-cone
gauge and the second term comes from the compact six dimensions. Thus we
partition 20 right moving fermions as

{(ψ1ψ2) (λ1
1λ

1
2λ

1
3) · · · (λ6

1λ
6
2λ

6
3)}. (17.7)

It is consistent only when every term in (17.6) has the same boundary condition.
So,

wμ = wi
1 +wi

2 +wi
3, mod 2 (17.8)

for each μ = 1, 2 and i = 1, . . . , 6. Here, wμ is the boundary conditions for the
ψμ, and wi

j ’s are those of λij .
In the symmetric orbifold, we assign the same boundary condition on the

corresponding left movers λ̃ij .

The spectrum is obtained from the mass shell condition

M2
L = Ñ− c̃ = 0, (17.9)

M2
R = N− c = 0, (17.10)
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with the zero point energies c̃ and c are calculated from (7.14). Note that the sign is
the opposite of that of the boson given in Eq. (7.14). We have contribution− 1

48 and
1

24 from the entries of 0 and 1, respectively.

17.1.2 Models

Original E8 × E8 Heterotic String
As an example, we first treat the original ten dimensional E8 × E8 heterotic string.
W0 is always present. We specify two vectors, W1 and W2,

W0 = (18|132)

W1 = (18|032) (17.11)

W2 = (08|116016).

We have 23 = 8 twisted sectors in total. The W1 and 2Wi ≡ Wi +Wi = (08|032)

sectors have the same left movers, which is our primary interest. Its zero point
energy is −1 = − 1

24 · 8 + (− 1
48 ) · 32 from the left sector only. When combined

with the right movers, we have the adjoint (120, 1)⊕ (1, 120) of SO(16)×SO(16),

λ̃i−1/2λ̃
j

−1/2|0〉, i, j = 1, . . . , 16, or i, j = 17, . . . , 32,

and in addition the conventional graviton, dilation, and antisymmetric tensor fields.
We have no crossed sectors such as the set one from i = 1, . . . , 16, and the
other from j = 17, . . . , 32, because the original GSO projection (6.146) before
orbifolding. Adding W1 to each sector, we have superpartners because of the change
in the right mover boundary conditions.

In the W2 sector, we have the zero point energy 0 = − 1
24 · 8+ 1

48 · 16. The states
are constructed by successive applications of creation operators of the form

|si〉, i = 1, . . . , 8,

where the spinorial s is generated by λ̃i0. They seem to be spinorial of dimension 28.
However, this W2 has a Ramond overlap with W0 (some entries have the common
1s), thus half the states are projected out. We have (128, 1). For the W0 +W1 +W2
sector, we obtain (1, 128) in a similar manner. As we know, these representations
(120, 1), (128, 1), (1, 120), and (1, 128) are not separable and we have an enhanced
gauge symmetry with the adjoint 248s. Namely, the gauge group is E8 × E8.
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Flipped SU(5) Model
As an example, let us consider the flipped SU(5) model of [3], the so-called
revamped version. They are the nine vectors 1, S, ζ, b1, b2, b3, b4, b5, and α with
one constraint.1 Let us start the discussion with the following three vectors:

1 =
(
(12)(16)(112)|(116)(112)(116)

)

S =
(
(12)(16)(012)|(016)(012)(016)

)

ζ =
(
(02)(06)(012)|(016)(012)(116)

)
.

This is essentially the same as (17.11). Focusing on the left movers, the only
difference from the 10D example is that in 4D we have twelve more entries. We
interpret that the first and the last 16 entries are going to describe E8 × E8. The
12 entries in the middle are interpreted as compactification of six dimensions,
equivalent to 12 fermionic degrees of freedom. Thus we may interpret this piece
as orbifolding. The S sector2 just provide the superpartners, as W1 did in the
10D example. The ζ sector has zero point energy 0, as W2 did in 10D, providing
(1, 128) of SO(28)×SO(16). The untwisted sector has the zero point energy −1
providing (378, 1) and (1, 120). These together make up the adjoint representations
of SO(28)×E8. Note that we have an enhanced gauge group

SO(28)× E8 × U(1)6

by taking the critical radii R = √α′.
Now introduce more vectors to break the group

b1 =
(
(12)(120202)(140404)|(110)(120202)(140404)(016)

)

b2 =
(
(12)(021202)(041404)|(110)(021202)(041404)(016)

)

b3 =
(
(12)(020212)(040414)|(110)(020212)(040414)(016)

)
,

1For comparison, we follow the names of fields used in [3]
(
(χμ)(χ1y1ω1 · · ·χ6)(y1 · · ·y6ω1 · · ·ω6)|(ψ̄1 · · · ψ̄5η̄1 · · · η̄3)(ȳ1 · · · ȳ6ω̄1 · · · ω̄6)(φ̄1 · · · φ̄8)

)
.

The fields χ, χ̄ , y, ȳ, ω, and ω̄ are real fields and the η̄, ψ̄, and ψ̄ are complex fields counted up
to 20 for the right movers and up to 44 for the left movers.
2It should be the S boundary condition, but “sector” is used here to follow the terminology in the
fermionic construction.
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where we used bold-faced numbers for the middle 12 entries corresponding to the
left mover boundary conditions. Conditions b1, b2, and b3 have a cyclic symmetry
and note that every right mover has the same 12 components with the corresponding
left mover entries. This corresponds to a symmetric orbifold. Note that there exists a
relation ζ = b1+b2+b3+1, thus there will be eight sectors instead of nine. We may
not need ζ any more, but its explicit form simplifies the discussion. Only bi + bj
and 1+ bi + bj sectors, with (i �= j , thus six in total), have non-positive zero point
energy c̃ = −1 and 0, respectively, and hence a possibility for massless spectra. In
fact, we can check by considering λi−1/2 and λ

j
−1/2 that the group is broken to

SO(10)× SO(6)3 × E8 ×U(1)6.

Considering the matter spectrum, we have three equivalent sectors b1, b2, and b3.
In each sector, there are (25, 23) = (32, 8) states, (16, 4)+(16, 4̄) +(16, 4)+(16, 4̄).
Combined with right movers, half of them are the CPT conjugate the other half.
Thus we have the spectrum

(16, 4)+ (16, 4̄).

Similarly the right movers have 24 multiplets, yet we count only half of them
because a complete Weyl fermion is made of two helicity states. We see that each
bi , due to the nonvanishing 12 in the middle bracket, reduces the number the half
and, at the same time, breaks half of the supersymmetries. However, only two of
them among three bi are independent directions, leading to N = 4 · 1

2 · 1
2 = 1

supersymmetry and 2 multiplet. We have two (16, 4)+ (16, 4̄)s in each b1, b2, and
b3 sector, thus we have total 48 generations (16s) of SO(10).

We have geometric interpretation: we can check that in the 12 component
orbifold section (=the bold-faced ones) in the left movers, each bi corresponds to
a Z2 orbifold action. The b3 and b1 action correspond to

θ = 1
2 (1 1 0), ω = 1

2 (0 1 1), (17.12)

respectively.3 Here, b2 is generated by the other two, θω = 1
2 (1 0 1): we have a

Z2 × Z2 symmetry. The important thing to note is that we have the family number
as a multiple of three because of the triple symmetries in exchanging bi’s. Basically,
this can be interpreted as three fixed points of ω, θ, ωθ . In view of the forms b1, b2,
and b3, 6 real dimensions are split in such a way that they are grouped into three
by complexifying them and furthermore they should give only three fixed points.
Then, the number of families is a multiple of three. Here, the number of complex
compact dimensions appears as 1

2 · 6 = 3. Still we have not obtained three families

3The (1, 1, 0) corresponds to a Z2 orbifold in the 4–5 and 6–7 tori and (0, 1, 1) corresponds to
another Z2 orbifold in the 6–7 and 8–9 tori, as discussed in Chap. 5.
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yet. This set b1, b2, and b3 is called the NAHE set [3]. So far the NAHE set respects
the Z2 × Z2 symmetry.

We proceed to introduce more vectors to have a realistic model,

b4 =
(
(12)(120202)(110010001000)|(110)(120202)(110010001000)(016)

)

b5 =
(
(12)(021202)(100011000100)|(110)(021202)(100011000100)(016)

)

α =
(
(12)(020202)(100000100000)|( 1

2
10
)( 1

2
2 1

2
2 1

2
2
)(100000100000)( 1

2
8
1404)

)
.

Here, we consider more general boundary conditions. We can complexify a pair
of fermions as λ̃I+ = λ̃2I−1+ iλ̃2I and consider more general boundary conditions,

λ̃I+ → e2πiVI λ̃I+ (17.13)

with the 16 component vector V . Conditions b4 and b5 give rise to Higgs bosons
and the last shift α breaks SO(10) down to the flipped SU(5). But, we can see that
the Z2 × Z2 symmetry is not present anymore. Note that the right movers have the
same form as before, and hence do not touch upon the N = 1 supersymmetry.
But the other right moving entries are different, reducing the number of generations
down from 48 to 6. However, there is an independent GSO projection provided
by 2α which also reduce the number of generations by two, thus we have three
generations.

The final gauge group contains flipped SU(5):

[SU(5)× U(1)] × U(1)4 × SO(10)× SO(6).

The rank is reduced by 2, by the shift α. Now the spectrum contains complete
families 1 + 5 + 10, and 1̄ + 5 + 10. By a GSO projection, we keep 1 + 5 + 10
so that they form a flipped SU(5) spectrum. It has been shown that the spectrum
1 + 5 + 10 has the U(1) charge ratio 5 : −3 : 1 of the flipped SU(5) [3]. A
flipped SU(5) model can be broken down to the SM by VEVs of 10H and 10H.
The Higgs fields 10H + 10H needed for the GUT breaking and 5H + 5H needed
for the electroweak symmetry breaking are also present. This model, however, has
a U(1) and hence there appear exotic multiplets (singlets and 10 of different SO(10)
and 4, 6, etc.) with unfamiliar U(1) charges. Of course, the extra U(1)’s beyond the
U(1) in the flipped SU(5) may be required to be broken. One such example, the
Fayet–Illiopoulos mechanism with the anomalous U(1) was discussed in Chap. 9.

In this kind of compactification, 44 fermions are equal, and we are not obliged
to use the same twisting to both left and right movers. Then, we have the fermionic
version of the asymmetric orbifold.
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17.2 Intersecting Branes

In Sect. 6.4 we studied that open strings can describe non-Abelian gauge theory. We
can assign non-Abelian charge at both ends of the open string, or in T -dual space
they become the locations of the D-branes.

If we make a stack of D-branes with n slices, on the worldvolume where the
brane stacks are located, we have U(n) gauge theory. The resulting low-energy fields
belong to an adjoint representation, transforming like n×n = (n2−1)+1 of U(n).

We can consider two parallel stacks of branes. For instance, if the two stacks
contain n1 and n2 slices of branes, they, respectively, support U(n1) and U(n2)

gauge group. An open string stretched between the two stacks have now bifunda-
mental representation (n1,n2). The mass of the lightest mode is proportional to the
interval length. If the two stacks come close and become coincident, we have gauge
symmetry enhancement

U(n1 + n2)↔ U(n1)×U(n2). (17.14)

The opposite process is also possible and it is nothing but the Higgs mechanism.
It is interesting to note that, if we only consider the non-Abelian group SU(3)c×

SU(2)L, all the Standard Model fields (2.7) are bifundamental. For quarks and
leptons, however, we need chiral representations. If two stacks are intersecting at
angles, we can obtain chiral fermion [5]. The string stretched between the two are
localized at the intersecting point to minimize the energy. Quantization gives the
massless chiral fermions of bifundamental (n1,n2).

In Fig. 17.1, we can construct a stacks of branes giving rise to the fields with
the SM quantum numbers. There we have four U(n) gauge groups. Since the U(1)
factors decouple as U(n) = U(1) × SU(n), the U(1) charges for matter fields
are provided by some linear combinations these. If the SM fields were charged

Fig. 17.1 Example for a
standard-like model
configuration
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under more than two non-Abelian groups, we cannot make an intersecting brane
model, contrary to the case in heterotic string models. It follows from a simple
observation that a non-Abelian horizontal (family) symmetry cannot be introduced
from intersecting brane models since one cannot introduce an additional set of
branes intersecting at the same intersection.

Now, to have our 4D we need to compactify six dimensions. In a typical realistic
setup, we compactify six dimension as before and consider 3-cycle [πA] on which
D6-brane stacks wrap. With some nontrivial cycle, we can make more than one
intersection points. Decomposing six torus as T 2 × T 2 × T 2 and denoting the
wrapping number

[πA] =
3∏

a=1

(laA,m
a
A) (17.15)

along each unit direction a, b of the ith 2-torus, we have the intersection number

IAB =
3∏

a=1

(laAm
a
B −ma

Al
a
B). (17.16)

For instance, three intersection points can explain three families, because the
same fermions appear as many times. An example is shown in Fig. 17.2. Like in the
heterotic string on orbifold, this also has the same merit: the distance explains the
hierarchy between Yukawa interactions. The more distant the intersection points are
separated, the more (exponentially) suppressed the interaction between them.

Ramond–Ramond Tadpole Cancellation
We can do bottom-up construction of the model as long as the global consistency
condition is satisfied. Recall that in the heterotic string the consistency condition
came from the modular invariance of one-loop amplitude, which gives no divergence
in the triangle diagram in four dimensions. In the open string, a potential divergence
lies in the RR tadpole diagram. For vanishing divergence, the sum of the RR charge
should be cancelled in the transverse compact dimension to the cycle. The condition
is [6]

∑
A

nA[πA] = 0. (17.17)

It is obtained from the consistency condition of equations of motion. Physically, it
is understood in terms of the (RR) charge conservation in the compact space. In the
open string, the corresponding diagram is sum of cylinder and its modifications by
unorientation [7].

With D-branes only, it is hard to cancel the RR charges. We can use anti-D-
branes which are D-branes wrapped on the same cycle with the opposite orientations



508 17 Other Constructions

Fig. 17.2 Two one-cycles
with wrapping numbers (1, 1)
and (1,−2). The intersection
number 1 · 1− 1 · (−2) = 3
accounts for the number of
families

and have the opposite RR charge; however, the brane then attract each other,
destined to be annihilated. They also break the desired supersymmetry, as seen
from (6.262).The cure can come from the introduction of orientifold. Consider the
worldsheet orientation reversal in (6.266). Indeed this operation interchanges the
left and right mover. In the T -dual coordinate X′ = X′L(τ + σ)− X′R(τ − σ), this
operation accompanies a spacetime Z2 reflection

R : X′ → −X′, (17.18)

(and technically also adds a G-parity action (−1)F in (6.142) with right movers).
As a result, the dual direction is now a S/Z2 orbifold. We count only D-branes in
the fundamental region, or interval. For instance, to have a bifundamental (n1,n2),
we need two stacks of branes n1 and n2 in the fundamental region. Also due to
the �R(−1)F identification “reflect” the situation in the fundamental domain with
respect to the fixed point. So, if we have a stack of brain in the interval, we also
have a mirror stack at the reflected point. This gives rise to a new open string
ending between the original stack and the mirror stack. Since the two stacks have the
opposite orientation, the low-energy field carries the bifundamental charge (n1,n2)

not anti-fundamental. We say that there is an orientifold plane, or Op-plane at
the fixed point, as shown in Fig. 17.3. If an open string connects between one
stack and its mirror stack, the resulting field has both symmetric and antisymmetric
representation. Thus, if an n stack of branes are placed at the orientifold plane, the
resulting gauge theory becomes SO(2n).

Like D-branes, the orientifold is charged under NSNS and RR. We can calculate
the brane tension by the amplitude of closed string exchange between the orientifold
and the D-brane or between D-brane and mirror brane. The resulting tension is

T O
p = ±2p−5T D

p . (17.19)

When we compactify one dimension, the worldsheet parity Z2 induces two fixed
points as discussed in Chap. 3, thus we have a double O(p−1)s. So, for every p, we
always need 16 D-branes to cancel the RR charges of orientifolds. The nonvanishing
sum of NSNS charges simply implies the time dependent dynamics.
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Fig. 17.3 Orientifold plane (center, dotted) and mirror branes

The RR charge cancellation leads to the anomaly cancellation in the low-energy
theory. For example, SU(nA)3 anomaly is proportional to the number of nA minus
number of nA, hence proportional to

∑
B

IABnB = [πA] ·
∑
B

nB[πB] = 0

coming from the above condition (17.17). Generically, the rest of anomalies such
as U(1)3 or SU(na)2×U(1) are not cancelled in the same way because like in the
heterotic string case there are potential anomalous U(1)s. They are cancelled by a
generalized Green–Schwarz mechanism, here the antisymmetric tensors responsible
for axions are provided by the RR tensor fields in the compact space. There are more
than one such anomalous U(1)s.

Supersymmetry
We comment that the supersymmetry condition [5] is the same with that of the
heterotic string on orbifold (3.73). Here the condition is parametrized by three
angles φi , tilted angle from the unit direction in each ith two-torus. This tilts the
brane and the supersymmetry generator as

Q̃+ RPR−1Q (17.20)

with the eigenvalues of R being e2πiφi . The unbroken symmetry is the common
intersection P = RPR−1. The condition reduces to the invariant part of Q under
R2, in the spinorial representation s

s · 2φ = 0 (17.21)
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for at least one combination of s = ([ 1
2

4]) with even numbers of minus sign. For
example, taking a basis s = ( 1

2
1
2

1
2

1
2 ),

φ1 + φ2 + φ3 = 0

We can rewrite this in terms of radii Ri of six-torus and three cycle numbers

arctan
R2m1

R1l1
+ arctan

R4m2

R3l2
+ arctan

R6m3

R5l3
= 0. (17.22)

The merit of non-supersymmetric model is that we can interpret the Higgs field
as tachyon. It signals instability and triggers geometric transition to the setup of
lower energy which typically has smaller gauge symmetry. This is interpreted as the
tachyon condensation or the brane recombination. There is no hierarchy problem
since the Yang–Mills field coupling can be arbitrarily lowered by adjusting the
compactification size

M2
Plg

2
YM =

M
11−p
s VX

gs

with VX being the volume of the space spanned by 3-cycle. However, it suffers
another hierarchy problem because of the size VX.

Instead of torus, we can use the Calabi–Yau manifold. Locally the SUSY
condition is essentially the same and we have SUSY preserving cycle called special
Lagrangian cycle.

17.2.1 Models

First, we discuss the simple non-supersymmetric model given in Ref. [6]. It is bases
on Type IIA string theory compactified on T 6. We have four stacks of D6 branes as
given in Table 17.1. With Relation (17.16), we also have the intersection number I
giving the number of families. The resulting spectrum is shown in Table 17.2. With
a number of intersecting branes, we have the gauge group,

U(3)a ×U(2)b ×U(1)c × U(1)d.

Table 17.1 An example of
D6-brane, Ref. [6], with
wrapping numbers giving a
SM spectrum

Stack A # slices (l1A,m
1
A) (l2A,m

2
A) (l3A,m

3
A)

a 3 (1, 0) (2, 1) (1, 1/2)

b 2 (0,−1) (1, 0) (1, 3/2)

c 1 (1, 3) (1, 0) (0, 1)

d 1 (1, 0) (0,−1) (1, 3/2)
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Table 17.2 The standard model spectrum of Table 17.1 and their U(1) charges

Intersection I Matter Qa Qb Qc Qd Y

(ab) 1 qL (3, 2) 1 −1 0 0 1/6

(ab*) 2 qL 2(3, 2) 1 1 0 0 1/6

(ac) −3 uR 3(3, 1) −1 0 1 0 −2/3

(ac*) −3 dR 3(3, 1) −1 0 −1 0 1/3

(bd*) −3 lL 3(1, 2) 0 −1 0 −1 −1/2

(cd) −3 eR 3(1, 1) 0 0 −1 1 1

(cd*) 3 nR 3(1, 1) 0 0 1 1 0

The intersection bd has vanishing intersection number

To cancel the total RR charges, O6 orientifold planes are introduced. Because of this
O6, we have mirror branes for which we use a star(*). They sit at the mirror image
points of the original branes, and are complex conjugate representations. Compare
(ab) intersection with (ab*).

With the U(1) charge assignments of Table 17.2, we can interpret Qa,Qb,Qc,

Qd as the baryon number, the lepton number, the right-handed isospin, and a Pecci–
Quinn type charge, respectively. This is a generic feature because, for example,
the U(1) from the strong interaction group U(3) = U(1) × SU(3) must be
a significant contributor to the baryon number symmetry U(1)B , because only
strongly interacting quarks are transforming nontrivially under the strong gauge
group. The lepton number in the above model is conserved, so Majorana type
neutrino masses are not possible, and hence a seesaw mechanism is not allowed.
Such U(1) symmetries are local, and a potential anomaly is cancelled by the GS
mechanism. The corresponding gauge bosons become massive but the symmetries
still persists as global symmetries, which suppress rapid proton decay. The non-
anomalous hypercharge generator is

Y = 1

6
Qa − 1

2
Qc + 1

2
Qd.

Instead of torus, we may use orbifold to obtain more realistic models. For
instance, we may introduce T 6/ZN or T 6/(ZN × ZM) orbifold. As in the heterotic
string case, the supersymmetry is broken by holonomy. D-branes and orientifolds
can break further supersymmety, but a judicious choice can break only half of the
supersymmetry yielding N = 1 in four dimensions. There are three-generation
models in Refs. [8–11].

17.3 Magnetized Brane

So far we have obtained chirality by projecting out chiral component of a fermion.
There is another way to obtain chirality on flat geometry. Under constant magnetic
flux background the solution to Dirac equation selects one chirality [12, 13].
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Consider a gauge U(n) gauge field AM on torus T 2 having the coordinates x5, x6.
We may turn on a constant magnetic flux

F45 = f = const.

We have freedom to fix the gauge as

A5 = 0, A6 = f 1nx4. (17.23)

This background does not break Lorentz symmetry in four dimensions. The
expectation value for A6 is non-constant but linearly grow with x5. At first sight
it seems not preserve the periodicity of the torus x5 ∼ x5 + e5. However, we only
need to have periodicity up to the global symmetry. In fact the consistency condition
requires (5.106) [12, 13]

1

2π

∮
dx trA = 1

2π

∫
T 2

d2x tr f 1n = integer. (17.24)

Thus the magnetic flux is quantized. So we may take f = m/n with an integer m.
The background

F45

2π
=

(
m1
n1

1n1 0

0 m2
n2

1n2

)
, (17.25)

breaks U(n) down to U(n1) × U(n2). It is convenient to define an “intersection
number”

I = m1n2 −m2n1, Ĩ = I/(n1n2). (17.26)

We reduce the six dimensional gauginos as

λ(xμ, y) =
∑

λ(n)(x)⊗ χ(n)(y). (17.27)

Here λ(n) are four component spinors and χ(n)(y) are two component spinors

χ(y) =
(
χ+(y)
χ−(y)

)
. (17.28)

From now on we focus on zero modes n = 0 and suppress the index.
The gamma matrix along these directions are

4 = 14 ⊗ σ 1, 5 = 14 ⊗ σ 2. (17.29)
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They are further decomposed into the blocks in the group space

χ±(y) =
(
χ11± (y) χ12± (y)

χ21± (y) χ22± (y)

)
(17.30)

in the sense of (17.25). The fields χ11± and χ22± transform as adjoint representations
of the unbroken gauge group U(n1) × U(n2). Then χ12± and χ21± correspond to bi-
fundamental matter fields, (n1,n2) and (n1,n2).

The Dirac equations for the gaugino zero modes are obtained as

⎛
⎝ ∂χ11+ [∂ + 2πĨx5]χ12+

[∂ + 2πĨx4]χ21+ ∂χ22+

⎞
⎠ = 0, (17.31)

⎛
⎝ ∂̄χ11− [∂̄ − 2πĨx5]χ12−

[∂̄ − 2πĨx4]χ21− ∂̄χ22−

⎞
⎠ = 0, (17.32)

where ∂ = ∂5 + i∂6 and ∂ = ∂5 − i∂6.
For I > 0, the solutions χ12+ and χ21− have normalizable zero modes, while χ12−

and χ21+ do not. The normalizable wave function is obtained as [14]

*j(x5, x6) = Nje
−Mπy2

5ϑ
[
j/I
0

]
(iI | I (x5 + ix6)), j = 0, 1, · · · , I − 1,

(17.33)

where Nj is a normalization constant. It is convenient to extended Jacobi theta
function by replacing β with ν + β as

ϑ
[
α
β

]
(ν|τ ) ≡ ϑ

[
α

ν + β

]
(τ ). (17.34)

It has similar transformation property

T : ϑ
[
α
β

]
(ν|τ + 1) = eiπ(α

2−α)ϑ
[
α
α+β−1/2

]
(ν|τ ), (17.35)

S : ϑ
[
α
β

](
ν

τ

∣∣∣∣−1

τ

)
= √−iτe2πi(ν2/2τ+αβ)ϑ

[
β
−α

]
(ν|τ ). (17.36)

Under transformation of argument ν

ϑ
[
α
β

]
(ν + 1|τ ) = e2πiαϑ

[
α
β

]
(ν|τ ) (17.37)

ϑ
[
α
β

]
(ν + τ |τ ) = e−2πi(β+ν+τ/2)ϑ

[
α
β

]
(ν|τ ). (17.38)
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In dealing with shift vectors, it is convenient to use

ϑ
[
α+1
β

]
(ν|τ ) = ϑ

[
α
β

]
(ν|τ ) (17.39)

ϑ
[
α
β+1

]
(ν|τ ) = e2πiαϑ

[
α
β

]
(ν|τ ). (17.40)

They are easily read off from the sum and the product definitions, respectively.
Conversely, when I < 0, χ12− and χ21+ become exclusively normalizable zero

modes. In both cases the number of normalizable zero modes is |I |. We obtain chiral
theory. In this way can obtain three generalization of bifundamentals if we turn on
magnetic flux such that I = 3. We have definite chirality depending on the sign of
I . Later we will see that this is dual to intersecting brane models, which we discuss
in Sect. 17.2, and it shares many interesting feature like the chirality and the number
of zero modes.

We may generalize this in two ways. First, we may consider breaking U(n) into
more than two gauge groups. The discussion applies the same if we consider a
2× 2 block diagonal matrices. Interestingly all the SM fermions are bifundamental
under the non-Abelian gauge group. They may have nontrivial U(1) charges and
we can obtain desired hypercharge. Also we can generalize it to higher dimensions.
The discussion also applies if we consider each two-torus separately. The number
of generations I is now multiplied as I45I67I89 where the subscripts denote the
two-torus directions. Combining this, we may turn on a nontrivial flux that is not
magnetic flux. We may start from type I string with SO(32) and turn on magnetic
fluxes to obtain this.

We may have F ∧ F which is not decomposed into F . This is the instanton
solution and its generalization that we discuss in Chap. 15.

17.4 F-theory

Finally, we introduce the most unified framework describing the open and closed
strings at the same time. Recall that the open string description nicely describes the
bifundamental quantum numbers. However, closed string theory nicely described
the unification structure using the En series of GUT groups.

We have seen a strange coincidence that the Narain lattice in eight dimensions

16 × 16 × 1,1 × 1,1 × 1,1

and the intersection matrix of the harmonic two forms in (15.31) are the same. This
can be nicely explained by M-theory and F-theory we discuss here.

While in the heterotic side we have extra left-moving worldsheet fields for the
current algebra taking into account the non-Abelian gauge theory, we have no extra
degrees of freedom on the other side. The secret is that the compact K3 in each has
singular geometry. Wrapped string/M2/D3 on the A,D,E singularity gives rise to
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massless gauge fields whose quantum number has same connected structure of the
singularity.

Recall the field contents of IIB supergravity: there are RR tensor fields
C0, C2, C4 of ranks 0, 2, 4, respectively, as well as dilaton φ and NSNS tensor
field B. In particular the rank 4 field is self-Hodge-dual in ten dimensions. Recall
that the C0 is a pseudoscalar and the expectation value of eφ gives the open string
coupling. We may complexify them as

τ ≡ C0 + ie−φ. (17.41)

The action has SL(2,R) symmetry

τ → aτ + b

cτ + d
, (17.42)

(
H

F

)
→

(
a b

c d

)(
H

F

)
, (17.43)

with a, b, c, d ∈ R and ad−bc = 1. Other fields are invariant. Here H = dB,F =
dC2 are the field strengths of the NSNS and RR two forms, respectively. A quantum
version of this, SL(2,Z), for which a, b, c, d are integers, is also the symmetry of
IIB string theory.

Note that this is also the same symmetry of the torus: the complex structure
transforms in the same ways as (17.42). The SUGRA action obeying this symmetry
is identical to dimensionally reduced theory if we identify the axio-dilaton field
(17.41) as the complex structure of a two-torus. Thus type IIB string may be
understood as a dimensionally reduced theory of a certain twelve dimensional
theory. We call this F-theory [15]. This torus is a virtual whose one complex
structure τ is identified as axio-dilaton and has no area. Note that we have no full
twelve dimensional spacetime with the Lorentz signature (1, 11) because then the
degrees of freedom of the gravitino is too large. Rather, two of them are T -dual to
each other, so we are not able to see both of them at the same time [16–18].

We may understand the geometry and its relation to gauge theory using algebraic
description, discussed in Sect. 15.5. The torus is described by Weierstrass equation

y2 = x3 + f x + g. (17.44)

That is, the torus is the complex curve satisfying this equation in C
2 with coordinates

x, y, including the point at the infinity. For this reason, the two-torus is also called
the elliptic curve. One way to see this is to express it as

y = ±[(x − x1)(x − x2)(x − x3)]1/2,

where x1, x2, x3 are three roots of Eq. (17.44) with y = 0. Here y is not a
single-valued function: we have order two branch point at each xi . To have global
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understanding, we may take two branch cuts connecting x1-x2 and x3-Inf ty. Once
we cross the branch cut

(x − xi)→ e2πi(x − xi), i = 1, 2, 3,

y acquires a phase eπi = −1. We understand it as that we have two Riemann sheets,
each of which is a sphere if we include the point at infinity. Once we cross the branch
cut we go to the other sheet. In effect two spheres are connected by two tubes, so
the total topology is the torus.4

We may also define F-theory as the M-theory compactified on a torus T 2 in
the vanishing volume limit. Due to T -duality, we have one extra dimension. So it
makes sense to have a torus without volume. We obtain four dimensional theory if
we compactify F-theory on a Calabi–Yau fourfold. Since we need the T 2 structure
the Calabi–Yau manifold should have elliptically fibered. We define fiber bundle
with the base and fiber. Locally the fiber is vector space but vary so the geometry is
not direct product.

The complex structure τ is related to the parameters f and g through Klein’s
j -function

j (τ ) = (12f )3

4f 3 + 27g2 . (17.45)

The denominator is the discriminant

� = 4f 3 + 27g2 (17.46)

of the cubic function, that is the RHS of Eq. (17.44).
F-theory compactified on a K3 is dual to heterotic string compactified on torus.

We may construct K3 as elliptic fibration (because torus is described by elliptic
curve) over a CP1 (two sphere). Due to fibration, f and g are not functions anymore,
because they vary once we transport around the base. However, the topology of the
base restricts the consistent condition like Dirac monopole quantization. Thus f and
g are sections of K−4 and K−6, respectively. Here K is the canonical line bundle
of the base, which is generalization of the volume form. It is because x and y are
sections of the line bundles L 3 and L 2 to admit good sections. The Chern class of
the total manifold is induced

c1(X) = π∗(L ⊗K), (17.47)

4Another way to see this is that a homogeneous degree n + 2 polynomial in P
n+1 describes

the Calabi–Yau n-fold. Using homogeneous coordinate we show that any cubic equation can be
completed to Weierstrass form.
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Table 17.3 Kodaira
classification of singularities

ord f ord g ord� Name Algebra

≥0 ≥0 0 I0 –

0 0 k ≥ 1 Ik Ak−1, Ck

≥1 1 2 II –

1 ≥2 3 III A1

≥2 2 4 IV A1, A2

≥2 ≥ 3 6 I∗0 D4, B3,G2

2 3 k ≥ 7 I∗
k−6 Dk−2, Bk−3

≥3 4 8 IV∗ E6, F4

3 ≥5 9 III∗ E7

≥4 5 10 II∗ E8

The corresponding 7-branes supports the alge-
bra, depending on further splitting or mon-
odromy conditions [32]

up to some irrelevant contributions [19]. We thus have vanishing first Chern class if

L = K−1. (17.48)

If we have vanishing discriminant, meaning that the elliptic fiber becomes
singular, we have symmetry enhancement. We interpret that we have 7-brane at the
locus. Like that in the quadratic function, it tells us how many zeros. For � > 0, we
have three real solutions. � = 0 gives double points, which means two of the above
three solutions become coincident. In view of the torus, one of the cycle is pinched
off and the resulting torus becomes singular. If we fiber this over CP1. Expanding
the j function we have

j (τ ) = e−2πiτ + 744+ 196884e2πiτ + . . . . (17.49)

If we blow-up this singularity, we may obtain the same geometry. This shape
of singularities can be classified by the local behavior. We have displayed this in
Table 17.3. For E8, as long as the order of g is 5, the leading order is dominated by
� � g2 � z10 as long as the order of f is equal or greater than 4. However, for
other groups like An−1 and Dn, there is cancellation between leading order terms in
4f 3 and 27g2 making the order of � nontrivial.

Roughly the vanishing order of �, ord�, is the number of 7-branes. For E8 we
have ten 7-branes. For An−1 we have n branes.5

5The j function may not vanish in the vanishing limit of the discriminant locus. For An−1 and
Dn+4 we have j →∞. For III and III∗ we have j → 1728. For others j → 0.
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17.4.1 Models

If we have 7-branes describing SU(5) we have SU(5) GUT. To track monodromy, it
is convenient to use the expanded form, or Tate form

y2 + a1xy + a3y = a2x
2 + a4x + a6, (17.50)

where ai are sections of K−i
B . The classification is done and the result is shown in

Table 17.4.
For concrete discussion, we construct an SU(5) singularity

y2 + b5xy + b3z
2y = b4zx

2 + b2x + b0, (17.51)

Table 17.4 Singularities identified by the orders of the coefficients of Weierstrass equation in the
Tate form (17.44) and (17.50) [32]

Type Group a1 a2 a3 a4 a6 � f g

I0 Smooth 0 0 0 0 0 0 0 0

I1 U(1) 0 0 1 1 1 1 0 0

I2 SU(2) 0 0 1 1 2 2 0 0

Ins
2k−1 Unconven. 0 0 k k 2k − 1 2k − 1 0 0

Is
2k−1 SU(2k − 1) 0 1 k − 1 k 2k − 1 2k − 1 0 0

Ins
2k Sp(k) 0 0 k k 2k 2k 0 0

Is
2k SU(2k) 0 1 k k 2k 2k 0 0

II — 1 1 1 1 1 2 1 1

III SU(2) 1 1 1 1 2 3 1 1

IVns Unconven. 1 1 1 2 2 4 1 1

IVs SU(3) 1 1 1 2 3 4 1 1

I∗ ns
0 G2 1 1 2 2 3 6 2 3

I∗ ss
0 SO(7) 1 1 2 2 4 6 2 3

I∗ s
0 SO(8)∗ 1 1 2 2 4 6 2 3

I∗ ns
2k−3 SO(4k + 1) 1 1 k k + 1 2k 2k + 3 2 3

I∗ s
2k−3 SO(4k + 2) 1 1 k k + 1 2k + 1 2k + 3 2 3

I∗ ns
2k−2 SO(4k + 3) 1 1 k + 1 k + 1 2k + 1 2k + 4 2 3

I∗ s
2k−2 SO(4k + 4)∗ 1 1 k + 1 k + 1 2k + 1 2k + 4 2 3

IV∗ ns F4 1 2 2 3 4 8 3 4

IV∗ s E6 1 2 2 3 5 8 3 4

III∗ E7 1 2 3 3 5 9 3 5

II∗ E8 1 2 3 4 5 10 3 5

Non-min – 1 2 3 4 6 12 4 6

Here k ≥ 2, and the starred ones have a further condition
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where we have the discriminant locus S = {z = 0} supporting the SU(5) singularity
and is the section of the normal bundle of S in B. A normal bundle is the tangent
bundle ofB modded out by the tangent bundle of S thus measures the departure from
the S. This means that we have chosen ais as above and we have only displayed the
leading order terms thus it is local description. We have higher order terms in z in
each coefficients. For instance

a1 = b5 + b5,1z+ b5,2z
2 + . . . (17.52)

Completing the y term and absorbing the x2 term, we have the original form
(17.44)6 We find the discriminant

� = b4
5(b0b

2
5 − b2b3b5 + b2

3b4)z
5 +O(z6). (17.53)

The leading order z5 and the coefficient vanishes at the zeros of the following:

R10 ≡ b5, (17.54)

R5 ≡ b0b
2
5 − b2b3b5 + b2

3b4. (17.55)

Each equation defines a hypersurface describing curve, so we define matter curves
as vanishing loci of these. This reminds us the intersection between two brane
stacks, discussed in Sect. 17.2. If we focus on one brane stack describing U(n1), the
intersection from the other describing U(n2) looks like a (complex) codimension
one hypersurface, which is curve in our case. We have bifundamental representation
(n1,n2) of the two groups, which can be understood as off-diagonal components
of the adjoint of the unified group U(n1 + n2) → U(n1) × U(n2). Here the same
happens and we may have other groups than U(n).

6Conventional parametrizations are as follows;

b2 = a2
1 + 4a2,

b4 = a1a3 + 2a4,

b6 = a2
3 + 4a6,

b8 = a2
1a6 − a1a3a4 + 4a2a6 + a2a

2
3 − a2

4 ,

f = b2
2 − 24b4,

g = −b3
2 + 36b2b4 − 216b6,

� = −b2
2b8 − 8b3

4 − 27b2
6 + 9b2b4b6.
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We have gauge symmetry enhancement to SO(10) at the locus R10 = 0, under
which the adjoint branches

45 → 24+ 10+ 10+ 1,

where 10 is the rank-two tensor representation of the SU(5) We have chiral zero
mode. In view of Eq. (17.52), setting b5 = 0 makes the leading order term of a1
to be b5,1z. Checking Table 17.4, we confirm that indeed the resulting singularity is
I s

5 describing the SO(10). Also we have enhancement to SU(6) at R5 = 0, under
which the adjoint branches

35 → 24+ 5+ 5+ 1.

At the common intersections R10 = R5. They are codimension three points,
along which we have gauge symmetry enhancement to E6 which embraces all the
SU(6) and SO(10). We have localized Yukawa coupling.

Yu ∼ 10 · 5 · 5, Yd ∼ 10 · 10 · 5. (17.56)

In the perturbative intersecting brane construction we cannot have the latter
coupling because we should totally antisymmetrize the tensor indices. In the F-
theory construction, this is inherited from E6 coupling. F-theory naturally describes
exceptional gauge group. Also we may have this term in nonperturbative way.

Wave functions are fuzzily localized at the matter curves and they have overlap
at the Yukawa points.

Finally, we need to obtain the chiral spectrum in four dimensions. The matter
curve is six dimensional so it becomes vectorlike. To have chirality, we turn on
magnetic flux discussed in Sect. 17.3. There we have seen that a magnet flux on the
flux also gives rise to a zero mode of one chirality exclusively. Here in F-theory
we have a universal source of the magnetic field, which is three-form tensor in M-
theory. We have Cartan subalgebra from the expansion in terms of harmonic two
forms

CMNP =
∑

AM ∧ ωNP , (17.57)

where the sum is over the rank. We may turn on magnetic flux ∂[MAN] from the
field strength G = dC. This induces magnetic fluxes to all the branes. Using the
index theorem, the number of zero modes is easily counted as

nR − nR =
∫
SR

G, (17.58)

whereSR is the matter surface, a CP1 fibration over the corresponding matter curve.
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Instead of having the GUT group, we may have 7-brane describing SU(3) ×
SU(2)× U(1) gauge group [20–24]. To construct U(1), we need special setup. The
fiber should admit more section than zero section. By theorem of Mordell and Weil
we may have Z and Zn. We have as many U(1) gauge groups as the rank of the
Mordell–Weil group Zs [25–27]. The discrete group is related to discrete symmetry.

Duality with Heterotic String
One way to construct the stable vector bundle (15.52) is to construct spectral cover
[28]. We follow the discussion in Refs. [29–31]. On a torus, we may turn on constant
gauge field (flat bundle) or Wilson line. If we fiber this torus over a base, the value
of the bundle may vary over the base. If this process is adiabatic, we can construct a
stable vector bundle on the total manifold.

We may have one to one correspondence between line bundle and the position
of real codimension two brane. This is essentially T -duality, although it is not well-
defined in the heterotic string. Taking T -dual along one of the directions of T 2, the
constant gauge field becomes a pointlike brane in the dual torus Ť 2. Fibering over
the common base we hay have spectral cover. In the heterotic side the background
breaks the gauge group E8×E8. On the other hand, in the F-theory side, the spectral
cover controls the broken gauge group like an extra stacks of 7-branes.

This unifies the open and the closed string description. In Sect. 6.4.4, we have
seen that shrinking a cylindrical M2-brane can give both closed and open strings
depending on the direction. This M2-brane is lifted to the above D3-branes. and
open. Shrinking along the axis we obtain an open string, which ends at the two E8s
at the end of the interval, which is drawn in Fig. 6.7.

We have seen various string constructions. Unification of string theory not only
provides us various tools for constructing the Standard Model but also enables us to
understand it in totally different ways.
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AUseful Tables for Model Building

In this appendix, we collect useful tables for model building. Firstly, we list
Tables 3.4 and 3.3 discussed in Chap. 3. Then, we list the degeneracy factor
χ̃(θ i, θj ) which counts the GSO allowed multiplicity. Compared to the geometrical
study for each case, using it is rather straightforward. Finally, we repeat Table 9.2,
constraining Wilson line conditions.

The shift vectors φ and the number of fixed points χ for possible six dimensional
orbifolds allowing N = 1 supersymmetry are given in Table A.1.

The N = 1 supersymmetry can be obtained also by a product orbifold ZN×ZM ,
where ZN and ZM are chosen from the following table:

P Grid unit φ χ

Z2 Half plane 1
2 (1 1) 16

Z3 Hexagon 1
3 (1 1) 9

Z4 Square 1
4 (1 1) 1

Z6 Triangle 1
6 (1 1) 1

For prime orbifolds, the degeneracy factor for the allowed massless fields is
simply given by the number of fixed points. Massless fields are located either in
the bulk or at the fixed points. So, it is clear in Z3 and Z7 orbifolds to locate
geometrically the massless fields. For nonprime orbifolds, however, the allowed
massless states are some combinations of functions located at fixed points. Thus, the
calculation of the degeneracy factor is more involved, as given in the Z12 example
of Chap. 14.

The i th twisted sector has the multiplicity

Pθk =
1

N

N−1∑
l=0

χ̃(θk, θ l)
(
�θk

)l (A.1)
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Table A.1 Possible six dimensional orbifolds allowing for N = 1 supersymmetry

P Coxeter lattice Twist(s) χ

Z3 SU(3)3 1
3 (2 1 1) 27

SU(2)2 × SO(5)2Z4

SU(2) × SU(4)× SO(5)

1
4 (2 1 1) 16

SU(4)2

Z6-I SU(3) × G2
2

1
6 (2 1 1) 3

[SU(3)2] × G2

SU(2) × SU(6)

SU(3) × SO(8)

Z6-II

SU(2) × SU(3)× SO(7)

1
6 (3 2 1) 12

SU(2)2 × SU(3)× G2

SU(2)2 × [SU(3)2]
Z7 SU(7) 1

7 (3 2 1) 7

Z8-I SO(9) × SO(5)∗ 1
8 (3 2 1) 4

[SU(4)2]
Z8-II SU(2)2 × SO(9) 1

8 (4 3 1) 8

SU(2) × SO(10)∗
Z12-I E6

1
12 (5 4 1) 3

SU(3) × F4

Z12-II SU(2)2 × F4
1
12 (6 5 1) 4

Z2 × Z2 SU(2)6 1
2 (1 1 0), 1

2 (1 0 1) 32

Z2 × Z4 SO(5) × SU(2)2 × SO(5) 1
2 (1 1 0), 1

4 (1 0 1) 16

Z3 × Z3 SU(3)3 1
3 (1 1 0), 1

3 (1 0 1) 27

Z2 × Z6-I G2 × SU(2)2 × G2
1
2 (1 1 0), 1

6 (1 0 1) 4

Z2 × Z6-II G2 × SU(3) × G2
1
2 (1 1 0), 1

6 (2 1 1) 3

Z4 × Z4 SO(5)3 1
4 (1 1 0), 1

4 (1 0 1) 8

Z3 × Z6 G2 × SU(3) × G2
1
3 (1 1 0), 1

6 (1 0 1) 3

Z6 × Z6 G3
2

1
6 (1 1 0), 1

6 (1 0 1) 1

The lattice within the [ ] bracket involves further modding by outer automorphisms and thus
irreducible. On each line, the lattice has the same order of the entries of the twist vectors, except
ones with asterisk (*). The point group is P and the number of fixed points is χ . Z2×Z3 is missing
because it is identical to Z6-II

where �θk is the phase of the state, |L−movers〉 ⊗ |R−movers〉. In the standard
case of taking k = 0 as the untwisted sector, the kth twisted sector has

�θk = e2πi[(P+kV )·V−(s̃+kφ+ρR−ρL)·φ+ k
2 (V

2−φ2)]

where s̃ is the last three entries of s = {s0; s̃}. The helicity ⊕ or . is determined
from |R−movers〉, by the first component of s = {s0; s̃}. s has half integers such
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as = [+ +++] with [ ] indicating even number of sign flips, i.e. in this example
even number of minus signs and all possible permutations.

As noted above, for prime orbifolds ZN(N = 3, 7) we have the (k, l) indepen-
dent χ̃(θk, θ l) = χ , and hence the multiplicity is χ(�0+�1+· · ·�N−1)/N which
is 0 for � = e2πik/N(k = 1, · · · , N − 1) and equivalent to the Euler number χ for
the case of � = 1.

For nonprime orbifolds, one has to perform a nontrivial calculation based on
(A.1). For this purpose, the degeneracy factors χ̃(θk, θj ) calculated by Eq. (8.62)
are given below:

χ̃(θk, θ l)

l =
k 0 1 2

Z3 1 27 27 27

l =
k 0 1 2 3

Z4 1 16 16 16 16
2 16 4 16 4

l =
k 0 1 2 3 4 5
1 3 3 3 3 3 3

Z6−I 2 27 3 27 3 27 3
1
6 (2 1 1) 3 16 1 1 16 1 1

1 12 12 12 12 12 12
Z6−II 2 9 3 9 3 9 3

3 16 4 4 16 4 4

l =
k 0 1 2 3 4 5 6
1 7 7 7 7 7 7 7

Z7 2 7 7 7 7 7 7 7
3 7 7 7 7 7 7 7

l =
k 0 1 2 3 4 5 6 7
1 4 4 4 4 4 4 4 4

Z8−I 2 16 4 16 4 16 4 16 4
3 4 4 4 4 4 4 4 4
4 16 2 4 2 16 2 4 2
1 8 8 8 8 8 8 8 8

Z8−II 2 4 2 4 2 4 2 4 2
3 8 8 8 8 8 8 8 8
4 16 2 4 2 16 2 4 2

l =
k 0 1 2 3 4 5 6 7 8 9 10 11
1 3 3 3 3 3 3 3 3 3 3 3 3
2 3 3 3 3 3 3 3 3 3 3 3 3

Z12−I 3 4 1 1 4 1 1 4 1 1 4 1 1
4 27 3 3 3 27 3 3 3 27 3 3 3
5 3 3 3 3 3 3 3 3 3 3 3 3
6 16 1 1 4 1 1 16 1 1 4 1 1
1 4 4 4 4 4 4 4 4 4 4 4 4
2 1 1 1 1 1 1 1 1 1 1 1 1

Z12−II 3 16 4 4 16 4 4 16 4 4 16 4 4
4 9 1 1 1 9 1 1 1 9 1 1 1
5 4 4 4 4 4 4 4 4 4 4 4 4
6 16 1 1 4 1 1 16 1 1 4 1 1
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They are the number of simultaneous fixed points under θk and θ l , neglecting
fixed tori. For instance, in the Z4 orbifold, we have χ̃(θ, θ l) = 16 since the fixed
points under θ are always those of θ l, l = 0, 1, 2, 3. However the converse is not
true. For θ2 we have a fixed torus when 2φa has integral element. Not counting this,
we have the 16 fixed points under θ2, giving χ̃ (θ, 1) = 16. Among them, we have
χ̃(θ, θ2) = 4 fixed points that are also invariant under θ .

For calculating masses in the kth twisted sector, we need the vacuum energy
contribution. The weights for massless states satisfy

(P + Ṽ )2 = 2(1− ζN,k)− 2ÑL. (A.2)

where ζN,k = 1
4

∑
i φi(1 − φi) with φi lattice-shifted such that 0 ≤ φi ≤ 1. The

present (1−ζ ) corresponds to c̃ of Chaps. 6 and 7. Below we list the vacuum energy
2(1− ζN,k) for the left movers,

−2c̃ = −2(1− ζN,k)

k = 1 2 3 4 5 6

Z12 − I 210
144

216
144

234
144

192
144

210
144

216
144

Z12 − II 206
144

248
144

198
144

224
144

206
144

216
144

Z8 − I 94
64

88
64

94
64

96
64

Z8 − II 90
64

104
64

90
64

96
64

Z7
10
7

10
7

10
7

Z6 − I 54
36

48
36

54
36

Z6 − II 7
18

5
9

1
2

Z4
22
16

24
16

Z3
4
3

Z2(6D) 3
2
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For the vacuum energy of right movers, we need

−2c = −2c̃+ 1

k = 1 2 3 4 5 6

Z12 − I 11
24

1
2

5
8

1
3

11
24

1
2

Z12 − II 31
72

13
18

3
8

5
9

31
72

1
2

Z8 − I 15
32

3
8

15
32

1
2

Z8 − II 13
32

5
8

13
32

1
2

Z7
3
7

3
7

3
7

Z6 − I 1
2

1
3

1
2

Z6 − II 7
18

5
9

1
2

Z4
3
8

1
2

Z3
1
3

Z2(6D) 1
2

where the vacuum energy contributions from the R and NS sectors add up. For
example, the k = 1 sector of Z12-I leads to

c = 4f (0)+ 2f (0)+ 2f

(
5

12

)
+ 2f

(
4

12

)
+ 2f

(
1

12

)
= −11

48
.

Finally, the Wilson line conditions are given in Tables A.2 and A.3.
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Table A.2 Constraints on Wilson lines for ZN orbifold

P Lattice Order Condition

Z3 SU(3)3 3a1 ≈ 0, 3a3 ≈ 0, 3a5 ≈ 0 a1 ≈ a2, a3 ≈ a4, a5 ≈ a6

Z4 SU(2)2 × SO(5)2 2a1 ≈ 0, 2a2 ≈ 0,
2a3 ≈ 0, 2a5 ≈ 0

a3 ≈ a4, a5 ≈ a6

SU(2) × SU(4) × SO(5) 2a1 ≈ 0, 4a2 ≈ 0, 2a5 ≈ 0 a2 ≈ a3 ≈ a4, a5 ≈ a6

SU(4)2 4a1 ≈ 0, 4a4 ≈ 0 a1 ≈ a2 ≈ a3, a4 ≈ a5 ≈ a6

Z6-I SU(3) × G2
2 3a1 ≈ 0 a1 ≈ a2

[SU(3)]2 × G2 3a1 ≈ 0 a1 ≈ a2 ≈ a3 ≈ a4

Z6-II SU(2)× SU(6) 2a1 ≈ 0, 6a2 ≈ 0 a2 ≈ a3 ≈ a4 ≈ a5 ≈ a6

SU(3)× SO(8) 3a1 ≈ 0, 2a5 ≈ 0 a1 ≈ a2, a3 ≈ a4 ≈ 0, a5 ≈ a6

SU(2) × SU(3) × SO(7) 2a1 ≈ 0, 3a2 ≈ 0 a2 ≈ a3, a4 ≈ a5 ≈ a6 ≈ 0

SU(2)2 × SU(3)× G2 3a1 ≈ 0, 2a3 ≈ 0, 2a4 ≈ 0 a1 ≈ a2, a5 ≈ a6 ≈ 0

SU(2)2 × [SU(3)2] 3a1 ≈ 0, 2a3 ≈ 0, 2a4 ≈ 0 a1 ≈ a2, a5 ≈ a6 ≈ 0

Z7 SU(7) 7a1 ≈ 0 a1 ≈ a2 ≈ a3 ≈ a4 ≈ a5 ≈ a6

Z8-I SO(9) × SO(5)∗ 2a1 ≈ 0, 2a6 ≈ 0 a1 ≈ a2 ≈ a3 ≈ a4, a5 ≈ a6

[SU(4)2] 4a1 ≈ 0 a1 ≈ a2 ≈ a3 ≈ a4 ≈ a5 ≈ a6

Z8-II SU(2)2 × SO(9) 2a1 ≈ 2a2 ≈ 2a3 ≈ 0 a3 ≈ a4 ≈ a5 ≈ a6

SU(2) × SO(10)∗ 2a1 ≈ 0, 2a2 ≈ 0 a2 ≈ a3 ≈ a4 ≈ a5 ≈ a6

Z12-I E6 3a1 ≈ 0 a1 ≈ a2 ≈ a3 ≈ a4 ≈ a5 ≈ a6

SU(3) × F4 3a1 ≈ 0 a1 ≈ a2

Z12-II SU(2)2 × F4 2a1 ≈ 2a2 ≈ 0

They depend on the choice of the lattices, classified in Table 3.4. Conventions of shift vectors are
given in (3.4) and the lattices follow the same orders. The sign “≈” means equivalence up to lattice
translation. The order of F4 and G2 Coxeter group is 1, so that we cannot turn on nontrivial Wilson
line. On each line, the lattice has the same order of the entries of the twist vectors, except ones with
asterisk (*)

Table A.3 Constraints on Wilson lines for ZN × ZM orbifold

P Lattice Order Condition

Z2 × Z2 SU(2)6 2a1 ≈ 0, 2a2 ≈ 0, 2a3 ≈ 0,
2a4 ≈ 0, 2a5 ≈ 0, 2a6 ≈ 0

Z2 × Z4 SO(5)× SU(2)2 × SO(5)
2a1 ≈ 0, 2a3 ≈ 0,
2a4 ≈ 0, 2a5 ≈ 0

a1 ≈ a2, a5 ≈ a6

Z3 × Z3 SU(3)3 3a1 ≈ 0, 3a3 ≈ 0, 3a5 ≈ 0 a1 ≈ a2, a3 ≈ a4, a5 ≈ a6

Z2 × Z6-I G2 × SU(2)2 × G2 2a3 ≈ 0, 2a4 ≈ 0

Z2 × Z6-II G2 × SU(3)× G2 3a3 ≈ 0 a3 ≈ a4

Z4 × Z4 SO(5)3 2a1 ≈ 0, 2a3 ≈ 0, 2a5 ≈ 0 a1 ≈ a2, a3 ≈ a4, a5 ≈ a6

Z3 × Z6 G2 × SU(3)× G2 3a3 ≈ 0 a3 ≈ a4

Z6 × Z6 G3
2

For conventions, see Table A.2
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KS, 485
χ(θk, θ l), 224
δCKM, 484
δMNS, 485
Z2 × Z

′
2, 425

Z6 orbifold, 393
ZN , 54
Z4R, 427
N

unbroken SUSY number, 72
θ vacuum, 20
120

an SO(10) vector, 86
126

an SO(10) spinor, 86

A
Affine Lie algebra, 345, 383

grade, 345
level, 345, 349

Anomalous U(1), 390, 400
Anomaly

cancellation from modular invariance, 229
cancellation in Z3 orbifold, 203
6D, 125
fixed point, 121
gravitational, 9
higher dimension, 9

Anomaly cancelation
d = 2 (mod 4), 84

Anti-SU(5), 411
flipped-SU(5), 411

Anti-symmetric representation, 114
Area rule, 324
Asymmetric orbifold, 229, 363, 364
Automorphism, 193

inner, 352, 353
outer, 353

Axion, 317
MI axion, 390
model-independent, 325

Axionic symmetry, 310, 314
Axion-like particles (ALPs), 403

B
Baryogenesis, 487

nonequilibrium condition, 487
Baryon

ducaplet, 16
octet, 16

Betti number, 403
Beyond the standard model (BSM), 483
Bianchi identity, 467
Bimaximal mixing, 489
Bino, 37
Bosonization, 172
Bottom-up approach, 5, 507
Boundary condition

Neumann(open string), 135
periodic(closed string), 133

Branching rule, 348, 368
Brane, 97

p-brane, 97
Bulk, 40, 97

C
Cabibbo angle, 475
Cabibbo–Kobayashi–Maskawa (CKM), 11
Calabi–Yau manifold, 431, 433, 435
Calabi–Yau space, 10, 11
Cartan matrix, 170
Cartan subalgebra (CSA), 168
Cartan–Weyl basis, 340
Central charge, 137, 150
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Central extension, 346
Centralizer, 216
Chan–Paton factor, 175
Characteristic class, 448
Charge conjugated spinor, 83

definition, 83
Charge conjugation

on weights P , 396
Charge quantization, 409
Charged current, 1, 477

‘V − A’ current, 2
Chiral basis, 80, 82
Chiral field

fifteen chiral fields, 21
Chirality, 2, 21, 45, 155, 200, 396, 414, 448

Z3, 202
2D helicity, 45

Chirality operator, 155
Chiral superfield, 34
Chiral theory, 106
CKM matrix, 478

Kim–Seo parametrization, 484
KS form, 483

Clifford algebra, 81
Closed string, 133
Cohomology

De Rham, 436
Cohomology class, 436
Coleman-Mandula no-go theorem, 32
Color, 16
Commutant, 307
Compactification, 8, 40

Narain, 311
torus, 46

Complex representation, 29
Complex structure, 53, 70, 142
Complex structure modulus, 314
Confinement problem, 17
Conformal gauge, 131
Conformal symmetry, 136
Conformal weight, 264, 265
Conjugacy class, 56, 216

more fundamental concept, 56
Conjugation, 56
Conseved vector current, 409
Correlation function

factorization, 288
four point, 283
normalization, 288
three point, 277

Cosmological constant, 36
self-tuning, 41

Covariant derivative, 2
Covariant gauge

globally, 143
Coxeter element, 357, 359
Coxeter group, 67
Coxeter label, 344, 349, 411, 412
Coxeter number, 344
CP

string theory, 403
CP barometer

Jarlskog determinant, 22
CP violation, 20

in 10D, 396
CPT theorem, 396
Critical radius, 316
Crosscap, 77
Crystallographic lattice, 77
Crystallography, 66
Current algebra, 169
Current-current interaction, 2
Cut diagram, 487
Cycle, 76

definition, 75
Cyclic group ZN , 54

D
D-brane, 97, 176
Dedekind eta function, 145
Degeneracy, 393

removal by fixed points, 419
Degeneracy factor, 224, 523, 525

number of fixed points, 221
Degenerate mass

from U secor, 293
Di-quark, 25
Diagonal embedding, 377
Dimensional transmutation, 28
Dirac–Clifford algebra, 81
Dirac γ matrices

5D, 102
Discrete gauge symmetry, 395, 488, 494
Discrete symmetry, 395
Domain wall number, 401

axion models, 401
Double covering group, 80
Doublet–triplet splitting, 29, 39, 40, 425

5D field theory, 425
Dual Coxeter number, 344
Duality

T -duality, 163, 176, 315
Dynkin basis, 341
Dynkin diagram, 342

technique in orbifolding, 371
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E
Elecroweak scale, 5
Electroweak CP, 403, 475
Electroweak scale, 22
Electroweak theory, 17
Ellptic genus, 334
Embedding, 192
Energy momentum tensor

as constraints, 132
world-sheet, 132

Equivalence class, 185
Equivalence relation, 56
Error propagation, 479
Eta function, 145
Euler number, 438
Exotics, 410

chiral, 410
vectorlike, 410

Extended Dynkin diagram, 344
Extended root, 344
Extra dimensions, 40

F
Factor orbifolds, 215
Family, 19

number of, 204
three families, 19
three families from intersection number,

507
three families from number of compact

dimensions, 504
Family problem, 7, 20, 21, 475
Family symmetry, 7
Fayet–Ilipoulos term, 392
Fermionic construction, 172, 499

Z2 × Z2, 504
Fermion mass, 5, 263
Fermion number, 153

R sector, 155
Field localization, 97, 98
Fine tuning

of the curvature, 36
Fixed point, 55, 186

conjugacy class, 57
number of, 76
the number of simultaneous, 416

Flavor changing neutral current (FCNC), 483
Flavor physics

origin, 477
Flavor problem, 20, 382, 475
Flavor puzzle, 491
Free action, 55
Fundamental reflection, 357

Fundamental region, 55, 58, 59, 61, 96, 108
Fundamental weight, 340
Fundamental weight of SU(n), 349

G
Gamma matrices, 80
Gamma matrix

2D, 146
10D, 148
even dimensions, 81

Gauge anomaly, 29
Gauge coupling

running, 25, 27, 326
Gauge group, 275
Gauge hierarchy

supersymmetry, 37
Gauge hierarchy problem, 28, 409

solution, 28
Gauge kinetic function fab(�), 34
Gauge principle, 3
Gauge symmetry

enhancement, 310
Gaugino, 37
Generalized momenta, 312
Ghost charges, 266
GIM mechanism, 476
Giudice–Masiero mechanism, 405
G2 lattice, 64
Global consistency condition, 336
Global monodromy condition, 283
Global symmetry, 395

in string theory, 176, 395
worldsheet, 176

Gluino, 37
Grand unification, 6, 24
Gravitational anomaly, 84, 160
Graviton, 265
Green–Schwarz mechanism, 334

counterterm, 334, 390
GSO projection, 153, 501

fermionic construction, 173
generalized, 217
generalized for twisted string, 231
generalized with Wilson lines, 259

GUT, 6, 24
anti-SU(5), 30
E6, 30
family unification, 394
flipped SU(5), 30, 505
Pati–Salam model, 30
proton decay, 7
semi-simple group, 30
SO(10), 24
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SO(10) breaking, 29
SO(10) subgroups, 114
SO(14), 30, 395
SO(18), 30
SU(11), 30
SU(5), 25
SU(N), 30
SUSY–, 38
trinification, 31

GUT multiplet, 389

H
Helicity, 45, 200
Heterotic M-theory, 469
Heterotic string, 165, 332

compactification, 161
E8 × E8, 502
mass formula, 162, 167
massless states, 167

Hierarchy
gauge–, 28
little, 45

Higgs
no-adjoint theorem, 349

Higgs boson, 21
BEHGHK boson, 6

Higgs doublet, 4
Higgs mechanism, 4, 99, 400
Higgs potential

SM, 21
Higgsino, 36
Highest root, 344
Highest weight, 347
Hilbert space, 216
H-momentum, 275
Hodge diamond, 439
Holomorphic, ix, 34
Holomorphicity, 34
Holomorphic transformation, 264
Holonomy, 75, 433
Homology, 436
Hypercharge normalization, 26
Hypercharge quantization, 40, 382

I
Identical particle, 42
Index l, 26
Index theorem, 447
Inner automorphism, 495
Instanton, 20
Integrability’ condition, 349
Integral lattice, 166

Intermediate vector boson
IVB, 2

Intersecting brane, 506
Isospin, 24

J
Jacobi abstruse identity, 157
Jacobi elliptic function, 171
Jarlskog determinant, 22

experimental value, 479
fat triangle, 484
KS form, 484
thin triangle, 484

Jarlskog determinant J , 484
Jarlskog invariant, 399

K
Kähler manifold, 307
Kac–Moody algebra, 345

level, 345
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