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Foreword

A new generation of cellular standards was introduced by the industry once every
10 years since 1979. Each generation provides a big improvement in performance,
functionality, and efficiency over the previous generation. These standards were
driven mainly by the International Telecommunication Union Radio Communi-
cation Sector (ITU-R) and the third generation partnership project (3GPP). As 5G
started deployment in 2019, different study groups are poised to examine the pos-
sibility of 6G to appear around 2030. One such study group is the ITU-T Focus
Group on Technologies for Network 2030. In May 2019, the group issued a white
paper entitled “Network 2030 – A Blueprint of Technology, Application and Mar-
ket Drivers Towards the Year 2030 and Beyond.” Among the new applications
being studied by the group are holographic media and multi-sense communication
services which include transmission of touch and feel as well as smell and taste,
in addition to sight and sound that we already enjoy today. Such new applications
are expected to give rise to a brand new class of vertical market in entertainment,
healthcare, automotive, education, and manufacturing.

It is perfect timing for researchers Amin Ebrahimzadeh and Martin Maier to
write their book on “Toward 6G: A New Era of Convergence.” The authors sur-
veyed the literature on different 6G proposals including their own work and wrote
this book on what 6G would look like in the future. 6G is expected to be built on
the strong foundation of 5G, in particular its ultra-high speed and reliability with
ultra-low latency. These features enable 6G to support new applications involving
human senses such as haptic communication as in the Tactile Internet, as well
as high-resolution immersive media beyond today’s virtual reality (VR) and aug-
mented reality (AR). The transmission of realistic hologram involves sending volu-
metric data from multiple viewpoints to account for the 6 degrees of freedom (tilt,
angle, and shift of the observer relative to the hologram). The authors provided
quantitative examples of such 6G applications requiring the complex interplay of
human, robots, avatars, and sophisticated digital twins of objects.
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xiv Foreword

I am particularly intrigued by the last chapter, where the authors summarized
their discussions in earlier chapters as the evolution to the “Internet of No Things”
in the 6G post-smartphone era, in which smartphones may not be needed any-
more. They presented the concept of extended reality (XR) which spans the con-
tinuum from pure reality (offline) at one end to pure virtuality (online) at the other
end. The middle of the continuum is the region of mixed reality that covers the
space from AR to Augmented Virtuality. The authors further expanded the XR
concept to extrasensory perception (ESP) as a nonlocal awareness of space and
time, mimicking the principle of nonlocality of the quantum realm. The authors
undoubtedly provided us plenty of food for thought as we continue our journey
from the well-defined 5G standards to the new world of 6G.

Nim Cheung
26 May 2020
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xv

Preface

In March 2019, I was approached to publish a book with Wiley-IEEE Press to give
visibility to our pioneering work on fiber wireless access. After a short period of
reflection, I was willing to accept the invitation and prepare a manuscript, mak-
ing the following two suggestions. First, we should extend the scope of the book
significantly by including technologies that are starting to play a key role in the
future 6G vision. Based on the position taken in a commissioned paper back in
2014, where I advocated that we enter an age of convergence, I suggested that
6G will not be a mere exploration of more spectrum at high-frequency bands, but
it will rather be a convergence of upcoming technological trends, most notably
connected robotics, extended reality, and blockchain technologies. Second, I sug-
gested to involve Dr. Amin Ebrahimzadeh as lead author, with whom I have been
closely collaborating on those research topics during his doctoral and postdoctoral
studies over the last four to five years, while my role will be more that of a spiri-
tus rector, much like a quarterback in modern American football. Gratefully, our
Wiley-IEEE book proposal was very well received by all reviewers and the book
project was underway to become the first book on 6G.

What will 6G be? Among others, 6G envisions four-tier network architectures
that will extend the 5G space-air-ground networks by integrating underwater net-
works and incorporating key enabling technologies such as millimeter-wave and
Terahertz communications as well as brand-new wireless communication tech-
nologies, most notably reconfigurable intelligent surfaces. Furthermore, 6G will
take network softwarization to a new level, namely toward network intelligenti-
zation. Arguably more interesting, while smartphones were central to 4G and 5G,
there has been an increase in wearable devices (e.g., Google and Levi’s smart jacket
or Amazon’s recently launched voice-controlled Echo Loop ring, glasses, and ear-
buds) whose functionalities are gradually replacing those of smartphones. The
complementary emergence of new human-centric and human-intended Internet
services, which appear from the surrounding environment when needed and dis-
appear when not needed, may bring an end to smartphones and potentially drive
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a majority of 6G use cases in an anticipated post-smartphone era. Given that the
smartphone is sometimes called the new cigarette of the twenty-first century and
using it is considered the new smoking, the anticipated 6G post-smartphone era
may allow us to rediscover the offline world by co-creating technology together
with a philosophy of technology use toward Digital Minimalism, as recently sug-
gested by computer scientist Cal Newport.

As this book is ready to go to press, the currently most intriguing 6G vision out
there at the time of writing was outlined by Harish Viswanathan and Preben E.
Mogensen, two Nokia Bell Labs Fellows, in an open access article titled “Commu-
nications in the 6G Era” that was published just recently last month. In this article,
the authors focus not only on the technologies but they also expect the human
transformation in the 6G era through unifying experiences across the physical, bio-
logical, and digital worlds in what they refer to as the network with the sixth sense.
This book aims at providing a comprehensive overview of these and other afore-
mentioned developments as well as up-to-date achievements, results, and trends
in the research on next-generation 6G mobile networks.

Martin Maier
Montréal, April 2020
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1

The 6G Vision

1.1 Introduction

With the completion of third generation partnership project (3GPP) Release 15
of the 5G standard in June 2018, the research community has begun to shift
their focus to 6G. In July 2018, ITU’s Telecommunication standardization sector
(ITU-T) Study Group 13 has established the ITU-T Focus Group Technologies
for Network 2030 (FG NET-2030). FG NET-2030 will study the requirements
of networks for the year 2030 and beyond and will investigate future network
infrastructures, use cases, and capabilities. According to Yastrebova et al. (2018),
current networks are not able to guarantee new application delivery constraints.
The application time delivery constraints will differ in terms of required quality
of service (QoS). For instance, for Internet of things (IoT) applications, the delay
can be up to 25 ms, but connected cars will need 5–10 ms to get information
about road conditions from the cloud to make the drive safe. Current cellular
networks are not able to guarantee these new application delivery constraints.
For illustration of these shortcomings, the authors of Yastrebova et al. (2018)
mentioned that the end-to-end latency in today’s 4G long-term evolution (LTE)
networks increases with the distance, e.g. 39 ms are needed to reach the gateway
to the Internet and additional 5 ms are needed to receive a reply from the server.
Furthermore, the number of active devices per cell greatly affect the network
latency. Measurements of highly loaded cells showed an increase of the average
latency from 50 to 85 ms. Among others, the authors of Yastrebova et al. (2018)
expect that future mobile networks will enable the following applications:

● Holographic calls
● Avatar robotics applications
● Nanonetworks

Toward 6G: A New Era of Convergence, First Edition. Amin Ebrahimzadeh and Martin Maier.
© 2021 The Institute of Electrical and Electronics Engineers, Inc.
Published 2021 by John Wiley & Sons, Inc.
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● Flying networks
● Teleoperated driving (ToD)
● Electronic health (e-Health)
● Tactile Internet
● Internet of skills (IoS).

As a consequence, the network traffic will increase significantly with these new
applications that will be enabled by technologies like virtual reality (VR) and aug-
mented reality (AR). Even more exciting will be the widespread use and distribu-
tion of avatars for the reproduction and implementation of user actions. According
to Yastrebova et al. (2018), avatar robotics applications can become one of the most
important sources of traffic in future FG NET-2030 networks, involving new types
of communications such as human-to-avatar (H2A), avatar-to-human (A2H), and
avatar-to-avatar (A2A) communications. Importantly, taking into account the lim-
ited speed of propagation of light, the requirements for ultra-low latency should
lead to the decentralization of future networks.

In academia, researchers from the University of Oulu’s Centre for Wireless Com-
munications launched an eight-year research program called 6G enabled smart
society and ecosystem (6Genesis) to conceptualize 6G. The first open 6Genesis sem-
inar was held in August 2018. In Katz et al. (2018), an initial vision of what the
sixth generation mobile communication system might be was presented by out-
lining the primary ideas of the 6Genesis Flagship Program (6GFP) created by the
University of Oulu together with a Finish academic and industrial consortium. In
this 6GFP program, 6G is investigated from a wide and realistic perspective, con-
sidering not only the communicational part of it but also looking into other highly
relevant parts such as computer science, engineering, electronics, and material
science. This integral approach is claimed to be instrumental in achieving truly
novel solutions. Among others, the interrelated research areas of 6GFP aim at
achieving distributed intelligent wireless computing by means of mobile edge,
cloud, and fog computing. More specifically, intelligent distributed computing and
data analytics is becoming an inseparable part of wireless networks, which call
for self-organizing solutions to provide strong robustness in the event of device
and link failures. Furthermore, VR/AR over wireless is considered one of the key
application drivers for the future, whereby the information theory and practical
performance requirements from the perspective of human psychology and physi-
ology must be accounted for. As a consequence, perception-based coding should be
considered to mitigate the shortcomings of existing compression–decompression
algorithms in VR/AR. Future applications need distributed high-throughput local
computing nodes and ubiquitous sensing to enable intelligent cyber-physical sys-
tems that are critical for future smart societies. Finally, techno-economic and busi-
ness considerations need to address the question how network ownership and
service provisioning models affect the design of radio access systems, including
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the potential analysis of high-risk technology enablers such as quantum theory
and communications.

In September 2019, the world’s first 6G white paper was published as an outcome
of the first 6G wireless summit, which was held in Levi, Finland, earlier in March
2019 with almost 300 participants from 29 countries, including major infrastruc-
ture manufacturers, operators, regulators as well as academia (Latva-aho and Lep-
pänen, 2019). Each year, the white paper will be updated following the annual 6G
wireless summit. While 5G was primarily developed to address the anticipated
capacity growth demand from consumers and to enable the increasing impor-
tance of the IoT, 6G will require a substantially more holistic approach, embracing
a much wider community. Many of the key performance indicators (KPIs) used
for 5G are valid also for 6G. However, in the beyond 5G (B5G) and 6G, KPIs in
most of the technology domains once again point to an increase by a factor of
10–100, though a 1000 times price reduction from the customer’s view point may
be also key to the success of 6G (Zhang et al., 2020). Note that price reduction
is particularly important for providing connectivity to rural and underprivileged
areas, where the cost of backhaul deployment is the major limitation. According
to Yaacoub and Alouini (2020), providing rural connectivity represents a key 6G
challenge and opportunity given that around half of the world population lives
in rural or underprivileged areas. Among other important KPIs, 6G is expected
to be the first wireless standard exceeding a peak throughput of 1 Tbit/s per user.
Furthermore, 6G needs a network with embedded trust given that the digital and
physical worlds will be deeply entangled by 2030. Toward this end, blockchain also
known as distributed ledger technology (DLT) may play a major role in 6G net-
works due to its capability to establish and maintain trust in a distributed fashion
without requiring any central authority.

Arguably more interestingly, the 6G white paper envisions that totally new ser-
vices such as telepresence, as a surrogate for actual travel, will be made possible by
combinations of graphical representations (e.g. avatars), wearable displays, mobile
robots and drones, specialized processors, and next-generation wireless networks.
Similarly, smartphones are likely to be replaced by pervasive extended reality (XR)
experiences through lightweight glasses, whereby feedback will be provided to
other senses via earphones and haptic interfaces.

1.2 Evolution of Mobile Networks and Internet

The general evolution of global mobile network standards was first to maximize
coverage in the first and second generations and then to maximize capacity in
the third and fourth generations. In addition to higher capacity, research on
5G mobile networks has focused on lower end-to-end latency, higher spectral
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efficiency and energy efficiency, and more connection nodes (Rowell and Han,
2015). More specifically, the first generation (1G) mobile network was designed
for voice services with a data rate of up to 2.4 kbit/s. It used analog signal to
transmit information, and there was no universal wireless standard. Conversely,
2G was based on digital modulation technologies and offered data rates of up
to 384 kbit/s, supporting not only voice services but also data services such as
short message service (SMS). The dominant 2G standard was the global system
for mobile (GSM) communication. The third generation (3G) mobile network
provided a data rate of at least 2 Mbit/s and enabled advanced services, including
web browsing, TV streaming, and video services. For achieving global roaming,
3GPP was established to define technical specifications and mobile standards. 4G
mobile networks were introduced in the late 2000s. 4G is an all Internet Protocol
(IP) based network, which is capable of providing high-speed data rates of up to
1 Gbit/s in the downlink and 500 Mbit/s in the uplink in support of advanced
applications like digital video broadcasting (DVB), high-definition TV content,
and video chat. LTE-Advanced (LTE-A) has been the dominant 4G standard,
which integrates techniques such as coordinated multipoint (CoMP) transmis-
sion and reception, multiple-input multiple-output (MIMO), and orthogonal
frequency division multiplexing (OFDM). The main goal of 5G has been to use
not only the microwave band but also the millimeter-wave (mmWave) band for
the first time in order to significantly increase data rates up to 10 Gbit/s. Another
feature of 5G is a more efficient use of the spectrum, as measured by increasing
the number of bits per hertz. ITU’s International Mobile Telecommunications
2020 (IMT 2020) standard proposed the following three major 5G usage scenarios:
(i) enhanced mobile broadband (eMBB), (ii) ultra-reliable and low latency com-
munications (URLLC), and (iii) massive machine type communications (mMTC).
As 5G is entering the commercial deployment phase, research has started to focus
on 6G mobile networks, which are anticipated to be deployed by 2030 (Huang
et al., 2019).

Typically, next-generation systems do not emerge from the vacuum, but fol-
low the industrial and technological trends from previous generations. Potential
research directions of 6G consistent with these trends were provided by Bi (2019),
including among others:

● 6G will continue to move to higher frequencies with wider system bandwidth: Given
that the spectrum at lower frequencies has almost been depleted, the current
trend is to obtain wider bandwidth at higher frequencies in order to increase
the data rate more than 10 times for each generation.

● Massive MIMO will remain a key technology for 6G: Massive MIMO has been the
defining technology for 5G that has enabled the antenna number to increase
from 2 to 64. Given that the performance gains have saturated in the areas of
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channel coder and modulator, the hope of increasing spectral efficiency for 6G
will remain in the multiple antenna area.

● 6G will take the cloud service to the next level: With the ever higher data rates,
short delays, and low transmission costs, many of the computational and storage
functions have been moved from the smartphone to the cloud. As a result, most
of the computational power of the smartphone can focus on presentation ren-
dering, making VR, AR, or XR more impressive and affordable. Many artificial
intelligence (AI) services that are intrinsically cloud based may prevail more eas-
ily and broadly. In addition to smartphones, less expensive functional terminals
may once again flourish, providing growth opportunities in more application
areas.

● Grant-free transmissions could be more prominent in 6G: In past cellular net-
work generations, transmissions were primarily based on grant-oriented design
with strong centralized system control. More advanced grant-free protocols and
approaches will be needed for 6G. It is possible that the non-orthogonal multi-
ple access (NOMA) technology may have another opportunity to prevail due to
its short delay performance even though it failed to take off during the 5G time
period.

● mMTC is more likely to take shape in the older generation before it can succeed
in the next generation: mMTC has been one of the major directions for the
next-generation system design since the market growth of communications
between people has saturated. High expectations have been put on 5G mMTC
to deliver significant growth for the cellular industry. Until now, however, this
expectation has been mismatched with the reality on the ground. Therefore, the
current trend appears to indicate that mMTC would be more likely to prevail
by utilizing older technology that operates in the lower band at lower cost.

● 6G will transform a transmission network into a computing network: One of
the possible trademarks of 6G could be the harmonious operations of trans-
mission, computing, AI, machine learning, and big data analytics such that
6G is expected to detect the users’ transmission intent autonomously and
automatically provide personalized services based on a user’s intent and desire.

In his latest book “The Inevitable,” Kevin Kelly described the 12 technological
forces that will shape our future (Kelly, 2016). According to Kelly, nothing has hap-
pened yet in terms of the Internet. The Internet linked humans together into one
very large thing. From this embryonic net will be born a collaborative interface,
a sensing, cognitive apparatus with power that exceeds any previous invention.
The hard version of it is a future brought about by the triumph of a superintelli-
gence. According to Kelly, however, a soft singularity is more likely where AI and
robots converge – humans plus machines – and together we move to a complex
interdependence. This phase has already begun. We are connecting all humans
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and all machines into a global matrix, which some call the global mind or world
brain. It is a new regime wherein our creations will make us better humans. This
new platform will include the collective intelligence of all humans combined with
the collective behavior of all machines, plus the intelligence of nature, plus what-
ever behavior emerges from this whole. Kelly estimates that by the year 2025 every
person will have access to this platform via some almost-free device.

The importance of convergence of emerging key technologies, e.g. AI, robots,
and XR, lies also at the heart of the 6G era with standards and enabled devices
anticipated to roll out around 2030. 6G research is just now starting, even though
5G networks have not been widely deployed yet. A few countries, most notably
Finland as well as China and South Korea, have taken the lead by launching 6G
programs to avoid getting left behind.

1.3 6G Network Architectures and Key Enabling
Technologies

1.3.1 Four-Tier Networks: Space-Air-Ground-Underwater

6G network architectures are anticipated to extend the 5G three-tier
space-air-ground networks by integrating underwater networks, thus giving
rise to four-tier space-air-ground-underwater networks with near-instant and
unlimited superconnectivity in the sky, at sea, and on land. According to Zhang
et al. (2019b), these large-dimensional integrated nonterrestrial and terrestrial
networks will consist of the following four network tiers:

● Space-network tier: This network tier will support orbit or space Internet ser-
vices in such applications such as space travel and provide wireless coverage
via satellites. For long-distance intersatellite transmission in free space, laser
communications represents a promising solution. The use of mmWave frequen-
cies to establish high-capacity (inter)satellite communications may be another
feasible solution to complement terrestrial 6G networks with computing sta-
tions placed on satellite platforms (Giordani and Zorzi, 2020). The integration
of terrestrial and non-terrestrial networks poses a number of challenges and new
open problems such as (i) large propagation delays, (ii) Duppler effect due to fast
moving satellites, and (iii) severe path loss of mmWave transmission.

● Air-network tier: This network tier works in the low-frequency, microwave,
and mmWave bands to provide more flexible and reliable connectivity for
urgent events or in remote areas by densely employing flying base stations, e.g.
unmanned aerial vehicles (UAVs).

● Terrestrial-network tier: Similar to 5G, this network tier will still be the main
solution for providing wireless coverage for most human activities. It will
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support low-frequency, microwave, mmWave, and THz bands in ultradense
heterogeneous networks, which require the deployment of ultra-high-capacity
backhaul infrastructures. Optical fiber will still be important for 6G, though
THz wireless backhaul will be an attractive alternative.

● Underwater-network tier: Finally, this network tier will provide coverage
and Internet services for broad-sea and deep-sea activities for military or
commercial applications. Given that water exhibits different propagation
characteristics, acoustic and laser communications can be used to achieve
high-speed data transmission for bidirectional underwater communications.
According to Huang et al. (2019), however, there is a lot of controversy about
whether undersea networks are able to become a part of future 6G networks.
Unpredictable and complex underwater environments lead to intricate network
deployments, severe signal attenuation, and physical damage to equipment,
leaving plenty of issues to be resolved.

1.3.2 Key Enabling Technologies

1.3.2.1 Millimeter-Wave and Terahertz Communications
Higher frequencies from 100 GHz to 3 THz are promising bands for the next gener-
ation of wireless communication systems, offering the potential for revolutionary
applications. Technically, the formal definition of the THz region is 300 GHz
through 3 THz, though sometimes the terms sub-THz or sub-mmWave are used to
define the 100–300 GHz spectrum. The short wavelengths at mmWave and THz
will allow massive spatial multiplexing in hub and backhaul communications.
The THz band from 100 GHz through 3 THz can enable secure communications
due to the fact that small wavelengths allow for extremely high-gain antennas
with extremely small physical dimensions. The ultra-high data rates facilitated
by mmWave and THz wireless local area and cellular networks will enable
super-fast download speeds for computer communication, autonomous vehicles,
robotic control, the so-called information shower, high-definition holographic
gaming, and high-speed wireless data distribution in data centers. In addition
to the extremely high data rates, there are promising applications for future
mmWave and THz systems that are likely to evolve in 6G networks and beyond.
These applications can be categorized into the main areas of wireless cogni-
tion, sensing, imaging, wireless communications, and position location/THz
navigation (Rappaport et al., 2019).

A comprehensive literature review on the technical challenges in THz com-
munications for B5G wireless networks was presented by Chen et al. (2019). In
this survey, several key technologies for the realization of THz wireless commu-
nication systems were discussed in technically greater detail. Heterodyne recep-
tion is the most widespread receiving system in the THz band, whereby its core
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circuits usually include the circuits for frequency conversion, signal generation,
and amplification. In the THz band, however, solid state amplifiers are lacking
because the technology of compound semiconductor transistors is immature. Fur-
ther, due to the lack of THz amplifiers, mixers become the first stage of receivers
and affect their system performance. In the THz band, subharmonic mixers are
usually used because they can mitigate the difficulty of local oscillators. The com-
bination of metamaterials and semiconductor technologies has led to significant
breakthroughs in dynamic THz functional devices, including THz amplitude and
phase modulation. For the sake of channel characterization and propagation mea-
surements in future THz wireless communication systems, it is vital to establish
efficient channel models that maximize THz bandwidth allocation and spectral
efficiency. Channel estimation in THz communication systems is challenging due
to hybrid beamforming structures and the large number of antennas. Large-scale
phased array antennas are suitable for THz communication systems to compen-
sate for the high path loss and molecular absorption loss.

1.3.2.2 Reconfigurable Intelligent Surfaces
A brand-new wireless communication technology referred to as reconfigurable
intelligent surfaces (RISs) – also known as large intelligent surfaces, smart
reflect-arrays, intelligent reflecting surfaces, passive intelligent mirrors, artificial
radio space, or programmable metasurface – has emerged recently (Basar et al.,
2019; Tang et al., 2020b). RISs are often referred to as software-defined surfaces
(SDSs) in analogy with the concept of software-defined radio (SDR). Accordingly,
an RIS may be viewed as an SDS whose surface of electromagnetic material
is controlled with integrated electronics and its response of the radio waves is
programmed in software.

According to Basar et al. (2019), the distinctive characteristic of RISs lies in
making the environment controllable by the telecommunication operators and
thus giving them the possibility of shaping and fully controlling the electro-
magnetic response of the environmental objects that are distributed throughout
the network. As a result, network operators are able to control the scattering,
reflection, and refraction characteristics of the radio wave and thereby effectively
control the wavefront (e.g. phase, amplitude, frequency, and even polarization)
of wireless signals without the need of complex decoding, encoding, and radio
frequency processing operations. In contrast to conventional wireless networks,
where the environment is out of control of the telecommunication operators,
RISs render the wireless environment a smart reconfigurable space that plays an
active role in transferring and processing information. Consequently, RISs have
given rise to the emerging concept of smart radio environments. In smart radio
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environments, the wireless environment is turned into a software-reconfigurable
entity, whose operation is optimized to enable uninterrupted connectivity and
high QoS guarantees. This is in stark contrast to conventional wireless networks,
where the radio environment has usually an uncontrollable negative effect on the
communication efficiency and QoS due to signal attenuation, multipath propaga-
tion, fading, and reflections from objects. RISs have the following distinguishable
features (Basar et al., 2019):

● They are nearly passive and, ideally, do not need any dedicated energy
source.

● They form a contiguous surface and, ideally, any point can shape the wave
impinging upon it.

● They are not affected by receiver noise since, ideally, they do not need
analog-to-digital converter (ADCs)/digital-to-analog converter (DACs) and
power amplifiers.

● They have full-band response since, ideally, they can work at any operating
frequency.

● They can be easily deployed, e.g. on facades of building, ceilings of indoor spaces,
or human clothing.

1.3.2.3 From Network Softwarization to Network Intelligentization
In contrast to previous generations, 6G will be transformative and will revolution-
ize the wireless evolution from “connected things” to “connected intelligence.”
According to Letaief et al. (2019), 6G will take network softwarization to a new
level, namely toward network intelligentization. Software-defined networking
(SDN) and network function virtualization (NFV) have moved modern commu-
nications networks toward software-based virtual networks. They also enable
network slicing, which can provide a powerful virtualization capability to allow
multiple virtual networks to be created atop a shared physical infrastructure.
However, as the network is becoming more complex and more heterogeneous,
softwarization is not going to be sufficient for 6G. Existing technologies such as
SDN, NFV, and network slicing will need to be further improved by enabling
fast learning and adaptation via AI-based methods. As a result, network slicing
will become much more versatile and intelligent in order to support diverse
capabilities and more advanced IoT functionalities, including sensing, data
collection, analytics, and storage.

6G is expected to undergo an unprecedented transformation that will make it
substantially different from the previous generations of wireless cellular systems.
In particular, 6G will go beyond mobile Internet and will be required to support
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ubiquitous AI services from the core to the end devices of the network. Toward
this end, Letaief et al. (2019) argue that 6G will require the support of the follow-
ing three new service types beyond the aforementioned 5G eMBB, URLLC, and
mMTC services:

● Computation oriented communications (CoC): New smart devices call for
distributed computation to enable key functionalities such as federated
learning. Instead of targeting conventional QoS provisioning, computation
oriented communication (CoC) will flexibly choose an operating point in
the rate-latency-reliability space depending on the availability of various
communications resources to achieve a certain computational accuracy.

● Contextually agile eMBB communications (CAeC): The provision of 6G eMBB
services is expected to be more agile and adaptive to the network context,
including the communication network context such as link congestion and net-
work topology, the physical environment context such as surrounding location
and mobility, and the social network context such as social neighborhood and
sentiments.

● Event defined URLLC (EDURLLC): In contrast to the 5G URLLC application sce-
nario with redundant resources in place to offset many uncertainties, 6G event
defined uRLLC (EDURLLC) will need to support URLLC in extreme or emer-
gency events with spatially and temporally changing device densities, traffic
patterns, and spectrum and infrastructure availability.

6G will provide an information and communication technology (ICT) infras-
tructure that enables end users to perceive themselves as surrounded by a huge
artificial brain offering virtually zero-latency services, unlimited storage, and
immense cognition capabilities. 6G will play a significant role in responding
to fundamental human and social needs and in helping realize Nikola Tesla’s
prophecy that “when wireless is perfectly applied, the whole Earth will be
converted into a huge brain”, according to Strinati et al. (2019). Toward this
end, however, network intelligentization still has a long way to go by advancing
machine learning technologies for 6G by taking more KPIs different from the
traditional metrics into account, including situational awareness, learning ability,
storage cost, and computation capacity (Kato et al., 2020). This also applies to the
future intelligentization of 6G vehicular networks, where employing machine
learning in vehicular communications becomes a hot topic that is widely studied
in both academia and industry (Tang et al., 2020a).

When it comes to defining the unique challenges and opportunities of 6G, it
is important to note that there is a strong notion that the nature of mobile ter-
minals will change, with cars and mobile robots playing a more important role.
Furthermore, we might witness the union of network convergence, meaning that
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we may see stronger dependencies between networking infrastructures and appli-
cations (David et al., 2019).

1.4 Toward 6G: A New Era of Convergence

According to the authors of Saad et al. (2020), the current deployment of 5G
cellular systems is exposing the inherent limitations of this system, compared to
its original premise as an enabler for Internet of everything (IoE) applications.
IoE services will require an end-to-end design of communication, control, and
computation functionalities, which to date has been largely overlooked. These
5G drawbacks are currently spurring worldwide activities focused on defining
the next-generation 6G wireless system that can truly integrate far-reaching
applications ranging from autonomous systems to XR and haptics. Importantly,
the authors opine that 6G will not be a mere exploration of more spectrum at
high-frequency bands, but it will rather be a convergence of upcoming technological
trends. Toward this end, the authors presented a holistic, comprehensive research
agenda that leverages those technologies and serves as a basis for stimulating
more out-of-the-box research around 6G. While traditional applications will
remain central to 6G, the key determinants of the system performance will be
the following four new applications domains: (i) multisensory XR applications,
(ii) connected robotics and autonomous systems, (iii) wireless brain-computer
interaction, a subclass of human–machine interaction (HMI), and (iv) blockchain
and distributed ledger technologies.

In addition to many of the 6G driving trends and enabling technologies dis-
cussed in previous sections, Saad et al. (2020) emphasized the importance of haptic
and empathic communications and the emergence of new human-centric service
classes as well as the end of the smartphone era. They argue that smartphones
were central to 4G and 5G. However, in recent years there has been an increase
in wearable devices whose functionalities are gradually replacing those of smart-
phones. This trend is further fueled by applications such as XR and HMI, e.g.
brain-computer interaction. The devices associated with those applications range
from smart wearables to integrated headsets or even smart body implants that can
take direct sensory inputs from human senses, bringing an end to smartphones
and potentially driving a majority of 6G use cases. They also expect that a handful
of technologies will mature along the same time of 6G, e.g. quantum computing
and communications, and hence potentially play a role toward the end of the 6G
standardization and research process.

An interesting example of out-of-the-box 6G research was presented just
recently in Viswanathan and Mogensen (2020). The authors claim that new
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themes are likely to emerge. Specifically, the future of connectivity is in the
creation of digital twin worlds that are a true representation of the physical and
biological worlds at every spatial and time instant, unifying our experience across
these physical, biological, and digital worlds. Digital twins of various objects
created in edge clouds will form the essential foundation of the future digital
world. Digital twin worlds of both physical and biological entities will be an
essential platform for the new digital services of the future. Digitalization will also
pave the way for the creation of new virtual worlds with digital representations
of imaginary objects that can be blended with the digital twin world to various
degrees to create a mixed-reality, super-physical world. Smart watches and heart
rate monitors will be mapped accurately every instant and integrated into the
digital and virtual worlds, enabling new super-human capabilities. AR user
interfaces will enable efficient and intuitive human control of all these worlds,
whether physical, virtual, or biological, thus creating a unified experience for
humans and the human transformation resulting from it. Dynamic digital twins
in the digital world with increasingly accurate, synchronous updates of the
physical world will be an essential platform for augmenting human intelligence.

The authors of Viswanathan and Mogensen (2020) outlined a vision of the
future life and digital society on the other side of the 2030s. While the smartphone
and the tablet will still be around, we are likely to see new man–machine
interfaces that will make it substantially more convenient for us to consume and
control information. The authors expect that wearable devices, such as earbuds
and devices embedded in our clothing, will become common. We will have
multiple wearables that we carry with us and they will work seamlessly with
each other, providing natural, intuitive interfaces. Touch-screen typing will likely
become outdated. Gesturing and talking to whatever devices we use to get things
done will become the norm. The devices we use will be fully context-aware and
the network will become increasingly sophisticated at predicting our needs. This
context awareness combined with new man–machine interfaces will make our
interaction with the physical and digital world much more intuitive and efficient.
The computing needed for these devices will likely not all reside in the devices
themselves because of form factor and battery power considerations. Rather,
they may have to rely on locally available computing resources to complete tasks
beyond the edge cloud. As consumers, we can expect that the self-driving concept
cars of today will be available to the masses by the 2030s. They will be self-driving
most of the time and thus will substantially increase the time available for us
to consume data from the Internet in the form of more entertainment, rich
communications, or education. Further, numerous domestic service robots will
complement the vacuum cleaners and lawn mowers we know today. These may
take the form of a swarm of smaller robots that work together to accomplish tasks.
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Combining the multi-modal sensing capabilities with the cognitive technolo-
gies enabled by the 6G platform will allow for analyzing behavioral patterns
and people’s preferences and even emotions, hence creating a sixth sense that
anticipated user needs. The resultant network with the sixth sense will allow for
interactions with the physical world in a much more intuitive way.

1.5 Scope and Outline of Book

1.5.1 Scope

Building on the 6G vision outlined above, this book will describe the latest
developments and recent progress on the key technologies enabling next-
generation 6G mobile networks, paying particular attention to their seamless
convergence. To help make and keep things concrete, the book will focus on
the emerging Tactile Internet as one of the most interesting 5G/6G URLLC
applications. Beside conventional audiovisual and data traffic, the Tactile Internet
envisions the real-time transmission of haptic information (i.e. touch and actua-
tion) for the remote control of physical and/or virtual objects through the Internet.
The Tactile Internet opens up a plethora of exciting research directions toward
adding a new dimension to the human-to-machine interaction via the Internet by
exploiting context- as well as self-awareness. The underlying end-to-end design
approach of the Tactile Internet is fully reflected in the key principles of the
Tactile Internet. Among others, the key principles envision to support local area
as well as wide area connectivity through wireless or hybrid wireless/wired
networking. Furthermore, it leverages computing resources from cloud variants
at the edge of the network. Some of the key use cases of the Tactile Internet
include teleoperation, haptic communications, immersive VR, and automotive
control. We will leverage our expertise and extend our recent work on immersive
Tactile Internet experiences in unified fiber-wireless mobile networks based
on AI enhanced multi-access edge computing (MEC), including cooperative
computation offloading.

In addition, we will include our work on decentralizing the Tactile Internet in
general and edge computing in particular via Ethereum blockchain technologies,
most notably the so-called decentralized autonomous organization (DAO). Unlike
AI-based agents that are completely autonomous, a DAO still requires heavy
involvement from humans specifically interacting according to a protocol defined
by the DAO in order to operate. We will elaborate on how this particular feature
of DAOs (i.e. automation at the center and humans at the edges) can be exploited
in the emerging concept of human-agent-robot teamwork.
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Finally, we report on the state-of-the-art and our ongoing work on XR in the
post-smartphone era. Specifically, we will elaborate on the implications of the
transition from the current gadgets-based Internet to a future Internet that is evolv-
ing from bearables (e.g. smartphone), moves toward wearables (e.g. Google and
Levi’s smart jacket or Amazon’s recently launched voice-controlled Echo Loop
ring, glasses, and earbuds), and then finally progresses to nearables (e.g. intelli-
gent mobile robots). Nearables denote nearby surroundings or environments with
embedded computing/storage technologies and service provisioning mechanisms
that are intelligent enough to learn and react according to user context and history
in order to provide user-intended services. While 5G was supposed to be about the
IoE, to be transformative 6G might be just about the opposite of Everything, i.e.
Nothing or, more technically, No Things. Toward this end, we will elaborate on
the Internet of No Things as an extension of immersive VR from virtual to real
environments, where human-intended Internet services – either digital or physi-
cal – appear when needed and disappear when not needed. Building on Nissan’s
so-called invisible-to-visible (I2V) technology concept for self-driving cars, we will
explore how the full potential of multisensory XR experiences may be unleashed in
so-called Multiverse cross-reality environments and present our extrasensory per-
ception network (ESPN) for the nonlocal extension of human “sixth-sense” expe-
riences in space and time.

1.5.2 Outline

The remainder of the book comprises the following six chapters:
In Chapter 2, we elaborate on the Tactile Internet and its inherent

human-in-the-loop (HITL) nature of human-to-machine interaction, paying
close attention to the dichotomy between automation and augmentation (i.e.
extension of capabilities) of the human. The Tactile Internet allows for a
human-centric design approach toward creating novel immersive experiences
and extending the capabilities of the human through the Internet by means of
haptic communications and teleoperation. In this chapter, we pay attention to
bilateral teleoperation as an example of HITL-centric applications and present
an in-depth study of haptic traffic characterization and modeling. Specifically,
we develop models of packet interarrival times and three-dimensional sample
autocorrelation based on haptic traces obtained from real-world teleoperation
experiments. Furthermore, we explore how wireless edge intelligence can be
leveraged to help realize immersive teleoperation experiences in mobile networks
that are unified with fiber backhaul and wireless mesh front-end networks
based on low-cost data-centric optical fiber Ethernet, i.e. Ethernet passive optical
network (EPON), and wireless Ethernet, i.e. wireless local area network (WLAN),
technologies.
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In Chapter 3, with the rise of increasingly smarter machines, we explore
coworking with mobile robots – owned by mobile users (i.e. ownership spread-
ing) or the mobile network operator – in greater detail by shedding light on
the coordination of the human–robot symbiosis. A promising approach toward
achieving advanced human–machine coordination by means of a superior process
for fluidly orchestrating human and machine coactivity, which may vary over time
or be unpredictable in different situations, can be found in the still young field of
human-agent-robot-teamwork (HART) research. Toward this end, we investigate
how context-awareness may be used to develop a HART-centric multi-robot
task coordination algorithm that minimizes the completion time of physical and
digital tasks as well as operational expenditures (OPEX) by spreading ownership
of robots across mobile users. In addition, we explore how self-awareness can
be exploited to improve the performance of multiple robots by identifying their
respective capabilities as well as the objective requirements by means of optimal
motion planning to minimize their energy consumption and traverse time to given
physical and/or digital tasks. The proposed context- and self-aware HART-centric
allocation scheme for both physical and digital tasks may be used to coordinate
the automation and augmentation of mutually beneficial human–machine
coactivities across the Tactile Internet based on unified communication network
infrastructures.

In Chapter 4, we delve into the so-called missing middle that refers to the new
ways that have to bridge the gap between human-only and machine-only activi-
ties for creating cutting-edge jobs and innovative businesses. This gives way to the
so-called third wave of business transformation, which will be centered around
human+machine activities. Toward this end, we formulate and solve the problem
of joint prioritized scheduling and assignment of delay-constrained teleoperation
tasks to available skilled human operators across unified communication network
infrastructures with multiple objectives to minimize the average weighted task
completion time, maximum tardiness, and average OPEX per task. We develop
an analytical framework to estimate the end-to-end delay of both local and nonlo-
cal teleoperation across the enhanced mobile networks under consideration and
investigate the coexistence of conventional human-to-human (H2H) and haptic
human-to-machine (H2M) traffic.

In Chapter 5, we explore the beneficial impact of cooperative computation
offloading on the quality of experience (QoE) of mobile users with regard to
average response time between mobile users, MEC servers, and remote cloud.
Specifically, we investigate techniques that enable mobile users in self-organizing
cellular networks to adaptively adjust their computational speed in order to
reduce energy consumption or shorten task execution time under different
scenarios. In our design approach, we take into account limitations stemming
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from both communications and computation by accurately modeling the fron-
thaul/backhaul as well as edge/cloud servers, while paying particular attention
to the offloading decision making between mobile users and edge servers as well
as edge servers and remote cloud. To allow mobile users to flexibly rely on their
local computing resources by means of dynamic reconfiguration, the proposed
self-organization framework lets mobile devices tune their offloading probability
and computational capabilities adaptively, thus giving rise to a Pareto frontier
characterization of the trade-off between average task execution time and energy
consumption.

In Chapter 6, we explore the salient features that set Ethereum aside from other
blockchains in more depth, including their symbiosis with other emerging key
technologies such as AI and robots apart from blockchain-enabled edge com-
puting. A question of particular interest hereby is how decentralized blockchain
mechanisms – most notably Ethereum’s concept of the DAO – may be leveraged
to let emerge new hybrid forms of collaboration among individuals, which
havenot been entertained in the traditional market-oriented economy dominated
by firms rather than individuals. After elaborating on the commonalities of and
specific differences between Ethereum and Bitcoin blockchains, we explain DAO
in more detail and discuss the potential role of Ethereum and in particular the
DAO in helping decentralize the Tactile Internet as a promising example of
future techno-social systems via automation at the center and crowdsourcing of
human assistance at the edges. Further, we explore the possibilities to extend
the smart contract framework of the emerging blockchain Internet of things
(BIoT) for enabling the nudging of human users in a broader Tactile Internet
context by searching for synergies between the aforementioned HART and the
complementary strengths of the DAO, AI, and robots.

Finally, in Chapter 7, we take an outlook on how future profound 6G tech-
nologies will weave themselves into the fabric of everyday life until they are
indistinguishable from it. In our discussion, we show that future fully intercon-
nected VR systems and the Tactile Internet seem to evolve toward common design
goals. Most notably, the boundary between virtual (i.e. online) and physical (i.e.
offline) worlds is to become increasingly imperceptible, while both digital and
physical capabilities of humans are to be extended via edge computing variants
with embedded AI capabilities. More specifically, we elaborate on the far-reaching
vision of future 6G networks ushering in an anticipated 6G post-smartphone
era, where smartphones will be increasingly replaced with wearables (e.g. smart
jackets or voice-controlled glasses/earbuds/rings) and nearables (e.g. intelligent
mobile robots). After explaining the reality–virtuality continuum in more detail,
we introduce the so-called Multiverse to unleash the full potential of advanced XR
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technologies for the extension of human experiences, ranging from conventional
VR to more sophisticated cross-reality environments known as third spaces.
Further, we explore the potential of the recently emerging I2V technology con-
cept, which we use together with other key enabling technologies (AI enhanced
MEC, intelligent mobile robots, blockchain) to tie both online and offline worlds
closer together in order to make the enduser “see the invisible” through the
awareness of nonlocal events in space and time by mimicking the quantum
realm via emerging multisensory XR and extrasensory “sixth-sense” human
experiences.
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2

Immersive Tactile Internet Experiences via Edge
Intelligence

2.1 Introduction

Beside conventional audiovisual and data traffic, the emerging Tactile Inter-
net envisions the real-time transmission of haptic information (i.e. touch and
actuation) for the remote control of physical and/or virtual objects through the
Internet (Simsek et al., 2016). The Tactile Internet holds promise to provide a
paradigm shift in how skills and labor are digitally delivered globally, thereby
converting today’s content-delivery networks into skillset/labor-delivery net-
works (Aijaz et al., 2017). The Tactile Internet is expected to have a profound
socioeconomic impact on a broad array of applications in our everyday life, rang-
ing from industry automation and transport systems to healthcare, telesurgery,
and education. Toward this end, at the core of the design of the Tactile Internet
is realizing the so-called <10 ms-challenge (i.e. achieving a round-trip latency of
<10 ms) with carrier-grade reliability.

The term “Tactile Internet” was first coined by G. P. Fettweis in 2014. In his sem-
inal paper, Fettweis (2014) defined the Tactile Internet as a breakthrough enabling
unprecedented mobile applications for tactile steering and control of real and vir-
tual objects by requiring a round-trip latency of 1–10 ms. Later in 2014, ITU-T
published a Technology Watch Report on the Tactile Internet, which emphasized
that scaling up research in the area of wired and wireless access networks will
be essential, ushering in new ideas and concepts to boost access networks’ redun-
dancy and diversity to meet the stringent latency as well as carrier-grade reliability
requirements of Tactile Internet applications (ITU-T Technology Watch Report,
2014).

Toward 6G: A New Era of Convergence, First Edition. Amin Ebrahimzadeh and Martin Maier.
© 2021 The Institute of Electrical and Electronics Engineers, Inc.
Published 2021 by John Wiley & Sons, Inc.
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To give it a more 5G-centric flavor, the Tactile Internet has been more recently
also referred to as the 5G-enabled Tactile Internet (Aijaz et al., 2017 and Simsek
et al., 2016). Unlike the previous four cellular generations, 5G networks will
lead to an increasing integration of cellular and WiFi technologies and stan-
dards (Andrews et al., 2014). Furthermore, the importance of the so-called
backhaul bottleneck needs to be recognized as well, calling for an end-to-end
design approach leveraging both wireless front-end and wired backhaul tech-
nologies. Or, as eloquently put by J. G. Andrews, the lead author of Andrews
et al. (2014), “placing base stations all over the place is great for providing the
mobile stations high-speed access, but does this not just pass the buck to the base
stations (BSs), which must now somehow get this data to and from the wired core
network?” (Andrews 2013).

This mandatory end-to-end design approach is fully reflected in the key prin-
ciples of the reference architecture within the emerging IEEE P1918.1 standards
working group (formed in March 2016), which aims to define a framework for
the Tactile Internet (Aijaz et al., 2018). Among others, the key principles envision
to (i) develop a generic Tactile Internet reference architecture, (ii) support local
area as well as wide area connectivity through wireless (e.g. cellular, WiFi) or
hybrid wireless/wired networking, and (iii) leverage computing resources from
cloud variants at the edge of the network. The working group defines the Tactile
Internet as follows: “A network, or a network of networks, for remotely accessing,
perceiving, manipulating or controlling real and virtual objects or processes in
perceived real-time.” Some of the key use cases considered in IEEE P1918.1
include teleoperation, haptic communications, immersive virtual reality (VR),
and automotive control.

Clearly, the Tactile Internet opens up a plethora of exciting research directions
toward adding a new dimension to the human-to-machine (H2M) interaction via
the Internet. According to the aforementioned ITU-T Technology Watch Report,
the Tactile Internet is supposed to be the next leap in the evolution of today’s
Internet of thing (IoT), though there is a significant overlap among 5G, IoT, and
the Tactile Internet, as illustrated in Figure 2.1. Despite their differences, all three
share an intersecting set of design goals:

● Very low latency on the order of 1 ms
● Ultrahigh reliability with an almost guaranteed availability of 99.999%
● Human-to-human (H2H)/machine-to-machine (M2M) coexistence
● Integration of data-centric technologies with a particular focus on WiFi
● Security.

For illustration, Figure 2.2 depicts a typical teleoperation system based on bidi-
rectional haptic communications between a human operator (HO) and a teleop-
erator robot (TOR). Note that the number of independent coordinates required to
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5G  

(H2H/MTC,

1000x area capacity,

10 Gb/s peak data rates,

100 billion devices,

economic considerations,

integrative (WiFi/cellular),

decentralization (D2D))

Common features of loT, 5G,

and Tactile Internet:
• Very low latency (1 ms) 

• Ultra-high reliability 

 (99.999% availability) 

• H2H/M2M co-existence 

• Data-centric 

 technologies (WiFi) 

• Security

Tactile Internet

(H2M, tactile/haptic devices)

loT

(M2M, smart devices)

Figure 2.1 The three lenses of 5G, Internet of things (IoT), and the Tactile Internet:
Commonalities and differences. Source: Maier et al. (2016). © 2016 IEEE.
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Figure 2.2 Teleoperation system based on bidirectional haptic communications
between a human operator (HO) and a teleoperator robot (TOR). Source: Maier and
Ebrahimzadeh (2019). © 2019 IEEE.

completely specify and control/steer the position, orientation, and velocity of the
TOR is defined by its degrees-of-freedom (DoF)1. Further, a local human system
interface (HSI) device is used to display haptic interaction with the remote TOR to
the HO. The local control loops on both ends of the teleoperation system ensure
the tracking performance and stability of the HSI and TOR.

1 Currently available teleoperation systems range from 1-DoF to >20-DoF TORs. For instance, a
6-DoF TOR allows for both translational motion (in 3D space) via force and rotational motion
(pitch, yaw, and roll) via torque.
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Maier et al. (2016) elaborated on the subtle differences between the Tactile Inter-
net and the IoT and 5G, which may be best expressed in terms of underlying
communications paradigms and enabling end-devices. Importantly, the Tactile
Internet involves the inherent human-in-the-loop (HITL) nature of H2M inter-
action, as opposed to the emerging IoT without any human involvement in its
underlying M2M communications. While M2M communications is useful for the
automation of industrial and other machine-centric processes, the Tactile Inter-
net will be centered around H2M/robot (R) communication and thus allows for
a human-centric design approach toward creating novel immersive experiences
and extending the capabilities of the human through the Internet, i.e. augmen-
tation rather than automation of the human (Maier et al., 2018), as discussed in
more detail in Section 2.2.

Deep fiber access solutions have been deployed worldwide to push optical fiber
closer to individual homes and businesses and to help realize different flavors of
fiber-to-the-x (FTTx) networks, where x denotes the discontinuity point between
optical fiber and some other wired or wireless transmission medium. Today’s
broadband access networks leverage both optical fiber and wireless technologies
with seamless convergence, giving rise to bimodal fiber-wireless (FiWi) access
networks (Maier and Ghazisaidi, 2018). FiWi access networks combine the
reliability, robustness, and high capacity of optical fiber networks and the flexi-
bility, ubiquity, and cost savings of wireless networks. Fully converged networks,
where different fixed and mobile access technologies can be flexibly selected
while sharing core network functionalities, will be instrumental in realizing 5G
low-latency applications. This is particularly advantageous for those use cases that
do not necessarily require mobility all of the time and thus can be carried out in
fixed broadband network environments (Lema et al., 2017).

Historically, the huge bandwidth potential of optical fiber, which is far in excess
of any other utilized transmission medium, has lured most research efforts into
focusing on the primary goal of continuously increasing the capacity of optical
networks rather than on, for example, lowering their end-to-end latency. This
comes as no surprise, given that a single strand of fiber offers a total bandwidth
of 25 000 GHz, which can be easily tapped into using wavelength division mul-
tiplexing (WDM). To put this potential into perspective, it is worthwhile to note
that it is about 1000 times the entire usable radio frequency (RF) spectrum on
the planet Earth (Green, 2001). As an illustrative example, Figure 2.3 shows the
next-generation passive optical network (NG-PON) roadmap as envisioned back in
2009, where the primary design goal for (r)evolutionary NG-PON1&2 broadband
access networks was the provisioning of ever increasing capacity over time (Kani
et al., 2009). However, this perspective slowly started to change in 2013,2 when

2 OFC/NFOEC workshop on “Post NG-PON2: Is it More About Capacity or Something Else,”
2013.
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Figure 2.3 Next-generation passive optical network (NG-PON) roadmap as of 2009
illustrating the primary goal of continued capacity upgrades in the past. Source: Kani
et al. (2009). © 2009 IEEE.

questions surfaced whether to focus access research efforts on more than just con-
tinued capacity upgrades (Maier, 2014). According to Biermann et al. (2013), one
of the major factors limiting the performance of edge mobile networks is latency.

Passive optical network (PON) technologies are anticipated to accelerate 5G
deployments (Pfeiffer, 2018). One solution to reduce latency in PONs is to modify
the architectural structure of the remote node by adding loop-back fibers to the
passive splitter. In doing so, a local Fx fronthaul (Fx-FH) can be realized for direct
inter-optical network unit (ONU) communications, where ONUs may interface
with their collocated macro and small-cell BSs, thus forming local clusters for
coordinated multipoint (CoMP) transmission in long-term evolution-advanced
(LTE-A) networks. Note that Fx is used to denote various lower-layer split points
along the 5G radio processing chain, as specified by the ITU-T Supplement
G.Sup.5GP (2018). Pfeiffer (2018) also emphasized the importance of end-to-end
coordination of both PON and wireless network resources via a common orches-
trator that runs one or more cooperative dynamic bandwidth allocation (co-DBA)
algorithms in support of emerging 5G low-latency applications. A preliminary
study of a distributed medium access control (MAC) protocol and simple dynamic
bandwidth allocation (DBA) algorithm run by ONUs to support low-latency
communication among BSs across multiple PONs, whose neighboring remote
nodes were interconnected via additional fiber links, was presented by Li and
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Chen (2017). This study exploited PON-based technologies for realizing mobile
backhaul infrastructures. Similarly, in Ranaweera et al. (2013a,b), AT&T reported
on their strategy to leverage existing PON-based fiber-to-the-node (FTTN) resi-
dential access, right of way, and already installed powering facilities to provide
inexpensive small-cell backhaul. Conversely, mobile fronthaul networks, which
interconnect centralized baseband units (BBUs) with remote radio heads (RRHs)
located at cell sites, have been implemented by using digital fiber-optic interfaces
such as the common public radio interface (CPRI) (Kim, 2018). For instance,
China Mobile’s cloud radio access network (C-RAN) is CPRI based and hence
makes use of digital radio-over-fiber (RoF) techniques.

Clearly, one way to realize the common orchestrator is by centralizing all
end-to-end coordination functions in the cloud, giving rise to the widely studied
C-RAN; see, e.g. Velasco et al. (2017), Zhou et al. (2018), and Pérez et al. (2018).
C-RAN is able to achieve significant cost savings by sharing centralized network
resource management units among mobile users (MUs). We revisit C-RAN in
Section 2.4 and elaborate on their pros and cons in light of the emerging concept
of edge computing (Rimal et al., 2017c). Edge computing is a new paradigm in
which computing and storage resources – variously referred to as cloudlets,
micro datacenters, or fog nodes – are placed at the Internet’s edge in proximity
to wireless end devices in order to achieve low end-to-end latency, low jitter, and
scalability (Satyanarayanan 2017).

In this chapter, we pay attention to bilateral teleoperation as an example of HITL
applications and present an in-depth study of haptic traffic characterization and
modeling in terms of packet arrival and sample autocorrelation. We develop new
models of describing packet interarrival times as well as three-dimensional sam-
ple autocorrelation. We then explore how edge intelligence may be leveraged to
help realize an immersive, reliable teleoperation experience over FiWi-based net-
working infrastructures. More specifically, we focus on the communication net-
work in Figure 2.2 and its role in realizing the Tactile Internet vision, thereby
paying particular attention to the unique characteristics of haptic traffic. Accord-
ing to Steinbach et al. (2012), even minor communication-induced time delays and
packet losses may destabilize the haptic communications system. Emphasizing
on its HITL-centric aspect, the Tactile Internet allows for a human-centric design
approach by exploiting the properties of human haptic perception via advanced
perceptual coding techniques in order to substantially reduce the haptic packet
rate, as explained in technically greater detail shortly. The contributions of this
chapter are threefold:

(i) First, we model Tactile Internet traffic by means of extensive haptic
traces, taking TORs with different DoF and perceptual coding into
account. As shown in Figure 2.2, in a typical teleoperation system the
position-orientation/velocity samples are transmitted from the HO through
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the HSI in the command path, whereas the force–torque samples are sent
back to the HO in the feedback path. In teleoperation, haptic feedback
plays a crucial role in providing the HO with transparency, immersion, and
togetherness with the remote environment (Steinbach et al., 2012). Note,
however, that despite growing interest in the Tactile Internet, there is still
limited understanding of the characteristics of real haptic traffic, especially
at the packet level. For simplicity and analytical tractability, Tactile Internet
traffic has been assumed to be Pareto or Poisson distributed in recent studies,
e.g. Wong et al. (2017). Our Tactile Internet traffic models reveal which haptic
packet interarrival time distributions best fit different types of teleoperation
systems, while the assumption of Poisson traffic is found valid only for a very
special case.

(ii) Second, we build on the recently proposed concept of so-called FiWi
enhanced LTE-A heterogeneous networks (HetNets) (Beyranvand et al., 2017),
which were shown to achieve the 5G and Tactile Internet key requirements
of very low latency and ultrahigh reliability by unifying coverage-centric
4G mobile networks and capacity-centric FiWi broadband access networks
based on data-centric Ethernet technologies. By means of probabilistic
analysis and verifying simulations based on recent and comprehensive
smartphone traces, Beyranvand et al. (2017) showed that an average
end-to-end latency of 1 ms can be achieved for a wide range of traffic loads
and that MUs can be provided with highly fault-tolerant FiWi connectivity
for reliable low-latency fiber backhaul sharing and WiFi offloading. Note,
however, that only conventional H2H communications was considered
by Beyranvand et al. (2017). In this chapter, we investigate the coexistence of
MUs and HOs/TORs and explore HITL-centric teleoperation techniques that
achieve the aforementioned Tactile Internet target of 1 ms under different
haptic traffic scenarios.

(iii) Third, for enhanced Tactile Internet reliability performance we present our
proposed edge sample forecast (ESF) module, which is inserted at the edge
of our communication network in close proximity to the HO, as shown in
Figure 2.2. A concept, originally known as mobile edge computing, has been
standardized by ETSI for 5G networks. Note that since September 2016, ETSI
has dropped the “mobile” out of MEC and renamed it multiaccess edge com-
puting (MEC) in order to broaden its applicability to HetNets, including WiFi
and fixed access technologies (e.g. fiber) (Taleb et al., 2017). Our proposed
ESF module leverages MEC servers with embedded artificial intelligence (AI)
capabilities that are placed at the optical-wireless interface of FiWi enhanced
LTE-A HetNets to compensate for delayed haptic samples in the feedback
path by means of multiple-sample-ahead-of-time forecasting. In doing so, the
response time of the HO can be kept small, resulting in a tighter togetherness
with and thereby an improved safety in the remote TOR environment.
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The remainder of the chapter is structured as follows: Section 2.2 sheds some
light on the dichotomy between automation (i.e. replacement of capabilities)
and augmentation (i.e. extension of capabilities) of the human through the
Tactile Internet. Section 2.3 derives Tactile Internet traffic models from haptic
traces by studying teleoperation as an example of an immersive Tactile Internet
experience. Section 2.4 introduces the concept of low-latency FiWi enhanced
LTE-A HetNets using advanced MEC capabilities. In Section 2.6, we propose our
AI-based sample forecasting scheme to help an HO experience an immersive
teleoperation experience. In Section 2.5, we develop our analytical framework to
estimate end-to-end delay in teleoperation over FiWi enhanced mobile networks.
Section 2.7 presents analytical latency results verified by haptic trace driven
simulations. Finally, Section 2.8 concludes the chapter.

2.2 The Tactile Internet: Automation or Augmentation
of the Human?

A new wave of technological change, the wave of computerization, automation,
and robotization, will eliminate not only manual efforts but also more and more
complex mental functions that until recently were carried out by humans, as
already predicted by Wassily Leontief, the 1973 Nobel Laureate in Economics,
(Leontief 1983). Leontief argued that the process by which progressive intro-
duction of new computerized, automated, and robotized equipment can be
expected to reduce the role of human labor is similar to the process by which the
introduction of tractors and other machinery first reduced and then completely
eliminated horses and other draft animals in agriculture. Even if horses were
ready to accept smaller rations of oats or hay per working day, the process of their
gradual elimination would slow down only temporarily. More and more efficient
tractors would come along, and finally, unable to compete with the superior
performance of machines, horses would lose their jobs.

Predictions that automation will make humans redundant have been made
before. President John F. Kennedy declared that the major domestic challenge
of the 1960s was to maintain full employment at a time when automation is
replacing men. In 1964, a group of Nobel laureates, known as the Ad Hoc
Committee on the Triple Revolution, alerted President Lyndon Johnson to the
danger of a revolution triggered by the combination of the computer and the
automated self-regulating machine, threatening to divide society into a skilled
elite and an unskilled underclass. Such doomsday predictions have in common
that they succumb to the so-called lump of labor fallacy,3 assuming that there

3 The Economist, “Automation and anxiety: Will smarter machines cause mass
unemployment?,” June 2016.
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is only a finite amount of work and if some of it is automated then there is less
for humans to do. Conversely, in a more recent study, the McKinsey Global
Institute (2017) comes to the conclusion that automation instead could make
us all more human (rather than redundant) by creating an opportunity to work
more closely with technology, freeing up more time to make use of intrinsically
human capabilities and innate human skills, which will be at a premium as
machines take on ever more of the predictable activities of the workday. Like
past technological changes, robotization can be a very good thing, relieving the
workload of humans while helping overcome many challenges the world faces.
Toward this end, however, spreading ownership of robots and machines across
people whose work they replace will be crucial to mitigate the risk of dividing
societies between the owners of the robots on one side and the workers, who
compete with the robots/machines on the other, and reduce the risk of producing
a new robot-age feudalism with unprecedented social inequality (Freeman, 2016).

At the nexus of computerization, automation, and robotization lies the emerg-
ing Tactile Internet, which will be centered around H2M/R communications by
leveraging devices that enable tactile sensations (Maier et al., 2016). It holds
promise of an Internet that will enable the delivery of skills in digital form
globally (Dohler et al., 2017). The Tactile Internet is expected to cover a wide
range of application fields, including remote healthcare, autonomous/assisted
driving, entertainment, and industry automation. In most of these industry
verticals, very low latency and ultrahigh reliability are key for realizing immersive
applications such as robotic teleoperation. Note, however, that some use cases do
not necessarily require mobility all the time and thus can be carried out in fixed
broadband network environments. Hence, 5G cellular networks need to be fully
converged networks, where different fixed and mobile access technologies can
be flexibly selected while sharing core network functionalities, leading to latency
and reliability improvements (Lema et al., 2017).

In this chapter, we leverage on our recently proposed concept of FiWi enhanced
LTE-A HetNets, which were shown to achieve the 5G and Tactile Internet key
requirements of very low latency on the order of 1 ms and ultra-high reliability by
unifying coverage-centric 4G mobile networks and capacity-centric fiber-wireless
broadband access networks based on low-cost, data-centric Ethernet NG-PON and
Gigabit-class wireless local area network (WLAN) technologies (Beyranvand et al.,
2017). While necessary, the design of reliable low-latency converged communi-
cation network infrastructures is not sufficient to realize the full potential of the
Tactile Internet. In the following, we inquire into possibilities to further extend the
capabilities of FiWi enhanced LTE-A HetNets, paying particular attention to the
aforementioned dichotomy between automation and augmentation (i.e. extension
of capabilities) of the human through the Tactile Internet.
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Toward this end, we let us guide by the following contemporary as well as
early-day Internet visionaries. In The Inevitable, Kevin Kelly argues that in terms
of the Internet, nothing has happened yet (Kelly, 2016). He suggests that if you
want a glimpse of what we humans do when the robots take our current jobs,
look at experiences. Humans excel at creating and consuming experiences. This
is no place for robots. Among other technological forces that will shape our
future, Kelly highlights that cognifying, i.e. embedding AI into an existing process
or inert thing, will be hundreds of times more disruptive to our lives than the
transformations gained by industrialization. Ideally, according to Kelly, the addi-
tional intelligence should be not just cheap, but free, like the free commons of the
web. In Deep Thinking: Where Machine Intelligence Ends and Human Creativity
Begins, Garry Kasparov elaborates on the importance of superior process in
human–machine collaboration, showing that weak human + machine + better
process is superior to strong human + machine + inferior process (Kasparov 2017).
Thus, a clever process beats superior knowledge and superior technology. His
observation received interest by Google and other Silicon Valley companies and
shifted the research focus from AI to intelligence amplification (IA) by using
information technology as an augmentation tool to enhance human decisions
(see, e.g. IBM’s Watson) instead of replacing them with autonomous AI systems.
According to Kasparov, this is not just user experience (UX), but entirely new
ways of bringing human–machine coordination into diverse fields and creating
the new tools we need in order to do so. Interestingly, this approach is fully in
line with the original vision of early Internet pioneers. Back in 1962, Douglas C.
Engelbart developed a detailed, though rudimentary, conceptual framework with
process hierarchies for augmenting the human intellect by increasing via online
assistance the capability of a man to derive solutions to complex problems that
before seemed insoluble (Engelbart, 1962). Earlier, in 1960, Joseph C. R. Licklider
envisioned man-computer symbiosis, a subclass of man–machine systems, to
enable close interaction between man and computer in mutually beneficial
cooperation (Licklider, 1960).

The Tactile Internet sets demanding requirements for future access net-
works in terms of latency, reliability, and also capacity (e.g. high data rates for
video sensors). Wired access networks are partly meeting these requirements
already, but wireless access networks are not yet designed to match these needs.
A round-trip latency of 1–10 ms in conjunction with carrier-grade robustness
and availability will enable the Tactile Internet for steering and control of real
and virtual objects (Fettweis, 2014). Toward this end, the Tactile Internet will
enable haptic communications and provide the medium for transporting touch
and actuation in real time, i.e. the ability to exert haptic control through the
Internet, in addition to nonhaptic control and data such that the end-user will
not be able to tell the difference between controlling a system locally or from
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another location (Van Den Berg et al., 2017). For a comprehensive update on
state-of-the-art haptic interfaces and telepresence systems we refer the interested
reader to Prattichizzo et al. (2018).

The idea of remotely controlling machines via the Internet has been studied
since the late 1990s. Luo et al. (1999) proposed the tele-control of a rapid proto-
typing machine (similar to a 3D printer) via the Internet for the purpose of auto-
mated telemanufacturing. Expanding on the idea to use sophisticated and expen-
sive manufacturing facilities by several users around the world, the teleoperation
issues related to the transmission of haptic information over the Internet were
investigated in greater detail by Elhajj et al. (2001). Although the proposed control
method was able to ensure stability, synchronization, and transparency in teleop-
eration, the reported round-trip time of packets transmitted between HO and TOR
were above 250 ms, thus missing the Tactile Internet target of 1–10 ms.

Advanced cloud robotics and automation systems may be built by connecting
them to the cloud in order to benefit from their networked operation via big
data, cloud computing, collective robot learning, and crowdsourcing capabili-
ties (Kehoe et al., 2015). Here, crowdsourcing is used to tap human skills for
analyzing images and video, classification, learning, and error recovery, i.e.
humans are used to enhance cloud robotics and automation systems. Note that
unlike networked robots, where robots communicate with each other via local
area networks, networked telerobots keep the human in the loop, where robots are
operated remotely by humans via global networks, e.g. the Internet. According
to Kehoe et al. (2015), an important open research challenge in cloud robotics
is the development of new algorithms and methods to cope with time-varying
latency, i.e. jitter. The high requirements of future haptic applications that allow
full immersion demand ultra-reliable and low-latency communications (URLLC).
For a comprehensive and up-to-date survey on methodologies and technologies
for enabling URLLC infrastructures for haptic communications, we refer the
interested reader to Antonakoglou et al. (2018) and the references therein.

Beside the design of URLLC infrastructures underlying the Tactile Internet,
another key challenge little discussed in existent Tactile Internet surveys is how
we can make sure that the potential of the Tactile Internet be unleashed for a
race with (rather than against) machines. The overarching goal of the Tactile
Internet should be the production of new goods and services by means of empow-
ering rather than automating machines that complement humans rather than
substitute for them. The Tactile Internet should amplify the differences between
machines and humans. By building on the areas where machines are strong and
humans are weak, the machines are more likely to complement humans rather
than substitute for them. The value of human inputs will grow, not shrink, as
the power of machines increases (Brynjolfsson and McAfee, 2014). In the future,
coworking with robots will require human expertise in the coordination of the
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human–robot symbiosis. Clearly, while URLCC is necessary to meet the very low
latency and ultrahigh reliability requirements of the Tactile Internet, it does not
address the proper task assignment nor does it provide suitable mechanisms to
orchestrate the mutually beneficial cooperation of humans and machines.

A promising approach toward achieving advanced human–machine coor-
dination by means of a superior process for fluidly orchestrating human and
machine coactivity may be found in the still young field of human-agent-robot
teamwork (HART) research (Bradshaw et al., 2012). Unlike early automation
research, HART goes beyond the singular focus on full autonomy (i.e. complete
independence and self-sufficiency) and cooperative/collaborative autonomy
among autonomous systems themselves, which aim at excluding humans as
potential teammates for the design of human-out-of-the-loop solutions. In HART,
the dynamic allocation of functions and tasks between humans and machines,
which may vary over time or be unpredictable in different situations, plays
a central role. In particular, with the rise of increasingly smarter machines,
the historical humans-are-better-at (HABA)/machines-are-better-at (MABA)
approach to decide which tasks are best performed by people and which by
machines rather than working in concert has become obsolete. To provide a
better understanding of the potential and limitations of current smart machines,
T. H. Davenport and J. Kirby classified in Only Humans Need Apply: Winners
and Losers in the Age of Smart Machines the capabilities of intelligent machines
along two dimensions, namely, their ability to act and their ability to learn, as
illustrated in Table 2.1 (Davenport and Kirby, 2016). In the vertical dimension,
the ability to act involves four task levels, ranging from the most basic tasks (e.g.
analyzing numbers) to performing digital tasks (done by agents) or even physical
tasks (done by robots). In the horizontal dimension, the ability to learn escalates
through four levels, spanning from human-support machines with no inherent
intelligence to machines with context-awareness, learning, or even self-aware
intelligence (to be elaborated on in technically greater detail in Chapter 3). The
upper left of Table 2.1 consists of tasks doable by state-of-the-art machines. The
lower and in particular far right of it is territory not yet conquered by machines.

According to Bradshaw et al. (2012), among other HART research challenges,
the development of capabilities that enable autonomous systems not merely to do
things for people but also to work together with people and other systems repre-
sents an important open issue in order to treat the human as a “member” of a team
of intelligent actors rather than keep viewing him as a conventional “user.”

In the following, after presenting an in-depth study of haptic traffic charac-
terization and modeling, we introduce FiWi-enhanced LTE-A HetNets with
AI-embedded MEC capabilities to achieve both low round-trip latency and low
jitter. To showcase the achievable performance gains, we study the use case
of HART-centric teleoperation via simulation based on haptic Tactile Internet
traffic traces.



Table 2.1 Classification of intelligent machines along two dimensions: Ability to act (vertical) and ability to learn (horizontal).

Task type Human support
Repetitive task
automation

Context-awareness
and learning

Self-aware
intelligence

Analyze numbers Business intelligence, data
visualization, hypothesis-driven
analytics

Operational analytics,
scoring, model management

Machine learning, neural
networks

Not yet

Digest words, images Character and speech recognition Image recognition, machine
vision

Watson, natural language
processing

Not yet

Perform digital tasks
(Admin and decisions)

Business process management Rules engines, robotic process
automation

Not yet Not yet

Perform physical tasks Remote operation Industrial robotics,
collaborative robotics

Fully autonomous robots,
vehicles

Not yet

Source: Maier et al. (2018). © 2018 IEEE.
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2.3 Haptic Traffic Characterization

An interesting example of a Tactile Internet experience that allows for remote
immersion is the HART-centric use case of teleoperation based on haptic commu-
nications. As mentioned earlier, the Tactile Internet envisions the real-time trans-
mission of haptic information for the remote control of physical and/or virtual
objects through the Internet (Antonakoglou et al., 2018). Recall from Section 2.1
that in a typical bilateral teleoperation system, the HO interfaces with the com-
munication network (to be described in greater detail in Section 2.4) via the HSI
device, which is used to display haptic interaction with the remote TOR to the
HO (see Figure 2.4). A perceptual deadband-based (i.e. zero output if changes
in consecutive samples are minimal) data reduction may be deployed as a lossy
compression mechanism by exploiting the fact that human end-users are not able
to discriminate arbitrarily small differences in haptic stimuli. The human per-
ception of haptics can be exploited to reduce the haptic packet rate. Specifically,
the well-known Weber’s law determines the just noticeable difference (JND), i.e.
the minimum change in the magnitude of a stimulus that can be detected by
humans Weber (1978). Weber’s law gives rise to the so-called deadband coding
technique, whereby a haptic sample is transmitted only if its change with respect
to the previously transmitted haptic sample exceeds a given deadband parameter
d ≥ 0 (given in percent) (Steinbach et al., 2012).

In the following, we take a closer look at the specific characteristics of Tactile
Internet traffic by studying the use case of teleoperation. Specifically, we study
two sets of haptic traces obtained from teleoperation experiments involving TORs

Human system interface (HSI)

Human
operator (HO)

Remote task
environment

Teleoperator robot (TOR)

Communication
network

Display Controller
Sensors

Actuators
Perceptual

deadband-based 
data reduction

Robotic arm Controller

Actuators
Sensors

Perceptual
deadband-based
data reduction

Figure 2.4 Teleoperation system based on bidirectional haptic communications
between HO and TOR in a remote task environment. Source: Maier and Ebrahimzadeh
(2019). © 2019 IEEE.
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with different DoF. The two considered teleoperation experiments involve TORs
with 1 and 6 DoF. Furthermore, our haptic traces comprise measurements with
different values of deadband parameter d.

2.3.1 Teleoperation Experiments

2.3.1.1 6-DoF Teleoperation without Deadband Coding
The first set of our traces for a haptics-enabled telesurgery system were provided
by Meli et al. (2017) from the Centre National de la Recherche Scientifique
(CNRS) at IRISA, Rennes, France. Note that telesurgery represents a well-known
type of teleoperation in the healthcare sector. The system consists of a 6-DoF
haptic interface at the HO side, a 6-DoF manipulator, and a six-axes force/torque
sensor at the TOR side. Update samples containing the position and orientation
signals from the HO are transmitted at every refresh time instant. Similarly, the
HO receives force–torque feedback samples from the remote TOR. The local
HO and remote TOR environment were put back-to-back during the experi-
ments, i.e. there were no communication-induced artifacts such as latency. Note
that deadband coding was not applied in this 6-DoF telesurgery experiment,
i.e. d = 0.

2.3.1.2 1-DoF Teleoperation with Deadband Coding
The second set of haptic traces were obtained from the 1-DoF teleoperation
experiments at the Technical University of Munich, Germany (Xu et al., 2016).
Two Phantom Omni4 devices were used as master (i.e. HO) and slave (i.e. TOR)
devices to create a 1-DoF bilateral teleoperation scenario. The communication
channel between HO and TOR was emulated by using a variable queuing system
to generate constant or time-varying delays. The velocity signal at the HO side was
sampled before being transmitted to the TOR, which in turn fed the force signal
back to the HOR. The experiments were run with different deadband values set to
d ∈ {0%, 5%, 10%, 15%, 20%} in both the command and feedback paths.

2.3.1.3 Packetization
Typically, haptic samples are packetized and transmitted immediately once new
sensor readings are available to help minimize the end-to-end delay, implying a
real-time transport protocol (RTP), user datagram protocol (UDP), and Internet
Protocol (IP) header of 12, 8, and 20 bytes, respectively Steinbach et al. (2012).
Additionally, for each DoF, the haptic sample of the aforementioned experimental
sensor readings comprises 8 bytes. Note that NDoF haptic samples are encapsulated

4 Phantom Omni is a widely used HSI device that enables HOs to interact with and manipulate
objects by adding 3D navigation to a broad range of applications, e.g. games, entertainment,
visualization, among others.
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into one RTP/UDP/IP packet, where NDoF denotes the number of DoF in either
experiment (i.e. 6 or 1 in our case). Thus, the packet size is equal to 40 + 8 ⋅ NDoF
bytes.

2.3.2 Packet Interarrival Times

We begin by investigating the packet interarrival times of both teleoperation
traces. For a given deadband parameter d, let 𝜆c(dc) and 𝜆f (df ) denote the mean
packet rate at which packets arrive at the MAC layer of the wireless interface in
the command path and feedback path, respectively. In the following, we discuss
both teleoperation traces separately, first without deadband coding (d = 0) and
then with deadband coding (d > 0).

Note that in our 1-DoF teleoperation traces without deadband coding,
packet interarrival times are deterministic with a constant packet arrival rate
of 𝜆c(dc)|dc=0 = 𝜆f (df )|df =0 = 1000 packets/s in both command and feedback
paths due to the fixed haptic sampling rate of 1 kHz. Conversely, in our 6-DoF
teleoperation traces without any deadband coding, haptic samples are immedi-
ately packetized and transmitted at varying (i.e. nondeterministic) refresh time
instants. In the following, we examine the command and feedback paths of our
6-DoF teleoperation traces separately and try to find the best fitting distribution
for the respective packet interarrival times.

First, let us focus on the position and orientation samples in the command
path (from HO to TOR), which are measured as a triplet and quaternion (i.e.
quadruple) at each refresh time instant, respectively. Let COMDi denote the
resultant position-orientation sample i, which is transmitted as packet in the
command path at time instant T(c)

i . Thus, the corresponding packet interarrival
times I(c)i = T(c)

i − T(c)
i−1, i = 2, 3,…, represent realizations of the random variable

I(c). Figure 2.5a depicts the histogram of the packet interarrival times I(c) in the
command path obtained from the 6-DoF teleoperation traces, with the most
frequent packet interarrival time expectedly being centered at 1 ms due to the
default haptic sampling rate of 1 kHz.

The histogram of the packet interarrival times I(f ) in the feedback path (from
TOR to HO) is shown in Figure 2.5b. Interestingly, the feedback path differs from
the command path in that it exhibits two peaks at approximately 0.75 ms and
another one at 1.25 ms. Upon examining the force/torque traces stemming from
the TOR side, we found that the two peaks exist because the force and torque sen-
sors of the TOR operate at two slightly different sampling rates above and below
1 kHz.

In an effort to find a probability distribution function (PDF) that best fits the
experimental packet interarrival times in Figure 2.5, we considered a variety
of well-known distributions. Our preliminary evaluations narrowed our choice
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Figure 2.5 Histogram of experimental 6-DoF teleoperation packet interarrival times:
(a) command path and (b) feedback path. Source: Maier and Ebrahimzadeh (2019).
© 2019 IEEE.

down to three candidate PDFs, namely, exponential, generalized Pareto (GP), and
gamma distributions. Our method of selecting the best fitting PDF comprised the
following three steps. First, we used the maximum likelihood estimation (MLE)
method to estimate the parameters of each PDF. Second, the estimates of the
first step were verified by computing the complementary cumulative distribution
function (CCDF) FI(c) (𝜁) = P(I(c) > 𝜁). Third, to compare the goodness-of-fit
among the three PDFs under consideration, we used the maximum difference D∗

between the fitted and experimental CCDFs, which is given by

D∗ = sup
𝜁

|F̂I(c) (𝜁) − FI(c) (𝜁)| (2.1)

whereby F̂I(c) (𝜁) denotes the experimental CCDF. The estimated parameters as
well as the calculated D∗ of the fitting PDFs are listed in Table 2.2, where we
observe that the gamma distribution matches the experimental data reasonably
well, as opposed to the exponential and GP distributions. Next, we proceed by
fitting the best PDF to the 6-DoF experimental packet interarrival times in the
feedback path. Similar to the command path, we observe from Table 2.2 that in
the feedback path, the gamma distribution again fits the experimental data best.

Figure 2.6a shows the CCDF of the three fitted PDFs and experimental 6-DoF
teleoperation packet interarrival times in the command path. We observe from the
figure that the gamma distribution matches the experimental data reasonably well,
as opposed to the exponential and GP distributions. Similar to the command path,
we observe from Figure 2.6b and Table 2.2 that for the CCDF in the feedback path,
FI(f ) (𝜁) = P(I(f ) > 𝜁), the gamma distribution again best fits the experimental data.



Table 2.2 Summary of the estimated parameters of fitted PDFs using MLE method.

Exponential

fI(x) =
1
𝝁

e−
x
𝝁 ,

x ≥ 0

Generalized Pareto

fI(x) =
1
𝝈

(
1 + k x − 𝜽

𝝈

)−1− 1
k
,

x ≥ 𝜽

Gamma

fI(x) =
ra

𝚪(a)
xa e−rx

x
,

x ≥ 0

d (%) 𝜇 D∗ k 𝜎 𝜃 D∗ a r D∗

6-DoF (Command path) 0 0.0010 0.47 −0.065 1.0 × 10−3 3.7 × 10−6 0.46 27 27620 0.14
0.05 0.0028 0.23 0.12 2.4 × 10−3 4.7 × 10−6 0.17 1.51 540 0.19
0.10 0.0047 0.16 0.16 3.8 × 10−3 9.6 × 10−6 0.14 1.29 270 0.19
0.20 0.0087 0.18 0.19 6.6 × 10−3 7.15 × 10−6 0.13 0.65 27 0.15

6-DoF (Feedback path) 0 0.001 0.45 −0.064 1.0 × 10−3 2.6 × 10−6 0.45 12 12166 0.10
5 0.0012 0.41 −0.02 1.2 × 10−3 2.8 × 10−6 0.40 4.85 4121 0.19
10 0.0014 0.36 0.05 1.3 × 10−3 4.1 × 10−6 0.37 2.56 1877 0.23
20 0.0017 0.21 0.13 1.3 × 10−3 2.8 × 10−6 0.27 1.54 931 0.31

1-DoF (Command path) 5 0.0022 0.36 0.63 5.7 × 10−4 7.3 × 10−4 0.34 1.46 663 0.38
10 0.0027 0.38 0.81 4.9 × 10−4 7.5 × 10−4 0.34 1.04 386 0.39
15 0.0038 0.41 0.88 7.8 × 10−4 6.4 × 10−4 0.32 0.79 208 0.36

1-DoF (Feedback path) 5 0.0075 0.16 0.46 3.7 × 10−3 5.8 × 10−4 0.10 0.91 120 0.14
10 0.0024 0.20 0.57 11.5 × 10−3 3.4 × 10−4 0.05 0.69 28 0.13
15 0.0036 0.12 0.32 24.2 × 10−3 11.2 × 10−4 0.04 0.91 25 0.10



�

� �

�

2.3 Haptic Traffic Characterization 37

Gamma distribution

100

10–1

10–2

10–3

100

10–1

10–2

10–3

Exponential distribution

GP distribution

Experimental data

0 2
ζ (ms)

F
I(

c)
 (

ζ)

F
I(

f)
 (

ζ)
ζ (ms)

4

(a) (b)

6 0 02 4 6

Gamma distribution

Exponential distribution

GP distribution

Experimental data

Figure 2.6 Complementary cumulative distribution function (CCDF) of fitted probability
distribution functions (PDFs) and experimental 6-DoF teleoperation packet interarrival
times: (a) command path and (b) feedback path. Source: Maier and Ebrahimzadeh (2019).
© 2019 IEEE.

Next, we study the 1-DoF teleoperation experiment, which included deadband
coding unlike its 6-DoF counterpart. For fair comparison of the two sets of haptic
traces, we postprocessed the original 6-DoF traces and applied deadband coding
for a variety of different deadband parameter values in the command path (dc)
and feedback path (df ), as explained in the following. To begin with, we model the
position signal with a 3D vector-valued function of time denoted by p(t). Further,
let o(t) denote the orientation signal, which is modeled by a quaternion.5 Similar to
the position signal in the command path, we model the force and torque signals in
the feedback path by 3D vector-valued function f(t) and t(t), respectively. We apply
the deadband coding as follows. In the command path of 6-DoF teleoperation, with
deadband coding, a position-orientation sample comd(t) is transmitted only if the
proportional change with respect to the previously transmitted sample COMDi−1
exceeds a given dc, i.e. COMDi = comd(t) only if

max {Δp,Δo} > dc

where Δp = ∥p(t)−pi−1∥
∥pi−1∥

and Δo = max {Δv̂,Δ�̂�}, whereby Δv̂ =
∥v̂(t)−v̂i−1∥

∥v̂i−1∥
and Δ�̂� =

∥�̂�(t)−�̂�i−1∥
∥�̂�i−1∥

. Note that ∥ ⋅ ∥ denotes the Euclidean norm function. In the feedback

5 Quaternion representation of orientation is characterized by v̂ = (v̂x , v̂y, v̂z) and �̂�, where �̂� is
the angle of rotation and v̂ is the unit vector about which rotation is performed, i.e. the axis of
rotation.
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Figure 2.7 Mean packet rate (in packets/s) vs. d for 6-DoF teleoperation: (a) command
path and (b) feedback path. Source: Based on Maier and Ebrahimzadeh (2019).
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path of 6-DoF teleoperation, an update force–torque sample is transmitted, only if
max {Δf ,Δt} > df , where Δf =

∥f(t)−fi−1∥
∥fi−1∥

and Δt =
∥t(t)−ti−1∥

∥ti−1∥
.

Figure 2.7 illustrates the beneficial impact of deadband coding on reducing
the haptic packet rate in the feedback path and in particular the command path.
More specifically, note that in the command path, a deadband parameter of only
dc = 0.02% decreases the mean packet rate 𝜆c(dc) to roughly 600 packets/s, trans-
lating into a haptic packet rate reduction of 39.5% compared to the case without
deadband coding (i.e. dc = 0). As shown in Figure 2.7a, 𝜆c(dc) further decreases
for increasing dc and levels off for dc > 0.1%. We observe from Figure 2.7b
that deadband coding is less effective in the feedback path, where a deadband
parameter of as high as df = 20% (compared to dc = 0.02% above) is needed to
reduce the mean packet rate 𝜆f (df ) to roughly 600 packets/s.

We again determined the best fitting PDFs for the packet interarrival times
with the different deadband parameter values by following the same approach
as described above. Table 2.2 comprehensively summarizes our findings on
the different best fitting packet interarrival time distributions for command and
feedback paths with and without deadband coding in both teleoperation scenarios
under consideration. Note that in Table 2.2, the goodness-of-fit of the best fitting
PDF for each teleoperation scenario is shown in bold.

For completeness, Figure 2.8 comprehensively summarizes our findings on
the different best fitting packet interarrival time distributions for command
and feedback paths with and without deadband coding in both teleoperation
scenarios. We observe that in general, command and feedback paths can be jointly
modeled by the GP, gamma, or deterministic packet interarrival time distribution,
depending on the given value of deadband parameters dc and df , as shown in
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Figure 2.8 Summary of best fitting packet interarrival time distributions for command
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Figure 2.8. Importantly, our haptic trace analysis indicates that the assumption
made in recent studies that Tactile Internet traffic is Pareto distributed and is
not valid for the analyzed traffic. Furthermore, the assumption of Poisson traffic
(e.g. (Wong et al., 2017)) with exponentially distributed packet interarrival times
was found valid only for 6-DoF teleoperation in the feedback path with deadband
parameter values of df ≥ 15%. We note that our trace analysis provides important
yet preliminary insights into the statistics of Tactile Internet traffic. Clearly, a
more systematic approach looking at additional haptic traces of different types
of teleoperation experiments will be instrumental in accurately validating the
packet interarrival time distributions reported above.

2.3.3 Sample Autocorrelation

After modeling haptic traffic arrival, we take a closer look at our available traces in
the feedback path to identify possible correlation patterns in haptic samples. Such
correlation patterns can be useful in developing sample forecasting techniques,
leveraging AI capabilities at the network edge to compensate for delayed feedback
samples by making accurate forecasts (Maier and Ebrahimzadeh, 2019), to be dis-
cussed in technically great detail later on. In the following, we are going to answer
the following questions: (i) how deep are the feedback samples correlated with
their own lagged samples? and (ii) what is the impact of deadband coding on the
autocorrelation of the feedback samples?

To answer these questions, we devise the autocorrelation function. We note,
however, that haptic packets transmitted in a typical teleoperation system con-
tain the samples taken from continuous signals, which are either 1D (i.e. force
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signal in 1-DoF teleoperation) or 3D (i.e. force/torque signal in 6-DoF teleoper-
ation) vector-valued functions of time. Unlike 1D signals, estimating the auto-
correlation function of a multidimensional vector-valued function is not straight-
forward. We thus present our method of estimating autocorrelation function of
a given multidimensional discrete vector-valued function. For the sake of argu-
ment, let us consider x(t) as a 3D vector-valued function evaluated at time t, which
is characterized by x(t) = x1(t)i + x2(t)j + x3(t)k, where x1(t), x2(t), and x3(t) are
the corresponding x−, y−, and z−coordinates of x(t), respectively. Note that i, j,
and k are unit vectors representing the axes of the Cartesian coordinate system.
We estimate the sample mean x ∈ ℝ3 of a given vector-valued function x(t) by
1

Ns

∑Ns
i=1 x(iTs), where Ns and Ts denote the total number of samples and inter-

sample time, respectively. We then estimate the sample variance 𝜎2
x ∈ ℝ+ ∪ {0} by

1
Ns−1

∑Ns
i=1 ∥ x(iTs) − x ∥2, which can be generalized to estimate the autocorrelation

function R̂x(h) by C(h)∕𝜎2
x , where C(h), ∀h ≪ Ns, is given by

C(h) = 1
Ns − 1

Ns−h∑
i=1

≪ (x(iTs) − x) ⋅ (x((i + h)Ts) − x) ≫ (2.2)

where ≪ ⋅ ≫ denotes the inner product.6
Figure 2.9 depicts the autocorrelation function of the force/torque feedback

samples of both available sets of traces for different teleoperation scenarios
with and without deadband coding. To cope with irregular sampling intervals,
which occur after performing deadband coding, we have used a zero-order hold
interpolator at the rate of 1 kHz. We observe that the force/torque samples
represent a quite deep correlation with their own lagged samples. Let correlation
depth h∗

𝛼 denote the maximum time lag such that, for h < h∗
𝛼 , force/torque

sample autocorrelation R̂(h) is greater than 𝛼%. Note that deadband coding, in
general, decreases the autocorrelation of feedback samples for a given time lag
h, thus decreasing the correlation depth, see Figure 2.9a–c. For instance, the
force feedback signal in 6-DoF teleoperation without deadband coding exhibits a
correlation depth h∗

90% of 202. Deadband coding, in turn, reduces the correlation
depth to 142, 116, and 98 for d = 5%, d = 10%, and d = 15%, respectively. Further,
we find that the torque samples show a slightly higher autocorrelation compared
with that of the force samples in 6-DoF teleoperation. Also note that the 1-DoF
force samples with deadband coding are associated with less autocorrelation,
compared to the 6-DoF force samples. This is mainly due to the fact that in
6-DoF teleoperation, 3D force samples are transmitted, as opposed to 1-DoF

6 Note that our defined autocorrelation function is based on the notion of the inner product of
vectors x𝟏 and x𝟐, which is given by ∥ x𝟏 ∥ ⋅ ∥ x𝟐 ∥ ⋅ cos 𝜃, where 𝜃 is the angle between x𝟏 and
x𝟐 in a multidimensional space. As 𝜃 deviates from zero, the two vectors are less correlated and
vice versa.
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Figure 2.9 Estimation of the autocorrelation of the haptic samples in the feedback path
of 1- and 6-DoF teleoperation: (a) force samples in 6-DoF teleoperation, (b) torque
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Based on Maier and Ebrahimzadeh (2019).

teleoperation, where only one dimensional force samples are fed back, thus being
more susceptible to deadband coding.

2.4 FiWi Access Networks: Revisited for Clouds
and Cloudlets

DBA is one of the contributing factors to latency in FiWi access networks, thus it is
important to understand how the edge architecture with its associated MAC pro-
tocol(s) affects the overall DBA strategy. Decentralized DBA is preferred in order to
eliminate the delays inherent with a centralized scheme. This is especially critical
for the latency-driven applications of the Tactile Internet.

Recently, Hossain et al. (2017) provided a preliminary study of the shortcomings
of centralized optical line terminal (OLT)-based DBA algorithms in FiWi access
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networks consisting of a conventional time division multiplexing (TDM) PON
with a passive power splitter at the remote node and BSs connected to ONUs.
Each BS was assumed to wirelessly exchange its queue information with other BSs
in an attempt to build and maintain global knowledge among all BSs and thereby
facilitate the use of a distributed DBA algorithm among all ONU-BSs. In doing so,
the OLT was exempt from the upstream bandwidth allocation process, thus avoid-
ing the detrimental impact of PON propagation delays in traditional centralized
DBA algorithms. Despite the reported queuing delay performance improvements
over the well-known centralized DBA algorithm interleaved polling with adaptive
cycle time (IPACT), the wireless exchange of periodic control messages among
all BSs may not be scalable in the wireless front-end. Furthermore, subscribers
may access the wireless medium without the network assistance of BSs in a truly
distributed manner, as explained in the two architectures described next.

2.4.1 FiWi: EPON and WLAN

Although a few FiWi architectural studies exist on the integration of PON with
long-term evolution (LTE) or WiMAX wireless front-end networks, the vast major-
ity of studies consider FiWi access networks consisting of a conventional IEEE
802.3ah Ethernet passive optical network (EPON) fiber backhaul and an IEEE
802.11b/g/n/s WLAN mesh front-end, which may be further upgraded by lever-
aging NG-PONs, notably 10+ Gb/s TDM/WDM PONs, and Gigabit-class IEEE
802.11ac very high throughput (VHT) WLAN technologies (Aurzada et al., 2014).
Thus, most FiWi access networks rely on low-cost data-centric optical fiber Ether-
net (EPON) and wireless Ethernet (WLAN) technologies, which provide a couple
of important benefits. First, economic considerations are expected to play an even
more critical role in 5G networks than in the previous four generations. Second,
today’s service providers have to cope with an unprecedented growth of mobile
data traffic worldwide. Complementing 4G LTE-A HetNets with already widely
deployed WiFi access points represents a key aspect of the strategy of today’s
operators to offload mobile data traffic from their cellular networks, a technique
known as WiFi offloading. FiWi access networks with a WLAN-based front-end
represent a promising approach to realize WiFi offloading in a cost-efficient
manner.

Now, it is important to understand that, unlike LTE, WLANs use a distributed
MAC protocol for arbitrating access to the wireless medium among stations.
Specifically, the so-called distributed coordination function (DCF) typically
deployed in WLANs may suffer from a seriously deteriorated throughput perfor-
mance due to the propagation delay of the fiber backhaul. To see this, note that in
WLANs a wireless source station starts a timer after each frame transmission and
waits for the acknowledgment (ACK) from the wireless destination station. If the
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source station does not receive the ACK before the ACK timeout, it will resend
the frame for a certain number of retransmission attempts. Clearly, one solution
to compensate for the fiber propagation delay is to increase the ACK timeout.
Note, however, that in DCF the ACK timeout must not exceed the DCFinterframe
space (DIFS), which prevents other stations from accessing the wireless medium,
thus avoiding collision with the ACK frame (in IEEE 802.11 WLAN specifications
DIFS is set to 50 μs). Due to the ACK timeout, backhaul fiber can be deployed
in WLAN-based FiWi networks only up to a maximum length. For instance, in
a standard IEEE 802.11b WLAN network with a default ACK timeout value of
20 μs, the backhaul fiber length must be less than 1948 meters to ensure the
proper operation of DCF.

Clearly, the aforementioned limitations of WLAN-based FiWi access networks
can be avoided by controlling access to the optical fiber and wireless media
separately from each other, giving rise to so-called “radio-and-fiber” (R&F)
networks (Maier et al., 2008). R&F-based FiWi access networks may deploy a
number of enabling optical and wireless technologies, including tunable lasers
and receivers, colorless ONUs, as well as burst-mode laser drivers and receivers.
In RoF networks, optical fiber is used as an analog or digital transmission
medium between a central station and one or more remote antenna units with
the central station in charge of controlling access to both optical and wireless
media. In contrast, in R&F networks, access to the optical and wireless media
is controlled separately by using in general two different MAC protocols in
the optical and wireless media, with protocol translation taking place at their
optical-wireless interface. As a consequence, wireless MAC frames do not have to
travel along the backhaul fiber to be processed at any central control station, but
simply traverse their associated access point and remain in the WLAN. Access
control is done locally inside the WLAN in a fully decentralized fashion, thus
avoiding the negative impact of fiber propagation delay. Note that in doing so,
WLAN-based FiWi access networks of extended coverage can be built without
imposing stringent limits on the length of the fiber backhaul. Recall that this
holds only for distributed MAC protocols such as DCF, but not for MAC protocols
that deploy centralized polling and scheduling such as EPON and LTE. Thus, in a
typical R&F-based FiWi access network consisting of a cascaded EPON backhaul
and WLAN front-end for WiFi offloading, the end-to-end coordination of both
fiber and wireless network resources may be done by a co-DBA algorithm that
uses the centralized IEEE 802.3ah multipoint control protocol (MPCP) for EPON
and the decentralized DCF for WiFi, with MAC protocol translation taking place
at the optical-wireless interface. Note that the decentralized nature of WLAN’s
access protocol DCF is instrumental in realizing low-latency FiWi enhanced
LTE-A HetNets, as explained in more detail in the subsequent section.
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Figure 2.10 Hierarchical frame aggregation involving different aggregation layers
(L0-L4) across Ethernet PON (EPON) backhaul and wireless local area network (WLAN)
mesh front-end. Source: Adapted from Ghazisaidi and Maier (2011).

Next, let us consider an illustrative example to better understand the opera-
tion of co-DBA in FiWi access networks. A major MAC enhancement technique
of next-generation WLANs is frame aggregation, which groups multiple wireless
MAC frames into a single aggregate MAC protocol or service data unit for wireless
transmission. In Ghazisaidi and Maier (2011), the benefits of co-DBA were demon-
strated by extending advanced frame aggregation techniques to EPON and their
integrated operation across both optical and wireless segments. The proposed hier-
archical frame aggregation techniques involve different aggregation layer, ranging
from hop-by-hop to end-to-end aggregation of traffic between the OLT and wire-
less stations, and help improve the throughput-delay performance of R&F-based
FiWi access networks for voice, video, and data traffic. For illustration, Figure 2.10
depicts a FiWi access network consisting of a cascaded EPON backhaul and a
WLAN-based mesh front-end. The wireless mesh front-end comprises mesh por-
tal points (MPPs) collocated with ONUs, intermediate mesh points (MPs), and
mesh access points (MAPs), each serving associated wireless stations (STAs). The
five different aggregation layers (L0–L4), shown in the upper part of Figure 2.10,
illustrate the possible operation modes of the co-DBA algorithm. Specifically, L0
applies frame aggregation only for traffic between the OLT and ONU-MPPs (as
well as conventional ONUs without wireless extension), i.e. frame aggregation is
used in the optical network segment separately from the wireless network seg-
ment. The remaining four aggregation layers (L1–L4) apply frame aggregation
across the optical-wireless interface, thereby allowing for joint frame aggregation
in both optical and wireless network segments, ranging from wireless single-hop
MPs to all wireless multi-hop MPs, MAPs, and STAs in an end-to-end fashion.



�

� �

�

2.4 FiWi Access Networks: Revisited for Clouds and Cloudlets 45

2.4.2 C-RAN: Cloud vs. Cloudlet

In Maier and Rimal (2015), we studied FiWi access networks in the context
of both conventional clouds and emerging cloudlets, paying particular attention
to the difference between R&F and traditional RoF networks. RoF networks
were used in, for example, China Mobile’s C-RAN, which relies on a centralized
cloud infrastructure and moves BBUs away from RRHs, intentionally rendering
the RRHs as simple as possible without any processing and storage capabilities.
Conversely, beside MAC protocol translation, the distributed processing and stor-
age capabilities inherently built into R&F networks may be exploited for realizing
a number of additional network functions. Therefore, Maier and Rimal (2015),
we argued that R&F-based FiWi access networks may become the solution
of choice in light of the aforementioned trends of 5G mobile networks toward
decentralization based on cloudlets and MEC. For completeness, however, we
note that R&F and RoF technologies may be also used jointly for providing
multitier cloud computing services, which accommodate both central cloud
(e.g. C-RAN) and decentralized edge computing services over the same network
infrastructure. For further details on multitier cloud computing in FiWi-enhanced
mobile networks, the interested reader is referred to Rimal et al. (2017a,b, 2018).

2.4.3 Low-Latency FiWi Enhanced LTE-A HetNets

Recall from Section 2.1 that FiWi access networks provide a promising approach
to offload mobile data from cellular networks by means of WiFi offloading. Recent
backhaul-aware 4G studies have begun to investigate the performance-limiting
impact of backhaul links in small-cell networks, though most of them did not take
fiber link failures into account and assumed the reliability of the backhaul to be
ideal (i.e. offering an availability of ∽100%).

To meet the URLLC requirements of 5G networks, Beyranvand et al.
(2017) recently explored the performance gains obtained from enhancing
coverage-centric 4G LTE-A HetNets with capacity-centric FiWi access networks
based on low-cost, data-centric Ethernet NG-PON and Gigabit-class WLAN tech-
nologies. Clearly, by unifying LTE-A HetNets and FiWi access networks, low-cost
high-speed mobile data offloading is achievable via high-capacity fiber backhaul
(e.g. IEEE 802.3av 10G-EPON) and Gigabit-class WLAN that has been able to
consistently provide data rates 100 times higher than cellular networks (Fettweis
and Alamouti, 2014), thus helping reach the envisioned thousandfold gains in
area capacity and 10 Gb/s peak data rates of 5G. In the following, we extend
the concept of FiWi-enhanced LTE-A HetNets in order to enable both local and
nonlocal teleoperation by exploiting AI-enhanced MEC capabilities. Note that
neither teleoperation nor edge intelligence were addressed by Beyranvand et al.
(2017).
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Figure 2.11 Local and non-local teleoperation in fiber-wireless (FiWi)
enhanced-LTE-Advanced (LTE-A) Heterogenous Networks (HetNets) with artificial
intelligence (AI)-enhanced multi-access edge computing (MEC) capabilities. Source:
Maier and Ebrahimzadeh (2019). © 2019 IEEE.

Figure 2.11 depicts the generic network architecture of FiWi-enhanced
LTE-A HetNets. The fiber backhaul consists of a TDM/WDM IEEE 802.3ah/av
1/10 Gb/s EPON with a typical fiber range of 20 km between the central
OLT and remote ONUs. The EPON may comprise multiple stages, each stage
separated by a wavelength-broadcasting splitter/combiner or wavelength multi-
plexer/demultiplexer. There are three different subsets of ONUs. An ONU may
either serve fixed (wired) subscribers. Alternatively, an ONU may connect to
either a cellular network BS or an IEEE 802.11n/ac/s WLAN MPP, giving rise to
a collocated ONU-BS or ONU-MPP, respectively. Depending on current location
and trajectory, a MU may communicate through the cellular network and/or
WLAN mesh front-end, which consists of ONU-MPPs, intermediate MPs, and
MAPs. Note that connecting these three different sets of ONUs via a common
shared EPON fiber backhaul infrastructure helps achieve the important goal of
fixed-mobile convergence gain of today’s network operator strategy.

Beyranvand et al. (2017) proposed various advanced fiber-lean backhaul
redundancy strategies (not shown in Figure 2.11), which can be used to realize
a local Fx-FH with direct inter-ONU communication. Specifically, the following
three strategies can be considered: (i) interconnection fiber links between pairs
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of neighboring ONUs, (ii) small-scale fiber protection rings among multiple
nearby ONUs, and (iii) wireless bypassing of backhaul fiber faults via the WLAN
front-end. The results showed that the localized protection techniques proposed
in Beyranvand et al. (2017) are instrumental in providing fixed wired and MUs
with highly fault-tolerant FiWi connectivity. Fx-FH solutions also help reduce
latency by forming local clusters of ONUs as well as ONU-MPPs, thereby increas-
ing the diversity of network connections. The analytical results verified by recent
comprehensive smartphone traces showed that the presented interconnection
fiber, fiber protection ring, and wireless protection techniques are able to keep the
FiWi connectivity probability of MUs essentially flat for a wide range of EPON
fiber-link failure probabilities while decreasing the average end-to-end delay to
1 ms for a wide range of traffic loads.

To better understand the reason behind the low delay performance of
FiWi-enhanced LTE-A HetNets, we note that LTE systems themselves cannot
guarantee low latency due to the fact that the transmission time interval is 1 ms.
Thus, both uplink and downlink transmissions take at least 1 ms, translating into
an end-to-end delay being lower bounded by 2 ms. In real-world deployment
scenarios, the latency in LTE networks may increase by an order of magnitude. On
the other hand, low-latency WiFi technology can bring 5G level of service today
if the network is properly set up to mitigate interference, given that distributed
DCF per se does not impose inherent latency limitations in that it allows users
to immediately access (after a short DIFS of 50 μs) the idle wireless channel in a
decentralized manner.7

In this chapter, unlike Beyranvand et al. (2017) which studied only conven-
tional H2H communication between MUs, we investigate the potential and lim-
its of coexistent teleoperation in FiWi-enhanced LTE-A HetNets. Given the typi-
cal WiFi-only operation of state-of-the-art robots (Maier et al., 2016), HOs and
TORs are assumed to communicate only via WLAN, as opposed to MUs who use
dual-mode 4G/WiFi smartphones. Teleoperation is done either locally or nonlo-
cally, depending on the proximity of the involved HO and TOR, as illustrated in
Figure 2.11. In local teleoperation, the HO and corresponding TOR are associated
with the same MAP and exchange their command and feedback samples through
this MAP without traversing the fiber backhaul. Conversely, if HO and TOR are
associated with different MAPs, nonlocal teleoperation is generally done by com-
municating via the backhaul EPON and central OLT. For simplicity, in this work,
we focus on the generic network architecture of FiWi enhanced LTE-A HetNets,
shown in Figure 2.11, without leveraging direct inter-ONU communication.

7 Aptilo Networks, “Why wait for 5G? Carrier Wi-Fi is here today,” 22 December 2016. Online:
www.wifinowevents.com
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2.5 Delay Analysis

In this section, we develop our analytical framework to compute the average
end-to-end delay and its distribution for local and nonlocal teleoperation with
coexistent H2H traffic.

2.5.1 Assumptions

In our analysis, we make the following assumptions:
• Single-hop WLAN: MUs, HOs, and TORs are directly associated with an

ONU-AP via a wireless single hop, whereby ONU-MPPs serve as ONU-APs (i.e.
no MPs).
• WiFi channel access: Similar to Beyranvand et al. (2017), Kafaie et al. (2018),

Medepalli and Tobagi (2006), Zhu et al. (2012), Liu et al. (2013), Han et al. (2006),
Pham et al. (2005), and Aurzada et al. (2014), the WiFi channel access time gov-
erned by the IEEE 802.11 DCF is assumed to be exponentially distributed. This
is justified by the DCF channel access mechanism, which includes carrier sens-
ing, binary exponential back-off(s), and reattempts (if any) due to collisions and
erroneous transmissions.
• WiFi connectivity and WiFi offloading: The WiFi connection and interconnec-

tion times of MUs are assumed to fit a truncated Pareto distribution, as validated
via recent smartphone traces by Beyranvand et al. (2017). The probability PMU

temporal

that an MU is temporarily connected to an ONU-AP is estimated as Ton∕(Ton +
Toff), whereby Ton and Toff denote the average WiFi connection and interconnec-
tion time, respectively. In this chapter, we assume that Ton ≫ Toff based on the fact
that the recent smartphone traces reported in by Beyranvand et al. (2017) indicate
that the ratio Ton∕(Ton + Toff) has been constantly increasing. Hence, we assume
that PMU

temporal ≈ 1 for MUs as well as HOs and TORs. Further, we assume that MUs
offload their mobile traffic onto WiFi within the coverage area of an ONU-AP.
• Traffic model: MUs generate background Poisson traffic at mean packet rate

𝜆BKGD (in packets/s). Background traffic coming from ONUs with attached fixed
(wired) subscribers is set to 𝛼PON ⋅ 𝜆BKGD, where 𝛼PON ≥ 1 is a traffic scaling fac-
tor for fixed subscribers that are directly connected to the backhaul EPON. Note
that HOs and TORs generate traffic according to the different best fitting packet
interarrival time distributions in Figure 2.8.

2.5.2 Local Teleoperation

For notational convenience, let us use the term “WiFi user” for all MUs, HOs,
and TORs within the coverage area of an ONU-AP. We model each WiFi user as
a GI/M/1 queue to account for the different packet interarrival time distributions



�

� �

�

2.5 Delay Analysis 49

under consideration. Let random variable D denote the delay experienced by any
packet generated by a WiFi user, where D comprises queuing delay DQ and service
time DS.

Suppose that packets arrive at rate 𝜆 at time instants T1,T2,…, and assume that
the interarrival times Tk+1 − Tk, k = 0, 1,…, are mutually independent, identically
distributed random variables with distribution function G(t) = P(Tk+1 − Tk ≤ t).
Let Nk denote the number of packets in the system (i.e. queue and server) just
prior to the arrival of packet k. By applying the theorem of total probability, we
have

P(Nk+1 = j) =
∞∑

i=0
P(Nk+1 = j ∣Nk = i )P(Nk = i), j = 0, 1, 2,… ,

k = 0, 1, 2,…
(2.3)

We define 𝜋j as the probability that an arriving packet finds j packets in the system.
A unique stationary distribution 𝜋j = limk→∞P(Nk = j), j = 0, 1, 2,…, exists if and
only if 𝜌 = 𝜆

𝜇
< 1, where 𝜇 denotes the service rate, which is equal to 1∕𝔼[DS]. By

taking limits on both sides of Eq. (2.3), we obtain

𝜋j =
∞∑

i=0
pij𝜋i; j = 0, 1, 2,… (2.4)

where pij = P(Nk+1 = j ∣ Nk = i ) represent the state transition probabilities and∑∞
j=0 𝜋j = 1. Clearly, we have pij = 0, ∀j > i + 1, because an arriving packet can find

at most one more packet in the system than was found by the preceding packet.
The remaining state transition probabilities can be computed by considering the
following three cases:

Case 1: The server is busy between Tk and Tk+1, i.e. i ≥ 0 and 1 ≤ j ≤ i + 1. The
probability that arriving packet k + 1 finds exactly j packets, given that the preced-
ing packet k found i packets, is equal to the probability that exactly i + 1 − j packets
depart during interarrival time x. Thus, we have

P(Nk+1 = j ∣Nk = i,Tk+1 − Tk = x) = (𝜇x)i+1−j

(i + 1 − j)!
e−𝜇x, i ≥ 0, 1 ≤ j ≤ i + 1

(2.5)

Using interarrival time distribution function G(x), we obtain

pij = ∫
∞

0

(𝜇x)i+1−j

(i + 1 − j)!
e−𝜇xdG(x), i ≥ 0, 1 ≤ j ≤ i + 1 (2.6)

Case 2: The server becomes idle between two consecutive arrivals and arriv-
ing packet k + 1 and preceding packet k find the system empty, i.e. i = j = 0. This
occurs if the service time of packet k is smaller than Tk+1 − Tk. Hence, we have

p00 = ∫
∞

0
(1 − e−𝜇x)dG(x) (2.7)
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Case 3: This case is like case 2 except that preceding packet k found i ≥ 1 packets.
The time y, Tk < y < Tk+1, until (i + 1 − s)th service completion leaving one packet
in the system has an Erlang distribution with density function f (y) = (𝜇y )i−s

(i−s)!
e−𝜇y𝜇.

For y < x, the probability of service completion during the remaining interarrival
time interval of length x − y equals 1 − e−𝜇(x−y). Thus, we have

pi0 = ∫
∞

0 ∫
x

0
(1 − e−𝜇(x−y))

(𝜇y )i−1

(i − 1)!
e−𝜇y𝜇dydG(x), i = 1, 2,… (2.8)

Lemma 2.1: The stationary state probabilities 𝜋j have a geometric distribution
given by

𝜋j = (1 − 𝜔 )𝜔j (2.9)

Proof: Let us consider the equilibrium probability state equations in Eq. (2.4) for
j ≥ 1. Substituting Eqs. (2.6) and (2.9) into Eq. (2.4) yields 𝜔 = ∫ ∞

0 e−(1−𝜔)𝜇x dG(x),
which can be rewritten as

𝜔 = Φ(z)∣z=(1−𝜔)𝜇 (2.10)

where Φ(z) is the Laplace–Stieltjes transform of G(x). The equation has a unique
root in (0, 1) if the queue is stable, i.e. 𝜌 < 𝜆∕𝜇. Substituting Eqs. (2.7)–(2.9) into
Eq. (2.4) verifies Eq. (2.9) for j = 0.

Next, we compute the distribution of DQ. Given N packets currently in the sys-
tem, the probability P(DQ > t) is equal to

∑∞
i=1 𝜋iP(DQ > t ∣ N = i), which can be

rewritten as
∞∑

j=0
(1 − 𝜔)𝜔j+1P(DQ > t ∣ N = j + 1)

The probability that a packet waits for longer than t in the queue given that
N = j + 1 is equivalent to the probability that the number of departures during
time interval t is smaller than or equal to j, which is given by

P(DQ > t ∣ N = j + 1) =
j∑

i=0

(𝜇t)i

i!
e−𝜇t (2.11)

Thus, we have

P(DQ > t) = (1 − 𝜔)𝜔
∞∑

j=0
𝜔j

j∑
i=0

(𝜇t)i

i!
e−𝜇t (2.12)

which reduces to P(DQ > t) = 𝜔e−(1−𝜔)𝜇t. The cumulative distribution function
(CDF) of DQ is then given by

FDQ
(t) = P(DQ ≤ t) = 1 − 𝜔e−(1−𝜔)𝜇t (2.13)
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Next, let us consider DS, whose CDF is given by

FDS
(t) = P(DS ≤ t) = 1 − e−𝜇t (2.14)

To compute the service rate 𝜇 in Eq. (2.14), we define the two-dimensional Markov
process (s(t), b(t)) shown in Figure 2.12 under unsaturated non-Poisson traffic con-
ditions and estimate the average service time 𝔼(DS) in a WLAN using the IEEE
802.11 DCF for access control, whereby b(t) and s(t) denote the random backoff
counter and size of contention window at time t, respectively. Let Pf and Wi denote
the probability of a failed transmission attempt (i.e. collision or erroneous trans-
mission) and contention window size at the back-off stage i, respectively. Note that
the back-off stage i is incremented after each failed attempt up to the maximum
value m, while the contention window is doubled at each stage, i.e. Wi = 2iW0.

A WiFi user is in idle state if (i) a successfully transmitted packet leaves the sys-
tem without any waiting packet in the queue and (ii) no packet arrives during the
current time slot given that the user was in idle state in the preceding time slot. We
note that for non-Poisson arrival, these two events are not identical and should be
calculated separately. Define 𝜋∗

j and �̂�j as the probability that a departing packet
leaves j packets in the queue (i.e. from the viewpoint of the departing packet), and
the fraction of time during which j packets are present in the queue (i.e. from the
viewpoint of an outside observer), respectively. According to Figure 2.12, 1 − q1 is
equal to the probability that a departing packet leaves the queue without any wait-
ing packet, thus 1 − q1 = 𝜋∗

0 . On the other hand, q2 is the probability that at least
one packet arrives during the current time slot given that the user was in idle state
in the preceding time slot. This, however, does depend on the time interval dur-
ing which the system has been in idle state so far. Nevertheless, for a slot duration
being much smaller than the mean interarrival time, it is reasonable to estimate
q2 by 1 − �̂�0 ≈ 𝜆

𝜇
. Note that, according to Burke’s theorem, 𝜋∗

j = 𝜋j holds for any
arrival model, whereas �̂�j = 𝜋j is valid only for Poisson arrival.

After finding the stationary distributions

bi,k = lim
k→∞

P(s(t) = i, b(t) = k), ∀k ∈ [0,Wi − 1], i ∈ [0,m]

the probability 𝜏 that a WiFi user attempts to transmit in a given time slot is
obtained as

𝜏 =
m∑

i=0
bi,0 =

2(1 − 2Pf )q2

2(1 − q1)(1 − Pf )(1 − 2Pf )
q2[(W0 + 1)(1 − 2Pf ) + W0Peq(1 − (2Pf )m)]

2(1 − q1)(1 − Pf )(1 − 2Pf )
+ 1

(2.15)

The probability of a failed transmission attempt Pf ,i by WiFi user i is given by

1 − Pf ,i = (1 − pe,i)(1 − pc,i) (2.16)
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Figure 2.12 Two-dimensional Markov process. Source: Ebrahimzadeh and Maier (2019).
© 2019 IEEE.

where pe,i and pc,i denote the probability of an erroneous transmission and the
probability of a collision, respectively. Note that WiFi subscriber i does not expe-
rience a collision if the remaining users do not attempt to transmit, thus 1 − pc,i =∏

v∶v≠i(1 − 𝜏v ). Moreover, pe,i is estimated by 1 − (1 − pb)Li , where Li and pb is the
average length of a packet transmitted by WiFi user i and the bit error probability,
respectively.

The probability of a collision-free packet transmission Ps given that there is
at least one transmission attempt is given by 1

Ptr

(∑
i𝜏i
∏

v,v≠i(1 − 𝜏v )
)
, whereby

the probability Ptr that there is at least one transmission attempt is equal to
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1 −
∏

i(1 − 𝜏i ). The average slot duration Es is then obtained as

Es = (1 − Ptr)𝜖 + Ptr(1 − Ps)Tc + PtrPsPeTe + PtrPs(1 − Pe)Ts (2.17)

where Tc, Te, and Ts are given in Aurzada et al. (2014). We then obtain

𝔼(DS) =
1
𝜇

=
∞∑

k=0
pk

e (1 − pe)

×

[ ∞∑
j=0

pj
c(1 − pc) ⋅

(( k+j∑
b=0

2min (b,m)W0 − 1
2

Es

)
+ jTc + kTe + Ts

)]
(2.18)

In order to obtain the steady-state values of q1, q2, Pf , 𝜏, and 𝜇, we numerically
solve the system of nonlinear Eqs. (2.18), (2.16), (2.15), and (2.9).

The CDFs of DQ (2.13) and DS (2.14) are used to calculate the CDF of D = DQ +
DS at a WiFi user as follows

FD(t) = P(D ≤ t) = ∫
t

0
FDS

(t − u)dFDQ
(u) (2.19)

The end-to-end delay of local teleoperation DE2E
LT(i→j) between WiFi users i and j

communicating via ONU-APz is obtained as Di→ONU−APz
+ DONU−APz→j, whose

CDF is given by

FDE2E
LT(i→j)

(t) = P(DE2E
LT(i→j) ≤ t) = ∫

t

0
FDi→ONU−APz

(t − 𝜁)dFDONU−APz→j
(𝜁) (2.20)

where the CDFs FDi→ONU−APz
(t) and FDONU−APz→j

(t) are calculated similar to Eq. (2.19).

2.5.3 Nonlocal Teleoperation

The average end-to-end delay of nonlocal teleoperation between WiFi user i and
WiFi user j associated with ONU-APm and ONU-APn, respectively, is given by

D
E2E
NLT(i→j) = Di→ONU−APm

+ D
u
PON + D

d
PON + DONU−APn→j (2.21)

where Di→ONU−APm
and DONU−APn→j denote the expected values of Di→ONU−APm

and DONU−APn→j, respectively. Both expected values can be obtained from

Eq. (2.19). Note that D
u
PON and D

d
PON denote the average delay of the backhaul

EPON in the upstream and downstream direction, respectively, which are
given by Φ(𝜌u,L, 𝜍2

L , cPON) + L∕cPON + 2𝜏PON
2−𝜌u

1−𝜌u − Bu and Φ(𝜌d,L, 𝜍2
L , cPON) +

L∕cPON + 𝜏PON − Bd, respectively; whereas 𝜌u is the traffic intensity in upstream,
𝜌d is the traffic intensity in downstream, 𝜏PON is the propagation delay
between ONUs and OLT, cPON is the EPON data rate, Φ(⋅) denotes the
well-known Pollaczek–Khintchine formula, and Bu and Bd are obtained as



�

� �

�

54 2 Immersive Tactile Internet Experiences via Edge Intelligence

Φ
(

L
ΛcPON

∑O
i=1

∑O
q=1 Γ

PON
iq ,L, 𝜍2

L , cPON

)
, where O is the number of ONUs and

ΓPON
iq is the traffic emanating from ONUi to ONUq, and Λ denotes the number of

wavelengths in the WDM PON (Beyranvand et al., 2017).

2.6 Edge Sample Forecast

Despite recent interest in exploiting machine learning for optical communications
and networking, edge intelligence for enabling an immersive and transparent tele-
operation experience for HOs has not been explored yet. In the following, we intro-
duce machine learning at the edge of our considered communication network for
realizing immersive and frictionless Tactile Internet experiences.

To realize edge intelligence, selected ONU-BSs/MPPs are equipped with
AI-enhanced MEC servers. These servers rely on the computational capabilities
of cloudlets collocated at the optical-wireless interface (see Figure 2.11) to
forecast delayed haptic samples in the feedback path. Toward this end, we deploy
a type of parameterized artificial neural network (ANN) known as multilayer
perceptron (MLP), which is capable of approximating any linear/nonlinear
function to an arbitrary degree of accuracy (Hornik et al., 1989). Figure 2.13
illustrates the generic architecture of an MLP–ANN model. Note that an MLP
with Nh hidden neurons represents a linear combination of Nh parameterized
nonlinear functions called neurons. Furthermore, note that a neuron is a
nonlinear function (⋅) of a linear combination of its input variables. In this
work, the ANN is an MLP with L input variables and one output variable.
More specifically, Ξ denotes the set of L ⋅ Nh + Nh + 1 weights of the model, i.e.
Ξ = {ci,j ∶ i = 1,… ,Nh, j = 1,… ,L} ∪ {c′

j ∶ j = 0, 1,… ,Nh}, which are estimated
during the training phase. The MLP yields the following output:

Ψ( ,Ξ) =
Nh∑
j=1

c′j
( L∑

i=1
ci,j(i)

)
+ c′0 (2.22)

where  ∈ ℝL represents the input vector (see Figure 2.13). We note that the
weights Ξ of the ANN are computed by the corresponding MEC server and are
subsequently sent to the HO in close proximity.

Recall from Section 2.3.2 that deadband coding is less effective in the feedback
path (see also Figure 2.7b). In this section, leveraging the notable amount of
correlation between the haptic samples, as observed in our teleoperation traces
in Section 2.3.3, we elaborate on our proposed ESF module as an interesting
alternative to deadband coding in the feedback path, using the MLP described
above instead. To do so, we present an ESF module based on the aforemen-
tioned MLP to compensate for delayed haptic feedback samples by means of
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Input layer
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Output
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Input 2

Input 3
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Figure 2.13 Generic architecture of a multilayer perceptron artificial neural network
(MLP–ANN) model with L inputs and one output.

multiple-sample-ahead-of-time forecasting. As a result, the response time of the
HO can be kept small, which in turn leads to a tighter togetherness with the
remote TOR and an enhanced immersion. In a nutshell, our developed MLP
based ESF module forecasts the force samples in the feedback path in real time.
More specifically, instead of waiting for the force samples that are delayed by
more than a given waiting deadline Tthr, the module locally generates and delivers
the forecast feedback samples to the HO. Let us refer to the feedback signal to
be forecast as the target signal X(⋅), i.e. the force feedback samples in our case.
Our objective is to generate at any time instant t a forecast sample denoted by 𝜃∗

for time instant t0 = t − Tthr, whereby Tthr is the maximum period of time that
the HO can wait until receiving the actual sample 𝜃 = X(t0). More precisely, at
any time t, if the sample for time instant t0 is not received, a forecast sample is
generated and immediately delivered to the HO. This procedure is repeated every
1 ms, which equals the typical intersample time of teleoperation systems. Note
that the proposed MLP predicts 𝜃 from the past observations of the target signal.
A technically more detailed description of our proposed ESF module is presented
in the following.

Our objective is to generate at any time t a forecast sample 𝜃∗ for time instant
t0 = t − Tthr, where Tthr is the waiting threshold until which the HO can wait
to receive the actual sample 𝜃 = X(t0). Let  ,  ∈ ℝK denote the last K samples
{s1, s2,… , sK} at time stamps {t1, t2,… , tK}. Note that  ,  are used to forecast
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Algorithm 1 Edge Sample Forecast
Input:  , , t0,Ξ
Output: 𝜃∗

1: 𝛿 = 1∕Fs
2:  𝜹,𝜹 = SAMPLE_ALIGNER( , , 𝛿)

3: Δ ←

⌈
t0−

𝜹(L)
𝛿

⌉
4: 0 ←

(
s𝛿1,… , s𝛿L

)
∈ ℝL

5: for i = 1 to Δ do
6: t∗i ← t𝛿L + i × 𝛿

7: 𝜃i = Ψ
(
i−1,Ξ

)
8: i =

(
i−1(2),i−1(3),… ,i−1(L), 𝜃i

)
9: end for

10: 𝜃∗ ← 𝜃Δ−𝜃Δ−1
t∗Δ−t∗Δ−1

(
t0 − t∗Δ−1

)
+ 𝜃Δ−1

11: return 𝜃∗

Source: Maier and Ebrahimzadeh (2019). © 2019 IEEE.

Algorithm 2 SAMPLE_ALIGNER()
Input:  , , 𝛿

Output:  𝜹,𝜹

1: L ←
⌈

tK−t1
𝛿

⌉
2: for i = 1 to L do
3: t𝛿i ← t1 + (i − 1)𝛿
4: end for
5: s𝛿1 ← s1
6: for i = 2 to L do
7: s𝛿i ←

sj−sj−1

tj−tj−1

(
t𝛿i − tj−1

)
+ sj−1, ∀j ∶ tj−1 < t𝛿i < tj

8: end for
9: return  𝜹,𝜹

Source: Maier and Ebrahimzadeh (2019). © 2019 IEEE.

sample 𝜃∗ at any time instant t0 > tK . The feedback sample is forecast by Algo-
rithm 1 with input  ,  , t0,Ξ and output 𝜃∗. We define 𝛿 as the intersample time
step in our sample forecaster and set it to 1∕Fs, where Fs denotes the sampling
frequency of 1 kHz (line 1 in Algorithm 1). To align the received samples in
time, we call the SAMPLE_ALIGNER() procedure (Algorithm 2) with input
 ∈ ℝK ,  ∈ ℝK , and 𝛿 and output consisting of the aligned sample set 𝛿 ∈ ℝL

and time stamp set  𝛿 ∈ ℝL.
Next, we calculate the forecast horizon Δ at time t, which denotes the

estimated number of samples during time interval  𝛿(L) between the last
observed sample and target time t0 (line 3 in Algorithm 1). Our objective is
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to forecast sample set Θ = {𝜃1, 𝜃2,… , 𝜃Δ} for time stamp set {t∗1 , t∗2 ,… , t∗Δ} to
finally estimate sample 𝜃∗ at time t0. Specifically, sample 𝜃i ∈ Θ is forecast by
feeding our MLP with input vector i−1 ∈ ℝL, where 0 = (s𝛿1,… , s𝛿L) ∈ ℝL and
i = (i−1(2),i−1(3),… ,i−1(L), 𝜃i), i.e. each sample is forecast based on the
preceding L samples. To further improve the forecasting accuracy, we estimate 𝜃∗

by performing a two-point linear interpolation between (t∗Δ−1, 𝜃Δ−1)T and (t∗Δ, 𝜃Δ)
T

(line 10 in Algorithm 1).
To create our training data set, we used the available 6-DoF teleoperation traces.

We used MATLAB to build and train a one-hidden-layer ANN. Our training data
set comprised 59 710 force feedback samples with the waiting deadline set to Tthr =
1 ms. We used the so-called “Levenberg–Marquardt” training method for adjusting
the weights until a desired input/output relationship was obtained. Prior to sim-
ulations, we applied brute force for determining the optimal value of the number
of neurons in the hidden layer, which led us to set it to 5. After training, we used a
new data set comprising 1000 samples (different from the training data set) to eval-
uate the performance of our proposed sample forecaster in terms of mean squared
error between the actual and forecast samples. It is worthwhile to mention that
once the training was complete, the ANN was run on the HO side to provide the
HO with forecast samples. Moreover, we note that the processing/running delay of
the developed ANN on the order of microseconds was relatively small compared
to the communication induced packet delays.

For completeness, we note that a one-hidden-layer MLP is also known as uni-
versal approximator. We decided to use a one-hidden-layer MLP since it is simple
(i.e. easy to implement and train) yet achieves an accuracy that is good enough
to approximate a wide variety of linear and/or nonlinear functions. Beside longer
training times, note that increasing the number of hidden layers in our consid-
ered one-hidden-layer MLP may result in overfitting, which in turn may have a
detrimental impact on its forecasting accuracy.

Note that in our considered FiWi-enhanced LTE-A HetNets architecture in
Figure 2.11, all HOs and TORs are connected through a shared fiber backhaul,
whose fiber reach does not exceed the typical 20 km of an IEEE 802.3ah EPON
or up to 100 km in case of long-reach PONs. The limited fiber reach keeps the
propagation delay below 0.1 and 0.5 ms, respectively. Thus, in a conventional
EPON and in long-reach PONs the fiber propagation delay does not pose a
challenge to meeting the 1 ms latency requirement of the Tactile Internet.
However, an interesting question is how the 1-ms challenge of the Tactile
Internet can be addressed for significantly larger geographical distances, e.g.
connecting HOs in North America with TORs in Europe and/or Asia. This is
where our proposed ESF module offers a potentially promising solution in that
it decouples haptic feedback from the impact of extensive propagation delays, as
typically encountered in wide area optical fiber networks. To see this, Figure 2.2
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illustrates our ESF module for the general case of a communication network with
arbitrary propagation delays. The ESF module may be inserted at the edge of the
communication network in close proximity to the HO. Rather than waiting for
delayed haptic feedback samples that exceed the waiting deadline of 1 ms, the
ESF module generates forecast samples and delivers them to the HO. Hence,
the HO is enabled to perceive the remote task environment in real time at a
1-ms granularity, resulting in a tighter togetherness, improved safety control, and
increased reliability of the teleoperation systems. It should be noted, however,
that a more rigorous experimental investigation would be needed to validate the
viability of our proposed ESF module for real-word deployment scenarios with
various wide area network propagation delays.

Clearly, the capability of our proposed ESF module to enable HOs to perceive the
remote task environment in real time at a 1-ms granularity requires a sufficiently
high forecasting accuracy of haptic feedback samples, as discussed in more detail
later on.

2.7 Results

In this section, we present trace-driven simulation results along with numerical
results derived from the analysis. Note that the obtained simulation results include
confidence intervals at 95% confidence level. The following results were obtained
by using the FiWi network parameter settings listed in Table 2.3. We assume that
MUs, HOs, and TORs are directly connected to their associated MPPs, i.e. MPPs
serve as conventional WLAN APs. By default, let us consider four ONU-APs, each
with four associated MUs, whereby two MUs communicate with each other via
their associated ONU-AP using an IEEE 802.11n WLAN (i.e. local H2H commu-
nications), while the two remaining MUs communicate with two uniformly ran-
domly selected MUs associated with a different ONU-AP by using a backhaul IEEE
802.3ah 1Gb/s EPON with a typical fiber range of 20 km (i.e. nonlocal H2H com-
munications). Furthermore, let us consider four conventional ONUs, serving fixed
(wired) subscribers that are all involved in nonlocal H2H communications among
each other. The MUs and fixed subscribers generate background traffic at a mean
rate of 𝜆BKGD and 𝛼PON ⋅ 𝜆BKGD, respectively. Note that 𝛼PON ≥ 1 is a traffic scal-
ing factor for fixed subscribers that are directly connected to the backhaul EPON.
Figure 2.14 depicts the average end-to-end delay of MUs vs. mean background
traffic rate 𝜆BKGD with different 𝛼PON ∈ {1, 50,100} for both local and nonlocal
H2H communications in FiWi-enhanced LTE-A HetNets. The figure shows that
an average end-to-end delay of 100 = 1 ms can be achieved for nonlocal H2H com-
munications for a wide range of background traffic loads.
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Table 2.3 FiWi network parameters and default values.

Parameter Value

Minimum contention window W0 16
Maximum back-off stage H 6
Empty slot duration 𝜖 9μs
DIFS 34μs
SIFS 16μs
PHY header 20μs
MAC header 36 bytes
RTS 20 bytes
CTS 14 bytes
ACK 14 bytes
Line rater in wireless fronthaul 600 Mbps
Uplink and downlink data rate rPON in PON 1 Gbps
lBKGD 1500 bytes
pb 10−6

NDoF 6
lPON 20 km

Non-local H2H communications
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Figure 2.14 Average end-to-end delay of mobile users (MUs) vs. mean background
traffic rate 𝜆BKGD (packets/s) for local and nonlocal human-to-human (H2H)
communications with different 𝛼PON ∈ {1, 50,100}. Source: Maier and Ebrahimzadeh
(2019). © 2019 IEEE.
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Figure 2.15 Average end-to-end delay of human operators (HOs) vs. mean background
traffic rate 𝜆BKGD (packets/s) for local teleoperation with and without deadband coding
in the command path for different dc ∈ {0%, 0.01%, 0.02%, 0.05%} (𝛼PON = 100 fixed).
Source: Maier and Ebrahimzadeh (2019). © 2019 IEEE.

Next, we include teleoperation and investigate the interplay between Tactile
Internet traffic and the above H2H background traffic. Toward this end, we con-
sider the above scenario and replace two MUs with a pair of HO and TOR in the
coverage area of each ONU-AP for local teleoperation with and without dead-
band coding in the command path. Specifically, we consider our findings on 6-DoF
teleoperation in Figure 2.8a and accordingly assume gamma and GP distributed
haptic packet arrivals for dc ∈ {0%, 0.01%, 0.02%} and dc = 0.05%, respectively.
Figure 2.15 depicts the average end-to-end delay of HOs vs. mean background traf-
fic rate 𝜆BKGD along with verifying trace-driven simulations based on our 6-DoF
haptic traces and packetization procedure described in Section 2.3.1. We observe
from Figure 2.15 that without deadband coding (dc = 0) the minimum achiev-
able average end-to-end delay experienced by HOs equals 4.62 ms, thus missing
the Tactile Internet target of 1 ms. However, note that this target can be achieved
with deadband coding for increasing dc. For illustration, Figure 2.15 shows that
we achieve a minimum average end-to-end delay of 1.18 ms for dc = 0.05%. In
addition to decreasing the latency of HOs, note that deadband coding also has
a beneficial impact on the admissible background traffic load of MUs due to the
reduced haptic packet rates. To see this, let us define the coding gain Gcoding as the
difference between the maximum admissible throughput of MUs in teleoperation
with and without deadband coding, while not violating a certain upper average
end-to-end delay limit. For instance, for a given upper limit of 4.8 ms a coding
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Figure 2.16 End-to-end delay cumulative distribution function (CDF) FDE2E
LT(i→j)

(t) of local
teleoperation. Source: Maier and Ebrahimzadeh (2019). © 2019 IEEE.

gain of Gcoding = 1.42 Mbps per MU can be achieved in our teleoperation scenario
by increasing dc from 0% to 0.01%, as depicted in Figure 2.15. Note that over-
all the presented analytical results and verifying trace-driven simulation results
(shown with 95% confidence interval) match very well.

Figure 2.16 provides useful insights into the upper end-to-end delay bounds
by showing its CDF FDE2E

LT(i→j)
(t) for the scenario of Figure 2.15. Notably, we

observe that for dc = 0.05% and a high background traffic rate of 𝜆BKGD = 20
packets/s (top curve), the end-to-end delay stays below 2 ms with a probability as
high as 0.8.

To provide insights into the impact of different NG-PON backhaul infras-
tructures in the case of nonlocal teleoperation, Figure 2.17 depicts the average
end-to-end delay performance of HOs vs. backhaul traffic scale factor 𝛼PON of fixed
subscribers with the mean background traffic rate set to 𝜆BKGD = 20 packets/s.
For comparison, we consider a conventional 1 Gbps EPON, a high-speed 10 Gbps
EPON, and a WDM PON with Λ = 2 wavelength channels, each operating at 1
Gb/s. Note that for all three considered NG-PONs we include a conventional
fiber reach of lPON = 20 km as well as its respective long-reach counterpart
with an extended fiber reach of lPON = 100 km. We observe from Figure 2.17 that
the use of deadband coding (dc = 0.05%) is instrumental in lowering the average
end-to-end delay below 10 ms for all NG-PON backhaul infrastructures under
consideration. The figure also confirms previous findings (see Section 2.1) that
10G PON and WDM technologies represent cost-effective solutions to support 5G
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Figure 2.17 Average end-to-end delay of human operators (HOs) vs. backhaul traffic
scale factor 𝛼PON of fixed subscribers (𝜆BKGD = 20 packets/s fixed) for nonlocal
teleoperation across different NG-PON backhaul infrastructures. Source: Maier
and Ebrahimzadeh (2019). © 2019 IEEE.

low-latency applications over a wide range of backhaul traffic loads by sharing a
common optical transport platform among fixed subscribers, MUs, and HOs.

We have seen in the results above that deadband coding is effective in decreas-
ing the average end-to-end delay by reducing the haptic packet rate. Neverthe-
less, some haptic packets may still experience an instantaneous delay that exceeds
the desired waiting deadline on the order of 1 ms until their reception due to vary-
ing traffic conditions and MAC layer queuing times. To ensure that the HO receives
expected haptic packets before the deadline, our proposed MLP based ESF mod-
ule may be used as a complementary technique to deadband coding in the feed-
back path. Figure 2.18 compares the forecasting accuracy of our proposed MLP
based ESF scheme with a naive ESF scheme, where the forecast sample is sim-
ply set to the last received sample. In our simulation, we used our 6-DoF tele-
operation traces to train a one-hidden-layer MLP by using 59 710 force feedback
samples with the waiting deadline set to Tthr = 1 ms. Figure 2.18 clearly shows
the superior forecasting accuracy of our proposed MLP based ESF scheme in terms
of mean squared error over a wide range of 𝜆BKGD for both local and nonlocal
teleoperation scenarios, whereby a low mean squared error is achievable in the for-
mer scenario. Specifically, for nonlocal teleoperation, our MLP-based ESF scheme
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Figure 2.18 Comparison of forecasting accuracy between proposed multilayer
perceptron (MLP) based and naive edge sample forecast (ESF) schemes for local
and nonlocal teleoperation without deadband coding in the feedback path (df = 0).
Source: Maier and Ebrahimzadeh (2019). © 2019 IEEE.

decreases the mean squared error from roughly 0.9 to 0.65 ×10−3, translating into
an improvement of 27.8%. For local teleoperation, it is able to keep the mean
squared error close to zero between 0.006 and 0.007 ×10−3 at a low to medium
background traffic load 𝜆BKGD. Note that the observed performance improvement
is due to the relatively high autocorrelation in the haptic feedback samples that
allows our proposed MLP based ESF module to achieve a more accurate forecast
compared to that of the naive ESF scheme.

2.8 Conclusions

We have seen that there is a significant overlap among 5G, IoT and the Tactile
Internet in that they share various important design goals, including very low
latency, ultrahigh reliability, and integration of data-centric technologies. This
chapter described how FiWi-enhanced LTE-A HetNets leveraging low-cost
data-centric EPON and WiFi technologies for fiber backhaul sharing and WiFi
offloading may help realize not only the aforementioned shared design goals but
also the key attributes of end-to-end co-DBA of both PON and wireless network
resources, decentralization, and edge intelligence in support of 5G low-latency
applications over a common optical transport platform.
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Our focus was on the emerging Tactile Internet as one of the most interesting
5G low-latency applications for creating novel immersive experiences. Recall from
Chapter 1 that the emerging Tactile Internet will remain a prominent applica-
tion enabled by future 6G mobile networks. We reviewed the HART-centric design
principles that add a new dimension to the H2M interaction via the Internet and
set the Tactile Internet aside from the more machine-centric IoT. Exploiting the
human perception of haptics to reduce the haptic packet rate by means of dead-
band coding, we derived haptic traffic models from teleoperation experiments. Our
haptic trace analysis showed that assuming Tactile Internet traffic to be Pareto
distributed was not valid for the analyzed traffic, while assuming it to be Poisson
traffic was valid only in a special case. In general, we observed that command and
feedback paths of teleoperation systems can be jointly modeled by GP, gamma, or
deterministic packet interarrival time distributions, depending on the given value
of the respective deadband parameters.

We elaborated on the importance of the decentralized nature of WLAN’s
access protocol DCF to realize low-latency FiWi enhanced LTE-A HetNets.
Furthermore, by exploiting their inherent distributed processing and storage
capabilities, we investigated the potential of enabling immersive teleoperation
experiences for HOs by introducing machine learning at the optical-wireless
interface of FiWi-enhanced LTE-A HetNets. Our proposed MLP based ESF
module compensates for delayed haptic feedback samples by means of
multiple-sample-ahead-of-time forecasting for a tighter togetherness, improved
safety control, and increased reliability.
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3

Context- and Self-Awareness for Human-Agent-Robot Task
Coordination

3.1 Introduction

Today’s telecommunication networks enable us to connect devices and people for
an unprecedented exchange of audiovisual and data content. With the advent of
commercially available haptic/tactile sensory and display devices, conventional
triple-play (i.e. audio, video, and data) content communication now extends to
encompass the real-time exchange of haptic information (i.e. touch and actuation)
for the remote control of physical and/or virtual objects through the Internet. This
paves the way toward realizing the so-called Tactile Internet (Maier et al., 2016),
whereby human–machine interactions will convert today’s content-delivery net-
works into skillset/labor-delivery networks (Aijaz et al., 2017). The Tactile Internet
holds great promise to have a profound socioeconomic impact on a broad array
of applications in our everyday life, ranging from industry automation and trans-
port systems to healthcare, telesurgery, and education (Maier and Ebrahimzadeh,
2019).

Beside the design of low-latency/jitter and highly reliable networking infrastruc-
tures, a key challenge little discussed in the existent Tactile Internet literature is
how we can make sure that the potential of the Tactile Internet be unleashed for
a race with (rather than against) machines. Recall from Chapter 2 that the overar-
ching goal of the Tactile Internet should be the production of new goods and ser-
vices by means of empowering rather than automating machines that complement
humans rather than substitute for them. We note that any technological advance
can be labor-saving or capital-saving. In either case, regardless of the speed with
which robots approach or even exceed human skill sets, the key to the effect of the
new technologies on human society is who owns the technologies. We would lose
our jobs if other persons owned our replacement technologies. By contrast, if users

Toward 6G: A New Era of Convergence, First Edition. Amin Ebrahimzadeh and Martin Maier.
© 2021 The Institute of Electrical and Electronics Engineers, Inc.
Published 2021 by John Wiley & Sons, Inc.
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owned them, humans would have their current earnings and their time freed from
labor to explore other productive activities (Freeman, 2016).

In this chapter, we leverage on our recently proposed concept of FiWi enhanced
long-term evolution-advanced (LTE-A) HetNets, which were shown to achieve
the 5G and Tactile Internet key requirements of very low latency on the order of
1–10 ms and ultra-high reliability by unifying coverage-centric 4G mobile net-
works and capacity-centric FiWi broadband access networks based on low-cost,
data-centric Ethernet next-generation passive optical network (NG-PON) and
Gigabit-class wireless local area network (WLAN) technologies (Beyranvand
et al., 2017). While necessary, though, the design of reliable low-latency con-
verged communication network infrastructures is not sufficient to realize the full
potential of the Tactile Internet.

Depending on the context-awareness1 of future Tactile Internet applications,
tasks may be classified into three different categories: (i) location-dependent
physical-only tasks (e.g. lifting an object), (ii) location-independent digital-only
tasks (e.g. object classification from a captured image, which might be offloaded
for computation at a remote cloud or nearby cloudlet), or (iii) location-dependent
physical/digital tasks that include both types of tasks (e.g. assemblage followed
by a unit test). As users will need to request robot assistance from time to time,
mapping these requests to the robots stands as an optimization problem, whose
objective is to minimize not only the task completion time but also the operational
expenditure (OPEX) and robot energy consumption. The difficulty of solving
such a problem lies in the following reasons. First, it is clear that we are dealing
with different conflicting objectives, which makes it challenging to obtain a
satisfactory result, especially for large-sized problems. Second, in real-world
scenarios, there is no a priori knowledge of the task arrival times, making it
almost impossible to obtain the optimal solution. Third, and more importantly, to
minimize the energy consumption of mobile robots (MRs), the task coordinator
requires global knowledge of all the system parameters, including in particular
the local parameters of the MRs, which may not be willing to share such private
information.

In this chapter, we use context-awareness to develop a HART-centric task coor-
dination algorithm that minimizes the completion time of physical/digital tasks
as well as OPEX by spreading ownership of robots across mobile users. In addi-
tion, we capitalize on self-awareness2 to improve the performance of a given robot

1 Context refers to the information that can be used to characterize situation of a relevant entity.
Accordingly, context-awareness is the ability to adapt behavior according to changes in
surroundings.
2 Self-awareness is the ability of networks to observe their own internal status, objectives, and
preferences and to modify their internal behavior so as to adaptively achieve certain goals, e.g.
compensating for failing or malfunctioning components.
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by identifying its capabilities as well as the objective requirements by means of
optimal motion planning to minimize its energy consumption as well as traverse
time. Our proposed self- and context-aware HART-centric allocation scheme for
both physical and digital tasks is used to coordinate the automation and augmen-
tation of mutually beneficial human–machine coactivities across a FiWi-based
Tactile Internet infrastructure. In particular, the contributions of this chapter are
as follows:

● We formulate a multiobjective optimization problem to minimize the task com-
pletion time, energy consumption, and OPEX for multirobot task allocation in
the Tactile Internet over FiWi-enhanced networks.

● We develop a context-aware HART-centric task coordination algorithm that
minimizes the completion time of physical/digital tasks, while paying particular
attention to reducing OPEX by spreading ownership of robots across mobile
users.

● We propose a self-aware optimal motion planning algorithm, which runs locally
at the MRs, with the objective to find the best trade-off between traverse time and
energy consumption by leveraging on local self-awareness of the MRs to identify
their respective limitations and capabilities as well as objective requirements for
accomplishing the allocated tasks.

● We provide an analytical framework to calculate the average packet transmis-
sion delay and human–robot connection reliability, two key attributes of the
Tactile Internet.

The remainder of the chapter is structured as follows. Section 3.2 describes
our considered FiWi-based Tactile Internet infrastructures for HART-centric
task coordination in greater detail, followed by motion and energy consumption
models for MRs. In Section 3.3, we develop our multiobjective optimization
problem considering characteristics and key parameters of MRs and tasks, which
is subsequently solved by our proposed HART-centric context-aware multi-robot
task coordination algorithm. In Section 3.4, we present our self-aware optimal
motion planning algorithm. Our delay and reliability analysis is presented in
Section 3.5. In Section 3.6, we report on our obtained results and findings.
Section 3.7 concludes the chapter.

3.2 System Model

3.2.1 Network Architecture

Figure 3.1 illustrates the generic network architecture of our considered
FiWi-enhanced LTE-A HetNets. The optical backhaul consists of a time division
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Figure 3.1 Generic architecture of fiber-wireless (FiWi) based Tactile Internet network
infrastructure for multirobot task coordination. Source: Ebrahimzadeh et al. 2019.
© 2019 IEEE.

multiplexing (TDM)/wavelength division multiplexing (WDM) IEEE 802.3ah/av
1/10 Gb/s Ethernet passive optical network (EPON) with a typical fiber length
of 20 km between the central optical line terminal (OLT) and remote optical
network units (ONUs). The EPON may comprise multiple stages, each stage
separated by a wavelength-broadcasting splitter/combiner or a wavelength
multiplexer/demultiplexer. There are three different subsets of ONUs. An ONU
may either serve fixed (wired) subscribers. Alternatively, it may connect to a
cellular network base station (BS) or an IEEE 802.11n/ac/s WLAN mesh portal
point (MPP), giving rise to a collocated ONU-BS or ONU-MPP, respectively.
Depending on her trajectory, an mobile user (MU) may communicate through the
cellular network and/or WLAN mesh front-end, which consists of ONU-MPPs,
intermediate mesh points (MPs), and mesh access points (MAPs).

Note that tasks arrive at random time instants at the MUs, which act as
the demand points. The MUs then send their demands upstream to the task
coordinator agent, which is colocated with the OLT (see also Figure 3.1), via
the wireless front-end and EPON backhaul until they reach the OLT. The task
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Figure 3.2 Trapezoidal
velocity profile of mobile
robots (MRs). Source:
Ebrahimzadeh et al. 2019.
© 2019 IEEE.
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coordinator agent is responsible for allocating the incoming tasks to MRs,3 which
may be owned by either the users or the network operator. After receiving the
task allocation from the OLT, the selected MR moves toward the demand point
and collaboratively executes the physical and/or digital tasks. After successfully
executing the tasks, the MR transmits the result/output of the physical and/or
digital task to the task demand point (i.e. MU).

3.2.2 Energy and Motion Models of Mobile Robots

For an MR with forward translational velocity powered by a direct current (DC)
motor, we use the detailed model presented in Tokekar et al. (2014). Specifically,
let v(t) and a(t) denote the velocity and acceleration profile of the MR, respectively.
The energy consumption of the brushed DC motor deployed at the MR is given by

E =∫
t3

0
e(t)i(t)dt =∫

t3

0
[c1a2(t) + c2v2(t) + c3v(t) + c4 + c5a(t) + c6v(t)a(t)]dt

(3.1)

where i(t) and e(t) denote the instantaneous current and voltage of the DC motor,
respectively, while the constants {ci}6

i=1, given by Tokekar et al. (2014), are com-
binations of the motor parameters and depend on the design of the motor and
surface on which the robot traverses.

Next, let us consider the trapezoidal velocity profile of the MR, shown in
Figure 3.2. The profile indicates that along a given path the MR accelerates
from rest during Tacc, traverses with constant velocity vmax during Tcst, and then
decelerates during Tdec until it returns to rest. Based on the considered velocity

3 The reader should that even though the acronym MR is widely referred to “mixed reality,” we
have frequently used MR standing for “mobile robot” only within this chapter.
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profile, the distance Δd traversed by the MR is given by

Δd = ∫
Ttrav

0
v(t)dt = (Tacc + 2Tcst + Tdec)

vmax

2
(3.2)

which yields

Tacc + Tcst =
Δd

vmax
(3.3)

by assuming aacc = −adec. Having

Tcst = 𝜔d
Δd

vmax
(3.4a)

Tacc = Tdec = (1 − 𝜔d)
Δd

vmax
(3.4b)

the traverse time Ttrav is then equal to

Ttrav = (1 − 𝜔d)
Δd

vmax
+ 𝜔d

Δd
vmax

+ (1 − 𝜔d)
Δd

vmax

= (2 − 𝜔d)
Δd

vmax
(3.5)

with 𝜔d ∈ [0, 1). Clearly, Ttrav is a monotonically decreasing function of 𝜔d with
the upper and lower bounds given by

TU
trav = lim

𝜔d→0
Ttrav = 2 Δd

vmax
(3.6a)

TL
trav = lim

𝜔d→1
Ttrav = Δd

vmax
(3.6b)

Lemma 3.1 For the velocity profile shown in Figure 3.2, the energy consump-
tion Etrav of the MR to traverse a given distance Δd is given by

Etrav = E(𝜔d) =
2c1v3

max

(1 − 𝜔d)Δd
+

c2

3
(𝜔d + 2)vmax Δd + c3Δd + (2 − 𝜔d)

c4Δd
vmax

(3.7)

Proof: See Appendix A.1. ◽

Note that E(𝜔d) is a convex function of 𝜔d, as 𝜕2E(𝜔d)
𝜕𝜔2

d
= 4c1v3

max
Δd(1−𝜔d)3

> 0 for 𝜔d ∈
[0, 1).
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Lemma 3.2 E(𝜔d) has a local minimum in interval (0, 1) if and only if

vmax <

√√√√√√√√√√
−c2 +

√
c2

2 − 4
(

6c1

Δd2

)
(−3c4)

2
(

6c1

Δd2

) (3.8)

otherwise, E(𝜔d) is a monotonically increasing function of 𝜔d with a minimum at
𝜔d = 0.

Proof: See Appendix A.2. ◽

3.3 Context-Aware Multirobot Task Coordination

In this section, we study the problem of task allocation to MRs in multirobot
FiWi-based infrastructures in greater detail. We note that the automation of
various physical and digital tasks with context-aware requirements is doable by
state-of-the-art agents and robots. We start by presenting an illustrative use case
as a simplified example of our optimization problem of interest. Next, we develop
the multiobjective formulation of our problem. We then develop a context-aware
allocation algorithm of physical/digital tasks for the HART-centric multirobot
task coordination based on the shared use of user- and network-owned robots.

3.3.1 Illustrative Case Study

For illustration, we present a case study to better understand the impact of different
coordination strategies on the delay/cost/energy performance from the viewpoint
of both users and network operator. Note that multirobot systems have attracted
attention in a wide variety of applications such as exploration (Elizondo Leal
et al., 2016), tracking (Chang et al., 2016), foraging (Lee et al., 2014), transporta-
tion (Barrientos et al., 2016), and manufacturing (Tereshchuk et al., 2019). Let us
consider two user- and three network-owned MRs (i.e. a 40% user ownership),
as shown in Figure 3.3, where a task has arrived at the demand point to be
allocated to one of the MRs. The next available time of each MR is also shown.
Assume that receiving service from a user- and network-owned MR is subject
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Figure 3.3 An illustrative case study demonstrating the trade-off between delay, OPEX,
and energy performance of the multirobot task allocation problem at a given task arrival
time instant. Source: Ebrahimzadeh et al. 2019. © 2019 IEEE.

to an incurred OPEX of 0.2 and 1 USD per second, respectively. The outcome
of the allocation of the given task to each of the MRs is shown in Figure 3.3, which
demonstrates the trade-off between task completion time, OPEX, and energy
consumption. The results indicate that allocating the task to MR2, MR4, or MR5 is
a Pareto optimal solution with respect to the three objectives of task completion
time, OPEX, and energy consumption, i.e. one cannot find any other solution
whose performance in terms of all the three objectives is better than MR2, MR4,
or MR5. Note that any allocation decision made for a given task updates the next
available time of the allocated MR, thus having a direct impact on the performance
results for upcoming tasks, whose arrival time instants are not known in advance.

3.3.2 Problem Formulation

We assume that HART members are self-aware about their respective goals,
application needs, capabilities, and constraints to be elaborated on in Section 3.4.
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Further, through communication, they establish a collective context-awareness
with the objective of minimizing the completion time of tasks by MRs, which
may be either user-owned or network-owned. Let the ownership spreading factor
𝛾O denote the percentage of robots that are jointly owned by MUs, whereas the
remaining robots are owned by the network operator. More specifically, our
multirobot task coordination algorithm aims to minimize the task completion
time along with the energy consumption and OPEX of physical/digital task
execution by MRs. In the following, after introducing the decision variables
and parameters, we develop a multiobjective formulation of the dynamic task
allocation problem.
Given:

● Ji: Task i, (i = 1, 2,…).
● ta

i : Arrival time of task demand i.
● W p

i : Physical workload (in Joules) generated by Ji.
● W d

i : Digital workload (in required central processing unit [CPU] cycles) gener-
ated by Ji.

● ltask
i : Demand location of task Ji.

● N : Set of network-owned MRs.
● U : Set of user-owned MRs.
● A

U : Set of available user-owned MRs.
● B

U : Set of busy user-owned MRs.
● A

N : Set of available user-owned MRs.
● B

N : Set of busy network-owned MRs.
● : Set of all user- or network-owned MRs.
● N: Total number of MRs.
● lr

j : Location of MRj.
● tav

j : Next available time of MRj.
● vj

max : Maximum speed of robot MRj.
● amax,j

acc : Maximum acceleration of robot MRj.
● Cp

j : Physical task processing capacity (in Watts) of MRj.
● Cd

j : Digital task processing capacity (in CPU cycles per time unit) of MRj.
● D: Maximum scheduling deadline.
● d(lr

j , ltask
i ): Euclidean distance between the demand location of task Ji and MRj.

Parameters:

● 𝜑U : Operational cost per time unit of user-owned MRs.
● 𝜑N : Operational cost per time unit of network-owned MRs.
● 𝜖d: Energy (in Joules) per CPU cycle.
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Decision variables:

● Xj
i : A binary variable set to 1 if task Ji is assigned to MRj.

Objectives:

● T(X): Task completion time.
● C(X): Operational expenditures (OPEX).
● E(X): Energy consumption.

Multiobjective formulation:

minimize
X

T(X),C(X),E(X), ∀i = 1, 2, 3,…

subject to
∑

j∈U

max {tav
j − ta

i , 0}Xj
i < D

N∑
j=1

Xj
i = 1

Xj
i ∈ {0, 1}, ∀j = 1, 2,… ,N

(P1)

where T(X), C(X), and E(X) are obtained as follows. The total task completion
time comprises the following delay components: (i) transmission delay Tdmd

trs of
allocation demand from a given MU to the OLT, (ii) scheduling delay Ti,j

sch, which
is the elapsed time between arrival time ta

j of task Ji until MRj becomes available,
(iii) transmission delay Talc

trs of allocation from the OLT to the allocated MR, (iv)
traverse time Ti,j

trav, which is the amount of time that takes MRj to traverse to the
demand location of task Ji, (v) execution time Ti,j

exc, which is the amount of time
that takes MRj to execute physical/digital task Ji, and (vi) transmission delay To

trs
to transmit the output/result of digital/physical task from the MR to the MU. T(X)
is then given by

T(X) =
N∑

j=1
Xj

i ( Tdmd
trs + Ti,j

sch + Talc
trs + Ti,j

trav + Ti,j
exc + To

trs), ∀i = 1, 2,…

(3.9)

where the scheduling delay Ti,j
sch is obtained as follows:

Ti,j
sch = max {tav

j − ta
i , 0}, ∀i = 1, 2,… , ∀j = 1, 2,… ,N (3.10)

We note that after rearranging and considering
∑j=1

N Xj
i = 1, ∀i = 1, 2,…, Eq. (3.9)

reduces to

T(X) = Tdmd
trs + Talc

trs + To
trs +

N∑
j=1

Xj
i (T

j
sch + Tj

trav + Tj
exc), ∀i = 1, 2,…

(3.11)
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Before estimating the task execution time, let incoming task Ji consist of both phys-
ical and digital workloads denoted by W p

i (in Joules) and W d
i (in required CPU

cycles), respectively. We then estimate the task execution time Ti,j
exc by

Ti,j
exc =

W p
i

Cp
j

physical sub-task

+
W d

i

Cd
j

digital sub-task

, ∀i = 1, 2,…
(3.12)

The traverse time Ti,j
trav is given in Eq. (3.5), whereas the other delay compo-

nents that are related to packet transmission delay will be computed shortly in
Section 3.5.1.

Next, we estimate the OPEX of task execution by user- and/or network-owned
MRs. To do so, we assume a flat-rate pricing policy that charges MUs from the
time instant when the MR becomes available and is allocated to the task until it
successfully accomplishes task execution. Let𝜑U and𝜑N denote the operating cost
per time unit for user- and network-owned MRs, respectively, whereby 𝜑U

𝜑N
≤ 1. We

then estimate the OPEX, C(X), of task execution as follows:

C(X) =
∑
j∈SU

𝜑U Xi
j (T

i,j
trav + Ti,j

exc) +
∑
j∈SN

𝜑N Xi
j (T

i,j
trav + Ti,j

exc), ∀i = 1, 2,…

(3.13)

Next, let us calculate the total energy consumption. We note that the energy
consumed to transmit the task demand/allocation/output/result is negligible com-
pared to the energy consumption of an MR to traverse and execute the task. There-
fore, we consider only the energy consumption of MRs to traverse to the demand
location and execute the physical/digital task. Accordingly, we model the total
energy consumption, E(X), as follows:

E(X) =
N∑

j=1
Xi

j (E
i,j
trav + Ei

exc) (3.14)

where Ei,j
trav is given in Eq. (A.1) and execution energy Ei

exc of task Ji (which is inde-
pendent of the MR selection) is given by

Ei
exc = W p

i

physical sub-task

+ 𝜖dW d
i

digital sub-task

, ∀i = 1, 2,…
(3.15)

where 𝜖d denotes the energy (in Joules) per CPU cycle. Note that Ei,j
trav depends on

the MR selection, while Ei
exc does not. Thus, Eq. (3.14) reduces to

E(X) = Ei
exc +

N∑
j=1

Xi
j Ei,j

trav, ∀i = 1, 2,… (3.16)
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3.3.3 The Proposed Algorithm

Clearly, T(X), C(X), and E(X) may be conflicting objectives, as minimizing T(X)
and E(X) may not necessarily minimize C(X) (see Figure 3.3). The reason for
this is that for some tasks selecting network-owned MRs can significantly reduce
the task completion time, resulting in increased OPEX due to higher pricing of
network-owned MRs compared to that of user-owned ones. We also note that the
energy consumption of an MR is a function of its local parameters, e.g. motor
and motion parameters, among others, which may preferably not be shared
by the MRs, as they are considered private information. Furthermore, the task
coordinator has to make decisions without a priori knowledge of the arrival time
instants of upcoming tasks, thus making it impossible to exploit conventional
optimization methods to obtain the optimal solution of the problem of interest.
Therefore, in order to make a suitable trade-off between the three objectives
and achieve a satisfactory solution, we prioritize the objectives of the problem
in descending order of T(X), C(X), and E(X). More specifically, we decouple the
problem into two subproblems namely multirobot task coordination and motion
planning, where the former aims to minimize T(X) and C(X), whereas the latter
minimizes E(X) (to be discussed in Section 3.4).

As shown in Algorithm 3, our proposed context-aware dynamic multirobot
task coordination (CADMRTC) algorithm assigns the given task to the nearest
available user-owned MR, if there is any (see line 2 of Algorithm 3). Otherwise,
it tries to find the earliest available user-owned MR up to a given maximum
scheduling deadline D ≥ 0 seconds before falling back onto network-owned MRs
(see lines 6–15 of Algorithm 3). In this case, the task is assigned to the nearest
available network-owned MR (see line 10 of Algorithm 3) or the earliest available
one, if there is not any (see line 12 of Algorithm 3). Note that our context-aware
scheme gives priority to user-owned MRs, thus substantially reducing OPEX. It
is worthwhile to mention that we aim at minimizing the energy consumption of
the assigned MR by using our proposed self-aware motion planning (see line 19
of Algorithm 3), to be elaborated on in technically greater detail in Section 3.4.

Next, we present a complexity analysis of our proposed CADMRTC algorithm.
We note that the best and worst case time complexity of our proposed algorithm
are (|A

U | + n) and (|A
U | + |B

U | + |A
N | + |B

N | + n), respectively, where n
is the number of operations performed by the self-aware optimal robot motion
planning (SAOMP) algorithm (see Algorithm 4). We note that n is a constant
number that depends on the number of local parameters of a given robot and
does not scale with growing numbers of MR. This suggests that the total time
complexity of our CADMRTC algorithm is (|A

U | + |B
U | + |A

N | + |B
N |).
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Algorithm 3 CADMRTC Algorithm
Input: Ji, ta

i ,A
U ,B

U ,A
N ,B

N ,, lr
j , tav

j ,D
Output: Xj

i , tav
j , lr

j ,∀j = 1, 2,… ,N
1: if A

U ≠ ∅ then
2: j∗ ← argmin

j∈A
U

d
(

lr
j , ltask

i

)
3: else
4: if B

U ≠ ∅ then
5: Wmin ← minj∈B

U
(tav

j − ta
i )

6: if Wmin < D then
7: j∗ ← argmin

j∈B
U

(tav
j − ta

i )

8: else
9: if A

N ≠ ∅ then
10: j∗ ← argmin

j∈A
N

d
(

lr
j , ltask

i

)
11: else
12: j∗ ← argmin

j∈S
(tav

j − ta
i )

13: end if
14: end if
15: end if
16: end if
17: Xj∗

i ← 1
18: Δd ← d

(
lr
j∗ , ltask

i

)
19: (Ti,j∗

trav,Ei,j∗
trav) = SAOMP (Δd, j∗) (call Algorithm 4)

20: tav
j∗ ← tav

j∗ + Ti,j∗
trav + Ti,j∗

exc

21: return Xj
i , tav

j , lr
j ,∀j = 1, 2,… ,N

Source: Ebrahimzadeh et al. (2019). © 2019 IEEE.

3.4 Self-Aware Optimal Motion Planning

Battery-powered MRs typically operate for long periods of time. Therefore, it is
necessary to optimize their motion by minimizing not only their traverse time but
also their energy consumption. In this section, we aim to find the energy-optimal
velocity profile of an MR for a given path to traverse.

So far we have derived traverse time Ttrav of an MR for a given distance Δd
and velocity profile v(t). We have shown that an increasing 𝜔d decreases traverse
time Ttrav. Moreover, our derived closed-form formula for energy consumption of
the MR demonstrates that under certain conditions, there exists an 𝜔∗

d ∈ (0, 1) for



�

� �

�

78 3 Context- and Self-Awareness for Human-Agent-Robot Task Coordination

which the energy consumption is minimized. Otherwise, the energy consumption
increases for increasing 𝜔d. Nevertheless, we note that the choice of 𝜔d is con-
strained by the maximum achievable acceleration, which in turn depends on the
physical design of the motor deployed at the MR. Hence, aacc is given by

aacc = −adec =
vmax

Tacc
=

vmax

(1 − 𝜔d)
Δd

vmax

(3.17)

which implies that aacc is a monotonically increasing function of 𝜔d with lower
and upper bounds given by v2

max
Δd

and ∞, which are reached for 𝜔d → 0 and 𝜔d → 1,
respectively. Thus, for a given maximum achievable acceleration amax

acc , the feasible
range for 𝜔d is obtained as

vmax

(1 − 𝜔d)
Δd

vmax

≤ amax
acc ⇔ 𝜔d ≤

𝜔m
d

⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞

1 −
v2

max

amax
acc Δd

(3.18)

Next, we aim to minimize both traverse time Ttrav and E(𝜔d), which under
certain conditions may become conflicting objectives. Therefore, to find a com-
promise between these two conflicting objectives, we aim to solve the following
multiobjective optimization problem:

min
𝜔d

f (𝜔d) =
E(𝜔d)

Em
+

Ttrav(𝜔d)
TU

trav
(3.19a)

s.t. 𝜔d ≤ 𝜔m
d (3.19b)

0 ≤ 𝜔d < 1 (3.19c)

where TU
trav is given in Eq. (3.6a) and Em, the upper bound of E(𝜔d), is equal to

Em = max {E(0),E(𝜔m
d )} (3.20)

We note that f (𝜔d) is a convex function of 𝜔d, as it is the sum of two convex
functions. For now, we relax the constraint 3.19b and then solve the relaxed opti-
mization problem by letting 𝜕f (𝜔d)

𝜕𝜔d
= 0 for the following two cases.

Case 1: In this case, E(𝜔d) does not have a local minimum for 𝜔d ∈ (0, 1), i.e.
(Δd, vmax ) ∉ A1 in Figure 3.4. Since E(𝜔d) is a monotonically increasing function
of 𝜔d, its upper bound, Em, is obtained for 𝜔d = 1 − v2

max
amax

acc Δd
. Thus, we have

Em = 2c1vmax amax
acc +

c2

3

(
3vmax Δd −

v3
max

amax
acc

)
+c3Δd +

(
1 +

v2
max

amax
acc Δd

)
c4Δd
vmax

(3.21)
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Figure 3.4 Different mobile robot (MR) operational regions represented by A1, A2, and
A3 on Δd − vmax plane, which the proposed self-aware optimal motion planning strategy
relies on (amax

acc = 2 m∕s2 fixed). Source: Ebrahimzadeh et al. 2019. © 2019 IEEE.

By substituting Eqs. (3.21) and (3.6a) into Eq. (5.28)a, we obtain f (𝜔d) as

f (𝜔d) =
1

Em
E(𝜔d) +

2 − 𝜔d

2
(3.22)

Let 𝜔∗
d denote the optimal value of 𝜔d ∈ (0, 1), for which f (𝜔d) is minimized. We

then obtain 𝜔∗
d by solving 𝜕f (𝜔d)

𝜕𝜔d
= 0, where 𝜕f (𝜔d)

𝜕𝜔d
is given by

𝜕f (𝜔d)
𝜕𝜔d

= 1
Em

𝜕E(𝜔d)
𝜕𝜔d

− 1
2

(3.23)

By substituting Eq. (A.6) into Eq. (3.23), we obtain
𝜕f (𝜔d)
𝜕𝜔d

=
vmax c2Δd

3Em
+

2c1v3
max

ΔdEm(1 − 𝜔d)2 −
c4Δd

vmax Em
− 1

2
(3.24)

Solving 𝜕f (𝜔d)
𝜕𝜔d

= 0 gives us 𝜔∗
d as

𝜔∗
d = 1 ±

√
K′ (3.25)

where

K′ =
2c1v3

max

Δd
(Δdc4

vmax
−

Δdvmax c2

3
+

Em

2

) (3.26)
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We note that for K′ > 0 we have 1 +
√

K′ ∉ (0, 1) and thus it is not acceptable.
Whereas 1 −

√
K′ lies in interval (0, 1) for a particular range of vmax , as specified

in the following lemma.

Lemma 3.3 𝜔∗
d lies in interval (0, 1) if and only if the following inequality holds:

vmax <

v2
⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞

max
Z′

i>0∶ℑ𝔪[Z′
i ]=0

{Z′
i}

(3.27)

where {Z′
i}

4
i=1 are the roots of the quartic equation given by

(A1Δd − 2c1)v4
max + (ΔdB1)v2

max +ΔdC1vmax + ΔdD1 = 0 (3.28)

where

A1 = −
c2

3amax
acc

B1 =
(

2c2

3
+ c1amax

acc +
c4

amax
acc

)
C1 =

c3Δd
2

D1 =
3Δdc4

2
(3.29)

Proof: See Appendix A.3.

We conclude that for v1 < vmax < v2 (i.e. (Δd, vmax ) ∈ A2 shown in Figure 3.4),
the optimal value of optimization problem (3.19) is obtained as

f ∗ =

{
f (𝜔∗

d) = f (1 −
√

K′), 0 < 𝜔d < 𝜔m
d

f (𝜔c
d), otherwise

(3.30)

For vmax > v2 (i.e. (Δd, vmax ) ∈ A3 shown in Figure 3.4), on the other hand, g(𝜔d) =
0 does not have any root in interval (0, 1). Since f (𝜔d) > 0 and 𝜕2f (𝜔d)

𝜕𝜔2
d

> 0 for 𝜔d ∈
[0, 1), and lim𝜔d→1g(𝜔d) = +∞, the optimal value f ∗ of optimization problem (3.19)
is equal to f (0).

Case 2: In this case, which is illustrated by (Δd, vmax ) ∈ A1 in Figure 3.4, both
f (𝜔d) and E(𝜔d) have a local minimum for 𝜔d ∈ (0, 1). Similarly to Case 1, the
optimal value of optimization problem (3.19) is obtained by using Eq. (3.30).

In summary, Algorithm 4 shows the pseudocode of our proposed SAOMP algo-
rithm, which runs locally in the MRs. Given the local parameters of vmax ,Δd, amax

acc ,
c1, c2, c3, and c4 of the assigned MR, our proposed self-aware algorithm makes a
trade-off between the traversing time Ttrav and energy consumption Etrav by means
of optimally planning its motion.
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Algorithm 4 SAOMP Algorithm
Input: vmax,Δd, amax

acc , c1, c2, c3, c4
Output: Etrav,Ttrav

1: Use v1 and v2 given by Eq. (A.10) and (3.27), respectively, to determine 𝐀1, 𝐀2, and
𝐀3

2: 𝜔m
d ← 1 − v2

max
amax

acc
3: if (Δd, vmax) ∈ 𝐀1 ∪ 𝐀2 then
4: 𝜔∗

d ← 1 −
√

Ḱ, where Ḱ is given by Eq. (3.26)
5: if 𝜔∗

d < 𝜔m
d then

6: Ttrav ← (2 − 𝜔∗
d)

Δd
vmax

7: Etrav ← E(𝜔∗
d) given by Eq. (3.7)

8: Update the MR velocity profile using Eqs. (3.4) and (3.17)
9: else

10: Ttrav ← (2 − 𝜔m
d )

Δd
vmax

11: Etrav ← E(𝜔m
d ) given by Eq. (3.7)

12: Update the MR velocity profile using Eqs. (3.4) and (3.17)
13: end if
14: end if
15: if (Δd, vmax) ∈ 𝐀3 then
16: Ttrav ←

2Δd
vmax

17: Etrav ← E(0) given by Eq. (3.7)
18: Update the MR velocity profile using Eqs. (3.4) and (3.17)
19: end if
20: return Etrav,Ttrav

Source: Ebrahimzadeh et al. (2019). © 2019 IEEE.

3.5 Delay and Reliability Analysis

In this section, we develop our analytical framework to calculate the average
packet transmission delay as well as the human–robot (HR) connection reliability
in FiWi-based Tactile Internet infrastructures. In our analysis, we make the
following assumptions:

● Single-hop WLAN: MUs and MRs are directly associated with an ONU-AP via a
wireless single hop, whereby ONU-MPPs serve as ONU-APs.

● Task arrival model: MUs act as service demand points, where tasks arrive at ran-
dom time instants following a Poisson distribution.

● Traffic model: The background traffic rate generated by ONUs with attached
fixed (wired) subscribers that are directly connected to the backhaul EPON is
set to 𝜆ONU.

3.5.1 Delay Analysis

Recall from Section 3.3 that we estimated the scheduling, traversing, and execution
delay components of the total task completion time. In this section, we proceed
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to develop an analytical framework to estimate the packet transmission related
delay components of multirobot task execution over FiWi-based Tactile Internet
infrastructures.

We build on the analytical frameworks presented in Beyranvand et al. (2017) and
Aurzada et al. (2014). We first define the backhaul downstream traffic intensity 𝜌u

and 𝜌d for a TDM passive optical network (PON) (Λ = 1) and a WDM PON (Λ > 1)
as

𝜌u = L
Λ ⋅ cPON

O∑
q=1

O∑
i=0

ΓPON
qi < 1 (3.31a)

𝜌d = L
Λ ⋅ cPON

O∑
q=0

O∑
i=1

ΓPON
qi < 1 (3.31b)

where cPON denotes the PON data rate, O denotes the number of ONUs, and ΓPON
qi

represents the traffic rate (in packets/second) between PON nodes q and i (with
q = 0 denoting the OLT).

Similar to Aurzada et al. (2014), upstream delay, Du
PON, and downstream delay,

Dd
PON, of both TDM and WDM PONs are obtained as

Du
PON = Φ(𝜌u,L, 𝜍2, cPON) +

L
cPON

+ 2𝜏PON
2 − 𝜌u

1 − 𝜌u − Bu (3.32)

Dd
PON = Φ(𝜌u,L, 𝜍2, cPON) +

L
cPON

+ 𝜏PON − Bu (3.33)

where 𝜏PON denotes the average propagation delay between ONUs and OLT,
Φ(⋅) is the average queuing delay of an M/G/1 queue characterized by the
Pollaczek–Khintchine formula as

Φ(𝜌,L, 𝜍2, c) = 𝜌

2c(1 − 𝜌)

(
𝜍2

L
+ L

)
(3.34)

and

Bd = Bu = Φ

(
L

Λ ⋅ cPON

O∑
q=1

O∑
i=1

ΓPON
qi ,L, 𝜍2, cPON

)
(3.35)

Next, we calculate the average delay experienced by an arriving packet at wire-
less subscribers. Let De2e

z,i denote the average packet delay of wireless subscriber i
that resides within the coverage area of ONU-APz. The set of MUs, MU

z , and MRs,
 MR

z , along with their associated ONU-APz constitute z =  MU
z ∪ MR

z ∪ {0}
with i = 0 representing ONU-APz. We then obtain De2e

z,i as

De2e
z,i = 1

1
Δz,i

− 𝜎z,i
, Δz,i𝜎z,i < 1, ∀i ∈ z, z = 1, 2,… ,NAP (3.36)
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Carrier sensing and random backoff

Collided and/or erroneous attempt

Successful transmission

Acknowledgment transmission

Time
Δz, i

Figure 3.5 Delay components of average channel access delay in IEEE 802.11
distributed coordination function (DCF) with random back-offs. Source: Ebrahimzadeh
et al. 2019. © 2019 IEEE.

where Δz,i and 𝜎z,i denote the average channel access delay and traffic rate, respec-
tively, and NAP is the total number of ONU-APs. Note that Eq. (3.36) accounts
for both queuing delay as well as channel access (service) delay of wireless sub-
scriber i ∈ z. We also note that the average access delay Δz,i consists of time
delays due to carrier sensing, exponential back-offs, collided and erroneous (if any)
attempts, successful transmission, and acknowledgement transmission, as illus-
trated in Figure 3.5.

To compute the average channel access delay, we define a two-dimensional
Markov process (s(t), b(t)) under unsaturated conditions (see Figure 2.12) and
estimate the average service time Δz,i in a WLAN using IEEE 802.11 distributed
coordination function (DCF) for access control, whereby b(t) and s(t) denote the
random back-off counter and size of the contention window at time t, respectively.
We note that Δz,i is obtained as

Δz,i =
∞∑

k=0
pk

e,i(1 − pe,i)

[ ∞∑
j=0

pj
c,i(1 − pc,i)

×

(( k+j∑
b=0

2min (b,m)W0 − 1
2

Es

)
+ jTc,i + kTe,i + Ts,i

)]
,

∀i ∈ z, z = 1, 2,… ,NAP (3.37)

In the following, we proceed to evaluate transmission delay Tdmd
trs from a given

MU to the OLT, transmission delay Talc
trs from the OLT to the allocated MR, and

transmission delay To
trs from the MR to the MU.

3.5.1.1 Transmission Delay from MU to OLT
The routing path of an allocation demand transmitted by an MU consists of a single
wireless hop and subsequent upstream transmission across the backhaul EPON.
Therefore, the average packet transmission delay Tdmd

trs of an MU to the OLT is
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estimated as
Tdmd

trs = 𝔼(De2e
z,i )

MU to ONU-AP

+ Du
PON

ONU-AP to OLT
(3.38)

where 𝔼(De2e
z,i ) is computed for ∀i ∈  MU

z , z = 1, 2,… ,NAP.

3.5.1.2 Transmission Delay from OLT to MR
After scheduling, the task coordinator collocated at the OLT transmits the task
allocation to the selected MR. Therefore, the average transmission delay Talc

trs from
the OLT to an MR is given by

Talc
trs = Dd

PON

OLT to ONU-AP

+ 𝔼(De2e
z,i )

ONU-AP to MR

,
(3.39)

where 𝔼(De2e
z,i ) is computed for ∀i = 0, z = 1, 2,… ,NAP.

3.5.1.3 End-to-End Delay from MR to MU
After successfully accomplishing the task, the MR transmits the task output/result
to the corresponding MU via the associated ONU-AP. The average transmission
delay To

trs from an MR to an MU is then obtained as

Talc
trs = 𝔼(De2e

z,i )

MR to ONU AP

+ 𝔼(De2e
z,i )

ONU AP to MU
(3.40)

where the first term is averaged over ∀i ∈  MR
z , z = 1, 2,… ,NAP, whereas the sec-

ond term is averaged over ∀i = 0, z = 1, 2,… ,NAP.

3.5.2 Reliability Analysis

Recall from above that according to recent real-world smartphone traces, WiFi
connection and interconnection times follow a truncated Pareto distribution
(Beyranvand et al., 2017). The stationary probability that an MU/MR temporarily
resides within the coverage area of an ONU-AP is given by

Ptemp =
Ton

Ton + Toff

=
Ton∕Toff

1 + Ton∕Toff

(3.41)

In order for an MR to successfully perform the task requested by an MU, both MU
and MR have to be connected to the associated ONU-AP. Let us define the HR con-
nectivity probability PHR as the probability that both MU and MR are connected
to the associated ONU-APs, which is given by

PHR = PMU
temp ⋅ (1 − Pdrop

MU→AP) ⋅ (1 − Pdrop
AP→MR) ⋅ PMR

temp ⋅ (1 − Pdrop
MR→AP) ⋅ (1 − Pdrop

AP→MU)
(3.42)

where Pdrop denotes the packet dropping probability.
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Furthermore, let us define the HR connection reliability function, RHR(t), as the
probability that the HR connection time lasts longer than t seconds. First, let ran-
dom variables TMU and TMR denote the WiFi connection lifetime of the MU and
MR, respectively. Recall that according to our mobility model, TMU and TMR follow
a truncated Pareto distribution, whose probability distribution function (PDF) is
given by

f (t) = 𝛼𝛾𝛼

1 −
(
𝛾

𝜈

)𝛼 t−(𝛼+1), 0 < 𝛾 ≤ t ≤ 𝜈 (3.43)

For notational convenience, we use subscripts H and R to denote the MU and MR,
respectively. Note that HR connection time THR can be computed as

THR = min {TMU,TMR} (3.44)

The probability that the HR connection time THR is greater than t translates to the
joint probability

P(TMU > t,TMR > t)

which in turn gives HR connection reliability RHR(t) as follows:

RHR(t) = P(TMU > t) ⋅ P(TMR > t) (3.45)

We note that this is due to the fact that TMU and TMR are two independent random
variables since the mobility of an MU does not depend on that of an MR, thus
rendering the MU-AP and MR-AP connections completely independent from each
other. Consequently, Eq. (3.45) is then equal to

RHR(t) =

⎛⎜⎜⎜⎜⎝
1 − ∫

t

0
fH(t)dt

P(TH )<t

⎞⎟⎟⎟⎟⎠
⎛⎜⎜⎜⎜⎝
1 − ∫

t

0
fR(t)dt

P(TR)<t

⎞⎟⎟⎟⎟⎠
Eq.(3.43)
=

⎛⎜⎜⎜⎜⎝
1 −

1 −
(𝛾H

t

)𝛼H

1 −
(
𝛾H

𝜈H

)𝛼H

⎞⎟⎟⎟⎟⎠
⎛⎜⎜⎜⎜⎝
1 −

1 −
(𝛾R

t

)𝛼R

1 −
(
𝛾R

𝜈R

)𝛼R

⎞⎟⎟⎟⎟⎠

(3.46)

Next, we proceed to estimate the conditional probability of an HR connection
failure during time interval [t, t + 𝜉], given that MU and MR have been connected
for the last t seconds:

P(t < THR < t + 𝜉 ∣ THR > t) =
P(connection failure happens in [t, t + 𝜉])

P(THR > t)
(3.47)
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As 𝜉 → 0, Eq. (3.47) reduces to

P(t < THR < t + 𝜉 ∣ THR > t) =
dFTHR

(t)
1 − FTHR

(t)
(3.48)

The right-hand side of Eq. (3.48), which is commonly referred to as failure rate
function (FRF) denoted by hHR(t), represents the conditional probability inten-
sity that an HR connection fails, given that it has lasted up to time t (Ross, 2014).
Hence, hHR(t) is then obtained as

hHR(t) =
𝜕

𝜕t
(1 − RHR(t))

RHR(t)
(3.49)

Substituting Eq. (3.46) into Eq. (3.49) and then differentiating with respect to t
finally yields

hHR(t) =

𝛼H𝛾
𝛼H
H

1 −
(
𝛾H

𝜈H

)𝛼H
t−(𝛼H+1)

1 −
(𝛾H

t

)𝛼H

1 −
(
𝛾H

𝜈H

)𝛼H

+

𝛼R𝛾
𝛼R
R

1 −
(
𝛾R

𝜈R

)𝛼R
t−(𝛼R+1)

1 −
(𝛾R

t

)𝛼R

1 −
(
𝛾R

𝜈R

)𝛼R

(3.50)

Note that FTHR
(t) is an increasingfailure rate (IFR)/decreasing failure rate (DFR)

distribution, if hHR(t) is an increasing/decreasing function of t. We can easily verify
that hHR(t) in Eq. (3.50) is a convex function of t. Thus, there exists a t∗ > 0 such
that 𝜕

𝜕t
hHR(t)∣t∗ = 0, whereby 𝜕

𝜕t
hHR(t) is negative for t < t∗ (i.e. DFR) and positive

for t > t∗ (i.e. IFR). We note that IFR renders an intuitive concept in that the prob-
ability of an HR connection failure increases over time. DFR, on the other hand,
implies that the probability of losing an HR connection decreases over time, which
happens for t < t∗.

3.6 Results

In this section, we investigate the performance of our proposed task allocation
scheme. For convenience, we summarized the key parameters and their assigned
default values in Table 3.1, which lists the parameter values of the considered FiWi
network taken from Beyranvand et al. (2017), those of the MRs in compliance
with Tokekar et al. (2014), and those of the physical and digital tasks in consistency
with You et al. (2017) and Chowdhury et al. (2018).4 We consider four ONU-APs as

4 It is worthwhile to mention that these parameters are either based on real-world
experiments/measurements or in compliance with well-known standards (e.g. IEEE 802.11n/ac
and IEEE 802.3ah).
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Table 3.1 MR and FiWi network parameters and default values.

Parameter Value Parameter Value

c1 17.75 DIFS 34 μs
c2 1.16 SIFS 16 μs
c3 10.46 PHY header 20 μs
c4 4.70 W0 16 slots
𝛾0 [0, 25, 50, 75,100]% H 6
vmax 2 m∕s 𝜖 9 μs
aacc

max 2 m∕s2 RTS 20 bytes
𝔼(ta

i ) 8 s CTS 14 bytes
W p

i 1–10 kJ ACK 14 bytes
W d

i 100–500 MHz (cycles/s) r in WMN 300 Mbps
N 4 cPON in PON 10 Gbps
NMU 8 lPON 20 km
Cp 1 kW L 1500 bytes
Cd 100–500 GHz (cycles/s) 𝜍2

L 0
𝜖d 10 × 10−10 J ONU-AP radius 10

√
2 m

Source: Ebrahimzadeh et al. 2019. © 2019 IEEE.

well as four ONUs serving fixed wired subscribers. Associated with each ONU-AP
are two MUs along with an MR, with a total of eight MUs and four MRs. We use
a Poisson point process to generate the random locations of MUs and MRs in an
80 × 80 m2 area. We assume that task demands arrive at the task coordinator with
exponential interarrival times.

Figure 3.6 depicts the average OPEX per task vs. user- to network-ownership
cost ratio, rU2N = 𝜑U

𝜑N
≤ 1. Interestingly, we observe that while full user-ownership

(i.e. 𝛾O = 100%) is always beneficial for MUs in terms of OPEX savings, partial
user-ownership (i.e. 𝛾O < 100%) isn’t necessarily so. From Figure 3.6 we observe
that a user-ownership of 𝛾O = 25% is less costly than full network-ownership
(i.e. 𝛾O = 0%) only for rU2N < 0.39. For rU2N > 0.39, on the other hand, MUs face
lower OPEX per task with full network-ownership (𝛾O = 0%) compared with a
partial user-ownership of 𝛾O = 25%. The reason for this is that for 𝛾O = 0%, our
task coordination algorithm allocates tasks to the preferred user-owned MR(s),
which is (are) responsible for giving service to all MUs in the area. This, in turn,
increases the average distance traversed by user-owned MRs, thus increasing
average traverse time and energy consumption. As 𝜑U

𝜑N
becomes greater than 0.39,

full network-ownership therefore proves less costly. Further, note that in order
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Figure 3.6 Average cost, C , per executed task vs. user- to network-owned operational
expenditures (OPEX) ratio rU2N (D = 0 fixed). Source: Ebrahimzadeh et al. 2019.
© 2019 IEEE.

for a partial user-ownership of 𝛾O = 50% and 𝛾O = 75% to be less costly than full
network-ownership (𝛾O = 0%), rU2N must not exceed 0.58 and 0.73, respectively
(see also Figure 3.6). Moreover, we observe that as 𝜑U

𝜑N
→ 0, the beneficial impact

of user-ownership on OPEX savings is more pronounced, whereas for 𝜑U
𝜑N

→ 1,

the average OPEX CrU2N
per task for different values of 𝛾O converges to that of

𝛾O = 100%. This is because as 𝜑U
𝜑N

→ 1 we have 𝜑U ≈ 𝜑N , thus user-ownership
does not reveal a notable OPEX gain compared with full network-ownership.

Next, we explore the impact of increasing waiting deadline5 D on OPEX
savings in Figure 3.7, which depicts the average OPEX, C per executed task,
vs. waiting deadline D. We find that an increasing D reduces C only for partial
user-ownership (i.e. 𝛾O = 25%, 50%, and 75%). To better understand this, let 𝜃

denote the ratio of the number of executed tasks by user-owned MRs to the total
number of tasks. Figure 3.8 depicts 𝜃 vs. waiting deadline D for the same fixed
rU2N = 0.2. We observe that an increasing D has no impact on 𝛾O = 0% and 100%,
whereas it increases 𝜃 for 𝛾O = 25%, 50%, and 75%. This is due to the fact that

5 We note that by setting D = 0 for 𝛾O =0% and 100%, our proposed CADMRTC algorithm may
be viewed as the nearest available robot allocation scheme, which stands as a baseline for fair
comparison.
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Figure 3.7 Average operational expenditures (OPEX), C , per executed task vs. waiting
deadline D (rU2N = 0.2 fixed). Source: Ebrahimzadeh et al. 2019. © 2019 IEEE.
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Figure 3.8 𝜃 vs. waiting deadline D (rU2N = 0.2 fixed). Source: Ebrahimzadeh et al. 2019.
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for increasing D more tasks are executed by user-owned MRs rather than their
network-owned counterparts, resulting in a decreased C (see also Figure 3.7).

Next, we plot the average task completion time vs. waiting deadline in Figure 3.9.
The figure shows that for 𝛾O the average task completion time increases linearly
with D. We note that Figure 3.9 along with Figures 3.7 and 3.8 demonstrate that
for 𝛾O = 0%, setting D = 0 achieves the best performance in terms of not only
OPEX but also average task completion time. For 𝛾O = 25%, 50%, and 75%, on
the other hand, the average task completion time increases for increasing D until
it hits a plateau. The values of D above, with the average task completion time
remaining constant, are obtained as 105, 2 × 104, and 100 seconds for 𝛾O = 25%,
50%, and 75%, respectively.

The obtained 2-D Pareto front results of our proposed CADMRTC algorithm
are depicted in Figure 3.10, which characterizes the trade-off between the average
OPEX per task and average task completion time. Figure 3.10 reveals that none of
the obtained results for a given 𝛾O is dominant, thus the decision-maker can yield
a flexible trade-off between the two objectives of the problem by appropriately set-
ting the waiting deadline D. Figure 3.11 depicts the average task completion time
vs. ownership spreading factor 𝛾O for different deadline D ∈ {0, 2, 5, 10} (given
in seconds). Generally, we observe a trend of decreasing average task completion
time for increasing ownership spreading factor, whereby the impact of varying D
becomes negligible for an ownership spreading factor of 75% and higher. Note that
the lowest average task completion time of roughly 16 seconds can be achieved for
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Figure 3.9 Average task completion time vs. waiting deadline D. Source: Ebrahimzadeh
et al. 2019. © 2019 IEEE.
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Figure 3.10 2-D Pareto-front of our proposed context-aware dynamic multirobot task
coordination (CADMRTC) algorithm for different values of ownership spreading factor 𝛾O
(waiting deadline D increases along the arrow shown on each curve). Source:
Ebrahimzadeh et al. 2019. © 2019 IEEE.
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D = 0 with either 0% or 100% ownership spreading. This is due to the fact that in
both cases all MRs are eligible for immediate task allocation. More interestingly,
for D = 0 and to a lesser extent also for D = 2 seconds the average task completion
time increases for an ownership spreading factor of up to 50%, as opposed to the
aforementioned general trend. This observation stems from the unbalanced task
allocation between a few overutilized user-owned MRs and the rest of underuti-
lized network-owned MRs (see also Figure 3.8).

Figure. 3.12 illustrates the probability of HR connectivity vs. T
MU
on ∕T

MU
off for dif-

ferent values of T
MR
on ∕T

MR
off . For Ton∕Toff = 2.73, which is obtained from real-world

measurements in Beyranvand et al. (2017), we achieve a maximum of 53.57% HR
connectivity probability. Note that for an increasing T

MU
on ∕T

MU
off of up to 30, PHR

increases until it levels off. Conversely, for T
MU
on ∕T

MU
off > 30, PHR highly depends on

the temporal availability of MR, PMR
temp.

Finally, Figure 3.13 shows the HR connection reliability function RHR(t) and
HR connection failure rate hHR(t). Note that for t < 615.4 minutes, the reliability
function is DFR, whereas it is IFR for t > 615.4. This implies that the connection
failure rate hHR(t) decreases as time t increases up to t∗ = 615 minutes, given that
it has not failed by time t. At t = t∗, the minimum value of 0.0044 is achieved. For
t > t∗, on the other hand, the HR connection failure rate increases up to roughly
120 min−1 (i.e. average interfailure time becomes 500 ms).

1

0.8
= 10

= ∞

= 1

= 0.1

0.6

P
H

R

0.4

0.2

0.01 0.1 1 10 100 1000
0

T MR
off

T MR
on

T MR
off

T MR
on

T MR
off

T MR
on

T MR
off

T MR
on

T MU
off

T MU
on
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�

� �

�

3.7 Conclusion 93

103 100

10–5

10–10

102

101 101

100

100

10–1

0 5 10

10–1

10–2

100

h H
R

(t
)

RHR(t)

RHR(t)

R
H

R
(t

)

t* = 615.4 minute
t = (minute)

h H
R

(t
)

hHR(t) R
H

R
 (

t)

hHR(t)

10–1

10–2

10–3
DFR regime IFR regime

Figure 3.13 Human–robot (HR) connection reliability function RHR(t) and failure rate
function hHR(t) vs. time. Source: Ebrahimzadeh et al. 2019. © 2019 IEEE.

3.7 Conclusion

We investigated the performance of our proposed context- and self-aware HART
centric multirobot task allocation over FiWi-based Tactile Internet infrastructures.
We shed light on when, how, and under which circumstances user-ownership of
MRs becomes beneficial in terms of OPEX per executed task. Further, we evalu-
ated the performance of our proposed CADMRTC algorithm in terms of average
task completion time, OPEX per executed task, and ratio of the number of exe-
cuted tasks by user-owned MRs and the total number of tasks. By leveraging on the
low-latency and reliable fiber backhaul and distributed WiFi-based fronthaul, we
showed that a HR connectivity probability of > 90% is achievable for T

MR
on ∕T

MR
off >

10. In addition, our obtained results show that our proposed self-aware scheme
plays a key role in minimizing the traverse time as well as energy consumption
of MRs in a distributed manner, whereas our context-aware task coordination is
instrumental in minimizing the task completion time, while paying particular
attention to reducing OPEX of user-/network-ownership of MRs.

Importantly, our obtained results show that from a performance perspective
(in terms of average task completion time) almost no deterioration occurs if the
ownership is shifted entirely from network operators to mobile users (D = 0),
though such a shift in ownership of robots has significant implications on sharing
the profits and collaborative business opportunities arising from the emerging
Tactile Internet in a more equitable fashion. As a result, this may open up
new opportunities for synergies between humans and machines/robots, while
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spurring the symbiotic human–machine/HR development envisaged by earlyday
Internet pioneers and imagining entirely new categories of abundance for a low
entry cost economy. Among others, one future research direction is to further
explore the synergies between the aforementioned HART membership and the
complementary strengths of robots to facilitate local human–machine coactivity
clusters by decentralizing the Tactile Internet. Another interesting open research
problem is how human crowdsourcing can help decrease task completion time
in the event of unreliable connectivity and/or network failures. Note that our
presented spreading ownership of robots across mobile users may be an important
stepping stone to collaborative business relationships that function more like
localized share-economy ecosystems than markets.
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4

Delay-Constrained Teleoperation Task Scheduling and
Assignment

4.1 Introduction

A popular misinterpretation about robotics is that intelligent systems, ranging
from advanced robots to digital bots, will gradually substitute humans in one job
after another. This argument may be true for some jobs, but we note that even
though advanced robotics can be deployed to automate certain jobs, its greater
potential, yet to be unleashed, is to complement and augment human capabilities.
The cutting-edge jobs and innovative businesses that arise from human–machine
symbiosis are happening in the so-called missing middle that refers to the new ways
that have to bridge the gap between human-only and machine-only activities. This
gives way to the so-called third wave of business transformation, which will be cen-
tered around human + machine hybrid activities (Daugherty and Wilson, 2018).
Key toward developing the missing middle is to understand the ways humans help
machines and the ways machines help humans. An interesting example of recog-
nizing the relative strengths of humans and machines and leveraging on them to
fill the missing middle can be found at automobile manufacturer Audi. Having
deployed a fleet of Audi robotic telepresence (ART) systems, Audi has set forth
toward employee augmentation that not only helps train technicians in diagnos-
tics and repair but also accelerates delivery of service to customers (Audi and VGo,
2014).

The advent of semiautonomous robotic assistance systems is becoming a part
of the vision of the Tactile Internet. An early example is the European research
project Robot-Era, which recently concluded the world’s largest real-life trial of
robot aids for the ageing population. With their small-stage deployment proven
successful, robotic helpers will need to request human assistance every now
and then, as stated recently by automobile manufacturer Nissan to augment
their autonomous vehicle technology with a crew of on-call remote human

Toward 6G: A New Era of Convergence, First Edition. Amin Ebrahimzadeh and Martin Maier.
© 2021 The Institute of Electrical and Electronics Engineers, Inc.
Published 2021 by John Wiley & Sons, Inc.
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operators (HOs) acting as “mobility managers,” who can remotely take control in
unexpected situations (Nowak, 2017).

While the Tactile Internet has been more recently also referred to as the
5G-enabled Tactile Internet, the importance of the so-called backhaul bottleneck
needs to be recognized as well, calling for an end-to-end design approach
leveraging both wireless frontend and wired backhaul technologies (Maier and
Ebrahimzadeh, 2019). As mentioned in Chapter 2, this mandatory end-to-end
design approach is fully reflected in the key principles of the reference architec-
ture within the IEEE P1918.1 standards working group Aijaz et al. (2018). These
key principles aim to develop a generic Tactile Internet reference architecture,
supporting local area as well as wide area connectivity through wireless (e.g.
cellular, WiFi) or hybrid wireless/wired networking. The importance of such a
design approach is more highlighted for Tactile Internet applications that may
not always require mobility, e.g. remote healthcare.

Unlike their fully autonomous counterparts, semiautonomous robotic systems
rely on human assistance from time to time via teleoperation and/or telepresence
when domain expertise is needed to accomplish a specific task, thus allowing for
an human-in-the-loop (HITL) centric design approach. As these robots will need
to request human assistance via teleoperation/presence, mapping these requests to
the HOs themselves stands as a difficult multicriteria optimization problem with
the objectives of minimizing the average weighted task completion time, maxi-
mum tardiness, and average operational expenditures (OPEX) per task. The diffi-
culty of solving such a problem lies in the following reasons. First, it is clear that
we are dealing with different conflicting objectives, which makes it challenging
to obtain a satisfactory result, especially for large-sized problem instants. Second,
the assignment of a given task to an HO is subject to strict end-to-end packet delay
constraints, thus calling for a cross-layer approach, taking into account the delay
experienced by packets in both command and feedback paths (to be discussed
below).

In this chapter, we formulate and solve the problem of joint prioritized schedul-
ing and assignment of delay-constrained teleoperation tasks to HOs so as to mini-
mize the average weighted task completion time, maximum tardiness, and average
OPEX per task. In particular, the contributions of this chapter are as follows:

● We elaborate on the role of FiWi-enhanced networks as the underlying commu-
nications infrastructure for enabling emerging delay-sensitive Tactile Internet
applications. In particular, trying to build on our findings in Beyranvand et al.
(2017) and Maier and Ebrahimzadeh (2019), we aim to realize local and/or non-
local teleoperation over FiWi-enhanced networks.

● We define the problem of joint prioritized scheduling and assignment of
delay-constrained teleoperation tasks onto available skilled HOs. After
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formulating our multiobjective optimization problem, we propose our so-called
“context-aware prioritized scheduling and task assignment” (CAPSTA) algo-
rithm to achieve satisfactory results by making suitable trade-offs between the
conflicting objectives of the problem.

● We develop our analytical framework to estimate the end-to-end packet delay of
both local and nonlocal teleoperation over FiWi-enhanced networks. Our anal-
ysis flexibly allows for the coexistence of both conventional human-to-human
(H2H) and haptic human-to-machine (H2M) traffic, while focusing on the HOs
and teleoperator robots (TORs) involved in either local or nonlocal teleopera-
tion. The results of our delay analysis are then fed into the proposed CAPSTA
algorithm.

The remainder of the chapter is structured as follows: Section 4.2 describes
FiWi-based Tactile Internet infrastructures for HITL-centric teleoperation-based
task coordination. In Section 4.3, we present our problem formulation, which
is then solved by proposing our context-aware task coordination algorithm in
Section 4.4. Our end-to-end packet delay analysis is presented in Section 4.5.
In Section 4.6, we present our obtained results and findings. In Section 4.7, we
present a complementary discussion of our findings and point to some interesting
future research avenues. Section 4.8 concludes the chapter.

4.2 System Model and Network Architecture

Recall from Chapter 2 that a typical bilateral teleoperation system realizes bidirec-
tional haptic communications between an HO and a TOR, which are both con-
nected via a communication network, as shown in Figure 2.4. In a typical tele-
operation system, the position-orientation samples are transmitted from the HO
through the human system interface (HSI) in the command path, whereas the
force–torque samples are fed back to the HO in the feedback path. By interfac-
ing with the HSI, the HO commands the motion of the TOR in the remote envi-
ronment. This couples the HO closely with the remote environment and thereby
creates a more realistic feeling of remote presence. Following the packetization
process presented in Chapter 2, we assume that the haptic packets are of size 8NDoF
+ 40 bytes, accounting for the real-time transport protocol (RTP)/user datagram
protocol (UDP)/Internet protocol (IP) header.

Figure 4.1 illustrates the generic network architecture of our considered
FiWi-enhanced Long-Term Evolution Advanced (LTE-A) HetNets. As shown
in Figure 4.1, selected mobile users (MUs) are equipped with TORs, which are
capable of performing physical tasks (simply referred to as tasks hereafter) by
establishing haptic communications with HOs. The MUs that are collocated with
the TORs act as task demand points. Typically, the number of task demands is
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Figure 4.1 Generic architecture of fiber-wireless (FiWi)-based Tactile Internet network
infrastructure for teleoperation task coordination. Source: Ebrahimzadeh and Maier
(2019). © 2019 IEEE.

greater than that of available skilled HOs. This necessitates a suitable mapping of
tasks to the available HOs. Given the set of tasks and available skilled HOs, the
task coordinator agent is responsible for the assignment of tasks and scheduling
them on the HOs (see Figure 4.1). Note that teleoperation-based tasks arrive at
the demand points. The corresponding MUs then send their demands upstream
to the task coordinator agent, which is collocated with the optical line terminal
(OLT) (see Figure 4.1), via the wireless front-end and Ethernet passive optical
network (EPON) backhaul until they reach the OLT. The task coordinator agent
then transmits the schedule to the HOs as well as demand points. According to
the schedule received from the task coordinator agent, an HO may be involved
in either local or nonlocal teleoperation with the corresponding TOR, depending
on the proximity of the involved HO and TOR, as illustrated in Figure 4.1. In
local teleoperation, the HO and corresponding TOR are associated with the same
mesh access point (MAP) and exchange their command and feedback samples
through this MAP without traversing the fiber backhaul. Conversely, if HO and
TOR are associated with different MAPs, nonlocal teleoperation is generally done
by communicating via the backhaul EPON and central OLT.
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4.3 Problem Statement

We consider the problem of joint assignment and scheduling of N delay-
constrained teleoperation tasks on any fixed number M of HOs as follows. Let
 = {O1,O2,… ,OM} and  = {J1, J2,… , JN} denote the set of M available HOs
and N given tasks, respectively. Let Tj denote the operation time of task Jj ∈  .
Note that operation time Tj is given by

Tj = sj + wj (4.1)

where sj and wj is the teleoperation session setup time and workload (both in sec-
onds) of task Jj, respectively. Each task Jj ∈  has a due time Dj and is associated
with weight Ωj. Larger weights correspond to higher priority levels. Although the
tasks are expected to be accomplished by the given due time, any incurred tardi-
ness is subject to a cost penalty (to be elaborated on in technically greater detail
shortly).

We consider an offline scheduling scenario, where all tasks are available at time
zero and remain available continuously thereafter. Each task can be operated by
only one HO at any time and each HO can operate only one task at a time. We also
assume that preemption is not allowed, meaning that tasks cannot be split. This is
because if tasks were divided and scheduled in noncontinuous time periods, pre-
emption would incur extra reconfiguration/setup overhead, which is significant
when the setup time is nonnegligible. For simplicity, we assume, without loss of
generality, that operation times, due times, and priority weights are all integers.
Further, we assume N ≫ M. For task Jj, the start and completion times are denoted
by Sj and Cj, respectively. A feasible assignment/schedule specifies when and by
which HO a given task is operated. Given a feasible schedule, one can compute
the tardiness of task Jj as max {0,Cj − Dj}. The goal is to assign the tasks to the
HOs such that the following constraints are satisfied: (i) no more than one task is
assigned to an HO at a time, (ii) no task is assigned to more than one HO, (iii) tasks
are not preempted, and (iv) the average end-to-end packet delay of a scheduled
teleoperation does not exceed a given delay threshold.

4.3.1 Problem Formulation

We formulate our mixed integer programming (MIP) problem of joint prioritized
scheduling and assignment of delay-constrained teleoperation tasks onto HOs as
follows:

Given:

●  : Set of tasks.
● : Set of available HOs.
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● Jj: Task j, j = 1, 2,… ,N.
● Tj: Operation time of task Jj, j = 1, 2,… ,N.
● Ωj: Weight of task Jj, j = 1, 2,… ,N.
● Dj: Due time of task Jj, j = 1, 2,… ,N.
● Ok: HO k, k = 1, 2,… ,M.
● Dc: Average end-to-end packet delay matrix of teleoperation pairs in the com-

mand path.
● Df : Average end-to-end packet delay matrix of teleoperation pairs in the feed-

back path.

Parameters:

● 𝜖h: Operational cost per time unit of tardiness.
● 𝜖m: Operational cost of activating a teleoperation session.
● 𝜖k: Operational cost per time unit of performing a teleoperation task by HO Ok.

Decision variables:

● 𝛿ij: A binary variable, which equals 0 unless task Ji precedes task Jj.
● zjk: A binary variable, which equals 0 unless task Jj is assigned to HO Ok.
● yij: A binary variable, which equals 0 unless tasks Ji and Jj are not assigned to

the same HO.
● Sj: Operation start time associated with task Jj, j = 1, 2,… ,N.
● Cj: Operation completion time associated with task Jj, j = 1, 2,… ,N.
● X : Set of total decision variables of the problem represented by(

{𝛿ij}, {yij}, {zjk}, {Sj}, {Cj}
)
.

Objective functions:

● L (X): Average weighted task completion time.
● T (X): Maximum tardiness.
● C (X): Operational expenditure.

Multiobjective formulation:

minimize
X

L(X),T(X),C(X) (4.2)

subject to

𝛿ij + 𝛿ji + yij = 1; i, j ∈  , i < j (4.3a)

𝛿ij + 𝛿jl + 𝛿lj ≤ 2; i, j, l ∈  , i < j < l (4.3b)

zik + zjk + yij ≤ 2; i, j ∈  , i < j, k ∈  (4.3c)

M∑
k=1

zjk = 1; ∀j ∈  (4.3d)
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Cj ≥ Tjzjk; j ∈  , i < j, k ∈  (4.3e)

Cj ≥ Ci + Tj(𝛿ij + zik + zjk − 2) − K(1 − 𝛿ij); (4.3f)

i, j ∈  , k ∈ ∑
k∈

Dc
kjzjk ≤ D0; j ∈  (4.3g)∑

k∈
Df

jkzjk ≤ D0; j ∈  (4.3h)

𝛿ij, 𝛿ji, yij, zjk ∈ {0, 1} ; i, j ∈  , k ∈  (4.3i)

Cj ∈ ℝ+; j ∈  (4.3j)

where L(X), T(X), C(X) are given as follows: Our first objective is to minimize the
average weighted task completion time L(X), which is given by

L(X) = 1
N
∑
j∈

ΩjCj. (4.4)

The second objective is to minimize the maximum tardiness T(X), which is given
by

T(X) = max
j∈

tardiness of task j
⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞

max {Cj − Dj, 0} (4.5)

which stands as a nonlinear objective function of the decision variables. The third
objective is to minimize OPEX, C(X), which is estimated as

C(X) = M ⋅ 𝜖m +
∑
j∈

𝜖hΩj max {Cj − Dj, 0} +
∑

k∈

∑
j∈

zjk𝜖kTj (4.6)

where the first term represents the cost of activating M teleoperation sessions, the
second term penalizes the tardy tasks according to their priority levels, i.e. the
tardy tasks with higher priorities are subject to higher incurred cost penalty, and
the third term models the total cost of performing tasks by HOs. The aforemen-
tioned definitions clearly indicate that these objectives are independent and often
conflicting optimization targets.

In our aforementioned MIP formulation, constraint set (4.3a) ensures that if
tasks Ji and Jj are assigned to the same HO (i.e. yij = 0), one of them should pre-
cede the other, thus either 𝛿ij or 𝛿ji must equal 1. On the other hand, if the tasks are
assigned to different HOs (i.e. yij = 1), both 𝛿ij and 𝛿ji must equal zero. Constraint
(4.3b) ensures a linear ordering of the tasks. According to constraint (4.3c), when
tasks Ji and Jj are assigned to HO Ok, then yij must equal zero. Constraint (4.3d)
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ensures that each task is assigned to one of the available HOs. Constraints (4.3e)
and (4.3g) represent the completion time of the scheduled tasks. We note that in
constraint set (4.3g), K is a relatively large number, which is set to

∑N
j=1 Tj in our

problem. Constraints (4.3h) and (4.3i) ensure that the average end-to-end packet
delay of any scheduled teleoperation pair HO–TOR in both command and feed-
back paths is kept below a given threshold D0. To be more specific, among all the
possible HO assignments, the teleoperation pairs that are incurred with an exces-
sive amount of connection latency are excluded from the feasible set.

Note that the average end-to-end packet delays of any possible HO–TOR pair
are characterized by two matrices, one of which represents the command path,
whereas the other accounts for the feedback path. More specifically, the command
delay matrix Dc is given by

Dc =

⎡⎢⎢⎢⎢⎣
Dc

11 Dc
12 … Dc

1N
Dc

21 Dc
22 … Dc

2N
⋮ ⋱ ⋮

Dc
M1 Dc

M2 … Dc
MN

⎤⎥⎥⎥⎥⎦M×N

(4.7)

where element Dc
kj in row k (k = 1,… ,M) and column j (j = 1,… ,N) denotes the

average end-to-end packet delay between HO k and TOR j. Similarly, the feedback
delay matrix Df is given by

Df =

⎡⎢⎢⎢⎢⎣
Df

11 Df
12 … Df

1M
Df

21 Df
22 … Df

2M
⋮ ⋱ ⋮

Df
N1 Df

N2 … Df
NM

⎤⎥⎥⎥⎥⎦N×M

(4.8)

where element Df
jk in row j (j = 1,… ,N) and column k (k = 1,… ,M) denotes the

average end-to-end packet delay between TOR j and HO k. Note that the elements
of the delay matrices Dc and Df , which depend on the state of the underlying net-
work, are estimated by using our delay analysis presented in Section 4.5.

4.3.2 Model Scalability

Recall from above that the problem of assigning and scheduling of tasks to the HOs
is subject to strict end-to-end packet delay constraints, which limits the feasible set.
If we consider a special case where there are tasks to be mapped to HOs without
any end-to-end packet delay constraint and with only one objective of minimiz-
ing the average weighted task completion time, then the problem reduces to a
parallel machine scheduling problem, which is known to be -hard (Brucker,
2007). Given that the single-criterion parallel machine scheduling without any
end-to-end delay constraint is a special case of the multicriteria delay-constrained
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teleoperation task scheduling and assignment, this makes the latter also -hard
by restriction. Given a set of N tasks and M HOs, the developed formulation has
2N2 + 2N + N ⋅ M variables and N(N−1)

2
+ N(N−1)(N−2)

6
+ 2N⋅M(N−1)

2
+ 2N2 + N ⋅ M +

4N constraints, which, along with the conflicting objectives, drastically restrict
the scalability of the model even for small-sized problems, therefore calling for
algorithmic solutions.

4.4 Algorithmic Solution

4.4.1 Illustrative Case Study

For illustration, we present a case study in order to better understand the impact of
different prioritized and nonprioritized coordination strategies on the delay/cost
performance from the viewpoint of both users and network operator. Let us con-
sider two HOs and five tasks, as shown in Figure 4.2, where the task parameters
(i.e. operation times, due times, and weights1) as well as the command/feedback
delay matrices (in millisecond) are illustrated.

Strategy A, regardless of task weights, assigns the tasks to the nearest HO that
resides within the coverage area of the same access point, thus giving preference
to realize local teleoperation sessions. Therefore, in strategy A, among the feasi-
ble solutions that meet the delay constraints specified by Eqs. (4.3g) and (4.3h),
tasks J1, J2, and J5 are assigned to O1, whereas J3 and J4 are assigned to O2. In con-
trast, Strategy B relies on giving preference to high-priority tasks with shorter due

Task coordinator collocated with OLT

Task parameters.

Strategy A

Strategy B

Strategy A 19.8 6
8

2εm + εk + 41εh
2εm + εk + 11εh10.4Strategy B

L(X) T(X) C(X)

5
6
1

4
7
1

7

2.5
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5
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2.6
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5.6

6 6 2.7 2.7 5
2×5

5×2

2.5 5 5 4.5
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J5

O2

O1
Dc =

Df =

O2

J5

J1

J1

Ti
DiΩi

J2 J3 J4 J5

J2

J4
J3

Figure 4.2 An illustrative case study of the delay/cost performance of two different task
coordination strategies. Source: Ebrahimzadeh and Maier (2019).© 2019 IEEE.

1 Weight is usually related to the importance, while due time is associated with the urgency of a
given task and a prioritized scheduler must prepare a sequence able to first perform
high-priority tasks.
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times, thus J1, J3, and J5 are assigned to O1, whereas J2 and J4 are assigned to O2.
The results indicate that strategy B yields a lower average weighted task comple-
tion time and smaller OPEX compared to strategy A. We note, however, that such
superior performance is achieved at the expense of a 20% increase in maximum
tardiness (see also Figure 4.2).

4.4.2 Proposed Task Coordination Algorithm

We note that while the first objective function, L(X), aims to minimize the average
weighted task completion time without considering the due times, the second and
third objective functions (i.e. T(X) and C(X)) deal with the tardiness incurred by
overdue completion of tasks, thus they do consider the task due times. Also note
that the second objective, T(X), represents the maximum task tardiness, which
is preferred to be minimized from a user standpoint. In addition, the third objec-
tive, C(X), which addresses the operator revenue, tries to push the task completion
times toward minimizing the incurred OPEX, thus implicitly minimizing the aver-
age weighted tardiness. This justifies the selection of the three different objectives
in our problem formulation.

Clearly, a so-called “optimum” with respect to one objective may perform
extremely bad with respect to other criteria (see example in Figure 4.2). There-
fore, a nonoptimal solution with satisfactory performance in terms of other
measures might be considered a better alternative by the decision-maker. For
large-sized problem instants of the developed formulation, the computational
difficulties associated with finding a satisfactory solution increase dramatically.
Therefore, in order to find a suitable trade-off between the conflicting objectives,
we propose our so-called CAPSTA algorithm, which is illustrated in Algorithm 5.
The suitable performance of the proposed algorithm relies on an accurate
estimation of the context parameters (e.g. task parameters, delay matrices in both
command and feedback paths, location of MUs/HOs/TORs, incoming H2H/H2M
traffic pattern). In the design of the proposed CAPSTA algorithm, we adopt two
sorting policies (to be elaborated on shortly), in both assignment and scheduling
phases, in order to perform in favor of high-priority tasks with shorter due times.

As a first step, the proposed CAPSTA algorithm aims to partition the given
task set  into M subsets. Toward this end, our sorting policy indicates that the
given tasks are sorted in a decreasing order of Ωj

Tj
(see line 1 in Algorithm 5).

Next, the tasks are selected from the sorted set and then are assigned to the HOs
in a round-robin fashion (see lines 3–15 in Algorithm 5). We note, however,
that the assignment of task Jn to the HO Om is valid only if the estimated
average end-to-end delays in both command and feedback paths satisfy the
delay constraints in Eqs. (4.3g) and (4.3h). Otherwise, we select the HO that
corresponds to the minimum average end-to-end delay with task Jn in both
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Algorithm 5 CAPSTA Algorithm
Input:  ,, Tj, Ωj, Dj; ∀j ∈  , 𝐃c, 𝐃f
Output: Sj, Cj, zjk; ∀j ∈  , ∀k ∈ 

1: Sort  in a decreasing order of Ωj

Tj
, ∀j ∈ 

2: k ← 0
3: for j = 1 to N do
4: k ← k + 1

5: k∗ ←

{
mod(k,M) if mod(k,M) ≠ 0
M otherwise

6: Dc
k∗ j ← Use Eq. (4.7) to estimate the average end-to-end packet delayin the com-

mand path
7: Df

jk∗ ← Use Eq. (4.8) to estimate the average end-to-end packet delay in the feed-
back path

8: if max{Dc
k∗ j,Df

jk∗} ≤ D0 then
9: zjk∗ ← 1

10: k∗ ← k∗ ∪
{

Jj
}

11: else
12: k∗ ← argmin

Ok∈

{
max{Dc

kj,Df
jk}|k = 1, 2,… ,M

}
13: zjk∗ ← 1
14: k∗ ← k∗ ∪

{
Jj
}

15: end if
16: end for
17: for k = 1 to M do
18: t ← 0
19: while k ≠ ∅ do
20: Jj∗ = argmin

Jj∈k

{
Dj

Ωj

}
21: Sj∗ ← t
22: Cj∗ ← Sj∗ + Tj∗

23: t ← Cj∗

24: k ← k ⧵
{

Jj∗
}

25: end while
26: end for
27: return Sj, Cj, zjk, ∀j = 1,… ,N, k = 1,… ,M
Source: Ebrahimzadeh and Maier (2019) © 2019 IEEE.

command and feedback paths (see lines 7–14 in Algorithm 5). This solves the
assignment sub-problem. Next, the proposed CAPSTA algorithm tackles the
scheduling subproblem to HOs. Toward this end, among unscheduled tasks, we
first select the task with the minimum amount of Dj

Ωi
and then schedule it when

the HO becomes available (see lines 16–25 in Algorithm 5). This, as a result, gives
preference to the tasks with larger weights and shorter due times.
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4.4.3 Complexity Analysis

In the proposed CAPSTA algorithm, partitioning the given task set  into M
subsets returns a solution with complexity(N log N) + (N) = (N log N). Next,
CAPSTA solves the scheduling subproblem with time complexity(||| N

M
||| log ||| N

M
|||) +(N ⋅ M). The overall time complexity is thus calculated as(N log N) + (M ⋅ N),

which reduces to (N log N) + (N2) since M ≪ N.

4.5 Delay Analysis

Recall from above that in order to ensure the quality-of-control of local/nonlocal
teleoperation loops, the average end-to-end delay of HO–TOR pairs should not
exceed a given threshold. Thus, in order to ensure the proper performance of our
proposed CAPSTA algorithm, it is of vital importance to estimate the connection
delay between any given TOR and the available HOs in both command and feed-
back paths. Toward this end, we develop our analytical framework to estimate the
average end-to-end packet delay of local and nonlocal teleoperation in FiWi-based
Tactile Internet infrastructures. In our analysis, we make the following assump-
tions:

● Single-hop wireless local area network (WLAN): MUs, HOs, and TORs are
directly associated with an (optical network unit) ONU-AP via a wireless single
hop, whereby ONU-MPPs serve as ONU-APs.

● Haptic traffic model: In both command and feedback paths, HOs and TORs
transmit their update packets at a rate of 1000 packets/s with fixed deterministic
interarrival times set to 1 ms (Steinbach et al., 2012).

● Background traffic model: MUs generate background Poisson traffic with mean
packet rate 𝜆B (in packets/second). In addition, the background traffic rate gen-
erated by ONUs with attached fixed (wired) subscribers that are directly con-
nected to the backhaul EPON is set to 𝜆ONU = 𝛼PON𝜆B, where 𝛼PON is a traffic
scale factor.

For notational convenience, let us use the term “WiFi user” for all MUs, HOs,
and TORs within the coverage area of an ONU-AP. We model each WiFi user
as a GI/G/1 queue to account for the different packet interarrival time distribu-
tions under consideration (i.e. Poisson for background traffic and deterministic
for haptic traffic). While the GI/G/1 queuing model requires the fewest assump-
tions among other models, it yields quite conservative results in that we can obtain
only an upper bound for the average delay experienced by any packet. An accurate
analysis of GI/G/1 queues can be done by solving the Lindley’s integral equation
in Lindley (1952). Closed-form solutions, however, are difficult to obtain, except
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for some known distributions. Therefore, we use the approximation method pre-
sented in Buzacott (1996) to estimate the upper bound of the average packet delay.

Let the delay experienced by any packet generated by a WiFi user be denoted
by random variable D, which is the sum of the queuing delay DQ and service time
(channel access delay) DS. To begin with, let the number of packets in the system
(i.e. queue and server) be denoted by Nt, which is approximated as

𝔼(Nt) ≈

(
𝜌2 (1 + C2

s
)

1 + 𝜌2C2
s

)(C2
a + 𝜌2C2

s

2(1 − 𝜌)

)
+ 𝜌 (4.9)

where Cs and Ca denote the coefficient of variation of service and interarrival
times, and 𝜌 denotes the server utilization. According to Little’s law, the average
delay experienced by an arbitrary packet since the time it arrives in the queue until
it successfully departs service is then calculated as

𝔼(D) =
𝔼(Nt)
𝜆

=

average queuing delay 𝔼(DQ)
⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞

1
𝜆

(
𝜌2 (1 + C2

s
)

1 + 𝜌2C2
s

)(C2
a + 𝜌2C2

s

2(1 − 𝜌)

)
+ 𝔼(DS). (4.10)

Clearly, in order to obtain 𝔼(D), we need to calculate the mean service time and
coefficient of variation of service time. This requires to obtain the first and second
moments of service time DS.

To compute the first and second moments of channel access delay DS in
Eq. (4.10), we defined the two-dimensional Markov chain (s(t), b(t)) shown in
Figure 2.12 under unsaturated traffic conditions and estimated the average service
time 𝔼(DS) and service time variance 𝕍𝔸ℝ(DS) in a WLAN using IEEE 802.11
distributed coordination function (DCF) for access control (see Chapter 2 for
further details). We then obtain the first and second moments of the packet delay
as follows:

𝔼(DS) =
∞∑

k=0
pk

e ⋅
(
1 − pe

)
⋅

[ ∞∑
j=0

pj
c
(
1 − pc

)
(( k+j∑

b=0

2min (b,m)W0 − 1
2

Es

)
+ jTc + kTe + Ts

)]
(4.11)

𝕍𝔸ℝ(DS) =
∞∑

k=0
pk

e
(
1 − pe

) ∞∑
j=0

pj
c
(
1 − pc

)
Q2(j, k) − 𝔼2(DS)

with

Q(j, k) =

( k+j∑
b=0

2min (b,m)W0 − 1
2

Es

)
+ jTc + kTe + Ts. (4.12)
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After finding 𝔼(DS) and 𝕍𝔸ℝ(DS) and given the incoming traffic rate 𝜆, we can
now compute the average delay experienced by any packet for a given WiFi sub-
scriber using Eq. (4.10).

Next, we calculate the average delay experienced by an arriving packet at the
EPON backhaul. In doing so, we build on the analytical frameworks presented in
Beyranvand et al. (2017) and Aurzada et al. (2014). We first define the backhaul
downstream traffic intensity 𝜌u and 𝜌d for a time division multiplexing (TDM)
passive optical network (PON) (Λ = 1) and a wavelength division multiplexing
(WDM) PON (Λ > 1) as

𝜌u = L
Λ ⋅ cPON

O∑
q=1

O∑
i=0

ΓPON
qi < 1 (4.13a)

𝜌d = L
Λ ⋅ cPON

O∑
q=0

O∑
i=1

ΓPON
qi < 1 (4.13b)

where cPON denotes the PON data rate, O denotes the number of ONUs, and ΓPON
qi

represents the traffic rate (in packets/second) between PON nodes q and i (with
q = 0 denoting the OLT).

Similar to Aurzada et al. (2014), the upstream delay, Du
PON, and downstream

delay, Dd
PON, of both TDM and WDM PONs are obtained as

Du
PON = Φ(𝜌u,L, 𝜍2, cPON) +

L
cPON

+ 2𝜏PON
2 − 𝜌u

1 − 𝜌u − Bu (4.14)

Dd
PON = Φ(𝜌u,L, 𝜍2, cPON) +

L
cPON

+ 𝜏PON − Bu (4.15)

where 𝜏PON denotes the average propagation delay between ONUs and OLT,
Φ(⋅) is the average queuing delay of an M/G/1 queue characterized by the
Pollaczek–Khintchine formula as

Φ(𝜌,L, 𝜍2, c) = 𝜌

2c(1 − 𝜌)

(
𝜍2

L
+ L

)
(4.16)

and

Bd = Bu = Φ

(
L

Λ ⋅ cPON

O∑
q=1

O∑
i=1

ΓPON
qi ,L, 𝜍2, cPON

)
. (4.17)

In the following, we proceed to estimate the elements of the command delay
matrix Dc and feedback delay matrix Df , accounting for both local and nonlocal
teleoperation scenarios.

4.5.1 Local Teleoperation

If HO Ok and the TOR that is collocated with task Jj are both associated with
the same ONU-AP, the average end-to-end packet delay Dc

kj, ∀k = 1, 2,… ,M and
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j = 1, 2,… ,N, in the command path is estimated as

Dc
kj = 𝔼(DOk

) + 𝔼(DONU-APn
) (4.18)

where 𝔼(DX ) for a given WiFi subscriber X is obtained from Eq. (4.10) and
ONU-APn denotes the ONU-AP, which HO k and TOR j are connected to.

The average end-to-end packet delay Df
jk, ∀j = 1, 2,… ,N and k = 1, 2,… ,M, in

the feedback path is then estimated as

Df
jk = 𝔼(DTORj

) + 𝔼(DONU-APn
). (4.19)

Note that in local teleoperation, the average end-to-end delay in command and
feedback paths may, in general, be different due to different traffic patterns/rates,
bit error probabilities, and medium access control (MAC) settings, among others.

4.5.2 Nonlocal Teleoperation

Unlike local teleoperation, nonlocal teleoperation is carried out, if HO Ok and the
TOR that is collocated with task Jj are associated with different ONU-APs. The
average end-to-end packet delay Dc

kj, ∀k = 1, 2,… ,M and j = 1, 2,… ,N, in the
command path is therefore estimated as

Dc
kj = 𝔼(DOk

) + Du
PON + Dd

PON + 𝔼(DONU-APn′
) (4.20)

which accounts for the average upstream delay Du
PON and downstream delay Du

PON
in the backhaul EPON given in Eqs. (4.14) and (4.15), respectively. Also note that
ONU-APn′ denotes the ONU-AP with which HO Ok is associated.

The average end-to-end packet delay Df
jk, ∀j = 1, 2,… ,N and k = 1, 2,… ,M, in

the feedback path is then estimated as

Df
jk = 𝔼(DTORj

) + Du
PON + Dd

PON + 𝔼(DONU-APn′
). (4.21)

4.6 Results

In this section, we examine our proposed CAPSTA algorithm. In our simulations,
the task operation time Tj is sampled from a discrete uniform distribution over
the range of [10, 30] seconds. The delay threshold D0 is set to 10 ms. The weight Ωj
is randomly chosen from {1, 2, 3, 4} (i.e. four different classes). The due times are
randomly chosen from 𝛼 ⋅ [1, | 1

M

∑N
j=1 Tj|], where |x| denotes the smallest integer

greater than or equal to x. Each point shown in the following results is averaged
over 50 randomly generated problem instants and falls within the 95% confidence
interval. We compare the performance of our proposed CAPSTA algorithm with
a benchmark random assignment and scheduling (RAS) algorithm, where for a
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given task an HO is randomly selected from the pool of available ones (Brucker,
2007). As for the underlying FiWi-enhanced mobile network architecture, we
apply the same default parameter settings of IEEE 802.11n DCF as listed in Table
I in Beyranvand et al. (2017). We consider four ONU-APs and four conventional
ONUs, each serving fixed (wired) subscribers that are all involved in nonlocal
H2H communications among each other. MUs and fixed subscribers generate
background traffic at a mean rate of 𝜆B and 𝛼PON ⋅ 𝜆B, respectively, whereas HOs
and TORs generate haptic traffic at a fixed rate of 1000 packets/s. We consider
6-DoF (degrees-of-freedom) TORs.

First, we present the average weighted completion time (AWCT) and maximum
tardiness vs. total number of available HOs M in Figures 4.3 and 4.4, respec-
tively. We observe from Figure 4.3 that increasing M results in an exponential
decrease of AWCT in both RAS and proposed CAPSTA algorithms. Specifically,
in the proposed CAPSTA algorithm, increasing M from 1 to 3 results in a 67%
reduction, whereas increasing M from 3 to 5 results in only a 41% reduction of
AWCT. Further, we note that the proposed CAPSTA algorithm achieves a 15–27%
reduction of AWTC compared to the RAS algorithm. Although achieving a lower
AWCT, the beneficial impact of the proposed CAPSTA algorithm compared to
the RAS algorithm is more pronounced in terms of the maximum tardiness, as
shown in Figure 4.4. We observe that the proposed CAPSTA algorithm achieves
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Figure 4.3 Average weighted completion time of tasks vs. total number of available
human operators M (𝛼 = 1 fixed). Source: Ebrahimzadeh and Maier (2019). © 2019 IEEE.
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Figure 4.4 Maximum tardiness of tasks vs. total number of available human operators M
(𝛼 = 1 fixed). Source: Ebrahimzadeh and Maier (2019). © 2019 IEEE.

a 49–56% reduction of maximum tardiness. Specifically, for N = 300, in order
to keep the maximum tardiness below 25 minutes, a total number of five HOs
is needed in the RAS algorithm, whereas in the proposed CAPSTA algorithm,
only two HOs are sufficient to achieve the same performance level. Further,
if the decision-maker likes to keep the maximum tardiness below 10 minutes,
then the number of required HOs is 5 and 12 in the proposed CAPSTA and RAS
algorithms, respectively, thus achieving a notable saving in OPEX, to be examined
shortly.

Next, we investigate the impact of increasing due time on the portion of the total
tasks of different classes that are subject to tardiness. Toward this end, let us define
RΩ as the rate of tardy tasks with weight Ω to the total number of tasks in the same
class. We have considered four different priority classes A, B, C, and D, which are
associated with weight W equal to 1, 2, 3, and 4, respectively. The results of RΩ vs. 𝛼
are shown in Figure 4.5. First, for small average task due times, 94% of class D tasks
cannot be accomplished within the expected due times, thus most of the tasks are
regarded as tardy tasks. This figure is >98% for class A–C tasks. Nevertheless, as
the average given due time increases, the portion of class D tasks that are subject
to tardiness decreases exponentially. Specifically, for 𝛼 = 1, RΩ drops below 2%.
Second, we find that the proposed CAPSTA algorithm schedules the tasks in favor
of high-priority ones, especially for 𝛼 greater than 0.5, as shown in Figure 4.5. We
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Figure 4.5 Rate RΩ of tardy tasks vs. 𝛼 for different task classes (N = 300 and M = 5
fixed). Source: Ebrahimzadeh and Maier (2019). © 2019 IEEE.

note that for 𝛼 equal to 2, RΩ converges to < 2% for classes B–D, whereas 36% of
class A tasks (i.e. low-priority tasks) are still subject to tardiness.

Figure 4.6 depicts the average OPEX per task vs. total number of available HOs
M for both the proposed CAPSTA and benchmark RAS algorithms. Overall, the
proposed CAPSTA algorithm outperforms the RAS algorithm in terms of average
OPEX per task, especially when the number of tasks is large, i.e. N = 300. For
M = 1, comparing the performance of the proposed CAPSTA algorithm with the
benchmark RAS algorithm, we observe a 75.3% and 78.9% reduction of average
OPEX per task for N = 100 and N = 300, respectively. As M increases, the OPEX
savings of the CAPSTA algorithm with respect to RAS algorithm decreases until
both curves converge. The reason for this is that when the total number of available
HOs M is small, the incurred OPEX is mainly due to tardy tasks, which are penal-
ized proportional to the weighted amount of tardiness. Figure 4.6 demonstrates
that the efficient scheduling of the proposed CAPSTA algorithm reduces the num-
ber of high-priority tasks that are subject to tardiness, thus achieving a significant
reduction of the average OPEX per task, compared to that of the benchmark RAS
algorithm.

More importantly, Figure 4.6 gives us further insights into selecting an optimal
number of HOs, which should be, on the one hand, large enough to reduce the
number of high-priority tardy tasks, and, on the other hand, small enough to avoid
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available human operators M (𝜖h = 1, 𝜖m = 5000, and 𝛼 = 1 fixed). Source: Ebrahimzadeh
and Maier (2019). © 2019 IEEE.

incurring excessive OPEX due to activating new teleoperation sessions. For the
proposed CAPSTA algorithm, the optimal number of available HOs M★ that min-
imizes C(X) is 2 and 5 for N = 100 and N = 300, respectively. We note that for the
proposed CAPSTA algorithm with M < 3, the average OPEX per task for N = 100
is less compared to that of N = 300. Both curves meet at M = 4 and then the OPEX
per task for N = 100 grows larger than that of N = 300. The reason for this is that
for N = 100, while increasing M does not result in a further decrease of tardiness,
it does result in an excessive increase of OPEX due to the incurred activation costs
of new teleoperation sessions. In contrast, for N = 300, a large portion of the tasks
are subject to tardiness, thus increasing M reduces the incurred OPEX due to tar-
diness, which in turn partly compensates for the incurred OPEX due to activating
teleoperation sessions.

The average OPEX per task vs. M for different 𝛼 ∈ {0.1, 0.5, 1, 2} for a fixed
N = 100 is illustrated in Figure 4.7, where we examine the impact of increasing
average task due times on the OPEX performance of our proposed CAPSTA algo-
rithm. We find that for 𝛼 = 0.1, 0.5, and 1, the average OPEX, C(X), is a convex
function of M, having a minimum at M★ = 6, 4, and 2, respectively, compared to
that of 𝛼 = 2, where C(X) increases linearly for increasing M, as explained above.
We note that for relatively relaxed due times (i.e. 𝛼 = 2), the contribution of the
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Figure 4.7 Average operational expenditures (OPEX) per task vs. total number of
available human operators M (𝜖h = 1, 𝜖m = 5000, and N = 100 fixed). Source:
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incurred penalty due to task tardiness is negligible compared to that of activating
excessive teleoperation sessions. Hence, the average OPEX grows linearly as M
increases. Therefore, when the average due time is large, it is beneficial to per-
form the teleoperation tasks by only one HO, provided that proper scheduling is
fulfilled (see Figure 4.7).

Next, the average OPEX vs. operational cost, 𝜖h, per time unit of tardiness
is shown in Figure 4.8, which renders the following interesting insights. First,
Figure 4.8 specifies the range of 𝜖h for which the proposed CAPSTA algorithm
achieves more beneficial results in terms of OPEX for two given M = M1 and
M = M2. For instance, while M = 2 always leads to a smaller OPEX per task
compared with that of M = 1, decreasing the number of HOs from M = 5 to
M = 2 does not achieve such reduction. To be more specific, M = 5 is more
OPEX-beneficial than M = 2 only if 𝜖h is greater than 0.5. This, however, is a
quite counterintuitive observation whether or not increasing M results in OPEX
savings depends not only on the average task due times (as explained before) but
also the operational cost, 𝜖h, per time unit of tardiness, as increasing M from 2 to
10 only incurs an additional OPEX due to activating new teleoperation sessions.
Further, we also note that for M = 10, the rate at which C(X) increases degrades
as 𝜖h grows. This is due to the fact that for a large M (e.g. M = 10) OPEX is less
likely due to task tardiness, thus increasing 𝜖h does not increase C(X) significantly,
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of available human operators M ∈ {1, 2, 5, 10} (𝛼 = 0.5, 𝜖m = 5000, and N = 100 fixed).
Source: Ebrahimzadeh and Maier (2019). © 2019 IEEE.

as opposed to small values of M (e.g. M = 1), where increasing 𝜖h results in a
significant increase of C(X). As a result, Figure 4.8 together with Figure 4.7 are
instrumental in helping optimize OPEX for a given set of system parameter
values.

Next, we examine the impact of average task due times on the OPEX perfor-
mance of the proposed CAPSTA algorithm. Figure 4.9 presents the average OPEX
per task vs. 𝛼, which reflects the amount of average task due time. For M = 1,
2, and 5, the average OPEX per task decreases for increasing 𝛼 and levels off for
𝛼 > 1. This is due to the fact that for smaller values of M, OPEX is mainly due to
penalizing the tardy tasks. Therefore, increasing 𝛼 translates into a reduced aver-
age tardiness, thus alleviating the average OPEX per task. On the other hand, for
large values of M (e.g. M = 10), the contribution of the first term of Eq. (4.6) to
OPEX is greater than the second term. For this reason, we do not observe a notable
decrease of the OPEX as 𝛼 increases.

Finally, we evaluate the end-to-end delay performance of local and nonlocal
teleoperation. Figure 4.10 depicts the average end-to-end packet delay of local tele-
operation vs. mean background traffic 𝜆B for different NMU ∈ {2, 3, 4, 5, 10}, where
NMU denotes the number of MUs that reside within the coverage of each ONU-AP.
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We find that an average end-to-end delay of 2.5 ms is achievable for local teleoper-
ation involved HO–TOR pairs. It is worthwhile to mention that the amount of time
waited by packets in the second hop (i.e. MAC queue of the ONU-AP) is notably
larger than that of the first hop (i.e. MAC queue of the HO/TOR), which is a direct
consequence of the high incoming packet rate at the ONU-AP. Second, we observe
that for NMU ∈ {2, 3, 4, 5}, the average end-to-end delay remains under 10 ms for
a wide range of background traffic rate 𝜆B.

Figure 4.11 illustrates the average end-to-end packet delay of nonlocal teleopera-
tion vs. background traffic rate𝜆B for different values of 𝛼PON ∈ {100, 200, 500} and
NMU = 2. In nonlocal teleoperation, the obtained end-to-end delay is as low as 2.8
and 4.5 ms for lPON = 20 and 100 km (compared to 2.5 ms in local teleoperation).
Further, we observe that for a given background traffic load, say 𝜆B = 10 packets/s,
increasing lPON from 20 to 100 km results in a 1.6 ms increase of the end-to-end
delay from 3.5 to 5.1 ms. This is counterintuitive in that the 80 km increase of
backhaul fiber length accounts for only 267 μs in propagation delay, which is much
smaller than 1.6 ms. The reason for this lies in the impact of increasing lPON on the
delay performance of the multipoint control protocol (MPCP) used in the backhaul
EPON.
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Figure 4.11 Average end-to-end packet delay of nonlocal teleoperation vs. background
traffic rate 𝜆B for different 𝛼PON ∈ {100, 200, 500} (NMU = 2 fixed). Source: Ebrahimzadeh
and Maier (2019). © 2019 IEEE.
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4.7 Discussion

As the Tactile Internet emerges, the flows generated by different applications
become more diverse, each requiring a different (quality of service) QoS/E.
To overcome the issues arising from traditional network management models,
including limited reconfigurability and complex per-flow traffic management,
software-defined networking (SDN)/network function virtualization (NFV) is
a promising solution, where a clear distinction is made between the control
and data planes. This as a result can provide the task coordinator with a logi-
cally centralized overview of the whole network, gather application-dependent
requirements (teleoperation in our studied scenario), and reconfigure network
parameters to achieve the desired QoS/E. In this context, NFV is a promising
technique, which can be used not only to further reduce the capital expenditure
(CAPEX) and OPEX issues of teleoperation over FiWi-enhanced mobile networks
but also to support a wider variety of HSI and TOR types (see Figure 2.2). More
importantly, given that FiWi-enhanced mobile networks have to cope with
the seamless integration of both optical and wireless subnetworks, the role of
SDN is even more pronounced in alleviating the difficulties of network design,
control, and management, especially with the coexistence of different types
of traffic (Liu et al., 2016). In this context, Thyagaturu et al. (2016) presents
a thorough review of the studies that examine the SDN paradigm in optical
networks, also referred to as software-defined optical networks (SDONs). While
the concept of sotfwarization of network protocols realized via SDN enables the
study of new ideas and optimization models, thereby significantly reducing the
deployment costs and speeding up the upgrade process, virtualization facilitates
service migration, thus allowing for location-aware service provisioning in a
cost-efficient manner (Cabrera et al., 2019).

4.8 Conclusion

We investigated the performance of our proposed CAPSTA algorithm in solving
the prioritized assignment and scheduling of delay-constrained teleoperation
tasks in FiWi-enhanced Tactile Internet network infrastructures. The obtained
results show that the proposed algorithm reduces the average weighted task com-
pletion time, maximum tardiness, and average OPEX, compared to the benchmark
RAS algorithm. Specifically, the proposed CAPSTA algorithm achieves a 15–27%
reduction of average weighted task completion time and a 49–56% reduction of
maximum tardiness. In addition, compared to the benchmark RAS algorithm,
the proposed CAPSTA algorithm achieves a 75.3% and 78.9% reduction of average
OPEX per task for N = 100 and N = 300, respectively. Our results also give
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insights into finding the optimal number of HOs to minimize the average OPEX
per completed task for different deployment scenarios. More precisely, we have
shown that for the proposed CAPSTA algorithm, the optimal number of available
HOs M★ that minimizes OPEX is 2 and 5 for N = 100 and N = 300, respectively.
Finally, we have shown that the considered solution is able to achieve an average
end-to-end packet delay of < 10 ms for both local and nonlocal teleoperation for
a wide range of background traffic rates. An interesting future research avenue
is to investigate the role of virtualization in FiWi-enhanced mobile networks
to eliminate the physical layer interaction of the often heterogeneous Tactile
Internet applications, thus realizing an infrastructure/technology-independent
architecture.
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5

Cooperative Computation Offloading in FiWi-Enhanced
Mobile Networks

5.1 Introduction

To address the contradiction between the rapid increase of computationally
intensive, delay-sensitive applications (e.g. Tactile Internet, augmented reality
(AR)/virtual reality (VR), and interactive gaming) and resource-limited smart
mobile devices, mobile cloud computing (MCC) has emerged to reduce the compu-
tational burden of mobile devices and broaden their capabilities by extending the
concept of cloud computing to the mobile environment via full and/or partial com-
putation offloading. Even though MCC allows mobile devices to benefit from pow-
erful computing resources to save battery power and accelerating task execution,
it raises several technical challenges due to additional communication overhead
and poor reliability that remote computation offloading may introduce. To over-
come these limitations, multi-access edge computing (MEC) has recently emerged
to provide cloud computing capabilities at the edge of access networks, leveraging
the physical proximity of edge servers and mobile users (MUs) to achieve reduced
communication latency and increased reliability (Chen et al., 2016).

While a conventional (remote) cloud provides high storage and computational
capabilities, it may pose large latency due to communications, as it is usually
physically distant from the MUs. On the other hand, MEC may offer a reduced
communication-induced latency, but it may pose an excessive processing latency
due to limited computational capabilities. In a broader vision, remote cloud
and MEC servers can thus coexist and be complementary to each other, giving
rise to cooperative computation offloading. The ultimate goal of MEC, in fact,
is to achieve an ultra-low response time, which is defined as the time interval
between the time instant at which a task is released from a mobile device until it
is processed (either locally or remotely) and the result is received by the device.
This time interval may include the waiting (queueing) and processing times in

Toward 6G: A New Era of Convergence, First Edition. Amin Ebrahimzadeh and Martin Maier.
© 2021 The Institute of Electrical and Electronics Engineers, Inc.
Published 2021 by John Wiley & Sons, Inc.
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either the local central processing unit (CPU) or edge/remote server as well as
the communication latency between the mobile device and edge/remote cloud.
Given the additional communication overhead that offloading introduces, a key
technical challenge is to find a trade-off between the cost of computation and
communication to enhance user experience in terms of lower latency and energy
consumption. In this chapter, motivated by Xiao and Krunz (2018), we focus
on the quality of experience (QoE) of MUs measured by the average response
time that can be influenced by the queueing/processing and transmission delay
components, including those between MUs and MEC servers and also between
MEC servers and the remote cloud.

To achieve the desired energy-delay performance, the so-called dynamic
voltage scaling (DVS) is a promising technique that varies the supply voltage and
clock frequency based on the computation load to achieve a suitable trade-off
between task execution time and energy consumption (Wang et al., 2016).
While computation offloading mainly relies on the computational capabilities
of the edge/remote servers, the DVS technique enables the MUs to adaptively
adjust their computational speed to reduce energy consumption or shorten task
execution time. Therefore, incorporating the DVS technique into computation
offloading offers more flexibility at the device side, enabling MUs to achieve
self-awareness via a design approach commonly known as self-organization to
further improve their QoE under different scenarios (Klaine et al., 2017).

5G mobile networks have led to an increasing integration of cellular and WiFi
technologies and standards, giving rise to so-called HetNets, which mandates the
need for addressing the backhaul bottleneck challenge (Maier and Ebrahimzadeh,
2019). Recently, we have explored the performance gains obtained from uni-
fying coverage-centric 4G long-term evolution-advanced (LTE-A) HetNets and
capacity-centric FiWi access networks based on data-centric Ethernet tech-
nologies with resulting fiber backhaul sharing and WiFi offloading capabilities
toward realizing 5G networks (Beyranvand et al., 2017). By means of probabilistic
analysis and verifying simulations based on recent and comprehensive smart-
phone traces, we showed that an average end-to-end latency of < 10 ms can be
achieved for a wide range of traffic loads and that MUs can be provided with
highly fault-tolerant FiWi connectivity for reliable low-latency fiber backhaul
sharing and WiFi offloading. Note, however, that only data offloading was
considered in Beyranvand et al. (2017) without any computation offloading via
MEC. Furthermore, the feasibility of implementing conventional cloud and
MEC in FiWi access networks was investigated in Rimal et al. (2017c), where
the main objective was to design a unified resource management scheme to
integrate offloading activities with the underlying FiWi operations. While much
of the effort in these papers has been devoted to the management of networking
resources, cooperation between mobile devices, MEC servers, the remote cloud
and the problem of offloading decision making have not been investigated. In Tan
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et al. (2017), a scalable online algorithm for task scheduling in an edge-cloud
system was proposed, which was verified by simulations using real-world traces
from Google. A hierarchical MEC-based architecture was presented in Tong et al.
(2016) with a focus on the workload placement problem. In Chen et al. (2017), an
optimization framework was presented for solving the problem of joint offloading
decision and allocation of computation and communication resources with the
aim of minimizing a weighted sum of the costs of energy, cost of computation,
and the delay for all users. More recently, Xiao and Krunz (2018) studied the
computation offloading problem for cooperative fog computing networks and
investigated the fundamental trade-off between QoE of MUs and power efficiency
of fog nodes. In Guo and Liu (2018), a collaborative computation offloading
scheme for MEC over FiWi networks was presented. All mentioned papers,
however, mainly focused on the management of computing resources without
further investigating the impact of the capacity-limited backhaul.

In this chapter, we examine the performance gains obtained by cooperative
computation offloading in MEC-enabled FiWi enhanced HetNets, which relies
on not only the computational capabilities of edge/cloud servers but also the
limited local computing resources at the device side. More specifically, we aim to
design a two-tier MEC-enabled FiWi enhanced HetNet architecture, where the
mobile devices as well as the edge servers cooperatively offload their computation
tasks toward achieving a reduced average response time. We take into account
both crucial aspects of limitations stemming from communications and compu-
tation in our design approach via accurate modeling of the fronthaul/backhaul
as well as edge/cloud servers, while paying particular attention to offloading
decision-making between MUs and edge servers as well as edge servers and the
remote cloud. Another important aspect of MEC is to cope with the additional
complexity that may arise in such a scenario by relying, fully or partially, on
the limited local computing resources of MUs when they are most needed.
The inherent time-varying nature of FiWi-enhanced HetNets, which is a direct
consequence of user mobility, entails exploiting a function that continuously
tune the local computational capabilities of mobile devices in order to ensure an
improved QoE. This can be achieved via adaptive reconfiguration of an MU given
its goals, capabilities, and constraints via a design approach commonly known
as self-awareness. Contributing to this effort, we leverage on the self-awareness
of MUs by applying the DVS technique for making appropriate energy-delay
trade-offs subject to given energy and delay constraints. In particular, the
contributions of this chapter are as follows:

● We design a two-tier hierarchical MEC-enabled FiWi enhanced HetNet-based
architecture for computation offloading, which leverages both local and nonlo-
cal computing resources to achieve low response time and energy consumption
for MUs. We also propose a simple but efficient offloading orchestration mech-
anism to achieve an improved QoE for MUs.
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● We develop an analytical framework to examine the performance of a system
model of our FiWi-based cooperative offloading scheme coexistent with con-
ventional human-to-human (H2H) traffic (i.e. voice, video, and data) in terms
of average response time as well as energy consumption of MUs. In our analysis,
we develop detailed models of both communication and computation, incorpo-
rating WiFi/LTE-A wireless access and capacity-limited backhaul fiber links as
well as resource-limited edge/remote cloud servers.

● Given the additional complexity incurred by integrating the cooperative compu-
tation offloading strategy in a FiWi enhanced HetNet architecture, any deviation
from optimal delay performance is inevitable. To cope with this and in order to
allow MUs to flexibly rely on their local computing resources by means of recon-
figuration, we propose a self-organization framework to allow mobile devices to
adaptively tune their offloading probability as well as computational capabilities
via the DVS technology. The proposed self-organizing design results in a Pareto
frontier characterization of the trade-off between average task execution time
and energy consumption.

The remainder of the chapter is structured as follows. In Section 5.2, we present
our proposed architecture of MEC-enabled FiWi enhanced HetNets and coopera-
tive offloading mechanism. In Section 5.3, we present our analytical framework for
estimating the energy-delay performance of our proposed cooperative task offload-
ing scheme. The proposed self-organization scheme is presented in Section 5.4.
Section 5.5 presents numerical results. Finally, Section 5.6 concludes the chapter.

5.2 System Model

Figure 5.1 depicts the generic architecture of the considered FiWi enhanced LTE-A
HetNets. We equip selected optical network unit-base stations (ONU-BSs)/mesh
portal points (MPPs) with MEC servers (or simply called edge servers hereafter) col-
located at the optical-wireless interface. MUs may offload fully or portion of their
incoming computational tasks to nearby edge servers. In addition to edge servers,
the optical line terminal (OLT) is equipped with cloud computing facilities, which
consist of multiple servers dedicated to processing mobile tasks. Each MU uses
a task scheduler that decides whether to offload a task to an edge server or exe-
cute it locally in its local CPU. We model the task scheduler in each MU by a
queueing system, as illustrated in Figure 5.2. Each MU uses a first in, first out
(FIFO) task scheduler that decides whether to offload a task to an edge server or
execute it locally in its local CPU. We model the task scheduler in each MU by a
FIFO queueing system, as illustrated in Figure 5.2. We assume that in each mobile
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Figure 5.1 Generic multi-access edge computing (MEC)-enabled fiber-wireless (FiWi)
enhanced LTE-Advanced (LTE-A) Heterogenous Networks (HetNets) architecture. Source:
Ebrahimzadeh and Maier (2020). © 2020 IEEE.
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Figure 5.2 Schematic of task scheduler and queueing system for mobile user (MU) i,
which includes two disjoint queues served by local central processing unit (CPU)
and WiFi/LTE-A wireless interface. Source: Ebrahimzadeh and Maier (2020). © 2020 IEEE.
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device there are two servers, namely, the CPU and the wireless interface (i.e. WiFi
or LTE-A). The former server is used to model the local task execution at the MU’s
CPU, whereas the latter is responsible for offloading tasks to an edge server in prox-
imity. We assume that MUs generate background Poisson traffic at mean packet
rate 𝜆B (in packets/s) (see Figure 5.2). We also assume that tasks arrive at MU i’s
scheduler at rate 𝜆MUi. The task scheduler at MU i makes its decision based on the
value of the so-called offloading probability, 𝛽i, which is defined as the probabil-
ity that an incoming task is offloaded to the edge server. Tasks generated by MU i
are characterized by Bl

i and Dl
i, which denote the average size of computation input

data (e.g. program codes and input parameters) and average number of CPU cycles
required, respectively. Computation tasks are assumed to be atomic and thus can-
not be divided into subtasks. We also assume that each edge server is equipped
with a FIFO task scheduler, which decides whether to execute an incoming task
or further offload it to the remote cloud. We also assume that each edge server
is equipped with a task scheduler, which decides whether to execute an incoming
task or further offload it to the remote cloud. Similar to MUs, a task arriving at edge
server j is further offloaded to the remote cloud with probability 𝛼j or executed
locally with probability (1 − 𝛼j).

5.3 Energy-Delay Analysis of the Proposed
Cooperative Offloading

In this section, we analyze the performance of our proposed cooperative
MEC-enabled FiWi enhanced LTE-A HetNets in terms of average response time
and energy consumption for task offloading coexistent with conventional H2H
traffic. Many related recent studies (e.g. (Xiao and Krunz, 2018; Chen et al.,
2016; Sun and Ansari, 2017; Fan and Ansari, 2018; Liu et al., 2018; Rodrigues
et al., 2017, 2018)) assumed a Poisson task arrival model and an exponentially
distributed number of required CPU cycles for task execution. In this chapter, we
follow the same research line and build our analysis on these assumptions. Fur-
ther, tasks are assumed to be computationally intensive, mutually independent,
and can be executed either locally or remotely on an edge server or the remote
cloud via computation offloading.1 Each edge server has a limited computational
capability and can serve a single task at a time (Xiao and Krunz, 2018; Sun
and Ansari, 2017). Besides, the remote cloud comprises a limited number of
high-performance computing servers, each of which can serve a single task at

1 We note that computation offloading may help enable the realization of a wide variety of
context-aware, computation intensive applications with low response time requirements, e.g.
simultaneous localization and mapping (SLAM) and/or 3D reconstruction of the surrounding
environment in an AR application.
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a time. While we assume that a tail-drop queue buffer management scheme
is considered, the size of the data buffers, including those deployed at optical
network units (ONUs) and OLT, is assumed to be sufficiently large to avoid any
packet loss due to overflow (Rimal et al., 2017a).

5.3.1 Average Response Time

In the proposed cooperative offloading scheme, both computation and com-
munication induced latencies may contribute to the resultant average response
time experienced by MUs.2 First, we estimate the latencies due to computation
for both local and nonlocal computing. For a given MU i, who is involved in
task offloading, assuming i.i.d. exponentially distributed task interarrival times
and given the offloading probability 𝛽i, the tasks arriving at the CPU queue
for local computing follow a Poisson process with rate

(
1 − 𝛽i

)
⋅ 𝜆MUi

, whereas
the offloaded tasks arriving at the wireless interface queue follow a Poisson
process with rate 𝛽i ⋅ 𝜆MUi

. This is because thinning a Poisson process with a fixed
probability results in another Poisson process. Let Dl

i be the average number of
required CPU cycles to execute a task arriving at MU i. The average local task
execution time 𝜏 l

i at MU i is given by

(fi) = 𝜏 l
i =

Dl
i

fi
(5.1)

where fi is the clock frequency (in CPU cycles per second) of MU i. Assuming that
the number of required CPU cycles per task follows an exponential distribution,
we can model the local CPU server of MU i as an M/M/1 queue with mean arrival
rate

(
1 − 𝛽i

)
𝜆MUi

and mean task execution time 𝜏 l
i . The average delayΔMUi

of local
task execution (which includes both queueing and service times) at MU i’s CPU is
then given by

ΔMUi =
1

𝜇l
i −

(
1 − 𝛽i

)
𝜆MUi

(5.2)

where 𝜇l
i , which is equal to 1∕𝜏 l

i , is the rate at which the executed tasks depart from
MU i’s CPU. We note that Eq. (5.2) is valid only if

(
1 − 𝛽i

)
𝜆MUi

𝜏 l
i < 1.

Let j denote the set of MUs that are served by edge server j. Further, let 𝜆e
0,j

be the mean arrival rate and De
0,j denote the required number of CPU cycles of

offloaded tasks from the fixed (wired) subscribers, if any, which may be directly
connected to edge server j. Given the offloading probabilities 𝛽i, ∀MUi ∈ j, the

2 It is worthwhile to mention that although network bandwidth fluctuations may lead to
variations of the response time, our main focus in this chapter is to estimate the long-run
average of the response time.
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mean arrival rate 𝜆MECj
at the task scheduler of edge server j is computed as

follows:

𝜆MECj = 𝜆e
0,j +

∑
MUi∈j

𝛽i ⋅ 𝜆MUi. (5.3)

Let 𝜏e
j denote the average task execution time at edge server j. For estimating 𝜏e

j ,
we compute the average number D

e
j of CPU cycles required to execute a task at

edge sever j as follows:

D
e
j =

𝜆e
0,jD

e
0,j +

∑
MUi∈j

𝛽i ⋅ 𝜆MUi ⋅ Dl
i

𝜆e
0,j +

∑
MUi∈j

𝛽i ⋅ 𝜆MUi
(5.4)

which is then used to calculate 𝜏e
j , which is given by

𝜏e
j =

D
e
j

f e
j

(5.5)

where f e
j is the computational capability (in CPU cycles per second) of edge server

j. Modeling edge server j as an M/M/1 queue with mean arrival rate
(
1 − 𝛼j

)
𝜆MECj

and mean service time 𝜏e
j , the average delay ΔMECj

of task execution at edge server
j is calculated as follows 3:

ΔMECj =
1

𝜇e
j −

(
1 − 𝛼j

)
𝜆MECj

(5.6)

whereby 𝜇e
j = 1∕𝜏e

j . Substituting Eq. (5.3) in Eq. (5.6) provides the following
expression:

ΔMECj
= 1

𝜇e
j −

(
1 − 𝛼j

)
⋅
(
𝜆e

0,j +
∑

MUi∈j
𝛽i ⋅ 𝜆MUi

) (5.7)

which is valid only if

𝜏e
j ⋅

(
1 − 𝛼j

)
⋅
⎛⎜⎜⎝𝜆e

0,j +
∑

MUi∈j

𝛽i ⋅ 𝜆MUi

⎞⎟⎟⎠ < 1.

Next, we proceed to estimate the task execution delay at the remote cloud. Let
 denote the set of edge servers that are connected to the remote cloud. The mean
arrival rate 𝜆c at the remote cloud is obtained as follows:

𝜆c = 𝜆c
0 +

∑
MECj∈

𝛼j ⋅ 𝜆MECj. (5.8)

3 Although an edge server may comprise a number of physical and/or virtual machines to
process the incoming tasks, we are focusing on a coarse-grained scenario, thus modeling an edge
server as a single entity, as in many related works, e.g. Xiao and Krunz (2018), Sun and Ansari
(2017), and Fan and Ansari (2018).
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Let 𝜆c
0 and Dc

0 denote the arrival rate and number of CPU cycles required to execute
the background tasks4 at the remote cloud, respectively.

Further, let 𝜏c denote the average task execution time at the remote cloud.
In order to estimate 𝜏c, we first calculate the average number Dc of CPU cycles
required to execute a task at the remote cloud, which is given by

Dc =
𝜆c

0Dc
0 +

∑
MECj∈𝛼j ⋅ 𝜆MECj ⋅ D

e
j

𝜆c
0 +

∑
MECj∈𝛼j ⋅ 𝜆MECj

(5.9)

which is then used to estimate 𝜏c as follows:

𝜏c =
Dc

f c (5.10)

where f c is the computational capability of each of the s homogeneous servers
deployed at the remote cloud. We can thus model the remote cloud as an M/M/s
queue with mean arrival rate 𝜆c (given by Eq. (5.8)) and mean service time 𝜏c (given
by Eq. (5.10)). The average delay Δc experienced by an arbitrary task in the remote
cloud is then estimated by the well-known Erlang-C formula:

Δc =
(s, a) ⋅ 𝜏c

s − a
+ 𝜏c (5.11)

where the carried load a is equal to 𝜆c ⋅ 𝜏c and (s, a) is given by

(s, a) =
as⋅s

s!(s−a)∑s−1
k=0

ak

k!
+ as⋅s

s!(s−a)

(5.12)

which is the probability that an arriving task finds all the s servers busy. Note that
Eq. (5.12) is valid only if the carried load does not exceed the number of servers
(i.e. 𝜆c ⋅ 𝜏c < s).

Next, we turn our attention to calculating the communication induced latency
in our cooperative task offloading scheme. Recall from above that the offloaded
tasks arrive at the wireless interface of MU i with rate 𝛽i ⋅ 𝜆MUi

. With Lm denoting
the maximum payload size of a single packet, the number of packets per task is
equal to

⌈
Bl

i
Lm

⌉
. We can then estimate the rate ΓMUi

at which packets arrive at the
wireless interface of MU i as follows:

ΓMUi
= 𝜆B +

⌈
Bl

i

Lm

⌉
⋅ 𝛽i ⋅ 𝜆MUi

(5.13)

where 𝜆B denotes the background H2H traffic (see also Figure 5.2).

4 Some of the fixed subscribers may not be connected to any edge server in proximity and thus
offload their tasks directly to the remote cloud via the backhaul Ethernet passive optical
network (EPON). We refer to such tasks as cloud background tasks.
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5.3.1.1 Delay Analysis of WiFi Users
First, we calculate the average packet delay ΘWiFi

i in the uplink for MU i, who
is associated with an ONU-AP through WiFi. For a given set of network model
parameters, we can estimate ΘWiFi

i as in Aurzada et al. (2014):

ΘWiFi
i = 1

1
Δi

− ΓMUi

; Δi ⋅ ΓMUi
< 1 (5.14)

where Δi denotes the average channel access delay and ΓMUi
is given by Eq. (5.13).

Note that Eq. (5.14) accounts for both queueing and channel access (service)
delay5.

Lemma 5.1 The average channel access delay Δi of MU i is obtained as follows

Δi =
∞∑

k=0
pk

e,i
(
1 − pe,i

)
×

[ ∞∑
j=0

pj
c,i

(
1 − pc,i

)(( k+j∑
b=0

2min (b,m)W0 − 1
2

Es

)
+ jTc,i + kTe,i + Ts,i

)]
,

(5.15)

where pe,i is the probability of an erroneous transmission, pc,i is the probability of a
collision, W0 is the initial contention window size, Es is the expected time-slot dura-
tion, and Tc,i, Te,i, and Ts,i denote the average duration of a collided, erroneous, and
successful transmission of MU i, respectively.

Proof: See Appendix A.4. ◽

We note that the average access delay Δi consists of time delays due to carrier
sensing, exponential back-offs, collided and erroneous (if any) attempts, successful
transmission, and acknowledgement. It is also worthwhile to mention that the
presence of interfering users may increase the collision probability, pc,i, of MU i,
thus increasing its average channel access delay (see Eq. (5.15)).

5.3.1.2 Delay Analysis of 4G LTE-A Users
Next, we assume a 4G LTE-A cellular network and estimate its uplink delay. Let
ptx

i denote the transmission power of MU i. We use the Shannon–Hartley theorem

5 Similar to Beyranvand et al. (2017), Aurzada et al. (2014), Kafaie et al. (2018), Zhu et al.
(2012), Liu et al. (2013), Han et al. (2006), and Pham et al. (2005), the WiFi channel access time
governed by the IEEE 802.11 distributed coordination function (DCF) is assumed to be
exponentially distributed. This is justified by the DCF channel access mechanism, which
includes carrier sensing, binary exponential back-off(s), and reattempts (if any) due to collisions
and erroneous transmissions.
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to estimate the uplink data rate rLTE
i of MU i transmitting to base station (BS) k via

a 4G LTE-A cellular network as follows:

rLTE
i = 𝜔log2

⎛⎜⎜⎝1 +
ptx

i
Gi,k

𝜔
2
0 +

∑
j≠iptx

j Gj,k

⎞⎟⎟⎠ (5.16)

where 𝜔 and 𝜔
2
0 are the channel bandwidth and background noise power, respec-

tively; Gi,k denotes the channel gain between MU i and BS k. We use (Beyranvand
et al., 2017, Eq. (37)) to estimate the uplink delay of LTE-A users, which is given by

ΘLTE
i =

𝜌u
BS

2rLTE
i (1 − 𝜌u

BS)

(
𝜍2

L

L
+ L

)
+ L

rLTE
i

+ Dup
RA + Dsetup + 𝜏BS (5.17)

where Dup
RA is the initial random access delay (given by (Beyranvand et al., 2017,

Eq. (38))), Dsetup denotes the connection setup delay after passing the random
access process successfully, 𝜌u

BS denotes the uplink traffic intensity, 𝜏BS is the prop-
agation delay in the cellular network, and L and 𝜍2

L denote the mean and variance
of the packet length, respectively. We note that, according to Eqs. (5.16) and (5.17),
the achievable uplink data rate for MU i is decreased as a larger number of users is
connected to the cellular BS, thereby increasing the packet delay experienced by
MU i.

Each MU is directly associated with an ONU-AP or a cellular BS via a wireless
single hop, whereby ONU-MPPs serve as ONU-APs. The WiFi connection and
interconnection times of MUs are assumed to fit a truncated Pareto distribu-
tion, as validated via recent smartphone traces in Beyranvand et al. (2017).
The probability PMU

temp that an MU is temporarily connected to an ONU-AP is
estimated as Ton∕(Ton + Toff), whereby Ton and Toff denote the average WiFi
connection and interconnection time, respectively. In this chapter, we assume
that Ton = 28.1 minutes and Toff = 10.3 minutes, which are consistent with the
measurements of PhoneLab traces (see (Beyranvand et al., 2017) for further
details). With these considerations, MU i is either connected to an ONU-AP
through WiFi with probability PMU

temp or an ONU-BS through cellular network with
probability (1 − PMU

temp). The average task transmission delay ΘUL
i in the uplink is

then computed as follows:

ΘUL
i =

(
PMU

temp ⋅ Θ
WiFi
i + (1 − PMU

temp) ⋅ Θ
LTE
i

)⌈
Bl

i

Lm

⌉
. (5.18)

5.3.1.3 Delay Analysis of Backhaul EPON
Let Du

PON denote the average packet delay in the backhaul EPON in the upstream
direction. The average task transmission delay ΘPON in the backhaul is then equal
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to Du
PON ⋅

⌈
Bl

i
Lm

⌉
, where Du

PON is given by Beyranvand et al. (2017):

Du
PON = Φ

(
𝜌u,L, 𝜍2

L , cPON

)
+ L

cPON
+ 2𝜏PON

2 − 𝜌u

1 − 𝜌u − Bu (5.19)

whereby 𝜌u is the upstream traffic intensity, 𝜏PON is the propagation delay
between ONUs and OLT, cPON is the EPON data rate, Φ(⋅) denotes the well-known
Pollaczek–Khintchine formula, and Bu is obtained as
Φ
(

L
ΛcPON

∑O
i=1

∑O
q=1 Γ

PON
iq ,L, 𝜍2

L , cPON

)
, where O is the number of ONUs and

ΓPON
iq is the traffic coming from ONUi to ONUq, and Λ denotes the number of

wavelengths in the wavelength division multiplexing (WDM) PON.
After calculating the computation and communication delay components, we

proceed to compute the total average response time Υi of MU i as follows6:

Υi = (1 − 𝛽i) ⋅

local response time Dr
L,i

⏞⏞⏞

ΔMUi
+ 𝛽i ⋅

nonlocal response time Dr
NL,i

⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞(
ΘUL

i +
(
1 − 𝛼j

)
ΔMECj

+ 𝛼j
(
ΘPON + Δc

))
(5.20)

where the terms denoted by Δ and Θ represent the latency components of compu-
tation and communication, respectively. Note that the communication-induced
latency terms ΘUL

i and ΘPON depend on the offloading probabilities 𝛽i and 𝛼j,
respectively. More specifically, if MUs decide to offload a large portion of their
incoming tasks to the edge servers, the average task transmission delay in the
uplink as well as the waiting times in the edge server may increase significantly.
On the other hand, if the edge servers also decide to further offload a large
portion of their tasks arriving from MUs and fixed subscribers to the remote
cloud, the backhaul upstream delay as well as waiting delay at the cloud servers
may increase as a result. Therefore, in order for the MUs to benefit from the
powerful computational capabilities of the edge/remote servers and experience a
low response time, it is important for both device and edge-server schedulers to
optimally adjust their offloading probabilities.

5.3.2 Average Energy Consumption per Task

In the following, assuming that the underlying networking and computing compo-
nents of our considered architecture shown in Figure 5.1 (e.g. BSs, APs, ONUs, and
edge servers) are consistently powered with sufficiently available, low-cost energy

6 Similar to Chen et al. (2016), Guo and Liu (2018), Liu et al. (2018), and Guo et al. (2016), we
neglect the time overhead for sending the computation result back to the MUs due to the fact
that for many applications (e.g. face/object recognition) the size of the computation result is
generally smaller than that of the computation input data.
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resources, we restrict our attention to the energy consumption of MUs only. Sim-
ilar to Xiao and Krunz (2018), we model the power consumption of MU i’s CPU
as 𝜅f 3

i , where 𝜅 is the effective switched capacitance related to the chip architec-
ture (Wang et al., 2016). The energy consumption per CPU cycle is thus equal to
𝜅f 2

i , as fi represents the number of CPU cycles per second. The average energy con-
sumption El

i for local execution of a task at MU i is then given by Xiao and Krunz
(2018)

El
i = 𝜅 ⋅ f 2

i ⋅ Dl
i. (5.21)

Recall from above that an incoming task at MU i is either executed locally with
probability

(
1 − 𝛽i

)
or it is offloaded for nonlocal execution with probability 𝛽i.

The energy consumption, Eo
i , of MU i for offloading an incoming task is given by

Eo
i = EUL

i + EDL
i (5.22)

where EUL
i and EDL

i are the average energy consumptions of MU i to offload an
incoming task in the uplink direction and receive its output in the downlink direc-
tion, respectively. In the uplink, EUL

i is calculated as follows:

EUL
i =

(
ktx

1 + ktx
2 ⋅ ptx

i
)
⋅ ΘUL

i (5.23)

whereby ktx
1 represents the static power consumption for having the radio

frequency (RF) transmission circuitries switched on and ktx
2 measures the linear

increase of the transmitter power consumption with radiated power ptx
i . In the

downlink, EDL
i of MU i is estimated by

EDL
i =

(
krx

1 + krx
2 ⋅ rDL

i
)
⋅ ΘDL

i (5.24)

where krx
1 represents the extra power consumption for having the receiver circuit

switched on, krx
2 (measured in W/Mbps) is the power consumption per Mbps in

the downlink direction, and rDL
i is the downlink rate, which is given by

rDL
i = PMU

temp ⋅ rWiFi + (1 − PMU
temp) ⋅ rLTE (5.25)

where rWiFi and rLTE are the average transmission rates of the WiFi access point
and LTE BS, respectively. Further, we note that the transmission time, ΘDL

i , of the
task output in the downlink direction is estimated by Bo

i ∕rDL
i , where Bo

i is the task
output size. Note that unlike ΘUL

i , ΘDL
i does not depend on the offloading proba-

bility 𝛽i. The average energy consumption Ei (for either executing a task locally or
transmitting its input data to an edge server) of MU i is then estimated as

Ei =
(
1 − 𝛽i

)
El

i + 𝛽iEo
i . (5.26)

By substituting Eqs. (5.21) and (5.22) into Eq. (5.26), we have

Ei =
(
1 − 𝛽i

) (
𝜅 ⋅ f 2

i ⋅ Dl
i
)
+ 𝛽i[

(
ktx

1 + ktx
2 ⋅ ptx

i
)
⋅ ΘUL

i +
(

krx
1 + krx

2 ⋅ rDL
i

)
⋅ ΘDL

i ].
(5.27)
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5.4 Energy-Delay Trade-off via Self-Organization

According to our analysis above, an improved QoE is only achieved when an opti-
mal setting of the offloading probabilities is done at both device and edge server
sides. Any deviation from this optimal setting may result in performance deteri-
oration. Due to the inherent time-varying nature of the network state, which is
a direct consequence of user mobility and traffic fluctuation, such an optimal set-
ting may not be obtained and maintained easily. To cope with this issue, we enable
the MUs with self-awareness such that after local measurements, they achieve
a reduced average response time and energy consumption by tuning their local
parameters only.

In the following, we develop a bicriteria optimization framework to enable MUs
to use their local information and minimize the response time as well as their
energy consumption by dynamically adjusting their offloading probability as well
as CPU clock frequency using the aforementioned DVS technique. For notational
simplicity, we consider a tagged user and drop the subscript i hereafter. Similar to
Wang et al. (2016) and Guo et al. (2016), we assume that the CPU clock frequency f
of the tagged MU is restricted to a continuous interval of [fmin , fmax ]. We formulate
the bicriteria energy-delay self-organization problem as follows:

(1) ∶ min
f ,𝛽

Υ(f , 𝛽),E(f , 𝛽) (5.28a)

s.t. fmin ≤ f ≤ fmax (5.28b)

0 ≤ 𝛽 ≤ 1 (5.28c)

where Υ and E are given in Eqs. (5.20) and (5.27), respectively. To assess the
developed model and characterize the trade-off between the two objectives of
the formulation above, we apply the Pareto front analysis. To obtain the Pareto
front solutions, a common approach is to transform the original problem into an
optimization problem by transferring one of the objectives into the constraints
and solving it iteratively. In doing so, the problem (1) is transformed into a
single-objective nonlinear optimization problem as follows:

(2) ∶ min
f ,𝛽

Υ(f , 𝛽) (5.29a)

s.t. fmin ≤ f ≤ fmax (5.29b)

0 ≤ 𝛽 ≤ 1 (5.29c)

E(𝛽, f ) ≤ thr (5.29d)
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where thr denotes the given energy budget not to be exceeded (see con-
straint (5.29d)).

Lemma 5.2 Problem (5.29) is a convex optimization problem.

Proof: Υ(𝛽, f ) is a continuous twice-differentiable convex function of f and 𝛽,
which can be verified by the fact that its Hessian matrix is positive definite.
Besides, constraints 5.29b and 5.29d are affine functions of f and 𝛽, respectively;
and constraint 5.29d is a convex function of f and 𝛽. Therefore, the feasible set of
the problem is a convex set. ◽

Lemma 5.3 Necessary condition for optimality: The optimal solution (f ∗, 𝛽∗) of
problem (2) satisfies the following equation:

f ∗ = (𝛽∗) = min {(𝛽), fmax }, ∀𝛽 ∈ [0, 𝛽max ], (5.30)

where

(𝛽) =
√thr − 𝛽[(ktx

1 + ktx
2 pt)Θ

UL +
(

krx
1 + krx

2 rDL
)
ΘDL]

(1 − 𝛽)𝜅Dl
, (5.31)

and 𝛽max is obtained by solving the following equation:

(𝛽) − fmin = 0. (5.32)

Proof: First, we show that f = (𝛽) (given by Eq. (5.30)) determines the upper
limit of CPU clock frequency f for a given 𝛽. In doing so, we take the energy con-
straint given by constraint (5.29d) and calculate f as a function of 𝛽 for a fixed thr
as follows:

f ≤ (𝛽). (5.33)

Taking into account constraint (5.29d), inequality (5.33) becomes:

f ≤
(𝛽)

⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞

min {(𝛽), fmax }. (5.34)

Clearly, f = (𝛽) gives the upper limit of f for a given 𝛽 (see Figure 5.3).
Next, we prove Lemma 5.3 by contradiction. Let (𝛽1, f1) satisfy f1 = (𝛽1).

Assume (𝛽1, f2), ∀f2 < f1, achieves a smaller response time, thus:

Υ(𝛽1, f2) < Υ(𝛽1, f1). (5.35)

Obviously, since f = (𝛽) gives the upper limit of the CPU clock frequency f for
a given (fixed) offloading probability 𝛽, an MU can experience a smaller response
time by increasing its CPU clock frequency from f2 to f1. This happens in light
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Figure 5.3 Illustration of the search space for problem (2) for different values of thr.
Source: Ebrahimzadeh and Maier (2020). © 2020 IEEE.

of the fact that for a fixed offloading probability 𝛽1, as CPU clock frequency f
increases, the first term on the right-hand side of Eq. (5.20) decreases, whereas
the second term remains unchanged. Hence, Υ(𝛽1, f1) < Υ(𝛽1, f2), which is in con-
tradiction with (5.35). We also note that for a given energy budget thr, the maxi-
mum offloading probability 𝛽max is obtained by solving fmin = (𝛽), as illustrated
in Figure 5.3. Therefore, the optimal solution (f ∗, 𝛽∗) of problem (2) satisfies
Eq. (5.30). This completes the proof. ◽

Since Lemmas 5.2 and 5.3 hold, we use a standard constrained convex opti-
mization approach and obtain the optimal solution (f ∗, 𝛽∗) of problem (2) for
a given MU using only its local information/parameters, as described in Algo-
rithm 6, where 𝜖2 is the minimum step size for searching the optimal solution
(𝛽∗, f ∗), M is a big number, and 𝜖1 is a small number. In Algorithm 6, the opti-
mal offloading probability 𝛽∗ is obtained via a one-dimensional search method,
whereas the optimal CPU clock frequency f ∗ is calculated accordingly using the
closed-form relation given by Eq. (5.30). It is worthwhile to mention that the non-
local processing latency term, Dr

NL, in Eq. (5.20) can be calculated using only local
information as follows:

Dr
NL =

Υ̂ − (1 − 𝛽) ⋅ Dr
L − 𝛽 ⋅ Θ̂

UL

𝛽
(5.36)
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Algorithm 6 Joint Offloading and DVS Procedure
Input: thr , fmin, fmax, energy and task parameters
Output: 𝛽∗ and f ∗

1: Initialize: 𝛽0 ← 0 and f0 ← (0)
2: Solve Eq. (5.32) and obtain 𝛽max
3: Δ← M
4: while (Δ > 𝜖1) & (𝛽0 ≤ 𝛽max) do
5: 𝛽1 ← 𝛽0 + 𝜖2
6: f1 ← (𝛽1) using Eq. (5.30)
7: Δ ← Υ(f0, 𝛽0) − Υ(f1, 𝛽1) using Eq. (5.20)
8: if Δ > 0 then
9: 𝛽∗ ← 𝛽1 and f ∗ ← f1

10: else
11: 𝛽∗ ← 𝛽0 and f ∗ ← f0
12: end if
13: 𝛽0 ← 𝛽1
14: end while
15: return 𝛽∗, f ∗

Source: Ebrahimzadeh and Maier (2020). © 2020 IEEE.

where Υ̂ and Θ̂
UL

can be obtained via measurements. Given that the number of
arithmetic operations within each iteration is upper-bounded, the complexity of
Algorithm 6 is (K), where K = 𝛽max

𝜖2
is the number of iterations for searching the

optimal solution.
We note that once the optimal setting of the offloading probability and CPU

clock frequency is achieved for a given MU, any change in the network state may
result in a degraded energy-delay performance. The optimal setting at the servers
side is obtained and maintained by solving a centralized optimization problem in
the backhaul. In contrast, at the MU side, the optimal setting is achieved and then
maintained by periodically solving the problem (2) using the local parameters
and latency measurements, as explained above. This, as a result, mandates the
need for designing an efficient mechanism that periodically updates the optimal
setting to ensure that the desired energy-delay performance is maintained.7

5.5 Results

The following numerical results were obtained by using the LTE-A and FiWi
network and traffic parameter settings listed in Table 5.1, which are consistent

7 Investigating efficient methods of maintaining optimal setting at the MU side while taking
into account operational expenditure (OPEX)/capital expenditure (CAPEX) considerations is an
interesting topic to pursue as future work.
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Table 5.1 MEC-enabled FiWi enhanced HetNet parameters and default values.

Parameter Value Parameter Value

Traffic model parameters

Lm 1500 Bytes 𝜆B 30 packet/s
𝛼PON 100 L, 𝜍2

L 1500 Bytes, 0

Backhaul EPON
lPON 20 km cPON 10 Gbps
NONU {12, 16, 20, 24} Λ 1

WiFi parameters
DIFS 34 μs SIFS 16 μs
PHY Header 20 μs W0, H 16 slots, 6
𝜖 9 μs RTS 20 bytes
CTS 14 bytes ACK 14 bytes
r in WMN 300 Mbps ONU-AP radius 15 m

LTE-A parameters
ptx 100 mW 𝜔 5 MHz
𝜔

2
0 −100 dBm ktx

1 0.4 W
ktx

2 18 ONU-BS radius 50 m
prx 200 mW krx

1 0.4 W
krx

2 2.86 W/Mbps

Task and edge/cloud server parameters
𝜆MU 25 task/min fi [150, 450] MHz
𝜆e

0 30 task/min f e
j 1.44 GHz

𝜆c
0 240 task/min s 6

f c 1.44 GHz Bl 66 KB
Dl, De

0,Dc
0 300 Mcycles 𝜅 10−26

𝜖1,𝜖2 10−3 M 102

Bo 1 KB
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with those in Beyranvand et al. (2017), Aurzada et al. (2014), Wang et al. (2016),
Guo et al. (2016), and Miettinen and Nurminen (2010). In our considered scenario,
50 MUs are scattered randomly within the range of 50 m from each ONU-BS.
Besides, we consider four MUs within the coverage area of each ONU-AP.
In the cellular access mode, we set the channel gain to Gi,k = d−𝜉

i,k between
MU i and BS k, where di,k is the distance between MU i and BS k, and 𝜉 = 4 is
the path loss factor. Further, we set 𝛽i = 𝛽(∀i = 1, 2,…) and 𝛼j = 𝛼(∀j = 1, 2,…).
A portion 𝜁 of the number of MUs that reside within the coverage area of an
ONU-AP or cellular BS is involved in task offloading, while the remaining portion
(1 − 𝜁) generates conventional Poisson H2H traffic at mean packet rate 𝜆B.
Background traffic coming from ONUs with attached fixed (wired) subscribers is
set to 𝛼PON ⋅ 𝜆B, where 𝛼PON ≥ 1 is a traffic scaling factor for fixed subscribers that
are directly connected to the backhaul EPON. Also, the user mobility parameters
in our simulations are tuned such that the WiFi connection and interconnection
times fit a truncated Pareto distribution with PMU

temp = 73.18%, which is compliant
with the measurements in Beyranvand et al. (2017).

First, we consider the edge computing-only scenario with 𝛼 being set to zero.
Figure 5.4a,b depict the energy-delay performance of MEC-assisted partial offload-
ing. The average response time vs. offloading probability 𝛽 for different values of 𝜁
is shown in Figure 5.4a. The results indicate that the average response time is a
convex function of 𝛽. For 𝜁 = 20%, setting 𝛽 = 0.66 leads to an 82% reduction of the
average response time compared to the fully local computing scheme (i.e. 𝛽 = 0).
We note that the optimal value of 𝛽 largely depends on 𝜁 . More specifically, as 𝜁
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Figure 5.4 (a) Average response time vs. mobile user (MU) offloading probability 𝛽

for different values of 𝜁 (𝛼 = 0 and fi=150 MHz); (b) average energy per task vs. MU
offloading probability 𝛽 for different values of local clock frequency fi (𝜁 = 20%). Source:
Ebrahimzadeh and Maier (2020). © 2020 IEEE.
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computing (𝜁 = 20%).
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and Maier (2020).
© 2020 IEEE.

increases, the optimal value of 𝛽 decreases, as shown in Figure 5.4a. Figure 5.4b
depicts the average energy consumption per task vs. 𝛽 for different values of fi. The
bottom curves in Figures 5.4a,b highlight the trade-off an MU can make between
the average response time and energy per task for 𝜁 = 20%. We also observe from
Figure 5.4b that for larger values of fi, partial offloading not only reduces the aver-
age response time but it also helps MUs reduce their energy consumption.

Next, we examine the performance gains obtained from our proposed trilateral
device-edge-cloud cooperative computing. Figure 5.5 depicts the average response
time vs. 𝛽 for the following three different scenarios: (i) edge-only (𝛼 = 0), (ii)
cloud-only (𝛼 = 1), and (iii) cooperative computing (𝛼 = 𝛼∗), where 𝛼∗ denotes
the optimal value of 𝛼 set by the network operator to minimize the average
task execution time experienced by the edge servers. Figure 5.5 shows that
the proposed cooperative computing scheme yields a better delay performance
compared to either the edge-only or cloud-only scheme, especially for 𝛽 > 0.64.
While the edge- and cloud-only schemes may both pose a longer response time
due to an excessive queueing delay for large values of 𝛽, the trilateral cooperation
between the CPU, edge server, and remote cloud yields a reduced response time
by setting 𝛽 and 𝛼 to their optimal values (see bottom curve in Figure 5.5).

Figure 5.6 shows the impact of edge server offloading probability 𝛼 on the delay
performance of our cooperative computing scheme. For fi = 250 MHz, when MUs
operate in the full offloading mode (i.e. 𝛽 = 1), the delay of the cooperative com-
puting scheme equals 2.28 seconds by setting 𝛼 = 0.68, compared to ∼ 12 seconds
of the edge- or cloud-only schemes, which translates into an 81% reduction of the
average response time. More interestingly, the reduction is achieved by appropri-
ately setting the edge server offloading probability 𝛼 and without incurring any
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Figure 5.6 Average
response time vs.
edge-server offloading
probability 𝛼 for different
values of 𝛽 and fi (𝜁 = 20%).
Source: Ebrahimzadeh
and Maier (2020).
© 2020 IEEE.
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Figure 5.7 Average
response time vs.
edge-server offloading
probability 𝛼 for different
values of 𝜁 (NONU = 12
and 𝛽 = 𝛽∗). Source:
Ebrahimzadeh and Maier
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additional energy per task, which remains unchanged for a given 𝛽. We note that
the average response time as well as the energy per task can be further reduced
by setting 𝛽 = 0.5. Moreover, for fi = 350 MHz, the minimum response time is
achieved by setting 𝛽 = 0.5 and 𝛼 = 0.86. In doing so, setting 𝛽 = 0.5 also yields
a near-optimal energy performance according to Figure 5.4b.

We proceed by discussing the results of the average response time vs. 𝛼 for differ-
ent values of 𝜁 in Figure 5.7. We observe that the beneficial impact of edge-cloud
cooperation through the backhaul on the average response time becomes even
more pronounced for larger values of 𝜁 . Specifically, we observe that the aver-
age response time decreases from 5.89 seconds for 𝛼 = 0 to 3.48 seconds for
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Figure 5.8 Average energy
per task vs. 𝜁 for different
values of local clock
frequency fi and number
NONU of optical network
units (ONUs) (𝛼 = 𝛼∗

and 𝛽 = 𝛽∗). Source:
Ebrahimzadeh and Maier
(2020). © 2020 IEEE.

𝛼 = 𝛼∗ = 0.5 and 𝜁 = 100%, as opposed to only a slight decrease from 2.25 seconds
for 𝛼 = 0 to 1.87 seconds for 𝛼 = 𝛼∗ = 0.7 and 𝜁 = 20%.

Next, we examine the energy performance of our proposed cooperative offload-
ing scheme in Figure 5.8, where 𝛼 and 𝛽 are set to their optimal values of 𝛼∗ and 𝛽∗.
For a given fi and an increasing 𝜁 or NONU, we observe a generally decreasing trend
in the energy consumption. This occurs because for a larger 𝜁 or NONU, the optimal
delay performance is achieved by relying more on local rather than nonlocal com-
puting resources by setting 𝛽 to smaller values, which in turn results in a reduced
energy consumption (see Figure 5.4b). Importantly, we also observe that while
increasing the local clock frequency fi always leads to a decreased average response
time (see Figure 5.6), it may not necessarily increase the energy consumption. For
instance, we observe that the energy consumption for fi = 250 MHz, unexpect-
edly, is lower than that of fi = 150 MHz, provided that 𝜁 < 45%. This is because
the delay-optimal setting 𝛽∗ in the former is smaller than that of the latter one,
thus revealing a better energy performance (see also Figure 5.4b). Note, however,
that for 𝜁 > 45%, setting fi = 150 MHz can achieve an energy saving of up to 38%
compared to fi = 250 MHz.

Next, we present the cumulative distribution function (CDF), FΥi
(t), of the

response time Υi (i.e. Pr
(
Υi ≤ t

)
) in Figure 5.9 for different values of 𝜁 . We

find that our proposed cooperative computing scheme ensures a lower bound
probability of 80% that an incoming task is executed (either locally or nonlocally)
and returned to the MU within 5.5 seconds. The average response time vs.
𝛼 for different values of NONU is depicted in Figure 5.10, where we evaluate
the delay performance of our proposed edge-cloud cooperation through the back-
haul. Interestingly, we find that by doubling the number NONU of ONUs from 12
to 24, the average response time of MUs only increases from 1.88 to 1.95 seconds,
provided that an optimal setting of both 𝛼 and 𝛽 is carried out.
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Figure 5.9 Cumulative
distribution function (CDF)
of response time
for different values of 𝜁
(𝛼 = 𝛼∗ and 𝛽 = 𝛽∗). Source:
Ebrahimzadeh and Maier
(2020). © 2020 IEEE.
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Figure 5.10 Average
response time vs. edge
server offloading probability
𝛼 for different values of NONU
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Figure 5.11 illustrates the Pareto frontier solutions of the energy-delay trade-off
an MU can choose from via dynamic reconfiguration using our proposed
self-organization scheme for different values of Dl. For a given energy constraint
thr, which is determined by the decision maker according to a given energy
budget of the battery as well as delay requirement of incoming tasks, an MU can
optimally adjust its offloading probability and CPU clock frequency using only its
local information to achieve the desired energy-delay performance. For instance,
Figure 5.11 shows that for Dl = 300 Mcycles, by increasing thr from 0.7 to 1.8 J
an 84% reduction of the average response time is achieved. We also observe
from Figure 5.11 that any further increase of the energy budget may not lead
to a significant reduction of the average response time, especially for Dl = 100
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Figure 5.12 (a) Optimal offloading probability 𝛽∗ vs. energy constraint thr and
(b) optimal central processing unit (CPU) clock frequency f ∗ vs. energy constraint thr
for different values of Dl = [100, 200, 300] Mcycles. Source: Ebrahimzadeh and Maier
(2020). © 2020 IEEE.

and 200 Mcycles. Moreover, the results of the optimal offloading probability 𝛽∗

and CPU clock frequency f ∗ vs. the energy constraint thr for different values of Dl

are shown in Figure 5.12. Interestingly, Figure 5.12a,b, along with Figure 5.11,
illustrate the impact of increasing Dl and thr on the optimal decision made by the
MU. For instance, we observe that for Dl = 100 Mcycles, offloading does not
have any benefit in terms of average response time, thus 𝛽∗ = 0, ∀thr ∈ [0.7, 3] J
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Figure 5.13 Average
uplink delay vs.
human-to-human (H2H)
background traffic
for different values
of energy budget
thr = [1, 2, 3, 4] J (𝛽 = 𝛽∗

and Dl = 300 Mcycle).
Source: Ebrahimzadeh
and Maier (2020).
© 2020 IEEE.
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(see Figure 5.12a). Instead, MUs can reduce their response time by increasing f
(see Figure 5.12b).

Finally, the average uplink delay vs. H2H background traffic rate 𝜆B is illus-
trated in Figure 5.13, which gives insights into how an increasing 𝜆B contributes
to an increased uplink delay. More importantly, according to Figure 5.13, increas-
ing the energy budget thr from 1 to 2 J results in an increased average uplink
delay, whereas a further increase of thr from 2 to 4 J leads to a decreased average
uplink delay. The reason for this can be inferred from Figure 5.12a, which gives
us insights into how the optimal offloading probability 𝛽∗ is obtained for different
values of thr = [1, 2, 3, 4] J.

5.6 Conclusions

This chapter studied the cooperative computation offloading in MEC-enabled
FiWi enhanced HetNets from both network architecture and offlading mecha-
nism design perspectives. Beside the design of reliable low-latency MEC-enabled
FiWi enhanced LTE-A HetNets, we presented a simple but efficient offloading
strategy that leverages trilateral cooperation among device, edge server, and
remote cloud. We developed an analytical framework to estimate the average
response time and energy consumption of MUs in a FiWi-based MEC-enabled
network infrastructure. Our results demonstrate the superior performance of
the proposed cooperative computing scheme compared to edge- or cloud-only
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schemes. Further, we showed that by optimally setting the offloading probabili-
ties, MUs can achieve a reduction of the average response time of up to 81%. In
order to cope with the incurred complexity, we also designed a self-organization
based mechanism, which enables an MU, using local information, to make
suitable energy-delay trade-offs and jointly minimize the average execution time
and energy consumption by dynamically adjusting the offloading probability and
its local CPU clock frequency using the DVS technique.
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6

Decentralization via Blockchain

6.1 Introduction

The Internet has been constantly evolving from the mobile Internet to the emerg-
ing Internet of Things (IoT) and future Tactile Internet. Similarly, the capabilities
of 5G networks have extended far beyond those of previous generations of mobile
communication. Beside 1000-fold gains in area capacity, 10 Gb/s peak data rates,
and connections for at least 100 billion devices, an important aspect of the 5G and
beyond vision is decentralization. While 2G–3G–4G cellular networks were built
under the design premise of having complete control at the infrastructure side, 5G
and beyond systems may drop this design assumption and evolve the cell-centric
architecture into a more device-centric one. While there is a significant overlap
of design objectives among 5G, IoT, and the Tactile Internet – most notably
ultra-reliable and low-latency communications (URLLC) – each one of them
exhibits unique characteristics in terms of underlying communications paradigms
and enabling end-devices (Maier et al., 2016).

Today’s Internet is ushering in a new era. While the first generation of digital rev-
olution gave rise to the Internet of information, the second generation – powered
by decentralized blockchain technology – is bringing us the Internet of value, a
true peer-to-peer platform that has the potential to go far beyond digital currencies
and record virtually everything of value to humankind in a distributed fashion
without powerful intermediaries (Tapscott and Tapscott, 2016). Some refer to
decentralized blockchain technology as the “alchemy of the twenty-first century”
since it may leverage end-user equipment for converting computing into digital
gold. Arguably more importantly, though, according to Don and Alex Tapscott,
the blockchain technology enables trusted collaboration that can start to change
the way wealth is distributed as people can share more fully in the wealth they
create. As a result, decentralized blockchain technology helps create platforms

Toward 6G: A New Era of Convergence, First Edition. Amin Ebrahimzadeh and Martin Maier.
© 2021 The Institute of Electrical and Electronics Engineers, Inc.
Published 2021 by John Wiley & Sons, Inc.
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for distributed capitalism and a more inclusive economy, which works best when
it works for everyone as the foundation for prosperity. Furthermore, the authors
of Saad et al. (2020) pointed out the important role of blockchain and distributed
ledger technology (DLT) applications as a next-generation of distributed sensing
services for 6G driving applications whose need for connectivity will require a
synergistic mix of URLLC and massive machine type communications (mMTC)
to guarantee low-latency, reliable connectivity, and scalability. Furthermore,
blockchains and smart contracts can improve the security of a wide range of
businesses by ensuring that data cannot be damaged, stolen, or lost. In Salman
et al. (2019), the authors presented a comprehensive survey on the utilization of
blockchain technologies to provide distributed security services. These services
include entity authentication, confidentiality, privacy, provenance, and integrity
assurances.

The fundamental concepts and potential of blockchain technologies for society
and industry in general have been described comprehensively in various existent
tutorials, e.g. Beck (2018). In particular, there has been a growing interest in
adapting blockchain to the specific needs of the IoT in order to develop a variety
of blockchain-based Internet of things (BIoT) applications, ranging from smart
cities and Industry 4.0 to financial transactions and farming, among others Novo
(2018). Toward this end, the authors of Fernández-Caramés and Fraga-Lamas
(2018) pointed out the important role of smart contracts, which are defined as
pieces of self-sufficient decentralized code that are executed autonomously when
certain conditions are met, whereby Ethereum was argued to be the most popular
blockchain-based platform for running smart contracts. The use of Ethereum
allows users to write and run their own code on top of the network. By updating
the code, users are able to modify the behavior of IoT devices for simplified
maintenance and error correction. Beside well-known BIoT problems such
as hosting a blockchain on resource-constrained IoT devices, low transaction
rates, and long block creation times, the authors of Fernández-Caramés and
Fraga-Lamas (2018) identified several significant challenges beyond early BIoT
developments and deployments that will need further investigation. Apart from
technological challenges, e.g. access control and security, the authors concluded
that shaping the regulatory environment, e.g. decentralized ownership, is one of
the biggest issues to unleash the potential of BIoT for its broader use.

Recently, initial studies have begun to address some of the aforementioned
shortcomings of BIoT. In Pan et al. (2019), resource-constrained IoT devices
were released from computationally intensive tasks by offloading the mining
work (i.e. creating/appending/monitoring blockchain transactions) onto more
powerful edge computing resources such as cloudlets. The proposed EdgeChain
was built on the Ethereum platform and uses smart contracts to monitor and
regulate the behavior of IoT devices based on how they act and use resources.
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Since all activities are stored in the blockchain, it is inconvenient for malicious
nodes to cause serious damage or take off without any evidences. Furthermore,
to tackle the critical access control issue of preventing BIoT resource access from
unauthorized entities, the authors of Zhang et al. (2019a) exploited the Ethereum
smart contract platform to achieve various access control methods. Specifically,
gateways were used to act as BIoT service agents for their respective cluster of
local resource-constrained IoT devices by storing their blockchain accounts and
using them to execute smart contracts on their behalf. The proposed smart con-
tract based framework consists of multiple access control contracts (ACCs). Each
ACC maintains a misbehavior list for each BIoT resource, including details and
time of the misbehavior as well as the penalty on its subject, e.g. blocking access
requests for a certain period of time. Further, in addition to a register contract, the
framework involves the so-called judge contract (JC), which implements a certain
misbehavior judging method. After receiving the misbehavior reports from the
ACCs, the JC determines the penalty on the corresponding subjects and returns
the decisions to the ACCs for execution.

Many additional BIoT studies considered Ethereum as the blockchain of choice.
For instance, the architectural issues for realizing BIoT services were investigated
in greater detail in Liao et al. (2017). In a preliminary study using a smart thing
renting service as an example BIoT service, the authors compared the following
four different architectural styles based on Ethereum: (i) fully centralized (cloud
without blockchain), (ii) pseudo distributed things (physically located in central
cloud), (iii) distributed things (directly controlled by smart contract), and (iv) fully
distributed. The preliminary results indicate that a fully distributed architecture,
where a blockchain endpoint is deployed on the end-user device, is superior in
terms of robustness and security. Further, the various perspectives for integrat-
ing secure elements in Ethereum transactions were discussed in Urien (2018). To
prevent the risks that secret keys for signature are stolen or hacked, the author
proposed to use java card secure elements and a so-called crypto currency smart
card (CCSC). Two CCSC use cases were discussed. In the first one, the CCSC was
integrated in a low-cost BIoT device powered by an Arduino processor, in which
sensor data are integrated in Ethereum transactions. The second use case involved
the deployment of CCSC in remote APDU call secure (RACS) servers to enable
remote and safe digital signatures by using the well-known elliptic curve digital
signature algorithm (ECDSA).

Despite the recent progress, the salient features that set Ethereum aside from
other blockchains remain to be explored in more depth, including their symbio-
sis with other emerging key technologies such as artificial intelligence (AI) and
robots apart from decentralized edge computing. A question of particular inter-
est hereby is how decentralized blockchain mechanisms may be leveraged to let
emerge new hybrid forms of collaboration among individuals, which have not
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been entertained in the traditional market-oriented economy dominated by firms
rather than individuals (Beck, 2018). Of particular interest will be Ethereum’s con-
cept of the so-called decentralized autonomous organization (DAO). In fact, in their
latest book on how to harness our digital future (McAfee and Brynjolfsson, 2017),
Andrew McAfee and Erik Brynjolfsson speak of “The Way of The DAO” that may
substitute a technology-enabled crowd for traditional organizations such as com-
panies. Toward this end, we focus on the Tactile Internet, which is considered the
next leap in the evolution of today’s IoT. Recall from Chapter 2 that the IoT with
its underlying machine-to-machine (M2M) communications is designed to enable
communications among machines without relying on any human involvement.
Conversely, the Tactile Internet will bring a new dimension to human-to-machine
interaction involving its intrinsic human-in-the-loop (HITL) nature. As a conse-
quence, this enables to create new immersive applications and extend the capa-
bilities of the human through the Internet via a human-centric design approach,
i.e. augmenting instead of automating away the human (Maier et al., 2018). This
chapter aims at addressing the open research challenges outlined above.

The remainder of the chapter is organized as follows. In Section 6.2, after
elaborating on the commonalities of and specific differences between Ethereum
and Bitcoin blockchains, we explain DAO in more detail. Section 6.3 reviews
recent progress and open challenges of the emerging BIoT and edge computing.
Section 6.4 discusses the potential role of Ethereum and in particular the DAO in
helping decentralize the Tactile Internet. In Section 6.5, we explore possibilities
to extend the BIoT framework of JC to nudge contract for enabling the nudging of
human users in a broader Tactile Internet context. Finally, Section 6.6 concludes
the chapter.

6.2 Blockchain Technologies

In this section, we give a brief overview of the basic concepts of blockchain
technologies, paying particular attention to the main commonalities and specific
differences between Ethereum and Bitcoin. We then introduce the DAO, which
represents a salient feature of Ethereum that cannot be found in Bitcoin.

6.2.1 Ethereum vs. Bitcoin Blockchains

Blockchain technologies have been undergoing several iterations as both public
organizations and private corporations sought to take advantage of their potential.
A typical blockchain network is essentially a distributed database (also known as
ledger) comprising records of all transactions or digital events that have been exe-
cuted by or shared among participating parties. Blockchains may be categorized
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Table 6.1 Public vs. private blockchains.

Public blockchain Private blockchain

Network type Fully decentralized Partially decentralized
Access Permissionless read/write Permissioned read/write
User identity Pseudo-anonymous Known participants
Consensus mechanism Proof-of-work/proof-of-stake Pre-approved participants
Consensus determination By all miners By one organization
Immutability Nearly impossible to tamper Could be tampered
Purpose Any decentralized applications Business applications

into public (i.e. permissionless) and private (i.e. permissioned) networks. In the
former category, anyone may join and participate in the blockchain. Conversely,
a private blockchain applies certain access control mechanisms to determine who
can join the network. A public blockchain is immutable because none of the trans-
actions can be tampered or changed. Also, it is pseudo-anonymous because the
identity of those involved in a transaction is represented by an address key in the
form of a random string. Table 6.1 highlights the major differences between pub-
lic and private blockchains, as discussed in further detail below. Note that both
Ethereum and Bitcoin are public blockchains.

Figure 6.1 illustrates the main commonalities of and differences between Bitcoin
and Ethereum blockchains. The Bitcoin blockchain is predominantly designed to
facilitate Bitcoin transactions. It is the world’s first fully functional digital cur-
rency that is truly decentralized, open source, and censorship resistant. Bitcoin
makes use of a cryptographic proof-of-work (PoW) consensus mechanism based
on the SHA-256 hash function and digital signatures. Achieving consensus pro-
vides extreme levels of fault tolerance, ensures zero downtime, and makes data
stored on the blockchain forever unchangeable and censorship-resistant in that
everyone can see the blockchain history, including any data or messages. There
are two different types of actors, whose roles are defined as follows:

● Regular nodes: A regular node is a conventional actor, who just has a copy of the
blockchain and uses the blockchain network to send or receive Bitcoins.

● Miners: A miner is an actor with a particular role, who builds the blockchain
through the validation of transactions by creating blocks and submitting them
to the blockchain network to be included as blocks. Miners serve as protectors
of the network and can operate from anywhere in the world as long as they
have sufficient knowledge about the mining process, the hardware and software
required to do so, and an Internet connection.
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-First digital currency
-Bitcoin currency
-Written in C++

-Public blockchain
-Decentralized
-Permissionless
-Cryptocurrency
-PoW consensus
-Mining

-Smart contract platform
-Ether currency
-Turing completeness
-Ethereum virtual machine
-DApps/DAO
-Written in C++, Python, Go

Bitcoin Ethereum

Figure 6.1 Bitcoin and Ethereum blockchains: commonalities and differences.

In the Bitcoin blockchain, a block is mined about every 10 minutes and the
block size is limited to 1 MByte. Note that the Bitcoin blockchain is restricted
to a rate of seven transactions per second, which renders it unsuitable for
high-frequency trading. Other weaknesses of the Bitcoin blockchain include its
script language, which offers only a limited number of small instructions and is
non-Turing-complete. Furthermore, developing applications using the Bitcoin
script language requires advanced skills in programming and cryptography.

Ethereum is currently the second most popular public blockchain after Bit-
coin. It has been developed by the Ethereum Foundation, a Swiss nonprofit
organization, with contributions from all over the world. Ethereum has its own
cryptocurrency called Ether, which provides the primary form of liquidity allow-
ing for exchange of value across the network. Ether also provides the mechanism
for paying and earning transaction fees that arise from supporting and using the
network. Like Bitcoin, Ether has been the subject of speculation witnessing wide
fluctuations. Ethereum is well suited for developing decentralized applications
(DApps) that need to be built quickly and interact efficiently and securely via
the blockchain platform. Similar to Bitcoin, Ethereum uses a PoW consensus
method for authenticating transactions and proving the achievement of a certain
amount of work. The hashing algorithm used by the PoW mechanism is called
Ethash. Different from Bitcoin, Ethereum developers expect to replace PoW
with a so-called proof-of-stake (PoS) consensus. PoS will require Ether miners
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to hold some amount of Ether, which will be forfeit if the miner attempts to
attack the blockchain network. The Ethereum platform is often referred to as a
Turing-complete Ethereum virtual machine (EVM) built on top of the underlying
blockchain. Turing-completeness means that any system or programming lan-
guage is able to compute anything computable provided it has enough resources.
Note that the EVM requires a small amount of fees for executing transactions.
These fees are called gas and the required amount of gas depends on the size of a
given instruction. The longer the instruction, the more gas is required.

While the Bitcoin blockchain simply contains a list of transactions, Ethereum’s
basic unit is the account. The Ethereum blockchain tracks the state of every
account, whereby all state transitions are transfers of value and information
between accounts. The account concept is considered an essential component
and data model of the Ethereum blockchain since it is vital for a user to interact
with the Ethereum network via transactions. Accounts represent the identities of
external agents (e.g. human or automated agents, mining nodes). Accounts use
public key cryptography to sign each transaction such that the EVM can securely
validate the identity of the sender of the transaction.

Beside C++, Ethereum supports several programming languages based on
JavaScript and Python, e.g. Solidity, Serpent, Mutan, or Lisp like language (LLL),
whereby Solidity is the most popular language for writing smart contracts. A smart
contract is an agreement that runs exactly as programmed without any third-party
interference. It uses its own arbitrary rules of ownership, transaction formats,
and state-transition logic. Each method of a smart contract can be invoked via
either a transaction or another method. Smart contracts enable the realization
of DApps, which may look exactly the same as conventional applications with
regard to application programming interface (API), though the centralized
backend services are replaced with smart contracts running on the decentralized
Ethereum network without relying on any central servers. Interesting examples
of existent DApps include Augur (a decentralized prediction market), Weifund
(an open platform for crowdfunding), Golem (supercomputing), and Ethlance
(decentralized job market platform), among others. To provide an effective means
of communications between DApps, Ethereum uses the Whisper peer-to-peer
protocol, a fully decentralized middleware for secret messaging and digital cryp-
tography. Whisper supports the creation of confidential communication routes
without the need for a trusted third party. It builds on a peer sampling service
that takes into account network limitations such as network address translation
(NAT) and firewalls. In general, any centralized service may be converted into a
DApp by using the Ethereum blockchain.
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6.2.2 Ethereum: The DAO

Ethereum made great strides in having its technology accepted as the blockchain
standard, when Microsoft Azure started offering it as a service in November 2015.
Ethereum was founded by Vitalik Buterin after his request for creating a wider and
more general scripting language for the development of DApps that are not lim-
ited to cryptocurrencies, a feature that Bitcoin did not have, was rejected by the
Bitcoin community (Buterin, 2013). Ethereum enables new forms of economic
organization and distributed models of companies, businesses, and ownership,
e.g. self-organized holacracies and member-owned cooperatives. Or as Buterin
puts it, while most technologies tend to automate workers on the periphery doing
unskilled tasks, Ethereum automates away the center. For instance, instead of
putting the cab driver out of a job, Ethereum puts Uber out of a job and lets the
cab drivers work with the customer directly (before Uber’s self-driving cars will
eventually wipe out their jobs). Hence, Ethereum does not aim at eliminating jobs
so much as it changes the definition of work. In fact, it gave rise to the first DAO
built within the Ethereum project. The DAO is an open-source, distributed soft-
ware that exists “simultaneously nowhere and everywhere,” thereby creating a
paradigm shift that offers new opportunities to democratize business and enable
entrepreneurs of the future to design their own entirely virtual organizations cus-
tomized to the optimal needs of their mission, vision, and strategy to change the
world (McAfee and Brynjolfsson, 2017).

A successful example of deploying the DAO concept for automated smart con-
tract operation is Storj, which is a decentralized, secure, private, and encrypted
cloud storage platform that may be used as an alternative to centralized storage
providers like Dropbox or Google Drive. A DAO may be funded by a group of indi-
viduals who cover its basic costs, giving the funders voting rights rather than any
kind of ownership or equity shares. This creates an autonomous and transparent
system that will continue on the network for as long as it provides a useful service
for its customers. DAOs exist as open-source, distributed software that executes
smart contracts and works according to specified governance rules and guidelines.
Buterin described on the Ethereum Blog the ideal of a DAO as follows: It is an
entity that exists on the Internet in an autonomous manner and heavily relies on
hiring individuals to execute specific tasks that the automation is unable to do so.
AI based agents are fully autonomous, as opposed to a DAO, which still calls for
human involvement specifically interacting following a protocol defined by the
DAO in order to operate. For illustrating the distinction between a DAO and AI,
Figure 6.2 depicts a quadrant chart that classifies DAOs, AI, traditional organiza-
tions as well as robots, which have been widely deployed in assembly lines among
others, with regard to automation and humans involved at their edges and center.
We will elaborate on how this particular feature of DAOs (i.e. automation at the
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Figure 6.2 Decentralized
autonomous organizations
(DAOs) vs. artificial
intelligence, traditional
organizations, and robots
(widely deployed in
assembly lines, among
others): Automation and
humans involved at their
edges and center. Source:
Maier and Ebrahimzadeh
(2019). © 2019 IEEE.
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center and humans at the edges) can be exploited for decentralizing the Tactile
Internet below in Section 6.4. Toward this end, we also briefly note that according
to Buterin even though a DAO is nonprofit, one can make money in a DAO, not
by investing into the DAO itself but by participating in its ecosystem, e.g. via mem-
bership (to be further explored in Section 6.4 in the context of human-agent-robot
teamwork [HART] membership).

6.3 Blockchain IoT and Edge Computing

In this section, after defining the integration of BIoT and edge computing, we dis-
cuss the motivation of such integration followed by a description of the challenges
of integrating blockchain and edge computing.

6.3.1 Blockchain IoT (BIoT): Recent Progress and Related Work

Recall from Section 6.1 that the IoT is designed to enable communications among
machines without relying on any human involvement. Thus, its underlying M2M
communications is useful for enabling the automation of industrial and other
machine-centric processes. The emerging BIoT represents a powerful combina-
tion of two massive technologies – blockchain and M2M communications – that
allows us to automate complex multi-step IoT processes, e.g. via smart contracts.
With the ever-increasing variety of communication protocols between IoT devices,
there is a need for transparent yet highly secure and reliable IoT device man-
agement systems. This section surveys the state of the art of the emerging BIoT,
describing recent progress and open challenges.
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The majority of IoT devices are resource constrained, which restricts them to be
part of the blockchain network. To cope with these limitations, the author of Novo
(2018) proposed a decentralized access management system, where all entities are
part of an Ethereum blockchain except for IoT devices as well as so-called man-
agement hub nodes that request permissions from the blockchain on behalf of the
IoT devices belonging to different wireless sensor networks. In addition, entities
called managers interact with the smart contract hosted at a specific agent node
in the blockchain in order to define and/or modify the access control policies for
the resources of their associated IoT devices. The proof-of-concept implementa-
tion evaluated the new system architecture components that are not part of the
Ethereum network, i.e. management hub and IoT devices, and demonstrated the
feasibility of the proposed access management architecture in terms of latency and
scalability. Another interesting Ethereum case study can be found in Aung and
Tantidham (2017), which reviews readily available Ethereum blockchain pack-
ages for realizing a smart home system according to its smart contract features
for handling access control policy, data storage, and data flow management.

Blockchain transactions require public-key encryption operations such as dig-
ital signatures. However, not all BIoT devices can support this computationally
intensive task. For this reason, in Polyzos and Fotiou (2017), the authors proposed
a preliminary design of a gateway-oriented approach, where all blockchain related
operations are offloaded to a gateway. The authors noted that their approach is
compatible with the Ethereum client side architecture.

Due to the massive scale and distributed nature of IoT applications and services,
blockchain technology can be exploited to provide a secure, tamper-proof BIoT
network. More specifically, the key properties of tamper-resistance and decen-
tralized trust allow us to build a secure authentication and authorization service,
which does not have a single point of failure. Toward this end, the authors of Gupta
et al. (2018) made a preliminary attempt to develop a security model backed by
blockchain that provide confidentiality, integrity, and availability of data transmit-
ted and received by nodes in a BIoT network. The proposed solution encompasses
a blockchain protocol layer on top of the TCP/IP transport layer and a blockchain
application layer. The first one comprises a distributed consensus algorithm for
BIoT nodes while the latter one defines the IoT security specific transactions and
their semantics for the higher protocol layers. To evaluate the feasibility and per-
formance of the proposed layered architecture, BIoT nodes connected in a tree
topology were simulated using 1 Gbps Ethernet or 54 Mbps WiFi links. The sim-
ulation results showed that the block arrival rate was not affected much by the
increased latency and reduced bandwidth, when replacing wired Ethernet with
wireless WiFi links, as the block difficulty adjustment adapts dynamically to the
network conditions.
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Among various low-power wide-area (LPWA) technologies, long range (LoRa)
wireless radio frequency (RF) is considered one of the most promising enabling
technologies for realizing massive IoT deployment. In Özy𝚤lmaz and Yur-
dakul (2017), the authors presented a proof-of-concept demonstrator to enable
low-power, resource-constrained LoRa IoT end-devices to access an Ethereum
blockchain network via an intermediate gateway, which acts as a full blockchain
node. More specifically, a battery-powered IoT end-device sends position data to
the LoRa gateway, which in turn forwards it through the standard Go-lang-based
Ethereum client Geth to the blockchain network using a smart contract. An
event-based communication mechanism between the LoRa gateway and a
backend application server was implemented as proof-of-concept demonstrator.

One of the fundamental challenges of object identification in IoT stems from the
traditional domain name system (DNS). Typically, DNS is managed in centralized
modules and thus may cause large-scale failures due to unilateral advanced
persistent threat (APT) attacks as well as zone file synchronization delays in
larger systems. Clearly, a more robust and distributed name management system
is needed that supports the smooth evolution of DNS and renders it more efficient
for IoT and the future Internet in general. Toward this end, a decentralized
blockchain-based DNS called DNSLedger was introduced in Duan et al. (2018).
To rebuild the hierarchical structure of DNS, DNSLedger contains two kinds
of blockchain: (i) a single root chain that stores all the top-level domain (TLD)
information and (ii) multiple TLD chains, each responsible for the information
about its respective domain name. In DNSLedger, servers of domain names act as
blockchain nodes, while each TLD chain may select one or more servers to join
the root chain. DNSLedger clients may execute common DNS functions such as
domain name look-up, application, and modification.

Many of the aforementioned studies considered Ethereum as the blockchain
of choice. It was shown that fully distributed Ethereum architectures are able to
enhance both robustness and security. Furthermore, a gateway-oriented design
approach was often applied to offload computationally intensive tasks from
low-power, resource-constrained IoT end-devices onto an intermediate gateway
and thus enable them to access the Ethereum blockchain network. Also, it was
shown that the block arrival rate does not deteriorate much by the increased
latency and reduced bandwidth of WiFi access links.

6.3.2 Blockchain Enabled Edge Computing

One of the critical challenges in cloud computing is the end-to-end responsiveness
between the mobile device and an associated cloud. To address this challenge,
multi-access edge computing (MEC) is proposed. An MEC entity is a trusted,
resource-rich computer or cluster of computers that is well-connected to the
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Internet and available for use by nearby mobile devices. According to the Euro-
pean Telecommunications Standards Institute (ETSI), MEC is considered a key
emerging technology for next-generation networks. In light of the aforementioned
arguments, the integration of blockchain and edge computing into one unified
entity becomes a natural trend. On one hand, by incorporating blockchain into
the edge computing network, the system can provide reliable access and control
of the network, computation, and storage over decentralized nodes. On the other
hand, edge computing enables blockchain storage and mining computation from
power-limited devices. Furthermore, off-chain storage and off-chain computation
at the edges enable scalable storage and computation on the blockchain (Yang
et al., 2019). Several recent studies on blockchain and edge computing have been
carried out. A blockchain-enabled computation offloading scheme for IoT with
edge computing capabilities, called BeCome, was proposed in Xu et al. (2020).
The authors of this study aimed at decreasing the task offloading time and energy
consumption of edge computing devices, while achieving load balancing and data
integrity.

The study in Zhaofeng et al. (2020) proposed a blockchain-based trusted data
management scheme called BlockTDM for edge computing to solve the data
trust and security problems in an edge computing environment. Specifically,
the authors proposed a flexible and configurable blockchain architecture that
includes a mutual authentication protocol, flexible consensus, smart contract,
block and transaction data management as well as blockchain node manage-
ment and deployment. The BlockTDM scheme is able to support matrix-based
multichannel data segment and isolation for sensitive or privacy data protection.
Moreover, the authors designed user-defined sensitive data encryption before
the transaction payload is stored in the blockchain system. They implemented
a conditional access and decryption query of the protected blockchain data and
transactions through an appropriate smart contract. Their analysis and evaluation
show that the proposed BlockTDM scheme provides a general, flexible, and
configurable blockchain-based paradigm for trusted data management with high
credibility. In summary, blockchain-enabled edge computing has become an
important concept that leverages decentralized management and distributed
services to meet the security, scalability, and performance requirements of
next-generation communications networks, as discussed in technically greater
detail next.

6.4 Decentralizing the Tactile Internet

In this section, we explore how Ethereum blockchain technologies, in par-
ticular the DAO, may be leveraged to decentralize the Tactile Internet as a
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promising example of future techno-social systems, which at the moment is
still debatable in many ways how this would work exactly (Beck, 2018). We
search for synergies between the aforementioned HART membership and the
complementary strengths of the DAO, AI, and robots (see Figure 6.2) to enable
local human-machine coactivity clusters via decentralizing the Tactile Internet.
Toward this end, it is important to better understand the merits and limits of AI.
Recently, Stanford University launched its One Hundred Year Study on Artificial
Intelligence (AI100). In the inaugural report “Artificial Intelligence and Life in
2030,” the authors defined AI as a set of computational technologies that are
inspired by how people use their brains to sense, learn, reason, and act. They also
point out that AI will likely replace tasks rather than jobs in the near term and
highlight the importance of crowdsourcing of human skills to solve problems that
machines alone cannot solve well. As interconnected computing power has spread
around the world and useful platforms have been built on top of it, the crowd
has become a demonstrably viable and valuable resource. According to McAfee
and Brynjolfsson (2017), there are many ways for companies that are squarely
at the core of modern capitalism to tap into the expertise of uncredentialed and
conventionally inexperienced members of the technology-enabled crowd such as
the DAO.

6.4.1 AI-enhanced MEC

First, let us explore the potential of leveraging mobile end-user equipment by par-
tially or fully decentralizing MEC. Recall from above that we introduced the use
of AI-enhanced MEC servers at the optical-wireless interface of FiWi-enhanced
mobile networks. In a BIoT context, these MEC servers have been used as gate-
ways that are required to act as BIoT service agents to release resource-constrained
IoT devices from computation-intensive tasks by offloading blockchain transac-
tions onto more powerful edge computing resources, as discussed in Section 6.1.
This design constraint can be relaxed in the Tactile Internet, where user equip-
ment (e.g. state-of-the-art smartphones or the aforementioned user-owned robots)
is computationally more resourceful than IoT devices and thus may be exploited
for decentralization.

Assuming the network architecture as well as the same default network param-
eter setting and simulation setup as in Chapter 3, we consider 1 ≤ NEdge ≤ 4
AI-enhanced MEC servers, each associated with eight end-users, whereof
1 ≤ NPD ≤ 8 partially decentralized end users can flexibly control the amount of
offloaded tasks by varying their computation offloading probability. The remain-
ing 8 − NPD are fully decentralized end-users that rely on edge computing only
(i.e. their computation offloading probability equals 1). Note that for NEdge = 4,
all end-users may offload their computation tasks onto an edge node. Conversely,
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for NEdge < 4, one or more edge nodes are unavailable for computation offloading
and their associated endusers fall back on their local computation resources
(i.e. fully decentralized). Figure 6.3 shows the average task completion time
vs. computation offloading probability of the partially decentralized end users
for different NEdge and NPD. We observe from Figure 6.3 that for a given NEdge,
increasing NPD (i.e. higher level of decentralization) is effective in reducing the
average task completion time. Specifically, for NEdge = 4, a high decentraliza-
tion level (NPD = 8) allows end-users to experience a reduction of the average
task completion time of up to 89.5% by optimally adjusting their computation
offloading probability to 0.7.

Note that in Figure 6.3, the average task completion time is on the order of sec-
onds, ranging from 2.5 to 25 seconds depending on the computation offloading
probability. Hence, given Ethereum’s transaction limit of 20 transactions/s, the
notoriously low transaction rate of blockchain technologies does not pose a sig-
nificant challenge to the execution of computational tasks and especially physical
tasks carried out by robots in the context of the Tactile Internet, as explained in
more detail next.

6.4.2 Crowdsourcing

In Chapter 3, we leveraged on self-awareness to introduce the idea of shared
use of user- and network-owned robots and developed a self-aware allocation
algorithm of physical tasks for HART-centric task coordination. By using our
AI-enhanced MEC servers as autonomous agents, we showed in Chapter 2
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that delayed force feedback samples coming from teleoperator robots (TORs)
may be locally generated and delivered to human operators (HOs) in close
proximity. More specifically, we deployed artificial neural network (ANN) to
build a forecaster of delayed (or lost) force feedback samples. We showed that by
generating the forecast samples at the HO side instead of waiting for the delayed
ones, AI-enhanced MEC servers enable HOs to perceive the remote physical
task environment in real-time at a 1-ms granularity and thereby experience
improved closeness and enhanced safety control therein. Note, however, that
the performance of a teleoperation system exploiting sample forecasting largely
depends on the accuracy of the forecaster.

In the following, we explore how crowdsourcing helps decrease the comple-
tion time of physical tasks in the event of unreliable forecasting of force feedback
samples from TORs. Toward realizing DAO in a decentralized Tactile Internet,
Ethereum may be used to establish HO–TOR sessions for remote physical task
execution, whereby smart contracts help establish/maintain trusted HART mem-
bership and allow each HART member to have global knowledge about all partic-
ipating HOs, TORs, and MEC servers that act as autonomous agents. We assume
that an HO remotely executes a given physical task until three out of the recent five
haptic feedback samples are misforecast. At this point, the HO immediately stops
the teleoperation and informs the agent. The agent assigns the interrupted task to
a nearby human (e.g. an available HO) in vicinity of the TOR, who then traverses
to the task point and finalizes the physical task. Figure 6.4 depicts the average task
completion time vs. probability of sample misforecast for different traverse time
Ttraverse of the nearby human and different ratio of human and robot operational

Figure 6.4 Average
physical task completion
time (in seconds) vs.
probability of sample
misforecast for different
traverse time
Ttraverse ∈ {2, 5} seconds of
nearby human and different
ratio of human and robot
operational capabilities
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capabilities fhuman
frobot

, where fhuman and frobot denote the number of operations per
second a human and robot is capable of performing, respectively. We can make sev-
eral observations from Figure 6.4. Obviously, it is beneficial to select humans with
a shorter traverse time, who happen to be closer to the interrupted TOR. We also
observe that the ratio fhuman

frobot
has a significant impact on the average task completion

time. Clearly, for a ratio of smaller than 1 (i.e. 1/3), the human assistance is less
useful since it takes him/her more time to complete the physical task. Conversely,
for a ratio of equal to 1 (i.e. 3/3) and especially larger than 1 (i.e. 5/3), crowdsourc-
ing pays off by making use of the superior operational capabilities of the human.
Whether humans or robots are better suited to perform a physical task certainly
depends on its nature. However, for a given physical task, an interesting approach
to benefit from the assistance of even uncredentialed and inexperienced crowd
members of the DAO may be to enhance the capabilities of humans by means of
nudging, as explained next.

6.5 Nudging: From Judge Contract to Nudge Contract

6.5.1 Cognitive Assistance: From AI to Intelligence Amplification (IA)

A widely studied approach to increase the usefulness of crowdsourcing has been
edge computing, which may be used to guide humans step by step through the
physical task execution process by providing them with cognitive assistance. Tech-
nically this could be easily realized by equipping humans with an augmented real-
ity (AR) headset (e.g. HoloLens 2 with WiFi connectivity) that receives work-order
information in real-time from its nearest AI-enhanced MEC server. Recall that in
Section 2.2, we elaborated on the importance of shifting the research focus from
AI to intelligence amplification (IA) by using information technology to enhance
human decisions. Note, however, that IA becomes difficult in dynamic task envi-
ronments of increased uncertainty and real-word situations of great complexity.

6.5.2 HITL Hybrid-Augmented Intelligence

Many problems that humans encounter tend to be highly uncertain, complex,
and open-ended. Human interaction and participation must be introduced
to solve such problems, giving rise to the concept of HITL hybrid-augmented
intelligence for advanced human-machine collaboration (Zheng et al., 2017). HITL
hybrid-augmented intelligence is defined as an intelligent model that calls for
human input and enables solving problems that may not be easily addressed by
machine learning. In general, machine learning is inferior to the human brain in
understanding unstructured real-world environments and processing incomplete
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information and complex spatiotemporal correlation tasks. Hence, machines
cannot carry out all the tasks in human society on their own. Instead, AI and
human intelligence are better viewed as highly complementary.

According to Zheng et al. (2017), the Internet provides an immense innova-
tion space for HITL hybrid-augmented intelligence. Specifically, cloud robotics
and AR are among the fastest growing commercial applications for enhancing
the intelligence of an individual in multi-robot collaborative systems. One of the
key research avenues of HITL hybrid-augmented intelligence is the development
of methods that allow machines to learn from not only massive training samples
but also human knowledge in order to execute highly intelligent tasks via shared
intelligence among different robots and humans.

6.5.3 Decentralized Self-Organizing Cooperative (DSOC)

A very interesting example of converting human and machine intelligence into a
new form of self-organizing artificial general intelligence (AGI) across the Internet
is the so-called SingularityNET (https://singularitynet.io). One can think of Singu-
larityNet as a decentralized self-organizing cooperative (DSOC), a concept similar
to DAO. DSOC is essentially a distributed computing architecture for making new
kinds of smart contracts. Entities executing these smart contracts are referred to as
agents, which can run in the cloud, on phones, robots, or other embedded devices.
Services are offered to any customer via APIs enabled by smart contracts and may
require a combination of actions by multiple agents using their collective intelli-
gence. In general, there may be multiple agents that can accomplish a given task
request in different ways and to different degrees. Each task request to the network
requires a unique combination of agents, thus forming a so-called offer network of
mutual dependency, where agents make offers to each other to exchange services
via offer-request pairs. Whenever someone wants an agent to perform services,
a smart contract is signed for this specific task. Toward this end, DSOC aims at
leveraging contributions from the broadest possible variety of agents by means
of superior discovery mechanisms for finding useful agents and nudging them to
become contributors.

6.5.4 Nudge Contract: Nudging via Smart Contract

Extending on DSOC and the JC introduced in Section 6.1, we develop a nudge
contract for enhancing the human capabilities of unskilled crowd members of the
DAO. According to Richard H. Thaler, the 2017 Nobel Laureate in Economics, a
nudge is defined as any aspect of a choice architecture that changes people’s behav-
ior in a predictable way, while not ruling out any options nor significantly chang-
ing their economic incentives. Deployed appropriately, nudges can steer people,
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Algorithm 7 Nudge Contract
Input: Set U = {h1, h2,… , hn} of n DAO members, capability vector 𝐂 =

[c1, c2,… , cn], distance vector 𝐃 = [d1, d2,… , dn], interrupted task 𝐓, required
number D of actions to execute the interrupted task, interrupted robot r0, capability
requirement c0 of the interrupted task

1: Decompose the given interrupted task 𝐓 into Nsub subtasks
2: for i = 1 to n do
3: if ci ≥ c0 then
4: S ← hi
5: end if
6: end for
7: h∗ ← argmindi

{S}
8: Create a secure blockchain transaction between h∗ and interrupted robot r0
9: Send the learning instructions from h∗ to r0 through the established transaction

10: Use the multi-arm bandit selection strategy in McGuire et al. [2018] to help the
robot learn the given set of subtasks

11: if all Nsub subtasks are learned successfully then
12: learning process is successfully accomplished
13: r0 can execute the interrupted task 𝐓 with the capability of h∗

14: else
15: Learning process is failed
16: DAO member h∗ traverses to the interruption point to execute the task 𝐓
17: end if
18: Reward the skilled DAO member h∗ via blockchain smart contract

as opposed to steer objects – real or virtual – as done in the conventional Tactile
Internet, to make better choices and positively influence the behavior of crowds of
all types.

Our nudge contract aims at completing interrupted physical tasks by learning
from a skilled DAO member with the objective of minimizing the learning loss,
which denotes the difference between the achievable and optimum task execution
times (McGuire et al., 2018). The ability to learn a given subtask is characterized by
the subtask learning probability. The learning process is accomplished if each sub-
task is learned successfully from a skilled DAO member, who in turn is rewarded
via a smart contract (see Algorithm 7 for details). Figure 6.5 shows the perfor-
mance of our nudge contract for 50 DAO crowd members, whose ratio fhuman

frobot
is

randomly chosen from {1∕3, 3∕3, 5∕3}. We observe that for a given subtask learn-
ing probability, decreasing the number Nsub of subtasks helps reduce the learning
loss, thus indicating the importance of a proper task decomposition method.
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Figure 6.5 Learning loss
(in seconds) vs. subtask
learning probability for
different number Nsub of
subtasks and traverse time
ttraverse.
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6.6 Conclusions

In this chapter, we explored how Ethereum blockchain technologies, in par-
ticular the DAO, may be leveraged to decentralize the Tactile Internet, which
enables unprecedented mobile applications for remotely steering real or virtual
objects/processes in perceived real-time and represents a promising example of
future techno-social systems. We showed that a higher level of decentralization
of AI-enhanced MEC reduces the average computational task completion time
of up to 89.5% by setting the computation offloading probability to 0.7. Further,
we observed that crowdsourcing of human assistance is beneficial in decreasing
the average completion time of physical tasks for medium to high feedback
misforecasting probabilities, provided the human offers equal or even superior
operational capabilities, i.e. fhuman

frobot
≥ 1. Toward this end, our proposed nudge

contract tries to successfully accomplish tasks via shared intelligence among
failing robots and skilled humans.
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7

XR in the 6G Post-Smartphone Era

7.1 Introduction

At the 2015 World Economic Forum, Eric Schmidt famously stated that “the Inter-
net will disappear” given that there will be so many things that we are wearing
and interacting with that we won’t even sense the Internet, though it will be part
of our presence all the time. Although this first might sound a bit surprising, it
is actually what profound technologies do in general. In “The Computer for the
21st Century,” Mark Weiser argued that the most profound technologies are those
that disappear. They weave themselves into the fabric of everyday life until they
are indistinguishable from it Weiser (1999).

An interesting recent approach to make the Internet disappear is the so-called
Naked world vision that aims at paving the way to an Internet of No Things by offer-
ing all kinds of human-intended services without owning or carrying any type of
computing or storage devices (Ahmad et al., 2018). The term Internet of No Things
was coined by Demos Helsinki founder RoopeMokka in 2015. The term nicely
resonates with Eric Schmidt’s aforementioned statement. The Naked world envi-
sions Internet services to appear from the surrounding environment when needed
and disappear when not needed. The transition from the current gadgets-based
Internet to the Internet of No Things is divided into three phases that starts from
bearables (e.g. smartphone), moves toward wearables (e.g. Google and Levi’s smart
jacket or Amazon’s recently launched voice-controlled Echo Loop ring, glasses,
and earbuds), and then finally progresses to the last phase of so-called nearables.
Nearables denote nearby surroundings or environments with embedded comput-
ing/storage technologies and service provisioning mechanisms that are intelligent
enough to learn and react according to user context and history in order to provide
user-intended services. According to Ahmad et al. (2018), their successful deploy-
ment is challenging not only from a technological point of view but also from a

Toward 6G: A New Era of Convergence, First Edition. Amin Ebrahimzadeh and Martin Maier.
© 2021 The Institute of Electrical and Electronics Engineers, Inc.
Published 2021 by John Wiley & Sons, Inc.
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business and social mindset perspective due to the required user acceptability and
trust.

Some of the most interesting 5G applications – most notably, virtual reality
(VR) and Tactile Internet – seem to evolve in the same direction. To see this,
note that according to Bastug (2017), VR systems will undergo three evolutionary
stages, similar to the aforementioned Internet of No Things. The first evolutionary
stage includes current VR systems that require a wired connection to a PC or
portable device because current 4G or even pre-5G wireless systems cannot
cope with the massive amount of bandwidth and latency requirements of VR.
The PC or portable device in turn is connected to the central cloud and the
Internet via backhaul links. At the second evolutionary stage, VR devices are
wirelessly connected to a fog/edge server located at the base station (BS) for
local computation and caching. The third and final evolutionary stage envisions
ideal (fully interconnected) VR systems, where no distinction between real and
virtual worlds are made in human perception. In addition, according to Bastug
(2017), the growing number of drones, robots, and self-driving vehicles will take
cameras to places humans could never imagine reaching. Similarly, the Tactile
Internet, specified within the IEEE P1918.1 standards working group, allows
for the tactile steering and control of not only virtual but also real objects (e.g.
teleoperated robots) as well as processes. Thus, the Tactile Internet may be viewed
as an extension of immersive VR from a virtual to a physical environment. Recall
that in Chapter 2, we showed that the human-centric design approach of the
Tactile Internet helps extend the capabilities of humans through the Internet by
supporting them in the coordination of their physical and digital co-activities
with robots and software agents by means of (artificial intelligence) AI-enhanced
multi-access edge computing (MEC).

The above discussion shows that future fully interconnected VR systems and
the Tactile Internet seem to evolve toward common design goals. Most notably,
the boundary between virtual (i.e. online) and physical (i.e. offline) worlds is to
become increasingly imperceptible while both digital and physical capabilities of
humans are to be extended via edge computing variants, ideally with embedded
AI capabilities. According to the inaugural report “Artificial Intelligence and Life
in 2030” of Stanford University’s recently launched One Hundred Year Study on
artificial intelligence (AI100), an increasing focus on developing systems that are
human-aware is expected over the next 10–15 years.

In this chapter, we elaborate on how the Internet of No Things with its underly-
ing human-intended services may serve as a useful stepping stone toward realizing
the far-reaching vision of future 6G networks, ushering in the 6G post-smartphone
era. After briefly reviewing the 6G vision, we explain the reality–virtuality
continuum in more detail and introduce the so-called Multiverse for the design
of advanced extended reality (XR) experiences, ranging from conventional VR to
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more sophisticated cross-reality environments known as third spaces. We then
elaborate on the recently emerging invisible-to-visible (I2V) technology concept,
which we use together with other key enabling network technologies to tie both
online and offline worlds closer together in an Internet of No Things and make it
“see the invisible” through the awareness of nonlocal events in space and time.

7.2 6G Vision: Putting (Internet of No) Things
in Perspective

The authors of Letaief et al. (2019) provided a roadmap to 6G, which envisions that,
in contrast to previous generations, 6G will be transformative and will revolution-
ize the wireless evolution from “connected things” to “connected intelligence.”
According to Strinati et al. (2019), 6G will play a significant role in advancing
Nikola Tesla’s prophecy that “when wireless is perfectly applied, the whole Earth
will be converted into a huge brain.” Toward this end, the authors of Strinati et al.
(2019) argue that 6G will provide an information and communication technology
(ICT) infrastructure that enables end-users to perceive themselves as surrounded
by a huge artificial brain offering virtually zero-latency services, unlimited stor-
age, and immense cognitive capabilities. In 6G, there is also a strong notion that
the nature of mobile terminals will change, whereby smart cars and intelligent
mobile robots are anticipated to play a more important role (Zong et al., 2019).

6G is anticipated to allow for the inclusion of additional human sensory infor-
mation. The ITU Telecommunication standardization sector (ITU-T) Focus Group
Technologies for Network 2030 (FG NET-2030) was established in July 2018 to
study and advance the capabilities of the networks for the year 2030 and beyond.
Among others, FG NET-2030 envisions user experiences to go from well-explored
audio–visual communications to the delivery of all five human senses as well as
other senses in line with the IEEE Digital Senses Initiative. In David and Berndt
(2018), the authors advocate that 6G should embrace a new mode of thinking from
the get-go by including social awareness and understanding the social impact of
advanced technologies. They argue that deepened personalization of 6G services
that could predict future events for the user and provide good advice would cer-
tainly be appreciated.

Finally, the authors of Saad et al. (2020) observed that the ongoing deployment
of 5G cellular systems is exposing their inherent limitations compared to the
original premise of 5G as an enabler for the Internet of Everything (IoE). They
argue that 6G should not only explore more spectrum at high-frequency bands
but, more importantly, converge driving technological trends, thereby ushering in
the 6G post-smartphone era. Their bold, forward-looking research agenda intends
to serve as a basis for stimulating more out-of-the-box research that will drive the
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6G revolution. Specifically, they claim that there will be the following four driving
applications behind 6G: (i) multisensory XR applications, (ii) connected robotics
and autonomous systems, (iii) wireless brain-computer interaction (a subclass of
human–machine interaction), and (iv) blockchain and distributed ledger technolo-
gies. Among other 6G driving trends and enabling technologies, they emphasize
the importance of haptic and empathic communications, edge AI, the emergence
of smart surfaces/environments and new human-centric service classes, as well
as the end of the smartphone era, given that smart wearables are increasingly
replacing the functionalities of smartphones. They also expect that research on
the quantum realm will intersect with 6G toward its end of standardization.

The Internet of No Things with its underlying human-intended services and
nonlocal extension of human “sixth-sense” experiences in both space and time
may serve as a useful stepping stone toward realizing the far-reaching 6G vision
above, as explained in technically greater detail in the remainder of the chapter.

7.3 Extended Reality (XR): Unleashing Its Full
Potential

In this section, we further elaborate on the recently emerging term XR and how
its full potential can be unleashed.

7.3.1 The Reality–Virtuality Continuum

According to Qualcomm, XR will be the next-generation mobile computing plat-
form that brings the different forms of reality together in order to realize the entire
reality–virtuality continuum of Figure 7.1 for the extension of human experiences,
including the support of human–machine interaction. In fact, according to a
recent ABI Research and Qualcomm study, some of the most exciting XR use
cases include remotely controlled devices and the Tactile Internet (ABI Research
and Qualcomm, 2017).

The reality–virtuality continuum ranges from pure reality (offline) to pure vir-
tuality (online), as created by VR. Both reality and virtuality may be augmented,
leading to augmented reality (AR) on one side of the continuum and augmented
virtuality (AV) on the other. AR enables the live view of a physical, real-world
environment, whose elements are augmented by computer-generated perceptual
information, ideally across multiple sensory modalities. In doing so, AR alters
one’s perception of the real-world environment, as opposed to VR, which replaces
the real-world environment with a simulated one. Conversely, AV occurs in a vir-
tual environment, where a real object is inserted into a computer-generated envi-
ronment.
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Figure 7.1 The reality–virtuality continuum, ranging from pure reality (offline) to pure
virtuality (online).

A good AR example is Shopify’s ARKit, which allows smartphones to place
3D models of physical items and see how they would look in real life. To do
so, AR overlays virtual objects/images/information on top of a real-world envi-
ronment. An illustrative AV example is an aircraft maintenance engineer, who
is able to visualize a real-time model, often referred to as digital twin, of an
engine that may be thousands of kilometers away. The term mixed reality (MR)
includes AR, AV, and mixed configurations thereof, blending representations
of virtual and real-world elements together in a single user interface. MR helps
bridge the gap between real and virtual environments, whereby the difference
between AR and AV reduces to where the user interaction takes place. If
the interaction happens in the real world, it is considered AR. By contrast, if
the interaction occurs in a virtual space, it is considered AV. The flagship MR
device is Microsoft’s HoloLens 2. The areas where most industries apply XR is
in remote guidance systems for performing complex tasks such as maintenance
and assembly (Fast-Berglund et al., 2018).

7.3.2 The Multiverse: An Architecture of Advanced XR Experiences

Apart from VR/AR/MR, future XR technologies may realize novel, unprece-
dented types of reality. Thus, X may be rather viewed as a placeholder for future
yet unforeseen developments on the digital frontier. An interesting attempt
to charter the unknown territory is the so-called Multiverse, which may serve
as an architecture of advanced XR experiences (Pine and Korn, 2011). As shown
in Figure 7.2, the Multiverse consists of the following architectural components:

● Dimensions: There are the three well-known physical dimensions – Space, Time,
and Matter – that constitute our physical reality.
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Figure 7.2 The Multiverse as an architecture of advanced XR experiences: three
dimensions, six variables, and eight realms. Source: (Pine and Korn, 2011).
© Berrett-Koehler Publishers.

● Variables: In addition, there are three nonphysical dimensions – referred to as
No-Space, No-Time, and No-Matter – that make up the virtual world. Unlike their
physical counterparts, these three digital dimensions are not subject to the con-
straints imposed by physical space, time, and matter. Thus, in total there are six
variables that can be exploited for the design of advanced XR experiences.

● Realms: Given that there are three (3) pairs of variables, each with two (2)
opposite physical/digital dimensions, we have a total of 23 = 8 possible realms.
Each realm creates a different type of reality, ranging from conventional AR/AV
to more sophisticated types of reality, e.g. mirrored virtuality, warped reality,
and alternate reality. Mirrored virtuality absorbs the real world into the virtual
and creates a virtual expression of reality that unfolds as it actually happens,
providing a particular bird’s eye view. Warped reality plays with time in any
way possible by taking an experience firmly grounded in reality and shifting it
from actual to autonomous time. Alternate reality, on the other hand, creates
an alternative view of the real world by constructing a digital experience
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and superimposing it onto a real place. Unlike AR, however, alternate reality
manipulates time and allows looking to the future freed from the bonds
of actual time.

According to Pine and Korn (2011), the Multiverse with its different variables
and realms offers a powerful experience design canvas to uncover hidden XR
opportunities by fusing the real and the virtual, thereby creating cross-reality
environments or so-called third spaces. Third spaces are created whenever
one transverses the boundary between realms within any given experience. It
is worthwhile to mention that, in Weiser (1999), Mark Weiser seems to had
something similar in mind when describing what he initially called embodied
virtuality, which is now more widely referred to as ubiquitous computing.

In the subsequent section, we explore how the above concepts (No-Space,
No-Time, No-Matter, realms, cross-reality environments) can be used to tie both
online and offline worlds closer together in an Internet of No Things and make it
“see the invisible.”

7.4 Internet of No Things: Invisible-to-Visible (I2V)
Technologies

Recall from Section 7.1 that future fully interconnected VR systems will lever-
age on the growing number of drones, robots, and self-driving vehicles. A very
interesting example of future connected-car technologies that merges real and vir-
tual worlds to help drivers “see the invisible” is Nissan’s recently unveiled I2V
technology concept (Nissan Newsroom, 2019). I2V creates a three-dimensional
immersion connected-car experience that is tailored to the driver’s interests by
changing how cars are driven and integrated into society. More specifically, by
merging information from sensors outside and inside the vehicle with data from
the cloud, I2V enables the driver and passengers not only to track the vehicle’s
immediate surroundings but also to anticipate what’s ahead, e.g. what’s behind a
building or around the corner. Although the initial I2V proof-of-concept demon-
strator used AR headsets (i.e. wearables), Nissan envisions to turn the windshield
of future self-driving cars into a portal to the virtual world, thus finally evolving
from wearables to nearables, as discussed in Section 7.1 in the context of the Inter-
net of No Things.

I2V is powered by Nissan’s omnisensing technology, a platform originally
developed by the video gaming company Unity Technologies, which acts as a
hub gathering real-time data from the traffic environment and from the vehicle’s
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surroundings and interior to anticipate when people inside the vehicle may need
assistance. The technology maps a 360∘ virtual space and gives guidance in an
interactive, human-like way, such as through avatars that appear inside the car.
It can also connect passengers to people in the so-called Metaverse virtual world
that is shared with other users. In doing so, people may appear inside the car as
AR avatars to provide assistance or company. For instance, when visiting a new
place, I2V can search within the Metaverse for a knowledgeable local guide. The
information provided by the guide may be stored in the cloud such that others
visiting the same area can access it or may be used by the onboard AI system for
a more efficient drive through local areas. Alternatively, the driver may book a
professional driver from the Metaverse, who appears as a virtual chase car in the
driver’s field of view to show the best way and improve driving skills, just like in
a video game.

Clearly, I2V opens up endless opportunities by tapping into the virtual world. In
fact, the IEEE P1918.1 standard, briefly mentioned in Section 7.1, highlights sev-
eral key use cases of the Tactile Internet, including not only the automative control
of connected/autonomous driving via virtual avatars but also the remote control of
physical robots. According to Haddadin et al. (2019), the vastly progressing smart
wearables such as exoskeletons and VR/AR devices effectively create real-world
avatars, i.e. tactile robots connected with human operators via smart wearables, as
a central physical embodiment of the Tactile Internet. More specifically, the authors
of Haddadin et al. (2019) argue that the Tactile Internet creates the new paradigm
of an immersive coexistence between humans and robots in order to achieve tight
physical human–robot interaction (pHRI) and entanglement between man and
machine in future locally connected human–avatar/robot collectives. Assistive
exoskeletons are thereby envisaged to become an important element of the Tactile
Internet in that they extend user capabilities or supplement/replace some form
of function loss, e.g. lifting heavy objects or rehabilitation systems for people
with spinal cord injury. In addition, many studies have shown that the physical
presence of robots benefited a variety of social interaction elements such as
persuasion, likeability, and trustworthiness. Thus, leveraging these beneficial
characteristics of social robots represents a promising solution toward addressing
the user acceptability and trust issues of nearables mentioned in Section 7.1.

In the following, we build on the I2V technology concept and explore how
emerging multisensory XR technologies in conjunction with AI-enhanced MEC,
intelligent mobile robots, and blockchain technologies may be combined to usher
in the Internet of No Things as an important stepping stone toward realizing the
6G vision outlined in Section 7.2.
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Figure 7.3 Extrasensory perception network (ESPN) architecture integrating ubiquitous,
pervasive, and persuasive computing.

7.4.1 Extrasensory Perception Network (ESPN)

Let our point of departure be Joseph A. Paradiso’s pioneering work on extrasen-
sory perception (ESP) in an Internet of Things (IoT) context at MIT Media
Lab (Dublon et al., 2014). In a sensor-driven world, network-connected sensors
embedded in anything function as extensions of the human nervous system and
enable us to enter the long-predicted era of ubiquitous computing, as envisioned
by Mark Weiser more than a quarter of century ago (see Section 7.3). In Dublon
et al. (2014), the authors showed that network-connected sensors and computers
make it possible to virtually travel to distant environments and “be” there in real
time. Interestingly, the authors concluded that future technologies will fold into
our surroundings that help us to get our noses off the smartphone screens and
back into our environments, thus making us more (rather than less) present in
the world around us. Clearly, this human-centric outlook on future technologies
may materialize in the 6G post-smartphone era.

Recall from Section 7.3.1 that XR will be the next-generation mobile computing
platform for the extension of human experiences, including the support of
human–machine interaction. Figure 7.3 depicts the architecture of our proposed
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extrasensory perception network (ESPN), which integrates the following three
evolutionary stages of mobile computing: (i) ubiquitous, (ii) pervasive, and (iii)
persuasive computing. Ubiquitous computing is embedded in the things sur-
rounding us (i.e. nearables), while pervasive computing involves our bearables and
wearables. Persuasive computing aims at changing the behavior of users through
social influence. An interesting phenomenon for changing behavior in an online
virtual environment is the so-called “Proteus effect,” where the behavior of indi-
viduals is shaped by the characteristics and traits of their virtual avatars, especially
through interaction during inter-avatar events. We will exploit AI-enhanced MEC
to realize persuasive computing, as described in more detail shortly.

We have seen in Section 7.3.1 that some of the most exciting XR use cases
include remotely controlled devices and the Tactile Internet (ABI Research and
Qualcomm, 2017). Recall from Chapter 2 that we studied the Tactile Internet as
one of the most interesting 5G low-latency applications enabling novel immersive
experiences by means of haptic communications (Maier and Ebrahimzadeh,
2019). Recall also that the emerging Tactile Internet will remain a prominent
application enabled by future 6G mobile networks. The underlying physical
network infrastructure, which is illustrated in Figure 7.3, consisted of a fiber
backhaul shared by wireless local area network (WLAN) mesh portal points
(MPPs) and cellular BSs that are collocated with optical network units (ONUs),
which in turn are connected to the central optical line terminal (OLT) of the fiber
backhaul. Based on real-world haptic traces, we studied the use case of nonlocal
teleoperation between an human operator (HO) and teleoperator robot (TOR),
which are both physical, i.e. offline, entities (see also Figure 7.3). We showed that
AI-enhanced MEC helps decouple haptic feedback from the impact of extensive
propagation delays by forecasting delayed or lost haptic feedback samples. This
enables humans to perceive remote task environments in real-time at a 1-ms
granularity.

7.4.2 Nonlocal Awareness of Space and Time: Mimicking
the Quantum Realm

As an illustrative example of advanced XR experiences, we study the delivery of
extrasensory human perceptions, i.e. senses other than the five human senses,
as envisioned by the IEEE Digital Senses Initiative and ITU-T FG NET-2030 (see
Section 7.2).

It is interesting to note that the term ESP actually refers to a widely known
phenomenon that allows humans to have nonlocal experiences in space and
time. According to Wikipedia, ESP is also called sixth sense, which includes
claimed reception of information not gained through the recognized five
physical senses, but sensed with the mind. There exist different types of ESP,
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including clairvoyance (i.e. viewing things or events at remote locations) and
precognition (i.e. viewing future events before they happen). While clairvoyance
may be viewed as the ability to perceive the hidden present, precognition is a
forecast (not prophecy) of events to come about in the future unless one does
something to change them based on the perceived information. In contemporary
physics, there exists the so-called “principle of nonlocality,” also referred to as
quantum-interconnectedness of all things by quantum physicists such as David
Bohm, which transcends spatial and temporal barriers (Bohm, 2002). Nonlocality
occurs due to the phenomenon of entanglement, where a pair of particles have
complementary properties when measured, and might be the cause of ESP.

Phenomena such as entanglement also play an important role in the nascent
Quantum Internet Cacciapuoti et al. (2020). The Quantum Internet consists of
both classical and quantum links interconnecting remote quantum devices. With
respect to quantum communication resources, it seems attractive to utilize existing
optical fiber networks. However, it is still an open problem to determine whether
it is feasible to utilize a single link, e.g. a single optical fiber, for both quantum
and classical communications, such that existing network infrastructures can be
exploited without the need for additional infrastructures. Hence, from a commu-
nication engineering perspective, the design of the Quantum Internet is not an
easy task at all since it is governed by the laws of quantum phenomena with no
counterpart in classical networks, which impose serious constraints on the net-
work design. A key strategy for transmitting information in the Quantum Internet
is teleportation. Quantum teleportation provides an invaluable strategy for trans-
mitting so-called quantum bits (qubits) without either the physical transfer of the
particle storing the qubit or the violation of the quantum mechanics principles.

According to Cacciapuoti et al. (2020), the Quantum Internet is probably still a
concept far from real-world implementation. In addition, the quantum teleporta-
tion process, which represents the core communication functionality of the Quan-
tum Internet, is gravely affected by a number of quantum imperfections that arise
during the quantum teleportation process from a communication engineering per-
spective (Cacciapuoti et al., 2020a). Despite the fact that the Quantum Internet
might pave the way for the Internet of the future, there is a substantial amount of
frontier-research required for tackling the challenges and open problems associ-
ated with it. By contrast, with the advent of advanced XR technologies it might be
easier to mimic the Quantum Internet instead of actually building it, as explained
in more detail next.1

Note that despite reports based on anecdotal evidence, there has been no
convincing scientific evidence that ESP exists after more than a century of

1 Still unsettled is the discussion about whether the brain is a natural quantum computer or
not. Nevertheless, it is worthwhile to mention that there are many theories that in some way
relate the brain to quantum physics, where quantum effects play some kind of role in the brain.
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research. However, instead of rejecting ESP as pseudoscience, in this chapter we
argue that with the emergence of XR it might become possible to disrupt the old
impossible/possible boundary and mimic the quantum realm. Toward this end,
we are going to design the following two advanced XR experiences that transverse
the boundary between the aforementioned Multiverse realms in order to realize
awareness of nonlocal events in space and time.

7.4.2.1 Precognition
To achieve precognition, we extend our aforementioned AI-enhanced MEC based
haptic feedback sample forecasting scheme in Chapter 2 for realizing persuasive
computing. Recall from above that in nonlocal teleoperation the HO and TOR are
physical entities, i.e. both reside in the realm reality characterized by Space, Time,
and Matter. In addition, we let the HO have access to the realm AV (i.e. No-Space,
Time, No-Matter) by observing a digital twin of the remote TOR via a wearable
head-mounted display.

Our AI-enhanced MEC forecasting scheme was trained by using haptic traces
obtained from application-specific teleoperation experiments. It was shown in
Chapter 2 that a high forecasting accuracy (mean squared error below 1‰)
can be achieved in the considered scenarios. In general, however, the training
may become irrelevant in changing or unstructured real-world environments,
resulting in a decreased forecasting accuracy. How can the HO know when or
even before this happens and be persuaded to make an informed decision?

To quantify the decreasing effectiveness, our AI-enhanced MEC computes the
metric regret, which measures the future regret the HO will have after blindly rely-
ing on a presumably intact haptic feeback sample forecasting scheme. We define
regret as the difference between the achievable and the optimum physical task exe-
cution times of the TOR. Note that the metric regret is used to influence the HO’s
decision to abort the teleoperation before unintended consequences might occur.
It is displayed in his head-mounted wearable to “make him see” the AI becoming
less trustworthy. In Section 7.5, we will highlight some illustrative results.

7.4.2.2 Eternalism
Next, we consider also the transition from the Time to No-Time dimension of the
Multiverse in Figure 7.2. In physics, the two most important theories on the
nature of time have been presentism and eternalism. Presentism states that only
the present is real. By contrast, eternalism states that the past and future are
as equally real as the present. Under eternalism, “now” is to time as “where” is
to space, whereby time is a dimension much like space, one in which the past
and future are as real as locations north and south (i.e. unlike presentism,
eternalism thus lends itself to time travel). Today, most physicists view eternalism
as the order of time (Buonomano, 2017).
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Figure 7.4 illustrates our experimental set-up for demonstrating eternalism
in locally connected human–avatar/robot collectives. The human engages
in embodied communication with Pepper, SoftBank Mobile’s most advanced
humanoid robot, via voice, gesture, and Pepper’s built-in Android tablet.
We use an Oculus Rift VR headset to let the human also access the virtual
avatar of the robot. A user profile is maintained to record each human–robot
interaction. In addition, we exploit IBM Watson’s empathic AI services, most
notably, IBM’s tone analyzer for detecting emotions in written text exchanged
during human–robot/avatar online communication. As blockchain of choice we
deploy Ethereum to interconnect all human operators, real and virtual robots,
and empathic AI services in a decentralized autonomous organization (DAO), one
of Ethereum’s salient features, to share skills and help solve complex problems
faced during human–robot–avatar interactions. MEC-based cloud computing
is used for offloading compute-intensive blockchain transactions, e.g. mining,
from resource-limited robots. In the subsequent section, we highlight a use case
of exploiting VR and empathic AI to make emotions visible and nudge the human
toward experiencing eternalism.

7.5 Results

Let us consider an HO–TOR pair carrying out a given physical task that can be
decomposed into 100 operations. To achieve the optimum task execution time, the
AI-enhanced MEC forecasting scheme outsources certain operations to another
crowdsourced HO, who is located 20 seconds away from the physical task point.
Let fH and fR denote the capability (given in number of operations per second) of
the HO and TOR to execute the physical task, respectively. The HO decides to abort
teleoperation, when he observes the digital twin starting to produce failures and
the ratio of misforecast samples to total number of received haptic feedback sam-
ples exceeds a certain threshold SH . Subsequently, the crowdsourced HO traverses
to the physical task point to finalize all remaining operations.

Figure 7.5 depicts the regret vs. misforecast sample rate 𝜆f for different ratio
fH
fR

and SH . It highlights the beneficial role of crowdsourcing a capable assistant

HO with increased fH
fR

in compensating for an unreliable AI and completing the
physical task failure-free.

Note that the above digital twin is synchronized with the remote TOR, both
operating in the actual Time dimension of Figure 7.2. Next, we also tap into
the No-Time dimension of VR environments during the following time travel
experiment from reality to virtuality. The experiment lasted 15 minutes and was
repeated five times, each time involving a different student. In the initial reality
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Figure 7.5 Regret (given
in seconds) vs. misforecast
sample rate 𝜆f for different
ratios of human and robot
capabilities fH

fR
∈ {0.5, 1, 2}

with human decision
threshold SH ∈ {5%, 10%}.
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part, the student first engages with Pepper for an interactive audio-visual tour of
INRS (the students’ university). Subsequently, the student is given the opportunity
to ask Pepper any arbitrary question about INRS, whereby Pepper’s responses
are provided by a remote human operator via speech-to-text and text-to-speech
conversion. Next, Pepper invites the student to continue the experiment in the
virtuality part, where the student can virtually walk through INRS guided by
an avatar acting as an omniscient oracle. The oracle relies on a remote human
operator, who is able to monitor the student’s detected emotions in real-time.
By leveraging on the “Proteus effect” experienced in inter-avatar events (see
Figure 7.3), the oracle gives advice to the student on how to gradually reach a
desirable future situation at INRS, which is characterized by higher levels of
confidence and emotional engagement.

Figure 7.6 shows the average empathic AI score of the four positive emotions
detected by IBM Watson’s tone analyzer during the various human–robot/avatar
speech-to-text-to-speech exchanges of the experiment. It clearly illustrates that the
students become increasingly more confident and emotionally less tentative after
transiting from reality to virtuality, thus confirming the beneficial impact of the
Proteus effect.

7.6 Conclusions

Our proposed ESPN architecture integrated ubiquitous, pervasive, and persuasive
computing to enable the delivery of so-called extrasensory sixth-sense human per-
ceptions via advanced XR experiences in a future Internet of No Things, which will
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be increasingly based on wearables (e.g. VR headsets) and nearables (e.g. intelli-
gent mobile robots) in an anticipated 6G post-smartphone era. We exploited the
so-called Multiverse concept to design cross-reality environments that help fuse
the real and the virtual in networked human–avatar/robot collectives. By means
of simulation and experiment, we studied two illustrative cross-reality use cases
to make humans see AI becoming less trustworthy and to exploit empathic AI
services making human emotions visible.
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Appendix A

Proof of Lemmas

A.1 Proof of Lemma 3.1

Proof: Using Eq. (3.1) along with the velocity profile shown in Fig. 3.2, the energy
consumption Etrav of the MR to traverse a given distance Δd is calculated as
follows:

Etrav = E(𝜔d) = ∫
Ttrav

0
c1a2(t).dt

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏟

E1

+ ∫
Ttrav

0
c2v2(t).dt

⏟⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏟

E2

+∫
Ttrav

0
c3v(t).dt

⏟⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏟

E3

+ ∫
Ttrav

0
c4.dt

⏟⏞⏞⏞⏟⏞⏞⏞⏟

E4

. (A.1)

Note that for the considered velocity profile v(t) in Fig. 3.2, the contributions of
both fifth and sixth terms in Eq. (3.1) are equal to zero, as ∫ Ttrav

0 a(t).dt = 0 and
∫ Ttrav

0 v(t)a(t).dt = 0. We obtain E1, E2, E3, and E4 as follows:

E1 = c1

(
∫

t1

0
a2

acc.dt + 0 + ∫
t3

t2

a2
dec.dt

)

= c1

(
∫

Tacc

0

(vmax

Tacc

)2

.dt + ∫
Ttrav

Tacc+Tcst

(−
vmax

Tdec
)2.dt

)

Eq.(3.4)
= 2c1(1 − 𝜔d)

Δd
vmax

(
v2

max(
1 − 𝜔d

)
Δd

)2

=
2c1v3

max

(1 − 𝜔d)Δd
, (A.2)

E2 = c2(∫
t1

0

(vmax

Tacc
t
)2

.dt + ∫
t2

t1

(
vmax

)2
.dt + ∫

t3

t2

(
−

vmax

Tacc
(t − Ttrav)

)2

.dt)

Toward 6G: A New Era of Convergence, First Edition. Amin Ebrahimzadeh and Martin Maier.
© 2021 The Institute of Electrical and Electronics Engineers, Inc.
Published 2021 by John Wiley & Sons, Inc.
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Eq.(3.4)
= c2

(2
3
(1 − 𝜔d)vmaxΔd + 𝜔dvmaxΔd

)
, (A.3)

E3 = c3 ∫
Ttrav

0
v(t).dt

Eq.(3.3)
= c3Δd, (A.4)

E4 = c4 ∫
Ttrav

0
1.dt

Eq.(3.5)
= c4(2 − 𝜔d)

Δd
vmax

. (A.5)

Substituting Eqs. (A.2)-(A.5) into Eq. (A.1), completes the proof. ◽

A.2 Proof of Lemma 3.2

Proof: Given 𝜕2E(𝜔d)
𝜕𝜔2

d
> 0 for𝜔d ∈ (0, 1), in order for E(𝜔d) to have a local minimum

in interval (0, 1), 𝜕E(𝜔d)
𝜕𝜔d

has to be zero. Therefore, we have

𝜕E(𝜔d)
𝜕𝜔d

=
vmaxc2Δd

3
+

2c1v3
max

Δd(1 − 𝜔d)2 −
c4Δd
vmax

= 0, (A.6)

which gives �̂�d as follows:

�̂�d = 1 −

√√√√√√√√
6c1v4

max
Δd2

3c4 − v2
maxc2

⏟⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏟

M′

. (A.7)

We note that �̂�d has to lie in interval (0, 1), thus implying that

0 < M′ < 1. (A.8)

The left-hand inequality holds for vmax < v′1, where v′1 =
√

3c4
c2

. Whereas the
right-hand inequality translates into

QE(vmax)
⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞

6c1

Δd
v4

max + c2v2
max − 3c4 < 0. (A.9)

To evaluate the range of vmax, for which inequality QE(vmax) < 0 holds, we
first determine the roots of QE(vmax) = 0. In doing so, we develop the auxiliary
equation Q′

E(vmax) = 0 by replacing v′max = v2
max. We note that as the discriminant

of equation Q′
E(vmax) = 0 is equal to 72c1c4∕Δd2, which is greater than zero for

Δd, Q′
E(vmax) = 0 has two distinct roots, one of which is positive and the other one

is negative. Clearly, as vmax = ±
√

v′max, the negative root does not give a valid real
value for vmax, whereas the positive one does. Therefore, QE(vmax) has only one
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positive root. Note that QE(vmax) < 0 holds for vmax < v′2, where v′2 is the positive
root of QE(vmax) = 0. The reason for this is that QE(0) < 0 and 𝜕2QE(vmax)

𝜕v2
max

> 0, thus
implying that QE(0) is negative for 0 < vmax < v′2. Therefore, inequality (A.9)
holds if

vmax <

v′2
⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞√√√√√√√√√√

−c2 +

√
c2

2 − 4
(

6c1

Δd2

)(
−3c4

)
2
(

6c1

Δd2

) . (A.10)

Subsequently, in order to satisfy Eq. (A.8), we have

vmax <

v1
⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞

min {v′1, v′2}, (A.11)

for which the right-hand is equal to v′2 because it is straightforward to show
that v′2 < v′1 for Δd > 0 given the experiment-driven values of {ci}6

i=1 taken from
Tokekar et al. (2014). For illustration, A1 ∈ ℝ2

+ depicts the region that satisfies
inequality (A.11), thus representing the values of (Δd, vmax), for which E(𝜔d) has
a local minimum ∀𝜔d ∈ (0, 1) (see Fig. 3.4). ◽

A.3 Proof of Lemma 3.3

Proof: g(𝜔d) =
𝜕f (𝜔d)
𝜕𝜔d

is a continuous function of 𝜔∗
d, thereby having a root in inter-

val (0,1) if and only if g(0)g(1) < 0, which implies that

(1 − K′)K′ < 0 ⇒ 0 < K′ < 1. (A.12)

The left-hand inequality, 0 < K′, reduces to
Q1(vmax)

⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞

A1v4
max + B1v2

max + C1vmax + D1 > 0, (A.13)

where A1, B1, C1, and D1 are given in Eq. (3.29). Note that in order to evaluate the
range of vmax for which inequality (A.12) holds, we have to determine the location
of the roots (i.e., zeros) of equation Q1(vmax) = 0. We also note that Q1(vmax) = 0
is a quartic equation that has four roots, two of which are real while the other
two are complex, as its discriminant is negative. Further, as Q1(0) > 0 holds and
limvmax→+∞Q1(vmax) = −∞, we conclude that one of the real roots is positive while
the other one is negative. Therefore, inequality (A.12) holds for vmax < zm, where
zm is the (only) positive root of Q1(vmax) = 0.
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Next, we turn our attention to the right-hand side inequality, K′ < 1, which
reduces to

2c1v3
max < Δd

(Δdc4

vmax
−

Δdvmaxc2

3
+

Em

2

)

vmax>0
⇔

Q2(vmax)
⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞

A2v4
max + B2v2

max + C2vmax + D2 > 0, (A.14)

where

A2 = A1Δd − 2c1,

B2 = B1Δd,

C2 = C1Δd,

D2 = D1Δd. (A.15)

We note that Q2(vmax) is greater than zero only for vmax < z′m, where z′m is the (only)
positive root of Q2(vmax) = 0. The reason for this is that as Q2(vmax) = 0 has two
real roots, one of which is positive and the other one is negative, and Q2(0) > 0,
Q2(vmax) is greater than zero for vmax < z′m. Clearly, in order for both right- and
left-hand inequalities in (A.12) to hold, vmax has to be smaller than min {zm, z′m}.
We note that for Δd > 0 we have z′m < zm, therefore min {zm, z′m} = z′m. Standing
as the only positive root of Q2(vmax), z′m is max Z′

i>0∶ℑ𝔪[Z′
i ]=0{Z′

i}. Then, g(𝜔d) = 0
has a root 𝜔∗

d in interval (0, 1) if and only if vmax < max Z′
i>0∶ℑ𝔪[Z′

i ]=0{Z′
i},

∀Δd > 0. ◽

A.4 Proof of Lemma 5.1

Proof: To compute the average channel access delay, we define a two-dimensional
Markov process (s(t), b(t)) shown in Fig. A.1 under unsaturated conditions and
estimate the average service time Δi of MU i in a WLAN using the IEEE 802.11
distributed coordination function (DCF) for access control, whereby b(t) and s(t)
denote the random back-off counter and size of the contention window at time t,
respectively. Without loss of generality, let us focus on a tagged user and drop the
subscript i for now. Let Pf and Ws denote the probability of a failed transmission
attempt (i.e., collision or erroneous transmission) and contention window size at
back-off stage s, respectively. Note that the back-off stage s is incremented after
each failed attempt up to the maximum value m, while the contention window is
doubled at each stage, i.e., Ws = 2sW0.
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Figure A.1 Two-dimensional Markov chain for distributed coordination function (DCF)
contention model under unsaturated traffic conditions. Source: Ebrahimzadeh and Maier
(2020). © 2020 IEEE.

From the viewpoint of a WiFi user, collisions may occur with probability pc
on transmitted packets, while erroneous transmission attempts may happen with
probability pe. Assuming that the collided and erroneous transmission events are
statistically independent, a packet is successfully transmitted after a collision-free
attempt followed by an error-free transmission. The probability of a successful
transmission is therefore equal to (1 − pe)(1 − pc), from which we infer that the
probability Pf of a failed transmission attempt is computed as follows:

Pf = 1 −
(
1 − pc

) (
1 − pe

)
. (A.16)

A WiFi user is in idle state, if (i) a successfully transmitted packet leaves the sys-
tem without any waiting packet in the queue and (ii) no packet arrives during the
current time slot given that the user was in idle state in the preceding time slot.
We note that for Poisson arrival these two events are identical and equal to 1 − q.
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With these considerations, we move on to analyze the Markov model in
Fig. A.1, where m + 1 different back-off stages are considered. The maximum
contention window size is 2mW0. Transmissions are attempted only in (s, 0)
states (s = 0, 1, ...,m). Upon a failed transmission attempt in state (s, 0), there
will be a transition to new state (s + 1, k), where k is uniformly selected from
[0,Ws+1]. From state (s, 0), we enter the initial back-off stage, again given that the
transmission is successful and the buffer is still nonempty; otherwise, we transit
in the idle state I and wait for an incoming packet.

The transition probabilities of the two-dimensional Markov chain in Fig. A.1 are
computed as follows:

P(s,k)|(s,k+1) = 1; ∀k ∈ [0,Ws − 2], s ∈ [0,m] (A.17a)

P(0,k)|(s,0) = q(1 − Pf )
W0

; ∀k ∈ [0,W0 − 1], s ∈ [0,m] (A.17b)

P(s,k)|(s−1,0) =
Pf

Ws
; ∀k ∈ [0,W0 − 1], s ∈ [1,m] (A.17c)

P(m,k)|(m,0) =
Pf

Wm
; ∀k ∈ [0,Wm − 1] (A.17d)

PI|(s,0) = (1 − q)
(
1 − Pf

)
; ∀s ∈ [0,m] (A.17e)

P(0,k)|I = q
W0

; ∀k ∈ [0,W0 − 1] (A.17f)

PI|I = 1 − q, (A.17g)

where P(a,b)|(c,d) denotes the transition probability from state (s(t) = c, b(t) = d) at
time t to state (s(t + 1) = a, b(t + 1) = b) at time t + 1.

In order to find the stationary distributions

bs,k = lim
k→∞

P (s(t) = s, b(t) = k) ,∀k ∈ [0,Ws − 1], s ∈ [0,m],

we consider Eqs. (A.17) together with the normalization equation

bI +
∑

s

∑
k

bs,k = 1,

where bI denote the stationary probability that the WiFi user is in idle state. After
finding the stationary distributions, the probability 𝜏 that a WiFi user attempts to
transmit in a given time slot is then obtained as

𝜏 =
m∑

s=0
bs,0 = 1

W0+1
2

+
W0Pf

(
1−(2Pf )m

)
2(1−2Pf )q

+ (1−q)(1−Pf )
q

. (A.18)
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From a system point of view, WiFi subscriber i does not experience a collision
if the remaining users do not attempt to transmit, thus 1 − pci

=
∏

v∶v≠i
(
1 − 𝜏v

)
.

Moreover, pe,i is estimated by 1 −
(
1 − pb

)Li , where Li and pb is the average length
of a packet transmitted by WiFi user i and bit error probability, respectively.

The probability of a collision-free packet transmission Ps provided that there is
at least one transmission attempt is given by 1

Ptr

(∑
i𝜏i
∏

v,v≠i
(
1 − 𝜏v

) )
, whereby

the probability Ptr that there is at least one transmission attempt is equal to 1 −∏
i
(
1 − 𝜏i

)
. The average slot duration Es is then obtained as

Es =
(
1 − Ptr

)
𝜖 + Ptr

(
1 − Ps

)
Tc + PtrPsPeTe + PtrPs

(
1 − Pe

)
Ts, (A.19)

where Tc, Te, and Ts are given in Aurzada et al. (2014). We also note that q can be
approximated as follows

q = 1 − e−𝜆Es , (A.20)

whereby Es is given in Eq. (A.19). In order to obtain the steady-state values of q, Pf ,
𝜏, and Es, and Δi, we numerically solve the system of non-linear equations (5.15),
(A.18), (A.19), and (A.20). ◽
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