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Preface 

This book is a collection of manuscripts from lectures given in the 
French-Chinese Summer Institute on Applied Mathematics, which was 
held at the School of Mathematical Sciences of Fudan University from 
September 1 to September 21,2008. This Institute was mainly sponsored 
by the Centre National de Recherche Scientifique (CNRS) and the Na
tional Natural Science Foundation of China (NSFC). The activities were 
organized by the Institut Sino-Fram;ais de Mathematiques Appliquees 
(ISFMA). There were more than 70 participants, including graduate 
students, postdoctors and junior faculty members from universities and 
research institutions in China and France. 

This volume is entitled Some Problems on Nonlinear Hyperbolic Equa
tions and Applications. The volume is composed of two parts: Mathe
matical and Numerical Analysis for Strongly Nonlinear Plasma Models 
and Exact Controllability and Observability for Quasilinear Hyperbolic 
Systems and Applications, which represent two subjects of the Institute. 
These topics are important not only for industrial applications but also 
for the theory of partial differential equations itself. 

The main propose of the Institute was to present recent progress and 
results obtained in the domains related to both subjects and to organize 
discussions for studying important problems by sustainable collabora
tions. We hope that this experience will be useful for the activities of 
the French-Chinese collaboration in the future. 

During the activities of the Institute, more than 30 lectures of 50 
minutes each were delivered. The speakers gave their presentation with
out attaching much importance to the details of proofs but rather to 
difficulties encountered, to open problems and possible ways to be ex
ploited. Each lecture was followed by a free discussion of 30 minutes, so 
that the participants were able to clarify the situation of each problem 
and to find interesting subjects to be cooperated in the future. Three 
mini-courses of 3 x 1.5 hours each were given by Jean-Michel Coron (Uni
versite Paris 6, France), Vilmos Komornik (Universite Louis Pasteur de 
Strasbourg, France) on the control theory and by Thierry Goudon (IN
RIA Lille-Nord Europe, France) on the mathematical theory for plasmas. 
The mini-course notes were prepared for all the students before the ac
tivities of the Institute. Moreover, in the middle and before the end of 
the Institute, we organized two sessions of general discussion on the open 
problems for future investigations by collaboration. 
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The editors would like to express their sincere thanks to all the au
thors in this volume for their contributions and to all the participants in 
the Summer Institute. Liqiang Lu, Zhiqiang Wang and Chunlian Zhou 
deserve our special thanks for their prompt and effective assistance to 
make the Institute run smoothly. The editors are grateful to the Centre 
National de Recherche Scientifique (CNRS), the Consulate General of 
France in Shanghai, the French Embassy in Beijing, the Institut Sino
Fran~ais de Mathematiques Appliquees (ISFMA), the National Natural 
Science Foundation of China (NSFC) and the School of Mathematical 
Sciences of Fudan University for their help and support. Finally, the edi
tors wish to thank Tianfu Zhao (Senior Editor, Higher Education Press) 
and Chunlian Zhou for their patience and professional assistance. 

Tatsien Li, Yuejun Peng, Bopeng Rao 

April 2010 
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Abstract 
This paper addresses the construction of absorbing boundary 

conditions for the one-dimensional SchrOdinger equation with a 
general variable repulsive potential or with a cubic nonlinearity. 
Semi-discrete time schemes, based on Crank-Nicolson approxima
tions, are built for the associated initial boundary value problems. 
Finally, some numerical simulations give a comparison of the var
ious absorbing boundary conditions to analyse their accuracy and 
efficiency. 

1 Introduction 

3 

We consider in this paper two kinds of initial value problems. The first 
one consists in a time-dependent Schrooinger equation with potential V 
set in an unbounded domain 

{

iOtU + a;u + Vu = 0, (x, t) E lR X [0; T], (1.1) 
u(x, 0) = uo(x), x E IR, 
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where u0 presents the initial data. The maximal time of computation 
is denoted by T. We assume in this article that V is a real-valued 
potential such that V E coo (IR x JR+, IR). This kind of potential then 
creates acceleration of the field compared to the free-potential equation 
[10, 17]. 

Our second interest concerns the one-dimensional cubic nonlinear 
Schrodinger equation 

{
i8tU + a;u + q lul2 

u = 0, (x, t) E IR X [0; T], (1.2) 
u(x, 0) = uo(x), x E IR, 

where the real parameter q corresponds to a focusing (q > 0) or de
focusing (q < 0) effect of the cubic nonlinearity. This equation has the 
property to possess special solutions which propagate without dispersion, 
the so-called solitons. 

For obvious reasons linked to the numerical solution of such problems, 
it is usual to truncate the spatial computational domain with a fictitious 
boundary E := an = {Xi' Xr}' where Xi and Xr respectively designate 
the left and right endpoints introduced to have a bounded domain of 
computation n =]xz; Xr[· Let us define the time domains nT = n X [0; T] 
and ET =Ex [0; T]. Considering the fictitious boundary E, we are now 
led to solve the problem 

{
i8tU + 8iu + "f/ U = 0, (x, t) E OT, 

u(x, 0) = uo(x), X E 0, 
(1.3) 

where "f/ denotes either the real potential V(x, t) or the cubic nonlin
earity q lul2 (x, t). In the sequel of the paper, we assume that the initial 
datum Uo is Compactly supported in the computational domain 0. 

Of course, a boundary condition set on ET must be added to systems 
(1.3). An ideal exact boundary condition tackling the problem is the so
called Transparent Boundary Condition (TBC) which leads to a solution 
of (1.3) equal to the restriction of the solution of (1.1) or (1.2) on nT. A 
first well-known case considers "f/ = 0. This situation has been treated by 
many authors [2]. In this case, according to what is precisely described 
in Section 2.2, we are able to build the following TBC in terms of the 
Dirichlet-to-Neumann (DtN) operator 

(1.4) 

where n is the outwardly directed unit normal vector to :E. The opera
tor ai12 is known as the half-order derivative operator (see Eq. (2.7) for 
its definition). Its nonlocal character related to its convolutional struc
ture has led to many developments concerning its accurate and efficient 
evaluation in the background of TBCs [2]. 
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A second situation which is related to the above case is when the 
potential is only time varying: "f/ = V(x, t) = V(t). In this case, the 
change of unknown 

v(x, t) = e-iV(t)u(x, t), (1.5) 

with 

V(t) = 1t V(s) ds (1.6) 

reduces the initial Schrodinger equation with potential to the free-poten
tial SchrOdinger equation [4). Then, the TBC (1.4) can be used for v 
and the resulting DtN TBC for u is 

8nu(x, t) + e-i1rj4eiV(t) ai12 ( e-iV(t)u(x, t)) = 0, on Er. (1.7) 

This change of variables is fundamental and, coupled to a factor
ization theorem, and allowed to derive accurate approximations of the 
TBC, which are usually called artificial or Absorbing Boundary Condi
tions (ABCs), when "f/ = V(x, t) [5) and "f/ = q lul2 [4). Families of ABCs 
can be computed and are classified following their degree of accuracy. 
Typically, for a general function "f/, the first ABC would be exactly (1.7), 
where V(t) has to be replaced by V(x, t) = J; "f/(x, s)ds. The ABC gives 
quite satisfactory accurate results but its evaluation remains costly since 
it involves the nonlocal time operator aJI2

• In [5], another kind of ABCs 
was introduced, with their numerical treatments being based on Pade 
approximants. It therefore gives rise to a local approximation scheme 
which is very competitive. 

The aim of the present paper is to present precisely the link between 
the two different types of ABCs set up in [5] and [4] and to extend the 
local ABC derived for "f/ = V(x, t) to the cubic nonlinear Schrodinger 
equation. Moreover, associated unconditionally stable schemes are given 
and numerical results are reported. 

For completeness, we must mention that recent attempts have been 
directed towards the derivation of TBCs for special potentials. In [15), 
the case of a linear potential is considered in the background of parabolic 
equations in electromagnetism. Using the Airy functions, the TBC can 
still be written and its accuracy is tested. In [27), Zheng derives the 
TBC in the special case of a sinusoidal potential using Floquet's theory. 
All these solutions take care of the very special form of the potential. 
Let us remark that other solutions based on PML techniques have also 
been applied (see [26)). Concerning the nonlinear case, using paradiffer
ential operators techniques, Szeftel [24) presented other kinds of ABCs. 
Moreover, a recent paper [6) gives a comprehensive review of current 
developments related to the derivation of artificial boundary conditions 
for nonlinear partial differential equations following various approaches. 
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The present paper is organized as follows. In Section 2, we recall the 
derivation of open boundary conditions for linear Schrodinger equations. 
Subsection 2.1 concerns the derivation of the TBC, and Subsection 2.2 
gives some possible extensions and their interpretations in the context of 
pseudodifferential calculus. This tool is the essential ingredient used in 
Section 3 where two possible approaches for building ABCs for the one
dimensional Schr6dinger equation with a variable repulsive potential are 
given. Section 4 is devoted to their numerical discretization and the un
derlying properties of the proposed schemes. Section 5 is concerned with 
the nonlinear case in which we explain the links between the different 
approaches and propose a new family of ABCs for the cubic nonlinear 
Schrodinger equation. Numerical schemes are also analysed. Section 6 
presents some numerical computations. These simulations show the high 
accuracy and efficiency of the proposed ABCs. Moreover, comparisons 
are made between the different approaches. Finally, a conclusion is given 
in Section 7. 

2 Open boundary conditions for linear Schro
dinger equations 

2.1 The constant coefficients case: derivation of the 
TBC 

We recall in this Section the standard derivation of the Transparent 
Boundary Condition (TBC) in the context of the following 1D Schrodin
ger equation 

i8tU + a~u + V(x, t)u = 0, (x, t) E nT, 
lim u(x, t) = 0, 

lxl-+oo 

u(x, 0) = uo(x), X E 0, 

(2.1) 

where the initial datum uo is compactly supported in n and the given real 
potential V is zero outside n. It is well known that the previous equation 
(2.1) is well posed in L2 (IR.) (see e.g. [22, 23]) and that the "density" is 
time preserved, i.e., llu(t)II£2(R) = lluoii£2(R)' Vt ? 0. The TBC for the 
Schrodinger equation (2.1) was independently derived by several authors 
from various application fields [20, 21, 8, 11, 13]. Such a TBC is nonlo
cal according to the time variable t and connects the Neumann datum 
8xv(xl,r, t) to the Dirichlet one v(xl,r, t). As a Dirichlet-to-Neumann 
(DtN) map, it reads 

e-i7r/4 d r v(x, r) 
8nv(x, t) = - ,.fo dt Jo ../t _ T dr on ET, (2.2) 
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where 8n is the outwardly directed unit normal derivative to 0. 
The derivation of the TBC (2.2) is performed from Equation (2.1) 

and is based on the decomposition of the Hilbert space L2 (1R.) as L2(0)E9 
L2 (0r u Oz) where 0 =]x,, Xr[, o, =I- oo, xz], and Or = [xr, oo[. Equa
tion (2.1) is equivalent to the coupled system of equations 

{ 

(i8t + o;)v = -V(:z;, t)v, (:z;, t) E OT, { (i8t + o;)w = 0, :z; E 01 U Or, t > 0, 
o.,v(:z;, t) = o.,w(:z;, t), (:z;, t) E :ET ~(:z;, t) = v(:z;, t), (:z;, t) E ET, 

( 0) _ ( ) E ,.... hmJ:z:J-oo w(:z;, t) = 0, t > 0, v :z;, - uo :z; , :z; ... ( ) 
(2 3) w x, 0 = 0, :z; E 01 u Or. 

. (2.4) 
This splitting of the spatial domain IR. into interior and exterior prob

lems is explained in Fig. 2.1. It shows the basic idea for constructing 
the TBC. The Transparent Boundary Condition is obtained by applying 
the Laplace transformation C with respect to the time t to the exterior 
problems (2.4). The Laplace transform is defined through the relation 
w(8) := C(w)(8) := JR+ w(t)e-stdt, where 8 =a+ iris the time covari
able with a > 0. 

left exterior 
problem 

output: - I input: 
Neumann data 1 Dirichlet data 
W.(x.. t) I ~ t) 

interior problem 

I 

right exterior 
problem 

Figure 2.1 Domain decomposition for the construction of the TBC. 

In the following, we focus on the derivation of the TBC at the right 
endpoint Xr. The Laplace transformation of (2.4) (on Or) reads isw + 
8~w = 0, x E Or. The solution to this second-order ode with constant co
efficients can be computed as w(x,s) = A+(8)e t'=isx +A-(8)e- V-isx, 
x > Xr, where the branch-cut of the square root tr is taken such that 
the real part is positive. However, since the solution is an element of 
L2 (0r), the coefficient A+ must vanish. Using the Dirichlet data at the 
artificial boundary yields w(x, 8) = e- V-is (x-Xr) w(x, 8)1x=xr• Deriving 
W(X, 8) with respect to X gives 

8.,W(X, s)ix=Xr =- t!=iSw(X, 8)1x=Xr' (2.5) 

The analogous condition at the left boundary is -8.,w(x, s)lx=x1 = 
- t/=isw(x,8)1x=x1 • Applying an inverse Laplace transformation c-1 

is able to obtain an expression of the Neumann datum 8.,w(xt,r, t) as a 
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function of the Dirichlet one. Since we have continuity of the traces on 
:Er, the boundary condition of Eq. (2.3) is into 

t 

anv(x, t) = .c-1
(- t'-T. v(x, ·))(t) = J f(t- r)v(x, r) dr, on :Er, 

0 
(2.6) 

where .C(f) ( s) = - \i'=Ts". By construction we have that u coincides 
with v on n, meaning that we have an exact or a Transparent Boundary 
Condition (TBC) given by the second equation of (2.6). 

All this analysis could also be performed using the time Fourier trans
form .ff:t 

.ff:t(u)(x, r) = 2~ l u(x, t)e-it'T dt, 

which roughly speaking corresponds to letting a -+ 0 in the expression of 
the Laplace transform and induces the following definition of the square 
root .jr = .jr if r 2:: 0 and .jr = -iFr if r < 0. The condition (2.5) 
is thus replaced by 

ax.ff:tw(x,r)lx=xr = iv:::T.ff:tw(x,r)lx=xr· 

We recover the TBC on :Er with anv(x, t) = .ff:t - 1(iF .ff:tv(x, ·))(t). 
This expression or its Laplace version anv(x, t) = .c-1 (- t!=i- v(x, ·))(t) 
can be simply written at points x = Xt,r as follows: 

anv(x, t) = -e-•'~~"l4aJ12v(x, t). 

The term aJI2 = ..;a;_ has to be interpreted as a fractional half-order time 
derivative. We recall that the derivative at-a f(t) of order k- a> 0 of 
a function f, with k E N and 0 < a ~ 1, is defined by 

at-a f(t) = r~) ~: 1t (t- r)a- 1 f(r)dr, (2.7) 

where r(z) = f0+oo e-ttz- 1dz denotes the Gamma function. In the same 
spirit, one can also define the integration of real order p > 0 of a function 
J, denoted by If f(t), by 

If f(t) = r~) lot (t- r)P-1 j(r)dr. (2.8) 

At this point, an interesting remark is that the Schrodinger equation 
can formally be factorized into left and right traveling waves (cf. [8]): 

(ax - e-i~ ai12
) (ax + e-i~ ai12 )u = 0, X > Xr. (2.9) 

This remark is crucial since it gives the idea to use a Nirenberg-like the
orem in Section 3.2 for general variable coefficients equations (including 
potentials for instance). 
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2.2 Extensions and interpretations in the context of 
pseudodifferential operator calculus: introduc
tion to the derivation of ABCs 

The first possible extension is to consider a given real potential V which 
is constant in space outside n, i.e., V(x, t) = Vi(t) for X < Xt, V(x, t) = 
Vr(t) for x > Xr· An easy computation, which consists in applying the 
following gauge change in (2.1), reduces this case to the zero exterior 
potential (3] for the new unknown 

1/Jt,r = e-iVI.r(t)U!,r, with Vt,r(t) =lot Vi,r(s)ds, 'Vt > 0. (2.10) 

The resulting TBC is then given by 

(2.11) 

The analysis based on Laplace or Fourier transforms and performed in 
the previous subsection can also be done if the potential is constant 
outside 0. This would lead to 

t 

8nu(x, t) = J f(t- r)u(x, r) dr, on :ET, 
0 

(2.12) 

where C(f)(s) = - tf-is- Vi,r· Therefore, the Schrodinger equation 
can formally and exactly be factorized into left and right traveling waves 
(cf. (8]): 

To understand and to make clearer the link between expressions (2.11) 
and (2.12), we have to introduce the notion of pseudodifferential op
erator. A pseudodifferential operator P(x, t, 8t) is given by its symbol 
p(x, t, r) in the Fourier space 

P(x, t, 8t)u(x, t) = §t- 1 (p(x, t, r)u(x, r)) 
= kp(x,t,r)§t(u)(x,r)eitT dr. 

{2.13) 

The inhomogeneous pseudodifferential operator calculus used in the pa
per was first introduced in [14]. For self-conciseness reasons, we only 
present the useful notions required here. Let a be a real number and 
3 an open subset of JR. Then (see (19]), the symbol class sacs X 3) 
denotes the linear space of coo functions a(·, ·, ·) in 3 x 3 x lR such that 
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for each K ~ 3 x 3 and for all indices /3, 8, -y, there exists a constant 
Cf3,8,,.,(K) such that 18~8f8Ja(x, t, r)l :::; Cf3,8,,.,(K)(1 + lrl2 )"'-f3, for all 
(x, t) E K and r E JR. A function f is said to be inhomogeneous of 
degree m if: f(x, t, J.t2r) = J.tm f(x, t, r), for any J.t > 0. Then, a pseu
dodifferential operator P = P(x, t, 8t) is inhomogeneous and classical of 
order M, ME Z/2, if its total symbol, designated by p = u(P), has an 
asymptotic expansion in inhomogeneous symbols {PM-i/2}j~ as 

+oo 
p(x, t, r) "'LPM-iJ2(x, t, r), 

j=O 

where each function PM-i/2 is inhomogeneous of degree 2M- j, for 
j E N. The meaning of "' is that 

m 
Vm EN, p- LPM-;12 E sM-(m+l)/2. 

j=O 

A symbol p satisfying the above property is denoted by p E sr and the 
associated operator P = Op(p) by inverse Fourier transform (according 
to (2.13)) by P E OPSW. Finally, let us remark that smoothness of the 
potential V is required for applying pseudodifferential operators theory. 
However, this is crucial for the complementary set of n but a much 
weaker regularity assumption could be expected for the interior problem 
set in n allowing therefore a wide class of potentials. 

Let us come back to the comparison of relations (2.11) and (2.12) in 
the case of a constant potential outside n. With the previous definitions, 
Eqs. (2.11) and (2.12) respectively read 

8nu(x, t) + ieiVi.rtOp ( -v'-T) (e-iVi.rtu)(x, t) = 0, on 'ET, (2.14) 

and 

8nu(x, t) + iOp ( -J-r + Vl,r) (u)(x, t), on 'ET. (2.15) 

Actually, these two formulations are equivalent thanks to the following 
Lemma (see [5) for a proof). 

Lemma 2.1. If a is at-independent symbol of sm and V(x, t) = V(x), 
then the following identity holds 

Op (a(r- V(x))) u = eitV(:z:)Qp (a(r)) ( e-itV(:z:lu(x, t)) . (2.16) 

In our case, since Vis also x-independent, one gets 

iOp ( -J -7" + Vl,r) (u)(x, t) = ieiVi.rtQp ( -v'-T) (e-iVi.rt)u)(x, t), 
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which explains the close link between (2.11) and (2.12). 
Lemma 2.1 has other applications when the potential V depends on 

the spatial variable x. To emphasize this point, let us develop some 
approximations of the TBC for the case of a linear potential V ( x, t) = 
x. Applying a Fourier transform in time, the Schrodinger equation: 
iatU + a~u +xu= 0 sets on nT becomes the Airy equation a~§tU + 
(-r + x)§tu = 0. The solution to this equation which is outgoing is 
given by §tu(x,r) = Ai ((x- r)e-i.,./3 ), where Ai stands for the Airy 
function [1]. Deriving this expression according to x, we obtain the exact 
relation expressing the corresponding DtN map in the Fourier space 

_ -i1r/3 Ai' ((x- r)e-i.,./3 ) 
8n§tu(x, r) - e A" (( ) . 13) §tu(x, r), 

1 X- T e-t11" 
(2.17) 

giving therefore the total symbol. The numerical approximation of the 
corresponding TBC is difficult to handle and approximations are needed. 
For sufficiently large values of lrl, one has the following approximation 

A•/ (( - ) -i11"/3) 
2i11"/3 1 X T e -i11"/6...j 

e A" (( ) . 13) ~ -e -r + x. 1 X- T e-•11" 

If we replace the total (left) symbol by its approximation, we obtain what 
is usually called an artificial or Absorbing Boundary Condition (ABC) 

(2.18) 

Thanks to Lemma 2.1 and since V(x, t) = x, this ABC is strictly equiv
alent to 

(2.19) 

Let us remark that, in the specific case of a linear potential, a change of 
unknown is allowed to transform the Schrodinger equation with linear 
potential into another Schrodinger equation without potential [10]. In-

deed, if vis solution to i8tv+8~v = 0, then u(x, t) = e-i(-a:tx+~la:l 2>v(x
t2o, t) is solution to iatU + 8~u + OXU = 0. 

At this point, some partial conclusions can be drawn: 

• Formally, the operator i8t + a~ + V can be (exactly or approxi
mately) factorized as 

according to the (x, t)-dependence of the potential. On the above 
right hand side, the second term characterizes the DtN map in
volved in the TBC or ABC. 
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• Transparent Boundary Conditions or Absorbing Boundary Condi
tions are written through a DtN operator either 

80 u + iOp ( -..;=T) (u) = 0, on :ET, 

or 

80 u + iOp ( -J-r + v) (u) = 0, on :ET. 

• If V(x, t) = V(t), the change of unknown v(x, t) = e-iV(t)u(x, t), 

with V(t) = J; V(s)ds, reduces the Schrooinger equation with po
tential to a free-Schrodinger equation and the TBC is then 

3 ABCs for the linear Schrodinger equation 
with a general variable potential 

3.1 Two possible strategies 

It is clear from the above analysis that we cannot expect to get a TBC 
for real general potentials. We then need to derive some approxima
tions and most specifically to compute ABCs using the previously in
troduced pseudodifferential operator calculus which extends the Laplace 
transform-based approach to variable coefficients operators. Further
more, it enables to manipulate symbols of operators at the algebraic 
level instead of operators at the functional level. The partial conclusions 
given at the end of the previous section let one think that two possible 
strategies to build ABCs can be considered. 

The first natural approach would consist in building an approximate 
boundary condition based on Eq. (1.1) with unknown u. However, even 
if this approach seems direct, it is quite intricate and for this reason it 
will be designated as strategy 2 in the sequel. 

A second possibility, called strategy 1, is the following. Let us con
sider now that u is the solution to Eq. (1.1) and let us define V as a 
primitive in time of the potential V 

V(x, t) =lot V(x, s) ds. (3.1) 

Following the Gauge change (2.10), let us introduce v as the new un
known defined by 

v(x, t) = e-iV(x,t)u(x, t). (3.2) 
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We obviously have vo(x) = uo(x). Moreover, plugging u given by 
(3.1)-(3.2) into the SchrOdinger equation with potential shows that v 
is solution to the variable coefficients Schrodinger equation 

(3.3) 

setting f = 2iox V and g = io~V - (Ox V) 2 • The fundamental reason 
why this change of unknown is considered crucial is that this first step 
leads to the TBC (2.11) applied to v and associated with (3.3) for a 
time-dependent potential (since then f = g = 0). 

We will see later that these two approaches lead to different absorbing 
boundary conditions which however coincide in some situations. 

3.2 Practical computation of the asymptotic expan-
sion of the DtN operator 

We explain here how to compute the asymptotic expansion of the DtN 
operator for a given model Schrodinger equation with smooth variable 
coefficients A and B 

L(x, t, Ox, Ot)w = iotw + o';w + Aoxw + Bw = 0. (3.4) 

Since we are trying to build an approximation of the DtN operator at 
the boundary, we must be able to write the normal derivative trace 
operator Ox (focusing on the right point Xr) as a function of the trace 
operator through an operator A+ which involves some (fractional) time 
derivatives/integrals of w as well as the effects of the potential V and its 
(x, t) variations. This can be done in an approximate way thanks to the 
factorization of L given by relation (3.4) 

where R E OPs-oo is a smoothing pseudodifferential operator. This 
relation corresponds to the formal factorization presented at the end 
of Section 2.2. The operators A± are pseudodifferential operators of 
order 1/2 (in time) and order zero in x. Computing the operators A± 
in an exact way through their respective total symbols a(A±) cannot 
be expected in general (which would therefore provide a TBC). A more 
realistic approach consists in seeking an asymptotic form of the total 
symbol a(A±) as 

+oo 
a(A±) = ,>.± "'L .>.t/2-i/2' (3.6) 

j=O 

where >.t12_;12 are symbols corresponding to operators of order 1/2-j /2. 
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Now, expanding the factorization (3.5), identifying the terms in Lin 
front of the operators ax with the ones from the expanded factorization 
and finally using a few symbolic manipulations to yield the system of 
equations 

(3.7) 

with a(x, t) = u(A) = A, b(x, t) = u(B) = B, since A and B are two 
functions of (x, t). 

Looking at the first equation of system (3.7), we see that we must 
have: >..~12 = -Xi/2" Now, if we identify the highest order symbol in the 
second equation of system (3.7), then we get four possibilities 

(3.8) 

and 
Xt/2(X, t, T) = ~J -T + b(x, t). (3.9) 

The first choice can be viewed as considering a principal classical sym
bol while the second possibility is rather referred to as a semi-classical 
symbol (see e.g. in [10]). 

Let us now consider the strategy 1 based on the gauge change leading 
to computing v solution to (3.3) for A = f and B = g. Following the 
derivation of the TBCs made in Section 2.2, the principal symbol with 
negative imaginary part characterizes the outgoing part of the solution 
u. A study of the sign of (3.8) (for a real-valued potential V) shows that 
the negative sign leads to the correct choice. Since g is a complex-valued 
potential with no controlled sign, we cannot determine the outgoing wave 
for (3.9). The only possible choice is then 

(3.10) 

Let us now consider the second strategy which consists in working 
on Eq. (1.1) for u setting A = 0 and B = V. The study of the signs 
of (3.8) and (3.9) for a real-valued potential V is possible in both cases 
and as for the first strategy, the negative sign provides the suitable so
lution. Therefore, we obtain the two possible symbols >..'t12 = -~ 

and >..'t12 = -..j-r + V. However, considering >..'t12 =-~would give 

some symbols which are approximations of >..'t12 = - ..j -r + V by using 
a truncated Taylor expansion when lrl --+ +oo. Since this case leads to 
less accurate ABCs, we will only consider next the case 

(3.11) 
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Choosing the principal symbol is a crucial point since it is directly 
related to the accuracy of the ABC. Moreover, for a given choice of 
the principal symbol, the corrective asymptotic terms {>.i12_;12};;::1 are 
different since they are computed in cascade developing the infinite sum 
in the second equation of {3. 7) as seen in the following Proposition. 

Proposition 3.1. Let us fix >.i12 by the expression {3.10). Then, the 
solution to system {3.7) is given by 

>.t = \: ( -i(8:r: + a)>.i12), 
2.1\1/2 

{3.12) 

and, for j EN, j :=:: 1, by 

{3.13) 

where 0;,1 = 0 if j =1- 1 and 61,1 = 1. 

Applying the above proposition to our situation, one obtains the 
following corollary. 

Corollary 3.2. In strategy 1 (a = f and b = g), if we fix the prin
cipal symbol >.i12 = -Fr in {3.7), then the next three terms of the 
asymptotic symbolic expansion are given by using {3.12} as 

+ + i8:r:V >._112 = 0 and >._ 1 = 4;"""· {3.14) 

In the case of the second strategy (a = 0 and b = V) and for >.i12 = 
-v'-r + V, we cannot obtain a general formula as for Proposition 3.1. 
However, the first terms can still be computed as 

+ -i 8:r:V 
and >._1 = -4 v· -r+ 

{3.15) 

In the case of a linear potential V = x, we saw that the total symbol 
is 

A· I (( ) -i'lr /3) + 2iw/3 1 X - T e 
>. =e ( )" Ai (x- r)e-iw/3 {3.16) 

The application of Corollary 3.2 in the context of strategy 2 gives the 
first- and second-order approximate symbols 0"1 = i>.i12 = -iv'-r + x 
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and a2 = i>.:t12 + iAd = a1 + t -T1+'J;, setting V = x. These two relations 
give good approximations of A+(x, r) for sufficiently large values of !x-rl 
(see Fig. 3.1 for x = 10), corresponding to a high frequency spectrum 
approximation. This test case shows the validity of our approach in this 
situation. 

't• ·100 100 - x,•10 

10' 

10 2 

10~ 

10 .. 

-40 ·20 0 20 40 60 

Figure 3.1 Logarithm of the absolute error 1.>.+- uti and 1.>.+- u2l with respect to 
r. A singularity is observed at 1-r- Xrl = 0, with Xr = 10. 

3.3 Choosing the ABC in the context of strategy 1 

If we assume that V is a real-valued smooth function, then the L2 (JR)
norm of the solution u to system {1.1) is conserved. If we truncate the 
domain by introducing a fictitious boundary, then one can expect that 
the £ 2 (0)-norm of the solution is bounded by lluoll£2(0)· This is for 
example proved in [3] in the case of the free-potential. In the case of a 
general potential, the expression of the artificial boundary condition is 
essential in the proof of a similar result. Particularly, by adapting the 
proof given in [7] and using the Plancherel theorem for Laplace trans
form, the following Lemma is the keypoint for proving a well-posedness 
result. 

Lemma 3.3. Let cp E H 114 (0, T) be a function extended by zero for any 

times> T. Then, we have the properties !R (ei'lf/4 f0
00 cp a:l2cpdt) ~ 0 

and 1R (Jo+oo Cj5 It cp dt) = 0. 
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This Lemma emphasizes the fact that the absorbing boundary condi
tion must have a symmetrical form. Since our approach gives the princi
pal symbol of an operator, an infinite choice of corresponding operators 
with this principal symbol is possible. For symmetrization reasons, we 
propose to fix the choice of the artificial boundary condition based on 
the principal symbol Ai12 = -Fr and {3.14) as follows: 

Cancelling the outgoing wave corresponding to Ai;2 for v writes down 

GnV + iA+v = 0, on Er. (3.17) 

Retaining theM first symbols {Ai12_i12 }M-l~j~o, we consider the as
sociated ABC 

M-1 

GnUM-i(GxV)uM+ieiV L Op()..i12_i12) (e-iVuM) =0, onEr, 
j=O 

(3.18) 
after replacing v in (3.17) by its expression (3.2). In Eq. (3.18), UM 
designates an approximation of u since we do not have a TBC. However, 
UM will be denoted by u in the sequel for conciseness. We adopt the 
following compact notation of {3.18) 

GnU+ AP (x, t, Gt) u = 0, on Er, (3.19) 

where M ~ 1 corresponds to the order of the boundary condition and is 
equal to the total number of terms XJ"i2 retained in the sum. The sub
script£= 1 {respectively£= 2) refers to the choice {3.10) {respectively 
(3.11)) of the principal symbol Ai12 , and therefore to the two different 
strategies. 

Let us begin by considering£ = 1 and M = 2. Then one directly 
obtains 

(3.20) 

which is a symmetrical operator. The case M = 4 is more ambiguous. 
Indeed, we only have access to the principal symbol X~1 = iGx V/(4r) 
of an operator. In order to conserve a symmetrical operator for the 
definition of the ABC, our choice of operator is 

0 ( \+ ) - (ll V) JiFnVf I (JiFnVi ) p "'-l v - sg un 2 t 2 V mod(OPS,S312). 

(3.21) 
In the above equation, sg( ·) designates the sign function. 

We finally obtain the following Proposition. 

Proposition 3.4. For£= 1, the ABC of order M 'tS given by 

GnU+ Afl u = 0, on :Er, {3.22) 
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with 
(3.23) 

and 

Af(x, t, Ot) u = AHx, t, Ot) u 

+isg(onV) ~eiV(x,t)ft ( ~e-iV(x,t)u). (3.24) 

The boundary condition (3.22) is referred to as ABCf-1 in the sequel. 

Considering the ABCs (3.22) of Proposition 3.4, we get the following 
well-posedness result (see proof in [5]). 

Proposition 3.5. Let uo E L2 (S1) be a compactly supported initial da
tum such that Supp(uo) c n. Let v E C00 (R X JR.+,JR.) be a real-valued 
potential. Let us denote by u a solution of the initial boundary value 
problem 

{ 

iOtU + o~u + V u = 0, in S1T, 

o0 u + A~u = 0, on ET, (3.25) 

u(x, 0) = ua(x), Vx E S1, 

where the operators A]'!, with M = 2, 4, are defined in Proposition 3.4. 
Then, u fulfils the following energy bound 

(3.26) 

forM= 2. Moreover, if sg(on V) is constant on ET, then the inequality 
(3.26) holds for M = 4. Particularly, this implies that we have the 
uniqueness of the solution u of the initial boundary value problem (3.25). 

3.4 Choosing the ABC in the context of strategy 2 

Let us now consider the second strategy for building the absorbing 
boundary conditions ABC~, for M = 2 and M = 4. 

Proposition 3.6. For l = 2, the ABC of order M based on the second 
strategy for symbols (3.15) is given by 

00 U +A~ u = 0, on ET, (3.27) 

with 
A~(x,t,Ot)U = Op ( -h/-T + v) u (3.28) 

and 
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The boundary condition {3.27) is referred to as ABcr in the sequel of 
the paper. 

Studying the well-posedness of the initial boundary value problem 
related to the boundary condition ABCr {3.27)-{3.29) is more diffi
cult than ABC{W" except for the case V(x, t) = V(x). Indeed, the well
posedness result is trivial since ABcr is strictly equivalent to ABC{W". 
A direct application of Lemma 2.1 gives the following Corollary. 

Corollary 3. 7. If the potential V is time independent, then ABCf-1 is 
equivalent ABcr, for a fixed value of M = 2, 4, with V(x, t) = tV(x). 
Particularly, the well-posedness of the associated bounded initial value 
problem is immediate from Proposition 9.5. 

4 Semi-discretization schemes and their prop
erties 

The aim of this section is to proceed to the semi-discretization in time 
of the initial value problem 

{ 

i8tu+o;u+ Vu = 0, in Or, 

8nu + A~2u = 0, on Er, for M = 2 or 4, 

u(·,O)=uo, inn, 

for a maximal time of computation T. 

{4.1) 

We consider an interior Crank-Nicolson scheme for the time dis
cretization of system (4.1). The interval [0; T] is uniformly discretized 
using N intervals. Let t1t = T / N be the time step and let us set 
tn = nt1t. Furthermore, un stands for an approximation of u(tn) and 
vn = V(x, tn)· If V = V(x) is a time-independent potential, then 
the Crank-Nicolson discretization of the Schrodinger equation is given 
by i{un+l- un)/t1t + 8~(un+l + un)/2 + V(un+l + un)/2 = 0, for 
n = 0, ... , N - 1. If V = V(x, t), for matters of symmetry, we choose 
the following time-discretization of the interior equation 

Let us remark that for implementation issues, it is often useful to set 
vn+l = (un+l + un)/2 = un+l/2 , with u-1 = 0 and u0 = uo. Similarly, 
we define wn+l = (Vn+l + Vn)/2 = vn+l/2 • Then, the time scheme 
{4.2) reads 

{4.3) 
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We propose here one approximation for each kind of ABC. The ap
proach for strategy 1 is based on semi-discrete convolutions for the frac
tional operators involved in ( 4.4 )-( 4.5), which leads to an uncondition
ally stable semi-discrete scheme. Considering strategy 2, we propose a 
scheme based on the approximation of the fractional operators through 
the solution of auxiliary differential equations which can be solved ex
plicitly. The evaluation is then extremely efficient but at the same time, 
no stability proof is at hand. 

4.1 Discrete convolutions-based discretizations for 
ABCfl 

We first consider the boundary conditions ABCfd. According to Propo
sition 3.4, we have 

ABC~: Gnu+ e-i'1rf4eiVGi12 (e-iVu) = 0, (4.4) 

and 

ABCf : GnU+ e-i'lr/4eiV Gi/2 (e-iVu) 

+ · (~ V) .JjFnVf iVI ( .JiFnVf -iV ) _ O 't sg un 
2 

e t 
2 

e u - . 
(4.5) 

We use the symmetrical form of ABCf, which is a keypoint in the case 
V = V(x, t). The associated initial boundary value problem is then 

{ 

iGtU + G;u + V u = 0, in Or, 
Gnu+ Afdu = 0, on :Er, forM= 2 or 4, 
u(·, 0) = UQ, inn. 

(4.6) 

We will use in the sequel the following discrete convolutions approximat
ing the continuous convolution operators. 

Proposition 4.1. If {r}neN is a sequence of complex numbers approxi

mating {f(tn)}neN. then the approximations of Gi12 f(tn), It112 f(tn) and 
It f(tn) with respect to the Cronk-Nicolson scheme for a time step llt are 

given by the numencal quadrature formulas Gi12 f(tn)~{i; tf3n-kfk, 

n n k=O 
1/2 k llt 

It f(tn) ~ Lan-k/ , It f(tn) ~ 2 L "fn-kfk, where these-
k~ k~ 

quences (an)neN, (f3n)neN and ('Yn)neN are 

{ 

( 
1133) (ao, a~, a2, a3, a4, as, ... )= 1, 1, 2, 2, 8, 8,... , 

fA=(-1)kak, Vk;:::O, 

('Yo, "11, "/2, "/3, ... ) = (1, 2, 2, ... ). 
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The weak formulation of ( 4.2) writes, for any test-function '1/J in 
H 1 (0), 

!it rr (vn+l- un)'I/Jdx + [axvn+l'I/J]=~- rr 8xvn+1ax'I/Jdx 
~I ~I ~.n 

+ [Xr wn+lVn+l'ljJdX = 0. 
Jx1 

According to the interior scheme (4.2), the semi-discretization of ABC~ 
for v at time tn+l is given by 

· · n+l f£n+l . k 
J:::~ vn+1(x ) - e-•w14 e'Jie'" -""f.! e-•Jie'" vk(x ) 
Un l,r = l:J.t L....J tJn+l-k l,r , 

k=O 

and, for ABCf, by 

. (J:::I wn+l) Jion wn+li iJ!e'"n+ll:it (4.8) 
-~sg un 

2 
e 2 

~ JionWkl -iJ!e'"k k( ) 
L....J 'Yn+l-k 2 e V X!,r 1 

k=O 

with the notation ~n+l = (Vn+l + Vn)/2. Then, the following Propo
sition can be proved (see [5]). 

Proposition 4.2. The semi-discrete Crank-Nicolson scheme for the ini
tial boundary value problem (4.6) is given by 

{ 

2i vn+~~ un + a;vn+l + wn+l vn+l = 0, in n, 

Onvn+l + A~·n+lvn+l = 0, onE, forM= 2 or 4, 

u0 = uo, inn, 

(4.9) 

for n = 0, ... , N- 1, setting vn+l = (un+l + un)/2, wn+l = (Vn+l + 
vn)/2, where the semi-discrete operators A~,n+1 and A~·n+l are defined 
by 

(4.10) 
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Here, '#fn+l is defined by '#fn+l = (Vn+l + vn)/2, vn(x) being the 
approximation ofV(x, tn) using the trapezoidal rule (Vis given by (3.1)}. 
Moreover, for M = 2, one has the following energy inequality 

(4.13) 

and if sg(8nWk) is constant, then (4.13) also holds forM = 4. This 
proves the L2 (S1) stability of the scheme. Inequality (4.13) is the semi
discrete version of (3.26) under the corresponding assumptions. 

4.2 Auxiliary functions-based discretizations 
for ABC~ 

While the previous strategy based on discrete convolution operators is 
accurate and provides a stability result, it may lead to significantly long 
computational time. For ABcr, the discretizations of the resulting 
pseudodifferential operators involved are not easy to obtain. Particu
larly, the operators with square-root symbols cannot be expressed in 
terms of fractional time operators since Lemma 2.1 cannot be applied. 
Let us consider the following additional approximations which will pro
vide a more suitable way to discretize the ABCs. 

Lemma 4.3. We have the approximations Op (\1-r + V) = Ji8t + V, 

mod (OPS5 312
) and Op ( ¥ -T~V) = sg(8n V) yl~n VI (i8t + V)-1 

v'l~n VI' mod {OPSS3 ). 

Thanks to Lemma 4.3, we now define the new approximations of 
ABC~ (see Proposition 3.6) 

AB'Cf: 8nu- h/i8t + Vu = 0, (4.14) 

and 

------ABC~: 8nu- iJil}t + Vu+ 

sg(8nV) ~(i8t + V)-1 
( ~ u) = 0. 

(4.15) 

Let us begin by the second-order condition (4.14). An alternative ap
proach to discrete convolutions (which cannot be applied here) consists 
in approximating the square-root operator Ji8t + V by using rational 
functions. More specifically here, we consider the m-th order Pade ap
proximants [18] 

m m m m md!!" 
..;z::::: Rm(z) =a()+ L ...!!:.!._!___ = :Eak'- L !!:LlL, 

k=1 z + dk k=O k=l z + dk 
(4.16) 
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where the coefficients (ar)o::;ks;m and (dkh9:Sm are given by 

fik = tan2 C2
\:

1)7r). a0 =0 , 
1 

ar=------~--~~ 
m cos2 ( (2~"!;;)"") 

Formally, .../i8t +Vis approximated by 

m m 

Rm(i8t + V) = L ar- L ar fik(i8t + v + a:,:)- 1
. (4.17) 

k=O k=1 

Applying this process to Eq. (4.14), we have the new relation 

m m 

8nu- iL:aru + iL:arfik(i8t + v +fik)-1 u = o, (4.18) 
k=O k=1 

defining then a second-order artificial boundary condition referred to as 
ABC~ m in the sequel. To write a suitable form of the equation in view 
of an ~fficient numerical treatment, we classically introduce m auxiliary 
functions <pk, for 1 :::; k:::; m, (see Lindmann [16]) as follows 

(/)k = (i8t + v + a:,:)- 1 u, 

leading to the following equation 

iOt<f'k + (V + fik) cpk = u, for 1 :::; k :::; m, at x = xz,r, 

(4.19) 

(4.20) 

with the initial condition cpk(x, 0) = 0. The corresponding complete 
local artificial boundary condition is written as a system 

l 
m m 

On u - i L aru + i Lara:,: cpk = 0, 
k=O k=1 

i8tcpk + (V + fik) (/)k = u, for 1 :::; k :::; m, X = xz,r, 

cpk(x, 0) = 0. 

(4.21) 

The semi-discretization of the interior scheme remains the same as before 
(4.2), and consequently, (4.21) becomes in terms of vf: functions 

m m 

OnVn+1 - i L arvn+l + i L arfikcp~+l/2 = 0, 
k=O k=1 

n+1 n 
. cpk - cpk + (wn+1 +a:!:) cpn+1/2 - vn+1 
l !:it k k - , 

(4.22) 

cp~ = 0. 

for 1 :::; k ~ m and x = X!,r· 
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---Now, let us consider the fourth-order condition ABC~ given by (4.15) 

8nu- i.../Wt + Vu 

+sg(8nV) ~(i8t + v)- 1 
( ~ u) = 0, on~ x JR. 

(4.23) 
Then, one has to introduce one more additional auxiliary function 1/J 

such that ( i8t + V) 1/J = yl~n VJ u. 

We call ABC~ m the resulting approximation of ABC~. Using again 
a Crank-Nicolson 'discretization of 1/J, one gets the following approximate 
representation of ABCf.m 

m m 

OnVn+1 - i L arvn+1 + i L ak'dk'<t>;+1/2 
k=O k=1 

+ sg(8n wn+l) vr;-;18::-'"n';';:";::n-;-+;-;111/Jn+l/2 = 0, 

(4.24) 

for 1 ::=::; k ::=::; m and X = X!,r· 

5 Extensions to nonlinear problems 

Following the developments in (4] for the cubic nonlinear Schrodinger 
(NLS), one can extend the derivation performed in Section 3.2 to cases 
in which the potential is formally replaced by a nonlinearity. To be more 
precise, we consider the following cubic (NLS) equation 

{ 
iOtU + o;u + qlul2u = 0, (x, t) E f2T, 

u(x, 0) = uo(x), X E f2. 
(5.1) 

The role of the potential V(x, t) is now replaced by the cubic nonlinear 
term qlul2 (x, t). If q > 0 (resp. q < 0), the (NLS) equation is said 
to be focusing (resp. defocusing). This equation is well posed and has 
special solutions when dispersion and nonlinearity compensate, namely 
the soliton solution, which exhibits the specific behavior to propagate 
without modification of its amplitude. The cubic NLS equation is ex
tremely interesting since it is the prototype of more general nonlinear 
dispersive equations and therefore it has received much attention these 
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years. In the context of TBCs and ABCs, contributions can be found in 
the papers [4, 24, 26, 6]. 

If we formally replace the potential by the nonlinearity qjui2, the 
two strategies developped in the previous sections lead respectively to 
two different ABCs of order M that will be denoted by NLABC~ for 

-M 
strategy 1 and NLABC2 -NLABC~m for strategy 2. For strategy 1, the 
ABCs of order M are given by 

(5.2) 

with (NLABC~) 

and (NLABCf) 

Tf u = T~ u+isg(onqiui2) v'lon2qlul21 eiV(x,t) It ( v'lon2qlul21 e-iV(x,t)u) , 

setting V(x, t) = J~ qjuj2(x, s) ds. ---~trategy 2, one gets NLABC~: Onu- iy'iot + qiui2u = 0 and 

NLABC~: 

onu- iy'iot + qjuj2u 

+ sg(onqlui2) v'r.:lo,-n
2
q-.,.ju....,.l=

2
1 (iOt + qjui2)-l ( v'lon

2
qiul

2
1 u) = O. 

The numerical treatment is slightly different from the linear SchrO
dinger equation with potential. Indeed, the semi-discrete approxima
tion of the nonlinear term qjui 2u is done following the Duran and Sanz
Serna scheme [12]. More precisely, we use the midpoint approxima
tion qj(un+l + un)/212(un+l + un)/2. This differs from q(jun+lj2 + 
iuni2)(un+l + un)/4 which is the classical Crank-Nicolson approxima
tion and corresponds to Eq. (4.2). Therefore, the semi-discrete time 
scheme reads 

. un+l- un 2un+l + un lun+l + un 12 un+l + un -
~ At + 0x 2 + q 2 2 - O 

which can be recast as follows 
vn+l un 

2i-- + o 2vn+l + qjvn+li2vn+l = 2i- (5.3) 
At X At' 

where vn+l denotes the midpoint term (un+l +un)/2. Since this scheme 
is now nonlinear, we solve it by a fixed-point procedure with error tol
erance c. The algorithm is described below: 
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let ( 0 = vn' s = 0 
repeat 

Antoine, Klein, Besse 

solve the linear elliptic problem 

2i(~:l + 8~(8+1 = 2i~G - ql(812(8 
s=s+l 

until ll(s+1
- (

8 11£2(0) ~ c 
vn+l = (8+1, un+l = 2vn+l _ un 

The rule is to replace vn+l by ( 8 +1 if the corresponding term is linear 
and by ( 8 if one deals with a nonlinear one. We do not detail this step 
further and this principle is also applied to the numerical treatment of 
other nonlinear ABCs. 

The numerical approximation of NLABCf is 

On(8+l + e-i~ /"£(8+1 = gs on :ET, (5.4) 

with 

g8 = -e-if/"£ (~exp (iqAtl(~l
2

) ~.Bn+l-kJEkvk) 

-i~8n(l(8 1 2 ) ( ~t ( 8 + AtJEn exp (iqAt 1(;1
2

) ~ JEkvk) . 

-The notations JEP and ]EP-1 are the quantities defined by 

(5.5) 

setting JE0 = 1 and JE1 = exp (il!J1 ). 

The Crank-Nicolson scheme (5.3) coupled to (5.4) remains nonlocal 
in time since we have to deal with convolution terms. In this direction, 
NLABC~ m are computationally more efficient since they are based on 
the Pade' approximants and are therefore local in time. For example, 
NLABC~ m reads 

' 
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with 

where cp~ = 0, Vk, ¢~ = cpk' and 

where 1/;0 = 0 and x0 = 'lj;n. When the convergence assumption 

is reached, one affects cp~+l = ¢~ and 1j;n+l = xs. 

6 Numerical examples 

The aim of this section is to provide some test cases to validate our ap
proach. We perform some experiments for Schrodinger equations with 
both variable potentials and nonlinearities. For each situation, we use a 
variational formulation of the semi-discrete time problem with nh linear 
finite elements (with spatial size h) and integrate the ABCs in the cor
responding scheme as a Fourier-Robin boundary condition. This leads 
to a tridiagonal banded matrix. The solution to the associated linear 
system is then simple and is realized by a direct LU solver. 

6.1 Linear Schrodinger equation with variable po
tential 

We consider the initial gaussian datum un(x) = eikoz-z
2

, where ko desig
nates the wave number fixed to ko = 10 in our simulations. This choice, 
like the nonlinear Schr&linger equation, is related to the fact that our 
ABCs are derived under a high frequency hypothesis. We present here 
one kind of potential: V(x, t) = 5xt (more examples are available in [5)). 
The computational domain is n =]- 5; 10[. The final time of computa
tion is T = 2.5. The spatial step size is h = 2.5 X w-3 for the linear 
finite element method and the time step is /:it = 10-4 . We present in 
Figure 6.1 the quantity log10(iu(x, t)l) in the domain S1r. We begin by 
reporting the reference solution (top left) computed on a larger domain 
to avoid any effect related to spurious reflection at the boundary. Next, 
we present (top) the solutions using ABC~ and ABCf which show that 
increasing the order of the boundary conditions yields smaller undesired 
back reflections. Finally, we compare the effect of the localization based 
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on the Pade approximation of order m for the second-order ABC and 
strategy 2. We choose m = 20 (ABC~,20 ) and m =50 (ABCl50 ) terms. 
To give an equivalent precision to ABC~, m = 50 is required. However, 
we note here that this leads to a negligible additional cost compared 
to m = 20. We also see on the right bottom picture that the preci
sion of ABC~ is conserved for ABC~ 50 . All these simulations show that 
the proposed ABCs have increasing ~ccuracy according to the order M, 
with similar accuracy for the same order when a localization process is 
applied. 

Figure 6.1 Log10 representation of the amplitude of the computed solutions for 
V(x, t) = 5xt. From left to right, top: reference solution, ABC~, ABCf; bottom: 
ABC~,20 , ABC~,50 , ABC~,50 

6.2 Nonlinear Schroinger equation 

The one-dimensional cubic nonlinear Schrodinger equation is integrable 
according to the inverse scattering theory [25]. This approach yields the 
so-called exact soliton solution given by 
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From now on, we fix the focusing parameter q to 1. The real parameter a, 
equaling 2 here, characterizes the amplitude of the wavefield. Finally, c is 
the velocity of the soliton. Like what is described in the previous subsec
tion, since the derivation of the nonlinear artificial boundary conditions 
has been constructed under a high-frequency assumption (lrllarge), we 
take c = 15. All along the computations, we consider e = w-6 in the 
fixed-point algorithm. The numerical parameters are ll.t = w-3 for a fi
nal timeT = 2. The finite computational spatial domain is n =]-10, 10[ 
discretized with nh = 4000 equally spaced points (h = 0.5 X w- 2). Con
cerning the Pade approximation, we choose m = 50 since this is an 
optimal choice for the potential test cases. 

To focus on the spurious reflections link to the different methods, 
we plot the contour of log10(lul) in Figs. 6.2-6.6. We see in Fig. 6.2 
that the maximal reflection is approximately equal to w-2 for an initial 
amplitude of 2 and the linear TBC (2.2). For Figs. 6.3-6.6, the reflec
tion attains a maximal value around 5 x 10-3 . The reflection occurring 
at the right boundary decreases according to the order M of the differ
ent conditions NLABCJ"f or NLABC~m· Moreover, the most accurate 
results are obtained for the condition NLABC~ with a minimal region 
of maximal reflection. Unlike the linear TBC, the reflection at the left 
boundary has an amplitude smaller than w-4 • 

Figure 6.2 Contour plot of log10(1ul) for the linear TBC (2 2}. 
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Figure 6.3 Contour plot for the boundary condition NLABCy. 

X 

Figure 6 4 Contour plot for the boundary condition NLABCf 
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Figure 6.5 Contour plot for the boundary condition NLABC~,so· 

X 

Figure 6.6 Contour plot for the boundary condition NLABCtso· 
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To precise these results, we plot in Fig. 6. 7 the relative errors for the 
£ 2 (0)-norm 

lluex- UnumiiP(f!) 

llunumll£2(f!) 

where Unum denotes the numerical solution. For the linear TBC, the 
error is about 2% whereas the best result is obtained for the NLABCf 
condition for a final error of 0.2%. It is interesting to note that the 
ABCs NLABC~ with Pade approximations are very competitive. The 
relative errors for NLABC~ and NLABC~.so are exactly the same, and 
NLABC~ 50 is between NLABC~ and NLABC~ methods, with the main 
differenc~ being that methods based on Pade approximations are lo
cal in time and easy to implement. However, the fact that NLABC~ 
and NLABC~,m are not numerically equivalent requires further inves
tigations. Indeed, for the variable potential cases, we obtained similar 
results while it is no longer the case here. 
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Figure 6. 7 Relative error for the different linear and nonlinear ABCs. 

7 Conclusion 

We have introduced various constructions of Absorbing Boundary Con
ditions (ABCs) for the one-dimensional Schrodinger equation with time-
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and space-variable repulsive potentials and for the one-dimensional non
linear cubic SchrOdinger equation. They are derived with the help of gen
eral pseudodifferential techniques and applied to variable potentials and 
nonlinear equations. New accurate and efficient Absorbing Boundary 
Conditions for the nonlinear cubic Schrodinger equation are proposed. 
Numerical examples compare the different ABCs of various orders, show
ing that fourth-order ABCs yield accurate computations, and that Pad&. 
based approximations are accurate while they are also efficient. Further 
studies will include other nonlinearities as well as extensions to higher 
dimensions. 
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Abstract 

This paper is devoted to hydrodynamic models intending to 
describe charging phenomena and the spacecraft evolving in Low 
Earth Orbits (LEO) are dealt with. The models we are interested 
in couple the stationary Euler equations to the Poisson equation 
which defines the electric potential. Furthermore, the charging 
dynamics is embodied into the boundary conditions where the 
time derivative of the potential appears. We point out the main 
mathematical difficulties by restricting to a lD caricature model 
for which we present rigorous existence results and numerical sim
ulations. 

*This research is partly supported by a contract with Thalesalenia Space 
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1 Introduction 

A spacecraft evolves in the space plasma and interacts with it. These 
complex interactions, due to the different dielectric properties of the 
materials on the surface of the spacecraft, can induce the apparition 
of severe potential differences which, in turn, produce electric arcing. 
These phenomena are sources of in-orbit failures since the arcing can 
lead to irreversible damage on the in-board devices or on the solar ar
rays. Therefore, the prevention of the apparition of excessive electric 
charges has motivated an intense research in space engineering in order 
to design efficient procedures of numerical simulations (see (21], [6], (22]). 
This effort requires an important preliminary step on modeling issues. 
A basis model is clearly based on the Vlasov-Maxwell-Boltzmann (or 
Fokker-Planck) equations for describing both the motion of the charged 
particles and the variations of the electro-magnetic fields. The nonlin
ear system of PDEs is completed by suitable boundary conditions on 
the surfaces of the satellite and equilibrium conditions at infinity. The 
charging phenomenon is precisely driven by the boundary conditions on 
the spacecraft surface for the electromagnetic field and the densities. We 
shall see that their expression, which involves the dielectric properties 
of the different materials on the surface, makes the problem highly non
standard. Moreover, taking account of the specific features of the plasma 
environment can help to reduce the complexity of the model, and we 
can actually decline a hierarchy of possible models. In the next section 
we describe some aspects of the derivation of the models, emphasizing 
the specificities of GEostationary Orbits (GEO) and Low Earth Orbits 
(LEO) environments. In Section 3 we derive a simpler one-dimensional 
model which helps point out several interesting features of the prob
lem. This is completed by theoretical results in Section 4 and numerical 
simulations in Section 5. 

2 Kinetic, hydrodynamics models and 
potential boundary conditions 

2.1 Generalities 

We suppose that the plasma consists in two charged particles species: 
ions n+ and electrons. We denote by /i and fe respectively the distribu
tion functions of these species: /i; e ( t, x, v) dv dx stands for the number 
of ions (respectively electrons) in the domain centered at the point (x, v) 
of the phase space with infinitesimal volume dv dx at time t ;:::: 0. Let 
qi = -qe = q > 0 be the elementary charge, let mi and me be the ion 
mass and the electron mass, respectively. The evolution of the charged 
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particles obeys the following PDEs 
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8tfile + V · V zfile + qile (E + V 1\ B)· V vfile = Cile(h fe), (2.1) 
mile 

which is coupled to the Maxwell equations for the electro-magnetic field 
(E,B): 

t:o(- 8tE + c2curlzB) = Ji + Je, 

divz(t:oE) = q(~ - ne), 

c28tB + curlzE = 0, 

divzB = 0, 

(2.2) 

(2.3) 

(2.4) 

(2.5) 

where eo and c stand for the vacuum permittivity and the light speed 
respectively and we denote 

In (2.1) the right hand side contains the collision dynamics between the 
particles (electron/electron, ion/ion and electron/ion), and the operator 
Cile being of Boltzmann or Fokker-Planck type (see [10, 13]). However, 
except for very specific flights (e. g. in Polar Earth Orbits), the magnetic 
effects can be neglected so that the Maxwell equations (2.2)-(2.5) can be 
replaced by a mere Poisson equation for the electric potential. Indeed, 
let us introduce the electric potential ct>(t, x): the electric field is defined 
byE= -Vzil>. Then, (2.1) reduces to 

8tfile + v. v zlile - qile v zil> . v vlile = cile (/i, !e), (2.6) 
mile 

where (2.3) leads to the Poisson equation 

-divz(t:o'Vzil>) = q(ni- ne)· (2.7) 

Equations (2.1)-(2.5) hold fort~ 0, x E !1, v E R3 , where f2 C R3 

represents the exterior of the satellite. Therefore the problem should be 
tackled with boundary conditions for the potential and the distribution 
functions. First of all, far from the spacecraft the plasma is supposed to 
be in an equilibrium state, thus, at infinity, we assume that 

CI>(t,x)-------? 0, 
lzl-oo 

00 2 
nile ( V ) 

file(t, x, v) ~ -:-(2-11'-:9::-'f:....le...,.)-::-31-:-::-2 exp - 29~e 
(2.8) 

holds with n~e > 0 and e~e > 0 giving densities and temperatures for 
the ions and the electrons. 
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Second of all, on the spacecraft the particles distributions obey 

'Yincfife = 'R('Youtfife) + S for V • v(x) < 0 (2.9} 

where v(x) stands for the outward unit vector at point X E an, "fine 

denotes the trace operator on the incoming set { (x, v) E an X JR3 S. t. V· 

v( x) < 0}, and "'out denotes the trace operator on the outgoing set 
{(x,v) E an x JR3 s. t. v · v(x) > 0}. The linear operator 'R, describes 
how impinging particles are reflected by the walls; for instance we can 
use the simple specular reflection law 

'Rf(x,v) =a f(x,v- 2(v · v(x))v(x)) 

with a E (0, 1} being an accommodation coefficient. Varying the value 
of a can be regarded as a model of the photo-emission. When flying 
in darkness the spacecraft surfaces are absorbing (a = 0} whereas ex
position to light causes emission of particles (a > 0}. Finally, S is a 
source term accounting for possible emission of charged particles by the 
surface. Let us now describe, according to [5], the boundary condition 
for the potential which is the most original part of the model. 

The spacecraft can be considered a perfect conductor, partially cov
ered by an assembly of dielectric materials. We denote by Oo the con
ductor, and Ok, k E {1, ... , Nd} the dielectrics which are characterized 
by their permittivity ek > 0 and conductivity O'k > 0. The height of 
the kth dielectric layer is denoted by dk. The plasma fills the domain 

n = IR3 \ U~.:o Ok. We set r = U~.:o a0k and for a given point x E r, 
v(x) stands for the normal vector at the surfacer (pointing outward the 
considered domain}. We consider the following interfaces (see Fig. 2.1): 

• r cfv = r \ n~.:o aok, the interface between the conductor and the 
vacuum, 

• r c/d = aoo \ r cfv• the interface between the conductor and the 
dielectrics, 

• r d/v =an\ r cfv• the interface between the dielectrics and the vac
uum, 

• r dfd = r \ (aOo u an), the interface between neighbors dielectrics. 

The boundary conditions for <P can be deduced from the Maxwell 
equations considered in the whole space JR3 and bearing in mind that 
the different parts of the spacecraft have different electric behavior. At 
any place of the conductor, the electric potential remains at a constant 
value: we denote by 4>abs(t), the so-called "absolute potential", the value 
of the potential at time t. Particularly, we have 

<P(t,x) = 4>abs(t) on rcfv· (2.10} 
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fc-v 

Vacuum 

Figure 2.1 Domain and notations of interfaces. 

In the dielectrics, there exists a runaway current, proportional to the 
electric field Jk = -ak V' xq,diel· Then, we consider the jump relations as
sociated with the Ampere law (2.2) recasts as 8tdivx(eY'xq,) = divx(J). 
Denoting Jext = Ji + Je, we get 

8t(fkavq,diel - eo8..,q,) + Jext. v + O'kavq,diel = 0 on r dfv (2.11) 

together with the relation 

[ [at(-€o8..,q,)+Jext·v] d-y+ [ [at(-ekavq,diez)-akavq,diel] d")' = 0. 
Jrc;v lrc/d 

(2.12) 
Since the dielectric layer is very thin, which means that the dk 's are small 
~om pared to the characteristic lengths of the spacecraft, and the normal 
derivative of the dielectric potential on r cfd and r dfv is approached by 

a ..1'. • (t ) ,__ ifJabs(t)- q,(t, x) 
v':l:'dtel ,X - dk · (2.13) 

Finally (2.10), (2.11), (2.12) and (2.13) define the boundary conditions 
for the potential. 
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2.2 From GEO to LEO 

The most studied environment relies on the geostationary orbits (GEO) 
which yields further simplifications, based on asymptotic considerations. 
There, the plasma can be considered as collisionless, that is, Cile = 0 
in (2.6). Furthermore, the Debye length is large and the evolution of 
the charged particles holds on a larger time scale than on the time scale 
of evolution of the electric potential on the boundary. Eventually, the 
GEO charging of a spacecraft is thus described by the stationary Vlasov
Poisson equations 

{ 
" J Qile J V · Vx ile- --'\Jxq> · 'Vv ile = 0, 

mile 
~xq> = 0, 

with the boundary conditions (2.8), (2.9) and (2.10)-(2.12). Note that 
the problem remains time-dependent due to the time derivative in (2.11) 
which governs the evolution of the charging phenomena. We refer to [5] 
for an introduction to this model, particularly for the discussion of the 
potential boundary conditions. The model is currently used in GEO 
codes (see [3, 6, 4, 1]). In this paper we are rather interested in Low 
Earth Orbits (it means orbits with an altitude between 100 and 2000 
km whereas GEO is around 36.000 km). Since the plasma is more dense 
with a smaller mean free path, the use of hydrodynamic models becomes 
reasonable, at least in the first approximation. This is interesting for 
numerical purposes since by getting rid of the velocity variable, it is 
allowed to reduce the size of the unknowns. The model can be derived 
as follows: Bearing in mind the standard collision operators in plasma 
physics, electron/ electron and ion/ion collisions preserve mass, impulsion 
and energy and relax towards equilibrium state which are the Maxwellian 
functions. After integration of (2.6) we obtain 

at r (~ )filedv+'Vx r v(~ )liledv }Ra v2 }Ra v2 

+ qile 'Vxq;. f (~ ) !i1edv = { (~ ) CileUi,fe)dv. 
mile }Ra 2v }Ra v2 

(2.14) 
Actually, the right hand side only retains the momentum and energy 
exchanges between the two species due to the electron/ion collisions. 
Of course, this set of moment equations is not closed since higher mo
ments appear in the convection terms. However, dealing with collision
dominated flows, the distribution functions relax to Maxwellians and 

1 . J b h d" n;J• ( lv-U;Jel
2

) rep acmg ile y t e correspon mg (z.,.e,
1
.)3J2 exp - 29,1• we are 
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led to the Euler equations satisfied by the density nile• velocity ui/e and 
temperature ei/e 

8tnije + divx(nijeUije) = 0, 
ffiiJe(8t(nijeUije) + Divx((nijeUije) ® Uije)) + 'lxPi/e 

= -qi/eni/e 'l~- kqi/eneni(Ui- Ue), 
8tWije + divx(WijeUije + PijeUije) 

= -qi/eni/e 'l x~ · Uije- kqi/enena(ui- Ue) · Uije 
-~qifeneni(ei - Be) 

(2.15) 

with Wife = m;tniJeluiJel2 + ~ni/eei/e· Here we denote by div the 
standard divergence of a vector and by Div the divergence of a matrix. 

On the right hand side, the term kqi/eneni(Ui - ue) is a drag force 
associated with the momentum exchanges between the two species, due 
to the ion-electron collisions. Similarly ~i/eneni(ei - 8e) represents 
the energy exchanges due to the ion-electron collisions. We refer on 
this derivation to classical textbooks in plasmas physics (2, 10, 13]. The 
equation is completed by the perfect gas law 

The force field is still given by the Poisson equation 

(2.16) 

endowed with the boundary conditions 

( rPabs - ~ 8 "') rPabs - ~ J. 0 
8t €k dk - €Q v'.l' + O'k dk + ext · V = 

~(t,x) = rPabs(t) on rc/v• 

lim ~(t, x) = 0, 
llxll-++oo 

(2.17) 

with 
Jext = q(niui- neue)+ Js, 

where Js describes the possible emission current of particles from the 
boundary. 

The derivation of relevant boundary conditions for the macroscopic 
quantities (nile• Uife• eije) is an issue. The difficulty is two-fold: 
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- On the one hand, we deal with a hyperbolic system so that we 
should prescribe only the incoming fields. We refer to [12] for a deep 
discussion in this aspect. 

- On the other hand, the Maxwellian state is usually not compatible 
with the kinetic boundary condition (2.9). Hence a kinetic boundary 
layer, the so-called Knudsen layer, should be taken into account (see 
[17, 25]), for a more practical viewpoint [11]. Remark that a conservative 
boundary condition that Jext · v = 0, for instance, with full reflection 
a = 1 and no source S = 0 in (2.9), has no interest for the charging 
phenomena; we refer to [1] for similar remarks. 

This aspect of the problem is particularly relevant, but it is beyond the 
scope of the present paper. 

Next, asymptotic considerations are allowed to derive a hierarchy of 
possible models. Indeed, for LEO regimes the following reasoning can 
be applied: 

• The charging time can still be considered small compared to the 
typical time scale of the fluid evolution. This leads to replacing 
the evolution equation in (2.15) by their stationary version: 

divx(nifeUife) = 0, 
mifeDivx((nifeUife) ® Uife) +\!pile 

= -qi/eni/e \! xlll- kqifeneni(Ui- Ue), 
divx(WifeUife + PifeUife) 

= -qi/eni/e \! xlll · Uife- kqi/eneni(Ui- Ue) · Uife 
-Kqifeneni(ei- 8e) 

(2.18) 
coupled to (2.16). Time appears as a parameter in these equations 
and the problem remains subject to time evolution through the 
boundary conditions (2.17). 

• A further approximation comes by assuming that the ions/ electrons 
temperatures depend only on the densities 

e eo 'Yi/e-1 
ife = ife nile , 

which leads to isentropic ('rife > 1) or isothermal ('rife = 1) mod
els. 

• Then the classical asymptotics me/mi « 1 and the quasi-neutral 
regime where the Debye length is small compared to the charac
teristic length of the spacecraft make sense for this application. 
The situation differs completely from the GEO case: in GEO the 
Debye length is of order 1Q-100m, but it is of order of a few cen
timeters in LEO. A rigorous justification of these asymptotics is a 
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very tough piece of analysis; we mention for instance [18, 24, 27] 
for the treatment of some specific situations, including a complete 
description of the boundary layers, and further references to these 
topics. 

3 A simple lD model 

In this section we consider a one-dimensional caricature of the LEO 
charging problem. Despite its simplicity, this model is interesting since it 
is permitted to bring out certain mathematical difficulties and to evaluate 
easily the efficiency of numerical schemes. In this model the spacecraft 
is treated as a scatterer occupying the domain 0 = ( -hd, he) where 
01 = ( -hd, 0) is occupied by a dielectric material whereas Oo = {0, he) is 
the conductor domain. The plasma fills the domain n = ( -L-hd, -hd)u 
(he, L+he)· Bearing in mind numerical purposes, we consider a bounded 
domain, characterized by 0 < L < oo, but L is thought of as a "large" 
quantity, far from the scatterer. We consider only the population of 
positive particles, described by the density n ~ 0 and current J. They 
obey the following stationary Euler equations: 

OxJ = 0, 

(
J2 ) q Ox - + p(n) = --nox<P 
n ~i 

for X E 0, with the pressure function 

p(n) = n7 'Y>L 

{3.1) 

{3.2) 

We assume the following Dirichlet boundary conditions for the density 

n(t, -hd) = n~ > 0, n(t, he) = n0 > 0, {3.3) 
n(t, L +he)= n(t, -L- hd) = n00 > 0. {3.4) 

The potential iP is required to satisfy the Poisson equation 

{3.5) 

for X En where C{x) is a given positive function describing the electrons 
background. The neutrality far from the spacecraft is guaranteed by 
C(L +he) = C( -L- hd) = n 00 • The potential verifies 

<P(t, -L- hd) = <P(t, L +he)= 0. {3.6) 

This set of equations can be roughly obtained from {2.18) by assuming 
k = 0, K = 0 (no impulsion nor energy exchanges), ne = C = n00 is 
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COnstant, Ue = 0 (hence there is no electron current) and V' x8e = qV' xcf> 
with the isentropic approximation for the ions. It remains to write the 
boundary conditions for the potential on -hd and he. For the sake of 
completeness, we give the main hints of the derivation, following [1]. The 
basis of the derivation consists in keeping in mind that the potential 
is actually defined on the whole domain ( -L - hd, L + he) and that 
electrodynamics relations should be used in the scatterer. We introduce 
a reference potential cl>ref defined by 

{ 
-a~xcl>ref = 0, 
cl>ref( -hd) = cl>ret(he) = 1, cl>ret(L +he)= cl>ref( -L- hd) = 0. 

(3.7) 
In the conductor domain, the potential is constant: ci> ( t, x) = ¢abs ( t) for 
any x E (0, he) where the absolute potential ¢abs is a function of time to 
be determined. We regard Jeond the current in the conductor. We split 
cl>(t, x) = ¢abs(t)cl>ref(x) + cl>'(t, x), so that the differential potential cl>' 
verifies 

{ 

-a~xcl>'(t,x) = n- c on n, 
cl>'(t, L +he) = cl>'(t, -L- hd) = 0, 
cf>'(t, he) = 0, cf>'(t, -hd) = cf>(t, -hd)- ¢abs(t). 

(3.8) 

The boundary condition on the spacecraft will take the form of equa
tions satisfied by ¢abs(t) and cl>'(t, -hd). Note that for the spacecraft 
engineering application, the crucial quantity to be controlled is precisely 
the differential potential. 

Since the dielectric layer is very thin, hd « he « L, there is no 
volumic charge in the dielectric and the derivative of the potential in the 
dielectric can be approximated by the finite difference 

The runaway current in the dielectric domain is defined by 

J . _ _ ¢abs(t) - cf>(t, -hd) 
dtel - O"d hd , 

with ad being the conductivity of the dielectric. Therefore, the Ampere 
law yields the following relations 

• At X= -hd 
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• At X= 0 

a( </Jabs(t)-~(t,-hd))- </Jabs(t)-~(t,-hd) J 
t €d hd - -(fd hd - eond· 

(3.10) 

• At X= -he 

-8t(€oOx~(t, he)) = Jeond- J(t, he)· (3.11) 

Adding (3.10) and (3.11) leads to 

Ot ( €d </Jabs(t) -h~(t, -hd) - €Q0x~(t, he)) 

= _ <Pabs(t)- ~(t, -hd) _ J(t h ) 
(fd hd ' e . 

Combining with (3.9) yields 

EoOtOx(~(t, -hd)- ~(t, he))= J(t, -hd)- J(t,he) (3.12) 

Eq. (3.9) can also be recast as 

EoOt ( (8x~'(t, -hd) + </Jabs(t)8x~reJ( -hd)) 

+ ~: 8t~'(t, -hd) + ~:~'(t, -hd) = J(t, -hd)· (3.13) 

The quantities ~'(t, -hd) and <Pabs(t) are entirely defined by (3.12) and 
(3.13). 

Taking account of the scaling of the dielectric thickness 0 < hd/ he « 
1 the boundary relations become 

J(t, -hd) = J(t, he), (3.14) 

Cd8t(~(t, -hd)- </Jabs(t)) + Sd(~(t, -hd)- </Jabs(t)) 

= Jext(t, -hd) (3.15) 

where cd = €d/€o and sd are the dimensionless capacity and conduc
tance of the dielectric respectively. Eventually, we recap the charging 
equations, written here in dimensionless form, as follows: 

(3.16) 

hold on the domain 0 = 0 1 U nr = (-L- hd, -hd) U (he, L +he), where 
.A is the ratio between the Debye length and the characteristic length, 
and with the boundary conditions 

{ 

n(t, -hd) = n~, n(t, he)= no 
n(t, L +he)= n(t, -L- hd) = n 00 , 

~(t, L +he) = ~(t, -L- hd) = 0, 
(3.17) 
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together with (3.14) and(3.15). Hence we deduce that J = J(t) is ac
tually constant on the whole set n. Next, combining the momentum 
equation with the Poisson equation we get 

-a~x~~> = ; 2 (n- C) 

= ax(~ax(J2fn+p(n))) = 8x(F~(n)8xn) 

with F~(n) = -J2 fn3 + p'(n)fn. Therefore the density verifies the 
following second order equation 

-a~xFJ(n)+ ; 2 (n-c) =0 onf! 
J2 

FJ(n) = 2n2 + h(n) (3.18) 

h(n) = r p'(y) dy = _'Y_ (n"Y- 1 - 1)' 
11 y 'Y- 1 

endowed with Dirichlet boundary conditions. 
We can also show that J is solution of a simple ODE. Indeed, we 

have 
_!l ""- -J2jn2+p'(n)a - !l F () 
ux~ - xn - ux J n . 

n 
(3.19) 

Integrating this relation and using IP(t, -L- hd) = q,(t, L +he)= 0, we 
obtain 

{ 
¢abs(t) = FJ(n00 )- FJ(n0), 
IP(t, -hd) = FJ(noo) - FJ(n~). 

Obviously if n0 = n~ we get ¢abs(t) = IP(t, -hd) for any t ~ 0 and (3.15) 
implies that there is no current at all: J = 0. From now on we suppose 
n0 =f:. n~. Hence the differential equation (3.15) becomes 

a ( 'Y (( r)")'-1 ( l)")'-1) J
2 

( 1 1 )) 
t 'Y- 1 no - no + 2 ~n())2 - (n~)2 
sd (-'-(( r)")'-1- ( 1)")'-1) !._(_1_- _1_))- .:!_ + cd 'Y- 1 no no + 2 (n())2 (n~)2 - cd 

which, as soon as J(t) =f:. 0, can be recast as 

J'(t) sd J(t) = _s_ !3 
+ cd 2 J(t) + ' (3.20) 

with 
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and 
1 (nr)2(nl )2 

(3- 0 0 
- cd (n&)2 - (n())2. 

We observe that the equation admits two stationary solutions 

J1 = ~: (f3 + J (32 + 2sSd/Cd) > 0, J2 = ~: (f3- J (32 + 2sSd/Cd) < 0 

4 Analysis of the one-dimensional problem 

According to the previous manipulations, the evolution of the current is 
decoupled from the density variations. In turn, there is no difficulty in 
analyzing the current equation and we obtain the following statement. 

Proposition 4.1. Let n0, n& > 0, n0 ¥= n& and let hnit be the initial 
current. Then, Eq. (3.20) has a unique global solution. Furthermore, 
the solution has the following behavior 

• if hnit > J1 then J(t) is a positive non increasing function which 
converges to J1 as t goes to oo, 

• if 0 < hnit < J1 then J(t) is a positive non decreasing function 
which converges to J1 as t goes to oo, 

• if hnit < h then J(t) is a negative non decreasing function which 
converges to J2 as t goes to oo, 

• if J2 < Jlnit < 0 then J(t) is a negative non increasing function 
which converges to J2 as t goes to oo. 

Therefore, the density n(t, x) is determined by (3.18), which is para
metrized by the time variable, via the definition of the current J(t) by 
(3.20). Nevertheless, while J is globally defined, this is not enough to 
ensure the well-posedness of (3.18) due to possible change of type of the 
equation. 

Definition 4.2. When the pair (n, J) is F.J(n) > 0, we say that the 
regime is subsonic; when the pair (n, J) is F.J(n) < 0, we say that the 
regime is supersonic. 

We are able to justify the existence of solutions, as far as the estimates 
guarantee that we remain in the subsonic region, so that (3.18) is a 
nonlinear elliptic equation. 

Theorem 4.3. (Existence, uniqueness and regularity of subsonic solu
tions) Let n0, n& and n00 be positive. We set n = min( n0, n&, n00 , min C) 
andn= max(n0,n&,n00 ,maxC). We set 

Jcrit = n v'rn-r-l. (4.1) 
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Then for any lhnitl ~ Jcrit there extsts a time T* and a unique so
lution (n,~) of (3.18), (3.17) defined on [O,T*]. The solution lies in 
C 1([0,T*];C2 (0)) and it venfies n ~ n(t,x) ~ n. If the data are 
0 < hnit < Jl ~ Jcrit or 0 < Jl ~ hnit < Jcrit (resp. -Jcrit < 
J2 ~ hnit < 0 or -Jcrit ~ hnit < J2 < 0}, then the solution is globally 
defined. 

We plot in Fig. 4.1 the phase portrait of the current J which summa
rizes the different situations described in Proposition 4.1 and Theorem 
4.3. We depict the subsonic and supersonic regions respectively by white 
and grey colored areas. Values of J 1 and J2 are 0.8035 and -4.0250, 
whereas Jcrit = 1.1832. The trajectories converge very fast to J1 for 
positive current, and the contrary is observed for J2 . This situation 
changes if we switch nh and n0. 

J 

2 4 6 6 10 12 
Time 

14 16 18 20 

Figure 4.1 Phase portrait of current J for n& = 1.1, n(j = 1.9, n= = 1, C = 1, 
"Y = 1.4, sd = 1.13 and cd = 3. 

The proof of Theorem 4.3 follows the lines of [14] and it is based 
on a suitable fixed point method. Indeed, we show that the mapping 
T : n ~--+ n defined by 

n- A28x(F~(n)8xii) = C 

endowed with the Dirichlet boundary conditions (3.17) has a unique fixed 
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point. The proof uses the regularizing effect of elliptic equations. Hence 
it works as soon as the regime becomes subsonic, which leads to the 
condition (4.1) on the current (14). Going back to (3.20), we can exhibit 
conditions on the data (that is on n~, n0, n 00 ) such that the current J(t) 
remains in the interval 0 < J(t) < J1 < Jerit for any time t 2: 0, and 
therefore the solution of the whole problem is globally defined. 

According to [23), we guess that we can exhibit some Jerit > Jerit 

such that if the initial current is large enough IJinit I 2: Jerit then, were
main in a supersonic case and we can also show the existence-uniqueness 
of a smooth solution. The proof is much more delicate since we do not 
have in the supersonic case a so nice elliptic structure and helpful esti
mates (like in particular the maximum principle) are not easily available. 
The analysis of the possible change of type and transonic regimes would 
be very interesting and challenging; we refer to (15, 16) for results in this 
direction. 

5 Numerical simulation of the 
one-dimensional problem 

We investigate numerically the following system 

, sd J(t) s 
J (t) + Cd - 2- = J(t) + (3, t E [0, T), (5.1) 

-8~xFJ(n) + ;2 ( n- c) = 0, (x, t) En X [0, T) (5.2) 

-8~x~ = ; 2 ( n- c), (x, t) E 0 X (0, T) (5.3) 

n(t, -hd) = n~, n(t, he) = n0, 

n(t, L +he) = n(t, -L- hd) = noo, 

~(t, he) = </Jabs(t) = FJ(noo)- FJ(n(i), 

~(t, -hd) = FJ(noo) - FJ(n~), 

~(t, L +he) = ~(t, -L- hd) = 0, 

t E [O,T), 

t E [0, T), 

t E [0, T), 

t E (O,T), 

t E (O,T), 

(5.4) 

(5.5) 

(5.6) 

(5.7) 

(5.8) 

J2 ln p'(y) "( ( ) with FJ(n) = - 2 + h(n) and h(n) = --dy = --
1 

n-r-l - 1 . 
~ 1 y "(-

We solve the current Eq. (5.1) for the variable y(t) = J(t)2, with the 
equation being transformed into 

y'(t) + ~:y(t) = 2(s±f3JYW). (5.9) 
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The choice of the sign in the r.h.s of (5.9) is determined by the sign 
of the initial datum hnit since the sign of J remains constant in time. 
Therefore, J(t) = ±JY(t). Equation (5.9) is solved once for all by a 
standard Runge-Kutta scheme. 

Then, knowing the current Jk, approximation of J(kAt), we ap
proach (5.2) with a basic finite difference scheme 

The nonlinear equation (5.10) is solved by a Newton algorithm. The 
elliptic Poisson equation (5.3) is also solved by classical finite difference 
scheme. Although those equations seem stationary, they depend on time 
by their boundary condition (5.4)-(5.8). 

The simulation reveals the threshold effect in the choice of the initial 
current: for a small enough hnit the scheme works well and reproduces 
a smooth density profile, as expected. But, starting with a larger initial 
current, singularity might appear characterized by the non invertibility of 
the linear systems involved in the resolution of (5.10). To emphasize this 
point we make the following experiment with -hd = he= 0 and L = 1 
for the domain n. We consider 'Y = 1.4, Sd = 1.13, Cd = 3, n00 = 1, 
n& = 1.1, n0 = 1.9 and C = 1. In this case we recall that the critical 
current is Jcrit = 1.1832. In Figs. 5.1, 5.2, 5.3 we take hnit = 1.15 such 
that hnit < Jcrit and we are in the subsonic case. Here the current is a 
smooth decreasing function of time. With the same values of parameters, 
taking hnit = 1.2, singularities appear directly from the begining. If 
hnit = -0.5, we also observe a problem when J(t) crosses the value of 
-Jcrit and singularities appear. 

0.6 

0 

Current 

2 3 4 5 

Figure 5.1 Evolution of current (line at top corresponds to the value of Jcrit)· 

As a final comment, it is worth having in mind that in the rescaled 
problem (3.16)-(3.17) the Debye length might be small compared to the 
characteristic length scale. Hence, in LEO environment we usually have 
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Potential at time t=0.01 Potential at time t=2.5 
0.5.....-----------. 0.5,..------------. 

0.5 0.5 

11~~~-~-~---~ 
0.5 0 0.5 

11~----------~ 
0.5 0 0.5 

Potential at time t=5 
0.5.....------------, 

0.5 

11~-0-.~5--0~-0~.5~~ 

Figure 5.2 Evolution of potential. 

Density at time t=0.01 Density at time t=2.5 
2 2r--------~-~ 

Density at time t=5 
2.....-----~-------. 

1.5 

Figure 5.3 Evolution of density. 
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0 < A « 1. It leads to the formation of boundary layers. Indeed, let us 
set C = n 00 = 1. Writing the equation for A = 0 we simply get 

OxJ = 0, Fj(n)8xn = Ox<P, n = 1. 

Taking account of the condition at infinity (or at the far end boundary 
x = L + he or - L - hd), the solution reads 

n = 1, I= j(t), ¥ = o. 

However, this solution does not verify the boundary condition at x =he 
nor x = -hd. Let us expand the solution of (3.16)-(3.17) as follows: 

j = J + )(xjA) +A], <P = ¥ + ~(xjA) +A~, n = 1 + n(xjA) +An. 

At leading order we obtain the following relations satisfied by the bound
ary correctors: 

{ 

~ay)(xf A) = o, 
-2 

'Y-j - 1 -
-A-8yn = -:xoy<P, 

!l2 ;1::.--uyy':ji'- n. 

The equation is completed by the boundary condition matching the data 
to the solution corresponding to A = 0, that is, 

~(y = 0) = tf>abs(t) = FJ(t)(noo)- FJ(t)(n(i) 
or <P(t, -hd) = FJ(t)(noo)- FJ(t)(n~), 

~(y--+ oo) = 0, 
n(y = 0) = n(i - 1 or n& - 1, 
n(y--+ oo) = 0. 

The numerical treatment of this kind of asymptotic problem leads to 
severe stiff problems, which require a specific treatment. A deep un
derstanding of the boundary layer formation and of the scale separation 
helps to design an efficient numerical scheme, as in [26]. 

6 Conclusions 

Considering LEO environment instead of GEO, it can be tempted to de
scribe spacecraft charge phenomena by using hydrodynamic models, at 
least as a first approximation. Such models are indeed less complicated 
than a full kinetic description of the plasma and can be treated for a re
duced numerical cost. The underlying Euler equations are thus coupled 
to the Poisson equation for the electric potential, with complex and non 
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standard boundary conditions. These boundary conditions for the po
tential, which consider that different places on the spacecraft surface can 
have a different electrical behavior, are at the origin of the charging phe
nomena. We point out several difficulties related to the hydrodynamic 
modeling: 

• A crucial issue concerns the boundary condition to be satisfied 
by the hydrodynamic unknowns. A convincing derivation should 
certainly go back to the kinetic model and the hydrodynamic limit 
through a fine analysis of the kinetic boundary layer. 

• Due to the time evolution through the boundary condition, change 
of type of the flow can occur. Such passage from subsonic to super
sonic regimes makes the mathematical analysis difficult and might 
lead to breakdown of the numerical methods. This is illustrated 
on a simple one-dimensional caricature model. 

• Eventually, a careful discussion of the various scales involved in the 
equations is necessary. The multiscale features of the problem def
initely make it challenge the numerical simulations which require 
the design of refined and dedicated schemes. 

Acknowledgements: We are gratefully indebted to Jean-Paul Dudon 
from Thalesalenia Space for introduction to the problem and many fruit
ful discussions. 
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Abstract 

The subject matter of this paper concerns the asymptotic 
regimes for transport equations. Such models arise in the mag
netic confinement context, where charged particles move under the 
action of strong magnetic fields. The main difficulty comes from 
the multi-scale character of the problem. According to the differ
ent possible orderings between the typical physical scales (Larmor 
radius, Debye length, cyclotronic frequency, plasma frequency) we 
distinguish several regimes. The main purpose is to derive the 
limit models: we justify rigorously the convergence towards these 
limit models and investigate the well-posedness of them. 

1 Introduction 

Motivated by the magnetic confinement fusion, the study of strong mag
netic field effect is now of crucial importance. We are concerned with 
the dynamics of a population of charged particles interacting through 
electro-magnetic fields. We consider a population of non relativistic elec
trons whose density is denoted by f. This particle density satisfies the 
Vlasov equation 

otf + .1!_ · 'Vxf- e (E(t,x) + .1!_ 1\ B(t,x)) · 'Vp/ = 0 
me me 

where -e < 0 is the electron charge and me > 0 is the electron mass. The 
self-consistent electro-magnetic field (E, B) verifies the Maxwell equa
tions 
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div:z:E = ~ (n- [ f dp) , div:z:B = 0. 
co }Ra 
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Here co is the vacuum permittivity, Co is the light speed in the vacuum 
and n is the concentration of the background ion distribution. One of 
the asymptotic regimes we wish to address here is the gyro-kinetic model 
with finite Larmor radius. Let us denote by Wp the plasma frequency 

and by We the cyclotronic frequency 

eB 
We=-. 

me 

Assuming that the cyclotronic frequency is much higher than the plasma 
frequency we deduce that the typical magnetic field magnitude satisfies 

B 
_ meWp We _ meWp 1 
---·----·-

e Wp e c 

where we/ Wp = 1 f c, 0 < c « 1. We assume also that the electron 
momentum in the plane orthogonal to the magnetic field is much larger 
than the thermal momentum Pth given by 

p2 
_.1h = KBTth 
me 

where KB is the Boltzmann constant and Tth is the temperature. Note 
that in this case the Larmor radius corresponding to the cyclotronic 
frequency We and the typical momentum ~ remains of order of the 
Debye length 

( )

1/2 
_ Pth _ Pth _ coKBTth _ \ 

PL - -- - -- - 2 - "D· 
cmeWe mewp e n 

This model is called the finite Larmor radius regime. For example, in 
the two-dimensional setting and assuming that the magnetic field has a 
constant direction 

f = j(t,x,p), (E,B) = (El,E2,0,0,0,B3)(t,x), (t,x,p) E lR+xJR.2xJR.2 

we are led, up to a multiplicative constant of order 1, to the following 
Vlasov equation (see [8], [2]) 

ade + ~. v:z:r- ( Ee(t,x) + B;(t,x) .i:) · vpr = o (1.1) 
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where the notation .l.p stands for (p2, -p1) for any p = (p1,p2) E JR.2. 
When the typical momentum is supposed to remain of order of the ther
mal momentum, the Larmor radius vanishes as the magnetic field be
comes very large; we are dealing with the guiding-center approximation. 
The guiding-center approximation for the Vlasov-Maxwell system was 
studied in [4] by the modulated energy method (see [3], [6]) for other 
results obtained by this method. The analysis of the Vlasov or Vlasov
Poisson equations with large external magnetic field has been carried out 
in [9], [11], [10], [5]. 

For simplifying we assume that the self-consistent electric field in 
the Vlasov equation derives from a potential determined by solving the 
Poisson equation 

We suppose also that B3 = B3(x) is a given stationary external magnetic 
field. The Vlasov equation leads naturally to problems like 

with the initial condition 

For example, (1.1) can be recast in the form (1.2) by taking m = 4, y = 
(x,p) E lll2 X lll2 , ue(t,y) = r(t,x,p), a(t,y) = -(O,O,E(t,x)), b(y) = 
(p, -B3(x).l.p). 

In this work we focus on the linear transport equation (1.2) when a 
and bare given smooth fields. Formally, multiplying (1.2) bye one gets 
b(y) · '\1 yue = O(e), saying that the variation of ue along the trajectories 
of b vanishes as e goes to zero. Following this observation it may seem 
reasonable to interpret the asymptotic e '\, 0 in (1.2) as homogenization 
procedure with respect to the flow of b. More precisely we appeal here 
to the ergodic theory. 

By Hilbert's method we have the formal expansion 

(1.3) 

and thus, plugging the ansatz (1.3) in (1.2) yields the equations 

e-1 
: b(y) · 'Vyu = 0 (1.4) 

e0 
: OtU + a(t, y) · '\1 yu + b(y) · '\1 yUl = 0 (1.5) 

£
1 

: OtUl + a(t, y) · '\1 yul + b(y) · '\1 yU2 = 0 (1.6) 
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The operator 7 = b(y) · Vy will play a crucial role in our analysis: Eq. 
(1.4) says that at any timet E R+ the leading order term in the expan
sion (1.3) belongs to the kernel of 7. Unfortunately this information 
(which will be interpreted later on as a constraint) is not sufficient for 
uniquely determining u. The use of (1.5) is mandatory, despite the cou
pling with the next term u1 in the asymptotic expansion (1.3). Actually, 
at least in a first step, we do not need all the information in (1.5), but 
only some consequence of it, such that, supplemented by the constraint 
(1.4), it will allow us to determine u. Since we need to eliminate u1 

in (1.5), the idea is to project (1.5) at any time t E IR+ to the orthog
onal complement of the image of 7, for example, in L2 (1Rm). Indeed, 
we will see that this consequence of (1.5) together with the constraint 
(1.4) provide a well posed limit model for u = lime'.O ue. And the same 
procedure applies to computing u1. u2, ... For example, once we have 
determined u, by (1.5) we know the image by 7 of u1 

7ul = -OtU- a(t,y) · Vyu. (1.7) 

Projecting now (1.6) on the orthogonal complement of the image of 7 
we eliminate u2 and get another equation for u1, which combined with 
(1. 7) provides a well posed problem for u1. 

Our paper is organized as follows. In Section 2 we recall some notions 
of ergodic theory. We introduce the average over a flow associated with 
a smooth field and discuss the main properties of this operator. Sec
tion 3 is devoted to the study of the limit model. We prove existence, 
uniqueness and regularity results. The convergence towards the limit 
model is justified rigorously in Section 4. Based on the concept of prime 
integrals, an equivalent limit model is derived in Section 5. We end this 
paper with some examples. 

2 Ergodic theory and average over a flow 

We assume that b : !Rm --+ !Rm is a given field satisfying 

divyb = 0 

and the growth condition 

3 C > 0 : lb(y)l:::; C(l + lyl), y E !Rm. 

(2.1) 

(2.2) 

(2.3) 
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Upon the above hypotheses the characteristic flow Y = Y(s; y) is well 
defined 

dY 
- = b(Y(s; y)), (s, y) E R x Rm 
ds 

Y(O;y)=y, yERm, 

(2.4) 

(2.5) 

and has the regularity Y E Wj~'~(R x Rm). By (2.2) we deduce that for 
any s E R, the map y -+ Y ( s; y) is measure preserving 

{ O(Y(s;y)) dy = { O(y) dy, Y 0 E L1 (Rm). 
}Rm Jam 

We have the following standard result concerning the kernel of u -+ 

Tu = divy(b(y)u(y)). 

Proposition 2.1. Let u E Lf0 c(Rm). Then divy(b(y)u(y)) = 0 in 
'D '(Rm) iff for any s E R we have u(Y(s;y)) = u(y) for a.a. y E Rm. 

Remark 2.2. Sometimes we will write u E kerT meaning that u is con
stant along the characteristics, i.e., u(Y(s; y)) = u(y) for all s E R and 
a.a. y E Rm. 

For any q E [1, +oo] we denote by Tq the linear operator defined by 
Tqu = divy(b(y)u(y)) for any u in the domain 

Dq = {u E Lq(Rm) : divy(b(y)u(y)) E Lq(Rm)}. 

Thanks to Proposition 2.1 we have for any q E [1, +oo] 

ker'Tq = {u E U(Rm) : u(Y(s; y)) = u(y), s E R, a.e. y E Rm}. 

For any continuous function h E C([a, b]; Lq(Rm)), with q E [1, +oo], 
we denote by I: h(t) dt E Lq(Rm) the Riemann integral of the function 
t -+ h(t) E Lq(Rm) on the interval [a,b]. Consider now a function 
u E Lq(Rm). Observing that for any q E [1, +oo) the application s -+ 

u(Y ( s; ·)) belongs to C(R; Lq (Rm)), we deduce that for any T > 0 the 
function (u)r := ~ IoT u(Y(s; ·)) ds is well defined as an element of 
Lq(Rm) and ll(u)TIILq(Rm) :::; lluiiLq(Rm)· Observe that for any function 

hE L00 ([a, b); L00 (Rm)), the map cp E L1(Rm) -+I: IR../t(t, y)cp(y) dy dt 
belongs to (L1 (11lm))' = L00 (Rm). Therefore there is a unique function 

in L00 (11lm), denoted I: h(t) dt, such that for any cp E L1(Rm) we have 

Lm(lb h(t) dt) (y)cp(y) dy = 1b (L:<t,y)cp(y) dy) dt. 

Particularly, we have 
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and 

(1b h(t) dt) (y) = 1b h(t,y) dt, a.e. y E Rm. 

Notice that for any function u E L00 (1Rm), the map s -+ u(Y(s; ·)) 
belongs to L00 (1R.; L00 (Rm)) and thus we deduce that for any T > 0 

the function (u)r := ~ J{ u(Y(s; ·)) ds is well defined as an element of 
L00 (1R.m) and ll(u}TIILco(Rm) ~ llull£co(Rm)· 

Obviously, when u belongs to ker'Tq we have (u)T = u for any q E 
[1,+oo] and T > 0. Generally, when q E (1,+oo) we prove the weak 
convergence of (u)r as T goes to +oo towards some element in ker'Tq. 
The arguments are standard [12]. 

Proposition 2.3. Assume that q E (1, +oo) and u E Lq(Rm). Then 
there is a unique function (u) E ker'Tq such that for any <p E ker'Tq, we 
have 

f (u(y)- (u)(y))<p(y) dy = 0. Jam 
Moreover we have the weak convergence in Lq(Rm) 

1 1T 1 jo (u) = lim -T u(Y(s; ·)) ds = lim -T u(Y(s; ·)) ds 
T-++oo O T-++oo -T 

(2.6) 

and the inequality ll(u}IILq(JRm) ~ lluiiLq(Rm)· Particularly the application 
u E Lq(Rm)-+ (u) E Lq(Rm) is linear, and continuous. 

Corollary 2.4. Assume that q E (1, +oo) and u E Lq(Rm). Let us 
denote by (u) E Lq(Rm) the function constructed in Proposition 2.3. 
a) lfu ~ -M for some constant M ~ 0 then (u) ~ -M. 
b) lfu ~ M for some constant M ~ 0 then (u) ~ M. 

Corollary 2.5. Assume that 1 < q1 < q2 < +oo and u E Lq1 (Rm) n 
Lq2 (Rm). We denote by (u)(q) the function of Lq(Rm) constructed in 
Proposition 2.3 for q E {q1,q2}. Then we have (u)Cq1 ) = (u)Cq2 ) E 
ker 'Tql n ker 'Tq2 . 

It is possible to prove that the convergence in Proposition 2.3 is strong. 
This is the object of the next proposition. Actually the case q = 2 
corresponds to the mean ergodic theorem, or von Neumann's ergodic 
theorem (see [12], p. 57). 

Proposition 2.6. Assume that q E (1, +oo) and u E Lq(Rm). Then 

11T 1 ~0 lim -T u(Y(s; ·)) ds = lim -T u(Y(s; ·)) ds = (u) 
T-++oo o T-++oo -T 
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It is also possible to define the operator 0 for functions in £ 1 (!Rm) and 
L00 (1Rm). These constructions are a little bit more delicate and require 
some additional hypotheses on the flow. On these hypotheses we have, 
for q E { 1, +oo}, similar results to those in Proposition 2.3. 

We inquire now about the symmetry between the operators O(q), O(q 'l 
when q, q 1 are conjugate exponents. We have the natural duality result. 

Proposition 2.7. a) Assume thatq,q' E (1,+oo), 1/q+1/q' = 1, 
u E Lq(!Rm), cp E Lq'(!Rm). Then 

f u (cp)<q ') dy = f (u)(q)cp dy. 
}Rm }Rm 

b) Particularly 0(2) is symmetric on L2 (1Rm) and coincides with the 
orthogonal projection on ker 72. Moreover we have the orthogonal de
composition L2 (1Rm) = ker72 ED ker0<2l. 

Proof. a) The function (cp)(q ') belongs to ker'Tq' and therefore 

Similarly (u)(q) belongs to ker'Tq and thus 

f (cp- (cp)(q 'l)(u)(q) dy = 0. 
}Rm 

Combining (2.7) with (2.8) yields 

f u (cp)(q ') dy = f (u)(q)(cp)(q ') dy = f (u)(q)cp dy. 
}Rm }Rm }Rm 

b) When q = 2 we obtain 

(2.7) 

(2.8) 

By the characterization in Proposition 2.3 we deduce that 0 <2l = Projker 72 . 
Since ker 72 is closed we have the orthogonal decomposition 

0 

The following result is a straightforward consequence of the characteri
zation for O(r) with r E [1, +oo). The proof is left to readers. 
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Corollary 2.8. Let u E V(!Rm), v E Lq(IR.m) and 1/r = 1/p+ 1/q with 
p,q,r E [1,+oo]. Assume thatu is constant along the flow. Then 

(uv)(r) = u (v)(q). 

By the orthogonal decompositions in Propositions 2.6 and 2. 7 we 
deduce that ker(·)<2l = range12. We have the general result. 

Proposition 2.9. Assume that q E {1, +oo). Then ker(-)(q) = range'Tq. 

Proof. For any v = 'Tqu E range'Tq and cp E ker'Tq 1 we have 

saying that (v)(q) = 0. Therefore range'Tq c ker{·)(q) and also range'Tq c 
ker(·)(q). Consider now a linear form h on Lq(IR.m) vanishing on range'Tq. 
There is v E Lq 

1 

(IR.m) such that h(w) = fRm wv dy for any wE Lq(IR.m). 
Particularly 

{ 'Tqu v dy = 0, V u E Dq 
}Rm 

saying that v E ker'Tq 1. For any cp E ker(·)(q) we can write by Proposition 
2.7 

and thus h vanishes on ker(·)(q). Consequently we have range'Tq = 
ker{·)(q). 0 

Generally we have the following characterization for ker(·)(q) = range'Tq. 

Proposition 2.10. Let f be a function in Lq(IR.m) for some q E {1, +oo). 
For any p, > 0 we denote by u~ the unique solution of 

p,u~ + 'Tqu,. = f (2.9) 

which is given by 

u~ = /_
0

00 

e~'8 f(Y(s; ·)) ds. (2.10) 

Then the following statements are equivalet 
a) {J)(q) = 0. 
b) lim~'-,.o(p,u~) = 0 in Lq(IR.m). 

Proof. Assume that b) holds true. Applying the operator (-)(q) in (2.9) 
one gets 
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and therefore 

Conversely, suppose that a) holds true. Considering the function G(s; y) 
= f

8
° f(Y(r; y)) dr we obtain by formula (2.10) {use the inequality 

IIG(s; ·)IILQ(Rm) :$; JsJJIJIILq(Rm) in order to justify the integration by 
parts) 

1° oG 1° G(s· ·) u~ =- e~8 -(s; ·) ds = JLS # 8
--'- ds 

_
00 

OS _
00 

S 

=~1o tetG(tJL-1;·)dt. 
JL -oo tJL-1 

We know that JIG(tJL-1 )/(tJL-1 )IILQ(Rm) :$; llfiiLq(Rm) and by Proposition 
2.6 we have for any t < 0 

. G(tJL-1;·) . ft~~f(Y(s;·))ds 
hm = hm ---'-'--:----
~"-.0 tJL-1 ~"-,.0 t/JL 

= -(J}(q) = 0, strongly in Lq(Rm). 

Consequently, by the dominated convergence theorem, one gets 

0 

Remark 2.11. With the above notations we have IJJLu~IILQ(Rm) :5II!IILQ(Rm)· 

Up to this point we have investigated the properties of (-)(q) operating 
from U(JRm) to Lq(Rm) with q E (1, +oo]. In view of further regularity 
results for transport equations with singular coefficients we investigate 
now how (-)(q) acts on some particular subspaces of smooth functions. 
For this purpose we recall here the following basic results concerning the 
derivation operators along fields in JRm. For any~= (~1 (y), ... • ~m(y)), 
where y E JRm, we denote by LE. the operator ~ · '\1 y. A direct computation 
shows that for any smooth fields ~' 7], the commutator between LE. and 
L., is still a first order operator, given by 

where x is the Poisson bracket of ~ and 1J 
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It is well known (see [1], p. 93) that L~, L'1 commute (or equivalently the 
Poisson bracket [~, 77] vanishes) iff the flows corresponding to ~' 77, let's 
say, zl, z2, commute 

Considering a smooth field c in involution with b and having bounded 
divergence, one gets 

c E wl~';'(IR.m), divyc E V'0 (1R.m), [c,b] = 0 

and let us denote by Z the flow associated with c (we assume that Z is 
well defined for any ( s, y) E JR. x IR.m). For any h E JR. we denote by rh 
the map associated with a function u with its translation on a time h 
along the flow Z 

(rhu)(y) = u(Z(h;y)), y E IR.m hE JR.. 

We claim that for any hE JR. the operators (-}(q) and rh commute. We 
use the following easy lemma. 

Lemma 2.12. Let c be a smooth field in involution with b. Then the 
divergence of c is invanant along the flow of b. 

Proposition 2.13. Assume that c is a smooth field in involution with b, 
with bounded divergence and well defined flow. Then for any q E ( 1, +oo) 
the operator o(q) commutes with the translations along the flow of c 

(u o Z(h; ·))(q) = (u)(q) o Z(h; ·), u E U(IR.m), hE JR.. 

Proof. First of all observe that rh maps Lq(R.m) to Lq(IR.m) (use Li
ouville's theorem and the hypothesis divyc E L00 (1R.m)). Assume that 
q E (1, +oo). By Proposition 2.3 we know that for any cp E Tq, we have 

(2.11) 

We denote by cp-h the function 

cp-h(z) = cp(Z( -h; z)) e- J0"(div11 c)(Z( -t;.z)) dt. 

Notice that cp-h E kerTq,. Indeed, replacing z by Y(s;y) and by con
sidering that the flows Y and Z commute we obtain 

cp(Z( -h; Y(s; y))) = cp(Y(s; Z( -h; y))) = cp(Z( -h; y)). 

Thanks to Lemma 2.12 we have 

(divyc)(Z( -t; Y(s; y))) = (divyc)(Y(s; Z( -t; y))) = (divyc)(Z( -t; y)). 
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Consequently one gets IP-h(Y(s; y)) = IP-h(Y) and it is easily seen that 
IP-h belongs to Lq '(!Rm). Applying (2.11) with the trial function fP-h 
and using the variable change z = Z(h; y) we deduce that 

f (u(Z(h; y)) - (u}(q) (Z(h; y))rp(y) dy = 0. }Rm 

Observe also that (u}(q)(Z(h; ·))belongs to Lq(IR.m) and that it is invari
ant along the flow of b 

(u}(q)(Z(h; Y(s; y))) = (u}(q) (Y(s; Z(h; y))) = (u}(q) (Z(h; y)). 

Consequently, by Proposition 2.3 we deduce that (uoZ(h; · )}(q) = (u}(q) o 
Z(h; ·). D 

Remark 2.14. Particularly we have [b, bJ = 0 and therefore (-}(q) com
mutes with the translations along the flow of b. We have for any h E IR, 
u E Lq(!Rm), q E (1, +oo) 

(u(Y(h; ·))}(q) = (u}(q)(Y(h; ·)) = (u)Cq). 

We shall show that for any smooth field c in involution with b, the 
operator (-}(q) commutes with c · Vy. We denote by ~c the operator 
given by 

~cu = divy(cu)- (divyc)u, u E D(T,t). 

We have the standard result (see [7], Proposition IX.3, p. 153 for similar 
results). 

Lemma 2.15. Assume that q E (1, +oo) and let u be a function in 
L q (IR.m). Then the following statements are equivalent 
a) u E D(~c). 
b) (h- 1(u(Z(h; ·))- u))h is bounded in Lq(IR.m). 
Moreover, for any u E D(~c) we have the convergence 

Thanks to Proposition 2.13 and Lemma 2.15 it is easily seen that 

Proposition 2.16. On the hypotheses of Proposition 2.13, assume that 
u E D(T,n for some q E (1, +oo). Then (u)Cq) E D(T,n and ~c(u)Cq) = 

(~cu}(q). 



Asymptotic Regimes for Plasma Physics 67 

Remark 2.17. Particularly Proposition 2.16 applies to c =b. Actually, 
for any u E D('Tq), q E (1, +oo) we have 'Tq(u)(q) = ('Tqu)(q) = 0. 

Remark 2.18. Upon the hypotheses of Proposition 2.13 we check imme
diately thanks to Lemma 2.15 that if u E D(~c), then for any s E JR, 
u o Y(s; ·) E D(~c) and 

~c(u o Y(s; ·)) = (~cu) o Y(s; ·). 

Particularly if u E ker'Tq n D(~c) then ~cuE ker'Tq. 

The last result in this section states that (-)(q) commutes with the time 
derivation. The proof is standard and comes easily by observing that 

(u(t +h))<:- (u(t))(q) = ( u(t + h~- u(t)) (q) 

and by adapting the arguments in Lemma 2.15. 

Proposition 2.19. Assume that u E W 1•P([O, T]; Lq(JRm)) for some 
p,q E (1,+oo). Then the application (t,y) ___. (u(t,·))(q)(y) belongs to 
W1·P([O,T];Lq(JRm)) and we have 8t(u)(q) = (8tu)(q). 

3 Well-posedness of the limit model 

This section is devoted to the study of the limit model, when e goes 
to 0, for the transport equation 

{ 
OtUe + a(t,y) · Vyue + b~) · Vyue = 0, 

ue(o, y) = u~(y), 

(t, y) E (0, T) X lRm (3.1) 
y E JRm. 

Recall that b is a given smooth field satisfying (2.1), (2.2), (2.3). We 
assume that a satisfies the conditions 

(3.2) 

Based on Hilbert's expansion method we have obtained (see {1.4), (1.5)) 
the formula ue = u + eu1 + e20(e) where 

PrE>jecting the second equation on the kernel ofT leads to the model 

8t(u) + (a(t) · Vyu(t)) = 0, (t, y) E (0, T) x lRm. 
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Notice that Tu = 0 and thus (u) = u. Finally we obtain 

{ 
OtU + (a(t) · 'V yu(t)) = 0, b(y) · 'V yu = 0, 
u(O, y) = uo(y), 

(t, y) E (0, T) x !Rm 
Y E !Rm. 

(3.3) 
We work in the Lq(IR.m) setting, with q E (1, +oo). For any <p E ker'Tq, 
we have 

[ (a(t, y) · 'V yu- (a(t) · 'V yu(t)}(q))<p(y) dy = 0 
}Rm 

and we introduce the notion of weak solution for (3.3) as follows: 

Definition 3.1. Assume that uo E ker'Tq, f E L 1([0,T];ker'Tq) (i.e., 
f E £ 1([0, T]; Lq(IR.m)) and f(t) E ker'Tq, t E [0, T]). We say that 
u E £ 00 ([0, T]; ker'Tq) is a weak solution for 

{ 
OtU + (a(t) · 'V yu(t))(q) = f(t, y), Tqu = 0, 
u(O,y) = uo(y), 

(t, y) E (0, T) x !Rm 
y E !Rm 

(3.4) 
iff for any <p E C~ ((0, T) x !Rm) satisfying T <p = 0 we have 

fT[ u(t,y)(8t<p+divy(<pa)) dydt+ [ uo(y)<p(O,y) dy 
Jolam lam 

+ ( [ f(t, y)<p(t, y) dydt = 0. (3.5) 
Jolam 

We start by establishing existence and regularity results for the so
lution of (3.4). 

Proposition 3.2. Assume that u0 E ker'Tq, f E £ 1([0, T); ker'Tq) for 
some q E (1, +oo). Then there is at least a weak solution u E L00 ([0, T); 
ker Tq) of (3.4} satisfying 

iiu(t)IIL•(Rm) ~ iiuoliL•(Rm) +lot lif(s)IIL•(Rm), t E (0, T). 

Moreover, if uo ~ 0 and f ~ 0 then u ~ 0. 

Proof. For any e > 0 there is a unique weak solution ue of 

{
OtUe +a(t,y) · 'Vyue + ¥ · 'Vyue = f(t,y), 
ue(o, y) = uo(y), 

The solution is given by 

(t, y) E (0, T) X !Rm 
Y E !Rm. 

(3.6) 

uE(t, y) = uo(ZE(O; t, y)) +lot f(s, ze(s; t, y)) ds, (t, y) E [0, T] X !Rm 
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where ZE are the characteristics corresponding to the field a + c-1b. 
Multiplying by uE(t,y)iuE(t,y)iq-2 and integrating withy E Rm, we 
obtain thanks to Holder's inequality 

We extract a sequence (ck)k converging towards 0 such that uEk 
--'- u weakly * in £=([0, T]; Lq(Rm)) for some function u E £ 00 ([0, T]; 
Lq (lRm)) satisfying 

lluiiL""([O,TJ;L9(Rm)) ~ lluoiiL9(Rm) + IIJIIL'([O,T];L9(Rm))· 

By the weak formulation of (3.6) with a function r.p E C~ ([0, T) x lRm) 
we deduce that 

Multiplying by ck and passing to the limit as k--+ +oo one gets easily 
by Proposition 2.1 that u(t) E ker'Tq, t E [0, T). If the test function in 
(3.7) verifies Tr.p = 0 we obtain 

[T [ uEk (8tr.p +a· '\1 yep) dydt + [ Uor.p(O, y) dy + {T { fr.p dydt = 0. 
Jo}Rm Jam Jo}Rm 

Passing to the limit for k --+ +oo we deduce that the weak * limit u 
satisfies the weak formulation of (3.4). If u0 ;?: 0, f ;?: 0 then uE ;?: 0 for 
any c > 0 and thus the solution constructed above is non negative. 0 

Whereas Proposition 3.2 yields a satisfactory theoretical result for solv
ing the limit model (3.4), its numerical approximation remains a difficult 
problem. The main drawback of the weak formulation (3.5) is the par
ticular form of the trial functions r.p E kerTnC~ ([0, T) x Rm). Generally, 
the choice of such test functions could be a difficult task. Accordingly, 
we are looking for a strong formulation of (3.4). Therefore we inquire 
about the smoothness of the solution. A complete regularity analysis 
can be carried out on the following hypothesis: we will assume that the 
field a is a linear combination of fields in involution with b0 := b 

r 

a(t,y) = Lai(t,y)bi(y), bi E W1'00 (1Rm), [bi,b] = 0, i E {1, ... ,r} 
i=O 

(3.8) 
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where (ai)i are smooth coefficients verifying 

ai E £ 1([0, T]; L00 (Rm)), b'·V'yai E £ 1([0, T]; L00 (Rm)), i,j E {0, 1, ... , r}. 
(3.9) 

For any i E {1, ... ,r} we denote by ~i: D(~i) C Lq(Rm)---+ Lq(Rm) 
the operator given by 

T;u = divy(biu)- (divybi)u, u E D(~i) 

and by yi the flow associated with bi. Since [bi, b] = 0 then yi commutes 
withY for any i E {1, ... , r}. 

Proposition 3.3. Assume that {3.8}, (3.9} hold, uo E ker'Tq n (ni=1 

D(~i)), f E £ 1 ([0, T]; ker'Tqn(ni= 1 D(~i))) (i.e., f E £ 1([0, T]; Lq(Rm)), 
Tqf = 0 and ~if E £ 1([0, T]; Lq(Rm)), i E {1, ... , r}J and let us denote 
by u the weak solution of {3.4} constructed in Proposition 3.2. Then we 
have u(t) E ker'Tq n (ni=1 D(~i)), t E [0, T] and 

r 

ll8tUII£l((O,T];Lq(Rm)) + L IIT;ullvx•((O,T];Lq(Rm)) ~ C(II/IIL'([O,T];Lq(Rm)) 
i=l 

r r 

+ L liT; /IILl((O,T];Lq(Rm)) + L IIT;uoiiLq(Rm)) 
i=l i=l 

for some constant depending on L:o:5i,i:5r llbi · V'yaiiiLl((O,T];L""(Rm))• 
L:;=O llaiiiLl([O,T);L""(Rm))· Moreover, iff E L00 ([0, T]; Lq(Rm)), ai E 
L00 ([0,T];L00 (Rm))foranyi E {1, ... ,r} then8tU E L00 ([0,T];Lq(Rm)). 

Proof. For any c > 0 let uE be the solution of (3.6). We intend to 
estimate IITquEIIL""([O,T);Lq(Rm)) + 2:;=1 ll~iuEIIL""([O,T);Lq(Rm)) and 
ll8tuEIILl((O,T);Lq(Rm)) uniformly with respect to c > 0. Consider the 
sequences of smooth functions (uon)n, Un)n such that 

lim UOn = uo, .lim T;uon = -z;fuo, i E {0, 1, ... , r} in Lq(Rm) 
n--++oo n--++oo 

and let us denote by (u~)n the solutions of (3.6) corresponding to the 
initial conditions (uon)n and the source terms Un)n· Actually (u~)n are 
strong solutions. It is easily seen that for any t E [0, T] 
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and therefore limn-++oo u~ = ue in L00 ([0, T]; Lq(JR.m)). Assume for the 
moment that c, n are fixed and let us estimate L:;=O IIT;u~IILoo([o,T);LQ(Rm)) 
and ll8tu~IIL'((O,T);LQ(Rm))· Take hE JR, i E {1, ... ,r} and consider the 
functions 

. ayi . . 
u~h(t, y) = u~(t, Y'(h; y)), ah(t, y) = oy ( -h; Y'(h; y))a(t, Y'(h; y)) 

ayi . . . 
bh(Y) = oy ( -h; Y'(h; y))b(Y'(h; y)), Uonh(Y) = Uon(Y'(h; y)), 

fnh(t, y) = fn(t, Yi(h; y)). 

A direct computation shows that 

{ 
Otu;h +ah(t, y) · "V yU~h + b,.~y) · "V yU~h = fnh(t, y), (t, y) E (0, T) X lRm 
U~h(O,y) = Uonh(y), y E lRm. 

Combining with the formulation (3.6) of u~ one gets 

{ 

Ot ( u:.,.;u:. ) + a,.ha . "V Y U~h +a( t, Y) . "V Y ( u:.,.;u:.) 

+ b,. -b • "V ue + ~ . "V ( u:.,. -u:.) = ~ 
eh Y nh e Y h h ' 

u:.,.(o,y)-u:.(o,y) _ uo,.,.(y)-uo,.(y) 
h - h , 

Obviously we have 

(3.10) 

(t, y) E (0, T) x lRm 

Y E IR.m. 
(3.11) 

l. u~h- u~ = 1. u~(t, Yi(h; y))- u~(t, y) = bi( )·" e (t ) = .-ro e 
1m h 1m h y vyUn ,y ~qun 

h-+0 h-+0 

l. fnh- fn = 1. fn(t, Yi(h; y))- fn(t, y) = bi( )·" J (t ) = -r"iJ 
1m h 1m h y v y n , y ~q n 

h-+0 h-+0 

l. Uonh- Uon 1. Uon(Yi(h; y))- Uon(Y) bi( ) " ( ) .-ro 
1m h = 1m h = y ·vyUOn y = ~qUon· 

h-+0 h-+0 

Taking the derivatives with respect to y and then with respect to h in the 
equality Yi( -h; Yi(h; y)) = y, we deduce after some easy manipulations 
that 

1 {ayi . } obi 
!~ h oy ( -h; Y'(h; y))- Im =- oy (y). 

By direct computations we obtain immediately 

ah-a . . . 
lim -h- = (b' · "ily)a- (a· "ily)b' = [b',a] 
h-+0 
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By passing to the limit for h-+ 0 in (3.11) we deduce that 'Iqiu~ solves 
weakly the problem 

{ 
8t~'Iqiu~) +a· ~y('Iqiu~) + ~ · 'Vy(T;u;) = 7'i fn- [bi, a]· 'Vyu; 

'Iq'u~(O, ·) = T;Uon· 
(3.12) 

As shown in the proof of Proposition 3.2 we obtain for any t E [0, T] and 
iE{1, ... ,r} 

IITiu;(t)IILq(Rm) ~ IIT;uoniiLq(Rm) 

+lot IIT;Jn(s)- [bi,a(s)]· 'Vyu;(s)IILq(Rm) ds. (3.13) 

Since a = L:~=O akbk we obtain by direct computation, with the notation 
~:=Tq 

r 

[bi,a] = ~::)T;ak)bk 
k=O 

and therefore 
r 

w,aJ· vyu; = I)'Iqiak)('Iqku;). 
k=O 

Consequently (3.13) implies 

IIT;u;(t)IILq(Rm) ~ IIT;uoniiLq(Rm) +lot IIT'ifn(s)IILq(Rm) ds (3.14) 

+ t t IW · 'Vyak(s)IILoo(Rm)II'Iqku;(s)IILq(Rm) ds. 
lo k=O 

Actually (3.14) holds also for bi replaced by b0 = b since [b, b] = 0 

ll~u;(t)IILq(Rm) ~ II~UoniiLq(Rm) +lot II~ fn(s)IILq(Rm) ds (3.15) 

+ t t llb0 
· 'Vyak(s)IILoo(Rm)II'Iqku;(s)IILq(Rm) ds. 

lo k=O 

Summing up the above inequalities one gets 

t IIT'iu;(t)IILq(Rm) ~ t II'IqiuoniiLq(Rm) + 1t t liT; fn(s)IILq(Rm) ds 
i=O i=O 0 i=O 

+ tt 1t libi.Vyak(s)IILoo(Rm)II'Iqku;(s)IILq(Rm)· 
i=O k=O 0 

(3.16) 
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By Gronwall's lemma we deduce that for any t E (0, T] 

r 

L ~~~u~IIL00 ([0,T];Lq(Rm)) 
i=O 

r 

~ CI.: {II~UoniiLq(Rm) + ~~~fnii£1([0,T);Lq(Rm))} (3.17) 
i=O 

for some constant depending on Eo~i,j~r llbi· Y'yaiiiLl([O,T);Loo(Rm))· Af
ter extraction eventually we can assume that (Yq'u~)n converges weakly 
*in £ 00 ((0, T]; Lq(Rm)) towards some function wi E £ 00 ((0, T]; Lq(Rm)) 
for any i E { 0, 1, ... , r}. Since we know that limn ..... +oo u~ = ue in 
L00 ([0,T];Lq(Rm)) it is easily seen that 

ue(t) E nr=oD(~), ~ue(t) = wi(t), t E (0, Tj. 

Moreover, passing to the limit with respect ton in (3.17) and taking ac
count of that limn ..... +oo Tquon = Tquo = 0 in Lq(Rm) and limn-++oo Tqfn 
= Tqf = 0 in £ 1 ((0, T]; Lq(!Rm)) we obtain 

r 

L ll~ueiiLoo([O,T];Lq(Rm)) 
i=l 

r 

~ CL{II~uoiiLq(Rm) + ll~fiiLl([O,T]P(Rm))}· (3.18) 
i=l 

Recall that the weak solution u constructed in Proposition 3.2 has been 
obtained by taking a weak* limit point of the family (ue)e>O in £ 00 ((0, T]; 
Lq(Rm)). Therefore we deduce by passing to the limit for € '\. 0 in (3.18) 
that u(t) E nr=l D(Yqi), t E (0, Tj and 

r 

L ~~~uiiLoo([O,T];Lq(Rm)) 
i=l 

r 

~ CL{II~uoiiLq(Rm) + ll~fii£1([0,T]P(Rm))}· (3.19) 
i=l 

Since Tqu = 0, observe also that 

r 

lla(t) · Y'yu(t)IILq(Rm) =II I.:ai(t)bi · Y'yu(t)IILq(Rm) 
i=l 

r 

~ L llai(t)IILoo(Rm)ll~u(t)IILq(Rm) 
i=l 
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and thus 

li8tuliv([o,T];Lq(R"')) =II!- (a· V'yu}(q)liLl([O,T);Lq(R"')) 
r 

~ llfii£1([0,T);Lq(R"')) + L 
i=l 

r 

~ II!IIL1 ([o,rJP(R"')) + cL: 
i=l 

{ll~fiiL1 ([0,T);Lq(R"')) + ~~~iuoiiLq(R"')}· 

When f belongs to £ 00 ([0, T]; Lq(IR.m)) and ai E £ 00 ([0, T]; L00 (1R.m)) for 
any i E {1, ... ,r} we obtain 

r 

li8tuiiL""([O,T);Lq(R"')) ~ llfiiL00 ([0,T);Lq(R"')) + L 
i=l 

r 

~ II!IIL""([O,T);Lq(R"')) + c L 
i=l 

0 

Thanks to the previous regularity result we are able to establish the 
existence of strong solution for (3.4). 

Definition 3.4. Upon the hypotheses (3.8), (3.9) we say that u is a 
strong solution of (3.4) iff uE£00 ([0, T]; Lq(IR.m)), 8tuEL1([0, T]; Lq(IR.m)), 
T;u E £ 00 ([0, T]; Lq(IR.m)) for any i E {1, ... , r} and 

{ 

OtU + L:~=l (ai(t)}(oo)~iu(t) = f(t), t E (0, T) 
(3.20) 

u(O) = uo. 

Corollary 3.5. Assume that (3.8}, {3.9} hold. Then for any uo E 
(ni= 1 D(~i)) nker'Tq and f E £1([0, T]; (ni= 1D(~i)) n ker'Tq), there is a 
strong solution u for (3.4} verifying 

r 

li8tu11Ll([O,TJ;Lq(R"')) + L ll~uiiL""([O,T);Lq(R"')) ::5 CllfiiL 1 ([0,Tj;Lq(R"')) 
i=l 

r 

+ CL{ii-z;Jiiu([o,T);Lq(R"')) + ii~uoliLq}. (3.21) 
i=l 
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As usual, the existence of strong solution for the adjoint problem 
implies the uniqueness of weak solution. 

Proposition 3.6. Assume that (3.8}, (3.9} hold. Then for any uo E 
ker'Tq and f E £l([O,T];ker'Tq), with q E (1,+oo), there is at most one 
weak solution of (3.4). 

Remark 3.7. The uniqueness of the weak solution for (3.4) guarantees 
the uniqueness of the strong solution in Corollary 3.5. 

Corollary 3.8. Assume that {3.8}, {3.9} hold and that uo E ker'Tq, 
f E L 1([0,T];ker'Tq) for some q E (1,+oo). Then the weak solution of 
{3.4} satisfies for any t E [0, T] 

~ [ iu(t, y)l9 dy=~ [ luo(y)l9 dy+ [t [ f(s, y)iu(s, y)lq-2u(s, y) dy ds. 
q }Rm q }Rm Jo }Rm 

Particularly, when f = 0 the Lq norm is preserved. 

Naturally we can obtain more smoothness for the solution provided that 
the data are more regular. We present here a simplified version for the 
homogeneous problem. The proof is a direct consequence of Propositions 
3.3, 2.16. 

Proposition 3.9. Assume that {3.8}, {3.9} hold and let us denote by u 
the solution of (3.4) with f = 0 and the initial condition uo satisfying 
for some q E (1, +oo) 

uo E (ni= 1 D(~')) nker'Tq, T/uo E ni= 1 D(~'), V j E {1, ... ,r}. 

Then we have 
r r 

L L II~T/uiiL00 ((0,T];Lq(Rm)) 
i=l j=l 

:<; C ( ~ t, IIT,'T/uoiiL•(Rm) + ~ IIT,'uoiiL•(Rm)) 

with C depending on L: 1 ~i,j,k~r II~'Tjakll£l([O,T];L00 (Rm)), L:l~i,j~r 
ll~iaj IILl([O,T];Loo(Rm )) and 

r 

lloluiiLl([o,rJ;Lq) + L 118t~uiiL 1 ([o,rJ;Lq) 
i=l 
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with C depending on L: 1 ~i,j,k~r ll~iTJakiiLl([O,TJ; L""(R"'))• E19,j~r 
IIT;aill£l([O,TJ; L""(R"'))• E~=lllaill£l([O,TJ; L""(R"')) and E~=l ll8t 
CtiiiLl([O,T]; L""(R"'))· 

4 Convergence towards the limit model 

This section is devoted to the asymptotic behavior of the solutions 
(ue)e>O of 

{
8tue+a(t,y)·Vyue+ b~) ·Vyue=O, 

ue(o, y) = ug(y), 

(t, y) E (0, T) x !Rm (4.1) 

Y E !Rm. 

We assume that b, a satisfy the hypotheses (2.1), (2.2), (2.3), (3.8) and we 
work in the L2 (1Rm) setting (q = 2). Motivated by Hilbert's expansion 
method, we intend to show the convergence of (ue)e>O as c goes to 0 
towards the solution u of 

{ 
OtU + (a(t) · Vyu(t)}(2) = 0, 
u(O, y) = uo(y), 

Our main result is the following. 

(t,y) E (O,T) x Rm 
yERm. 

Theorem 4.1. Assume that (ai)ie{l, ... ,r} are smooth and satisfy 

r r 

L llaiiiLl((O,T];L""(R"')) + L 118taill£1([o,T];L""(R"')) < +oo 
i=l i=l 

r r r r r 

LL II'J2ia;ll£1([o,T];L""(R"')) + LLL 
i=lj=l i=lj=lk=l 

1112Tdak11Ll((o,T];L""(R"')) < +oo. 

Suppose that 

(4.2) 

uo E (ni=1D('J2i)) nker'J2, Tduo E ni=1D('J2i), 'TI j E {1, · ·. ,r} 

and that ( ug)e>O are smooth initial conditions such that lime'\.0 ug = uo 
in £2(JRm). We denote by ue:, u the solutions of (4.1}, (4.2} respectively. 
Then we have lime'\,0 ue = u, in L00 ([0, T]; L2(1Rm)). 

Proof. According to Propositions 3.3, 3.6 and Corollary 3.8 there is a 
unique strong solution u for (4.2), satisfying llu(t)IIL2(R"') = lluoii£2(R"') 
for any t E [0, T] and 

r r 

118tuiiL""([O,T];L2(R"')) + L 1112uiiL""([O,T];L2(R"')) :::; c:L: II'J2uoii£2(R"')· 
i=l i=l 
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Since u(t) E ker72, t E (0, T], we have 

(8tu + a(t) · Y'yu(t))<
2

> = 8t(u)<2> + (a(t). Y'yu(t))<2> 

= OtU + (a(t) · Y'yu(t))<2> = 0 

and thus by Proposition 2.10 there are (vi-')1-'>0 such that 

OtU + a(t, y) · V' yu + IJ.V"'(t, y) + 12v"' 

77 

= 0, lim(IJ.vl-'(t)) = 0 in L2 (1Rm), t E (O,T]. (4.3) 
!-''\.0 

Moreover, by Remark 2.11 we know that 

IIIJ.v"'IIL""([O,T);L2(Rm)) ~ ll8tu + a(t) · V' yuiiL""([O,T];L2(Rm)) 

~ ll8tUIIL""((O,T];L2(Rm)) 
r 

+C L llctiiiWl,l((O,T];L""(Rm)) II'J2uiiL""([O,T];L2(Rm)) 
i=1 

r 

~ CL: ll7;'uoiiL2(Rm)· (4.4) 
i=1 

Combining (4.1), (4.2) and the equation 12u = 0 yields 

(at+ a(t,y) · Y'y + b~) · Y'y) (ue- u- ev"') 

= IJ.V"' -e(OtV"' +a(t,y) · V'yv"'). (4.5) 

We investigate now the regularity of vw By Remark 2.11 we have 

11-llotv"'(t)IIP<Rm> ~ llalu+ tatai7;'u+ tai(t)ot7;'ull 
,=1 '=1 £2(Rm) 

and thus Proposition 3.9 implies 

IJ.IIOtVI-' II £l((O,T];£2(Rm)) 

,; C ( t, t II'T,'Tjuo IIL'(RmJ + t,IIT,'uoiiL'(R•J) . ( 4.6) 

Applying now the operator T;i, i E {0, 1, ... ,r}, in (4.3), yields 

r 

Ot7;'u+ LHT2ia;)(T/u) + o:;(r;T/u)} + IJ.7;'V"' + 127;'v"' = 0. 
j=1 
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By Remark 2.11 and Proposition 3.9 we obtain as before 

~-tii'J2v~(t)IIL2(Rm) 
r 

~ ll8t'J2u(t) + L {(~a;(t))(T/u(t)) + a;(t)('J2T/u(t))}IIL2(Rm) 
j=l 

implying that 

r 

J.t L II'J2v~IILl((O,T);L2(Rm)) 
i=O 

Multiplying (4.5) by ue:- u- eV~ and integrating over Rm yield 

r 

+e OtV~(t) + L ai(t)7;iv~(t) 
i=O 

and we deduce that 

r 

~ 11~-tv~{t)IIP(Rm) + Ce{ll8tv~{t)IIL2(Rm) + L II'J2v~{t)IIL2(Rm))· 
i=O 

Combining with {4.6), {4.7), we obtain for any t E [O,T] 

ll(ue:- u- ev~)(t)IIP(Rm) ~ llug- uo- ev~{O)IIP(Rm) 

+ 1T 11~-tv~(s)IIP(Rm) ds 

e 
+C~(II~-t8tv~IIL1([0,TJ;L2(Rm)) 

r 

+ L ll~-t'J2v~IILI([O,T);£2(Rm))) 
i=O 

~ llug- Uo- ev~{O)IIL2(Rm) 

+ {T 11~-tv~(s)IIP(Rm) ds + C~. h J.t 
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Consequently one gets by (4.4) for any t E [0, T] 

ll(ue- u)(t)IIL2(Rm) ~ llu5- uoii£2(Rm) 
e 

+-(IIJ.wl'(t)11£2(Rm) + IIJ.tvi'(O)II£2(Rm)) 
J.t 

e 
+C"'ji, + ll~-tv~<IILl([O,T);£2(Rm)) 
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~ lluo- uoii£2(Rm) + c=- + IIJ.tvi'IILl((O,T];£2(Rm))· 
J.t 

Since the functions t--+ IIJ.tv~<(t)IIL2(Rm) converge pointwise to 0 as J.t '\, 0 
(cf. (4.3)) and they are uniformly bounded on [0, T] (cf. (4.4)) we deduce 
by dominated convergence theorem that 

!~ IIJ.tvi'IILl((O,T);£2(Rm)) = 0. 

Particularly, for J.t = e0, with 8 E (0, 1) we have, for e '\, 0 

llue - uiiL=([O,T);£2(Rm)) 

~ llu5- uoiiL2(Rm) + Cel-o + lle6Ve611Ll((O,T];£2(Rm)) --+ 0. 

0 

5 The limit model in terms of prime inte
grals 

In the previous section we have derived a limit model for the transport 
equation (4.1) based on the computation of the fields (bi)i in involution 
with b. We investigate now the same limit model from the view point of 
prime integral concept. Surely, this approach will provide an equivalent 
analysis. Nevertheless, in practical situations (see the examples in the 
next section) the computations are simplified when prime integrals are 
employed. We assume that there are m- 1 prime integrals, independent 
of Rm, and associated with the field b 

b·Vy'I/Ji=O, iE{1, ... ,m-1} (5.1) 

rank ( 88'1/J~ (y)) = m- 1, y E Rm. (5.2) 
YJ (m-l)xm 

Let us recall that generally, around any non singular point Yo of b (i.e., 
b(y0 ) -::f 0) there are (m- 1) independent prime integrals, defined only 
locally, in a small enough neighborhood of Yo (see [1], p. 95). For any y E 
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am we denote by M(y) the matrix whose lines are 'Vy'l/;1, ... , 'Vy'l/;m-1 

and b. The hypotheses (5.1), (5.2) imply that detM(y) =F 0 for any 
y E am. The idea is to search for fields c = c(y) such that c(y) · 'V yu 
remains constant along the flow of b for any function u which is constant 
along the same flow. If u is constant on the characteristics of b, there is 
a function v = v(z) : am- 1 --+a such that 

Therefore one gets 

m-1 !l.J,k 
au ""' av ( 1( ) m-1( ))U'f/ ~=L.....-~1/J y, ... ,'I/J Yay· 
uy3 k=1 UZk J 

implying that 

m-1 a m a'l/;k a'l/; 
c·'Vyu = L -i-(1/;1 (y), ... , 1/;m-1(y)) L ~Cj = ('V zv)('l/;(y))·Fc(y). 

k=1 Zk j=1 YJ y 

Particularly, if ~c(y) do not depend on y, the directional derivative c· 'V y 
remains constant along the trajectories of b. Actually, the following more 
general result holds. 

Lemma 5.1. Assume that {5.1}, {5.2} hold and let c be a smooth field 
such that y --+ ~ (y )c(y) and y --+ b(y) · c(y) are constant along the flow 
of b. Then we have 

_ c(y) · ('Vy¥ +Tb) m 
[c, b](y) - lb(y)l2 b(y), y E a . 

For any i E {1, ... , m -1} let us denote by ci(y) the unique solution 
of the linear system 

where oii are the Kronecker's symbols. Notice that M(y) ~~~~ 2 =em and 
thus c1 (y), ... , cm- 1 (y), b(y) are linearly independent at any y E am. 
According to Lemma 5.1 we have for any i E {1, ... , m- 1} 

Particularly, for any function u constant along the flow of b, the direc
tional derivative ci · 'V yU remains constant along the same flow for any 
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i E { 1, ... , m - 1}. We denote by /3o ,{31, ... , !3m-1 the coordinates of a 
with respect to b, c1, ... , cm-1 and we assume that {/3i)i are smooth and 
bounded 

m-1 
a(t,y) = /3o(t,y)b(y) + L /3i(t,y)ci(y), (t,y) E [O,T] x Rm. (5.3) 

i=1 

Thanks to Corollary 2.8, one gets for any function u E (n:;11D(7/)) n 
kerTq 

m-1 
= L (/3i(t)}(oo)ci(y) · Y'yu(t). 

i=1 
It remains computing (/3ik Multiplying (5.3) by M(y) yields 

m-1 
M(y)a(t, y) = /3o(t, y)lb(y)l2em + L /3i(t, y)ei 

i=1 
implying that 

/3i(t, y) = M(y)a(t, y) · ei, i E {1, ... , m- 1 }, 

/3o(t, y)lb(y)l2 = M(y)a(t, y) ·em 

or equivalently to 

i . a(t, y) · b(y) 
f3i(t,y)=a(t,y)·Y'y1/J, zE{1, ... ,m-1}, /3o(t,y)= lb(y)l2 · 

Finally one gets the following form of the limit model 

m-1 
8tU + L (a(t) · 'V'y'I/Ji}(oo) M- 1(y)ei · 'V'yu = 0 (5.4) 

i=1 
supplemented by the constraint Tqu = 0. Actually we check that this 
constraint is a consequence of Eq. (5.4), provided that the initial condi
tion satisfies Tqua = 0. Indeed, by Lemma 5.1 it is easily seen that for 
any i E { 1, ... , m - 1} we have 

Tq ((a(t) · 'V'y'I/Ji}(oo)ci · 'V'yu) = (a(t) · Y'y'I/Ji}(oo)Tq(ci · Y'yu) 

= (a(t) · Y'y'!f;i}(oo)(ci · Y'y)Tqu 

-(a(t). Y'y'!f;i}(oo). 

ci(y). (vY~ + (b(y) · 'V'y)b) 

lb(y)l2 Tqu. 
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Therefore, by applying Tq to (5.4) we obtain 

m-1 

8tTqu + L (a(t) · Vy'l/i)(oo)(ci · \ly)Tqu 
i=1 

(

m-1 . ci(y). (v)f+(b(y) · \ly)b)) - tt (a(t). Vy'l/l)(oo) lb(y)l2 Tqu = 0 

and thus it is clear that if Tquo = 0, then Tqu(t) = 0, t E [0, T]. 

5.1 Examples 

We apply the previous theoretical results to the finite Larmor radius 
regime, in the particular case of a constant magnetic field Ba =I 0. We 
have m = 4, y = (x,p) E JR2 X JR2, a(t,y) = (O,O,-E1(t,x),-E2(t,x)), 
b(y) = (p1,P2, -Bap2, Bapl) = (p, -Ba .Lp). The characteristic flow 
Y =(X, P) associated with b satisfies 

dX dP .L ds = P(s;x,p), ds = -B3 P(s;x,p). 

It is easily seen that a set of independent prime integrals is given by 

and thus we need to invert the matrix 

( 
0 Ba 1 0) 

M(p) = - B3 o o 1 . 
00 P1 P2 

P1 P2 - BaP2 BaPl 

In order to simplify our computations it is very convenient to introduce 
.1. - -

the new variable z = x - 7!; = ( -'1/P, t/J1 ) f Ba and the new unknown 
gE(t,z,p) = jE(t,x,p). The equation forgE becomes 

8tgE+ ~3 .LE (t,z+ la}\lzgE-E (t,z+ la}\lpg£-~Ba .Lp·\lpg£ = 0 

and thus the fields to analyze in this case are 
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A set of independent prime integrals is given by 

The matrix to be inverted is 

(

1 0 0 0) 
M(p) = 01 0 0 

0 

0 0 P1 P2 
0 0 - B3p2 B3p1 

It is easily seen that M-1 is given by 

-1 (~ ~ ~ ~) 
M (p) = 0 0 ~ - B~~pl 0 

O OW B3l~l 2 
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In view of {5.4) we need to compute (a(t) 0 V(z,p)'I/Ji)(oo), i E {1,2,3}0 A 
direct computation shows that the flow {Z, P)(s; z,p) associated with b 
is given by 

Z(s;z,p) = z, P(s;z,p) = R(sB3)p, R(8) = o n n o (
cos8- sin8) 
smu cosu 

Consequently the constant functions along the flow are the functions 
with radial symmetry with respect to po Since all the trajectories are 
271" / B3 periodic, we have 

B3 f fii 1 [ 2
w 

(u)<oo>(z,p) = 
2

71" Jo u(z,R(sB3)p) ds = 271" Jo u(z,R(8)p) d8 

for any bounded function u E L00 {lR4 )o We have 
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We claim that the coefficient (a(t) · V(z,p)1/J3 )(oo) vanishes. Indeed 

(a(t) · V(z,p)1/J3)(oo) =- :: 1* E (t, z + .l p~3z,p)) · P(s; z,p) ds. 

Taking account of that E(t) derives from a potential cp(t) and that 

!!:._,~, (t z+ .LP(s;z,p)) = E (t + l.P(s;z,p)). P( . ) 
ds'~' , B3 ,z B3 s,z,p 

we deduce that 

(a(t)·V(z,p)1/J3)(oo)=-::~o* :
8

</J(t,z+ l.p~3z,p)) ds=O. 

Plugging into (5.4) all these computations yield the limit model 

8tg + - 1- {
2
"' l. E (t, z + l.(R(O)p)) dO· V ..,g = 0 

21l"B3 }0 B3 

which is equivalent to 

1 [
2
"' .l ( .Lp l.(R(O)p)) 

8tf+21l"B3}o E t,x- B3 + B3 dO·'Vxf=O. 

Therefore the finite Larmor radius regime leads to a transport equation 
for the particle density, whose advection field is given by a gyro-average 
type operator. For more details, the reader can refer to [2] where a 
complete analysis of the coupled Vlasov-Poisson equations (with finite 
Larmor radius) was performed. 
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Abstract 

The Euler-Poisson system consists of the conservation laws for 
the electron and ion densities and their current densities coupled 
to the Poisson equation for the electrostatic potential. We report 
in this paper that the limit of vanishing electron mass of the sys
tem for given ion density (unipolar case) with both well and ill 
prepared initial data is proved. The limit is related to the low 
Mach number limit in Euler system, which was proved by Klain
erman and Majda for well prepared initial data, and by Ukai and 
Schochet for ill prepared initial data. More precisely, in the zero 
mass limit, the limit velocity satisfies the incompressible Euler 
equations with damping. The difference between the zero mass 
limit and the low Mach number limit comes from the singular 
coupling of the electrostatic potential. This additional singular 
coupling gives the most difficult part in the proof. We prove the 
limit for both well and ill prepared initial data. By a reformula
tion of the equations in terms of the enthalpy, we are able to show 
the uniform higher-order energy estimates with a careful use of 
the Poisson equation. With similar idea we can show the uniform 
estimate for time derivative for well prepared initial data. For ill 
prepared initial data, a careful analysis on the structure of the 
linear perturbation has been done to show that the convergence 
occurs away from time t = 0. 

*The results reported in this Chinese French Summer Institute are joint work with 
Giuseppe An, Ansgar Jiingel and Yue-Jun Peng. The work is partially supported by 
the National Natural Science Foundation of China (NSFC}, grant numbers 10571101 
and 10871112. 
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1 Introduction 

This is a review on zero mass limit of the Euler-Poisson system. In 
plasma physics and semiconductor simulation, the Euler-Poisson system 
is derived to study the time evolution of charged fluids. These models 
can be obtained from Boltzmann equation for electrons and ions (or holes 
in semiconductor) (see [23, 14)). The system consists of the conservation 
laws for the electron(ion) density and current density for electron{ion), 
coupled to the Poisson equation for the electrostatic potential. 

1.1 Quasi-hydrodynamic models {Euler-Poisson sys-
tem) 

The following are the scaled hydrodynamic equations for the electron 
density ne with charge qe = -1, the density ni of the positively charged 
ions with charge qi = +1, the respective velocities Ve, vi, and the elec
trostatic potential ¢, 

8tna + \! · (nava) = 0, a= e, i, 

ma8t(naVa) + ma \! · (naVa ® Va) + \lpa(na) = -qana \lt/J- ma naVa, 
Ta 

->..26¢ =ni-ne- C(x) for x E 0, t > 0, {1) 

where d ~ 1, n is JRd or Td. The initial conditions are given by 

na(·,O) = nl,a, Va(·,O) = V[,a inn, a= e,i. 

Pa are the pressure functions, usually given by Pa(x) = cax'Y"', x ~ 0, 
where Ca > 0 and 'Ya ~ 1. In the following discussions, we only assume 
that Pa are strictly monotone and smooth. The function C(x) models 
fixed charged background ions (doping profile). The (scaled) physical 
parameters are the particle mass ma, the relaxation time T a, and the 
Debye length >... 

1.2 Some known results on Euler-Poisson system 

There are a lot of mathematical works, on both well-posedness and dif
ferent kinds of singular limit problems, for Euler-Poisson system in the 
literature. We only list here a few of them. 

In the stationary case, Degond-Markowich [6) discussed the existence 
and uniqueness of the steady state solution in the subsonic case, while 
Gamba [7) studied the same problem in the transonic case. 

In the time evolution case, Zhang [32) and Marcati-Natalini [22) got 
the global existence of weak solutions of the initial boundary value prob
lem and the Cauchy problem respectively by using compensated com
pactness. 
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Singular limit problems in this system include 

• Relaxation-time limit: ro: ---+ 0, a= i ore; 

• Quasineutrallimit: ..X --+ 0; 

• The zero-electron-mass limit: me ---+ 0. 
mi 

We also list some of the known results on singular limit. 

• The relaxation limit (ri,e ---+ 0) of Euler-Poisson system to the 
drift-diffusion equations for the Cauchy and initial boundary value 
problem was studied separately by Marcati-Natalini [22] and Hsiao
Zhang [13]. In the consideration of smooth solution, Luo-Natalini
Xin [17], Hsiao-Yang [12] and Li-Markowich-Mei [16] investigated 
the asymptotic behavior of solutions to the Cauchy and initial 
boundary value problem respectively. 

• The quasineutral limit (..X --+ 0) in the Euler-Poisson system has 
been analyzed for transient smooth solutions by Cordier and Gre
nier [5] in the one-dimensional case and independently in [26, 30] 
in the multi-dimensional case. 

• For the zero mass limit (me/mi ---+ 0), there has been very lim
ited work on zero electron mass limit up to now, under restrictive 
assumptions (see [10]). We got some results recently for unipolar 
case in [1] and [2] with n = 'll'd for well prepared initial data and 
0 = lRd for both well and ill prepared initial data. We will report 
these results in this review paper. Recently, L. Chen, X. Chen and 
C. Zhang also got a result on well prepared initial data in [4] for 
bipolar case. 

1.3 Zero-electron-mass limit for given ion density 

In this review paper we restrict ourselves to a situation in which the 
ion density is given and n = JRd or yd (the case for n = ']['d with well 
prepared initial data is much easier), i.e., we wish to perform rigorously 
the limit me ---+ 0 in the system 

Otne + '\1 · (neve) = 0, (2) 

meOt(neVe) +me '\1 · (neVe® Ve) + '\lpe(ne) =neE- me neVe, (3) 
'Te 

..X2E=V(r*(ne-N)) forxElRd, t>O, (4) 

where N = ni- Cis given (In fact, we need that N is a constant.), r is 
the fundamental solution of Poisson equation. 
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Remark 1. The reason we use the electric field E instead of V <1> here is 
that <I> = r* ( ne- N) might not be well defined for not good enough ne- N 
in the whole space JRd case, while E could be defined for ne-N E H 8 (!Rd). 

If 0 = Td, we will still use </> with { </>dx fixed. 
}yd 

The parameter me is essentially the ratio of the electron mass to the 
ion mass (see [15] for details on the scaling). We assume that the ion 
mass is much larger than the electron mass such that the limit me -+ 0 
makes sense. The limit has the goal to achieve simpler models containing 
the essential physical phenomena. We notice that in plasma physics, 
zero-electron-mass assumptions are widely used (see [11, 18]). 

To present the main ideas, it is convenient to write the main part 
of the systems (2)-(3) in symmetric hyperbolic form. Setting n = ne, 
v = Ve, p(n) = Pe(ne), and e2 = me and introducing the enthalpy 
h = h(ne), defined by h'(n) = p'(n)/n and h(1) = 0, the systems (2)-(4) 
can be rewritten as 

8tn + V · (nv) = 0, 

e2 (8tv + v · Vv) + Vh(n) = E- e2v, (5) 

E=V(r*(n-N)), xEIRd, t>O, 

with initial conditions 

n(·,O)=n[, v(·,O)=v[ in!Rd. (6) 

Here, we have set Te = ,\ = 1 in order to simplify the notation. Clearly, 
for smooth solutions, this system is equivalent to the following system 
with symmetric hyperbolic structure 

(8t + v · V)h + p'(n)V · v = 0, 
e2 (8t + v · V)v + Vh = E- e2v, (7) 

E=V(f*(n(h)-N)), xEIRd, t>O, 

with initial conditions 

h(·,O) = h[ = h(nr), v(·,O) = v[ in !Rd. (8) 

As we suppose that the pressure function is invertible, so is h( n) and 
we denote its inverse by n(h). Sometimes we will analyse this system 
instead of the original one (5)-(6). 

Now the objective is to perform the limite-+ 0 in (5). 



90 Chen 

1.4 Formal asymptotic analysis 

To express the idea more clearly, in this part, we will take 0 = 'll'd. In 
this case, we can write the system into 

(8t + v · V)h + p'(n)V · v = 0, 

c2(8t + v · V)v + Vh = V¢- c2v, (9) 

l1¢=n(h)-N, xE'll'd, t>O, 

where we assume that JTd ¢dx is fixed, with initial conditions 

h(·,O)=hj, v(·,O)=vj in'll'd. (10) 

In order to derive the limiting system when c -+ 0, we substitute the 
formal expansions 

h = ho+ch1+e2h2+· .. 'v = vo+cv1+e2v2+· .. ' ¢ = ¢o+c¢l+c2¢2+· .. 

in the system (9) and equate equal powers of E. The lowest-order terms 
satisfy the equations 

(8t+v0 ·'V)h0 +p'(n(h0 ))V·v0 = 0, V(h0-¢0) = 0, 1:1¢0 = n(h0 )-N. 
(11) 

The second equation implies that h0 - ¢0 is a function of time only. 
Combining this fact with the third equation, we find that h0 solves 
t1h0 = n(h0 )- N. It is not difficult to see that ¢0 = 0 and h0 = n- 1(N) 
are the unique solutions of the corresponding equations. Particularly, 
the first equation in (11) becomes V · v0 = 0. The first-order terms 
satisfy 

V(h1 - ¢1) = 0, 1:1¢1 = n' (h0)h1. 

The solutions h1 = ¢1 = 0 are consistent with these equations. At 
second order, we find 

From V ·v0 = 0 and the first equation, v0 and ¢2 - h2 can be found. Then, 
h2 is the solution of the third equation, written in the form of t1h2 = 
n'(h0 )h2 - 1:1(¢2 - h2 ), and finally, ¢2 is given by ¢2 = h2 + (¢2 - h2 ). 

These considerations motivate to choose the initial data as 

(13) 

The formal analysis shows that the zero-electron-mass limit has some 
similarities with the low-Mach-number limit in the compressible Euler 
system [21]. It is possible to use ideas from Klainerman and Majda 
[19, 20] to deal with the term E-1 V h in (7) (after division byE). However, 
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we have another singularity from chv</> which cannot be fixed by their 
method. Our idea is to control this term by a careful use of the mass 
conservation and the Poisson equation. 

We will show in the following two sections the results and the main 
ideas of the proof in well and ill prepared initial data. 

2 Limit with well prepared initial data 

2.1 Main results 

We introduce as in (21) the following notations: 

ll·lls = II·IIH•(nJ, lll·llls,T = sup ll·lls for s E IR, 
O<t<T 

ll·lloo = 11·11£00 (!1)· 

Theorem 1. n = 'JI'd. Let n be a smooth strictly increasing function 
and let N > 0. Furthermore, let s > d/2 + 1 and let the initial data 
(h}, v1) satisfy v1 = v~ and 

ll
h} _ ho II e 

8 

+ llv111s ~ Mo, 

where h0 = n-1 (N) and M0 > 0 ts a constant independent of e. Then 
there exist constants To> 0 andM0 > 0, independent ofe, ande0 (M0 ) > 
0 such that for all 0 < e < eo(Mo), the problems {9)-{10) have a classical 
solution (hE, vE, </>E) in [0, T0) satisfying 

Theorem 2. Let the assumptions of Theorem 1 hold with '\1 · v~ = 0 
and 

(14) 

and let (hE, vE, </>E) be a classical solution to (9)-(10) in [0, To) with To > 0 
independent of e. Then, as e ~ 0, 

hE~ h0 , '\1</>E ~ 0 strongly in L00 (0, T0 ; Ha('ll'd))nC0·1 ([0, To); L2(r)), 

VE ~ v0 strongly in C0 ([0, To); HQ('ll'd)) for all a: < s, 

where v0 is the (unique) classical solution of the following incompressible 
Euler equations with damping, 

'\J. v0 = 0, (8t + v0 · '\l)v0 + v0 = '\11r, x E 'll'd, t > 0, (15) 

v0 (·,0)=v~ in'll'd, 
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and 1l' is the limit of 

Remark 2. The above results on well prepared initial data are still true 
when n = llld, but in this case, we will use the electric field E instead of 
'V ¢ since ¢ = r * ( ne - N) might not be well defined for not good enough 
ne - N in the whole space llld case, while E is defined for ne - N E 
H 8 (1lld). The the corresponding results are for problems {7}-{8). 

2.2 Ideas 

To describe the idea more precisely, we introduce the new variables 

- h- h0 

h=--, 
c 

as in [21, Ch. 2.4], where ¢0 is any constant fixed by I ¢dx {if I ¢dx = 0 
then ¢0 = 0). The system {7) can be written as 

- - 1 A(ch)(8t + v · 'V)h + -'V · v = 0, {16) 
c 

1 - 1 -
(8t+v·'V)v+-'Vh= -'\1¢-v, {17) 

c c 

A~= !(n(cii + h0)- n(h0 )), x E 1'd, t > 0, {18) 
c 

where A(ck) = 1/p'(cii + h0 ). 

For the proof of the limit c ---+ 0, it is enough to prove the follow
ing lemma by the classical continuity argument on hyperbolic system, 
which means that we need to derive uniform estimates up to sth-order 
derivatives, where s > d/2 + 1. 

Lemma 3. Suppose that it holds, for some T* > 0 and M > 0, 

llkiiL""(O,T";W'·""(Td)) + llviiL""(O,T";W'·""(Td)) ::=; M. {19) 

Then there exist co> 0 and c(M) > 0 {depending on M) such that for 
all 0 < c < co, it holds 

lllkllls,T• + lllvllls,T• + III'V~IIIs,T• ::=; ec(M)T* (Mo + c(M)T*). {20) 

Here, we will describe only how to derive the lowest-order estimates, 
which is sufficient to illustrate the idea. As in the assumption of the 
lemma, there are £<'"{0, T; W1•00 (1'd)) estimates for ii and v. Friedrich's 
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energy estimate for symmetric hyperbolic systems and integration by 
parts yield 

! ld (A(eh)ihl 2 + lvl 2 )dx + ld lvl2dx 

:s c J (lhl2 + lvl 2 )dx - ~ r ¢v . vdx, 
lTd e lTd 

whe~e the constant c > 0 depends on the £ 00 (0, T; W1•00 (1l'd)) bounds 
for h and v. Replacing the term e- 1v · v by the mass conservation 
equation, we are left to control the integrals 

{ ¢A(eh)htdx + { ¢A(eh)v · Vhdx. 
lTd lTd 

The second integral can be easily controlled (after integration by parts) 
by the £ 00 (0, T; W1•00 (1l'd)) bounds for h and v. In order to deal with 
the first integral we employ the Poisson equation, 

l:::J..¢t = n'(eh + h0 )ht. 

Then we arrive at 

1 - -- 1 A(eh) - -4>A(eh)htdx = - !:::J..4>t4>dx. 
Td yd n'(eh + ho) 

Again after integration by parts, we obtain an integral with a "good" 
sign, i.e. 

The integral with "good" sign is -8tii"V'¢11i2• and other integrals can 
be estimated by lleV¢tll£2 and ll8t(n'(eh + h0))IIL2· Using the Poisson 
equation to bound the first expression, it can be seen that both terms 
contain the derivative eht as above including the factor e. Indeed, by 
(16), we are now able to control this expression in some norm in terms 
of the £ 00 (0, T; W1·00(1l'd)) estimates for h and v. 

For higher-order derivatives, we need to take care of the nonlinear 
terms arising from the partial derivatives, but finally, we end up with 
estimates for h and v which are appropriate for employing the standard 
continuation argument (see below for details). 
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In the case of n = JRd, since we will use electric field E instead of 
electric potential ¢, we need to use smoothing technics to get similar 
results as in (21). 

3 Limit with ill prepared initial data 

3.1 Main results 

Our result on ill prepared initial data is in the case of S1 = JRd. The 
problem for n = 'll'd is still open. 

First we got the uniform local existence 

Theorem 4. Let s > d/2 + 1 and N > 0. The initial data (nj, vi) 
satisfy nj - N E £ 1 (JRd) and 

ll nj-NII c 
8 

+ llvills ~ Mo, 

with Mo > 0 being a constant independent of c. Then there exist con
stants To > 0 and M0 > 0, independent of c, and co(Mo) > 0 such that 
for all 0 < c < co(Mo), the problems (5)-(6) have a classical solution 
(nE, vE, EE) in [0, To] satisfying 

Zero mass limit for ill prepared initial data is as follows: 

Theorem 5. Let the assumptions of Theorem 4 hold and let d ~ 3, 
(nE, vE, ¢E) be a classical solution to (5)-(6) in [0, To] with To > 0 inde
pendent of c. Then, as c-+ 0, 

nE-+ n°, "V¢E-+ 0 strongly in L 00 (0,To;H 8 (1Rd)), 

vE __, v0 weakly* in L 00 (0, To; H 8 (1Rd)), 

vE -+ v0 strongly in cPoc((O, To] X !Rd), 

where vo E £ 00 ([0, To]; H 8 (1Rd)) is the unique solution of the following 
incompressible Euler equations with damping, 

"V·vo=O, (8t+v0 ·"V)v0 +v0 ="V1T, xEIRd, t>O, (22) 

v0(·,0)=PVI in!Rd, 

for some 1T E £ 00 ([0, To]; H 8 (1Rd)). p is the orthogonal projection of ns 
onto the subspace { v E H 8 

: '\1 · v = 0}. 
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In getting the limit for ill prepared initial data case, we need also the 
scaling of n, i.e. ii = n~N. The system {5) can be written as 

8tii + 'V· (iiv) + N '\1 · v = 0, 
e 

a .., h'(N) 'Vii E h'(N) - h'(eii + N) '""'-tV+v·vv+v+ -+-= vn, 
e e e 

E = v(r * ii), 

3.2 Ideas 

Our idea to get the uniform local existence is similar to the case of 
n = 'li'd (see Remark 2). We will show in this part the main technics to 
deal with ill prepared initial data. 

To have more estimates in the ill prepared initial data case. we 
borrowed some of the ideas by Ukai [29] and Grenier [9] to rewrite the 
system into a linearized form, 

8tii + ~'\!· v = Gi, 
1 e 

&tv+ v + -(h' (N) + ( -a)- 1 )'Vii = a~, 
e 

h Ge .., (- ) Ge .., h'(N)- h'(eii + N) '""'-
w ere 1 = - v · nv , 2 = -v · v v + v n. 

e 
Let Le{t) be the group generated by the linearized operator 

L- e 
( 

0 ~'\!·) 
- ~(h'(N) + {-a)-1)'\l Id ' 

i.e. U(x, t) = Le(t)U0 (x) solves the following Cauchy problem 

( 

0 ~'\!·) Ut + 1 e U = 0, U(x,O) = Uo(x), 
e(a+(-a)-1 )'\l Id 

where a= h'(N). Then the system {23) can be rewritten into 

(~\ =Le(t)(~:)+ fotLE(t-r)(gl)dr. 

Then we need to study the linear operator LE(t). 
Obviously, U(x,t) = LE(t)Uo(x) = :F-1e-tB(e,F.):FUo with 

( 

0 !i~) 
B(e, ~) = !_ ( _1_) ct el . 

e a+ 1~12 ., d 

{23) 
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where :F is the Fourier transform. B has eigenvalues and eigenvectors 

A= 1 (d-1 multiple) ei(~) = (O,*)t,i = 1,··· ,d-1, 
1 . 

A±= 2 ± 2~c V4(al~l2 + 1)- e;2, 

( 
2il~l e ) 2 1~1 2 

e±= e:±iJ4(al~l2 +1)-e:2 'iZf' le±l = al~l 2 +1 +1. 

II./' ( t) has the orthogonal decomposition IL1 ( t) and IL~ ( t) according to 
the eigenvalue 1 and A± in the following sense, 

IL1(t)Uo = e-t:F- 1 (ej(~) · Uo(~)ej(~)) = e-tiLoUo 

1L2(t)Uo = e-!:F-le=F*v'4(alel2+1)-e2(e±(~). Uo(~)e±(~)) 

where we have used the summation convention on j and +, -. Since 
e3 (~) = (O,e3 (~))t, then IL0U0 = (O,Pvo), Pvo = :F- 1 (e3 (~) · vo(~)e3 (~)) 
for Uo = (ho,vo)t. By Parseval theorem, one gets 

By using the properties of JLE(t), we can decompose the solution 

ue = ( ~; ) into two parts by 

ue = Uf +Ui, 

Uf = (O,vi)t, vi= e-t(Pvi +lot eTPG2(r)dr), 

Ui = 1L2(t)Uo +lot 1L2(t- r)(Gi(r),G2(r))tdr. 

Now in order to get convergence, we have the following facts with 
the second being much harder. 

• Step 1. By the orthogonal decomposition and 8tvi = -vi+ PG~, 
uniform energy estimates give llvills + ll8tvills-1:::; C. 

• Step 2. It is needed to deal with Ui in one sense. In fact we have 
the following convergence, Vr > 0, 

sup IIUilloo --+ 0, as c--+ 0. 
T~t 

We will use the following facts to get the convergence in Step 2. The 
key estimates in the following is omitted here (see [2] for details). 

With s ~ ~ + 1, Uo = (ho, vo) and for any fixed r > 0, we have 



Euler-Poisson System 97 

1. 3t:o s.t. when t: < t:o, t ~ T, the following estimate for Uo E 
H 8 (JRd) n £(JRd) holds 

8- d/2 
a=---,-.,...:...-

8 + d/2 -1 

2. For U0 E H 8 (!Rd), it holds that 

sup IIIL~(t)Uolloo-+ 0, as t:-+ 0. 
T9 

By uniform energy estimates, for any T E [0, To], there exists C in
dependent of t: such that 

IIG~IILI + IIG~IIs-1 :5 C. 

Then for any fixed 0 < To, choosing 0 < T1 < To, Vt > r0 , we 
decompose the integral as 

U2 = II...~(t)Uo +(it + t_.,., )IL~(t- T)(Gf(r), G~(r))tdT. 
t--r' lo 

So the L00 estimate of Ui is (with t- T ~ r' forTE [0, t- T
1
]) 

IIU2IIoo :5 IIIL~(t)Uolloo + T1 IIL~(t- r)(G1 (T), G~(T))tlloo 

+C lt--r' e-r-tlt ~ T~-6 IIGi,G~II!-criiGi,G~II1~dr 
:5II1L~(t)Uolloo +T'IIGi,G~IIs-1 +Ct:6 11Gi,G~II!-criiGi,G~II1~· 

By letting t: -+ 0, we have 

sup IIU2IIoo-+ CT'. 
-ro:5t 

Since T
1 could be arbitrarily small, the conclusion of the last point is 

drawn. 
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Abstract 

In this paper, we review a few aspects of two phase flows where 
a disperse phase- the particles - interacts with a dense fluid. 
We are thus led to consider kinetic equations where the leading 
term is due to the drag force exerted by the fluid on the particles. 
We discuss several asymptotic questions and present a numeri
cal scheme which is able to treat the multiscale features of the 
problem. 

1 Introduction 

This paper is concerned with models describing disperse particles inter
acting with a fluid. This work is motivated by the transport of pollutants 
[14, 39], the dispersion of smokes and dust [18], the modeling of biomed
ical flows [7, 5] as well as combustion theory, with applications to Diesel 
engines or propulsors [1, 2, 20, 34, 40]. 

The basis of the models we are interested in assumes that the leading 
effect is due to the drag force exerted by the fluid on the particles. As a 
warm-up, let us explain what is going on with the very simple example of 
a single particle, spherically shaped with radius a and mass density pp, 
dropped in a fluid. The fluid is characterized by its mass density Pr, its 
velocity u, and its dynamic viscosity J.l.· The drag force is supposed to be 
proportional to the relative velocity between the fluid and the particle 



Fluid-Particles Flows 

so that the motion of the particle is described by the ODE system 

d 
-X=V 
dt ' 

101 

which defines the evolution of the position X and velocity V of the 
particle. In (1.1), :F represents the density of external forces applied to 
the particle; for instance, considering gravity and buoyancy forces, we 
have 

:F = g( Pr _ 1), 
pp 

with g > 0 the gravitational acceleration. Let us set 

Tst = 2a2pp. 
9p, 

When u = 0 in the gravity driven case, the velocity tends to the limit 
value Tstg(pr / pp - 1 ), the so-called Stokes settling velocity, and Tst, the 
Stokes settling time, clearly appears as a relaxation time, characterizing 
how the friction decelerates the particle. In complex mixtures, the dis
perse phase can be seen as an ensemble of particles, which is described 
by means of a particle distribution function I 2: 0 depending on time 
and on the phase space variable (x, v) where x stands for a space variable 
and v a velocity variable: 

fnfv1(t,x,v)dvdx 

is the number of particles that can be found at time t 2: 0, in the domain 
n X v c JR.N X JR.N of the phase space. Therefore, the evolution of the 
density I is governed by the following Vlasov-type equation 

1 ad+ 'Vx. (vf) + ;:r'Vv. ((u- v)l) + 'Vv. (:FI) = 0. (1.2) 
.J.St 

Particularly, if we have P independent particles described by their 
position-velocity pair (X;,Vj), j E {1, ... ,P}, obeying (1.1), then 
l(t,x,v) = Ef=1 6(x = X;(t)) ® 6(v = Vj(t)) satisfies (1.2). It clari
fies the connection between the statistical and the particles viewpoints. 
The questions we address can be summarized as follows: 

• Modeling issues are crucial for applications. A fundamental ques
tion is concerned with the drag force: the linear expression of the 
drag force we used above - that is the Stokes law - looks reason
able for low Reynolds numbers; otherwise, a more complex and non 
linear relation should be used, which will make the mathematical 
analysis harder. The role of the density of the fluid, which does not 
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appear in the expression of the Stokes drag force above, should be 
also discussed. Furthermore, additional effects could be important 
depending on the flow and need to be incorporated in the model: 
added mass effect, Basset force, lift force · · · (see (19, 28, 31]). The 
models can also account for more complex interactions between the 
particles due to collision effects and shape or size variation through 
coagulation and fragmentation phenomena (see (2, 4, 34]). 

• The surrounding fluid is considered as "turbulent" which, roughly 
speaking, means that the velocity u has fast and high variations. 
Hence, one seeks some averaging procedures which is allowed to 
derive useful and simple models that account for these turbulent 
effects. In this spirit, we mention (13, 17, 24], and on more physical 
grounds (41]. 

• Another viewpoint consists in coupling the evolution of the parti
cles to hydrodynamic equations that describe the behavior of the 
dense phase. We are thus led to nonlinear systems of PDEs and we 
address the questions of existence, uniqueness, stability properties 
of the solutions, as well as we aim at designing efficient numerical 
schemes able to handle the multiscale features of the problem. We 
refer in particular to (3, 6, 26, 27, 34, 36] for well-posedness analy
sis of such coupled fluid-kinetic models. Asymptotic problems and 
stability properties are investigated in (8, 9, 10, 21, 22, 30, 34, 37]. 
Concerning numerical methods, of course the key reference is [1]; 
we also mention (4, 34] and below we shall describe the method 
introduced in (11]. 

In this paper, we will focus on some of these questions. In Section 2, 
we propose a possible modeling of "turbulence" by assuming that u is a 
time dependent random field. Discussing the scaling of the equations of 
motion with respect to the relaxation time associated with the Markov 
properties of the velocity, we identify several relevant asymptotic regimes 
for which we are able to describe limit effective equations. Section 3 
deals with coupled kinetic/hydrodynamic equations and we show how 
efficient numerical schemes can be designed, based on the dissipative 
and asymptotic properties of the model. 

2 Particles in turbulent flows 

In this section, we neglect the external forces (:F = 0) and we consider 
the velocity field as given, but we wish to investigate the behavior of the 
solutions depending on parameters that characterize the flow. We will 
assume time randomness intending to mimic some "turbulence effects" 
and we will derive averaged models. 
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2.1 Modeling of turbulent flow 

The function u is thought of as the velocity field of a "turbulent" flow 
which is therefore modeled through a time dependent random field. We 
model the time dependence of the velocity by a Markov process (with, 
say, dimension 1) which is consistent with the rough idea of an expo
nentially fast decay of the time-correlations. Let us detail the model we 
have in mind. The velocity at time t and position x is defined by 

where: 

• U is the amplitude of the velocity, 

• U: JRN x lR is a smooth, divergence free and bounded (dimension
less) function in which the modeling of turbulence is embodied, 
with l being a typical length scale of the variation of the velocity, 

• t 1-+ Qt/TM is a stationary Markov process modeling the random
ness of turbulence with typical decorrelation time TM. 

Typically, one expects some translational invariance property of the field, 
i.e.: 

Law(U(x/f., Qt/TM)) = Law(U(xfl + n, Qt/TM)), 

for all n E JRN or at least for all n E zN. The asymptotic regimes studied 
in this paper will typically lead to non-trivial evolution equations as soon 
as the following time auto-correlations are non-vanishing: 

{+oo { E(U(y,Qo)®U(y+vt,Qt/TM)) dydttfO, 
lo l(o,l)N 

for any (y,v) E JR2N. 
To simplify the formal computations and the analysis, we restrict 

ourselves to the following framework: 

• The velocity field satisfies 

y ~-----+ U(y,q) is (0, 1)N =¥-periodic, (~*,Q;) (2.1) 

sup IU(y, q)l :::; C < oo, (2.2) 
yEY, qER 

Vy · U(y, q) = 0 for a. e. q. (2.3) 

• t I-+ Qt E lR is the Markov process at hand. It is described by an 
operator Q, the Markov generator. We assume long time mixing 
properties characterized by a stationary probability distribution 
M(q) dq, with M being a normalized positive function: 

M(q) > 0, Q(1l) = 0, Q*(1l) = 0, 
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where, here and below, we denote by Q* the adjoint operator de
fined for the inner product in L2 (IR, M(q) dq): 

(F, G) = l F(q)G(q) M(q) dq. 

The parameter 'TM then appears as a relaxation time. 

The mixing requirement on the Markov operators Q* / Q can be em
bodied in the spectral gap assumption 

{ 

There exists u > 0 such that -L Q(F) F M(q) dq ~ (j liF(q) -l F(q')M(q') dq'l 2 
M(q) dq ~ 0. 

(2.4) 
A typical example uses the Fokker-Planck operator 

1 
Q(F) = M(q) oq(MoqF) (2.5) 

with M(q) = e-q
2

/
2 j..ti/i. In this case, the evolution of a particle is 

then governed by the following set of differential equations 

dX = Vdt, 
1 

dV = ;:;=- (U U(Xf f., Qt/TM) - V) dt, 
.lSt 

dQ = oqM(q)dt + J2dWt 

with Wt being a Brownian motion. Another example relies on a jump 
process, associated with the generator 

(2.6) 

For technical purposes, we need further assumptions involving the 
velocity field U and the generator Q. We will assume that U has null 
average 

f U(y,q) M(q)dqdy = 0. 
lvxR 

(2.7) 

Occasionally, this assumption will be strengthened with the following 
pointwise centering condition 

For a. e. y E Y, l U(y,q) M(q)dq = 0. (2.8) 

We shall also need an ergodic property which states 

{

For a. e. q E IR, the solutions of U(y, q) · \1 yj = 0 

are constants with respect toy, 
{2.9) 
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and the non-degeneracy condition 

{
The matrix A(y) = JR U(y, q) ® U(y, q) M(q) dq 

(2.10) 
is positively definite, and its coefficients belong to W 1

•00 (Y). 

The expression of the time correlations of the space average of the 
field we obtained depends on the scales separation, that is on the ordering 
between the different physical parameters involved in the equation. In 
what follows, it will be given by the following formula: 

[1)2 = Li U(y,q)dy®(-Q*)- 1(/v U(y,q)dy) M(q)dqdy, (2.11) 

or by the following two cases when particle transport operates at the 
same time scale as the random process: the first case will appear when 
dealing with the "Fine Particle" regime: 

[1)1= f U(y,q)®(U(y,q)'Vy-Q*)- 1(U)(y,q)M(q)dqdy (2.12) 
lvxR 

and for the "High Inertia" regime, we get 

[1)0 (v) = f U(y,q) ® (v · 'Vy- Q*)-1(U)(y,q) M(q)dqdy. (2.13) 
lvxR 

The definition of the inverse operators involved in these formulae is an 
issue and the arguments, which are of Fredholm alternative type, should 
be discussed carefully. 

Instead of considering the particle distribution function in phase 
space, it is therefore convenient to deal with the density in JR2N x lR of 
the probability distribution of the random variable (X, V, Q). In other 
words, we introduce F(t,x,v,q) ~ 0 such that, at timet~ 0, for any 
measurable sets n c JRN, V c IRN and JC c IR, we have, 

{ F(t,x,v,q) M(q)dqdvdx = Proba({(Xt, vt,Qt) E OxVxJC}). 
lnxvxJC 

Accordingly, we are led to the following evolution PDE on densities 

1 1 
8tF + v · \1 xF + ;:;:-- \1 v · ( (U U(xjl, q)- v)F) = ;:;:-- Q*(F). (2.14) 

~& ~M 

Our goal is: 
- first to identify some relevant asymptotic regimes, depending on 

the values of the stochastic and physical parameters TM, U, land Tst, 
compared to typical time and length scales of observation, 
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- second, to establish the limit equations which correspond to these 
regimes. 

These questions have been addressed with a different viewpoint in [13], 
as well as in [41] with a more physical insight. Our approach is also 
strongly inspired from [24]: there the modeling of turbulence relies on 
finite time decorrelations of the velocity field. It is allowed to perform 
the asymptotic analysis by using the method introduced in [38]. We 
revisit this analysis by replacing this finite time decorrelation by suit
able mixing properties of the Markov generator. In turn, the kinetic 
viewpoint applied to (2.14) is based on the relaxation property of the 
generator, with methods reminiscient to the analysis of hydrodynamic 
limits in gas dynamics. Such an approach also appears in [17] where an 
additional variable is introduced to the usual (position-velocity) phase 
space in order to describe the carrier flow turbulent velocity encoutered 
by a particle along its path. We finally refer to the technical develop
ments in [25] which have to be adapted to the two-phase flow context. 

2.2 Dimension analysis and asymptotic regimes 

We introduce time and length units, denoted by T and L respectively. 
Then, we define dimensionless variables and unknowns as follows: 

t ---4 tT, x ---4 xL, v ---4 ¥v 

F(t,x,v,q) ---4 L3 (~)
3 

F(t,x,v,q). 

We are finally led to 

8tF + v · V xF + .!:.vv · [(7JU(xj.X, q) - v)F] = .!:.Q*(F) 
T € 

(2.15) 

which is governed by the following four dimensionless parameters 

TM Tst 
e=T, r=T 

UT f 
7]=L' A=L. 

We shall investigate the behavior of the solutions with respect to the pa
rameters. Let us start with some a priori estimates. Since J Q(f)M dq = 
0, we can reproduce easily the argument in [24] which proves the follow
ing estimate on the momentum and kinetic energy. 

Proposition 2.1. Let the initial data F0 ~ 0 satisfy 

f F0 Mdqdvdx = Mo < oo, 
JR2NxR 

f lvi 2 Fo M dqdvdx = M2 < oo. 
JR2NxR 

(2.16) 
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Then, for any timet 2:: 0, the solution F(t,x,v,q) of (2.15) venfies 
fR2NxR F(t) M dqdvdx = Mo and there exists a constant C > 0, de
pending only on Mo, M2 and K such that, for any t ;::: 0, 

[ lviF(t) M dqdvdx ~ OrJ, 
JR2NxR 

We can also obtain estimates that use the dissipative properties of the 
Markov generator. However, these estimates are useful only when T does 
not go to 0. 

Proposition 2.2. Let the initial data Fo ;::: 0 satisfy (2.16) and 

[ 1Fol2 Mdqdvdx =Me< oo. 
JR2NxR 

(2.17) 

Then, for any time 0 ~ t ~ T < oo, there exists a constant C(T jr) > 0, 
which blows up as T -+ 0, such that 

[ IF(t)l2 M dqdvdx ~ C(Tjr), 
JR2NxR 

! t [ IF-JF(q*)M(q*)dq*i
2 Mdqdvdxds~C(Tjr). flo JR2NxR 

Proof. By using integration by parts, we have 

d
d f F2Mdqdvdx-! { Q*(F)FMdqdvdx 
t JR2 N xR € JR2 N xR 11 p2 N1 = -- v · Y'v(-

2 
)Mdqdvdx = -

2 
F2Mdqdvdx. 

T R2NxR T R2NxR 

We conclude by using (2.4) and the Gronwall lemma. D 

In the spirit of (24], we shall distinguish "High Inertia Particles 
Regimes" where T is kept fixed and "Fine Particles Regimes" where the 
drag force is the leading term within the equation. The former asymptot
ically lead to diffusion equations where the diffusion operates on velocity 
while the latter lead to asymptotic diffusion operating on position. As 
explained below, the Fine Particles Regimes are much harder to analyze 
due to concentration phenomena (see (29, 30]). Interestingly, looking into 
an "Over-Damped Regime" (r -+ 0) yet in the "High Inertia-Particles 
Regimes" leads to an asymptotic diffusion evolution on position simi
lar to the "Fine Particles Regimes", but based on a different physical 
background mechanism. 
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2.2.1 High-inertia-particles regime 

The high-inertia regimes investigated in [24] correspond to assume 

TJ = 1/..fi, A =c:, c:-o, 'T fixed. (2.18) 

FUrthermore, an adaptation of [25] leads to considering the regime 

TJ = 1/ ...re, A= c:"', c:-o, r fixed, a>l. (2.19) 

We will take a = 3/2 in the formal analysis, but the method seems to 
work just the same for other a> 1. Both regimes (2.18) and (2.19) yield 
Fokker-Planck like equations in phase space. It means that the limiting 
behavior as c: - 0 can be described by the PDE 

8tG + V • "VxG = "Vv · ( ~G + : 2 ID>n "VvG) 

where the unknown G = G(t, x, v) is a distribution function in phase 
space. For the regime (2.18), the effective diffusion matrix is ID>o as 
defined in (2.13), whereas for the regime (2.19), it is llll2 given by (2.11). 

Considering classically the "Over-Damped" regime r- 0 for regime 
(2.19) leads to a diffusion on position: 

8tG = '\l x · {llll2 '\l xG), 

where G = G(t, x) now depends only on time and space. The "Over
Damped" regime could be obtained directly from (2.19) by taking .,fi « 
re « 1. The case of regime (2.18) with such an over damping would also 
lead to a similar diffusion on position but solution of a more intricate 
diffusion homogeneization problem that lies beyond the scope of this 
paper. 

2.2.2 Fine-particles regime 

In these regimes the scaled Stokes settling time r goes to 0 very fast. Let 
us first discuss the asymptotic properties of the model, without making 
precisely the relation between the parameters; we only assume that 0 < 
r « 1 sufficiently fast. We can expect that 

f(t,x,v,q) rv p(t,x,q) 6v='1u(xf>.,q)• (2.20) 

with the macroscopic density p of order 1. It fixes the dependence with 
respect to the variable v. It is therefore convenient to use the moment 
equations associated with (2.14). We set 

p(t,x,q) =I fdv, J(t,x,q) =I vfdv, JP(t,x,q) =I v®vjdv. 

(2.21) 
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Integration of (2.14) with respect to the velocity variable yields 

8tp(t, x) + divxJ = ~Q*(p), 
€ 

8tJ + Divx!P' = ~(77 pU(x/ >., q) - J) + ~ Q*(J). 
T € 

Due to (2.20), we have 

7]pU(x/ >., q) - J) --+ 0, 

as well as 
p = 0(1), J = 0(7]), 
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(2.22) 

(2.23) 

(2.24) 

and all of the above terms remain bounded when r --+ 0. Hence, we can 
use (2.23) to rewrite (2.22) as follows: 

8tp(t,x) +divx(P7JU(xj>.,q))- ~Q*(p) 
€ 

= rdivx [atJ + Divx!P'] - ~divxQ*(J). 

The scaling assumptions 7]T / € «: 1 and 772r «: 1 will guarantee that the 
right hand side goes to 0, owing to (2.24). Hence, we can expect the 
problem is close to the more familiar one 

8tp(t, x) + divx (7JpU(x/ >., q)) - ~Q*(p) = 0 
€ 

which is a standard model describing the passive transport of tracer 
particles in the flow described by u (see (32]). Note that the above 
formal computation could also be carried out using a Hilbert expansion 
on the dual problem (with operators acting on test functions instead of 
densities). 

Let us now specify the scaling. Below, the analysis will be carried 
out by assuming either 

{
7]=1/.,fi, >.=..fi, 
r = gk with k > 3/2. 

or 

{
1] = 1/.,fi, >. = €"', 
r = gk with k > 3/2, 

€--+ 0, 

€--+ 0, 
a> 1/2. 

(2.25) 

(2.26) 

As a consequence of the combination of the hydrodynamic limit to the 
random homogenization effects, we obtain a macroscopic diffusion equa
tion 
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with n = 1 for (2.25) and n = 2 for (2.26) with a = 3/2. Referring 
to [24], these scalings correspond to the "Small Stokes Number-Fine 
Particles Regimes" (the Stokes number is the ratio r/e). However (2.25) 
and (2.26) are not treated in [24] where so fast space oscillations are 
excluded (with 11 = 1/ .,fi, the result in [24] assumes >. is fixed, a case 
which can be treated easily by the techniques exposed here). 

2.3 Derivation of the effective equations in the fine 
particles regimes 

2.3.1 Analysis of the regime (2.25) 

Let us assume that (2.25) holds, so that we address the question of the 
behavior for small e's of 

8tpE(t,x) + ~divx(PEU(xjye,q))- ~Q*(pE) = 0. (2.27) 
ye e 

We insert the ansatz 

PE(t,x,q) = po(t,x,xfye,q)+vePI(t, x, xfve, q)+ep2(t, x, xfye, q)+ ... 

At leading order we obtain 

U(y,q) · 'VyPo- Q*(po) = 0. 

The 0(1/ .,fi) equation reads 

U(y,q) · 'VyPl- Q*(pl) = -U(y,q) · Vxpo, 

and, finally, 0(1) terms yield 

U(y,q) · 'VyP2- Q*(p2) = -8tPo- U(y,q) · V:cPl· 

We are thus led to investigating the cell equation 

U(y,q) · Vyp- Q*(p) = h 

completed with periodic boundary conditions. Clearly, the equation can 
make sense only when the right hand side fulfills the compatibility con
dition 

r h M(q)dqdy = o. 
lvxR 

This is a necessary condition; it can be shown to be also sufficient as 
summarized in the following claim (We analyze the relaxation operator 
(2.6) only, but it is possible to extend the result to the operator (2.5)). 
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Lemma 2.3. Let Q* be a bounded operator on L2 (1R,M dq), verifying 
(2.4). Let U satUJfy (2.1)-(2.3) and (2.9)-(2.10). Then for any h E 
L2 (Y x IR, M dqdy) verifying I h M(q) dqdy = 0 there exists a unique 
solution p E L 2 (Y x IR, M dq dy) of U(y, q) · "Vyp- Q*(p) = h such that 
IvxR p M(q) dq dy = 0. 

Proof Let us start by studying the problem when h = 0. Integrating 
with respect to both y and q, using the periodic boundary condition and 
(2.4), we get 

and we infer first that the solution p(y, q) = p(y) E Ker(Q*) does not 
depend on q. Then, the equation simply becomes U(y, q) · "Vyp = 0. 
The ergodic condition (2.9) implies that p does not depend on the fast 
variable y. Therefore imposing the solution has a null average force 
p= 0. 

Now we suppose h =1- 0 and we justify the existence of solutions 
by a regularization argument. Let us consider the sequence (P-\) -'>O of 
solutions to 

>..p-' + U · V yP-' - Q* (p-') = h. (2.28) 

If P-\ is bounded in L2 (Y x IR) letting >.. -+ 0 for a suitable (weakly) 
convergent subsequence yields the desired existence statement. Hence, 
we assume that IIP-\IIL2(YxR) = 1 and the P-\'s verifies (2.28) with a 
right hand side h" that tends to 0. We shall show that we are led to a 
contradiction. Indeed, let us denote (p-\} = IR p"M dq. By using (2.4), 
we get 

[ IP-\(y,q)- (P-\}(y)J
2 

M(q)dqdy- 0. 
JvxR -\-oO 

Next, since (P-\} E Ker(Q*), we can write 

We denote by S-' (y, q) the right hand side and we set 

A(y) = (U(y,q) ® U(y,q)}. 

By (2.10) this matrix is invertible and A(y)-1 belongs to W 1•00 (Y). We 
deduce that 

"Vy(P-'} = A(y)-1 (US"(y,q)} 

belongs to a compact set of H-1 (Y). Accordingly, since I h"M dqdy = 
0 implies I (p-\} dy = 0, we deduce by a standard Fourier argument 
that (p-\} belongs to a compact set in L2(Y). Finally, we conclude that 
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P>. = (P>.- (P>.}) + (P>.} is (strongly) compact in £ 2(¥ x lll,Mdqdy). 
Extracting a subsequence if necessary, let us denote p the limit of the 
P>. 's. It verifies 

u. 'Vyp- Q*(p) = 0, j pMdqdy = 0, 

thus p = 0, a contradiction. D 

Remark 2.4. In fact, the above cell problem has a probabilistic inter
pretation that will lead to similar existence/uniqueness result but which 
can be extended to the space of continuous and bounded functions. In
troducing 

t 1-+ Q;, 

the Markov process with generator Q*, and the process solution of 

yt* = -U(yt*,Q;), 

the solution of the cell problem U(y, q) · 'V vP- Q*(p) = h, we can write 
down: 

r+oo 
p(q, y) = lo -IE (h(yt*, Q;)I(Yo* = y, Qo = q)) dt, 

which will be well defined as soon as the process t ~--+ (yt*, Q;) is mixing 
and h is centered with respect to the invariant measure M(q) dqdy. If 
Q* is a Fokker-Planck operator, a sufficient condition to get mixing is the 
hypoellipticity of the operator U(y, q) · 'V yP- Q* (the usual Hormander 
sense) (see {35}). 

This statement already proves that Po(t,x,y,q) = po(t,x) does not 
depend on neither q nor y. Let us introduce x = (Xl, ... , XN) solution 
of 

U(y, q) · 'V vX- Q* (X) = U(y, q) 

which makes sense thanks to (2.7). Then we get 

Pl(t,x,y,q) = -x(y,q) · 'Vxpo(t,x). 

Therefore, the compatibility condition for the 0(1) equation leads to 

OtPO- 'Vx. (ixR U(y,q) ® x(y,q) M(q)dqdy 'VxPo) = 0. 
The diffusion matrix (2.12) writes down: 

Jl))l = { U(y, q) ® x(y, q) M(q) dqdy. lYxR 
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Note it is indeed non negative since we have, for any~ E JRN \ {0}, 

llll1v·v= f (U·'V'y-Q*)(x·~)x·~dydq 
lvxR 

=- f Q*(x·~)x·c;M(q)dqdy 
lvxR 

~a f lx · c;l 2 M(q) dqdy > o 
lvxR 
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by (2.3) and (2.4). Moreover, it cannot vanish due to (2.10). This formal 
development can be achieved rigorously by adapting the arguments in 
(25) and we conclude with the following statement. 

Theorem 2.5. Let U verify (2.1)-(2.7) and (2.9)-(2.10). We assume 
that (2.4) is fulfilled. We suppose that the initial condition verifies 

sup { IPfnit(x, q)l 2 M(q) dqdx :5 C < oo. (2.29) 
e>O JRNxR 

Then, up to a subsequence, pe solutions of (2.27) associated with Pfnit 
converges weakly in L2 ((0,T) x JRN x IR;M(q)dqdx) and in C0 ([0,T], 
L2(JRN x IR,M dqdx)- weak) to p(t, x), where pis the solution of 

{ 

8tp = 'V'v · {l!lll 'V'vp), 

p(t = 0, x) =weak- lim { Pinit(x, q)M(q) dq, (2·30) 
e-+0 }R 

with llll1 defined by (2.12). 

The statement only deals with Eq. (2.27), which is already an ap
proximation of the moment system coming form (2.14). Taking account 
of the additional (small) terms in (2.27) leads to technical difficulties 
due to the functional framework: we have only the L1 bounds at hand 
(see Propositions 2.1 and 2.2) and the ugly terms make derivatives with 
respect to space and time appearing. 

2.3.2 Analysis of the regime (2.26) 

Let us assume that (2.26) holds, so that we address the question of the 
behavior for small c's of 

We insert the ansatz 

Pe(t,x,q) = Po(t,x,xfc312 ,q) +c312pl(t,x,xfc312 ,q) 
3 (t I 3/2 ) + +c P2 , x, x c , q ... 
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At leading order we obtain 

U(y,q) · 'ilyPo = 0. 

The ergodic condition (2.9) implies that po(t, x, y, q) = Po(t, x, q) does 
not depend on the fast variable. Next, we get 

U(y,q) · 'ilvPl = Q*(po). 

Integrating withy and bearing in mind that Po does not depend on y, 
we obtain Po E Ker(Q*), so that Po does not depend on q anymore. 
Therefore, the equation for the corrector becomes U · V yPl = 0 implying 
that Pl(t,x,y,q) = Pl(t,x,q). Then, we arrive at 

U(y,q) · 'ilyP2 = Q*(pl)- U(y,q) · 'ilxPo(t,x). 

Integration over 'if yields 

Q*(pl) = 1 U(y, q) dy · V xPo(t, x). 

When U verifies the pointwise centering condition (2.8) we can appeal 
to the Fredholm alternative for Q* and find the auxilliary function x(q) 
such that 

Q*(x) =- [ U(y, ·) dy. 

We thus write Pl(t,x,q) = -x(q) · 'ilxPo(t,x). We plug this formula into 
the 0(1) equation, which after integration leads to 

with 

11))2 = f U(y,q) ® x(q)M(q) dqdy. 
lvxR 

(2.32) 

Referring to [25] again, we obtain the following statement (note that the 
restriction (2.8) can be relaxed by using a fully probabilistic proof). 

Theorem 2.6. Let U verify (2.1)-(2.3) and (2.8)-(2.9). We assume 
that (2.4) is fulfilled. We suppose that the initial condition venjies 
(2.29). Then, up to a subsequence, pe solutions of (2.31) associated 
with Pfnit converge weakly in L2((0,T) x JRN x lR;M(q)dqdx) and in 
CO([O,T],L2 (1RN x lR,Mdqdx)- weak) to p(t,x), where pis the solu
tion of (2.32) with coefficient (2.11). 
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2.4 Derivation of the effective equations in the high-
inertia particles regimes 

By the same token, we can discuss the effective equations arising with the 
regimes (2.18) and (2.19). In these situations where we do not have con
centration effect, a complete proof can be designed by adapting directly 
the argument in [25]. 

Assuming (2.18), we are concerned with the behavior as e ~ 0 of 

8tF~ + v · VxF~ + Vv · [ (~U(x/e,q)- v )F~] = ~Q*(F~). (2.33) 

A double-scale ansatz leads to the auxilliary equation 

v · Vyx*- Q*x* = U(y,q) 

which makes sense under the centering assumption (2.7) and we define 
the (non-negative) matrix by (2.11), namely 

Do(v) = f U(y,q)®x*(v,y,q)dqdy. 
JRxY 

Assuming (2.19), we are concerned with the behavior as e ~ 0 of 

8tF~ +v · VxF~ + Vv · [(~U(x/e312 ,q)- v)F~] = ~Q*(F~). (2.34) 

Then, we are led to the auxilliary equation 

-Q*x*= [u(y,·)dy 

which makes sense under the centering assumption (2.8). We recall 
(2.11), in this context: 

D2 = f f U(y,q)dy®x*(q)dq. 
JRx }y 

The results are summarized as follows: 

Theorem 2.7. Let U verify (2.1)-(2.7). For the scaling (2.19), we as
sume the strengthened condition (2.8). We assume that (2.4) is fulfilled. 
We suppose that the initial condition venfies 

sup [ IF{nit(x,q)I2M(q)dqdvdx ~ C < oo. 
~>0 JRN xRN xR 

Then, up to a subsequence, F~ solutions of (2.33) (resp. (2.34)} associ
ated with F1~it converge weakly in L2 ((0, T) x RN x RN x R; M(q) dqdx) 
and in CO([O, T], L2(JRN xJRN xlR.,M dqdx)-weak) to G(t, x, v), solution 
of 

8t.G +v · VxG = Vv · (vG +DnVvG) 

with Dn given by (2.13) (n = 0} (resp. by (2.11) (n = 2}}. 
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3 Numerical schemes for coupled 
fluid/ particles models 

This section is devoted to models which take account of the back-reaction 
of the particles on the dense phase. Therefore, the velocity field u in
volved in the drag force is defined by an evolution equation depending on 
the particle density. More precisely, the dense phase is described by the 
mass density n(t, x) and the velocity field u(t, x). These quantities obey 
the Euler or Navier-Stokes system. We take the following into account: 

• the drag force exerted by each phase on the other; as explained in 
the Introduction it depends on the relative velocity v - u( t, x ); 

• the Brownian motion of the particles which leads to diffusion with 
respect to the velocity variable; 

• the effect of external forces embodied into a potential field ~(x). 

Accordingly, the fluid-particles flow is governed by the PDEs 

9p, ( kOo ) atf+v·'V~J-a'Vx~·'Vvf=-2 2 'Vv· (v-u)J+- 'Vvf' (3.1) 
a pp mp 

Otn + 'Vx · (nu) = 0, (3.2) 

Pr( Ot(nu)+Divx(nu ® u)+n'V x~) + 'V xP(n) =61rp,a L
3 
(v-u)f dv. (3.3) 

In (3.3), Pr is a typical mass density of the fluid, k stands for the Boltz
mann constant, and Oo > 0 denotes the temperature of the fluid, assumed 
to be constant; p(n) is a general pressure law, for instance, p(n) = C-y n'Y, 
with 'Y 2: 1, C-y > 0. The parameter a E JR. is a dimensionless parameter 
which indicates that the external force can have a different strength and 
direction on the two phases. Throughout this paper we have in mind 
the case of gravity forces where 

~(t,x) = gx3, 
u 

a= (1 - prfpr) .j3kOo/47ra3pP' 

with U being a typical value of the fluid velocity. Hence, a accounts 
for the buoyancy and gravity forces. The equation is completed by ini
tial and boundary conditions. We suppose the standard homogeneous 
condition 

u · v(x) = 0 

for the dense phase and for the particles the specular reflection boundary 
condition 

f(t,x,v) = f(t,x,v- (v · v(x))v(x)) 
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for any (x,v) E an X JRN such that v · v(x) < 0, where v(x) stands for 
the outer normal vector at the point X E an. Obviously the boundary 
condition guarantees mass conservation. 

Establishing the well-posedness of such a nonlinear system is a tough 
piece of analysis; we refer to [3, 6, 27, 26, 36] for such existence results 
in different functional frameworks. Next, relevant asymptotic regimes 
can be identified and investigated, depending on the mass density ratio, 
the Stokes settling time, the typical velocity of the particles compared 
to those of the fluid · · · We refer to [10, 21, 22, 37] for such discussion 
and analysis. 

Here, we are concerned with the asymptotic regime c -+ 0 in the 
following rescaled version of (3.1)-(3.3) 

at(neue) + Divx(neUe ® Ue) + \1 xP(ne) + TJ£ ne \1 x~ = Je- PeUe, 
(3.4) 

where we use the notation 

Pe(t,x)= [ fe(t,x,v)dv, 
JR3 

Je(t,x) = ~ l
3 

v fe(t,x,v)dv. 

It is referred to as the "Bubbling regime" in [10] and it relies on the 
following scaling assumptions 

2p a2 

Stokes velocity= :J.t g\1- prJ PPI 

« Typical velocity of the fluid ~ Thermal velocity = , 
p 

while the ratio pp/ Pr is of order f. Finally, we suppose that TJE -+ TJ* E 
(0, oo) (precisely, for gravity forces it reads TJ£ = (1-c)-1 ). The analysis 
of the asymptotic behavior e -+ 0 relies on the dissipative properties of 
the system (3.4), which are summarized in the following claim. 

Proposition 3.1 (Entropy Dissipation Property). We set 

F (t) = [ [ (fln(f) + v
2 

f- ~f) dvdx, 
P }R3JR3 2 

Fr(t) = l
3 

( n ~~
2 

+ II(n) + TJ£~n) dx, 
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where II: JR.+ --.JR.+ is defined by sii"(s) = p'(s). Then, we have 

~(:F +:Fr)+~ { { j(v-veu)v'f+2Vvv'fj
2
dvdx$0. (3.5) 

dt P € }R3jR3 

Accordingly, we guess that, as f goes to 0, 

fe ~ p(t,x) M(v), M(v) = (27r)-Nf2e-v
2
12 , 

and the asymptotic dynamics is embodied into the behavior of the macro
scopic density p(t, x). The formal expansion 

fe = f(O} + Jej(l} + ef(2) + . . . (3.6) 

is allowed to go into a step further. Identifying terms with the same 
power of f, we find the following equation for the corrector 

Lj(l} = v · Vxf(o) + (u + Vxq,)Vvf(o) = v M(v) (VxP- (u + Vxq,)p), 

with L being the standard Fokker-Planck operator 

Lj = Vv · (vj + Vvf). 

We obtain 

We use this information in the mass conservation relation 

8t I fe dv + V x · I :efe dv = 0 

which becomes 

8t I j(O} dv + Vx ·I vj(l} dv = 0 

= 8tp+ Vx · (p(u+ Vxq,)- VxP) = 0. 

Similarly, in the fiuid equation, we get 

Je- PeUe ~ -(V xP- pV xq,). 

Hence, in the limit system, (3.7) is completed by 

(3.7) 

{ 

8tn + divx(nu) = 0, 
(3.8) 

8t(nu) + Divx(nu ® u) + V x(p(n) + p) + (TJ.n- p)V xq, = 0. 

Imposing the reflection law leads to the following Robin condition 

on an, (3.9) 

which completes (3.7) and also preserves mass for the limit system. We 
wish to design a numerical scheme specifically dedicated to treat the 
asymptotic regime. 



Fluid-Particles Flows 119 

3.1 Asymptotic preserving numerical methods 

The previous discussion suggests that the solution expands into 

fe(t,x,v) = Pe(t,x)M(v) + ..fi"re(t,x,v) (3.10) 

where Proposition 3.1 might give an estimate on the remainder re. Then 
we rewrite (3.4) as follows: 

with 
Se(t,x,v) = -v · VxPe- v · (ue(t,x) + \lx<P)Pe· 

We also have 

1 1 
8tre =-Lre + -MSe 

e e 

- )e [v · Vxre + (ue + Vx<P)\lvre- M\lx · (l
3 

v*redv*)]. 

(3.12) 

To derive the numerical scheme, we use a splitting algorithm to compute 
the evolution of both the density fe and its fluctuations re by using (3.11) 
and (3.12). This approach is inspired by [23]. More precisely, the scheme 
works as follows: Giving nk, uk, Jk, rk, approximation of n, u, j, r at time 
kf:lt, 

• Step 0. Solve the Euler equations for the fluid density n and ve
locity u. The source term is treated explicitly by plugging 

f vrk dv - uk f fk dv. 
}Ra }Ra 

We use a numerical method which preserves with accuracy the 
shock structure of the hyperbolic system, applying directly the 
scheme designed in [15, 16, 33]. It defines the updated density 
nk+1 and velocity uk+l. 

• Step 1. Solve the stiff equations 

where 

1 
8tf = -Lj, 

e 
1 1 

8tr = -Lr + -MS, 
e e 

S = -v · VxP + V • (uk+l + \lx<P)p. 

Note that we get rid of the 0(1/.fi) terms in (3.11) and (3.12). 
The crucial point is that p = f f dv is not modified during this 
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step: pk+l/2 = J fk+l/2 dv = pk so that the source term in the 
second equation can be treated as constant in time. Accordingly, 
the updated quantities read 

{ 
fk+l/2 = eD.tL/e fk, 
rk+l/2 = eD.tLferk + {1 _ eD.tLfe)M Sk. (3.13) 

• Step 2. Solve the transport-like part 

8tf + v · 'lxr + (uk+l + 'lxq?) · 'lvr = 0, 

which defines fk+l and pk+l = J fk+ 1 dv. Particularly, the con
vection term is of characteristic speed v other than v / .je). 

Let us comment further on the proposed scheme. 

1. CFL and Sub-cycling. Since the limit equation for the particles 
density is a diffusion equation, it involves a different typical time 
scale compared with the Euler equations. Accordingly, the stability 
constraints in Step 0 and Steps 1-2 are different. Therefore, given 
the space mesh size 6-x, we define a "parabolic" and a "hyperbolic" 
time steps, 6-tp = 0(6.x2 ) and 6-th= 0(6-x)) respectively (with 
6-tp <6-th)· Then, we perform several sub-cycles (Step 1-Step 2) 
above at time intervals (k6.tp, (k + 1)6-tp) and only Step 0 at the 
time interval (k6.th, (k + 1)6-th)· 

2. Approximation of the Fokker-Planck semi-group. Formulae {3.13) 
involve the operator e8 L, with L being the Fokker-Planck operator, 
but the expression is not explicit enough to be incorporated in a 
numerical subroutine, and a further approximation is needed. The 
method we proposed is based on the expression of the semi-group 
by means of convolution with the fundamental solution associated 
with the Fokker-Planck operator (see [12]). Using the fact that we 
are concerned with the regime 0 < € « 1, we derive the following 
expression used in Step 1 

{ 

fk+ 112 (v) = M(v) (pk + e-D.tfev h
3 

v*fk dv*) , 

rk+112 (v) =e-D.tfe M(v) ( v h
3 
v*rk dv* )+(1-e-D.tfe) M(v)Sk. 

{3.14) 

3. Fundamental properties of the scheme. The numerical scheme can 
be shown to fulfill many interesting requirements. First of all, it 
is asymptotic preserving in the sense that letting € run to 0, we 
obtain a stable and consistent scheme for the limit systems (3. 7)
{3.8). Second of all, the scheme is well balanced which means that 



Fluid-Particles Flows 121 

it preserves the equilibrium state. Finally, up to some reasonable 
care in the space/velocity discretization as well as in the definition 
of the numerical boundary conditions, the scheme conserves mass. 
We can check on numerics that the entropy dissipation property is 
also preserved. 

We refer to [11] for further details and comments. We only show be
low a sample of the simulations, restricting ourselves to a one-dimensional 
situation (which is a toy-model, for instance, for describing the disper
sion of pollutants emitted from ground sources). Initially, the dense 
phase is at rest u(O, x) = 0 with constant density n(O, x) = 1 while the 
distribution of particles is the following centered Maxwellian: 

e-v2f2 

f(O,x,v) = 0.5 D.[abJ(x) rrc., 
' y27r 

with 0 ~ a ~ b ~ 4. The influence of e can be discussed by looking 
at Figs. 3.1-3.4 and Figs. 3.5-3.8, where in both cases the adiabatic 
constant is 'Y = 1.4. The smoothing effect of the limit e --+ 0 appears 
clearly and both the fluid unknowns (n, u) and the macroscopic density 
of particles are smoother for small values of e. 

In Figs. 3.9-3.12, we show the solution at time T = 20 for different 
values of the adiabatic constant. The simulations illustrate the stability 
of sedimentation profiles, as conjectured from [10]. These profiles depend 
on the pressure law, with a change of convexity for the critical exponent 
'Y = 2. 

The discussion leaves several important questions open. Particularly, 
assuming a constant temperature in the systems (3.1)-(3.3) might be 
questionable. An extension of the model that includes an energy equa
tion and energy exchanges has been proposed and studied in [8]. Another 
important question relies on the approximation of the Fokker-Planck 
semi-group, for which different approaches deserve to be discussed. 
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Abstract 

The well-posedness and stability of multi-dimensional quan
tum hydrodynamic equations for charge transport in ultra-small 
electronic devices like semiconductors where quantum effects (like 
particle tunnelling through potential barriers and built-up in quan
tum wells which can not be simulated by classical hydrodynamic 
models) take place are considered in JR3

. The local existence and 
uniqueness of classical solutions subject to general regular initial 
data are proven in terms of an extended system with which the 
original problem under investigation is consistent as a special case. 
Particularly, the nonlinear dispersive term appears mainly in the 
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form of a fourth-order wave type operator. Then, we establish the 
existence, uniqueness and exponential stability of steady-state un
der a stability condition viewed as a quantized version of classical 
subsonic condition. 

1 Introduction and main results 

In the modelling of semiconductor devices in nano-size, for instance, 
HEMT's, MOSFET's and RTD's where quantum effects (like particle 
tunnelling through potential barriers and built-up in quantum wells [10, 
14, 32] which can not be simulated by classical hydrodynamic models) 
take place, the quantum hydrodynamical equations are important and 
dominative in the description of the motion of electron or hole trans
port in the self-consistent electric field. The basic observation regarding 
quantum hydrodynamics lies on that the energy density consists of ad
ditional new quantum correction term of the order O(li), the planck 
constant, introduced first by Wigner [49] in 1932, and that the stress 
tensor contains also additional quantum correction part [2, 3] related to 
the quantum Bohm potential [5] 

Q(p) = -~ t1..ft, 
2m ..;p (1.1) 

with observable p > 0 the density, m the charge mass, and li the Planck 
constant. It is no wonder, however, since the original idea initialized 
by Madelung [39] in 1927 to derive quantum fluid-type equations has 
already described such possible relation. To have an intuition let us just 
consider the motion of an electron in a potential field described by the 
linear Schrodinger equation 

with t1 the Laplacian operator on JR3 , q the electron charge, and U(x), 
x E !R3 the given potential field. To understand the dynamics of phys
ical observables like density p, momentum J and so on, we apply the 
Madelung's transformation ¢ = ..;peiS/fi. of the wave function to the 
above linear Schrodinger equation to obtain the quantum fluid equations 
for potential flow away from vacuum 

1 
OtP + m "'V· (p"'VS) = 0, (1.2) 

1 2 li2 t1y'P 
8tS + -I"'VSI - qU(x)- --- = o. 

2m 2m ..;p (1.3) 
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Based on such an idea, one is able to derive quantum fluid type equations 
from the pure-state (nonlinear) Schrodinger equation [19, 26, 18]. 

A practicable and rigorous approach to derive quantum hydrody
namic equations for semiconductor device at nano-size is based on the 
moment method applied to Wigner-Boltzmann (or quantum Liouville) 
equation. The kinetic structure behind the Schrodinger Hamiltonian 
was justified through Wigner transformation [49]. In fact, the action of 
Wigner transformation on the wave function of the Schrodinger equa
tion gives rise to a quantum Liouville equation, the Wigner-Boltzmann 
equation [42, 44]. Start with the Wigner-Boltzmann equation 

q 
Wt +CY'xW + -IP'[V]W = [Wt]c 

m 
(1.4) 

where w = W(x, e, t), (x, e, t) E IR3 X IR3 X IR+, and IP' denotes the 
pseudo-differential operator defined by 

IP'[V]W = 

__j!!!:._ jj V(x + ..J!r.TJ)- V(x- ..J!r.TJ) ,11 <~-~'>w( t:' t)d .-~~:' 
(27r)N li e x,., ' 17""> • 

The electrostatic potential V = V(x, t) is self-consistent through Poisson 
equation 

Ao L\ V = q (j W de - C) 

with Ao > 0 the characteristic of permitivity and C = C(x) > 0 the given 
doping profile, and [Wt]c refers to the quantum collision operator [44]. 
Applying moment method to the above Wigner-Boltzmann equation 
(1.4) near the "momentum-shifted quantum Maxwellian" [49] together 
with appropriate closure assumption [14, 20] and modified Baccarani
Wordeman type relaxation time approximation of electron scattering ef
fects [1, 14, 43], we can obtain the quantum hydrodynamic equations 
[14, 26]. For more derivation from and references to the modelling 
of quantum hydrodynamical or quantum moment models, one refers 
to [44, 19, 15, 8, 9] and references therein. 

The advantage of the macroscopic quantum hydrodynamical models 
is such that they are able to describe directly the dynamic evolution of 
physical observables and is convenient to simulate quantum phenomena. 
Moreover, in the semiclassical (or the zero dispersion) limit the macro
scopic quantum quantities, like density, momentum, and temperature, 
are shown to converge in one sense to the of Newtonian fluid-dynamical 
quantities [18]. Similar macroscopic quantum models are also used in 
other physical areas such as superfluid [38] and superconductivity [11]. 

In the present paper, we consider the initial value problem (IVP) of 
the quantum hydrodynamic model in IR3 (QHD) under re-scaling in IR3 
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as follows: 

OtP + V · (pu) = 0, (1.5) 

8t(pu) + V·(pu ® u)+ VP = pE + ~e2pV( t::.:/:)- p;, (1.6) 

>..2"\l·E=p-C(x), VxE=O, E(x)--+0, lxl--++oo, (1.7) 

(p,u)(x,O) = (p1,u1)(x), (p1,ul)(x)--+ (p,O), lxl--+ +oo, (1.8) 

where p > 0 is a constant, £ > 0 the scaled Planck constant, r > 0 the 
scaled momentum relaxation time, >.. > 0 the scaled Debye length, and 
P = P(p) the pressure-density function. The electric field E = - VV is 
a gradient vector field of the electrostatic potential V. Note here that 

the nonlinear dispersive term Q2 = !e2 p"V ( t:.j/) requires the strict 
positivity of density for classical solution. 

Recently, important progress has been made on the analysis about 
the QHD (1.5)-(1.7). The existence and uniqueness of (classical) steady
state solutions to the QHD (1.5)-(1.7) for current density J = 0 (thermal 
equilibrium) were studied in one and high dimension bounded domain 
with density and electrostatic potential imposed at boundary [4, 17, 48], 
the existence of unique stationary solutions of QHD (1.5)-(1. 7) for Jo > 0 
(non-thermal equilibrium) was proven in [13, 21, 25, 50] for monotonous 
increasing pressure functions, and in [27] for general pressure functions 
P(p), and the asymptotic properties of stationary or dynamical solutions 
with respect to small physical parameter like Planck constant, relaxation 
time, and Debye length were investigated [12, 21, 34, 35]. For dynamical 
system, an analysis of special travelling wave solution was also made (16], 
the local and global in-time existence of classical solution was obtained in 
one-dimensional bounded domain [28, 22, 23] subject to different bound
ary conditions and in real line [24], in multi-dimensional bounded do
main in terms of SchroOdinger-Poisson type description via Schrodinger 
semigroup for potential flow [31] and multi-dimensional torus 1m for 
ir-rotational (potential) flow [36]. However, the well-posedness theory 
of multi-dimensional QHD for general rotational initial data is still not 
known yet. The readers can refer to one review paper [29] and above
mentioned papers for more references. 

The aim of the present paper is to investigate the well-posedness 
theory of classical solutions of the QHD (1.5)-(1.7) in JR3 for general 
regular large ( rotationaQ initial data, and the existence, uniqueness and 
stability of steady-state. The mathematical analysis on these topics is 
absolutely nontrivial due to the strong coupling of nonlinear dispersion 
and Euler-Poisson. The quantum systems (1.5)-(1.7) can be (for smooth 
solutions) re-written mathematically as the same form as the classical 
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hydrodynamic system for hot electron transport 

8tP + \J. (pu) = 0, 

8t(pu) + "V·(pu® u+ 'i') = pE- pu, 
T 

>..2 \1· E = p- C, 
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(1.9) 

(1.10) 

(1.11) 

with stress tensor T = P(p)Inxn since for quantum hydrodynamic sys
tems (1.5)-(1.7) the quantized stress tensor P of classical one T satisfies 

"V· P = \JP- ~c-2p\l( t:I.f/). P = P(p)Inxn- ~c-2p\l ® Vlogp. 

However, the standard Kato-Lax-Friedrich's theory of quasilinear sym
metric hyperbolic system [33, 40], which works for hydrodynamic systems 
(1.9)-(1.11) about well-posedness theory in Sobolev space for arbitrar
ily large initial data, does not apply here for quantum hydrodynamic 
systems (1.5)-(1.7) due to the influence of nonlinear dispersion opera
tor which as we know is not symmetrizable for general charge fluid and 
requires positivity and enough regularity of charge density for classical 
solutions. 

It is convenient to make use of the variable transformation p = 1jJ2 

in (1.5)-(1.8). Then, we derive the corresponding IVP for ( 1/J, u, E): 

21/J · 8t'I/J + \J. (1/J2u) = 0, (1.12) 

u €2 (l:I.'I/J) Btu+ (u·"V)u + Vh(1/J2
) +-;=- = E + 2" --:;r , 

\J. E = 1/J2 
- C, \lxE = 0, E(x) --+ 0, lxl --+ oo, 

1/J(x,O) = 1/J1(x) := JPt{X), u(x,O) = u1(x), 

(1.13) 

(1.14) 

(1.15) 

with ph'(p) = P'(p), and (1/Jb u1)(x) --+ ( JP, 0) as lxl --+ oo. Note here 
that the two problems (1.5)-(1.8) and (1.12)-(1.15) are equivalent for 
classical solutions. For convenience in the rest part of the paper we just 
consider the initial value problem (1.12)-(1.15) on IR3 for general (quan
tum) flow, and show how to prove both the local and global existence 
and investigate the long-time behavior of classical solutions. 

First of all, based on sharp observations about the quantum hydro
dynamic system (1.5)-(1.7) to be explained later, we are able to prove 
the local existence and uniqueness theorem: 

Theorem 1.1. Suppose that P(p) E C5(0, +oo). Assume ('1/11- JP, ul) 
E H 6 (JR3 ) x 1i5 (IR3 ) satisfying 1/J. =: infxeR31/Jl(x) > 0. Then, there is 
a short timeT •• > 0 such that the unique solution (1/J, u, E) with 1/J > 0 
of the IVP (1.12)-(1.15) exists fortE [0, T •• ] and satisfies 

'1/J- JP E Ci([O, T •• ]; H 6- 2i(JR3)) n C3 ([0, T •• ]; L2 (JR3)), i = 0, 1, 2; 
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u E Ci([O, T**]; rt5- 2i(IR3 ), i = 0, 1, 2; E E C1 ([0, T**]; 1i3 (IR3
)). 

Hereafter 1ik(JR3 ) = {! E L6 (IR3 ), Df E Hk-1 (IR3 )}, k 2: 1. 

Remark 1.2. Though the above local existence result is proven when 
the "boundary" value of density (or doping profile) at spatial infinity is 
a positive constant p, we claim that it is applicable to more general case 
with some modification on the proof. 

The proof of Theorem 1.1 for the quantum hydrodynamics {1.12)
(1.14) is absolutely nontrivial due to a strong coupling between hyper
bolicity, ellipticity, and nonlinear dispersion in particular. The nonlinear 
dispersion term is a nonlinear third-order differential operator with re
spect to space variables. It requires strict positivity and higher order reg
ularity of density for time-dependent classical solutions. However, there 
is no maximum principle applicable to obtaining the a-priori bounds on 
density, and it is not obvious how to keep higher order regularity for 
density directly from Eqs. {1.12)-(1.14). We have to establish the short 
time existence of classical solutions through another way. Fortunately, 
the information behind the conservation law of mass and the balance law 
of momentum helps us finally to overcome the above difficulties. In fact, 
the conservation law of mass describes in one sense the transport prop
erty of charge particles and implies at least for short time the positivity 
of density. Combining the balance law of momentum with conservation 
law of mass, one can observe dispersive effect induced from the nonlinear 
dispersion operator - a fourth-order wave operator acting on density 
as main part, this can help to keep the same regularity as the initial 
data of density as expected [28, 36]. These sharp observations are, how
ever, far from the real program to prove Theorem 1.1. In fact, inspired 
by the above ideas, we still need to introduce new unknown variables 
and construct an extended system, derived based on Eqs. {1.12)-(1.14), 
for (v, z, <p, '1/J, u, E) where the dispersive term appears in the form of 
a fourth-order wave type operator, and prove the short time existence 
of classical solutions (v, z, <p, '1/J, u, E) of the initial value problems for 
this extended system. The key point is that the local in-time classical 
solutions (v, z, <p, '1/J, u, E) of the extended system shall be equivalent to 
these of IVP (1.12)-(1.15) for classical solution so long as u = v + z 
and '1/J = <p initially, which is different from [28, 36] where the solution 
of original system is located on the invariant sub-manifolds of extended 
system in phase space and makes the construction much more difficult. 
The expected positivity and higher order regularity of density '1/J follow 
(see Section 3 for details). 

With the help of local existence theory, we can investigate the ex
istence, uniqueness and stability of steady-state (i{J, ii, E) for the quan
tum hydrodynamic equations (1.5)-(1.8). To this end, we first need to 
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establish the well-posedness of stationary state (if;, u, E) of Eqs. (1.12)
(1.14) in IR3 . As a starting point we consider a special stationary state 
(if;, u, E)= (;f, 0, E) with ;fa small perturbation of the state JP. 

Theorem 1.3. Suppose that P(p) E C 4 (0, +oo). Let p be a positive 
constant and 

(1.16) 

Assume 
e:.jp + P'(p) > 0. (1.17) 

Then there extsts a constant m2.. > O_such that for anu 6o ~ mo, there ex
ists a unique steady solution (1/J, 0, E), with infxeR3'1/J(x) > 0, of (1.12)
(1.14) satisfying 

(1.18) 

where Co= Co(p, e:) > 0 is a constant independent of 6o. 

The proof can be completed in terms of the a-priori estimates and 
the fixed point theorem, as used in [24], we omit the details. 

Remark 1.4. (1) The condition (1.17) can be viewed as a quantum cor
rection of the subsonic condition for classical fluids [6, 7] in the sense that 
it is (formally) equivalent to the subsonic condition as re-scaled Planck 
constant e goes to zero. When e > 0 and P'(p) > 0, the "sound" speed 
c(p) = Je:JP + P'(p) is bigger than the sound speed c(p) = JP'(p) 
for classical fluids. Moreover, for a general steady-state ( ;f, u, E) of 
BVP (1.12)-(1.14) to exist and be stable in multi-dimension, the quan
tum subsonic condition is 

(1.19) 

Here we should mention that the condition {1.19) generalizes the one 
proposed before by authors in [36] which is related to the spatial struc
ture of the semiconductor device under consideration, while the quantum 
subsonic condition (1.19) is generic and independent of the geometric 
structure of the domain. 

(2) It is known [37] that classical solutions of hydrodynamical model 
for semiconductors (i.e., (1.5)-(1.7) withe= 0) may only exist in sub
sonic regime [6, 7]. When dispersive regularity is involved in (1.17), 
however, the classical (strong) solutions of (1.12)-(1.15) exist even in the 
transonic or supersonic regime so long as the stability (1.17) holds. Note 
that the condition (1.19) also admits the existence of strong solution for 
the case infxeR3(e;f + P'(;f2 ) -liil2

) > 0 > SUPxeR3(P'(;f2 ) -liil2
), i.e., 
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the existence of strong solution in transonic regime with the thickness of 
order O(e). For more consideration on the influence of quantum correc
tion to the existence of solutions, one can refer to [21, 24, 30] for further 
analysis. 

Finally, we obtain the global-in-time existence of classical solutions 
and exponential stability of steady-state. 

Theorem 1.5. Assume that (1.16) holds. Let (.J;,O,E) the steady state 
solution obtained in Theorem 1.3. Suppose that P(p) E C 5 (0, +oo) with 
(1.17) satisfied. Assume ('1/Jl - .J;, ul) E H6 (IR3) x 1t5 (JR3). Then, there 

is m1 > 0 such that if II'I/J1- .JSIIH6(R3) + llu1IIW(Ra) +Do::::; m1, solution 
('1/J, u, E) of the IVP (1.12)-(1.15) exists globally in time and satisfies 

- - At 11('1/J- 'I/J)(t)IIH6(R3) + llu(t)IIW(R3) + II(E- E)(t)II"Ha(R3) ::::;; C161e- 0 

fort 2: 0. Here C1 > 0, Ao > 0 are constants and 

(1.20) 

Remark 1.6. (1) Theorems 1.1-1.5 can be extended to multi-dimension 
JR.N, N 2: 3, for IVP (1.12)-(1.15) for smooth (large) initial data. The 
proof can be done within the same framework. 

(2) Once we prove the local existence (resp. global existence) of 
solutions ('1/J, u, E) ofiVP (1.12)-(1.15), we can obtain the local existence 
(resp. global existence) of solutions (p, u, E) ofiVP (1.5)-(1.8) by setting 
p='I/J2. 

This paper is arranged as follows. In Section 2, we present neces
sary results on divergence equation, vorticity equation, and a semilin
ear fourth-order wave equation on JR3 ; then list some known calculus 
inequalities. In Section 3, we prove Theorem 1.1. After the construc
tion of an extended system to be dealt with in Section 3.1, we make 
the approximate solution series, derive uniform estimates, and prove the 
Theorem 1.1 in Section 3.2. Section 4 is devoted to the proof of Theo
rem 1.5. After the reformulation of original problem in Section 4.1, we 
establish the a-priori estimates on the local solutions in Section 4.2, and 
prove their global existence and large time behavior finally. 

Notation. C always denotes generic positive constant. £P(JR3 ), 1 ::::;; 
p::::;; oo, is the space of p-powers integral functions on IR.3 with the norm 
II · IlL~>· Particularly, the norm of the space of square integral functions 
on IR.3 is denoted by II· II· Hk(JR.3 ) with integer k 2: 1 denotes the usual 
Sobolev space of function f, satisfying a~f E £ 2 (0::::; i::::; k), with norm 

llfllk = 
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here and after Do: = 8f1 8~2 
• • • {)~n for Ia I = a1 + a2 + · · · + an and 

Oj = Ox;, j = 1, 2, ... , n, for abbreviation. Especially, II · llo = II · II· 
Moreover, Wk,v, with k 2: 1,p 2: 1, denotes the space of functions with 
D1j E £P, 0 :::; Ill :::; k, and 'Hk(JR.3 ) denotes the subspace of £ 6 (1R.3 ) 

with Df E Hk-l(JR.3 ). LetT> 0 and B be a Banach space. Ck(O,T;B) 
(Ck([O, T); B) resp.) denotes the space of B-valued k-times continuously 
differentiable functions on (0, T) (or (0, T] resp.), £ 2([0, T); B) the space 
of B-valued £ 2-functions on [0, T], and Hk([O, T]; B) the spaces of f(x, t) 
with o:J E £ 2 ({0, T]; B), 1 :::; i :::; k, 1 :::; p:::; oo. 

2 Preliminaries 

In this section, we list the existence and uniqueness of solutions of di
vergence equation and vorticity equation in IR.3 without proof, mention 
the orthogonal decomposition of velocity vector field, and then turn to 
prove the well-posedness for an abstract second-order semi-linear wave 
equation. Finally, some useful calculus inequalities are listed. 

First, we have the theorem on the divergence operator and vorticity 
operator on IR.3 : 

Theorem 2.1. Let f E H 8 (1R.3 ), s 2: 3/2. There is a unique solution u 
of the divergence equation 

'\l·u=f, '\lxu=O, u(x)--+0, lxl-+oo, (2.1) 

satisfying 

Theorem 2.2. Let f E H 8 (1R.3 ), s ;::: 3/2. There is a unique solution u 
of the vorticity equation 

'\/xu= f, '\!· u = 0, u(x) --+ 0, lxl --+ oo, (2.3) 

satisfying 

Theorem 2.3. For u E 'H8 (1R.3 ), s;::: 3/2, it has a unique decomposition 
consisting of the gradient vector field v E 'H8 (1R.3) and the divergence free 
vector field z E 'H8 (1R.3), i.e., 

u = v + z = Qu + Pu, Q = I - P, '\J. P = 0. 
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Proof. The proof of the above theorems can be made by using the 
standard arguments and the Riesz's potential theory. The reader can 
refer to [41, 47], we omit the details here. 0 

Based on Theorem 2.1, we obtain the initial electric field E(x, 0) = 
E1(x) through (1.14) in view of initial density: 

"V· E 1 = 1/J~- C, '\lxE1 = 0, E1(x)--+ 0, lxl--+ oo. (2.5) 

By 1/;1 - JP E H 6 (IR3 ) and C - p E H 3 (IR3 ), we obtain E 1 E 1i3 (JR3 ), 

satisfying 

Finally, let us turn to consider an abstract initial value problem in 
Hilbert space L2 (1R3): 

1 
u" + -u' +Au+ Cu' = F(t), 

T 

u(O) = uo, u'(O) = u1. 

where u' denotes ~~, and the operator A is given by 

Au= vo~2u + 111u, 

(2.7) 

(2.8) 

(2.9) 

with ~ the Laplace operator on IR3 , and vo, 111 > 0 constants. The 
domain of linear operator A is D(A) = H 4 (JR3). Related to the operator 
A, we define a continuous and symmetric bilinear form a( u, v) on H 2 (JR3 ) 

a(u,v)= { (vo~u~v+v1 uv)dx, Vu,vEH2(JR3 ), (2.10) }Ra 
which is coercive, i.e., 

3 11 > 0, a(u,u) 2: vllull2, VuE H 2(IR3 ). (2.11) 

Related to Cu and F(t), we have 

< Cu, v >= { (b(x, t) · '\lu)vdx, u, v E H 2 (JR3 ), (2.12) }Ra 
< F(t), v >= { f(x, t)vdx, v E H 2 (1R3), (2.13) }Ra 

where b: !Rx [0, T]-+ IR3 and f : !Rx [0, T] --+ IR are measurable functions. 
Note that the space H 4 (IR3 ) is separable and has a complete basis 

{rj};;;::l· Applying the Faedo-Galerkin method [36, 51], we can obtain 
the existence of solutions of (2.7)-(2.8). 
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Theorem 2.4. Let T > 0 and assume that 
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FE C1([0,TJ;L2 (1R3 )), bE C1 ([0,T];'H3 (JR3)). (2.14) 

Then, ifuo E H 4 (1R3 ) andu1 E H 2 (1R3), the solution oj(2.7)-(2.8) exists 
and satisfies 

Moreover, assume 

(2.16) 

Proof. The (2.17) follows from (2.15) with some modification when 
we consider the similar problem for new variable v = vo:u, lo:l = 2. The 
(2.15) can be proven by applying the Faedo-Galerkin method. We omit 
the details here. 0 

Finally, we list below the Moser-type calculus inequalities [33, 40]: 

Lemma 2.5. 1). Let j,g E £ 00 n H 8 (lR3 ), s 2: 3/2. Then, it holds 

IIDo:(fg)ll ~ CII9IIL<"' liDO: /II+ CIIJIIL00 liDO: gil, (2.18) 

liDO:(! g)- JDo:gll ~ CllgiiLooiiDO: Jll + CIIJIILooiiDo:-lgll, (2.19) 

for 1 ~ !o:l ~ s. 
2). Let u E 'H1(JR3 ), then it holds 

(2.20) 

3 Local-in-time existence 

This section is concerned with the proof of Theorem 1.1. Instead, we 
shall prove the well-posedness for a new extended problem, derived based 
on (1.12)-(1.14), for U = (v, z, cp, 1/J, u, E) 

V·v=r(t), Vxv=O, v(x,t)->0, !x!--+oo, (3.1) 

{

z = Bo JRalx- Yl- 3(x- y) x w(y, t) dy, 

w' +w + (v + z)·Vw +wV· v- (w·V)[v + z] = 0, 
w(x,O) = w1(x) =: Vxu1(x), 

(3.2) 
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{
<p' + ~('\7 · v)<p + u· '\71/J = 0, 

(3.3) 
<p(x,O) = 1/J1(x), 

{

1/J" + 1/J' + vtl.21/J + v'l/J + k(t) · '\71/J' = h(t), 

1 (3.4) 
1/J(x,O) = 1/J1(x), 1/J'(x,O) = 1/Jo =: -21/Jl '\7· u1- ul·'\7¢1, 

{
u' + u = g(t), 

u(x,O) = u1(x), <3·5) 

'\7· E = q =: 1/J2 - C, '\7xE = 0, E(x, t)- 0, !xi- oo (3.6) 

where v = te2 , and 

r(t) = r(x,t) =- 2(1/J' + u·'\71/J) (3.7) 
<p ' 

k(t) = k(x, t) =up(x, t) + v(x, t) + z(x, t), (3.8) 

1 e2 lti¢12 1 
h(t) = h(x, t) =-1/J'('l/J' + u· '\71/J) + --- - -1/J'\7 · E- '\71/J. E 

<p 4 <p 2 

+ ~ f:l.P(¢
2

) + v'l/J + ~ '\71/J· '\7(lv + zi 2 ) - ~1/JI wl 2 

2 <p 2 2 
1 

- [v + zj · '\7(u· '\71/J)+ -(1/J' + u· '\71/J)(v· '\71/J) 
<p 

1 
- '\71/J · ([v + zj x w) + "21/J'\7(v + z):'\7(v + z), {3.9) 

g(t) = g(x, t) =E- ~V(Iv + zi2
) + [v + zj x w- '\7h{¢2

) 

(3.10) 

where u = ( u1 , u2 , u3 ) and v = ( v1 , v2 , v3 ). The most important fact 
which will be belown in Section 3.2 is to note that the above extended 
system for U = (v,z,<p,'I/J,u,E) is equivalent to the equations {1.12)
(1.14) of {1/J, u, E) for classical solutions when u = v + z and 1/J = <p > 0. 

The main result in this section is: 

Theorem 3.1. Assume that P E C5 (0, oo) and (¢1-,JP, ul) E H6 {JR.3) x 
1i5 (R.3 ) satisfy?,ng 

1/J* = sup 1/JI(x), 1/J. =: inf 1/J1(x) > 0. (3.11) 
:rER3 :rER3 
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Then, there is a uniform time T •• such that there exists a solution series 
U = (v, z, cp, '1/J, u, E) which solves uniformly the systems (3.1)-(3.6) for 
t E [0, T •• ] and satisfies 

v E Ci ([0, T •• ]; 1i4-i(JR3 )) n C2 ([0, T.]; 7i1 (R3 )), 

z E 0 1([0, T •• ]; 7i4- 1(R3)), w E C1([0, T1]; H3-I(JR3)), 

u E 0 1 ((0, T •• ]; 7i3(R3)) n C2([0, T •• ]; 7i1 (JR3)), 
cp- yp E C1([0, T.]; H3(R3)) n C2([0, T •• ]; H2(JR3)) (3.12) 

n 0 3 ([0, T •• ]; L 2(R3)), 

'1/J- .fP E Ck([O, T.]; H6- 2k(JR3)) n C3([o, r •• ]; £2(JR3)), 

E E C 1((0,T •• ];7i3 (JR3 )), 

where j = 0, 1, l = 0, 1, 2, k = 0, 1, 2, and we recall that 1-lm = {f E 
£6(JR3); Df E Hm-l(JR3)}, m ~ 1. 

We will show the construction of the extended systems (3.1)-(3.10) 
based on (1.12)-(1.14) in Section 3.1. Then we define an iterative scheme 
of approximate solution sequence of the extended system and obtain the 
uniform estimates, and then prove Theorem 1.1 in Section 3.2. For 
simplicity, we set T = 1 and >. = 1. 

3.1 Construction of new problems 

We construct the extended systems (3.1)-(3.10) based on Eqs. (1.12)
(1.14) by modifying the main idea in [28, 36]. For general smooth fluid
dynamics, the velocity vector filed can be (uniquely) decomposed into 
the gradient field and the divergence free vector field: 

u=v+z=Qu+'Pu=VS+z, V·z=O. (3.13) 

Equation (1.13) for the velocity vector field u can be rewritten as 

where we use the relation of the convection term 

(3.15) 

Taking curl on (3.14) and letting w = Vxu, we have 

OtW + w + U· '\lw + w'\1· u- (w· V)u = 0. (3.16) 

For smooth '1/J > 0 Eq. (1.12) is equivalent to 

20ttP + 2u· '\1'1/J + '1/J'\1· u = 0. (3.17) 
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Based on Eqs. {3.13)-(3.17), we show the ideas on how to construct 
the extended systems {3.1)-(3.10) for U = {v, z, cp, 1/J, u, E) to be dealt 
with on the basis of Section 3.2. Given u and 1/J, we can introduce new 
equations for "density" cp > 0 and gradient velocity vector field v in 
terms of divergence free vector field z as 

1 
OtiP + 

2
cp'V · v + u· V''I/J = 0, cp(x, 0) = 1/J1 (x) > 0, {3.18) 

"'. V ___ 2{8t1/J + U· V''I/J), 
v V'xv = 0, v{x, t) ---+ 0, lxl ---+ oo. {3.19) 

!p 

The new divergence free vector field z is represented by its vorticity 
(which will still be denoted by w) w = V'xz as 

z(x, t) = Bo r lx- Yl- 3(x- y) X w(y, t) dy laa (3.20) 

where B0 is a constant matrix, and the vorticity vector field w = V' x z 
solves the following equation 

OtW + w + (v + z)· 'Vw + w'V· v- (w· V')[v + z] = 0, 
w(x,O) = V'xu1(x), 

(3.21) 

(3.22) 

which is obtained by taking curl on (3.16) after replacing z + v for u. 
We need to pay attention to, however, that we should be able to 

determine u and 1/J again so long as we can solve the above equations for 
v, z and cp. Namely, we will propose the corresponding two equations 
for u and 1/J based on (3.18), (3.19), and (3.20) as follows. In fact, we 
can construct the expected equation for the velocity u as 

1 
OtU + u + 2V'(Iv + zl2)- (v + z) xw + V'h(1f;2) 

= E + c2 ( V' 6.1/J - 6.1/JV''I/J), 
2 !p cp2 

u(x,O) = u1(x), 

(3.23) 

(3.24) 

which is derived from (3.14) by substituting v + z for u into the convec
tion term through the relation (3.15), and by using the equality 

(3.25) 

and replacing ~ by ~ on the right hand side terms of (3.25). And we 
construct the equation for the density 1/J as 

1 2 2 1 2ID.1/JI 2 1 2 1 
1/Jtt + 1/Jt + -4c l::i.'I/J- -c --- -D.P('I/J ) + -1/JD..V + V'1f;. E 

4 !p 2cp 2 
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+ (u + v + z)·"il'I/Jt- ~ (1/Jt + u·'\11/J)- ~'\11/J · '\l(lv + zl2) 

1 1 + '\11/J · ([v + z] x w)- 21/J'\l(v + z): '\l(v + z) + 
2

1/Jiwl2 

1 + (v + z)·'\l(u·'\11/J)- -(1/Jt + u·'\11/J)([v + z]·'\11/J) = 0 (3.26) 
<p 

with initial data 

where v =(vi, v2 , ... , vn) and 

'\lv:'\lv = L l8;vil2· 
i,j 

In fact, by differentiating (3.17) with respect to time, replacing Ut in 
terms of (3.14) where the unknown u of the convection term is substi
tuted by v + z, using(3.15) and replacing the term !1/J[!~(Iv + zl2) -
'\1· ([v + z] x w)] by 

1 1 
21/J'\l(v + z): '\l(v + z) - 21/Jiwl 2 - (v + z) · '\11/Jt 

1 
- (v + z)· '\l(u· '\11/J) + -;p('I/Jt + u· '\11/J)([v + z]· '\11/J), 

and by using the relation 

and by replacing all i in the resulting equation by ~, we can obtain 
Eq. (3.26). Finally, from {1.14) we still solve E from the same divergence 
equation on JR3 : 

'\1· E = 1jJ2 
- C, '\lxE = 0, E(x, t) ~ 0, lxl ~ oo. (3.28) 

So far, we have constructed the extended and closed systems (3.1)
(3.10) for U = (v, z, <p, 1/J, u, E) which consists of two O.D.E.s (3.18) for 
<p and (3.23) for u, a wave type equation (3.26) for 1/J, two divergence 
equations (3.19) and (3.28) for v and E, and a formula (3.20) for z in 
terms of w which solves a hyperbolic equation (3.21). 

3.2 Iteration scheme and local existence 

We define an iterative scheme of approximate solution sequence of the 
extended system and obtain the uniform estimates, and then prove The
orem 3.1 and Theorem 1.1. We consider the corresponding problem for 
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an approximate solution sequence {Ui}~1 with 

UP = (vp, Zp, cpp, '1/Jp, up, Ep) 

based on the extended systems {3.1)-{3.10) constructed in Section 3.1. 
We construct an iterative scheme for the solution 

UP+l = ( v p+ 1. Zp+l ' cpp+ 1 ' '1/Jp+l ' Up+ 1' Ep+l)' p 2:: 1' 

on JR3 by solving the following problems 

\!· vp+l = rp(t), \lxvp+l = 0, Vp+l{x,t)- 0, lxl- oo, {3.29) 

Zp+l = Bo JRalx- Yl-3(x- y) x Wp+l (y, t) dy, 

w~+1 + Wp+l + (vp + zp) · \lwp+1 
{3.30) 

+ Wp+l \!· Vp - {Wp+1 · \l}[Vp + Zp] = 0, 

wp+l(x,O) = w1(x) =: \lxu1(x), 

{ 

'1/1;+1 + '1/1~+ 1 + vfl2 '1/lp+l + vt/Jp+1 + kp(t) · \1'1/J~+l = hp(t), 

t/Jp+1(x,O) = t/J1(x), (3.32) 

'1/J~+l (x, 0) = '1/Jo =: - ~t/J1 \!· u1 - u1 · \lt/J1, 

{ 
\!· Ep+l = qp =: '1/J~- C, \lxEp+1 = 0, 
Ep+l (x, t) - 0, lxl - oo, 

where v = ~e2 , and 

Tp(t) =Tp(X, t) = - 2( '1/J~ +Up· \1'1/Jp), 
cpp 

kp(t) =kp(x, t) = np(x, t) + vp(x, t) + zp(x, t), 

{3.34) 

{3.35) 

{3.36) 
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1 2 
-

2
'1/Jpl wpl - [vp + zp]· V{11p. '\7'1/Jp) 

+ _!:_('1/J~ + Up·'\7'1/Jp){Vp·'\7'1/Jp)- '\7'1/Jp · {[Vp + Zpj X Wp) 
<pp 
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1 + 2'1/Jp V(vp + zp): V(vp + zp), (3.37) 

9p(t) =gp(X, t) = Ep- ~ v(!vp + Zp12) + [vp + Zp] X Wp- Vh('I/J;) 

(3.38) 

where Up= (u~,u;,u;) and Vp = (v~,v;,v:). Here, we also note that 
functions rp{O),kp{O), hp(O), gp(O), qp(O) only depend on initial data 
('1/Jl,ul). 

The main result in this subsection is 

Lemma 3.2. Let the assumption of Theorem 3.1 hold. Then, there is a 
uniform timeT. such that there exists a solution series {UP}~1 which 
solves uniformly the systems {3.29)-(3.34) fortE [0, T.] and satisfies 

vp E ci([o,T.J;7t4-i(JR3))nc2([o,r.J;7t1 (JR3)), 
Zp E Ck([O, T.]; 7t4-k(JR3)), Wp+l E Ck([O, Tl]i H3-k(JR3)), 

up E C1 ([o,T.J;7t3(JR3))nc2([o,T.J;H1 (JR3)), 
cpp- .,fP E C1 ([0, T.]; H 3(JR3)) n C2([0, T.]; H 2(JR3)) (3.39) 

n C3([0, T.]; £2(JR3)), 
'1/Jp- .,fP E Cl([O, T.]; H6-2l(JR3)) n C3([0, T.]; £2(JR3)), 

Ep E C1{[0, T.]; 7t3 (JR3 )), 

where j = 0, 1, k = 0, 1, 2, l = 0, 1, 2, and we recall that 7-tk = {! E 
£6(JR3); Df E Hk- 1 (JR3)}, k ;::: 1. Furthermore, the solution series 
{UP}~1 is bounded uniformly for each p :2: 1 by 

! 
IID(v~, Up,~, Ep, E~)(t)l1~2 + IIDvp(t)ll~s + IID(v~, u~)(t)ll 2 $ M., 

ll(wp,W~,w~)(t)ll~sxH2xHl + IID(zp,Z~,z~)(t)ll~sxH2xHl $ M., 

11('1/Jp- JP,'I/J~,'I/J;,'I/J;')(t)11~6xH4xH2xL2 ~ M., 

ll(cpp- v'iJ,cp~,cp~,cp~')(t)ll~sxH3xH2xL2 $ M., 
(3.40) 

with M. a positive constant independent of UP, p :2: 1. 

Remark 3.3. Here, note that by (2.20) we can obtain automatically the 
£6-norm of the unknown vp+l• Zp+l> Ep+l> Up+l and their time deriva
tives so long as (3.40) holds, i.e., 

l!(vp+l• v~+l' v;+l)I!L6 ~ CIID(vp+l• v~+l' v;+l)I!L2, (3.41) 
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ll(zp+l• z~+l' z~+l)IILs $ CIID(zp+l• z~+l' z~+l)IIL2, 

ll(uv+l• u~+l• ~+1' Ev+l• E~+l)IILs 
:SCIID(up+l• u~+l• u~+l' Ev+l• E~+1 )IIL2· 

Below, we will often use this fact without mentioning it. 

(3.42) 

(3.43) 

Proof. We prove Lemma 3.2 and verify the a-priori estimates (3.40) 
in terms of energy method and induction argument as follows: 

First of all, we consider the case p = 1. We choose 

which obviously satisfies (3.39)-(3.40) for t E [0, T1] with M. replaced 
by a constant B 1 > 0, where E 1 is determined by (2.5). Starting with 
U1 = (Qu1. Pu1, 1P1, 'ljJ1, u1, E1) and solving the problems (3.29)-(3.34) 
for p = 1' we shall prove the (local in time) existence of solution U2 = 
(v2, z2, 'I/J2, cp2, u2, E2) which also satisfies (3.39)-(3.40) for t E [0, T1] 
with T1 > 0 and with M. replaced by another constant M2 > 0. In fact, 
for U1 = (Qul, Pul,'I/Jl,'I/Jl, Ut,El) the functions rt, kl, hl, 91, ql 
depend only on the initial data (7/Jb u 1), i.e., 

satisfying 

r1(x,t) = f\(x), k1(x,t) = k1(x), h1(x,t) = h1(x), 

9l(x, t) = g1(x), q1(x, t) = Q1(x), 

here and after N > 0 denotes a generic constant independent of UP, p ~ 
1, 

Io = II ( 'I/J1 - ../P) 11
2 + IIV'I/J1II~ + llu1ll~ + IIC - .Oil~· (3.45) 

The systems (3.29)-(3.34) with p = 1 are linear with U2 = (v2, z2, 'ljJ2, cp2, 
u2, E2). It can be solved with the help of the estimates (3.44) about the 
right hand side terms as follows. Applying Theorem 2.1 to the divergence 
equations (3.29) with r1 (x, t) replaced by f1 (x) and (3.34) with q1 (x, t) 
replaced by q1(x), we obtain the existence of solution 

and E2 E C 1([0, T1]; 'H3 (JR3 )). Making use of the theory of linear hy
perbolic system, we show the existence of w2 E Ci([O,TI];H3-i(JR3 )), 

j = 0, 1, 2, of Eq. (3.30)2,3, which together with (3.30)1 and (2.4) im
plies the existence of z2 E Ci([O,T1];'H4-i(JR3 )), j = 0,1,2. By the 
theory of linear O.D.E. system, we prove the existence of solution u 2 E 
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C 1([0,T1];7-l3(JR3)) n C2([0,T .. ];7-l1(IR3)) of (3.33) for g1(x,t) = g1(x), 
and solution of (3.31) satisfying 

'P2- JP E C 1([0, T1]; H 3(1R3)) nC2([0, T1]; H 2(1R3))nC3([0, T1]; L2(1R3)). 

Finally, applying Theorem 2.4 with b(x, t) = 2u1(x) in (2.12) and f(x, t) 
= h1(x) in (2.13) to the semilinear wave equation (3.32), we conclude the 
existence of solution 'I/J2- .fP E Ci ([0, T1]; H 6- 2i), j = 0, 1, 2. Moreover, 

based on the estimates (3.44), we conclude that there is a constant M 2 

such that U2 satisfies (3.40) where p = 2, M .. = M 2 and T. = T1. 
Next, let us prove the estimates for p ~ 2. Assume that {Ui}f=1 

(p ~ 2) exists uniformly fort E [0, T1], solves the systems (3.29)-(3.34), 
and satisfies (3.39)-(3.40) with (the constant M .. replaced by) the upper 
bound Mp ( ~ maxl~j~p-l{M;}). We shall prove that it still holds for 
UP+l for t E [0, T1]. In fact, the systems (3.33)-(3.34) are linear with 
UP+l = ( v p+l, Zp+l, 'Pp+l, '1/Jp+l, up+l, Ep+l) for given UP. In analogy, 
the application of Theorem 2.1 to divergence equations (3.29) for Vp+l 
and (3.34) for EP+l• theory of linear O.D.E. system to Eq. (3.31) for 
'Pp+l and Eq. (3.33) for Up+l• and Theorem 2.4 to wave equation (3.32) 
for '1/Jp+l with f(x, t) = hp(t) and b(x, t) = kp(t), shows that UP+l = 
(vp+l, Zp+l, '1/Jp+l, 'fJp+l, Up+l, Ep+l) exists for t E [0, T1] and satisfies 

vp+l E Ci ([0, T1]; 7-£4-i (IR3)) n C2([0, T .. ]; 7-l1(IR3)), j = o, 1, 

Zp+l E Ci([O,T1];7-l4 -i(JR3)), Wp+l E Ci([O,Tl];H3-i(JR3)), j = 0,1,2, 

up+l E C 1 ([0, T1]; 7-l3(IR3)) n C2([o, T.]; 7-£1 (JR3)), 

'Pp+l- .fP E C 1([0, T1]; H 3(1R3)) n C2([0, T1]; H 2(IR3)) 

nC3([0, T .. ]; £2(JR3)), 

'1/Jp+l- .fP E C1([0, T1]; H 6 - 21 (IR3)) n C3([0, T.]; L2(JR3)), l = 0, 1, 2, 

Ep+l E C 1([0,Tl];7-l3(R3)). 

What we do next is to obtain a uniform upper bound of Ui+1, 1 :::; j :=:; p, 
for a fixed time period. 

Let us verify the £ 2 norm of the initial value of '1/Jp+l, '1/J~+l, '1/J;+l first, 

where the initial value .,P of '1/J;+l is obtained through (3.32)1 at t = 0 
with '1/Jp+l and '1/J~+l replaced by initial data 'I/J1, '1/Jo: 

.,P = -'1/Jo - vtl.2'1/Jo - v'I/J1 - 2u1 · V'I/Jo + h(O) (3.46) 

with h(O) = hp(O) only depending on ('1/Jl, ul). Hence, the initial values of 
'1/Jp+l• '1/J~+l• '1/J;+l only depend on ('I/J1, ul). Obviously, there is a constant 
M2 > 0 such that the initial values of '1/Jp+l, '1/J~+l, '1/J;+l for p ~ 1 are 
bounded by 

max { II'I/J1- JP II~, 11'1/Joll~, 11.,P11~, IIC- Pll~, IIDu1ll~} :=:; M2Io. (3.47) 
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Here, we recall that Io is defined by (3.45)0 
Set 

Mo = 16NJ0 ° max{1,v-1
}, } 

M1 = 2N(Io + 1 + M0 )
7 

0 max{1, v-2
}, 

(3.48) 

'1/J* =: sup 'I/J1(x) > 0, '1/J. =: inf 'I/J1(x) > 0 (3.49) 
o:eR3 o:ER3 

and choose 
0 { '1/J. 2Io ln 2 } 

T. = mm 1' 4Mo' M3' N M4 ' (3050) 

where 

and we choose the generic constant N > M2 independent of UP, p ~ 1. 
The main hard work in this part is to apply energy method to the 

coupled system (3o29)-(3o34) for UP+l = (vp+l,zp+l,Cf'p+l>WP+l>uP+l• 
Ep+l) in a similar argument to the above step for U2 , and obtain after a 
tedious but straightforward computation (We omit the details here, one 
can also refer to (36] for the main steps for irrotaional case) the following 
statement: 

If it holds for {Ui}~=l (p ~ 2), solving problems (3o29)-(3o34), that 

{ 

II(Dzj,w;)(t)ll~ + IIDu;(t)ll~ :5 Mo, 

11('1/J;- yp,'I/Jj)(t)ll~ + 11'1/Jj(t)ll~ :5 Mo, (3o52) 

IIDv;(t)ll~ + IID~'I/J;(t)ll~ :5 M1, 

for 1 :5 j :5 p and t E [0, T.], then it also holds for UP+l that 

{ 

II(Dzp+l.wp+l)(t)ll~ + IIDup+l(t)ll~ :5 Mo, 

11('1/Jp+l- yp,'I/J~+l)(t)ll~ + 11'1/J~+l(t)ll~ :5 Mo, 

IIDvp+l(t)ll~ + IID~'I/Jp+l(t)ll~ :5 M1, 

(3o53) 

fortE [0, T.]o Here Mo and M1 are gwen by (3.48) and (3.49)0 

Furthermore, with the help of the above statement, we can conclude, by a 
direct complicated computation, that the approximate solution sequence 
UP+l = (vP+l• Zp+l. <f'p+l• Wp+l> Up+l> Ep+l),p ~ 1, which solves (3029)
(3034) uniformly for t E [0, T.] with T. defined by (3050), is uniformly 
bounded for t E [0, T.], and satisfies (3o39), (3.40) with the constant 
M. > 0 chosen by 

M. = N(Io + 1 + M 0 + Ml)15
0 (3o54) 
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In addition, for given (x, t) E JR3 x [0, T.] using the standard argument 
of O.D.E., we obtain 'PJ+l from (3.31), that is, 

'P;H(x,t) =(tPl(x) -lot e!fC:V·v;(x,e)deu;-'VtJI;(x,s)ds) 

e-! IJ V·v;(x,s)ds , 
<{)J+1- ..fP E C1 ([0, T1]; H 3 (JR3

)) n C 2 ([0, T1]; H 2 (JR3
)) 

n C3 ([0, T1]; L2(1R3 )), 

(3.55) 

which together with (3.52) give rise to the uniform positivity for (x, t) E 
JR3 X [0, T.] 

~.,P. ::; <{)J+l (x, t) ::; 2( .,P* + .,P.). (3.56) 

Recall here that Mo, M 1 , .,P*, and .,P. are defined by (3.48) and (3.49) 
respectively and N > 0 is a generic constant, which are independent of 
UP+l, p ~ 1. Thus, the proof of Lemma 3.2 is completed. D 

Proof of Theorem 3.1. By Lemma 3.2, we obtain an approximate 
solution sequence {Ui}~ 1 satisfying (3.39)-(3.40). To prove the uniform 
convergence of the whole sequence, we need to estimate the difference of 
the approximate solution sequence 

Y p+l - (- - .T. - E- ) -· uv+l UP > 1 - Vp+l, 'Pp+l, 'f'p+b llp+b p+l -. - , p _ , 

based on Lemma 3.2. In fact, let 

Vp+l = Vp+l - v,, Zp+l = Zp+l - Zp, 

'¢v+1 = tPp+l - .,P,, fip+l = Up+l - u,, 
<Pv+l = <flp+l - 'Pv, 
Ep+l = Ep+l - Ep, 

then by using Lemma 3.2 and repeating the similar arguments as above, 
we can show after a tedious computation that there is a time 0 < T •• ::; 
T. such that the difference yp+l, p ~ 1, of the approximate solution 
sequence satisfies the following estimates 

00 

·~:)II (iip+ll E,H)(t)11~3(R3) + 11~+1 (t)11~2(R3) 
(3.57) p=l 

00 

L:(11(vp+l,zpH)(t)11~4 + ll(v~+l,z~+l)(t)11~3(R3>) ~c., (3.58) 
p=l 

(3.59) 
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where i = 0, 1, 2, and C. = C.(N, M.) denotes a positive constant de
pending on Nand M •. Here we recall that 1f_k = {! E L6 (1R3

); Df E 
nk-l(JR3)}, k ~ 1. 

By applying Ascoli-Arzela Theorem (to time variable) and Rellich
Kondrachov theorem (to spatial variable) [45], we can prove by the stan
dard argument [40] that there exists a (unique) U = (v, z, cp, '1/J, u, E) 
such that as p - oo 

Vp- v in 
zp - z in 
Up-tU in 

Ci([O, T •• ]; 1{4-i-a (JR3)), 
Ci([O, T •• ]; 1f_4-i-a (JR3)), 
Ci([O, T •• ]; 1{3-a (JR3)), 
Ci([O, T •• ]; 1f.3-a(JR3)), Ev-E in 

cpp- cp in 
'1/Jv- '1/J in 

0 1 ([0, T •• ]; H 3-a(R3 )) n 0 2 ([0, T •• ]; H 2-a(R3 )), 

Ci ([0, T •• ]; H 6- 2i-a(JR3)) 

with i = 0, 1, j = 0, 1, 2, and 0 < a < 1/2. Moreover, by (3.56) it holds 

1 
cp(x, t) ~ '4'1/J* > 0, (x, t) E JR3 x [0, T •• ]. (3.60) 

Passing into limit p- oo in (3.29)-(3.34), we obtain the (short time) ex
istence and uniqueness of classical solution of the extended systems (3.1 )
(3.6) constructed in Section 3.1. The proof of Theorem 3.1 is completed. 

Proof of Theorem 1.1. By Theorem 3.1, we have the existence and 
uniqueness of short time strong solution (v, z, '1/J, cp, u, E) of the extended 
systems (3.1)-(3.6) with initial data 

(v,z,cp,'I/J, v,E)(x,O) = (Qu1. Pul.'I/JI,'I/Jl, u1,E1)(x). 

The most important fact we show below is that the extended systems 
(3.1)-(3.6) for U = (v, z, cp, '1/J, u, E) are equivalent to Eqs. (1.12)-(1.14) 
for ( '1/J, u, E) for classical solutions. That is, it holds 

'1/J = cp, u = v+z, t ~ 0, so long as [cp-'1/J](O) = 0, [u-v-z](O) = 0. 
(3.61) 

In fact, erasing the common term u· \1'1/J in the ODE equation (3.3) for 
cp and the divergence equation for v, i.e., 

1 
C/)t + U·\1'1/J + 2cp\1· V = 0, \1· V = (3.62) 

we obtain 
(cp- '1/J)t(x, t) = 0, t E [0, T •• ]. (3.63) 

By (3.63), (3.60) and the fact 

cp(x,O) = '1/J(x,O) = 'I/J1(x) => (cp- '1/J)(x,O) = 0, 
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we obtain 

1 
7/J(x, t) = cp(x, t) ;::: 47/J. > 0, (x, t) E R3 x [0, T •• ], (3.64) 

1 
1/Jt + u· '\l?/J + 2'1/J'\l· v = 0, (x, t) E R3 x (0, T •• ]. (3.65) 

With the help of (3.2)! which gives w = '\lxz, (3.64) and (3.25), we 
obtain from Eq. (3.2) for u the following equation 

1 ~ (67/J) OtU + 2 V(lv + zl 2
)- (v + z) x ('\lxz) + '\lh(?jJ2

) + u = E + '2 '\l -:;f . 
(3.66) 

Taking curl to Eq. {3.66) and making the difference between the resulted 
equation and Eq. (3.2)2 for w = '\lxz, we have 

'\lx(u-z)t+Vx(u-z)=O, t;:::O. (3.67) 

Similarly, recombining the various terms in Eq. (3.26) for 1/J we can obtain, 
with the help of (3.64) and (3.25), that 

1/Jtt + 1/Jt - 4~ '\l· ( 7/J2 ~ V(lv + zl2
) -7/J2 {v + z) x ('\l xz)) 

_ _]:_6P(?jJ2 ) + u·'\77/Jt + !7/Jt(V· v) 
27/J 2 

+ 2~ "J. ( 7/J
2 
E) + 4~ c2

'\l-( 'ljJ
2
'\l ( ~7/J)) = 0. (3.68) 

From (3.65) we have 7/Jt = -u·'\77/J- ~1/J'\l· v. Substituting it into (3.68) 
and representing Ut by {3.66), we obtain after a computation that 

'\l· (u- v)t + '\l· (u- v) = 0. 

Since 
'\l· (u- v){x, 0) = 0, '\lx (u- z)(x, 0) = 0, 

it follows from {3.67), (3.69) that 

(3.69) 

'\l·(u-v){x, t) = 0, '\lx (u-z){x, t) = 0, (x, t) E R3 x (0, T •• ]. (3.70) 

After decomposing the velocity u into u 9 + Ur =: Qu + 'Pu and using 
Theorems 2.1-2.3, we conclude from (3.70) that 

u = v + z, Qu = v, 'Pu = z, (x, t) E R3 x [0, T •• ]. (3.71) 
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Thus, by {3.71), (3.66), and (3.15), we recover the equation for u which 
is exactly Eq. (3.14). Multiplying {3.65) with '1/J and using (3.71) we 
recover the equation for '1/J (which is exactly Eq. (1.12)) 

(3.72) 

Finally, by (3.6) and Theorem 2.1 we show that E E C 1 ((0, T ... ]; 1i3 (1R.3 )) 

is the unique solution of the divergence equation: 

'V· E = 'I/J2
- C, '\lxE = 0, E(x, t)-? 0, lxl-? oo. 

Therefore ('1/J, u, E) with '1/J ;::: ~'1/J. > 0 is the unique local (in time) 
solution of IVP {1.12)-(1.15). Again by a straightforward computation 
once more, we can find 

'1/J E Ci([O, T ... ); H 6- 2i(JR.3)) n C3 ([0, T ... ); L2 (1R.3 )), i = 0, 1, 2; 

u E cn([O, T •• ); 1i5- 2i{JR.3 ), i = 0, 1, 2; E E C 1 ([0, T ... ); 1i3 (1R.3 )). 

The proof of Theorem 1.1 is completed. D 

4 Global existence and large time behavior 

We establish the uniform a-priori estimates for local classical solutions 
('1/J, u, E) of the IVP (1.12)-(1.15) for any fixed T > 0 when ('1/J, u, E) is 
around the asymptotic state (-J;, 0, E). 

4.1 Reformulation of original problems 

We reformulate the original problem (1.12)-(1.15) for classical solutions. 
For simplicity, we still set T = 1 and .>. = 1. 

Set 
w = '1/J(x, t) - -J;(x), () = E- E. 

By (1.12), (1.14), (3.26) we have the following systems for (w, u, 0) 

Ut + (u · 'V)u + u = fi(x, t), (4.1) 

1 2 2 -2 -2 
Wtt + Wt + 4e t:s. W + '1/J W + 2u · 'VWt- 'V· (P'('I/J )'\lw) = f2, (4.2) 

'V· () = (2-J; + w)w, (4.3) 

and the corresponding initial values are 

w(x, 0) = w1 (x), Wt(x, 0) = w2(x), u(x, 0) = u1 (x), (4.4) 
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with 

Here 

The derivatives of w and u satisfy 

2wt + 2u·V(1/j" + w) + (1/j" + w)\7· u = 0. (4.9) 

4.2 The a-priori estimates 

ForT> 0 define the workspace for (w, u, B) of the IVP (4.2)-(4.4) as 

X(T) = {(w, u,B)(t) E H 6 (JR3) x 7-l5 (JR3) x 7-l3(JR3), 0 ~ t ~ T}, 

and assume that it holds 

It is easy to verify that under the assumption ( 4.10) it holds that 

1 - 3 
2../P ~ w +"" ~ 2../P. (4.11) 

First, by Theorem 2.1 we derive the following estimates. 

Lemma 4.1. It holds for (w, u,B) E X(T) 

{ 
IBI + IIBIILs + IIDBII3 ~ Cllwll3, 
I Btl+ IIBtiiLs + IIDBtll2 ~ Cllwtll2, (

4
.
12

) 

provided that 8T + 8o « 1. 
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The estimates (4.12) together with (4.10) give 

191 + l9tl + ll(9,9t)ll1~~ + IID(9,9t)ll~ ~coT. (4.13) 

Next, we have the following basic estimates: 

Lemma 4.2. It holds, for (w,u,E) E X(T), that 

ll(w, Vw, flw, Wt, Vxu)(t)ll 2 ~ C(llw1ll~ + IIDulW)e-.l31t, (4.14) 

II (w, flw, wt)(t)ll~ + ll(wt, flwt, Wtt)(t)ll~ 
+IIVxull~ ~ C(llwdll~ + 11Dulll~)e-.l32 t, (4.15) 

with {31 , !32 > 0 two constants, provided that OT and Oo are small 
enough. 

Proof. Let us prove (4.14) first. Take inner product between (4.2) 
and w + 2Wt and integrate it by parts over IR3 , we obtain by Cauchy' 
inequality, (4.10), (4.11), Lemma 4.1, that 

! l
3 
(~w2 + WWt + w; + :;j}w

2 
+ ~e-2 lflwl2 + P'(~2)1Vwl2 )dx 

+ l
3 

( w; + ~2w2 + ~e-2 lflwj 2 + P'(~2 )1Vwl2 )dx 
~C(oT + 8o)li(wt,w, Vw, flw)ll 2 + C(oT + 8o)IIVxull2

. (4.16) 

It is easy to verify under the condition (1.17) that there is an ao > 0 so 
that 

l
3 

( ~2w2 + ~e-2 lflwl 2 + P'(~2)1Vwl2 )dx 
;:::: ao(llwll 2 + llflwll 2

) (4.17) 

due to the facts that the above inequality holds when P' (p) > 0 since 
P'(~2 ) = P'(p)+0(1)80 > 0 when 80 is small, and if P'(p) ~ 0 and (1.17) 
holds, we know that there is a positive constant ko with 0 < 1 - ko < 1 
such that ypkoe- + P'(p) > 0. 

To estimate the £ 2-norm of Vxu, we take Vx on Eq. (4.1) to obtain 

8tVxu + Vxu + u·V(Vxu) + (Vxu)V· u- ([Vxu]·V)u = 0. (4.18) 

Taking inner product between (4.18) and Vxu and integrating it by 
parts, we have 
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Making summation of (4.16) and (4.19) and applying Gronwall's 
lemma and Nirenberg inequality, we get finally the expected estimate 
(4.14) for a constant /31 > 0, provided that or and o0 are small enough. 

The higher order estimate (4.15) for w and u can be obtained in a 
similar fashion, we omit the details. Finally, since we can estimate Du 
by 

IIDull~ :5 CIIVxull~ + II'V· ull~, (4.20) 

and express D5w and D6 w through Eq.(4.2), we have, by Lemmas 4.1-
4.2, and (2.20), that 

Theorem 4.3. It holds, for (w, u, 9) E X(T), that 

llw(t)IIH6(R3) + ll(u, 9)(t)11Le(R3)+11Du(t)IIH4(R3) 

+IID9(t)IIH2(R3) :5 Co1e-f3at, 
(4.21) 

provided that or+ Oo «: 1. Here /33 = min{/32, /31} and o1 is given by 
(1.20). 

Proof of Theorem 1.5. Based on Theorem 4.3, we can prove that 
(4.10) is true for the classical solution existing locally in time so long as 
o1 = ll1/11- .;J;116 + IIDu1ll4 is small enough such that Co1 «: 1. Then, 
the continuity argument together with the uniform a-priori bounds (4.21) 
gives the global existence, and the time-asymptotic behavior of the global 
solutions follows. 0 
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Abstract 

In this paper, we introduce the Bloch decomposition-based 
time splitting spectral method to conduct numerical simulations 
of the (non)linear dispersive wave equations with periodic coeffi
cients. We first consider the numerical simulations of the dynam
ics of nonlinear Schrooinger equations subject to periodic and con
fining potentials. We consider this system as a two-scale asymp
totic problem with different scalings of the nonlinearity. Particu
larly we discuss (nonlinear) mass transfer between different Bloch 
bands and also present three-dimensional simulations for lattice 
Bose-Einstein condensates in the superfluid regime. We further 
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estimate the stability of our scheme in the presence of random per
turbations and give numerical evidence for the well-known phe
nomenon of Anderson's localization. 

0 Introduction 

In this paper, we consider the propagation of (non)linear high frequency 
waves in the heterogeneous media with periodic microstructures. Such 
problems arise, e.g., in the studies of 

• Bose-Einstein condensates (BECs) in optical lattices, 

• composite materials, 

• photonic crystals, 

• laser optics, 

• plasma physics, 

•...... 

We are interested in the case where the typical wavelength is comparable 
to the perwd of the medium, both of which are assumed to be small on 
the length-scale of the considered physical domain. This consequently 
leads us to a problem involving two-scales where from now on we shall 
denote by 0 < e « 1 the small dimensionless parameter describing the 
microscopic/macroscopic scale ratio. 

' 
I I I I I 

i I I : I 1 I r____..,. 
' 

Figure 0.1 

Here we shall mainly consider two kinds of problems: the dynamics of 
lattice BEGs and the acoustic waves in composite materials. Therefore, 
we will study the Schrodinger equation and the Klein-Gordon equation. 
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Recently there is a growing interest in the theoretical description and 
the experimental realization of Bose-Einstein condensates (BECs) un
der the influence of the so-called optical lattices, cf. [8, 25, 28, 30]. In 
such a system there are two extreme situations one needs to distinguish: 
the superfluid, or Gross-Pitaevskii (GP) regime and the so-called Mott 
insulator. The two regimes are essentially induced by the strength of the 
optical lattice, experimentally generated via intense laser fields. In the 
following we shall focus solely on the superfluid regime, corresponding 
to situations where the optical lattice potential is of order 0{1) in am
plitude. The BEC is usually modelled by the Gross-Pitaevskii equation, 
a cubically nonlinear Schrodinger equation (NLS), given by (30] 

li2 
iliOt'I/J = - 2m~'I/J+V(x)'¢+Uo(x)'¢+Nai'I/JI

2 '1/J, x E JR.3,t E JR., (0.1) 

where m is the atomic mass, It is the Planck constant, N is the number 
of atoms in the condensate and a= 47rli2ajm, with a E JR. denoting the 
characteristic scattering length of the particles. 

The external potential U0 (x) is being confined in order to describe 
the electromagnetic trap needed for the experimental realization of a 
BEC. Typically it is assumed to be of harmonic form 

lxl2 
Uo(x) = mw52' woE R {0.2) 

V(x) is a periodic external potential induced by the applied laser field. 
A particular example for the periodic potentials used in physical exper
iments is then given by [11, 30] 

3 n2F_2 
V (x) = s L mt sin2 (~exe), ~t E JR., 

l=l 

{0.3) 

where~= {6,6,~3) denotes the wave vector of the applied laser field 
and s > 0 is a dimensionless parameter describing the depth of the 
optical lattice (expressed in terms of the recoil energy). 

After appropriate scaling, cf. [7, 33], we therefore arrive at the follow
ing nonlinear Schrodinger equation in a semiclassical asymptotic scaling, 
i.e. 

{ 
ie8t'I/J =- e; ~'1/J + Vr (~) '1/J + U(x)'¢ + ,BI'¢12'1/J, x E JR.d, {0.4) 

'1/Jit=O = '1/Jin{x), 

where 0 < e « 1 denotes the small semiclassical parameter describ
ing the microscopic/macroscopic scale ratio. The dimensionless equa
tion (0.4) describes the motion of the electrons on the macroscopic scale 
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induced by the external potential U ( x). The highly oscillating lattice
potential Vr(Y) is assumed to be periodic w.r.t some regular lattice r. 
For definiteness we shall assume that 

Vr(Y + 27r) = Vr(y) Vy E R, (0.5) 

i.e. r = 21rZ. It is well known that (0.4) preserves mass 

and energy 

The mathematically precise asymptotic description of '1/J(t), solution 
to {0.4), as c --+ 0, has been intensively studied in [5, 14, 19, 29], relying 
on different analytical tools. On the other hand the numerical literature 
on these issues is not so abundant [16, 17, 18]. 

Generally speaking, for the traditional numerical methods, one needs 
the restriction 6.x = O(c) and 6.t = O{c) to achieve a satisfactory 
numerical result. 

We want to develop an efficient numerical approach with high accu
racy and reasonable computational cost, especially for non-smooth lattice 
potentials and/or non-smooth external potentials. Furthermore, we need 
that 

• it has high accuracy even in the case of heterogeneous media and/ or 
with discontinuities, 

• and it has uniform convergence w.r.t the parameter c. 

This paper is organized as follows: 
1. Description of the Bloch decomposition-based algorithm, 
2. Numerical implementation for lattice BECs, 
3. Random coefficients: Stability tests and Anderson localization, 
4. Conclusions. 

1 Description of the Bloch decomposition
based algorithm 

First, let us introduce some notation used throughout this paper, re
spectively recall some basic definitions used when dealing with periodic 
Schrodinger operators [2, 5, 34, 36]. 

With Vr obeying {0.5) we have: 
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• The fundamental domain of our lattice r = 21r.Z, is C = (0, 21r). 

• The dual lattice r• can then be defined as the set of all wave 
numbers k E IR, for which plane waves of the form exp(ikx) have 
the same periodicity as the potential Vr. This yields r• = .Z in 
our case. 

• The fundamental domain of the dual lattice, i.e. the (first) Bril
louin zone, B = C* is the set of all k E lR closer to zero than to any 
other dual lattice point. In our case, that is B = (- ~, ~). 

1.1 Recapitulation of Bloch's decomposition method 

One of our main points in all what follows is that the dynamical behavior 
of (0.4) is mainly governed by the periodic part of the Hamiltonian, for 
e « 1 in particular. Thus it will be important to study its spectral 
properties. To this end consider the periodic Hamiltonian, where for the 
moment we set y = x/e for simplicity, 

(1.1) 

which will be focused here only on L2 (C). This is possible due to the 
periodicity of Vr which is allowed since then to cover all of lR by simple 
translations. More precisely, for k E B = [- ~, ~] we equip the operator 
H with the following quasi-penodic boundary conditions 

{ 
1/J(t, y + 21r) = e2ik1r'lj;(t, y) 'v' y E IR, k E B, 

(1.2) 
oy'I/J(t,y+27r) =e2ik1roy'I/J(t,y) 'v'y E IR, k E B. 

It is well known (36] that under very mild conditions on Vr, the operator 
H admits a complete set of eigenfunctions cpm(Y, k), m E N, providing, 
for each fixed k E B, an orthonormal basis in L2 (C). Correspondingly 
there exists a countable family of real-valued eigenvalues which can be 
ordered according to E1(k) ::::; E2(k) ::::; · · · ::::; Em(k) ::::; · · ·, m E N, 
including the respective multiplicity. The set {Em(k) I k E B} C 1R is 
called the mth energy band of the operator H and the eigenfunctions 
C{Jm ( ·, k) are usually called Bloch function. In the following the index 
m E N will always denote the band index. Concerning the dependence 
on k E B, it has been shown [36] that for any mEN there exists a closed 
subset A c B such that: Em(k) is analytic and cpm(·,k) can be chosen 
to be real analytic function for all k E B\A. Moreover 

Em-1 < Em(k) < Em+l(k) 'v' k E B\A. (1.3) 

If this condition indeed holds for all k E B then Em(k) is called an 
isolated Bloch band (34]. Moreover, it is known that 

measA = meas{k E B I En(k) = Em(k), n =f. m} = 0. (1.4) 



166 Huang, Jin, Markowich, Sparber 

In this set of measure zero one encounters so called band crossings. Note 
that due to (1.2) we can rewrite rpm(Y, k) as 

rpm(Y, k) = eikyXm(y, k) Vm EN, (1.5) 

for some 211"-periodic function Xm(·, k). In terms of Xm(y, k) the Bloch 
eigenvalue problem reads 

{ 
H(k)xm(Y, k) = Em(k)Xm(Y, k), 

Xm(Y + 211", k) = Xm(Y, k) V k E 13, 

where H(k) denotes the shifted Hamiltonian 

H(k) := ~(-i8y + k) 2 + Vr(y). 

(1.6) 

(1.7) 

By solving the eigenvalue problem {1.6), the Bloch decomposition 
allows us to decompose the Hilbert space 'H. = L2 (1R) into a direct sum 
of orthogonal band spaces [26, 31, 36), i.e. 

This consequently allows us to write 

V J E L2 (JR) : J(y) = L fm(y), fm E 'H.m. {1.8) 
mEN 

The corresponding projection off onto the m-th band space is given by 
[26) 

fm(Y) = (JP>mf)(y) 

= l (l /(()cpm {(, k) d() rpm (y, k) dk. 
(1.9) 

In what follows, we will denote by 

Cm(k) := l /{()cpm ((, k) d( (1.10) 

the coefficient of the Bloch decomposition. The main use of the Bloch 
decomposition is that it reduces an equation of the form 

i8tt/J = -~ 8yyt/; + Vr(y)tf;, t/Jit=O = tPin(Y), {1.11) 

into countably many, exactly solvable problems on 'H.m· Indeed in each 
band space one simply obtains 
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where Em(-icoy) denotes the Fourier-multiplier corresponding to the 
symbol Em(k). Using the Fourier transformation :F, equation (1.12) is 
easily solved by 

(1.13) 

Here the energy band Em ( k) is understood to be periodically extended 
to all of JR. 

1.2 The Bloch decomposition(BD)-based split-step 
algorithm 

In (20) we introduced a new numerical method, based on the Bloch de
composition described above. In order to make the paper self-contained, 
we shall recall here the most important steps of our algorithm and then 
show how to generalize it to more than one spatial dimension. 

As a necessary preprocessing, we first need to calculate the energy 
bands Em(k) as well as the eigenfunction lfJm(Y, k) from (1.2) (or, like
wise from (1.6)). In d = 1 dimension this is rather easy to do with an 
acceptable numerical cost as described in [20) (see also [17) for an anal
ogous treatment). We shall therefore not go into details here and only 
remark that the numerical cost for this preprocessing does not depend 
on the spatial grid to be chosen later on and is therefore almost negligible 
when compared to the costs spent in the evolutionary algorithms below. 

For the convenience of the computations, we consider equation (0.4), 
for d = 1, on a bounded domain V = [0, 211') with periodic boundary 
conditions. This represents an approximation of the (one-dimensional) 
whole-space problem, as long as the observed wave function does not 
touch the boundaries x = 0, 27!'. Then, for some N E N, t > 0, let the 
time step be 

t 
!'::!.t = N , and tn = n!'::!.t, n = 1, · · · , N. 

Suppose that there are L E N lattice cells of r within the computational 
domain V, and that there are R E N grid points in each lattice cell, 
which yields the following discretization 

{ 

1 i-1 

kt = ;71'~ ~ 1 )L , 

Yr = R , 

where i = {1, · · ·, L} C N, 
(1.14) 

where r = {1,· · · ,R} C N. 

Thus, for any time-step tn, we evaluate 1/J(tn, ·),the solution of (0.4), at 
the grid points 

Xt,r = c(27r(i- 1) + Yr)· {1.15) 
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Now we introduce the following unitary transformation off E L2 (1R) 

(T f)(y, k) =: f{y, k) := L f(c(y + 21r"Y)) e-i21rk-y, y E C, k E B, 
-yEZ 

(1.16) 
such that f(y + 21r, k) = e2i""k f(y, k) and f(y, k + 1) = f(y, k). In other 
words f(y, k) admits the same periodicity properties w.r.t. k andy as 
the Bloch eigenfunction <fJm(Y, k). Thus we can decompose f(y, k) as 
a linear combination of such eigenfunctions <fJm(Y, k). We introduce the 
transform T instead of the traditional Bloch transform, in order to solely 
use FFT in (1.25) and (1.29) below. Note that the following inversion 
formula holds 

(1.17) 

Moreover one easily sees that the Bloch coefficient, defined in (1.10), can 
be equivalently written as 

Cm(k) = fc f(y, k)-qJm (y, k) dy, (1.18) 

which, in view of (1.5), resembles a Fourier integral. 
We are now in position to set up the time-splitting algorithm. To 

this end, we first set d = 1, for simplicity. We then solve (0.4) in two 
steps. 

Step 1. First, we solve the equation 

X E IR, (1.19) 

on a fixed time-interval 6.t. To do so we consider for each fixed t E IR, 
the corresponding transformed solution (T'I/;(t, ·)) = ;j(t, y, k), where Tis 
defined in (1.16) andy= xfc. Note that if we would not use There, the 
solution '1/;(t, ·) in general would not satisfy the same periodic boundary 
conditions (w.r.t. y) as the eigenfunctions <fJm(Y, k). After applying T 
we can decompose ;j(t,y,k) according to 

;j(t, y, k) = L (IP'm;j) = L Cm(t, k)<pm (y, k). (1.20) 
mEN mEN 

Of course, we have to truncate this summation at a certain fixed MEN. 
Numerical experiments on the band mixing (see also the next section) 
give us enough experience to choose M large enough, typically M = 32, 
in order to maintain mass conservation up to a sufficiently high accuracy. 
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By (1.12), this consequently yields the following evolution equation for 
the coefficient Cm(t, k) 

(1.21) 

which yields 
Cm(t, k) = Cm(O, k)e-iEm(k)tfe. (1.22) 

Step 2. We solve the ordinary differential equation 

(1.23) 

on the same time-interval as before, where the solution obtained in Step 
1 serves as initial condition for Step 2. Again, we easily obtain the exact 
solution for this equation by 

(1.24) 

Note that this splitting conserves the total particle number 111/J( t, x) II £2 

also on the fully discrete level and is thus unconditionally stable in the 
sense used by Iserles in [23] (w.r.t. to the discrete £ 2-norm). Clearly, the 
algorithm given above is the first order in time. But we can easily obtain 
a second order scheme by the Strang's splitting method, i.e. perform 
Step 1 with time-step 6.t/2, then Step 2 with 6.t and finally once again 
Step 1 with 6.tj2. Indeed, this is what we should do when we implement 
the algorithm. Step 1 consequently consists of several intermediate steps: 

Step 1.1. We compute ;j, cf. (1.16), at time tn by 

L 

;j(tn, Xt,r. ke) = L ?j;(tn, Xj,r) e-i21rkt (j-l)' 
i=l 

where Xt,r is as in (1.15). 
Step 1.2. Next, we compute the coefficient Cm(tn, kt) via (1.18), 

R 

Cm(tn, ke) :::::; ~ L ;j(tn, Xt,n kt)Xm(Yr. ke) e-iktYr. 
r=l 

(1.25) 

(1.26) 

Step 1.3. The obtained Bloch coefficients are then evolved up to tn+l 
as given by (1.22), 

C (t k ) _ C (t k ) e-iEm(kt)t;:,.tje 
m n+l• l - m n• t · (1.27) 

Step 1.4. Then we obtain ;j at the time tn+l by summing up all band 
contributions 

M 

;j(tn+l,Xt,nke) = L Cm(tn+l,kt)Xm(Yr,kt)eiktYr. (1.28) 
m=l 
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Step 1.5. Finally, we perform the inverse transformation (1.17), 

L 
·l·(t k ) ,...., 1 ".l:"(t k ) i21rk,(l-l) 
o/ n+l• Xt,r, l "' L ~ <v n+b Xj,r, j e · 

j=l 

(1.29) 

This concludes the numerical procedure performed in Step 1. 
In our algorithm, we compute the dominant effects from the disper

sion and the periodic lattice potential in one step, maintaining their 
strong interaction, and treat the non-periodic potential as a perturba
tion. Because the split-step error between the periodic and non-periodic 
parts is relatively small, the time-steps can be chosen to be considerably 
larger than these for a conventional time-splitting algorithm (3, 4], see 
(20] for more details. 

Moreover, an extension of the above given algorithm to more than 
one spatial dimension is straightforward, if the periodic potential Vr is 
of the following form 

d 

Vr(y) = L\';(xj), such that: V;(xj +lj) = V;(xj)· (1.30) 
j=l 

In other words, Vr is given by the sum of one-dimensional lattice periodic 
potentials V;. In this case, Step 1 consequently generalizes to the task 
of solving an equation of the form (1.19) for each spatial direction Xj E 
IR separately. Since our new algorithm allows for much larger time
steps and much coarser spatial grid, compared with a conventional time
splitting code, we can apply it to such multi-dimensional problems with 
reasonable computational complexity. 

Remark 1.1. Note that the separability property (1.30) is necessary in 
order to easily compute the Bloch bands as a preparatory step. If Vr 
does not obey (1.30), the computational treatment of (1.2) is in itself 
a formidable task. For the main application we have in mind, namely 
lattice BECs, the separability condition (1.30) holds, since there Vr is 
typically given by (0.3). 

1.3 The classical time splitting pseudo spectral (TS) 
method 

Often finite difference methods are used to simulate the (non)linear 
Schrodinger equations. However, the results of [27] show that these 
methods disqualify in the semiclassical regime from a practical point of 
view, since they require exceedingly small temporal and spatial mesh 
sizes. By contrast, time-splitting spectral schemes have performed very 
well in such cases, cf. [3, 4]. In the present setting, however, the fast 



Bloch Decomposition Method 171 

varying periodic potential Vr introduces additional difficulties. In [20) 
we compared our Bloch-decomposition-based algorithm with a time
splitting method which splits the dispersion from all potential terms 
(the approach used in [17)). Even in the linear, one-dimensional case, 
this method is not comparable in efficiency with our Bloch decomposi
tion approach. To complete the picture we shall now present a compari
son with a method, invoking the same time-splitting as above but with a 
trigonometric pseudo-spectral discretization of the periodic Hamiltonian. 

More precisely, the classical pseudo-spectral method consists of the 
following steps: 
Step 1. We solve the equation 

X E IR, (1.31) 

on a fixed time-interval 6.t. Denoting by "'7"" the Fast Fourier Transform 
(FFT) we then solve the ordinary differential equation 

(1.32) 

From here we consequently obtain 'if;(t, x) by invoking an inverse FFT. 
Step 2. We solve, as before, the ordinary differential equation (1.23) 
at the same time-interval, where the solution obtained in Step 1 serves 
as initial condition for Step 2. The splitting of the equation (0.4) is 
therefore as the above, only the numerical approach for solving (1.31) 
differs. Again we shall implement this pseudo-spectral method by using 
Strang's splitting to gain a second order scheme in time. 

1.4 Application to lattice BEC in 3D 

Now we turn to the application to lattice BEC in 3D, i.e. 

{ 
ic8t'I/J =- c; Ll'if; + Vr (~)'if;+ U(x)'if; + .BI'I/JI 2 '1/J, x E IR

3
'(1.33) 

'1/Jit=O = '1/Jin(x). 

In practice, we usually consider the lattice potential Vr as follows: 

3 

For example, Vr(y) = Lsin2 (~iYi) with some constants ~i E JR. 
i=l 

In this case (1.34), we can split Step 1 in our BD algorithm into 
three steps: 
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Step 1.1. First, we solve the equation 

. e
2 (Xl) 

1E:8t'I/J = -2 8x,x,1/J + vl € '1/J, (1.35) 

at the time interval !:it. 
Step 1.2. Then, we solve the equation 

. e
2 (X2) 

1E:8t'I/J = -2 8x2x21/J + v2 € 1/J. (1.36) 

Step 1.3. Third, we solve the equation 

(1.37) 

In each substep given above, we can use the Bloch decomposition 
based algorithm given in Section 1.2. 

2 Numerical implementation 

We shall use several examples to show the efficiency of our algorithm. 
In order to compare the different numerical algorithms we denote by 

• 1/Jt8 (t, x) - the solution gained from the time-splitting spectral 
method, 

• 1/Jbd(t, x) - the solution obtained via the new method base on 
Bloch's decomposition, 

• 1/Jex(t,x)- the "exact" solution obtained using a very fine spatial 
grid and time step. 

We also consider the following errors 

fl.~/ts(t) := 111/Jex(t)- 1/Jbd/ts(t)IIL""(R)' 

A~d/ts{t) := 111/Jex(t) -1/Jbd/ts{t)II£2(R)' 
(2.1) 

between the "exact solution" and the corresponding solutions obtained 
via our methods. 

2.1 Numerical tests for lD problems (/3 = 0) 
We choose the initial data 1/J;n E S(JR) of the following form 

( ) 

1/4 
.! •. ( ) _ 2w -w(x-1r)2 
'I'm X - e . 

7r 
(2.2) 

Concerning slowly varying, external potentials U, we shall choose, 
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• a harmonic oscillator type potential: 

U(x) = lx- 71"12' 
2 

• or an external (non-smooth) step potential, 

{ 

1, X E [~, 3
;] , 

U(x) = 
0, else. 

173 

(2.3) 

(2.4) 

Within the setting described above, we shall focus on two particular 
choices for the lattice potential, namely: 

Example 2.1. (Mathieu's model) 

The so-called Mathieu's model, i.e. 

Vr(x) = cos(x), (2.5) 

as already considered in [17]. (For applications in solid state physics 
this is rather unrealistic, however it fits quite well with experiments on 
Bose-Einstein condensates in optical lattices.) 

Example 2.2. (Kronig-Penney's model) 

The so-called Kronig-Penney's model, i.e. 

Vr(x) = 1-L lxE[~+21r"f>~f+2.,.'Y]' 
7EZ 

(2.6) 

where ln denotes the characteristic function of a set n c JR. In contrast 
to Mathieu's model this case comprises a non-smooth lattice potential. 
The corresponding Bloch eigenvalue problem is known to be explicitly 
solvable (see, e.g., [17]). 

Figure 2.1 shows a plot of the first few energy bands, drawn over B. 
Here we have some results of Example 2.1 fore= 1~24 : (forTS, we 

let !:::.t = 10~00 , !:::.x = 16~84 ; for BD, we let !:::.t = lo, !:::.x = 81~2 . ) 
lx-.,.12 

• U(x) = 2 . 

~:(t) = 3.04E- 2, 

~:'(t) = 4.63E- 3, 

• U(x) = { 1, x E [~, 3;)' 
0, else. 

~:(t) = 3.04E- 2, 

~:'(t) = 8.46E- 4, 

~~(t) = 1.34E- 2, 
~~d(t) = 2.94E- 3. 

~~8 (t) = 1.34E- 2, 

~~d(t) = 6.67E- 4. 
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Mathieu's Model Kronig-Penney's Model 
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Figure 2.1 Em(k), m = 1, · · · , 5. 

Figure 2.2 shows the comparison of the spatial and temporal discretiza
tion error tests of our BD method and TS method. 
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w 

10. 
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t.x-1 

TS: l::.t = 1oiooo' BD: l::.t = 1o~o 

~ w 
10° 

10 ''L..._------------.......J 
102 

41"1 

TS and BD: ~"' = 1 ~8 
Figure 2.2 The spatial and temporal discretization error test of Example 2.2 with 

U(x) = '"'-;,.1 2
, e = uJ24 , t = 0.01. 

Here we have some remarks on linear problems. 
If U(x) = 0: 

• We can use only one step in time to obtain the numerical solution, 
because the Bloch decomposition method indeed is "exact" in this 
case (independent of c). 

• On the other hand, by using the usual time-splitting method, one 
has to refine the time steps (depending on c) as well as the mesh 
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size in order to achieve the same accuracy. 

If U(x) =F 0 and c « 1: 

• We can achieve quite good accuracy by using the Bloch decompo
sition method with ~t = 0(1) and ~x = O(c). 

• On the other hand, by using the time splitting spectral algorithm, 
we have to use ~t = O(ca), ~x = O(ca), for some a ~ 1. Par
ticularly a > 1 is required for the case of a non-smooth lattice 
potential Vr. 

2.2 Numerical tests for lD NLS 

Before applying our algorithm to the simulation of three-dimensional 
lattice BECs we shall first study in more detail the influence of the 
nonlinearity on the Bloch decomposition. The corresponding numerical 
experiments are of some interest on their own, since so far the mixing 
of Bloch bands (i.e. the mass transfer between different bands) due 
to nonlinear interactions has not been fully clarified. We remark that 
these tests have to be seen as mathematical experiments which do not 
necessarily correspond to realistic physical experiments. 

Example 2.3. (Tests for nonlinear band mixing) The periodic po
tential is chosen to be (2.5). Figure 2.1 shows a plot of the first few 
energy bands, drawn over B. For the slowly varying, external potentials 
U ( x), we shall choose a harmonic oscillator type potential centered in 
the middle of the computational domain (2.3). Obviously, if U(x) =F 0 
an exact treatment along the lines of (1.11)- (1.13) is no longer possible 
for the evolution equation (0.4), even if /3 = 0. This is due to the fact 
that one has to take account of the action of the non-periodic potential 
U(x), which in general mtxes all Bloch bands Em(k). It is well known 
however, at least in the linear case, that one has a so-called adiabatic 
decoupling of the individual bands, as long as U(x) varies slowly on the 
scale of the periodic potential which is the case in our scaling. More 
precisely (see [34] and the references given therein) 

sup 11(1- 1Pm)Ue(t)1Pmlls(L2 (R)) :5 O(c), (2.7) 
tE[O,T) 

where JP> is the €-rescaled projection onto the m-th Bloch band defined 
in (1.9) and ue(t) = e-iH"tfe is the unitary group corresponding to the 
linear Hamiltonian operator 



176 Huang, Jin, Markowich, Sparber 

In other words, under the influence of U(x) the m-th band is stable, 
up to errors of order O(c:). The estimate (2.7) however only holds for 
energy bands Em(k) which are isolated from the rest of the spectra, i.e. 
do not exhibit band-crossings. In the latter case mass transfer of order 
0(1) is possible, the so-called Landau-Zener phenomena (see [12, 24, 34] 
and the references given therein). In the nonlinear case, the situation is 
even more complicated, as the strength (in terms of c:) of the nonlinear 
coupling >.e is expected to play a crucial role. So far, only the case of a 
weak nonlinearity, i.e. (3"' O(c:), has been treated rigorously in [7, 15]. 
It has been shown there, that, apart from certain resonance phenomena, 
an adiabatic decoupling also holds in the weakly nonlinear case. 

In the following we shall numerically study such band mixing phe
nomena. The reason for this is twofold: Firstly, it gives us more ex
perience on how many Bloch bands one has to take into account to 
guarantee that our numerical algorithm preserves mass with sufficient 
accuracy. Secondly, we aim to present some qualitative and quantitative 
studies on the phenomena for band mixing in the nonlinear case, which 
are of some interest on their own. 

Now we start with the initial condition like 

(2.8) 

where Win(x) is given in (2.2). We'll test the mass transition from one 
band to others. 

Here we have the following results (c£ Figures 2.3-2.6). 

• The isolated band with mo = 1 is more stable than other bands. 

• If mo is large, there will be more mass transfers to other bands. 

• If the eigenvalue Em0 is not isolated, there will be 0(1) mass trans
fers to other bands. 

• If (3 = 0(1), there will be 0(1) mass transfers to other bands. 

2.3 Numerical examples for lattice BEC in 3D 

Having gained sufficient insight on the phenomena of band mixing, we 
shall finally turn to the simulation of three-dimensional lattice BECs 
described by (0.4). To do so we have to choose physically relevant initial 
data, having in mind the following experimental situation: We assume 
that in the first step, the BEC is formed in a trap without the lattice 
potential, i.e. only under the influence of U(x), where x = (x1,x2 ,x3 ). 

Then, in a second step, we assume that the lattice potential Vr(xfc:) is 
switched on and the (nonlinear) dynamics of the BEC under the com
bined influence of U(x) and Vr(xfc:) is studied. For definiteness we shall 
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from now on consider the following potentials acting on the BEC 

3 

Vr (x) =I: sin2 (xe), (2.9) 
l=l 

These choices, obtained from the potentials (0.2)-(0.3) by scaling, are 
consistent with various physical experiments [1, 6, 8, 10, 25, 30]. 

Example 2.4. (Dynamics of lattice BECs) 

We consequently have to set for the initial data of (0.4): 

1/Jit=O = 1/Jin(x), 

where 1/Jin(x) is the ground state of the nonlinear eigenvalue problem 

Then we will turn on the lattice potential after t > 0. 

Numerical examples for lattice BEC in 3D, for example, in 3D case, 
with U(x) given by (2.3) (harmonic oscillator) are listed below. 

• weak interaction: 1.81 « 1, 

3e 
f.Lg= 2' 

1 if> _ e-U(x)/t:. 
g - (7re)3/4 ' 

• strong interaction: .B = 0(1), 

if>g = { J(f.L~- U(x))/(3, U(x) < f.L~, 
0, otherwise. 

The comparison of defocusing and focusing cases is given in Figure 
2.7. In the defocusing case we see that the density starts to redistribute 
itself under the influence of the periodic potential and the nonlinearity. 
In the case where (3 < 0 this behavior is countervailed by the typical 
concentration effects of the focusing nonlinearity, leading to a blow-up 
for solutions to (0.4) and thus a collapse of the condensate. 

3 Random coefficients: stability tests and 
Anderson localization 

In this section, we present numerical studies on the Klein-Gordon equa
tion including random coefficients. This describes waves propagating in 
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1.81 = ~ and e = ~ 

•• 

1.81 = 1 and e = ~ 

Figure 2. 7 Comparison of the initial and final mass densities, evaluated at X3 = 0. 

disordered media, a topic of intense physical and mathematical research 
(c£ P. A. Robinson, Phil. Magazine B 80, 2000). 

We shall study the following class of (one-dimensional) Klein-Gordon 
type equations 

{ 

a
2
u = !__ (ar (~) au) - ..!:_Wr (~) u + f(x), t > 0, 

at2 ax e ax e2 e (3.1) 

uit=O = uo(x), aau I = vo(x), 
t t=O 

with given initial data uo(x), vo(x) E JR. and f(x) E JR. describing some 
slowly varying source terms. 

The highly oscillatory coefficients ar(y), Wr(Y) E JR. are assumed to 
be periodic with respect to some regular lattice r ~ z. Equation (3.1) 
henceforth describes the propagation of waves on macroscopic length
and time-scales. The purely periodic coefficients ar(y) and Wr(Y) de
scribe an idealized situation where no defects are present within the ma
terial. More realistic descriptions for disordered media usually rely on 
the introduction of random perturbations within these coefficients and 
we wish to include such random perturbations also in our numerics. 

Since our numerical method relies on { <pm (y, k)} ~= 1 as basis func
tions, the stability of our method w.r.t. to perturbation of these Bloch 
functions is an important question. 
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3.1 Stability of our BD algorithm 

To this end we consider, instead of (1.2), the randomly perturbed eigen
value problem 

(-~ ( ar(w, y) ~) + Wr(y)) cpm(w, y, k) = Am(w, k)cpm(w, y, k), 

(3.2) 
subject to the quasi-periodic boundary condition. Here, the coefficient 
ar = ar(w, y) is assumed to be a function of a uniformly distributed 
random variable w with mean zero and variance a2 2: 0. In the following 
we shall vary a in such a way that we do not loose the uniform ellipticity, 
i.e. we have, as before, that Am(w, k) 2: 0 for every realization of w) 
and we consequently set Em(w, k) = Am(w, k). Note that we do not 
assume any randomness in Wr, since this would only result in a shift of 
the eigenvalues. 

In our algorithm, we solve the random eigenvalue problem (3.2), for 
different choices of a, to obtain the corresponding eigenvalues Am ( w, k) 
and eigenfunctions cpm(w, y, k). We shall then take the average of them 
and use these averaged quantities in our Bloch decomposition based 
algorithm (as described in Section 1.2). 

Example 3.1. (Stability test) Consider (3.1) with f(x) = 0 and initial 
data 

~ 

( 
2 

) 

1/4 2 

u0 (x) = 7rc e- • , vo(x) = 0. (3.3) 

The random coefficient ar is chosen as 

ar(w, y) = ar(y) + w, ar (y) = 2.5 + cos(y), (3.4) 

i.e. including an additive noise, and 

Wr(Y) = 1-L lxe[~+27r'Y,~+27r'Y]· 
...,ez 

(3.5) 

For a given choice of a we numerically generate N E N realization of 
w and consequently take the ensemble average. In our examples we 
usually choose N = 100. Figure 3.1 shows the average of the first few 
Bloch bands, i.e. 

1 N 
Em(k) := lE{Em(w,k)} ~ N LEm(Wt,k), (3.6) 

i=l 

for different values of a. 
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o'!i 
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a.05 

... ,, ....... _, 
e I I I t l I I I I I I ,,,,,,,.. . .. ,,,,,, 

0 05 o'!i 0 05 

Figure 3.1 The first five averaged Bloch bands Em(k) = JE{E:;'.(k}} after random 
perturbation. 

Figure 3.2 shows a comparison between the solution uu(t,x) with 
noise and the solution u( t, x) without noise. To this end we consider two 
different kinds of errors 

~~(t) := llu(t, ·)- uu(t, ·)IIL=(Rl• ~2(t) := llu(t, ·)- uu(t, ·)II£2(Rl· 

Numerically, we find that ~~ "' a, and ~2 "' allu(t, ·)II£2(R)· That 
means our BD algorithm is stable with the numerical simulation of the 
Bloch eigenvalue problem. 

3.2 Numerical evidence for the Anderson's localiza
tion 

The phenomenon of Anderson's localization, also known as the strong 
localization, describes the absence of dispersion for waves in random me
dia with sufficiently strong random perturbation. It has been predicted 
by P. W. Anderson (Philos. Mag. B, 52, 1985) in the context of (quan
tum mechanical) electron dynamics but is now regarded as a general 
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Graphs of the differences: u{l, 21rx)- u"'{l, 21rx) 
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01 

008 0.2 

002 005 

004 01 

008 015 

008 02 

01 0 0.2 04 08 08 0.25 0 0.2 04 08 08 

(T = 0.10 (T = 0.20 

Figure 3.2 Comparison between the solution u"'{t,x) with noise and the solution 
u{t,x) without noise, where e = f:i, /::,.t = fo• /::,.x = 5~2 • 

wave phenomenon applied to the transport of electromagnetic or acous
tic waves as well, cf. [9, 32, 35]. 

In the following, we shall again assume that ar = ar(w, y) depends on 
a uniformly distributed random variable w with mean zero and variance 
u2 • We then study the random Klein-Gordon equation 

{ 

fJ2uw = .i_ (ar (w, ::) auw) - _!_Wr (::) uw + f(x), 
at2 ax c ax c2 c (3.7) 

auw 
uwlt=O = uo(x), Ttlt=O = vo(x), 

which describes the propagation of waves in disordered media. 
In order to realize the emergence of these localization phenomena we 

consider the local energy density ew(t, x) of the solution uw(t, x): 

The total energy EQ'(t) of uw(t, x) is then given by the zeroth spatial 
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moment of ew(t,x), i.e. 

EQ(w,t) = l ew(t,x)dx, (3.8) 

and we likewise define 

{3.9) 

which measures the spread of the wave. It represents the mean square 
of the distance of the wave from the origin at time t. 

Note that in the case, where f(x) = 0 (no source term), we have 
energy conservation, i.e. EQ'(t) = EQ'(O). We consequently consider the 
function 

Au(t) ·- IE{E2(t)} (3.10) 
.- IE{E()(t)}' 

where lE again denotes the mathematical expectation. The quantity 
Au(t) has been introduced in [13] as a measure for the presence of An
derson's localization. In the absence of any random perturbation Au(t) 
should grow quadratically in time whereas in the case of the Anderson 
localization Au(t) should grow only linearly, indicating diffusive behavior 
and eventually become a constant in time [13, 32, 35]. 

Example 3.2. (Anderson's localization) Here we also consider (3.7) 
with f(x) = 0 and ar(w,y) is given by (3.4), the potential Wr is given 
by (3.5) and the initial data are chosen as {3.3). Now we make a different 
test with random perturbation. We then solve the Klein-Gordon equa
tion (3.7) with 100 kinds of different realization of the random variable 
w. Finally we take an ensemble average to obtain lE{ uw ( t, x)}, cf. Figure 
3.3. 

We plot the graph of the quantity Au(t) in Figure 3.4. As we see it 
first grows almost linearly in t, a typical diffusive behavior, and then, 
around t = 2 it flattens. The latter is a strong indication of Anderson's 
localization. 

4 Conclusions 

In this paper, we present a new numerical method for accurate computa
tions of solutions to (non)linear dispersive wave equations with periodic 
coefficients. 

• Our approach is based on the classical Bloch decomposition method 
(BD) and it proves to be superior to the mainly used time-splitting 
pseudo spectral schemes (TS). 
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E.{uw(l, 11rx)}, where, from left to right: u = 0, 0.5, and 1.0 . 

.. 
u 

~ ~ 
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.. ~.--~ .. ~-~~~ .. ~~ .. --~ .... ~~ .. ~~~~~ .. ~~.~.--~ 
E.{uw(2,11rx)}, where, from left to right: u = 0, 0.5, and 1.0. 

Figure 3.3 Averaged solutions at different time (e = ti)· 
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Figure 3.4 The graph of A"(t) for different u (e = ti) 

• It is shown by the given numerical examples that our method is 
unconditionally stable, and has conserved mass and uniform con
vergence rate in temporal discretization. 

• Our new method allows for much larger time-steps and sometimes 
even a coarser spatial grid, to achieve the same accuracy as for the 
usual time-splitting pseudo-spectral method. This is particularly 
visible in cases, where the lattice potential is no longer smooth 
and e <t:: 1. 
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Indeed in these cases the BD algorithm turns out to be considerably 
faster than the TS method. 
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Abstract 

This paper is a review of different results already published 
concerning the steady state Euler-Poisson system for a potential 
flow. In a first part we present results of the zero electron mass 
limit and the quasineutral limit of the system using an asymp
totic expansion method. For the quasineutral limit, we consider 
the case where boundary layers can appear. In a second part, 
we present some numerical schemes of finite volume type to com
pute approximate solutions of the system for semiconductors in 
the unipolar case. Particularly, some numerical simulations are 
given to illustrate some smallness conditions on given data and 
parameters in the proof of existence of solutions to the system. 

1 Introduction 

In this paper we consider the Euler-Poisson system which is a hydrody
namic model widely used in the mathematical modeling and numerical 
simulation for plasmas [9] and semiconductors [32]. It consists in two 
nonlinear equations given by the conservation laws of momentum and 
density, called the Euler equations, plus a Poisson equation for the elec
trostatic potential. Due to the hyperbolicity of the transient nonlinear 
Euler equations, the weak solution is only studied in one space dimen
sion. In such a situation, the existence of global weak solution is shown 
in the set of bounded functions [31]. 

Here we only consider the unipolar steady-state case for a potential 
flow. In the scaled variables, the Euler-Poisson system reads then as 
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follows (see [13, 34, 35)): 

-div(n\71/J) = 0, 

~IV1/JI 2 + h(n) = v + c1/7, 
2 r 

-.>.2 .6.V = n- C. 

(1.1) 

(1.2) 

(1.3) 

This system will be studied in an open and bounded domain n in 1R d 

( d = 2 or d = 3 in practice) with sufficiently smooth boundary r. The 
unknowns of the system are n = n(x), 1/J = 1/J(x) and V = V(x) which 
represent respectively the electron density, the velocity potential and 
the electrostatic potential. The function h = h( n) corresponds to the 
enthalpy of the system and is defined by: 

h'(n) = p'(n), n > 0, and h(1) = 0, 
n 

where p = p( n) is the pressure function, supposed to be sufficiently 
smooth and strictly increasing for n > 0. In practice, the pressure func
tion is typically governed by the -y-law, p(n) = en"~ where c > 0 and 
'Y ~ 1 are constants. The case 'Y = 1 corresponds to the isothermal flow, 
since in this case the temperature is constant. The function C = C(x) 
stands for the doping profile for a semiconductor and for the ion density 
for a plasma. The physical scaled parameters.>., c, r represent respec
tively the De bye length, the electron mass and the relaxation time of the 
system. They are dimensionless and small compared to the characteristic 
length of physical interest. 

In all the following, systems (1.1)-(1.3) will be completed with Dirich
let type boundary conditions. We will see later which ones are exact. 

First of all let us say that this system has already been studied a lot. 
Particularly let us mention [13] where the authors have shown existence 
and uniqueness of solutions (with all the physical parameters equal to 
one) under a smallness condition on the data, which implies that the 
problem is in the subsonic region. In [34], it is shown that the small
ness condition on the data can be replaced by a smallness condition on 
the parameter c. Then the existence and uniqueness hold for large data 
provided that c is small enough. In the same article, the author was 
also interested in the asymptotic limit of the system when the physical 
parameters tend, independently, to zero. There are then three limits 
called respectively the zero electron mass limit (case c tends to zero), 
the zero relaxation time limit (case r tends to zero) and the quasineutral 
limit (case .>. tends to zero). Particularly, in [34], the author obtained 
the convergence, for the electron mass limit, in O(c) for an asymptotic 
expansion of order zero, and, a convergence in 0(.>.2 ) for the quasineutral 
limit in case of an asymptotic expansion of order zero under a compati
bility condition. In (35], the asymptotic expansion is justified up to any 
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order for the zero electron mass limit and the zero relaxation time limit. 
In [40], the same result is obtained for the quasineutral limit without 
compatibility condition. 

Let us note that the asymptotic limits for the Euler-Poisson system 
have been studied by a lot of authors. In one-dimensional steady state 
Euler-Poisson system, the quasineutral limit was performed in [39] for 
well-prepared boundary data and in [33] for general boundary data. In 
[12], by using pseudo-differential techniques, the quasineutrallimit was 
studied for local smooth solutions of a one-dimensional and isothermal 
model for plasmas in which the electron density is described by the 
Maxwell-Boltzmann relation. This relation can be obtained in the zero 
electron mass limit of the Euler-Poisson equations which we will discuss 
below. See also [4] for the study of the quasineutrallimit in a semi-linear 
Poisson equation in which the Maxwell-Boltzmann relation is also used. 

The zero relaxation time limit in one-dimensional transient Euler
Poisson system has been investigated in [31] and [26, 27] by the com
pensated compactness arguments for global weak solutions. The limit 
system is governed by the classical drift-diffusion model. In multi
dimensional case and for local smooth solutions this limit has been stud
ied in [1]. 

From a numerical point of view, the hydrodynamic model has essen
tially been studied in its complete form with the energy balance equation. 
In [3] the authors provide numerical simulations and show that the model 
exhibits velocity overshoot. In [19] the authors propose numerical meth
ods of the hydrodynamic model and give numerical results of the ballistic 
diode. In [18], the author extends the simulations to the case of tran
sonic flow. There exists also a wide literature on the analysis and simu
lation of the drift-diffusion equations (see [2, 5, 6, 7, 10, 11, 25, 29, 38] 
and references therein). The steady-state drift-diffusion system, as the 
steady state Euler-Poisson model, is a fully nonlinear system which is 
frequently solved with a Gummel map method [24]. In [8] the authors 
propose iterative schemes to solve a system of linear partial differential 
equations for the electrostatic and velocity potentials and nonlinear alge
braic equation for the density instead of solving a fully nonlinear system 
of partial differential equations. They consider in their article also the 
case of the bi-polar system (which means that they consider the two 
species: electrons and ions). Particularly they can see numerically the 
smallness condition on the parameter e for the existence of solutions. 
They can also obtain some current-voltage characteristics and the case 
of a ballistic diode. 

In this paper we make a review of results of the steady state Euler
Poisson system for a potential flow obtained by the author and co
authors. Particularly we will present the construction and justification of 
an asymptotic expansion up to any order, and in the multi-dimensional 
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case, for the zero electron mass limit and the quasineutral limit. Let 
us note that for the quasineutral limit, we will consider a case without 
compatibility condition, which means that boundary layers can appear. 
These two results were the objects of two previous papers [35, 40] and 
will be here presented in Section 2. Moreover we will be interested in 
numerical simulation for systems (1.1)-(1.3). As mentioned above, in [8] 
the authors propose two numerical schemes of finite volume type with 
reconstruction of the gradient appearing in (1.2). We will present them 
in Section 3. 

2 Asymptotic limits 

In this section we are interested in two asymptotic limits: the zero elec
tron mass limit and the quasineutral limit. We will just give the main 
ideas of the results and we refer to [35] and [40] for more details. In all 
this section we take r = 1. 

First of all, as mentioned in the introduction, we complete the sys
tems (1.1)-(1.3) with Dirichlet type boundary conditions on the density 
and the velocity potential: 

n = nD, 1/J = 1/JD, on r. (2.1) 

By eliminating V of {1.2) and (1.3) and using (1.1) we have: 

d 
e '"' a,p a,p a2n e e 2 

-~h(n) +- Li - - -'\11/JS!n- -('\11/J.'\ln) n .. _
1 

axi ax; axiax; rn n2 
t,J-

e ~ a,p a2 ,p an 
+-Lia a a a+n-C(x)=Q(,P), 

n i,j=l Xi Xi Xj Xj 
(2.2) 

where Q is given by 

(2.3) 

For n > 0 it is easy to see that (n, 1/J, V) is a smooth solution to the 
systems (1.1)-(1.3) if and only if (n, 1/J) is a smooth solution to (1.1) and 
(2.2). Moreover, for 1/J given, equation (2.2) is elliptic if and only if the 
flow is subsonic, i.e., the condition I'\/1/JI < Jp'(n)/e holds. 

The first goal of this part is to construct asymptotic expansions in 
the case of the zero electron mass limit and the quasineutrallimit. The 
second one is to justify them, which means that we can obtain the ex
istence and uniqueness of each profile, and estimates of the difference 
between the exact solution and the asymptotic expansion. 
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2.1 Zero electron mass limit 

Here we are interested in the construction and justification of an asymp
totic expansion for the zero electron mass limit i.e. for e tends to zero. 
Then we assume in all this part >. = 1 and we note ( ne, 1/Je, Ve) the 
solution of {1.1)-(1.3) supplemented with the boundary conditions: 

(2.4) 

where nv~1 and 1/Jv~ 1 are smooth enough and defined inn such that 
nm+l = O(em+l) and vr+l = O(em+l) uniformly in e. 
D~ D~ 

Let us recall that for fixed£, the existence and uniqueness of solutions 
to the system have been already shown in the space 

for small boundary data [13] or on a smallness condition on e [34] which 
guarantee that the problem is located in the subsonic region. 

2.1.1 Construction of the asymptotic expansion 

Let us first explain how to derive the profile equations. We assume that: 

• (A1) 0 is a bounded and convex domain of m,d with r E C2•6, 
o E]0,1[, 

• (A2) p E Cm+4(ffi.+), mE IN, p'(n) > 0 'V n > 0, 

• (A3) C E L00 (0), 0 < C :$ C(x), 

• (A4) nk E W 2·q(O) for q > 1 ~6 and V 0 :$ k :$ m, 0 < !! :$ 
no(x) Vx E r, 

• (A5) 1$k E C2•6(fi), V 0 :$ k :$ m, 

• (A6) the sequence (e-(m+1lnv~ 1 )e>o is bounded in W2·q(O), 

• (A7) the sequence (e-(m+t)1/Jv~ 1 )0o is bounded in C2•6 (ri). 

Let (na,e, 1/Ja,e, Va,e) be defined by the following ansatz : 

na,E = ~::::eknk, 1/Ja,E = L:ek'I/Jk, Va,E = L:ek</>k inn, (2.5) 
k~O k~O k~O 

with the boundary conditions : 

on r. (2.6) 
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Plugging expression {2.5) into the systems {1.1)-{1.3), using the Taylor's 
formula to develop 

h(fu•'n•} 
and by identification of the power of c, we obtain the system for each 
(nk, '1/Jk, Vk), k ;::: 0. More precisely, the first order (no, '1/Jo, Vo) satisfies 
the nonlinear problem in n: 

-div(noV'If;o) = 0, 

h(no) = Vo, 

-LlVo = C(x)- no, 

with the following boundary conditions : 

no =no, '1/Jo = 1$o on r. 

{2.7) 

{2.8) 

{2.9) 

(2.10) 

For all k ;::: 1, (nk, '1/Jk, Vk) is obtained by induction on kin the following 
linear problem in n: 

k 

-div{noV'I/Jk) = Ldiv(niV'I/Jk-i), 
i=1 

-LlVk = -nk, 

with the boundary conditions : 

where 

{2.11) 

(2.12) 

{2.13) 

(2.14) 

1 k-1 -

!k = '1/Jk-1 - 2 L V'I/Jk-1-i·V'I/Ji- hk((ni)o~i$k-1)· (2.15) 
i=O 

Remark 2.1. Equation {2.8) expresses a Maxwell-Boltzmann type rela
tion. Indeed for the isothermal plasma, the pressure is a linear function. 
Then p(n) = a2n with a> 0. This implies from the definition of h that 
h(n) = a2 logn and hence, from {2.8) no= exp(V0 ja2). This is the clas
sical Maxwell-Boltzmann relation which has been used in [4, 12, 37] for 
the study of the quasineutrallimit. 
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2.1.2 Justification of the asymptotic expansion 

To justify the asymptotic expansion there are two necessary steps. First, 
we have to show that each profile exists and is unique. Then we have to 
obtain estimates for the difference between the exact solution and the 
asymptotic expansion in the good spaces. 

Using classical results we can prove 

Theorem 2.2. Let assumptions {A1}-{A5) hold. The problem (2.7)
(2.10) has a unique solution (no,'I/Jo, V0) in W 2·q(O) x C2•6(fi) x C1•6(0) 
which satisfies 

no(x) ~ min(C,n) > 0, 'Vx E 0. 

We refer to [35] for the details of proof. Considering now the problem 
(2.11)-(2.14), we can prove by induction on k that it has also a unique 
solution 

Theorem 2.3. Let assumptions {A1}-{A5) hold and 1 ~ k ~ m. The 
problem (2.11)-(2.14) has a unique solution (nk, 1/Jk, Vk) in W 2•q(O) x 
C2•6(0) X C1•6(0). 

We refer again to [35] for more details on proof. The two theorems 
2.2 and 2.3 give immediately 

Theorem 2.4. Let m E lN and assumptions (A1)-{A5) hold. Then 
there exists a unique asymptotic expansion (2.5) up to order m, i.e., for 
all 0 ~ k ~ m, there exists a unique profile (nk, 1/Jk, Vk) E B, solution to 
the problem (2.7)-(2.10) of k = 0 or (2.11}-(2.14) if 1 ~ k ~ m. 

It remains now obtaining estimates for the difference between a se
quence of exact solution and the asymptotic expansion. Let ( nE, 1/JE, Ve) 
be a smooth solution of (1.1)-(1.3) and (2.4) and (n~E' 1/J~E' Va~) be 
approximate solution of order m defined by 

m m 

1/.1-:,E = L ek'I/Jk, v~ = :EekVk, (2.16) 
k=O k=O 

where (nk, 1/Jk, Vk)09:5m is the unique solution of (2,7)-(2.10) fork= 0 
and (2.11)-(2.14) for 1 ~ k ~ m. In [35] it is shown that 

Theorem 2.5. Let (nE, 1/JE, Ve) be the solution of the systems (1.1}-(1.3) 
and (2.4) and (n~E.'I/J~E' Va~) be the approximate solution given by the 
asymptotic expansion (2.16). Let assumptions {Al)-(A 7} hold. Then 
there exists eo > 0 such that for all e E (0, eo], we have the following 
estimates 

linE - n:,EIIw2,q(n) ~ A1em+1, 111/JE -1/.1-:,E llc2.6(fi) ~ A1em+1, (2.17) 

liVe- V~llc1,6(!l) ~ A1em+l, 
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where A1 > 0 is a constant independent of e. 

Here we give only the main steps of the proof of Theorem 2.4 and we 
refer one more time to (35] for more details. 

The first step consists in obtaining the system satisfied by the ap
proximate solution (n:::e, 1/J:::e, Va~). To this end we use the problems 
satisfied by each profile of the asymptotic expansion. Then we subtract 
the systems verified by the exact solution and the approximate solution 
to obtain 

-div(ne 'V'l/Je) + div(n:;:e '\71/J:,e) = em+l Df, (2.18) 

~(IV'1/Jel 2 -I'V'l/J:,el2 )+h(ne)-h(n:;:e) = Ve- Va':!:+e('l/Je-1/J:,e)+em+l D~, 
(2.19) 

-~(Ve - Va':!:) = -(ne- n:;:e), (2.20) 

and 
(2.21) 

where 
2m m 

Di = L (ek-m-l L div(ni'\71/Jk-i)), 
k=m+l i=k-m 

1 
2m m 

D~=-2 L(ek-m L '\71/Ji.'\71/Jk-i) -re(n)+'l/Jm, 
k=m i=k-m 

and 
1 dffl+lh(nm ) 

re(n) = (m + 1)! d,em+la,~ with~ E [O,e]. 

We eliminate first Ve- Va~ to obtain an elliptic nonlinear system satisfied 
by (ne-n:::e, 1/Je-1/J:::e)· Using different lemmas and uniform boundedness 
of the sequence of solution (ne, 1/Je, Ve), we can show the estimates (2.17) 
for (ne - n:::e, 1/Je - 1/J:::e)· Then, using (2.19), we obtain easily the last 
estimate of (2.17) for Ve - Va~. 

Remark 2.6. Here, this kind of proof is possible only due to the fact 
that we have already existence, uniqueness and uniform boundedness 
of a sequence of solution to the problem (1.1)-(1.3) and (2.1) thanks to 
(34]. In the following section for the quasineutrallimit, the situation will 
be very different, since without compatibility condition, we don't have 
anymore existence of solutions for the problem (1.1)-(1.3) and (2.1). 

Remark 2. 7. In a same way, it is shown in (35] that there exists an 
analogous result for the zero relaxation time limit. Moreover, as an 
application of Theorem 2.4 here and Theorem 4.2 in (35], when the 
boundary data are compatible with the function C, it is possible to 
obtain the convergence to the incompressible Euler equations via the 
zero electron mass limit and the zero relaxation time limit. 
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2.2 Quasineutrallimit 

Here we are interested in the construction and justification of an asymp
totic expansion for the quasineutral limit, i.e. >. tends to zero, without 
compatibility condition which means that boundary layers can appear. 
Indeed, if we formally take >. = 0 in {1.3) and {2.1) we obtain 

C(x) = n(x), in n and n = nD on r. 

Then, if nD f Con r some boundary layers appear. 
In all the section we keep c > 0 as a small parameter independent 

of>. in the equations and we note (n>., 1/J>., V>.) a solution of {1.1)-{1.3) 
supplemented with the boundary conditions 

m m 

n>. = L >.inb + nv,>.· 1/J>. = L >.i?J?D + 1/Jv,>.· on r, (2.22) 
j=O j=O 

where nv,>. and 1/Jv,>. are smooth enough and defined on n. Let us note 
that here since we consider the case without compatibility condition, we 
don't have existence and uniqueness of solution to {1.1)-(1.3) and (2.22) 
contrary to the previous. We will see later that it is important to keep 
c in the equations since the ellipticity of the system would be equivalent 
to a smallness condition on c as before. 

2.2.1 Construction of the asymptotic expansion 

Let us first explain how to construct the asymptotic expansion. The 
method used here is the one presented in [36]. We assume that: 

• {H1) C E 0 00 (0), 0 < 11 ~ C(x) ~ n, x E fi, n, n E JR, 

• {H2) nb E C00 (0) for 0 $ j ~ m, 

• (H3) ?J?D E C2•5(0) for 0 ~ j ~ m, 

• (H4) n'b(x) = C(x), nb(x) = 0, x E fi, 
• (H5) (.x-m- 1nv,>.h>o is bounded in W 2·q(n), q > ~. 8 E {0, 1), 

• (H6) (>.-m+11/JL),>.h>o is bounded in C2•5 (0). 

Remark 2.8. The assumption {H4) is a compatibility condition for the 
first and second order terms. It assures that any boundary layers will not 
appear in these two terms. The case without compatibility conditions 
presents some difficulties in which we didn't succeed in the study [40]. 
We will give more details on it below. 

Here due to the boundary layers, we have to construct an asymptotic 
expansion including an internal expansion and an external expansion. 
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Internal expansion Let 

n(x) = LAknk(x); '1/J(x) = LAk'I/Jk(x); V(x) = LAkVk(x). 
k~O k~O k~O 

Plugging this into (1.1)-(1.3), using the same method as in the previous 
section, and by identification of the power of A, we obtain the problems 
satisfied by (nk, '1/Jk, Vk) for all k. More precisely 

and for all k ;::: 2 

k 

Vo = -~IV'I/Jol2 - h(no) + e'I/Jo, 

div(no V'I/Jo) = 0, 

no= C(x), 

V1 = -e\7'1/Jo.V'I/Jl - h'(no)nl + e'I/J1, 

-div(n0V'I/Jt) = div(n1 \7'1/Jo), 

n1 = 0, 

(2.23) 

(2.24) 

(2.25) 

(2.26) 

(2.27) 

(2.28) 

vk = -~ L \7'1/Ji.\7'1/Jk-i- h'(no)nk- iik((ni)O~i::;k-d + e'I/JJ(2.29) 
i=O 

k 

-div(no \7'1/Jk) = L div(ni \7'1/Jk-i), 
i=l 

nk = AVk-2• 

where hk is smooth and h1 = 0 (see [35]). 

(2.30) 

(2.31) 

All the profiles (nk, '1/Jk, Vk) can be determined to become uniquely 
and sufficiently smooth by induction on k with boundary conditions 
given later. Then the internal expansion is constructed. Form ;::: 2 let 
us denote 

m m m 

n7,m = L Aknki 'I/J7,m = L Ak'I/Jki Vr~m = L AkVk· 
k=O k=O k=O 

By construction, it is easy to see that if (nk, '1/Jk, Vk) are smooth enough, 
then the error equations are of order O(,\m+1). Since nk = AVk_2, for 
k ;::: 2, and is not necessarily equal to nt on r, a boundary layer can 
appear. 

External expansion We follow the notations in [40). For x E 0, we 
note t(x) the distance from r to x and s(x) the point of r nearest to x. 
For () > 0, let Oe be the boundary layer of size () : 

Oe={xEO;Ix-yi<O, yEr}. 
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If(} is small enough, s(x) is defined uniquely for all x E S'le. In S'le, we 
define the fast variable by ~(x, >.) = t(x)j>.. For x E Oe, let v(x) = 
(v1, ... , vd) the unit interior-directional normal vector of r passing from 
x. Then from: 

t(x) = llx- s(x)ll, x- s(x) = t(x)v(x), 

and due to the fact that for all i = 1, ... , d, as(x)jaxi is orthogonal to 
v(x), it is easy to see that Vxt = v(x). Hence the partial derivative of a 
function w( s( x), ~ ( x, >.)) may be decomposed as : 

aw(s(x),~(x,>.)) _ ,_1 _aw D· 
axi - A V, a~ + ,W, (2.32) 

where Di is a first order differential operator in s defined by : Diw = 
"Vsw·/t· Similarly: 

a2w(s(x),~(x,>.)) -2 a2w -1 aw a2s 
axiaXj = >. Vi a~2 + >. Dji a~ + DjDiw + "VsW· axiaXj' 

(2.33) 
where Dii = viDi + viDi + avdaxi. Note that for all i, j we have : 
Dii = Dii· 

For each function w(x) defined in S'le the equivalent function of (s, t) is 
denoted by w i.e. w(x) = w(s(x), t(x)) = w(s(x), >.~(x, >.)). We develop 
w(s(x), >.~(x, >.)) formally to obtain 

w(s(x), >.~(x, >.)) = w(s(x), 0) + 0(>.). 

Let w(s) = w(s, 0). Then the ansatz of an approximate solution up to 
order m of (1.1)-(1.3) in S'le is given by 

n!,m(x) = nJ,m(x) + n~,m(s(x),~(x, >.)), 

tb~ m(x) = '1/Jf m(x) + {b~ m(s(x), ~(x, >.)), 
' ' ' 

- .>. .>. - .>. va m(x) =VI m(x) +VB m(s(x),~(x, >.)); 
' ' ' 

where the boundary layers (ii~,m,tb~,m•4>~,m) have the expansion: 

m m+1 m 
-.>. ""'\k b .7..>. ""' ,k.t,b TTA ""'\kv;b 
nB,m = L....,A nk, '+'B,m = L...., A '+'k• YB,m = L....,A k• 

k=O k=O k=O 

in which each term (nt(s,~),'I/Jt(s,~), v:(s,~)) will be chosen to decay 
exponentially when ~ tends to +oo. They are determined by setting 
(ii~,m• tb~,m• Va~m) in (1.1)-(1.3) and identification of the power of>.. Let 

a;av = I:t=1 viajaxi. After computation we obtain 

'1/J~ ::::0, 
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_ b <P'l/Jt ( a?jjo 8'1/Jt) an~ _ 
(no +no) ae2 + 8v + ae ae -0, 

b 2 b -
c: (81f;1) 81f;1 8'1/Jo (- b) Trb V ';;/, (So) 2 ae + e ae av + h no +no - Yo = 0 + C'f'O• 

82VJ- b 
ae2 -no, 

and fork;::: 1: 
b b -

c: 8'1/Jk+l (8'1/J1 + 8'1/Jo) + h'(n + nb)nb _ v;b 
ae ae 8v 0 0 k k 

= Fl.k(nf,'l/Jf+l,o ~ l ~ k -1), 

_ b 82'1/J~+l (87jj0 8'1/Jt) 8n~ b 8
2

'1/Jt 
(Sk) (no+ no) ae2 + 8v + ae ae + nk ae2 

8n~ 8'1/J~+l b b ) + ae ~ = F2,k(n1 ,'1f;1+1,0 ~ l ~ k -1, 

a2v: b b ) 
- ae + nk = F3,k (Vi , k - 1 ~ l ~ k - 2 , 

where Fi,k, i = 1, 2, 3, are given functions of (nf, 1f;f+l)099-l for F1,k, 
F2,k, and of (Vib)k-199-2 for F3,k· 

Hence the approximate solution is constructed in 08. To complete 
the definition of the approximate solution in 0, let u E C00 (0,oo) be a 
smooth function such that u(t) = 1 for 0 ~ t ~ 9/2 and u = 0 fort;:::() 
and (n1, m(x), '1f;1, m(x), v; m(x)) defined by 

' ' ' 

{ 

(n~,m(s(x), t(x )/ >.), -rP~,m (s(x)t(x )/ >.), v;,m (s(x)t(x )/ >.) )u(t(x)), 

for x E 08, 

0, for X E 0 - 08. 

A A A A -A -A Then, (nB,m• '1/JB,m• VB,m) has the same regularity as (nB,m• '1/JB,m• VB,m)· 
For (nt(s, e), 1/J~(s, e), v:(s, e)) decreasing exponentially when e tends to 
+oo, it is easy to see that the difference between (n~,m• 1/J1,,m, v;,m) and 
(n1,,m, -rP~,m' v;,m) is uniform of order of e-JJ./A for a constant J.L > 0. 

Finally, the boundary conditions (2.22) give for s E r : 

no= n'b, n1 = nb, n~(s, 0) = nt(s, 0) = 0, Tik(s) + nt(s, 0) = n1,, k;::: 2, 
{2.34) 

'1/Jo = '1/J'b, 1/J1 = 1/Jb, 1/J2 = '1/Jb, 
'1/Jt(s, 0) = '1/J~(s, 0) = 0, ?jjk(s) + '1/J~(s, 0) = '1/J'D, k;::: 3. {2.35) 

We refer to [36] for the scheme of determination of (nk, '1/Jk, Vk, nt, 
1/J~+l' v:). 



Some Results of the Euler-Poisson System 

Remark 2.9. Due to the assumption (H4), 

b - b - .J,b - .J,b - 0 no - n1 - 'f'l - '1'2 - • 
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This means that there are no boundary layers terms of order zero and 
one for the density and zero, one and two for the velocity potential. 

The approximate solution up to order m is now constructed in the 
form: 

m 

n~ =no+ L .Xi(ni + n~), 
j=2 

m 

(2.37) 

'1/J~ = '1/Jo + .X'rf;1 + .X2'1/J2 + L _xi ('1/Jj + '1/JJ) + _xm+l'rf;~+l· (2.38) 
j=3 

2.2.2 Justification of the asymptotic expansion 

To justify one more time the asymptotic expansion, we have to prove the 
existence and uniqueness of each profile and to obtain some estimates for 
the difference between the exact solution and the approximate solution. 
Moreover, here, since we consider the case where boundary layers can 
appear, we have also to prove existence of solutions to the problems 
(1.1)-(1.3) and (2.22). We will give here only the results and we refer to 
[40] for more details. 

Theorem 2.10. Under the assumptions {H1}-(H6}, there exists a unique 
asymptotic expansion (2.36) up to order m, sufficiently smooth satisfying 
(2.37) -(2.38). 

We have already seen that (1.1)-(1.3) and (2.22) are equivalent to 
(1.1), (2.2) and (2.22). Then 

Theorem 2.11. Let the assumptions {H1}-{H6} hold. For .X is small 
enough there is an eo > 0 independent of .X such that for all e E [0, eo], the 
problems (1.1), (2.2), (2.22) have a unique solution (n>., '1/J>.) in W 2•q(O)x 
C2·6 (0) which satisfy 

(2.39) 

where A is a constant independent of .X. 
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Remark 2.12. Using equation (1.2), the continuity of h and estimates 
(2.39), we can easily obtain, for .A is small enough 

II VA-- Vtllcl,6(0) :::; A.Am-l, 

where A is a constant independent of .A. 

The proof of Theorem 2.11 is long and complicated and we refer to 
[40) for details. Let us just mention that the main idea is to search a 
solution under the form 

nA = n~ + ,xm-lrA, '1/JA = '1/J~ + ,xm-lPA· 

Then we consider the problem verified by rA and PA· It is clear that if we 
obtain the existence and the boundedness of rA and pA we immediately 
have the result of Theorem 2.11. The problem for rA andpA is a nonlinear 
elliptic problem. To solve it, we use the Schauder fixed point theorem, in 
which, to obtain the existence, uniqueness and boundedness of solution 
for the linearized problem, we use another fixed point theorem: the 
Leray-Schauder fixed point theorem. 

3 Numerical simulations 

In this section we construct numerical schemes to the systems ( 1.1 )
(1.3). As seen before, from a theoritical point of view, to study these 
systems one uses (1.1) and (1.3) to eliminate V in (1.2) to obtain a 
system of two equations of unknowns ( n, '1/J), supplemented with Dirichlet 
boundary conditions. Recall that the resulting equation for n, equation 
(2.2), is elliptic if and only if the flow is subsonic which corresponds to 
a smallness condition on the data or on the parameter E. When ( n, '1/J) 
are solved one obtains easily V from (1.2). However, equation (2.2) 
is fully nonlinear and coupled to '1/J till its second derivatives, so that 
the numerical discretization is not an easy task. Let us now recall the 
systems (1.1)-(1.3): 

-div(n'V'I/J) = 0, 

~I'V'I/JI 2 + h(n) = V + E'I/J, 
2 T 

-.A2~V=n-C, EO. 

(3.1) 

(3.2) 

(3.3) 

The first and last equations are linear with ( '1/J, V) and the second one is 
nonlinear only algebraically with n. This motivates us to make the fol
lowing iterative scheme: for a given n m ( m ~ 0), we first solve ( '1/Jm, vm) 
by: 

-div(nm'V'I/Jm) = 0, 

-~Vm=C-nm, inn, 

(3.4) 

(3.5) 
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subject to mixed Dirichlet-Neumann boundary conditions: 

vm = v, '1/Jm = 1j), on rv, 
'VVm.V = 'V'!f;m.V = 0, on rN, 

where V is the unit outward normal to r = r D U r N. 
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(3.6) 
{3.7) 

Remark 3.1. Let us note that these boundary conditions are physically 
motivated in the case of a semiconductor. However,usually, for a semi
conductor the boundary conditions are given for the electrostatic poten
tial and the electron density. But, since here we need some boundary 
conditions on 'If; and not on n, we choose 

-def -
'If; = (h(nv)- V)fe. (3.8) 

With such boundary conditions we are able to obtain Dirichlet type 
boundary conditions for non rv (see Remark 2.1 in [8] for more details). 

Then, nm+l is computed with the algebraic equation 

{3.9) 

Equations {3.4) and {3.5) are of elliptic type (provided that n remains 
positive). There are several numerical methods to solve them. In [8], 
we choose to use two finite volume schemes. The first scheme is "clas
sical" with a two-point discretization of the fluxes through the edges, 
see (15]. It leads to piecewise constant approximate solutions and needs 
to be completed by a reconstruction of the gradients 'V'If;m, necessary 
for the computation of nm+l in (3.9). The second scheme is of mixed 
finite volume type as introduced in (14], in which the construction of the 
gradients is intrinsic. Here we will only present the first scheme and we 
refer to (8] for details on the second scheme. Let us just mention that 
the results obtained with each scheme are really similar. Our first goal 
in this study is to see numerically the necessary smallness condition on e 
for the existence of solutions. But our schemes can also be used to obtain 
the current-voltage characteristics or to simulate a ballistic diode. 

3.1 Mesh and notations 

Let us first of all introduce some notations useful in the presentation of 
the schemes. It concerns the mesh, the initial and boundary data. 

A mesh of 0 is given by a family T of control volumes (open polygonal 
convex disjoint subsets of 0), a family £ of edges in 2-d {faces in 3-d) 
and a set p of points of n indexed by T : p = (XK )KeT. For a control 
volume K E T we denote by m(K) the measure of K and £K the set 
of edges of K. The {d-1)-dimensional measure of an edge u is denoted 
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m(u). In the case where u E e such that 7f = Kni with K and L being 
two neighboring cells, we note u = KIL. 

The set of interior (resp. boundary) edges is denoted by eint (resp. 
eezt), that is eint = {u E e;u C/. an} (resp. eeo:t = {u E e;u Can}). 
We note e'j)t (resp. ej;t) the set of 0' c r D (resp. 0' c r N ). For all 
K E T, we note e'jr = eK n eezt, e'ff.k: (resp. ejt,k:) the edges of K 
included in r D ( resp. r N), and ej<t = e K n eint. Finally, for 0' E e K, we 
denote by x, its barycenter and by VK,u the exterior unit normal vector 
to u. 

Given an initial datum n° and boundary data V, tp, their approxi
mations on each control volume or on each boundary edge are denoted 
by 

o 1 r o 
nK = m(K) JK n, 

- 1 1-Vu = m(u) u V, 

- 1 1-
1/Ju = m(u) u 1/J. 

We also set 

f m-c m K- K -nK, with CK = mtK) L C. 

3.2 Classical finite volume scheme (VF4-scheme) 

Now we are able to present the classical finite volume scheme used in [8] 
to solve the problem (3.1)-(3.3). 

Let us consider an admissible mesh of n given by T, e and P which 
satisfy Definition 3.8 in [15]. We recall that the admissibility ofT implies 
that the straight line between two neighboring centers of cells (xK, XL) is 
orthogonal to the edge u = KIL. Finally, let us define the transmissibility 
coefficients: 

Tu = 

and the size of the mesh: 

H = max diam(K). 
KET 

m(u) 
d(xK,r) 

if 0' E eeo:t 
K> 

(3.10) 

(3.11) 

In all the sequel, we assume that the points XK are located inside each 
control volume. Let (Vi()KeT and (1/JJ()KeT be the discrete unknowns. 
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A finite volume scheme to the mixed Dirichlet-Neumann problem (3.4)
(3. 7) is defined by the following set of equations (see [15]) : 

where 

- L dVK,u = m(K)ff<, 
uE&K 

- L n';'d?/Ji(,u = 0, 
uE&K 

{ 

Tu(VJ:- Vi("), a= KIL, 

dVJ(';CT = Tu(V CT -Vi("), a E £_D,k, 
0, a E £Jt,k, 

(3.12) 

(3.13) 

The quantities dVjf u and d'l/lj( u are the approximations of the fluxes 
through each edge f~r each function, i.e. 

dVJ(';u ~ i \7Vm 'VK,u and d?/JK,u ~ i \71/Jm 'VK,u· 

For given nm, since equations (3.4)-(3.5) are linear, we obtain the 
piecewise constant functions 1/Jm and vm, unique solution of (3.12)
(3.13). Then we need to define the gradient of 1/Jm. Therefore, we use the 
reconstruction proposed in [16]; the approximate gradient is a piecewise 
constant function, defined on each control volume by 

wj( = m/K) L d?/J'K,u(Xu- XK), VK E T. 
uE&K 

Finally, from (3.2) we obtain the piecewise constant function nm+l by: 

(3.14) 

with h-1 being the inverse function of h (see [8] for a discussion on the 
invertibility of h). 
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3.3 Numerical results 

In [8] the numerical simulations are performed in two space dimensions 
by taking the domain n = [0, 1] X [0, 1]. A point X of n is denoted by its 
coordinates X = (x1, X2) and then the boundary r = r N U r D is defined 
by rN = {(x1,x2),x1 E (0, 1],x2 E {0, 1}} and rv = rv,! Urv,r with 

rv,l = {(xl,X2),xl = O,x2 E [0, 1]}, 

rv,r = {(xl,X2),xl = 1,X2 E [0, 1]}. 

The considered pressure functions are p( s) = s-r with 'Y = 1 or 5/3, which 
implies for the enthalpy : 

if 'Y = 1, 

{

ln(s), 

h(s) = ~(s2/3- 1), if 'Y = 5/3. 

For the case 'Y = 5/3, the inverse function of h is defined on allJR by 
setting 

h-l(t) = { (~t + 1) 
312

, if t > -5/2, 

0, else. 

We refer again to [8] for more details. In all the simulations, the used 
mesh is a triangular mesh of size 5 x 10-2 and the accuracy of the 
numerical results is defined as the difference between nm and nm+l in 
£ 2(0) or L00 (0) norm. For results of the validity of the schemes, on the 
bipolar case, we refer one more time to [8]. Here we present the obtained 
results of a ballistic diode using either the VF4-scheme or the mixed finite 
volume scheme (DE-scheme) since they are always very similar. 

A ballistic diode is a semiconductor which consists of a weakly doped 
n-region S between two highly doped n+ -regions n; S. It corresponds to 
the unipolar case since in such devices the charge transport is only due 
to electrons. In [8] the numerical solution of the systems (3.1}-(3.3) is 
computed with the doping profile 

C(x) = ' { 

10-3 

1, 

if (x1,X2) E 8 = (1/6,5/6] X (0,1], 

else. 

The considered boundary conditions for the electrostatic potential are 
the following 

ym = 0, on rv,! and ym = u, on rv,r, m ~ 0, (3.15) 
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where U is a given applied voltage. Two kinds of boundary conditions 
are considered for the velocity potential. First the authors consider the 
following one: 

1/Jm = 0, on rv,t and 1/Jm = -U, on rv,r, m 2:: 0. (3.16) 

For different values of 'Y, U and e, the numerical solutions of the elec
tron density, velocity potential and electrostatic potential are calculated. 
Note that the smallness condition one, for boundary conditions inde
pendent of e (see [34]), which ensures the strict ellipticity of the system, 
appears clearly in the numerical simulations. Indeed, when e is not small 
enough, the gradient of the velocity potential becomes more and more 
larger in the iteration. Moreover, due to the negative sign before IV1/J~I 2 

in the formula (3.14), the condition n > 0 is not numerically satisfied 
and the matrix involved in the computation of 1/Jm becomes singular. A 
numerical example in this case is given in Figure 3.1 (the computation 
is stopped after 4 iterations). 

Electron density Velocity potential 

2.5, 

0 0 o.2 0.4 o.s o.e 

Electrostatic potential 

Figure 3.1 Case-y= 1, U = 2, e = 0.6. 

In the case 'Y = 5/3, due to the definition of the inverse function of h, 
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U should satisfy U > -5/2. Indeed, fore is small enough, n;;+l is nearly 
given by h- 1(V.K) according to (3.14). If¢}( :::; -5/2, then h-1{V.K) = 0 
and n;;+l ~ 0, so that the matrix involved in the computation of 'lj;m+l 
becomes singular. 

Note that the usual boundary conditions used for a ballistic diode are 
on V and n instead of 'If; and in general we choose n = nv = C(x) = 1 
on rv (see Remark 2.6). Since h(1) = 0 by definition, from (3.8) we 
deduce the following boundary conditions on 'lj;: 

'!f;m = 0, on rv,t and '!f;m = -Ufe, on rv,r, m 2: 0. (3.17) 

For such boundary conditions, the ellipticity condition depends on the 
ratio of U and ..,re and not only on e. This ratio has to be small enough 
to ensure the ellipticity condition (which remains ensuring that we are 
in the subsonic region). In Figure 3.2 we show the obtained solution for 
e = 0.6 and U = 0.1 with the DE-scheme. The required accuracy is 
of order w-7 in V'0 (f2) norm for stopping the iterations (the iteration 
number is 8). 

0.98, 

0.96i 

0.94, 

0.92 

0.9~ 

Electron density 

0~~"",----.,-, -------.----~~-o:;--'1 
0 0.2 0.4 0.6 

Electrostatic potential 

0.2 0.4 0.6 0.8 

I 
-() 1 ~ 

I 

Velocity potential 

-().15\ 
-()_2 

1 

0.5 
0~,-~-~----.,--~0~8~ 

0 0.2 0.4 0.6 . 

Electron velocity 

0. 175~ 

0 0 0.2 0.4 0.6 0.8 

Figure 3.2 Case "Y = 1, U = 0.1, e = 0.6 for a ballistic diode. 
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Let us now present the current-voltage characteristics for the bound
ary conditions (3.15) and (3.17). By definition of rN, the second co
ordinate of the electron current density is vanishing. Then, the prob
lem is reduced to a one-dimensional case and the first coordinate of 
the electron current density is constant in the device. To obtain the 
current-voltage characteristics, we compute the electron current density 
on each control volume and we take the average of these values. Here 
by definition of the boundary conditions on '¢, the ellipticity condition 
is satisfied when lUI/ .,fi is strictly less than 1. Then for c = 1 we choose 
-0.83 :5 U :5 0.83 and for c = 0.6, - 0.66 :5 U :5 0.66. We show the 
results in Figure 3.3. The required accuracy in V"'(O) norm for stopping 
the iterations is 10-7 and we still present the results of the DE-scheme. 

Case e = 1, - 0.83 ~ U ~ 0.83 
06 

04 

~ 02 
"' c 
-8 0 

~ -o2 

"' 0 -o4 

-os 

---·-- -~--~ 

-o~~---o~5--~o~--7o~5--~ 

Applied voltage 

Case e = 0.6, - 0.66 ~ U ~ 0.66 
1.--~~---

1 
I 

=lie -os -o4 -o2 o 02 04 os oe 
Applied voltage 

Figure 3.3 Current-voltage characteristics for different values of e when the consid
ered boundary conditions on t/.1 depend on e. 

In conclusion, in [8], two kinds of finite volume schemes for the numer
ical approximation of the steady state Euler-Poisson system for potential 
flows are proposed. Both schemes give similar results of different test 
cases with similar times computation. They permit to show the impor
tance of the smallness of c and the boundary data for the ellipticity of 
the system. 

The VF4-scheme is a bit simpler to implement but it only works on 
admissible meshes, whereas the DE-scheme enables to treat very general 
meshes. 
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Abstract 

This note is devoted to the study of the asymptotic behavior 
of discontinuous solutions to the Cauchy problem for linear and 
semilinear thermoelastic equations with second sound and variable 
coefficients in one space variable. When the relaxation parameter 
tends to zero, we obtain that the jump of temperature vanishes 
while jumps of elastic waves and heat flux are propagated in the 
speed of elastic waves. Furthermore, it is observed that these 
jumps decay exponentially when the time goes to infinity, and the 
decay rates depend on not only the growth rate of the nonlinear 
source terms and heat conduction coefficient, but also the change 
rates of variable speed of elastic waves. 

1 Introduction 

213 

Thermoelastic equations describe the elastic and thermal behavior of 
elastic heat conductive media. The classical equations in thermoelastic
ity, based on the Fourier law for heat conduction, are of a hyperbolic
parabolic coupled type ([1, 5]). After introducing a microlocally decou
pling idea in [11], there already have been some interesting results of the 
propagation of singularities in hyperbolic-parabolic coupled systems of 
thermoelasticity (c.f. [11, 3, 9, 12] and references therein). When the 
Fourier law is replaced by the Cattaneo law for the heat conduction, the 
thermoelastic system becomes purely hyperbolic, which shows that the 
thermal disturbance is transmitted as a "wave-like" pulse with a finite 
speed ([2, 4]). This kind of equation is the so-called thermoelastic sys
tem with second sound. Tarabek in [10] first studied the existence of 

*The authors are partly supported by the NSF of China (No. 10531020; No 
10676020). 
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smooth solutions to linear thermoelastic equations with second sound in 
one space variable, and recently Racke and Wang in [8] have obtained 
the well-posedness of its nonlinear problems. 

The semilinear version of thermoelastic equations with second sound 
in one space variable is as follows: 

{ 

Utt - et2Uzz + f3(}z = f( U, Uz, Ut, (}) 

Ot + 'YQz + dUt:z; = g(u, Uz, Ut, 0) 

TQt + q + K.Oz = 0 

(1.1) 

where u, (} and q denote the displacement, temperature and heat flux 
respectively, all coefficients in ( 1.1) are supposed to be smooth functions 
of (t,x) E [O,oo) x IR with a~ ao > 0, {315 > 0, T > 0 and K.')' ~ ao > 0 
for a constant ao > 0. 

Obviously, equations (1.1) are strictly hyperbolic, and when the re
laxation parameter r goes to zero, they formally converge to the classical 
thermoelastic equations of hyperbolic-parabolic coupled type. So, one 
approach to study the behavior of discontinuous solutions to problems 
for the classical thermoelastic equations of hyperbolic-parabolic type is 
to investigate the asymptotic behavior of discontinuities as T vanishes 
for problems of the thermoelastic equations {1.1). This was first studied 
by Racke and Wang in [6, 7] for the linear and semilinear thermoelastic 
equations with second sound and constant coefficients in one and three 
space variables. In this note, we study this problem for equations with 
variable coefficients in one space variable. The goal is to investigate the 
influence of coefficients on the behavior of discontinuities. This obser
vation shall be also helpful to studying fully nonlinear problems, which 
will be considered in a forth coming work. An interesting phenomenon is 
observed that the change rate of the variable speed of elastic waves has 
an explicit influence on the decay of the discontinuities of elastic waves 
and heat flux. 

In §2, we shall present some preliminary facts of equations {1.1). The 
linear and semilinear problems for (1.1) with discontinuous initial data 
will be studied in §3 and §4 respectively. 

2 Preliminaries 

In this section, let us first state some elementary facts related to equa
tions {1.1). Some of them had been given similarly in [6], so we shall 
only give their main steps of calculations for completeness. 
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Denote by 

( :~J (Ut ~ auxJ 
U '~ ~: ~ u, : au, . 

From (1.1), we know that U(t,x) satisfies the following equations 

8tU + B18xU + BoU = F(U) 

where F(U) = (0,/,/,g,O)T, 

and 

(

0 0 0 0 OJ 0 -a 0 (3 0 
B 1 := 0 0 a (3 0 , 

o§.§.o"' 2 2 I 

0 0 0 ~ 0 

(

0 _! _! 0 OJ 0 aa,. ~a, a, -Ja;; 0 0 
B ·- 0 a,iga;; - a,2taa;; 0 0 

0 ·- 2a 2a · 
0 0 0 0 0 

0 0 0 0 * 
It is easy to know ([6]) that the eigenvalues of B1 are 

( of3 2 
Al = 0, A2,3 ==Fa 1- 2/I:'Y r)+O(r ), 

(2.1) 

(2.2) 

Denote by rk and lk the right and left eigenvectors of B1 with respect 
to Ak for 1 ~ k ~ 5, i.e. (..Xk · Id- B1)rk = lk(Ak · Id- B1) = 0. As in 
[6], we have h = rf = (1,0,0,0,0), 

0 0 

,r,~(+J 1 >.a-a 

>.a+a >.a+a 

r2 = >.a-a 'rg = 1 fork= 4,5, 
~ >.a-a 

{3 {3 
~t~>.a+a) ~t(>.a-a) 

T{j>.a T{3>.a TAk 
{2.4) 

and 

l _ (o >.a-a 1 2(>.'ra) 2-y(>.a-a)) 
3 - Cg • >.3+a' ' ' >.a8 (2.5) 

lk = Ck ( 0, 2(>.:+a), 2(>.:-a), 1, ?; ) fork= 4, 5 
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with constants { Ck H=2 satisfying the normalization 

{ 

1, j = k 
l·rk = O·k = 
J J 0, j =1- k. 

By a simple computation, one can choose 

1 1 
c2 = 1+0(r), ca = 1+0(r), C4 = 

2
+0(r), cs = 2+0(r) (2.6) 

in (2.5). 
Denote by 

L '~ (jJ R '~ (r,,r,,r,,r,,r,). 

From (2.2), we know that V = L · U satisfies 

8tV + A8:cV + B0V = F(V) (2.7) 

where 

and 
(2.8) 

Denote by {Ej }J=1 characteristic curves of the operator 8t + A8:c 
passing the origin {t = x = 0}, i.e. Ej = {x = 'YJ(t)} with 'YJ(t) 
satisfying 

Denote by 

[u]E;(t*,x*) = lim u(t,x)- lim u(t,x) 
(t,z:)-+(t• ,z•) (t,z)-(t• ,z•) 

=>-r;(t) =<-r;(t) 

the jump of u at ( t•, x•) across E3. 

First, for the diagonal equations (2.7), from (6] we know 

Lemma 2.1 Let V be a bounded solution to equations (2. 7). For 
each fixed 1 ~ j ~ 5, V;(t,x) may have jump only on E3. 

For a fixed 1 ~ j ~ 5, by noting that the vector field X3 = 8t + 
AJ(t,x)8:c is tangential to Ej, and using Lemma 2.1, we know from (2.7) 
that the jump of Vj on E3 satisfies the following transport equation: 

(8t + Aj8:c)[V;]E; + bJJ[V;]E; = (FJ(V)]E;. (2.9) 
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Thus, to have the asymptotic behavior of the jump of V; on E; it is 
important to compute b;;. 

Denote the right and left eigenvectors given in (2.4)(2.5) by 

for 1 :S j :S 5. 
By a direct computation, from (2.8) we have 

b·· = ll·5r5· + (-!.2.!.- ""-"'"''"l·2 + ~l·3) r2· 33 .,. 3 3 2 2a J 2a J 3 

+ ( !.2.!. + ac-aa.,l ~l ) + "5 l a 
- 2 2a j2 - 2a j3 T3j Lik=l jk tTkj (2.10) 

+ ( ~lj4 - al;2) OxT2j + ( ~lj4 + al;3) OxT3j 

+ (/3 (l;2 + l;3) + ~l;5) OxT4j + "'{lj40xT5j 

for all 1 :S j :S 5. 
Noting that rn = 1 and Tkl = 0 for all k ;::: 2, we have 

bn = 0 (2.11) 

immediately. By using (2.4) and (2.5) in (2.10), it is not difficult to 
obtain: 

Lemma 2.2 When r --+ 0, we have 

{

b - .JR + Cl<Cl<a;-Cl<t + 0( ) 22- 2K')' 2a T 

b = .JR _ aa.,+ac + O(r) 
33 2K-y 2a 

b;; = 2~ (1 + 0( JT)), j = 4, 5 

(2.12) 

3 Linear problems 

From now on, let us study the Cauchy problem for equations (1.1) in 
{(t, x)it > 0, x E JR} with the initial data 

u(O,x) = u0 (x), Ut(O,x) = u1(x), O(O,x) = Oo(x), q(O,x) = qo(x) 
(3.1) 

where u0 is continuous, and ( u~, u 1, 00 , q0 ) are continuous away from the 
origin, and may have jumps at {x = 0}. 

In this section, we study the behavior of discontinuous solutions to 
a linear problem for (1.1) and (3.1) with f = g = 0. In this case, the 
unknowns 

V = L · (u, Ut + O!Ux, Ut- O!Ux 1 0, q)T (3.2) 
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satisfy the diagonal equations (2.7) with F = 0. From Lemma 2.1 and 
(2.9), we know that for each 1 $ j $ 5, Vj may have jump only on :Ej, 
and [Vj]E; satisfies 

(8t + AjOx)[Vj]E; + b,j[Vj]E; = 0. (3.3) 

Integrating (3.3) along :Ei, it follows 

[Vj)E;(t) = [Vo,j]{o}e- f~ b;;(s,'"Y;(s))ds (3.4) 

where [Vj)E;(t) denotes the jump of Vj at (t, 'Yi(t)) across :Ei, and [Vo,i]{o} 
is the jump of the initial data Vo,i at {x = 0}. 

Obviously, we have :E1 = {t > O,x = 0}. Since u(O,x) = uo(x) 
is supposed to be continuous everywhere, from (3.4) we immediately 
obtain 

[Vl){x=O} = 0, (3.5) 

which implies that u = vl is continuous for t > 0. 
By using Lemma 2.2 in (3.4), we can obtain 

Lemma 3.1 {1) For j = 4, 5, the jump of Vj on :Ei behaves as 

(3.6) 

when all coefficient functions given in ( 1.1), Ot, {3, 1, 8, /'i, are bounded in 
(t, x), i.e. for any fixed t > 0, the jump of Vj on :Ei decays exponentially 
as r--+ 0. 

{2} The jumps of V2 and V3 on :E2 and :E3 behave as 

;~([V2]E2 (t)- [Vo,2){o}e- f~(~+~-~)(s,'"Y2 (s))ds) = 0 (3.7) 

and 

respectively. 

From (3.7) and (3.8), it follows 

Corollary 3.2 {1) If there exists e0 > 0 such that 

{38 Otx Ott 
-+--->eo 
2/'i,/ 2 20t -

(3.9) 

holds for all t ~to with some t0 > 0, then we have 

(3.10) 
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for all t ;?: to + 1. 
(2) If there exists fl > 0 such that 

(36 ax at -+--- < -fl 
2~~:")' 2 2a-

(3.11) 

holds for all t;?: to with some to > 0, then we have 

(3.12) 

for all t ;?: to + 1. 
(3) If the function /;!;y - ~ - ra satisfies the same condition as in 

(3.9} or (3.11} for all t ;?: to, then [V3h::3 (t) has the same asymptotic 
property as in (3.10} or (3.12} when r-+ 0. 

Remark 3.3 (1) For the problem (1.1), (3.1) with f = 9 = 0, when 
~ has a positive lower bound, and a is a positive constant fort ;?: t0 , 

the assumption (3.9) holds obviously, so we deduce that the jumps of 
lt2 and V3 on E2 and E3 respectively decay exponentially as t -+ +oo, 
more rapidly for smaller heat conduction K")', which is the same as in the 
constant coefficient case studied in [6]. 

(2) For the case that (3, o, K and ")' are constants, and a depends only 
on t, if when t ;?: t0 , a satisfies 8t(lna) ;?: C01. for a constant C01. satisfying 
C01. > ~, then the jumps of V2 and V3 on E2 and E3 respectively increase 
exponentially as t -+ +oo, faster for larger G01., which is a completely new 
phenomenon for variable coefficient problems. 

Now, let us study the behavior of jumps of the unknown (u,O, q) from 
the above conclusions. From (3.2), (2.4) and (2.5), we get 

u= v1 
Ut + aux = v2 + O(r)V3 + O(y'T)V4 + O(y'T)Vs 

Ut- aux = v3 + O(r)V2 + O(JT)V4 + O(y'T)Vs 

() = V4 + Vs + O(r)V2 + O(r)V3 

q=#(Vs- V4)- 2~(V2 + V3)+0(r)V2 + O(r)V3+0(1)V4 + 0(1)Vs 

(3.13) 
and 

Vo,l = uo(x) 

Vo,2 = u1(x) + a(O,x)u0(x) + O(r) 

Vo,3 = u1(x)- a(O,x)u0(x) + O(r) 

Vo,; = !Oo(x) + O(JT), j = 4, 5 

(3.14) 
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By using the results given in (3.5) and Lemma 3.1, from (3.13) and 
(3.14) we conclude 

Theorem 3.4 When r goes to zero, the solution to the problem 
{1.1}-{3.1} with f = g = 0 has the following properties: 

( 1) u( t, x) is continuous everywhere; 
{2} The jump of Ut +au, behaves as 

lim {[ut + a:ux]E2(t)- [u1 + a:u~]{o}e- f~(/;!.y+~-?a-)(s,"f2 (s))ds} = 0 
T--+0 

(3.15) 
and 

of order O(r) for j = 3, and exponentially for j = 4, 5. 
{3} The jump of Ut - a:u, behaves as 

(3.16) 

!~ { [ut- a:u,)E
3
(t)- [u1- a:u~){o}e- f~(/;!.y-~-?a-)(s,"fa(s))ds} = 0 

(3.17) 
and 

lim [ut - a:u,)E. (t) = 0 
T--+0 3 

(3.18) 

of order O(r) for j = 2, and exponentially for j = 4,5. 
(4) The jump of temperature () vanishes always, and it is described 

as 
lim(O]Ej(t) = 0 
T--+0 

of order O(r) for j = 2, 3, and exponentially for j = 4, 5. 
{5} The jump of heat flux q behaves as 

(3.19) 

{ 
!~ { (q]E2(t) + ;"' [ut + a:uo]{o}e- J~(/.ty+-¥-?a- )(s,"f2(s))ds} = 0 

!~ { [q)Ea(t) + 2~ (ul - a:uo){o}e- f~(/.ty-~-?a- )(s,"fa(s))ds} = 0 

(3.20) 
and 

lim [q)E. (t) = 0 
T--+0 3 

(3.21) 

exponentially for j = 4, 5. 

4 Nonlinear problems 

In this section, we are going to study the semilinear problem {1.1)-{3.1). 
First, for convenience we rewrite the nonlinear terms f and g depending 
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on ( u, Ut + aux, Ut - O!Ux, 0) explicitly, i.e. 

{ 

f = f(u, Ut + O!Ux 1 Ut- O!Ux 1 0) 

9 = 9(U,Ut + O!Ux 1 Ut- O!Ux,O) 

and we always assume that 

f and 9 are globally Lipschitz in their arguments 

in the following discussion. 
From the deduction given at the beginning of §2, we know that 

V = L · (u, Ut + O!Ux 1 Ut- O!Ux 1 0, q)T 

satisfy the diagonal equations (2.7) with 

F(V) = L · F(RV) 

and F = (O,j,J,9,0)T. 

(4.1) 

By using the asymptotic behavior of the left eigenvectors {l;g=l• we 
know that 

{ ~;(V)=J+O(r)J+O(r)9, j=2,3 
- (4.2) 
F;(V) = ~9+0(r)9+0(JT)J, j =4,5 

From (2.9), one immediately obtains 

[\'; h::;(t) = [Vo,;]{o}e- f~ b;;(s,..,.;(s))ds+ lot [F;(V)]'E;(h)e- fttl bjj(sm(s))ds dtl 

(4.3) 
for 2 '5: j '5: 5. 

Since V; has jump only on E; for any fixed 2 '5: j '5: 5, it is obvious 
that 

(4.4) 

with the notation Vi representing V2 = (V1 , V2, V3, V4, Vs)T, for exam
ple, for certain V2 ranging between v2- and v2+. 

From (4.2), it is easy to have 

8v2 F2(V) = (1 + O(r))fhf+O(r)(o3f + o4J)+O(r)(fh9 + 039 + 049) 

8v3 F3(V) = (1 + O(r))o3f+O(r)(fhf + o4J)+O(r)(lJ..l9 + 039 + 049) 

8v;F;(V) = (~ + O(r))o49 + 0( JT)(thf + o3j + o4J) 

+O(JT)(fhg+o3g), i=4,5 
(4.5) 
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where the notation 8kf means the partial derivative off with respect 
to the k-th argument. 

Substituting (4.4) and (4.5) into (4.3), it follows 

[Vj ]E;(t) = [Vo,j]{o}e- f~ b;; (s,-y;(s))ds 

+I~ 8jf(Vi)[l'J]E;(tt)e- J.•1 bjj(sm(s))ds dt1 + O('T) 
(4.6) 

for j = 2,3, and 

[Vj ]E; (t) = [Vo,j]{o}e- f~ b;;(sm(s))ds 
(4.7) 

+~I~ 84g(Vj)[l'J]E;(h)e- I:l b;;(sm(s))ds dtl + 0( vr) 
for j = 4,5. 

By applying the Gronwall inequality in the inequalities ( 4.6) and 
(4.7), and using Lemma 2.2, we obtain 

for j = 2,3, and 

for j = 4, 5, where L f,i, L9,4 denote the Lipschitz constants of f and g 
in their j-th and 4-th arguments respectively. 

Plugging (4.8) into the integrant of the second term on the right hand 
side of (4.6), we get 

l[l'J]E; (t) I ~ I [Vo,j]{o} le- f~ b;;(sm(s))ds(2 - eLJ,;t) + 0( 'T) ( 4.10) 

for j = 2,3. 
From (4.7) and (4.10), we conclude 

Lemma 4.1 Under the assumption that f and g are globally Lip
schitz in their arguments, when 'T-+ 0, the jumps of Vj on Ej(t) decay 
exponentially for j = 4, 5, and are kept for j = 2, 3, and they are de
scribed by {4.10}. Moreover, if there are eo, to > 0 such that 

(3o ax at - + - - - - L12 > eo > 0 
2~~:-y 2 2a ' -

(4.11) 

( 
(3o ax at ) - - - - - - Lf3 ~ eo > 0 resp. 
2~~:-y 2 2a · 

(4.12) 

holds fort ~to, then the jump of V2 (V3 resp.) on E2(t) ~3(t) resp.) 
decays exponentially when t goes to infinity. 
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Similar to the discussion in §3, from Lemma 4.1 and (3.13)-(3.14), 
we can easily deduce 

Theorem 4.2 For the semilinear Cauchy problem {1.1}-{3.1} with 
the nonlinear terms /, g being the special form (4.1}, suppose that f 
and g are globally Lipschitz in their arguments, u0 is continuous, and 
( u0, u1. 9o, qo) are continuous away from the origin, and may have jumps 
at {x = 0}. When r goes to zero, the solution to the problem (1.1}-(3.1} 
has the following properties: 

( 1) u( t, x) is continuous everywhere; 
{2} The jump of Ut + O:Ux behaves as 

l[ul + o:uo]{o}le- J;<-/.#.;+¥-*><s•Y2(s})ds(2- eLJ.2t) + O(r) 

:::::; l[ut + O:Uxh::2(t)l (4.13) 

:::::; l[u1 + o:uo]{o}leL,,2t-J;<-f!:r+¥-*><s>r2(s))ds + O(r) 

and 

lim[ut +o:uxh::-(t) = 0 
'T-+0 3 

of order O(r) for j = 3, and exponentially for j = 4, 5. 
{3) The jump of Ut- O:Ux behaves as 

j[u1 - o:u0]{o} le-I;</,!.;-¥-* )(s,-y3 (s}}ds (2 - eLJ,3 t) + 0( r) 

(4.14) 

:::::; l[ut- o:ux]r:3 (t) I (4.15) 

:::::; l[ul- o:uo]{o}leL,,at-J;</,!.;-¥-*><sm(s})ds + 0(-r) 

and 

lim[ut- o:uxh::-(t) = 0 
'T-+0 3 

(4.16) 

of order O(r) for j = 2, and exponentially for j = 4,5. 
(4) The jump of temperature 9 on Ei {2 :::::; j :::::; 5} vanishes always, 

and it has the same decay rates as given in Theorem 3.4(4). 
{5) The jump of heat flux q on E2 (}:;3 resp.) behaves in the same way 

as that of- 2; V2 {- 2; V3 resp.) given in (4.8)-(4.10}, and the jumps of 
heat flux q on E4, Es share the same decay properties as given in {3.21}. 

Remark 4.3 As in Lemma 4.1, when the coefficient functions in 
(1.1) satisfy the condition (4.11) ((4.12) resp.) for t ~ to, the jump 
of Ut + o:ux ( Ut - O:Ux resp.) on E2 {E3 resp.) decays exponentially 
when t goes to infinity. For example, it happens when /3, 6, K and 'Y are 
constants, and a:= e0 t with C < ~- 2 max{LJ,2,LJ,3}· 
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Abstract 

The quasineutral limit and the zero electron mass limit of 
Euler-Poisson system in plasma physics in the torus Td, d ?: 1 
are studied. The convergence of Euler-Poisson system to the in
compressible Euler equations is proven by performing quasineu
trallimit and/or zero electron mass limit. The proof of the result 
is based on a straightforward extension of the classical energy 
method, the iteration techniques and the standard compactness 
argument. One of the key points is to establish uniformly a pri
ori estimate of the electric field with respect to the two singular 
parameters by dealing with the singular hyperbolic part and the 
singular Poisson part. Dealing with the former is just an applica
tion of Klainermann and Majda's singular limit theory. Another 
singular Poisson part caused by the coupling electric field is con
trolled by specially spatial dependent relation between the electric 
field and the density, which is established by using the Poisson 
equation and the mass conservation law carefully. 

1 Introduction 

The main objective of this paper is to study the asymptotic limits 
(quasineutral limit and/or zero electron mass limit) of Euler-Poisson 

*The authors are partly supported by NSF of China {No. 10771009}, Beijing 
NSF (No.l082001} and Funding Project for Academic Human Resources Develop
ment in Institutions of Higher Leading under the Jurisdiction of Beijing Municipality 
(PHR(IHLB}){NO.PHR200906103}. 
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system 

8tnE,>.. + div(nE•>..uE•>..) = 0, x E 'll'd, t > 0, (1.1) 

f[OtUE,>.. + uE,>.. ·VuE,>..]+ V'h(nE•>..) = V'</J€•\ x E 'll'd, t > 0, (1.2) 

>.? t::J.<jJE,>.. = nE,>.- 1, x E 'll'd, t > 0, (1.3) 

nE,>.(t = 0) = n~·\ uE•>.(t = 0) = u~·>-, x E 'll'd, (1.4) 

for x E 'll'd, t > 0, where 'll'd is the d-dimensional torus, d ~ 1, f is 
the ratio of the electron mass to the ion mass, A is the (scaled) Debye 
length. Here n E,>.., uE,>., <P>..,E denote the electron density, electron velocity 
and the electrostatic potential, respectively. The entropy function h( s) 
satisfies h'(s) = ~P'(s) and P(s) is the pressure-density function having 
the property that s2 P'(s) is strictly increasing function from [0, +oo) 
onto [0, +oo). 

The Euler-Poisson systems (1.1)-(1.4) are a simplified isentropic two
fluid model to describe the dynamics of a plasma, where the compress
ible electron fluid interacts with its own electric field against a constant 
charged ion background, see [7, 11]. The global existence of small am
plitude smooth solution in Rd has been studied [11]. However, on the 
one hand, plasma physics is usually concerned with large scales struc
tures with respect to the Debye length. For such scales, the plasma is 
electrically neutral, i.e. there is no charge separation or electric field. In 
this case, the formal limit system is the incompressible Euler equations 
of ideal fluid in the unknowns ( uE,O, p€·0) given by 

div uE,O = 0, x E 'll'd,t > 0, (1.5) 

f[u~·0 + uE,O · V'uE•0] = V'pE,O, x E 'll'd, t > 0, (1.6) 

uE•0 (t = 0) = U~'0 , X E 'Jl'd (1.7) 

for any fixed c > 0. Note that this limit is widely used in plasma physics. 
On the other hand, usually the ion mass is much larger than the 

electron mass, so the zero electron mass limit f---+ 0 makes sense, see [1]. 
If, set f ---+ 0 formally in (1.5)-(1.7), one gets the incompressible Euler 
equations uniformly on all f > 0 

div u 0
•
0 = 0, X E r, t > 0, 

uot,o + uo,o . "'uo,o = "'po,o, x E 'll'd t > 0 v v ' ' 

u0
•
0 (t = 0) = ug•0

, x E 'll'd. 

(1.8) 

(1.9) 

(1.10) 

Otherwise, if we change the turn of taking the limits, first let c ---+ 0 and 
then let A---+ 0, then we also get the limit systems (1.8)-(1.10). 

Moreover, if in the meantime let f---+ 0 and A ---+ 0, we can directly 
get the above formal limit systems (1.8)-(1.10) from the Euler-Poisson 
systems (1.1)-(1.4). 
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The aim of this work is to justify rigorously the above formal limits 
for the small time as well as large time and sufficiently smooth solutions. 

Concerning the quasineutral limit >. --+ 0, many results have been 
obtained recently. Particularly, the limit >. --+ 0 has been performed in 
Vlasov-Poisson system by Brenier [2], Grenier [12, 13, 14] and Masmoudi 
[24], in Schrodinger-Poisson system by Puel [28] and Jiingel and Wang 
[17], in drift-diffusion-Poisson system by Gasser et al. [9, 10], Jiingel and 
Peng [16], Wang, Xin and Markowich [35], and in Euler-Poisson system 
by Cordier and Grenier [5, 6], Cordier et al. [4], Peng and Wang [27], 
Wang [33] and Wang and Jiang [34]. Recently, a zero-electron-mass limit 
of hydrodynamic model in the plasmas for any given >. > 0 is performed 
by Ali et al. [1]. 

From the point of view of the singular perturbation theory, the limit 
>. --+ 0 in Euler-Poisson system is a problem of singular perturbation of an 
hyperbolic system by an operator of order -2, see [6]. For the theory of 
singular perturbations we refer to [20, 21], and, [20] in particular for the 
perturbation of hyperbolic systems by order one linear terms (the main 
example being the incompressible limit of weakly compressible fluids). 
However, combining quasineutral and zero-electron-mass limit problems 
is very different from the theory of singular low Mach number limit of 
symmetrizable hyperbolic system by Klainerman and Majda in [20, 21] 
because the extra singularity is caused by the coupling electric field, 
which can not be overcome by using the theory of singular perturbations 
formed by Klainerman, Majda et al., see [20, 21, 29]. 

One of the main difficulties in dealing with combining quasineutral 
and zero-electron-mass limits is the oscillatory behavior of the electric 
field with respect toe and.>.. Usually it is difficult to obtain the uniform 
estimates in the electric field with respect to the Debye length .>.. 

Our approach to construct local existence of smooth solutions in time 
uniformly with respect toe and >.in this paper, motivated by [20, 21], 
is to introduce appropriate weighted energy norms with respect to the 
De bye length and then to use a straightforward extension of the classical 
energy method and iteration techniques. The proof of our asymptotic 
limit is based on uniformly a priori estimates and then on standard com
pactness arguments, whose key step of derivation is to establish the a 
priori .>.-weighted Sobolev's norm estimates of the electric field QY dealing 
with the estimate of such a crucial inner product like J D~'VVE,A D~uE,A, 
which can be controlled by using the specially spatial dependent relation, 
see below (3.1) and (3.2), between density and electric field, established 
by using the mass conservation equation and the Poisson equation care
fully. 

Let us summarize the main results of this paper as follows: Let 
(nE·'\ uf•'\ <f>E,A) be a solution of Euler-Poisson systems (1.1)-(1.4), then, 
under the assumption of well-prepared initial data, one has that (nE,A, 
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u<,>.) --+ ( n, u) in the sense of Sobolev's norm for some fixed time in
terval [0, To), where To is independent of e and .A, n is some positive 
constant and u is the classical smooth solution of the incompressible Eu
ler equation of ideal fluid with some pressure function as .je.A --+ 0, and 
the convergence rate is also given(The precise statement will be given in 
Section 2). The limit .je.A--+ 0 includes all kinds of asymptotic limits of 
Euler-Poisson systems (1.1)-(1.4) fore--+ 0 and/or .A--+ 0. 

It should be pointed out that for the case of ill-prepared initial data, 
some further substantial techniques like the study of wave propagation 
used by Grenier [15), Masmoudi [25), Schochet [29), Ukai [32), et al. in 
the different directions to deal with the oscillations in time are required. 
But it is very likely to extend the present convergence results to the 
case of general initial data, even though convincing arguments require 
substantial technical efforts. This will be one of the topics of our further 
study in the future. 

VVe also mention that many mathematicians have made contributions 
to the large time behavior and global existence of smooth or weak solu
tions to the related pure Euler model or the related Euler-Poisson model 
in semiconductor physics with momentum relaxation. See [3, 8, 18, 23, 
31, 30) for more references on this subject. 

Notations used throughout this paper. H 8 ('D.'d) is the standard Sobolev's 
space in torus 'll'd, which is defined by Fourier series, namely, 1 E H 8 ('ll'd) 
if and only if 

IIIII~ = (27r)d L (1 + lki2
)

8 1(Ff)(kW < +oo, 
kezc~ 

where (Ff)(k) = fTc~ l(x)e-ikxdx is the Fourier series of I E H 8 ('ll'd). 
Noting that if J"Jl"d l(x)dx = 0, then IIIIIL2(Td):::; IIVIIIL2(Td)· \7 = Vx is 
the gradient. a= (a1,· · · ,ad),/3, etc. are the multi-index. 

Also, we need the following basic Moser-type calculus inequalities 
[20, 21, 22): 

For I, g, v E H 8
, for any nonnegative multi index a, Ia I :::; s, 

(i) IID~(fg)IIL2:::; Cs(lllooiiD!giiL2 + IYiooiiD!IIIP),s ~ 0; 

(ii) IID~(fg)- ID~giiL2:::; Cs(IDxllooiiD!-1YIIL2 + IYiooiiD!IIIP), 
s ~ 1; 

8 

(iii) IID!A(v)IIL2:::; Cs L IDtA(v)loo(1 + IVvlooY-1IID!vllp,s ~ 1. 
j=l 

This paper is organized as follows: In Section 2, the precise con
vergence results are stated. Section 3 is devoted to the proofs of main 
convergence results of Euler-Poisson system. 
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2 Main result 

In this section we state our main theorem. For this, we first recall the 
following classical result of the existence of sufficiently regular solutions 
of the incompressible Euler equations (see (19, 26]). 

Proposition 2.1. Let ug•o satisfy ug.o E H 8 (or Hs+l }, s > ~ + 2, 
div ug.o = 0. Then there exist 0 < T .. ~ oo (if d = 2, T .. = oo), 

the maximal existence time, and a unique smooth solution (u0•0 ,p0 • 0~ 
of the incompressible Euler equations on [0, T .. ) with initial datum ug• 
satisfying, for any To < T .. , 

sup (llu0
'
0 IIH• + ll8tU0

'
0 IIH•-1 + li'Vp0

'
0 IIH• + !lot V'p0

'
0 IIH•-1) 

o::;t::;To 
~ C(T0 ). (2.1) 

Before stating our main results, it is convenient for us to rewrite the 
hyperbolic part of Euler-Poisson system in the symmetric form. First, 
using the entropy h•·>. = h(n•·>-) as new variable, one has 

q(h•,>. )[8th•,>. + u•,>. · 'Vh•·>.] + divu•,>. = 0, 

€(0tU<,>. + u•,>. · '\i'u••>.j + '\i'h<,>. = '\7¢••>., 

).,_2tl.q/•>. = n(h••>.) -1, X E 'Il'd, t > 0, 

h•·>-(t = 0) = h~·\ u•·>-(t = 0) = ~·\ 

xE'Il'd, t>O, 
xE'Il'd, t>O, 

where q(s) = d~~s) nh>• and n•·>. = n(h•·>.) is the inverse function of 

h•,>. = h(n•·>-). Then, by setting 

h•·>- = h0 + ..fih•·>., ¢>-·• = ..jfv•·>., 

where h0 is some constant (in fact, the Poisson equation in the torus 
implies that n(h0 ) = 1), one has 

- - - divu•,>. 
q(h0+..fih••>-)[oth••>-+u••>. · 'Vh••>.j+ .fi. = 0, X E 'Il'd, t > 0, (2.2) 

vh•,>- vv•.>-
Btu•·>- + u•,>.. vu•·>. + -- = --, X E 'Il'd, t > 0, (2.3) 

.fi. .fi. 
A2 tl.V•·>- = _!__(n(h0 + ..fih•·>-) -1), x E ~. t > o, (2.4) 

.fi. 
h••>-(t = 0) = k~'>., u••>-(t = 0) = ~·>., X E ']['d. (2.5) 

For simplicity, in this paper we assume that 

(2.6) 
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Using the assumption (2.6), we know that h0 = 1 and then we can 
rewrite (2.2)-(2.5) as 

X E 'll'd, t > 0, (2.8) 

_x2~y~,A = j,e,A, { ye,Adx = 0, X E r, t > 0, (2.9) 
}yd 

j,e,A(t = 0) = h~·A, Ue'A(t = 0) = u~·A, X E 'll'd, (2.10) 

where q(s) = ~-
Now we state our main results as follows. 

- A A 0 0 Theorem 2.2 (Local convergence). Assume that (h~· , u~· ) = (0, UQ' ) 
satisfies ug.o E H 8

, s > ~ + 3, div ug.o = 0. Then there exists a fixed 
time interval [0, T) with T > 0, depending only on initial data but not 
on .X and e, and a constant to, depending only on initw.l data, such 
that Euler-Poisson systems {2. 7}-(2.10} have a classical smooth solution 
(he•A, ue•A, ye,A), defined on [0, T], satisfying 

ii(h~•A, ue,A, X\7V~•A)(t, ·)IIH•(Td) 

+i1(8the,A,8tUe'\.X8t"\7Ve•A)(t,·)iiH•-l(Td) ::5 2Mo (2.11) 

for all 0 < ~>.. ::5 to, 0 < e $ 1 and 0 $ t ::5 T, where Mo = llug'0 IIH• + 
llug.o. vug· IIH•-1. Particularly, as .fi>..- 0, 

j,e,A--+ h0•0 strongly in L00 ([0,T], 

H 8
-

1('1l'd)) n C([O, T], H 8 -.,.('l'd)) for any r > 0, 
Othe,A --+ 8th0•0 strongly in£00 ([0, T], H 8

-
2('ll'd)), 

ue,A -'- u 0•0 weakly* in £ 00 ([0, T], H 8 ('ll'd)), 

div ue,A--+ 0 strongly in £ 00 ((0, T], H 8
-

2('ll'd)), 

OtUe,A-'- 8tu0•0 weakly* in £ 00 ((0, T], H 8
-

1('ll'd)), 

ue,A--+ u0•0 uniformly in C([O, T], H 8 -.,.(r)) for any r > 0, 
V(Ve,A _ j,e,A) 

Vi -'- Vp0
•
0 weakly* in £ 00 ([0, T], H 8

-
1('l'd)). (2.12) 

Moreover, h0•0 = 0 if .X--+ 0, and (u0•0,p0•0) is a classical C 1([0, T] x 'll'd) 
solution, defined on [0, T), of the incompressible Euler equations with 
initial data ug.o. 
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Remark 2.3. The same result holds for small well-prepared perturba
tions, avoiding the presence of the initial time layer, of the incompress
ible initial data (0, u~·0 ). We will discuss the case of ill-prepared ini
tial data allowing the presence of initial layer in the future. Also, if 
h~·>. = 0, ~,>. E coo, then a coo result similar to that of Theorem 2.2 
holds. 

Remark 2.4. The condition s > ~ + 3 is required, see below (3.32), 
in the derivation of estimates of the Sobolev's norm of one order time 
derivative of the solutions, which yields necessary compactness in time 
in the limiting process as .je>.--+ 0. 

Theorem 2.5 (Global convergence). Assume that (h~·\ u~·>.) satisfies 
ii(h~·>., ~,>. - ug.o, >.V(Ve,>. - .jep0•0 )(t = O))IIH•(Td) $ Move>. with 
div ug.o = 0, ug•o E Hs+1, s > ~ + 2, where Mo is independent of e 

and>., and ye,>.(t = 0) solves the Poisson equation >.2 ~ye,>.(t = 0) = 

h~·>. with fyct ye,>.(t = O)dx = 0. Let T., 0 < T. $ oo (d = 2, T. = 
oo), be the maximal existence time of smooth solution ( u 0•0 , p0•0 ) of the 
incompressible Euler equation with initial data ug.o. Then for any To < 
T., there exist constants t.o(To) and M(To) , depending only on To and 
the initial data Mo, such that Euler-Poisson systems {2. 7}-(2.10} have 
a classical smooth solution (he·>., ue•A, ye,>.), defined on [0, To], satisfying 

for all .je>. $ £Q, 0 < €, >. $ 1 and 0 $ t $To. 

Remark 2.6. If u~·0 , h~·>., u~·>. E coo, then a coo result similar to that 
of Theorem 2.5 holds. 

Remark 2.7. Since, for d = 2, T. = oo, then the convergence holds 
globally in time. 

Remark 2.8. Theorems 2.2 and 2.5 are complete, which include all kinds 
of asymptotic limits of Euler-Poisson systems (1.1)-(1.4) with respect 
to two small parameters e and >.., and imply the convergence of Euler
Poisson systems (1.1 )-(1.4) to the incompressible Euler equations of ideal 
fluid in any case(e --+ 0 and/or >. --+ 0) if coming back to the variables 
(ne•>., 0 e,>., <Pe,>.). 

Remark 2.9. The restriction 0 < €, >. $ 1 can be changed to 0 < € $ 
eo, 0 $ >. $ >.o for any given eo and >..o. Hence, the restriction 0 < 
€, >. $ 1 can be removed. Also, the assumption (2.6) is only a technical 
one. Similar results hold for general strictly increasing convex entropy 
h = h(n). We omit this. 
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3 Euler-Poisson Systems (1.1}-(1.4} 
In this section, we will prove our main theorem, Theorems 2.2 and 2.5, on 
Euler-Poisson systems {1.1)-(1.4) by a straightforward extension of the 
classical energy method, the iteration techniques and the standard com
pactness argument. Our key point is to deal with higher order Sobolev's 
energy estimates of the electric field term integrals caused by the Poisson 
part of Euler-Poisson system by using the idea formed by the author in 
(33]. 

3.1 Preliminary estimates on electric field 

First we give the following Lemma, which is crucial for establishing the 
energy estimates of the electric fields. 

Lemma 3.1. If yE,>. = (yg•>., y!•>.)T E (H 81 )d+1 with s1 > ~ + 2, 
p E H 81 -l,a E (H81

-
1)d, Otp, Vp, Va E L00

, Vp0 E (H 81 +l)d, Vp? E 

(H 81 )d and fo E H 81
-

1. Let (ye,>., VE,>.) be the solution of 

8tyg•>. +a· Vyg•>. + (1 + p) div Y!'>. = fo, {3.1) 

,\2.6,VE,>. = r..\.6.p0 +yg•>. with f ye,>.dx = 0. (3.2) 
}yd 

Then we have the following estimate 

(Davve,>. DayE,>.) < - ,x2 ~ (<vvE,>. vvE,>.) + (Df3 .6. ye,>. Df3 .6. VE,>-)) 
X >X* - 2dt > X >X 

+.A2Csllalls 1 -1IIVVe,>.ll~ 1 
+r2Csli"VP?II~1 + T2 Csllaii~1 -1IIVP0 11~1 

1 II 112 I E A 2 1 2 + ,\2Cs P St-1 IY." lls1 + ,X2Csllfolls1 -1> (3.3) 

where a ({3) is a multi index of length$ s1(s1- 1). Here and in the 
following, C8 is a constant depending only on Sobolev's constant. 

Proof of Lemma 3.1 The proof is similar to Lemma 3.1 in [33]. VVe omit 
the details. 

Remark 3.2. Singular two terms containing a multiplier -b on the right 
hand side of estimate (3.3) of the electric potential are caused by the per
turbation of hyperbolic equation of acoustics OtYS +a· "VyS + div y:·>. = 
0. If p = fo = 0, then there is no singular term in (3.3). So in the fol
lowing we must carefully estimate the perturbation terms resulting from 
nonlinear terms of Euler-Poisson system to establish uniform estimates 
with respect to c and ..\. 
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3.2 The proof of Theorem 2.2 

In this subsection, we will give the proof of Theorem 2.2 by using Lemma 
3.1, the carefully classical energy method and standard compactness 
arguments. The proof relies on the symmetrizable form of Euler part of 
Euler-Poisson systems {1.1)-{1.4), estimates of the >.-weighted high order 
Sobolev's norm and the specially space-dependent relation between the 
electric field and the density. 

Denoting vE,.\ =(hE·\ uE,.\)T, we can write {2.7)-(2.10) in the form 

(3.5) 

(3.6) 

Here and in the following we use q to denote (0, qf for any q E Rd, 
e'I.' = (81 · · · · 8d·) J. = 1 · · · d 

J J! ' 'J ' ' ' ' 

and 

!:. - {1,i=j; 
u,J- 0 . ..J.. • 

'z ;- J, 

Ag{1 + .;iii.E,A) = ( q{1 + t:ij,E,A) ~:) ' 

which is symmetric and positive since 

q{1 + .jihE,A) > 0 

for all hE,.\ : y'clhE,.\1£= ~ ~· 
We next introduce the >.-weighted high order Sobolev's norm. For 

given vE,.\ = (:::~) E L00 ([0, T]; H 8 )nC0•1{[0, T]; H 8
-

1) with s > ~+3, 
define the >.-weighted norm by 

lllvE,.\III.x = livE,.\ lis+ IIBtVE,.\IIs-1 + >.(IIVVE,.\IIs + ll8t VVE,.\IIs-1), 

where >.2~VE,A = ij,E,A in r with JTd VE·A(t)dx = 0 for any t E [O,T], 
which can be solved by 
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Using Poisson equation, we have 

(3.7) 

Consider now the iteration scheme 

(v~,>.,o, Ve,>.,O) = (v~·\O) = ((O,ug•0)T,O), (3.8) 
(ve,>.,p+l' ve,>.,p+l) = ~((ve,>.,p' ve,>.,p)), (3.9) 

where the generator~ maps the v~ctor (ve•A, V~•>.) = ((h~•>., u~•>.)T, V~•>.) 

into the solution (v\ v~•>.) = ({he•>., UE,A)T, lfE,A) of the following lin
earized Euler-Poisson system 

- d ~ 
A~(l+J€hE,>.)8tvE,>.+ :EAj(vE,>.)8;vE,>.= .fi ,x E 'll'd,t > 0,(3.10) 

j=l 

A2 AVE,>. = h,e,>. with r VE·>.dx = 0, X E ']['d' t > 0, 
}ytt 

vE,>.(t = 0) = v~·>. = (0, ug•0)T with div ug.o = 0, x E 'll'd. 

(3.11) 

(3.12) 

VVe will prove the convergence of the approximating sequence { (ve,>.,p, 
ve,>.,p)}~0 via the uniform boundedness of this sequence in the above 
weighted high Sobolev's norm. This strategy is used in [20, 21]. 

To this end, we will establish the estimates of solutions of the lin
earized Euler-Poisson systems (3.10)-(3.12). 

Lemma 3.3. Assume that v~·>. E H 8
, s > ~ + 3, div ug.o = 0. Then 

there exists 9 = 9(C8 , Mo), depending only on the initial data and 
Sobolev's constant Cs, such that, if 

lllvE,>.III>.,T ~ 2Mo, T: e9
T = 4min{1, eo}, 0 < ..[iA ~ 1{), e ~ 1, (3.13) 

where I{) = min{1, (4MoC;)-2}, 0 < co = inflsi:::;I/2 q(1 + s) and c; is 
Sobolev's constant, then the solution (ve•A, ye,>.) of {3.10)-{3.12} satis
fies 

lllvE,>.III>.,T ~ 2Mo, T: e9 T = 4min{1,co}, 0 < ..[iA ~ to,e ~ 1. (3.14) 

Proof of Lemma 3.3 As usual in this framework, we determine the 
conditions on the constant 9(Mo) in the estimate. As we will see, this 
constant depend only on the initial data and Sobolev's constant but does 
not depend one, A and the choice of vE,>.. To show this, we will give the 
exact formulation of C, see below (3.17), which determin~s the constant 
9. VVe divide the proof into several steps. 
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Step 1. The energy differential inequalities. 

Introduce the energy norm II · II~ = ( Aij-, ·), and ( ·, ·) is the usual 
L2 scalar product. We want to obtain the following energy differential 
inequalities with respect to II · II~-

(3.15) 

where 

---- --- --- -----+II(AD~aVE•\AVVE•\AD'i8taVE,\A8tVVE,A)IIi2, (3.16) 

d d 8 8-l 

C = C(Cs, L IDvAjlcx, LL ID~Ajloo, L jq(k)loo, lllvE,AIII>.) 
j=O j=lk=l k=O 

d 

= Cs(lllvE,AIIII>- +!livE,>. Ill~)+ Cs(1 + L IDvAjloo)lllvE,AIII>. 
j=O 

d 8 

+C8 L L ID~Aj(vE,.>.)Ioo(l + lllvE,AIII.>.) 11
-

1 IIIvE,AIII>. 
j=l k=l 

d s-1 

+C8 L L ID~(DvAj(vE,.>.))I~(l + lllvE,.>.III>.) 2(s-2)lllvE,.>.III~ 
j=lk=O 
s-1 

+Cs L jq(k)l~(lllvE,AIII~ + (1 + lllvE,AIII.>.)2(s-a) · 

k=O 

(lllvE,.>.IIIi + lllvE,.>.III~)) (3.17) 

and a:, {3, "Yare the multi indexes of the length~ s, s-1, s-2, respectively. 
Taking the L2 inner product of (3.10) with vE,.>. and integration by 

parts, we have the basic energy equation of Friedrich 

-
!livE,.>. II~= (DivA.,(vE,.>.)vE·\ vE,.>.) + 2( V~·", vE,.>.), (3.18) 

~ d 
where DivAE(yE,A) = 8t(A~(1 + y'ehE,A)) + I:j=l aj(Aj(vE,A)). 

Noting that A~= A~(1 + y'ehE,.>.) depends upon vE,.>. via y'ehE,.>. and 
the singular part OC7e) of the matrix Aj,j = 1,··· ,d, is -jeCj, where 
Cj is a constant symmetric matrix, independent of c and A, and Cj 's 
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diagonal elements are 0. One gets, for any y€>.. ::; 1, that 

then 

d 

::; IDvA5Ioolv'€8the,>.loo + L IDvAjlooiY've,.>.loo 
j=1 

d 

::; Cs(IDvA5Ioollv'€8the,>.lls-2 + L IDvAjloollvE,AIIs) 
j=1 

d 

::; Cs(IDvA5IooJ€>.11>.8t V'VE,AIIs-1 + L IDvAjlooiiVE'AIIs) 
j=1 

d 

::; Cs(IDvAoloo + L IDvAjloo)(llve,.>.lls + llv'€8tVe,.>.lls-d 
j=1 

d 

::; Cs(IDvA5Ioo + L IDvAjloo)lllve,.>.lll.>., 
j=1 

I(DivAe(vE,.>.)ve•>., vE,.>.)I::; Cs(IDvA5Ioo 
d 

+ L IDvAjloo)lllvE,AIII.>.IIVE'AIIi2· 
j=1 

(3.19) 

Now we estimate another singular term, the electric potential term, 
which depends upon two parameters e and >... This singular term can 
be estimated by comparing {3.4)-{3.5) with {3.1)-{3.2) and then using 
Lemma 3.1. Taking s1 = s,y~·>. = J,e,>.,a = ue,>.,p = y€hE•\y!•.>. = 
iiji, r = 0, fo = 0 in Lemma 3.1, we have, by (3.7), 

-'l'7v-e,>- 'l'7v-E,A 
2(_v_ yE,A) = 2(_v_ UE'A) 

Vi' Vi' 
< ->.2!!:_(V'Ve,>. yrtfe,.>.) + 2>..2(V'Ve,.>. V'VE,.>.) - dt , , 

+ ;2 llvehE,.>.II~-1II ~II~+ Cs>..2 llue,.>.lls-1IIV'VE,.>.II~ 

::; ->..2! (V'Ve,>., yrtfe,.>.) + >.2Cs(1 + llue,.>.lls)IIV'VE,.>.II~ 

+ ;2llhE,.>.II~-1IIvE,.>.II~ 
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~ ->.2 :t ('vv~·>-, vtfe,>.) + >.2Cs(l + llu~,>.lls)IIVVe,>.ll~ 
+Csll>. vve,>.ll~llve,>.ll~ 

~ ->.2! (vv~·>-, vv~,>-) + >.2Cs(l + lllv~'>-111>-)IIVV~,>-11~ 
+Cslllve,>.lll~llve,>.ll~· (3.20) 

In the last second inequality we use (3.7). 
Thus, (3.18), together with (3.19) and (3.20), gives 

! (llv~'>.ll~ + >.2 (VV~·A, vv~,>.)) 
d 

~ Cs(IDvAgloo + L IDvAjloo)lllve,>.III>.IIVe,>.llt2 
j=l 

+>.2Cs(1 + lllve,>-111>-)IIVV~,>-11~ + Cslllve,>.lll~llv''>-11~· (3.21) 

Now we obtain higher order energy inequality. As in (3.18), by using the 
symmetry of the matrix Aj and integration by parts, we have the basic 
energy equation of Friedrich 

! IID~ve,>.ll~ = (DivAe(ve,>.)D~ve•A, D~ve,>.) 

where Hi2> is a commutator defined by 

d 

Hi2> =-L ( D~(Aj(ve,>.)oive,>.)- Aj(ve,>.)ojD~v~,>.). 
j=l 

Similar to the above, the first term can be bounded by 

I(DivAe(v•·>.)D~v··A, D~ve,>.)l ~ Cs(IDvAgloo 
d 

+ L IDvAjloo)lllv••>-III>.IIVE,>.II~· 
j=l 

The standard commutator technique gives 

2(Hi2>, D~ve,>.) ~ 211Hi2>IIL211D~v•·>-IIP 
d s 

~ Cs L L ID!Ajloo 
j=l k=l 

(3.23) 

(1 + lllv•·>-111>-) 8- 1 lllv•·>-lll>-llv•·>-ll~· (3.24) 



238 Wang, Wang, Yang 

For electric field term, which is more difficult to deal with, we can control 
it as follows by using Lemma 3.1 and the Poisson equation. Taking 

A : - A -• >. 
S - s y~>• - he,A a - u•,A p - t;h•·A y•· - ~ r - 0 .,o = 0 in 

1 - ' 0 - ' - ' - yc:. ' * - yE' - 'Jl 

Lemma 3.1, we have 

2(D~~ Dav••A) = 2(Da'Vtf•,A Da(u•,A)) 
.,fi >x x •x.;e 

< - ),_2 !!:._ ((D.B ~ tf•,A D.B ~ if•• A) + ('VV••A V'V••A)) - dt X IX ' 

1 -•A 
+A2 Csllu•·AIIs-lii'VV•·AII~ + A2 Csllveii•·AII~-lll ~II~ 

= -A2! ((D~~if•,A,D~~V•·A) + ('VV•·A, V'V•·A)) 

+A2Csllu•·AIIs-lli'VV•·AII~ + ;2 Csllii•·AII~-lllu•·AII~ 

< -A2 !!:._ ((D.B ~ tf•,A D.B ~ tf•·A) + ('VV•·A V'V•·A)) - dt X IX l 

+A2Csllu•·AIIs-lii'VV•·AII~ + CsiiAV'V•·AII~IIu•·AII~ 
< -A2 !!:._((D.B~tf•,A D.B~tf•·A) + (V'tf•,A V'V•·A)) - dt X IX ' 

+(lllv•·AIIIA + lllv•·AIIInlllv•·AIIIt (3.25) 

where we have used 

Thus, (3.22), together with (3.23)-(3.25), gives 

d -- --
dt (IID~v··AII~ + II(AD~~v··\AV'V•·A)IIi2) 

d 

~ Cs L IDvA~Ioolllv•·AIIIAIIv•·AII~ + Cs(lllv•·AIIIIA + lllv•·AIIIDIIIv•·AIII~ 
j=O 

d 8 

+Cs L L ID~Ajloo(1 + lllv•·AIIIA) 8- 1 IIIv•·AIIIAIIv•·AII~- (3.26) 
j=lk=l 

To conclude (3.15), the rest is to establish the estimates of the first time 
derivatives. 

Differentiating (3.10)-(3.12) with respect to t and denoting v•,A = 
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d 

A08tv~.>- + L: A;(v~·>-)a;v£,.>. + 8t(A0 )v~.>-
i=1 -= f + VV£•\x E 'l!'d, t > 0; (3.27) 

A2 .6. V£,.>. = ;,~ . .>., r v£,.>.dx = 0, X E ']['d' t > 0; (3.28) 
}ytt 

y£,>-(t = 0) = OtV£'.>.(t = 0) 
d 

=-L ((Ao)-1Aj(v£•A)8;v£,A)(t = 0) E ns-1, (3.29) 
i=1 

is a nonsingular matrix since the singular part of the matrix Aj is a 
constant singular matrix. 

It is clear that the systems (3.27)-(3.29) have the same structure as 
systems (3.10)-(3.12) except the additional non-homogenous source f (In 
fact, it yields the presence of the singular term). Therefore, proceeding 
as in the derivation of (3.26), we have, I.BI ::::; s - 1, 

d 

!IID~v£•.>.11~ $ Cs L !DvAjloolllv£,.>.111>-llv£,.>.11~-1 
i=O 

d 8 

+ Cs LL ID~Ajloo(1+lllv£,.>.111>.)&-1 lllv£,.>.111.>.11v£,.>.11~-1 
j=1 k=1 

-- D~,.>. --
+ llv~·.>.ll~-1 + IID~flli2 + 2( x .fi , D~v~•>-). (3.30) 

Now, we devote ourselves to the estimate of the final two terms on the 
right hand side of (3.30). 

Using the definition off, with the aid of Moser-type calculus inequal-
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ities and Sobolev's lemma, one gets 

IID~flli2 =II- D~(8t(Aj(v•·>-))8;v•·>-)lli2 

~ Cs{l8t{Aj(v•·>-))I;,IID~- 1 8;v•·>-lli2 

+183 v•·>-1;, IID~- 1 8t(Aj (v··>.))lli2) 
~ Cs (IDvAj(v•·>-)I;,IBtv•·>-l;,llv•·>-11~ 

+l8;v•·>-I;,IID~- 1 (DvAj(v•·>-)8tv•·>-)llh) 

~ Cs (1DvAj{v•·>.)l;,l8tv•·>-l;,llv•·>.ll~ 

+l8;v•·>-l;, (IDvAj (v•,>.) 1;, IID~- 1 8tv•·>.lli2 

+l8tv•·>-I;,IID~- 1 DvAj(v•·>-)lli,2)) 

~ Cs (1DvAj(v•·>.)l;,l8tv•·>-l;,llv•·>.ll~ 

+l8;v•·>-l;, (IDvAj (v•,>. )I;, ll8tv•·>.ll~-1 
s-1 

+l8tv•·>-l;, L ID~(DvAj(v••>.))l;, 
k=O 

{1 + 1Vv••>.loo)2(s- 2)IID~- 1 v••>.lli2)) 

~ Cs (1DvAj(v•·>.)l;,ll8tv•·>.11~-111v•·>.ll~ 

+llv•·>.ll~ (IDvAj (v•·>. )I;, ll8tv•·>.11~-1 
s-1 

+118tV0'>.11~-1 L ID~(DvAj(v••>.))l;, 
k=O 

{1 + llv•·>.lls)2(s-2) uv··>.ll~-1)) 
s-1 

~ Cs L ID~(DvAj(v••>-))1;, 
k=O 

{1 + lllv•·>.lll>.) 2(s-2)lllv•·>.lll~llv•·>.ll~· (3.31) 

In view of Lemma 3.1 with 81 = 8-1 > ~ + 2 (Here we need 8 > ~ + 3), 
as in (3.25), we have, by comparing the first equation in {3.27) with the 
equation {3.1), for I.BI ~ 8- 1, that 
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- 1 - u•·A 
+-X2 Csllu•·AIIs-2IIVV•·AII~-1 + ,x2 Csllveh•·AII~-211 v'e 11~-1 

+ ; 2 Call - [q' vfe8th••Ah•·A + (q' vfe8th••Aue,A + q8tu••A) · VhE,AJII~-2 

< --X2 !:...((D"~tJ.V•·A D"~tJ.V•·A) + (vv•,A vv•,A)) - dt X 'X ' 

+Csllu•·AIIs-211-XVV•·AII~-1 + Csii-XVV•·AII~-111u•·AII~-1 

+ ; 2 Call - [q' vfe8th••Ah•·A 

+(q'vfe8th•·Au•·A + q8tu•·A) · VhE•A]II~- 2 . (3.32) 

Now we estimate the final term in (3.32), which is singular since there 
is a multiplier p. 

;2 Csll- [q' vfe8th•·Ah•·A + (q' vfe8th••Au•·A + q8tu••A). VhE•A]II~-2 

:5 ;2 cs(lq'vfe8th•·AI~IIh•·AII~-2 + lh•·AI~IIq'vfe8th•·AII~-2 
+lq' vfe8th•·Au•·A + q8tu•·AI~IIVhE•AII~-2 + IVhE,AI~II 
q' vfe8th••Au••A + q8tu•·A~~~-2) 

:5 ;2 Cs(lq'l~llvfe8th•·AII~-211h•·AII~-2 + llh•·AII~-2 
(lq'l~ II vfe8thE,AIIs-2 + lvfe8thE,AI~ llq'll~-2) 
+(lq'l~llvfe8th•·AII~-211u•·AI1~-2 + lql~ll8tu•·AII~-2)11VhE,AII~-2 
+IIVhE,AII~-2(IIq'll~-2llvfe8th•·>-11~-211u•·AII~-2 + llqll~-2118tu•·>.ll~-2)) 

:5 Cs (lq'l~ II y'ea~'h··A ll~-2llh•·AII~-2 

+llh•·AII~-2 (lq'l~ll y'ea~'h··A lls-2 + lv'e8t'h•·AI~ I: lq(k+l) I~ 
k=O 

hE, A 
(1 + vfel\7h••Aioo)2(s-3

) II T 11~-2) 

+(lq'l~llv'e8th•·>.ll~-211u•·AII~-2 + lql~ll8tu•·AII~-2) II V~·A 11~-2 
:: >. s-2 

+II V~E, 11~-2 ( L lq(k+1) I~ 
k=O 

(1 + vfel\7h••Aioo)2(s-3) llhE,A~~~-211vfe8th••A11~-211u••AII~-2 
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s-2 
+ L lq(k)l~(1 + v'eiVh••>.loo}2(s-3)llh••).ll~-2118tUE'AII~-2)) 

k=O 
s-1 

:::; Cs L lq(k) I~ ( c(IIAOt vv··"ll~-1 + (1 + v'e11Vil.•·"lls-2)2(s-3
) 

k=O 
lllv•·"lll~ IIAVV•·>-11~-1) llv•·>-11~-2 + (lllv•·"lll~ + clllv•·>-1111 
+(1 + v'e11Vil.•·>-lls-2)2(s-3)(111v•·"llli + clllv•·-'111~)) IIAVV•·-'11~) 

s-1 
:::; Cs L lq(k)l~ (c(lllv•·>-111~ + (1 + v'elllv•·"lll>.)2(s-3)lllv•·"llli) 

k=O 
llv•·>-11~-2 + (lllv•·"lll~ + clllv•·"llli + (1 + v'elllv•·>-111>.)2(s-3

) 

(lllv•·"llli + clllv•·"lll~)) IIAVV•·>-11~) 
8-l 

:::; Cs L lq(k)l~(lllv••>-111~ + (1 + lllv••>.lll>.}2(s-3) 

k=O 
(lllv•·"lll1 + lllv•·"lll~)) x (llv•·>-11~-2 + IIAVV•·"II~), (3.33} 

where we have used c :::; 1, 11 8·~·.>-lls-2 :::; IIAOt vv··"lls-1. II h~>.lls-2 :::; 

IIAVV··"IIs-1 and II vr·>.lls-2:::; IIAVV··"IIs· 
Thus, (3.32}, together with (3.33}, gives 

2(D.avv;:>. D.Bv•·-') 
X l X 

< -A2 ~((D'Yf!:.V•·" D'Yf!:.V•·-') + (VV•·" VV•·-')) - dt x •x ' 

+Cslllv•·>-111>-IIAVV•·>-11~-1 + Cslllv•·"lll~llv•·>-11~-1 
s-1 

+Cs L lq(k)l~(lllv•·"lll~ + (1 + lllv••>-111>.}2(s-3
) 

k=O 
(lllv•·>-1111 + lllv•·>-111~)) x (llv•·-'11~-2 + IIAVV••>-11~). (3.34) 

Thus, (3.30}, together with (3.31} and (3.34}, gives 

! (IID~v•·>-11~ + II(AD~·\ A~)lli2) 
d 

:::; Cs(1 + L IDvAjloo}lllv••>.lll>.llv•·-'11~-1 
j=O 

d 8 

+Cs LL ID~Ajloo(1 + lllv••>-111>.} 8- 1 lllv•·"III>.IIV••-'11~-1 
j=lk=l 
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d 8-1 
+C8 L L ID~(DvAj(v'•).))l;,(1 + lllv'•).lll).) 2<8-2)lllv'•).lll~llv'•).ll~ 

j=1 k=O 

8-1 
+C8 L lq(k)l;,(lllv'•).lll~ + (1 + lllv'•).lll).)2(8- 3

) 

k=O 

(lllv'•).llli + lllv'•).lll1)) X (llv••.\11~-2 + II.XVV'•).II~). (3.35) 

Combining (3.26) and (3.35), we have 

!Q(v'•).) :5 C8(111v'·).llll). + lllv'·).lll~)lllv•·.\111~ 
d 

+C8(1 + L IDvAjloo)lllv'•).lll.x(llv'•).ll~ + llv•·.\11~-1) 
i=O 

d 8 

+C8 L L ID~Ajloo(1 + lllv'•).lll).)8- 1lllv'•).lll). 
j=1k=1 

d 8-1 
(llv'•).ll~ + llv•·).ll~-d + C8 L LID~ 

j=1 k=O 

(DvAj (v•·A))I;,(1 + lllv'•).lll).)2<8- 2)lllv'•.\ lll~llv••).ll~ 

+C8111v•·).III).II.XVV•·).II~-1 + C8lllv•·).lll~ llv•·.xll~-1 
8-1 

+C8 L lq(k)l;,(lllv••).lll~ + (1 + lllv••).lll).)2(8- 3) 

k=O 

(lllv••).llli + lllv••.\1111)) X (llv••).ll~-2 + II.XVVE,AII~) 

::; Clllv•·).lll~. (3.36) 

where Cis given by (3.17). By (3.36) we get (3.15). 

Step 2. The equivalences of the norm Q(v•·A) and the norm lllv•·).lll~· 

First, from the definition of III·III).,T and Sobolev's lemma, it follows 
that 

lveh•·.\loo::; vrec;uh··).118-l 

:5 ve.XC;II.XVV•·).II8 :5 2Mov'>.ec; :5 ~ (3.37) 

for any 0 < .,fi.X :5 to and 0 < t :5 T if lllv•·).lll). :5 2Mo. 
Thus, from (3.37) we know that the energy norm 11·11~ and the norm 

II · lli3 are equivalent. 
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Also, it follows from the fact 

that the norm (D~A·,D~A·) is equivalent to the norm (D';''V·,D~'V·). 
Therefore, the norm Q(ve,>.) and the norm lllve,>.lll~ are equivalent. 
Thus, we have 

(3.38) 

Step 3. The uniform bounds of the initial data and the coefficient C. 
Direct computation gives 

Q(t = 0) = lllve,>.(t = 0)111~ = M~. (3.39) 

Also, from the definition of the matrices Aj,j = 0, · · · ,d, it follows 
that there exist constants c1 and c2, depending only on Mo, such that 

d d 

L IDvAjloo ~ L sup IDvAj(ve,>.)loo ~ c2, 
j=O J=O llv•·.>.II.~2Mo 

d 8 d 8 

LL ID~Ajloo ~ L sup I LD~Aj(ve,>.)loo ~ c2 (3.41) 
j=l k=l j=lllv•·>-II.~2Mo k=l 

for any 0 < ..fi>. ~to, c ~ 1 and 0 < t ~ T if lllve,>.lll>. ~ 2Mo. 
Hence, if lllve,>.lll>. ~ 2Mo, then there exists 9, depending only on 

Mo, not on c and>., such that 

c~e. (3.42) 

Using (3.38), (3.39) and (3.42), Gronwall's inequality gives 

min{l,eo}lllvE,>.III~ ~ Q ~ M$e9 (Mo}T, 0 < t ~ T. (3.43) 

Taking T such that e9 (Mo}T = 4min{l, eo}, we get our result. 
This completes the proof of Lemma 3.3. 

Noting that from the exact formulation of C we know that C depends 
only on the bound of ve,>. other than on the choice of ve,>., and so do 
the constant 9 and T. Thus, by Lemma 3.3, we have 
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Proposition 3.4. There are T > 0 and an to, depending only on the 
initial data, such that for any 0 < .ji)..:::; to, 0 < c:::; 1 and p = 0, 1, · · ·, 

where 

Proof of Proposition 3.4 We shall prove this proposition by using Lemma 
3.3. 

First, since (vE,.>.,o, VE,>.,o) = {0, u~·0 )T, 0), we have 

{3.44) 

for any c > 0,).. > 0 and any t > 0. Particularly, take to and T > 0 given 
by Lemma 3.3, then 

{3.45) 

for any 0 < .ji).. :5 to, 0 < c :5 1 and any 0 < t :::; T. Thus, by using 
Lemma 3.3, we have 

lllvE,>.,liii>.,T :5 2Mo 

for any 0 < .ji)..:::; to and 0 < c:::; 1. 
Now assume that 

{3.46) 

{3.47) 

for any 0 < .ji).. :5 to and 0 < c :51, we will show that lllvE,>.,p+liii.>.,T :5 
2Mo for the same c,).. and T. 

Because the constant 8 in Lemma 3.3 depends only on the initial 
data (more precisely, the bound of ve,>.) but does not depends on c,).. 
and the choice of ve,>. and the initial data on vE,>.,p are the same for any 
p, we can repeatedly use Lemma 3.3 with ve,>. = yE,>.,p' ve,>. = yE,>.,p+l 
and then get our result. 

This completes the proof of Proposition 3.4. 

The end of the proof of Theorem 2.2 It follows from Proposi
tion 3.4 that approximating sequence {(vE,>.,p, VE,>.,p)} satisfies (vE,>.,p, 
V'VE,>.,p) E L00 {(0, T]; H 8

) n C0•1{(0, T]; H 8
-

1 ) and the systems (3.10)
(3.12) with ve,>. = yE,>.,p, ve,>. = yE,>.,p+l and y-e,>. = VE,>.,p+l as well as 
the uniform estimates, for 0 < .ji)..:::; to and 0 < c :5 1, 

lllvE,.>.,piii.>.,T = SUp (llvE,A,plls + ll8tVE,A,plls-l 
09~T 

+II)..V'VE,.>.,plls + IIA8t"VVE,>.,plls-d :5 2Mo. {3.48) 
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It follows from the Arzela-Ascoli theorem that there exists 

such that 

(vE,.>.,p, 'VVE,.>.,p)--+ (v~•.>., 'VV~'.>.) 

strongly in £ 00 ((0, T]; H 8
-

1),p--+ oo (3.50) 

and (vE•A, v~ • .>.) satisfies (3.4)-(3.6) as well as estimates 

(3.51) 

for 0 < .Ji>. ::::; to and 0 < e ::::; 1, which gives (2.11). 
Furthermore, from the standard Sobolev interpolation inequalities, it 

follows that 

(vE,.>.,p, 'VVE,>.,p)--+ (v~,>., 'VV~•>.) 

uniformly in C((O, T]; Hs--r) for any T > 0. (3.52) 

Choosing T such that s- T > ~ + 1, then we deduce 

d d L Aj(vE,.>.,p)8ivE,.>.,p+l + V~+l --+ L Aj(v~'>-)aiv~,.>. + ~ 
j=1 j=1 

uniformly in C((O,T];Hs--r-1) for any T > 0. Thus, we have 8tv~,>. E 
C((O,T];Hs--r-1) for any T > 0. 

By Sobolev's lemma, we have C((O, T]; Hs--r) n C1 ((0, T]; Hs--r-1) c 
C1 ((0, T] x 'II'd), and hence the constructed solutions (v~,.>., ve,.>.) are clas
sical. Thus, we have proved the first part of Theorem 2.2. 

Now we prove convergence of Euler-Poisson system to the incom
pressible Euler equations. 

By (2.11) and the Poisson equation, we have 

h~,>. 
II T lls-1 ::::; II>. vv~,>.lls ::::; 2Mo, (3.53) 

a h~.>-
IITIIs-2::::; 11>.8tV'Ve,>.lls-1::::; 2Mo. (3.54) 

Therefore, as >.--+ 0, 

he,.>.--+ 0 strongly in £ 00 ([0, T]; H 8
-

1) n C((O, T]; Hs-1-.,.), (3.55) 

8th~,.>. --+ 0 strongly in £ 00 ((0, T]; H 8
-

2). (3.56) 

Moreover since ll(he,.>., u~•>.)lls + ll8t(h~,>., u~•>.)lls-1 ::::; 2Mo for any 0 < 
.Ji>.::::; to and 0 < e::::; 1, by Lions-Aubin lemma, we have that any subse
quence (he•.>., ue,.>.) has a subsequence (still denoted by (he,.>., ue,>.)) with 
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a limit (h0•0, u0•0 ) E £ 00 ((0, T]; H 8
) n C((O, T]; Hs-T), (8th0·0, 8tu0•0 ) E 

£ 00 ([0, T); H 8
) for any T > 0 satisfying, as .je>.-+ 0, 

(h~,>., U~'>.) -+ (h0•0 , u0•0 ) weakly* in £ 00 ([0, T]; H 8
), (3.57) 

(oth~·\otU~'>.)-+ (otho,o,Otuo,o) weakly* in L00 ([0,T);H8
-

1), (3.58) 

(he,>., ue,>.)-+ (ho,o, u0•0)uniformly in 

C([O, T]; H 8-T)for anyr > 0. (3.59) 

Let <f>(x, t) be any smooth test function with div 4> = 0 and compact 
support in t E (0, T]. Then, 

(3.60) 

Furthermore, by (2.7), (2.11), (3.55) and (3.56) 

div ue,>. = -veq[othe,>. + ue,>.. 'Vhe,>.l -+ 0 (3.61) 

strongly in £ 00 ([0, T]; H 8
-

2 ) as Je>.-+ 0. 
Thus, it follows from (3.57)-(3.61) that u0•0 E C([O, T]; Hs-T) satis

fies 

Otu0
•
0 + P(u0

•
0 

• V'u0
•
0

) = 0, divu0
•
0 = 0, u0

•
0 (t = 0) = u~'0 , 

where P is the standard projection in the div zero vector fields. Since 
u0•0 E C([O, T]; H 8-T), s- r > ~ + 1, one infers that 8tu0•0 = -P(u0•0 . 

V'u0•0 ) E C((O, T]; Hs- 1-T). Thus u0•0 E C1((0, T] x 'll'd) is a classical 
solution of the incompressible Euler equations (1.8)-(1.10) with some 
pressure function p0•0 . Because the classical solution is unique, it follows 
that the convergence is valid for ue,>. as Je>. -+ 0 without passing to 
subsequences. 

Now, we discuss the convergence of the pressure. From (1.2) and 
(3.57)-(3.59) we conclude easily that 

'V(Ve,>. j,e,>.) 
----'----=-=------'- = OtUe,>. + ue,>.. 'Vue,>. __, OtUo,o + uo,o. V'uo,o 

y'c 
= V'po,o (3.62) 

weakly* in L00 ([0, T]; H 8
-

1 ) as y'c>. -+ 0. 
Combining (3.55)-(3.59), (3.61) and (3.62), we get (2.12) and that 

(u0•0 , p0•0 ) is a solution of incompressible Euler equations (1.8)-(1.10) 
with the initial data u~·0 • 

The proof of Theorem 2.2 is complete. 
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Remark 3.5. Under much more assumptions on the initial data, we can 
obtain much stronger estimates. Namely, if assume that I:~=O ll8f(v€,A+ 
.X\7VE,A)(t = O)lls-k :::; C uniformly in e, .X with s > ~ + k + 3, then 

I:~=O ll8f(v€,A + .XVVE•A)(t)lls-k :::; C. Particularly, if div u~·0 = 0 and 

I:1,i=l 8iu~i08iu~j0 = 0, then I:~=O ll8f(vE,A + .XVVE,A)(t)lls-k:::; C. In 
this case, we can directly prove that u0•0 E C1([0, T] x 'JI'd). In fact, by 
Lions-Aubin Lemma, we have 

which, together with (3.59), gives u0·0 E C([O, T], Hs-.-('JI'd))nC1 ([0, T], 
Hs-.-- 1('JI'd)) for any r > 0. Hence, u0 E 0 1([0, T] x 'JI'd) by Sobolev's 
lemma and choosing r such that s - r - 1 > ~ + 1 due to s > ~ + 3. 

3.3 The proof of Theorem 2.5 

In this subsection, we will prove Theorem 2.5 by using the asymptotic 
expansion of singular perturbation and the carefully classical energy 
method. 

Let us start with the derivation of the 'error' equations by the asymp
totic expansion of singular perturbation. 

Set uE,A = u0 •0 +u~·A and VE,A = y'cp0•0 +Vl€,\ then (hE•A, u~·\ vlE,A) 
satisfies 

divuE,A 
q(1 + v'€hE,A)[athE,A + (uo,o + u~·A) . VhE•A) + 1 

Vi 
= 0, X E 'JI'd, t > 0, (3.63) 

VhE,A 
8tu~·A + (uo,o + u~'A) . Vu~·A + -- + u~·A. Vuo,o 

Vi 
\7\f,E,A 

= )E. , X E 'JI'd, t > 0, (3.64) 

.X2 .!lV1E,A = -y'c.X2.!lp0•0 + hE•\ { V1E,Adx = 0, X E 'JI'd, t > 0, (3.65) 
}yd 

hE,A(t = 0) = h~·\ U~'A(t = 0) = U~OA = U~'A- ~·0 , X E 'JI'd. (3.66) 

Denoting v~·A = (hE,A, u~·A)T, we can write (3.63)-(3.66) in the form 
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>.2Llv1~,>. = -..,f€>.2Llpo,o +h.··>., r v1•,>.dx = 0, 
J'Jfd 

VE,>. (t - 0) - VE,>. - (h-£,>. UE'>.)T 
1 - - 10 - 0 ' 10 ' 
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(3.68) 

(3.69) 

for x E yd, t > 0, where Aij is the same as before, Aj ( u0·0, v~,>.) = 

A- (uo,o v•'>.) + 1 C. 
3 ' 1 7e J> 

Ai ( u 0•0 , v~,>.) is symmetric and Ci is a constant symmetric matrix. 

Following the proof of Theorem 2.2 in Subsection 3.2, we introduce 
the set, s>., of functions to £ 00 ([0, T]; H 8 )nC0•1([0, T]; H 8

-
1), 8 > ~ +2, 

t . fy" ~,>. (t 0) .,>. d sa lS mg v 1 = = v 10 an 

llv~'>.lls + II>.VV1<,>.11s ~ M(To)..,fi>., 

ll8tV~'>.IIs-1 ~ M(To), 

where M(To) is appropriate constant to be chosen later. 

(3.70) 

(3.71) 

We want to prove that (3.67)-(3.69) have a smooth solution satisfying 
(v~·A, vvl•,>.) E s>. for appropriate M(To), c: and >.. This yields the 
desired estimates stated in Theorem 2.5. 

As usual in this framework, we determine the conditions on the con
stant M(To) in the estimate. As we will see, the constant M(T0 ) only 
depends on ( u 0•0 , p0·0). For a given choice for M (To), we shall ultimately 
make a finite number of restriction for c:, >.. First, our first restriction 
for c:, >. will be the requirement that 

..,filh~'>.loo ~ ..,fiC;II'h~·>.lls 

~ ..;ec;Mo.fi>. ~ c;Mo.fi>. ~ ~' 
.fil'h··>.loo ~ vrcc;uli··>.lls 

- - 1 
~ .fiC;M(To)..,fi>. ~ c;M(To)..,fi>. ~ 2' 

(3.72) 

(3.73) 

which can be guaranteed provided that c:, >.satisfy c: ~ 1, .fi>.C; Mo ~ ~ 
- 1 and .fi>.C;M(To) ~ 2· 

Let V16" = Vt>.(t = 0) be a solution of 

>.2LlV16>. = -J€>.2-!lpo,o(t = 0) + h~'". 



250 Wang, Wang, Yang 

Consider now the iteration scheme 

(v~,>.,o, Vt'>.,o) = (v~0\ V1'Q>.) = ((h~'>., u~ij>.), V1'Q>.), 

(v~·>.,p+l' Vie,>.,p+l) = <f?((v~·>.,p, vt·>.,p) ), 

(3.74) 

(3.75) 

where the generator <f? maps the vector (v~,>., V1e,>.) = ((he,>., u1'>.)T, Vt'>.) 

into the solution (v~•\ V1e,>.) = ( (he•>., u1'>.)T, V1e,>.) of the following lin
earized Euler-Poisson system 

d -
A58tV~,>. + L Aj(u0·0' v~·>.)ajv~·>. + u~·>.. vuo,o 

j=1 

V0:>. 
= Je , X E 'll'd, t > 0, 

A2~y1e,>. = -.,f€A2~po,o + h,e,>. with 

= 0, X E yd, t > 0, 

V~'>.(t = 0) = V~o>. = (h~·\ U~0>.)T, X E 'll'd. 

(3.76) 

(3.77) 

(3.78) 

As before, we will prove the convergence of the approximating sequence 
{(v~,>.,p, Vt'>.,p)}~0 via the uniform boundedness of this sequence in 
some weighted high Sobolev's norm. 

Now we will establish the estimates of the sequence {( v~·>.,p ,Vt'>.,p)}~0 . 

Lemma 3.6. For any To< T., there exist a constant M(T0 ) > 0 and a 
constant to(To) > 0 such that 

llv~·>.,plls + IIAVVt·>.,plls + u..reathe,>.,plls-1 

~ M(To).,f€A, ll8tv~,>.,plls-1 ~ M(To) (3.79) 

for 0 < .jeA ~to, 0 < e, A~ 1 and any p = 0, 1, · · ·. 

Proo1 o1 Lemma 3 6 First since (ve,>.,o V,e,>.,o) - ((he,>. ue,>.) Ve,>.) it 
. ' 1 ' 1 - 0 ' 10 ' 10 ' 

follows from the assumption on the initial data, (3.72) and the system 
(3.63)-(3.66) that 

llv~'>.,olls + IIAVVt·>.,olls + IIVe8the,>.,olls-1 

~ M(To)VeA, 118tv~·>.,olls-1 ~ M(To) (3.80) 

for any M(To) ~ max{Mo, Co(Mo)} and any 0 < e ~ 1 and 0 < A ~ 1, 

where Co(Mo) = supo<e<1 0<>.<1 118tv~·>.,olt=OIIs-1 can be exactly given. 
So, our second restriction for e, A will be the requirement that 0 < 

e~1and0<A~l. 
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Now assume that there exist an M(To) and an to(To) such that 

llv~·>.,plls + IIXVV1"'>.,plls + llveatf~,E,>.,vlls-1 :S M(To)ve.X, 

118tv~·>.,plls-1 :S M(To), 0 :S t :S To (3.81) 

for all 0 < ,fi-X :S to, 0 < £,.X :S 1, and we shall show 

llv~·>.,p+llls + 11-XVVt·>.,p+llls + ll..fioth"·>.,p+llls-1 :S M(To)ve.X, 

llotv~·>.,p+llls-1 :S M(To), 0 :S t :S To (3.82) 

for all 0 < ,fi-X :S to, 0 < £,.X :S 1. 
De Ote Ve,>.,p _ v•·>- v"•.X,p+1 _-<,A ,,E,A,p _ ,,.,>. ,,E,A,p+1 _ T'T<,>. 

n 1 - 1 • 1 - V1 • "1 - "1 • "1 - "1 • 
then (v~·\ V~'\ y1••A, V1<'A) satisfies (3.76)-(3.78) and h,<,>. satisfies (3.73) 
by assumption (3.81). 

Obviously, if ll(v~·-X,v+l,_xvv;."·>.,p+l)lls :S M(To)..fi.X, then from 
(3.76), by the calculus inequality, it easily follows that there exists a 
constant C1 (To) such that 

II v'eoth"·>.,p+llls-1 :S ve-XC1 (To), ll8tv1'-X,p+llls-1 

:S C1 (To), 0 :S t :S To (3.83) 

for any 0 <,fi-X :S to, 0 <£,A :S 1. Thus, we only need to prove 

llv~·>.,p+llls + 11-XVY;_"·>.,p+llls :S M(To)ve.X. (3.84) 

Also, from the Poisson equation, we have 

A2 110t \i'Vt'.X,p+1lls-1 $ 3IIOth~'A,p+llls-1 + 3ve.X2 IIOt \i'p0
'
0 lls-1 

:S 4C1(To). (3.85) 

Now we determine M(To) and to(To). 
As in (3.22), the standard higher-order energy estimates of Friedrich 

imply that 

!!_11Do:v•·>.ll2 = (DivAE(u0•0 v••.X)Do:v•·>- Do:v•·>.) + 2(H<3> Do:v••.x) dt x1 E •1 x1• x1 o:• x1 

-2(D~vF-Vuo,o, D~v~'.x)- 2(HJ_4>, D~v~·.x) 

where Hf:.k), k = 3, 4 are commutators defined by 

d 

(3.86) 

H<3> =-~ (vo:(.J~(u0 •0 v•·.x)o·v··.x)- A~(u0•0 v••.>.)o·Do:v•·>-) o: L...J XJ •1 31 J •1 Jx1 
j=1 
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and - -H~4l = D~(v~·A. V'u0•0)- D~v~·A · V'uO.O. 

The coefficient Div.Ae = 8tA~ + OjAj in the first term on the right hand 
side of {3.86) can be bounded by 

d 

IDivAe(v••A)IL<"' ~ IDvA~Ioolvfc8th••>.loo + L IDvAjlooiV'v••Aioo 
j=1 

d 

~ Cs{IDvA~Ioollvfc8th••AIIs-1 + L IDvAjloollv••AIIs) 
j=1 

~ Cs( sup IDvA~Ioov'cll8tii··AIIs-1 
llv~ .>.11. $1 

d 

+ L sup IDvAjloollv•·AIIs) 
j=1 llv~'.>.ll.$1 

~ Cs ( sup IDvA~Ioovfc.XM(To) 
llv~'.>.ll.$1 

+ t sup IDvAjloovfc.XM(To)) 
j=1 llv~·.>.ll.$1 

~ Cs ( sup IDvA~Ioo + t sup IDvAjloo), 
llv~'.>.ll.$1 j=111v~'.>.ll.$1 

which yields the third restriction y'c.XM(To) ~ 1. 
Thus, by using (3.73), e ~ 1, llv~'AIIs ~ y'e.XM(To) ~ 1 and Sobolev's 

lemma, we have 

Here and in the following C2(To) denotes a constant that may take dif
ferent values during the same proof and depends only on u0•0 but does 
not depend on M(To), e and .X. 

Hence, we have 

(DivAE(uo,o v•·A)DOtvE,A DOtvE'A) < c (To )llv•·AII2 
> 1 X 1 > X 1 - 2 0 1 s· {3.87) 

The usual estimates on commutators lead to 

2{Hi3l, D~v~'A) ~ C2(llu0
'
0 lls. llv~'AIIs)llv~'AII~ 

~ C2(llu0
'
0 lls, l)llv~'AII~ (3.88) 
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and 

Here we have used s > ~+2 and llv~·"lls ~ 1 and the bound of llu0
•
0 11s+l· 

Similarly, we have 

--2{DavE·". vuo,o navE·") < 2jV'uo,ol llvE'"II2 x1 >x1- 001s 

~ 2C;IIu0'0 llsllv~·"ll~ 
~ C2{To)llv~·"ll~- (3.90) 

Now we estimate the most singular term in {3.86) by using Lemma 
3.1. 

0 " - , " = u•·.~. Taking a = u ·0 + u~· , p = .jihE•"', y~· = he,..\, yE,..\ = 7e, p0 = 

-p0•0, r = .ji>.., fo = 0 in Lemma 3.1, we have 

-navV,E,A -E,A 
2( x 1 va:vE·") = 2(navV,E·" va(~)) .ji •x1 x 1•x.;e 

< ->..2 !!:_ (<n/3 a V,E,A n/3 a V,E,A) + ('\i'V,E,A vV,E,A)) 
- dt x 1•x 1 1• 1 

1 UE,A 
+>..2Csllu0

'
0 + u1'"lls-1IIV'Vt·"ll~ + >..2 Cs II .jih/•"11~-dl .}e II~ 

+e->..2CsiiY'8tp0 '0 11~ + e>..2Csllu0
'
0 + u1'"11~-d!V'p0'0 11~ 

< ->..2 !!:_ (<n/3 a V,E,A n/3 a V,E,A) + ('\i'V,E,A vV,E,A)) 
- dt x 1•x 1 1• 1 

+Cs(llu0
'
01ls-1 + llu1'"1ls-dii>..V'V1E,..\II~ + e>..2CsiiY'8tP0 '0 1l~ 

+e>..2 Cs(llu0 '0 11~-1 + llu1'"11~-1)11V'P0 '0 ll~ 
1 c llh-E,..\,,2 ,,-E,AII2 + >.,2 s s-1 U1 s· 

It follows from the Poisson equation that 

and hence 

- ,\ 

II h: 11~-1 ~ (pavt·"lls-1 + .ji>..!lap0
'
0 lls-d2 

{3.91) 

~ {1 + ve>..IIV'p0
•
0 lls)2 ~ C2(To). (3.92) 
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Combining (3.91) and (3.92), one have 

--vavV,e,>. lie,>. 
2( X 1 va-e,>.) = 2(DavV,e,>. Da(_1_)) ...;e > X V1 X 1 l X ...;e 

< - >..2 .!:._ (<D/3 A V,e,>. D/3 A V,e,>.) + ('VV,e,>. vV,•·>-)) - dt x 1•x 1 1• 1 

+Cs(\\u0 '0 ils-1 + llu~'>.lls-1)iiX\7V1''>.11~ + e:>.2 Csli'V8tP0'0 1i~ 
+e:.>.2 Cs(llu0 •0 11~- 1 + llu~'>.ll~-1)1i'VP0 ' 0 11~ + CsC2(To)\\ii1'>.11~ 

< ->.2 .!:._ (<D/3 A V,•,>- D/3 A \/,•·>-) + (\7\/,'·>. vV,•·>-)) - dt x 1>x 1 1> 1 

+Cs(llu0
'
0 lls-1 + 1)1i.>.'VV1''>.11~ + e:>.2Csi!'V8tP0 '0 1i~ 

+e:.>.2Cs(llu0 ' 0 11~- 1 + 1)ii'Vp0 '0 1\~ + CsC2(To)l\ii1'>.1\~ 

< ->.2 .!:.. (<v/3 A V,•,>- n/3 A V,•·>-) + (vV,•,>- vV,•·>-)) - dt x 1>x 1 1> 1 

+CsC2(To)(\\.h 'VV1''>.1\~ + l\ii1'>.1\~) + e:>.2CsC2(To). (3.93) 

Hence, by (3.86), together with (3.87)-(3.90), and (3.93) we have 

!<IID~v~'>.ll~ + I\(.>.D~·>-,.>.~)IIi,2) 
:::; c2(To)l\(v~·>-, .>.VV1''>.)11~ + c2(To)e:>.2. (3.94) 

Similar to Step 2 of Lemma 3.3, we know that there exist constants 
Ck, k =3, 4, for example, c3 =min{minlsl~!q(1+s), 1}, c4=max{maxlsl~! 
q(1 + s), 1} such that 

c3(IID~v~·>-11~ + I\(.>.D~·\.>.~)IIi2) 
:::; II (v~·>-, >. vv1•.>-) II~ -- --:::; c4(1\D~v~'>.ll~ + II(.>.DeA\ii'·>.,.>.vv1•,>.)11i2)· (3.95) 

Since ll(v~·\.>.VVt''>.)(t = O)lls:::; Moft>., by Gronwall's lemma, (3.94), 
together with (3.95), implies 

II (v~·>.' >. 'VV1e,>.)(t)ll~ :::; e:.>.2c4( M6 + C2(To)To)e02 (To)c4T0 (3.96) 
C3 

- A{2 1 
for any 0 < t::; To. Taking M(To) =max{(c4( ~+C2 (To)To)ec2(To)c4To)2, 
max{Mo, Co(Mo[}, C1(To)}, we get (3.84) from (3.96). Then for th~s 
fixed choice of M(To), we can take Lo(T0 ) = min{(M(T0))-1,(2C;M 
(To))-1} by using the above three restrictions. 

This completes the proof of Lemma 3.6. 
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The end of the proof of Theorem 2.5 As in the proof of Theo
rem 2.2, from Lemma 3.6 and (3.83)-(3.85) it follows that for .,;eA.~ £o 

and 0 < e, A. ~ 1, there exists (v~·\ V1e,A) such that v~·A E C((O, T], 
HB-T('II'd)) n C 1 ((0,T],H8 -T-l('ll'd)), vvle,A E C([O,T],H8 -T('II'd)), the 
SUbsequence (still denoted by) (v~·A,p, V'Vt•A•P) converges to (v~•A, V'Vt•A) 
strongly in L00 ((0, T], H 8

-
1(1I'd)) and (v~·A, V1e,A) satisfies (3.67)-(3.69) 

as well as the uniform estimates 

The proof of Theorem 2.5 is complete. 
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Abstract 

This work is concerned with bipolar hydrodynamic models 
for semiconductors with short momentum relaxation-time and en
ergy relaxation-time. Inspired by the Maxwell iteration, we con
struct a new approximation solution and show that the periodic 
initial-value problems of certain scaled hydrodynamic model have 
unique smooth solutions in a time interval independent of the two 
relaxation-times. FUrthermore, as the relaxation-times both tend 
to zero, the smooth solutions converge to the smooth solution of 
the corresponding bipolar drift-diffusion model. 

1 Introduction 

With the increasing demand of semiconductor devices, the mathematical 
theory about various device models has become an active area in applied 
mathematics. It ranges from kinetic transport equations for charged car
riers (electrons and holes) to fluid-dynamical models. The Boltzmann 
equation is an accurate kinetic model which describes the transport of 
charged carriers. However, it needs much computing power in practical 

*This work is supported by NUAA's Scientific Fund for the Introduction of Qual
ified Personnel. 
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applications. Based on the moment method, one derives some simpler 
fluid-dynamical equations for macroscopic quantities like density, veloc
ity and energy, which can represent a reasonable compromise between 
physical accuracy and the reduction of computational cost. For details, 
see [19]. 

Bipolar drift-diffusion models are the most popular fluid-dynamical 
equations for simulations in semiconductor devices. These models work 
very well in the case of low carrier densities and small electric fields. 
By contrast, bipolar hydrodynamic models are usually considered to 
describe high field phenomena or submicron devices. The main aim of 
this paper is to discuss the relation between the hydrodynamic models 
and drift-diffusion models. 

Consider a typical semiconductor device (e.g., P-N diodes or bipo
lar transistor), where the current flow is generated by electrons with 
charge Qe = -1 and holes with charge Qi = + 1. We denote by ne = 
ne(t, x), Ue = ue(t, x) (ni, Ui, respectively) the density and velocity of 
electrons (holes, respectively). ~ = ~( t, x) represents the electrostatic 
potential generated by the Coulomb force from the particles. After a 
re-scaling of the time variable, these variables satisfy the bipolar hydro
dynamic model: 

8tna + ~div(naua) = 0, 

8t(naua) + ~div(naUa ® Ua) + ~"VPa 

a (nalual
2 + .i:sJ....) + .!.div((nalual

2 
+ J.Ii)u ) 

t 2 -y-1 -r 2 -y-1 a 

(1.1) 

= _!l!!.n U "V~ _ .1....(nalual
2 + P4 -n4 TL) 

.,. a a -ru 2 -y-1 ' 

where a= e,i and (t,x) E [O,+oo) x JRd(d ~ 2). The dimensionless 
parameters r, a > 0 are the momentum relaxation-time and energy 
relaxation-time of electrons and holes, respectively. The pressure func
tion Pa satisfies the state equation Pa = ('y-1)naea (the adiabatic expo
nent 'Y > 1), in which ea is the specific internal energy. For simplicity, we 
only handle the polytropic gas case. Furthermore, we may set Pa = naTa 
and e = - 1-Ta where Ta(a = e, i) are the temperatures of electrons 

a -y-1 • 
and holes respectively. TL = TL(x) > 0 is the given lattice temperature 
of semiconductor device, and the given function b = b(x) > 0 stands for 
the density of fixed, positively charged background ions (doping profile). 

With variables (na, Ua, Ta)(a = e, i), the system (1.1) for classical 
solutions is equivalent to 
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8tna + *div(naua) = 0, 

8t(naua) + *div(naUa ® Ua) +*'\!(naTa) 

= -~na '\1~- ~naUa, 

8tTa + *Ua · VTa + ~Tadivua 
(1.2) 

= ('y -1)(~- 2;,.)lual 2
- .,.~(Ta- TL), 

t:J. iP = ne - ni - b. 

In what follows, we focus mainly on the system (1.2). Note that the 
scaling 

t = ri 
converts (1.2) back into the original bipolar hydrodynamic model in [19] 
with t as its time variable. 

The scaled-time variable twas first introduced in [17] to establish the 
relation between the unipolar hydrodynamic model and drift-diffusion 
model, via the zero-relaxation-time limit. Since [17], this kind of limit 
problem for the bipolar isentropic model has been investigated by many 
authors in the compensated compactness framework for weak entropy 
solutions [7, 8, 9, 10, 12, 18, 20, 22, 27], and in the Aubin-Lions [21] 
compactness framework for small smooth solutions [1, 13]. Recently, Y. 
P. Li [15] considered the relaxation limit in the bipolar isentropic hy
drodynamic model by generalizing the analysis in [23] for the unipolar 
model (one carrier type). The main idea of [15, 23] is essentially differ
ent from the previous ideas for weak entropy solutions or small smooth 
solutions. However, only one small parameter r is considered in [15]. 

In this paper, we consider the genuine two-parameter singular limit 
problems where both relaxation-times r, a are much smaller than 1 and 
r = O(a). These seemingly contain all the physically relevant cases, 
since Monte Carlo simulations on the bipolar Boltzmann-Poisson equa
tions show that the momentum relaxation-timer is much smaller than 
the energy relaxation-time a [2]. 

To show our approach, we rewrite the momentum and temperature 
equations in (1.2) as (a= e, i) 

! 
naUa = -qarna '\1~- r'\l(naTa) -rdiv(naUa ® Ua)- r28t(naua), 

Ta = TL + ra('y- 1) ( ~- 2;,.) lual2 

-ra( 8tTa + *Ua · VTa + ~Tadivua). 
For r,a «: 1 and r = O(a), these equations show that Ua = O(r) 
and Ta = TL + O(ra) formally. With these, we iterate the momentum 
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equation once to obtain 

naUa = -qa'rna '\liP- r'\l(naTL) + O(r2 ). 

Substituting the truncation naua = -qa'rna '\liP- r'\l(naTL) into the 
mass equations in (1.2), we immediately obtain the bipolar drift-diffusion 
model: 

{ 

8tne = Ll(neTL)- div(ne '\1 if!), 

8tni = Ll(niTL) + div(?lt '\1 iP), 

Ll iP = ne - ni - b, 

which is a semilinear parabolic-elliptic system, for TL(x) > 0. 

(1.3) 

The main aim of this paper is to justify the above formal procedure. 
Let (ne, ni, iP) solve the drift-diffusion model (1.3). Inspired by the above 
(Maxwell) iteration, we construct (f := (r,u)) 

Tif = TL + ('y- 1)(ru- !r2)!ViP + V(':;TL) 12 

+ru( V(':;TL) + '\1 iP)'\!TL + ('y- 1)ruTLdiv('\1 if!+ V(':;L) ), 
iPf = iP = Ll-1(ne- ni-b) 

(1.4) 

as an approximation for the solution ( n~, u~, r:; ni, ui, Tt, iJ!f) to the 
system (1.2) with initial data 

Obviously, these initial data are in equilibrium. Then, by using the 
energy method, we can prove the validity of the approximation (1.4) 
and establish the following main result. 

Theorem 1.1. Let s > 1 + d/2 be an integer. Suppose that TL = 
TL(x), b = b(x) satisfy conditions 

bE H8+1('ll'd), TL E ns+J(~), and TL(X), b(x) :2: Co> 0, (1.6) 
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and the semilinear dnft-diffusion equations (1.3} have a solution 

with positive lower bounds. Then, for sufficiently small r and a with 
r = 0( a), there is an e -independent positive number 1l' ** :$ 1l',. such that 
the system {1.2} with periodic initial data {1.5} has a unique solution 
( E E TE E E TE) t· :fyi ne, ue, e , ni, ui, i sa zs ng 

Moreover, there exists an e-independent constant K > 0 such that for all 
t E (0, 1l' ,.,.], 

II (neE- n~, UeE- u~, TeE- r:' niE- ni' u.E- ui' TiE- Tt)(t)il H•(Td) :$ K 'T(1. 

(1.7) 

Remark 1.2. From (1.7) and Lemma 2.1 in the next section it simply 
follows that 

(1.8) 

where K' > 0 is a constant independent of e. 

Remark 1.3. From (1.7)-(1.8) and (1.4) we see that the exact solution 
(n~, u~, r:, ni, u£, TiE• ~E) of the system {1.2) has the following asymp
totic expression 

n~(t, x) = ne(t, x) + O(ra), 

u~(t, x) = r'\1 f? - T V(:e.TL) + 0( ra), 

r:(t, x) = TL(x) + O(ra), 

nHt,x) = ni(t,x) + O(ra), 

u~(t x) = -r'\1 {?- r V(n;TL) + O(ra) 
'1. ' n, ' 

7iE(t, x) = TL(x) + O(ra), 

f?•(t,x) = f?(t,x) + O(ra) 

for (t,x) E [0, 11',.,.] x 'll'd. Therefore, Theorem 1.1 characterizes the lim
iting behavior more precisely than previous results in [1, 13], where the 
convergence was proven but no convergence rates were given. Moreover, 
let us mention that no smallness conditions are required by Theorem 1.1. 
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Remark 1.4. This paper deals with the case where the initial data are 
in equilibrium. For more general periodic initial data, the initial-layers 
will occur and the similar results of form {1.7) may still be verified by 
using the matched expansion methods, see (24]. 

The paper is arranged as follows. In Section 2, we review the con
tinuation principle developed in (25, 3] for singular limit problems. The 
approximation solution {1.4) is discussed in Section 3. Section 4 is de
voted to the proof of Theorem 1.1. 

Notations. The symbol C is a generic positive constant indepen
dent of e = ( T, a). I Ul denotes the standard Euclidean norm of a vector 
or matrix U. L 2 = L 2('lr') is the space of square integrable (vector
or matrix-valued) functions on the d-dimensional unit 'll'd = {0, 1]d. 
H 8 (1l'd) is the usual Sobolev space on the d-dimensional unit 'll'd whose 
distribution derivatives of order :5 s are all in L2 ('II'd). We use nota
tions !lUlls and IIUII as the space norms respectively. We also label 
ll(a,b,c,d)ll~ = llall~ + llbll~ + llcll~ + lldll~, where a,b,c,d E H 8 (1I'd). 
Finally, we denote by C{(O, T],X) (resp., 0 1 {(0, T],X)) the space of con
tinuous {resp., continuously differentiable) functions on (0, T] with values 
in a Banach space X. 

At the end of introduction, we mention many other efforts made for 
the bipolar hydrodynamic model on the whole position space or spatial 
bounded domain, such as well-posedness of steady-state solutions, global 
existence of classical or entropy weak solutions and large time behavior 
of solutions. The interested readers may refer to [1, 4, 5, 6, 8, 11, 18, 22, 
27, 28] and the literatures quoted therein. 

2 Preliminaries 

In this section, we first rewrite the scaled bipolar hydrodynamical model 
( 1.1) as a symmetrizable hyperbolic system. Then we review a contin
uation principle for singular limit problems (25, 3]. To begin with, we 
recall an elementary fact from (23]. 

Lemma 2.1. v~-1 is a bounded linear operator on L2 (Td). 

This proposition can be easily proved by using the Fourier series. It is 
this proposition that requires the initial data to be periodic. 

Having this proposition, we see that {1.2){a = e, i) for classical solu-
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tions is equivalent to 

8tna. + *div(na.ua.) = 0, 

8tUa. + *(Ua. · V')ua. + *(~Y'na. + V'Ta.) 

= -~V'6.- 1 (ne- ni-b)- ~Ua., 

8tTa. + *ua. · V'Ta. + ~Ta.divua. 

= ('y -1)(~- 2;u)lua.l2
- /u(Ta.- TL) 

(2.1) 

and ~ = 6. -l ( ne-ni-b). Obviously, (2.1) is a symmetrizable hyperbolic 
system, since va-1(ne- ~-b) is a zero-order (but non-local) term. 

Next, we review the continuation principle in (25, 3) for general sin
gular limit problems of quasi-linear symmetrizable hyperbolic systems 
depending (singularly) on parameters 

d 

Ut + LAi(U,e)Uxj = Q(U,e) (2.2) 
j=l 

for X E n = JRd or ']['d. Here e represents a parameter in a topological 
space (in this paper e = (r, u) is a vector), Aj(U, e) and Q(U, e) are 
(matrix- or vector-valued) smooth functions of U E G c JRd for each e 
different from a certain singular point, say 0. 

For each fixed e(# 0), consider the initial-value problem of (2.2) 
with initial data U(x, e). Assume U(x, e) E Go c G for all x E n and 
U( ·,e) E fi 8 with s > 1 + d/2. Let G1 be a subset of the state space 
satisfying Go CC G1. According to the local-in-time existence theory 
for the initial-value problem of symmetrizable hyperbolic systems (see 
Theorem 2.1 in (16]), there exists T > 0 such that (2.2) with initial data 
U(x, e) has a classical solution 

ue E C((O, T), fi8 (0)) and ue(t, x) E G1 for (t, x) E (0, T) x 0. 

Define 

'll'. = sup{T > 0: ue E C((O, T), fi8 (0)) 

and Ue(t,x) E G1 for (t,x) E (O,T) x 0}. 

Obviously, (0, 'll'.) is the maximal time interval for the existence of fi 8
-

solutions with values in G1. Note that'll'.= 'll'.(Gl) depends on G1 and 
may tend to zero as e approaches to the singular point 0. 

In order to show that lime __,0 1l' e > 0, we make the following assump
tion. 
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Convergence assumption: there exist '][' * > 0 and 

for each e(:f 0), satisfying 

U {UE(t,x)} CC G and sup IIUE(·,t)lls < oo, 
t,x,E tE(O,T.) 

such that fortE (O,min{'ll'*, 'll'E}), 

supiUE(t,x)- UE(t,x)i = o(l), 
t,x 

as e goes to the singular point 0. 
With such an assumption, we have the following fact established in 

(25, 3]. 

Lemma 2.2. Suppose U(x, e) E Go c G for all X E n and e(=f 0), 
U(·,e) E H 8 withs > l+d/2 an integer, and the convergence assumption 
holds. Then, for each G1 satisfying 

Go U {UE(t,x)} CC G1 C G, 
t,x,E: 

there is a neighborhood of the singular point such that 

for all e in the neighborhood of the singular point 0. 

Thanks to Lemma 2.2, our prime task is reduced to find an approx
imation solution UE ( t, x) such that the above convergence-assumption 
holds. 

3 Construction of approximation solutions 

Let (ne, ni) solve the semilinear and nonlocal parabolic equations (1.3): 
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Inspired by the Maxwell iteration described in Introduction, we construct 
a formal approximation solution as in (1.4): 

n. = -T'\1 ~ - T V(n;TL) 
-1-E fli ' 

Ti£ = TL + (-y- l)(Ta- !T2)1V~ + vc';:,TL) 12 

+Ta("'<';:,TL) + '\1~)'\JTL + ("Y- l)TaTLdiv('\1~ + V(';:;L>), 

~E = ~ = tl.-1(ne- ni-b). 

It is easy to show that this approximation solution satisfies the following 
equations 

8tneE + *div(neEUeE) = 0, 

au + l(u . V)u + l V(n£.T£.) 
t eE T eE eE T ne< 

= ~V~E- ~UeE + T'Rel + a'Re2, 

8tTeE + ~UeE · VTeE + ~TeEdivueE 

= ('y- 1)(,.\- 2;u)lueEI2 - 7~(TeE- TL) + TO"'Re3, 

8tniE + *div(niEUiE) = 0, 

au + l(n .. V)u· + l V(ni<T;.) 
t e£ T -u: 'IE T nie 

= -~V~E- ,_\uiE + T'R.-.1 + a'R-.2, 

8tTiE + ~UiE · '\JTiE + ~TiEdiVlltE 

= ('y- 1)(,_\- 2;u)IUtEI2 - 7~(TiE- TL) + TO"'R.3, 

~E = !:i-1 (neE- niE- b(x)). 

(3.2) 
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Here (a= i, e) 

'R.a
1 

= OtUa£ + (ua£ · V)ua£/T 
T 

~ ( -1 V(naTL)) 
= ut - Qa VA (ne£ - ni£- b) - na 

( 
1 ) V(naTL)) + - Qa VA- ( ne£ - ni£ - b - na 

( 
1( ) V(naTL)) · V - Qa VA- ne£ - ni£ - b - , 

na 
'R.a

2 
= V(na£(Ta£- TL)) 

TO'na£ 

= V { na [ (-y - 1) ( 1 - ;a) 1- Qa VA - 1 (nee - nie - b) - V ( :TL) 12 

(
V(nTL) _1 ) 

+ n +qaVA (neE-niE-b) VTL 

-(-y- 1)TLdiv(- Qa VA - 1(ne£- niE- b)- V(::TL))]} / na, 

1[ 1 -y-1 . 
'R.a3 = - 8tTaE + -UaE · VTa£ + --TaEdlVUaE 

TO' T T 

-(-y- 1)(_!_- -
1 

)iuaEI2 + _!_(TaE- TL)] 
T 2 2Ta TO' 

= 8t{ ('Y -1)(1- ;a)lqaVA-1(ne- ni-b)+ V(::TL) 1
2 

(
V(naTL) 1( ) + na +qaVA- ne-ni-b) VTL 

+(-y- 1)TLdiv( Qa VA - 1 (ne -ni-b)+ V(::TL))} 

-(qaVA-1(ne- ni-b)+ V(::TL)) 

·V[ c0'2~ T)(-y -1)lqaVA-1(ne- ~-b)+ V(::TL) 12 

(
V(naTL) 1 ( )) + na + Qa v A- ne - ni - b VTL 

+(-r- 1)TLdiv( Qa VA - 1 (ne- ni-b)+ V(:::L))] 

-(-y- 1) [ (-y- 1) ( 1- ;a) lqa VA - 1(ne- ni-b)+ V(::TL) 1
2 

+(V(::TL) +qaVA-1(ne- Ttt- b))VTL 

+('Y- 1)TLdiv( Qa VA - 1(ne- ni-b)+ V(::TL))] 

xdiv(qaVA-1(ne- Ttt- b)+ V(:TL)). 
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Observe that the residues Ral, Ra2 and Ra3(a = i,e) are bounded 
with respect to € = ( r, a) under certain regularity assumptions on TL, b, 
ne and ni, while (ne, ni) solves the semilinear and non-local parabolic 
equation (3.1). This observation is crucial for subsequent analysis. More
over, the regularity of the approximation solution also depends on the 
four quantities. To clarify these, we formulate the following lemma. 

Lemma 3.1. Let s > d/2 + 1 be an integer. Assume TL(x) and 
b(x) satisfy {1.6}. If (ne, ni) E C([O, 11'.], H 8 +3) n C1 ([0, 'll'.], ns+2 ) 

has positive lower bounds, then u,., Te~,'lt,~, Ti~ E C([O, 1l' .] , Hs+1 ) and 
Re1, Re2. Re3, Ril, ~2, ~3 E C([O, 1l'.],H8

) for r,a « 1 and r = O(a). 

The proof of this lemma needs some calculus inequalities in Sobolev 
spaces, whose proofs can be found in [26]: 

Lemma 3.2. {Moser-type calculus inequalities) 

(I). Let A, V E H 8 with s ~ [d/2] + 1. Then, for any multi-index a 
with JaJ $ s, it holds that 

Jloa(AV)JI $ CsllAllsiiViis· 

(II). For integers~ [d/2] + 2 and multi-index a with Jal $ s, 

(III). Let A= A(x, V) be a smooth function satisfying A(x,O) = 0 
and V E H 8 with s ~ [d/2] + 1. For multi-index a with JaJ $ s, it 
holds that 

Here Cs > 0 is a generic constant depending only on s and d. 

4 Proof of the main result 

In this section, we prove Theorem 1.1. 
Since (ne, ni) has positive lower bounds, there are two positive con

stants a and b such that ne~(O,x),ni~(O,x),Te~(O,x),Ti~(O,x) E (2a,b), 
Jui~(O, x)J $ band Jue~{O, x)l $ b for all x. Denote by [0, 'Jl'~) the maximal 
time interval where the system {2.1) with initial data (1.5) has a unique 
H 8 -solution (n~, u~, T:)(a = i, e) with values in (a, 2b) X ( -2b, 2b)d X 

(a, 2b) = G1. Thanks to Lemma 2.2, it suffices to prove the error esti
mate in {1.7) fortE [O,min{'ll' •• , 'Jl'~}) with 'll' •• $ 'll'. independent of € 

and to be determined. 
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To this end, we set 

nee- n~ 
Uee- U~ 
Tee-T; 
nie- ni 
Uie- Ui 

Tie- TiE 

From the equations in {2.1) and {3.2), it follows that the error (Na, Ua, 
Ba)(a = e, i) satisfies 

8tNa + ~(u~ · 'il Na + n~divUa) 

= -~(Ua · 'ilnae + NadiVUae), 

8tUa + ~(u~ · 'il)Ua +~('ilea+ ~'ilNa) 
4 

= -l(U . V)u - l (L....- !.:.)vn .,. a a£ .,. ncu: n~ f: 

-~VD..- 1 (Ne- Ni)- fzUa +r'R.al +o-'R.a2, 

8t9a + ~u~ ·'ilea+ ~T:divUa 

= -lU . 'ilT. - tc.!ledivu .,. a a£ .,. E 

+h- 1)(-fz- 2;cr)(luael2 -lu~l2)- -r~ea + TlT'R.a3· 

{4.1) 

Then we differentiate (4.1) with 8~ for a multi-index a satisfying lal ~ s 
to get 

8t8~Na + ~(u~ · 'il8~Na + n~div8~Ua) = F~, 

8t8~Ua + ~(u~ · 'il)8~Ua + ~('il8~ea + ~'il8~Na) 
4 

= -fz8~Ua + ~' 

8t8~ea + ~u~ · 'il8~ea + ~T:div8~Ua 

= _-rlcr~ea +F~. 

Here a= e,i and 

.r~ =- ]:_8~(Ua · 'ilnae + NadiVUae) 
T 

(4.2) 

- ~ ( 8~(u~ · 'il Na + n~divUa) - {u~ · 'il8~ Na + n~div8~Ua)) 
·= tll + t12 
· Ja Ja ' 
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:F~ =.!.8~(( -qa)V a -l(Ne- Ni) + r 2'R.al + TCT'R.a2) 
1" 

- .!.a~((Ua. V)uaE + (TaE - raE)vna£) 
1" na£ na£ 

- ;{a~((u~ · V)Ua + ~~VNa)- ((u~ · V)o~Ua + ~~Vo~Na)} 
a a 

:=/~1 + {;.2 + !~3, 

:F! =ru8~'R.a3- ;a~[ua · VTaE- ('y -1)8adivua£ 

+ ('y -1)(~- 2~)(1ua£12 -lu~l2 )] 
- ~{ o~( u~ · V9a + ('y- l)T:divUa) 

- ( u~ · Vo~ea + ('y- l)T:divo~Ua)} 
:=f!l + 1!2 + 1!3. 

For the sake of clarity, we divide the following arguments into lemmas. 

Lemma 4.1. Under the assumptions of Theorem 1.1, we have 

$~ J [.7e(I8~Nel 2 + 18~Uel 2 + j8~9el 2 ) 

+ .Ji(lo~ Nil2 + l8~Uil 2 + l8~9il2 )] dx 

+ Gelii:F;IIIIo~Nell + Ge21l:F~IIII8~Uell + Ge3ll:F:IIIIo~eell 

+ Gilii:Flllllo~Nill + Gi21l:Flllllo~uill + Gi31l:Ffllllo~eill, 

(4.3) 

where G, Ge1, Ge2 , Ge3, Gil C.;.2 and C;.3 are all generic constants depend-
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ing only on the range [a,2b] ofn~,n:,T;,TiE but independent of€, and 

.1a =ldivu~l + lu~ · Vn~l + lu~ · VT:I + !_lu~l 2+ 
T 

(a= e,i). 

Proof. By multiplying (4.2) by (~)
2

8~Na, T:O~Ua, (-y-1)8~9a(a = 
e, i), respectively, and integrating them with respect to x over ']['d, after 
tedious but straight calculations we can obtain {4.3). See also [14] for 
similar details. 0 

For the right-hand side of {4.3), we have the following lemma. 

Lemma 4.2. Set 

D = D(t) = II(Ne,Ue,9efa,Ni,Ui,eda)(-,t)lls. 
T 

For r, a « 1 and T = 0{ a), the following estimates hold: 

Je ~ Cr{1 + D2), {4.4) 

Ce211.r:uua~Uell ~ 311 ~r~ell
2 

+ Cr2a2 + CIINill~ 

+C{1 + D)IIUell~ + C{1 + D28)(11Nell~ + ll9ell~), (4.8) 

ci2IIF[IIII8~Uill ~ 311!~i 112 
+ Cr2a2 +CliNe II~ 

+C{1 + D)IIUill~ + C{1 + D2s)(IINill~ + ll9ill~), {4.9) 

Ce3IIF:IIII8~9ell ~ IIO~eell
2 

+ tte IIU~II~ 
TO' T 
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where C > 0 is a generic constant (independent of €) depending only 
on the range [a, 2b] of n~, n~, T;, Ti~ and K-e, K-i are two positive constants 
(independent of €) to be determined below, see (4.19}. 

Proof. Note that 

Thus, for s > 1 + d/2, we use the well-known embedding inequality in 
Sobolev spaces to get 

ldivu~l ~ ldivUel + ldivne~l ~ CIIUells + Cr ~ Cr(1 +D), 

and 

riV'T:I 2 ~ 2r(IV'9el2 + IV'Te~l 2 ) ~ Cr(1 + r 2u2 D2
). 

Putting all above inequalities together gives the estimate (4.4) for .Je 
defined in Lemma 4.1. Through a similar process, we can deduce the 
estimate (4.5). 

Next we turn to estimate CeliiFiiiii8;"Nell, where Fi = fi 1 + fi 2
• 

For fi 1, we use Lemma 3.2 and the boundedness of II (nee, Uee, Tee) lls+l 
indicated in Lemma 3.1 to obtain 

~ C(IIV'ne~llsiiUells + lldiVUeellsiiNells) 

~ C(IIUells + riiNells) 
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and the second term J:2 can be estimated as 

rll/;211 = 118~(u: · VNe)- u: · \18~Ne + 8~(n:divUe)- n~div8~Uell 

:::=; Cll8u:lls-1IIV Nells-1 + Cll8n:lls-1lldivUells-1 

:::=; C[{IIUells + llue£lls)IINells +(liNe lis+ llne£lls)IIUells] 

::::; C[r(1 +D) liNe lis+ (1 + rD)IIUellsl· 

Thus, we have 

Ce111.r;11118~Nell::::; "'e IIU~II~ + C(1 + D2)11Nell~, 
T 

where K.e > 0 is a constant to be determined in (4.19). This is just the 
inequality {4.6). In a similar way, we also can arrive at (4.7) and Itt > 0 
is a constant to be determined in (4.19), too. 

For Ce2IIF;IIII8~Uell, we recall F; = J:1 + J:2 + J:3 and estimate 
them as follows: 

= 
0;2 11a~((Ue · V)ue£ + (~::- ~f)vne~) llua~Uell 

::::; clla~Uell (11Uells11Vue£lls +liTe£- T: IIIIVneells) 
T ne£ ne s 

::::; C 11a~TUell (riiUells + (1 + Ds-1)(11Nells + ll6ells)) 

(4.12) 

::::; 11 8~~;11
2 

+ CIIUell~ + C(1 + D2<s- 1>)(11Nell~ + ll6ell~), (4.13) 
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where (III) of Lemma 3.2 is used to estimate 

as 

and 

A(x N e ) ·-TeE - T: = TeE(x) - TeE(x)- 9e 
' e. e ·- E ( ) ( ) N nee ne nee X nee X - e 

IIA(x, Ne, 9e)lls 

$ CsiAic•+1(1 + (IINells + ll9ells)8
-

1)(11Nells + ll9ells) 

$ C(1 + ns-1 )(IINells + ll9ells), 

Ce2IIJ'13 11118~Uell 

= Ce2 11°~rUellllo~((u~ · V)Ue + ~i VNe) 

- ( (u~ . V)8~Ue + ~= va~ Ne) II 
e 

$ cilo~rUeil (118u~lls-1IIVUells-1 + i18(T;/n~)ils-liiVNells-l) 

$ cllo~:ell (r(1 + D)IIUells + (IITedneells + IIAIIs)IINells) 

$ c llo~:e" ( r(1 + D)IIUells + (1 + ns)IINells) 

$ 11 8~~;11
2 

+ C(1 + D28)11Nell~ + C(1 + D)IIUell~· (4.14) 

Adding (4.12)-(4.14) immediately gives the inequality (4.8). In the sim
ilar spirit, we can achieve (4.9) without extra troubles. 

Finally, we estimate CeaiiF:IIII8~9ell as follows: 
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-rll/:2 11 = llo~(Ue · V'Te~- (-y -1)8edivue~ 

+(-y -1)(~- 2~)(1ue~l 2 -lu~l2)) II 

:5 c(IIVTe~llsiiUells + lldivne~llsll8ells + ~(2llne~lls + IIUells)IIUells) 

and 

-( u:. va~ee + (-y- 1)T;div8~Ue) II 

:5 C(ll8u~lls-1IIV'8ells-1 + IIOT~IIs-llldivUells-1) 

:5 Cr(1 + D)ll8ells + C(1 + ruD)IIUells· 

From (4.15)-(4.17) we easily deduce that 

(4.16) 

(4.17) 

This is the inequality (4.10). Similarly, it is not difficult to get (4.11). 
The proof of Lemma 4.2 is complete. 0 

Substituting the estimates in (4.4)-(4.11) into (4.3) gives 

+(-y -1)(18~8el2 + 18~8il 2 ) }dx 

+ 4
1 2 11(8~Ue,8~Ui)ll 2 + 4

3 ll(8~8e,a~ei)ll 2 
1" 1"0" 
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By integrating this inequality from 0 tot::; min{'II'., 11'.}, we get 

J { (~i) 2

ia~Nel 2 + (~~fia~Nil2 +T:Ia~Uel2 +Ti£1a~Uil2 

+('Y -1)(1a~8el2 + 1a~ei1 2) }dx + 4~2 1t li(a~Ue,a~Ui)(t', ·)ll2dt' 

::; Ctr2a2 + 2~e r IIUe(t', ·)ll~dt' + 2~i r IIUi(t', ·)ll~dt' 
T lo r lo 

(4.18) 

where we have used the fact that the initial data are in equilibrium (1.5). 
It is easy to show 

c- 1 ll(a~ Ne, a~ue, a~ee, a~ Ni, a~ui, a~ei)ll 2 

::; Cll(a~ Ne, a~ue,a~ee, a~ Ni,a~ui, a~ei)ll 2 , 

since n£ and T' are bounded from the below and the above for t ::; 
min{'II'£, 11'.}. Now we take Ke, Ki to be so small that 

8Ke L 1 :S 1, 8Kt L 1 :S 1 (4.19) 
JaJ~s JaJ~s 

respectively and sum up (4.18) over all a satisfying lal ::; s to obtain 

II (Ne, Ue, ee, Ni, ui, ei)(t, ·)II~ ::; C1I' •• r2a 2 

+C 1t(1+D28 )ii(Ne,Ue,8e,Ni,Ui,ei)(t',·)ll~dt' (4.20) 

for t ::; 'II"** ::; 'II". with 'II"** to be determined. Then we apply Gronwall's 
lemma to (4.20) and get 

II(Ne, Ue, ee, Ni, ui, ei)(t, ·)II~ 

::; C1I' •• r 2a2 exp [c 1t (1 + D28 )dt']. (4.21) 
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Recalling that II(Ne,Ue,eefu,Ni,Ui,eiju)lls = rD and 0 < r << 1, it 
follows from (4.21) that 

D(t)2 ~ C'll' .... exp [Clot (1 + D28 )dt'] = <P(t), (4.22) 

thus 

With the help of the nonlinear Gronwall-type inequality in [24], we obtain 

<t>(t) ~ eCT •• 

fortE [0, min{'ll'e, 'll' .... } ), if we choose')['** > 0 (independent of €!) to be 
so small that 

<1>(0) = C'll' .... ~ e-CT ••. 

Then, in view of (4.22), there exists a constant c, independent of E, such 
that 

D(t) ~ c (4.23) 

fortE [O,min{'ll'e,'ll'**}). Finally, according to the inequalities (4.21) 
and (4.23) we conclude the proof of Theorem 1.1. 
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The goal of this article is to analyze observability results of 
arbitrary small time for discrete approximations of conservative 
systems. In previous works, under the assumption that the con
tinuous conservative system is admissible and exactly observable, 
observability results of the corresponding discrete approximation 
schemes have been proved within the class of conveniently filtered 
solutions using resolvent estimates. However, in several situations 
and for SchrOdinger equations in particular when the Geometric 
Control Condition is satisfied, the exact observability property 
holds in any arbitrary small time. We prove that in several cases, 
namely under a stronger resolvent condition, the time-discrete ap
proximations of conservative systems also enjoy uniform observ
ability properties in arbitrary small time, still within the class 
of conveniently filtered solutions. Particularly, our methodology 
applies to space semi-discrete and fully discrete approximation 
schemes of SchrOdinger equations for which the Geometric Con
trol Condition is satisfied. Our approach is based on the resolvent 
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1 Introduction 

Let X be a Hilbert space endowed with the norm ll·llx and let A : 
V(A) ~X be a skew-adjoint operator with compact resolvent. Let us 
consider the following abstract system: 

i(t) = Az(t), z(O) = zo. (1.1) 

Here and henceforth, a dot (") denotes differentiation with respect to the 
timet. The element zo EX is called the initial state, and z = z(t) is the 
state of the system. Note that since A is skew-adjoint, solutions of (1.1) 
have constant energy: "i/t E IR, llz(t)llx = llzollx· Particularly, (1.1) can 
be solved for all time t E JR. 

Such systems are often used as models of vibrating systems (e.g., the 
wave equation), electromagnetic phenomena (Maxwell equations) or in 
quantum mechanics (Schrodinger equation). 

Assume that Y is another Hilbert space equipped with the norm 
ll·lly· We denote by .C(X, Y) the space of bounded linear operators from 
X to Y, endowed with the classical operator norm. Let B E .C(V(A), Y) 
be an observation operator and define the output function 

y(t) = Bz(t). (1.2) 

In order to give a sense to (1.2), we make the assumption that B is an 
admissible observation operator in the following sense (see [20]): 

Definition 1.1. The operator B is an admissible observation operator 
for systems (1.1)-(1.2) if for every T > 0 there exists a constant KT > 0 
such that 

loT IIBz(t)ll~ dt ~ KT llzoll~, "i/zo E V(A). (1.3) 

Note that if B is bounded on X, i.e. if it can be extended such that 
B E .C(X, Y), then B is obviously an admissible observation operator. 
However, in applications, this is often not the case, and the admissi
bility condition is then a consequence of a suitable "hidden regularity" 
property of the solutions of the evolution equation (1.1). 

The exact observability property of systems (1.1)-(1.2) can be for
mulated as follows: 

Definition 1.2. Systems (1.1)-(1.2) are exactly observable in timeT if 
there exists kr > 0 such that 

kT llzoll~ ~ loT IIBz(t)ll~ dt, "i/zo E V(A). (1.4) 
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Moreover, (1.1)-(1.2) are said to be exactly observable if they are exactly 
observable in some time T > 0. 

Note that observability issues arise naturally when dealing with con
trollability and stabilization properties of linear systems (see for instance 
[20]). Indeed, controllability and observability are dual notions, and 
therefore each statement concerning observability has its counterpart in 
controllability. In the sequel, we focus on the observability properties of 
(1.1)-(1.2). 

It was proved in [21] that systems (1.1)-(1.2) are exactly observable 
if and only if the following assertion holds: 

Condition 1. There exist positive constants M, m > 0 such that 

M 2 11 (A- iwl)zlli + m2 11Bzll~ 2:: llzlli , 'V w E R, 'V z E V(A). (1.5) 

This spectral condition can be viewed as a Hautus-type test, and 
generalizes the classical Kalman rank condition (see for instance [26]). 
To be more precise, if Condition 1 holds, then systems (1.1)-(1.2) are 
exactly observable in any timeT> To= 1rM (see [21]). 

The following stronger resolvent condition is more interesting for our 
purpose: 

Condition 2. There exist a positive constant m > 0 and a function 
M = M(w) of wE R, bounded on R, satisfying 

lim M(w) = 0, 
lwl-+oo 

(1.6) 

such that for all w E R, 

M(w)2 II(A- iwl)zlli + m2 11Bzll~ ~ llzlli, 'V z E V(A). (1.7) 

This condition appears naturally when considering Schrodinger equa
tions for which the Geometric Control Condition is satisfied (see [21] and 
Section 4 below). 

Theorem 1.3 ([5, 21]). When Condition 2 is fulfilled, systems (1.1)
{1.2) are observable in any time T* > 0. 

The proof of Theorem 1.3 in [21] is based on a decoupling argument 
of high- and low-frequency components. Given T* > 0, take M > 0 such 
that 1rM < T*, and choose a frequency cut 0 = Oo + 1/M where Oo 
satisfies SUPiwi~Oo {M(w)} $ M. Then the frequencies higher than n are 
exactly observable in any timeT E (1rM, T*). The low-frequency com
ponents then correspond to a finite dimensional observability problem 
and can be handled in any time T > 0. Finally these two partial observ
ability properties are combined together using a compactness argument 
(or simultaneous exact controllability results as in [26]). 
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But these methods are not constructive and are then not sufficient 
to obtain observability results of family of operators satisfying {1.7) uni
formly. It is then of particular interest to design a constructive proof 
of Theorem 1.3 when dealing for instance with discrete approximation 
schemes of {1.1)-{1.2). 

In the sequel, we will then propose a constructive proof of Theorem 
1.3, based on an explicit method proposed by Haraux in [14]. This allows 
us to deal with families of operators satisfying Condition 2 uniformly. 
We then explain how our method applies to time semi-discretizations of 
{1.1 )-{1.2). 

Particularly, our method implies that when the Geometric Control 
Condition is satisfied, time continuous and time semi-discrete Schrooinger 
equations are exactly observable in arbitrary small time, as we will see 
in Section 4. In this case, based on the abstract approach developed in 
[8, 9], we can also deal with space semi-discrete and fully discrete ap
proximation schemes. Particularly, we will prove uniform (with respect 
to the discretization parameters) observability results in arbitrary small 
time for discrete approximations of Schrodinger equations satisfying the 
Geometric Control Condition, within the class of conveniently filtered 
solutions. 

Let us now briefly comment the literature. This article follows the 
works [10, 8, 9] on observability properties for discrete approximation 
schemes of abstract conservative systems which, in the continuous set
ting, are exactly observable. The main underlying idea there is to use 
spectral criteria such as {1.5) which yield explicit dependence on the pa
rameters for the constants entering in the exact observability property 
{1.4). Indeed, one can then use the following diagram to prove uniform 
observability results of discrete approximations of {1.1)-{1.2): 

Exact observability property 
for the continuous system 

.ij. 
Spectral criterion ===> 

for the continuous system 

Uniform observability 
for discretizations of ( 1.1 )-( 1. 2) 

it 
Spectral criterion 

for the discrete systems 

The spectral criteria used in [10, 8, 9] for the exact observability property 
are due to [5, 21, 24, 26] in particular. As already noticed in [26], if the 
operators A and B satisfy estimate {1.7) for a function M(w) satisfying 
limlwl-+oo M(w) = M (M may be different from 0), then systems {1.1)
{1.2) is exactly observable in any timeT> 1rM. 

Let us mention that one has to look for uniform observability prop
erties for the discrete approximation schemes of {1.1)-{1.2) to guarantee 
the convergence of the controls computed in the discrete setting to one 
of the continuous systems {1.1)-{1.2). However, as already noticed in 
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[11, 12, 13], observability properties for discrete versions of (1.1)-(1.2) 
do not hold uniformly with respect to the discretization parameters due 
to spurious high-frequencies. We thus need to restrict ourselves to prove 
uniform observability properties within the class of conveniently filtered 
solutions. 

There are of course several other techniques to study observability 
properties for discrete versions of (1.1)-(1.2), such as Ingham's Lemma 
[16], whose use is essentially limited to the 1d cases (see [15, 6, 7]), and 
discrete multiplier methods in [22, 23]. For extensive references and the 
state of the art for the observability properties of discrete approximations 
of the wave equation, we refer to [27]. 

The paper is organized as follows: 
In Section 2, we give a constructive proof of Theorem 1.3. In Section 

3, we explain how this can yield uniform observability results in arbitrary 
small time for time semi-discrete versions of (1.1)-(1.2). in Section 4, 
we present an application of these techniques to discrete Schrodinger 
equations, including the fully discrete case, when the Geometric Control 
Condition is satisfied. We finally end up with some further comments. 

Acknowledgments. The author acknowledges Vilmos Komornik 
for pointing out the constructive argument of Haraux. 

2 A constructive proof of Theorem 1.3 

Before going into the proof, we introduce some notations. 
For a function f E L2 (1R; X) depending on timet E IR, we define its 

time Fourier transform j E L2(R, X) by 

A 1 l f(w) = . rn= f(t)e-uut dt. 
v27r R 

(2.1) 

The Parseval identity then reads: 

It is convenient to introduce the spectrum of the operator A. Since 
A is skew-adjoint with compact resolvent, its spectrum is discrete and 
a(A) = {iJ.ti : j E Z}, where (J.ti)iEZ is an increasing sequence of 
real numbers. Set (~j)jEN an orthonormal basis of eigenvectors of A 
associated with the eigenvalues (iJ.£j)jEZ: 

A~i = iJ.tiiPi. (2.3) 

Moreover, we define the filtered class 

C(s) = span{iPj: the correspondingiJ.I.i satisfying IJ.£il < s}, (2.4) 
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and its orthogonal C(s)J. in X, which coincides with 

span{~;: the correspondingiJ.t; satisfying IJ.t;l2:: s}. 

We can now focus on the proof of Theorem 1.3, which is decomposed 
in two main steps, which will be explained in the following subsections: 

1. We prove an observability inequality in arbitrary small time for 
the high-frequency solutions of (1.1). 

2. We use the constructive argument in [14] to obtain an observability 
inequality for any solutions of (1.1). 

2.1 High frequency components 

We first prove a high-frequency resolvent estimate: 

Lemma 2.1. For all M > 0 there exists a constant n such that 

M 2 ii(A- iwl)zll~ + m2 11Bzll~ 2:: llzll~, 
(2.5) 

'r/ w E IR, 'r/ z E V(A) n C(n)J.. 

Proof of Lemma 2.1. Fix M > 0. Then there exists no such that 

'r/w 2:: no, IM(w)l :5 M. 

This implies the following version of (2.5): 

M 2 ii(A- iwl)zll~ +m2 11Bzll~ 2:: llzll~, 
'r/ w such that iwl 2:: no, 'r/ z E V(A). 

Particularly, this implies (2.5) for all w such that lwl 2:: no. We thus only 
need to prove (2.5) for w such that lwl :5 no. This can be done using 
the following remark: If n 2:: no, 

'r/w such that iwl :5 no, 'r/z E V(A) n C(n)J., 
II(A- iw)zll~ 2:: (n- no)2 llzll~. 

Then, with the choice n =no+ 1/M, (2.5) holds. 

We now prove the following lemma: 

0 

Lemma 2.2. If (2.5) holds for given M and n, the observability in
equality (1.4) holds in any time T > 1rM for solutions of (1.1) with 
initial data lying in C(n)J.. Besides the corresponding constant kT > 0 
of observability in (1.4) can be chosen as 

k 1 ( 2 2 2 
T = 2m2T2 T - 7r M ). 
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This lemma can actually be found in [5, 21]. We provide the proof 
for completeness. 

Proof of Lemma 2.2. Given zo E C(f!).L n V(A), let z(t) be the corre
sponding solution of (1.1) and define, for x E Clf(IR), 

g(t) = x(t)z(t), f(t) = g'(t)- Ag(t) = x'(t)z(t). 

Then ](w) = (iw- A)g(w). Besides, g belongs to L2 (R; V(A) n C(f!).L ). 
We can thus apply the resolvent estimate (2.5) to g(w): 

Integrating with w and using the Parseval identity, we obtain 

where we see that the energy of solutions of (1.1), given by llz(t)ll~, is 
constant. 

We then look for a function x which makes the left hand side positive. 
This can be achieved by taking x(t) = sin(1rtjT) in (0, T) and vanishing 
anywhere else. This is not in Clf(IR.) but in H 1(JR.) with compact support, 
which is sufficient for the proof developed above. 

This gives the desired estimate for any initial data z0 E V(A)nC(f!).L 
and we conclude by density. 0 

2.2 Haraux's constructive argument 

To present the construction precisely, remark that since A has compact 
resolvent, there is only a finite number of eigenvalues for which 1~-til < n. 
For convenience, we introduce the finite sequence (mih5i5N of strictly 
increasing real numbers such that {mj} = {1-ti such that 1~-til < 0}. For 
j E {1, · · · , N}, we then denote by Xi the finite-dimensional vector 
space spanned by the eigenvectors corresponding to eigenvalues i~-ti with 
1-'i =mi. Note that these notations are not needed when the eigenvalues 
are simple. 

Lemma 2.3 ([14]). Let B be an admissible operator for (1.1)-(1.2). 
Assume that there exist positive constants k > 0 and 'i' such that any 
solution of (1.1) with initial data zo E C(f!).L satisfies 

k llzoll~ :517' IIBz(t)ll~ dt. (2.6) 
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Also assume that there exists a strictly positive number f3 such that 

'r/j E { 1, · · · , N}, 'r/z E Xi, IIBzlly ;::: /311zllx . (2. 7) 

Then the observability inequality (1.4) holds in any timeT> T, with a 
strictly positive obse'!:"aEility constant kr > 0 depending explicitly on the 
parameters /3, T- T, k, the number N of low frequencies and the low 
frequency gap 

'Y = . inf {mi+l- mj}, where m0 =-nand mN+l = +0. (2.8) 
JE{O, .. ,N} 

Note that 'Y in (2.8) is strictly positive as an infimum of a finite 
number of strictly positive quantities. 

We give the proof of this lemma below, since it will later be general
ized to more complex situations. Note that this proof can also be found 
in [18). 

Proof of Lemma 2.3. The argument is inductive. We then just need to 
describe the first step, for the others are similar. We then focus on the 
observability inequality (1.4) for initial data in XN + C(n).L. 

Set z0 E XN + C(O).L, and expand it as zo,N + zo,hf with zo,N E XN 

and zo,hf E C(n).t. 
Let z(t) be the solution of {1.1) corresponding to the initial data zo, 

and define, for a> 0, 

v(t) = z(t)-
1 
.. 16 

eimN
8z(t- s) ds. 

2u -6 
(2.9) 

Writing zo = L:ai4>i, the solution z(t) of (1.1) can be explicitly 
written as I: ai4>i exp(iJLit). Particularly, 

v(t) = Lai4>i exp(iJLit)( 1- sinc(a(mN- JLi))) 
j 

= L ai4>;exp(iJLit)(1-sinc(a(mN-JLi))) (2.10) 

i with IP.i I ~n 

Note particularly that (2.10) implies that the norms of vo = v(O) and 
zo satisfy 

(2.11) 

Besides, (2.10) also implies that v is a solution of (1.1) with initial 
data in C(O).L. Hence, it shall also satisfy the observability inequality 
(2.6): 

(2.12) 
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We then have to estimate the right hand side of {2.12). From {2.9), we 
get: 

lot IIBv(t)ll~ dt ~ 21t IIBz(t)ll~ dt 

+2 t h ;. I>•m•"z(t- s) ds) [ dt 

~ 2 rt IIBz(t)ll~ dt+21T+ii IIBz(t)ll~ dt 
lo -ii 

j
i'+ii 

~ 4 -ii I!Bz(t)ll~ dt. {2.13) 

Combined with {2.11) and {2.12), this yields 

4 ~i'+ii 
llzo,hJIIi ~ k{1 - sinc('ya))2 -ii I!Bz(t)ll~ dt. {2.14) 

We then focus on the component of the solution in XN. Obviously, 
denoting by ZN,Zhf the solutions of {1.1) with initial data zo,N,ZO,hf 
respectively, and applying (2.7) we obtain 

llzo,NIIi $ T~2 1t IIBzN(t)ll~ dt 

~ ~ (2 rt I!Bz(t)ll~ dt + 2 rt IIBZhJ(t)ll~ dt). 
T/32 lo lo 

Using the admissibility of B for systems {1.1)-{1.2), we obtain 

2 2 rt 2 2Kt 2 
llzo,NIIx ~ T/32 Jo I!Bz(t)lly dt + T/32 llzo,hJIIx. {2.15) 

Using (2.14) and the orthogonality of XN and C{O).l., we conclude 

2 2K 4 ~T+ii 
II 11 2 < [- (___t:_ 1) ] IIBz{t)ll2 

dt 
zo X - Tf32 + Tf32 + k{1- sinc('y8))2 -ii Y ' 

(2.16) 
or, using the conservation of the energy for solutions of {1.1) and the 
semi-group property, 

rT+2ii 
llzoll~ $ [T~2 + (~~; + 1) k{1- si:c('ya))2 ] lo IIBz(t)ll~ dt. 

{2.17) 
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Since 6 > 0 is arbitrarily small, we have proved the observability in
equality (2.17) in any time TN > 'i' for any solution of (1.1) with initial 
data in XN + C(S1)1.. 

The induction argument is then left to the reader. 0 

2.3 End of the proof of Theorem 1.3 

Set T* > 0. Choose M > 0 such that -rrM = T* /4. From Lemma 2.1, 
one can choose n such that (2.5) holds for z E V(A) n C(S1)1.. From 
Lemma 2.2, this implies that any solution of (1.1) with initial data in 
C(S1)1. satisfies (2.6) in time 'i' = T* /2. 

Since A has compact resolvent, there is only a finite number of eigen
values JL; such that IJL; I < n and then the low frequency gap 'Y defined 
in (2.8) is strictly positive. 

We only have to check that estimate (2. 7) indeed holds. This is 
actually obvious, since for j E {1, · · · , N} and z E X;, taking w = m; 
in (1.7), we obtain: 

The proof is then completed by applying Lemma 2.3. 0 

3 Applications to time-discrete approxima
tions of {1.1}-(1.2) 

This section aims at describing how the previous result can be adapted to 
time-discrete approximations of systems (1.1)-(1.2) satisfying Condition 
2. Particularly, we shall prove that in that case, time semi-discrete 
approximations of (1.1)-(1.2) indeed are exactly observable in arbitrary 
small time within the class of conveniently filtered solutions, uniformly 
with respect to the time discretization parameter. 

3.1 Time discrete approximations of (1.1)-(1.2) 

To simplify the presentation, we will focus on the following natural ap
proximation of (1.1)-(1.2), the so-called midpoint scheme. For {).t > 0, 
consider 

{ 

zk+l _ zk = A(zk + zk+l) 
/).t 2 , 

z0 = zo given. 

in X, k E Z, 
(3.1) 

Here, zk denotes the approximation of the solution z of (1.1) at time 
tk = k{).t. Note that the discrete system (3.1) is conservative, in the 
sense that k ~ llzkll~ is constant. 
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The output function is now given by the discrete sample 

yk = Bzk. (3.2) 

The admissibility and observability properties for (3.1)-(3.2) have been 
studied in (10] using spectral criteria such as Condition 1 for the observ
ability properties. Particularly, (10] states the following result: 

Theorem 3.1 ((10]). Assume that the continuous systems (1.1)-{1.2) 
are admissible and exactly observable in some timeT> 0. Then for all 
8 > 0: 

• For all T > 0, there extSts a constant Ko,T such that, for all tit> 
0, any solution zk of (3.1) with initial data zoE C(8jtit) satisfies 

tit L IIBzkll~ $ Ko,T llzoll~. (3.3) 
k.6.tE(O,T) 

• There exist a time T0 and a positive constant k0 > 0 such that, for 
all tit> 0 small enough, any solution zk of (3.1) with initial data 
zo E C ( 8/ tit) satisfies 

kollzoll~ $tit L IIBzkll~. (3.4) 
k.6.tE(O,T6) 

Note that the observability property (3.4) requires the time to be 
large enough. Actually, a precise estimate is given in (10) in terms of 
the resolvent parameters in (1.5) and the scaling parameter 8, but this 
is not completely satisfactory since, to our knowledge, even in the con
tinuous setting, we are not able in general to recover the optimal time 
of controllability from (1.5). 

But, as explained in Introduction, Condition 2 is sufficient to prove 
observability of the continuous systems (1.1)-(1.2) in any positive time. 
We thus ask whether or not it is also possible to prove discrete observ
ability properties for (3.1)-(3.2) in arbitrary small time when Condition 
2 is satisfied. 

Theorem 3.2. Assume that Condition 2 is satisfied. 
• If B E .C(V(A,.), Y) with K. < 1. Then for any o > 0, for any time 
T* > 0, there exists a positive constant ko,T• > 0 such that, for all tit> 
0 small enough, any solution zk of (3.1) with initial data zoE C(ojtit) 
satisfies 

ko,T• llzoll~ $ tit (3.5) 
k.6.tE(O,T•) 

• If B simply belongs to .C(V(A), Y). Then for any timeT* > 0, there 
exist two positive constants 8 > 0 and ko,T• > 0 such that, for all tit > 0 
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small enough, any solution zk of (3.1) with initial data zo E C(ofl:l.t) 
satisfies (3.5). 

Theorem 3.2 is the exact counterpart in the discrete setting of Theo
rem 1.3, and we will only indicate the modifications needed in its proof 
to derive Theorem 3.2. 

Proof of Theorem 3.2. As we said, the proof of Theorem 3.2 closely fol
lows the one of Theorem 1.3, and we thus only sketch it briefly. 

We first deal with the high-frequency components. Lemma 2.1 still 
holds, since it is by nature independent of time, no matter whether this 
time is continuous or not. However, Lemma 2.2 has to be modified and 
replaced by the following 

Lemma 3.3. Assume that (2.5) holds for given m, M and n. For any 
o > 0, set 

(3.6) 

Then the observability inequality (3.4) holds in any time T > TM for 
some positive constant kT > 0 for any solution of (3.1) with initial data 
lying in C(O).l nC(ofl:l.t). Besides, kT can be chosen explicitly as a 
function ofT, m, M and the norm of Bin .C(V(A), Y). 

Proof of Lemma 3.3. In the case B E .C(V(A), Y), this lemma corre
sponds exactly to Theorem 1.3 in [10], and might be seen as an exten
sion of Lemma 2.2 to the time discrete case, involving discrete Fourier 
transforms in particular instead of continuous ones. 

In the case B E .C(V(A,.), Y) with K. < 1, the proof of Lemma 3.3 
can be adapted immediately from the one of Theorem 1.3 in [10] by 
modifying estimate (2.19) in [10] using 

II (zk+l_zk)ll II (zk+zk+l)ll B l:l.t y ~ IIBII.c('D(A"},Y) Al+l< 2 X 

( 
0 ) l+~< II zo + zl II ~ l:l.t IIBII.c('D(A"},Y) 2 X ' 

and the following ones accordingly. Particularly, with the notations of 
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[10], a 2 in Lemma 2.4 shall be replaced by 

Details are then left to the reader. 0 

We then deal with the low-frequency components. This is done as in 
the continuous case: 

Lemma 3.4. Let B be an admissible operator for (1.1). Assume that 
there exist positive constants 8 > 0, k > 0 and T such that, for all 
ll.t > 0 small enough, any solution of (3.1) with initial data zo E C(O).Ln 
C ( 8/ ll.t) satisfies 

k llzoll~ ~ ll.t L IIBzkll~. (3.7) 
kate(o,i') 

Also assume that there exists a strictly positive number {3 such that (2. 7) 
holds. Then, for any ll.t > 0 small enough, for any solutions of (3.1) 
with initial data zo E C(8/ ll.t), the observability inequality (3.4) holds in 
any time T > T, with a strictly positive observability constant kr > 0 
depending explicitly on the parameters {3, T- T, k, the number N of low 
frequencies and the low frequency gap (2.8). 

Proof of Lemma 3.4. The proof of Lemma 3.4 closely follows the one of 
Lemma 2.3. 

Fix ll.t > 0. First remark that solutions of (3.1) can be written as 

zk = L a/Pi exp(.Aj,atkll.t), 
j 

Then define, similarly as in (2.8), 

. 1 (J.tjll.t) w1th Aj,at = 
2

/l.t tan -
2

- . 

1 (mjll.t) ·nr { } mj,at = 
2 

At tan -
2
- and "'tat = . 1 mj+l,at - mj,at . 

u JE{O,··· ,N} 

For simplicity, choose 8at such that 8/ ll.t is an integer. Introduce, 
similarly as in (2.9), 

vk = zk- ~: L exp(imN,atlll.t)zk-l. 
tate(-<5,<5) 

The proof of Lemma 3.4 then follows all along the line the one of Lemma 
2.3, replacing all the continuous integrals in time by discrete summations 
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and using the admissibility result (3.3) in the class C(6/ At). This yields, 
similarly as in (2.17), that any solution of (3.1) with initial data zo E 

XN + C(f!).L n C(6/ At) satisfies 

2 [ 2 (2Kt ) 4 ]At "" 11Bzkll2 llzollx ::; T-(32 + T-(32 +1 k-{1- . ( 6 ))2 ~ Y. 
smc 'Yt:.t t:.t kt:.te(O,T+26.o.e) 

Particularly, when At goes to zero, one can choose (6t:.t) converging 
to 6. Besides, when At -+ 0, bt:.t) obviously converges to 'Y· We thus 
obtain, for At > 0 small enough, that any solution of (3.1) with initial 
data z0 E XN + C(f!).L n C{6/ At) satisfies 

2 < [-2 (2Kt ) 4 ] At "" 11Bzkll2 . llzollx - Tf32 + T(32 + 1 k(1- sine{ 6))2 ~ Y 
'Y kt:.tE(O,T+26.o.t) 

The inductive argument then again works and allows one to conclude 
Lemma 3.4. 0 

We now finish the proof of Theorem 3.2. Set T* > 0. 
• If B E .C(V(Ait), Y) with K. < 1. Set 6 > 0. Choose M such that 
1rM(1 + 62 /4) = T* /4. 
• If B E .C(V(A), Y). Set 6 < 6o, where 6o is 

?rm IIBII.c('D(A),Y) 61 = T* /8. 

Choose M > 0 such that 

[ 

62 2 64] 1/2 
1r M2 ( 1 + 4) + m211BII~('D(A),Y) 16 = T* /4. 

Applying successively Lemmas 2.2 and 3.3, we prove uniform ob
servability properties (3.7) for any solution of (3.1) with initial data 
zoE C(f!).L nC(6/ At) in timeT* /2. We then conclude as in the contin
uous case by Lemma 3.4 and estimate (2.7). 0 

Remark 3.5. Note that the approach developed in this section can also be 
applied to more general time discrete approximation schemes. We refer 
to [10] for the precise assumptions needed on the time discrete numerical 
schemes. Roughly speaking, any time discrete scheme which preserves 
the eigenvectors and for which the energy is constant enters into our 
setting. This includes, for instance, the fourth order Gauss method, or 
the Newmark method for the wave equation. 
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4 Schrodinger equations 

In this section, we present an application to the above results of SchrO
dinger equations. Condition 2 is indeed typically satisfied by Schrodinger 
equations, and can be guaranteed when the corresponding wave equation 
is observable. 

4.1 The continuous case 

Let n be a smooth bounded domain of JR.N' and w a subdomain of n. 
Let us consider the following Schrodinger equation: 

{ 

ii + il.z = 0, in 0 X (O,oo), 
z = 0, on an X (O,oo), 
z(O) = zo E L 2(0), 

(4.1) 

observed through y(t) = Xw z(t), where Xw = Xw(x) denotes the charac
teristic function of the set w. 

We thus consider the following observability property: for T* > 0, 
find a strictly positive constant k. such that any solution of ( 4.1) satisfies 

r· 
k. llzoii~2(0) ~ 1 iiz(t)11~2(w) dt. (4.2) 

Note that this fits the abstract setting presented above: X = L2 (0), 
A = ill. with Dirichlet boundary conditions, the domain of the operator 
A is V(A) = H 2 nHJ(O) and B simply is the multiplication operator by 
Xw 1 which is continuous from L2 (0) to L2(w) (and therefore admissible). 

For Schrooinger equations, due to the infinite velocity of propagation 
of rays, there are many cases in which the observability inequality ( 4.2) 
holds in any time T* > 0, for instance, when the Geometric Control 
Condition (GCC) is satisfied in some timeT. 

The GCC in time T can be, roughly speaking, formulated as follows 
(see (2] for the precise setting): The subdomain w of n is said to satisfy 
the GCC in time T if all rays of Geometric Optics that propagate inside 
the domain nat velocity one reach the set win time less than T. 

I';l'ote that this is not a necessary condition. For instance, in (17], 
it has been proved that when the domain n is a square, for any non
empty bounded open subset w, the observability inequality (4.2) holds 
for system (4.1). Other geometry has also been dealt with: we refer to 
(18, 19, 3, 1]. 

Similarly, Condition 2 is not guaranteed in general: it is indeed 
not clear whether the observability property in arbitrary small time for 
Schrodinger equation (4.1) implies Condition 2. 
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But there are several cases in which Condition 2 is satisfied: when it 
has been proven directly to prove observability in arbitrary small time 
(see for instance [5)), which has not been fully developed in the literature, 
or when the Geometric Control Condition is satisfied. 

Theorem 4.1 ([21)). Assume that the Geometric Control Condition 
holds. Then Condition 2 is satisfied for system (4.1) observed through 
y(t) = Xw z(t). 

Before going into the proof, we recall that the Geometric Control 
Condition in time T > 0 is equivalent [4] to the exact observability 
property in time T of the corresponding wave equation 

{

u-au=O, inOx(O,oo), 
u = 0, on an X (O,oo), 
(u, u)(O) = (uo, ul) E HJ(O) x £ 2(0), 

(4.3) 

observed by y(t) = x..,u(t). In this case, the observability inequality 
reads as the existence of a strictly positive constant CT > 0 such that 
solutions of (4.3) satisfy 

CT !l(uo, Ut)li~J(O)x£2(!1) :::; loT llit(t)11~2(w) dt. (4.4) 

It is then convenient to introduce an abstract setting, which gener
alizes Theorem 4.1. 

Theorem 4.2 ([21)). Let A0 be a positive definite operator on X, and 
let B be a continuous operator from V(A~12 ) to Y. Assume that the 
wave like equation 

ii. + Aou = 0, t ~ 0, (u(O),u(O)) = (u0 ,ut) E V(A~12 ) x X {4.5) 

observed through 
y(t) = Bit(t), (4.6) 

is admissible and exactly observable, meaning that there exist a time T 
and positive constants CT, KT > 0 such that solutions of ( 4.5) satisfy 

CT li(u0, u1 )II;(A~'2JxX :::; 1T !IBu(t)!l~ dt:::; KT !l(uo, Ut)II;(A~/2)xx · 
0 

(4.7) 

Then the operators A= -iAo and B satisfy Condition 2. 
Particularly, the Schrodinger like equation 

i.i = Aoz, t ~ 0, z(O) =zoE X, (4.8) 
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observed by 
y(t) = Bz(t) (4.9) 

satisfies Condition 2 and is therefore observable in arbitrary small time: 
for all T* > 0, there exists a positive constant k. > 0 such that any 
solution of ( 4.8) satisfies 

r· 
k. llzoll~ ~ 1 IIBz(t)ll~ dt (4.10) 

Proof. Assume that (4.5)-(4.6) are exactly observable. Remark that, 
setting X= V(A~/2 ) x X, and 

A=( 0 Id), -Ao 0 B = ( 0 ' B), (4.11) 

equation (4.5) fits the abstract setting given above. Particularly, the 
domain of A simply is V(A0 ) x V(A~/2 ) and then the conditions B E 

.C(V(A~/2 ), Y) and BE .C(V(A), Y) are equivalent. 
The admissibility and observability properties (4.7) then imply (see 

[21]) Condition 1: There exist positive constants M, m > 0 such that 

M211(A-iwl) (:)[ +m211B(:)[ ~ 11(:)[. 
Vw E JR, V (:) E V(A). (4.12) 

Particularly, for all wE lR and u E V(Ao), taking v = iwu yields 

M2ll (Ao - w2 J)ull~ + m2w2 11Bull~ ~ jjA~12ujj: + w2 llull~ 
~ w2 llull~. 

Hence 

M2
2 

II (Ao - w2 J)ull~ + m2 11Bull~ ~ llull~, Vw E lR, Vu E V(Ao), 
w 

or, equivalently, 

M 2 2 2 2 2 -II(Ao- wl)ullx + m IIBully ~ llullx, Vw E IR+, VuE V(Ao). 
w 

(4.13) 
Of course, this estimate does not hold for w < 0 and is not interesting 
for small values of w. But this actually corresponds to the easy case. 
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Indeed, if w < A1 (Ao), where A1 (Ao) is the first eigenvalue of Ao (which 
is strictly positive since Ao is positive definite), 

II(Ao- wl)ull~ 2: (Al(Ao)- w)2 llull~, VuE V(A). 

Combining with (4.13), by taking 

we then obtain 

{

M 

M(w) = 7w 1 
A1(Ao)- w 

for w > AI(fo)' 

for w :5 Al~Ao)' 

M(w) 2 1i(A0 - wl)ull~ + m2 11Bull~ 2: llull~, Vw E IR, VuE V(Ao). 
(4.14) 

This completes the proof of Theorem 4.2 and, as a particular instance 
of it, of Theorem 4.1. D 

The interest of this approach is that it also applies to space semi
discrete, as well as fully discrete approximation schemes of (4.8) and 
(4.1) in particular. 

4.2 Space semi-discrete approximation schemes 

Let us now introduce the finite element method to (4.8). 
Let (Vh)h>O be a sequence of vector spaces of finite dimension nh 

which embed into X via a linear injective map 7rh : Vh ~ X. For each 
h > 0, the inner product < ·, · > x in X induces a structure of Hilbert 
space for Vh endowed with the scalar product < ·, · >h=< 11"h·, 'Trh· >X· 

We assume that for each h > 0, the vector space 7rh(Vh) is a subspace 

of V(A~/2 ). We thus define the linear operator Aoh : Vh ~ Vh by 

< Aoh</Jh,'I/Jh >h=< A~121rh¢h,A~121rh1/Jh >x, V(¢h,1/Jh) E V~. (4.15) 

The operator Aoh defined in (4.15) obviously is self-adjoint and positively 
definite. If we introduce the adjoint 1rh_ of 'Trh, definition (4.15) reads: 

(4.16) 

This operator Aoh corresponds to the finite element discretization of 
the operator Ao. We thus consider the following space semi-discretization 
of (4.8): 

(4.17) 

In this context, for all h > 0, the observation then naturally becomes 

(4.18) 
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Note that we shall impose BE .C(V(A~/2 ), Y) for this definition to make 
sense. 

We now make precisely the assumptions we have, usually, on 7rh, 
which will be needed in our analysis. One easily checks that 7rh7rh = Idh· 
The injection 7rh describes the finite element approximation we have 
chosen. Particularly, the vector space 7rh(Vh) approximates, in the sense 
given hereafter, the space V(A~/2 ): There exist()> 0 and Co > 0, such 
that for all h > 0, 

{ 

IIA~12 (7rh7rh- J)¢11x ~Co IIA~12¢11x' 

IIA~12 (7rh7rh- J)¢11x ~ Coh6 IIAo¢11x, 
(4.19) 

'</¢ E V(Ao). 

When considering finite element discretizations of the Schrodinger equa
tion (4.1), which, as we said, corresponds to taking Ao as the Laplace 
operator with Dirichlet boundary conditions, estimates ( 4.19) are satis
fied [25] for () = 1 when using P1 finite elements on a regular mesh (in 
the sense of finite elements). 

We will not discuss convergence results of the numerical approxima
tion schemes presented here, which are classical under assumption (4.19), 
and can be found for instance in [25]. 

In [8, 9], we proved uniform observability properties for ( 4.17)-( 4.18) 
in classes of conveniently filtered initial data. In the sequel, our goal is 
to obtain uniform observability properties for (4.17) similar to (4.10), 
but in arbitrary small time, also for conveniently filtered initial data. 

Therefore, we shall introduce the filtered classes of data. For all 
h > 0, since Aoh is a self-adjoint positive definite operator, the spectrum 
of Aoh is given by a sequence of positive eigenvalues 

(4.20) 

and normalized (in Vh) eigenvectors (ll>jh::;j::;nh· For any s > 0, we can 
now define, for any h > 0, the filtered space 

Ch(s) =span{ ~~>j with the corresponding eigenvalue satisfying I>•JI ::::; s }· 

We have then proved in Theorem 1.3 in [8]: 

Theorem 4.3. Let Ao be a self-adjoint positive definite operator with 
compact resolvent, and B E .C(V(A0), Y), with K < 1/2. Assume that 
the maps (7rh)h>O satisfy property (4.19). Set 

u = Omin{ 2(1- 2K), ~}· (4.21) 
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Assume that systems (4.8)-(4.9) are admissible and exactly observable. 
Then there exist c > 0, a timeT* and positive constants k., K. > 0 such 
that, for any h > 0, any solution of ( 4.17) with initial data 

(4.22) 

satisfies 
r· 

k.llzohll! :S 1 IIBhzh(t)ll~ dt :S K. llzohll!. (4.23) 

In this result, based on spectral criteria for the admissibility and ad
missibility of Schrodinger operators, the time of observability T* cannot 
be made as small as desired. 

When the Geometric Control Condition is satisfied, the following has 
been proved in Theorem 8.3 in [9] as a by product on our analysis of the 
abstract wave like equation (4.5): 

Theorem 4.4. Let A0 be a positive definite unbounded opemtor with 
compact resolvent and B E .C('D(Aa), Y), with r;, < 1/2. Assume that the 
approximations (11'h)h>O satisfy property (4.19). Set 

'= Omin { 2(1- 2r;,), ~ }· (4.24) 

Assume that systems (4.5)-(4.6) is admissible and exactly observable. 
Then there exist c > 0, a time T* and positive constants k., K. > 0 such 
that, for any h > 0, any solution of ( 4.17) with initial data in 

(4.25) 

satisfies (4.23). 

Theorem 4.4 indeed improves Theorem 4.3 since ' ;=:: u. This is 
expected since the assumptions of admissibility and observability for the 
abstract wave systems ( 4.5)-( 4.6) are stronger than the admissibility and 
observability of Schrodinger equations ( 4.8)-( 4.9). 

The proof of Theorem 4.4 is made in [9]. However, Theorem 4.4 
requires the time of observability to be large enough. We shall prove 
below that it can actually be chosen to be arbitrarily small. 

Theorem 4.5. Under the assumptions of Theorem 4.4, assume that 
systems (4.5)-(4.6) are admissible and exactly observable. Then there 
extSts c > 0 such that for all T* > 0, there exist positive constants 
k.,K. > 0 such that, for any h > 0, any solution of (4.17) with initial 
data in (4.25) satisfies (4.23). 
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Proof. The admissibility result of (4.23) follows from the one in Theorem 
4.4 since, when the admissibility inequality holds for some timeT> 0, 
it holds for any time. We shall thus not deal further with that question. 

Assume that systems (4.5)-(4.6) are admissible and exactly observ
able. Then we can use Theorem 1.1 in [9], which states that, under the 
assumptions of Theorem 4.4, the space semi-discrete wave systems 

are 

• uniformly (with respect to h > 0) admissible for any initial data 
(uoh,ulh) E Ch("'h-<;)2 , whatever 71 > 0 is. 

• uniformly (with respect to h > 0) observable in some timeT> 0 
for initial data (uoh,ulh) E Ch(eh-<;)2 , provided e is small enough. 

These uniform admissibility and observability properties imply, as 
proved in [21], that the resolvent condition (4.12) for the operators Aoh 
and Bh holds uniformly with respect to h for data zh E Ch(e/hr;). The 
proof of Theorem 4.2 then gives that, uniformly with respect to h > 0, 
we can find positive constants M, m > 0 such that 

To conclude that Condition 2 is uniformly satisfied, following the proof 
of Theorem 4.2, we only need to check that the first eigenvalue .xt cor
responding to the operator Aoh stays away from 0. But, writing the 
Rayleigh coefficient which characterizes .xt and Al(Ao), one instanta
neously checks that .xt ~ Al(Ao) > 0 for all h > 0. 

In other words, we have proved that there exists a bounded posi
tive function M = M(w) satisfying limlwl-+oo M(w) = 0 and a positive 
constant m > 0 such that for all h > 0 

M(w)2 II(Aoh- wh)uhll~ + m2 11Bhuhll~ ~ lluhll~, 
Vw E IR, Vuh E Ch(e/hc;). (4.26) 

Now, we use our constructive proof of Theorem 1.3 to deduce uni
form observability properties in any time T*. However, though this 
might seem at first a direct consequence of Theorem 1.3, one needs to 
be cautious. 

Following the proof of Theorem 1.3, we see that the high-frequency 
components can be dealt with uniformly without modification. Particu
larly, for all t > o, there exists n such that, for all h > o, any solution 
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of (4.17) with initial data zoh E Ch(O).L n Ch(e/h<;) satisfies 

(4.27) 

for some positive constant k > 0 independent of h > 0. 
Besides the systems (4.17)-(4.18) are uniformly admissible because 

of Theorem 4.4. 
But the low-frequency components require an estimate on the low

frequency gap for each h > 0. The constant n is independent of h > 0 
and setting (m~)je{l,-·· ,N,.} for the increasing sequence of the values 
taken by the eigenvalues of Aoh which are smaller than n, we shall 
estimate 

'Yh = inf {mj+l- mj} where m3 =-nand mt,.+l = n. (4.28) 
jE{O,-·· ,N~o} 

Note particularly that Nh might depend on h. However, since all these 
correspond to the discrete spectrum of Aoh, it shall converge to the 
spectrum of Ao. 

Case 1: Each eigenvalue of the spectrum of Ao is simple. Then 
the convergence of the discrete spectrum of Aoh in the band of eigen
values smaller than the constant n is guaranteed [25]. Particularly, Nh 
is constant for h > 0 small enough and the sequence ('Yh) then simply 
converges to 'Y. 

Case 2: The general case. When the spectrum of A0 is not simple, 
this is harder since a multiple eigenvalue of the continuous operator may 
yield different but close eigenvalues, making 'Yh dangerously small for our 
argument. The idea then is to refine Haraux' argument, and to think 
directly about this convergence property of the spectrum. 

For each positive a > 0 smaller than 'Y /4 ( 'Y being the continuous 
low frequency gap defined in (2.8)), there exists h01 > 0 such that for 
hE (0, h01 ), the spectrum of the operator Aoh satisfies 

{.A~ such that .X~< 0} c U [mi- a, mi +a]. (4.29) 
jE{l,··· ,N} 

Define then the sets x;•a =span{~~ such that I.X~- mil :::; a}. Since 
the discrete operators satisfy (4.26), further assuming that a is smaller 
than 1/(2supM(w)), choosing for instance {3 = 1/(2m), we obtain 

Vj E {1, ... 'N}, Vz E x;·a, IIBhzhiiY ~ /311zllh. (4.30) 

Once we have seen (4.29)-(4.30), the inductive argument developed in 
Lemma 2.3 works as before, except some small error terms. Let us 
present it briefly below at the first step. 
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To write it properly, we shall introduce the orthogonal projections 
JP>~a on x';;a and JP>~1 on Ch(f!).L, respectively. 

Set then Zoh E x';;Q + Ch(f!).L n Ch(c/h<;), and decompose it into 
zoh,N = JP>~azoh and zoh,hf = IP~1zoh· Let zh(t) be the solution of (4.17) 
with intial data zoh and, for 8 > 0, define Vh as 

Expanding Zoh on the basis of ~J, similarly as in (2.11), we obtain 

Besides, vh is a solution of ( 4.17), so is JP>~1vh. But JP>~1vh lies in 
Ch(f!).L n Ch(c/h<;), and then one can use (4.27): 

IIIP~Jvh(O)II~ ~ ~ 1T IIBhlP~Jvh(t)li~ dt 

~ ~ 1i' liBhvh(t)ii~ dt + 
2~7' jjiP~avh(o)ll: 

~ ~for IIBhvh(t)ii~ dt + 
2~7' (1- sinc(a8))2 IIIP~azh(o)ll:c4.32) 

Using the same estimates as in (2.13), combining with (2.11), we get 

We then focus on the component of the solution in x';;a. Arguing 
as in (2.15) and using (4.30), we obtain 

(4.34) 
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Equations (4.33) and (4.34), together, give 

II 
h,a 112 ( 4Kf ( 1- sinc(a8)) 

2
) 

JPl N zoh h 1 - Tf32k 1 - sine( ')'d) 

_2_ i' B t 2 dt 
( 

8K 
) 1

T+6 

:::; Tf32 + Tf32k(1- sinc('Y8))2 -6 II hZh( )lly · (4.35) 

Particularly, if one can guarantee that the left hand side is positive, 
which can be done simply by choosing a > 0 small enough and 

we deduce 

- 2-

(1 - sinc(a8))2 :::; ~:K: (1 - sinc('Y8))2, 
T 

(4.36) 

2 ( 4 16K- ) 1TH IIIP'~"'zohllh:::; Tf32 + Tf32k(1- si:c('Y8))2 _
6 

liBhzh(t)ll~ dt. 

From (4.33), we obtain an estimate for IIIP'~1zohll:· Using the or

thogonality of X';;"' and Ch(n).L nCh(e/h~), this proves that the observ
ability inequality holds in any timeT > T, uniformly with respect to 
hE (O,ha), for solutions of (4.17) with initial data in X';;" +Ch(O).L n 
Ch(e/hc;). 

Note that (4.36) does not depend on h > 0. Thus, once a is chosen 
according to (4.36), the above proof stands for any hE (O,ha)· 

This concludes the inductive argument, and this slightly generalized 
Haraux's technique can be applied to concluding the proof of Theo
rem 4.5. 0 

4.3 Fully discrete approximation schemes 

We can also prove observability properties for fully discrete approxi
mations of (4.8)-(4.9), uniformly with both discretization parameters 
At > 0 and h > 0, in arbitrary small time. 

To be more precise, we consider, for h > 0 and tl.t > 0, the following 
system: 

{ 
(

zk+l _ zk) (zk + zk+l) i h h -A h h 
f:l.t - Oh 2 ' 

z~ = Zoh, 

(4.37) 

observed by 
(4.38) 
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For these systems, admissibility and observability results have been de
rived in [8) using [10) in the classCh(8j6.t)nCh(ch-u), with a in (4.21), 
but the observability results in [8) need the time T to be large enough. 
Later in [9), these admissibility and observability results have been im
proved by using the Geometric Control Condition, yielding the filtering 
class Ch(8j6.t) nCh(c/h.;) with (in (4.24), but the observability time is 
again required to be large enough. 

However, using [9) and the techniques developed above, we can prove 
that the discrete systems ( 4.37)-( 4.38) actually are observable in arbi
trary small time. 

Theorem 4.6. Under the assumptions of Theorem 4.4. Assume that 
systems (4.5)-(4.6) are admissible and exactly observable. Then, for 
any timeT* > 0, for any 8 > 0, there exist two positive constants c > 0 
and k6,T• > 0 such that, for all h, 6-t > 0 small enough, any solution of 
( 4.37) with initial data 

where ( is given by (4.24), satisfies 

k6,T• llzohll~ ~ 6-t L IIBhz~ll~ · (4.39) 
k.1.tE(O,T•) 

The proof of Theorem 4.6, which can be adapted easily from the 
previous theorems, is left to the reader. The keynote is the convergence 
of the low components of the spectrum and the fact that all the above 
proofs are explicit and shortcut any compacity argument. 

5 Further comments 

This work is based on the resolvent estimate given in Condition 2. Un
der Condition 2, observability properties hold in arbitrary small time. 
However, there might be systems fitting the abstract setting {1.1)-(1.2) 
which are observable in arbitrary small time but for which Condition 2 
does not hold. In this sense, we did not completely solve the problem. 

This is actually part of a more general question: can we read on 
the operators A and B and their spectral properties the critical time of 
observability ? To our knowledge, this is still not clear if the resolvent 
estimates keep precisely track of this information, which is of primary 
importance in applications, for instance, when dealing with waves. It 
would then be interesting to try to design an efficient spectral charac
terization of the time of observability. 
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Abstract 

This paper is addressed to an analysis of the longtime behavior 
of the hyperbolic equations with a partially boundary damping, 
under sharp regularity assumptions on the coefficients appearing 
in the equation. Based on a global Carleman estimate, we estab
lish an estimate on the underlying resolvent operator of the equa
tion, via which we show the logarithmic decay rate for solutions 
of the hyperbolic equations without any geometric assumption on 
the subboundary in which the damping is effective. 

1 Introduction and main results 

Let n c !Rn (n E N) be a bounded domain with boundary an of class 
C2 • Denote by v = (v1 , • • • , vn) the unit outward normal field along the 
boundary an, and ft the closure of n. For simplicity, we use the notation 
Uj =::.,where Xj is the j-th coordinate of a point x = (x1, · · · ,xn) in 

J 

!Rn. In a similar manner, we use the notations Wj, Vj, etc. for the partial 
derivatives of w and v with respect to Xj· By c we denote the complex 
conjugate of c E q), Throughout this paper, we will use C to denote 
a positive constant which may vary from line to line (unless otherwise 
stated). 

Let ai k (.) E C 2 (0; IR) be fixed functions satisfying 

V X Eft, j, k = 1, 2, · · · , n, (1.1) 

and for some constant so > 0, 

n 

L aik(x)~it 2: sol~l 2 , (1.2) 
j,k=l 

*The author was partially supported by the NSF of China (No. 10525105, No 
10771149 and No 10831007). 
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where~= ce, ... ,~n). 
Next, we fix a function a(·) E L 00 (an; IR+) satisfying 

/:,. ro = {x E an; a(x) > 0} =f. 0. (1.3) 

The main purpose of this paper is to study the longtime behavior of 
solutions of the following hyperbolic equation with a boundary damping 
term a(x)ut: 

Put 

n 

Utt- L (aikuj)k = 0 
j,k=l 

n 

L aikUjVk + a(x)Ut = 0 on JR+ X an, 
j,k=l 

H ~ {(!,g) E H 1(n) x L2 (n) lin fdx = 0}, 
which is a Hilbert space, whose norm is given by 

V (!,g) E H. 

(1.4) 

Define an unbounded operator A: H--+ H by (recalling that u~ = ~~; ) 

n 

D(A) ~ { u = (u0 ,u1
) E H;Au E H; ( L aiku~vk + au1

) lan = 0 }· 
j,k=l 

(1.5) 
It is easy to show that A generates a C0-semigroup {etA heR on H. 
Therefore, system (1.4) is well posed in H. Clearly, H is the finite 
energy space of system (1.4). By the classical energy method, it is easy 
to check that 

d
d ll(u,ut)ll~ = -2 r a(x)iuti2dro. 
t lro 

(1.6) 

-Formula (1.6) shows that the only dissipative mechanism acting on the 
system is through the sub-boundary ro. 
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According to the energy dissipation law (1.6) and the well-known 
unique continuation property for solutions of the wave equation, it is 
easy to show that there are no nonzero solutions of {1.4) which conserve 
energy. Hence, using LaSalle's invariance principle ((12, p.18]), we may 
conclude that the energy of every solution of (1.4) tends to zero as t -+ 

oo, without any geometric conditions on the domain n. This paper is 
devoted to analyzing further the decay rate of solutions of system {1.4) 
tending to zero as t -+ oo. In this respect, very interesting logarithmic 
decay result was given in (14] for the above system under the regularity 
assumption that the coefficients aik(-) and a(·), and the boundary an 
are C00-smooth. Note that since the sub-boundary fo in which the 
damping a(x)ut is effective may be very "small" with respect to the 
whole boundary an, the "geometric optics condition" introduced in (1] 
is not guaranteed for system (1.4), and therefore, in general, one can 
not expect exponential stability of this system. On the other hand, as 
pointed in [14], for some special case of system (1.4), logarithmic stability 
is the best decay rate. 

The main results of this paper are stated as follows: 

Theorem 1.1. Let aik(·) E C 2(0; R) satisfy (1.1)-(1.2), and a(·) E 
L00 (8n; R+) satisfy (1.3). Then solutions etA(u0 ,u1) = (u,ut) E 
C(R; D(A)) n C 1(R; H) of system (1.4) satisfy 

llet.A(uo, ul)IIH :$ ln(2C+ t) ll(uo,ul)IID(.A)• 
(1.7) 

Following [3] (see also [5]), Theorem 1.1 is a consequence of the fol
lowing resolvent estimate for operator A: 

Theorem 1.2. There exists a constant C > 0 such that for any 

we have 

[ 
e-Cilm>.l ] 

ReA. E - C ,0 , 

II(A- A.I)- 1 II.c(H) :$ CeCIIm>-1, for I-XI> 1. 

We shall develop an approach based on global Carleman estimate 
to prove Theorem 1.2, which is the main novelty of this paper. Our 
approach, stimulated by (13] (see also [7, 9, 21]), is different from that in 
[14], which instead employed the classical local Carleman estimate and 
therefore needs coo -regularity for the data. 
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It would be quite interesting to establish better decay rate (than 
logarithmic one) for system (1.4) under further conditions (without ge
ometric optics condition). There are some impressive results in this 
respect, say [4, 5, 15, 16, 17), for polynomial decay of system (1.4) with 
special geometry. However, to the best of the author's knowledge, the 
full picture of this problem is still unclear. We refer to [6, 19, 22) for 
some related work. 

The rest of this paper is organized as follows. In Section 2, we collect 
some useful preliminary results which will be useful later. Another key 
result, an interpolation inequality for an elliptic equation with an inho
mogeneous boundary condition, is brought about in Section 3. Sections 
4-5 are devoted to the proof of our main results. 

2 Some preliminaries 

In this section, we collect some preliminaries which will be useful in the 
sequel. 

First of all, we recall the following result which is an easy consequence 
of known result in [11, 20), for example. 

Lemma 2.1. Let r 0 be given by (1.3). Then there exists a real-valued 
function -/iJ E C2 (0) such that 

t/J>O inn, 

IV-IPI > 0 inn, 

t/J=O on an\ro, (2.1) 

n 

L aikt/Jivk ~ 0 on an\ro. 
j,k=l 

Next, to establish the desired interpolation inequality via global Car
leman estimate, we need the following point-wise estimate for second
order differential operators with symmetric coefficients, which is a con
sequence of [9, Theorem 2.1) (see also [8, Theorem 1.1)). 

Lemma 2.2. Let fiJk E C2 (Rn; R) satisfy fiJk = bkJ (j, k = 1, · · · , n). 
Assume that wE C2 (Rl+n; <I:) and f. E C2 (Rl+n; R). Set 

n 

(} - e - e' v =Ow, 'l1 = -2f.ss- 2 L (li'kf.j)k (2.2) 
j,k=l 
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Then 
n 2 

o2 jwss + L (b1kwj )k I + Ms + div v 
j,k=l 

n n 

~ 2( 3£88 + L (b1kf;)k) lvsl 2 + 4 L lYkf;s(VkVs + VkVs) (2.3) 
j,k=l j,k=l 

where 

and, 

n 

+ L dk(vkVj + Vkv;) + Blvl2
, 

j,k=l 

n n 

A= f~ + L lYkf;fk- fss- L (b1kf;)k- Ill, 
j,k=l j,k=l 

n n 

M = 2ls(lvsl2
- L IJikv;vk) + 2 L lYkf;(VsVj + Vs'U;) 

j,k=l j=l 

-lli(V8 V + V8 V) + (2Afs +Ill s)lvl 2
, 

V = [V1, ... , Vk, ... ,Vn], 

n 

vk = L {- 21Ykf;lvsl2 + 2lYkfs(VjVs + VjVs) 
j,j',k'=l 

n n 

B = L (b1kllfk)j + llfss + 2(Afs)s + 2 L (AlYkfj)k + 2Ailf. 
j,k=l j,k=l 

(2.4) 

(2.5) 

Remark 2.1. Since 0 is a weight function, (2.3) can be viewed as a 
weighted inequality. Although this inequality looks very complicated, 
its proof is considerably simple and elementary. 

Remark 2.2. For any function l E C2 (1Rl+n; JR), set 

n 

0 = /, V =Ow, ~ = -2lss- 2 L (b1kl;)k· (2.6) 
j,k=l 
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Then, by Lemma 2.2, one obtains a similar inequality as (2.3) with M, V 
and cJk replaced by M, V and Cik, respectively. 

Proof of Lemma 2.2. Using Theorem 2.1 in (9] with m = 1 + n, and 

By a direct calculation, we obtain (2.3). 0 

Finally, proceeding exactly as (21, Lemma 3.3] and (10, Lemma 3.2], 
we obtain the following identity. 

Lemma 2.3. Let bJk E C 2 (Rn; IR) satisfy bJk = bki (j, k = 1, · · · , n), and 
[:,. 

g = (g1 , · · · , gn) : IRs x IR~ --+ IRn be a vector field of class C 1 . Then for 
any wE C2 (1Rs x IR~; ~),it holds 

n n n 

-L [(g · V'w) 'L:b1kw; + (g · Vw) 'L:bikw; 
k=l j=l j=l 

n 

-gk(lwsl2 + _L b31w;wt) L 
t,l=l 

n n (2.7) 
=-[was+ L (b1kw;)k ]g · V'w- [was+ L (b1kw;)k ]g · V'w 

j,k=l j,k=l 

+(wag· V'w + Ws9 · V'w)s - (Ws9s · V'W + Ws9 · V'w) 
n at n 

+(V'. g)lwsl2 - 2 L zykWjW! a! + L WjWk V'. (bikg). 
j,k,l=l k j,k=l 

3 Interpolation inequality for an elliptic 
equation with an inhomogeneous 
boundary condition 

In this section, by means of the global Carleman estimate, we shall derive 
an interpolation inequality for an elliptic equation with a nonhomoge
neous and complex Neumann-like boundary condition. 

Denote 

x = (-2,2) x n, :r: = (-2,2) x an, Y = (-1, 1) x n, z = (-2,2) x ro. 



316 Fu 

Let us consider the following elliptic equation: 

n 

Zss + L (aikzi)k = zo in (-2,2) X n, 
j,k=l 

n 
(3.1) 

L aik Zjllk- ia(x)zs = a(x)z1 on ( -2, 2) X an, 
j,k=l 

where z0 E L2 (X) and z 1 E L2 (E). 
The desired interpolation inequality is stated as follows: 

Theorem 3.1. Under the assumptions in Theorem 1.1, there exists a 
constant C > 0 such that for any c > 0, any solution z of system (3.1) 
satisfies 

llziiHI(Y)::; CeCfe [11z0 II£2(X) + llz1IIL2(E) + llziiL2(Z) + llzsiiL2(Z)] 

+Ce-21ellzi1Hl(X) · 
(3.2) 

Proof. The proof is based on the point-wise estimate presented in 
Section 2. The point is to estimate the "energy-terms" (on the right 
hand side of (2.3)) and the "divergence-terms" (M8 and divV on the 
left hand side of (2.3)). Note however that we need to consider the 
problem with nonhomogeneous Neumann-like boundary in this paper. 
Hence, the treatment on the corresponding boundary terms becomes 
much more complicated than the usual case with homogeneous Dirichlet 
boundary condition. Note also that in the present case, we shall choose 
two weight functions such that many boundary terms vanish on an\ r 0. 

The proof is long, and therefore, we divided it into several steps. 

Step 1. Choosing of the weight functions. 
We borrow some ideas from [18]. For any JL > ln 2, put 

b ~ J1 + ~ ln(2 + e~-'), 

It is easy to check that 

6. 
bo = b2 - .!._ ln ( 1 + eJ.L ) • 

JL eJ.L 

1 < bo < b ::; 2. 

(3.3) 

(3.4) 

Note however that there is no boundary condition for z at s = ±2. There
fore, we need to introduce a cut-off function cp = cp(s) E CQ'( -b, b) c 
CQ'(IR) such that 

{

0::; tp(s)::; 1, 

tp(s) = 1, 

lsi< b, 

lsi ::; bo. 
(3.5) 
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Put 
z = cpz. (3.6) 

Then, noting that cp does not depend on x, by (3.1), it follows 

n 

A """ ( jk A ) 2 0 Zss + L.J a Zj k = 'PssZ + C{)sZs + cpz in (-2,2) X 0, 
j,k=l 

n 

L aikZjVk- ia(x)zs = -ia(x)cpsZ + a(x)cpz1 on ( -2, 2) X an. 
j,k=l 

(3.7) 
Now, we choose the desired weight functions as follows. 

!
1/J='Ij;(s,x)~ A1/J(x) +b2 -s2 , ¢=e11-11>, O=e'-=e>.<f>, 

111/J II L"" <n> 
- ;::,. 1/J(x) - - -
1/J='Ij;(s,x)=- A +b2 -s2 ,¢=el1-11>, O=e'-=e>.<t>, 

111/JIIL""<n> 
(3.8) 

where 1/J E C2 (0) is given by Lemma 2.1. Thus, by Lemma 2.1 and (3.8), 
we find 

and 

;::,. - 1 A 

h = IV'I/JI = IV'I/JI = A IV'I/J(x)l > 0, 
111/JIIL""<n> 

inn, (3.9) 

{ 
¢(s, ·) ~ 2 + el1-, for any s satisfying lsi S 1, 

(3.10) 
¢(s, ·) S 1 + e11-, for any s satisfying bo S lsi S b. 

Next, it is easy to check that 

{i;s'I/J, O<¢S¢, 0<0$0. (3.11) 

Finally, by (3.8), it is easy to see that 

{
is = AJL¢'1/J8 , ij = AJL¢'1/Jj, ijs = AJL2¢'1/Js'I/Jj 

iss = AJL2 ¢1/J~ + AJL¢1/Jss, ijk = AJL2 ¢'1/Jj'I/Jk + AJL¢'1/Jjk 
(3.12) 

and 

{ 
fs = AJL#s, lj = AJL¢-(j;j, fjs = AJL2¢{i;s{j;j 

iss = AJL2#~ + AJL¢-¢ss 1 lik = AJL2#i{i;k + AJL#ik· 
(3.13) 

In what follows, for n E N, we denote by O(JLn) a function of order JLn 
for large JL (which is independent of>..); by 011-(>..n) a function of order 
).. n for fixed JL and for large >... 
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Step 2. Estimates for the energy terms. 
First, recalling the definition of dk in (2.5), by (3.12) and with bJk 

replaced by a3k in Lemma 2.2, note that a3k = akj, we have 

n n 

L cJk(VkVj + VkVj) = 2 L C'kVkVj 

j,k=l j,k=l 

n 2 

= 4>..J.L21 L a3k'l/JjVk I 
j,k=l 

+ jkn } -a (.88 VkVj 

n n 

+2{ AJ.L2¢[ L a3k'l/Jj'l/Jk + I'I/J812] + >..¢0(J.L)} L a3kvkVj. 
j,k=l j,k=l 

Hence, by (3.14), we have the following estimate. 

n 

2( 3l8s + L (ajklj)k) lv8 1
2 

j,k=l 

n n 

+4 L a3k£j8(VkV8 + VkVs) + L cJk(VkVj + VkVj) 

j,k=l j,k=l 

n 

= 2{ AJ.L
2
¢[3I'I/Jsl2 + L a3k'l/Jj'l/Jk] + >..¢0(J.L) }lvsl2 

j,k=l 

n . n . 2 
+8AJ.L2¢ L a1k'l/Jj'l/JsVkVs + 4AJ.L21 L a1k'l/JjVkl 

j,k=l J,k=l 

n n 

+2{ AJ.L2¢[ L a3k'l/Jj'l/Jk + I'I/Jsl2] + >..¢0(J.L)} L a3kVkVj 
j,k=l j,k=l 

n 2 n 

= 4AJ.L
2

</>I'l/J8Vs + L a3k'l/Jjvkl + 2{ AJ.L2¢[ L ajk'l/Jj'l/Jk 
j,k=l j,k=l 

n 

+I'I/Jsl 2] + >..¢0(J.L)} (1vsl2 + L a3kv1vk) 

j,k=l 

n n 

;::: 2 [ AJ.L2¢ L a3k'l/J;'l/Jk + >..¢0(J.L) ](iv812 + L ajkVjVk). 

j,k=l j,k=l 

(3.14) 

(3.15) 
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Further, by (3.12) and recalling A and 111 in (2.4) and (2.2), respectively, 
we have 

n 

111 = -2.Xtt24>[11Psl2 + L aik.,P;?J7k] + .XQ>O(JL), 
j,k=l 

(3.16) 
n 

A= (.X2JL24>2 + .Xtt24>) [11Psl2 + L aik.,P;?Pk] + .XQ>O(JL). 
j,k=l 

Therefore, by (2.4), (2.5) and (2.2), we have 

n n 

B = L (aik111k); + 11188 + 2(Als)s + 2 L (Aaikf;)k + 2A111 
j,k=l j,k=l 

n n 

""" "k """ "k = 2Asfs + 2 ~ a3 f;Ak + Aw + ~ (a1 wk); +Was 
j,k=l j,k=l 

n 2 

= 2.X3JL44>311Jisl4 + 2.X3JL44>31 L aik.,P;?Pkl + _x3q>30(JL3) + OI-'(.X2) 
j,k=l 

n 2 

;::: 2_x3JL44>31 L aik.,P;?Pkl + _x34>30(JL3) + O~-'(.X2). 
j,k=l 

(3.17) 
Combining (2.3), (3.15) and (3.17), by using (1.2) and (3.9), we conclude 
that there exists a JLo > 1, such that for any JL;::: JLo, there exists .Xo(JL) > 
1 such that for any .X;::: .X1, it holds (recall that v = 9w) 

n 2 

92 Jwss+ L(aikw;)kl +Ms+divV 
j,k=l 

n n 

;:::2[.Xtt24> L aik.,P;1Jik+.X4>0(tt)](ivsl2 + L aikv;vk) 
j,k=l j,k=l 

+2 [ _x3 JL44>31 t aik.,P;.,Pk 1
2 

+ _x34>30(JL3) + O~-'(.X2)] lvl2 (3.18) 
j,k=l 

;::: 2[soh2 .Xtt2 4> + .X4>0(JL)](Ivsl2 + sol'\7vl2) 

+2[s~h4.X3JL44>3 + _x34>30(JL3) + OI-'(.X2)Jivl2 

;::: c[.Xtt24>(lvsl2 + l'\7vl2) + .X3tt44>3lv12]. 

Similar to (3.18), by (1.2), (3.8), (3.13) and Remark 2.2, we have (recall 
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that v = Bw) 

B2 ,Wss+ t (aikwj)kl
2 

+M8 +divV 
j,k=l (3.19) 

;::: C [ AJL2 ~(1vsl 2 + 1Vvl2) + >.3 JL4~3 Ivl 2]. 

Combining (3.18) and (3.19), we have 

(fP + B2 ),w88 + t (aikwj)kl
2 

+ (M + M)s + div(V + V) 
j,k=l 

;::: c[>.JL24>(Ivsl2 + 1Vvl2) + >.3JL44>31v12] 

+C[>.JL2~(1vsl2 + 1Vvl2) + >.3JL4~31v12]. 

(3.20) 

Now, integrating inequality (3.20) (with w replaced by z) in ( -b, b) X 

n, recalling that r.p vanishes nears= ±b, by (3.7) and (3.11), one arrives 
at 

AJL21b { 4>(1Vvl2 + lvsl2)dxds + >.3JL41b { 4>3lvl 2dxds 
-&ln -&ln 

$ C [ /_bb l 92l<fJssZ + 2r.psZs + r.pz0
1
2dxds (3.21) 

+ jb [ (V + V) . vdxds] . 
-blan 

Recalling that v = 9z, by (3.12), we get 

~82(1Vzl2 + >.2JL24>21zl2) $ 1Vvl2 + >.2JL24>21vl2 
(3.22) 

$ ce2(1Vzl2 + >.2JL24>21.zl2). 

Therefore, by (3.21) and (3.22), we end up with 

AJL21b { 92¢(1\7212 + lzsl2)dxds + >.3JL41b { 924>31zl2dxds 
-bln -bln 

$ c[jb 1 92l<fJssZ + 2r.psZs + r.pz0
1
2dxds (3.23) 

-b n 

+ jb r (V + V) . vdxds] . 
-blan 
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Step 3. Estimate for the boundary term jb f (V + V) ·vdxds. 
-blan 

By recalling {2.4) for V and Remark 2.2 for V, we have (with bJk 
replaced by aik) 

1
b f (V + V) · vdxds 

-blan 

= -21b [ t [a3ki!jvklvsl 2 + aik£3 vklvsl 2]dxds 
-b lao j,k=l 

+21b 1 t aik[i!s(VjVs + VjVs) + ls(VjVs + VjVs)]vkdxds 
-b an j,k=l 

-jb f t aik[w(v3v + v3v) + ~(v3v + v3v)]vkdxds 
-b lao j,k=l {3.24) 

+ jb f t a3k[(2Alj + Wj)lvl2 + (2Alj + ~i)lvl 2]vkdxds 
-blan j,k=l 

+li(vi'vk' + v3'vk' )vk] dxds. 

We will estimate the above six terms on the right left side of {3.24) one 
by one. Before doing this, we note that by (2.1) , {3.8) and (3.12)-(3.13), 
it holds 

on 80\ro, 

(3.25) 
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Hence, by (3.6) and (3.25), we have (recalling that v = Oz, v = Oz) 

-2 J:b lao it.l [aik£ivklvsl
2 + aiklivkliisl

2
]dxds 

(3.26) 

Next, by (1.3), (3.6)-(3. 7) and (3.25), we have (recalling that v = Oz, v = 
Oz) 

(3.27) 

Similarly, by (1.3), (2.2), (2.6), (3.6)-(3.7) and (3.25), we get (recalling 
that v = Oz, v = Oz) 

_ jb f t aik[w(viii + vjv) + ~(viv + viv)]vkdxds 
-blao j,k=l 

+ jb f t aik[(2Alj + "ll!j)lvl 2 + (2Aii + ~i)lvl 2]vkdxds (3.28) 
-blao j,k=l 

$ Cec>.jb [ (lzsl2 + lzl2 + lzll2)dxds 
-blro 
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Further, by (3.25), and noting that v = (}z, ii = Oz, we get 

= X1 +X2 +X3 

323 

(3.29) 

where X;(j = 1,2,3) will be given below. First, by (3.6)-(3.7) and 
(3.12), we have 

x1 

j b r 2 ~ ·k' ·'k - -
- 2 -b lro () j,k,f;:k'=l a

3 
a

3 
.e;[zk,zi' + Zk'Zj']vkdxds 

= 2jb i t (aik' '!JI;2k' )[a(x)>..JL()2 ¢(iz8 - i<p8 z + <pz1 ))dxds 
-b ro j,k'=l 

+2jb { t (aik''!JI;zk,)[a(x)>..JL()2 ¢(-i28 +i<p8 z+<pz1 )]dxds 
-b lro j,k'=l 

:5 cjb f !Vzi2dxds +Gee>. jb f (izsi 2 + izl2 + iz1i2 )dxds, 
-blro -blro 

where c > 0 independent of >.., JL· 
Similarly, by (3.6)-(3.7) and (3.12)-(3.13), we have 

+2 [bb £
0 

()
2 j,k.t.'=l ai'k.ei'vkaik' .e;[2k'Z + zk,2]dxds 

+2 [bb [o 02 
;,k.t.'=l ai'kl;'vkaik'li[2k,z + zk,2]dxds 

:5 c jb r IV zi2dxds +Gee>. jb r (izsl2 + lzl 2 + iz1 i2 )dxds. 
-b lro -b lro 

(3.30) 

(3.31) 
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Further, by (3.6)-(3.7), we obtain 

b n 

= 2 j 1 L aik' [02i;ik' + 02l;lk']a1'k(zi'2 + ii'z)vkdxds 
-b I'o j,k,j' ,k'=l 

b n 

+4 j 1 L aik' ai'k[02i;ik'ii' + 02l;lk'l;']vklzl 2dxds 
-b I'o j,k,j'k'=l 

::::; Gee>.. jb f (lzsl2 + lzl2 + lz112)dxds. 
-blro 

Combining (3.33) and (3.30)-(3.32), we have 

+i;(v;'~k' + ~i'vk' )]vkdxds 

(3.32) 

::::; cjb { 1Vzl2dxds +Gee>.. jb { (lzsl2 + lzl2 + lz112)dxds. 
-b lro -b lro 

(3.33) 
Finally, by (1.1), (3.6)-(3.7), (3.11) and (3.25), and noting that v = 

Oz, v = Oz, we get 

l b { ~ [ 2 'k •I k1 

-2 -b lro i,k,f:'1c'=l 0 (a
3 

i;vk)(a
3 

ik'ii') 

+02 (aikl;vk)(ai'k' lk,li')] lzl 2dxds 

::::; -CAJ.l. !b 1 (02¢- 02{i>) t (aik.,P;vk)(ai'k' z;,ik' )dxds 
-b I'o j,k,j' ,k'=l 

(3.34) 
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Thus, Combining (3.24), (3.26)-(3.28) and (3.33)- (3.34), we end up 
with 

! b f (V + V) · vdxds 
-blan 

:5 cfb { 1Vzl2dxds (3.35) 
-blro 

+CeCA Jb f (lzsl2 + lzl2 + lz112 )dxds. 
-blro 

Step 4. Estimate for jb f 1Vzl2dxds. 
-blro 

First, we choose a function g E C 1 (0; R.) such that g = v on 80 in 
Lemma 2.3. Integrating (2.7) in ( -b, b) X n, with w replaced by z and bJk 
replaced by aik' using integration by parts, and noting z( -b) = z(b) = 0, 
by (3.7), we have 

Jb 1 (1zsl2 + :t ai1z32z)dxds 
-b an j,l=l 

- jb f t [(g · V2)aikzivk + (g · Vz)aik"§ivk]dxds 
-b Jan j,k=l 

= -jb f [zss + :t (aikzi)k]g · V2dxds 
-b ln j,k=l 

-jb 1 [iss+ :t (aik"§j)k]9 · Vzdxds 
-b n i,k=l (3.36) 

- Jb f (z8 g8 • \72 + 2sg · Vz)dxds 
-bln 

+jb { [(V·g)lzsl2 -2 t aikzizl::' 
-b ln j,k,l=l k 

n 

+ 2::: zi2k \7 · (aikg)]dxds 
j,k=l 

Next, by (1.2), (1.3), the boundary condition in (3.7), and by {3.36), we 
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have 

b fb 1 n 
f 

f (lzsl2 + s0 J'VzJ 2)dxds ~ (1zsl 2 + L ai1ziil)dxds 
-b lan -b an j,!=l 

~ C fb { [I'PssZ + 2<psZs + cpz0 12 + (Jzs 12 + JV 2J 2
)] dxds 

-bln 

+o Jb f J'VzJ 2dxds + C(o) Jb f (lzl2 + lzsl 2 + lz112)dxds, 
-blro -b lro 

where 0 < o < so is small. 
Then, by (3.6) and (3.37), we deduce that 

f
b f J'VzJ 2dxds 

-blro 

(3.37) 

~ cfb { [I'PssZ + 2<psZs + cpz0
1
2 + (lzsl2 + I'Vzl 2)]dxds (3.38) 

-bln 

+Cjb { (Jzl2 + lzsl2 + lz112)dxds. 
-blro 

Step 5. End of the proof. 
Combining {3.23), (3.35) and (3.38), we end up with 

AJ.L2 fb { tJ24>(J'Vzl2 + lzsl 2)dxds + A3 J.L4 1b { (J24>3 Izl 2dxds 
-bln -bln 

~ C fb { e2A4>JcpssZ + 2cpsZs + cpz0 J2dxds 
-bln 

+CeCA fb { (Jzl2 + lzsl2 + lz112)dxds. 
-blro 

(3.39) 

Denote co = 2 + eP. > 1, and recall (3.3) for b0 E (1, b). Fixing the 
parameter J.L in (3.39), using (3.5) and (3.10), one finds 

>..e2Aco /1 { (J'Vzl2 + lzsl2 + lzl2)dxds 
-1 ln 

~CeCA{ !2 
f lz0 12dxds + !2 

f lz1
1
2dxds -2ln -2lan 

+ [
2

2
£

0 

(JzJ 2 + lzsl2)dxds} 

(3.40) 

+Ce2A(co- 1) { { (lzl2 + lzsl 2 )dxds. 
J( -b,-bo) U(bo,b) Jn 
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From (3.40), one concludes that there exists an e2 > 0 such that the 
desired inequality (3.2) holds fore E (O,e2], which, in turn, implies that 
it holds for any e > 0. This completes the proof of Theorem 3.1. 0 

4 Proof of Theorem 1.2 

In this section, we will prove the existence and the estimate of the norm 
of the resolvent (A - A/)-1 when ReA E [- e-CIIm >-I jC, 0], stated in 

Theorem 1.2. 

Proof of Theorem 1.2. We divide the proof into two steps. 

Step 1. First, fix f = (f0 ,Jl) E Hand u = (u0 ,u1 ) E D(A) satisfy-
n 

ing the boundary condition ( L aiku~vk + au1) I an= 0. It is easy to 
j,k=l 

see that the following equation 

(A- AI)u= f (4.1) 

is equivalent to 

{

-Auo+ul=fo, 

.t (aiku~)k- AUl =fl. 
J,k=l 

(4.2) 

Substituting u 1 by u0 in the second equation of (4.2) and noting the 
boundary condition, we conclude that 

Put 

n 

L (aiku~)k- A2u0 = Af0 + f 1 inn, 
j,k=l 

n 

L aiku~vk + aAu0 = -af0 

j,k=l 
on an, 

inn. 

It is easy to check that v satisfies the following equation: 
n 

Vss + L (aikvj)k = (Af0 + f 1)ei.>.s in R X n, 
j,k=l 

n 
L aikVjVk - iav8 = -af0ei.>.s 

j,k=l 
on R X an. 

(4.3) 

(4.4) 

(4.5) 
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Step 2. By (4.4), we have the following estimates. 

lu0 1Hl(O) :::; CeCIIm.>.llviHl(Y)• 

lviHl(X) :S C(IAI + 1)eCIIm.>.llu01Hl(O)• 

lvi£2(Z) :S CeCIIm.>.llu0IP(ro)• 

lvsi£2(Z) :S CIAieCIIm.>.llu0 IL2(ro)· 

(4.6) 

Now, applying Theorem 3.1 to v, and combining with (4.6), we have 

lu0 1Hl(O) :S CeCIIm.>.l [1!0 1Hl(O) + 1!11£2(0) + lu0 IL2(ro)]. (4.7) 

On the other hand, multiplying (4.2) by "fi? and integrating it on n, it 
follows that 

1 (- t (aiku~)k + A2u0
) · "fi?dx 

0 j,k=l 

n n 

= A
2
lu

0
li2(0) + L 1 aiku~v!/cdx- L f aiku~vk"fi?dx (4.8) 

j,k=l o j,k=l lao 

= A2lu0 li2(0) + t 1 aiku~v!/cdx + f (aAu0 + af0 )"fi?dx. 
j,k=l o lao 

By taking the imaginary part on the both sides of (4.8), we find, 

llmAI [ alu0
1
2dx lao 

n :::; 1- L (aiku~)k + A2uol 2 luol£2(0) 
~k=l L (O) 

+2llmAIIReAIIu
0

li2(0) + Clf0 IL2(8o)lv'Ciu0 1£2(80) 

:S c[I(Aj
0 

+ f
1
)IL2(o)lu0 IL2(0) 

+lim AliRe Allu
0
li2(0) + lf

0
1Hl(O)Iu0 1Hl(O)]. 

Hence, combining (4.7) and (4.9), we have 

lu
0

1Hl(O) 

:::; CeCIIm.>.l [l!oiHl(O) + lfliP(o) + llmAIIReAIIuoiHl(O)]. 

We now take 

(4.9) 

(4.10) 
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which holds, whenever !ReAl $ -eCIIm>-l;c for some sufficiently large 
C > 0. Then, by (4.10), we have 

luo!Hl(n) $ CeCIIm>.l(lfoiHl(n) + lfliL2(0))· (4.11) 

Recalling that u1 = f 0 + Au0 , it follows 

lu1 1£2(n) $lf0 1£2(0) + 1AIIu0 IL2(0) 

$ CeCIIm>.l(lf0 1Hl(O) + lf1 IL2(0))· 
( 4.12) 

By (4.11)-(4.12), we know that A- AI is injective. Therefore A- AI is 
hi-injective from D(A) to H. Moreover, 

II(A-AI)-1 II.C(H,H) $ CeCIIm>-1, ReA E (-eCIIm>.ljC,O), 

This completes the proof of Theorem 1.2. 

5 Proof of Theorem 1.1 

This section is addressed to giving a proof of Theorem 1.1. It is now 
clear that once suitable resolvent estimates are established, the existing 
abstract semi-group results can be adopted to yield the desired energy 
decay rate. In this respect, we refer to [3, 5] for the energy decay for the 
wave equation on non-compact manifolds, [15] for the energy decay for 
the linear evolution equations on Hilbert spaces, and [2] for more general 
problems governed by bounded semi-groups on Banach spaces. 

Proof of Theorem 1.1. Recalling the resolvent estimate established 
in Theorem 1.2, for any positive integer k, proceeding exactly as in [3, 
Theoreme 3] and [15, Theorem 2.1], we conclude that 

r; t ~ 0, (5.1) 

i.e., 

r; t ~ 0. (5.2) 

Taking k = 2, then D(A) is the interpolate space between D(A0 ) = H 
and D(A2 ). Note however that 

(5.3) 

Hence, combining (5.2) and(5.3), and using the standard interpolation 
technique, the desired decay rate result (1.7) in Theorem 1.1 follows. 

0 
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Abstract 

In this paper, we consider a system of conservation laws in
troduced by DiPerna [12], from the point of view of boundary 
controllability, in the context of weak entropy solutions. Bressan 
and Coclite (5] have shown that this system is not controllable 
when the solutions are of small total variation. We study the use 
of a large shock wave for the control. 

1 Introduction 

1.1 Basic question and previous results 

The problems of controllability for one-dimensional systems of conserva
tion laws and more generally quasilinear hyperbolic systems have known 
much progress since the pioneering work of Cirina [7], particularly in the 
framework of classical solutions of class C 1 , see particularly Li and Rao 
[19] for an important work on this problem. 

A general quasilinear hyperbolic system in one-dimension reads as 
follows: 

Ut + A(u)ux = 0 for (t,x) E IR+ x IR, (1.1) 

where u: IR+ x lR--+ !Rn is the unknown and the matrix A(u) E Mn(IR) 
satisfies the strict hyperbolic condition, that is, for any u in the state 
domain n c !Rn, one has 

A(u) has n real distinct eigenvalues >.1 < · · · < >.n. (1.2) 

*The author is partly supported by the Agence Nationale de la Recherche, Project 
ControleFlux. 
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These eigenvalues are the characteristic speeds at which the system prop
agates; we associate the eigenvectors ri with them. A very important 
particular case of hyperbolic systems is given by the systems of conser
vation laws: 

Ut + (f(u))x = 0 for (t,x) E R+ X R, (1.3) 

where the flux function f is regular from n to Rn. Typically, t is the 
time and x is the position. 

The general problem of controllability is the following. Consider the 
problem posed in the interval [0, 1] rather than in JR. In such a case 
one needs of course to prescribe boundary conditions on [0, T] x {0, 1 }: 
here boundary conditions will be considered as a control, that is, a way 
to influence the system to make it behave in a prescribed way. Let us 
call u(t, ·) the state of the system at time t. The question is: having 
given two possible states of the system, say uo and u1, can we choose 
the control suitably, in order that the solution of the system starting 
from uo, reaches u1 at timeT? 

Let us underline that the boundary conditions for such hyperbolic 
systems of conservation laws are in general quite involved (particularly 
when the characteristic speeds can change sign). A way to overcome this 
difficulty is to reformulate the controllability problem in an underdeter
mined form: given uo, u1 and T, can we find a solution of (1.1) (without 
boundary conditions) satisfying 

Uit=O = U0 and Uit=T = Ul? 

A very general solution to this problem has been obtained by Li and Rao 
[19] in the case of solutions of class C1 with small C 1 norm, when the 
characteristic speeds are strictly separated from zero. 

Theorem 1.1 (Li-Rao, [19], 2002). Consider the system (1.1) with the 
condition A1(u) < · · · < Ak(u) ::; -c < 0 and 0::; c < Ak+l(u) < · · · < 
An(u). Then for all¢,'¢ E C1 ([0, 1]) such that ll4>llct + II'~PIIct < e, there 
exists a solution u E C1 ([0, T] x [0, 1]) such that 

Uit=O = </> and Uit=T = '¢. 

In the same functional framework, a result has also been obtained in 
certain cases admitting vanishing characteristic speeds, see [11]. 

But the situation is far less well understood in the context of en
tropy solutions of systems of conservation laws (1.3). The origin of this 
theory stems from the fact that in general the solutions of these equa
tions develop singularity in finite time. It is hence natural to consider 
discontinuous (weak) solutions. As is well known, such weak solutions 
are no longer unique, and it is natural to consider weak solutions which 
satisfy entropy conditions aiming at singling out the physically relevant 
solution. These entropy conditions are the following: 
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Definition 1.2. We define an entropy/entropy flux couple as a couple 
of functions (TJ, q) such that 

'1:/u E IR~ x IR, DTJ(u).Df(u) = Dq(u). 

Then entropy solutions are defined as weak solutions of the system, 

Ut + (f(u))x = 0, 

which moreover satisfy that for all (TJ,q) entropy couple with TJ convex, 
stands, in the sense of distributions: 

TJ(U)t + q(u)x ~ 0. 

An important difference between the theory of entropy solutions and 
the one of classical solutions is that in the context of entropy solutions, 
the system is no longer reversible. This is, of course, of great significance 
for the study of these equations, and particularly for what concerns 
controllability problems. Of course, the C1 solutions of the system are 
entropy solutions in particular. 

To be more precise, in this paper, we will consider solutions a la 
Glimm [15], that is, entropy solutions in the sense above, of small total 
variation in x for all times. Note that the meaning of the boundary 
value in this context is intricate, especially when the characteristic speeds 
are not separated from zero, see the reference of Dubois and LeFloch 
[13] in particular. Hence the underdetermined version of the problem is 
particularly well suited here. 

There are very few studies concerning the controllability problem for 
hyperbolic systems of conservation laws in the context of entropy solu
tions. Ancona and Marson [2] described the attainable set on a half line 
for convex scalar (n = 1) conservation laws. In the case of the Burgers 
equation, Horsin [16] considered the case of a bounded interval, when the 
initial data are not necessarily zero. His method relies on J.-M. Caron's 
so-called return method, to which we shall come back later. For what 
concerns systems of conservation laws (n;:::: 2), Ancona and Coclite de
scribed the attainable set for the particular case of Temple systems [1]. 
Bressan and Coclite [5] showed that for a hyperbolic system of conserva
tion laws with fields either linearly degenerate or genuinely nonlinear in 
the sense of Lax [17], with characteristic speeds strictly separated from 
zero, one can asymptotically converge toward any constant state. But for 
what concerns the finite time controllability, Bressan and Coclite showed 
the following very surprising result. 
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Theorem 1.3 (Bressan-Coclite, [5], 2002). For a class of systems con
taining DiPerna's system {12}: 

{ 
8tp + 8x(pv) = 0, 
8tV + 8x ( v; + 

7
K_2

1p'Y-l) = 0, (1.4) 

there are initial conditions cp E BV([O, 1]) of arbitrary small total varia
tion such that any entropy solution u remaining of small total variation 
for all times satisfies: 

for any t, u( t, ·) : = (p, v) is not constant. 

We see that the situation is strikingly different from the case of C 1 

solutions. As we will see, DiPerna's system is strictly hyperbolic, has 
genuinely nonlinear characteristic fields, and there are large zones in 
which the two characteristic speeds are away from zero. Hence the Li
Rao theorem applies, and in the context of C 1 solutions, one can reach 
constant state in finite time, at least if one stays away from the critical 
state when one of the characteristic speeds vanishes. Hence Bressan and 
Coclite's result describes a particular phenomenon due to discontinuities. 
To describe very roughly their counterexample, the initial state they 
consider is constituted with a dense distribution of shock waves in [0, 1]; 
a particular feature of DiPerna's system is that when two shocks of 
the same characteristic family interact, they merge into a larger shock 
and create an additional shock in the other characteristic family. This 
involves a permanent creation of shocks in the domain, hence the solution 
cannot be driven to a constant state. 

Now the introduction of system (1.4) was motivated by isentropic 
fluid dynamics, which is described by a system very close to (1.4): 

{ 
8tP + 8xm = 0, 
8tm + 8x(";,

2 + K-p7 ) = 0. (1.
5

) 

In the above equation, p = p( t, x) ;:::: 0 is the density of the fluid, m( t, x) is 
the momentum (v(t, x) = ';: :,-:) is the velocity of the fluid), the pressure 
law is p(p) = K-p'Y, '"Y E (1, 3]. Equation (1.5) is formulated in Eulerian 
coordinates. The problem of one-dimensional isentropic gas dynamics is 
also frequently studied in Lagrangian coordinates: 

{ 
8(r - 8xv = 0, 
8tV + 8x(K-r-7 ) = 0, (1.

6) 

in which the system is referred to as the p-system; here T = 1/ p is 
the specific volume. What we have shown in [14] is that the particular 
behavior of system (1.4) does not occur in the case of equations (1.5) 
and (1.6): 
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Theorem 1.4 (G., [14], 2007). Consider two constant states uo .
(p0, mo) and u1 := (PI. ml) in JR.+ x JR. There exist e > 0 and T > 0, 
such that, for any uo E BV([O, 1]) satisfymg: 

lluo- uollu ~ e and TV(uo) ~ e, 

there is an entropy solution u of (1.5) in [0, T] x [0, 1] such that 

Ult=O = uo and ult=T = u1. 

The same result applies for equation (1.6). 

Remark 1.5. Actually, the result of [14] describes a broader set of final 
states that can be reached via suitable boundary controls. Typically, this 
set contains all small C 1 states, and also states containing shocks, which 
fulfill a so-called Oleinik-type inequality. Also, one can see that in the 
case (1.5), no condition of separation of the characteristics speeds from 
zero is imposed, despite the fact that these speed can actually vanish. 

The proof of Theorem 1.4 given in [14] relies in fact on two different 
methods for the case (1.5) and the case (1.6) and gives in fact slightly 
different results. Actually, the method we give for (1.6) applies also 
to equation (1.5) (see [14] for more details), and allows one to get the 
following property: 

if uo - u1 is small in total variation, then the solution of the 

control problem can be chosen to be small as well. (1.7) 

This does not mean that necessarily we will have for all times that u( t, ·) 
is of total variation of order TV(uo- ul); actually this is more likely 
[TV(uo- u1)]1/3, but this is typically a behavior which is excluded for 
system (1.4). One of the main points is that for systems (1.5) and 
(1.6), when two shocks of the same characteristic family interact, they 
merge into a larger shock and create a rarefaction wave in the other 
characteristic family. The other method we present in [14] for (1.5) does 
not yield property (1.7), and does not apply to system (1.6). But what 
we are going to see in this paper is that it applies to system (1.4). 

1.2 The result 

What we show is the following. 

Theorem 1.6. Given uo := (po, vo), u1 := (p1, vl) in JR.+ x IR, there exist 
e > 0 and T > 0, such that, for any uo E BV([O, 1]; JR.+ x IR) satisfying: 

lluo- UoiiLl ~ e and TV(uo) ~ e, 
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there is an entropy solution u of (1.4) in [0, T] x [0, 1] such that 

But of course, the solution we obtain does not remain of small total 
variation for all times! 

1.3 Structure of the proof 

As in [14], the proof of Theorem 1.6 consists in proving these two con
secutive propositions. 

Proposition 1. 7. Let u0 E BV ( [0, 1]; !Rf- x IR) as in Theorem 1. 6. Then 
there exist TI > 0, a constant state WI E n, and an entropy solution 
u : [0, TI] X [0, 1] ~ n of {1.4) such that 

Ult=O = Uo 

Ult=T1 =WI· 

(1.8) 

(1.9) 

This part is to show that the fact that the solution remains of small 
total variation is central in Theorem 1.3. This is connected to Coron's 
return method, which was introduced in [9]; see [10] for more details on 
it. Basically, this method advocates that in many situations, one has 
better controllability properties when the system goes far from the base 
point and returns to it. In the context here the Bressan-Coclite theorem 
shows that it is more or less necessary. 

The second proposition, which can be seen as finite-dimensional con
trol result, is the following. 

Proposition 1.8. For any (w, w') E (!Rf- x IR)2, there is some T2 > 0 
and an entropy solution u of (1.4) in [0, T] x [0, 1], such that: 

Ult=O = W 
I 

Ult=T2 = W • 

(1.10) 

(1.11) 

We show this two propositions in Sections 3 and 4, which establishes 
Theorem 1.6. 

2 Characteristics of DiPerna's system 

Let us briefly describe the main characteristics of system (1.4). The 
Jacobian matrix A= df associated with (1.4) is the following 

A(p, v) = ( K2;-y-2 ~) · (2.1) 
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Hence it is easily seen that this system is strictly hyperbolic for (p, v) E 
f2 := JR.+ X JR., with eigenvalues 

>..1 = v- KpiJ and >..2 = v + KpiJ, (2.2) 

and eigenvectors 

(2.3) 

where 
'Y-1 f3 := -

2
- E (0, 1). 

It is straightforward to check that the system is genuinely nonlinear in 
the sense of Lax (17] 

Ti.\i'Ai > 0 in f2. 
Let us finally describe the wave curves associated with this system. The 
wave curves, that is, shock curves and rarefaction curves, are the set 
of states in n which can be connected to a given fixed state on the 
left u1 := (Pl, vl) via a shock wave or a rarefaction wave. Shock waves 
(associated with each characteristic family) are discontinuities satisfying 
Rankine-Hugoniot (in order to become a weak solution of the equation) 
relations 

f(ur)- f(uz) = s[ur- ul], (2.4) 

and Lax's inequalities (in order to become entropic): for the i-th family 
of shocks, 

Ai(Ur) < S < Ai(Ul) 

Ai-l(ul) < s < >..i+l(ur)· 

(2.5) 

(2.6) 

where s is the speed of the shock, which gives the particular solution 

u(t x) = {ul for xft < s, 
' Ur for xft > s. 

Rarefaction waves are defined by introducing integral curves of ri, 
and are discontinuity-free solutions: 

{ 

d~ Wi(a) = ri(Wi(a)), 
Wi(O) = Ul, 
0' ~ 0. 

The standard (right) shock curves at the point (p0 , v0 ) En are given by 
the following 

{ 
v = vo -7sJ(p2/3- p~13)~ with p ~ po, along Rl(Po,vo), 

v = vo + !/rJ V(p2/3 - p~13 ) P~PO with 0 < p :5 Po, along R2(po, v0 ). 

(2.7) 
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The left shock curves at the point (po, vo) E n (when we fix the right 
state and look for the right one) are given by the following 

{ 

v = vo- !fp.j(p213 + p~13)~ with 0 < p:::; Po, along LI(Po,vo), 

v = vo + !fp.j(p213- p~13 )p~p~ with p ~Po, along L2(po,vo). 
{2.8) 

Instead of describing the rarefaction curves in the plane (p, v), we in
troduce the Riemann invariants associated with system {1.4). Precisely 
define 

K K 
z = v - 73 p/3 and w = v + 73 p/3, (2.9) 

so that 
r1.\?w = r2.\?z = 0 and r1.\?z > 0, r2.\?w > 0. 

In the (w, z)-plane, rarefaction curves are horizontal and vertical half
lines. 

3 Proof of Proposition 1. 7 

The proof of Proposition 1.7 relies on large shocks for system (1.4). We 
will be able to treat them thanks to the next lemma. 

Lemma 3.1. All shocks (u-,u+) are Majda-stable in the sense that 

i. s is not an eigenvalue of A(u±), 
ii. {rj(u+) I >.i(u+) > s} U {u+- u-} U {ri(u-) I >.j(u-) < s} 

is a basis of JR2 (for a j-shock). 
(3.1) 

Proof. Taking account of the fact that Lax's inequalities are globally 
satisfied along the shock curves (see [12]) which means that 1-shocks 
(resp. 2-shocks) (ul,ur) satisfy 

(r1(u-),u+-u-) (resp. (u+-u-,r2(u+))) is a basisof!R.2. (3.2) 

One of the properties of the system (1.4) as shown by DiPerna [12) is 
that its shock curves have special behavior in the plane given by the 
Riemann invariants. One can express all the wave curves in terms of 
TJ : = ( 2K I (3) p/3 and check that 

8R1 8L1 < 0 and 8R2 8£2 > O 
8TJ' 8TJ- 8TJ' 8TJ-' 

which involves that expressed in terms of w, the curves satisfy 

_
00 

< 8R1 8L1 < _ 1 and _ 1 < 8R2 8L2 < O. 
- 8w' 8w- - 8w' 8w-
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This is referred to as property A2 in [12]. Hence the shock curves are 
confined in cones which involve that (3.2) is satisfied since in the (w, z) 
plane, r 1 and r 2 are vertical and horizontal respectively. 0 

The other ingredient which appeared in (14] was the following. 

Lemma 3.2. For any ("p0 , vo) E n, there exists (p, v) E L2(w), such that 

>.2((p, v)) > >.1 ((p, v)) ~ 3, 

s((p0 ,vo), (p,v)) ~ 3. 

(3.3) 

(3.4) 

Here s is the shock speed given by the Rankine-Hugoniot relation 
(2.4). 

Proof. Consider (p, v) E L2(p0 , vo), with p-+ +oo. From the Rankine
Hugoniot relations, one easily computes 

s((p0 ,vo), (p,v)) = vo + V/3~ 

Hence clearly s((p0 , vo), (p, v))-+ +oo asp-+ +oo. Next one sees that 

K 
>.1((p,v)) = vo + V/3 

But since f3 E (0, 1), one has 

~(P_213_-..::..P..!!.~13....!.)~(p_-......!...;Po~) _ Kp/3. 
P+Po 

K 
V/3 > K. 

Hence one deduces that as well >.1 ( (p, v)) -+ +oo as p -+ +oo. With the 
global strict hyperbolicity this concludes the proof. 0 

Now given uo := (p0 , vo) and uo as in Theorem 1.6, we introduce 
u = (p, v) as in Lemma 3.2. We introduce the following function Uo E 
BVioc(lR; JR+ X JR): 

{ 
u for x < 0, 

Uo(x) = uo(x) for 0::; x ::; 1, 
uo for x > 1. 

(3.5) 

Exactly as in (14], we can prove the following proposition. 

Proposition 3.3. If Uo is small enough total variation, there is a global
in-time entropy solution U of (1.4) in [O,+oo) x lR satisfying 

U(O, ·) = Uo in R (3.6) 

Moreover it satisfies: 

Ul{l}x[O,l) is constant. (3.7) 
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By simply taking the restriction of U to [0, 1] x [0, 1], we obtain a 
solution of the problem consisting in driving uo to a constant. The proof 
of Proposition 3.3 is exactly the same as in [14] (see also [6, 8, 18, 20, 
21] for related problems). It relies only on the Majda-stability of the 
large shock and on the positivity of the propagation speeds on its left. 
Basically we show that the above initial condition is propagated for all 
times as a large shock plus small waves on both sides of it. However, due 
to condition (3.3), all these waves travel at positive speed and eventually 
leave the domain. The basic ingredient to prove this is the use of a front
tracking algorithm (see [4] for more details on this particular construction 
of solutions of systems of conservation laws). We refer to the above 
articles for a complete proof. 

4 Proof of Proposition 1.8 

This is almost exactly the same as in [14]. There are three zones in n 
with respect to the signs of the characteristic speeds: the zone n_ := 
{(p, u) I u < - K pl3} where both characteristic speeds are negative, the 
zone n+ := {(p,u) I u > Kpl3} where both characteristic speeds are 
positive and the zone n± := {(p, u) I - Kpl3 < u < Kpl3} where .A1 is 
negative and .A2 is positive. These three zones are separated by the two 
criticalcurvesC- := {(p,u) I u = -Kpl3} andC+ := {(p,u) I u = Kpl3}. 

Now to prove Proposition 1.8, it suffices to prove that 

1. Given w and w' in the same zone (!1_, n+ or !1±), one can find a 
solution from w to w'. 

2. One can always find a solution from a given zone to another. 

3. One can always go out to a critical curve or reach it from one of 
the above zones. 

1. To prove the first point, let us limit ourselves to the case where 
w and w' are sufficiently close to each other. Then since the zones are 
path-connected and a path is compact, one easily deduces the general 
case. 

Now one has to clarify which one does depend on the zone where the 
states occur. Given w and w' in n+ and sufficiently close one to another, 
we solve the Riemann problem ( w', w) (see [4, 17]). If the two states are 
sufficiently close to one another' the intermediate state is in n+ as well, 
hence the two waves obtained in this Riemann problem are of fixed sign 
speed. Hence the Riemann solution of this problem indicates that if one 
waits long enough, the solution of this problem with w' on llL and w on 
JR+, will reach w' in [0, 1]. 
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If both states are in fL, the idea is the same, but one has to let the 
waves enter from the right boundary, that is, one solves the Riemann 
problem (w, w'), where the separation between the states occurs at x = 1. 
Wait long enough, and w' enters [0, 1). 

If both states are inn±, again, we manage in other that the inter
mediate state Wm in the resolution of the Riemann problem (w',w) is 
inn±. Now we use the solution of the Riemann problem (w,wm) with 
the states separated at x = 1 and the solution of the Riemann problem 
(w',wm) with the states separated at x = 0 to join w' from w. 

2. To prove the second point, we use roughly the same remark as for 
Lemma 3.2. If the state you consider is in n_ or n±, then by a large 
2-shock on the left of the domain, you can reach n+. In the same way, if 
the state you consider is n_' then you can reach n±: reach the point on 
the second left shock curve for which v = 0 and observe that its speed is 
necessarily positive. The same (with 1-shocks on the right) can be done 
to go from n+ to n_ or n±. Also, by the same method, one can leave 
a critical curve. 

3. It remains to explain how to reach a critical curve. It is not difficult 
to see that one can arrive to the critical curve c_ by a small 1-shock 
that one lets enter by x = 1 (with the critical state on x > 1, and a 
non-critical state for x < 1), and that one can reach the critical curve 
C+ by a small2-shock that one lets enter by x = 0 (with the critical state 
on x < 0, and a non-critical state for x > 0). It suffices to check that r 1 
is transverse to c_ and T2 is transverse to c+. This is easily established 
by noticing that (3 < 1. 

Acknowledgements. The author would like to thank Professors Ta
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Shanghai, and useful discussions. 
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Abstract 

The purpose of this tutorial is to give a quick introduction to 
various basic results of observability, controllability and stabiliza
tion of linear partial differential equations with a time-reversible 
dynamics. 

1 Introduction 

The purpose of this tutorial is to give a quick introduction to various 
basic results of observability, controllability and stabilization of linear 
partial differential equations with a time-reversible dynamics. 

In Section 2 we present the multiplier method which, in the hands of 
J .L. Lions, became a very powerful method in control theory. His land
mark papers [26], [27] and his subsequent monography [28] stimulated 
a huge research activity resulting in hundreds of papers during the past 
twenty years. 

In Section 3 we show a very efficient combination of the multiplier 
method and of harmonic analysis in order to obtain observability and 
controllability theorems in minimal time. Many other applications of 
this kind are given in the textbook [18]. 

In Section 4 we give an application of the Fourier series method in 
control theory. Numerous other results and examples are treated in our 
book [22] in collaboration with P. Loreti. 

Finally, Section 5 contains a general linear stabilization method, orig
inally exposed in [20]. 

*The author thanks the organizers of the Workshop of the French-Chinese Summer 
Institute on Applied Mathematics, Fudan University, Shanghai, September 2008, for 
their kind invitation 
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2 The multiplier method and the wave 
equation 

345 

Throughout this section we fix a bounded domain n c llln of class C2 

with boundary r. We refer to the original works [27], [28] of Lions or to 
the textbook [18] for more results and for the proofs of some technical 
lemmas which are omitted here for the sake of brevity. 

2.1 Observability 

We investigate here the following system: 

in Jll X 0, 
u=O 

{

u"- D.u = 0 

u(O) = uo and u'(O) = u1 in 

on JR X r, 
n. 

(2.1) 

The well posedness of this system is classical and well known (see 
[29]): 

Proposition 2.1. 
(a) If (uo, ul) E HJ(n) x £ 2 (0), then the problem (2.1) has a unique 

(weak) solution belonging to the space 

{b) The energy 

E = ~ fn1u'l2 + IV'ul2 dx . 

of the solutions is conserued (does not depend on t E Ill}. 

(c) If (u0 , u1) E (H2(0) n HJ(n)) x HJ(n), then the corresponding 
(strong) solution belongs to 

The main result of this subsection is the following: 

Theorem 2.2. ( J.L. Lions {27]} If n is contained in a ball of radius 
R, then for every bounded interval I of length III > 2R there eXUJt two 
positive constants c1, c2 such that 

for all solutions. 
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Remarks. 

• The second "direct" inequality was discovered by Lasiecka and 
'Iriggiani [24], and a simpler proof was given by Lions [25] using 
the multiplier method. 

• The first "inverse" inequality was discovered by Ho [9] and then 
improved by Lions [26]. 

• Later sharper results were obtained by Bardos, Lebeau and Rauch 
by employing deeper tools [3]. 

Let us outline the proof. We may assume that n c B(O, R). The 
proof is based on the following crucial identity where we write m(x) = x 
and Mu =2m· u + (n- 1)u for brevity. 

Lemma 2.3. Every strong solution satisfies the identity 

fsT l (ovu)Mu + (m · v)((u')2 -IV'ul2
) di' dt 

= [fn u'Mu dx]: + fsT k (u')2 + IV'ul2 dx dt (2.2) 

for all -oo < S < T < oo. 
This identity is independent of the boundary and initial conditions in 

(2.1). 

Proof. Integrating by parts we get 

0 = fsT k (u"- flu)Mu dx dt 

= [fn u' Mu dx]:- fsT i (ovu)Mu di' dt 

- fsT k u' Mu' dx dt + fsT k V'u · V'(Mu) dx dt. 

It remains to transform the last two integrals. 
Using the equalities M u = 2m · u + ( n - 1 )u and div m = n we have 

- fsT k u'Mu' dx dt 

= - fsT k m · V'(u')2 + (n- 1)(u')2 dx dt 

=- fsT l (m · v)(u')2 di' dt + fsT k (u')2 dx dt 
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and 
T Is l Vu · V(Mu) dx dt 

= fsr l m · V(IVul 2
) + (n + 1)1Vul2 dx dt 

= fsr l (m · v)IVul2 di' dt + fsr fn1Vul 2 dx dt. 

Substituting these expressions into the first equality we obtain (2.2). D 

Using the boundary conditions the identity (2.2) is reduced to 

fsT l (m · v)(8vu)2 di' dt = [fn u'Mu dxJ: + 2(T- S)E. (2.3) 

In order to get a sharp estimate of the integral on the right side of 
(2.3) we establish (following [13]) a second identity: 

Lemma 2.4. We have 

L (Mu) 2 dx = fn12m · Vul2 + (1- n2 )u2 dx + (2n- 2) l (m · v)u2 dl'. 

(2.4) 
This identity is also independent of the boundary and initial condi

tions in (2.1). 

Using the Dirichlet boundary conditions we conclude from the iden
tity (2.4) that 

and therefore 

lin u' Mu dxl ~ 2llmiiLoo(f!) llu'IIL2(f!) 11Vull£2(f!) ~ 2llmiiLoo(n)E. (2.5) 

If n c B(O, R), then lim II LOO(f!) ~ R. Using this and the inequality 
(2.5) we deduce from the identity (2.3) that 

lfsr fr<m·v)(8vu) 2 dl'dt-2(T-S)EI = l[fn u'Mudx]:l ~4RE. 
We conclude for every bounded interval I = (S, T) the identity 

2(111 - 2R)E ~ ll (m · v)(8vu)2 di' dt ~ 2(111 + 2R)E. 

This proves the theorem if S1 is star-shaped: m · v > 0 on r. The 
general case requires minor modifications. 
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2.2 Controllability 

In this subsection we investigate the nonhomogeneous system 

{ 

y" - !::iy = 0 in (0, Tj x 0, 
y = v on (0, Tj X r, 
y(O) =Yo and y'(O) = Y1 in 0, 

{2.6) 

where T > 0 is a given number and v is considered a control function. 
Applying the transposition or duality method (see [29]) we deduce from 
Theorem 2.2 the following well posedness result: 

Proposition 2.5. If(y0 ,y1) E L2{!l)xH-1{0) andv E L2{0,T;L2{r), 
then the problem {2.5) has a unique {weak) solution belonging to the space 

Moreover, the linear map 

(yo, Y1, v) ~---+ (y, y') 

is continuous with respect to these topologies. 

The main result of this subsection is the following: 

Theorem 2.6. (J.L. Lions {27}). If n c B(xo,R), T > 2R and 
(y0 ,y1

) E £ 2 (0) x H-1(0), then there exists v E L2{0,T;L2(r)) such 
that the solution of the problem satisfies 

y(T) = y'(T) = 0 in n. 

Sketch of the proof by the Hilbert Uniqueness Method (HUM}. The main 
idea is to seek a suitable control function in the form v = a~.~u where u 
is the solution of 

in Ill X f!, 
u=O 

{

u"- !::iu = 0 

u{O) = uo and u'{O) = u 1 in 

on Ill X r, 
n 

for suitable initial data. 
This will be a suitable control provided the solution of the homoge

neous system 

{

y"- !::iy = 0 in [O,T] X n, 
y = a~.~u on [O,T] X r, 
y(T) = y'(T) = 0 in n 

satisfies y{O) =Yo and y'{O) = Yl· 
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Thanks to the direct inequality 

ll8.,uli£2(r) :S cll(uo,ul)IIHJ(O)x£2(Q) 

of Theorem 2.2 and the well posedness of the nonhomogeneous problem, 
the formula 

A(uo, u1) := (y'(O), -y(O)) 

defines a continuous linear map 

It remains to prove that the operator A is surjective. For this first 
we establish the identity 

by a direct computation. Then, applying the Lax-Milgram theorem we 
conclude that A is even an isomorphism. 0 

2.3 Linear stabilization by natural feedbacks 

Instead of ensuring E(T) = 0 for some finite T > 0 for the solutions 
of (2.6), it is more realistic and more practical to seek automatic or 
feedback controls yielding E(oo) = 0. (Watt's regulator device for the 
steam engine was one of the first such successful feedback controls; see 
[30).) 

More precisely, we seek a function F such that the problem 

{

U
11 

- 6.u = 0 in JR.+ X 0, 
F(u,u',a.,u) = 0 on JR.+ X r, 
u(O) = Uo and u'(O) = Ul in n 

is well posed and its solutions satisfy E(t) ~ 0 as t ~ oo. 
One of the simplest expressions making the energy nondecreasing is 

the following. Fix a partititon {r0 , r!} of r, two nonnegative continuous 
functions a, b on r 1 and consider the problem 

{

U
11

- 6.u = 0 in JR.+ X 0, 
U = 0 On JR.+ X ro, 
OvU +au+ bu' = 0 on JR.+ X rl, 
u(O) = Uo and u'(O) = Ul in n. 

The problem is well posed: 

(2.7) 
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Proposition 2. 7. 
(a) If(u0 ,u1) E HJ(O) x £ 2(0), then the problem (2.7) has a unique 

(weak) solution belonging to the space 

{b) The modified energy (or Liapunov function) 

E(t) = ~ fn1u'(t)l 2 + 1Vu(t)l2 
dx + ~ £

1 

alu(t)l
2 

di' 

of the solutions is nonincreasing. 

(c) lf(u0 ,u1) E (H2(0)nHJ(O)) x HJ(O), then the corresponding 
(strong) solution belongs to 

Proof. We indicate only the proof of (b) for strong solutions and we refer 
to [15] or [18] for the full proof. Differentiating the modified energy we 
get 

E' = { u'u" + Vu · Vu' dx + { auu' di' 
ln lr1 

= f u' .6.u + Vu' · Vu dx + f auu' di' 
ln lr1 

= r u'ov di' + r u'(ovu +au) di' 
lro lr1 

= - r b(u')2 di' 
lr1 

::::; 0. 

Since E'::::; 0, E is nonincreasing. 0 

Under some additional assumptions the energy tends to zero. The 
first result of this kind is due to G. Chen [6], [7]: 

Theorem 2.8. Assume that a, b are positive on r 1 and that there is a 
point xo ERn such that setting m(x) = x- xo we have 

m · 11 ::::; 0 on r 0 and m · 11:?: 0 on r 1• (2.8) 

Then there exist two constants C, w > 0 such that 

E(t)::::; CE(O)e-wt, t:?: 0 

for all solutions of (2.7). 
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Let us consider the special case of the system (2.7) where 0 is the 
unit ball of IR3 , x0 = 0, r 0 = 0 and a = b = 1. Then (2.8) and the 
modified energy take the form 

and 

{

u" - Au = 0 in IR+ x 0, 
8vu+u+u' = 0 on IR+ X r, 
u(O) = uo and u'(O) = u1 on 0 

(2.9) 

The following theorem is a special case of a result obtained in [15]. 

Theorem 2.9. The solutions of (2.9) satisfy the decay estimate 

E(t) ~ E(O)e1-t 

for all t 2:: 0. 

Proof. We recall the multiplier identity of Lemma 2.3: 

fsT l (8vu)Mu + (m · v)((u')2 -1Vul2
) dr dt 

=[fnu'Mudx]:+ fsT l(u')2 +1Vul2 dxdt 

where m(x) = x and Mu =2m· Vu + 2u. 
Using the boundary condition it is simplified to 

fsT £-2(u + u')(u + m · Vu) + (u')2 -1Vul2 + u2 dr dt 

= [fn u'Mu dx]: + 2 fsT Edt. 

Since lml ~ 1, we have 

-2(u + u')(m · Vu) ~ (u + u')2 + lm · Vul2 ~ (u + u')2 + 1Vul2
, 
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and therefore 

[fn u'Mu dx]: + 2 fsT Edt 

= fsT k -2(u + u')(u + m · 'Vu) + (u')2 -IV'ul2 + u2 di' dt 

::::;fsT k -2(u + u')u + (u + u') 2 + (u? + u2 di' dt 

= 2 hT k ( u')2 di' dt 

= 2E(S) - 2E(T). 

Next we observe that (since n = 3 and lml :51) 

l (Mu) 2 dx = fn12m · V'ul 2 + (1- n2 )u2 dx 

+ (2n- 2) k (m · v)u2 di' 

:5 4fnl'Vul2 
dx + 4£ u2 

di' 

and therefore 

lin u' Mu dxl :::;fn (u')2 + {1/4)(Mu)2 
dx 

Therefore we have 

:::;fn (u')2 + IV'ul 2 dx + k u2 
di' 

=2E. 

-2E(S)- 2E(T) + 2 fsT Edt :5 [fn u' Mu dx]: + 2 fsT Edt 

:5 2E(S) - 2E(T). 

Hence 

2 fsT Edt :5 4E(S) 

for all 0 :5 S :5 T < oo and therefore 

for all S;::: 0. 
The following "anti" -Gronwall lemma completes the proof: 
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Lemma 2.10. If a nonincreasing function E : IR+ --+ IR+ satisfies for 
some a > 0 the condition 

a 100 

E(s) ds ~ E(t) 

for all t ~ 0, then 
E(t) ~ E(O)e1-at 

for all t ~ 0. 

Proof of the lemma. The function 

f(x) := eax 100 

E(s) ds, x ~ 0 

is nonincreasing because 

almost everywhere. Hence 

aeax 100 

E(s) ds = af(x) ~ af(O) =a fooo E(s) ds ~ E(O) 

for all x ~ 0. Since E is nonnegative and nonincreasing, we conclude 
that 

1oo lx+a- 1 

E(O)e-ax ~a x E(s) ds ~a x E(s) ds ~ E(x + a- 1
). 

Putting t = x + a-1 the inequality 

takes the form 
E(t) ~ E(O)e1-at, t ~ a-1 . 

The last inequality also holds for 0 ~ t ~ a-1 because E(t) ~ E(O). 0 

Remark. The above approach can be adapted to more complex hyper
bolic systems (see [17] on Maxwell's system, [19] on coupled systems, 
[1] on linear elastodynamic systems) and to various plate models (see, 
e.g., Lagnese [23]). However, many important models remain outside 
its applicability. Moreover, we cannot construct feedbacks of this type 
leading to arbitrarily large decay rates. We shall present in Section 5 
another more general and more satisfactory approach. 
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2.4 Nonlinear stabilization by natural feedbacks 

The method of the preceding subsection can be adapted for certain non
linear feedbacks. 

Consider the problem 

{

u"- du = 0 in IR+ X 0, 
u = 0 on IR+ X ro, 

(2.10) 
allu + (m. v)g(u') = 0 on IR+ X rl, 
u(O) = Uo and u'(O) = U1 in 0 

where {ro, rl} is a partition of r, m(x) =X- Xo for some given point 
xo E IR.n, and g : lR --. lR is a given nondecreasing continuous function 
satisfying g(O) = 0. 

Proposition 2.11. 
(a) lf(uo, ul) E HJ(O) x £ 2(0), then the problem (2.10) has a unique 

(weak) solution belonging to the space 

C(IR+; HJ(O)) n C1 (1R+; £ 2 (0)). 

(b) The energy 

E(t) = ~ k u'(t) 2 + 1Vu(t)j2 dx 

of the solutions is nonincreasing. 

(c) If (uo, ul) E (H2(0) n HJ(O)) x HJ(O), then the corresponding 
(strong) solution belongs to 

C(IR.+; H2(0) n HJ(O)) n C1 (1R.+; HJ(O)). 

Proof. As in the case of Proposition 2.7, we only indicate the proof of 
(b) for strong solutions and refer to [18] for the full proof. Differentiating 

we get 

E =! f (u') 2 + jVuj2 dx 
2}n 

E' = k u'u" + Vu · Vu' dx 

= l u' du + Vu' · Vu dx 

= 1 u'a"u dr + 1 u'811u dr 
I"o 1"1 

= - r (m. v)u' g(u') dr. 
Jr1 
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Since the right side of the identity 

E' =- f (m · v)u'g(u') di' 
lr1 

is ~ 0, the assertion follows. 
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0 

Now we have the following theorem establishing the polynomial decay 
of the solutions: 

Theorem 2.12. Assume that 

• n ~ 3; 

• ro =f. 0; 

• m. v ~ 0 on ro and m. v ~ 0 on rl; 
• c1isiP ~ lg(s)i ~ c2isi 1/P if lsi~ 1; 

• c3lsl ~ lg(s)i ~ c4isl if lsi~ 1 

with some real number p > 1 and positive constants c1, c2, C3, C4. 
Then the solutions satisfy the energy estimate 

-L E(t) ~ Ct1-p 

with a constant depending on the initial energy E(O). 

In the rest of this subsection we sketch the proof and refer to [18] for 
the details. Using the multiplier method we obtain the following identity 
which is reduced to that of the preceding subsection if p = 1. Setting 
Mu :=2m· 'Vu + (n- 1)u and di' m := (m · v)di' we have 

2 {T E~ dt = {T EY { l8vui2 di' m dt 
ls ls lro 

- [EY L u'Mu dxJ: 
+p- 1 {T E~E' { u'Mudxdt 

2 ls ln 
+ {T EY { (u')2 - i'Vui2 - g(u')Mu di' m dt. 

ls Jr1 
The first term on the right side is ~ 0. We show that the the next 

two terms are ~ cE. 
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Step 1. Estimate of f0 u' Mu dx. We have 

Hence 

and 

IL u'Mu dxl ~ L (u')2 + (Mu)
2 

dx 

=In (u')2 +12m· Vu + (n- l)ul2 dx 

~ c L (u')2 + 1Vul2 + u2 dx 

~cE. 

~E~ In u'Mu dxl ~ cE~ 

~E~E'l u'Mu dxl ~ -cE~E' ~ -c(E~)'. 

Step 2. Estimate of the right side. Since E(t) is nonincreasing, it 
follows that 

2 fsT E~ dt 

= fsT E~ £
0

l8vul2 di'm dt- [E~ L u'Mudx]: 

p-1 rT ~ r 
+ - 2- Js E---rE' Jn u'Mu dx dt 

+ {T E~ { (u')2 -1Vul2 - g(u')Mu di' m dt 
Js Jr1 

~ cEE¥(S) + {T E~ { (u')2 -1Vul2 - g(u')Mu di' m dt 
ls Jr1 

~ cE(S) + {T E~ { (u')2 -1Vul2 - g(u')Mu di' m dt. 
Js Jr1 
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Step 9. Estimate of the boundary integral. We have 

f (u')2
- 1Vul2

- g(u')Mu di' m 
lr1 

= f (u')2
- 1Vul2

- g(u')(2m · V'u + (n- l)u) di' m 
lr1 

:5 f (u')2 -1Vul2 + c:IV'ul2 + cu2 + cc-1g(u')2 di' m 
lr1 

:5 cc fn1Vul 2 
dx 

+ f (u') 2 
- 1Vul2 + c:IY'ul2 + cc-1g(u')2 di' m· lr1 

Choosing a small c: > 0 we get 
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Step 4. Simplified energy inequality. Using this estimate we obtain 
that 

2 fsT EE¥ dt 

:5 cE(S) + {T E~ f (u') 2 -1Vul2 - g(u')Mu di' m dt 
ls lr1 

:5 cE(S) + fsT EE¥ dt 

+ c {T E~ { (u') 2 + g(u')2 di' m dt 
ls lr1 

whence 

{TEE¥ dt :5 cE(S) + c {T E~ f (u')2 + g(u')2 di' m dt. 
ls ls lr1 

Step 5. Estimate of the last term. We will show that the last term is 
:5 cE. 
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On r2 := {x E rl : lu'(x)l > 1} we have g(u'(x)) X u'(x), so that 

{TEE? { (u') 2 + g(u')2 di' m dt 
ls lr2 

$ c {TEE? { u'g(u') di'm dt 
ls lr2 

$ c {TEE? r u'g(u') di' m dt 
ls lr1 

= c lT EE? E' dt 

$ c ( E~(S)- E~(T)) 
$ cE(S). 

Since for lsi $ 1 we have 

lsiP+l $ csg(s) and lg(s)IP+l $ csg(s), 

on r3 := {x E r1 : lu'(x)l $ 1} we have 

r (u') 2 + g(u')2 di'm $ c r (u'g(u'))P"h di'm 
lr3 lr3 

$ c (£
3 

u'g(u') di' m) Ph 
2 

$ c (£
1 

u'g(u') di' m) P+I 

= c( -E')Ph. 

It follows that 

{TEE? r (u') 2 + g(u')2 di' m dt 
ls Jr1 

1
T 

-1 _a_ 
$ c 

8 
ET(-E')~>+l dt 

$1sT eE~ - c(e)E' dt 

$ e lT E~ dt + c(e)E(S) 

for any e > 0. 
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Step 6. An integral inequality. Using the last estimates, we obtain 
that 

{T E~ dt ~ cE + c {T E'fjl { (u')2 + g(u')2 di' m dt 
ls ls lr1 

~ c(e:)E(S) + cc 1sT E~ dt. 

Choosing c > 0 such that cc < 1, we get 

{T 1 

Js E~ dt ~ cE(S) 

for all T > S ~ 0. 
Letting T -+ oo we conclude that 

for all S ~ 0. 
The following lemma, which is reduced to Lemma 2.10 for a -+ 0, 

completes the proof: 

Lemma 2.13. If a nonincreasing function E : JR.+ -+ JR.+ satisfies for 
some a > 0 and T > 0 the condition 

loo E'"+l(s) ds ~ TE(O)"'E(t) 

for all t ~ 0, then 

-1 

E(t) ~ E(O) (J::~)-;;-
for all t ~ 0. 

3 A Petrovsky system 

The multiplier method can be adapted to some nonhyperbolic systems 
as various plate models. Usually a new difficulty arises when we try to 
determine the critical observability or controllability time. This can be 
overcome by applying a harmonic analysis argument. We present this 
approach on the example of the Petrovsky system 

{

u" + ~2u = 0 in 

u = OvU = 0 on 
u(O) = uo and u'(O) = u1 in 

JR. x n, 
JR. x r, 
n 

(3.1) 
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where 0 c IR.N is a bounded domain of class C4 with boundary r. We 
skip some details and refer to [18] for a full treatement. 

The following results are classical and well known (see [29]): 

Proposition 3.1. 
(a) If (u0 , ul) E H~(O) x £ 2(0), then the problem (3.1) has a unique 

(weak) solution belonging to the space 

(b) The energy 

C(IR; Hg(O)) n C1 (1R; £ 2(0)). 

E = ~ { lu'l2 + (Llu)2 dx 
2 Jn 

of the solutions is conserved {does not depend on t E IR}. 

We have the following observability result: 

Theorem 3.2. (J.L. Lions {27/, E. Zuazua {31/} For every bounded 
interval I of length III > 0 there enst two positive constants c1, c2 such 
that 

(3.2) 

for all solutions. 

Lions first proved the theorem for sufficiently large intervals/. Then 
Zuazua established the general case by an indirect compactness
uniqueness argument. We present here a constructive proof given in 
[14]. 

The proof of this theorem consists of four steps. We denote by 
.A1 < .A2 < · · · the eigenvalues of Ll2 in H~(O) and by Z1, Z2 , ••• the 
corresponding eigenspaces. We recall that .Xk -+ oo. Then the solutions 
of (3.1) may be written in the form 

u(t) = L ukeowkt 
kEK 

(3.3) 

where K = Z*' Wk = ±y'Xjkj and the coefficients Uk E zlkl depend on the 
initial data. It suffices to consider finite sums: once the estimates (3.2) 
are established for finite sums, they remain valid by a density argument 
for all solutions. 

Step 1. Using the same multiplier as for the wave equation (see 
Lemma 2.3 above), we obtain the estimates 
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provided III > 2RA~114 where n c B(O, R) and Al denotes the first 
eigenvalue of b.2 in HJ(O). 

Applying this result to the the functions u(t) = Uke'IWkt we obtain 
that 

b.uk = 0 on f ===? Uk = 0 

for all eigenfuctions Uk E Zlkl• k = 1, 2, .... 

(3.4) 

Step 2. If we consider only solutions whose initial data are orthogonal 
to the first k eigenspaces, the proof of Step 1 shows that the estimates 
(3.2) hold under the weaker condition III > 2RA;~{4 . 

Step 3. We show that the condition III > 2RA;~{4 is in fact sufficient 
for all initial data. This is shown by adapting a method of Haraux [8] to 
trigonometric sums with vector coefficients. Introducing the seminorm 

( )

1/2 

p(u) := h (b.u)2 di' 

on the linear subspace spanned by the finite sums of the form (3.3), we 
need to show that 

f p(u)2 dt :=: L llukll 2 

}I kEK 

where the notation A :=: B means that c1A :5 B :5 c2A with suitable 
positive constants c1 and c2. 

By Step 2 these estimates hold for all sums (3.3) satisfying u; = 0 
for all integers i satisfying 1 :5 Iii :5 k, and by Step 1 the restriction 
of the seminorm p to each eigenspace Zk is a norm. It remains to relax 
the assumptions u; = 0 whenever 1 :5 Iii :5 k. This will follow from the 
next lemma (see [21] and [22] for more general results): 

Lemma 3.3. Assume that for some interval Io and for some finite subset 
Ko C K we have 

(3.5) 

for all sums (3.3) satisfying 

Uk = 0 for all k E Ko. 

Then for every interval I of length III > IIol we have 

f p(u)2 dt :=: L llukll 2 

}I kEK 
(3.6) 

for all sums (3.3). 
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Proof of the lemma. We start with two elementary observations. First, 
if one of the inequalities in (3.5) or (3.6) holds, then it also holds, with 
the same constant, for any translate of Io, and I respectively. Secondly, 
by an induction argument we may assume that Ko has only one element, 
say Ko = {ko}. 

Proof of the direct inequality. Putting z(t) := Uk0 e""kot we have 

r p(u)2 dt ::; 2 r p(u- z)2 dt + 2 r p(z)2 dt 
}Io }Io }Io 

:5 c ( L llukll 2
) + 2IIol · p(Uk0 )

2 

k#ko 

:5 c L llukll 2 

kEK 

because p and 11·11 are equivalent norma on Zko· 
Covering I by finitely many translates of Io similar estimate is ob

tained on I with another constant c. 

Preliminary inverse inequality. We first prove that 

I: llukll 2
::; r p(u)2 dt 

k#o }I 

for all sums (3.3). 
We may assume by translation that Io = (a, b) and I = (a - 6, b + 6) 

with 6 > 0. 
Thrning to the proof, if 

then setting 

u(t) = L uke""kt, 
kEK 

1 16 . v(t) := u(t)-- e-zwko 8 u(t + s) ds 
26 -6 

we obtain a function 

v(t) = L (1- 2~ 16 ei(wk-wko)s ds) Uke""kt =: L Vkeiwkt. 
kEK - 6 kEK 

Observe that vko = 0 and llvkll::::::: llukll for the remaining coefficients. 
Next we estimate p(v). Observe that 

r p(v)2 dt::; 4 r p(u)2 dt. 
}I }Io 
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Indeed, for every fixed t E JR. we have 

1 !6 2 
p(v(t))2 ~ 2p(u(t))2 + 2pc8 -6 e-"""o 8 u(t + s) ds) 

1 !6 2 ~ 2p(u(t))2 + 282 1 _/(u(t + s)) dsl 

116 ~ 2p(u(t))2 + 8 _/(u(t + s))2 ds 

11t+6 
= 2p(u(t))2 + 8 p(u(s))2 ds. 

t-6 

It follows that 

1bp(v(t))2 dt 

1b 11b1t+6 ~ 2 p(u(t))2 dt + 8 p(u(s))2 ds dt 
a a t-6 

1

b 1 1b+61min{b,s+6} 
= 2 p(u(t))2 dt + 8 p(u(s))2 dt ds 

a a-6 max{a,s-6} 

1
b 1b+6 

~ 2 a p(u(t))2 dt + 2 a-
6 

p(u(s))2 dt 

1
b+6 

~ 4 p(u(s))2 dt. 
a-6 

We have 

L llukll 2 ~ c L llvkll2 

k#ko k#ko 

~ c r p(v)2 dt 
Jlo 

~ 4c h p(u)2 dt. 

Proof of the inverse inequality. It remains to prove that 
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Since the restriction of the seminorm p to Zko is a norm, setting 
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llukoll 2
:::; cp(Uko)2 

= c 1p(z)2 dt 

:::; 2c 1p(u)2 dt+2c 1p(u-z)2 dt 

:::; c r p(u)2 dt + c I: llukll 2 

jl kf.ko 

:::; c 1 p(u)2 dt. 

The proof is completed. D 

Step 4. Given an arbitrary bounded interval of positive length, we 
may choose a sufficiently large integer k satisfying this condition. Then 
by Step 3 the estimates (3.2) hold for all sums of the form (3.3). 

The same approach as in Subsection 2.2 above yields now the follow
ing theorem: 

Theorem 3.4. /fO. is of class C4 , T > 0 and (y0 ,y1) E L2(0.)xH- 2 (0.), 
then there exists a control function v E £ 2(0, T; L2(r)) such that the 
solution of 

satisfies 

{

y" + 1),.2y = 0 in [0, T] X n, 
y = v on [0, T] X r, 
y(O) =Yo and y'(O) = Yl in 0. 

y(T) = y'(T) = 0 in 0.. 

4 Observability by using Fourier series 

Fourier series did a good service in the preceding section. Here we give 
another rather different application of Fourier series for the study of 
rectangular plates (and analogous higher-dimensional models). Many 
other examples and theorems are given in [22]. 

Let 0. C JRN be an N-dimensional open interval ("brick") with 
boundary r. The problem 

{

u" + 1),.2u = 0 in IR X n, 
u = /),.u = 0 on IR X r, 
u(O) = Uo and u'(O) = ul in n, 
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is well posed in (H2 (n) n HJ(n)) x L2(n). 

Let no be a nonempty open subset of n and I a nondegenerate 
bounded interval. A natural question is whether it is possible to de
termine the initial data by observing the solution only in no x I. The 
answer is yes: 

Theorem 4.1. (Haraux {8}, Jaffard {11}, {12}, Komornik {16}} Given 
no and I arbitrarily, there exist two constants a1 , a2 > 0 such that 

a1E(O) ~ 1 !no lu'l2 
dx dt ~ a2E(O) 

for all solutions where the energy is defined by 

E(t) := ~ foiu(t,x)l 2 + l~u(t,xW + lu'(t,x)l2 dx. 

Assume for simplicity that n = (0, 1r)N. Expanding the solution into 
Fourier series according to an orthonormal basis formed by eigenfunc
tions of the the infinitesimal generator of the underlying semi-group and 
setting 

dt dx ~ a2 L lckl2 

kEK 

for all square summable families (ck)keK of complex numbers. 

The proposition follows from Propositions 4.3-4.5 below. The first 
one is a vectorial generalization of a classical theorem of Ingham [10]: 

Proposition 4.3. (Baiocchi, K., Loreti [2]} If a family (wk)keK of vec
tors in JRN satisfies the gap condition 

then we have 

'Y = 'Y(K) := inf lwk- Wnl > 0, 
k;6on 

(4.1) 

(4.2) 

for every R > 2f where Bn denotes the open ball of radius R in JRN 

and J.L denotes the first eigenvalue of-~ in the Sobolev space HJ(Bl). 



366 Komornik 

The next one is a strenghtening of the preceding result by weakening 
the assumptions on the radius R of the ball BR; this generalizes a one
dimensional result of Beurling [4]: 

Proposition 4.4. Given a family (wk)keK c JR.N satisfying (4.1), the 
estimates (4.2) stul hold if 

2-..ffi 2-..ffi 
R > Ro := 1(Ki) + ... + I(Km) 

for a suitable finite partition K = K1 U · · · U Km of K. 

The final step is a combinatorial result: 

Proposition 4.5. If 

then for every c > 0 there exists a finite partition K = K1 U · · · U Km of 
K such that 

Example. For N = 1 the exponents Wk lie on two parabolas. If m is a 
positive integer, then setting 

{wk:kEKj}={(±n2,n):nEZ, n=j modm} 

we have 1(Ki);::: m2 for every j = 1, ... , m. 

5 A general method of stabilization 

At the end of Subsection 2.3 we mentioned some drawbacks of the linear 
stabilization by natural feedbacks. In this section we present another 
more general and powerful method. For a full exposition we refer to 
[20]. 

The following two theorems are due to J .L. Lions [25], [27]. 
Let n be a bounded nonempty open set of class C2 in JR.N. We denote 

by v the unit outward normal vector to its boundary r. Consider the 
following controllability problem: 

{

y"- 1:1y = 0 

y(O) =Yo and y'(O) = Y1 

y=u 

First we reformulate Theorem 2.6. 

in !l X (0, oo), 

inn, 

on r X (0, oo). 
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Theorem 5.1. 
(a) For u E L1oc(O, oo; L 2(r)) the problem is well posed in 

1-l := L 2(0) x n-1(0). 

(b} For T > 0 sufficiently large, the problem is exactly controllable 
in time T: for every (Yo, Y1) E 1-l there extSts u such that the solution 
satisfies 

y(T) = y'(T) = 0 in 0. 

Remarks. This theorem was proved by a general method (HUM). The 
controls u were constructed explicitly, and the overall proof presented 
few technical difficulties. 

Concerning the stabilization the following result holds true: 

Theorem 5.2. There exist two bounded linear maps 

and two constants M, w > 0 such that, putting 

u = o11 (Py' + Qy) 

the problem is well posed in 1-l := L 2 (0) x H-1(0), and its solutions 
satisfy the estimate 

for all (yo, yl) E 1-l and t ~ 0. 

Remarks. This theorem was also proved by a general method. However, 
there was no construction of the feedbacks P and Q and, due to some 
indirect arguments, no explicit decay rate was provided by the proof. 
Finally, the proof of this theorem was technically much more involved 
than that of Theorem 5.1: infinite-dimensional Riccati equations had to 
be solved. 

The following similar theorem was obtained in [20]: 

Theorem 5.3. Fix w > 0 arbitrarily. There exist two bounded linear 
maps 

P: n-1(0) --t HJ(O), Q: L2 (0) --t HJ(O) 

and a constant M such that, putting 

u = ov(Py' + Qy) 
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the problem is well posed in 1t := L 2 (0) x H-1 (0), and its solutions 
satisfy the estimate 

for all (yo, yl) E 1t and t ~ 0. 

Remarks. Compared with Theorem 5.2, this result was also proved by 
a general method. Moreover, the feedbacks P and Q were constructed 
and explicit decay rates were obtained by a constructive proof, which was 
substantially simpler than that of Theorem 5.2. Finally, arbitrarily high 
decay rates may be ensured by suitable constructions of the feedbacks. 

In order to compare these two theorems and their proofs, first we 
review Lions's approach: 

1. Observability of the dual problem. Taking u = 0 in and using 
multipliers we get 

II(Yo,Yl)IIHJ(O)x£2(0);:::: ll8vYIIL2(I'x(O,T))· 

2. Controllability of the primal problem. By duality, for every given 
(yo,Yl) E L 2 (0) x H-1(0) there exists u E L 2(r x (O,T)) such 
that 

y(T) = y'(T) = 0 in 0. 

3. Stabilization. We minimize the cost function 

J(y, u) := 100 In y2 
dx dt + 100 i u2 dr dt 

where (y, u) solves our problem. Then (Riccati) y and u are re
lated by the feedback equation. The decay estimate follows from 
a theorem of Datko. 

The Hilbert Uniqueness Method is based on the implication 

observability =? controllability. 

The Riccati equation approach is based on the implication chain 

observability =?controllability=? stabilizability. 

By contrast, Theorem 5.3 is obtained by establishing directly the 
implication 

observability =? stabilizability. 

Let us explain the new approach in an abstract setting. 
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Primal-dual problems. Consider the abstract problem 

x' = Ax+Bu, x(O) = xo (5.1) 

and its dual 

<p' = -A*<p, <p(O) = <po, '1/J = B*<p, (5.2) 

where A : H --+ H and B : G --+ H are densely defined closed linear 
maps is some Hilbert spaces Hand G. We assume the following: 

(H1) (reversability) A* generates a group esA" in H'; 

(H2) (weakened continuity of B) We have D(A*) C D(B*) and there 
exist .A E C and C > 0 such that 

for all <po E D(A*); 

(H3) (direct inequality) There exist T' > 0 and d > 0 such that 

II7/Jii£2(0,T';G') ~ c'll<poiiH' 

for all <po E D(A*); 

(H4) (inverse inequality) There exist T > 0 and c > 0 such that 

for all <po E D(A*). 

An equivalent norm. Fix w > 0 and set 

1 {e-2ws if 0 ~ S ~ T, 
Tw := T + -2 , ew(s) = -2wT( ) 

W 2we Tw-S ifT~s~Tw. 

Identify G' with G. Then 

[T"' 
Aw := lo ew(s)e-sABB*e-sA" ds 

defines an isomorphism Aw of H' onto H, and the formula 

an equivalent norm on H. 

Now we have the following abstract stabilization theorem: 
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Theorem 5.4. Assume (Hl) to (H4) and fix w > 0 arbitrarily large. 
Then the problem 

x' =(A- BB*A-;/)x, x(O) = xo 

is well posed in H, and its solutions satisfy the estimate 

for all xo E H and t ~ 0. 

Remark. For w = 0 this is reduced to the observability operator A in 
Subsection 2.2. Note that w > 0 in the above theorem. 

Formal proof. The solutions satisfy the following identity: 

d 
dt (A-;/x,x)H',H = (A;:; 1x, (AAw + AwA*- 2BB*)A;:; 1x)H',H· 

Two different evaluations of 

show that 
AAw + AwA*- 2BB* ~ -2wAw. 

Hence 
d 
dt (A;:; 1x,x)H',H ~ -2w(A;:;1x,x)H',H 

and 
llx(t)llw ~ llxollwe-wt. 

The two evaluations are as follows. First, using Leibniz's rule we 
have 

1T.., d • 
-(e..,(s)e-sABB*e-sA ) ds 

0 ds 

{T"' 
= Jo e~(s)e-sABB*e-sA• ds- AAw- AwA* 

~ -2wAw- AAw- AwA*. 

On the other hand, applying the Newton-Leibniz formula we obtain 
that 

1T"'! (ew(s)e-sABB*e-sA•) ds = ew(T)e-TABB*e-TA.- BB* 

~ -BB* 

~ -2BB*. 
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Hence 
AAw + AwA* + 2wAw :5 2BB*. 0 

Proof of Theorem 5.3. Let us rewrite the systems (2.1) and (2.6) in the 
form (5.2) and (5.1) as follows. 

First, putting cp = ( u, u'), cpo = ( uo, u1) and introducing the linear 
operators A* and B* by the formulas 

D(A*) = D(B*) = (H2(0) n HJ(O)) x HJ(O), 

A* (zo, z1) = -(zl> .1.zo), 
B*(zo, zl) = Ovzo, 

we may rewrite (2.1) with the observation of Ovu in the abstract form 
(5.2). 

We claim that choosing H' = HJ(O) x L2 (n) and G' = L2(r) the 
assumptions (H1)-(H4) are satisfied. Indeed, (H1) is well known and is 
related to the energy conservation, see [29]. Property (H2) follows (with 
A = 0) from the definition of A*, B* and from the elliptic regularity 
theory for z0 e H 2(0) n HJ(O): 

IIB*(zo, zl)ll£2(r) = ll8vzoii£2(I') :5 cllzoiiH2(!1) 
:5 cll.1.zoll£2(n) :5 ciiA*(zo,zi)IIHJ(n)x£2(!1)· 

Finally, (H3) and (H4) are equivalent to the inequalities proved in the
orem 2.2. 

Now a standard computation of duality shows that the dual problem 
(5.1) is just another form of the problem (2.6) if we introduce the nota
tions x = (-y',y), xo = (-YI>Yo) and if we put G := G" = L2(r) and 
H := H" = H-1(n) x L 2 (n). 

Therefore Theorem 5.3 follows from Theorem 5.4. 0 

Remark. Many numerical simulations and physical experiments were 
made by F. Bourquin and his collaborators: see [5]. 
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Abstract 

In this paper we give known results and open problems on the 
exact controllability and the exact observability for quasilinear 
hyperbolic systems. 

1 Introduction and known results 

Consider the following first order quasilinear hyperbolic systems 

au au - + A(u)- = F(u) at ax ' (1.1) 

where u = (u1. · · · , un)T is the unknown vector function of (t 1 x) 1 A(u) is 
an n x n matrix with suitably smooth entries aii ( u) ( i 1 j = 11 • • • , n) and 
F(u) = (!1 (u) 1 • • • 1 fn(u))T is a suitably smooth vector function with 

F(O) = 0. (1.2) 

By (1.2) 1 u = 0 is an equilibrium of system (1.1). 

*Supported by the Basic Research Program of China {No. 200708814800). 
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By hyperbolicity, for any given u on the domain under consideration, 
the matrix A( u) possesses n real eigenvalues 

(1.3) 

and a complete set of left eigenvectors li ( u) = ( li1 ( u), · · · , lin ( u)) ( i = 
1, · · ·, n): 

(1.4) 

Suppose that all Ai ( u) and li ( u) ( i = 1, · · · , n) have the same regu
larity as A(u) = (ai;(u)), and there are no zero eigenvalues: 

Ar(u)<O<.As(u) (r=l,··· ,m; s=m+l,··· ,n). (1.5) 

Let 
Vi= li(u)u (i = 1, · · · , n). (1.6) 

where Vi is called the diagonal variable corresponding to Ai ( u) ( i = 
1, · · · , n). In a neighbourhood of u = 0, v = (vb · · · , vn)T is a diffeo
morphism of u = (u1, · · · , un)T. When (1.1) is a system of diagonal 
form, i.e., A(u) is a diagonal matrix: 

A(u) = diag{.A1(u), · · · , An(u)}, (1.7) 

vis just u. 
Under the previous assumptions, on the domain { ( t, x) I t ~ 0, 0 ~ 

x ~ L} the most general boundary conditions which guarantee the well
posedness of the forward problem can be written as 

x=O: Vs=Gs(t,v1,··· ,vm)+Hs(t) (s=m+1,··· ,n), (1.8) 

X= L : Vr = Gr(t, Vm+b ... 'Vn) + Hr(t) (r = 1, ... 'm), (1.9) 

where Gi and Hi (i = 1, · · · , n) are all smooth and, without loss of 
generality, we may suppose that 

Gi(t,O, · · · ,0) = 0 (i = 1· · · ,n). (1.10) 

By (1.5), on the boundary x = 0 the characteristics ~ = .A8 (u) (s = 
m + 1, · · · , n) corresponding to all the positive eigenvalues are called the 
coming characteristics since they reach the boundary x = 0 from the 
interior of the domain. Similarly, the characteristics ~ = Ar(u) (r = 
1, · · · , m) corresponding to all the negative eigenvalues are the coming 
characteristics on the boundary x = L. 

Thus, the characters of boundary conditions (1.8)-(1.9) are as follows 
(cf. [1]): 

1. on x = 0, the number of the boundary conditions = the number of 
the coming characteristics = the number of positive eigenvalues = n-m, 
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while, on x = L, the number of the boundary conditions = the number 
of the coming characteristics = the number of negative eigenvalues = m. 

2. The boundary conditions (1.8) on x = 0 are written in the form 
that all the diagonal variables v8 ( s = m + 1, · · · , n) corresponding to the 
coming characteristics on x = 0 are explicitly expressed by the diagonal 
variables Vr (r = 1, · · · , m) corresponding to other characteristics. Sim
ilarly, the boundary conditions (1.9) on x = L are written in the form 
that all the diagonal variables Vr (r = 1, · · · , m) corresponding to the 
coming characteristics on x = L are explicitly expressed by the diagonal 
variables v8 (s = m + 1, · · · , n) corresponding to other characteristics. 

In what follows we give the known results on controllability and ob
servability for quasilinear hyperbolic systems [2-3], which are obtained 
by the theory of semi-global C 1 solution [4]. 

1.1 Exact boundary controllability 

1.1.1 Two-sided exact boundary controllability [5] 

Let 

T def. ( 1 1 ) >To = L max --, -- . 
~= 1 • ,m IAr(O)I As(O) 8-m+l, ,n 

(1.11) 

For any given initial data <P(x) and final data <ll(x) with small C 1[0,L] 
norm, there exist boundary controls Hi ( t) ( i = 1, · · · , n) with small 
C 1 [0, T] norm, such that the corresponding mixed initial-boundary value 
problems (1.1), (1.8)-(1.9) and 

t = 0: u = <P(x), 0 ~ x ~ L (1.12) 

admit a unique semi-global C1 solution u = u(t, x) with small C 1 norm 

on the domain R(T) = {(t,x) I 0 ~ t ~ T, 0 ~ x ~ L}, which exactly 
satisfies the final condition 

t = L: u = ~(x), 0 ~ x ~ L. (1.13) 

1.1.2 One-sided exact boundary controllability [6] 

Suppose that the number of positive eigenvalues is not larger than that 
of negative ones: 

_ def. < m = n-m_m, i.e., n~ 2m. (1.14) 

Suppose furthermore that in a neighbourhood of u = 0, the boundary 
condition (1.8) on x = 0 (the side with less coming characteristics) can 
be equivalently rewritten as 

x=O: Vr=Gr(t,vm+l,··· ,vm,Vm+l,··· ,vn)+Hr(t) (f=1,··· ,m) 
(1.15) 
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with 
Gr(t, 0, · · · , 0) = 0 (r = 1, .. · , m). {1.16) 

Let 

def.( 1 1) T >To = L max -- + max -- . 
r=l, ,m l..\r{O)I s=m+l, ,n ..\8 {0) 

(1.17) 

For any given initial data 4J( x) and final data ~ ( x) with small 0 1 [0, L] 
norm and any given H 8 (t) (s = m + 1, · · · , n) with small 0 1[0, T] norm, 
such that the conditions of 0 1 compatibility are satisfied at the points 
(t,x) = (0,0) and (T,O), respectively, there exist boundary controls 
Hr(t) (r = 1, · · · , m) with small C 1 [0, T] norm on x = L (the side with 
more coming characteristics), such that the corresponding mixed initial
boundary value problems (1.1), (1.8)-(1.9) and (1.12) admit a unique 
semi-global 0 1 solution u = u(t, x) with small 0 1 norm on the domain 

R(T) = {( t, x) I 0 ~ t ~ T, 0 ~ x ~ L}, which satisfies exactly the final 

condition (1.13). 

1.2 Exact boundary observability 

1.2.1 Two-sided exact boundary observability [7] 

Suppose that T > 0 satisfies (1.11). Suppose furthermore that 4J(x) 
with small C 1 [0,L] norm and Hi(t) (i = 1, ... ,n) with small C 1 [0,T] 
norm are given and the conditions of 0 1 compatibility are satisfied at the 
points (t, x) = (0, 0) and (T, 0), respectively. Then, for the mixed initial
boundary value problems (1.1), (1.8)-(1.9) and (1.12), the boundary 
observations Vr = iir(t) (r = 1, · · · , m) at x = 0 and the boundary 
observations v8 = v8 (t) (s = m + 1, · · · , n) at x = L in the interval 
[0, T] can uniquely determine the initial data 4J(x), and the following 
observability inequality holds: 

m n 

II~PIIcl[O,L] ~ c(L: lliiriiCl[O,T] + L llvsllc1 [0,T] + 11HIIc1 [0,T]), 
r=l s=m+l 

(1.18) 
where 0 1 is a positive constant. 

1.2.2 One-sided exact boundary observability [7] 

Suppose that (1.14) holds. Suppose furthermore that in neighbourhood 
of u = 0, boundary condition (1.9) on x = L (the side with more coming 
characteristics) implies 

x=L: V8 =G8 (t,vl>··· ,v,n,Vm+l>''' ,vm) (s=m+1,··· ,n) 
(1.19) 
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with 
G8 (t,O,··· ,0) ::::0 (s=m+1,··· ,n). (1.20) 

LetT> 0 satisfies (1.17). For the same mixed initial-boundary value 
problems (1.1), (1.8)-(1.9) and (1.12), the boundary observations Vr = 
iir(t) (r = 1, · · · , m) at x = 0 (the side with less coming characteristics) 
in the interval [0, T] can uniquely determine the initial data cp(x), and 
the following observability inequality holds: 

m 

ll<f'llcl[O,LJ::; c(L::IIiirllc1 [0,T) + IIHIIc1 [0,TJ), (1.21) 
r=l 

where C1 is a positive constant. 

2 Remarks and open problems 

2.1. In the previous results of controllability and observability, the 
estimates on the controllability time coincide with the estimates on the 
observability time, and all these estimates are sharp. On the other hand, 
generally speaking, the number of boundary controls or boundary obser
vations on the interval [0, T] can not be reduced. 

2.2. In practice, it is natural to ask if it is possible to reduce the 
number of boundary controls or boundary observations for a problem 
under consideration. Moreover, in some control problems, according to 
the physical meaning, certain boundary conditions do not contain terms 
which can be used as boundary controls, namely, some of Hi(t) (i = 
1, · · · , n) are identically equal to zero. This situation also leads to the 
study on the lack of boundary controls. 

Problem 1: Upon what additional hypotheses about system (1.1) 
and boundary conditions (1.8)-(1.9), is it possible (resp. not possible) 
to get the previous results of controllability and observability by means 
of less boundary controls or boundary observations in the interval [0, T], 
including the case that certain boundary controls or boundary observa
tions only partially play their role, i.e., only act in an interval whose 
length is less than To defined by (1.11) or {1.17)? 

Particularly, is it possible to realize the two-sided exact boundary 
controllability or observability by means of part (not whole!) boundary 
controls or boundary observations on each side? 

Problem 2: When the requirement of Problem 1 can not be realized 
in the interval [0, T], on what additional hypotheses about (1.1) and 
(1.8)-{1.9), is it possible to realize it in an enlarged interval [0, T] with 
T>T? 

2.3. In the case of one-sided exact boundary controllability, there 
are two related problems as follows: 
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Problem 3: Suppose that the number of positive eigenvalues is less 
than that of negative ones: 

_ def . 
2 m = n- m < m, z.e., n < m. (2.1) 

Upon what additional hypotheses about (1.1) and (1.8)-(1.9), is it pos
sible(resp. not possible) to get the one-sided exact boundary control
lability by means of boundary controls on x = 0 (the side with less 
coming characteristics) instead of on x = L (the side with more coming 
characteristics) in the interval [0, T]? 

Problem 4: When the requirement of Problem 3 can not be realized 
in the interval [0, T], is it possible to realize it at an enlarged interval 
[0, T] with T > T? 

Moreover, in the previous result of the one-sided exact boundary 
controllability, the boundary conditions on x = 0 (the side with less 
coming characteristics) are required to satisfy hypothesis (1.15), which 
guarantees the well-posedness of the corresponding backward problem 
and is a generalization of the Group Condition [8] in the linear case with 
the assumption n =2m, i.e., the number of positive eigenvalues is equal 
to that of negative ones. 

Problem 5: Upon what additional hypotheses about (1.1) and 
(1.8)-(1.9), is it possible to get the one-sided exact boundary controlla
bility without hypothesis (1.15)? 

Partial results of Problem 5 can be found in [9-10]. 
Here, we point out that an affirmative answer can be given to Problem 

3 and Problem 5 on the following hypotheses: 
a. The final data are specially taken as 

t=T: u=O (O~x~L), (2.2) 

namely, the so-called zero controllability is considered. 
b. For Problem 3, the boundary conditions on x = L (the side with 

more coming characteristics) are specially prescribed as 

X= L: Vr = Gr(t, Vm+l, ... , Vn) (r = 1, ... , m), (2.3) 

namely, Hr(t) = 0 (r = 1, · · · , m) and then u = 0 is an equilibrium 
of systems (1.1) and (2.3). While, for Problem 5, the boundary condi
tions on x = 0 (the side with less coming characteristics) are specially 
prescribed as 

X = 0 : Vs = Gs(t, VI, •.. , Vm) (s = m + 1, ... , n), (2.4) 

namely, H 8 (t) = 0 (s = m + 1, · · · , n) and then u = 0 is an equilibrium 
of systems (1.1) and (2.4). 
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Upon these additional hypotheses, by means of boundary controls 
H8 (t) (s = m+1, · · · , n) (for Problem 3) or boundary controls Hr(t) (r = 
1, ... , m) (for Problem 5), the one-sided exact boundary controllability 
can be realized in the interval (O,T], where T > 0 satisfies (1.17). 

In fact, even though the corresponding backward mixed initial-boun
dary value problem is not well posed in this case, we can simply take 
u = 0 as its solution, and then the constructive method given in (6] 
can be still applied effectively. A similar idea was introduced by D. 
Russell (8] in the linear case with the assumption n =2m, however, our 
constructive method gives a more clear way to get the result. 

We call the zero controllability as a special kind of controllability 
the weak controllability, and the usual controllability the strong con
trollability (cf. (11]). Obviously, the strong controllability implies the 
weak controllability, however, the weak controllability can not imply the 
strong controllability generically. For the weak controllability, we can 
also turn to the corresponding Problems 1 and 2. 

2.4. In the case of one-sided exact boundary observability, there are 
two similar problems as follows: 

Problem 6: Suppose that (2.1) holds. Upon what additional hy
potheses about (1.1) and (1.8)-(1.9), is it possible to get the one-sided ex
act boundary observability by means of boundary observations on x = L 
(the side with more coming characteristics) instead of on x = 0 (the side 
with less coming characteristics) at the interval (0, T]? 

Problem 7: When the requirement of Problem 6 can not be realized 
at the interval (0, T], is it possible to realize it at an enlarged interval 
(0, T] with T > T? 

Moreover, in the previous result of the one-sided exact boundary 
observability, the boundary conditions on x = L (the side with more 
coming characteristics) are required to satisfy hypothesis (1.19), which 
guarantees the well-posedness of the corresponding backward problem 
and is a generalization of the Group Condition (8] in the linear case with 
the assumption n = 2m. 

Problem 8: Upon what additional hypotheses about (1.1) and 
(1.8)-(1.9), is it possible to get the one-sided exact boundary observ
ability without hypothesis (1.19)? 

Partial results of Problem 8 can be found in (12]. 
D. Russell has introduced a kind of observability in (8]. In his defini

tion, the boundary observations are required to uniquely determine the 
initial data for the backward problem, namely, to uniquely determine 
the final data for the forward problem. In the special case that n = 2m 
(the number of positive eigenvalues is equal to that of negative ones) and 
the boundary conditions (1.8)-(1.9) can be equivalently rewritten as 

X = 0 : Vr = Gr(t, Vm+l> ... 'Vn) + Hr(t) (r = 1, ... 'm) (2.5) 
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and 

X= L: V8 = G8 (t,v1, · · · ,vm) + H8 (t) (s = m + 1, · · · ,n) (2.6) 

with 

Gi(t,O, · · · ,0) = o (i = 1, · · · ,n), (2.7) 

the backward problems (1.1), (1.8)-(1.9) and (1.13) are still well posed, 
then, to uniquely determining the final data 9?(x) is equivalent to uniquely 
determining the initial data ¢(x) and, consequently, the definition given 
by D. Russell coincides with the previous definition of observability. 
However, in the general situation, even if the forward problem is well 
posed, the corresponding backward problem with the same boundary 
conditions might not be well posed, then the usual definition of observ
ability is stronger than the definition given by D. Russell. From this 
point of view, we call the observability previously defined the strong 
observability, and the observability defined by D. Russell the weak ob
servability [11). 

For the weak observability we can still go to the corresponding Prob
lems 1 and 2. Moreover, since, in order to get the weak observability, it 
is not necessary to solve the corresponding backward problem, we can 
give an affirmative solution to Problem 6 and Problem 8 without any 
additional hypotheses about (1.1) and (1.8)-(1.9). Correspondingly, we 
have 

Problem 9: Upon what additional hypotheses about (1.1) and 
(1.8)-(1.9), is it possible to get the one-sided weak exact boundary ob
servability by means of less boundary observations on x = L in the 
interval [0, T)? 

Problem 10: When the requirement of Problem 9 can not be real
ized at the interval [0, T), is it possible to realize it in an enlarged interval 
[0, i'] with t > T? 

2.5. In the previous discussion we always suppose that all the ob
served values are accurate, i.e., there is no measuring error in the obser
vation. However, one can not eliminate errors in practical observation, 
leading to the following problem on the stability of observation. 

Problem 11: Is it possible to control the error of the initial data (for 
the strong observability) or the final data (for the weak observability) 
by means of the error of observed values? 

An affirmative solution to Problem 11 in the case of strong observ
ability can be found in [13). 

In the case of controllability, a related problem is 
Problem 12: Is it possible to estimate the error of the determined 

final data by means of the error of both boundary controls and the initial 
data? 
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2.6. Since all the problems are considered in the framework of clas
sical solutions in a neighbourhood of the equilibrium u = 0, they are all 
related to the local exact boundary controllability and the local exact 
boundary observability. However, in some special cases, the global ex
act boundary controllability with arbitrarily large distance between the 
initial data and the final data can be obtained [14-19]. 

Problem 13: Upon what additional hypotheses about (1.1) and 
(1.8)-(1.9), is it possible to get the global exact boundary controllability? 

Problem 14: Upon what additional hypotheses about (1.1) ad 
(1.8)-(1.9), is it possible to get the global exact boundary observabil
ity? 

2. 7. When there are zero eigenvalues: 

(2.8) 

(p = 1, · · · , l; q = l + 1, · · · , m; r = m + 1, · · · , n), 

the situation is quite different from the case without zero eigenvalues. 
In the case of controllability, suitable boundary controls correspond

ing to non-zero eigenvalues and suitable internal controls corresponding 
to zero eigenvalues can be used to realize the exact controllability [20]. 
However, according to the physical meaning, certain equations corre
sponding to zero eigenvalues do not contain terms which can be used as 
internal controls, then we should face the difficulty of the lack of internal 
controls. 

Problem 15: Upon what additional hypotheses about (1.1) and 
(1.8)-(1.9), is it possible to realize the exact controllability without in
ternal controls or by less internal controls in the case that (2.5) holds? 

A very preliminary consideration on Problem 15 can be found in [21]. 
In the case of observation, by a constructive method together with 

the theory as to the semi-global C 1 solution for a special kind of bound
ary value problem [22], suitable boundary observations corresponding to 
non-zero eigenvalues and suitable internal observations corresponding to 
zero eigenvalues can be used to realize the exact observability [23]. 

Problem 16: Upon what additional hypotheses about (1.1) and 
(1.8)-(1.9), is it possible to realize the exact observability without in
ternal observations or by means of less internal observations in the case 
that (2.5) holds? 

2.8. Quite different from the autonomous case, for the nonautonomous 
first order quasilinear hyperbolic system 

au au 
at + A(t, x, u) ax = F(t, x, u), (2.9) 

the exact controllability and the exact observability possess various pos
sibilities and should be studied in a more delicate way (cf. [24-25]). 
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Problem 17: Study the previous problems for the corresponding 
mixed initial-boundary value problem related to the nonautonomous sys
tem (2.9). 

2.9. Higher order hyperbolic equations (systems) are also of great 
importance in practice. The related study on controllability and ob
servability can be found in [8], [26] and the references therein for the 
linear case and in [27-31] and [10] for the quasilinear case. Since the 
corresponding study in the quasilinear case is just at the beginning, we 
have 

Problem 18: Establish a complete theory about the controllability 
and observability for higher order quasilinear hyperbolic systems. 

2.10. For higher dimensional hyperbolic equations (systems), the 
study on controllability and observability can be found in [8] and [26] for 
the linear case and in [33-37] for the semilinear case, however, for the 
quasilinear case, the only result obtained up to now is that by means of a 
boundary control of Dirichlet type on the whole boundary, the local exact 
boundary controllability can be realized for quasilinear wave equations 
[38-39]. Compared with the corresponding results in the linear case and 
in the 1-D quasilinear case, this result is far from what we want to get. 
As to the observability, it seems to be still open in higher dimensional 
quasilinear case. 

Problem 19: Establish a complete theory as to the exact controlla
bility in higher dimensional quasilinear hyperbolic case. 

Problem 20: Establish the exact observability in higher dimensional 
quasilinear hyperbolic case. 
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Abstract 

This article describes some applications of two kinds of obser
vation estimates for the wave equation and for the damped wave 
equation in a bounded domain where the geometric control con
dition of C. Bardos, G. Lebeau and J. Rauch may fail. 

1 The wave equation and observation 

We consider the wave equation in the solution u = u(x, t) 

{ 

OfU - t:J.u = 0 in n X JR , 
U = 0 on an X JR , 

(u,OtU)(·,O) = (uo,ui) , 
(1.1) 

consisting in a bounded open set n in JRn, n ~ 1, either convex or C2 , 

to be connected with boundary an. It is well known that for any initial 
data (ua, u1) E H 2 (n) n HJ (n) x HJ (n), the above problem is well 
posed and has a unique strong solution. 

Linked to exact controllability and strong stabilization for the wave 
equation (see [Li]), it appears the following observability problem which 
consists in proving the following estimate 

ii(uo, ui)II~J(n)xL2(n) ~CloT i lotu (x, t)l
2 

dxdt 

for some constant C > 0 independent of the initial data. Here, T > 0 and 
w is a non-empty open subset in n. Due to finite speed of propagation, 

*This work is supported by the NSF of China under grants 10525105 and 10771149. 
Part of this talk was done when the author visited Fudan University with a finan
cial support from the "French-Chinese Summer Institute on Applied Mathematics" 
(September 1-21, 2008}. 
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the time T has to be chosen to be large enough. Dealing with high 
frequency waves, i.e., waves which propagate according to the law of 
geometrical optics, the choice of w can not be arbitrary. In other words, 
the existence of trapped rays (e.g, constructed with gaussian beams (see 
[RaJ) implies the requirement of some kinds of geometric conditions on 
(w, T) (see [BLR]) in order that the above observability estimate may 
hold. 

Now, we want to know what kind of estimate we may expect in a 
geometry with trapped rays. Let us introduce the quantity 

A_ ll(uo,ui)IIH2nHJ(O)xHJ(O) 
- ll(uo,ui)IIHJ(O)x£2(0) ' 

which can be seen as a measure of the frequency of the wave. In this 
paper, we present the two following inequalities 

(1.2) 

and 

Cfl.lh 

ll(uo,ul)II~J(O)x£2(0) ~ C fo fw1atu(x,t)l
2

dxdt (1.3) 

where {3 E (0, 1), 'Y > 0. We will also give their applications to control 
theory. 

The strategy to get estimate {1.2) is now well known (see [Ro2],[LR]) 
and a sketch of the proof will be given in Appendix for completeness. 
More precisely, we have the following results. 

Theorem 1.1. For any w non-empty open subset in 0, for any /3 E 
(0, 1), there exist C > 0 and T > 0 such that for any solution u of {1.1} 
with non-identically zero initial data (u0 , ui) E H 2(0)nHJ (0) x HJ (0), 
the inequality (1.2} holds. 

Now, we can ask whether it is possible to get another weight function 
of A other than the exponential one, a polynomial weight function with 
a geometry (O,w) with trapped rays in particular. Here we present the 
following results. 

Theorem 1.2. There exists a geometry (O,w) with trapped rays 
such that for any solution u of {1.1} with non-identically zero initial 
data (ua, ui) E H 2(0) n HJ (0) x HJ (0), the inequality {1.3} holds for 
some C > 0 and 'Y > 0. 

The proof of Theorem 1.2 is given in [Ph1]. With the help of Theorem 
2.1 below, it can also be deduced from [LiR], [BuH]. 
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2 The damped wave equation and 
our motivation 

We consider the following damped wave equation in the solution w = 
w(x, t) 

{ 
a~w - D.w + 1watW = 0 

w=O 
in n X (0, +oo) , 
on an X (0, +oo) , (2.1) 

consisting in a bounded open set n in !Rn, n ~ 1, either convex or C2 , 

to be connected with boundary an. Here w is a non-empty open subset 
inn with trapped rays and 1w denotes the characteristic function on w. 
Further, for any (w,atw) (·,0) E H 2 (n) n HJ (n) x HJ (0), the above 
problem is well posed for any t ~ 0 and has a unique strong solution. 

Denote for any g E C ([0, +oo); HJ (0)) n C1 ([0, +oo); £2 (n)), 

E (g, t) = ~in (IVg (x, t)l2 + latg (x, t)12
) dx . 

Then for any 0 :::; to < t 1 , the strong solution w satisfies the following 
formula 

E (w, tl)- E (w, to)+ 1t1 

11atw (x, t)1 2 dxdt = 0 . (2.2) 
t 0 w 

2.1 The polynomial decay rate 

Our motivation for establishing estimate (1.3) comes from the following 
result. 

Theorem 2.1. The following two assertions are equivalent. Let 
0 > 0. 

(i) There exists C > 0 such that for any solution w of (2.1} with the 
non-null initial data (w, atw) (·, 0) = (w0 , w1) E H 2 (0) nHJ (n) x 
HJ (0), we have 

c( EJ:1•"'·)>) 1/6 

2 1 w,O 1 2 ll(wo, wl)IIHl(Q)xL2(Q) :5 C 1atw (x, t)i dxdt . 
0 0 w 

(ii) There exists C > 0 such that the solution w of {2.1} with the initial 
data (w, atw) (·, 0) = (w0 , w1) E H 2 (O)nHJ (0) x HJ (0) satisfies 

E (w, t) :5 ~ ll(wo, wl)ll~2nHJ(n)xHJ(O) 'Vt > 0 · 
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Remark. It is not difficult to see (e.g., [Ph2]) by a classical de
composition method, a translation in time and (2.2), that the inequality 
(1.3) with the exponent 'Y for the wave equation implies the inequality 
of (i) in Theorem 2.1 with the exponent o = 2-y/3 for the damped wave 
equation. And conversely, the inequality of ( i) in Theorem 2.1 with the 
exponent 6 for the damped wave equation implies the inequality (1.3) 
with the exponent 'Y = 6/2 for the wave equation. 

Proof of Theorem 2.1. 
(ii) => (i). Suppose that 

c 2 
E(w,T) ~ T611(wo,wl)IIH2nHJ(O)xHJ(O) 'liT> 0 · 

Therefore from (2.2) 

C 2 {T1 2 
E(w,O) ~ T6 ll(wo,wl)IIH2nHJ(O)xHJ(O) + Jo w l8tw(x,t)l dxdt. 

By choosing 

T = 
20

11(wo,Wt)IIH2nHJ(n)xHJ(O) 
( 

2 ) 1/6 

E(w,O) ' 

we get the desired estimate 

(i) => (ii). Conversely, suppose the existence of a constant c > 1 such 
that the solution w of (2.1) with the non-null initial data (w, 8tw) (·, 0) = 
(w0 , wt) E H 2 (0) n HJ (0) x HJ (0) satisfies 

c( E(w,OJ:/!b~'w,O)) 1/6 
2 

E(w,O) ~ c 1 ll8tw(x,t)l dxdt. 

We obtain the following inequalities by a translation on the time variable 
and by using (2.2). 'Its ~ 0 

E(w,s1 s+c( (E(w,oJ:t:~~tw.o))) 116 icltw(x,tt 
:E(w,O)+E( ,w,O)) ~ c fs ' fw E(w,O)+E( 1w,O) dxdt 

( 

E( w,s+c(E(w,O!+E(81w,0!)1/6)) < E(w,s) _ (w,o) 
- C E(w,O)+E(81w,O) E(w,O)+E(8,w,O) . 
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Denoting G (s) = E(w,o~ti(h.w,O), we deduce using the decreasing of G 
that 

which gives 

a(s+c(a:J''),; !:cG(s). 

Let ci = (l¥)I/6 -1 > 0 and denote d(s) = (ee, ~)
6

. We distinguish 

two cases. 

If CIS~ c (a~s)f16 , then G(s) ~ (~ ~)
6 

and 

G((1+ci)s) ~ d(s). 

If cis> c ( ats) f 16
, then s+c ( ats) f 16 

< (1 + cl) sand the decreasing 

of G gives G ((1 + CI) s) ~ G (s + c ( ats) / 16
) and then 

c 
G((1+cl)s)~ 

1
+cG(s). 

Consequently, we have that Vs > 0, Vn EN, n;::: 1, 

G ((1 + ci) s) ~max [d(s), I~ed (c1;ed), · · ·, 

( l~e) n d ( (1+~1 )n) ' ( l~e) n+l G ( (1+~1}*)] 
Now, remark that with our choice of ci, we get 

1 :cd c1 :cl)) = d(s) Vs > 0. 
Thus, we deduce that Vn ;::: 1 

G ( ( 1 + c1) s) ~ max ( d ( s) , ( I~e) n+l G ( (1+~1) .. )) 

~max ( d (s), ( I~e) n+l) because G ~ 1 , 

and conclude that Vs > 0 

E(w,s) =G(s)<d(-s-) = (c(1+cl))
6 

2_ 
E(w,O)+E(Otw,O) - 1+c1 c1 s6 · 

This completes the proof. 
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2.2 The approximate controllability 

The goal of this section consists in giving an application of estimate 
(1.2). 

For any w non-empty open subset inn, for any f3 E (0, 1), letT> 0 be 
given in Theorem 1.1. 

Let (v0 , v1, vod, v1d) E (H2 (!1) n HJ (n) x HJ {!1))
2 

and u be the solu
tion of (1.1) with initial data (u,8tu)(·,O) = (vo,vl). 

For any integer N > 0, let us introduce 

N 

f N (x, t) = -1w L [ 8tw(2i+l) (x, t) + 8tw(2t) (x, T- t) J , (2.3) 
l=O 

where w(O) E C ([0, T]; H2 (!1) n HJ (!1)) is the solution of the damped 
wave equation (2.1) with initial data 

( w(O)' 8tW(O)) (·, 0) = (vod, -Vld)- (u, -8tU) (·, T) inn ' 

and for j ~ 0, w(i+l) E C ([0, T]; H 2 (!1) n HJ (!1)) is the solution of the 
damped wave equation (2.1) with initial data 

( w(i+l)' 8tW(j+l)) {-, 0) = ( -w(j)' 8tW(j}) (·, T) inn . 

Introduce 

M =sup llw(j) (·, 0), 8tw(j) (·, 0)11
2 

j~O H2(Q)xHJ(O) 

Our main result is as follows. 

Theorem 2.2 . Suppose that M < +oo. Then there exists C > 0 
such that for all N > 0, the control function IN given by {2.9} dnves 
the system 

{ 

8fV- t:J..v = 1wx(O,T}!N 
v=O 
(v,8tv) (-,0) = (vo,vl) 

inn X (O,T) ' 
on an X (O,T) ' 
inn' 

to the desired data (vod, VId) approximately at time T, i.e., 

2 c 
llv(·,T)-vod,8tv(·,T)-vldliH'(O)xL2(0} ~ 213 M, 

0 [ln (1 + 2N)] 

and satisfies 
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Remark. For any e > 0, we can choose N such that 

c (:&:M.) 1/13 
----~M:::: e2 and (2N + 1):::: e ~ 
[ln (1 + 2N}]2.B 

in order that 

and 

[(-'<:v'M)l/13] 
llfiiLoc(o,T;£2(n))::; e ~ ll(vo,VI,Vod,Vld)II(HJ(n)x£2(n))2 

In [Zu), a method was proposed to construct an approximate control. 
It consists of minimizing a functional depending on the parameter e. 
However, no estimate of the cost is given. On the other hand, estimate 
of the form {1.2) was originally established by [Ro2) to give the cost (see 
[Le]). Here, we present a new way to construct an approximate control 
by superposing different waves. Given a cost to be not overcome, we 
construct a solution which will be closed in the above sense to the desired 
state. It takes ideas from [Ru) and [BF) like an iterative time reversal 
construction. 

2.2.1 Proof 

Consider the solution 
N 

V (·, t) = L [w(2l+l} (·, t) + w(2l} (·, T- t)J 
i=O 

We deduce that for t E (0, T) 

{ 

alV (·, t)- ~v (·, t) = -1w l~O [atw(2l+l) (·, t) + atw(2l) (·, T- t)] , 

v = 0 on an X (0, T) , 
(V,atV) (·,0) = 0 inn. 

Now, from the definition of w<0>, the property of (wCi+l), atw(i+ll) (·, O) 
and a change of variable, we obtain that 

(V, at V) (·, T) = (w<0>, -atw<0>) (-, 0} + (w<2N+l), atw<2N+l)) (·, T) 
= (vod, VId)- (u, atu) (·, T) + (w<2N+l), atw<2N+ 1>) (·, T) 

Finally, the solution v = V + u satisfies 

{ 

atv- ~v = 1wx(o,T}!N inn X (0, T) , 
v = 0 on an X (0, T) , 
(v,atv) (·,0} = (vo,vl) inn, 
(v,atv) (·,T) = (vod,Vld) + (w<2N+l),atw(2N+l}) (·,T) inn. 
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Clearly, 

IJv (·, T) - Vod, OtV (·, T)- V1dll~6 (n) x£2(!1) = 2E ( w<2
N+

1
), T) 

It remains to estimate E (w<2N+1), T). We claim that 

3C>O VN 2: 1 E (w<2N+1) T) < C M . 
' - (In (1 + 2N)]2.8 

Indeed, from Theorem 1.1, we can easily see by a classical decom
position method that there exist C > 0 and T > 0 such that for any 
j 2: 0, 

II (j+l) ( o) a (i+1) ( o) 112 
W ·, ' tW ·, H6(0)x£2(!1) 

( 
II {i+1)( 0) 8 (i+1)( OJ II ) 1/,8 < W ·, ' tW ' H2(1l)xH1(n) 

- Cexp C llw(i+1l(·,O),a.w<i+ll(- O)IJ 1 2 
' H 0 (ll) XL (ll) 

J:{ L l8tw(i+1) (x, t)l
2 

dxdt. 

Since 
E ( w<i+1

), 0) = E ( wW, T) 

we deduce from (2.2) that for any j 2: 0 

Vj 2: 0, 

E w<i+1) 0 < C ex C M 
( ) 

1/(2,8) 

( ' ) - p llw(i+l)(·,0),8tw(i+l)(·,O)IJ 2 
1 2 H 0 (1l)XL (ll) 

[E (wUl, T)- E (wCi+l), T)] . 

Let 
d; = E ( w<i+1l, r) . 

By using the decreasing property of the sequenced;, that is d; ~ d;_ 1 , 

we obtain that for any integer 0 ~ j ~ 2N 

(c )1/(213> 

d; ~ Ce ~ [d;-1 - d;] 

By summing over (0, 2N], we deduce that 

(c -~!:;) 1/(213) 

(2N + 1)d2N ~ Ce 2N (d-1- d2N] 

Finally, using the fact that d-1 ~ M, it follows that 

d < C M 2
N - [In (1 + 2N)] 2.8 . 
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This completes the proof of our claim. 

On the other hand, the computation of the bound off N is immediate. 
Therefore, we check that for some C > 0 and T > 0, 

2 c 
llv(·,T)-vod,8tv(·,T)-vldiiHJ(n)xL2(!l) ::5 (ln{

1
+

2
N)]2fiM' 

for any f3 E {0, 1) and any integer N > 0. This completes the proof of 
our Theorem. 

2.2.2 Numerical experiments 

Here, we perform numerical experiments to investigate the practical ap
plicability of the approach proposed to construct an approximate con
trol. For simplicity, we consider a square domain n = {0, 1) x {0, 1), 
w = {0, 1/5) x {0, 1). The time of controllability is given by T = 4. 

For convenience we recall some well-known formulas. Denote by { ei} .>1 J_ 
the Hilbert basis in £ 2 (S1) formed by the eigenfunctions of the operator 
-a with eigenvalues {Aj}i;:::l' such that lleill£2(!1) = 1 and 0 < At < 
A2 ::5 .Aa ::5 · · · , i.e., 

{ 
Aj = 1r

2 (kJ + t]), ki,ti EN*, 
ei (x1,x2) = 2sin(7rkjxl)sin(7r£jx2) 

The solution of 

{ 

8{v- av = f 
v=O 

(v,8tv)(·,O) = (vo,vl) 

inn X (0, T) ' 
on an X (O,T) ' 
inn' 

where f is in the form 

f(xt,X2) = -1w 'L,J; (t)ej (x1,x2) , 
j~l 

is given by the formula 

v(x1,x2,t) = lim E {a~cos(ty'Xj) +a}+sin(ty'Xj) 
G-++oo j=l V >.; 

+ Jx; J~ sin ((t- s) y'Xj) Rj (s) ds} ei (x1,x2) , 
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where 

Here, G will be the number of Galer kin mode. The numerical results are 
shown below. The approximate solution of the damped wave equation 
is established via a system of ODE solved by MATLAB. 

Example 1 : low frequency The initial condition and desired target 
are specifically as follows: (vo, v1) = (0, 0) and (vod, VId) = (e1 + e2, e1). 
We take the number of Galerkin mode G = 100 and the number of 
iterations in the time reversal construction N = 30. 

Below, we plot the graph of the desired initial data vod and the 
controlled solution v (·, t = T = 4). 

..., .. ..., .. 
Below, we plot the graph of the energy of the controlled solution and 

the cost of the control function. 
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Example 2 : high frequency The initial condition and desired target 
are specifically as follows: ( Vod, Vld) = (0, 0) and with (k0 , a 0 , b0 ,) = 
(200, 1/2, 10000), for (x1 , x2 ) E (0, 1) x (0, 1), 

Notice that we have chosen as initial data the G-first projections on the 
basis {e;};;:::1 of a gaussian beam g(x1,x2,t) such that g(·,t = 0) = g0, 
8tg (·, t = 0) = 91, which propagate in the direction (0, 1). 

We take the number of Galerkin mode G = 1000 and the number of 
iterations in the time reversal construction N = 100. 

Below, we plot the graph of the energy of the controlled solution and 
the cost of the control function. 

0.004 

0002 

~~~u~~~u~~.~~u~~~u--~ -
3 Conclusion 

0.1 

u • 
Od<4 

In this paper, we have considered the wave equation in a bounded domain 
(eventually convex). Two kinds of inequalities are described when there 
occur trapped rays. Applications to control theory are given. First, we 
link such kind of estimate with the damped wave equation and its decay 
rate. Next, we describe the design of an approximate control function 
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by an iterative time reversal method. We also provide a numerical sim
ulation in a square domain. I'm grateful to Prof. Jean-Pierre Puel, the 
"French-Chinese Summer Institute on Applied Mathematics" and Fudan 
University for the kind invitation and the support to my visit. 

4 Appendix 

In this appendix, we recall most of the materials from the works by I. 
Kukavica [Ku2] and L. Escauriaza [E] for the elliptic equation and from 
the works by G. Lebeau and L. Robbiano [LR] for the wave equation. 

In the original paper dealing with doubling property and frequency func
tion, N. Garofalo and F.H. Lin [GaL] studied the monotonicity property 
of the following quantity 

f88 lv (y)l2 da (y) · 
O,r 

However, it seems more natural in our context to consider the mono
tonicity properties of the frequency function (see [Ze]) defined by 

JBo,r jV'v (y)J2 (r2 -JyJ2) dy 

JBo,r Jv (y)J
2 

dy 

4.1 Monotonicity formula 

Following the ideas of I. Kukavica ([Ku2], [Ku], [KN], see also [E], [AE]), 
one obtains the following three lemmas. Detailed proofs are given in 
[Ph3]. 

Lemma A. Let D c JRN+l, N ~ 1, be a connected bounded open 
set such that Byo,Ro C D with Yo E D and Ro > 0. If v = V (y) E 
H2 (D) is a solution of ll.yv = 0 in D, then 

is non-decreasing on 0 < r < R 0 , and 

d [ 2 1 
drln }

1 
iv(y)i dy= ;:(N+1+4}(r)) 

B1J0 ,r 

Lemma B. Let D C JRN+l, N 2:: 1, be a connected bounded open 
set such that By

0
,R

0 
CD with Yo ED and Ro > 0. Let r1, r2, r3 be three 
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real numbers such that 0 < r1 < r2 < r3 < R 0 • If v = v (y) E H 2 (D) is 
a solution of tl.yv = 0 in D, then 

where a= r;;h (r;;h + ~) -l E (0, 1). 
nrl nrl nr2 

The above two results are still available when we are closed to a part r of 
the boundary 80 under the homogeneous Dirichlet boundary condition 
on r, as follows. 

Lemma C. Let D c JRN+l, N ;::: 1, be a connected bounded open 
set with boundary 8D. Let r be a non-empty Lipschitz open subset of 
8D. Let r0 , r1, r2, r3, Ro be five real numbers such that 0 < r1 < 
ro < r2 < r3 < Ro. Suppose that Yo E D satisfies the following three 
conditions: 

i}. Byo,r n D is star-shaped with respect to Yo Vr E (0, Ro) I 

ii}. By0 ,r CD Vr E {0, T0 ) 1 

iii). By0 ,r n 8D c r Vr E [r0 , Ro) . 
If v = v (y) E H 2 (D) is a solution of tl.yv = 0 in D and v = 0 on r, 
then 

where a= lnh (~ + lnh) -l E (0, 1). 
rl rl r2 

4.1.1 Proof of Lemma B 

Let 

By applying Lemma A, we know that 

d 1 
-d lnH (r) =- (N + 1 + <P (r)) 

r r 

Next, from the monotonicity property of <P, one deduces the following 
two inequalities 
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Consequently, 

and therefore the desired estimate holds 

4.1.2 Proof of Lemma A 

We introduce the following two functions H and D for 0 < r < Ro : 

First, the derivative of H(r) = J; fsN lv(ps+yo)l2 pNdpdn(s) is given 
by H' (r) = f88 lv (y)l2 dn (y). Next, recall the Green formula 

1/o,r 

faB
11
o.r lvl2 

OvGdn (y) - faB
11
o.r Ov (1vl2) Gdn (y) 

= JBllo.r lvl2 f:l.Gdy- JBllo.r f:l. (1v12) Gdy . 

We apply it with G (y) = r2-ly- Yol2 where GI8B
110

,r = 0, 8vGI8B
110

,r = 
-2r, and l:l.G = -2 (N + 1). It gives 

H' (r) = ~ JBlloor (N + 1) lvl2 dy + 2~ JBIIo.r f:l. (1v12) (r2 - IY- Yol2) dy 

= N:l H (r) + ~ j
8110

,r div (vV'v) (r2 -ly- Yol 2) dy 

= N:l H (r) + ~ JBIIoor (1Vvl2 + vl:l.v) (r2 - IY- Yol 2) dy . 

Consequently, when tl.yv = 0, 

N+1 1 
H' (r) = --H (r) + -D (r) , 

r r 
(A.1) 
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that is IJ;(;? = N;l + ~ ~~;~ the second equality in Lemma A. 

Now, we compute the derivative of D (r). 

D'(r) = fr (r2 J; fsN I('V'v)lps+yo 12 pNdpda(s)) 

-fsNr21('vv)lrs+yol2 rNda(s) {A.2) 

= 2r J; fsN I('V'v)lps+Yo 12 pNdpda(s) 
= 2r f8 IV'vl

2 
dy . 

Jlo,r 

On the other hand, we have by integrations by parts that 

2r JBI/o.r IV'vl2 dy = Ntl D (r) + ~ Js!Jo,r I{Y- Yo) . V'vl2 dy 

-~ fs
11
o.r V'v · (y- Yo) .6.v (r2 -ly- Yol

2
) dy. 

(A.3) 
Therefore, 

(N + 1) fs
110

,r IV'vl
2 

(r2 -ly- Yol
2
) dy 

= 2r2 fsl/o.r IV'vl2 dy- 4 fsllo r I(Y- Yo). V'vl2 dy 

+2 JB
110

,r (y- Yo)· V'v.6.v (r2 -ly- Yol
2
) dy , 

and this is the desired estimate (A.3). 

Consequently, from {A.2) and (A.3), we obtain, when .6.yv = 0, the 
following formula 

N+l 41 2 D' (r) = --D (r) +- i(Y- Yo)· V'vl dy. 
r r Bllo,r 

The computation of the derivative of q> (r) = ~~;~ gives 

1 
q>' (r) = H 2 (r) [D' (r) H (r)- D (r) H' (r)J , 

which implies using (A.l) and (A.4) that 

{A.4) 

H2 (r) 'I>' (r) ~ ~ ( 4 L .... l(y- Yo)· Vvl
2 

dyH (r)- D2 (r)) 2: 0 , 

indeed, thanks to an integration by parts and using Cauchy-Schwarz 
inequality, we have 



Waves, Damped Wave and Observation 401 

Therefore, we have proved the desired monotonicity for ~ and this com
pletes the proof of Lemma A. 

4.1.3 Proof of Lemma C 

Under the assumption Byo,r n aD c r for any T E [ro, Ro), we extend v 
by zero in Byo.Ro \D and denote by v its extension. Since v = 0 on r, 
we have 

Now, we denote Or= By
0
,r n D, when 0 < r < R0 • Particularly, Or= 

By
0
,r, when 0 < r < r 0 • We introduce the following three functions: 

H (r) = Jnr iv (y)i2 dy , 

D (r) = fnr i"Vv (y)i2 (r2 - iY- Yoi 2
) dy , 

and 

D(r) 
~ (r) = H (r) ~ 0 . 

Our goal is to show that ~ is a non-decreasing function. Indeed, we will 
prove that the following equality holds 

d d 1 
-d lnH (r) = (N + 1) -d lnr + -~ (r) 

r r r 
(C.l) 

Therefore, from the monotonicity of~. we will deduce (in a similar way 
to that in the proof of Lemma A) that 

and this will imply the desired estimate 
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First, we compute the derivative of H (r) = f8 iv(y)i2 
dy. 

11o•r 

H' (r) = fsN lv(rs + Yo)l2 
rN do" (s) 

= : fsN lv(rs + Yo)l 2 
rs · srN du (s) 

= : f
811

o.r div (iv (y)l
2 
(y- Yo)) dy (C.2) 

= : JB
110

,r ( (N + 1) lv (y)l2 + V lv (y)l
2 

• (y- Yo)) dy 

= Ntl H (r) + ~ fnr v (y) Vv (y) · (y- Yo) dy · 

Next, when !:l.yv = 0 in D and v1r = 0, we remark that 

D (r) = 2 { v (y) Vv (y) · (y- Yo)dy, (C.3) 
Jnr 

indeed, 

fnr 1Vvl2 (r2 -ly- Yol
2

) dy 

= fnr div [vvv (r2 -ly- Yol2)] dy- fnr vdiv [vv (r2 -ly- Yol
2
)] dy 

= - fnr v!:l.v (r2
- IY- Yol 2

) dy- fnr vVv · V (r2
- IY- Yol

2
) dy 

because on 8By0 ,r, r = IY- Yol and v1r = 0 
= 2 fnr vVv · (y -Yo) dy because !:l.yv = 0 in D . 

Consequently, from {C.2) and (C.3), we obtain 

H' (r) = N + 1 
H (r) + ~D (r) , 

T T 

and this is {C.1). 

On the other hand, the derivative of D ( r) is 

D' (r) = 2r J; fsN I(Vv)IPs+Yo 1

2 

pN dpdu (s) 
= 2r fnr IVv (y)l2 

dy . 

Here, when !:l.yv = 0 in D and v1r = 0, we will remark that 

{C.4) 

(C.5) 

2r fn IVv (y)l2 
dy = Ntl D (r) + ~ f8 i(Y- Yo)· Vv (y)l 2 dy 

r +: frnBI/o,r l8vvl
2 (;2r -ly- Yol 2

) (y- Yo)· vdu (y) 

(C.6) 
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(N + 1) fnr IV'vl2 (r2 -ly- Yol2 ) dy 

= fnr div (1Vvl2 (r2
- IY- Yol 2

) (y- Yo)) dy 

- fo.r V' (1Vvl2 (r2
- IY- Yol 2

)) · (y- Yo) dy 

= frnB
110

,r IV'vl2 (r2 
- IY- Yol 2

) (y- Yo) · vdu (y) 

- fo.r 8y, (1Vvl2 (r2
- IY- Yol 2

)) (Yi- Yat) dy 

= frnB
110

,r 1Vvl2 (r2 
- IY- Yol2 ) (y- Yo)· vdu (y) 

- fo.r 2V'v8y, V'v (r2 
- IY- Yol 2

) (Yi - Yoi) dy 

+2 fo.r IV'vi2 1Y- Yol 2 
dy , 

and - fo.r 871;va;,71; v (r2 -ly- Yol 2
) (Yi- Yoi) dy 

=- fo.r 871; ( (Yi- Yat) 871;v871,v (r2 -ly- Yol 2
)) dy 

+ fnr 8y; (Yi- Yoi) 871;v871,v (r2 -ly- Yol 2
) dy 

+ fo.r (Yi- Yoi) a;; v871,v (r2 -ly- Yol 2
) dy 

403 

+ fo.r (Yi- Yoi)8y;V8y,V8y; (r2 -ly- Yol 2
) dy 

=- frns
11
o.r V; ((Yi- Yoi) 8y;V8y,v (r2 -ly- Yol 2

)) du (y) 

+ fo.r IV'vl2 (r2 
- IY- Yol 2

) dy 
+0 because a71v = 0 in D 
- fnr 2l(y- Yo) · V'vl 2 

dy · 

Therefore, when a 71v = 0 in D, we have 

(N + 1) fnr IV'vl2 (r2 
- IY- Yol 2

) dy 

= frnB
110

,r IV'vl2 (r2 
- IY- Yol2 ) (y- Yo)· vdu (y) 

-2 frnB
110

,r 8y;VV; ((yi- Yoi) 8y,v) (r2 -ly- Yol 2) du (y) 

+2r2 fo.r IV'ul2 dy- 4 fo.r I(Y- Yo)· V'vl 2 dy . 

By the fact that vw = 0, we get V'v = (V'v · v) von rand deduce that 

(N + 1} Jnr IV'vl2 (r2 
- IY- Yol 2

) dy 

= - frnB
110

,r l8.,vl2 (r2 -ly- Yol 2
) (y- Yo)· vdu (y) 

+2r2 fnr IV'vl2 
dy- 4 fo.r I(Y- Yo)· V'vl2 

dy , 
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and this is (C.6). 

Consequently, from (C.5) and (C.6), when !::J.yv = 0 in D and Vjr = 0, 
we have 

D' (r) = Ntl D (r) + ~ fnr i(Y- Yo)· 'Vv (y)i
2 

dy (C.
7

) 

+~ frnB
11
o.r iovvi

2 
(r2 - iY- Yoi

2
) (y- Yo)· vdn (y) . 

The computation of the derivative of <I> (r) = ~~~~ gives 

<I>' (r) = H2\r) [D' (r) H (r) - D (r) H' (r)] , 

which implies from (C.4) and (C.7) that 

H 2 (r) <I>' (r) = ~ ( 4 fnr i(Y- Yo)· 'Vv (y)i 2 dy H (r) - D2 (r)) 

+ H~r) frnB
11
o.r iovvi2 (r2 - iY- Yol

2
) (y- Yo)· vdn (y) 

Thanks to (C.3) and Cauchy-Schwarz inequality, we obtain that 

0::;; 4 { i(Y- Yo)· 'Vv (y)i2 dy H (r)- D2 (r) . 
Jnr 

The inequality 0 ::;; (y- Yo)· v on r holds when By
0

,r n D is star-shaped 
with respect to Yo for any r E (0, R0 ). Therefore, we get the desired 
monotonicity for <I> which completes the proof of Lemma C. 

4.2 Quantitative unique continuation property for 
the Laplacian 

Let D C JRN+l, N ~ 1, be a connected bounded open set with boundary 
aD. Let r be a non-empty Lipschitz open part of aD. We consider the 
Laplacian in D, with a homogeneous Dirichlet boundary condition on 
rcan: 

{ 

!::J.yv = 0 in D, 
v = 0 on r' 

v = v (y) E H 2 (D) . 
(D.1) 

The goal of this section is to describe interpolation inequalities associated 
with solutions v of (D.1). 

Theorem D. Let w be a non-empty open subset of D. Then, for 
any D1 c D, oD1 noD <S rand D1 \(r noDi) c D, there exist C > 0 
and J.L E (0, 1) such that for any v solution of (D.l), we have 

L
1 

iv (y)i
2 

dy::;; C (fwiv (y)l2 dy) ~-' (L lv (y)l2 dy y-JS 
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Or in an equivalent way and by a minimization technique, there occur 
the following results: 

Theorem D'. Let w be a non-empty open subset of D. Then, for 
any D1 c D, 8D1 n8D <S rand D1 \(f n 8Dl) c D, there exist C > 0 
and J..t E (0, 1) such that for any v solution of (D.1), we have 

Proof of Theorem D. We divide the proof into two steps. 

Step 1. We apply Lemma B, and use a standard argument (see e.g., 
[Ro]) which consists of constructing a sequence of balls chained along a 
curve. More precisely, we claim that for any non-empty compact sets in 
D, K 1 and K2, meas (Kl) > 0, there exists J..t E (0, 1) such that for any 
v = v (y) E H 2 (D), solution of l:iyv = 0 in D, we have 

Step 2. We apply Lemma C, and choose Yo in a neighborhood of 
the part r such that the conditions i, ii, iii hold. Next, by an adequate 
partition of D, we deduce from (D.2) that for any D1 c D, 8D1n8D <S r 
and D1 \(f n 8Dl) c D, there exist C > 0 and J..t E (0, 1) such that foJ 
any v = v (y) E H 2 (D), l:iyv = 0 on D and v = 0 on r, we have 

This completes the proof. 

4.3 Quantitative unique continuation property for 
the elliptic operator 8l + ~ 

In this section, we present the following result. 

Theorem E. Let n be a bounded open set in !Rn, n ~ 1, either 
convex or C2 connected. We choose T2 > T1 and o E (0, (T2 - Tl) /2). 
Let f E L2 (0 x (T1, T2)). We consider the elliptic operator of the second 
order in n X (Tl, T2) with a homogeneous Dirichlet boundary condition 
on an X (Tl, T2), 

{ 

a;w + l:iw = f in n X (Tl, T2) , 
w=O on80x(T1,T2), 
w = w(x,t) E H 2 (n x (T1,T2)) . 

(E.1) 
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Then, for any cp E Cif' ( 0 x ( T1 , T2)), cp f 0, there exist C > 0 and 
p. E (0, 1) such that for any w solution of (E.1}, we have 

IJ:;: In iw (x, t)1
2 

dxdt 

~ c (!~2 In iw (x, t)12 
dxdt r-~< 

(!~2 In icpw (x, t)l 2 
dxdt + I~2 In If (x, t)l

2 
dxdt r 

Proof. First, by a difference quotient technique and a standard 
extension at 0 x {T1. T2}, we check the existence of a solution u E 

H2 {0 x (T1,T2)) solving 

{ 
8tu + D.u = f 
u=O 

in 0 x (T1.T2) , 
on 80 x (T1, T2) U 0 x {T1, T2} , 

such that 
lluiiH2(nx(T!,T2)) ~ C llfll£2(nx(T1,T2)) ' 

for some c > 0 only depending on (0, T1, T2). Next, we apply Theorem D 
with D =Ox (Tb T2), Ox {T1 + 6, T2- 6) c D1, y = (x, t), D.y = 8f+D., 
and v= w-u. 

4.4 Application to the wave equation 

From the idea of L. Robbiano [Ro2] which consists of using an inter
polation inequality of Holder type for the elliptic operator 8t + D. and 
the Fourier-Bros-Iagolnitzer transform introduced by G. Lebeau and L. 
Robbiano [LR], we obtain the following estimate of logarithmic type. 

Theorem F. Let 0 be a bounded open set in IR.n, n ~ 1, either 
convex or C2 connected. Let w be a non-empty open subset in 0. Then, 
for any {3 E (0, 1) and k E N*, there exist C > 0 and T > 0 such that 
for any solution u of 

{ 

8tu - D.u = 0 in 0 x (0, T) , 
u = 0 on 80 x (0, T) , 

(u,8tu)(·,O) = (uo,ul) , 

with non-identically zero initial data ( u0 , ul) E D (A k-l), we have 

( 

ll(uo,u1)11D(Ak-1) ) 1f(,6k) 

II( )II < c 0 11<uo.u1liiL2(fl)xH-1(f1) II II 
uo,ul D(Ak-1)- e u L2(wx(O,T)) 

Proof. First, recall that with a standard energy method, we have 
that 

WEIR ll(ua,ul)II~J(n)x£2{n) = L (18tu(x,t)i
2 + IV'u(x,t)i

2
) dx, 

{F.1) 
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and there exists a constant c > 0 such that for all T ~ 1, 

T ll(uo, ul)ll~2(f!)xH-l(f!) ~ c 1T foiu (x, t)1 2 
dx . (F.2) 

Next, let {3 E (0, 1), k EN*, and choose N E N* such that 0 < {3+ 2}v < 1 
and 2N > k. Put 'Y = 1- 2}v. For any>.~ 1, the function F>.(z) = 

• ( T )2N 
2~ JR eoz-r e- n dr is holomorphic in C, and there exists four positive 
constants 0 0 , eo, c1 and c2 (independent of>.) such that 

{
'Vz E C IF>.(z)l ~ CoXYeco>.IImzllh , 
llmzl ~ c2IRezl::::} IF>.(z)l ~ CoXYe-c1 >.1Rezl 1

t-r , (F.a) 

(see (LR]). 

Now, let s, f.0 E R, we introduce the following Fourier-Bros-Iagolnitzer 
transformation in (LR]: 

Wt 0 ,>.(x,s) = L F>.(fo+is-f.)~(f.)u(x,f.)d.e, (F.4) 

where~ E CQ'(R). As u is solution of the wave equation, Wto,>. satisfies: 

{ 

a;wlo,>.(X, s) + AWto,>.(X, s) 
= JR-F>.(f.0 +is -f.) [~" (f.)u(x, f.)+ 2~' (f.)8tu(x, f.)] d.e , (F.5) 

Wto.>.(X, s) = 0 for X E an , 
Wto,>.(X, 0) = (F>. * ~u(x, ·))(.eo) for X E n . 

On the other hand, we also have for any T > 0, 

ll~u (x, ·)lb((f-1,f+1)) ~ ll~u(x, ·)- F>. * ~u(x, ·)IIL2((f-1,f+l)) 

+ IIF>. * ~u(x, ·)IIL2((f-1,f+1)) 

~ ll~u(x, ·)- F>. * ~u(x, ·)IIL2(R) 

( 
2 ) 1/2 + ftE(~- 1.~+1) IWt,>.(x,O)I dt . 

(F.6) 
Denoting F (f) the Fourier transform of f, by using Parseval equality 

( 
T )2N 

and F(F>.) (r) = e- n , one obtains 

ll~u(x, ·)- F>. * ~u(x, ·)IIP(R) 
= J; IIF (~u(x, ·)- F>. * ~u(x, ·))IIP(R) 

= * (IRI(1-e-h'r)2N)F(~u(x,·))(r)l 2 
drr

12 

~ C (JR IU"~")k F(~u(x,·))(r)l 2 dr) 
112 

because k < 2N (F.
7

) 

~ Cxk (JR IF (8t (~u(x, ·))) (r)l
2 dr) 112 

because {3 < 'Y 

~ Cxk ll8t (q,u(x, ·))II£2(R) · 
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Therefore, from (F.6) and (F.7), one gets 

ll4>u (x, ·)IIL2((f-1,f+1)) 

S Cxfn; iio: (4>u(x, ·))IIL2CR> + (Ite(f-1,f+1) IWt,.>.(x,O)I2 dt) 1/2 
(F.8) 

Now, recall that from the Cauchy's theorem we have: 

Proposition 1. Let f be a holomorphic function in a domain D C 
C. Let a, b > 0, z E C. We suppose that 

Do= { (x, y) E JR? ~ C \ lx- Rezl Sa, IY- Imzl S b} C D , 

then 
f(z) = -

1 J f f(x+iy)dxdy. 
1rab }I :r:-:u 12 +lv-~m~ 12~1 

Choosing z = t E (~- 1, ~ + 1) C IR and x + iy = io +is, we deduce 
that 

IWt,.>.(X, O)l S 1r~b ~lo-tl~a ~sl~b IWto+is,.>.(X, 0)1 diodS 

S ?r~b flto-tl~a ~si91Wto,.>.(X, s)l dsdio 1/2 (F.9) 

s .,.Ta;; (~lo-tl~a ~sl~b IWto,.>.(X, s)l
2 

dsdio) 

and with a= 2b = 1, 

fte(f-1,f+1) IWt,.>.(X, 0)12 dt 

S fte(f-1,f+l) (~lo-tl$1 ~si9/2 1Wt0 ,.>.(X, s)l2 
dsdio) dt 

S fte(f-1,f+l) ftoe(f-2,f+2) ~si$1/2 1Wt0 ,.>.(X, s)l2 
dsdiodt 

S 2 feoe(f-2,f+2) ~si$1/2 1Wt0 ,.>.(X, s)l2 
dsdio . 

(F.10) 

Consequently, from (F.8), (F.10) and integrating over n, we get the 
existence of C > 0 such that 

fo. fte(f-1,f+l) l4>(t)u(x, t)1
2 

dtdx 

S C~ fo. JR io: (4"> (t) u(x, t)))l
2 

dtdx (F.ll) 

+4 ftoe(f-2,f+2) (In ~si$1/21Wto,.>.(X, s)l2 
dsdx) dio . 

Now recall the following quantification result for unique continuation of 
elliptic equation with Dirichlet boundary condition (Theorem E applied 
to T1 = -1, T2 = 1, 8 = 1/2, <p E err (w X (-1, 1))): 

Proposition 2. Let 0 be a bounded open set in IRn, n ~ 1, either 
convex or C 2 connected. Let w be a non-empty open subset in n. Let 
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f = f (x, s) E L2 (n x ( -1, 1)). Then there extSts c > 0 such that for all 
w = w (x, s) E H 2 en X ( -1, 1)) solution of 

{
a;w+t:.w=f in!lx(-1,1)' 
w=O on80x (-1,1), 

for all e > 0, we have : 

~sl:51/2 In lw (x, s)l
2 

dxds 

~ ce-c;e (!1819 L lw (x, s)l
2 dxds + ~819 In If (x, s)l

2 dxds) 

+e-4co/e ~si9 In lw (x, s)l2 dxds . 

Applying to Wt0 ,>., from (F.5) we deduce that for all e > 0, 

Ilsl~l/2 In IWto,>.(X, s)l2 dxds 
~ e-4co/e ~sl9 In IWto,>.(x, s)l2 dxds 

+eecfe ~sl<l fw 1Wt0 ,>.(X, s)l
2 

dxds 
+eecfe ~sl~l In IIR -F>.(to +is- t) 

- [<I>"(t)u(x,t) + 2<I>'(t)8tu(x,t)] d£12 dxdsl
2 

dxds. 

(F.12) 
Consequently, from (F.ll) and (F.12), there exists a constant C > 0, 
such that for all e > 0, 

In Ite(f-l,f+l) I<I>(t)u(x, t)l
2 

dtdx 

~ Cxfm; In IR iat (<I> (t) u(x, t)))l
2 

dtdx 

+4e-4co/e ItoE(f-2,f+2) (~sl9 In IWto,>.(X, s)l2 dxds) dto 

+4CeCfe ItoE(f-2,f+2) (~sl:51 fw IWto,>.(X, s)l2 dxds) dto 

+4Cecfe ItoE(f-2,f+2) (Jisl9 In IIR -F>.(to +is- t) 

[<I>"(t)u(x, t) + 2<I>'(t)8tu(x, t)] d£1 2 dxds) d£0 • 

(F.13) 

Let us define <I> E C8"(1R) more precisely now: we choose <I> E C8"((0, T)), 
0 ~<I>~ 1, <I>= 1 on Cf, 3J). Furthermore, let K = [0, t] U [3J, T] 
such that supp(<I>') = K and supp(<I>") C K. 

Let Ko = (3i', 5i). Particularly, dist (K, Ko) = t· Let us define 
T > 0 more precisely now: we choose T > 16 max (1, 1/ c2) in order that 
Cf - 2, ~ + 2) C Ko and dist(K, K 0 ) ;::: ! . 
Now, we will choose toE (~- 2, ~ + 2) C Ko and s E [-1, 1]. Conse

quently, for any t E K, Ito - tl ;::: !; ;::: !; lsi and it will imply from the 
second line of (F.3) that 

Tit E K IF>.(to +is- t)l ~ A.A'Ye-c1 >.(f)
1

h . (F.14) 
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Till the end of the proof, C and Cr will denote a generic positive constant 
independent of c and A but dependent on S1 and respectively (S1, T), 
whose value may change all along the line. 

The first term on the right hand side of (F.13) becomes, using (F.l), 

A2~k In li8f ((> (t) u(x, t)))i
2 

dtdx ~ Cr A;/Jk ll(uo, ul)II~(Ak-i) . 

(F.15) 
The second term on the right hand side of (F.13) becomes, using the 
first line of (F.3), 

e-4/F: ItoE(f-2,{+2) (~si-:;I In 1Wt0 ,.x(x, s)l
2 

dxds) dlo 

~ (CoXYe-Xeo)2 e-4co/F: ItoE({-2,{+2) [~sl-:;1 In IJoT lu(x,f)l d.£12 dxds] 

~ CrA2"~e2.Xeoe-4co/F: ll(uo,ul)II~J(n)xL2(n) · 
(F.16) 

The third term on the right hand side of (F.l3) becomes, using the first 
line of (F.3), 

eCfF: ItoE({-2,{+2) (~sl9 fw IWto,.x(x, s)l2 dxds) dlo 

~ (CoA'Ye.Xeo)2 eC/F: ItoE({-2,f+2) [~sl-:;1 L IIoT lu(x,£)1 d.£12 dxds] dlo 

~ CA2"~e0.xeC/F: L J: lu(x, t)l 2 dtdx . 
(F.l7) 

The fourth term on the right hand side of (F.l3) becomes, using (F.14) 
and the choice of (>, 

ecfF: ItoE(f-2,f+2) (~sl-:;1 In IIR -F.x(fo +is- f) 

[(>"(f)u(x,f) + 2(>'(f)8tu(x,f)] d.£1 2 dxds) dlo 

:5 C ( AA"~e-c1 .x(f) 1h) 
2 

ecfF: In IJK (lu(x,f)l + l8tu(x, f)l) d.£1 2 dx 

< C\2"f -2cl.>.(f)lh c/F: II( )112 _ "' e e Uo, U1 HJ(n)x£2(n) · 
(F.18) 

We finally obtain from (F.l5), (F.16), (F.l7), (F.l8) and (F.l3) that 

fn Ite(f-1,{+1) l(>(t)u(x, t)1
2 

dtdx 

~ Cr~ ll(uo,ul)II~(Ak-1) 
+0 \2'Ye2.Xco -4co/F: II( )112 TA e Uo,Ul HJ(n)x£2(n) 
+CA2"~e0-XeC/F: f. J

0
T lu(x, t)1 2 dtdx 

+CA2'Y -2cl.X(f)'f;.., cfF: II( )112 e e uo,ul HJ(n)x£2(n) 

(F.19) 
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lt/e begin to choose >. = : in order that 

In ItEa-l,f+l) l~(t)u(x, t)12 dtdx 

~ c213kCr ll(uo, ul)II~(Ak-1) 
+e-2eo/e~Cr ll(uo,ul)II~J(n)xL2(n) 
+ecfec fw I;{ iu(x, t)1 2 dtdx 

+C~ exp ( ( -2c1 (~) 1h +c):) ll(uo,ul)II~J<n)xL2(n) 
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(F.20) 

We finally need to choose T > 16max(1,1/c2) large enough such that 

( -2Cl (~)lh +c) ~ -1 that is 8 (¥cff ~ T, to deduce the existence 

of C > 0 such that for any c E (0, 1), 

In ItE(f-l,f+l) iu(x, t)l
2 

dtdx ~In ItE(f-l,f+l) l~(t)u(x, t)l2 
dtdx 

~ Cc213
k ll(uo, ul)II~(Ak-1) 

+CeCfe fw IoT iu(x, t)12 dtdx . 
(F.21) 

Now we conclude from (F.2) that there exist a constant c > 0 and a time 
T > 0 large enough such that for all c > 0 we have 

ll(uo, ut)lli2(n)xH-1(n) 
~ ecfe fw I;{ iu(x, t)l2 dtdx + c213k ll(uo, ul)II~(Ak-1) 

(F.22) 

Finally, we choose 

c = ll(uo,ut)ll£2(n)xH-1(n) 
( ) 

1/(/3k) 

ll(uo, ut)llv(Ak-1) 

Theorem 1.1 is deduced by applying Theorem F to OtU. 
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Abstract 
Controllability problems for fluid equations are an important 

topic and have been the object of a lot of studies in recent years. 
We present here, in a first part, the resonable objectives which 
can be attempted, namely, the exact controllability to trajectories, 
then the results and methods which have been used in the recent 
work of the incompressible fluid systems. In the last sections, 
we discuss the possibility of global controllability and we pose 
some open problems for compressible fluid systems as well as for 
lagrangian control. 

1 Introduction 

413 

In the late 1980's, J.-L. Lions gave a systematic study of controllability 
problems in [19] and, among others, raised the issue of "controllability" 
of fluid flows. 

The relevant notion of "controllability" was not very precise at that 
time. 

For Euler equations, J.-L. Lions showed that the linearized problem 
around zero was not controllable in any sense as the curl of the solution 
had to be constant in time. 

For Navier-Stokes equations there is no hope for obtaining "exact 
controllability" because of dissipativity and irreversability of the prob
lem. J.-L. Lions was clearly expecting "approximate controllability". 
But this notion is not really relevant here : even if we have approximate 
controllability at time T, then what should we do after time T to preserve 
the neighborhood of a target? Anyway this could be an important step 
in understanding how we can act on the Navier-Stokes system. Anyway, 
for classical boundary conditions, this is still an open problem. 

In the early 1990's, A. Fursikov and 0. Imanuvilov showed that the 
viscous Burger's equation was not approximately controllable (see [7] for 
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a general monograph and the references therein). One essential reason 
why Burger's equation is not controllable is that it is too much stable, 
whereas Navier-Stokes equations are much less stable. 

A basic philosophy claimed by J.-L. Lions was the following: the 
more unstable a system is, the more controllable it will be. 

So what could be the situation for incompressible fluids? This was 
an exciting and important challenge · · · and a few years after came some 
very interesting positive answers. 

In 1996, J.-M. Coron, in [3], proved exact controllability for Euler's 
equations in 2-d. This result was extended to the 3-d case by 0. Glass 
in [8]. J.-M. Coron used successfully his return method which consists 
in linearizing the system around a special nonzero trajectory going from 
zero to zero (around which the linearized problem is controllable), then 
using an implict function theorem to obtain a local result, and finishing 
by a scaling argument to obtain a global result. 

He then used this result in [4] to prove approximate controllability 
for Navier-Stokes equations (again in 2-d) with Navier boundary condi
tions {which include a term on the curl on the boundary). With these 
boundary conditons, one can prove convergence of the Navier-Stokes 
sytem toward the Euler system when the viscosity tends to zero and 
J.-M. Coron used this fact plus a scaling argument to obtain his result. 

About the same time, L. Robbiano and G. Lebeau ([18]), A. Fursikov 
and 0. Imanuvilov ([7]), by different methods, proved "null controllabil
ity" for the heat equation. 

A. Fursikov and O.Imanuvilov extended their method to the Navier
Stokes system with boundary conditions on the curl of the solution, 
proving that one can reach in finite time any stationnary solution (for 
example), even an unstable one, if the initial condition is not too far 
from this stationnary solution. 

This was a real breakthrough with a number of extensions later on. 
It contained the idea of exact controllability to trajectories: even if you 
cannot reach any point in the state space, you can reach (in finite time) 
any point on the trajectories of the same operator. 

In 1998, 0. Imanuvilov proved, in a very important article [13], are
sult of local exact controllability to trajectories for Navier-Stokes equa
tions with classical Dirichlet boundary conditions, under rather strong 
regularity assumptions. This paper was improved in [14]. 

A lot of work has been done since then to improve and extend his 
result. Recently, in articles written in collaboration with 0. Imanuvilov 
and J.-P. Puel ([15]) and E. Fernandez-Cara, S. Guerrero, 0. Imanuvilov 
and J.-P. Puel ([6]), we have given a rather strong extension of 
Imanuvilov's first result with systematic proofs of each step of the argu
ment, with some of the results being now optimal. 

We will present here the notion of exact controllability to trajectories, 
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the (local) results obtained for Navier-Stokes equations (and Boussinesq 
equations) with Dirichlet boundary conditions and some ideas of the 
methods used for proving these results. Then we will give some global 
controllability results of a simplfied model and we will discuss some im
portant pen problems. 

2 Exact controllability to trajectories 

2.1 Abstract setting 

We consider a nonlinear evolution system with a control variable v 

{ ~r + LY + N(Y) = F + Bv in (0, T), 
(2.1) 

Y(O) =Yo. 
L is for example an elliptic operator and N is a nonlinear perturbation. 

We can think of a nonlinear convection-diffusion equation or Navier
Stokes equations or other related examples. 

On the other hand, we have an uncontrolled trajectory of the same 
operator, which we call the "ideal" trajectory we want to reach 

{ 
~~ + L~ + N(Y) = F in (0, T), 

Y(O) =Yo. 
(2.2) 

Exact controllability to trajectories is the following question: can we find 
a control v such that 

Y(T) = Y(T)? 

(In the linear case, taking the difference between the two systems, we 
can speak of null controllability: we look for v such that Y (T) = 0.) 

A local version of this question is the following: provided (Yo -Yo) 
is "small" in a suitable norm, can we find a control v such that 

Y(T) = Y(T)? 

Remark: If the answer is positive and if our evolution system is well 
posed, after time T we can switch off the control and the system will 
follow the "ideal" trajectory. 

An important case is the case where Y is a stationnary solution (with 
F independent of time t), namely, 

LY +N(Y) =F. (2.3) 

Many important nonlinear stationnary systems of this type may ha~e 
several solutions, unstable solutions in particular. In this case, if Y 
is such an unstable solution and if the problem of exact controllability 
to trajectories has a positive answer, it corresponds to stabilizing (and 
exactly reaching) an unstable solution. 
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2.2 Case of Navier-Stokes equations 

What follows is also valid for Boussinesq equations and related coupled 
systems. 

Let (y,p) be a fixed "ideal" solution of Navier-Stokes equations, for 
example, a stationnary solution. 

{ 

~- v!:iy + y.'Vy + 'Vp =fin 0 X (0, T), 
divy = 0 inn X (O,T), 
y = 0 on r X (0, T) 
y(O) = Yo in n. 

(2.4) 

Let us consider a solution of the controlled system, starting from a dif
ferent initial value 

{ 

~ - v!:iy + y.'Vy + 'Vp = f + v.llw in n X (0, T), 
divy = 0 inn X (O,T), 
y = 0 on r x (0, T) 
y(O) = Yo in 0, 

where 11w is the characteristic function of a (little) subset w of n. 

(2.5) 

Exact Controllability to Trajectories for this sytem is the following 
question: Can we find a control v such that 

y(T) = y(T)? 

i.e. can we reach exactly in finite time the "ideal" trajectory y? 
The local version is the same question, provided IIYo- Yoll is small 

enough. 

Remark 2.1. If there exists such a control v, then, after time T, just 
switch off the control (v = 0) and the system can stay (or will stay 
depending on the uniqueness problem) on the "ideal" trajectory. 

2.3 Linearization 

In the abstract setting, if we substract the equation for Y from the equa
tion for Y and then linearize the control problem around the trajectory 
Y, we obtain (still writing Y for the solution and Yo for the difference 
Yo - Yo) a linear system of the form 

{ !Jft + LY = Bv in (0, T), 
Y(O) =Yo. 

Now we look for v such that Y(T) = 0. 

(2.6) 

First step: let us consider a parameter € > 0 and the following func
tional 
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From standard optimal control arguments, we know that there exists a 
unique v. such that 

and v. is characterized by the following optimality system (Ye = Y(v.)) 

~ +LYe = Bv. in (0, T), 
Ye(O) =Yo, 

-~~+L*<P=O in(O,T), 
<P(T) = ~Ye(T), 

B*<P +v. = 0. 

Multiplying the first equation by <P we obtain immediately 

!II'Ye(T)W + {T IIB*<P(t)ll2dt =(Yo, <P(O)). 
t: lo 

Second step: estimates. 

(2.7) 

Let us assume that we know an Observability Inequality for solutions 
of adjoint equation of the following type: 

Then we obtain an estimate on the control 

We also obtain 

!11Ye(T)II2 ~ CIIYoll2
• 

€ 

Third step: Passage to the limit when t: -+ 0. 
After extraction of or a subsequence v. converges weakly to v, and 

therefore 
Y(v.)(T)-+ Y(v)(T) and IIY(v,)(T)II ~ JfCIIYoll, which implies 

Y(v)(T) = 0. 

We have then solved the null controllability problem and obtained some 
additional properties · · · 

The problem is now to know how to obtain the Observability Inequal
ity for adjoint system!! 

This is the most difficult part of the argument and has to be done 
for each specific sytem we are considering. 
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Let us then consider the linearized controlled Navier-Stokes equations 
around the trajectory fi which can be written as follows: 

l 
~- vAy + V' · (y ® y + y ® y) + 'Vp = v.llw 

inn X (0, T), 
divy=O in nx(O,T), 
y = 0 on r X (0, T) 
y(O) = Yo in n. 

(2.8) 

The real adjoint system can be replaced by the following pseudo-adjoint 
system (which is a backward equation) by changing the pressure term: 

{ 

-~- vAcp- y. D(cp) + V'11' = 0 inn X (0, T), 
divcp = 0 in n X (0, T), 
cp = 0 on r X (0, T) 
cp(T) = cpo in n, 

where Dcp = V' cp + V' cpT. 
We want to show the Observability Inequality 

(there is no reference to the "initial" value cpo in this inequality). 

(2.9) 

(2.10) 

It turns out that to prove this observability inequality requires the 
proof of a Global Carleman estimate (which is the difficult part) plus 
standard energy estimates. 

Let us describe how we can obtain the desired Carleman estimate. 
This requires several difficult steps. First of all we have to define some 
weights involved in the Carleman estimate. 

For later technical reasons, let us consider two non-empty open sets 
w2 CC w1 cc w. We know that there exists TJ0 E C2(0) such that 

From this function TJ0 and for s, >. ~ 1 and m > 4, we construct the 
following weight functions: 

(2.11) 

These precise weights were considered in [6]. 
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Let us introduce a notation corresponding to weighted Sobolev norms 

I(s, >.; cp) = s-1 j k e-2sQC1 I'Ptl2 dx dt + s-1 Jk e-2sQC1I.:lcpl2 dxdt 

+ s>.2 j k e-2sQ{IY'cpl2 dx dt + s3 >.4 j k e-2sQelcpl 2 dx dt. 

Using the results of Fursikov-Imanuvilov [7] of the heat equation, the 
result of Imanuvilov-Puel [15] of general non homogeneous elliptic equa
tion (for the pressure here) and regularity results of Stokes system ([20]) 
we can obtain the following Carleman estimates. 

Proposition 2.2. There exist three positive constants Co, so and >.0 

depending on n and Wt such that, for every cp0 E H, the solution ( cp, 1r) 
satisfies, 

(2.12) 

This gives us particularly 

We have to notice that on the right hand side we have two local terms: 
one on the velocity (which is a good term) and the other in the pressure. 

The method used in [6] (dimension 3) consists in getting rid of the 
local term on the pressure and this gives rise to a long and difficult argu
ment. Moreover, if we consider another related system (like Boussinesq 
system or other coupling with diffusion-convectin equations), we need to 
write this argument again for each separate system. 

An alternative method has been given by M. Gonzales-Burgos, S. 
Guerrero, J.-P. Puel in [10]. This method turns out to be quite interest
ing if we have a coupling with other equations (like diffusion convection 
equations, for example, for Boussinesq system, oceans models, etc.). 
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This is also valid for boundary control on a part r o of the boundary. 
In this case, we extend the domain !1 by 0 such that r - r o E 80 and 
we take a subset w E 0 - !1. We are then in the context of a distributed 
control. 

The method relies on the consideration of another control which is 
fictitious and should be removed in a further step. We will take two con
trols in w: one on the right hand side and the other on the divergence!!. 

Let us take a nonempty open set w1 with w1 c w and let us consider 
( E COO(IRN) such that 

0 ~ ((x) ~ 1, Vx E IRN, ((x) = 1, Vx E w1, Supp( C w. 

For linearized Navier-Stokes equations around fi we consider the follow
ing control problem 

! 
%7- - vtl.y + V · (y ® y + y ® y) + Vp = v.llw 

inn X (O,T), 
divy = h ( in n X (O,T), 
y = 0 on r X (O,T) 
y(O) = Yo in !1. 

(2.13) 

Using similar arguments as the ones presented above, it is immediately 
shown that the controllability problem for this sytem corresponds to the 
following Observability Inequality on the adjoint system 

lcp{O)It2(f!) ~ C(1T 1icpl2dxdt + 1T 111l'i2dxdt). 
0 Wi 0 Wi 

{2.14) 

We have to notice that we allow here the presence of a local term in the 
pressure on the right hand side. 

From (2.13) together with standard energy estimate we immediately 
obtain our observability inequality (2.14) and therefore our null control
lability property with two controls. 

Moreover, Carleman estimate {2.12) tells us that we can choose a 
control which is more regular than expected: 

The control v can be taken bounded with additional integrability 
properties. 

The fictitious control h.( can be shown to be regular in space and 
time. 

Then we can lift this control h.( by a regular function {in space and 
time) Z such that 

divZ =h.( 

and Z has support contained in w. By a simple translation, adding some 
function of Z to the control v {which stays supported in w), we can get 
rid of the fictitious control h. 
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This shows the null controllability for our linearized Navier-Stokes 
system (with only the v control). 

The next step is then to apply a fixed point theorem and we can 
use here Kakutani fixed point theorem to obtain a local result of exact 
controllability to trajectories which is analogous to the one obtained in 
(6]. 

Theorem 2.3. If y E £ 00 and Yt E £ 2(0, T; U(n)) with q > N/3 
(and solution to the Navier-Stokes system) with Yo E W 8 ·P(f2) with s,p 
suitably chosen, then there exists o > 0 such that if IIYo - 'Yollw•.p :::; o, 
there exuJts a control v E L2(Q)N such that y(T) = y(T). 

3 Global controllability 

The previous result is a local result of exact controllability to trajectories. 
It is then natural to ask whether this result could be extended to a global 
result. For the Navier-Stokes system with Dirichlet boundary conditions 
(at least on a part of the boundary) the problem is completely open and 
there is no strong conjecture on it. When the control acts on the whole 
boundary, the type of boundary conditions is of course at our choice 
and combining the results of Coron (approximate controllability) and 
Fursikov-Imanuvilov (on local controllability) one can obtain a global 
controllability result ((5]), but this is no longer valid if the control does 
not act on the whole boundary. 

It is then interesting to consider simpler models to try to understand 
the situation. 

For 1-d viscous Burgers equation in an interval, 0. Imanuvilov and 
S. Guerrero have given in (11] a counter-example, even in the case where 
the control acts on both extremities of the interval. 

For the 2-d Burgers equation, the global {boundary) controllability 
question has been studied by 0. Imanuvilov and J.-P. Puel in (16]. We 
have obtained positive results and counter examples depending on the 
geometry of the region where the control acts. More precisely, let us 
consider the following 2-d Burgers equation 

au 8u2 8u2 
- - ~u + - +- = I in Q = (0, T) X n, (3.1) 
8t 8x1 8x2 
uiro = 0, uir1 = h, (3.2) 

u(O, ·) = uo, (3.3) 

u(T, ·) = 0. (3.4) 

The control h acts on the part r 1 of the boundary and we take the 
homogeneous Dirichlet boundary conditions on the complementary part 
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of the boundary. Without loss of generality we may assume that 0 is 
included in the rectangle 0 :::; x 1 - x2 :::; A, - B :::; x1 + X2 :::; B with A 
and B being two positive constants. 

We obtain the following positive result of global controllability to 
zero 

Theorem 3.1. Let us assume that 

roc {x E r I Xl- X2 = 0} (3.5) 

(or r 0 is empty which is allowed}. Suppose that f E L2 (0, T; L2 (0)) and 
that there exists To E (0, T) such that f(t, x) = 0, 'v't ~To. 

Then for every u0 E L 2 (0) there exists a solution u E L 2 (0, T; 
HJ(O)) n C([O, T]; L2(0)) such that t 2 .u E H 1•2(Q) = H 1(0, T; L2(0)) n 
L2 (0, T; H 2(0) n HJ(O)) to problems {3.1}-(3.4} (and a corresponding 
control h). 

The proof is related to Coron's return method but different from it. 
We make use of a special solution U of Burgers equation such that NU 
is again a solution of the Burgers equation and we can drive this solution 
to zero by an action on r 1 in arbitrary small time whenever we want. 
We use the boundary value of NU on r 1 as control in a short interval 
of time and we prove that for N sufficiently large, the solution is driven 
in an €-neighborhood of NU with € as small as we wish. Then we use a 
control which drives NU to zero and the difference between the solution 
and NU is kept constant so that the solution is now close to zero. In the 
last step, we use a result of local controllability to achieve exactly zero. 

4 Open problems 

4.1 Compressible fluids 

What is the situation for compressible viscous fluids, even for local con
trollability? This is a completely open question. The system to be 
considered is, for example, 

! 
~ + div (p.y) = 0, 
p(%7- + y.V'y)- vtl.y + V'p = f + v.llw, 
y = 0 on r X (0, T) 
y(O) =Yo, 
P = Cp-r 

(4.1) 

where p is the density of the fluid, v the velocity and p the pressure and 
'Y gets as close as possible to 1.4. To our knowledge, nothing has been 
done for the controllability of such a system. 
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One possibility of approach could be the use of S. Klainerman and 
A. Majda's result ([17]): when Mach number tends to +oo, at first order 
a compressible fluid behaves like an incompressible fluid on which you 
have propagation of acoustic waves. We could try to control this coupled 
system, but the first question would be: do we have to put the control 
on both equations or only on the incompressible motion? 

4.2 Nonlinear control. Lagrangian control 

This is a wide area with very interesting applications where nonlinear 
control problems arise. 

The first question is the following: 
Given two densities of mass Po and Pl (for example, characteristic 

functions) does there exist a vector field u such that we have 

'::: + u. 'V p = 0, in (0, T) X n 
p(O) =Po, 

p(T) = P1? 

(4.2) 

(4.3) 

(4.4) 

This can be formulated as a problem for transport of mass and it should 
be related to optimal transportation problems (Monge Kantorovitch 
problem) where we try to find a "mapping" tro.nsporting Po to P1 (Bre
nier [2], Benamou-Brenier [1], Villani [21]· · ·) which has to be optimal 
for some "cost" function which behaves like a distance function. Here 
we don't look for any optimality in a first step but we would like to 
transport the masses by a flow or a generalized flow. 

The second question could be: can u be a divergence free vector field? 
(of course with compatibility conditions on Po and Pl) 

The third question is: can u be solution of Euler equations or Navier
Stokes equations with a control acting on a subdomain? 

The fourth question is: can u be a motion of a compressible fluid? 
Simpler problems in 1-d and 2-d have been considered by T.Horsin 

with the heat equation and Burgers equation with positive results (see, 
for example, [12]). 

Very recent interesting results have been given by Glass and Horsin 
in [9] on approximate controllability for the transport of Jordan curves in 
2-d by a vector field which is a velocity satisfying the Euler equations. 
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Abstract 

A degenerate nonlinear system of Kirchhoff type with bound
ary damping is studied. We prove that this system has a unique 
global solution if the domain and initial data satisfy some assump
tions. We also obtain the polynomial decay of the global solution 
of the system. 

1 Introduction 

In 1880's, G. Kirchhoff introduced a model describing the transversal 
vibration of a nonlinear elastic string ([9]), which is later called Kirchhoff 
string. 

{ 

u"(x, t)- (a+ bllux(x,t)ll 2 )uxx(x, t) = 0 in (0, L) x R+, 

u(O, t) = u(L, t) = 0, 

u(x,O) = uo(x), u'(x,O) = u1(x) in (O,L), 

(1.1) 

where u is the transverse displacement of the string, a and b are positive 
constants, L is the length of the string, II · II represents the norm on 
£ 2(0, L), and u0 , u1 are initial data. Both ends of the string are fixed. 

Later, more general models were considered by Carrier ([4]) and Lions 
([12]) such as 

{ 
u"(x, t)- M(IIAiu(x, t)ll~ )Au(x, t) = 0 in n X R+, 

u(x,O) = uo(x), u'(x,O) = u1(x) in n, 
(1.2) 

*Supported by the National Natural Science Foundation of China {60504001). 
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where A is a selfadjoint linear nonnegative operator on Hilbert space H 
with dense domain D(A), M : [0, oo) -t [0, oo) is a differential function 
and n c IR+ is a bounded open domain. System (1.2) is called a non
degenerate equation when M(e) ~ M > 0 for all e ~ 0, and a degenerate 
one when M(e) ~ 0 for all e ~ 0. In the case of M(e) = M > 0, system 
(1.2) is a usual linear elastic equation. 

Since then, the local and global solvability of nonlinear systems of 
Kirchhoff type has been studied under various assumptions concerned 
with function M, the dissipative term, and the regularity of the initial 
data (see [1, 6, 8]). Among the literature, the latest results about local 
solvability of system {1.2) can be found in [8]. They proved the existence, 
uniqueness and regularity of the local solution for non-dissipative model 
{1.2) when M is a degenerate differential function and M(e) =f:. 0 fore 
belonging to the neighborhood of IIA!u0 11 2'Y. 

It is clear that an extra dissipative term is necessary to obtain the 
existence, uniqueness and regularity of the global solution of system 
{1.2). In the non-degenerate case, system (1.2) describes a pre-stressed 
structure. When initial data are small enough, Brito [3], Nishihara [13] 
and Cavalcanti [5] proved that there exists a unique global solution with 
exponential decay property for non-degenerate system if a damping is 
applied in n and M is a C 1 function. The same result was obtained by 
Lasiecka. and Ong [11] if the dissipative term is on the boundary. 

Degenerate nonlinear systems of Kirchhoff type were considered by 
Nishihara and Yamada ([14]), Ono ([15]), Ghisi ([7]) and references 
therein. They proved that when M(e) behaves like C (-y > 0), there 
exists a unique global solution of the system and the solution decays 
polynomially if a velocity dissipative term is applied in n and initial 
data are small and regular enough. It is more difficult to handle a de
generate case than a non-degenerate case. The difficulty increases when 
the damping is applied on the boundary. The method in references can 
not be applied directly to the degenerate Kirchhoff system with bound
ary damping. 

In this paper we study the global existence and decay properties of 
the solution of a degenerate Kirchhoff wave equation system with natural 
boundary damping. The nonlinear coefficient function is assumed to be 
M(e) = C (-y > 1). First, we prove the existence, uniqueness and 
regularity of the global solution of the system. We introduce several 
estimates of higher order energy divided by IIA!ulls (s > 0) to overcome 
difficulties due to the degenerateness of M(e). Then by the idea of 
iterativeness of the time and assumptions on initial data, we show that 
M(IIA!u(t)ll) > 0 for all t > 0, i.e., the degenerateness situation never 
occurs because of the dissipation. Thus, the local solution of the system 
can be continued globally in time. We also obtain the polynomial decay 
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of the solution of the system by the classical Gronwall lemma. 
This paper is organized as follows. In Section 2 we present the system 

and main results. In Section 3 we prove the global existence of the 
solution of the system. 

2 Main results 

In this section we state main results of this paper. Let n be an open 
bounded set in IRn with smooth boundary r = ro u r 1. Assume that 
r 0 has positive boundary measure and r o n I\ = 0 (this assumption 
excludes simply connected regions). In what follows, Hr(n) denotes a 
usual Sobolev space for any r E JR. H/-

0
(n) denotes space {wE H 1{n) 

: w = 0 on ro}. Let X be a Banach space. We denote by cm{[O, T]; X) 
the space of all m times continuously differentiable functions defined on 
[O,T] with values in X, and write C{[O,T]; X) for C0 ([0,T]; X). The 
scalar product and norm in L2 (n) and L2(r) are represented by II · II, 
(·, ·) and l·lr, (·, ·}r, respectively. 

We consider the following degenerate nonlinear wave equation of 
Kirchhoff type with boundary damping. 

u"(x, t)- II'Vu(x, t)II 2
'Y ~u(x, t) = 0 in n x JR+, 

u(x,t) = 0 on roxR.+, 

II'Vu(x, t)ii 2'Y8vu(x, t) + ku'(x, t) = 0 r1 x IR+, 
{2.1) 

on 

u(x,O) = uo(x), u'(x,O) = u1(x) in n, 

where u is the transverse displacement of the wave, 'Y > 1 is a real 
number, v(x) denotes a unit outward normal vector at x E r, u0 , u1 are 
initial data, ku' (k > 0) is boundary damping. 

The natural energy of system (2.1) is defined by 

E(u(t)) = -
2
1

iiu'(t)11 2 + - 1
-11Vu(t)ll 2-r+2 . (2.2) 

2"{ + 2 

A direct computation gives that 

d 
dtE(u(t)) = -kiu'(t)if1 , (2.3) 

i.e., energy function (2.2) for system (2.1) decreases on [O,oo). 
For completeness, we introduce the following local existence theorem, 

which can be proved by the contraction mapping theorem. 
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Theorem 2.1. Let 'Y > 0, and initial data uo E H2 (0) n Hf.
0 
(0) and 

u1 E Hf.
0
(f2). Suppose IIV'uoll > 0. Then there exists T = T(IIV'uoll) > 0 

such that system (2.1} has a unique local solution u with regularity 

u E c([o, T]; H 2(0)nHf.
0
(0)) nC1([o,T]; Hf.

0
(0)) nC2 ([o, T]; L2(n)). 

(2.4) 

We note that the dissipative term on the boundary does not play role 
in the local existence result, while it plays a crucial role in the global 
existence one. 

Now, we present an assumption about geometry of the domain, called 
"geometric optic conditions". It guarantees that all rays of geometric op
tics meet r 1 to which the memory damping is applied. This assumption 
is useful to get estimations about higher order energy when we prove the 
global existence of the solution of system (2.1). 

(B) m(x) · v(x) ~ 0 on r 0 and m(x) · v(x) ~ 8 > 0 on r1, where 
m(x) = x- xo, x0 is an arbitrary fixed point in IR.n. 

The main result of this paper is as follows. Its proof is in Section 3. 

Theorem 2.2. Assume (B) holds and 'Y ~ 1. Let initial data u0 E 
H2(0) n Hf.

0 
(0), u1 E Hf.

0 
(0) satisfy 

IIY'uoll > 0, (2.5) 

~llu11i 2 + 2'Y ~ 2 iiV'uoll2
-r+

2 ~ 1, (2.6) 

and there exists "' > 0, depending on 0, k and 'Y, such that 

Then system (2.1} has a unique global solution u(x, t) with regulanty 
that 

u E C([O, oo ); H 2(0)nHf,
0 
(0) )nC1 ([0, oo ); Hf

0 
(0)) nC2 ([0, oo ); L~0 (0)). 

Remark 2.1. The key point ?.S to prove that the degeneration situation 
never occurs. Firstly, we introduce several higher order energy functions 

containing ::~:::: and ~~~~:"": (s > 0). Then, we show that IIV'u(t)ll > 0 
for all t ~ 0 by the assumption on initial data. Therefore, the local 
solution of system (2.1} can be continued globally in time. 
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After getting the existence, uniqueness and regularity of the solution 
of system (2.1), we study the asymptotic behavior of the global solution 
of system (2.1). In fact, we have the following decay properties by using 
proper estimates and the classical Gronwall lemma. 

Theorem 2.3. Assume that all conditions of Theorem 2.2 are satisfied. 
Suppose that 

ll.6.uoll, IIVuoll, IIVu1ll < Kt, 

where K1(0,k,-y) > 0 is a constant. Let u(x,t) be the global solution of 
system {2.1}. Then there exists positive constant C depending on n, k, 
-y and initial data such that 

c 
E(t) $ ~· 

(1 + t) ., 
'V t;:::: 0. (2.8) 

Remark 2.2. The proof of Theorem 2.3 is regular and we just give a 
sketch here. The key is to introduce an auxiliary function 

.C(t) ~ 17(E(t))P+~ + (E(t))P p(t), 

where p > 0, 17 > 0 and 

p(t) ~ 2(u'(t), m · Vu(t)) + (n- 1){u'(t), u(t)). 

Then we can choose a proper constant 17 such that 

[.C(tW" + cddt .C(t) $ o, a~ P ~ > 1, c > o. (2.9) 
p+ 2-y+2 

Therefore, the decay property is obtained by using the Gronwall lemma. 

As a corollary, we have immediately the following polynomial decay 
results. 

Theorem 2.4. Assume that all conditions of Theorem 2.3 are satisfied. 
Let u(x, t) be the global solution of system (2.1}. Then the following 
estimates satisfy 

0 < 11Vu(t)ll2 $ C .a., 
(1 + t)., 

llu'(t)11 2
, ll.6.u(t)ll2 $ C ~· 

(1 + t) ., 

11Vu'(t)ll2 $ C ~, 
(1 + t) ., 

with a positive constant C for all t ;:::: 0. 
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3 Proof of Theorem 2.2 

In this section we prove the global existence of the solution of system 
(2.1). First, we set 

Tt='=sup{tE[O,oo): IIVu(r)II>O, 'v'O:Sr<t}. 

Then Tt > 0, IIVu(t)il > 0 for 0 :S t < Tt, and IIVu(Tt)ll = 0. For any 
0 :S t < Tt, define 

H (t) _ ll6.u(x,t)ll2 II'Vu'(x,t)ll 2 

s - li'Vu(x, t)jjs-4-y + li'Vu(x, t)lls-2-y, 

( ) 
_ (6-u(x, t), 2m(x) · 'Vu'(x, t)) + (n- 1)(6-u(x, t), u'(x, t)) 

Ps t - ii'Vu(x, t)lls-2-y ' 

where 8 2: 4-y is a real number. It is clear that for any 0 :S t < T1, 

IPs(t)i :S Hs+2-y(t) + (2R + n- 1)2 Hs(t), R ='= m~ lm(x)j. (3.1) 
xen 

Set 
es(t) ='= Ps(t) + AtHs(t) + .A2Hs+2-r(t), 

where .>,.1 and .A2 are positive constants satisfying 

At2:max{(2R+n-1)2 +1, ~}, 

{ 
2R

2k } .A2 2: max 2, -~- + k(n- 1)2 . 

(3.2) 

Suppose 8 > 4-y. We differentiate the first equation of (2.1) with respect 
tot, multiply the result by 2m. 'Vu + (n- 1)u and integrate it inn, 

d 
Hs + dtes 

iu"l2 2R2 k2 iu"l 2 
:S (R- Atk) II 'Vults + [-~- + k2(n- 1)2- .A2k] 11Vull~~2-r 

(
8R2k2-y2 

2) (Vu, Vu') 2 lu'l~ 1 4.Atk'Y2 ('Vu, 'Vu')2 lu'l~ 1 
+ ~ + 4.A2k'Y 11Vulls+2-r+4 + 11Vulls+4 

2k-y(n- l)(Vu, Vu')lu'l~1 iu'j~1 (8- 2-y)(Vu, 'Vu')Ps(t) 
+ 11Vulls+2 + 411Vulls-2-y - 11Vull2 

.>,.1(8- 2-y) ('Vu, 'Vu') H _ .A2s ('Vu, 'Vu') H 'V O :S t < T
1

. 

11Vull2 s 11Vull2-y+2 s• 

(3.3) 
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Here we use assumption (B). Combining (3.2) with (3.3) yields 

d 
Hs+ d/s 

(
8R2k2,,? 2) (V'u, V'u') 2 lu'l~1 4>.lk'Y2 (V'u, V'u') 2 lu'l~ 1 

~ 8 + 4>.2k1 IIV'uils+2")'+4 + IIV'ulls+4 

2kr(n- 1){V'u, V'u')lu'l~1 lu'l~1 (8- 2r)(V'u, V'u')Ps(t) 
+ IIV'ulls+2 + 4IIV'ulls-2")' - IIV'ull2 

>.1(8- 2'Y) (V'u, V'u') H - >.28 (V'u, V'u') H V 0 ~ t < Tl. 
IIV'ull 2 s IIV'uii 2"Y+2 s, 

(3.4) 

Secondly, for a positive constant /3 specified later, we define 

....:... { . I(V'u(r), V'u'(r))l } 
T2- sup t E (0, oo) . IIV'u(r)II2"Y+2 < /3, V 0 ~ T < t . 

It follows that T2 > 0. Suppose 

(3.5) 

Then, 
I (V'u(T2), V'u'(T2)) I _ /3 

IIY'u(T2)II 2"Y+2 - · (3.6) 

Therefore, we have from (3.4) that for any 0 ~ t ~ T2 , 

d < 2 (8R2k212 
2) lu'l~ 1 4/32 >.1k12 lu'l~1 

Hs + dt Es - /3 8 + 4>.2k'Y IIV'ulls-2")' + IIV'ulls-4")' 

2/3kr(n- 1)lu'lf1 lu'lf1 2"Y 
+ IIV'ulls-2")' + 4IIV'ulls-2"Y + !3(8 - 2r)IIV'ull Ps 

(3.7) 
Let 8 = 4r + 2. It follows from (3.1) and (3.7) that for any 0 :5 t :5 T2, 

H dE < ( 1 /32- ( ) /3 ) lu'lf1 -4")'+2+ dt 4")'+2 - 4+ J.L1 t + J.L2 IIV'uii 2"Y+2 +/3J.L3(t)H4"Y+2, (3.8) 

where 

8R2k2'Y2 
it1(t)~ 8 +4>.2kr2+4>.1kr211V'u(t)II2"Y, 

J.L2 ~ 2kr(n- 1), 

it3(t) = 21 + 2 + >.2(4'Y + 2) + (2'Y + 2)[(2R + n- 1)2 + >.1JIIV'u(t)11 2"Y. 
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By using (2.3) and (2.6), 

8R2k2'Y2 2 

ftl(t) :::; J..tl ~ fJ + 4.A2k"(2 + 4.Alk'Y2(2'Y + 2)'2f.h' 

[t3(t):::; J..t3 ~ 2'Y + 2 + .A2(4'Y + 2) + (2'Y + 2)1+2;h [(2R+ n -1)2 +.AI]. 

Not that lu'l~ 1 :::; CniiV'u'll2, (Cn > 0). Consequently, we have from 
(3.8) that 

H4-r+2(t)+ !e4-r+2(t):::; [~n +.82J..tiCn+.B(J..t2Cn+J..t3)]H4-r+2(t). (3.9) 

We can choose ,8 such that 

2 ( ) Cn ,8 J..t1Cn + ,8 J..t2Cn + J..t3 < 4· 

Thus, it follows from (3.9)-(3.10) that 

d 
dt e4-r+2(t) :::; o, 'V o :::; t :::; T2. 

By (3.1), (3.2) and (3.11), we get that for any 0 :::; t :=:; T2 , 

H4-r+2(t) + H6-r+2(t) :::; .A ( H4-r+2(0) + H6-r+2(0)], 

where 
.A~ max { .A1 + (2R + n- 1)2, A2 + 1}. 

min { .A1- (2R + n- 1)2, .A2- 1} 

On the other hand, it is clear that for any 0 :=:; t < T1, 

(3.10) 

(3.11) 

(3.12) 

I (Y'u(t), V'u'(t)) I IIV'u'(t)ll ! 
IIV'u(t)112-y+2 :=:; IIV'u(t)112-r+l :=:; H6-r+2(t). (3.13) 

Combining (3.5), (3.12) with (3.13) yields that for any 0:::; t:::; T2 < T1, 

I(V'u(t),V'u'(t))l ! 
IIV'u(t)ll 2-r+2 :::; (.A(H4-r+2(0) + H6-r+2(0))] . (3.14) 

We set 

ll~uoll 2 IIV'udl2 ll~uoll 2 IIV'ud 2 ,82 

IIV'uoll 2 + IIY'uoll 2-r+2 + IIV'uoii 2'Y+2 + IIY'uoii 4'Y+2 < 4-A · (3.
15

) 

From (3.14) and (3.15), 

I (V'u(t), V'u'(t)) I < (!_ (3.16) 
IIV'u(t)ll2-r+2 2. 
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Then, we get a contradiction to (3.6). Therefore, T1 :5 T2. 

Finally, we show that II'V'u(t)ll > 0 for all t > 0. By the definition of 
T1 , we have that 

II'V'u(TI)II = o. (3.17) 

Then we have from (3.12) and (3.17) that 

ll~u(TI)II = II'V'u'(Tl)ll = 0. (3.18) 

Induce a variable v(t) == u(T1 - t). Then v(t) satisfies 

v = 0 on ro X [0, Tl], 

{ 

v" -II'V'vll 2"~ ~v = 0 in n X [0, Tl], 

li'Vvli 2"~8vv- kv' = 0 on rl X [0, Tl], (3·19) 
v(O) = 0, v'(O) = 0 in n. 

It is clear that 

:tE(v(t)) = klv'(t)j~1 • (3.20) 

By the trace theorem, there exists a positive constant Cn such that 

lv'(t)l~ 1 :5 Cnii'V'v'(t)llllv'(t)ll, 'V 0 :5 t :5 T1. (3.21) 

Moreover, we have from (3.12) that 

Combining (3.21) with (3.22) yields 

lv' (t)l~ 1 :5 Cn(21 + 2) [>.( H4-y+2(0) + Hs-y+2(0))]! 
E(v(t)), 'V 0 :5 t :5 T1. (3.23) 

Hence, by (3.20) and (3.23), we get that 

d - 1 

dt E(v(t)) :5 kCn(2'Y + 2)[>.(H4-y+2(0) + H6-y+2(0)) )2 
E(v(t)), 'V 0 :5 t :5 T1. (3.24) 

Notice that E(v(O)) = 0. Thus, it follows from (3.24) that E(v(T1)) = 
0. Consequently, II'V'u(O)II = 0, which contradicts assumption (2.5) 
Therefore, II'V'u(t)ll > 0 for all t > 0, and (3.12) holds for all t 2: 0. The 
proof of Theorem 2.2 is completed. 
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Abstract 

In this paper, we review the main existing results, methods, 
and some key open problems on the controllability of nonlinear 
hyperbolic and parabolic equations. Especially, we describe our 
recent universal approach to solve the local controllability problem 
of quasilinear time-reversible evolution equations, which is based 
on a new unbounded perturbation technique. It is also worthy 
to mention that the technique we developed can also be applied 
to other problems for quasilinear equations, say local existence, 
stabilization, etc. 

1 Introduction 

Consider the following controlled evolution equation: 

{ 

~ty(t) = A(y(t))y(t) + Bu(t), 

y(O) =Yo· 

t E {0, T), 
{1.1) 

Here, the timeT> 0 is given, y(t) E Y is the state variable, u(t) E U is 
the control variable, Yo( E Y) is the initial state; Y and U are respectively 

*This work was supported by the NSF of China under grants 10525105, 10831007 
and 60821091, the Chunhui program (State Education Ministry of China) under 
grant Z007-1-61006, and the project MTM2008-03541 of the Spanish Ministry of 
Science and Innovation. Part of this work was done when the author visited Fudan 
University, with a financial support from the "French-Chinese Summer Institute on 
Applied Mathematics" (September 1-21, 2008). 



438 Zhang 

the state space and control space, both of which are some Hilbert space; 
A(·) is a suitable (nonlinear and usually unbounded) operator on Y, 
while the control operator B maps U into Y. Many control problems 
for relevant nonlinear Partial Differential Equations (PDEs, for short) 
enter into this context, for instance, the quasilinearjsemilinear parabolic 
equation, wave equation, plate equation, Schrodinger equation, Maxwell 
equations, and Lame system, etc. 

In this paper, we shall describe some existing methods, results and 
main open problems on the controllability of these systems, especially 
these for nonlinear hyperbolic and parabolic equations. 

System (1.1) is said to be exactly controllable in Y at time T if for 
any y0 , y1 E Y, there is a control u E £ 2 (0, T; U) such that the solution 
of system (1.1) with this control satisfies 

y(T) = Yl· (1.2) 

When dim Y = oo (We shall focus on this case later unless otherwise 
stated), sometimes one has to relax the requirement (1.2), and this leads 
to various notions and degrees of controllability: approximate control
lability, null controllability, etc. Note however that for time reversible 
system, the notion of exact controllability is equivalent to that of null 
controllability. 

Roughly speaking, the controllability problem for an evolution equa
tion consists in driving the state of the system (the solution of the con
trolled equation under consideration) to a prescribed final target state 
(exactly or in some approximate way) in finite time. Problems of this 
type are common in science and engineering and, particularly, they arise 
often in the context of flow control, in the control of flexible structures 
appearing in flexible robots and in large space structures, in quantum 
chemistry, etc. 

The controllability theory about finite dimensional linear systems 
was introduced by R.E. Kalman [14] at the very beginning of the 1960s. 
Thereafter, many authors were devoted to developing it for more gen
eral systems including infinite dimensional ones, and its nonlinear and 
stochastic counterparts. 

The controllability theory of PDEs depends heavily on its nature and, 
on its time-reversibility properties in particular. To some extent, the 
study of controllability for linear PDEs is well developed although many 
challenging problems are still unsolved. Classical references in this field 
are D.L. Russell [29] and J.L. Lions [21]. Updated progress can be found 
in a recent survey by E. Zuazua ([43]). Nevertheless, much less is known 
for nonlinear controllability problems for PDEs although several books 
on this topic have been available, say J.M. Coron [6], A.V. Fursikov & 
O.Yu. Imanuvilov [11], T.T. Li [16], and X. Zhang [36]. Therefore, in this 
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paper, we concentrate on controllability problems for systems governed 
by nonlinear PDEs. 

The main results in this paper can be described as follows: Assume 
that {A{O), B) is exactly controllable in Y. Then, under some assump
tions on the structure of A(y) {for concrete problems, which needs more 
regularity on the state space, say V(A(O)k) for sufficiently large k), sys
tem {1.1) is locally exactly controllable in V(A(O)k). 

The main approach we employed to show the above controllability 
result is a new perturbation technique. The point is that the pertur
bation is unbounded but small. Note however that this approach does 
NOT work for the null controllability problem of the time-irreversible 
systems, and therefore, one has to develop different methods to solve 
the local null controllability of quasilinear parabolic equations. 

For simplicity, in what follows, we consider mainly the case of internal 
control, i.e. B E C(U, Y). Also, we will focus on the local controllabil
ity of the quasilinear wave equation. However, our approach is univer
sal, and therefore, it can be extended to other quasilinear PDEs, say, 
quasilinear plate equation, Schrodinger equation, Maxwell equations, 
and Lame system, etc. 

On the other hand, we mention that the technique developed in this 
paper can also be applied to other problems for quasilinear equations. 
For example, stabilization problem for system (1.1) (with small initial 
data) can be considered similarly. Indeed, although there does not exist 
the same equivalence between exact controllability and stabilization in 
the nonlinear setting, the approaches to treat them can be employed one 
other. 

The rest of this paper is organized as follows. In Section 2, we review 
the robustness of the controllability in the setting of Ordinal Differential 
Equations {ODEs, for short). In Section 3, we recall some known per
turbation result of the exact controllability of abstract evolution equa
tions. Then, in Section 4, we show a new perturbation result of the 
exact controllability of general evolution equations. Sections 5 and 6 
are addressed to present local controllability results of multidimensional 
quasilinear hyperbolic equations and parabolic equations, respectively. 
Finally, in Section 7, we collect some open problems, which seem to be 
important in the field of controllability of PDEs. 

2 Starting point: the case of ODEs 

Consider the following controlled ODE: 

{ 
:ty = Ay + Bu, 

y(O) =Yo, 

t E (O,T), 
{2.1) 
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where A E !Rnxn and B E !Rnxm. It is well known ([14]) that system 
(2.1) is exactly controllable in (0, T) if and only if 

B*eA"txo = 0, 'V t E (0, T):::::} xo = 0. 

Note that this condition is also equivalent to the following Kalman rank 
condition: 

rank(B, AB, A2 B, · · · , An-l B) = n. (2.2) 

From (2.2), it is clear that if (A, B) is exactly controllable, then 
there exists a small c = c(A, B) > 0 such that (A, B) is still exactly 
controllable provided that I lA- All+ liB- Bll <c. Therefore, the exact 
controllability of system (2.1) is robust under small perturbation. 

Because of the above robustness, the local exact controllability of 
nonlinear OPEs is quite easy. Indeed, consider the following controlled 
system: 

{ 
!y=Ay+f(y)+Bu, 

y(O) =Yo, 

t E (0, T), 
(2.3) 

with /0 E C 1 (1Rn) and f(y) = O(lyl1+6) when y is small, for some 
8 > 0. The local exact controllability of system (2.3) follows from a 
standard perturbation argument. 

However, the corresponding problem in PDE setting is much more 
complicated, as we shall see below. 

3 Known perturbation result of exact con
trollability 

In this section, we recall some known perturbation results of the exact 
controllability of abstract evolution equations. These results are based 
on the following two tools: 

• Duality argument (e.g. [20, 21, 36]): In the linear setting (i.e., 
A(y) = A is independent of y and linear, and further A generates a Co
group {eAt hER on Y), the null controllability of system ( 1.1) is equiva
lent to the following observability estimate: 

leA"T z*l~· ~CloT IB*eA·sz*l~-ds, 'V z* E Y*, (3.1) 

for some constant C > 0. 

• Variation of constants formula: In the setting of semigroup, 
for a bounded perturbation P E .C(Y): 

'Vx E Y. (3.2) 
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Combining (3.1) and (3.2), it is easy to establish the following well
known (bounded) perturbation result of the exact controllability: 

Theorem 3.1. Assume that A generates a Co-group {eAt}teR on Y 
and B E .C(U, Y). If (A, B) is exactly controllable, then so is (A+ P, B) 
provided that IIPII.c(Y) is small enough. 

The above perturbation P can also be time-dependent. In this case, 
one needs the language of evolution system. In the sequel, for a simple 
presentation, we consider only the time-independent case. 

As a consequence of Theorem 3.1 and the standard fixed point tech
nique, one can easily deduce a local exact controllability result of some 
semilinear equations, say, the counterpart of system (2.3): 

{ ! z = Az + f(z) + Bv, 

z(O) = zo. 

More precisely, we have 

t E (O,T), 
(3.3) 

Corollary 3.1. Assume that A generates a Co-group {eAtheR on Y, 
BE .C(U, Y), and (A, B) is exactly controllable. If the nonlinearity fO : 
Y--+ Y satisfies fOE C 1 (Y) and, for some 6 > 0, lf(z)IY = O(lzi~H) 
as lzly --+ 0, then system {3.3} is locally exactly controllable in Y. 

Clearly, both the time reservability of the underlying system and 
the variation of constants formula (3.2) play a key role in the above 
perturbation-type results. 

When the system is time-irreversible, the above perturbation tech
nique does not work. The typical example is the controlled heat equation. 
In this case, one has to search for other robust methods to derive the 
desired controllability, say, Carleman estimate. We shall consider this 
case in Section 6. 

When the perturbation operator P is unbounded, formula (3.2) may 
fail to work, and in this case things become much more delicate even for 
the semigroup theory itself. Nevertheless, there do exist some special 
cases, for which the perturbation Pis unbounded but the above varia
tion of constants formula still works (in the usual sense), say, when the 
semigroup {eAt }t~o has some smooth effect. In this case, one can find 
some perturbation results of exact controllability in the articles by S. 
Boulite, A. Idrissi and L. Maniar [3], S. Hadd [12], and H. Leiva [15]. 
However, it does not seem that these perturbation results can be adapted 
to solve the nonlinear controllability problems, especially for quasilinear 
equations. 
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4 A new perturbation result of exact 
controllability 

In this section, we present a new perturbation result of the exact con
trollability of general evolution equations. The idea is simple, and the 
key point is that the generation of a Co-semigroup {eAt h2=:o is robust 
with respect to a small perturbation of the same "order" with respect to 
the generator A. 

Stimulated by quasilinear problem, we consider the following small 
perturbation of the same "order": 

P=PoA, 

where Po E .C(Y) and IIPoll < 1. That is, the perturbed operator reads: 
(I+ P0 )A. It is easy to show that if A generated a contractive Co
semigroup, then so is (I + Po)A. Indeed, it is obvious that (I + Po)A 
is dissipative in Y with the new scalar product ((I+ Po)-1

·, ·), which 
induces a norm, equivalent to the original one. Nevertheless, we remark 
that the variation of constants formula does not work for eU+Po)At for 
this general case. 

Thanks to the above observation, a new perturbation result for exact 
controllability is shown in [38], which reads as follows: 

Theorem 4.1. Assume that A generates a unitary group {eAt heR on Y 
and BE .C(U, Y). IJ(A, B) is exactly controllable, then so is (A+P, B) = 
((I+ Po)A, B) provided that IIPoll.c(Y) is small enough. 

Since the variation of constants formula does not work for eU+Po)At, 
the above result can not be derived as Theorem 3.1. Instead, we need to 
use Laplace transform and some elementary tools from complex analysis 
to prove the desired result. 

The above simple yet useful perturbation-type controllability result 
can be employed to treat the local controllability problems for quasilinear 
evolution-type PDEs with time-reversibility, as we shall see in the next 
section. 

5 Local exact controllability for multidimen
sional quasilinear hyperbolic equations 

This section is addressed to the local exact controllability of quasilinear 
hyperbolic equations in any space dimensions. 

To begin with, let us recall the related known controllability results of 
controlled quasilinear hyperbolic equations. The problem is well under
stood in one space dimension. To the author's best knowledge, the first 
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paper in this direction was written by M. Cirina [5]. Recent rich results 
are made available by T.T. Li & B.P. Rao [17], T.T. Li & B.Y. Zhang 
[23], T.T. Li & L.X. Yu [19], Z.Q. Wang [32], and especially the above 
mentioned book by T.T. Li [16]. As for the corresponding controllability 
results in multi-space dimensions, we refer toP. F. Yao [35] andY. Zhou 
& z. Lei [41]. 

Let n be a bounded domain in IRn with a sufficiently smooth bound
ary r. Put Q = (0, T) X nand I;= (0, T) X r. Let w be a nonempty open 
subset of n. We consider the following controlled quasilinear hyperbolic 
equations: 

n 

Ztt- L Ox,(ai;(x)zx;) 
i,j=l 

= G(t, x, z, Y't,xZ 1 V'~,xz) + <Pw(x)u, 

z =0, 

z(O) = zo, Zt(O) = z1, 

in Q, 

in E, 
inn, 

(5.1) 

where the coefficients ai;(·) E C2 ('ft) (i,j = 1, ... ,n) satisfy G.t.; = a;i, 
and for some constant p > 0, 

n 

L ai;(x)~i~j ~ Pl~l2 , v (x.~) = (x,~l •... • ~n) En X IRn, 
i,j=l 

and following [41], the nonlinearity G(·) is taken to be of the form 

G( t, x, V' t,xZ, v~.xZ) 
n n 

= L L 9ia(t, x, Y't,xz)O;,xQZ + O(lul2 + IV't,xzl2
), 

i=l a=O 

9ia(t,x,O,O) = 0 and xo = t; <Pw is a nonnegative smooth function 
defined on n, satisfying min¢w(x) > 0. 

xEw 
Denote by Xw the characteristic function of w. We need to introduce 

the following 

Assumption (H): Assume the linear hyperbolic equation 

l 
Ytt- .t Ox,(ai;(x)Yx;) = Xw(x)u, 

•,J=l 

y=O, 

y(O) = Yo, Yt(O) = Yt, 

is exactly controllable in HJ(O) x £ 2(0). 

in Q, 

in E, 

inn 

(5.2) 

The following controllability result for quasilinear hyperbolic equa
tions is shown in [38]: 
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Theorem 5.1. Let Assumption (H) hold. Then, for any s > ~ + 1, 
system (5.1} is locally exactly controllable in (H8 +1 (n)nHJ(S1))xH8 (S1), 
provided that some compatible conditions are satisfied for the initial and 
final data. 

Clearly, Theorem 5.1 covers the main results in [35, 41]. The above 
result follows by combining our new perturbation result for exact con
trollability, i.e. Theorem 4.1 and the fixed point technique developed in 
[41]. 

Remark 5.1. The boundary control problem can be considered similarly 
although the technique is a little more complicated. 

Remark 5.2. The key point of our approach is to reduce the local ex
act controllability of quasilinear equations to the exact controllability of 
the linear equation. This method is general and simple. The disadvan
tage is that we can not construct the control explicitly. Therefore, this 
approach does not replace the value of {41}, and the deep results of the 
corresponding 1 - d problem, obtained by T. T. Li and his collaborators, 
as mentioned before. Especially, from the computational point of view, 
the later approach might be more useful. 

We now return to Assumption (H), and review the known results 
and unsolved problems for exact controllability of the linear hyperbolic 
equation but we concentrate on the case of boundary control although 
similar things can be said for the case of internal control. 

Denote by A the elliptic operator appearing in the first equation 
of system (5.2). We consider the following controlled linear hyperbolic 
equation with a boundary controller: 

{ 

Ytt +Ay = 0, 

y = XEoU, 

y(O) = Yo, Yt(O) = Y1. 

in Q, 
in :E, (5.3) 

inn, 

where 0 =1- Eo C :E is the controller. It is easy to show that system (5.3) 
is exactly controllable in L2(n) x n-1(S1) at timeT by means of control 
u E L2 (:Eo) if and only if there is a constant C > 0 such that solutions 
of its dual system 

{

Wtt +Aw = 0, 

w=O, 

w(O) = Wo, Wt(O) = w1, 

satisfy the following observability estimate: 

in Q 

in :E 

inn 

lwoi~J(f!) + lw1ll2(f!) ~ C ko 18;;'12 

d:Eo, 

'</ (wo,wl) E HJ(n) x L 2 (S1). 

(5.4) 

(5.5) 
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When A=-~, E0 = (0, T) x r 0 with r 0 being a suitable subset of 
an, L.F. Ho [13] established (5.5) by means of the classical Rellich-type 
multiplier. Later, K. Liu [22] gave a nice improvement for the case of 
internal control. When A is a general elliptic operator of second order, 
and Eo is a general (maybe non-cylinder) subset of E, J.L. Lions [21] 
posed an open problem on "under which condition, does inequality (5.5) 
hold?". When Eo= (0, T) x r 0 is a cylinder subset of E, Lions's problem 
is almost solved. In this case, typical results are as follows: 

1) Geometric Optics Condition (GOC for short) introduced by C. Bar
dos, G. Lebeau & J. Rauch (1], which is a sufficient and (almost) 
necessary condition for inequality (5.5) to hold. GOC is perfect 
except the three disadvantage: one is that it needs considerably 
high regularity on both the coefficients and an (N. Burq [4] gives 
some improvement in this respect); one is that this condition is 
not easy to verify; one is that the observability constant derived 
from GOC is not explicit because it involves the contradiction ar
gument to absorb the undesired lower order terms appearing in the 
observability estimate. 

2) Rellich-type multiplier conditions introduced by L.F. Ho [13], K. 
Liu (22], A. Osses [27] et al., which require less smooth conditions 
than GOC but they are not necessary conditions for inequality 
(5.5) to hold. 

3) There exist some other sufficient conditions for inequality (5.5) to 
hold, say, the vector field condition by A. Wyler [33], and the cur
vature condition by P.F. Yao [34]. Later, it is shown by S.J. Feng 
& D.X. Feng [9] that these two conditions are equivalent although 
they are introduced through different tools. 

4) Mixed tensor/vector field condition introduced by X. Zhang & E. 
Zuazua [40], which covers the conditions in 2) and 3). 

Remark 5.3. It is shown by L. Miller {26} that when the data are suf
ficiently smooth, the conditions in 2} and 3} are special cases of GOG. 
Nevertheless, as far as I know, it is an unsolved problem on the minimal 
assumption on data for GOG. 

When Eo # (0, T) x r 0, especially when it is NOT a cylinder subset of 
E, there exists almost no nontrivial progress on Lions's problem (which 
seems to be a challenging mathematical problem), even for the simplest 
1 - d wave equation! The only related results are as follows: 

a) For 1- d wave equation and Eo = E x r 0 with E c (0, T) to be a 
Lebesgue measurable set with positive measure, P. Martinez & J. 
Vancostenoble [24] show that (5.5) holds. 
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b) G. Wang [31] obtains an interesting internal observability estimate 
for the heat equation in multi-space dimensions, where the observer 
is E x w with E being the same as in the above case and w to be 
any nonempty open subset of n. 

6 Local null controllability for quasilinear 
parabolic equations 

In this section, we consider the local exact controllability of quasilinear 
parabolic equations in any space dimensions. 

As mentioned before, the perturbation technique does not apply to 
the time irreversible system, exactly the case of parabolic equations. 
Therefore, one has to search for other robust methods to derive the de
sired null controllability, say, Carleman estimate even if the perturbation 
to the null-controllable system is very small (even in the linear setting!). 

We consider the following controlled quasilinear parabolic system 

in Q, 

on E, 
inn, 

(6.1) 

where aii ( ·) : R --+ R are twice the continuously differentiable functions 
satisfying similar conditions in the last section. 

In the last decades, there were many papers devoted to the control
lability of linear and semilinear parabolic equations (see [11, 43] and the 
rich references therein). However, as far as we know, nothing is known 
about the controllability of quasilinear parabolic equations except for 
the case of one space dimension. In [2], the author proves the local null 
controllability of a 1 - d quasilinear diffusion equation by means of the 
Sobolev embedding relation L00 (0, T; HJ(O)) ~ L00 (Q), which is valid 
only for one space dimension. 

The following local null controllability result for a class of consid
erably general multidimensional quasilinear parabolic equations, system 
(6.1), is shown in [23]. 

Theorem 6.1. There is a constant 'Y > 0 such that for any initial value 
Yo E C 2+ ~ (0) satisfying I Yo I c2+! (n) :::; 'Y and the first order compatibility 

condition, one can find a control u E ct.~ (Q) with suppu ~ w x [0, T] 
so that the solution y of system {6.1} satisfies y(T) = 0 in 0. Moreover, 

luld·t(Q):::; CeecAIYoi£2(0)• 
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where A= f: (1 + sup laii(sW + sup la~i(sW), and C depends only 
i,j=l lsl9 lsl9 

on p, n, nand T. 

The key point in the proof of Theorem 6.1 is to improve the regularity 
of the control function for smooth data, which is a consequence of a new 
observability inequality for linear parabolic equations with an explicit 
estimate on the observability constant in terms of the 0 1-norm of the 
coefficients in the principle operator. The latter is based on a new global 
Carleman estimate for the parabolic operator. 

7 Open problems 

Although great progress has been made on the controllability theory 
of PDEs, the field is still full of open problems. In some sense, the 
linear theory is well understood and there exist extensive works on the 
controllability of linear PDEs. But, still, even for the linear setting, some 
fundamental problems remain to be solved, as we shall explain later. 
The controllability theory of nonlinear system originated in the middle of 
1960s but the progress is very slow. Similar to other nonlinear problems, 
controllability of infinite dimensional nonlinear system is usually very 
little. Due to the underlying properties of the equation, the progress 
of the exact controllability theory for nonlinear hyperbolic equations is 
even slower. Nevertheless, nonlinear problems are not always difficult 
than linear ones. Indeed, as we have shown in Theorem 5.1, local exact 
controllability of quasilinear hyperbolic equations is a consequence of 
the exact controllability of linear hyperbolic equations. One may then 
ask such a question: "How to judge whether a nonlinear result is good 
or not?" To the author's opinion, except for some famous unsolved 
problems, the point is either "whether the result is optimal or not in 
some nontrivial sense" , or "whether some new phenomenon is discovered 
or not". 

From the above "criteria", our result of the local exact controllability 
of quasilinear hyperbolic equations is not good at all. Indeed, there is 
no evidence to show that the result is optimal. Therefore, 

how to establish the "optimal" local exact controllability 
result of quasilinear equations 

is one of the most challenging problems in the field of control of PDEs. 
As we shall see below, this problem is also highly nontrivial even in the 
semilinear setting! 

We now review the exact controllability for the following semilinear 
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hyperbolic equations: 

{ 

Ztt + Az = f(z) + Xw(x)u(t, x), 

z = 0, 

z(O) = zo, zt(O) = z1. 

in Q, 
in E, 

inn. 

(7.1) 

For some very general nonlinearity f(·) and a suitable controller w, E. 
Zuazua (42] obtains the local exact controllability for system (7.1). Re
cently, B. Dehman & G. Lebeau (7] made a significant improvement. 
However, as far as I know, no optimality on the controllability results is 
analyzed in these works, which seems also to be a challenging problem. 

Remark 7.1. The possible optimality on the local exact controllability 
for semilinear equations should be largely related to PDEs with lower 
regularity dada. This is a very rapid developing field in recent years. 

Remark 7.2. There exists big difference between the controllability prob
lems and pure PDEs problems. Indeed, the exact controllability problem 
for the system 

{ 

Ztt + Az = f(zt) + Xw(x)u(t, x), 

z = 0, 

z(O) = Zo, Zt(O) = Z1, 

inQ 

in E {7.2) 
inn 

in the natural energy space HJ(O) x £ 2 (0) is not clear even iff(·) is 
global Lipchtiz continuous. But, of course, the well-posedness of the cor
responding pure PDE problem (i.e. the control u = 0} is trivial. 

Global exact controllability for semilinear equations is generally a 
very difficult problem. We refer to (36] for known global controllability 
results of the semilinear hyperbolic equation when the nonlinearity is 
global Lipschitz continuous. For system {7 .1), if the nonlinearity f ( ·) 
grows too fast, say, 

lim lf(s)llsl-1 log-r lsi= 0, 
lsi-+oo 

r > 2, {7.3) 

the solution may blow up, and therefore, global exactly controllability is 
impossible in this case. Recently, based on X. FU, J. Yong & X. Zhang 
(10] and V.Z. Meshkov (25], T. Duyckaerts, X. Zhang & E. Zuazua (8] 
showed that, if 

lim lf(s)iisl-1 log-r lsi= 0, 
lsl-+oo r < 3/2, {7.4) 

then system (7.1) is globally exactly controllable. Moreover, it is also 
shown that the above index "3/2" is optimal in some sense (i.e., whether 
the linearization argument works or not) when n;::: 2. But this number 
is not optimal in 1 - d. 
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Remark 7 .3. The same ''3 /2 "-phenomenon happens also for parabolic 
equations when n;::: 2. Surprisingly, the 1- d problem is unsolved. That 
is, it is not clear whether the index ''3/2" is optimal or not in 1 - d! 
This means, sometimes, the 1 - d problem is more difficult than the 
multidimensional one. 

Remark 7.4. Note that for the pure PDE problems, the same phe
nomenon descnbed above does not happen. This indicates that the study 
of the controllability problem for nonlinear PDEs has some independent 
interest, which is far from a sub-PDE-problem. 

Remark 7.5. Another strongly related longstanding unsolved problem 
is the exact controllability of the linear time- and space-dependent hy
perbolic equation under the GOG. It seems that this needs to combine 
cleverly the tool from micro-local analysis and the technique of Carle
man estimate. But nobody knows how to do it. 

To end this paper, we list the following further open problems. 

• Controllability of the coupled and/or higher order systems 
by using minimal number of controls. As shown by X. Zhang 
& E. Zuazua [39], the study of the related controllability problem is 
surprisingly complicated and highly nontrivial even for the systems 
in one space dimension! 

• Constrained controllability. As shown by K.D. Phung, G. Wang 
& X. Zhang [28), the problem is unexpected difficult even for the 
simplest 1 - d wave equation and heat equation. 

• Controllability of parabolic PDEs with memory, or retard 
argument and/or other nonlocal terms. Consider the follow
ing controlled heat equations with a memory term: 

{ 
Zt- !:::.z =lot a(s,x)z(s)ds + Xw(x)u, 

z =0, 

z(O) = zo, 

in Q, 

in :E, 

inn. 

The PDE problem itself is not difficult. But, as far as I know, the 
controllability problem for the above equation is unsolved even if 
the memory kernel a(·, ·) is small! 

• Controllability/ observability of stochastic PDEs. There ex
ist only very few nontrivial results, say, [30, 37] and the reference 
cited therein. I believe this is a very hopeful direction for the 
control of PDEs in the near future. 

• Controllability of PDEs in non-reflexive space. There exists 
almost no nontrivial result in this direction! 
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• Other types of controllability. Different notions of controlla
bility, say, periodic controllability, may lead to new and interesting 
problems for PDEs. 
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