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Preface

This book is the third one in my book series plan. While the first two are  
dedicated to model-based and data-driven fault diagnosis respectively, this one 
addresses topics in both model-based and data-driven thematic fields, and increas-
ingly focuses on fault-tolerant control issues and application of machine learning 
methods.

The enthusiasm for machine learning and big data technologies has consider-
able influences on the development of fault diagnosis techniques in recent years. 
It seems that research efforts in the thematic domain of data-driven fault diagno-
sis gradually become a competition under the Olympic motto, faster transferring 
machine learning methods to fault diagnosis applications, preferably adopting 
higher actual (most popular) machine learning methods, and stronger publishing. 
The main intention of this book is to study basic fault diagnosis and fault-tolerant 
control problems, which build a framework for long-term research efforts in the 
fault diagnosis and fault-tolerant control domain. In this framework, possibly uni-
fied solutions and methods can be developed for general classes of systems.

This book is composed of six parts. Besides Part I, which serves as a com-
mon basis for the subsequent studies, Parts II–VI are dedicated to five different 
thematic areas. In Part II, optimal fault detection and estimation in time-varying 
systems, detection and isolation of multiplicative faults in linear time-invariant 
systems with uncertainties are addressed. Part III is dedicated to the investigation 
on existence conditions of observer-based fault detection systems for a general 
type of nonlinear systems, as well as on parameterisation and optimisation issues 
of nonlinear observer-based fault detection systems. Part IV deals with statistical 
and data-driven fault diagnosis, but is dedicated to different topics, including a 
critical review of multivariate analysis based fault detection methods, optimal fault 
detection and estimation in large-scale distributed and interconnected systems, 
Kullback-Leibler divergence based fault detection schemes, and alternative fault 
detection and clustering methods using symmetric positive definite data matrices 
and based on Riemannian manifold theory. In Part V, the well-established ran-
domised algorithm theory is applied to the study on assessment and design of fault 
diagnosis systems. Finally, fault-tolerant control schemes with a strong focus on 
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performance degradation monitoring and recovering are studied in Part VI. These 
parts are self-contained and so structured that they can also be used for self-study 
on the concerned topics.

It should be mentioned that the final work on this book has been done during 
the Corona crisis. I was so deeply sorry to hear of Dr. Jie Chen's death due to the 
coronavirus. Jie was a good friend, a pioneer and a brilliant researcher of our com-
munity. He will be sadly missed.

This book would not be possible without valuable support from many peo-
ple. I would like to thank Prof. Dr.-Ing. L. Li from the University of Science and 
Technology Beijing for the long-term collaboration and for the extensive editorial 
corrections of the book. I am very grateful to my Ph.D. students and co-workers 
for the valuable discussions and proofreading of the book chapters. They are Ms. 
Caroline Charlotte Zhu, Ms. Ting Xue, Ms. Han Yu, Ms. Yuhong Na, Mr. Yannian 
Liu and Mr. Jiarui Zhang.

Finally, I would like to express my gratitude to Mrs. Hestermann-Beyerle and 
Mrs. Lisa Burato from Springer-Verlag. Mrs. Hestermann-Beyerle has initiated 
this book project and Ms. Lisa Burato has perfectly managed the final submission 
issues.

Duisburg  
May 2020

Steven X. Ding
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Chapter 1
Introduction

The past two decades have witnessed tremendous development in the field of fault
diagnosis and fault-tolerant control. This trend is the logic consequence of the ever
increasing demands for highly economic and ecological operations of technical sys-
tems, processes and assets in all industrial sectors. The speed, at which new concepts,
schemes and methods are developed, is rapid. In the course of this development, in-
numerable methods and successful applications have been reported.

Fault diagnosis technique is an engineering thematic area and its applications can
be found across all technical fields. Consequently, in its history, the development
of fault diagnosis technique and methods was obviously formed by individual tech-
nical demands and characteristics of systems and assets under monitoring. There
was no uniform and standardised theory and framework. The situation has changed
dramatically since this decade. Like all technical and scientific disciplines, in the
era of information, digitalisation and big-data, the impact of artificial intelligence,
computer science, information theory and communication technology on the de-
velopment of fault diagnosis technique is enormous and everywhere. A uniform
technological framework towards intelligent and data-driven fault diagnosis is being
newly established.

Generally, fault-tolerant control (FTC) deals with feedback control systems. From
the methodological viewpoint, fault-tolerant control is a thematic field of control
theory and engineering. Logically, the development of FTC technique can be well
characterised by the application of advanced control theoretical methods and asso-
ciated mathematical tools. Robust control theory, adaptive control algorithms and
newly optimisation methods including model predictive control (MPC) are the ma-
jor methodological tools for the design and implementation of fault-tolerant control
systems. The impact of the main technologies in the era of information and big-data
on the FTC technique is reflected by the recent research efforts on FTC in networked
control systems (NCSs) and cyber-physical systems (CPSs).
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1.1 Trends and Mainstream in Research

In the current decade, the following new trends can be observed in comparison with
the research efforts in the past decades,

• data-driven, multivariate analysis (MVA) and machine learning based methods are
dominate in the field of process monitoring and fault diagnosis,

• research efforts on model-based fault diagnosis pounce on fault detection and
estimation methods for special classes of systems like networked and distributed
systems, event-triggered or switched systems,

• detection of two special types of faults, the so-called intermittent and incipient
faults, is receiving remarkable attention, and

• in the research area of fault-tolerant control, efforts are strongly focused on

– fault estimation and, based on it, fault compensation strategy, as well as
– application of real-time optimisation techniques like MPC technique.

1.1.1 Data-Driven, Statistic and Machine Learning Based
Fault Diagnosis Methods

The enthusiasm for machine learning (ML) and big data technologies significantly
influences the developments in all engineering and scientific areas. The key issues in
the diagnosis framework, like feature generation and analysis, (fault) classification
and decision making, are also basic tasks in machine learning. It is a logic conse-
quence that most of the existing ML methods and concepts have been introduced
into the fault diagnosis framework, often in combination with MVAmethods. At the
very beginning of this development, the process of transferring an existing MVA-
ML method to the fault diagnosis application was built with sophisticated research
efforts, which resulted in certain time lag, but allowed sufficient time for necessary
validations. In the course of this development, the time lag of the transfer processes
has become shorter and shorter. Recently, it seems that it is becoming a competition
of publishing applications of newly developed ML methods and algorithms to fault
diagnosis. The most recent example is the application with deep learning technique.
The consequence of this copy-and-paste style of research is that it is hard to have a
solid overview of all published MVA-ML based fault diagnosis methods. Below, we
would like to shortly review and analyse the basic ideas and common working prin-
ciples of the existing MVA-ML based fault diagnosis methods without addressing
the methods in detail.

Which MVA-ML methods are really useful for a reliable and efficient fault di-
agnosis? To answer this question, let us recall the basic tasks of a fault detection
system as an example. Note that fault detection is the first and most importance task
of fault diagnosis, and most of the fault isolation and classification problems can be
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re-formulated as a number of fault detection problems. A fault detection system or
scheme is composed of three essential components and steps:

• data collection and pre-processing,
• feature generation and extraction, and
• decision making and classification algorithms.

Most of the published MVA-ML based fault diagnosis methods and algorithms are
dedicated to the second and third steps on the assumption that the collected data
have been well pre-processed and satisfy the required conditions. The basic idea
behind the step with feature generation and extraction is to solve the core problem in
fault detection: faults vs. uncertainties. Without the existence of uncertainties, fault
detection is straightforward. Regrettably, in most of technical systems and assets,
uncertainties are inevitable and exist in different forms. Measurement and process
noises are the simplest form of uncertainties, which can be, for example, modelled as
random variables with certain distributions. Variations in system and asset parame-
ters caused by, for instance, varying system operation conditions, ageing in machine
and asset components or changing environmental conditions around the system and
asset, result in uncertainties which are hard to be described analytically. A feature is
a function of all reliable (possibly pre-processed) measurement variables. It should
be formed (generated) in such a way that it depends on the faults to be detected.
Unfortunately, it is unavoidable that a feature is, more or less, corrupted with uncer-
tainties. For the fault detection purpose, a good feature is a function that is sensitive
to the faults and less affected by the uncertainties. In the step of decision making, a
decision is made based on an analysis of the feature. The mostly adopted strategy is
to compare the feature values in the fault-free and faulty operations, and a decision
is made on account of the difference between these values. This requires that the
feature (as a function) should be a metric or a good measure or an indicator for the
influences of the faults and uncertainties. In an abstract form, we can summarise
the fault detection problem as finding a metric for assessing the measurement data.
Roughly speaking, a defined fault detection problem is optimally solved, when the
ratio,

the metric value corresponding to the faulty operation

the metric value corresponding to the fault-free operation
,

is at the largest.
It should be emphasised that both data-driven and model-based fault detection

schemes follow the above-described strategy. Their differences lie in the realisation
and implementation. In the data-driven fault diagnosis framework, there are two
types of strategies for the steps of features generation and decision making:

• modelling of a designed feature by learning,
• automated learning of the two steps in a single learning process.

In the first strategy, on account of certain assumptions or a priori knowledge of the
system under consideration or applying some statistic and mathematical methods, a
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model mapping the process measurement variables to the feature is first established.
By means of collected operation data, the model parameters and even the model
structure are then identified. This process is called training or learning, and runs
typically offline. Based on such a model, an online detection of faults can be realised
by checking and analysing the feature value delivered by the model. Below are some
examples. For the technical details, the reader is referred to the study in the subsequent
chapters.

Example 1.1 PCA based fault detection (referred to Sub-Sec.3.5.4). Principal com-
ponent analysis (PCA) is a simple fault detection method, in which two features, the
so-called T 2 and SPE (squared prediction error) test statistics, are defined. Re-
grettably, in the literature the PCA method is generally introduced as a projection
algorithm without describing (i) the assumptions for its use in fault detection and
(ii) its statistic interpretations. In order to apply T 2 and SPE test statistics success-
fully to fault detection, (i) the process measurement variables are assumed to be
normally distributed, (ii) a data pre-processing is needed, and (iii) the faults to be
detected can be modelled as the so-called additive faults which cause changes in the
mean (vector) of the process measurement variables. Moreover, T 2 test statistic is
the so-called Mahalanobis distance which is a dissimilarity measure between two
random vectors of the same distribution with the same covariance matrix. Finally,
the detection logic is established based on the statistic distributions of both features.
The model parameters of the T 2 and SPE test statistics are the mean (vector) and the
covariance matrix of the process measurement variables, which should be estimated
(learned) using the collected process data.

Example 1.2 KL divergence based fault detection (referred to Sect.15.2). Kullback-
Leibler (KL) divergence is a dissimilarity measure between distributions. When it
is assumed that the fault to be detected would cause changes in the distribution of
the measurement variables, KL divergence is a good feature for detecting such a
fault. Since for the computation of the KL divergence model the distribution of the
(random) measurement variables during the fault-free operation is needed, in the
data-driven framework an estimation of the distribution is to be performed during
the training phase using the collected process data. To this end, there exist numerous
algorithms, among them the so-called kernel density estimation (KDE) method is
very popular.

Example 1.3 SVM based fault detection (referred to Sub-section 18.3.2). Support
vector machine (SVM) is a popular ML method. One of its application fields is
classification, which can be directly adopted for the use of fault detection. In order
to solve the problem of measuring the distance between two data sets, the faulty
and fault-free data sets, a (threshold) hyperplane is introduced, which separates the
faulty data set from the fault-free one, and thus guarantees a defined (Euclidean)
distance between these two data sets. During the training, the hyperplane model is
to be determined.

Artificial neural networks (ANNs) are the most popular technique to realise feature
generation and decision making in a single step. For example, for the fault detection
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purpose, an ANN is trained using the collected operation data in such a way that the
ANN directly delivers the decision result for faulty (alarm) or fault-free. That is, an
ANN-based fault diagnosis system is a mathematical model that describes relations
between the measurement variables and the faults. During the training, this model
is identified using the measurement data. In other words, training an ANN is in fact
to perform a model identification. In application, the model is driven by the system
measurement variables (as the input) and delivers information about the possible
faults (as output).

The unbelievable media effects of recent remarkable successes of deep learning
technique in some technical fields have initiated the enthusiasm for applying different
forms of ANN schemes, in particular the deep learning technique, to fault diagnosis.
Thanks to their self-learning capacity, ANNs are able to extract features of the faults
to be detected from the training data automatically. And these features enable us to
distinguish the faults from the uncertainties in the measurement data efficiently. On
the other hand, its extreme dependence on the training data also limits the application
of the ANN technique in fault diagnosis. One obvious problem is the availability of
the so-called labelled data. Labelled data are data which have been recorded under
known operation conditions. In order to train an ANN, the expected output of the
model (to be identified) with respect to the given training data (as input) should
be known. In fault detection applications, this means, whether the data have been
recorded by faulty operation and thus labelled by faulty or by fault-free operations
and labelled by fault-free should be known. In a reliable technical system, faulty
operation is an event with (very) low probability, while most of the data are collected
during fault-free operations (and thus labelled as fault-free). As a result, the number
of the data samples for the faulty operation is in general much smaller than the
number of the data labelled by fault-free. A further concern is the transferability.
For instance, an ANN-based fault diagnosis system for an industrial asset has been
well trained and constructed using a huge number of data collected as the asset is
in operation. Even for all these efforts at great expense, it cannot be guaranteed that
this diagnosis system can be used for another asset of the same type but located in a
different operation environment.

A potential and promising solution to the above problems is the application of the
so-called transfer learning technique. Transfer learning is a research field in machine
learning and deals with, roughly speaking, development of methods which enable
to apply learned knowledge of the solution of a defined problem to solving different
but relevant problems. Recall that data-driven fault diagnosis can be schematically
defined as a model identification problem and solved using the system data (as
model inputs) and labels (knowledge) of the faults (as model outputs). To achieve
fault diagnosis of two different systems, two different models are to be identified
using two different system data sets and two labelled data sets. Assume that

• two systems, say S1 and S2, under consideration are similar,
• for one system, say S1, the operation data are well labelled, and thus its (diagnosis)
model M1 is well identified,

• for system S2, there exist few data and they are poorly labelled.
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Consequently, it is hard to identify a reliable diagnosis modelM2 for system S2 using
the available data. This problem can be addressed using transfer learning methods,
which help us to use the well-labelled operation data and model of system S1 to
improve the identification of model M2 based on probabilistic relations and using
optimisation algorithms.

Example 1.4 Application of transfer learning tomachine diagnosis. It is well known
that machine diagnosis becomes a challenging task, once a machine is integrated
in a large-scale and complex system. Differently, under laboratory conditions, the
same machine can be well tested and sufficient operation data can be collected. This
allows us to build a reliable machine diagnosis model for the machine (under labo-
ratory conditions). Now, transfer learning methods may support system engineers to
apply machine diagnosis knowledge, including the machine diagnosis model and the
operation data under laboratory conditions to diagnosing the machine integrated in
the large-scale system. In the literature given at the end of this chapter, successful
cases of this application have been reported.

In their recent survey report (see the reference given at the end of this chapter),
Lei et al. have pointed out that the transfer learning technique would be the major
technological tool for data-driven fault diagnosis of the next decade.

1.1.2 Model-Based Fault Diagnosis Research

Model-based fault diagnosis techniques played once a very dominant role in the
research domain of fault diagnosis. Even today in the era of information and digital-
isation, model-based fault diagnosis methods are widely accepted as an efficient and
powerful technique in dealing with fault diagnosis issues for dynamic systems.

After a dynamic development in the 1980s and 1990s, in which the framework for
the model-based fault diagnosis techniques was established with three main research
areas,

• observer-based fault detection, isolation and estimation,
• parity-space based fault detection and isolation, and
• parameter identification based fault detection and estimation,

all the three areas of the model-based fault diagnosis technique were well equipped
with basic concepts, methods and algorithms. It is remarkable that most of these
methods and algorithms are the well-established results in control theory with slight
modifications. In the following decade, the research focus was mainly on robustness
issues, which, due to the use of mathematical models, is a natural and necessary key
step. In the course of this development, the foundations for system design techniques
with the associated (mathematical) tools, for instance, H∞ robust theory, handling
of special classes of nonlinear systems like systems satisfying Lipschitz conditions,
Takagi-Sugeno (T-S) fuzzy systems etc., system adaptive technique, sliding mode
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control methods, have been laid for the research efforts in the recent decade. In a
certain sense, themost valuable contributions in this time period have been the “trans-
lation and standardisation works”, which have resulted in formalisation of common
fault diagnosis problems by means of problem formulations known in control theory
and engineering. A representative example is the so-called H−/H∞ design scheme
for observer-based fault detection systems with LMI (linear matrix inequality) algo-
rithms as the solution tool. It is noteworthy that the common basis of these techniques
is Lyapunov theory. Reviewing the research results published in the current decade,
it can be recognised that

• there are no significant contributions (i) to the model-based fault diagnosis frame-
work, and (ii) to the existing essential design schemes, as established anddeveloped
in the past three decades,

• the main research efforts have been focused on addressing fault diagnosis issues,
on the basis of the well-established formalisation framework, for special kinds
of dynamic systems like systems with different types of time-delays, NCSs, dis-
tributed large-scale systems, switching systems, and newly multi-agent systems
and CPSs, and

• in this regard, a great number of publications have been dedicated to the design
algorithmswith skilled application of existingmathematical and control theoretical
tools.

Recently, a further trend can be observed. More and more reported research efforts
have been devoted to the (robust) fault estimation issueswith the argument that, once a
fault is estimated, fault detection and isolation problems are solved as well. The real
reason behind this handling is in fact a simplification of the problem formulation
and handling. As mentioned, a fault detection problem is, in its core, a trade-off
between the sensitivity to the fault and robustness against uncertainties or simply
fault detection rate vs. false alarm rate. From the mathematical point of view, this is
a multi-objective optimisation problem, and its solution is often a challenging task.
In the framework of (robust) fault estimation, the problem is generally formulated
as minimising the estimation error of the fault with respect to uncertainties. It is
well-known in control theory that such a problem can be efficiently addressed in the
framework of Lyapunov theory.

As a summary, it can be concluded that the research on the major model-based
fault diagnosis techniques has been strongly driven and formed by the development
of control theory. And, this trend will be reinforced rather than weakened.

1.1.3 Detection of Intermittent and Incipient Faults

Driven by industrial applications and continuously increasing demands for reliability
and safety, recent research efforts have been devoted to two special types of faults,
the so-called intermittent and incipient faults. Intermittent faults are malfunctions



10 1 Introduction

in technical systems and assets, which occur from time to time. Recall that most of
the existing fault diagnosis methods have been developed on the assumption that the
fault under consideration persists after its occurrence. In practice, it can be, on the
other hand, often observed that a fault occurs in the system only for a (short) time
interval, then disappears. And, this scenario is repeated until the component or the
whole system fails. Typical examples are

• faulty rotary components in mechanical assets, which are, for instance, mounted
in wind turbines, or

• faulty components of an electrical or electronic circuit embedded in a large-scale
system, or

• software faults, which only occur under certain logic conditions.

Nowadays, industrial systems become very complex. Full integration of hardware
and software, mechanical and electronic components and sub-systems into industrial
systems is the technical state of the art. This trend calls for novel methods for effi-
ciently detecting intermittent faults. Corresponding to this development, considerable
research efforts have bee reported, often well supported with research funding.

In the course of industry 4.0, condition monitoring (CM), prognostics and health
management (PHM) become key technologies aiming at meeting high industrial reli-
ability and safety requirements. In the CM-PHM framework, research in the thematic
field of predicting and detecting incipient faults becomes exceptionally active. An
incipient fault is in fact a transient process in a system component or in an asset. It is
the beginning of a degradation process in the functionality and in the operating per-
formance of the component or the asset. Incipient faults are generally characterised
by their low magnitude and transient behavious. These properties make detection of
incipient faults very tricky. On the other hand, detecting or even predicting incipient
faults are a key pre-request for a successful PHM. This strongly drives the recent
research activities on detection and prediction of incipient faults.

From the technological point of view, the research on diagnosis of intermittent
and incipient faults is still in the initial stage. Most of the reported research efforts
have been devoted to the application of the existing fault diagnosis methods with
moderate modifications.

1.1.4 Fault-Tolerant Control

Similar to the model-based fault diagnosis technique, the development of the fault-
tolerant control technique in the past decade has been strongly driven by the advances
in control theory and engineering. During the initial phase beginning in the 1990s,
basic FTC strategies, concepts and system design schemes were well developed and,
as a result, a fundamental framework was established. The recent research activities
mainly concentrate on implementing the existing FTC strategies using advanced
control theoretical methods. In this course, the following trends can be identified:
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• fault estimation based FTC schemes become very popular, and
• advancedmethods of real-time optimisation are widely applied for achieving FTC.

As mentioned before, thanks to its general form of the problem formulation that well
fits into the framework of Lyapunov theory, robust fault estimation is also a main
research focus in the fault diagnosis area. An extension to fault-tolerant control is
straightforward and can be realised, for example, by feeding back the estimated fault
aiming at compensating the faulty effects in the control system under supervision.
The design of such a compensator is generally performed in the framework of Lya-
punov stability theory and, in most cases, done offline. The major advantage of this
strategy is that it can be applied to different types of dynamic systems. Consequently,
major efforts are often mathematically skilled application of certain existing control
theoretical methods to a common fault-tolerant control problem for a class of control
systems.

In recent years, the control community has received a strong boost from the con-
siderable development of real-time optimisation techniques and algorithms. MPC
and adaptive control techniques become much more powerful and efficient in imple-
menting online adaptation and tuning of feedback controllers. In combination with
diagnostic algorithms, these methods can be applied to realising fault-tolerant con-
trol. It is of remarkable interest to notice that such fault-tolerant control algorithms
result in optimal system performance under the (faulty) operation conditions. This
is the major advantage over the traditional fault-tolerant control schemes.

1.2 Motivation

1.2.1 Data-Driven and Model-Based Fault Diagnosis

The triumphal march of the statistical and machine learning based fault diagnosis
techniques has also its downside. Many researchers fall in love with ML methods,
concentrate on transferring (newly developed) ML methods to fault diagnosis under
some vague formulation of fault diagnosis problems, but pay less attention to the
specifications of fault diagnosis in technical systems. It is not rare that a problem
has been interpreted as an important issue in fault diagnosis, although it is of less
practical interest and importance in that regard, only because the appliedMLmethod
has been initially developed for dealing with such a problem. A further phenomenon
is incorrect applications of well-established and popularMLmethods to dealing with
fault detection problems. Here are two unexceptional examples.

Example 1.5 PCA technique is a representative and very popular tool to transform
(map) the data to a (much) lower dimensional subspace, the so-called principal
component subspace (PCS), and simultaneously attempts to preserve the information
in the data. Depending on applications, the information here is related to some
features of interest, for example, image features in image processing. Consequently,
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it is often the case that strong attention is paid to the PCS by applying the PCA
technique to fault detection. As we know (see also the discussions in Chap.3 and 13),
in the fault detection framework, the PCA algorithm is performed on the basis of
covariance matrix of the measurement variables, which represents the uncertainty in
themeasurement process. In otherwords, thePCSpreserves the dominant uncertainty
in the data. As a result, a fault detection performed in the principal component
subspace results in poorer detectability. By theway, it is well-known inML framework
that PCA is an unsupervised learning algorithm. In its application to fault detection,
the PCA algorithm is generally implemented using fault-free data. Thus, the PCA
learning is done using the labelled data and supervised.

Example 1.6 Kernel PCA (KPCA) is another popular and representative method
adopted to deal with fault detection issues. The core of this method is to transform
the data to a higher-dimensional subspace by means of a nonlinear function. The
theoretical foundation for such (nonlinear) data transforms is the Cover’s theorem,
which claims the existence of some nonlinear functions. These functions transform
the data, which are not linearly separable, to a higher-dimensional subspace, in
which the transformeddata become,with highprobability, linearly separable.Having
transformed the data, the standard PCA algorithm can be then effectively applied to
solving the fault detection problem. To this end, the so-called T 2 test statistic used in
the PCA algorithm is also applied for the online fault detection. Without knowing the
statistical meaning of the T 2 test statistic, this way of handling sounds reasonable
and logic. The reality could be different. It is well-known in statistics that the T 2

test statistic is the so-called Mahalanobis distance that is a dissimilarity measure
between two random vectors of the identical distribution with the same covariance
matrix. In other words, the Mahalanobis distance is used for checking the deviation
of a measurement point (data) from the given mean (center). In this context, it is
very questionable to apply the T 2 test statistic for the detection purpose after the
data transformation, since (i) for the training only fault-free data are used, and (ii)
nonlinear mappings generally do not guarantee to preserve the statistical properties.
In order to illustrate this point, we extend a popular (academic) example adopted in
the literature on KPCA studies (see the references given at the end of this chapter)
by including additive faults. Given two measurement (random) variables (x, y)with

x =
{

εx ∼ U (−1, 1) , fault-free,
fx + εx , fx �= 0, faulty,

y =
{
cx2 + εy, εy ∼ N (

0, σ 2
)
, fault-free,

cx2 + εy + fy, fy �= 0, faulty,

where c > 0 is someconstant, fx , fy represent (deterministic) sensor faults and εx , εy
are independent. Now, we apply the kernel method, as suggested in the references.
Suppose that N data have been collected, (xi , yi ) , i = 1, · · · , N . Let the kernel
function be

k(zi , z j ) = e− (xi−x j)
2+(yi−y j)

2

2 , zk =
[
xk
yk

]
, k = i, j.
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It results in the so-called kernel matrix K with the (i, j)-th entrance

ki j
(
zi , z j

) = e− (xi−x j)
2+(yi−y j)

2

2 , i, j = 1, · · · , N ,

based on which the principal components will be determined. Note that

ki j
(
zi , z j

) =

⎧⎪⎨
⎪⎩

e− (εxi −εx j )
2+

(
cε2xi

−cε2x j
+εyi −εy j

)2
2 , fault-free,

e− (εxi −εx j)
2+

(
c(εxi + fx)

2−c(εx j + fx)
2+εyi −εy j

)2
2 , faulty,

where
εxi , εx j ∼ U (−1, 1) , εyi , εy j ∼ N (

0, σ 2) , i, j = 1, · · · , N ,

are samples of εx , εy, respectively. It is obvious that the kernel matrices in the fault-
free and faulty cases are different. Thus, it is not suitable to apply the Mahalanobis
distance as the test statistic. In summary, the use of T 2 test statistic and, based on it,
the corresponding threshold setting are statistically unfounded.

Further similar examples can also be observed from the application of popular man-
ifold learning algorithms like locally-linear embedding (LLE) and Isomap methods,
which were developed for nonlinear dimensionality reduction, to fault detection. The
reported studies often follow the same pattern:

• mapping the (high-dimensional) measurement data by means of a manifold learn-
ing algorithm to a low-dimensional data subspace, and

• applying the existing test statistics or methods to the low-dimensional data to
achieve fault detection.

It is obvious that the major deficits in the course of applying the well-established
ML-methods to dealing with fault diagnosis issues are:

• less attention has been paid to the core task of fault detection: find a test statistic
or evaluation function, on which the influence of uncertainties (in the fault-free
data) is minimised and, simultaneously, the impact of the fault (to be detected) is
maximised,

• a hard combination of theML algorithms and the statistical decision (test statistics
and threshold setting) methods under the motto

an ML algorithm + a statistical decision method

= a new fault detection method,

is often not targeted and adequate, and
• requirements and specifications of fault diagnosis are often different from the
original application and development objectives of the adopted ML methods.
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One deeper reason for this situation could be the missing methodological basis of
fault diagnosis framework in education and research. To our best knowledge, there
exists nomethodological paradigm, inwhich fault diagnosis problems are formulated
in simple forms, but applicable for most types of technical systems. Here, we would
like to emphasise the fact that data-driven and model-based fault diagnosis methods
address, from the fault diagnosis viewpoint, the same complex of fault diagnosis
problems. In this context, they should share the same methodological paradigm with
the same problem formulations. Unfortunately, they are generally dealt separately
and in different regards due to the missing methodological basis. It is a motivation
of our work to make contributions to change this situation.

It is a common opinion that model-based methods are more powerful in dealing
with fault diagnosis in dynamic processes, in particular in automatic control systems,
than data-driven schemes. On the other hand, our observation of state of the art of
the publications in this field, as reviewed in the previous sub-section, reveals that

• fault diagnosis problems are generally addressed on the basis of the formalisation
in control theory and engineering framework and less fault diagnosis specifically,

• model-based methods have been rarely devoted to dealing with fault diagnosis
issues in the probabilistic framework,

• the recent research works are control theoretical method driven and follow closely
the new and popular topics in control theory, and

• less attention has been dedicated to the investigation on the fault diagnosis ori-
ented and specified methods. Less research efforts have been made to study fault
diagnosis issues for basic but general classes of dynamic systems like time-varying
systems (which cover awide spectrum of system types popularly handled recently)
or nonlinear systems (not special types of nonlinear systems).

Fault detection in feedback control systems is a special topic in the thematic area of
model-based fault diagnosis. It is strongly related to the study on fault-tolerant control
and is of considerable practical importance in process and automotive industries, in
robotics and mechatronic systems, just mentioning some representative industrial
sectors. Also in this research field, the application of the existing control and model-
based diagnosis methods is the state of the art. Often, the developed methods are
dedicated to detecting and estimating faults in the typical components embedded in
a control loop like sensors and actuators.

On account of the above observations and analysis, we are well motivated to

• establish a methodological paradigm that can be shared by both data-driven and
model-based frameworks and gives a generalised formulation of basic fault diag-
nosis issues,

• study basic fault diagnosis problems for general classes of dynamic systems includ-
ing linear time-invariant (LTI), linear time-varying (LTV) and nonlinear systems,

• analyse existing basic data-driven fault diagnosis methods with a strong focus on
their statistic properties, and to propose, where needed, alternative schemes,
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• apply the solutions of the generalised fault diagnosis problems to dealingwith fault
diagnosis in distributed and networked large-scale processes, which characterise
automatic control systems of the next generation,

• develop a scheme, by which the model-based fault diagnosis issues can be ad-
dressed in the probabilistic framework as well, and

• find alternative and practice oriented ways to handle fault diagnosis issues in
feedback control loops.

In our work, we will pay attention to incipient faults from the following aspects:

• checking, when possible, how far a fault diagnosis method is applicable for de-
tecting incipient faults,

• developing performance degradation prediction methods which enable an efficient
prediction of performance degradation caused by incipient faults, and

• establishing a framework for recovering the system performance from the degra-
dation.

1.2.2 Fault-Tolerant Control and Performance Degradation
Recovery

As described before, the major focus of the existing fault-tolerant control schemes
is on compensating and accommodating influences of faulty system components
like sensors, actuators or some other hardware units. The major objective is to fully
or partially recover the functionality of those faulty components so that the overall
system performance degradation is limited. In this regard, these fault-tolerant control
schemes can be viewed as component oriented. On the other hand, it can be observed
that in the course of industry 4.0, considerable efforts have been made in the recent
decade to increase the component reliability and, more recently, to increase the
intelligent degree of those key system components. Smart sensors and actuators are
nowadays the state of the art. The new generation of smart system components will
be characterised by their ability of self-diagnosing and self-repairing.

Aiming at following the trends in automation industry and shaping our research
to meet the industrial and application demands, we propose and study the so-called
performance-based fault-tolerant control as an alternative strategy to the compo-
nent oriented technique. Our focus lies on recovering system performance from the
performance degradation caused by faults or unexpected changes in operation con-
ditions or even mismatching among controller parameter settings. The methods to
be developed should satisfy the following requirements on

• plug and play (PnP) implementation,
• real-time applicability and
• online adaptation and learning.
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PnP is a challenging topic in the field of fault-tolerant control. PnP implementation
enables (i) to embed additional controllers without changing the existing controllers
towards recovering the performance, or (ii) to run certain maintenance or repair ac-
tions online. Online learning and simultaneously satisfying real-time requirements
will be a novel feature of fault-tolerant control systems of the next generation.Our ob-
jective is to contribute to this development by transferring machine learning methods
to the fault-tolerant control area.

In our work on the performance-based fault-tolerant control, both structural sys-
tem performance like the system stability as well as control performance expressed
in terms of certain cost functions are under consideration. This work is closely re-
lated to the intended efforts on detection and prediction of performance degradation.
In fact, performance degradation monitoring and recovery are two key steps of our
performance-based fault-tolerant control strategy.

1.2.3 Performance Assessment of Fault Diagnosis and
Fault-Tolerant control Systems

It is popular practice in the fault diagnosis and fault-tolerant control research domain
that a published method, its efficiency and performance are demonstrated by a sim-
ulation or case study. In more elaborate studies, benchmark (case) study is adopted
to perform comparison with other related methods and thus show convincingly that
the proposed method is an improvement of the state of the art technique. This way of
demonstrating the capability of the published results is very popular in the data-driven
research area. For the following reasons, this manner of performance assessment is
critical.

As mentioned, the core of fault diagnosis is suitable trade-off handling of faults
and uncertainties. Both uncertainties and faults are in their nature random variables.
This demands for a fair performance assessment of fault diagnosis and fault-tolerant
control systems in the probabilistic and statistic framework. Due to the limitation of
simulation capacity and availability of the data amount, results from a benchmark
study are generally less representative and of lower statistical significance. In ad-
dition, although those performance indices like false alarm rate and fault detection
rate are well defined in the probabilistic framework, the computation rules are rarely
followed in most of published benchmark or case studies.

Triggered by these concerns, we will propose a probabilistic framework and re-
lated technique aiming at

• developing computation algorithms of fault diagnosis performance indices,
• using them to achieve fair performance assessment of fault diagnosis systems, and
based on them,

• developing methods for designing fault diagnosis and fault-tolerant control sys-
tems.
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1.3 Outline of the Contents

This book is composed of six parts. Besides Part I, which serves as a common basis
for the subsequent studies, Parts II–VI are dedicated to five different thematic areas.
They are self-contained and so structured that they can also be used for self-study
on the concerned topics.

1.3.1 Part I: Introduction, Basic Concepts and Preliminaries

The objective of this part is to (i) introduce definitions of basic fault detection and
estimation problems, which are independent of system types andmethods applied for
achieving fault diagnosis, and (ii) to review known definitions, concepts and existing
fault diagnosis schemes, which as preliminaries are necessary for our subsequent
work.

Recall our intention to establish a methodological paradigm being able to be
shared by both data-driven and model-based frameworks and to give a generalised
formulation of basic fault diagnosis issues. Chap. 2 serves for this purpose. Fault
detection and estimation problems are first formulated and described in an abstract
form. Among these defined fault diagnosis problems, fault detection with maximum
fault detectability is the optimal fault detection problem mostly addressed in the
subsequent chapters. This enables the formulation of basic optimal fault detection
and estimation problems, which are applicable for most of system classes. Besides,
at this abstract level, general solutions for the formulated optimal fault detection and
estimation problems are provided. They also serve as guidelines for the subsequent
investigations on the concrete solutions for different types of systems.

Chap.3 is dedicated to (i) the review of basic methods for fault detection and
estimation in static processes, and (ii) highlighting their solutions in the context
of the optimal fault detection and estimation problems formulated in Chap. 2. The
issues of fault detection and estimation in (static) processes either with noises or
with deterministic disturbances are addressed both in the model-based and data-
driven fashions. It is worth remarking that rare research results on fault diagnosis in
static processes with deterministic disturbances have been reported in the literature.

Chap. 4 consists of (i) a review of basic model-based schemes for residual genera-
tion in LTI systems, in which the observer-based and parity space based methods are
presented, (ii) two optimalmodel-based schemes for detecting (additive) faults in LTI
systems with stochastic and deterministic unknown inputs, and (iii) the data-driven
fault detection schemes for LTI systems. These two optimal model-based schemes
are namely the Kalman filter based scheme for the stochastic case and the so-called
unified solution (H2 observer-based) for the deterministic case. In this regard, it is
further demonstrated that these two schemes solve the optimal fault detection prob-
lems formulated in Chap. 2. Besides, the so-called system factorisation technique,
including left and right coprime factorisations as well as co-inner-outer factorisation,
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and associated with it, the stable kernel representation (SKR) model form are intro-
duced. They are important mathematical tools intensively applied in the subsequent
chapters.

Fault diagnosis in feedback control systems and fault-tolerant control are the
major topics of this book. Needed preliminary knowledge for our study is introduced
in Chap.5. This includes, (i) the so-called Youla parameterisation of all stabilising
controllers, (ii) various realisation forms of the Youla parameterisation, and (iii)
the so-called fault-tolerant control architecture that has been developed based on
the observer-based realisation of Youla parameterised controllers. In addition, the
dual form of the SKR, the so-called stable image representation (SIR) is presented.
It should be emphasised that the residual signal plays a central role in all these
control schemes. In fact, the use of residual signals enables a deeper study on control,
observation and detection issues from the information point of view. This is also the
common thread through this book.

1.3.2 Part II: Fault Detection, Isolation and Estimation in
Linear dynamic Systems

Although it is the common opinion that great research efforts in the past three decades
have resulted in a solid framework for dealing with fault diagnosis issues in linear
dynamic systems, a number of problems are still open. Among them are, for instance,
optimal fault detection and estimation in time-varying systems, detection and isola-
tion of multiplicative faults in LTI systems with uncertainties. The objective of this
part is to investigate potential solutions of these open problems.

In Chap.6, the unified solution is extended to a more general case. This extension
allows us to design an optimal fault detection filter (FDF) in the case that the fault
vector builds a lower dimensional subspace in the measurement space. To this end,
two design schemes are proposed. The first one is an algebraic solution based on
the (algebraic) system input-output model. The involved computations in the system
design are lower and, in particular, straightforward. This fault detection scheme can
be applied to both stochastic and deterministic systems. Also a data-driven imple-
mentation form of this scheme is derived. The second scheme is developed using
a published algorithm for the co-inner-outer factorisation of LTI systems satisfying
the above-mentioned structural restriction. The design algorithm is elegant, but de-
manding and sophisticated. It is illustrated that this solution solves the optimal fault
detection problems formulated in Chap.2 for the given class of LTI systems.

The main objective of Chap.7 is to study fault detection issues in linear discrete-
time varying (LDTV) systems. The focus is on deriving an optimal solution for the
fault detection problem defined in Chap.2. To this end, various mathematical tools
are applied, which result in two solutions, one is based on the algebraic model and
the other is derived using operator theory. Both solutions lead to the identical setting
for the LDTV fault detection filter that can be viewed as an extension of the LTI
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unified solution. Aiming at gaining deeper insights into the solutions, the achieved
results are further investigated in the context of co-inner-outer factorisation of LDTV
systems. Recall that for LTI systems, inner and co-inner are defined in terms of the
transfer function matrix of the system under consideration, and a co-inner can be
expressed as the transpose of an inner. From the viewpoint of energy balance, an
inner system is lossless with respect to the defined (energy) supply rate. In order
to define the co-inner-outer factorisation of LDTV systems for our purpose, we
introduce the concept of lossless with respect to information transform rate, as a dual
form of the lossless property in the regard of energy balance. It is demonstrated that
the optimal LDTV solutions can be achieved using a co-inner-outer factorisation.
Further studies are dedicated to the relations between the achieved solutions and
some optimal indices based solutions. We would like to mention that the LDTV state
space representation is a general model form of linear dynamic systems. Systems
like switched systems, linear parameter varying (LPV) systems, networked systems
or event-triggered systems can be well modelled as LDTV systems.

Fault estimation in dynamic systems is receiving considerable attention in the
research field of fault diagnosis and fault-tolerant control. Chap. 8 is dedicated to
the topic of fault estimation in LDTV systems. Different from the robust unknown
input observer and augmented observer schemes, which build the mainstream in
the research field of observer-based fault estimation, we investigate fault estimation
from the least squares (LS) optimisation viewpoint. The so-called least squares
observers are in fact the analogue form of the celebrated Kalman filter and can be
applied to the estimation of state variables in processes with deterministic unknown
inputs. The mathematical tool for the solution of our least squares estimation is the
regularised least squares (RLS) estimationmethod. TwoLS fault estimation problems
are addressed in our work, one for estimating sensor type of faults and the other for
process faults. In addition, the relations between the unified solution (with faults as
unknown inputs) and the LS estimation algorithms are analysed.

While the previous chapters are mainly dedicated to the diagnosis issues in the
regard of additive faults and without considering model uncertainties, Chap.9 deals
with detection and isolation of multiplicative faults in LTI systems with model un-
certainties. Multiplicative faults, also those with small size, may cause remarkable
changes in the system structure and dynamics. They often rise up in a continuing
process, are thus hard to be detected, in particular, when these faults are embedded in
a closed-loop control system. Detecting and isolating multiplicative faults are chal-
lenging and open issues that are of significant research and practical interests. Due
to the complexity of the involved problems, studies in Chap.9 are multifaceted and
include the following issues:

• Considering that (model) uncertainties andmultiplicative faults could be presented
in a system in different forms, themodelling issue of different types of uncertainties
and faults is first addressed. In this work, the SKR and SIR model forms are at
the centre of the discussion. On account of the equivalent relations between the
various forms of uncertainties and faults, in the subsequent studies, the so-called
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left coprime factor form is adopted for representing the model uncertainties and
multiplicative faults.

• Observer-based fault detection schemes are proposed for systems in open-loop and
closed-loop configurations respectively. These schemes consist of (i) an observer-
based residual generator design algorithm, and (ii) a threshold setting rule. In case
of a closed-loop feedback control system, the influence of the controller on the
detection performance is analysed. It is revealed that increasing the stabilitymargin
of the control system by minimising theH∞ norm of the controller SIR enhances
simultaneously the fault detectability. It should be remarked that this result is in
direct contradiction with the common conjecture that fault detectability would be
weak in a well-working feedback control loop.

• Noticing that less attention has been paid to qualitative fault detection and isola-
tion (FDI) performance evaluation, further efforts are devoted to the performance
analysis of observer-based FDI systems. A quantisation of FDI performance is of
considerable practical interest and helpful to get a deeper insight into the system
structural properties and for establishing appropriate design objectives. To this
end, the coprime factorisation and gap metric techniques are applied as the control
theoretical tool. Gap metric technique is widely applied in robust control theory.
Roughly speaking, a gap is a measurement of the distance between two closed
subspaces in Hilbert space. For the application of FDI performance analysis, we
introduce the definition of the so-called K-gap and derive its computation algo-
rithm. The K-gap metric is the dual form of the gap metric. Applying the K-gap
and the associatedL2-gap metric, the proposed observer-based fault detection sys-
tems are analysed. Moreover, fault detection performance indicators are defined
in terms of the K-gap and L2-gap metric. And the concept of fault-to-uncertainty
ratio (F2U) is introduced. These results provide us with valuable quantisation of
FDI performance and is thus helpful for designing observer-based systems for a
reliable detection of multiplicative faults in uncertain systems.

• At the end of this chapter, the isolation topic of multiplicative faults is addressed
with the help of the K-gap. Using the SKRs as the clustering models of fault
patterns and the K-gap as the distance measure of the fault clusters under con-
sideration, isolability of multiplicative faults is first defined. On this basis, fault
isolation problems are formulated and, corresponding to it, an observer-based fault
isolation scheme as well as an SKR identification based fault isolation strategy are
developed. The latter fault isolation strategy includes an online identification of the
SKR of the faulty system and data-driven computation of the system K-gap. It is
suggested that these two fault isolation methods could be applied in combination.
With this work and the achieved results, a framework for isolating multiplicative
faults is established.
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1.3.3 Part III: Fault Detection in Nonlinear Dynamic Systems

There is no question that nonlinear observer-based fault detection is the most chal-
lenging topic in the fault detection research area. In recent years, much attention
has been paid to the application of techniques like fuzzy technique, LPV methods
or sliding mode technique to addressing nonlinear fault detection issues. Besides,
considerable research efforts concentrate on systems with a special class of non-
linearities, typically Lipschitz nonlinearity or sector bounded nonlinearity. It is a
surprising observation that little attention has been paid to the existence conditions
of nonlinear observer-based fault detection systems for a general type of nonlinear
systems, although this is a fundamental issue for the design of any type of nonlinear
systems. Also, the parameterisation and optimisation issues of nonlinear observer-
based fault detection systems are rarely addressed. The objective of this part is to
make contributions to the research on these topics.

In the first section of Chap.10, existence conditions for a general type of nonlinear
observer-based fault detection systems are investigated. This work is helpful to gain
a deeper insight into the fundamental properties of nonlinear observer-based fault
detection systems. Corresponding to the use of two different types of evaluation
functions,L∞ andL2 types of observer-based fault detection systems arefirst defined.
Inspiredby the frameworkof input-state, input-output stability (IOS) and stabilisation
of nonlinear control systems, the existence conditions for these two types of observer-
based fault detection systems are then derived. In the second section of this chapter,
various design schemes for the proposed observer-based fault detection systems are
developed for their use under different system conditions.

System parameterisation is essential for system analysis and optimisation. Moti-
vated by the well-established parameterisation of LTI residual generators, Chap.11
is devoted to the parameterisation of nonlinear observer-based fault detection sys-
tems. For our study, the factorisation technique, the nonlinear SKR and SIR and
input-output operator techniques serve as the mathematical tool. It is demonstrated
that observer-based residual generators can be parameterised in form of a cascade
connection of a system kernel representation and a post-filter. Moreover, using IOS
methods and the results achieved in Chap.10, parameterisations of different types
of nonlinear observer-based fault detection systems, including the residual evaluator
and the threshold, are investigated.

In Chap.12, optimal design of observer-based nonlinear fault detection systems
is investigated in the context of the optimal fault detection problem formulated in
Chap.2. The study is restricted to a class of nonlinear systems, the so-called affine
systems. The core of our work is a co-inner-outer factorisation of nonlinear affine
systems, which leads to the optimal construction of an observer-based fault detection
system, analogue to the design schemes for LTI and LDTV systems. For our purpose,
preliminary about Hamiltonian systems is first introduced. Based on it, co-inner and
further co-inner-outer factorisation are defined. Noticing that there are few existing
results on co-inner and the available definition is not coincident with the lossless
interpretation, we propose a co-inner definition using the concept of lossless with
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respect to information transform rate, as introduced for the co-inner of LDTV sys-
tems in Chap.8. On this basis, we are able to solve the co-inner-outer factorisation by
finding a canonical transformation, which is then solved using the so-called generat-
ing function approach well-established in Hamiltonian mechanics. Having achieved
a co-inner-outer factorisation, the initial design problem can be completely solved
by setting the threshold and constructing a post-filter as described in the last section
of this chapter.

1.3.4 Part IV: Statistical and Data-Driven Fault Diagnosis
Methods

This part includes three chapters. They all deal with statistical and data-driven fault
diagnosis, but are dedicated to different issues and not strongly related.

Our observations of the current trends in the statistical and data-driven fault diag-
nosis, as described in the previous two section, motivates a critical review of basic
methods in the framework of MVA based fault detection methods in Chap.13. It
should be emphasised that this is not a literature review. Instead, the objectives of the
review are (i) to stress and correct popular but misleading use of some standard tech-
niques or methods, (ii) to pose critical questions on some basic multivariate analysis
based fault diagnosis methods, and (iii) to motivate development of alternative MVA
based fault detection methods, which will then be in part addressed in Chap. 15. In
this regard, the following issues are addressed.

• On projection technique and its use in fault detection: It is state of the art that
in many data-driven methods, projecting or transforming process data from the
measurement subspace to another subspace with a reduced dimension is adopted.
PCA technique is a representative example. With the PCA method as a reference,
the arguments for and against the use of this technique are discussed.

• Data centering, time-varying mean and variance: In most of MVA based fault
detectionmethods, centering the raw process data is the first step both in the offline
training and online detection. In many publications, this step is not mentioned
explicitly and thus less attention has been paid to the problems that may arise. We
discuss the two possible problems with (i) data centering as well as the associated
conditions and consequence, and (ii) handling of a time-varying mean.

• On detecting multiplicative faults and the use of T 2-test statistic: In the MVA
based fault detection framework, a multiplicative fault is referred to the changes in
the covariance matrix. Although investigations on detecting multiplicative faults
by means of different test statistics have been reported, T 2-test statistic is still the
mostly used one, also for detecting multiplicative faults. In particular, if there is
no specification for the type of the fault under consideration, T 2-test statistic is
the standard choice. It is illustrated that miss detection rate would be high when
the T 2-test statistic is applied to detecting multiplicative faults.
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• Assessment of fault detection performance: Here, confidential computations of
FAR and FDR are discussed.

Fault detection in large-scale, interconnected and distributed systems is a challenging
issue. In the literature, the major focus in this research domain is on the design of
distributed fault detection systems towards distributed online fault detection. Conse-
quently, model-based methods are mainly applied. Our work in Chap.14 is dedicated
to data-driven fault detection issues in interconnected and distributed large-scale sys-
tems. That means, both offline learning and online fault detection are to be performed
in a distributed fashion. Two different classes of large-scale processes are under con-
sideration: (i) large-scale processes equipped with a distributed sensor (monitoring)
network, and (ii) interconnected large-scale processes with weakly coupled sub-
processes. For the first class of processes, detecting the faults within the process (as
a whole) from the local sensor nodes is the objective of the study, while the objective
of fault detection in the second class of processes consists in detecting faults in each
sub-processes. From the optimal fault detection viewpoint, as formulated in Chap.2,
the work in this chapter is the application of the optimal fault detection solution to
interconnected and distributed large-scale systems. Considering the special role of
communication networks and their topology in system operations, we first briefly
introduce preliminary knowledge of network and graph theory. For detecting faults in
a large-scale process by means of a distributed sensor network, we propose to apply
the well-developed average consensus technique for a fusion of process data received
by the sensor network. Various average consensus based detection algorithms are de-
veloped for an optimal fault detection in static large-scale processes equipped with a
distributed sensor network. Based on a lifting data-driven SKR model of large-scale
dynamic processes, we propose a consensus Kalman filter based distributed fault
detection scheme, in which the structure of the distributed Kalman filter reported in
the literature is adopted.

Chap. 15 is the follow-up discussion of the questions concerning the test statistics
used for decision making and the metric adopted in a test statistic for measuring the
distance between two probabilistic distributions. The objective of this discussion is
(i) to select right test statistics for the fault detection problem under consideration,
and (ii) to propose alternative methods when the conditions for the use of the existing
test statistics are not satisfied. To this end, a general formulation and solution of gen-
eralised likelihood ratio (GLR) based fault detection are first presented. Under certain
conditions, the GLR based detection method delivers the optimal fault detection per-
formance as defined in Chap.2. As a well-established dissimilarity measure between
two distributions, Kullback-Leibler (KL) divergence is also widely accepted as a
test statistic for the fault detection purpose. In order to gain a deeper understanding,
the statistic properties of KL divergence are closely examined. It is demonstrated
that the KL divergence is the expectation of likelihood ratio (LR). Unfortunately,
the property that KL divergence is asymmetric has not received reasonable attention
by some existing KL divergence based fault detection algorithms, in which the KL
divergence from the faulty distribution to the fault-free distribution is adopted. Re-
lationships between the KL divergence and GLR based fault detection methods, as
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well as the asymptotic behaviour of GLR andKL divergence used as test statistics are
further investigated. Under consideration that identifying a distribution to cover the
overall (normal) operation of a process variable is generally a technical challenge,
due to uncertainties within and around the process under consideration, we propose
in the last section of this chapter a pure data-driven method whose application re-
quires no statistic knowledge a priori. The idea behind this method is to handle the
(measurement) data sets from the viewpoint of information geometry and to abstract
the overall process operations as a manifold, and consequently, to apply differential-
geometric theory to solving fault detection and isolation problems. To be specific, the
collected data are formed as symmetric positive definite (SPD) matrices, which can
then be presented as a Riemannian manifold. For our purpose, we first introduce very
basic differential-geometric properties of SPD matrices as a Riemannianmanifold as
well as some relevant concepts and methods, including definitions and relations like
tangent space, geodesic curves, exponential and logarithmicmaps as well as Rieman-
nian distance. On this basis, we propose (i) Riemannian distance based basic fault
detection algorithms, and (ii) algorithms for clustering on Riemannian manifolds
and their application to fault detection and diagnosis.

1.3.5 Part V: Application of Randomised Algorithms to
Assessment and Design of Fault Diagnosis Systems

This part is motivated by the discussion in Sub-section 1.2.3 on the correct assess-
ment of fault diagnosis performance and an attempt to give convincing answers to the
questions raised in the discussion. The theoretical fundament for our work is proba-
bilistic methods called Randomised Algorithms (RA). The objective of this part is to
establish a probabilistic framework to deal with assessment and design issues of fault
diagnosis systems. This framework consists of three functional levels, (i) probabilis-
tic models for faults and uncertainties, (ii) performance assessment of fault diagnosis
systems in terms of FAR, FDR and mean time to fault detection (MT2FD) as well
as the associated computation algorithms, (iii) design of fault diagnosis systems in
the context of trade-off between FAR and FDR.

Chap.16 is devoted to the construction of the first functional level. To this end,
probabilistic models for dynamic systems with various types of uncertainties as well
as probabilistic fault and evaluation function models are defined and described. It is
followed by an introduction to the preliminaries of randomised algorithms.

To complete the construction of the second functional level, assessment of fault de-
tection performance and computation algorithms are addressed in Chap. 17. Based on
the probabilistic models for the uncertainties and faults, concepts like false alarm rate
(FAR) with respect to (w.r.t.) a uncertainty mode, average false alarm rate (AFAR),
fault detection rate (FDR) w.r.t. a fault pattern, average fault detection rate (AFDR)
and mean time to fault detection (MT2FD) w.r.t. a fault pattern are introduced for
the assessment of fault detection performance. Aided by the RA technique, ran-
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domised algorithms are then developed for the estimation and computation of all the
above-mentioned performance indices. In order to guarantee the required estimation
confidential, determination of the minimum number of the samples to be generated
using the RA method is included in the estimation algorithms.

The last level of the framework is established in Chap.18, in which a number of
RA-based design schemes and algorithms for fault detection systems are proposed.
While the first two levels are functionality oriented, this level is application oriented
and thus open for integrating further design algorithms in future. In the first section,
two randomised algorithms are proposed for threshold settings. They can be used for
the threshold setting purpose for any type of systems. In fact, they have been applied to
dealingwith threshold setting tasks in a number of chapters in this book. In the second
section, a RA-based design of observer-based fault detection systems is developed.
This design scheme is similar to the design method described in Chap.6, but can be
efficiently applied to dealing with uncertainties in the system under consideration.
At the end of this section, multiple monitoring indices based fault detection is under
consideration. The use ofmultiple features expressed in terms ofmultiplemonitoring
indices is a common practice in machine learning aided fault diagnosis and could
considerably improve fault detectability in comparison with a single monitoring
index. For this purpose, we propose a RA-based design scheme whose core is the
optimal selection of a threshold hyperplane. Applying the well-known support vector
machine (SVM) technique, a RA-based solution is derived, which maximises the
FDR and guarantees the pre-defined upper-bound of FAR. It is worth remarking that
this is the first study on the use of multiple monitoring indices in the model-based
fault detection framework in combination with SVM as the tool for the problem
solution.

1.3.6 Part VI: An Integrated Framework of Control and
Diagnosis, And fault-Tolerant Control Schemes

This part is composed of four chapters and focuses on analysis of control and di-
agnosis performance from an integrated perspective, performance and performance
degradationmonitoring as well as fault-tolerant control in the context of performance
degradation recovery.

Chap. 19 consists of several topics related to the analysis and performance as-
sessment of feedback control systems. In the center of our study stand, however,
the observer-based residual signal and an observer-based input-output model. In this
model, the residual signal plays an essential role and enables us to handle uncer-
tainties as accessible system variables. Based on this model, new concepts related to
performance assessment are introduced, and some standard control problems can be
alternatively addressed in the context of performance degradation recovery. The first
work in this regard is the introduction of the concept loop performance degradation
(LPD) and its use in control performance monitoring. LPD is an extension and gen-
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eralisation of the well-known concept loop transfer recovery (LTR) and deals with
recovering control performance degradation caused, besides by the use of a state es-
timate (as handled in the LTR framework), by uncertainties and faults in a feedback
control loop. On this basis, two assessment schemes are proposed for monitoring
control performance degradation. Related to the work in Chap.9, the role of the SIR
of a feedback controller in recovering system control and detection performance is
studied. As system performances are (i) stability margin, (ii) fault detectability in-
dicator, and (iii) LPD under consideration. It is demonstrated that the optimisation
of these three performance indices can be achieved uniformly by minimising the
H∞-norm of the SIR of the feedback controller. It is revealed that minimising the
SIR is equivalent to the minimisation of the transfer function from the uncertainties
or/and faults (expressed in terms of the residual signal) to the estimates for the state
feedback controller. This is the unified perspective of these three system performance
and is also called information and estimation perspective of control and detection.

Chap. 20 serves for four purposes concerning with performance monitoring and
fault-tolerant control. Besides (i) reviewing the standard linear quadratic Gaussian
(LQG) and linear quadratic regulator (LQR) (orH2) control problems and providing
the alternative solutions based on the observer-based input-output model introduced
in Chap.19, (ii) formulating and solving performance degradationmonitoring and re-
covering problems for feedback control loops with a linear quadratic (LQ) controller,
(iii) formulating LQ optimal observer design problem, studying its solution and some
relevant issues, and (iv) formulating and solving LQ observer performance degrada-
tion monitoring and recovering problems are the further objectives. This work builds
the fundament for our investigation on fault-tolerant control, performance degrada-
tion recovery, and online observer optimisation in the subsequent chapters. To be
specific, LQG and LQR are first handled based on the observer-based input-output
model, which yields the same solutions known in the literature. It is followed by the
study on the so-called LQ optimal observer design. The motivation of this work is
the separation principle and the known result that the LQR controller (H2 controller)
is composed of an LQ state feedback controller and an H2 observer. The latter is a
special case of the LQ observer defined and addressed in our work. In fact, from the
viewpoint of the cost function, LQ optimal observer is similar with the LS observer
studied in Chap. 8. On the other hand, our major focus in this chapter is on (i) the
role and interpretation of the co-state vector, (ii) the (smoothing) estimates of the
state and unknown input vectors, which is important for the subsequent work on
online optimisation of the observer, and (iii) the dual form and relations between
the LQ optimal controller and observer. In the following two sections, performance
degradation monitoring and recovering issues for control and estimation systems are
investigated, respectively. For the purpose of detecting control performance degrada-
tion, two algorithms are proposed. In the second algorithm, the well-known Bellman
equation is used as the performance residual model for performance degradation
prediction. In the reinforcement learning framework, the performance residual is
called temporal difference (TD). Our work on the control performance degradation
recovery is inspired by the so-called Q-learning method known in the reinforcement
learning technique and widely applied in online and model-free optimisation of LQ
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controllers. To recover the control performance, a scheme for updating state feedback
gain matrix is proposed, in which the update is triggered by the prediction of per-
formance degradation. The last section of this chapter addresses the monitoring and
performance recovering issues of observers which are applied both for the control
and fault detection purposes. Thanks to the duality of the LQ controller and observer,
the detection issue of observer performance degradation can be then formulated and
solved analogue to detecting LQ control performance degradation. The core of the
observer performance degradation recovery is an estimation problem. Using the pro-
cess data and the smoothing estimates of the state and unknown input variables,
the variations in the system parameters are estimated. To this end, an algorithm is
developed.

Chap.21 begins with a discussion on the component oriented and performance-
based fault-tolerant control strategies and underlines the needs for the latter. In
this context, a schematic framework of performance-based fault-tolerant control is
sketched. While the study in the previous chapter concentrates on updating the state
feedback gain and observer in the control loop towards monitoring and recover-
ing LQ control performance, the performance-based fault-tolerant control schemes
presented in this chapter deal with tuning the parameter system of the Youla param-
eterised stabilisation controller. In the first scheme, the system performance under
supervision is the stability margin. Corresponding to it, the so-called fault-tolerant
margin is introduced as an indicator for the performance degradation. In this regard,
an algorithm to detect performance degradation and two algorithms for performance
recovery are developed. The second scheme addresses the recovery of loop perfor-
mance degradation defined in Chap.19. Based on the so-called dual form of theYoula
parameterisation (of stabilisation controllers), a relation between the residual vector
and the parameterised model uncertainties (can also be faults) is built. This allows
us to formulate the performance degradation problem as a (robust) control problem
with the parameter system of the Youla parameterised controller as a dynamic feed-
back controller and the uncertainties (faults) as the (unknown) plant. As a result, the
performance monitoring and recovering algorithms developed in Chap. 20 can be
applied for our purpose of recovering loop performance degradation.

The objective of Chap.22 is to study fault-tolerant control issues in the data-driven
fashion. Considering that online identification of the plant model during closed-loop
operations is often a part of a fault-tolerant scheme, we first address the online iden-
tification issue of SIR and SKR in the closed-loop configuration. This work yields
the state space models of the data-driven SIR and SKR. The most convincing argu-
ment for applying these models for performing online monitoring and control tasks
is that all state variables in the models are accessible. This enables the realisation
of performance monitoring and fault-tolerant control in the data-driven fashion and
allows us to apply the existing algorithms presented in Chaps. 20–21 to realise per-
formance monitoring and performance degradation recovering. In the last section of
this chapter, an algorithm is developed to achieve performance degradation recovery
by means of a reduced controller. In summary, our work in this chapter enables an
optimal performance degradation recovery by means of a dynamic output controller
with flexible structure.
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1.4 Notes and References

In the last three decades, a great number of monographs on process monitoring, di-
agnosis and fault-tolerant control have been published. Among them, for instance,
[1–10] are dedicated to the model-based fault diagnosis techniques, [11–14] are fo-
cused on the data-driven process monitoring and diagnosis methods, and [8, 15, 16]
deal with fault-tolerant control issues. Concerning the surveys on these topics, we
recommend the reader the following representative survey papers, [17–23] on the
model-based fault diagnosis techniques, [24–31] on the data-driven process moni-
toring and diagnosis, and [22, 32, 33] on fault-tolerant control methods.

Although it is dedicated to the application of machine learning technique to ma-
chine fault diagnosis, the survey paper by Lei et al. [34] provides excellent insights
into the application of machine learning methods to fault diagnosis and gives an
elaborate summary of the basic ideas, concepts and schemes in this research domain.
We strongly recommend it to the reader. It is worth mentioning that transfer learning
technique [35] is viewed in this survey as the key technology of the next generation.
A successful case study of applying transfer learning technique to fault diagnosis is
reported in [36].

Due to its increasing importance in industrial applications, diagnosis of intermit-
tent and incipient faults is receiving considerable research attention. The reader is
referred to the review papers in [37–39] for a comprehensive description of the state
of the art of the related techniques. In this book, no explicit study will be devoted to
this topic, except that applicability and efficiency of some detection and performance
degradation recovery methods with respect to incipient faults are discussed.

The Cover’s theorem mentioned in Example 1.6 was published by Cover in [40].
Schölkopf et al. have made initial contributions to the KPCA technique [41]. In [42],
an early application of the KPCA technique to fault detection has been reported. The
academic example considered in Example 1.6 is adopted from [41, 42].

Fault diagnosis and fault-tolerant control is an interdisciplinary field. For a success
research in this field, good knowledge of MVA and statistics, linear algebra, linear
system theory and robust control theory is necessary. Throughout this book, known
and well-developed methods and algorithms from these thematic areas will serve
as the major tools. Among the great number of available books on these topics, we
would like to recommend the following representative ones: [1, 43] on statistical
methods and MVA, [44, 45] on linear algebra and matrix theory, [46, 47] on linear
system theory, [48] on filtering theory, and [49] on robust control theory.
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Chapter 2
Basic Requirements on Fault Detection
and Estimation

In this chapter, we first introduce the essential configuration of a fault detection and
estimation system, and describe the fundamental requirements on such a fault detec-
tion and estimation system. On this basis, elementary fault detection and estimation
problems are formulated.

2.1 Fault Detection and Estimation Paradigm

Afault detection (FD) and fault estimation (FE) system is driven by themeasurements
of the process under consideration. These measurements are typically sensor signals.
If the process operation is regulated by some control signals, they can also be used as
measurements for FD and FE purpose. In most cases, we denote the sensor signals
by vector y and process control signals by u. Suppose that the fault to be detected
can be modelled by a signal vector which is denoted by f and satisfies

{
fault-free: f = 0,
faulty: f �= 0.

The first step to a successful fault detection is to build a mapping from the measure-
ment space, (y, u) , to an image space of the fault, f, which is then applied as a fault
detector. This procedure can be schematically described by

J = J (y, u) = D ( f ) .

There are numerous terms for the function J. In the field of machine learning, it is
called feature, while in statistic multi-variate analysis (MVA) and model-based fault
diagnosis it is often called test statistic and evaluation function, respectively.

In the model-based FD and FE framework, in particular when the process under
consideration is driven by control input u, D ( f ) is often built in two steps: (i)
mapping (y, u) to the so-called residual subspace with residual vector r , which is

© Springer-Verlag GmbH Germany, part of Springer Nature 2021
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also an image space of f , and (ii) building J as a function of r . Mathematically,
these two steps can be described by

(i) r = K (y, u) = Q ( f ) , (ii) J = J (r) = J (Q ( f )) = D ( f ) .

The real challenge in dealing with fault diagnosis consists in the existence of process
uncertainties, which can arise in different forms. In order to simplify our problem
description,we first restrict our attention to those uncertaintieswhich are expressed in
form of additive unknown inputs including noises and (deterministic) disturbances.
They corrupt the process measurements and affect the fault indicator. In order to
distinguish the influences of the unknown inputs and the fault f, two basic steps are
widely adopted: (i) design the function J to enhance the influence of f on the fault
detector and simultaneously to degrade the influence of the unknown inputs, and (ii)
introduce a threshold Jth and, based on {J, Jth}, run the (simple) detection logic,

{
J − Jth ≤ 0 =⇒ fault-free,
J − Jth > 0 =⇒ faulty =⇒ alarm,

(2.1)

online for a fault detection.
Once a fault is detected, a fault estimator can be activated, when needed, which

is driven either by y or (y, u), and can be schematically described by

f̂ = I (y) or f̂ = I (y, u) .

In summary, the major design tasks of a fault detector and a fault estimator consist
of

• construction of J (y, u) or K (y, u) and J (r),
• setting of Jth, and
• construction of I (y) or I (y, u).

2.2 Fault Detection and Estimation in the Probabilistic
Framework

In this section, we briefly introduce the major indicators for assessing fault detection
performance in a probabilistic framework. It is followed by the formulation of basic
optimal fault detection and estimation problems.



2.2 Fault Detection and Estimation in the Probabilistic Framework 33

2.2.1 Fault Detection Performance Assessment

For a process with random uncertainties, false alarm rate (FAR), missed detection
rate (MDR) or fault detection rate (FDR) are widely adopted for assessing FD per-
formance. They are defined as follows.

Definition 2.1 Given the test statistic J , threshold Jth and detection logic (2.1), FAR
is defined as the probability

FAR = Pr (J > Jth | f = 0 ) . (2.2)

Definition 2.2 Given the test statistic J, threshold Jth and detection logic (2.1),
MDR is defined as the probability

MDR = Pr (J ≤ Jth | f �= 0 ) . (2.3)

Definition 2.3 Given the test statistic J, threshold Jth and detection logic (2.1),
FDR is defined as the probability

FDR = Pr (J > Jth | f �= 0 ) . (2.4)

It is clear that it holds
FDR = 1 − MDR.

Hence, both of them, MDR and FDR, can be used for assessing fault detectability.
It should be noticed that the computation of FAR and MDR/FDR requires knowl-

edge of the distribution of the test statistic J a priori, both in the faulty and fault-free
cases. Also, FDR/MDR is a function of f. In Chaps. 16–17, we shall discuss about
their computation in the probabilistic framework and introduce the so-called ran-
domised algorithms technique to deal with relevant computation issues.

2.2.2 Optimal Fault Detection and Estimation Problems

An FD problem is defined by finding (i) a test statistic J , and (ii) a corresponding
threshold Jth . Considering that the test statistic J is a function of the fault to be
detected and random uncertainties, reducing FAR may lead to increasing MDR, and
vise versa. Thus, an optimal FD solution is, in fact, an optimal trade-off between
FAR and MDR/FDR. This motivates us to formulate two alternative optimisation
problems.
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Definition 2.4 FD with maximum fault detectability: A solution to this FD problem
is said to be optimal, when, for a given acceptable FAR α,

{J, Jth} = arg min
J,Jth ,FAR≤α

MDR. (2.5)

Definition 2.5 FD with minimum false alarm rate: A solution to this FD problem is
said to be optimal, when, for a given acceptable MDR β,

{J, Jth} = arg min
J,Jth ,MDR≤β

FAR. (2.6)

Major attention in theoretical studies and applications has been devoted to the prob-
lem of FD with maximum fault detectability. In fact, FD with minimum false alarm
rate is its dual form. In our subsequent work, we shall focus on FD with maximum
fault detectability and handle FD with minimum false alarm rate as a dual form of
the first FD problem.

Concerning FE, we call f̂ an optimal estimation of f if

• it is unbiased, that is
E

(
f̂
)

= f, (2.7)

• and LMS (least mean squares) defined by

f̂ = arg min
f̄ ,E( f̄ )= f

E (
f − f̄

)T (
f − f̄

)
. (2.8)

2.3 Fault Detection and Estimation in Deterministic
Processes

In the model-based framework, FD and FE in processes with deterministic unknown
inputs have been extensively investigated. On the other hand, there do not exist
common criteria for the performance assessment. The design problems are often
formulated in form of certain FD or FE system specifications like sensitivity or
robustness. This section is dedicated to (i) introduction of some concepts for the
performance assessment and, based on them, (ii) formulation of basic optimal FD
and FE problems.

2.3.1 Performance Assessment

For FD in processes with deterministic unknown inputs, FAR,MDR/FDR are not
applicable for assessing FD performance. This calls for alternative performance in-
dicators.
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Let y be the process (output) measurement vector with

y = Md(d) + M f ( f ) = yd + y f , (2.9)

where Md : Dd → Dy,M f : D f → Dy represent the mappings of disturbance
vector d ∈ Dd and fault vector f ∈ D f to the measurement vector y ∈ Dy , re-
spectively.Dd ,D f andDy are general notations for the domains of the disturbances,
faults and measurements. For instance, for static processes, Md ,M f would be
constant matrices and Dd = Rkd ,D f = Rk f and Dy = Rm, and for LTI pro-
cesses, they could be transfer functions or the system state space representations and
Dd = Hkd

2 ,D f = Hk f

2 and Dy = Hm
2 if the process under consideration is stable.

Remark 2.1 A more general form of the measurement model can be described as

y = M (d, f )

with

y =
{M (d, 0) = Md(d) = yd , fault-free,
M (0, f ) = M f ( f ) = y f , faulty, uncertain-free.

On the other hand, in most of our studies, linear systems are under consideration,
which are well represented by the model (2.9). In addition, in our subsequent work
the fault-free and faulty operations are often separately addressed. In this regard,
we could also consider the following theoretical model

y =
{
yd = Md(d), fault-free,
y f = M f ( f ), faulty.

We denote the images ofMd ,M f by

IMd = {yd |yd = Md(d),∀d ∈ Dd } ,

IM f = {
y f

∣∣y f = M f ( f ),∀ f ∈ D f
}
,

and assume, at first,
IMd = IM f . (2.10)

That means
∀yd ∈ IMd , ∃ f s.t. y f = M f ( f ) = yd ,

and vice versa. This implies aswell, the images ofMd ,M f have the same dimension
equal to the one of y,

dim (yd) = dim(y f ) = dim(y). (2.11)

Note that the relation (2.10)–(2.11) can be understood as a total overlapping of the
influences of d and f in the measurement space.
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Inspired by the concept of rejection and critical regions used in hypothesis tests
and the (linear) separability of two sets adopted in the classification technique, we
will first define various sets related to the influences of d and f.

We define the image of the disturbance vector as

Id = {yd |yd = Md(d),∀d ∈ Dd , ‖d‖N ≤ δd } , (2.12)

where ‖·‖N is the placeholder for a certain norm of d with δd as its boundedness.
Note that due to the boundedness of d, Id is, in general, a subspace of the image of
Md ,

Id ⊂ IMd .

From the classification point of view, it is clear that a fault f is not separable from
the disturbance if its influence on y, y f = M f ( f ), belongs to Id . In this context,
we introduce the definition of the set of undetectable faults.

Definition 2.6 The fault domain defined by

D f,undetc = {
f
∣∣ f ∈ D f , y f = M f ( f ) ∈ Id

}
(2.13)

is called the set of undetectable faults.

It is clear that an optimal fault detection is achieved in the sense of maximal fault
detection rate, when all faults that do not belong to the set of undetectable faults can
be detected.

Definition 2.7 A solution {J, Jth} to the FD problem with the presence of distur-
bances d is called optimal in the sense of maximising the fault detectability, when

∀y ∈ Id , f = 0, J (y) − Jth ≤ 0, (2.14)

∀ f /∈ D f,undetc, d = 0, J (y) − Jth > 0. (2.15)

It should be remarked that such an optimal solution leads to the maximum fault
detectability and, simultaneously, no false alarm. This type of FD problems has been
mostly investigated. In comparison, less attention has been paid to its dual form,
which is briefly formulated below.

Suppose that we are only interested in detecting those faults whose norm, ‖ f ‖N ,

is larger than a pre-defined level. In other words, if ‖ f ‖N is lower than the pre-defined
level, an alarm should not be triggered.

Definition 2.8 Given constant β > 0, the domain

D f,β = {
f
∣∣ f ∈ D f , ‖ f ‖N ≤ β

}
(2.16)

is called the set of faults of no interest. β is called the margin of detectable faults.
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To simplify our study, we assume that

∀ f ∈ D f , f �= 0, y f = M f ( f ) �= 0,

which means, the dimension of the kernel space of M f is zero and equivalently

dim ( f ) = dim
(
y f

) ≤ dim (y) . (2.17)

This assumption loses no practical applicability and can be interpreted as no need to
detect those faults which cause no change in the process output.

In order to reduce false alarms, d should not trigger an alarm if its response yd
belongs to I f,β ,

I f,β = {
y f

∣∣y f = M f ( f ), f ∈ D f,β
}
.

That is, there exists f ∈ D f,β so that

y f = M f ( f ) = yd .

Hence, for our purpose, we define the following disturbance image set

Id,β = {
yd

∣∣yd = Md(d) ∈ I f,β , d ∈ Dd
}
. (2.18)

For a reliable FD, it is of interest that those disturbances whose responses belong to
Id,β should not trigger alarms. In this context, we introduce the dual form of the FD
problem defined in Definition 2.7.

Definition 2.9 A solution {J, Jth} to the FD problem with the presence of distur-
bances d is called optimal in the sense of minimising the number of false alarms,
when

∀ f /∈ D f,β , d = 0, J (y) − Jth > 0, (2.19)

∀y ∈ Id,β , f = 0, J (y) − Jth ≤ 0. (2.20)

Condition (2.19) gives a necessary condition for detecting a fault “of interest” with-
out taking into account the influence of disturbances, which can trigger false alarms.
In order to reduce the number of false alarms as much as possible, condition (2.20)
is introduced to avoid false alarms which may be, otherwise, caused by those distur-
bances whose responses belong to Id,β .

Once a fault is detected, a fault estimation can be realised by finding a generalised
inverse of M f . In our work, an optimal FE for f is understood as a least squares
(LS) estimation and will be addressed for various types of processes.



38 2 Basic Requirements on Fault Detection and Estimation

2.3.2 Characterisation of Optimal Solutions

In this sub-section, we give some results, which characterise the solutions to the
formulated FD problems and will become useful in our subsequent study on the
design of FD systems for different types of process models.

Theorem 2.1 Let M−
d be an operator satisfying the following conditions:

(i) M−
d is (left) invertible,

(ii) ∀d ∈ Dd ∥∥M−
d ◦ Md(d)

∥∥
N ≤ ‖d‖N , (2.21)

(iii) for f satisfying ∥∥M−
d ◦ M f ( f )

∥∥
N ≤ δd ,

there exists d, ‖d‖N ≤ δd , so that

M−
d ◦ M f ( f ) = M−

d ◦ Md(d). (2.22)

Then, {J, Jth} given by

J = ‖r‖2N , r = M−
d y, Jth = δ2d (2.23)

solves the optimal FD problem defined in Definition 2.7.

Before proving the theorem, we would like to explain and understand the above
three conditions. Note that under condition (i), (2.11) holds true. This ensures that
there is no change in the dimension of image space of the faults and thus no loss of
information about the faults to be detected. Conditions (ii) and (iii) can be understood
as the fact that M−

d should be a generalised inverse of Md .

Proof It is evident that for f = 0

J − Jth = ∥∥M−
d ◦ Md(d)

∥∥2
N − δ2d ≤ 0.

Thus, (2.14) holds. We now prove condition (2.15) by contradiction. Assume that
f /∈ D f,undetc but J ≤ Jth for d = 0. It turns out

J = ∥∥M−
d ◦ M f ( f )

∥∥2
N ≤ δ2d .

Following condition (iii), ∃d, ‖d‖N ≤ δd , s.t.

M−
d ◦ M f ( f ) = M−

d ◦ Md(d),

and furthermore
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yd = Md(d) ∈ Id .

Considering further condition (i), we have

M f ( f ) = Md(d) = yd ,

which means, in turn,

y f = M f ( f ) ∈ Id =⇒ f ∈ I f,undetc.

Thus, by contradiction, it is proved that (2.15) holds.

The three conditions given in Theorem 2.1 characterise the major features of the
optimal solutions and can be viewed as a guideline for designing FD systems.

At this point, we would like to call reader’s attention to the fact that M−
d is

a generalised inverse of Md , which will also be demonstrated in our subsequent
study on different types of systems. This fact allows us to interpretM−

d yd as an
LS estimation of d. In other words, the optimal FD problem can also be viewed
as an optimal estimation problem for the disturbance d. Indeed, this view of the
FD problem is not surprising, since all available information about d is its norm-
boundedness. It is reasonable to apply the norm of the LS estimate of d to build
the evaluation function and to compare it with the known norm-boundedness δ2d (as
threshold).

Example 2.1 In order to illustrate Theorem 2.1, we consider a simple static system
described by

y = Md(d) + M f ( f ) = Mdd + M f f ∈ Rm,

rank (Md) = rank
(
M f

) = m, d ∈ Rkd , f ∈ Rk f ,

where Md ∈ Rm×kd , M f ∈ Rm×k f are constant matrices. Let

M−
d = M−

d = MT
d

(
MdM

T
d

)−1
.

That is, M−
d is the generalised inverse of Md . It is straightforward that M−

d is left
invertible,

MdM
−
d = I,

and ∥∥∥MT
d

(
MdM

T
d

)−1
Mdd

∥∥∥ ≤ ‖d‖

so that condition (2.21) is satisfied, where the Euclidean norm is adopted as ‖·‖N ,
that is

‖·‖N = ‖·‖ .
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Moreover, if ∥∥∥MT
d

(
MdM

T
d

)−1
M f f

∥∥∥2 ≤ δ2d = Jth,

we have, for d = MT
d

(
MdMT

d

)−1
M f f,

‖d‖ =
∥∥∥MT

d

(
MdM

T
d

)−1
M f f

∥∥∥ ≤ δd

so that

M−
d M f ( f ) = MT

d

(
MdM

T
d

)−1
M f f

= MT
d

(
MdM

T
d

)−1
MdM

T
d

(
MdM

T
d

)−1
M f f

= M−
d Md(d).

Thus, condition (2.22) holds.

As a solution to the FD problem defined in Definition 2.9, we give the following
corollary which is a dual result of Theorem 2.1.

Corollary 2.1 Given the margin of detectable faults β. Let M−
f satisfy

∀ f ∈ D f , y f = M−
f ◦ M f ( f ),

∥∥y f

∥∥
N = ‖ f ‖N . (2.24)

Then, {J, Jth} given by

J = ‖r‖2N , r = M−
f y, Jth = β2 (2.25)

solves the optimal FD problem defined in Definition 2.9.

Proof Condition (2.24) guarantees that for f /∈ D f,β , i.e. ‖ f ‖N > β and d = 0,

J (y) − Jth = ‖r‖2N − β2 > 0.

If yd ∈ Id,β , then there exists, according to the definition of Id,β , f ∈ D f,β so that

y f = M f ( f ) = yd ,

which leads to

r = M−
f (yd) = M−

f M f ( f ) =⇒ ‖r‖2N = ‖ f ‖2N ≤ β2.

As a result, (2.20) holds.

Note thatM−
f is the generalised inverse ofM f . Thus, the FD problem with respect

to minimising the number of false alarms, as defined in Definition 2.9, is, in fact, an
optimal (LS) estimation problem.
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Remark 2.2 We would like to point out that the result given in Corollary 2.1 is
achieved based on the assumption

∀ f ∈ D f , f �= 0, y f = M f ( f ) �= 0

which leads to (2.17).

Example 2.2 To demonstrate the duality and the result given in Corollary 2.1, we
consider the same system model as given in Example 2.1 but with

rank
(
M f

) = k f .

Let
M−

f = M−
f = (

MT
f M f

)−1
MT

f

be the generalised inverse of M f . Since

M−
f M f = M−

f M f = I,

it holds ∥∥∥M−
f M f ( f )

∥∥∥ = ‖ f ‖ ,

and thus condition (2.24) is satisfied. With the evaluation function and threshold
defined in (2.25), it is evident that

∀ f /∈ D f,β = {
f
∣∣ f ∈ D f , ‖ f ‖ ≤ β

}
, d = 0, J > Jth,

∀yd ∈ Id,β = {
yd

∣∣yd = Md(d) ∈ I f,β , d ∈ Dd
}
, f = 0, J ≤ Jth .

That means, the two conditions in Definition 2.9 are satisfied and thus the evalua-
tion function and threshold defined in (2.25) solve the (dual) FD optimal problem
described in Definition 2.9.

2.3.3 A General Form of Problem Formulation

Recall our assumption on the identical image dimensions of Md and M f . If the
dimension of f (the number of the faults) is lower than the one of y, i.e. if the image
of M f only spans a subspace in the measurement space, it is reasonable to detect
and estimate the faults just using the measurement in the subspace spanned by the
image of M f . To this end, we can first find M−

f satisfying
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∀ f, ∃ f̂ = M−
f ◦ M f ( f ), s.t.

∥∥∥ f̂
∥∥∥
N

= ‖ f ‖N , (2.26)

dim
(
f̂
)

= dim ( f ) = dim (ȳd) , ȳd = M−
f ◦ Md(d), (2.27)

and transform the original fault detection problem into

ȳ = M−
f y = f̂ + M−

f ◦ Md(d),

which is identical with model (2.9) satisfying condition (2.10 ). It is remarkable that
in this case an FE is embedded in the FD solution.

2.4 Notes and References

The major objective of this chapter is to introduce the basic criteria for assessing
a fault detection system and, associated with them, to formulate the basic optimal
detection problems, which should be common for most types of technical processes.
While the concepts like FAR, MDR and FDR are widely accepted both in the appli-
cation and research domains as dealing with fault detection in statistic or stochastic
processes, fewmethods have been published on the performance assessment for pro-
cesses with deterministic uncertainties. Also for this reason, our major focus is on
this topic.

In its core, fault detection is a process of making a decision for one of two sit-
uations: faulty or fault-free, as described in (2.1). In dealing with statistical pro-
cesses, such a decision process is equivalent with statistical hypothesis testing, a
well-established statistical method. Suppose “fault-free” is the null hypothesis and
“faulty” the alternative hypothesis, then FAR is equivalent to the so-called “Type I
Error”, while MDR corresponds to the “Type II Error”. For more details, the reader
is referred to [2]. In fact, due to this relationship, we are able to apply the well-
established theory of statistical hypothesis testing to solving some corresponding
fault detection problems in the sequel.

Unfortunately, there exists no similar framework for assessing fault detection
systems for processes with deterministic uncertainties, although some efforts have
been reported in [1]. Sect. 2.3 is dedicated to this topic. Inspired by the concepts of
rejection and critical regions adopted in hypothesis testing framework [2] and the
(linear) separability of two sets adopted in the classification technique in machine
learning, we have introduced the concepts like set of undetectable faults D f,undetc,
image (set) of the disturbance vector Id , set of faults of no interest D f,β . Based on
them, we are able to define two basic optimal fault detection problems, which are
analogue to the basic fault detection problems in the probabilistic context.
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It should be remarked that

• an abstract form has been adopted to describe those new concepts related to fault
detection in deterministic processes so that they can be applied to various types
of process models, including static and dynamic, time invariant and time varying,
linear and nonlinear, as will be done in the subsequent study,

• the concepts, the fault detection problem formulations and the conceptual solutions
presented in this chapter are only applicable for the so-called additive faults [1].
Different concepts and schemes will be proposed, as multiplicative or parameter
faults [1] are addressed,

• often, optimal fault detection problems can be viewed and solved as an estimation
problem, as pointed out in Sub-sections 2.3.2 and 2.3.3.
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Chapter 3
Basic Methods for Fault Detection and
Estimation in Static Processes

This chapter serves for two purposes. Beside the review of basic fault detection and
estimation methods, we would like to highlight and discuss about the basic ideas
and concepts of fault detection and estimation, which can be, as dealing with static
processes, well addressed and explained using common statistic and linear algebraic
methods.

Wewill briefly study fault detection and estimation in processes either with noises
or with deterministic disturbances, and address the relevant issues both in the model-
based and data-driven fashions.

3.1 A Basic Fault Detection and Estimation Problem

We begin with a basic fault detection and estimation problem: Given

y = f + ε ∈ Rm,m ≥ 1, (3.1)

where y represents themeasurement vector and ε ∼ N (0,Σ) themeasurement noise
with known covariance matrix Σ > 0, and f satisfying

f = 0 =⇒ fault-free, f �= 0 =⇒ faulty, (3.2)

denotes the fault vector, find

• an optimal solution for the fault detection problem (2.5), and
• an optimal solution for the fault estimation problem (2.7)–(2.8).

It follows from the well-known Neyman-Pearson Lemma that the use of likelihood
ratio (LR) leads to the optimal solution as defined in (2.5), when f is known. For
our purpose of detecting unknown (constant) fault vector f , we
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• build the log-LR, which is, considering that y ∼ N ( f,Σ),

LR = ln
L ( f �= 0 |y )

L ( f = 0 |y )

= 1

2

(
yTΣ−1y − (y − f )T Σ−1(y − f )

) ;

• maximise L ( f �= 0 |y ) and so the LR by finding an estimation of f, which leads
to

f̂ = argmax
f

1

2

(− (y − f )T Σ−1(y − f )
) = y; (3.3)

• build the test statistic based on the maximal LR

max
f

1

2

(
yTΣ−1y − (y − f )T Σ−1(y − f )

) = 1

2
yTΣ−1y

=⇒ J = yTΣ−1y ∼ χ2(m) (3.4)

• and finally, set the threshold

Jth = χ2
α, (3.5)

Pr
{
χ2(m) > χ2

α

} = α ⇐⇒ Pr
{
χ2(m) ≤ χ2

α

} = 1 − α (3.6)

for a given acceptable FAR = α.

This solution is called generalised likelihood ratio (GLR)method, and the test statistic
(3.4) is subject to χ2 distribution.

Remark 3.1 Neyman-Pearson Lemma is dedicated to performing hypothesis tests
with the LR as the most powerful test at the significant level α for a given thresh-
old. For our application, as described in the above procedure, modifications are
made to match the common use in the fault diagnosis framework without loss of the
applicability.

Remark 3.2 For the sake of simplicity, factor 1
2 is omitted by defining the test statistic

in (3.4).

In fact, the optimal solution for {J, Jth} given in (3.4)–(3.5) is well-known.Wewould
like to call the reader’s attention to the following interesting facts embedded in the
approach to the solution:

• an (optimal) estimation of the fault, the maximal likelihood estimate (MLE) f̂ , is
embedded in the decision making, as described in (3.3);

• on the other hand, a direct use of f̂ T f̂ as a test statistic leads to poor FD perfor-
mance, since equation f̂ T f̂ = yT y is not an optimal test statistic;

• however, once a fault is detected, f̂ = y delivers an estimate for f , which is
optimal in the sense of (2.7)–(2.8).
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Next, we study the test statistic (3.4) aiming at understanding why this test statistic
delivers an optimal solution.

Let us do an SVD on Σ,

Σ = Pdiag
(
σ 2
1 , · · · , σ 2

m

)
PT , PPT = I, P = [

p1 · · · pm
]
. (3.7)

The column vectors of P, p1, · · · , pm, span the measurement (vector) space, and
each of them defines a direction of this space. Corresponding to them, σ1, · · · , σm are
understood as the “amplitude” (size) of the variance in each direction. Considering
that larger variance means stronger uncertainty, σi can be interpreted as the strength
of the uncertainty in the direction pi .

Using the SVD of Σ, the test statistic J can be written into

J = yTΣ−1y = yT Pdiag
(
σ−2
1 , · · · , σ−2

m

)
PT y. (3.8)

Note that any fault can be written as a linear combination of p1, · · · , pm . Let

f =
m∑

i=1

pi f̄i = P f̄ , f̄ =
⎡

⎢
⎣

f̄1
...

f̄m

⎤

⎥
⎦ .

In the presence of fault f, the χ2 test statistic satisfies

E J = E (yTΣ−1y
) = f TΣ−1 f + E (εTΣ−1ε

) =
m∑

i=1

f̄ 2i
σ 2
i

+ m (3.9)

=
m∑

i=1

wi f̄
2
i + m, wi = 1

σ 2
i

.

Equation (3.9) reveals that

• viewing wi as a weighting factor, the fault will be stronger weighted in those
directions, where uncertainties are weaker,

• the fault detectability can be improved in sense of enhancing FDR, when the
process uncertainties can be reduced.

3.2 A General Form of Fault Detection and Estimation
Problem

We now consider a general form of the above basic fault detection and estimation
problem with the measurement model
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y = E f f + ε ∈ Rm, (3.10)

where f, ε are as defined previously, E f ∈ Rm×k f is a known matrix and satisfies

rank
(
E f

) = k f < m, (3.11)

which means that the image subspace of the fault vector builds a k f -dimensional
subspace in the m-dimensional measurement space.

To approach an optimal fault detection in the sense of minimisingMDR,we apply
the GLR method and solve the detection problem by

• building the log-LR, which is, considering that y ∼ N (E f f,Σ),

LR = 1

2

(
yTΣ−1y − (

y − E f f
)T

Σ−1(y − E f f )
)

,

• maximising the LR by finding an estimation of f,

f̂ = argmax
f

1

2

(
− (

y − E f f
)T

Σ−1(y − E f f )
)

, (3.12)

• building the test statistic based on the maximal LR

J = 2max
f

1

2

(
yTΣ−1y − (

y − E f f
)T

Σ−1(y − E f f )
)

, (3.13)

• and finally setting the threshold

Pr {J > Jth} = α, (3.14)

for a given acceptable FAR = α.

Concretely, the solution for the maximisation problem is given by

f̂ = argmin
f

(
y − E f f

)T
Σ−1(y − E f f ) = E−

f y, (3.15)

E−
f = (

ET
f Σ

−1E f
)−1

ET
f Σ

−1. (3.16)

Note that f̂ given in (3.15) is a least mean squares (LMS) estimation of f satisfying

E
(
f − f̂

) (
f − f̂

)T = E
(
f − E−

f y
) (

f − E−
f y
)T

= E
(
E−

f ε
) (

E−
f ε
)T = (

ET
f Σ

−1E f
)−1

.

It turns out
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J = yT
(

Σ−1 −
(
I − E f E

−
f

)T
Σ−1

(
I − E f E

−
f

))
y. (3.17)

By noting the relations

Σ−1 −
(
I − E f E

−
f

)T
Σ−1

(
I − E f E

−
f

)
= Σ−1E f

(
ET

f Σ
−1E f

)−1
ET

f Σ
−1,

Σ−1E f
(
ET

f Σ
−1E f

)−1
ET

f Σ
−1 =

(
E−

f

)T
ET

f Σ
−1E f E

−
f ,

ET
f Σ

−1E f =
(
E−

f Σ
(
E−

f

)T)−1

, E−
f y ∼ N

(
0, E−

f Σ
(
E−

f

)T)
,

we have

yTΣ−1E f
(
ET

f Σ
−1E f

)−1
ET

f Σ
−1y = yT

(
E−

f

)T (
E−

f Σ
(
E−

f

)T)−1

E−
f y

=⇒ max
f

J ∼ χ2(k f ). (3.18)

As a result, the threshold is finally set as

Jth = χ2
α,Pr

{
χ2(k f ) ≤ χ2

α

} = 1 − α. (3.19)

For our purpose, we would like to present an alternative way of solving the above
fault detection problem, as described in Sub-section2.3.3. To this end, we multiply
y by E−

f , which yields

E−
f y = f + E−

f ε =: ȳ ∈ Rk f , E−
f ε ∼ N

(
0, E−

f Σ
(
E−

f

)T)
. (3.20)

The new model (3.20) is of the same form like (3.1). Thus, applying the result given
in the last section leads to the test statistic

J = yT
(
E−

f

)T (
E−

f Σ
(
E−

f

)T)−1

E−
f y,

which is (3.17), and the corresponding threshold as given in (3.18).
Recall that, in regarding to the noise,

Σ ∈ Rm×m, E−
f Σ

(
E−

f

)T ∈ Rk f ×k f , k f < m.

That means by mapping E−
f : Rm → Rk f the measurement space is transformed to

a lower dimensional subspace. Such a dimension reduction reduces the influence of
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the noise on fault detection performance without loss of information on faults, and
therefore improves the fault detection performance.

It is worth remarking that the LMS estimation of f,

f̂ = E−
f y,

can be used for the fault estimation purpose, once the fault is detected.

3.3 Application of Canonical Correlation Analysis to Fault
Detection

In the previous sections, a basic fault detection problem and its extended form have
been reviewed, in which it is assumed that the data are collected from a set of sensors
modelled in form of (3.1) or (3.10). In practice, we may often have two data sets
which are, for instance, from two different parts in a process or even from two
different processes. Fault detection and estimation in such a process configuration
are of considerable practical interests. To deal with such issues, canonical correlation
analysis (CCA) can serve as a powerful tool. CCA is awell-establishedMVAmethod.
In this section, we first briefly introduce the essential ideas and computations of CCA,
and then discuss about their applications to fault detection and estimation.

3.3.1 An Introduction to CCA

CCA is a statistical method to analyse correlation relations between two random
vectors. Suppose that y ∈ Rm, x ∈ Rn are two random vectors satisfying

[
x
y

]
∼ N

([E(x)
E(y)

]
,

[
Σx Σxy

Σyx Σy

])
,Σyx = ΣT

xy . (3.21)

Let J, L define some linearmappings of x and y.Roughly speaking,CCA is dedicated
to finding those linear mappings that deliver the most closed correlations between x
and y. As the basis for the correlation assessment, matrix

K = Σ−1/2
x ΣxyΣ

−1/2
y (3.22)

is taken into account. Assume that

rank
(
Σxy

) = rank (K ) = κ.

An SVD of K results in
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K = RΣV T ,Σ =
[
diag(σ1, · · · , σκ) 0

0 0

]
, 1 ≥ σ1 ≥ · · · ≥ σκ > 0, (3.23)

R = [
r1 · · · rn

]
, RT R = I, V = [

v1 · · · vm
]
, V T V = I.

Let

J = Σ−1/2
x R, J = [

J1 · · · Jn
]
, L = Σ−1/2

y V, L = [
L1 · · · Lm

]
. (3.24)

It is evident that

J TΣx J = I, LTΣy L = I, (3.25)

J TΣxy L = Σ =
[
diag(σ1, · · · , σκ) 0

0 0

]
. (3.26)

Definition 3.1 Given random vectors y ∈ Rm, x ∈ Rn satisfying (3.21), and let
K = RΣV T , J, L be defined in (3.23) and (3.24), respectively. Then,

Ji = Σ−1/2
x ri , Li = Σ−1/2

y vi , i = 1, · · · , κ, (3.27)

are called canonical correlation vectors,

ηi = J T
i x, ϕi = LT

i y, i = 1, · · · , κ, (3.28)

canonical correlation variables, and σ1, · · · , σκ are called canonical correlation
coefficients.

It is clear that the first l (≤ κ) canonical correlation vectors J1, L1, · · · , Jl , Ll de-
fine the l mostly correlated linear combinations corresponding to the first l largest
canonical correlation coefficients σ1, · · · , σl . Moreover, it holds for the canonical
correlation vectors

J̄ = [
J1 · · · Jκ

]
, L̄ = [

L1 · · · Lκ

]
, (3.29)

J̄ TΣx J̄ = I ∈ Rκ×κ , L̄TΣy L̄ = I ∈ Rκ×κ ,

J̄ TΣxy L̄ = diag(σ1, · · · , σκ) =: Σ̄.

3.3.2 Application to Fault Detection and Estimation

Thebasic idea behind the applicationofCCAmethod to fault detection and estimation
consists in reducing the process uncertainty bymaking use of the existing correlation
between two measurement vectors. To simplify our study, we assume that

E(x) = 0, E(y) = 0
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without loss of generality. For our purpose, define

r1 = J̄ T x − Σ̄ L̄T y, r2 = L̄T y − Σ̄ J̄ T x . (3.30)

It turns out

E (r1r T1
) = J̄ TΣx J̄ + Σ̄ L̄TΣy L̄Σ̄ − J̄ TΣxy L̄Σ̄ − Σ̄ L̄TΣyx J̄

= I − Σ̄Σ̄ = diag
(
1 − σ 2

1 , · · · , 1 − σ 2
κ

)
, (3.31)

E (r2r T2
) = L̄TΣy L̄ + Σ̄ J̄ TΣx J̄Σ̄ − L̄TΣyx J̄Σ̄ − Σ̄ J̄ TΣxy L̄

= I − Σ̄Σ̄ = diag
(
1 − σ 2

1 , · · · , 1 − σ 2
κ

)
. (3.32)

In general, when we define

r1 = J T x − ΣLT y, r2 = LT y − ΣT J T x, (3.33)

the covariance matrices of r1, r2 satisfy

E (r1r T1
) = J TΣx J + ΣLTΣy LΣT − J TΣxy LΣT − ΣLTΣyx J

= I − ΣΣT = diag
(
1 − σ 2

1 , · · · , 1 − σ 2
κ , 1, · · · , 1

)
, (3.34)

E (r2r T2
) = LTΣy L + ΣT J TΣx JΣ − LTΣyx JΣ − ΣT J TΣxy L

= I − ΣTΣ = diag
(
1 − σ 2

1 , · · · , 1 − σ 2
κ , 1, · · · , 1

)
. (3.35)

A comparison with

E (J T xxT J
) = J TΣx J = I, E (LT yyT L

) = LTΣy L = I,

which are the normalised covariance matrices of x, y, respectively, makes it clear
that the covariance matrix of the random vector r1 or r2 under consideration becomes
smaller when the correlated measurements are taken into account. In fact, r1, r2 can
be re-written as

r1 = J T
(
x − Σxy LL

T y
) = RTΣ−1/2

x

(
x − ΣxyΣ

−1
y y

)
, (3.36)

r2 = LT
(
y − Σyx J J

T x
) = V TΣ−1/2

y

(
y − ΣyxΣ

−1
x x

)
. (3.37)

Note that
x̂ = ΣxyΣ

−1
y y, ŷ = ΣyxΣ

−1
x x

are LMS estimates for x, y by means of y, x, respectively, thus the estimation errors,
x − x̂, y − ŷ, have the minimum variance. In this regard, r1, r2 can be understood
as residual signals. This motivates us to use signals r1, r2 for fault detection and
estimation purpose.

Let
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y = fy + εy ∈ Rm, εy ∼ N (0,Σy), (3.38)

x = fx + εx ∈ Rn, εx ∼ N (0,Σx ) (3.39)

be the process models for (sub-)process y, x, where fy, fx represent fault vectors in
the process measurements y and x , respectively. We assume that fy and fx are not
present in the processes simultaneously. Suppose that εy, εx are correlated with

E (εxεTy
) = Σxy .

Then, after determining J, L ,Σ according to (3.23) and (3.24),we have the following
fault detection solutions:

• define the test statistics

Jx = r T1
(
diag

(
1 − σ 2

1 , · · · , 1 − σ 2
κ , 1, · · · , 1

))−1
r1, (3.40)

r1 = J T x − ΣLT y,

Jy = r T2
(
diag

(
1 − σ 2

1 , · · · , 1 − σ 2
κ , 1, · · · , 1

))−1
r2, (3.41)

r2 = LT y − ΣT J T x,

where it is assumed that σ1 < 1;
• set the thresholds: for a given acceptable FAR α

Jth,x = χα,x ,Pr
{
χ2(n) > χα,x

} = α, (3.42)

Jth,y = χα,y,Pr
{
χ2(m) > χα,y

} = α; (3.43)

• define the detection logic

Jx ≤ Jth,x =⇒ fault-free, otherwise faulty with x, (3.44)

Jy ≤ Jth,y =⇒ fault-free, otherwise faulty with y. (3.45)

It should be noticed that the above fault detection solutions only allow a successful
fault detection, but do not guarantee a perfect fault isolation. This fact can be clearly
seen from the following relations

r1 = J T x − ΣLT y = J T fx − ΣLT fy + J T εx − ΣLT εy,

r2 = LT y − ΣT J T x = LT fy − ΣT J T fx + LT εy − ΣT J T εx ,

which mean that r1, r2 will be affected by both fx , fy . On the other hand, it holds

{E(Jx ) = f Tx Σx,1 fx + n, E(Jy) = f Tx Σx,2 fx + m, for fx �= 0, fy = 0,
E(Jy) = f Ty Σy,1 fy + m, E(Jx ) = f Ty Σy,2 fy + n, for fy �= 0, fx = 0,
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Σx,1 = Σ−1/2
x R

(
diag

(
1 − σ 2

1 , · · · , 1 − σ 2
κ , 1, · · · , 1

))−1
RTΣ−1/2

x ,

Σx,2 = Σ−1/2
x Rdiag

(
σ 2
1

(
1 − σ 2

1

)−1
, · · · , σ 2

κ

(
1 − σ 2

κ

)−1
, 0, · · · , 0

)
RTΣ−1/2

x ,

Σy,1 = Σ−1/2
y V

(
diag

(
1 − σ 2

1 , · · · , 1 − σ 2
κ , 1, · · · , 1

))−1
V TΣ−1/2

y ,

Σy,2 = Σ−1/2
y V diag

(
σ 2
1

(
1 − σ 2

1

)−1
, · · · , σ 2

κ

(
1 − σ 2

κ

)−1
, 0, · · · , 0

)
V TΣ−1/2

y .

It turns out, on the assumption σ1 < 1,

Σx,1 > Σx,2,Σy,1 > Σy,2 =⇒
E(Jx ) > E(Jy) − m + n, for fx �= 0, fy = 0, (3.46)

E(Jx ) < E(Jy) − m + n, for fy �= 0, fx = 0. (3.47)

Inequalities (3.46) and (3.47) can be applied as a decision logic for fault isolation.
Note that if Jx , Jy are used, instead of their mean, for this purpose, false isolation
decisions can be made. The rate of false isolation decision depends on fx , fy , which
are in general unknown. In order to reduce false isolation decisions, we can collect
data and estimate E(Jx ) and E(Jy).

Following our discussion on the solution of the basic fault detection problem
reviewed inSect. 3.1, it is evident that the above solutions,

{
Jx , Jth,x

}
and

{
Jy, Jth,y

}
,

are the optimal solution for detecting faults fx and fy, thanks to the fact that x −
x̂, y − ŷ have the minimum variance. On the other hand, attention should be paid to
the assumption that fy and fx are not present in the (sub-)processes simultaneously.
If this is not the case, then the overall model

[
x
y

]
=
[
fx
fy

]
+
[

εx
εy

]
,

[
εx
εy

]
∼ N

([
0
0

]
,

[
Σx Σxy

Σyx Σy

])

should be used for the detection purpose, which is the basic fault detection problem
discussed in Sect. 3.1.

We now consider another assumption σ1 < 1. Suppose that this is not true and

σ1 = σ2 = · · · = σl = 1, l ≤ κ, (3.48)

which means, according to (3.23) and (3.24),

⎡

⎢
⎣

J T
1
...

J T
l

⎤

⎥
⎦Σxy

[
L1 · · · Ll

] = I.

It turns out, in the fault-free case,
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E

⎛

⎜
⎝

⎡

⎢
⎣

J T
1
...

J T
l

⎤

⎥
⎦ x −

⎡

⎢
⎣

LT
1
...

LT
l

⎤

⎥
⎦ y

⎞

⎟
⎠

⎛

⎜
⎝

⎡

⎢
⎣

J T
1
...

J T
l

⎤

⎥
⎦ x −

⎡

⎢
⎣

LT
1
...

LT
l

⎤

⎥
⎦ y

⎞

⎟
⎠

T

= 0.

Recalling

⎡

⎢
⎣

J T
1
...

J T
l

LT
1
...

LT
l

⎤

⎥
⎦

[
x
y

]
=
⎡

⎢
⎣

J T
1
...

J T
l

LT
1
...

LT
l

⎤

⎥
⎦

[
εx
εy

]
,

[
εx
εy

]
∼ N

([
0
0

]
,

[
Σx Σxy

Σyx Σy

])
,

it can be concluded that ⎡

⎢
⎣

J T
1
...

J T
l

⎤

⎥
⎦ x −

⎡

⎢
⎣

LT
1
...

LT
l

⎤

⎥
⎦ y = 0. (3.49)

As a result, the original fault detection problem can be re-formulated as two fault
detection problems:

• fault detection by means of a plausibility check based on (3.49),
• fault detection using the signals

r1 =
⎡

⎢
⎣

J T
l+1
...

J T
n

⎤

⎥
⎦ x − Σ̄

⎡

⎢
⎣

LT
l+1
...

LT
m

⎤

⎥
⎦ y, r2 =

⎡

⎢
⎣

LT
l+1
...

LT
m

⎤

⎥
⎦ y − Σ̄T

⎡

⎢
⎣

J T
l+1
...

J T
n

⎤

⎥
⎦ x,

Σ̄ =
[
diag(σl+1, · · · , σκ) 0

0 0

]
.

Concerning fault estimation, signals

f̂x = x − x̂, x̂ = ΣxyΣ
−1
y y, f̂ y = y − ŷ, ŷ = ΣyxΣ

−1
x x

deliver estimates for fx , fy respectively, after a fault, either fx or fy, is detected and
isolated. They are LMS estimations and satisfy

E
((

fx − f̂x
) (

fx − f̂x
)T) =

RTΣ−1/2
x

(
diag

(
1 − σ 2

1 , · · · , 1 − σ 2
κ , 1, · · · , 1

))−1
Σ−1/2

x R,

E
((

fy − f̂ y
) (

fy − f̂ y
)T) =

V TΣ−1/2
y

(
diag

(
1 − σ 2

1 , · · · , 1 − σ 2
κ , 1, · · · , 1

))−1
Σ−1/2

y V .
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3.3.3 CCA and GLR

In the previous sub-section, we have claimed that the test statistics,

Jx = r T1
(
I − ΣΣT

)−1
r1, Jy = r T2

(
I − ΣTΣ

)−1
r2,

r1 = J T x − ΣLT y, r2 = LT y − ΣT J T x,

can be applied for detecting the faults fx , fy as given in the models (3.38) and (3.39),
respectively, and they deliver, on the assumption that fx , fy are not present in the
process simultaneously, the best fault detectability. In this sub-section, we are going
to prove this statement by handling the CCA-based FD as a special case of the
GLR-based solution.

In order to simplify the notation and subsequent discussion, we first do a normal-
isation on x, y in the process model

[
x
y

]
=
[
fx
fy

]
+
[

εx
εy

]
,

[
εx
εy

]
∼ N

([
0
0

]
,

[
Σx Σxy

Σyx Σy

])

as follows

[
x̄
ȳ

]
=
[
RTΣ

−1/2
x 0
0 V TΣ

−1/2
y

][
x
y

]
=
[
RTΣ

−1/2
x x

V TΣ
−1/2
y y

]

with R, V as the unitary matrices defined in (3.23). It turns out

[
x̄
ȳ

]
=

[
f̄x
f̄ y

]
+
[

ε̄x
ε̄y

]
, (3.50)

[
f̄x
f̄ y

]
=

[
RTΣ

−1/2
x fx

V TΣ
−1/2
y fy

]

,

[
ε̄x
ε̄y

]
∼ N

([
0
0

]
,

[
I Σ

ΣT I

])
,

where
Σ = RTΣ−1/2

x ΣxyΣ
−1/2
y V,

as defined in (3.23). Now, we are in the position to formulate our detection problem,
under the assumption that fx , fy are not present in the process simultaneously, as
the following two FD problems:

• detecting f̄x in the model

z =
[
x̄
ȳ

]
=
[
I
0

]
f̄x +

[
ε̄x
ε̄y

]
, (3.51)
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• detecting f̄ y in the model

z =
[
x̄
ȳ

]
=
[
0
I

]
f̄ y +

[
ε̄x
ε̄y

]
. (3.52)

Next, we focus on solving FD problem for process (3.51) using the standard GLR
method. Note that (3.51) is given exactly in the form of (3.10) with

E f =
[
I
0

]
.

It follows from the discussion in Sect. 3.2 that the test statistic

J = zT
(
E−

f

)T (
E−

f

[
I Σ

ΣT I

] (
E−

f

)T)−1

E−
f z

= zT
[

I Σ

ΣT I

]−1 [
I
0

]([
I
0

]T [
I Σ

ΣT I

]−1 [
I
0

])−1 [
I
0

]T [
I Σ

ΣT I

]−1

z

= (x̄ − Σ ȳ)T
(
I − ΣΣT

)−1
(x̄ − Σ ȳ)

delivers the best solution. Recall that

x̄ − Σ ȳ = RTΣ−1/2
x x − ΣV TΣ−1/2

y y = RTΣ−1/2
x

(
x − ΣxyΣ

−1
y y

) = r1,

and covariance matrix of r1 is I − ΣΣT . Hence, it is proved that

Jx = r T1
(
I − ΣΣT

)−1
r1

is the best test statistic for detecting the faults in x . Analogue to it, it can also be
proved that the test statistic Jy with r2 given in (3.41) is the best statistic for detecting
the faults in y.

3.4 Fault Detection and Estimation with Deterministic
Disturbances

Comparing with the investigations on fault detection and estimation issues for dy-
namic processes with deterministic disturbances, few results have been reported on
dealing with the similar topics for static processes. In the present section, we will
review some basic methods for the latter case.
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3.4.1 A Basic Fault Detection Problem

We first consider a basic fault detection problem and suppose that the process model
is given as follows

y = f + Edd ∈ Rm,m ≥ 1, (3.53)

where d is unknown disturbance vector and norm-bounded,

d ∈ Rkd , ‖d‖2 = dT d ≤ δ2d (3.54)

with known δ2d , the known matrix Ed satisfies

rank (Ed) = m, (3.55)

and fault vector f is as defined in (3.2). The following theorem gives an optimal
solution {J, Jth} for the fault detection problem defined in Definition 2.7.

Theorem 3.1 Given model (3.53), then

J = yT
(
Ed E

T
d

)−1
y, Jth = δ2d (3.56)

are a solution of the fault detection problem defined in Definition 2.7.

Proof Following Theorem 2.1, we just need to prove that

M−
d = (

Ed E
T
d

)−1/2

satisfies conditions (2.21)–(2.22). Note that

rank
((

Ed E
T
d

)−1/2
Ed

)
= m, σi

((
Ed E

T
d

)−1/2
Ed

)
= 1

with i = 1, · · · ,m. This ensures

∀d, dT ET
d

(
Ed E

T
d

)−1
Edd ≤ dT d =⇒ (2.21) is true,

∀ f, ∃z, s.t. f T (Ed E
T
d

)−1
f = zT ET

d

(
Ed E

T
d

)−1
Edz.

Consider f satisfying

∥∥M−
d M f f

∥∥2 =
∥∥∥
(
Ed E

T
d

)−1/2
f
∥∥∥
2 ≤ δ2d .

It is evident that
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d = ET
d

(
Ed E

T
d

)−1
f =⇒

M−
d Mdd = (

Ed E
T
d

)−1/2
f = M−

d M f f,

which proves that (2.22) holds.

Example 3.1 Note that the result in Theorem 3.1 is different from the solution given
in Example 2.1, although model (3.53) is indeed a special case of the process model
considered in Example 2.1. In this example, we demonstrate that both solutions are
equivalent in regard of solving the defined optimal FD problem. In fact, this can be
well recognised by noting the fact that the evaluation functions and the corresponding
thresholds in both solutions are identical, i.e.

MT
d

(
MdM

T
d

)−1 = ET
d

(
Ed E

T
d

)−1
, Md = Ed =⇒

yT
(
MdM

T
d

)−1
MdM

T
d

(
MdM

T
d

)−1
y = yT

(
Ed E

T
d

)−1
y,

Jth = δ2d .

Notice that ET
d

(
Ed ET

d

)−1
can be written as

ET
d

(
Ed E

T
d

)−1 = ET
d

(
Ed E

T
d

)−1/2 (
Ed E

T
d

)−1/2
,

and (
ET
d

(
Ed E

T
d

)−1/2
)T

ET
d

(
Ed E

T
d

)−1/2 = I.

This explains why the both solutions are identical.

Motivated by this example, we would like to call reader’s attention to an alternative
interpretation of the above solution, which is useful for our subsequent study on fault
detection in dynamic processes. Given model (3.53), in the fault-free case,

d̂ = E−
d y, E

−
d = ET

d

(
Ed E

T
d

)−1
, (3.57)

is an LS estimation for d. Since all available information about d is its norm-
boundedness given in (3.54), it is reasonable to apply the norm of the LS estimate of
d, ∥∥∥d̂

∥∥∥
2 = yT

(
E−
d

)T
E−
d y = yT

(
Ed E

T
d

)−1
y,

to build the evaluation function and to compare it with the known norm-boundedness
δ2d (as threshold). As demonstrated in Theorem 3.1, in this manner we can find the
optimal solution of the fault detection problem as well.

The solution for the fault detection problem defined in Definition 2.9 is evidently
given by

J = ‖y‖2 , Jth = β2 (3.58)
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with the givenmargin of detectable faultsβ.Theproof of this result is straightforward.
Considering that for process (3.53)

D f,β = {
f
∣∣ f ∈ D f , ‖ f ‖ ≤ β

}
, I f,β = {

y f

∣∣y f = f, f ∈ D f,β
}
,

Id,β = {
yd
∣∣yd = Edd ∈ I f,β , d ∈ Dd

}
,

it is ensured that

∀ f /∈ D f,β , d = 0, J (y) − Jth = ‖ f ‖2 − β2 > 0,

∀y ∈ Id,β , f = 0, J (y) − Jth = ‖Edd‖2 − β2 ≤ 0.

In fact, by means of Corollary 2.1 this result can be directly proved. Note that on the
assumption of process model (3.53), y is indeed an LS estimation of f. This means,
the norm of the LS estimation of f can serve as the solution of the fault detection
problem defined in Definition 2.9.

3.4.2 A General Form of Fault Detection and Estimation

Analogue to the statistic case, we now consider the extended model form

y = E f f + Edd ∈ Rm, (3.59)

where E f , Ed are as defined in (3.11) and (3.55), respectively. It holds

Id = {
yd
∣∣yd = Edd,∀d ∈ Rkd , ‖d‖ ≤ δd

}
,

D f,undetc = {
f
∣∣y f = E f f ∈ Id

}
.

Let E−
f be the left inverse of E f given by

E−
f =

(
ET

f

(
Ed E

T
d

)−1
E f

)−1
ET

f

(
Ed E

T
d

)−1
, E−

f E f = I.

It holds
ȳ = E−

f y = f + E−
f Edd ∈ Rk f . (3.60)

As a result, D f,undetc can be re-written as

D f,undetc = {
f
∣∣ȳ f = f ∈ Id,ȳ

}
,

Id,ȳ =
{
ȳd
∣∣∣ȳd = E−

f Edd,∀d ∈ Rkd , ‖d‖ ≤ δd

}
.
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The solutions to the fault detection problems defined in Definition 2.7 and Definition
2.9 are respectively given in the following two theorems.

Theorem 3.2 Given model (3.59), then

J = yT
(
Ed E

T
d

)−1
M

(
Ed E

T
d

)−1
y, Jth = δ2d , (3.61)

M = E f

(
ET

f

(
Ed E

T
d

)−1
E f

)−1
ET

f ,

are a solution of the fault detection problem defined in Definition 2.7.

Proof Considering that by the transformation ȳ = E−
f y, condition (2.27) holds, i.e.

rank
(
E−

f Ed

)
= k f = dim (ȳ) ,

the fault detection problems with process model (3.59) becomes equivalent to the
one with model (3.53). Note further

(
Ed E

T
d

)−1
M

(
Ed E

T
d

)−1 =
(
E−

f

)T
ET

f

(
Ed E

T
d

)−1
E f E

−
f ,

E−
f Ed E

T
d

(
E−

f

)T =
(
ET

f

(
Ed E

T
d

)−1
E f

)−1
.

We have

J = ȳT
(
E−

f Ed E
T
d

(
E−

f

)T)−1

ȳ.

Thus, the solution (3.61), following Theorem 3.1, is a solution of the fault detection
problem defined in Definition 2.7.

For the same argument and following the discussion in the end of the last sub-section,
we have also the following theorem.

Theorem 3.3 Given model (3.59) and margin of detectable faults β, then

J = ‖ȳ‖2 =
∥∥∥E−

f y
∥∥∥
2
, Jth = β2 (3.62)

are a solution of the fault detection problem defined in Definition 2.9.

It is worth remarking that f̂ = E−
f y is an LS estimate of f and can be used for the

fault estimation purpose. On the other hand, it should be pointed out that the use
of f̂ T f̂ as an evaluation function for the detection purpose delivers poor detectabil-
ity performance, since it is not optimal for the fault detection problem defined in
Definition 2.7. This can be seen from the following discussion as well. For

J = f̂ T f̂ = yT
(
E−

f

)T
E−

f y,
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it holds, in the fault-free case,

J = dT ET
d

(
E−

f

)T
E−

f Edd,

which requires the threshold setting

Jth = σ̄ 2
(
E−

f Ed

)
δ2d ,

in order to guarantee condition (2.14). On the other hand, since for d = 0

J = f̂ T f̂ = f T f =⇒ J − Jth = f T f − σ̄ 2
(
E−

f Ed

)
δ2d ,

and considering (3.60), it becomes evident that

∃ f /∈ D f,undetc, s.t. J − Jth ≤ 0.

That is, f is not detectable, as far as E−
f Ed �= I.

3.5 The Data-Driven Solutions of the Detection and
Estimation Problems

In the previous sections, fault detection and estimation problems have been handled
on the assumption that a model exists for the process under consideration. In the real
application world, this is often not the case. This motivates the development of data-
driven fault detection and estimation methods. In this section, we briefly introduce
the data-driven solutions of the fault detection and estimation problems handled in the
last four sections, and then review the three well-established basic data-driven fault
detection methods: PCA (principal component analysis), PLS (partial least squares)
and CCA.

In the context of data-driven fault detection and estimation formulation, it is
often assumed that the model structure/form is given, but the model parameters are
unknownaprior.On theother hand, a hugenumber of historic data, y1, · · · yN , N >>

1, are available. This motivates the identification of the model parameters using the
available data or the integration of the model parameter identification into the fault
detection and estimation procedure. In this manner, the fault detection and estimation
problems are often solved in a two-step procedure:

• identification of the model parameters using the recorded data. This is also called
training phase and runs typically offline,

• application of an existing (model-based) fault detection and estimation scheme.
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3.5.1 Fault Detection and Estimation in Statistic Processes
with sufficient Training Data

It is clear that for the application of the fault detection and estimation methods for
statistic processes introduced in the previous sections, themeanvector and covariance
matrix of y, E(y), var(y), are needed. It is well-known that

ȳ(N ) = 1

N

N∑

i=1

yi and SN−1 = 1

N − 1

N∑

i=1

(yi − ȳ(N )) (yi − ȳ(N ))T (3.63)

are sample mean vector and covariance matrix of y, and for N → ∞

lim
N→∞ ȳ(N ) = E(y) = μ and lim

N→∞ SN−1 = var(y) = Σ. (3.64)

On the assumption that N is sufficiently large so that

ȳ(N ) ≈ μ, SN−1 ≈ Σ,

the followingprocedure canbeused for dealingwith the fault detection and estimation
problems:

• Offline training: computation of

ȳ(N ) = 1

N

N∑

i=1

yi , SN−1 = 1

N − 1

N∑

i=1

(yi − ȳ(N )) (yi − ȳ(N ))T ;

• Offline design: setting thresholds using the given formulas;
• Online fault detection and estimation using the given test statistics and estimation
algorithms.

3.5.2 Fault Detection Using Hotelling’s T2 test statistic

In practical cases, the number of data is often limited. This requires special handling
of the fault detection solutions. For our purpose, consider model

y = f + ε ∈ Rm, ε ∼ N (μ,Σ)

with unknown μ,Σ. Assume that there are two groups of process data available:
training data (recorded for the offline computation) yi , i = 1, · · · , N , online mea-
surement data yk+i , i = 1, · · · , n, and N >> n. Note that in our previous study,
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n = 1. Recall that the training data should be recorded in the fault-free case, that
means the data (samples) have been generated on the model assumption

y = ε ∈ Rm, E(y) = E(ε) = μ. (3.65)

Differently, the online measurement data may cover both the fault-free or faulty
cases. Hence, the model assumption is

y = f + ε ∈ Rm, E(y) = μ + f =: μ f , f =
{
0, fault-free,
constant �= 0, faulty.

(3.66)

In the context of a fault detection, we are now able to re-formulate our original
problem as {

μ − μ f = 0 =⇒ fault-free,
μ − μ f �= 0 =⇒ faulty.

(3.67)

For our purpose, the (possible) difference between the means of the two data sets
should be checked. To this end, consider

ȳ(N ) − ȳ ∼ N
(
f,

N + n

nN
Σ

)
, ȳ(N ) = 1

N

N∑

i=1

yi , ȳ = 1

n

n∑

i=1

yk+i . (3.68)

SinceΣ is unknown, it will be estimated by offline and online data sets, respectively.
Let

Sof f = 1

N

N∑

i=1

(yi − ȳ(N )) (yi − ȳ(N ))T , Son = 1

n

n∑

i=1

(yk+i − ȳ) (yk+i − ȳ)T

be sample covariance matrices of the two data sets and

S = NSof f + nSon
n + N

(3.69)

= 1

n + N

(
N∑

i=1

(yi − ȳ(N )) (yi − ȳ(N ))T +
n∑

i=1

(yk+i − ȳ) (yk+i − ȳ)T
)

.

The following theorem plays a central role for building the test statistic and setting
the threshold.

Theorem 3.4 Let f, ȳ(N ), ȳ, S be defined in (3.66), (3.68) and (3.69). It holds

nN (n + N − 2)

(n + N )2
(ȳ(N ) − ȳ)T S−1 (ȳ(N ) − ȳ) ∼ T 2(m, n + N − 2), (3.70)
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where T 2(m, n+N−2) is Hotelling T 2-distribution with m and (n+N−2) degrees
of freedom.

The above theorem is a standard result on the Hotelling T 2 -distribution and its
proof can be found in books on multivariate analysis. The reader is referred to the
references given at the end of this chapter.

Consider further

T 2(m, n + N − 2) = m(n + N − 2)

n + N − m − 1
F(m, n + N − m − 1),

where F(m, n + N − 2) denotes F-distribution with m and (n + N − 1) degrees of
freedom. As a result, for the test statistic defined by

(ȳ(N ) − ȳ)T S−1 (ȳ(N ) − ȳ) , (3.71)

the corresponding threshold is set to be

Jth = m (n + N )2

nN (n + N − m − 1)
Fα(m, n + N − m − 1), (3.72)

for a given acceptable FAR α.
Note that S consists of two terms: NSof f

n+N , nSon
n+N . For n = 1, it holds

S = NSof f
N + 1

= N − 1

N + 1

1

N − 1

N∑

i=1

(yi − ȳ(N )) (yi − ȳ(N ))T =: N − 1

N + 1
Σ̂,

where

Σ̂ = 1

N − 1

N∑

i=1

(yi − ȳ(N )) (yi − ȳ(N ))T

is a unbiased estimate of Σ. Finally, we define the test statistic

J = (ȳ(N ) − yk)
T Σ̂−1 (ȳ(N ) − yk) = N − 1

N + 1
(ȳ(N ) − yk)

T S−1 (ȳ(N ) − yk)

(3.73)
and the corresponding threshold

JT 2,th = m
(
N 2 − 1

)

N (N − m)
Fα(m, N − m). (3.74)
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3.5.3 Fault Detection Using Q Statistic

In the T 2 test statistic (3.73), computation of the inverse matrix of Σ̂ is necessary.
By a high dimensional and often ill-conditional Σ̂, such a computation may cause
numerical trouble in practical applications. As an alternative statistic,

Q = yT y (3.75)

is widely accepted in practice and applied in the multivariate analysis technique.
On the assumption of y ∼ N (0,Σy), it is proved that the distribution of Q can be
approximated by

Q ∼ gχ2(h), (3.76)

where χ2(h) denotes the χ2 distribution with h degrees of freedom, and

g = S

2E (Q)
, h = 2E2 (Q)

S
, S = E ((Q − E (Q))2

) = E (Q2) − E2 (Q) . (3.77)

For our purpose of fault detection, E (Q) , S can be estimated using the training data,
and the threshold setting for the statistic (3.76) is given by

Jth,Q = gχ2
α(h), (3.78)

where α is the acceptable FAR.

3.5.4 Application of Principal Component Analysis to Fault
Diagnosis

PCA is a basic engineeringmethod and has been successfully used in numerous areas
including data compression, feature extraction, image processing, pattern recogni-
tion, signal analysis and process monitoring. Thanks to its simplicity and efficiency
in processing huge amount of process data, PCA is recognised as a powerful tool
of statistical process monitoring and widely used in the process industry for fault
detection and diagnosis. In research, PCA often serves as a basic technique for the
development of advanced process monitoring and fault diagnosis techniques like
recursive or adaptive PCA and kernel PCA.

From χ2-test statistic to PCA

Recall that χ2-test statistic (3.4) can be, by an SVD of the covariance matrix Σ,

written in form of (3.8). Let
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P1 = [
p1 · · · pl

]
, P2 = [

pl+1 · · · pm
]
.

This test statistic can be further written as

J = yTΣ−1y

= yT P1diag
(
σ−2
1 , · · · , σ−2

l

)
PT
1 y + yT P2diag

(
σ−2
l+1, · · · , σ−2

m

)
PT
2 y. (3.79)

Alternatively, we can define two test statistics as

J1 = yT P1diag
(
σ−2
1 , · · · , σ−2

l

)
PT
1 y, (3.80)

J2 = yT P2diag
(
σ−2
l+1, · · · , σ−2

m

)
PT
2 y. (3.81)

In case that Σ is unknown, but can be estimated using data, we are able to build the
above two test statistics by means of (i) a data normalisation and (ii) the estimated
Σ, as given in (3.63). This leads to two T 2 test statistics. If, moreover, σl+1, · · · , σm

are very small and computation of σ−2
l+1, · · · , σ−2

m would cause numerical problems,
the second T 2 test statistic can be substituted by Q statistic introduced in the last
sub-section. As a result, we now have the basic form of PCA method.

The basic form of PCA

PCA method is generally applied to solving fault detection problems in static (sta-
tistical) processes. The basic PCA algorithms can be summarised as follows.

Algorithm 3.1 Offline computation (training): Given data yi , i = 1, · · · , N ,

• Center the data

ȳ(N ) = 1

N

N∑

i=1

yi , ȳi = yi − ȳ(N ) (3.82)

and form the data matrix

YN = [
ȳ1 · · · ȳN

] ∈ Rm×N ; (3.83)

• Compute the estimation of Σ

Σ̂ = 1

N − 1
YNY

T
N ; (3.84)

• Do an SVD of Σ̂

Σ̂ = PΛPT ,Λ = diag
(
σ 2
1 , · · · , σ 2

m

)
, σ 2

1 ≥ σ 2
2 ≥ · · · ≥ σ 2

m; (3.85)
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• Determine the number of principal components (PCs) l and decompose P,Λ into

Λ =
[

Λpc 0
0 Λres

]
,Λpc = diag

(
σ 2
1 , · · · , σ 2

l

)
, (3.86)

Λres = diag
(
σ 2
l+1, · · · , σ 2

m

) ∈ R(m−l)×(m−l), σ 2
l >> σ 2

l+1,

P = [
Ppc Pres

] ∈ Rm×m, Ppc ∈ Rm×l; (3.87)

• Set two thresholds,

SPE : Jth,SPE = θ1

⎛

⎝
cα

√
2θ2h20

θ1
+ 1 + θ2h0 (h0 − 1)

θ2
1

⎞

⎠

1/h0

, (3.88)

T 2
PCA : Jth,T 2

PCA
= l

(
N 2 − 1

)

N (N − l)
Fα(l, N − l), (3.89)

θi =
m∑

j=l+1

(
σ 2
j

)i
, i = 1, 2, 3, h0 = 1 − 2θ1θ3

3θ2
2

,

for a (given) significance level α with cα being the normal deviate.

Algorithm 3.2 Online detection algorithm

• Center the received data and denote them by y;
• Compute the test statistics

T 2
PCA = yT PpcΛ

−1
pc P

T
pc y, (3.90)

SPE = yT
(
I − Ppc P

T
pc

)
y = yT Pres P

T
res y, (3.91)

where SPE stands for squared prediction error;
• Make a decision according to the detection logic

SPE ≤ Jth,SPE and T 2
PCA ≤ Jth,T 2

PCA
=⇒ fault-free, otherwise faulty.

Basic ideas and properties
The original idea behind the PCA is to reduce the dimension of a data set, while
retaining, as much as possible, the variation present in the data set. The realisation
of this idea can be clearly seen from the decomposition of P,Λ into Ppc, Pres as
well as Λpc,Λres, which results in two subspaces in the m-dimensional measure-
ment subspace. The subspace spanned by PT

pc is called principal subspace , which
is constructed by those eigenvectors corresponding to the larger singular values,
σ 2
1 , · · · , σ 2

l , of the covariance matrix of the normalised measurement vector. That
means, the projection
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ŷ = PT
pc y ∈ Rl

delivers a (much) lower dimensional vector ŷ whose covariance matrix is

E (PT
pc yy

T Ppc
) = PT

pc PΛPT Ppc = Λpc.

ŷ retains the major (principal) variation and thus can be viewed as the information
carrier. In against, the covariance matrix of the projection onto the residual subspace,

yres = PT
res y ∈ Rm−l , E (yres yTres

) = Λres

is (significantly) smaller and thus yres can be, in view of its information content,
neglected.

For the fault detection purpose, two test statistics, T 2
PCA and SPE , are defined,

which are formed by means of the projections

ŷ = PT
pc y and yres = PT

res y,

respectively. We would like to call reader’s attention to the following aspects:

• Assumption and problem formulation: Although the distribution of the measure-
ment vector is often not explicitly mentioned, it becomes evident from the test
statistics and their threshold setting that the application of the PCA technique to
fault detection is based on the assumption of the normally distributedmeasurement
vector;

• Estimation of the covariance matrix: In most studies, less attention has been paid
to the data centering and normalisation. This step delivers an estimation of the
(normalised) covariance matrix Σ. As we have discussed in Sub-section3.5.1, in
the data-driven fault detection framework, this step plays a central role;

• SVD and inverse of the covariance matrix: The SVD of the (estimated) covariance
matrix is the core of the PCA technique. It serves, as discussed at the beginning
of this sub-section, as a numerical solution for the inverse computation of the
covariance matrix;

• SPE and residual subspace: Note that the columns of Pres, pl+1, · · · , pm, span a
subspace corresponding to the m − l smallest singular values, σ 2

l+1, · · · , σ 2
m . As

discussed in Sect. 3.1 and revealed by (3.9), in this subspace the fault detectability
is higher. On the other hand, it should be noticed that SPE is not a most powerful
test, since it is not an LR-type statistic, as will be discussed below.

Variation forms of PCA

It is clear that if Λres is well-conditioning and computing Λ−1
res does not cause any

numerical problem, it is suggested to apply the test statistic
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T 2
H = yT PresΛ

−1
res P

T
res y

for the detection purpose. T 2
H is called Hawkin’s T 2

H statistic and, as discussed in
Sect. 3.1, delivers the best fault detectability. Recalling that

T 2
H = yT PresΛ

−1
res P

T
res y ∼ χ2(m − l),

the corresponding threshold, different from SPE , can be exactly determined using
the available χ2 data table.

In the context of probabilistic PCA (PPCA), the process model under considera-
tion is described by

y = Ex + ε ∈ Rm, x ∈ Rn,m > n, (3.92)

ε ∼ N (0, σ 2
ε I ), x ∼ N (0, I ), (3.93)

where Ex represents the process noise with

rank (E) = n

and ε themeasurement noise. Themajor advantage of the PPCAmodel is the separate
modelling of the process and sensor noises, which enables an effective description
of the correlations among the process variables and thus increases fault detection
performance. On the other hand, such a modelling scheme requires sophisticated
modelling algorithms. The so-called expectation and maximisation (EM) algorithm
is widely applied for this purpose.

Suppose that we are only interested in detecting process fault modelled by

y = E (x + f ) + ε (3.94)

with fault vector f to be detected. Note that in the fault-free case,

E (yyT ) = EET + σ 2
ε I.

We assume that
min {σi (E) �= 0, i = 1, · · · , n} > σε.

Considering that

EET + σ 2
ε I = P

[
Λpc 0
0 σ 2

ε I

]
PT ,

P = [
Ppc Pres

]

with
Λpc = diag

(
σ 2
1 , · · · , σ 2

n

)
, σ 2

1 ≥ σ 2
2 ≥ · · · ≥ σ 2

n >> σ 2
ε ,
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fault detection can be achieved by means of the PCA method and using T 2 test
statistic

T 2
PCA = yT PpcΛ

−1
pc P

T
pc y.

We would like to call reader’s attention to the similarity of process model (3.94) to
the model (3.10) studied in Sect. 3.2 . In fact, (3.94) can be re-written as

y = E f f + ε̄, ε̄ = Ex + ε ∼ N (0, EET + σ 2
ε I ), E f = E . (3.95)

In case that σ 2
ε is, in comparison with EET , sufficiently small, that is

EET + σ 2
ε I ≈ EET ,

it turns out

yT PpcΛ
−1
pc P

T
pc y ≈ yT

(
E−)T

(
E−Σ

(
E−)T

)−1
E−y,

where the right side of the above equation is the test statistic given in Sect. 3.2 for
fault detection under the use of process model (3.10) with

Σ = EET + σ 2
ε I ≈ EET .

Hence, we can claim that, according to our study in Sect. 3.2 , the test statistic T 2
PCA

results in the best fault detection performance. On the other hand, if σ 2
ε cannot be

neglected, it is evident that

yT PpcΛ
−1
pc P

T
pc y �= yT

(
E−)T

(
E−Σ

(
E−)T

)−1
E−y.

This means, the PCA method can only deliver sub-optimal fault detection perfor-
mance. In Chap.13, we will discuss this detection problem in more details.

3.5.5 LS, PLS and CCA

Roughly speaking, LS and PLS regressions are multivariate analysis methods that
build a linear regression between two data sets expressed in form of data matrices.
In typical process monitoring applications, LS and PLS regressions are applied to
predict key process variables using process measurement data. Key process variables
often serve as indicators for process operation performance or product quality, but
may be online unavailable or sampled with a long sampling period.
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The objective of LS and PLS

Suppose that y ∈ Rm and θ ∈ Rκ represent the (centered) process measurement
vector and key process variable vector, respectively, and

y ∼ N (0,Σy), θ ∼ N (0,Σθ ).

Consider the following regression model

θ = Ψ y + εθ (3.96)

with rank(Ψ ) = κ , where εθ is the part in θ which is uncorrelated with y, that is
E(εθ yT ) = 0. Suppose thatΨ is unknown and will be estimated using available data,
y1, · · · , yN , θ1, · · · , θN . Let

YN = [
y1 · · · yN

]
,ΘN = [

θ1 · · · θN
]
.

On the assumption that data sets YN ,ΘN with a large N are available and YNY T
N is

invertible,
Ψ̂ = ΘNY

T
N

(
YNY

T
N

)−1
, θ̂ = Ψ̂ y (3.97)

deliver approximated LS (LMS as well) solutions for Ψ and θ estimations. Noting
that

1

N − 1
ΘNY

T
N ≈ E(θyT ),

1

N − 1
YNY

T
N ≈ E(yyT ),

Ψ̂ can also be written into

Ψ̂ = 1

N − 1
ΘNY

T
N

(
1

N − 1
YNY

T
N

)−1

≈ E(θyT )
(E(yyT )

)−1
.

In case that
rank

(
YNY

T
N

)
< m,

the LS estimation for Ψ is given by

Ψ̂ = ΘY T
N

(
YNY

T
N

)+

with
(
YNY T

N

)+
being the pseudo-inverse of YNY T

N , which can be expressed in terms
of the SVD of YNY T

N as follows

YNY
T
N = UΣUT ,Σ =

[
diag(σ1, · · · , σl) 0

0 0

]
,U = [

U1 U2
]

=⇒ (
YNY

T
N

)+ = UΣ+UT = U1diag
(
σ−1
1 , · · · , σ−1

l

)
UT

1 .
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The online predicted value θ̂ = Ψ̂ y can then be applied for the detection and moni-
toring purpose.

Note that for a process with a great number of sensors, the computation demand
for ΘNY T

N

(
YNY T

N

)−1
is considerably high. In addition, computing

(
YNY T

N

)−1
may

cause numerical problems. The PLS algorithms provide alternative solutions for
identifying Ψ, in which the solution is approached by iterative computations of a
series of optimisation problems. The core of these algorithms consists in the compu-
tation of the “mostly correlated” eigenvectors of matrix YNΘT

N . These algorithms are
numerically stable, reliable, and can be applied to highly dimensional processes. Due
to their complexity, these algorithms are not included here. The reader is referred to
the publications given in References. Instead, we would like to make some remarks.

Remarks on PLS-based fault diagnosis

From the viewpoint of fault diagnosis, the application of PLS regression technique
serves establishing a linear regression between two groups of variables using the
collected (training) data. The main goal is to predict the process variables based
on the established linear regression model and, using the predicted value, to realise
process monitoring and to detect changes in the process variables.

Identifying a linear regression model using process data is a trivial engineering
problem. There are numerousmathematical and engineeringmethods for solving this
problem. The questions may arise: why and under which conditions should the PLS-
based methods be applied? In order to answer these questions, we first summarise
the major features of the PLS regression:

• low computation demands: the major computation of a PLS algorithm is the so-
lution of an optimisation problem. It deals with an eigenvalue-eigenvector com-
putation of a κ × κ-dimensional matrix. Since κ << m, the computation in each
iteration is numerically highly reliable and its cost is low;

• recursive computation: the overall solution is approached step by step. In this
manner, numerical stability is achieved and unnecessary computations can be
avoided;

• sub-optimal linear regression: PLS regression technique leads to a linear regression
which is, in general, sub-optimal in the sense of least squared prediction error.

In this regard, the basic criteria for selecting the PLS regression for fault diagnosis
purpose are:

• a great number of measurement variables are available, that is a large m,
• the application goal is to find out a limited number of combinations of the mea-
surement variables, which deliver sufficient information for a reliable prediction
of the process variables under monitoring,

• the search procedure can deliver alternative solutions for testing or simulations,
• the computation capacity and resources are limited and there may exist numerical
stability and reliability concerns.
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It should be pointed out that nowadays the last point is less critical in engineering
applications, although it was, a couple of decades ago, a convincing argument for
the application of PLS instead of, for instance, LS method.

On LS, PLS and CCA

In Sub-section3.3.2, a CCA-based fault detection approach has been introduced,
in which the CCA method is applied to the computation of an LMS estimation of
process variables. Let y ∈ Rm, x ∈ Rn be two random vectors satisfying

[
x
y

]
∼ N

([
0
0

]
,

[
Σx Σxy

Σyx Σy

])
,Σyx = ΣT

xy .

Then, by the CCA algorithm described in Sub-section3.3.1, an LMS estimate for x
using the process measurement vector y is given by

x̂ = Σxy LL
T y = ΣxyΣ

−1
y y. (3.98)

Moreover,
x̂N = J TΣxy LL

T y = RTΣ−1/2
x ΣxyΣ

−1
y y

delivers an estimation for the normalised process vector x,

xN = J T x ∼ N (0, I ) ,

which is useful to build the test statistic for the fault detection purpose.
Recall that the core of PLS algorithms is the computation of the “mostly corre-

lated” eigenvectors of the estimated Σxy . In this context, PLS and CCA are similar.
Below, we introduce an alternative CCA algorithm, which delivers an LS estimate
of x using collected data of y and is numerically reliable like PLS algorithms. To
this end, we first introduce a known result.

Theorem 3.5 Given

Σx ∈ Rn×n,Σx > 0,Σy ∈ Rm×m,Σy > 0,Σxy = ΣT
yx ∈ Rn×m,

and assume that
rank

(
Σxy

) = κ.

Then, the canonical correlation vectors, Ji , Li , i = 1, · · · , κ, defined in Defini-
tion3.1, are the solution of the following optimisation problem
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max
J̄ ,L̄

tr
(
J̄ TΣxy L̄

)
(3.99)

s.t. J̄ TΣx J̄ = Iκ×κ , L̄
TΣy L̄ = Iκ×κ , (3.100)

where J̄ ∈ Rn×κ , L̄ ∈ Rm×κ .

The proof of this theorem is evident. In fact, due to constraint (3.100), J̄ , L̄ can be
parameterised as

J̄ = Σ−1/2
x Ux ,U

T
x Ux = Iκ×κ ,

L̄ = Σ−1/2
y Uy,U

T
y Uy = Iκ×κ .

It yields
tr
(
J̄ TΣxy L̄

) = tr
(
UT

x Σ−1/2
x ΣxyΣ

−1/2
y Uy

)
.

Let

K̄ =
[

Σ
−1/2
x ΣxyΣ

−1/2
y 0

0 0

]
∈ Rς×ς , Ūy =

[
Uy

0

]
∈ Rς×κ ,

Ū T
x = [

UT
x 0

] ∈ Rκ×ς , ς = min (m, n) ≥ κ.

Note that

UT
x Σ−1/2

x ΣxyΣ
−1/2
y Uy = Ū T

x K̄ Ūy ∈ Rκ×κ ,

σi
(
K̄
) = σi (K ) = σi , i = 1, · · · , κ,

σi
(
ŪyŪ

T
x

) = σi
(
UyU

T
x

) = 1, i = 1, · · · , κ,

where K is defined in (3.22). It turns out

tr
(
UT

x Σ−1/2
x ΣxyΣ

−1/2
y Uy

) = tr
(
ŪyŪ

T
x K̄

)

≤
κ∑

i=1

σi
(
ŪyŪ

T
x

)
σi
(
K̄
) =

κ∑

i=1

σi (K ) .

On the other hand, for

Ux = [
r1 · · · rκ

]
,Uy = [

v1 · · · vκ

]
,

with ri , vi , i = 1, · · · , κ, being defined in Definition 3.1, it holds

tr
(
UT

x Σ−1/2
x ΣxyΣ

−1/2
y Uy

) = tr (Σ) =
κ∑

i=1

σi (K ) .

That is,
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J̄ = [
J1 · · · Jκ

]
, L̄ = [

L1 · · · Lκ

]

solve the optimisation problem (3.99)–(3.100).
We now consider the estimation issue. Similar to the PLS study, we assume that

m >> n and κ = n. Note that

J̄ TΣxy L = J̄ TΣxy
[
L̄ L̃

] = [
Σ̄ 0

]
,

where
L̃ = [

Ln+1 · · · Lm
]
.

It yields

J̄ TΣxy L̃ = 0 =⇒ J̄ TΣxy L̄ L̄
T y = J̄ TΣxy LL

T y = RTΣ−1/2
x ΣxyΣ

−1/2
y y.

As a result, using J̄ , L̄ delivered by solving the optimisation problem (3.99), we are
able to construct an LMS estimation for the normalised process variable x, that is

x̂N = J̄ TΣxy L̄ L̄
T y. (3.101)

The data-driven realisation for x̂N is given in the following algorithm.

Algorithm 3.3 Estimation of the normalised process variable x

• Data pre-processing for XN ,YN ;
• Forming

Σxy ≈ 1

N − 1
XNY

T
N ,Σx ≈ 1

N − 1
XN X

T
N ,Σy ≈ 1

N − 1
YNY

T
N ;

• Solving optimisation problem (3.99) for J̄ , L̄;
• Estimating the normalised process variable x using (3.101).

3.6 Notes and References

Although the fault detection and estimation issues addressed in this chapter are very
basic, in which only static processes are under consideration and common statistic
and linear algebraic methods are applied for the problem solutions, the ideas and
concepts behind the solutions are fundamental. They provide us with a systematic
way of handling optimal FD and FE problems, and can be applied for other types of
systems, dynamic, time-varying or nonlinear systems, which will be investigated in
the subsequent chapters.

To begin with, a basic problem of detecting and estimating faults in the mean
of static processes, as formulated in Definition 2.4, and its general form have been
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studied. The well-known solution with χ2 test statistic is achieved based onNeyman-
Pearson Lemma, which proves, roughly speaking, the likelihood ratio delivers the
best fault detectability, when the likelihood function of the fault is known. Neyman-
Pearson Lemma is a well-known result in hypothesis testing methods. For more
details about it, the reader is referred to [1]. In the application to fault detection,
the likelihood function of the fault to be detected is in general partially known, this
requires (i) an optimal fault estimation (for instance MLE), and (ii) embedding the
fault estimate into the likelihood ratio. The achieved χ2 test statistic is the result of
this solution procedure. This is the basic idea and application procedure of the GLR
method, for which we refer the reader to the excellent monographs by Basseville and
Nikiforov [2], and by Gustafsson [3].

One point should be emphasised that a direct application of the estimated fault
to building test statistic for the FD purpose will not, in general, lead to an optimal
fault detection. On the other hand, the first step of performing MLE of f is of
considerable importance for the FD performance, in particular when the general
form of the process model (3.10) is under consideration. From the FD point of view,
this step can be interpreted as mapping the measurement vector to a subspace with
reduced influence of the noise without loss of the sensitivity to the fault.

In recent years, application of CCA technique to fault detection has become pop-
ular, thanks to the so-called residual forms (3.33) and (3.30) [4]. CCA is a standard
MVA analysis method. As introduced in Sub-section3.3.1, which is a summary of
Chap.15 in [5], CCA describes the correlation relation between two random vectors.
In [4], it has been proposed to make use of the canonical correlation vectors to build
the residual model and apply it for fault detection. The idea behind this FD scheme
is the reduction of the uncertainty in sense of variance in the process measurement,
which is well illustrated by (3.34)–(3.35). In fact, it is well-known that if two ran-
dom variables are correlated, we can use one variable to estimate the other one.
When the estimate is LMS, the covariance of the estimation error is minimum. As
shown in (3.36)–(3.37), CCA delivers such an estimate. In this sense, the residual
model (3.33) or (3.30) results in optimal FD. For the same reason and in this context,
we have the equivalence between the CCA and GLR methods, as demonstrated in
Sub-section3.3.3.

It should be stressed with all clarity that the idea of applying MVA methods to
dealing with FD issues is to extract information about uncertainty in the process
measurement variables. In the context of FD studies, the uncertainty is expressed in
terms of the covariance matrix and serves as a weighting matrix in the χ2 test statistic
to increase the sensitivity to the faults. In the CCA method, the covariance matrix is
adopted to construct an estimate of a random (measurement) random variable using
another (measurement) random variable aiming at reducing the uncertainty (again
expressed in terms of its variance) in the estimated random variable.

In comparison with FD studies on processes with measurement noises, research
work on FD in processes with deterministic disturbances has rarely been reported.
One reason could be that there exists no established framework for such investiga-
tions. Under this consideration, our efforts have been devoted to solving the optimal
FD problems formulated in Definitions 2.7 and 2.9, which serve as a frame for our
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study. The achieved solutions are given in Theorems 3.2–3.3. Some interesting as-
pects are summarised as follows:

• like the handling of statistic FD problems, an LS fault estimation builds the first
step towards reducing the influence of the unknown disturbance,

• it is followed by switching on the right inverse of themapping from the disturbance
to the measurement,

• by using ‖·‖2 as the evaluation function, the threshold is set to be the bound of the
disturbance δ2d .

The computation of finding the right inverse of the mapping from the disturbance to
the measurement is a key step of the solution for the optimal FD problem given in
Definition 2.7. It can be understood as an LS estimate of the disturbance d, whose
norm, as the LS solution, is bounded by δd . This enables us to make use of available
information about the disturbance d to achieve optimal fault detection.

The so-called data-driven solutions of FD and FE problems addressed in Sect. 3.5
deal with the identical FD and FE problems presented in the previous sections on
the same model assumptions, but without a priori knowledge of the model parame-
ters. Instead, great number of process operation data are collected and recorded. It is
worth mentioning that the model assumptions are essential for the test statistic build-
ing and threshold setting, although they are not explicitly mentioned in most of the
publications on these issues. In such a case, it is intuitional to use the recorded data
for the purpose of identifying the (unknown) model parameters, which then allows
us to apply the existing (model-based) statistical methods to detect and estimate the
faults. In general, data-driven FD schemes consist of two phases: (i) (offline) training
aiming to identify the model parameters, and (ii) online detection and estimation.
In application practice, it is the state of the art that the recorded process data are
assumed to be collected during the fault-free operations. As a result, on the assump-
tion of process model (3.1) or (3.10), the mean value and covariance matrix of the
measurement noise are identified using the recorded process data.

In Sub-section3.5.2, we have studied the data-driven fault detection problem, in
which the “training data” and onlinemeasurement data are treated as two independent
samples and the detection problem is formulated as detecting the difference (change)
between the mean values of the samples. By means of the T 2 test statistic for change
detection, the threshold setting is realised using F-distribution. We refer the reader
to [5–7] for the needed mathematical knowledge and detailed discussion in this
subsection. The proof of Theorem 3.4 can be found, for instance, in Sect. 5.2 in [5].
As an alternative statistic, we have introduced Q test statistic in Subsection3.5.3.
This test statistic has been, for instance, proposed by Nomikos and MacGregor for
process monitoring [8], where the T 2 test statistic is, considering the involved inverse
computation of the covariance matrix, replaced by the Q test statistic for a reliable
monitoring performance. For the purpose of threshold setting, the χ2 approximations
of the Q test statistic that was proposed and proved by Box [9] has been adopted.

PCA is a basic MVA method and widely applied to data compression, feature
extraction, image processing, pattern recognition, signal analysis and process mon-
itoring [10]. The application of the basic PCA algorithms, as summarised in Sub-
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section3.5.4, to fault detection can be found, for example, in [11–13]. We have
illustrated that the basic PCA algorithms are, for their FD application, a special case
of χ2 or T 2 test statistic. The SVD performed in the PCA offline computation algo-
rithm serves as numerical computation of the inverse of the covariance matrix of the
measurements. It does not lead to any improvement of fault detection performance.

In the past two decades, numerous variations of PCAmethods have been reported.
A recent development is the application of the PPCA technique [14] to process mon-
itoring and fault detection [15].We have briefly discussed about PPCA application in
the context of detecting possible faults (changes in themean value) using process data
and on the assumption of model (3.92)–(3.93) without touching the modelling issue
which is typically handled using the EM algorithm. This topic will also be addressed
in Chap.13. Further developments of the PCA technique include, for example, the
recursive implementation of PCA [16], fast moving window PCA [17], kernel PCA
[18], and dynamic PCA [12], just mentioning some representative algorithms.

PLS is a standard tool and widely used in chemometrics [19]. The first successful
applications of PLS to fault diagnosis and process monitoring have been reported in
[11, 20, 21]. Roughly speaking, PLS regression is an MVAmethod that constructs a
linear regression between two random variables based on their correlation (expressed
by the covariance matrix). It is evident that there exist close relations between the
LS, CCA and PLS methods. This fact also motivates our work in Sub-section3.5.5.
In [22], it has been demonstrated that PLS performs an oblique projection instead
of an orthogonal one, as done in the LS or CCA methods. Consequently, LS and
CCA algorithms deliver an LMS estimate or minimum variance residual vector and
thus perform an optimal FD, as illustrated in our study. Differently, the advantage of
the standard PLS algorithm lies in the numerical reliability. There exist a number of
variations of PLS regression algorithms [23–25], and remarkable efforts have been
made recently to improve its application to process monitoring and fault diagnosis.
In [26], recursive PLS (RPLS) has been proposed. Li et al. have studied the geometric
properties of PLS for process monitoring [22]. Zhou et al. have developed the so-
called T-PLS (total PLS) approach [27]. Benchmark and comparison studies on PLS
and successful applications of PLS have been reported in [12, 28–30].
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Chapter 4
Basic Methods for Fault Detection in
Dynamic Processes

Issues related to fault diagnosis in dynamic processes are important topics in the
application and research domains. Thanks to their intimate relations to automatic
control systems, model-based schemes are widely accepted as a powerful technol-
ogy in dealing with process monitoring and fault diagnosis in dynamic processes.
Triggered by the recent trend with machine learning and big data, data-driven design
of model- and observer-based fault detection systems for dynamic processes draws
remarkable research attention, in which various schemes have been proposed.

In this chapter, we first review some basic model-based methods for residual
generation. It is followed by the introduction of two basic model-based methods for
fault detection in dynamic processes. Our focus is on

• outlining the basic ideas and principles of model- and observer-based fault detec-
tion, which are of considerable importance for our subsequent study, and

• demonstrating how they solve the fault detection problems formulated in Chap. 2.

We will also present a data-driven design scheme for model- and observer-based
fault detection systems.

4.1 Preliminaries and Review of Model-Based Residual
Generation Schemes

Residual generation is an essential step for detecting faults in dynamic processes
driven by certain input variables. Roughly speaking, residual generation is

• to build software redundancy for process measurement variables and
• to create a residual vector by comparing the process measurement variables and
their software redundancy.

In the ideal case, the residual vector should contain information about all possible
process variations causedby faults anddisturbances, and is independent of the process
input variables. The mostly popular way to build software redundancy is the use of
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a nominal process model and, based on it, the construction of an observer, or in
general, a residual generator.

4.1.1 Nominal System Models

A dynamic system can be described in different ways. The so-called linear time
invariant (LTI) system model offers the simplest form and thus is widely used in
research and application domains. We call disturbance-free and fault-free systems
nominal, and suppose that the nominal systems are LTI. There are two basic mathe-
matical model forms for LTI systems: the transfer function matrix and the state space
representation.

Transfer function and state space representation

Roughly speaking, a transfer (function) matrix is an input-output description of the
dynamic behaviour of an LTI system in the frequency domain. Throughout this book,
notation Gyu(z) is used for presenting a transfer matrix from the input vector u ∈ Rl

to the output vector y ∈ Rm, that is,

y(z) = Gyu(z)u(z). (4.1)

It is assumed that Gyu(z) is a proper real-rational matrix. We use z to denote the
complex variable of z-transform for discrete-time signals.

The standard form of the state space representation of a discrete-time LTI system
is

x(k + 1) = Ax(k) + Bu(k), x(0) = x0, (4.2)

y(k) = Cx(k) + Du(k), (4.3)

where x ∈ Rn is called the state vector, x0 the initial condition of the system, u ∈ Rl

the input vector and y ∈ Rm the output vector.Matrices A, B,C, D are appropriately
dimensioned real constant matrices.

State space models can be either directly achieved by modelling or derived based
on a transfer matrix. The latter is called a state space realisation of

Gyu(z) = C(z I − A)−1B + D,

and denoted by

Gyu(z) = (A, B,C, D) or Gyu(z) =
[
A B
C D

]
. (4.4)
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In general, we assume that (A, B,C, D) is a minimal realisation of Gyu(z).

Remark 4.1 Throughout the book, for the sake of simplicity, we may drop out of
the (frequency or time) domain variable of a transfer function or a system variable,
when this does not cause any confusion. For example, we may use Gyu instead of
Gyu(z), y instead of y(k).

Coprime factorisation technique

Coprime factorisation of a transfer function matrix gives a further system represen-
tation form which will be intensively used in our subsequent study. In simple words,
a coprime factorisation over RH∞ is to factorise a transfer matrix into two stable
and coprime transfer matrices.

Definition 4.1 Two stable transfer matrices M̂(z), N̂ (z) are called left coprime if
there exist two stable transfer matrices X̂(z) and Ŷ (z) such that

[
M̂(z) N̂ (z)

] [ X̂(z)
Ŷ (z)

]
= I. (4.5)

Similarly, two stable transfer matrices M(z), N (z) are right coprime if there exist
two stable matrices Y (z), X (z) such that

[
X (z) Y (z)

] [M(z)
N (z)

]
= I. (4.6)

Let G(z) be a proper real-rational transfer matrix. The left coprime factorisation
(LCF) of G(z) is a factorisation of G(z) into two stable and coprime matrices which
will play a key role in designing the so-called residual generator. To complete the
notation, we have also introduced the right coprime factorisation (RCF), which is
however only occasionally applied in dealing with residual generation issues and
mainly in the control relevant context.

Definition 4.2 G(z) = M̂−1(z)N̂ (z) with the left coprime pair
(
M̂(z), N̂ (z)

)
is

called LCF of G(z). Its dual form, RCF of G(z), is defined by G(z) = N (z)M−1(z)
with the right coprime pair (M(z), N (z)).

Below are the computation formulas for
(
M̂(z), N̂ (z)

)
, (M(z), N (z)) and the

associated pairs
(
X̂(z), Ŷ (z)

)
and (X (z),Y (z)) .

SupposeG(z) is a proper real-rational transfermatrixwith a state space realisation
(A, B,C, D), and it is stabilisable and detectable. Let F and L be so that A + BF
and A − LC are Schur matrices (that is, their eigenvalues are inside the unit circle
on the complex plane). Then
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M̂(z) = (A − LC,−L ,C, I ) , N̂ (z) = (A − LC, B − LD,C, D) , (4.7)

M(z) = (A + BF, B, F, I ) , N (z) = (A + BF, B,C + DF, D) , (4.8)

X̂(z) = (A + BF, L ,C + DF, I ) , Ŷ (z) = (A + BF,−L , F, 0) , (4.9)

X (z) = (A − LC,−(B − LD), F, I ) ,Y (z) = (A − LC,−L , F, 0) (4.10)

give the LCF and RCF of G(z) as well as two other coprime pairs
(
X̂(z), Ŷ (z)

)
and

(X (z),Y (z)) , respectively. These eight transfer matrices build the so-called Bezout
identity [

X (z) Y (z)
−N̂ (z) M̂(z)

] [
M(z) − Ŷ (z)
N (z) X̂(z)

]
=
[
I 0
0 I

]
. (4.11)

4.1.2 Observer-Based Residual Generation Schemes

Next, we introduce two standard observer-based residual generation schemes.

Fault detection filter

Fault detection filter (FDF) is a type of observer-based residual generators proposed
by Beard and Jones in the early 1970s. Their work marked the beginning of a stormy
development of model-based FDI techniques.

The core of an FDF is a full-order state observer

x̂(k + 1) = Ax̂(k) + Bu(k) + L
(
y(k) − Cx̂(k) − Du(k)

)
, (4.12)

which is constructed on the basis of the nominal system model

Gyu(z) = C(z I − A)−1B + D.

Built upon (4.12), the residual is simply defined by

r(k) = y(k) − ŷ(k) = y(k) − Cx̂(k) − Du(k). (4.13)

The advantages of an FDF lie in its simple construction form and, for the reader
who is familiar with the modern control theory, in its intimate relationship with the
state observer design and especially with the well-established robust control theory
by designing robust residual generators.

We see that the design of an FDF is in fact the determination of the observer gain
matrix L . To increase the degree of design freedom, we can switch a matrix to the
output estimation error y(z) − ŷ(z), that is
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r(z) = V
(
y(z) − ŷ(z)

)
. (4.14)

Diagnostic observer scheme

The diagnostic observer (DO) is, thanks to its flexible structure and similarity to
the Luenberger type observer, one of the mostly investigated model-based residual
generator forms.

The core of a DO is a Luenberger type (output) observer described by

ξ(k + 1) = Gξ(k) + Hu(k) + Ly(k), (4.15)

r(k) = V y(k) − Wξ(k) − Qu(k), (4.16)

where ξ ∈ Rs , s denotes the observer order and can be equal to or lower or
higher than the system order n. Although most contributions to the Luenberger type
observer are focused on the case with lower order aiming at getting a reduced order
observer, higher order observers may play an important role in the optimisation of
fault detection systems.

Assume Gyu(z) = C(z I − A)−1B + D, then matrices G, H, L , Q, V and W
together with amatrix T ∈ Rs×n have to satisfy the so-called Luenberger conditions,

I. G is a Schur matrix, (4.17)

I I. T A − GT = LC, H = T B − LD, (4.18)

I I I. VC − WT = 0, Q = V D, (4.19)

under which system (4.15)–(4.16) delivers a residual vector satisfying

∀u, x(0), lim
k→∞ r(k) = 0.

Let
e(k) = T ξ(k) − x(k).

It is straightforward to show that the system dynamics of DO is governed by

e(k + 1) = Ge(k), r(k) = Ve(k).

4.1.3 Parity Space Approach

The parity space approach was initiated by Chow and Willsky in their pioneering
work in the early 1980’s. The parity space approach is generally recognised as one
of the important model-based residual generation approaches.
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We consider in the following state space model (4.2)–(4.3) and, without loss of
generality, assume

rank(C) = m.

Introducing the notations

ys(k) =

⎡
⎢⎢⎢⎣

y(k − s)
y(k − s + 1)

...

y(k)

⎤
⎥⎥⎥⎦ , us(k) =

⎡
⎢⎢⎢⎣

u(k − s)
u(k − s + 1)

...

u(k)

⎤
⎥⎥⎥⎦ , (4.20)

Ho,s =

⎡
⎢⎢⎢⎣

C
CA
...

CAs

⎤
⎥⎥⎥⎦ , Hu,s =

⎡
⎢⎢⎢⎢⎣

D 0 · · · 0

CB D
. . .

...
...

. . .
. . . 0

CAs−1B · · · CB D

⎤
⎥⎥⎥⎥⎦ , (4.21)

a straightforward computation using the state space model (4.2)–(4.3) yields the
following compact model form

ys(k) = Ho,s x(k − s) + Hu,sus(k). (4.22)

Note that (4.22) describes the input and output relationship in dependence on the
past state vector x(k− s), which is unknown (not measured). The underlying idea of
the parity relation based residual generation lies in the utilisation of the fact, known
from the linear control theory, that for s ≥ n the following rank condition holds:

rank
(
Ho,s

) ≤ n < the row number of matrix Ho,s = (s + 1)m.

This ensures that for s ≥ n there exists at least a (row) vector

vs( �= 0) ∈ R(s+1)m

such that
vs Ho,s = 0. (4.23)

Hence, a parity relation based residual generator is constructed by

r(k) = vs
(
ys(k) − Hu,sus(k)

)
, (4.24)

whose dynamics is governed by

r(k) = vs
(
ys(k) − Hu,sus(k)

) = vs Ho,s x(k − s) = 0.

Vectors satisfying (4.23) are called parity vectors, the set of which,
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Ps = {vs | vs Ho,s = 0}, (4.25)

is called the parity space of the s-th order.
One of the significant properties of parity relation based residual generators, also

widely viewed as the main advantage over the observer-based approaches, is that
the design can be carried out in a straightforward manner. In fact, it only deals with
solutions of linear equations or linear optimisation problems. In against, the imple-
mentation form (4.24) is surely not optimal for an online realisation, since for the
online computation not only the temporal but also a number of past measurement and
input data are needed, which have to be recorded. In Sub-section 4.4.5, a one-to-one
mapping between the parity space approach and the observer-based approach will
be presented, which allows an observer-based residual generator construction for
a given a parity vector. Based on this result, a strategy called parity space design,
observer-based implementation has been developed, which makes use of the com-
putational advantage of parity space approaches for the system design (selection of a
parity vector or matrix) and then realises the solution in the observer form to ensure a
numerically stable and less consuming on-line computation. This strategy has been,
for instance, successfully used in the sensor fault detection in vehicles and highly
evaluated by engineers in industry. It is worth mentioning that the strategy of parity
space design, observer-based implementation can also be applied to continuous-time
systems.

4.1.4 Kernel Representation and Parameterisation of
Residual Generators

In the model-based fault detection framework, the FDF and DO based residual gen-
erators are called closed-loop configurated, since a feedback of the residual signal is
embedded in the system configuration and the computation is realised in a recursive
form. Differently, the parity space residual generator is of an open-loop structure. In
fact, it is an FIR (finite impulse response) filter. Below, we briefly introduce a general
form for all types of LTI residual generators, which is also called parameterisation
of residual generators.

A fundamental property of the LCF is that in the fault- and disturbance-free case

∀u,
[−N̂ (z) M̂(z)

] [ u(z)
y(z)

]
= 0. (4.26)

Equation (4.26) is called kernel representation (KR) of the system under consid-
eration and useful in parameterising all residual generators. For our purpose, we
introduce below a more general definition of kernel representation.

Definition 4.3 Given system (4.2)–(4.3), a stable linear system K driven by u(z),
y(z) and satisfying
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∀u(z), r(z) = K
[
u(z)
y(z)

]
= 0 (4.27)

is called stable kernel representation (SKR) of system (4.2)–(4.3).

It is clear that system
[−N̂ (z) M̂(z)

]
is an SKR. Now, consider the process model

(4.2)–(4.3). A parameterisation form of all LTI residual generators is described by

r(z) = R(z)
[−N̂ (z) M̂(z)

] [ u(z)
y(z)

]
, (4.28)

where R(z) ( �= 0) is a stable parameterisation systemand called post-filter.Moreover,
in order to avoid loss of information about faults to be detected, in general, the
condition

rank(R(z)) = m

is to be satisfied.
It has been demonstrated that

[−N̂ (z) M̂(z)
] [ u(z)

y(z)

]
= y(z) − ŷ(z) (4.29)

with ŷ being delivered by a full order observer as an estimate of y. Consequently,
we can apply an FDF,

x̂(k + 1) = Ax̂(k) + Bu(k) + L
(
y(k) − ŷ(k)

)
, ŷ(k) = Cx̂(k) + Du(k),

for the realisation of (4.28). Based on this result, it is also straightforward to prove
the following relation between the observer setting and post-filter.

Lemma 4.1 Given

r1(z) = M̂1(z)y(z) − N̂1(z)u(z), r2(z) = M̂2(z)y(z) − N̂2(z)u(z)

M̂i (z) = (
ALi ,−Li ,C, I

)
, N̂i (z) = (

ALi , B − Li D,C, D
)

ALi = A − LiC, i = 1, 2,

then, it holds

[
M̂2(z) N̂2(z)

] = Q21(z)
[
M̂1(z) N̂1(z)

] =⇒ r2(z) = Q21(z)r1(z), (4.30)

Q21(z) = I − C
(
z I − AL2

)−1
(L2 − L1) .

Moreover, Q21(z) is invertible, and Q−1
21 (z) is stable and satisfies

Q−1
21 (z) = I − C

(
z I − AL1

)−1
(L1 − L2) = Q12(z),
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which gives

[
M̂1(z) N̂1(z)

] = Q12(z)
[
M̂2(z) N̂2(z)

] =⇒ r1(z) = Q12(z)r2(z).

Remark 4.2 Consider a parity relation based residual vector r(k),

r(k) = Vs
(
ys(k) − Hu,sus(k)

)
,

where Vs ∈ Rm×(s+1)m is the parity matrix. Let

Vs = [
Vs,0 · · · Vs,s

]
, Vs,i ∈ Rm×m, i = 0, 1, · · · , s,

and assume
rank

(
Vs,s

) = m.

Then, r(k) can also be parameterised in the form

r(k) = Vs
(
ys(k) − Hu,sus(k)

) = V
(
y(k) − ŷ(k)

)
,

by defining

V = Vs,s, ŷ(k) = V−1
s,s

(
VsHu,sus(k) − Vs−1ys−1(k − 1)

)
,

Vs−1 = [
Vs,0 · · · Vs,s−1

]
, ys−1(k − 1) =

⎡
⎢⎣
y(k − s)

...

y(k − 1)

⎤
⎥⎦ .

4.2 Fault Detection in Linear Stochastic Processes

Consider the process model

x(k + 1) = A(k)x(k) + B(k)u(k) + E(k)w(k), (4.31)

y(k) = C(k)x(k) + D(k)u(k) + v(k), (4.32)

where x(k) ∈ Rn, u(k) ∈ Rp, y(k) ∈ Rm are process state, input and output
vectors, respectively, and all system matrices are of appropriate dimensions and
known. w(k) ∈ Rkw , v(k) are process and measurement noise vectors. It is assumed
that they are uncorrelated with the state and input vectors, and
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w(k) ∼ N (0,Σw(k)) , v(k) ∼ N (0,Σv(k)) ,

E

⎛
⎜⎝
⎡
⎣w(i)

v(i)
x (0)

⎤
⎦
⎡
⎣w( j)

v( j)
x (0)

⎤
⎦

T
⎞
⎟⎠ =

⎡
⎣
[

Σw(i) Swv(i)
STwv(i) Σv(i)

]
δi j 0

0 �0

⎤
⎦ , δi j =

{
1, i = j,
0, i �= j.

It is well-known that a Kalman filter with the recursive algorithm,

x̂(k + 1 |k ) = A(k)x̂(k |k − 1 ) + B(k)u(k) + K (k)r(k),

r(k) = y(k) − ŷ(k |k − 1 ), x̂(0) = 0,

ŷ(k |k − 1 ) = C(k)x̂(k |k − 1 ) + D(k)u(k),

K (k) = (
A(k)P(k |k − 1 )CT (k) + E(k)Swv(k)

)
Σ−1

r (k),

P(k + 1 |k ) = A(k)P(k |k − 1 )AT (k) + E(k)Σw(k)ET (k)

−K (k)Σr (k)K
T (k),

Σr (k) = C(k)P(k |k − 1 )CT (k) + Σv(k) = E (r(k)r T (k)
)
,

delivers a residual vector r(k) ∈ Rm, which is white and of minimum covariance
matrix.

Thewhiteness of the residual vector allows us to approach the fault detection prob-
lem at each time instant equivalently to the basic fault detection problem described
in Sect. 3.1 with the model

r(k) = f (k) + ε(k), ε(k) ∼ N (0,Σr (k)), (4.33)

where f (k) represents any type of possible faults in the process or in the sensors and
actuators. As described in Sect. 3.1, for given model (4.33) and an acceptable FAR
α, setting {J, Jth} equal to

J (k) = r T (k)Σ−1
r (k)r(k), Jth = χ2

α, (4.34)

leads to the optimal solution for fault detection with maximum fault detectability,
as defined in (2.5). It is remarkable that the property with the minimum covariance
matrix Σr (k) results in overall maximal fault detectability. That is, given system
model (4.31)–(4.32), the above Kalman filter based fault detection system delivers,
in comparison with all other potential (linear) fault detection systems, the best fault
detectability at the FAR level α.
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4.3 Fault Detection in Linear Processes with Unknown
Inputs

Consider the process model

x(k + 1) = Ax(k) + Bu(k) + E f f (k) + Edd(k), (4.35)

y(k) = Cx(k) + Du(k) + Ff f (k) + Fdd(k), (4.36)

where x(k), u(k), y(k) are as given in model (4.31)–(4.32), d(k) ∈ Rkd , f (k) ∈ Rk f

represent unknown input and fault vectors, respectively. It is assumed that d(k) is l2
bounded with

‖d‖22 ≤ δ2d . (4.37)

Fault detection issues for processes modelled by (4.35)–(4.36) have been extensively
investigated. Our objectives in this section are

• to introduce the so-called “unified solution”,
• to demonstrate that this unified solution solves the optimal fault detection problem
given in Definition 2.7,

• to present an interpretation of the unified solution from an alternative viewpoint,
and finally

• to give a dual form of the unified solution, which solves the optimal fault detection
problem given in Definition 2.9.

4.3.1 A Basic Form of the Unified Solution

Consider the process model (4.35)–(4.36). Under the assumption

rank
(
Gyf (z)

) = m,Gyf (z) = C (z I − A)−1 E f + Ff , (4.38)

∀θ ∈ [0, 2π ], rank
[
A − e jθ I Ed

C Fd

]
= n + m, (4.39)

it is proved that the residual generator

x̂(k + 1) = Ax̂(k) + Bu(k) + L2
(
y(k) − ŷ(k)

)
, (4.40)

r(k) = Vr
(
y(k) − ŷ(k)

)
, ŷ(k) = Cx̂(k) + Du(k), (4.41)

L2 = (
AXCT + Ed F

T
d

)
V 2
r , Vr = (

CXCT + Fd F
T
d

)−1/2
, (4.42)

where X > 0 solves the Riccati equation

AX AT − X + Ed E
T
d − L2

(
CXCT + Fd F

T
d

)
LT
2 = 0, (4.43)
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is optimal in the sense of

∀θ ∈ [0, 2π ], {L2, Vr } = arg sup
L ,V

σi

(
V N̂ f (e jθ )

)
∥∥∥V N̂d

∥∥∥∞

, i = 1, · · · ,m, (4.44)

N̂ f (z) = Ff + C (z I − A + LC)−1
(
E f − LFf

)
,

N̂d(z) = Fd + C (z I − A + LC)−1 (Ed − LFd)

with σi

(
V N̂ f (e jθ )

)
denoting the singular values of V N̂ f (e jθ ). V N̂ f (z), V N̂d(z)

represent the transfer functions from f and d to r , respectively. Since this solution
is a unified and generalised form for the so-calledH−/H∞ andH∞/H∞ solutions,
it is called unified solution. The optimisation problem formulated in (4.44) is also
called Hi/H∞ optimisation.

Moreover, it is known that Vr N̂d satisfies

∀θ ∈ [0, 2π ], Vr N̂d(e
jθ )
(
Vr N̂d(e

− jθ )
)T = I, (4.45)

which is called co-inner. As a result, in the fault-free case,

∀d, ‖r‖22 =
∥∥∥Vr N̂d

∥∥∥2
2

≤ ‖d‖22 . (4.46)

This suggests the residual evaluation function

J = ‖r‖22 (4.47)

and threshold
Jth = δ2d . (4.48)

4.3.2 Optimality of the Unified Solution

We now demonstrate that the unified solution solves the optimal fault detection
problem given in Definition 2.7. To this end, Theorem 2.1 is used. Recall that for
the process model (4.35)–(4.36), the image of the disturbance vector and the fault
domain, as defined in (2.12) and Definition 2.7, are

Id = {
yd
∣∣yd = Gyd(z)d(z),∀d ∈ Dd , ‖d‖2 ≤ δd

}
,

D f,undetc = {
f
∣∣y f = Gyf (z) f (z) ∈ Id

}
,

where



4.3 Fault Detection in Linear Processes with Unknown Inputs 93

Gyd = Fd + C (z I − A)−1 Ed .

That means in turn
Md = Gyd(z),M f = Gyf (z).

On the other hand, it is well-known that the dynamics of the residual generator is
governed by

r(z) = V N̂ f (z) f (z) + V N̂d(z)d(z), (4.49)

V M̂(z)Gyf (z) = V N̂ f (z), V M̂(z)Gyd(z) = V N̂d(z) (4.50)

with
M̂(z) = I − C (z I − A + LC)−1 L . (4.51)

We now prove that for
L = L2, V = Vr ,

as given in (4.42),
M−

d = Vr M̂(z)

satisfies the three conditions given in Theorem 2.1. It is evident thatM−
d is invertible

and, as given in (4.46),

∀d, ‖r‖22 = ∥∥M−
d ◦ Md(d)

∥∥2
2 =

∥∥∥Vr N̂d

∥∥∥2
2

≤ ‖d‖22 .

Thus, Conditions (i) and (ii) are satisfied. Next, considering that Vr N̂d(z) is co-inner,
it holds

∀r, ∃d s.t. ‖r‖22 =
∥∥∥Vr N̂dd

∥∥∥2
2

= ‖d‖22 .

Therefore, ∀ f leading to

∥∥r f

∥∥2
2 =

∥∥∥Vr N̂ f f
∥∥∥2
2

≤ δ2d ,

r f = Vr M̂(e jθ )Gyf (e
jθ ) f (e jθ ) = Vr N̂ f (e

jθ ) f (e jθ ),

∃d so that ∥∥r f

∥∥2
2 =

∥∥∥Vr N̂ f f
∥∥∥2
2

=
∥∥∥Vr N̂dd

∥∥∥2
2
.

That means, Condition (iii) with (2.22) is also satisfied. As a result, we have proved
the following theorem.

Theorem 4.1 Given the process model (4.35)–(4.36) and the residual generator
(4.40)–(4.42), then {J, Jth} given by
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J = ‖r‖22 , Jth = δ2d (4.52)

deliver the optimal solution for the fault detection problem given in Definition 2.7.

In a similar way, we can also find an optimal solution to the dual fault detection
problem given in Definition 2.9, which is summarised in the following corollary.

Corollary 4.1 Given the process model (4.35)–(4.36), the margin of detectable
faults β and the FDF (4.12)–(4.14), and assume that

Gy f (z) ∈ Cm×k f , rank
(
Gyf (z)

) = m, (4.53)

∀θ ∈ [0, 2π ], rank
[
A − e jθ I E f

C Ff

]
= n + m. (4.54)

Then, {L , V, J, Jth} given by

L = (
AXCT + E f F

T
f

)
V 2, V = (

CXCT + Ff F
T
f

)−1/2
, (4.55)

J = ‖r‖22 , Jth = β2 (4.56)

solve the optimal fault detection problem given in Definition 2.9, where X > 0 solves
the Riccati equation

AX AT − X + E f E
T
f − L

(
CXCT + Ff F

T
f

)
LT = 0. (4.57)

Proof It is clear that the dynamics of the residual generator (FDF) is governed by

r(z) = V N̂ f (z) f (z) + V N̂d(z)d(z) (4.58)

where N̂ f (z), N̂d(z) are as given in (4.44). Moreover, the FDF gain matrix and the
post-filter {L , V } given in (4.55) result in, analogous to the unified solution, that
V N̂ f (z) is co-inner. That is

∀θ ∈ [0, 2π ], V N̂ f (e
jθ )
(
V N̂ f (e

− jθ )
)T = I. (4.59)

Hence,

∀ f,
∥∥r f

∥∥2
2 =

∥∥∥V N̂ f f
∥∥∥2
2

= ‖ f ‖22 . (4.60)

Recall that
M f = Gyf (z), V M̂(z)Gyf (z) = V N̂ f (z).

Thus, V M̂(z) isM−
f that yields

r f = M−
f M f ( f )
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satisfying (4.60). Finally, according to Corollary 2.1, it is proved that {L , V } and
{J, Jth} given by (4.55)–(4.56) solve the optimal fault detection problem given in
Definition 2.9.

4.3.3 An Alternative Interpretation and Solution Scheme

Analogue to the solutions for the optimal fault detection in static processes, as dis-
cussed in Sect. 3.4, the solution to the fault detection problem given in Definition
2.7 can be interpreted as finding a generalised inverse of Gyd or an optimal estima-
tion of d . To this end, the co-inner-outer factorisation serves as a useful tool. By a
co-inner-outer factorisation of Gyd ,

Gyd(z) =
(
Vr M̂(z)

)−1
Vr N̂d(z)

with Vr N̂d as co-inner and
(
Vr M̂(z)

)−1
co-outer, Vr M̂(z) can be interpreted as a

generalised inverse of Gyd(z). Correspondingly, the evaluation function, in the fault-
free case,

‖r‖22 =
∥∥∥Vr M̂d

∥∥∥2
2

is a generalised form of (3.56).
Similarly, we can also view ‖r‖22 as an estimate for ‖d‖22. The relation (4.46)

allows us to use available information about the disturbance, namely, its l2 norm
boundedness δd , for the threshold setting. That is

Jth = δ2d .

In our subsequent investigation on optimal solutions for detecting faults in various
types of dynamic systems, for instance, for time-varying systems and a class of
nonlinear systems, we shall derive the solutions directly applying co-inner-outer
factorisation technique.

4.4 A Data-Driven Method for Fault Detection in Dynamic
Processes

We now review a data-driven method for detecting faults in dynamic processes. The
core of this approach is the identification of system kernel representation, which
has been, in the initial form, called subspace technique aided identification of parity
vectors.
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4.4.1 An Input-Output Data Model

For our purpose, we first introduce an input-output (I/O) data model. It is essential
in our subsequent study and builds a link between the model-based fault detection
schemes introduced in the previous sections and the data-driven design method to
be introduced below. For our purpose, the following LTI process model is assumed
to be the underlying model form adopted in our study

x(k + 1) = Ax(k) + Bu(k) + w(k), (4.61)

y(k) = Cx(k) + Du(k) + v(k), (4.62)

where u ∈ Rp, y ∈ Rm and x ∈ Rn, w ∈ Rn and v ∈ Rm denote white noise
sequences that are statistically independent of u and x(0).

Let ω(k) ∈ Rξ be a data vector. We introduce the following notations:

ωs(k) =
⎡
⎢⎣

ω(k − s)
...

ω(k)

⎤
⎥⎦ ∈ R(s+1)ξ , �k = [

ω(k) · · · ω(k + N − 1)
] ∈ Rξ×N ,

(4.63)

�k,s = [
ωs(k) · · · ωs(k + N − 1)

] =
⎡
⎢⎣

�k−s
...

�k

⎤
⎥⎦ ∈ R(s+1)ξ×N , (4.64)

where s, N are some (large) integers. Note that by the notation ωs(k) the time instant
k in the bracket denotes the end time instant of the ω vector, and sub-index s is used
in denoting the start time instant k − s. In our study, ω(k) can be y(k), u(k), x(k),
w(k), v(k), and ξ represents m or p or n given in (4.61)–(4.62).

By a straightforward computation using the state space model (4.61)–(4.62) and
the notations (4.63)–(4.64), we have a data model of the form

Yk,s = �s Xk−s + Hu,sUk,s + Hw,sWk,s + Vk,s ∈ R(s+1)m×N , (4.65)

Xk−s = [
x(k − s) · · · x(k − s + N − 1)

]
, �s =

⎡
⎢⎢⎢⎣

C
CA
...

CAs

⎤
⎥⎥⎥⎦ ∈ R(s+1)m×n,

Hu,s =

⎡
⎢⎢⎢⎢⎣

D 0

CB
. . .

. . .

...
. . .

. . . 0
CAs−1B · · · CB D

⎤
⎥⎥⎥⎥⎦ , Hw,s =

⎡
⎢⎢⎢⎢⎣

0 0

C
. . .

. . .

...
. . .

. . . 0
CAs−1 · · · C 0

⎤
⎥⎥⎥⎥⎦ ,
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where Hu,s ∈ R(s+1)m×(s+1)p, Hw,sWk,s + Vk,s represents the influence of the noise
vectors on the process output, and Wk,s, Vk,s are as defined in (4.63)–(4.64).

Recall that a (steady) Kalman filter,

x̂(k + 1) = Ax̂(k) + Bu(k) + K
(
y(k) − ŷ(k)

)
, ŷ(k) = Cx̂(k) + Du(k),

can be re-written as

x̂(k + 1) = AK x̂(k) + BKu(k) + Ky(k), (4.66)

AK = A − KC, BK = B − K D

with K as the Kalman filter gain matrix. It yields, for some integers i, sp,

x̂(k − i) = A
sp
K x̂(k − i − sp) +

[
A
sp−1
K BK · · · BK

]
usp−1(k − i − 1)

+
[
A
sp−1
K K · · · K

]
ysp−1(k − i − 1) =⇒

X̂k−s = [
x̂(k − s) · · · x̂(k − s + N − 1)

]
= A

sp
K

[
x̂(k − s − sp) · · · x̂(k − s + N − 1 − sp)

]+ L pZ p,

L p =
[
A
sp−1
K BK · · · BK A

sp−1
K K · · · K

]
, Z p =

[
Uk−s−1,sp−1

Yk−s−1,sp−1

]
,

Uk−s−1,sp−1 = [
usp−1(k − s − 1) · · · usp−1(k − s − 2 + N )

]
,

Yk−s−1,sp−1 = [
ysp−1(k − s − 1) · · · ysp−1(k − s − 2 + N )

]
.

For a sufficiently large sp, it is reasonable to assume

A
sp
K ≈ 0.

Substituting Xk−s by its estimation X̂k−s leads to

Yk,s = �s L p Z p + Hu,sUk,s + Hw,sWk,s + Vk,s . (4.67)

Note that only process input and output data as well as noises are included in (4.67).
Hence, it is called I/O data model.

4.4.2 Identification of an SKR-based Residual Generator

Corresponding to Z p, let

Z f =
[
Uk,s

Yk,s

]
.



98 4 Basic Methods for Fault Detection in Dynamic Processes

Here, the sub-indices of Z , f and p, stand for “future and past”, respectively. It holds

Z f =
[

0 I
�s L p Hu,s

] [
Z p

Uk,s

]
+
[

0
Hw,sWk,s + Vk,s

]
. (4.68)

The residual generation problem can then be formulated as finding null matrix K so
that

K
[

0 I
�s L p Hu,s

]
= 0. (4.69)

In other words, in the noise-free case,

KZ f = K
[

0 I
�s L p Hu,s

] [
Z p

Uk,s

]
= 0.

K solving (4.69) is also called data-driven realisation of the kernel representation of
system (4.61)–(4.62). Below, we briefly present an approach to finding K.

By an LQ decomposition of the data sets,

⎡
⎣ Z p

Uk,s

Yk,s

⎤
⎦ =

⎡
⎣ L11 0 0
L21 L22 0
L31 L32 L33

⎤
⎦
⎡
⎣ Q1

Q2

Q3

⎤
⎦ ,

where ⎡
⎣ Q1

Q2

Q3

⎤
⎦[ QT

1 QT
2 QT

3

] =
⎡
⎣ I 0 0
0 I 0
0 0 I

⎤
⎦ ,

it turns out

Z f =
[
Uk,s

Yk,s

]
=
[
L21 L22

L31 L32

] [
Q1

Q2

]
+
[

0
L33

]
Q3.

Note that due to the whiteness of the noises, for a (very) large N

1

N

[
Hw,sWk,s + Vk,s

] [ Z p

Uk,s

]T
≈ 0,

and moreover,

Z f

[
Z p

Uk,s

]T
=
[
L21 L22

L31 L32

] [
L11 0
L21 L22

]T

=
[

0 I
�s L p Hu,s

] [
Z p

Uk,s

] [
Z p

Uk,s

]T
.
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Hence,
L33Q3 = Hw,sWk,s + Vk,s, (4.70)

which means, in turn,

K
[

0 I
�s L p Hu,s

]
= 0 ⇐⇒ K

[
L21 L22

L31 L32

]
= 0. (4.71)

Let
K = [K1 K2

]

solve (4.71). It is evident that

K2�s L p = 0,K2Hu,s = −K1. (4.72)

Note that it is reasonable to assume that, for a large sp(>> n),

rank
(
L p
) = n.

As a result, K2 is in fact a parity matrix, as defined in ( 4.25), and the residual
generator,

r(k) = K2ys(k) + K1us(k) = K2
(
ys(k) − Hu,sus(k)

)
(4.73)

is equivalent to the parity space residual generator given in (4.24 ). It is worth noticing
that

• on the assumption
rank (�s) = n

the maximum rank of K2 is (s + 1)m − n, which means in turn

r(k) ∈ R(s+1)m−n;

• the residual generator (4.72) can be parameterised by

r(k) = PK2ys(k) + PK1us(k), P ∈ R((s+1)m−n)×(s+1)m, (4.74)

since ∀P ∈ R((s+1)m−n)×(s+1)m,

K
[
L21 L22

L31 L32

]
= 0 =⇒ PK

[
L21 L22

L31 L32

]
= 0.

Suppose that an m-dimensional residual vector is generated by means of

r(k) = PmK2ys(k) + PmK1us(k) ∈ Rm, Pm ∈ Rm×(s+1)m .
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Let
PmK2 = [

V̄0 · · · V̄s
]
, V̄i ∈ Rm×m, i = 0, 1, · · · , s,

and assume
rank

(
V̄s
) = m.

Then, we can write r(k) as, similar to the parameterisation form given in Remark
4.2,

r(k) = V
(
y(k) − ŷ(k)

)
, V = V̄s,

ŷ(k) = −V̄−1
s

(
V̄ ys−1(k − 1) + PmK1us(k)

)
,

V̄ = [
V̄0 · · · V̄s−1

]
.

4.4.3 An Alternative Algorithm of SKR Identification

Recall that

Yk,s = [
L31 L32

] [ Q1

Q2

]
+ L33Q3

and L33Q3 represents the process and measurement noises. Hence,

Ŷk,s = [
L31 L32

] [ Q1

Q2

]
= [

L31 L32
] [ L11 0

L21 L22

]+ [
Z p

Uk,s

]

delivers an estimate for Yk,s , which can then be used for generating the residual
(matrix)

Yk,s − Ŷk,s = Yk,s − [
L31 L32

] [ L11 0
L21 L22

]+ [
Z p

Uk,s

]
. (4.75)

Here,

[
L11 0
L21 L22

]+
is pseudo-inverse of

[
L11 0
L21 L22

]
. Let

[
Kp K f,u

] = [
L31 L32

] [ L11 0
L21 L22

]+
.

The residual form (4.75) can be re-written into

Yk,s − Ŷk,s = Yk,s − KpZ p − K f,uUk,s . (4.76)

Correspondingly, the residual generator for the online residual generation is con-
structed by
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r(k) = ys(k) − Kp

[
us−1(k − s − 1)
ys−1(k − s − 1)

]
− K f,uus(k). (4.77)

Here, sp is set to be s. In other words,

ŷs(k) := Kp

[
us−1(k − s − 1)
ys−1(k − s − 1)

]
+ K f,uus(k)

can be viewed as an estimate of ys(k).

4.4.4 Fault Detection

Once the residual generator (4.72) is identified, the remaining tasks for a success-
ful fault detection are to define a test statistic and to determine the corresponding
threshold. For our purpose, we assume that the process and measurement noises are
normally distributed with

[
w(k)
v(k)

]
∼ N

(
0,

Σw Swv

STwv Σv

)
.

Recall that in the fault-free case

r(k) = K2
(
ys(k) − Hu,sus(k)

) = K2θs(k),

θs(k) = Hw,sws(k) + vs(k) ∼ N (0,Σθ) .

Moreover, on the assumption that the number of the training data N is sufficiently
large, it holds

1

N

(
Hw,sWk,s + Vk,s

) (
Hw,sWk,s + Vk,s

)T ≈ Σθ,

which, considering (4.70), can be re-written as

1

N
L33Q3Q

T
3 L

T
33 = 1

N
L33L

T
33 ≈ Σθ.

To detect a change in themean of r(k), it is optimal, as we have discussed in Sect. 3.1,

• to define the test statistic

J = r T (k)N
(K2L33L

T
33KT

2

)−1
r(k), (4.78)

which can be, for a sufficiently large N , assumed to be
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J ∼ χ2 ((s + 1)m − n) ,

• and to set the threshold
Jth = χ2

α((s + 1)m − n). (4.79)

It is worth noting that a large s results in high threshold setting and thus may signif-
icantly reduce the fault detectability. Furthermore, the residual vector r(k) contains
redundant information. These suggest to select a number of rows from K2 to build
the test statistic. To this end, the following modifications can be adopted:

• Do an SVD on 1
NK2L33LT

33KT
2 ,

1

N
K2L33L

T
33KT

2 = UΣUT ,Σ = diag
(
σ 2
1 , · · · , σ 2

(s+1)m−n

) ;
• Form

Σ2 = diag
(
σ 2
l+1, · · · , σ 2

(s+1)m−n

) ∈ R((s+1)m−n−l)×((s+1)m−n−l), l >> 1

and correspondingly U2

UΣUT = [
U1 U2

] [ diag
(
σ 2
1 , · · · , σ 2

l

)
UT

1

diag
(
σ 2
l+1, · · · , σ 2

(s+1)m−n

)
UT

2

]
;

• Set

r(k) = UT
2 K2

(
ys(k) − Hu,sus(k)

) ∈ R(s+1)m−n−l , (4.80)

J = r T (k)diag
(
σ−2
l+1, · · · , σ−2

(s+1)m−n

)
r(k), (4.81)

Jth = χ2
α((s + 1)m − n − l). (4.82)

The idea behind this alternative solution is evident, as given below,

r(k) = UT
2 K2

(
ys(k) − Hu,sus(k)

) = UT
2 K2θs(k) ∼ N (

0,UT
2 K2ΣθKT

2U2
)
,

UT
2 K2ΣθKT

2U2 = UT
2 UΣUTU2 = diag

(
σ 2
l+1, · · · , σ 2

(s+1)m−n

) =⇒
r(k) ∼ N (

0, diag
(
σ 2
l+1, · · · , σ 2

(s+1)m−n

))
, J ∼ χ2 ((s + 1)m − n − l) .

We would like to emphasise that the selected ((s + 1)m − n − l) -dimensional
residual vector corresponds the residual subspace with the (s + 1)m − n− l smallest
singular values σ 2

l+1, · · · , σ 2
(s+1)m−n, which, as discussed in Sect. 3.1, delivers the

optimal fault detectability.
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4.4.5 Observer-Based Implementation

In its original form (4.24), a parity space based residual generator is in fact a finite
impulse response filter (FIRF). In control engineering, it is state of the art that control
and detection systems are implemented in a recursive form, that is as an infinite
impulse response filter (IIRF). For instance, an FDF is an IIRF. In this sub-section,
we briefly introduce an approach, which allows us to realise a parity space based
residual generator in form of a diagnostic observer.

Consider the process model (4.2)–(4.3) and a parity vector

vs = [
vs,0 vs,1 · · · vs,s

] ∈ R(s+1)m, vs

⎡
⎢⎢⎢⎣

C
CA
...

CAs

⎤
⎥⎥⎥⎦ = 0,

vs,i ∈ Rm, i = 0, 1, · · · , s. It has been demonstrated that matrices

Az =

⎡
⎢⎢⎢⎣
0 0 · · · 0
1 0 · · · 0
...

. . .
. . .

...

0 · · · 1 0

⎤
⎥⎥⎥⎦ ∈ Rs×s, Lz = −

⎡
⎢⎢⎢⎣

vs,0
vs,1
...

vs,s−1

⎤
⎥⎥⎥⎦ , (4.83)

T =

⎡
⎢⎢⎢⎣

vs,1 vs,2 · · · vs,s−1 vs,s
vs,2 · · · · · · vs,s 0
... · · · · · · ...

...

vs,s 0 · · · · · · 0

⎤
⎥⎥⎥⎦

⎡
⎢⎢⎢⎣

C
CA
...

CAs−1

⎤
⎥⎥⎥⎦ (4.84)

solve the Luenberger equations

T A − AzT = LzC, czT = gC, cz = [
0 · · · 0 1

]
, g = vs,s . (4.85)

A direct application of this result is the construction of an observer-based residual
generator for the given parity vector vs as follows

z(k + 1) = Azz(k) + Bzu(k) + Lz y(k) ∈ Rs, Bz = T B − LzD, (4.86)

r(k) = gy(k) − czz(k) − dzu(k) ∈ R, dz = gD. (4.87)

Note that

[
Bz

dz

]
=

⎡
⎢⎢⎢⎣

vs,0 vs,1 · · · vs,s−1 vs,s
vs,1 · · · · · · vs,s 0
... · · · · · · ...

...

vs,s 0 · · · · · · 0

⎤
⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎣

D
CB
CAB

...

CAs−1B

⎤
⎥⎥⎥⎥⎥⎦

(4.88)
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=

⎡
⎢⎢⎢⎣

vs Hu,s(:, 1 : p)
vs Hu,s(:, p + 1 : 2p)

...

vs Hu,s(:, sp + 1 : (s + 1)p)

⎤
⎥⎥⎥⎦ .

Equations (4.83), (4.85) and (4.88) allow a direct construction of a residual generator
of form (4.86)–(4.87) using a row of the identified kernel matrix K and without any
additional design effort. Concretely, let ψK be a row of K and of the form

ψK = [
ψK1 ψK2

]
.

Since ψK2 is a parity vector and

ψK1 = −ψK2Hu,s,

we have, besides of Az, cz given in (4.83) and (4.85), Bz, dz, g, Lz formed in terms
of ψK1 , ψK2 :

Lz = −
⎡
⎢⎣

ψK2(1 : m)
...

ψK2((s − 1)m + 1 : sm)

⎤
⎥⎦ , g = ψK2((sm + 1 : (s + 1)m), (4.89)

Bz = −
⎡
⎢⎣

ψK1(1 : p)
...

ψK1((s − 1)p + 1 : sp)

⎤
⎥⎦ , dz = −ψK1(sp + 1 : (s + 1)p). (4.90)

It is well-known that anm-dimensional residual vector is necessary for a reliable fault
detection and isolation in the framework of observer-based fault diagnosis systems.
There are various schemes to extend the above result to the multiple case.

At the end of this section, we would like to summarise the major results:

• the data-driven approach introduced in this section leads to a direct identification
of parity space generators as well as the statistic features of the residual vector,

• based on these results, a fault detection can be realised.
• Moreover, the one-to-one mapping between the parity space approach and the
observer-based approach allows us to construct an observer-based residual gener-
ator using an identified parity vector.

4.5 Notes and References

In this chapter, we have reviewed the basics of the model-based fault detection
methods for LTI systems. Most of the results can be found in the monographs
[1–7] and in the early survey papers [8–11]. The first work on FDF and DO has
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been reported by Beard and Jones [12, 13], and Chow and Willsky have proposed
the first optimal solution using the parity space scheme [14]. The unified solution
for an integrated optimal design of FDF and threshold has been derived by Ding
et al. [15]. The achieved optimal FDF is in fact anH2 observer [7]. It is remarkable
that Theorem 4.1 reveals that the unified solution solves the optimal fault detection
problem formulated in Definition 2.7.

Although it has not been addressed in our review, the topic of (optimal) indices
based observer-based residual generator design has been widely investigated in the
past decades. The H∞/H∞ design problem was first proposed and solved in [16],
lately in [17–19]. In 1993,H−/H∞ design problem was proposed and handled [20].
It has been first extensively studied after the publication of the LMI (linear matrix
inequality) solution to this problem [21]. The most significant contributions to this
issue are [21–27]. It is worth mentioning the work by Zhong et al. [28], Wang and
Yang [29] and Chadli et al. [30], in which the H−/H∞ design scheme has been
applied to (i) uncertain LTI systems, (ii) the solution in a finite frequency range, and
(iii) nonlinear systems modelled by means of T-S fuzzy technique, respectively. In
[15, 31], it has been proved that the unified solution offers a simultaneous solution
to the multi-objectiveHi/H∞ optimisation problem, and theH−/H∞,H∞/H∞ as
well as H−/H∞ in a finite frequency range are only special cases of the Hi/H∞
optimisation. The unified solution was derived using the co-inner-outer factorisa-
tion technique, which is, in comparison with the LMI solutions, computational less
involved.

We have briefly introduced a mathematical and control theoretical tool, the fac-
torisation technique, for the modelling and presentation of dynamic systems. The
associated model forms like LCF and RCF will play an important role in our sub-
sequent studies. An immediate application of the factorisation technique to residual
generation is the parameterisation of all LTI residual generators that is expressed by
(4.28)–(4.29), first proposed by Ding and Frank in 1990 [32]. The reader is referred
to [7, 33] for more details. For instance, Lemma 4.1 can be found in [7].

SKR is an alternative model and residual generator form, which is widely adopted
in our subsequent work, in dealing with not only LTI systems, but also time-varying
and nonlinear systems. In fact, the SKR modelling is widely applied in research on
nonlinear control systems [34].

In the second part of this chapter, we have summarised the data-driven fault
detectionmethods for dynamic systems. It is the applicationof subspace identification
technique (SIT) to the fault diagnosis study, first reported in [35–38]. SIT is well-
established and widely applied in process identification [39–42]. A remarkable result
is the data-driven forms of SKR and their identification, which have been introduced
in [43–45] and recently extended by Li et al. [46] to a class of nonlinear systems. In
our subsequent investigations, SKR will be applied to bridging the model-based and
data-driven fault detection techniques.

The final result presented in this chapter on the observer-based implementation
of parity vector based residual generators has been reported in [47] and applied for
the purpose of parity space design, observer-based implementation [7] or for the
data-driven design of observer-based residual generators [36, 43, 45].
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Chapter 5
Feedback Control, Observer and
Residual Generation

Fault-tolerant control is one of the major topics of this book. It is state of the art
that fault-tolerant control is generally dealt with in the context of accommodating
or/and re-configuring an operating controller tomaintain reliable and fail-safe system
operations, when faults are detected and identified in the system. Roughly speaking,
a fault-tolerant control scheme is implemented in two steps:

• a fault diagnosis system is running real-time, synchronised with the process opera-
tion, and activates the fault-tolerant action, when a fault is detected and identified,

• the controller is then accommodated or re-configured based on information about
the fault received from the diagnosis system.

Consequently, a fault-tolerant control system is often designed in two separate units:
a fault diagnosis system and an accommodatable and re-configurable control system.

On the other hand, recent investigations reveal that feedback control and fault
detection share the process information presented in form of residual signals. This
fact allows us to design fault-tolerant control systems in an integrated manner, that is,
integrated design of the fault diagnosis and control systems. The expected benefit of
such an integrated design is improvement in the system efficiency and performance.
Most of the fault-tolerant control schemes addressed and developed in this book are
based on the principle of integrated design. This also motivates us to review and
introduce needed preliminaries and results in this chapter. For our purpose, we will
attempt to study and provide “residual relevant” insights and interpretations of the
well-established feedback control theoretical framework.

5.1 Preliminaries

We first introduce preliminary knowledge needed for the feedback controller config-
uration and design, which builds the basis for our fault-tolerant control architecture
and the relevant study. We consider the nominal model
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x(k + 1) = Ax(k) + Bu(k), x(0) = x0, (5.1)

y(k) = Cx(k) + Du(k). (5.2)

5.1.1 State Feedback Control, RCF and Image
Representation

Recall that in Chap.4 we have introduced LCF, RCF as well as SKR, where RCF is
defined as follows. Let

Gyu(z) = C(z I − A)−1B + D.

The pair (M(z), N (z)),

M(z) = I + F (z I − AF )−1 B, N (z) = D + CF (z I − AF )−1 B,

AF = A + BF,CF = C + DF,

builds the RCF of Gyu(z) with

Gyu(z) = N (z)M−1(z),

where F is a matrix of appropriate dimension and AF is a Schur matrix. It is well-
known that the interpretation of RCF is state feedback control with

x(k + 1) = (A + BF) x(k) + Bυ(k), y(k) = (C + DF) x(k) + Dυ(k),

u(k) = Fx(k) + υ(k) =⇒ u(z) = M(z)υ(z), y(z) = N (z)υ(z), (5.3)

and υ(z) being the reference vector. Alternatively, the nominal model (5.1)-(5.2) can
be represented by

for some υ ∈ H2,

[
u(z)
y(z)

]
=

[
M(z)
N (z)

]
υ(z). (5.4)

As a dual form of the SKR introduced in Definition 4.3, (5.4) is called (stable) image
representation of system (5.1)–(5.2).

Definition 5.1 Given system (5.1)–(5.2), then a stable linear system I is called
stable image representation (SIR) of (5.1)–(5.2), when for any u(z) and its response
y(z) a (reference) input υ(z) can be found such that

[
u(z)
y(z)

]
= Iυ(z). (5.5)
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A direct application of SIR is to design feed-forward controllers. Suppose that
υ(z) is driven by a reference signal yre f (z) to be followed by the plant output y(z).
Let

υ(z) = T (z)yre f (z) =⇒ N (z) υ(z) = N (z) T (z)yre f (z). (5.6)

T (z) is a feed-forward controller, which can be applied to approaching the desired
tracking behaviour. It yields

y(z) = N (z)T (z)yre f (z).

Moreover, the dynamic relation between υ(z) and u(z),

u(z) = M(z)υ(z),

models the actuator dynamics, which can be used, for instance, for the purpose of
actuator monitoring.

5.1.2 Parameterisation of all Stabilising Controllers

Consider the feedback control loop sketched in Fig. 5.1 with plant model Gyu(z)
and controller K (z). Suppose that the model (5.1)–(5.2) is the minimal state space
realisation of Gyu(z) and, associated with it, there are eight transfer matrices, left

and right coprime pairs of Gyu(z),
(
M̂(z), N̂ (z)

)
and (M(z), N (z)), as well as the

other two coprime pairs
(
X̂(z), Ŷ (z)

)
and (X (z),Y (z)), as given in (4.7)–(4.10).

The so-called Youla parameterisation described by

K (z) = −
(
X (z) − Qc(z)N̂ (z)

)−1 (
Y (z) + Qc(z)M̂(z)

)
(5.7)

= −
(
Ŷ (z) + M(z)Qc(z)

) (
X̂(z) − N (z)Qc(z)

)−1
(5.8)

Fig. 5.1 Feedback control
loop
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parameterises all stabilising controllers by the stable parameter matrix Qc(z). In
other words, the feedback control loop is stable if the controller K (z) is expressed
either in form of (5.7) or (5.8), and vice versa.

Note that for the controller

u(z) = K (z)y(z),

the pairs,

(
−X (z) + Qc(z)N̂ (z),Y (z) + Qc(z)M̂(z)

)
,(

−Ŷ (z) − M(z)Qc(z), X̂(z) − N (z)Qc(z)
)

,

build the LCF and RCF of K (z), which can also be written in form of SKR and SIR
of the controller as follows:

[
X (z) − Qc(z)N̂ (z) Y (z) + Qc(z)M̂(z)

] [
u(z)
y(z)

]
= 0,

[
u(z)
y(z)

]
=

[−Ŷ (z) − M(z)Qc(z)
X̂(z) − N (z)Qc(z)

]
v(z).

5.2 On Bezout Identity and Parameterisation of Stabilising
Controllers

5.2.1 Observer-Based Realisations of Feedback Controllers

The control theoretical interpretations of theRCFandLCF, namely, the state feedback
controller and observer-based residual generator, have been briefly introduced in
the previous sections. It is of considerable interest to reveal the control theoretical
interpretations of the other four transfer matrices, X (z),Y (z), X̂(z), Ŷ (z), in the
Bezout identity with the state space representations given in (4.9)–(4.10).

We first consider X̂(z),−Ŷ (z). It is evident that they are, due to Bezout identity
(4.11), right coprime. Next, re-write observer-based residual generator (4.12)–(4.13)
as

x̂(k + 1) = Ax̂(k) + Bu(k) + Lr(k), r(k) = y(k) − Cx̂(k) − Du(k). (5.9)

Let
u(k) = Fx̂(k)
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be an observer-based state feedback controller. Substituting it into the residual gen-
erator yields

x̂(k + 1) = (A + BF) x̂(k) + Lr(k), y(k) = r(k) + (C + DF) x̂(k). (5.10)

Comparing with (4.9), it becomes clear that

[
u(z)
y(z)

]
=

[−Ŷ (z)
X̂(z)

]
r(z). (5.11)

That is, X̂(z),−Ŷ (z) are an observer-based system with the residual vector as its
input and u(k), y(k) as its output. It can also be understood as an SIR of the dynamic
output controller

u(z) = K (z)y(z) = −Ŷ (z)X̂−1(z)y(z). (5.12)

We now consider X (z),−Y (z). Re-writing the observer (5.9) as

x̂(k + 1) = (A − LC) x̂(k) + (B − LD) u(k) + Ly(k),

it is straightforward that for

u(k) = Fx̂(k) + v(k) ⇐⇒ v(z) = u(z) − Fx̂(z),

it holds
X (z)u(z) + Y (z)y(z) = v(z). (5.13)

Hence, X (z),−Y (z) are in fact an observer-driven system. For v(z) = 0,

[
X (z) Y (z)

] [
u(z)
y(z)

]
= 0

builds an SKR of the controller

u(z) = K (z)y(z) = −X−1(z)Y (z)y(z), (5.14)

and thus it is also an LCF of K (z).

5.2.2 Bezout Identity and Feedback Control Loops

It is interesting to notice that by means of (5.11) and (5.13) as well as (5.12) and
(5.14), the proof of Bezout identity (4.11) becomes evident. Moreover, the Bezout
identity can be interpreted as the following system realisation: Given the system
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(5.1)–(5.2) with x0 �= 0, and re-write it as

x(k + 1) = Ax(k) + Bu(k) + x̄0δ(k), x(0) = 0, x̄0 = Ax0, (5.15)

y(k) = Cx(k) + Du(k), δ(k) =
{
1, k = 0,
0, k �= 0.

(5.16)

For our purpose, system (5.15)–(5.16) is decomposed into two sub-systems

x(k) = x1(k) + x2(k), y(k) = y1(k) + y2(k), u(k) = u1(k) + u2(k)

with

x1(k + 1) = Ax1(k) + Bu1(k), x1(0) = 0, (5.17)

y1(k) = Cx1(k) + Du1(k), u1(k) = Fx1(k) + v(k), (5.18)

x2(k + 1) = Ax2(k) + Bu2(k) + x̄0δ(k), x2(0) = 0, (5.19)

y2(k) = Cx2(k) + Du2(k), u2(k) = Fx̂2(k), (5.20)

x̂2(k + 1) = (A + BF) x̂2(k) + Lr(k), (5.21)

r(k) = y2(k) − Cx̂2(k) − Du2(k). (5.22)

As a result, we have the following system dynamics,

[
u(z)
y(z)

]
=

[
u1(z) + u2(z)
y1(z) + y2(z)

]
=

[
M(z) −Ŷ (z)
N (z) X̂(z)

] [
v(z)
r(z)

]
. (5.23)

On the other hand, note that

x1(k + 1) = Ax1(k) + Bu1(k) = (A − LC) x1(k) + (B − LD) u1(k) + Ly1(k),

u1(k) = Fx1(k) + v(k) ⇐⇒ v(k) = u1(k) − Fx1(k)

is a state space realisation of

v(z) = [
X (z) Y (z)

] [
u1(z)
y1(z)

]
.

Moreover,

[
u2(z)
y2(z)

]
=

[−Ŷ (z)
X̂(z)

]
r(z),

[
X (z) Y (z)

] [−Ŷ (z)
X̂(z)

]
= 0.

It holds

v(z) = [
X (z) Y (z)

] [
u1(z) + u2(z)
y1(z) + y2(z)

]
= [

X (z) Y (z)
] [

u(z)
y(z)

]
.
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Similarly, we have

[−N̂ (z) M̂(z)
] [

u(z)
y(z)

]
= [−N̂ (z) M̂(z)

] [
u1(z) + u2(z)
y1(z) + y2(z)

]

= [−N̂ (z) M̂(z)
] [

M(z)
N (z)

]
v(z) + r(z) = r(z).

Thus, it finally results in

[
v(z)
r(z)

]
=

[
X (z) Y (z)

−N̂ (z) M̂(z)

] [
u(z)
y(z)

]
. (5.24)

This demonstrates that

[
M(z) −Ŷ (z)
N (z) X̂(z)

]−1

=
[

X (z) Y (z)
−N̂ (z) M̂(z)

]
,

whichgives a control-loop interpretation ofBezout identity (4.11). It isworth noticing
that x̂2(k) can be understood as an estimation of the change in the state vector, which
is caused by the disturbance δ(k). Indeed, our interpretation can also be extended in
a more general form:

x(k + 1) = Ax(k) + Bu(k) + Ed(k), x(0) = 0, (5.25)

y(k) = Cx(k) + Du(k), (5.26)

where d(k) represents an unknown input vector, and x̄0δ(k) in (5.17)–(5.22) is sub-
stituted by Ed(k). It should be emphasised that the residual vector r(k) reflects the
change in the system caused by the unknown input vector d(k).

From the control systempoint of view, the systemonewith (u1, y1) as the input and
output pair represents the response of a state feedback control loop to the reference
signal, while the system two with (u2, y2) delivers the response to the uncertainty
caused by the unknown initial condition under the use of an observer-based state
feedback controller. The uncertainty is the driver of the residual vector. In other
words, the residual signal is an indicator for the uncertainty in the feedback control
loop. The above study and relation (5.23) reveal that the core of a feedback control is
the feedback of the residual signal aiming at reducing the influence of the uncertainty
on the feedback control loop.

5.2.3 Parameterisation of Bezout Identity

Using the identities included in the Bezout identity (4.11), the Bezout identity can
be extended to
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[
X (z) − Q(z)N̂ (z) Y (z) + Q(z)M̂(z)

−N̂ (z) M̂(z)

] [
M(z) −Ŷ (z) − M(z)Q(z)
N (z) X̂(z) − N (z)Q(z)

]
=

[
I 0
0 I

]

for any Q(z) or as

[
X (z) Y (z)

S(z)X (z) − N̂ (z) M̂(z) + S(z)Y (z)

] [
M(z) + Ŷ (z)S(z) −Ŷ (z)
N (z) − X̂(z)S(z) X̂(z)

]
=

[
I 0
0 I

]

for any S(z). Q(z), S(z) are called parameterisation matrices. In our subsequent
study, they are assumed to belong toRH∞.

Below, we study the Bezout identity parameterised by Q(z). To this end, we
consider again the system model (5.1)–(5.2) and the corresponding observer-based
residual generator (5.9) with a controller

u(z) = Fx̂(z) − Q(z)r(z).

It turns out

x̂(k + 1) = (A + BF) x̂(k) + Br̄(k) + Lr(k), r̄(z) = −Q(z)r(z),

y(k) = r(k) + (C + DF) x̂(k) + Dr̄(k).

Recalling (4.8)–(4.9), it leads to

[
u(z)
y(z)

]
=

[−Ŷ (z) − M(z)Q(z)
X̂(z) − N (z)Q(z)

]
r(z). (5.27)

Since
(
−Ŷ (z) − M(z)Q(z), X̂(z) − N (z)Q(z)

)
is a right coprime pair, we finally

have

u(z) = −
(
Ŷ (z) + M(z)Q(z)

) (
X̂(z) − N (z)Q(z)

)−1
y(z).

In a similar way and analogue to our study in the last sub-section, it can also be
proved that

(
X (z) − Q(z)N̂ (z

)
u(z) +

(
Y (z) + Q(z)M̂(z)

)
y(z) = v(z). (5.28)

In this way, the Youla parameterisation forms (5.7) and (5.8) for all stabilising con-
trollers are also demonstrated. They are observer-based systems.
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5.3 An Observer-Based Fault-Tolerant Control
Architecture

In this section, we focus on the observer-based realisation of the Youla parameteri-
sation of all stabilising controllers, as we have demonstrated in the last section. This
realisation form is the basis of the so-called observer-based fault-tolerant control
architecture and will play a central role in our subsequent work on fault-tolerant
control issues. For our purpose, we first summarise this result in form of a theorem.

Theorem 5.1 Given the feedback control loop sketched in Fig. 5.1 with the plant
model Gyu(z) whose minimal state space realisation is given by (5.1)–(5.2), then all
stabilising controllers can be realised by the following observer-based system:

x̂(k + 1) = Ax̂(k) + Bu(k) + Lr(k) (5.29)

= (A − LC) x̂(k) + (B − LD) u(k) + Ly(k), (5.30)

u(z) = Fx̂(z) + Q(z)r(z), Q(z) ∈ RH∞, (5.31)

r(z) = y(k) − ŷ(k) = y(k) − Cx̂(k) − Du(k), (5.32)

where Q(z) is the parameterisation matrix.

5.3.1 An Output Feedback Controller is an Estimator

Given the system model (5.1)–(5.2), it has been demonstrated that system

η(z) =
(
F(z)X (z) − Qo(z)N̂ (z)

)
u(z) +

(
F(z)Y (z) + Qo(z)M̂(z)

)
y(z),

(5.33)

F(z) = F (z I − A − BF)−1 B ∈ RH∞, Qo(z) ∈ RH∞, (5.34)

describes a parameterisation of all observers that deliver an estimation for Fx(k)
satisfying

∀x(0), u(k), lim
k→∞ (η(k) − Fx(k)) = 0, (5.35)

where X (z),Y (z), N̂ (z), M̂(z) are the stable transfer functionmatrices given in (4.7)
and (4.10), and Qo(z) is a parameterisationmatrix.Moreover, (5.33) can be re-written
into
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x̂(k + 1) = (A − LC) x̂(k) + (B − LD) u(k) + Ly(k), (5.36)

η(z) = Fx̂(z) + R(z)
(
y(z) − ŷ(z)

)
, ŷ(k) = Cx̂(k) + Du(k), (5.37)

R(z) = Qo(z) + Ŷ (z) ∈ RH∞. (5.38)

We now compare the above systemwith the output feedback controller (5.29)–(5.32)
given in Theorem 5.1 and see clearly that this output feedback controller is indeed
an observer-based estimator for Fx(k). As a result, we claim, according to Theorem
5.1, that all stabilising output feedback controllers are an observer-based estimator.

This result reveals an important aspect of an output feedback controller: for a
given state feedback gain matrix F , the performance of the controller depends on the
estimation performance of the observer (5.36)–(5.37). In a certain sense, this aspect
can be understood as an extension of the well-known separation principle.

5.3.2 A Fault-Tolerant Control Architecture

An immediate and obvious application of the observer-based realisation of all stabil-
ising controllers described in Theorem 5.1 is the establishment of the fault-tolerant
control system architecture sketc.hed in Fig. 5.2. It is composed of three functional
modules:

• an observer and an observer-based residual generator,

x̂(k + 1) = Ax̂(k) + Bu(k) + Lr(k),

r(k) = y(k) − ŷ(k), ŷ(k) = Cx̂(k) + Du(k),

which serve as an information provider for the controller and diagnostic system
and deliver a state estimation, x̂, and the preliminary residual, r = y − ŷ,

• controllers
u(z) = Fx̂(z) + Q(z)r(z) + V (z)v(z),

including

– a feedback controller: Fx̂(z) + Q(z)r(z) and
– a feed-forward controller: V (z)v(z),

• diagnostic residual generator R(z)r(z), which is used for the fault diagnosis pur-
pose.

We call the above three functional modules the low level components of a fault-
tolerant control system, which run real-time during process operations. For a suc-
cessful fault-tolerant control, further functional modules and algorithms like fault
detection and identification algorithms, system re-configuration and adaptation will
be integrated into the architecture. We call them high level functional modules, since
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Fig. 5.2 A fault-tolerant control architecture

they are driven or activated by the diagnostic system at the low level and accommo-
date or re-configure the controllers, the observer as well as the diagnostic system.

The fault-tolerant control architecture is a platform, on which control and fault
diagnosis are realised in an integrated manner with the observer as their core. From
the control theoretical point of view, this fault-tolerant control architecture has the
advantage that all dynamic systems integrated in the architecture are stable and the
closed loop is well-posed. In particular, the modular structure provides us with

• clear parameterisations of the functional modules:

– the state observer is parameterised by L ,

– the feedback controller by F, Q(z),
– the feed-forward controller by V (z), and
– the diagnostic residual generator by R(z);

• functionalisation of the system parameters and
• prioritisation.

The last two properties are of special importance for a successful fault-tolerant con-
trol, as shortly described below.

Functionalisation Although all five parameters listed above are available in the
fault-tolerant control architecture for the design and online optimisation objectives,
they have evidently different functionalities, as summarised below:

• F, L determine the stability and eigen-dynamics of the closed-loop,
• R(z), V (z) have no influence on the system stability, and
• Q(z) is used to enhance the system robustness and fault-tolerant performance. The
design and modification of Q(z) will affect the system stability, when parameter
uncertainties or faults are present in the system,
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• R(z) serves for the optimisation of the fault detectability, and
• V (z) for the tracking behaviour.

Prioritisation In the context of fault-tolerant control, the above five parameters
have to be, due to their different functionalities, treated with different priorities.
Recall that system stability is the minimum requirement on an automatic control
system. This requires that a real-time adaptation of F, L to the possible changes in
the system eigen-dynamics, possibly caused by faults, is to be performed, in order to
guarantee the overall system stability. For this reason, adaptation of F, L should have
the highest priority during the system operation. Differently, Q(z), R(z), V (z) are
used to optimise control or diagnosis performance. In case that a temporary system
performance degradation is tolerable, the real-time demand and the priority for the
optimisation of Q(z), R(z), V (z) are relatively low.

5.4 Notes and References

This chapter is dedicated to the introduction of preliminary knowledge of feedback
controller and observer design, which is needed for our study on fault-tolerant control
and integrated design of control and diagnostic systems.

At first, we have reviewed the RCF in the control theoretic context and illustrated
its interpretation as a state feedback controller. As a dual form to SKR, we have
further introduced the SIR which is similar to the one given by [1] for nonlinear
systems. SIR is a useful tool for the design of feedback and feed-forward controllers.

Youla parameterisation of all (LTI) stabilizing controllers is essential in ro-
bust control and for fault-tolerant controller design. Both the original form and its
observer-based form can be found in [2, 3]. In this regard, we have revealed the
following interesting aspects of Youla parameterisation of stabilizing controllers:

• any stabilising controller is an observer for the estimation of Fx(k). This result
has been demonstrated in [4, 5] based on the parameterisation of all LTI observers
[6];

• the SIR of a stabilising controller is driven by the residual vector, and
• the core of a stabilising controller is the feedback of the residual signal aiming to
reduce the influence of the uncertainty on the feedback control loop.

On the basis of the observer-based realisation of stabilising controllers, a fault-
tolerant control architecture with an observer-based residual generator in its core
is introduced and sketched in Fig. 5.2. This kind of fault-tolerant control architecture
was initiated by [7] and extensively investigated in [4]. There are two aspects that
may call the reader’s attention. Firstly, this architecture can be used for the integrated
design of control and diagnostic systems, which was first investigated by Nett et al.
in 1988 [8] and intensively addressed later in [9–11]. The main idea of the integrated
design scheme is to formulate the design of the controller and diagnostic system
uniformly as a standard optimisation problem. Secondly, this fault-tolerant control
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architecture is helpful for us to gain a deeper insight into the design and (real-time)
optimisation of feedback controllers. For instance, it enables a clear functionalisa-
tion of all controller parameters, and, consequently, helps us to realise a prioritisation
of all the involved parameters. The latter is of significant importance for the online
optimisation of the controller parameters by performing fault-tolerant control.
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Part II
Fault Detection, Isolation and Estimation 

in Linear Dynamic Systems



Chapter 6
General Solutions of Optimal Fault
Detection

In Chap.4, Kalman filter and the unified solution orH2 observer-basedmethods have
been presented as optimal solutions for fault detection in stochastic and deterministic
processes, respectively. These results have been achieved on the assumption that
(4.38) or more general (2.10)–(2.11) hold. In other words, the image subspace of the
faults is identical with the measurement space. In real applications, the number of the
faults to be detected could be smaller than the number of the sensors. In particular, by
solving fault isolation problem, a bank of fault detection sub-systems are constructed,
and each of them is used to detect (isolate) a special fault of considerably lower
dimension. This motivates our work in this chapter to study general solutions of fault
detection in dynamic systems for the case

dim( f ) = k f < m = dim(y). (6.1)

We will propose two different types of solutions: the algebraic solution and co-inner-
outer factorisation based solution. The first solution consists of straightforward ma-
trix computations and requires less mathematical and control theoretical knowledge,
while the second solution is control theoretically oriented.

6.1 Algebraic Solutions

We will deal with stochastic and deterministic processes separately, and begin with
the solution for the stochastic case.
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6.1.1 An Algebraic Solution for Stochastic Processes

Problem Formulation
Consider the LTI process model

x(k + 1) = Ax(k) + Bu(k) + Ew(k) + E f f (k), (6.2)

y(k) = Cx(k) + Du(k) + v(k) + Ff f (k), (6.3)

where x(k) ∈ Rn, u(k) ∈ Rp, y(k) ∈ Rm are process state, input and output
vectors, respectively, and all system matrices are of appropriate dimensions and
known. f (k) ∈ Rk f satisfying condition (6.1) is the fault vector to be detected.
w(k) ∈ Rkw , v(k) are process and measurement noise vectors. It is assumed that
they are uncorrelated with the state and input vectors, and

w(k) ∼ N (0,Σw) , v(k) ∼ N (0,Σv) ,

E

⎛
⎜⎝

⎡
⎣

w(i)
v(i)
x (0)

⎤
⎦

⎡
⎣

w( j)
v( j)
x (0)

⎤
⎦

T
⎞
⎟⎠ =

⎡
⎣

[
Σw Swv

STwv Σv

]
δi j 0

0 �0

⎤
⎦ .

For the residual generation purpose, an LTI Kalman filter is applied,

x̂(k + 1) = Ax̂(k) + Bu(k) + Lr(k), x̂(0) = 0,

r(k) = y(k) − ŷ(k), ŷ(k) = Cx̂(k) + Du(k),

L = (
APCT + ESwv

)
Σ−1

r , P = APAT + EΣwE
T − LΣr L ,

Σr = CPCT + Σv = E (
r(k)r T (k)

)
.

Thegenerated residual vector r(k) ∈ Rm iswhite and ofminimumcovariancematrix,
and its dynamics is governed by

e(k + 1) = (A − LC) e(k) + Ew(k) − Lv(k) + (
E f − LFf

)
f (k), (6.4)

r(k) = Ce(k) + v(k) + Ff f (k). (6.5)
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We now adopt the notations introduced in Sub-section 4.4 and write (6.4)–(6.5) into

rs(k) = Hoe(k − s) + Hv̄,s v̄s(k) + Hf,s fs(k),

rs(k) =
⎡
⎢⎣
r(k − s)

...

r(k)

⎤
⎥⎦ , fs(k) =

⎡
⎢⎣

f (k − s)
...

f (k)

⎤
⎥⎦ , v̄s(k) =

⎡
⎢⎣

v̄(k − s)
...

v̄(k)

⎤
⎥⎦ ,

v̄(i) =
[

w(i)
v(i)

]
, i = k − s, · · · k, Ho =

⎡
⎢⎣

C
...

CAs
L

⎤
⎥⎦ , AL = A − LC,

Hv̄,s =

⎡
⎢⎢⎢⎢⎣

Fv̄ 0

CEv̄

. . .
. . .

...
. . .

. . . 0
CAs−1

L Ev̄ · · · CEv̄ Fv̄

⎤
⎥⎥⎥⎥⎦

, Ev̄ = [
E −L

]
, Fv̄ = [

0 I
]
,

Hf,s =

⎡
⎢⎢⎢⎢⎣

Ff 0

C Ē f
. . .

. . .

...
. . .

. . . 0
CAs−1

L Ē f · · · C Ē f F f

⎤
⎥⎥⎥⎥⎦

, Ē f = E f − LFf ,

which can be further written as

rs(k) = HoA
γ

Le(k − s − γ ) + H̄v̄,s+γ v̄s+γ (k) + H̄ f,s+γ fs+γ (k),

Γv̄ = Ho

[
Aγ−1
L Ev̄ · · · AL Ev̄ Ev̄

]
, H̄v̄,s+γ = [

Γv̄ Hv̄,s
]
,

Γ f = Ho

[
Aγ−1
L Ē f · · · AL Ē f Ē f

]
, H̄ f,s+γ = [

Γ f H f,s
]
.

Since Kalman-filter is a stable system, it holds for a large γ

Aγ

L ≈ 0.

Hence, the residual vector rs(k) can be well approximated by

rs(k) = H̄v̄,s+γ v̄s+γ (k) + H̄ f,s+γ fs+γ (k) ∈ Rm(s+1). (6.6)

Note that

rs(k) ∼ N (Ers(k), diag (Σr , · · · ,Σr )) , Ers(k) =
{
0, fault-free,
H̄ f,s+γ fs+γ (k), faulty.



128 6 General Solutions of Optimal Fault Detection

Moreover, since

rank
(
Γ f

) ≤ n =⇒ rank
(
H̄ f,s+γ

) ≤ n + (s + 1)k f ,

for k f < m and s ≥ n

n + (s + 1)k f < m(s + 1) =⇒ rank
(
H̄ f,s+γ

)
< m(s + 1). (6.7)

As a result, our original problem of detecting faults in dynamic processes is trans-
formed into a problem of detecting faults in a static process modelled by (6.6) and
satisfying (6.7). The latter problem has been handled and solved in Sect. 3.2.

Problem Solution

We now apply the results in Sect. 3.2 to the problem solution. On the assumption

rank
(
H̄ f,s+γ

) = n + (s + 1)k f , (6.8)

it holds

H̄−
f,s+γ = (

H̄ T
f,s+γ Σ−1

rs H̄ f,s+γ

)−1
H̄ T

f,s+γ Σ−1
rs ,

Σrs = diag (Σr , · · · ,Σr ) ∈ Rm(s+1)×m(s+1),

H̄−
f,s+γ rs(k) ∼ N

(
0, H̄−

f,s+γ Σrs

(
H̄−

f,s+γ

)T
)

for fs(k) = 0.

The corresponding (optimal) test statistic and the associated threshold are

J = r Ts (k)
(
H̄−

f,s+γ

)T
(
H̄−

f,s+γ Σrs

(
H̄−

f,s+γ

)T
)−1

H̄−
f,s+γ rs(k)

= r Ts (k)Σ−1
rs H̄ f,s+γ

(
H̄ T

f,s+γ Σ−1
rs H̄ f,s+γ

)−1
H̄ T

f,s+γ Σ−1
rs rs(k)

∼ χ2(n + (s + 1)k f ), (6.9)

Jth = χα,Pr
{
χ2(n + (s + 1)k f ) ≤ χα

} = 1 − α,

respectively, where α is the given upper bound of the false alarm rate.

6.1.2 An Algebraic Solution for Deterministic Processes

The above solution can be extended to the deterministic case immediately. Below,
we give the solution without the detailed derivation.
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The process model under consideration is

x(k + 1) = Ax(k) + Bu(k) + Ed(k) + E f f (k),

y(k) = Cx(k) + Du(k) + Fd(k) + Ff f (k),

where d(k) ∈ Rkd represents unknown input vector and is assumed to be l2 bounded
with the known bound value

‖d(k)‖2 ≤ δd .

For the residual generation purpose, an FDF is applied,

x̂(k + 1) = Ax̂(k) + Bu(k) + Lr(k), x̂(0) = 0,

r(k) = y(k) − ŷ(k), ŷ(k) = Cx̂(k) + Du(k)

with the observer gain matrix L . The dynamics of the generated residual vector
r(k) ∈ Rm is governed by

e(k + 1) = ALe(k) + ELd(k) + Ē f f (k), EL = E − LF,

r(k) = Ce(k) + Fd(k) + Ff f (k).

It yields

rs(k) = Hoe(k − s) + Hd,sds(k) + Hf,s fs(k),

ds(k) =
⎡
⎢⎣
d(k − s)

...

d(k)

⎤
⎥⎦ , Hd,s =

⎡
⎢⎢⎢⎢⎣

F 0

CEL
. . .

. . .

...
. . .

. . . 0
CAs−1

L EL · · · CEL F

⎤
⎥⎥⎥⎥⎦

,

which can be well approximated by

rs(k) = H̄d,s+γ ds+γ (k) + H̄ f,s+γ fs+γ (k), (6.10)

Γd = Ho

[
Aγ−1
L EL · · · AL EL EL

]
, H̄d,s+γ = [

Γd Hd,s
]
.

On the assumption

rank
(
H̄ f,s+γ

) = n + (s + 1)k f < m(s + 1),

rank
(
H̄d,s+γ

) = m(s + 1),

a left inverse of H̄ f,s+γ , H̄−
f,s+γ , is given by

H̄−
f,s+γ =

(
H̄ T

f,s+γ

(
H̄d,s+γ H̄

T
d,s+γ

)−1
H̄ f,s+γ

)−1
H̄ T

f,s+γ

(
H̄d,s+γ H̄

T
d,s+γ

)−1
.
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This allows us, using the results in Sect. 3.4, to build the residual evaluation function

J = r Ts (k)
(
H̄−

f,s+γ

)T
(
H̄−

f,s+γ H̄d,s+γ H̄
T
d,s+γ

(
H̄−

f,s+γ

)T
)−1

H̄−
f,s+γ rs(k)

= r̄ Ts (k)
(
H̄ T

f,s+γ

(
H̄d,s+γ H̄

T
d,s+γ

)−1
H̄ f,s+γ

)−1
r̄s(k), (6.11)

r̄s(k) = H̄ T
f,s+γ

(
H̄d,s+γ H̄

T
d,s+γ

)−1
rs(k),

with the associated threshold
Jth = δ2d .

6.1.3 Some Remarks

In the end of this section, we would like to make remarks on the different aspects of
the solutions proposed in this section.

On Real-time Implementation

In order to compute the test statistic (6.9) or the residual evaluation function (6.11)
online, s + 1 residual data, r(i), i ∈ [k − s, k] , should be first collected. There are
two different ways to realise this operation:

• batch-wise data collection. That is,

rs(k), rs(k + 1 + s), · · · , rs(k + i (s + 1)), · · · , i = 0, 1, · · · ,

are built for computing J defined by (6.9) or (6.11);
• moving window scheme. In this case,

rs(k), rs(k + 1), · · · , rs(k + i), · · · , i = 0, 1, · · · ,

are built for the computation of J defined by (6.9) or (6.11 ).

It is evident that both test statistic (6.9) and residual evaluation function (6.11) are
independent of the scheme of the data collection.

On System Structures

The key step in the proposed solutions is the computation of H̄−
f,s+γ , the left inverse

of H̄ f,s+γ . Recall that H̄−
f,s+γ exists when condition (6.8) holds. In comparison, a

realisable inverse of the transfer function (matrix) from the fault vector to the residual,
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Gr f (z) = C (z I − AL)
−1 Ē f + Ff ,

exists only under strict conditions like

• no transmission zero of Gr f (z) being located outside the unit circle,
• no zero of Gr f (z) being located at infinity.

In other words, the inverse of Gr f (z) should be a stable and causal dynamic system.
Although the so-called co-inner-outer factorisation is an alternative solution with
weaker existence conditions, the needed computations are still (very) involved, as
will be addressed in the next section. It follows from this comparison that the major
advantages of the proposed algebraic solutions consist in

• the weak existence conditions,
• easy computation and
• no restriction on the system configuration of the solution.

The last property promises improvement of fault detection performance.

Utilisation of Information about the Fault Vector to Improve the Fault
Detection Performance

Roughly speaking, the spirit of the proposed solutions is to make use of the structural
information about the influence of the fault vector on the residual signal to enhance
the fault detectability. The algebraic models (6.6) and (6.10) provide us with the
possibility to integrate available (additional) information about the fault vector f (k)
into the models, in order to improve the fault detection performance. To illustrate
this possibility, we give the following two examples.

Example 6.1 Assume that f (k) is an unknown constant vector denoted by f . In this
case, fs+γ (k) can be written as

fs+γ (k) =
⎡
⎢⎣
I
...

I

⎤
⎥⎦ f

and thus

H̄ f,s+γ fs+γ (k) = H̄ f,s+γ

⎡
⎢⎣
I
...

I

⎤
⎥⎦ f =: Ĥ f,s+γ f, Ĥ f,s+γ ∈ Rm(s+1)×k f .

As a result, we have, in case of stochastic processes,
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Ĥ−
f,s+γ =

(
Ĥ T

f,s+γ Σ−1
rs Ĥ f,s+γ

)−1
Ĥ T

f,s+γ Σ−1
rs ∈ Rk f ×m(s+1),

Ĥ−
f,s+γ rs(k) ∼ N

(
0, Ĥ−

f,s+γ Σrs

(
Ĥ−

f,s+γ

)T
)

for f = 0 =⇒

J = rTs (k)Σ−1
rs Ĥ f,s+γ

(
Ĥ T

f,s+γ Σ−1
rs Ĥ f,s+γ

)−1
Ĥ T

f,s+γ Σ−1
rs rs(k) ∼ χ2(k f ),

Jth = χα,Pr
{
χ2(k f ) ≤ χα

}
= 1 − α,

and for deterministic processes,

Ĥ−
f,s+γ =

(
Ĥ T

f,s+γ

(
H̄d,s+γ H̄

T
d,s+γ

)−1
Ĥ f,s+γ

)−1
Ĥ T

f,s+γ

(
H̄d,s+γ H̄

T
d,s+γ

)−1
,

J = r̄ Ts (k)
(
Ĥ T

f,s+γ

(
H̄d,s+γ H̄

T
d,s+γ

)−1
Ĥ f,s+γ

)−1
r̄s(k),

r̄s(k) = Ĥ T
f,s+γ

(
H̄d,s+γ H̄

T
d,s+γ

)−1
rs(k),

Jth = δ2d .

Example 6.2 Let

f (k) =
⎡
⎢⎣

f1(k)
...

fk f (k)

⎤
⎥⎦ , fi,s+γ (k) =

⎡
⎢⎣

fi (k − s − γ )
...

fi (k)

⎤
⎥⎦ , i = 1, · · · , k f .

Suppose that fi (k) can be well approximated by

fi (k) =
s+γ∑
j=0

ci, jφ j (k), (6.12)

where φ j (k), j = 0, 1, · · · , s + γ, are the so-called basic functions. In fact, in the
context of discrete transforms of (time-domain) signals, (6.12) defines an inverse
transform. There are a great number of discrete transforms. For instance, the dis-
crete Fourier transform (DFT) is a well-known and widely applied discrete orthonor-
mal transform, in which ci, j , j = 0, 1, · · · , s + γ, represent s + γ + 1 frequency
magnitudes. In the sequel, for the sake of better understanding, we suppose that
DFT is adopted. Next, fi,s+γ (k) is written into the following compact form:

fi,s+γ (k) = ΦCi , i = 1, · · · , k f , (6.13)

Φ =
⎡
⎢⎣

φ0(k − s − γ ) · · · φs+γ (k − s − γ )
...

...
...

φ0(k) · · · φs+γ (k)

⎤
⎥⎦ ,Ci =

⎡
⎢⎣

ci,0
...

ci,s+γ

⎤
⎥⎦ .

For our purpose, we transform fs+γ (k), by a regular matrix T ,
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T ∈ Rk f (γ+s+1)×k f (γ+s+1),

into

T fs+γ (k) =
⎡
⎢⎣

f1,s+γ (k)
...

fk f ,s+γ (k)

⎤
⎥⎦

and re-write fs+γ (k), using (6.13), as

fs+γ (k) = T−1

⎡
⎢⎣

f1,s+γ (k)
...

fk f ,s+γ (k)

⎤
⎥⎦ = T−1

⎡
⎢⎣

ΦC1
...

ΦCk f

⎤
⎥⎦ .

Now, it is assumed that the faults are periodic signals of q (<< s) frequencies.
Without loss of generality, suppose that these are the first q frequencies. Hence,

ci, j 	= 0, j = 0, 1, · · · , q − 1, ci,q+l = 0, l = 0, 1, · · · , s + γ − q,

ΦCi =
⎡
⎢⎣

φ0(k − s − γ ) · · · φq−1(k − s − γ )
...

...
...

φ0(k) · · · φq−1(k)

⎤
⎥⎦

⎡
⎢⎣

ci,0
...

ci,q−1

⎤
⎥⎦

= : Φ̄C̄i , Φ̄ ∈ R(s+γ+1)×q , i = 1, · · · , k f ,

fs+γ (k) = T−1

⎡
⎢⎣

Φ̄ 0
...

. . .
...

0 Φ̄

⎤
⎥⎦

⎡
⎢⎣

C̄1
...

C̄k f

⎤
⎥⎦ , T−1

⎡
⎢⎣

Φ̄ 0
...

. . .
...

0 Φ̄

⎤
⎥⎦ ∈ Rk f (s+γ+1)×k f q .

It leads to

H̄ f,s+γ fs+γ (k) = H̄ f,s+γ T
−1

⎡
⎢⎣

Φ̄ 0
...

. . .
...

0 Φ̄

⎤
⎥⎦

⎡
⎢⎣

C̄1
...

C̄k f

⎤
⎥⎦ =: Ĥ f,s+γ f̂ ,

Ĥ f,s+γ ∈ Rm(s+1)×k f q , f̂ =
⎡
⎢⎣

C̄1
...

C̄k f

⎤
⎥⎦ ∈ Rk f q .

Finally, we have, in case of stochastic processes,

J = r Ts (k)Σ−1
rs Ĥ f,s+γ

(
Ĥ T

f,s+γ Σ−1
rs Ĥ f,s+γ

)−1
Ĥ T

f,s+γ Σ−1
rs rs(k) ∼ χ2(k f q),

Jth = χα,Pr
{
χ2(k f q) ≤ χα

} = 1 − α,
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and for deterministic processes,

J = r̄ Ts (k)
(
Ĥ T

f,s+γ

(
H̄d,s+γ H̄

T
d,s+γ

)−1
Ĥ f,s+γ

)−1
r̄s(k),

r̄s(k) = Ĥ T
f,s+γ

(
H̄d,s+γ H̄

T
d,s+γ

)−1
rs(k),

Jth = δ2d .

It is obvious from the both examples that the utilisation of information about the
fault vector can remarkably reduce the dimension of the residual subspace, in which
fault will be detected. Since such a dimension reduction does not lead to loss of
information about the fault vector, the fault-to-uncertainty (noises or disturbances)
ratio becomes considerably larger. In this way, the fault detectability is significantly
improved.

6.2 An Observer-based Optimal Scheme

6.2.1 Problem Formulation

In this section, we propose a design scheme for an optimal observer-based fault
detection, when it holds

k f < m.

The process model under consideration is the standard LTI system,

x(k + 1) = Ax(k) + Bu(k) + Ed(k) + E f f (k),

y(k) = Cx(k) + Du(k) + Fd(k) + Ff f (k),

as adopted in our previous study. The transfer function from the fault vector to the
measurement is denoted by

Gyf (z) = Ff + C (z I − A)−1 E f ∈ Cm×k f .

Our solution consists of two main steps:

• doing a co-inner-outer factorisation of Gyf (z) and construct a residual generator
delivering a k f -dimensional residual vector ro,

• doing a co-inner-outer factorisation of N̂d,o(z) ∈ Ck f ×kd , the transfer function
from d to ro, and construct the residual generator delivering residual vector r.

For the purpose of residual evaluation and threshold setting, l2-norm of r is adopted
with the corresponding threshold

Jth = δ2d .
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Although the idea behind this design scheme is similar to the algebraic solutions pro-
posed in the last section, the system realisation is significantly different. Considering
that an inverse of Gyf (z) is a dynamic system that could be unstable and non-causal,
a co-inner-outer factorisation of Gyf (z) is to be performed.

For our purpose, we will, in the sequel, focus on solving the first design problem.
It is clear that the core of the solution is the co-inner-outer factorisation of Gyf ,

which is, unfortunately, not a trivial problem.

6.2.2 A Solution

The following theorem given by Gu et al. (see the reference given in the end of this
chapter) provides uswith an algorithm for a (generalised) co-inner-outer factorisation
of Gyf (z).

Theorem 6.1 Given Gy f (z) ∈ Cm×k f ,m > k f satisfying

rank

[
A − e jθ I E f

C Ff

]
= n + k f ,∀θ ∈ [0, 2π ],

and A is a Schur matrix, then there exists a co-inner-outer factorisation

Gy f (z) = G f,co(z)G f,ci (z),G f,ci (z) ∈ Ck f ×k f ,

G f,ci (z) = Ω+ (
Ff + C (z I − AL)

−1 Ē f
)
,

G f,co(z) = (
I + C (z I − A)−1 Lo

)
Ω,

AL = A − LoC, Ē f = E f − LoFf ,

ΩΩT = � = Ff F
T
f + CXmaxC

T ,

where the observer gain matrix Lo is given by

Lo = (
AXmaxC

T + E f F
T
f

)
�+, (6.14)

Xmax solves the following equation

X = AL X AT
L + Ē f Ē

T
f (6.15)

and the left inverse of G f,co(z) is given by

G−
f,co(z) = Ω+ (

I − C (z I − AL)
−1 Lo

)
,G−

f,co(z)G f,co(z) = I.

ΩΩT is the Cholesky factorisation of�withΩ ∈ Rm×k f , and�+,Ω+ are pseudo-
inverse of �,Ω with

Ω+ ∈ Rk f ×m, rank
(
Ω+) = k f .
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Equation (6.15) has in general more than one solution for X ≥ 0. An iterative
algorithm is given by Gu et al. for finding the maximum solution Xmax. Moreover,
the assumption that A is a Schur matrix loses no generality, since a stable observer
can be applied before doing the co-inner-outer factorisation.

It follows from the above theorem that the dynamics of the co-inner-outer factori-
sation based residual generator,

x̂(k + 1) = Ax̂(k) + Bu(k) + Lo
(
y(k) − ŷ(k)

)
, (6.16)

ro(k) = Ω+ (
y(k) − ŷ(k)

)
, (6.17)

is governed by

e(k + 1) = ALe(k) + Ē f f (k) + ELd(k), EL = E − LoF,

ro(k) = Ω+ (
Ce(k) + Ff f (k) + Fdd(k)

)
.

As a result,

ro(z) = N̂ f,o(z) f (z) + N̂d,o(z)d(z) ∈ Ck f ,

N̂ f,o = F̄ f + C̄ (z I − AL)
−1 Ē f ,

[
F̄ f C̄

] = Ω+ [
Ff C

]
,

N̂d,o(z) = F̄ + C̄ (z I − AL)
−1 EL , F̄ = Ω+F.

Next, we design an observer-based residual generator based on N̂d,o(z), which is
equivalent with a co-inner-outer factorisation of N̂d,o(z) and leads to the following
residual generator, as described in Chap.4,

x̂(k + 1) = (A − LC) x̂(k) + (B − LD) u(k) + Ly(k), (6.18)

L = Lo + L2Ω
+, r(k) = Vrro(k) = VrΩ

+ (
y(k) − ŷ(k)

)
, (6.19)

Vr = (
C̄ XC̄T + F̄ F̄ T

)−1/2
, L2 = (

AL XC̄
T + EL F̄

T
)
V 2
r ,

AL X AT
L − X + EL E

T
L − L2

(
C̄ XC̄T + F̄ F̄ T

)
LT
2 = 0.

The dynamics of this residual generator is governed by

r(z) = N̂ f (z) f (z) + N̂d(z)d(z),

N̂ f (z) = VrΩ
+ (

Ff + C (z I − A + LC)−1 E f,L
)
,

N̂d(z) = VrΩ
+ (

F + C (z I − A + LC)−1 Ed,L
)
,

E f,L = E f − LFf , Ed,L = E − LF,

where N̂d(z) is a co-inner. This allows us to build the evaluation function and to set
the threshold as

J = ‖r‖22 , Jth = δ2d .
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It is worth remarking that once a fault is detected, the observer-based residual gen-
erator (6.18)–(6.19) can be, for example by switching the observer gain matrix L to
Lo, used for the fault estimation purpose.

6.2.3 Discussions

Comparing with the algebraic solutions presented in the last section, the realisation
of the observer-based solution described above requires considerable mathematical
and control theoretical understandings. From the fault detection point of view, the
stability and causality requirements on the observer, which is in fact the inverse of
a co-outer as a post-filter, imply certain system structural constraints and thus may
limit the fault detection performance.

On the other hand, the algebraic solutions can also be interpreted as a residual
evaluation problem of finding an optimal weighting matrix. That is, the residual
evaluation function is defined by

J = r Ts (k)Wrs(k), (6.20)

and the (optimal) residual evaluation is formulated as finding a weighting matrix
W > 0 under some given (performance) cost functions. Following this idea, the
optimal fault detection problem can be formulated as

• designing an optimal observer-based residual generator (for instance,Kalmanfilter
in the stochastic case and H2 observer for deterministic processes),

• determining the weighting matrix W in the evaluation function (6.20).

6.3 A Data-driven Solution

In Sect. 4.4.1, we have derived a data-driven form of SKR and, based on it, a data-
driven residual generator.Notice that the dynamics of that residual generator is similar
to the algebraic model form (6.6) studied in our algebraic solutions. This motivates
us to give a data-driven solution.

Recall that the data-driven residual generator is constructed

rs(k) = ys(k) − Kp

[
us−1(k − s − 1)
ys−1(k − s − 1)

]
− K f,uus(k), (6.21)

where Kp, K f,u are matrices identified using the recorded process input and output
data as follows:
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[
Kp K f,u

] = [
L31 L32

] [
L11 0
L21 L22

]+
,

⎡
⎣

Z p

Uk,s

Yk,s

⎤
⎦ =

⎡
⎣
L11 0 0
L21 L22 0
L31 L32 L33

⎤
⎦

⎡
⎣
Q1

Q2

Q3

⎤
⎦ .

Moreover, during fault-free operations, we have

rs(k) = θ, θ ∼ N (
0, L33L

T
33

)

with regular matrix L33LT
33. Suppose that we would like to detect some faults in the

process and are able to model the influence of the faults on the residual vector rs(k)
by means of Hf,s fs(k),

rs(k) = Hf,s fs(k) + θ, rank
(
Hf,s

) = η < m(s + 1), (6.22)

as shown in the following examples.

Example 6.3 Suppose that some process faults will affect the i-th and the j-th
sensors (from the m sensors, 2 < m), and until the time instant k − s − 1 no fault
has been detected. The influence of the faults on ys(k) is modelled by

H f,s fs(k) =
⎡
⎢⎣
Ei j 0

. . .

0 Ei j

⎤
⎥⎦

⎡
⎢⎢⎢⎢⎢⎣

fi (k − s)
f j (k − s)

...

fi (k)
f j (k)

⎤
⎥⎥⎥⎥⎥⎦

,

Ei j = [
ei e j

] ∈ Rm×2,

where ei (e j ) is a column vector with all entries equal to zero except for the i-th
( j-th) entry that is equal to one. As a result,

rs(k) = Hf,s fs(k) + θ,

Hf,s =
⎡
⎢⎣
Ei j 0

. . .

0 Ei j

⎤
⎥⎦ , rank

(
Hf,s

) = 2 (s + 1) < m(s + 1).

Example 6.4 Suppose that the number of the actuators is smaller than the number
of the sensors, p < m, and until the time instant k − s − 1 no actuator faults have
been detected. According to (6.21), the influence of the actuator faults represented
by fs(k) on the residual vector rs(k) is modelled by



6.4 Notes and References 139

rs(k) = Hf,s fs(k) + θ,

Hf,s = K f,u ∈ Rm(s+1)×k f (s+1), rank
(
Hf,s

) = k f (s + 1) < m(s + 1).

Given model (6.22), the optimal fault detection solution is obvious and summarised
as follows:

J = r Ts (k)Σ−1
rs H f,s

(
HT

f,sΣ
−1
rs H f,s

)−1
HT

f,sΣ
−1
rs rs(k) ∼ χ2(η),

Σ−1
rs = (

L33L
T
33

)−1
,

Jth = χα,Pr
{
χ2(η) ≤ χα

} = 1 − α.

6.4 Notes and References

Two optimal fault detection schemes for LTI dynamic processes have been presented
in this chapter for the case that

dim( f ) = k f < m = dim(y).

The first scheme consists of algebraic solutions including a data-driven realisation.
Its core is the algebraic model of the residual dynamics (6.6). On this basis, the
optimal solutions can be foundby straightforwardmatrix computations. The achieved
solutions can be interpreted as an optimal weighting of the threshold vector rs(k)
as well, as given in (6.20). It is worth remarking that with the increasing dimension
of rs(k),m(s + 1), attention should be paid to possible numerical problems. Also,
computation costs could yield concern.

The second scheme is a control theoretical solution and consists of a co-inner-
outer factorisation of transfer function (matrix). For our purpose, we have applied
the results given by Gu et al. [1], which have been summarised as Theorem 6.1.

Recall that the optimal fault detection problem can be interpreted as an LS estima-
tion problem that requires to inverse the mapping from the fault vector to the residual
vector. For the system model expressed in terms of an algebraic relation, this can be
well realised by finding a (pseudo) inverse of a matrix. For a dynamic system model,
such an inverse can only be realised in form of a co-inner-outer factorisation due to
the requirements on the system stability and causality. In fact, this system structural
restriction limits the application of the second fault detection scheme. Also for this
reason, the algebraic solutions may result in better fault detection performance.

In the end of this chapter, we would like to emphasise that the algebraic solution
can be well realised in the data-driven fashion. Our discussion and examples in
Sect. 6.3 have illustrated and demonstrated such a solution.
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Chapter 7
Fault Detection in Linear Time-Varying
Systems

Our study on fault detection in linear discrete time-varying (LDTV) systems is highly
motivated by the recent development in the fault detection research and application
domains. Firstly, we see the demands for investigation on LDTV fault detection
systems. It is evident that even for an LTI process the fault detection system with a
finite residual evaluation horizon is time-varying. In most of studies on the LTI fault
detection system design, the threshold setting is generally achieved based on the
norm computation with the infinite time horizon, which may result in a conservative
threshold setting. It can be observed that in practice most of evaluation schemes are
realised in the discrete form and with a finite horizon.

In the application world of real-time automatic control systems, most of control
systems are in their nature time-varying. For instance, SD (sampling data) and MSR
(multi-sampling rate) systems are periodic and so time varying. Industrial automatic
networked control systems (NCSs) with TDMA (time division multiple access) pro-
tocol can be modelled as periodic systems. The so-called event-triggered NCSs or
switching systems, which are currently receiving intensive research attention, are
time-varying as well.

Our objectives in this chapter are

• to derive optimal LDTV solutions for the fault detection problem defined in
Chap.2,

• to introduce variousmathematical tools, including co-inner-outer factorisation (for
LDTV systems), operator-aided modelling and system analysis, for dealing with
fault detection issues in LDTV systems as well as their applications to the solution
of the optimal FD problems,

• to reveal relations between the achieved solutions (of the defined optimal FD
problem) and some optimal indices based solutions, and finally

• to demonstrate that the basic ideas for approaching fault detection in static or LTI
systems can also be applied to LDTV systems.
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7.1 Formulation of Fault Detection Problems

7.1.1 System Model and Assumptions

We consider LDTV systems modelled by

x(k + 1) = A(k)x(k) + B(k)u(k) + Ed(k)d(k) + E f (k) f (k), (7.1)

y(k) = C(k)x(k) + D(k)u(k) + Fd(k)d(k) + Ff (k) f (k), (7.2)

where x(k) ∈ Rn, u(k) ∈ Rku , y(k) ∈ Rm represent the state, input and out-
put vector, respectively, d(k) ∈ Rkd and f (k) ∈ Rk f are unknown input vec-
tors with d(k) representing the disturbances and f (k) the faults to be detected.
A(k), B(k),C(k), D(k), Ed(k), E f (k), Fd(k) and Ff (k) are real matrices, bounded
and of appropriate dimensions, and kd ≥ m, k f ≥ m. It is assumed that

A1: (C(k), A(k)) is uniformly detectable and (A(k), Ed(k)) is uniformly stabilis-
able;

A2: d(k), f (k) are l2,[0,N ] bounded with ‖d(k)‖2,[0,N ] ≤ δd,[0,N ].

7.1.2 Observer-Based FD Systems

A standard observer-based FD system is considered in our study, which consists of
(i) an observer-based residual generator, (ii) a residual evaluator, and (iii) a decision
logic. For the purpose of residual generation, an LDTV fault detection filter (LDTV-
FDF) of the form

x̂(k + 1) = A(k)x̂(k) + B(k)u(k) + L(k)
(
y(k) − ŷ(k)

)
, (7.3)

r(k) = V (k)
(
y(k) − ŷ(k)

)
, ŷ(k) = C(k)x̂(k) + D(k)u(k), (7.4)

is considered. r(k) is the residual vector, and the observer gain matrix L(k) as well
as the (static) post-filter V (k) are the design parameter matrices of the FD system,
respectively. The selection of L(k) should ensure the exponential stability of the FDF,
while V (k) ∈ Rm×m is regular so that the residual subspace has the same dimension
like themeasurement subspace. It is straightforward that the dynamics of the residual
generator is governed by
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e(k + 1) = Ā(k)e(k) + Ēd(k)d(k) + Ē f (k) f (k), e(k) = x(k) − x̂(k), (7.5)

r(k) = C̄(k)e(k) + F̄d(k)d(k) + F̄ f (k) f (k), (7.6)

Ā(k) = A(k) − L(k)C(k), Ēd(k) = Ed(k) − L(k)Fd(k),

Ē f (k) = E f (k) − L(k)Ff (k),

C̄(k) = V (k)C(k), F̄d(k) = V (k)Fd(k), F̄ f (k) = V (k)Ff (k).

Without loss of generality, we further assume that x̂(0) = 0 and

A3: ‖x(0)‖ = ‖e(0)‖ = √eT (0)e(0) ≤ δe.

The objective of residual evaluation is to generate a feature of the residual vector,
based on which the threshold and detection logic can then be established. To this
end, the l2,[0,N ]-norm of r(k) is mostly used in the theoretical study,

J2,[0,N ] =
N∑

k=0

r T (k)r(k) = ‖r(k)‖22,[0,N ] . (7.7)

In the framework of process monitoring, there are different evaluation schemes.
Analogue to them, we consider three variations of the evaluation function (7.7):

• Cumulative sum (CUSUM) scheme: the residual evaluation function is defined by

JCUSUM( j) =
j∑

k=0

r T (k)r(k), j = 0, 1, · · · , N ; (7.8)

• Moving horizon (MH) scheme with the residual evaluation function defined by

JMH( j) =
j+M−1∑

k= j

r T (k)r(k), [ j, j + M − 1] ∈ [0, N ], j = 0, 1, · · · , N − M + 1;
(7.9)

• Batch scheme: In practice, for instance in remotemonitoring, data arefirst collected
in packet and then analysed. To this end, batched residual evaluation function

Jbatch(l) =
(l+1)M−1∑

k=lM

r T (k)r(k), [lM, (l + 1)M − 1] ∈ [0, N ], l = 0, 1, · · · ,

(7.10)
is used.

Remark 7.1 In statistical quality control, CUSUM is the shorting for cumulative
sum control chart, which is the cumulative sum of the difference between the mea-
surement signal and the expected value, and thus different from JCUSUM ( j) defined
in (7.8).
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It is obvious that both JCUSUM( j) and JMH( j) are sensitive to the occurrence of a fault
at each sampling time instant. In addition, it is robust against transient disturbances.
Often, these residual evaluation functions can be used in a combined form.

7.1.3 Formulation of the Integrated Design of the FD
Systems

The objective of our observer-based FD system design is to maximise the fault
detectability in the context of Definition 2.7. Given the system model (7.1)–(7.2),
the image of the disturbance vector is given by

Id = {yd
∣∣yd = Md(d), ‖d‖22,[0,N ] + ‖x(0)‖2 ≤ δ2d,[0,N ] + δ2e

}
,

Md(d) :
{
x(k + 1) = A(k)x(k) + Ed(k)d(k),
yd(k) = C(k)e(k) + Fd(k)d(k),

and the set of undetectable faults, as given in Definition 2.6, is described by

D f,undetc = { f ∣∣ f ∈ D f , y f = M f ( f ) ∈ Id
}
,

M f ( f ) :
{
x(k + 1) = A(k)x(k) + E f (k) f (k),
y f (k) = C(k)x(k) + Ff (k) f (k).

Thus, our task is to (i) find the observer gain matrix L(k) and the post-filter V (k),
(ii) set thresholds corresponding to the four residual evaluation functions given in
(7.7)–(7.10) so that

∀y ∈ Id , f = 0, J (y) − Jth ≤ 0,

∀ f /∈ D f,undetc, d = 0, J (y) − Jth > 0.

7.2 Problem Solutions

We now begin with the work on problem solutions, which will be done in a number
of steps.
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7.2.1 An Alternative Input-Output Model of the FD System
Dynamics

For our purpose, we first re-write the dynamics of residual generator (7.5)–(7.6) and
the residual evaluation functions J2,[0,N ], JCUSUM( j), JMH( j), Jbatch(l). Let

r̄(k1, k2) =
⎡

⎢
⎣

r(k1)
...

r(k2)

⎤

⎥
⎦ , [k1, k2] ∈ [0, N ], N < ∞.

After a straightforward computation, we have

r̄(k1, k2) = Hd̄(k1, k2)d̄ (0, k2) + H f̄ (k1, k2) f̄ (0, k2) , (7.11)

Hd̄(k1, k2) =
⎡

⎢
⎣

Hd̄(k1)
...

Hd̄(k2)

⎤

⎥
⎦ , H f̄ (k1, k2) =

⎡

⎢
⎣

H f̄ (k1)
...

H f̄ (k2)

⎤

⎥
⎦ , (7.12)

{
Hd̄(i) = [ ge(i, 0) gd(i, 0) · · · gd(i, i − 1) gd(i, i) 0 · · · 0 ] , i = k1, · · · , k2 − 1,
Hd̄(k2) = [ ge(k2, 0) gd(k2, 0) · · · gd(k2, k2 − 1) gd(k2, k2)

]
,

⎧
⎨

⎩

ge(i, 0) = C̄(i)Φ(i, 0), i = k1, · · · k2,
gd(i, j) = C̄(i)Φ(i, j + 1)Ēd( j), i = k1, · · · k2, 0 ≤ j < i,
gd(i, i) = F̄d(i), i = k1, · · · k2,
{
H f̄ (i) = [ g f (i, 0) · · · g f (i, i − 1) g f (i, i) 0 · · · 0 ] , i = k1, · · · , k2 − 1,
H f̄ (k2) = [ g f (k2, 0) · · · g f (k2, k2 − 1) g f (k2, k2)

]
,

g f (i, j) = C̄(i)Φ(i, j)Ē f ( j), g f (i, i) = F̄ f (i), i = k1, · · · , k2, 0 ≤ j < i,

Φ(i, j) =
i−1∏

l= j

Ā(l),Φ(i, i) = I, i = k1, · · · , k2, 0 ≤ j < i, (7.13)

d̄ (0, k2) =

⎡

⎢⎢⎢
⎣

e (0)
d (0)

...

d (k2)

⎤

⎥⎥⎥
⎦

, f̄ (0, k2) =
⎡

⎢
⎣

f (0)
...

f (k2)

⎤

⎥
⎦ .

Assumptions A2 and A3 can now be expressed by

d̄T (0, k2) d̄ (0, k2) ≤ δ2d,[0,k2] + δ2e =: δ2. (7.14)

Moreover, the previously defined four residual evaluation functions can also be
respectively expressed in terms of r̄(k1, k2) with different time interval [k1, k2] :
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J2,[0,N ] =
N∑

k=0

r T (k)r(k) = r̄ T (k1, k2)r̄(k1, k2), [k1, k2] = [0, N ],

JCUSUM( j) =
j∑

k=0

r T (k)r(k) = r̄ T (k1, k2)r̄(k1, k2), [k1, k2] = [0, j],

JMH( j) =
j+M−1∑

k= j

r T (k)r(k) = r̄ T (k1, k2)r̄(k1, k2), [k1, k2] = [ j, j + M − 1],

Jbatch(l) =
(l+1)M−1∑

k=lM

r T (k)r(k) = r̄ T (k1, k2)r̄(k1, k2),

[k1, k2] = [lM, (l + 1)M − 1].

7.2.2 The Unified Solution

Wefirst introduce the following two lemmas, which play an important role in solving
our problem as well as in the subsequent study.

Lemma 7.1 Let

Lo(k) = (A(k)Po(k)C
T (k) + Ed(k)F

T
d (k)
)
V 2
o (k), (7.15)

Vo(k) = (C(k)Po(k)C
T (k) + Fd(k)F

T
d (k)
)−1/2

, (7.16)

where Po(k) > 0 satisfies the Riccati difference equation

Po(k + 1) = Φo(k + 1, k)Po(k)Φ
T
o (k + 1, k) + Ēd,o(k)Ē

T
d,o(k), (7.17)

Φo(k + 1, k) = Φ(k + 1, k)
∣∣
L(k)=Lo(k) , Ēd,o(k) = Ēd(k))

∣∣
L(k)=Lo(k) ,

with k ≥ 0, Po(0) = I . It holds

Hd̄,o(0, N )HT
d̄,o(0, N ) = I, Hd̄,o(0, N ) = Hd̄(0, N )

∣∣
L(k)=Lo(k),V (k)=Vo(k) . (7.18)

Proof According to the definition of Hd̄,o(i) given in (7.18) as well as in (7.12), it
holds for i = 0, · · · , N

Hd̄,o(i)H
T
d̄,o(i) = ge,o(i, 0)g

T
e,o(i, 0) +

i∑

j=0

gd,o(i, j)g
T
d,o(i, j)

= C̄o(i)Γo(i, 0)C̄
T
o (i) + F̄d,o(i)F̄

T
d,o(i), (7.19)
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where

ge,o(i, 0) = ge(i, 0)
∣∣
L(k)=Lo(k),V (k)=Vo(k) ,

gd,o(i, j) = gd(i, j)
∣∣
L(k)=Lo(k),V (k)=Vo(k) , 0 ≤ j ≤ i,

C̄o(i) = Vo (i)C(i), F̄d,o(i) = Vo (i) Fd(i), Γo(0, 0) = I,

and for i > 0

Γo(i, 0) = Φo(i, 0)Φ
T
o (i, 0) +

i−1∑

j=0

Φo(i, j + 1)W ( j)ΦT
o (i, j + 1),

W ( j) = Ēd,o( j)Ē
T
d,o( j).

Note that

Γo(i + 1, 0) = Φo(i + 1, i)Γo(i, 0)Φ
T
o (i + 1, i) + W (i).

That is Γo(i, 0) is exactly the solution of (7.17) and thus

Γo(i, 0) = Po(i).

As a result, it follows from (7.19) and (7.16) that

Hd̄,o(i)H
T
d̄,o(i) = C̄o(i)Po(i)C̄

T
o (i) + F̄d,o(i)F̄

T
d,o(i) = I, i = 0, · · · , N . (7.20)

We now study

Hd̄,o(i)H
T
d̄,o

( j) = ge,o(i, 0)g
T
e,o( j, 0) +

i∑

l=0

gd,o(i, l)g
T
d,o( j, l), j = 1, · · · , N ,

for 0 ≤ i < j. Let Āo(i) = A(i) − Lo(i)C(i), it turns out

ge,o(i, 0)g
T
e,o( j, 0) = C̄o(i)Φo(i, 0)Φ

T
o (i, 0) ĀT

o (i)ΦT
o ( j, i + 1)C̄T

o ( j),

gd,o(i, l)g
T
d,o( j, l) = C̄o(i)Φo(i, l + 1)W (l)ΦT

o (i, l + 1) ĀT
o (i)ΦT

o ( j, i + 1)C̄T
o ( j),

gd,o(i, i)g
T
d,o( j, i) = Vo (i) Fd(i)Ē

T
d,o(i)Φ

T
o ( j, i + 1)C̄T

o ( j),

for l = 0, · · · , i. It yields
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Hd̄,o(i)H
T
d̄,o

( j) = Vo (i) Ψ (i)ΦT ( j, i + 1)C̄T
o ( j) ,

Ψ (i) = C(i)

(

Φo(i, 0)Φ
T
o (i, 0) +

i−1∑

l=N

Φo(i, l + 1)W (l)ΦT
o (i, l + 1)

)

ĀT
o (i)

+ Fd (i)Ē
T
d,o( j).

Remember that

Φo(i, 0)Φ
T
o (i, 0) +

i−1∑

l=N

Φo(i, l + 1)W (l)ΦT
o (i, l + 1) = Po(i)

and moreover ∀k

Lo(k)
(
C(k)Po(k)C

T (k) + Fd(k)F
T
d (k)
) = A(k)Po(k)C

T (k) + Ed(k)F
T
d (k)

=⇒ Āo(k)Po(k)C
T (k) + Ēd,o(k)F

T
d (k) = 0. (7.21)

Thus, we have for j = 1, · · · , N , 0 ≤ i < j,

Ψ T (i) = Āo(i)Po(i)C
T (i) + Ēd,o(i)F

T
d (i) = 0

=⇒ Hd̄,o(i)H
T
d̄,o( j) = HT

d̄,o( j)Hd̄,o(i) = 0.

As a result of the above equation and (7.20), (7.18) is finally proved.

Remark 7.2 For the practical implementation, the stability of the LDTV-FDF is
required. It is well-known that under Assumption A1 the FDF with

Φo(k + 1, k) = A(k) − Lo(k)C(k)

is exponentially stable.

Along the lines of the above proof, a general form of (7.18) in Lemma 7.1, which is
given below, can be easily proved:

Hd̄,o(k1, k2)H
T
d̄,o(k1, k2) = I,∀ [k1, k2] ∈ [0, N ], (7.22)

Hd̄,o(k1, k2) = Hd̄(k1, k2)
∣∣
L(k)=Lo(k),V (k)=Vo(k) .

Lemma 7.2 Given Vo(k), Lo(k), k ∈ [0, k1 − 1] , as defined in (7.15)–(7.16) in
Lemma 7.1, then for any (regular) V (k) and L(k) with k ∈ [k1, k2] , it holds
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Hd̄ (k1, k2) = Q (k1, k2) Hd̄,o(k1, k2), (7.23)

H f̄ (k1, k2) = Q (k1, k2) H f̄ ,o(k1, k2), (7.24)

H f̄ ,o(k1, k2) = H f̄ (k1, k2)
∣
∣L(k)=Lo(k),V (k)=Vo(k) ,

Q (k1, k2) =

⎡

⎢
⎢⎢
⎢
⎢
⎣

V̄ (k1) 0 · · · 0
Υ (k1 + 1, k1) V̄ (k1 + 1) 0 · · · 0

.

.

.
. . .

. . .
. . .

.

.

.

Υ (k2 − 1, k1) · · · Υ (k2 − 1, k2 − 2) V̄ (k2 − 1) 0
Υ (k2, k1) · · · Υ (k2, k2 − 2) Υ (k2, k2 − 1) V̄ (k2)

⎤

⎥
⎥⎥
⎥
⎥
⎦

V̄ (k) = V (k)V−1
o (k), Υ (k, j) = C̄(k)Φ(k, j + 1)ΔL( j),

ΔL( j) = (Lo( j) − L( j)) V−1
o ( j), k = k1, · · · , k2, k1 ≤ j < k.

Proof Weprove (7.23). Given Vo(0), Lo(0), . . . , Vo(k1−1), Lo(k1−1), it is obvious
that

ge(k1, 0) = C̄(k1)Φo(k1, 0) = V̄ (k1)ge,o(k1, 0).

For k = k1 + 1, · · · , k2,

ge(k, 0) = C̄(k)Φ(k, 0)

= C̄(k)Φ(k, k1 + 1) (Φo(k1 + 1, k1) + ΔL(k1)Vo(k1)C(k1))Φo(k1, 0)

= C̄(k)Φ(k, k1 + 1)Φo(k1 + 1, 0) + C̄(k)Φ(k, k1 + 1)ΔL(k1)ge,o(k1, 0)

= · · ·

= C̄(k)
k−1∑

l=k1

Φ(k, l + 1)ΔL(l)Vo(l)C(l)Φo(l, 0) + C̄(k)Φo(k, 0)

=
k−1∑

l=k1

Υ (k, l)ge,o(l, 0) + V̄ (k)ge,o(k, 0).

Similarly, for k = k1 + 1, · · · , k2, 0 ≤ j < k1,

gd(k, j) = C̄(k)Φ(k, k1)Φo(k1, j + 1)Ēd,o( j)

= C̄(k)Φo(k, j + 1)Ēd,o( j) + C̄(k)
k−1∑

l=k1

Φ(k, l + 1)ΔL(l)C̄o(l)Φo(l, j + 1)Ēd,o( j)

=
k−1∑

l=k1

Υ (k, l)gd,o(l, j) + V̄ (k)gd,o(k, j),

and for k1 ≤ j < k
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gd(k, j) = C̄(k)Φ(k, j + 1)Ēd( j)

= C̄(k)Φ(k, j + 1)(Ēd,o( j) + ΔL( j)Vo( j)Fd( j))

= · · ·

= C̄(k)
k−1∑

l= j+1

Φ(k, l + 1)ΔL(l)C̄o(l)Φo(l, j + 1)Ēd,o( j)

+ C̄(k)Φ(k, j + 1)ΔL( j)F̄d,o( j)

=
k−1∑

l= j

Υ (k, l)gd,o(l, j),

and finally for j = k,

gd( j, j) = V ( j) Fd( j) = V ( j) V−1
o ( j)Vo( j)Fd( j) = V̄ ( j) gd,o( j, j).

Remember that

Hd̄,o(k1, k2) =
⎡

⎢
⎣

Hd̄,o(k1)
...

Hd̄,o(k2)

⎤

⎥
⎦

=
⎡

⎢
⎣

ge,o(k1, 0) gd,o(k1, 0) · · · gd,o(k1, k1) 0 · · ·
...

...
. . .

. . .

ge,o(k2, 0) gd,o(k2, 0) · · · gd,o(k2, k2)

⎤

⎥
⎦ .

It directly follows from the above results that

Hd̄(k1, k2) = Q (k1, k2) Hd̄,o(k1, k2)

Note that Q (k1, k2) is independent of Ēd , Fd and g f (k, j) is similar with gd(k, j) by
replacing Ēd , Fd with Ē f , Ff . The proof of (7.24) is analogue to the one of (7.23).
As a result, (7.23) and (7.24) are proved.

As a special case of Lemma 7.2, for k1 = 0, k2 ∈ (0, N ], it holds

Hd̄(0, k2) = Q (0, k2) Hd̄,o(0, k2), H f̄ (0, k2) = Q (0, k2) H f̄ ,o(0, k2). (7.25)

Noting that Q (0, k2) is invertible and

Hd̄,o(0, k2) = Q−1 (0, k2) Hd̄(0, k2), (7.26)

Q−1 (0, k2) has the identical structure like Q (0, k2) and is formed by changing the
positions of Vo(k) and V (k) and the positions of Lo(k) and L(k) in the related
equations as follows:
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Q−1 (0, k2) =

⎡

⎢⎢⎢⎢
⎢
⎣

V̄ (0) 0 · · · 0
Υ (1, 0) V̄ (1) 0 · · · 0

...
. . .

. . .
. . .

...

Υ (k2 − 1, 0) · · · Υ (k2 − 1, k2 − 2) V̄ (k2 − 1) 0
Υ (k2, 0) · · · Υ (k2, k2 − 2) Υ (k2, k2 − 1) V̄ (k2)

⎤

⎥⎥⎥⎥
⎥
⎦

,

V̄ (k) = Vo(k)V
−1(k), Υ (k, j) = C̄o(k)Φo(k, j + 1)ΔL( j),

ΔL( j) = (L( j) − Lo( j)) V
−1( j), k = 0, · · · , k2, 0 ≤ j < k.

Moreover, let for k ∈ [0, N ]

V (k) = I, L(k) = 0,

yd(0, k) =
⎡

⎢
⎣

y(0)
...

y(k)

⎤

⎥
⎦ for u(k) = 0, f (k) = 0, (7.27)

y f (0, k) =
⎡

⎢
⎣

y(0)
...

y(k)

⎤

⎥
⎦ for x(0) = 0, u(k) = 0, d(k) = 0. (7.28)

It is obvious that the influences of x(0), d(k), f (k) on the system output y(k) (that
is in the open-loop configuration) can be equivalently described by

r̄(0, k) = yd(0, k) + y f (0, k) = Hd̄(0, k)d̄ (0, k) + H f̄ (0, k) f̄ (0, k)

= Q (0, k) Hd̄,o(0, k)d̄ (0, k) + Q (0, k) H f̄ ,o(0, k) f̄ (0, k)

with V (k) = I, L(k) = 0. In this way, we have proved the following lemma.

Lemma 7.3 Given LDTV systemmodel (7.1)–(7.2), then the influences of x(0), d(k)
on the system output y(k), yd(0, k) for k ∈ [0, N ], can be factorised by

yd(0, k) = Hd̄(0, k)d̄ (0, k) , Hd̄(0, k) = Q (0, k) Hd̄,o(0, k), (7.29)

where yd(0, k) is defined by (7.27).

To be consistent with the notations introduced in Chapter 2 and Sect. 7.1, we denote

yd = yd(0, k), y f = y f (0, k),

Md(d) = Hd̄(0, k)d̄ (0, k) ,M f ( f ) = H f̄ (0, k) f̄ (0, k) ,

Id =
{
yd(0, k)

∣∣
∣yd(0, k) = Hd̄(0, k)d̄ (0, k) ,

∥∥d̄ (0, k)
∥∥2 ≤ δ2d,[0,k] + δ2e

}
,

D f,undetc = { f̄ (0, k)
∣
∣y f (0, k) = H f̄ (0, k) f̄ (0, k) ∈ Id

}
.



152 7 Fault Detection in Linear Time-Varying Systems

We are now in a position to present the first solution to our FD problem formulated
in Sect. 7.1.

Theorem 7.1 Given the LDTV system model (7.1)–(7.2), the FDF (7.3)–(7.4) and
the residual evaluation functions (7.7) as well as (7.8), then Vo(k), Lo(k) given in
(7.15)–(7.16) in Lemma 7.1 and

Jth,2,[0,N ] = δ2d,[0,N ] + δ2e , (7.30)

Jth,2,CUSUM = δ2d,[0,N ] + δ2e (7.31)

solve the optimal FD problem.

Proof Viewing CUSUMevaluation function (7.8) as J2,[0, j] evaluation function with
a varying j , the proof for the optimal FD with CUSUM evaluation function can be
easily achieved by extending the proof for the FD with evaluation function (7.7).
Therefore, we focus on the latter case. Recall that

Md(d) = Hd̄(0, N )d̄ (0, N ) = Q (0, N ) Hd̄,o(0, N )d̄ (0, N )

⇐⇒ Hd̄,o(0, N )d̄ (0, N ) = Q−1 (0, N ) Hd̄(0, N )d̄ (0, N ) .

According to Theorem 2.1, we only need to prove

M−
d = Q−1 (0, N ) .

Since Q−1 (0, N ) is invertible and

Hd̄,o(0, N )HT
d̄,o(0, N ) = I,

it is obvious that

• ∀d̄ (0, N ),

‖r̄(0, N )‖2 = ‖r(k)‖22,[0,N ] = ∥∥Hd̄,o(0, N )d̄ (0, N )
∥∥2

= ∥∥M−
d ◦ Md(d)

∥∥2 ≤ δ2d,[0,N ] + δ2e

• ∀ f̄ (0, k) ∈ D f,undetc, ∃d̄ (0, k) so that

H f̄ (0, k) f̄ (0, k) = Hd̄,o(0, k)d̄ (0, k) =⇒
∥∥H f̄ (0, k) f̄ (0, k)

∥∥2 = ∥∥d̄ (0, k)
∥∥2 .

As a result, it follows fromTheorem 2.1 that Q−1 (0, N )with Vo(k), Lo(k) defined in
(7.15)–(7.16) in Lemma 7.1 and threshold Jth,2,[0,N ] given in (7.30) solve the optimal
FD problem. The theorem is proved.
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Noting that the proof given above holds for any integer N , an extension of this
proof to the optimal FD with CUSUM evaluation function is straightforward, since
for each j the given matrices Vo(k), Lo(k) as well as Jth,CUSUM are optimal.

The optimal solutions corresponding to the other two evaluation functions are
summarised in the following theorem, whose proof is similar to the one of the above
theorem.

Theorem 7.2 Given the LDTV system model (7.1)–(7.2), the FDF (7.3)–(7.4), and
the residual evaluation functions (7.9) and (7.10), then Vo(k), Lo(k) given in (7.15)–
(7.16) in Lemma 7.1 and

Jth,MH = δ2d,[0,N ] + δ2e , (7.32)

Jth,batch = δ2d,[0,N ] + δ2e (7.33)

solve the optimal FD problem.

Proof Webeginwith the residual evaluation functions (7.9) and (7.10) for j = l = 0,
which are equivalent to the FD problem in the time interval [0, M − 1] with residual
evaluation function

J = ‖r(k)‖22,[0,M−1] .

Thus, according to Theorem 7.1, the optimal solution, for both cases, is given by
Vo(k), Lo(k) in (7.15)–(7.16) and the threshold settings (7.32) and (7.33), respec-
tively. Next, for j = l = 1, the FD problems are equivalent to the FD problem in
the time intervals [1, M] as well as [M, 2M − 1] with residual evaluation functions

J = ‖r(k)‖22,[1,M] as well as J = ‖r(k)‖22,[M,2M−1] .

Denote the influences of x(0), d(k), f (k) on the system output y(k) in the time
intervals [1, M] as well as [M, 2M − 1] by

yd(k1, k2) + y f (k1, k2) = Hd̄(k1, k2)d̄ (0, k2) + H f̄ (k1, k2) f̄ (0, k2) ,

[k1, k2] = [1, M] as well as [k1, k2] = [M, 2M − 1],

which is equivalent to r̄(k1, k2) with V (k) = I, L(k) = 0. It follows from Lemma
7.2 that

Hd̄(k1, k2)d̄ (0, k2) + H f̄ (k1, k2) f̄ (0, k2)

= Q(k1, k2)Hd̄,o(k1, k2)d̄ (0, k2) + Q(k1, k2)H f̄ ,o(k1, k2) f̄ (0, k2) ⇐⇒
Q−1(k1, k2)

(
Hd̄(k1, k2)d̄ (0, k2) + H f̄ (k1, k2) f̄ (0, k2)

)

= Hd̄,o(k1, k2)d̄ (0, k2) + H f̄ ,o(k1, k2) f̄ (0, k2) .

Re-write the above equation in the form of
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Hd̄(k1, k2)d̄ (0, k2) + H f̄ (k1, k2) f̄ (0, k2) = Md(d) + M f ( f )

and recall (7.22),
Hd̄,o(k1, k2)H

T
d̄,o(k1, k2) = I.

As a result, along the lines of the proof of Theorem 7.1, it is obvious that

M−
d = Q−1(k1, k2)

delivers the optimal solution. Notice that the above results hold for any time interval
[k1, k2]. That is, they are also true for

[k1, k2] = [ j, j + M − 1] as well as [k1, k2] = [lM, (l + 1)M − 1].

We have finally proved that Vo(k), Lo(k) given in (7.15)–( 7.16) and the threshold
settings (7.32) and (7.33) solve the optimal FD problem.

With Theorems 7.1 and 7.2, we have now the complete solution for the optimal FD
problem formulated in Definition 2.7. It is remarkable that for all four variations
of the residual evaluation functions we have the identical solution. It is also worth
noting that the unified solution presented in Sect. 4.3 for LTI systems is a special
case of the solution given above. With this background as well as our subsequent
discussions, we continue to use “unified solution” to denote the solution given in
Theorems 7.1 and 7.2.

In the subsequent sections, we shall discuss about the solution from different
aspects and using various system modelling and analysis techniques, which will
result in diverse interesting interpretations.

7.3 Algebraic I/O-Model, Co-inner-outer Factorisation and
Unified Solution

In the previous section, we have found the optimal fault detection solution using an
input-output model of the observer-based FD system dynamics. In this section, we
address the same fault detection problem on the basis of the algebraic input-output
model adopted in our investigation on parity space approach and data-driven fault
detection in Chap. 4.

7.3.1 The Algebraic Input-Output Model for LDTV Systems

Given LDTV systemmodel (7.1)–(7.2), its algebraic input-output model is described
by
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yk(k) = Ho,k x(0) + Hu,kuk(k) + Hd,kdk(k) + Hf,k fk(k), (7.34)

yk(k) =

⎡

⎢⎢
⎢
⎣

y(0)
y(1)

...

y(k)

⎤

⎥⎥
⎥
⎦

, uk(k) =

⎡

⎢⎢
⎢
⎣

u(0)
u(1)

...

u(k)

⎤

⎥⎥
⎥
⎦

, dk(k) =

⎡

⎢⎢
⎢
⎣

d(0)
d(1)

...

d(k)

⎤

⎥⎥
⎥
⎦

, fk(k) =

⎡

⎢⎢
⎢
⎣

f (0)
f (1)
...

f (k)

⎤

⎥⎥
⎥
⎦

,

Ho,k =

⎡

⎢⎢⎢
⎣

C(0)Ψ (0, 0)
C(1)Ψ (1, 0)

...

C(k)Ψ (k, 0)

⎤

⎥⎥⎥
⎦

, Ψ (i, j) =
i−1∏

l= j

A(l), Ψ (i, i) = I,

Hu,k =

⎡

⎢⎢
⎢⎢
⎣

D(0) 0 · · · 0

C(1)Ψ (0, 0)B(0) D(1)
. . .

...
...

. . .
. . . 0

C(k)Ψ (k − 1, 0)B(0) · · · C(k)Ψ (0, 0)B(k − 1) D(k)

⎤

⎥⎥
⎥⎥
⎦

,

and Hd,k, Hf,k have the identical structure like Hu,k and are built by substituting
D(k), B(k) in terms of Fd(k), Fd(k) and Ed(k), E f (k), respectively.

Recalling the definitions of matrices Hd̄(k1, k2), H f̄ (k1, k2) as well as vectors
d̄ (0, k2) , f̄ (0, k2) given in (7.11)–(7.13), the algebraic input-output model (7.34)
can be re-written as

yk(k) = Hu,kuk(k) + Hd̄(0, k)d̄ (0, k) + H f̄ (0, k) f̄ (0, k) , (7.35)

where V (k), L(k) in Hd̄(0, k), H f̄ (0, k) are set to be

V (k) = I, L(k) = 0. (7.36)

In our subsequent discussion, matrices Hd̄(0, k), H f̄ (0, k) are considered on the
assumption of (7.36).

7.3.2 Co-inner-outer Factorisation and the Solution

It follows from Lemmas 7.1–7.3 that

[
Ho,k Hd,k

] = Hd̄(0, k) = Q (0, k) Hd̄,o(0, k), (7.37)

Hd̄,o(0, k)H
T
d̄,o(0, k) = I. (7.38)
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Moreover, Q (0, k) is invertible and given by

Q (0, k) =

⎡

⎢⎢
⎢⎢⎢
⎣

Vo(0) 0 · · · 0
Υ (1, 0) Vo(1) 0 · · · 0

...
. . .

. . .
. . .

...

Υ (k − 1, 0) · · · Υ (k − 1, k − 2) Vo(k − 1) 0
Υ (k, 0) · · · Υ (k, k − 2) Υ (k, k − 1) Vo(k)

⎤

⎥⎥
⎥⎥⎥
⎦

,

Υ (i, j) = −C̄o(i)Φo(i, j + 1)Lo( j), i = 1, · · · , k, 0 ≤ j < i.

We call (7.37)–(7.38) a co-inner-outer factorisation of
[
Ho,k Hd,k

]
with Q (0, k)

as co-outer and Hd̄,o(0, k) as co-inner. Analogue to the relation between the co-
inner-outer factorisation of LTI systems and unified solution presented in Sect. 4.3,
we see, from the co-inner-outer factorisation of

[
Ho,k Hd,k

]
, another aspect of the

optimal residual generator (7.3)–(7.4) with L(k) = Lo(k), V (k) = Vo(k). To this
end, re-form the input-output model (7.34) into

yk(k) − Hu,kuk(k) = Ho,k x(0) + Hd,kdk(k) + Hf,k fk(k)

= Hd̄(0, k)d̄ (0, k) + H f̄ (0, k) f̄ (0, k) .

By means of the co-inner-outer factorisation (7.37)–(7.38), it turns out

yk(k) − Hu,kuk(k) = Q (0, k)
(
Hd̄,o(0, k)d̄ (0, k) + H f̄ ,o(0, k) f̄ (0, k)

) =⇒
Q−1 (0, k)

(
yk(k) − Hu,kuk(k)

) = Hd̄,o(0, k)d̄ (0, k) + H f̄ ,o(0, k) f̄ (0, k) .

It is clear that
Q−1 (0, k)

(
yk(k) − Hu,kuk(k)

) = r̄(0, k),

and finally it holds, in the fault-free case,

J2,[0,k] =
k∑

i=0

r T (i)r(i) = ‖r̄(0, k)‖2 ≤ ∥∥d̄ (0, k)
∥∥2 ≤ δ2d,[0,k] + δ2e .

Consider the dual form of

r̄(0, k) = Hd̄,o(0, k)d̄ (0, k) ,

the residual vector in the fault-free case, which can be written as

ˆ̄d (0, k) = HT
d̄ (0, k)r̄(0, k), (7.39)

and interpreted as a residual-based estimation for d̄ (0, k) . Recall that



7.4 Co-inner-outer, Lossless and Unified Solution 157

Hd̄,o(0, k)H
T
d̄,o(0, k) = I.

Hence,

‖r(i)‖22,[0,k] = ‖r̄(0, k)‖2 =
∥∥
∥ ˆ̄d (0, k)

∥∥
∥
2
. (7.40)

That means, the unified solution can be equivalently viewed as a residual-driven
estimation of the disturbance with the property that the l2,[0,k] norm of the residual
vector equals to the one of the estimated disturbance vector.

It is of interest to notice that the state space realisation of the algebraic input-output
model (7.39) is given by

ē(i) = ĀT
o (i)ē(i + 1) + C̄T

o (i)r̄(i + 1), (7.41)

d̂(i + 1) = Ē T
d,o(i)ē(i + 1) + F̄ T

d,o(i)r̄(i + 1) (7.42)

with ē(k + 1) = 0, i ∈ [0, k], and

ˆ̄d (0, k) =

⎡

⎢⎢
⎢
⎣

ē(0)
d̂(1)

...

d̂(k + 1)

⎤

⎥⎥
⎥
⎦

, r̄(0, k) =
⎡

⎢
⎣

r(0)
...

r(k)

⎤

⎥
⎦ =
⎡

⎢
⎣

r̄(1)
...

r̄(k + 1)

⎤

⎥
⎦ . (7.43)

It is well-known in control theory that the system representation (7.41)–(7.42) is the
dual form of the system model

e(i + 1) = Āo(i)e(i) + Ēd,o(i)d(i), r(i) = C̄o(i)e(i) + F̄d,o(i)d(i). (7.44)

7.4 Co-inner-outer, Lossless and Unified Solution

In control theory, an inner system is lossless with respect to the so-called l2-gain
supply rate. Generally speaking, a system is lossless with respect to the l2-gain
supply rate, when the energy change stored in the system is equal to the difference
between the system input and output energy. In some literatures, an inner system is
also defined in the context of this energy balance relation. As a dual form of the inner
system with (energy) lossless behaviour, we introduce first the following definition
of a co-inner system in the context of lossless information transform.

Definition 7.1 Given system

x(k + 1) = A(k)x(k) + E(k)d(k), r(k) = C(k)x(k) + D(k)d(k) (7.45)

and its dual form
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x̄(k) = AT (k)x̄(k + 1) + CT (k)r̄(k + 1), (7.46)

d̄(k + 1) = ET (k)x̄(k + 1) + DT (k)r̄(k + 1), (7.47)

system (7.45) is called co-inner if there exists a function V (x̄(k)) ≥ 0, V (0) = 0
such that

V (x̄ (N + 1)) − V (x̄ (0)) = ∥∥d̄(k + 1)
∥
∥2
2,[0,N ] − ‖r̄(k + 1)‖22,[0,N ] . (7.48)

In the frameworkof processmonitoring anddiagnosis,V (x̄ (k)) and
∥∥d̄(k+ 1)

∥∥2
2,[0,N ]

can be viewed as uncertainties due to the (not measurable) system state variables and
unknown input d̄(k + 1), while ‖r̄(k + 1)‖22,[0,N ] represents the information amount
about the uncertainties, which can be extracted from the systemmeasurement. In this
context, we call system (7.45) lossless with respect to information transform rate

s(d̄, r̄) = d̄T (k + 1)d̄(k + 1) − r̄ T (k + 1)r̄(k + 1).

Theorem 7.3 Consider residual dynamics in the fault-free case,

e(k + 1) = Āo(k)e(k) + Ēd,o(k)d(k), (7.49)

r(k) = C̄o(k)e(k) + F̄d,o(k)d(k), (7.50)

and its dual form

ē(k) = ĀT
o (k)ē(k + 1) + C̄T

o (k)r̄(k + 1),

d̂(k + 1) = Ē T
d,o(k)ē(k + 1) + F̄ T

d,o(k)r̄(k + 1),

for k ∈ [0, N ] and ē(N + 1) = 0, where

Āo(k) = A(k) − Lo(k)C(k), C̄o(k) = Vo(k)C(k),

Ēd,o(i) = Ed(k) − Lo(k)Fd(k), F̄d,o(k) = Vo(k)Fd(k)

with Lo(k), Vo(k) defined in Lemma 7.1. Then, system (7.49) is co-inner and lossless
with respect to information transform rate s(d̂, r̄).

Proof Let
V (ē(k)) = ēT (k)Po (k) ē(k),

where Po (k) ≥ 0 is the solution of Riccati recursion (7.17), and consider

V (ē(k + 1)) − V (ē(k)) .

It follows from (7.41) that
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V (ē(k + 1)) − V (ē(k))

= ēT (k + 1)
(
Po (k + 1) − Āo(k)Po (k) ĀT

o (k)
)
ē(k + 1)

− 2ēT (k + 1) Āo(k)Po (k) C̄T
o (k)r̄(k + 1) − r̄ T (k + 1)C̄o(k)Po (k) C̄T

o (k)r̄(k + 1).

By means of Riccati recursion (7.17) and relation (7.21), it holds

V (ē(k + 1)) − V (ē(k))

= ēT (k + 1)Ēd,o(k)Ē
T
d,o(k)ē(k + 1) + 2ēT (k + 1)Ēd,o(k)F̄

T
d,or̄(k + 1)

− r̄ T (k + 1)C̄o(k)Po (k) C̄T
o (k)r̄(k + 1)

= d̂T (k + 1)d̂(k + 1) − r̄ T (k + 1)r̄(k + 1),

with Vo(k)
(
C(k)Po (k)CT (k) + Fd(k)F

T
d (k)
)
V T
o (k) = I.

Finally, we have

N∑

k=0

(V (ē(k + 1)) − V (ē(k)))

= −V (ē(0)) =
N∑

k=0

(
d̂T (k + 1)d̂(k + 1) − r̄ T (k + 1)r̄(k + 1)

)
⇐⇒

‖r̄(k + 1)‖22.[0,N ] = V (ē(0)) +
∥∥∥d̂(k + 1)

∥∥∥
2

2,[0,N ]
.

The theorem is proved.

Theorem 7.3 gives a deeper insight into the unified solution and reveals its loss-
less property with respect to the information transform rate s(d̂, r̄). This property
can be, for instance, applied to developing model-free algorithms to achieve the
unified solution. To this end, we can start, on the assumption of zero input vector,
with a deadbeat system (of the appropriate dimension) as an observer-based residual
generator and drive its dual system using the generated residual vector. It follows an
update of the dual system, that is L(k), V (k), to minimise

‖r̄(k + 1)‖22,[0,N ] − V (ē(0)) −
∥∥∥d̂(k + 1)

∥∥∥
2

2,[0,N ]
.

Repeat these steps until

‖r̄(k + 1)‖22,[0,N ] � V (ē(0)) +
∥∥∥d̂(k + 1)

∥∥∥
2

2,[0,N ]
.



160 7 Fault Detection in Linear Time-Varying Systems

7.5 Operator-Based Co-inner-outer Factorisation and
Interpretations

In the previous sections, we have derived and investigated the unified solution on the
basis of the algebraic input-output models. On the other hand, it is the state of the
art in the fault detection research that the design of observer-based FD systems is
approached by a multi-objective optimisation of the residual generator aiming at a
trade-off between the system robustness and fault sensitivity. We now briefly study
the unified solution in this context. For our purpose, wewill apply the operator theory
as the mathematical tool.

7.5.1 Operator-Based Models of the Residual Dynamics

We first introduce some definitions and mathematical preliminaries for the system
representation using a linear operator.

In the fault-free case, the dynamics of the residual generator given by (7.5)–(7.6)
defines a linear operator Hd,[0,N ] that maps (e(0), d) to r. That is

Hd,[0,N ] : Rn × l2,[0,N ] → l2,[0,N ], (7.51)

rd(k) = C̄(k)Φ(k, 0)e(0) + C̄(k)
k−1∑

j=0

Φ(k, j + 1)Ēd( j)d( j) + F̄d(k)d(k).

With the inner product in Rn × l2,[0,N ] defined by

〈(e1, d1) , (e2, d2)〉2,[0,N ] = eT1 e2 +
N∑

k=0

dT
1 (k) d2(k),

the adjoint of Hd,[0,N ],

H∗
d,[0,N ] : l2,[0,N ] → Rn × l2,[0,N ],

can be determined by

〈
rd ,Hd,[0,N ] (e, d)

〉
2,[0,N ] = 〈H∗

d,[0,N ]rd , (e, d)
〉
2,[0,N ] .

It turns out

H∗
d,[0,N ]rd =

[ ∑N
i=0 ΦT (i, 0)C̄T (i)rd(i)∑N

i= j+1 Ē
T
d ( j)ΦT (i, j + 1)C̄T (i)rd(i) + F̄ T

d ( j)rd( j)

]

. (7.52)
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Similarly, for the analysis of the influence of the faults on the residual signal, we
define a linear operator H f,[0,N ] that maps f to r :

H f,[0,N ] : l2,[0,N ] → l2,[0,N ], (7.53)

H f,[0,N ] ( f ) : r f (k) = C̄(k)
k−1∑

j=0

Φ(k, j + 1)Ē f ( j) f ( j) + F̄ f (k) f (k),

whose state-space representation is given by (7.5)–(7.6) for d(k) = 0. The adjoint
of H f,[0,N ] is

H∗
f,[0,N ]r f =

N∑

i= j+1

Ē T
f ( j)Φ

T (i, j + 1)C̄T (i)r f (i) + F̄ T
f ( j)r f ( j). (7.54)

Using the notation introduced in (7.11)–(7.13), Hd,[0,N ],H f,[0,N ] and their adjoints
can be re-written into

Hd,[0,N ] (e, d) (k) = ge(k, 0)e(0) +
k∑

j=0

gd(k, j)d( j),

H∗
d,[0,N ]rd =

[∑N
i=0 g

T
e (i, 0)rd(i)∑N

i= j g
T
d (i, j)rd(i)

]

,

H f,[0,N ] f (k) =
k∑

j=0

g f (k, j) f ( j),

H∗
f,[0,N ]r f =

N∑

i= j

gTf (i, j)r f (i).

The overall residual dynamics is modelled by

r(k) = Hd,[0,N ] (e, d) (k) + H f,[0,N ] f (k). (7.55)

Similar to our previous study, we can view the dynamics of the system output y(k)
with respect to the disturbance d(k) and fault f (k) as a special case of the residual
dynamics (7.55) with

V (k) = I, L(k) = 0.

We denote them by

yd(k) = rd(k) = Hyd ,[0,N ] (e, d) (k), y f (k) = r f (k) = Hy f ,[0,N ] ( f ) (k),
(7.56)

Hyd ,[0,N ] = Hd,[0,N ]
∣∣
L(k)=0,V (k)=I ,Hy f ,[0,N ] = H f,[0,N ]

∣∣
L(k)=0,V (k)=I .
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7.5.2 Co-inner-outer Factorisation and the Unified Solution

We now give an "operator version" of the unified solution using a co-inner-outer fac-
torisation of the defined linear operator. A co-inner-outer factorisation of an operator
is described as follows.

Definition 7.2 An operator Hci,[0,N ] : l2,[0,N ] → l2,[0,N ] is called co-inner, when
∀ξ(k) ∈ l2,[0,N ]

〈
ξ,Hci,[0,N ]H∗

ci,[0,N ]ξ
〉
2,[0,N ] =

N∑

k=0

ξ T (k)ξ(k) = 〈ξ, ξ 〉2,[0,N ] .

A factorisation of the operator H[0,N ] : l2,[0,N ] → l2,[0,N ]

H[0,N ] = Hco,[0,N ] ◦ Hci,[0,N ]

is called co-inner-outer factorisation, when Hci,[0,N ] is co-inner and Hco,[0,N ] is
invertible which is called co-outer.

For our purpose, we first define a linear operator Q[0,N ] : l2,[0,N ] → l2,[0,N ] with

Q[0,N ]r(k) = CQ(k)
k−1∑

j=0

ΦQ(k, j + 1)BQ( j)r( j) + DQ(k)r(k) (7.57)

for k ∈ [0, N ], where r(k) is a residual vector generated by an observer-based
residual generator, andCQ(k), BQ( j), (invertible) DQ(k) andΦQ(k, j+1) are some
matrices of the appropriate dimensions. It is obvious that Q[0,N ] defines a dynamic
post-filter driven by r(k).Now, we are able to introduce the following lemma, which
is similar to Lemma 7.2 and plays an important role in our subsequent study.

Lemma 7.4 Given residual vectors

r1(k) = H1
d,[0,N ] (e, d) (k) + H1

f,[0,N ] ( f ) (k), (7.58)

r2(k) = H2
d,[0,N ] (e, d) (k) + H2

f,[0,N ] ( f ) (k), (7.59)

where r1(k), r2(k) are generated by two observer-based residual generators with
(regular) V1(k), V2(k) and observer gain matrices L1(k), L2(k), respectively, then
it holds
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r1(k) = Q[0,N ]r2(k) (7.60)

= CQ(k)
k−1∑

j=0

ΦQ(k, j + 1)BQ( j)r2( j) + DQ(k)r2(k),

CQ(k) = V1(k)C(k), DQ(k) = V1(k)V
−1
2 (k),

BQ( j) = (L1( j) − L2( j)) V
−1
2 ( j), 0 ≤ j < k,

ΦQ(k, j + 1) =
k−1∏

l= j+1

(A(l) − L1(l)C(l)) , 0 ≤ j < k − 1, ΦQ(k, k) = I.

Proof According to (7.51) and (7.53), ri (k), i = 1, 2, given in (7.58)–(7.59) can be
re-written into

ri (k) = Hi
d,[0,N ] (e, d) (k) + Hi

f,[0,N ] f (k)

= gie(k, 0)e(0) +
k∑

j=0

gid(k, j)d( j) +
k∑

j=0

gif (k, j) f ( j), i = 1, 2,

gie(k, 0) = ge(k, 0)
∣
∣
L(k)=Li (k),V (k)=Vi (k) ,

gid(k, j) = gd(k, j)
∣∣
L(k)=Li (k),V (k)=Vi (k) ,

gif (k, j) = g f (k, j)
∣∣
L(k)=Li (k),V (k)=Vi (k) , i = 1, 2.

It follows from the lines in the proof of Lemma 7.2 and (7.25) that

g1e (k, 0)e(0) +
k∑

j=0

g1d (k, j)d( j)

= CQ(k)
k−1∑

j=0

ΦQ(k, j + 1)BQ( j)

⎛

⎝g2e ( j, 0)e(0) +
j∑

i=0

g2d ( j, i)d(i)

⎞

⎠

+ DQ(k)

(

g2e (k, 0)e(0) +
k∑

i=0

g2d (k, i)d(i)

)

,

k∑

j=0

g1f (k, j) f ( j) = CQ(k)
k−1∑

j=0

ΦQ(k, j + 1)BQ( j)
j∑

i=0

g2f ( j, i) f (i)

+ DQ(k)
k∑

i=0

g2f (k, i) f (i),
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which results in

r1(k) = CQ(k)
k−1∑

j=0

ΦQ(k, j + 1)BQ( j)r2( j) + DQ(k)r2(k).

Thus, (7.60) is proved.

Note that (7.60) can also be equivalently written as

r2(k) = Q−1
[0,N ]r1(k) =: Q̄[0,N ]r1(k),

Q̄[0,N ]r1(k) = CQ̄(k)
k−1∑

j=0

ΦQ̄(k, j + 1)BQ̄( j)r1( j) + DQ̄(k)r1(k),

CQ̄(k) = V2(k)C(k), DQ̄(k) = V2(k)V
−1
1 (k),

BQ̄( j) = (L2( j) − L1( j)) V
−1
1 ( j), 0 ≤ j < k,

ΦQ̄(k, j + 1) =
k−1∏

l= j+1

(A(l) − L2(l)C(l)) , 0 ≤ j < k − 1, ΦQ̄(k, k) = I.

Moreover, it holds

H1
d,[0,N ] (e, d) = Q[0,N ] ◦ H2

d,[0,N ] (e, d) ,

H1
f,[0,N ]( f ) = Q[0,N ] ◦ H2

f,[0,N ] ( f ) .

The above results allow us to factoriseHyd ,[0,N ] as

Hyd ,[0,N ] = Q[0,N ] ◦ Hd,o,[0,N ],
Hd,o,[0,N ] = Hd,[0,N ]

∣∣
L(k)=Lo(k),V (k)=Vo(k) ,

where Lo(k), Vo(k) satisfy (7.15) and (7.16), respectively, and the post-filterQ[0,N ],
as defined in (7.57), is invertible and given by

CQ(k) = C(k), DQ(k) = V−1
o (k), BQ( j) = −Lo( j)V

−1
o ( j), 0 ≤ j < k,

(7.61)

ΦQ(k, j + 1) =
k−1∏

l= j+1

A(l), 0 ≤ j < k − 1, ΦQ(k, k) = I. (7.62)

On the other hand, it follows from Lemma 7.1 that
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〈
rd ,Hd,o,[0,N ]H∗

d,o,[0,N ]rd
〉
2,[0,N ]

=
N∑

k=0

r Td (k)

⎛

⎝ge,o(k, 0)gTe,o(k, 0) +
k∑

j=0

gd,o(k, j)g
T
d,o(k, j)

⎞

⎠ rd(k)

=
N∑

k=0

r Td (k)rd(k) = 〈rd , rd〉2,[0,N ] .

In order words, Hd,o,[0,N ] is co-inner. In summary, we have proved the following
theorem.

Theorem 7.4 Given Hyd ,[0,N ], as defined in (7.56), then

Hyd ,[0,N ] = Q[0,N ] ◦ Hd,o,[0,N ] (7.63)

is a co-inner-outer factorisation ofHyd ,[0,N ] withHd,o,[0,N ] being co-inner andQ[0,N ]

defined in (7.61)–(7.62) being co-outer.

As a result, the optimal residual generator design can be interpreted as finding a
post-filter, which is the inverse of the co-outer. That is,

r(k) = Q−1
[0,N ]yd(k) = Hd,o,[0,N ] (e, d) (k),

Q−1
[0,N ]yd(k) = CQ̄(k)

k−1∑

j=0

ΦQ̄(k, j + 1)BQ̄( j)yd( j) + DQ̄(k)yd(k),

CQ̄(k) = Vo(k)C(k), DQ̄(k) = Vo(k), BQ̄( j) = Lo( j), 0 ≤ j < k,

ΦQ̄(k, j + 1) =
k−1∏

l= j+1

(A(l) − Lo(l)C(l)) , 0 ≤ j < k − 1, ΦQ̄(k, k) = I.

Next, we briefly discuss the unified solution from the system theoretic viewpoint
briefly. Recall

Hd,o,[0,N ]H∗
d,o,[0,N ] = Q−1

[0,N ]Hy,d,[0,N ]
(Q−1

[0,N ]Hy,d,[0,N ]
)∗ = I, (7.64)

r(k) = Q−1
[0,N ]Hy,d,[0,N ] (e, d) (k) + Q−1

[0,N ]Hy, f,[0,N ] f (k). (7.65)

SinceHy,d,[0,N ]H∗
y,d,[0,N ] can be interpreted as the magnitude profile of the influence

of x(0), d(k) on y(k), (7.64) means that the operator Q−1
[0,N ] is an "inverse" of the

magnitude profile ofHy,d,[0,N ]. Moreover, we see from (7.65) that the operatorQ−1
[0,N ]

acts as a weighting on the influence of f (k) on the residual signal. As a result, we
claim that the unified solution can be interpreted as weighting the influence of f (k)
on r(k) by using the "inverse" of the magnitude profile of the influence of x(0), d(k)
on y(k).
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7.5.3 Robustness Vs. Sensitivity

Due to their close relation to observers, observer-based residual generators are often
designed in the context of the trade-off between robustness against disturbances
and sensitivity to the faults. Blow, we briefly demonstrate that the unified solution
given above also delivers an optimal trade-off in such a context. To this end, we first
introduce necessary definitions and formulate our problems to be addressed.

Definition 7.3 Let the linear operator Hd,[0,N ] : Rn × l2,[0,N ], be given in (7.51).
The l2-gain of Hd,[0,N ] is defined as

∥∥Hd,[0,N ]
∥∥
2 = sup

d∈l2,[0,N ],e(0)∈Rn

‖rd(k)‖2,[0,N ]√
‖d(k)‖22,[0,N ] + ‖e(0)‖2

. (7.66)

Considering that the fault could be present in any direction in the residual sub-
space, we use H∗

f,[0,N ]H f,[0,N ], instead of a norm or a scalar function of H f,[0,N ],
to measure the fault sensitivity. Given two residual generators with L1(k), V1(k)
and L2(k), V2(k), respectively, we say that the residual generator with L1(k), V1(k)
offers a better sensitivity-to-robustness trade-off than the residual generator with
L2(k), V2(k) if ∀ f (k)

〈H f,1,[0,N ] f,H f,1,[0,N ] f
〉
2,[0,N ]

∥∥Hd,1,[0,N ]
∥∥2
2

−
〈H f,2,[0,N ] f,H f,2,[0,N ] f

〉
2,[0,N ]

∥∥Hd,2,[0,N ]
∥∥2
2

≥ 0, (7.67)

H f,i,[0,N ] = H f,[0,N ]
∣∣
L(k)=Li (k),V (k)=Vi (k) ,

Hd,i,[0,N ] = Hd,[0,N ]
∣∣
L(k)=Li (k),V (k)=Vi (k) , i = 1, 2.

For the sake of simplification, we introduce the following notation.

Definition 7.4 The fact that ∀ f (k) (7.67) holds is denoted by

H∗
f,1,[0,N ]H f,1,[0,N ]
∥
∥Hd,1,[0,N ]

∥
∥2
2

≥ H∗
f,2,[0,N ]H f,2,[0,N ]
∥
∥Hd,2,[0,N ]

∥
∥2
2

or (7.68)

H∗
f,1,[0,N ]H f,1,[0,N ]
∥∥Hd,1,[0,N ]

∥∥2
2

− H∗
f,2,[0,N ]H f,2,[0,N ]
∥∥Hd,2,[0,N ]

∥∥2
2

≥ 0. (7.69)

We now formulate the optimal trade-off fault detection problem as an H f / l2 opti-
misation problem.

Definition 7.5 (H f / l2 optimisation) Given the residual generator (7.3)–(7.4), find,
if exist, L(k), V (k) which maximise the (matrix-valued) ratio

J f/2 = H∗
f,[0,N ]H f,[0,N ]
∥∥Hd,[0,N ]

∥∥2
2

. (7.70)
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Remark 7.3 TheH f / l2 optimisation problem can be interpreted as a general form
of the Hi/H∞ optimisation problem formulated in (4.44) for LTI systems.

Remark 7.4 It should be pointed out for any two residual generators with L1(k),
V1(k) and L2(k), V2(k), the matrix-valued ratios,

H∗
f,1,[0,N ]H f,1,[0,N ]
∥∥Hd,1,[0,N ]

∥∥2
2

and
H∗

f,2,[0,N ]H f,2,[0,N ]
∥∥Hd,2,[0,N ]

∥∥2
2

may be incomparable. Thus, the proof of the existence of the H f / l2 optimisation is
necessary. If it is solvable and let L̄(k), V̄ (k) be the optimal solution of (7.70), then
the H f / l2 optimisation can be understood that for any given L(k), V (k) we have:
∀ f (k)

〈H̄ f,[0,N ] f, H̄ f,[0,N ] f
〉

∥∥H̄d,[0,N ]
∥∥2
2

≥
〈H f,[0,N ] f,H f,[0,N ] f

〉

∥∥Hd,[0,N ]
∥∥2
2

, (7.71)

H̄ f,[0,N ] = H f,[0,N ]
∣
∣
L(k)=L̄(k),V (k)=V̄ (k) ,

H̄d,[0,N ] = Hd,[0,N ]
∣∣
L(k)=L̄(k),V (k)=V̄ (k) .

In this context, L̄(k), V̄ (k) are understood as the best trade-off solution. We would
like to emphasise that the inequality (7.71) should hold for all possible faults. In fact,
for this reason, we have introduced the matrix-valued ratio (7.71).

Before presenting the solution to the H f / l2 optimisation problem, we introduce
some necessary preliminary results. Generally, given a linear operator H[0,N ] that
maps ς(k) ∈ l2,[0,N ] to ξ(k) ∈ l2,[0,N ] and whose l2-gain is defined by

∥∥H[0,N ]
∥∥
2 = sup

ς∈l2,[0,N ],ς �=0

‖ξ(k)‖2,[0,N ]

‖ς(k)‖2,[0,N ]

= sup
ς∈l2,[0,N ],ς �=0

∥∥H[0,N ]ς(k)
∥∥
2,[0,N ]

‖ς(k)‖2,[0,N ]
,

it holds ∥∥H[0,N ]
∥∥
2 = ∥∥H∗

[0,N ]
∥∥
2
.

Note that

∥∥H∗
[0,N ]
∥∥2
2

= sup
ξ∈l2,[0,N ],ξ �=0

〈H∗
[0,N ]ξ(k),H∗

[0,N ]ξ(k)
〉
2,[0,N ]

‖ξ(k)‖22
, (7.72)

〈H∗
[0,N ]ξ(k),H∗

[0,N ]ξ(k)
〉
2,[0,N ] = 〈ξ(k),H[0,N ]H∗

[0,N ]ξ(k)
〉
2,[0,N ] . (7.73)

Equations (7.72)–(7.73) will be used for the l2-gain computation of an operator.
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Remark 7.5 In the above discussion, no restriction has been made on the time
interval [0, N ]. Notice that for a finite N , the l2-gain ofHd,[0,N ] andH∗

f,[0,N ]H f,[0,N ]
can be equivalently expressed in terms of σ̄

(
Hd̄(0, N )

)
and HT

f̄
(0, N )H f̄ (0, N ),

respectively. With the introduction of the above operators, we are also able to address
the case with [0, N ] = [0,∞]. It should be pointed out that a fault may be unbounded
for N −→ ∞. On the other hand, it is of practical interest that a fault is detected in
a short finite time after its occurrence. Under this consideration, it is supposed that

f (k) =
{
f (k), k ≤ K ,

0, k > K ,
K (< ∞) is a (large) integer,

so that f (k) is also l2,[0,∞]-bounded without loss of the practical applicability.

We are now in a position to present the results on the H f / l2 optimisation problem.

Theorem 7.5 Given the system model (7.1)–(7.2) and residual generator (7.5)–
(7.4), the H f / l2 optimisation problem can be solved by

L(k) = Lo(k), V (k) = βVo(k)

with any (real) constant β and Lo(k), Vo(k) given in (7.15)–(7.16) in Lemma 7.1.

Proof Recall

〈
rd ,Hd,[0,N ]H∗

d,[0,N ]rd
〉
2,[0,N ]

=
N∑

k=0

r Td (k)

⎛

⎝ge(k, 0)
k∑

i=0

gTe (i, 0)rd(i) +
k∑

j=0

gd(k, j)
k∑

i= j

gTd (i, j)rd(i)

⎞

⎠ ,

and for L(k) = Lo(k), V (k) = Vo(k), it holds

〈
rd ,Hd,o,[0,N ]H∗

d,o,[0,N ]rd
〉
2,[0,N ] =

N∑

k=0

r Td (k)rd(k). (7.74)

Noting that (7.74) means for L(k) = Lo(k), V (k) = Vo(k),

∥∥Hd,o,[0,N ]
∥∥
2 = ∥∥H∗

d,o,[0,N ]
∥∥
2

= 1,

we have

J f/2 = H∗
f,o,[0,N ]H f,o,[0,N ]
∥∥Hd,o,[0,N ]

∥∥2
2

= H∗
f,o,[0,N ]H f,o,[0,N ]. (7.75)

For any L(k), V (k) different from Lo(k), Vo(k), it holds, according to Lemma 7.4
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〈
rd ,Hd,[0,N ]H∗

d,[0,N ]rd
〉
2,[0,N ] = 〈rd ,Q[0,N ]Q∗

[0,N ]rd
〉
2,[0,N ] ⇐⇒

∥
∥Hd,[0,N ]

∥
∥2
2 = ∥∥H∗

d,[0,N ]
∥
∥2
2

= sup
rd∈l2,[0,N ]

〈
rd ,Hd,[0,N ]H∗

d,[0,N ]rd
〉
2,[0,N ]

‖rd‖22
= sup

rd∈l2,[0,N ]

〈
rd ,Q[0,N ]Q∗

[0,N ]rd
〉
2,[0,N ]

‖rd‖22
= ∥∥Q∗

[0,N ]

∥∥2
2

= ∥∥Q[0,N ]

∥∥2
2 ,

and moreover ∀ f (k)

r f (k) = Q[0,N ]r f,o(k) =⇒ 〈H f,[0,N ] f,H f,[0,N ] f
〉
2,[0,N ] = ∥∥r f (k)

∥∥2
2

≤ ∥∥Q[0,N ]

∥
∥2∞
∥
∥r f,o(k)

∥
∥2
2 = ∥∥Q[0,N ]

∥
∥2∞
〈H f,o,[0,N ] f,H f,o,[0,N ] f

〉
2,[0,N ] .

That means, according to (7.75),

H∗
f,[0,N ]H f,[0,N ]
∥∥Q[0,N ]

∥∥2∞
= H∗

f,[0,N ]H f,[0,N ]
∥∥Hd,[0,N ]

∥∥2
2

≤

H∗
f,o,[0,N ]H f,o[0,N ] = H∗

f,o,[0,N ]H f,o,[0,N ]
∥∥Hd,o,[0,N ]

∥∥2
2

. (7.76)

Thus, for any L(k), V (k),
H∗

f,[0,N ]H f,[0,N ]
‖Hd,[0,N ]‖2

∞
is comparable with

H∗
f,o,[0,N ]H f,o,[0,N ]
‖Hd,o,[0,N ]‖2

∞
and, by

Definition 7.4, smaller or equal to
H∗

f,o,[0,N ]H f,o,[0,N ]
‖Hd,o,[0,N ]‖2

∞
, which means that Lo(k), Vo(k)

solve theH f / l2 optimisation problem. Note that for any (real) constant β, the above
results also hold for V (k) = βVo(k), since

(
βH f,o,[0,N ]

)∗
βH f,o,[0,N ]

∥
∥βHd,o,[0,N ]

∥
∥2∞

= H∗
f,o,[0,N ]H f,o,[0,N ]
∥
∥Hd,o,[0,N ]

∥
∥2∞

.

As a result, the theorem is finally proved.

As introduced in Chap.4, the so-calledH−/H∞ andH∞/H∞ optimisations are the
well-established schemes for the residual generator design of LTI systems. Below,
we demonstrate that they are the special cases of the H f / l2 optimisation.

Definition 7.6 H−/ l2 and l2/ l2 optimisations are defined as: given the residual
generator (7.3)–(7.4), find L(k) and V (k) so that the following cost functions,
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J−/2 =
∥∥H f,[0,N ]

∥∥2−∥∥Hd,[0,N ]
∥∥2
2

,
∥∥H f,[0,N ]

∥∥− = inf
f ∈l2,[0,N ], f �=0

∥
∥r f (k)

∥
∥
2

‖ f (k)‖2
, (7.77)

J2/2 =
∥∥H f,[0,N ]

∥∥2
2∥∥Hd,[0,N ]
∥∥2
2

,
∥∥H f,[0,N ]

∥∥∞ = sup
f ∈l2,[0,N ], f �=0

∥∥r f (k)
∥∥
2

‖ f (k)‖2
, (7.78)

are respectively maximised.

Theorem 7.6 Given the system model (7.1)–(7.2) and residual generator (7.5)–
(7.4), then Lo(k), βVo(k)with any (real) constantβ and Lo(k), Vo(k)given in (7.15)–
(7.16) unifiedly solve theH−/ l2 and l2/ l2 optimisation problems.

Proof Re-write J−/2, J2/2 into

J−/2 = inf‖ f (k)‖2=1

∥
∥r f (k)

∥
∥2
2∥∥Hd,[0,N ]

∥∥2
2

, J2/2 = sup‖ f (k)‖2=1

∥
∥r f (k)

∥
∥
2∥∥Hd,[0,N ]

∥∥2
2

Let f 1(k), f 2(k) with
∥∥ f 1(k)

∥∥
2 = ∥∥ f 2(k)∥∥2 = 1 be the fault vectors satisfying

〈H f,o,[0,N ] f 1,H f,o,[0,N ] f 1
〉 = ∥∥H f,o,[0,N ]

∥∥2− ,
〈H f,[0,N ] f 2,H f,[0,N ] f 2

〉 = ∥∥H f,[0,N ]
∥∥2
2 .

Remember that ∀ f (k)

〈H f,o,[0,N ] f,H f,o,[0,N ] f
〉

∥∥Hd,o,[0,N ]
∥∥2
2

= ∥∥r f,o(k)
∥∥
2

≥
〈H f,[0,N ] f,H f,[0,N ] f

〉

∥∥Hd,[0,N ]
∥∥2
2

=
∥∥r f (k)

∥∥
2∥∥Hd,[0,N ]
∥∥2
2

.

As a result, we have

∥∥H f,o,[0,N ]
∥∥2−∥∥Hd,o,[0,N ]
∥∥2
2

=
〈H f,o,[0,N ] f 1,H f,o,[0,N ] f 1

〉

∥∥Hd,o,[0,N ]
∥∥2
2

≥
〈H f,[0,N ] f 1,H f,[0,N ] f 1

〉

∥∥Hd,[0,N ]
∥∥2
2

=
∥∥H f,[0,N ]

∥∥2−∥∥Hd,[0,N ]
∥∥2
2

,

∥∥H f,o,[0,N ]
∥∥2
2∥

∥Hd,o,[0,N ]
∥
∥2
2

=
〈H f,o,[0,N ] f 2,H f,o,[0,N ] f 2

〉

∥
∥Hd,o,[0,N ]

∥
∥2
2

≥
〈H f,[0,N ] f 2,H f,[0,N ] f 2

〉

∥∥Hd,[0,N ]
∥∥2
2

=
∥∥H f,[0,N ]

∥∥2
2∥∥Hd,[0,N ]
∥∥2
2

.
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Since for any constant β,

∥∥βH f,o,[0,N ]
∥∥2−∥∥βHd,o,[0,N ]
∥∥2
2

=
∥∥H f,o,[0,N ]

∥∥2−∥∥Hd,o,[0,N ]
∥∥2
2

,

∥∥βH f,o,[0,N ]
∥∥2
2∥∥βHd,o,[0,N ]
∥∥2
2

=
∥∥H f,o,[0,N ]

∥∥2
2∥∥Hd,o,[0,N ]
∥∥2
2

,

the theorem is thus proved.

Alternative to the H−/ l2 and l2/ l2 optimisations, design problem formulated as

max
L ,V

∥
∥H f,[0,N ]

∥
∥ subject to

∥
∥Hd,[0,N ]

∥
∥
2 ≤ γ (7.79)

is often considered in the observer-based FD study on LTI systems, where γ > 0 is a
given constant and

∥∥H f,[0,N ]
∥∥ stands either for l2-gain orH− -index. This formulation

allows, for example, the application of the well-established LMI multi-objective
optimisation technique or the dynamic game theory to solving FD problems. The
following theorem reveals that the unified solution also solves the above optimisation
design problem.

Theorem 7.7 Given the system model (7.1)–(7.2) and residual generator (7.5)–
(7.4), then Lo(k), γ Vo(k) with Lo(k), Vo(k) given in (7.15)–(7.16) unifiedly solve
(7.79), both for

∥∥H f,[0,N ]
∥∥ = ∥∥H f,[0,N ]

∥∥
2 or

∥∥H f,[0,N ]
∥∥ = ∥∥H f,[0,N ]

∥∥− .

Proof Assume that for some L(k) = L̄(k), V (k) = Ṽ (k)

max
L ,V

∥∥H f,[0,N ]
∥∥ =
∥∥
∥H̃ f,[0,N ]

∥∥
∥ , H̃ f,[0,N ] = H f,[0,N ]

∣∣
L(k)=L̄(k),V (k)=Ṽ (k)

subject to
∥∥∥H̃d,[0,N ]

∥∥∥
2

≤ γ, H̃d,[0,N ] = Hd,[0,N ]
∣∣
L(k)=L̄(k),V (k)=Ṽ (k) .

Recall that ∥∥γHd,o,[0,N ]
∥∥
2 = γ

and Lo(k), γ Vo(k) solve the H−/ l2 and l2/ l2 optimisations, which means

∥
∥∥H̃ f,[0,N ]

∥
∥∥

∥
∥∥H̃d,[0,N ]

∥
∥∥
2

≤
∥∥γH f,o,[0,N ]

∥∥
∥
∥γHd,o,[0,N ]

∥
∥
2

.

Hence, it holds

∥∥∥H̃ f,[0,N ]
∥∥∥ = max

L ,V

∥∥H f,[0,N ]
∥∥ ≤ ∥∥γH f,o,[0,N ]

∥∥

∥∥∥H̃d,[0,N ]
∥∥∥∞

γ
≤ ∥∥γH f,o,[0,N ]

∥∥ .
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Thus, Lo(k), γ Vo(k) solve (7.79) and the theorem is proved.

Application of multi-objective optimisation techniques to solving (7.79) generally
leads to an iterative computation of two Riccati inequalities. Differently, the unified
solution only needs to solve a single Riccati recursion.Moreover, the unified solution
solves H−/ l2 and l2/ l2 optimisations simultaneously.

7.6 Examples

As examples, we apply the FD schemes proposed in this chapter to two special
LDTV systems, the so-called switched systems and linear parameter varying (LPV)
systems.

Example 7.1 Consider the LDTV system model (7.1)–(7.2) with

A(k) = Aσ(k), B(k) = Bσ(k),C(k) = Cσ(k), D(k) = Dσ(k),

Ed(k) = Ed,σ (k), E f (k) = E f,σ (k), Fd(k) = Fd,σ (k), Ff (k) = Ff,σ (k),

where σ(k) ∈ {1, · · · , M} is called switching signal. It is a time function and indi-
cates, for σ(k) = i,

A(k) = Ai , B(k) = Bi ,C(k) = Ci , D(k) = Di ,

Ed(k) = Ed,i , E f (k) = E f,i , Fd(k) = Fd,i , Ff (k) = Ff,i .

The LTI system

x(k + 1) = Ai x(k) + Biu(k) + Ed,i d(k) + E f,i f (k),

y(k) = Ci x(k) + Diu(k) + Fd,i d(k) + Ff,i f (k),

i = 1, · · · , M,

is called the i-th sub-system. The switching signal σ(k) and the system matrices of
all M sub-systems are known. The above system model is called switched system.

In order to achieve an optimal fault detection, we propose to apply the following
FDF

x̂(k + 1) = Aσ(k) x̂(k) + Bσ(k)u(k) + L(k)
(
y(k) − ŷ(k)

)
,

r(k) = V (k)
(
y(k) − ŷ(k)

)
, ŷ(k) = Cσ(k) x̂(k) + Dσ(k)u(k),

L(k) = (Aσ(k)P(k)CT
σ(k) + Ed,σ (k)F

T
d,σ (k)

)
V 2(k),

V (k) = (Cσ(k)P(k)CT
σ(k) + Fd,σ (k)F

T
d,σ (k)

)−1/2
,

P(k + 1) = Aσ(k)P(k)AT
σ(k) + Ed,σ (k)E

T
d,σ (k) − L(k)V−2(k)LT (k), P(0) = I,
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and the residual evaluation function

J2,[0,N ] =
N∑

k=0

r T (k)r(k) = ‖r(k)‖22,[0,N ] .

Adopting the notations defined in Sect.7.2, J2,[0,N ] can be expressed, during fault-free
operations, by

J2,[0,N ] = r̄ T (0, N )r̄(0, N ) = d̄T (0, N ) HT
d̄ (0, N )Hd̄(0, N )d̄ (0, N ) ,

r̄(0, N ) = Hd̄(0, N )d̄ (0, N ) .

It follows from Lemma 7.1 that ∀N

Hd̄(0, N )HT
d̄ (0, N ) = I.

Thus, on the assumption

eT (0)e(0) + ‖r(k)‖22,[0,N ] = d̄T (0, N ) d̄ (0, N ) ≤ δ2d,[0,k2] + δ2e = δ2,

the threshold is set to be
Jth = δ2.

As proved in Theorem 7.1, the above FD system results in an optimal fault detection.

Example 7.2 Substituting the systemmatrices in the LDTV systemmodel (7.1)–(7.2)
by

A(k) = A (p(k)) , B(k) = B(p(k)),C(k) = C (p(k)) , D(k) = D (p(k)) ,

Ed(k) = Ed (p(k)) , E f (k) = E f (p(k)) , Fd(k) = Fd (p(k)) , Ff (k) = Ff (p(k)) ,

leads to an LPV system model, where p(k) is the known, time-varying parameter
vector. Based on it, we propose to apply the following FDF,

x̂(k + 1) = A (p(k)) x̂(k) + B(p(k))u(k) + L(p(k))
(
y(k) − ŷ(k)

)
,

r(k) = V (p(k))
(
y(k) − ŷ(k)

)
, ŷ(k) = C(p(k))x̂(k) + D(p(k))u(k),

L(p(k))) = (A(p(k))P(k)CT (p(k)) + Ed(p(k))F
T
d (p(k))

)
V 2(p(k)),

V (p(k)) = (C(p(k))P(k)CT (p(k)) + Fd(p(k))F
T
d (p(k))

)−1/2
,

P(k + 1) = A(p(k))P(k)AT (p(k)) + Ed(p(k))E
T
d (p(k))

− L(p(k))V−2(p(k))LT (p(k)), P(0) = I,

and the residual evaluation function
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J2,[0,N ] =
N∑

k=0

r T (k)r(k) = ‖r(k)‖22,[0,N ] .

With the same notation and argument given in Example 7.1, it holds, during fault-free
operations,

J2,[0,N ] = r̄ T (0, N )r̄(0, N ) = d̄T (0, N ) HT
d̄ (0, N )Hd̄(0, N )d̄ (0, N ) ,

r̄(0, N ) = Hd̄(0, N )d̄ (0, N ) , Hd̄(0, N )HT
d̄ (0, N ) = I.

As a result, setting the threshold equal to

Jth = δ2.

results in an optimal fault detection.

7.7 Notes and References

In this chapter, we have studied LDTV observer-based fault detection systems. This
work is motivated not only by the recent development in the application domain
but also by the research efforts since the last decade. In their work, Zhang and
Ding [1], Li and Zhou [2] have systematically studied H∞/H∞ and H−/H∞ fault
detection problems for linear continuous time-varying systems (LTV) and provided
an analytical solution. Zhang et al. [3, 4] and Li [5] have reported successful results
on the FD in linear discrete time periodic and LDTV systems, respectively. In this
decade, Prof. Zhong and her co-authors have been strongly active in the field of
model-based fault detection for LDTV systems and made significant contributions
to the theoretical framework. They have proposed numerous fault detection schemes
using different techniques andmethods, including time-varying Parity spacemethods
[6–8], projection technique [9, 10] and optimisation technique [11] . Some of these
and other existing methods have been well summarised in their recent survey paper
[12].

We would like to mention that fault detection issues in LTV systems are often
addressed, different from our study presented here, in the robustness framework,
where the time varying parts in the process model are modelled either as (time
varying) model uncertainties or as linear parameter varying (LPV) functions. For
instance, in [13–15], the authors have proposed LMI-based approaches to deal with
LTI systemswith time-varying uncertainties, while in [16, 17] geometrical technique
and LMI-based FD methods have been developed for the LPV systems. It is worth
remarking that all these studies have been dedicated to the observer-based residual
generator design in the H∞ or H−/H∞ trade-off framework.

Our work in this chapter consists of four parts. The first part has been dedicated to
the formulation of the fault detection problems for LDTV systems in the context of
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the optimal fault detection problem formulated in Chap. 2. That means, the objective
of the fault detection system design is to achieve maximal fault detectability. It is
remarkable that four types of residual evaluation functions have been considered in
our work.

After some mathematical efforts, the optimal solutions have been achieved and
summarised in Theorems 7.1 and 7.2 in the second part of our work. It is of consid-
erable interest to notice that

• for the four residual evaluation functions, the optimal fault detection systems
(solutions) are comprised of the identical (optimal) residual generator. It is the
optimal FDF, and

• the optimal FDF can be viewed as an extension of the unified solution presented
in Chap.4 to the LDTV systems. This aspect has been further studied in the third
and fourth parts of our work.

Recall that co-inner-outer factorisation is an important interpretation and a tool as
well for the unified solution. The achieved unified solution for LDTV systems has
been intensively studied in this context. We have provided two different forms of the
co-inner-outer factorisation for LDTV systems. Moreover, a deeper insight into the
unified solution using the concept of information lossless is given, which is helpful
for extending the achieved results to the data-driven and model-free framework.

In the last part of our work, we have studied the addressed fault detection problem
in the classical “robustness vs. sensitivity” framework, in which the optimal fault
detection is formulated as an optimisation problem with the ratio of the l2-norm of
the residual response to the unknown input to the l2-norm of the residual response to
the fault. To this end, the operator-based system model, the associated computations
and handlings are involved. For the needed essential knowledge of operator theory,
we refer the reader to [18]. It is demonstrated that the unified solution achieved in our
work simultaneously solves the H−/ l2 and l2/ l2 optimisation problems, which are
the LDTV version of the well-knownH−/H∞ andH∞/H∞ optimisation problems
for LTI-FDF design [19].

To conclude this chapter, we would like to remark that the LDTV state space
representation is a very general model form of linear dynamic systems, to which
system types like switched systems or LPV systems belong as well. We notice that
few results have been reported on the application of LDTV system techniques to
designing observer-based FD systems for switched or LPV systems, although it may
result in optimal fault detection, as demonstrated in our examples given in the last
section. In this regard, we would like to mention the work by Zhong et al. [20], in
which the LDTV technique has been successfully applied to the solution of nonlinear
fault detection problems.
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Chapter 8
Fault Estimation in Linear Dynamic
Systems

Fault estimation is a main issue in the fault diagnosis framework. As illustrated in
previous chapters, fault estimation can be embedded in an optimal fault detection
solution, and further delivers detailed information about the fault, after this fault
is detected. In this chapter, we study the fault estimation problem defined in the
following context.

Consider the LDTV system model

x(k + 1) = A(k)x(k) + B(k)u(k) + E(k) f (k), (8.1)

y(k) = C(k)x(k) + D(k)u(k) + F(k) f (k), (8.2)

where x(k) ∈ Rn, u(k) ∈ Rp, y(k) ∈ Rm are system state, input and output vectors,
respectively, f (k) ∈ Rk f is the unknown fault vector to be estimated, and all system
matrices are of appropriate dimensions and known. We assume that f (k) can be any
l2-bounded time function. Thus, such a fault estimation problem can be, in general,
formulated as unknown input estimation.

Before we begin with our study, we would like to call reader’s attention to the
following two facts in the fault detection scheme presented in the last chapter, which
tell us that the unified solution and an optimal FDF can also be used for the purpose
of estimating the unknown input vector:

• the mapping from the unknown input vector to the residual vector satisfies

Hd̄(N )H T
d̄ (N ) = I,

when the unified solution is adopted. In this sense, the residual vector delivers an
estimation for the unknown input vector d(k), and

• the observer-based residual generator with

Lo(k) = (
A(k)P(k)CT (k) + Ed(k)F T

d (k)
)

V 2
o (k)

can be equivalently written as

© Springer-Verlag GmbH Germany, part of Springer Nature 2021
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x̂(k + 1) = A(k)x̂(k) + B(k)u(k) + L1(k)r(k) + Edd̂(k),

d̂(k) = F T
d (k)V 2

o (k)r(k), L1(k) = A(k)P(k)CT (k)V 2
o (k),

in which d̂(k) can be interpreted as an estimation for the unknown input vector.

For our purpose, we will first introduce a least squares (LS) estimation scheme for
systemswith deterministic unknown inputs,whichwas intensively studied a couple of
decades ago, but did not receive researcher’s attention for an application for the fault
estimation purpose. We will compare this LS estimation scheme with the application
of the unified solution for fault estimation and discuss about their advantages and
disadvantages.

8.1 Regularised Least Squares Estimation

We first introduce the so-called regularised least squares (RLS) estimation method
for estimating x in a static process modelled by

y = H x + v (8.3)

with x ∈ Rn andmeasurement vector y ∈ Rm . v is an unknownvector. The estimated
x should solve the optimisation problem

min
x

J = min
x

(‖y − H x‖2W + ‖x‖2
Σ−1

)
. (8.4)

Here, W > 0,Σ > 0 are (given) weighting matrices. By a straightforward compu-
tation, we have the solution

d J

dx
= 0 =⇒ Σ−1x = H T W (y − H x) =⇒

x̂ = argmin
x

J = (
Σ−1 + H T W H

)−1
H T W y. (8.5)

It is of interest to notice that if Σ−1 → 0,

x̂ = (
H T W H

)−1
H T W y

is a regular LS solution. We now extend the cost function to

J = ‖y − H x‖2W + ‖x − a‖2
Σ−1 , (8.6)

where a is an estimate for x based on a priori knowledge. A (very) large Σ means
that we are less confident with the estimate a . The solution for minimising (8.6) is
given by
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x̂ = (
Σ−1 + H T W H

)−1 (
H T W y + Σ−1a

)
. (8.7)

Since (
Σ−1 + H T W H

)−1 = Σ − Σ H T
(
W −1 + HΣ H T

)−1
HΣ,

solution (8.7) can be further written into

x̂ = a + L (y − Ha) , L = Σ H T
(
W −1 + HΣ H T

)−1
. (8.8)

This form of estimation for x is similar to a recursive LS algorithm and can be
interpreted as a correction of a (as a pre-estimate of x) by the difference (y − Ha) ,

which acts like a residual vector.
For our purpose, we would like to mention some facts with the RLS algorithm,

which are useful for our subsequent work:

• By means of y and x̂, v can be estimated in terms of

v̂ = y − H x̂ = W −1 (
W −1 + HΣ H T

)−1
(y − Ha) . (8.9)

• It holds

J = ‖y − H x‖2W + ‖x − a‖2
Σ−1

= ∥∥y − H x̂
∥∥2

W + ∥∥x̂ − a
∥∥2

Σ−1 + ∥∥x − x̂
∥∥2

Σ−1 + ∥∥v − v̂
∥∥2

W (8.10)

= ∥
∥y − H x̂

∥
∥2

W
+ ∥

∥x̂ − a
∥
∥2

Σ−1 + ∥
∥x − x̂

∥
∥2

P−1 ,

P−1 = H T W H + Σ−1. (8.11)

• Variable vectors x̂, v̂ are the solution of the optimisation problem

min
x,v

J, J = ‖y − H x‖2W + ‖x − a‖2
Σ−1 = ‖v‖2W + ‖x − a‖2

Σ−1

s.t. y = H x + v

with the optimal value of the cost function

min
x,v

J = ∥
∥y − H x̂

∥
∥2

W + ∥
∥x̂ − a

∥
∥2

Σ−1 . (8.12)

It is clear that (8.12) is the result of (8.10). In fact, relation (8.10) reveals that

min
x

J = min
x

(‖y − H x‖2W + ‖x‖2
Σ−1

)

is equivalent with
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min
x,v

J = min
x,v

(‖y − H x‖2W + ‖x − a‖2
Σ−1

)
(8.13)

s.t. y = H x + v.

In order to prove (8.10), we do the following calculations: Let

ev = v − v̂, ex = x − x̂ .

Then,

‖y − H x‖2W + ‖x − a‖2
Σ−1 = ∥∥v̂ + ev

∥∥2
W + ∥∥x̂ − a + ex

∥∥2
Σ−1

= ∥∥v̂
∥∥2

W + ∥∥x̂ − a
∥∥2

Σ−1 + ‖ev‖2W + ‖ex‖2Σ−1 + 2
(
v̂T W ev + (

x̂ − a
)T

Σ−1ex

)
.

By noting that

v̂T W ev = (y − Ha)T
(
W −1 + HΣ H T

)−1
H (−ex ) ,

(
x̂ − a

)T
Σ−1ex = (y − Ha)T

(
W −1 + HΣ H T

)−1
Hex ,

‖ev‖2W = eT
x H T W Hex , P−1 = H T W H + Σ−1 =⇒
‖ev‖2W + ‖ex‖2Σ−1 = ‖ex‖2P−1 ,

equation (8.10) is proved. It is remarkable that

v̂T W ev + (
x̂ − a

)T
Σ−1ex =

[
v̂T

(
x̂ − a

)T
] [

W 0
0 Σ−1

] [
ev

ex

]
= 0

means that vectors [
v̂

x̂ − a

]
and

[
ev

ex

]

are orthogonal. Since ev, ex are the estimation errors of v, x, v̂ and x̂ − a are under-
stood as the LS estimates for v and x − a (and so x), respectively.

Example 8.1 As an extension of the optimisation problem (8.13), we consider

min
x,v

J = min
x,v

(‖y − H x‖2W + ‖x − a‖2
Σ−1

)
(8.14)

s.t. y = H x + Fv, rank(F) = m. (8.15)

It follows from the previous results that
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‖y − H x‖2W + ‖x − a‖2
Σ−1 =

∥∥∥ ˆ̄v + ev̄

∥∥∥
2

W
+ ∥∥x̂ − a + ex

∥∥2
Σ−1

=
∥∥∥ ˆ̄v

∥∥∥
2

W
+ ∥∥x̂ − a

∥∥2
Σ−1 + ‖ev̄‖2W + ‖ex‖2Σ−1 ,

ˆ̄v = y − H x̂ = W −1
(
W −1 + HΣ H T

)−1
(y − Ha) ,

ev̄ = Fv − ˆ̄v, ex = x − x̂ .

Recall that
v̂ = F T

(
F F T

)−1 ˆ̄v

is an LS estimate of v satisfying
F v̂ = ˆ̄v.

As a result, for

x̂ = a + L (y − Ha) , L = Σ H T
(
W −1 + HΣ H T

)−1
,

v̂ = F T
(
F F T

)−1
W −1

(
W −1 + HΣ H T

)−1
(y − Ha) ,

it holds

min
x,v

(‖y − H x‖2W + ‖x − a‖2
Σ−1

) =
∥∥∥ ˆ̄v

∥∥∥
2

W
+ ∥∥x̂ − a

∥∥2
Σ−1 = ‖ex‖2P−1 ,

P−1 = H T W H + Σ−1.

That is {
x̂, v̂

} = argmin
x,v

(‖y − H x‖2W + ‖x − a‖2
Σ−1

)
.

Note that for W = (
F F T

)−1
,

v̂ = F T
(
F F T + HΣ H T

)−1
(y − Ha) .

RLS algorithm is widely applied in the machine learning technique and plays an
important role in our subsequent investigation.

8.2 Least Squares Observer and Sensor Fault Estimation

8.2.1 Problem Formulation

We now formulate the fault estimation as an optimisation problem: given measure-
ment data y(0), · · · , y(k), · · · , y(N ), find x(k), f (k), k = 0, · · · , N , such that the
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cost function

JN = 1

2

( ‖x(0) − xo‖2P−1(0) + ‖y(k) − C(k)x(k)‖2W1(k),2,[0,N ]

+‖x(k + 1) − A(k)x(k)‖2W2(k),2,[0,N−1]

)
(8.16)

s.t. x(k + 1) = A(k)x(k) + E(k) f (k), (8.17)

y(k) = C(k)x(k) + F(k) f (k) (8.18)

is minimised, where

W1(k) = (
F(k)F T (k)

)−1
, W2(k) ∈ Rn×n, rank(W2(k)) = n,

are (symmetric) weighting matrices, and it is assumed that

rank (F(k)) = m, F(k) ∈ Rm×k f , (8.19)

P(0) > 0 is given and xo is an initial estimation for x(0) based on a priori knowledge.
We call the solution of the above optimisation problem least squares (LS) esti-

mations for x(k), f (k) and the associated dynamic system (estimator) least squares
(LS) observer.

Remark 8.1 To simplify our work, we omit the dynamics with respect to the process
input u(k). For linear systems without parameter uncertainties, this way of handling
the estimation problem leads to no loss of generality.

Remark 8.2 Since the fault vector f (k) directly affects the measurement vector
y(k), it is called sensor fault.

8.2.2 Solution Algorithm

In order to gain deep insight into the solution, we are going to derive the solution
and the associated algorithm step by step.

We begin with N = 0. In this case, the optimisation problem (8.16) can be re-
formulated as

min
x(0), f (0)

J0, (8.20)

J0 = 1

2
‖x(0) − xo‖2P−1(0) + 1

2
‖y(0) − C(0)x(0)‖2

(F(0)F T (0))
−1 ,

s.t. y(0) = C(0)x(0) + F(0) f (0).

It follows from the RLS algorithm and the associated discussion that
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x̂(0) = xo + L(0) (y(0) − C(0)xo) , L(0) = P(0)CT (0)R−1(0), (8.21)

f̂ (0) = F T (0)R−1(0) (y(0) − C(0)xo) , (8.22)

R(0) = F(0)F T (0) + C(0)P(0)CT (0). (8.23)

For our purpose, we denote x̂(0) by x̂(0 |0 ). Moreover, the cost function

J0 = 1

2
‖x(0) − xo‖2P−1(0) + 1

2
‖y(0) − C(0)x(0)‖2

(F(0)F T (0))
−1

can be written as

J0 = J (0) + 1

2

∥∥∥F(0)
(

f (0) − f̂ (0)
)∥∥∥

2

(F(0)F T (0))
−1 + 1

2

∥∥x(0) − x̂(0 |0 )
∥∥2

P−1(0) ,

(8.24)

J (0) = 1

2

∥
∥x̂(0 |0 ) − xo

∥
∥2

P−1(0) + 1

2

∥
∥∥F(0) f̂ (0)

∥
∥∥
2

(F(0)F T (0))
−1 .

Notice that

∥∥
∥F(0)

(
f (0) − f̂ (0)

)∥∥
∥
2

(F(0)F T (0))
−1 = ∥∥x(0) − x̂(0 |0 )

∥∥2
CT (0)(F(0)F T (0))

−1
C(0) ,

and let
P−1(0 |0 ) = P−1(0) + CT (0)

(
F(0)F T (0)

)−1
C(0).

It turns out

J0 = J (0) + 1

2

∥∥∥F(0)
(

f (0) − f̂ (0)
)∥∥∥

2

(F(0)F T (0))
−1 + 1

2

∥∥x(0) − x̂(0 |0 )
∥∥2

P−1(0)

= J (0) + 1

2

∥∥x(0) − x̂(0 |0 )
∥∥2

P−1(0|0 )
. (8.25)

Next, we study the optimisation problem for N = 1, which, following our result
given in (8.25), can be formulated as

min
x(k), f (k),k=0,1

J1,

J1 = J (0) + 1

2

∥∥x(0) − x̂(0 |0 )
∥∥2

P−1(0|0 )
+ 1

2
‖x(1) − A(0)x(0)‖2W2(0)

+1

2
‖y(1) − C(1)x(1)‖2

(F(1)F T (1))
−1 ,

s.t. x(1) = A(0)x(0) + E(0) f (0),

y(1) = C(1)x(1) + F(1) f (1).

Noting that J (0) is a constant value, this optimisation problem is equivalent with
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min
x(k), f (k),k=0,1

J̄1, (8.26)

J̄1 = 1

2

∥
∥x(0) − x̂(0 |0 )

∥
∥2

P−1(0|0 )
+ 1

2
‖x(1) − A(0)x(0)‖2W2(0)

+1

2
‖y(1) − C(1)x(1)‖2

(F(1)F T (1))
−1 ,

s.t. x(1) = A(0)x(0) + E(0) f (0),

y(1) = C(1)x(1) + F(1) f (1).

We solve this problem in two steps. It is evident that the estimate for x(0) does not
explicitly depend on y(1). Therefore, in the first step, we consider the optimisation
problem

min
x(0), f (0)

(
1

2

∥∥x(0) − x̂(0 |0 )
∥∥2

P−1(0|0 )
+ 1

2
‖x(1) − A(0)x(0)‖2W2(0)

)
(8.27)

s.t. x(1) = A(0)x(0) + E(0) f (0),

and express the solution for x(0), denoted by x̂(0 |1 ), as a function of x(1). Note
that the optimisation problem (8.27) has the identical form like (8.20) and can thus
be solved using the RLS algorithm. It turns out

x̂(0 |1 ) = x̂(0 |0 ) + P(0 |0 )AT (0)Q−1
(
x(1) − A(0)x̂(0 |0 )

)
,

Q = W −1
2 (0) + A(0)P(0 |0 )AT (0),

which yields

min
x(0), f (0)

(
1

2

∥∥x(0) − x̂(0 |0 )
∥∥2

P−1(0|0 )
+ 1

2
‖x(1) − A(0)x(0)‖2W2(0)

)

= 1

2

∥
∥P(0 |0 )AT (0)Q−1

(
x(1) − A(0)x̂(0 |0 )

)∥∥2

P−1(0|0 )

+ 1

2

∥∥x(1) − A(0)x̂(0 |1 )
∥∥2

W2(0)
.

Recall

x(1) − A(0)x̂(0 |1 ) = (
I − A(0)P(0 |0 )AT (0)Q−1

) (
x(1) − A(0)x̂(0 |0 )

)

= W −1
2 (0)Q−1

(
x(1) − A(0)x̂(0 |0 )

)
.

It holds
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∥
∥P(0 |0 )AT (0)Q−1

(
x(1) − A(0)x̂(0 |0 )

)∥∥2

P−1(0|0 )
+ ∥

∥x(1) − A(0)x̂(0 |1 )
∥
∥2

W2(0)

= ∥∥x(1) − A(0)x̂(0 |0 )
∥∥

P−1(1|0 )
,

P(1 |0 ) := Q = W −1
2 (0) + A(0)P(0 |0 )AT (0).

Hence, after the first step, we have

min
x(k), f (k),k=0,1

J̄1

= min
x(1), f (1)

1

2

(∥∥x(1) − x̂(1 |0 )
∥∥

P−1(1|0 )
+ ‖y(1) − C(1)x(1)‖2

(F(1)F T (1))
−1

)

s.t. y(1) = C(1)x(1) + F(1) f (1) with

x̂(1 |0 ) = A(0)x̂(0 |0 ).

This is the same optimisation problem like (8.20) for N = 0, and thus is solved by

x̂(1 |1 ) = x̂(1 |0 ) + L(1)
(
y(1) − C(1)x̂(1 |0 )

)
, (8.28)

f̂ (1) = F T (1)R−1(1)
(
y(1) − C(1)x̂(1 |0 )

)
, (8.29)

L(1) = P(1 |0 )CT (1)R−1(1), (8.30)

R(1) = F(1)F T (1) + C(1)P(1 |0 )CT (1). (8.31)

Moreover, it holds

J̄1 = 1

2

∥∥x(1) − x̂(1 |0 )
∥∥2

P−1(1|0 )
+ 1

2
‖F(1) f (1)‖2

(F(1)F T (1))
−1

= J (1) + 1

2

∥∥x(1) − x̂(1 |1 )
∥∥2

P−1(1|1 )
, (8.32)

P−1(1 |1 ) = P−1(1 |0 ) + CT (1)
(
F(1)F T (1)

)−1
C(1),

x̂(2 |1 ) = A(1)x̂(1 |1 ),

J (1) = 1

2

∥∥x̂(1 |1 ) − x̂(1 |0 )
∥∥2

P−1(1|0 )
+ 1

2

∥∥∥F(1) f̂ (1)
∥∥∥
2

(F(1)F T (1))
−1 ,

J1 = J (0) + J (1) + 1

2

∥∥x(1) − x̂(1 |1 )
∥∥2

P−1(1|1 )
. (8.33)

With the aid of the above study, we are now in a position to give and prove the
solution for the original optimisation problem (8.16). To this end, we assume that
for N = i,
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Ji = 1

2

( ‖x(0) − xo‖2P−1(0) + ‖y(k) − C(k)x(k)‖2W1(k),2,[0,i]

+‖x(k + 1) − A(k)x(k)‖2W2(k),2,[0,i−1]

)

=
i∑

k=0

J (k) + 1

2

∥∥x(i) − x̂(i |i )
∥∥2

P−1(i |i )
,

J (k) = 1

2

∥∥x̂(k |k ) − x̂(k |k − 1 )
∥∥2

P−1(k|k−1 )
+ 1

2

∥∥∥F(k) f̂ (k)

∥∥∥
2

W1(k)
,

x̂(i |i ) = x̂(i |i − 1 ) + L(i)
(
y(i) − C(i)x̂(i |i − 1 )

)
, x̂(0 |−1 ) := xo, (8.34)

x̂(i + 1 |i ) = A(i)x̂(i |i ), (8.35)

f̂ (i) = F T (i)R−1(i)
(
y(i) − C(i)x̂(i |i − 1 )

)
, (8.36)

L(i) = P(i |i − 1 )CT (i)R−1(i), (8.37)

R(i) = F(i)F T (i) + C(i)P(i |i − 1 )CT (i), (8.38)

P−1(i |i ) = P−1(i |i − 1 ) + CT (i)
(
F(i)F T (i)

)−1
C(i), P(0 |−1 ) = P(0),

(8.39)

P(i |i − 1 ) = W −1
2 (i − 1) + A(i − 1)P(i − 1 |i − 1 )AT (i − 1), (8.40)

and derive the solution for N = i + 1. It is clear that

Ji+1 = 1

2

( ‖x(0) − xo‖2P−1(0) + ‖y(k) − C(k)x(k)‖2W1(k),2,[0,i+1]

+‖x(k + 1) − A(k)x(k)‖2W2(k),2,[0,i]

)

= 1

2

⎛

⎜⎜
⎝

‖x(0) − xo‖2P−1(0) + ‖y(k) − C(k)x(k)‖2W1(k),2,[0,i]

+‖x(k + 1) − A(k)x(k)‖2W2(k),2,[0,i−1]

+‖y(i + 1) − C(i + 1)x(i + 1)‖2W1(i+1)

+‖x(i + 1) − A(i)x(i)‖2W2(i)

⎞

⎟⎟
⎠

=
i∑

k=0

J (k) + 1

2

(∥∥x(i) − x̂(i |i )
∥∥2

P−1(i |i )
+ ‖x(i + 1) − A(i)x(i)‖2W2(i)

+‖y(i + 1) − C(i + 1)x(i + 1)‖2W1(i+1)

)

.

Recall that ∥
∥x(i) − x̂(i |i )

∥
∥2

P−1(i |i )
+ ‖x(i + 1) − A(i)x(i)‖2W2(i)

can be written as

∥∥P(i |i )AT (i)P−1(i + 1 |i )
(
x(i + 1) − A(i)x̂(i |i )

)∥∥2

P−1(i |i )

+ ∥∥x(i + 1) − A(i)x̂(i)
∥∥2

W2(i)
= ∥∥x(i + 1) − A(i)x̂(i |i )

∥∥
P−1(i+1|i )

,

P(i + 1 |i ) = W −1
2 (i) + A(i)P(i |i )AT (i).

It yields
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Ji+1 =
i∑

k=0

J (k) + 1

2

( ∥
∥x(i + 1) − A(i)x̂(i |i )

∥
∥2

P−1(i+1|i )

+‖y(i + 1) − C(i + 1)x(i + 1)‖2W1(i+1)

)

,

which can be, using the RLS algorithm, brought into

Ji+1 =
i∑

k=0

J (k) + J (i + 1) + 1

2

∥∥x(i + 1) − x̂(i + 1 |i + 1 )
∥∥2

P−1(i+1|i+1 )
,

J (i + 1) = 1

2

⎛

⎝

∥∥x̂(i + 1 |i + 1 ) − x̂(i + 1 |i )
∥∥2

P−1(i+1|i )

+
∥∥
∥F(i + 1) f̂ (i + 1)

∥∥
∥
2

(F(i+1)FT (i+1))
−1

⎞

⎠ ,

x̂(i + 1 |i + 1 ) = x̂(i + 1 |i ) + L(i + 1)
(
y(i + 1) − C(i + 1)x̂(i + 1 |i )

)
,

x̂(i + 1 |i ) = A(i)x̂(i |i ),

f̂ (i + 1) = FT (i + 1)R−1(i + 1)
(
y(i + 1) − C(i + 1)x̂(i + 1 |i )

)
,

L(i + 1) = P(i + 1 |i )CT (i + 1)R−1(i + 1),

R(i + 1) = F(i + 1)FT (i + 1) + C(i + 1)P(i + 1 |i )CT (i + 1),

P(i + 1 |i ) = W −1
2 (i) + A(i)P(i |i )AT (i),

P−1(i + 1 |i + 1 ) = P−1(i + 1 |i ) + CT (i + 1)
(

F(i + 1)FT (i + 1)
)−1

C(i + 1).

By mathematical induction, we have proved the following theorem.

Theorem 8.1 The solution of the optimisation problem (8.16)–(8.18) is given by
(8.34)–(8.40) for i = k. Moreover,

min
x(k), f (k),k=0,··· ,N

JN = 1

2

(∥∥x̂(k |k ) − x̂(k |k − 1 )
∥∥2

P−1(k|k−1 ),2,[0,N ] +∥∥y(k) − C(k)x̂(k |k )
∥∥2

(F(k)F T (k))
−1

,2,[0,N ]

)

= 1

2

∥∥y(k) − C(k)x̂(k |k − 1 )
∥∥2

R−1(k),2,[0,N ] . (8.41)

Here, (8.41) follows from the equations

x̂(k |k ) − x̂(k |k − 1 ) = L(k)
(
y(k) − C(k)x̂(k |k − 1 )

)
,

y(k) − C(k)x̂(k |k ) = F(k)F T (k)R−1(k)
(
y(k) − C(k)x̂(k |k − 1 )

)
,

L(k) = P(k |k − 1 )CT (k)R−1(k),

R(k) = F(k)F T (k) + C(k)P(k |k − 1 )CT (k).

8.2.3 Discussions

We now discuss about the achieved solution and results from different aspects.
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One-step ahead prediction

Although the focus of our previous study is on the estimation x̂(k |k ), one-step
prediction x̂(k |k − 1 ) plays a central role, since both x̂(k |k ), f̂ (k) are driven by
the residual vector y(k) − C(k)x̂(k |k − 1 ). This motivates us to discuss about the
one-step prediction issue.

It is obvious that

x̂(k + 1 |k ) = A(k)x̂(k |k − 1 ) + L (k + 1 |k )
(
y(k) − C(k)x̂(k |k − 1 )

)
, (8.42)

L (k + 1 |k ) = A(k)L(k) = A(k)P(k |k − 1 )CT (k)R−1(k). (8.43)

Suppose that we are now interested in finding x(k + 1), f (k), k = 0, · · · , N − 1,
so that for the measurement data, y(0), · · · , y(k), · · · , y(N − 1), the cost function

JN |N−1 = 1

2

( ‖x(0) − xo‖2P−1(0) + ‖y(k) − C(k)x(k)‖2W1(k),2,[0,N−1]

+‖x(k + 1) − A(k)x(k)‖2W2(k),2,[0,N−1]

)

is minimised subject to (8.17)–(8.18). Using the results achieved in the last sub-
section, the following theorem can be proved, which provides us with a solution of
the above optimisation problem.

Theorem 8.2 Given xo := x̂(0 |−1 ), y(0), · · · , y(k), · · · , y(N − 1), the solution
to the minimisation of the cost function JN |N−1 subject to (8.17)–(8.18) is given by

{
x̂(k + 1 |k ), f̂ (k), k = 0, · · · , N − 1

}
= arg min

x(k+1), f (k),k=0,···N−1
JN |N−1 ,

min
x(k+1), f (k),k=0,···N−1

JN |N−1 = 1

2

∥∥y(k) − C(k)x̂(k |k − 1 )
∥∥2

R−1(k),2,[0,N−1] , (8.44)

R(k) = F(k)F T (k) + C(k)P(k |k − 1 )CT (k).

Proof It follows from our discussion in the last sub-section that

JN |N−1 = 1

2

⎛

⎝

∥∥x̂(k |k ) − x̂(k |k − 1 )
∥∥2

P−1(k|k−1 ),2,[0,N−1]
+

∥∥∥F(k) f̂ (k)

∥∥∥
2

(F(k)F T (k))
−1

,2,[0,N−1]

⎞

⎠

+1

2

∥∥x(N ) − x̂(N |N − 1 )
∥∥2

P−1(N |N−1 )
.

Recalling

x̂(k |k ) − x̂(k |k − 1 ) = L(k)
(
y(k) − C(k)x̂(k |k − 1 )

)
,

F(k) f̂ (k) = R−1(k)
(
y(k) − C(k)x̂(k |k − 1 )

)
,

equation (8.44) is obviously true.
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About the update of P(k |k ), P(k + 1 |k )

It is straightforward that the update of P(k |k ), P(k + 1 |k ) can be written in the
recursive forms

P(k |k ) =
(

P−1(k |k − 1 ) + CT (k)
(
F(k)F T (k)

)−1
C(k)

)−1 =⇒
P(k + 1 |k + 1 ) = W −1

2 (k) + A(k)P(k |k )AT (k)

−L(k + 1)R(k + 1)LT (k + 1),

P(k + 1 |k ) = W −1
2 (k) + A(k)P(k |k )AT (k)

= W −1
2 (k) + A(k)P(k |k − 1 )AT (k) − L(k + 1 |k )R(k)LT (k + 1 |k ),

L(k + 1) = P(k + 1 |k )CT (k + 1)R−1(k + 1), L(k + 1 |k ) = A(k)L(k),

R(k) = F(k)F T (k) + C(k)P(k |k − 1 )CT (k),

which are Riccati recursions and represent the dual form of the well-known LQ
regulator. For an LTI detectable system with N → ∞, P(N |N − 1 ) is the solution
of an algebraic Riccati equation

lim
N→∞ P(N |N − 1 ) = P > 0,

AP AT − P − L RLT + W −1
2 = 0, (8.45)

L = APCT R−1, R = F F T + C PCT ,

and moreover

lim
N→∞ P(N |N ) = P̄, P̄ =

(
P−1 + CT

(
F F T

)−1
C

)−1
.

Like the covariance matrix of the state estimation error in Kalman filter, P(k + 1 |k )

and P(k |k ) are also an indicator for the estimation performance, but with different
interpretation, as will be discussed below.

About the cost function
Write the cost function as

JN = 1

2

(
‖x(0) − xo‖2P−1(0) + ‖ f (k)‖2W f (k),2,[0,N ]

)
,

W f (k) = F T (k)
(
F(k)F T (k)

)−1
F(k) + E T (k)W2(k)E(k),

whose optimum value is
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J ∗
N = 1

2

∥
∥y(k) − C(k)x̂(k |k − 1 )

∥
∥2

R−1(k),2,[0,N ] .

Let
r(k) = R−1/2(k)

(
y(k) − C(k)x̂(k |k − 1 )

)

be the (optimal) residual vector with a post-filter R−1/2(k). Since JN ≥ J ∗
N , it holds

‖r(k)‖22,[0,N ] ≤ ‖x(0) − xo‖2P−1(0) + ‖ f (k)‖2W f (k),2,[0,N ] . (8.46)

On the assumption of a good estimation of the initial value of x(0) and selecting
W2(k) so that

W f (k) = F T (k)
(
F(k)F T (k)

)−1
F(k) + E T (k)W2(k)E(k) = γ −1 I, γ > 0,

(8.47)
a lower bound ‖ f (k)‖22,[0,N ] can be expressed in terms of the l2,[0,N ] norm of the
residual vector, that is

‖ f (k)‖22,[0,N ] ≥ γ ‖r(k)‖22,[0,N ] .

Example 8.2 In this example, we demonstrate the determination of the weighting
matrices W1(k) and W2(k) aiming to ensure equation (8.47). To be specific, we are
interested in the case γ = 1. It is evident that for W1(k) = (

F(k)F T (k)
)−1

,

I − F T (k)
(
F(k)F T (k)

)−1
F(k) ≥ 0 =⇒

E T (k)W2(k)E(k) = I − F T (k)
(
F(k)F T (k)

)−1
F(k) ≥ 0.

That means, on the assumption of

rank(E(k)) = k f ,

the requirement that
rank (W2(k)) = n

cannot be guaranteed. Now, let

W1(k) = η
(
F(k)F T (k)

)−1
, 0 < η < 1, (8.48)

which yields

I − F T (k)W1(k)F(k) = I − ηF T (k)
(
F(k)F T (k)

)−1
F(k) > 0.

Next, define
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W2(k) =
[ (

E−(k)
)T (

E⊥(k)
)T

] [
I − F T (k)W1(k)F(k) 0

0 I

] [
E−(k)

E⊥(k)

]
, (8.49)

rank

[
E−(k)

E⊥(k)

]
= n,

[
E−(k)

E⊥(k)

]
∈ Rn×n,

E−(k)E(k) = Ik f ×k f , E⊥(k)E(k) = 0.

It is clear that

ET (k)W2(k)E(k) = I − F T (k)W1(k)F(k), W2(k) > 0.

In other words, it holds

ηF T (k)
(
F(k)F T (k)

)−1
F(k) + E T (k)W2(k)E(k) = I. (8.50)

Recall that in the cost function JN , P−1(0) = P−1(0 |−1 ) is an indicator for the
confidence of the initial estimation xo for x(0). A smaller P−1(0) means a higher
confidential degree. In general, it holds

JN = 1

2

(
‖x(0) − xo‖2P−1(0) + ‖ f (k)‖2W f (k),2,[0,N ]

)

=
N−1∑

k=0

J (k) + 1

2

∥∥x(N ) − x̂(N |N − 1 )
∥∥2

P−1(k|k−1 )
,

J (k) = 1

2

∥∥x̂(k |k ) − x̂(k |k − 1 )
∥∥2

P−1(k|k−1 )
+ 1

2

∥∥∥F(k) f̂ (k)

∥∥∥
2

(F(k)F T (k))
−1 .

Hence, P(k |k − 1 ) indicates the confidential degree of the estimate x̂(k |k − 1 ) for
x(k). Similarly, P(k |k ) can be interpreted as the confidence of the estimate x̂(k |k )

for x(k).

At the end of our discussion, we would like to point out that the optimisation
problem (8.16)–(8.18) can be formulated in a recursive form as follows:

J ∗
N = min

x(k), f (k),k=0,···N
JN

= min
x(N ), f (N )

(
minx(k), f (k),k=0,··· ,N−1 JN−1+

1
2

∥∥x(N ) − x̂(N |N − 1 )
∥∥2

P−1(N |N−1 )
+ ‖F(N ) f (N )‖2W1(N )

)

= min
x(N ), f (N )

(
J ∗

N−1 + 1
2

∥∥x(N ) − x̂(N |N − 1 )
∥∥2

P−1(N |N−1 )

+‖F(N ) f (N )‖2W1(N )

)

. (8.51)
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About the fault estimation

We have learnt that an (optimal) estimate for f (k) using date up to y(k) is delivered
by

f̂ (k) = F T (k)R−1(k)
(
y(k) − C(k)x̂(k |k − 1 )

)
.

On the other hand, it has been demonstrated, by the proof of Theorem 8.1, that

∥
∥x(k + 1) − x̂(k + 1 |k )

∥
∥2

P−1(k+1|k )

= ∥∥P(k |k )AT (k)P−1(k + 1 |k )
(
x(k + 1) − A(k)x̂(k |k )

)∥∥2

P−1(k|k )

+ ∥∥W −1
2 (k)P−1(k + 1 |k )

(
x(k + 1) − A(k)x̂(k |k )

)∥∥2

W2(k)
,

P(k + 1 |k ) = W −1
2 (k) + A(k)P(k |k )AT (k),

in which

W −1
2 (k)P−1(k + 1 |k )

(
x(k + 1) − A(k)x̂(k |k )

) = x(k + 1) − A(k)x̂(k |k + 1 ),

x̂(k |k + 1 ) = x̂(k |k ) + P(k |k )AT (k)P−1(k + 1 |k )
(
x(k + 1) − A(k)x̂(k |k )

)
.

The vector x̂(k |k + 1 ) represents an estimate for x(k) in terms of x̂(k |k ) and x(k +
1). Recall that, due to the system dynamic constraint,

x(k + 1) = A(k)x(k) + E(k) f (k),

the term x(k + 1) − A(k)x̂(k |k + 1 ) gives an estimate of

fE (k) = E(k) f (k).

In this regard, substituting x(k+1) by its estimate x̂(k+1 |k + 1 ) leads to an estimate
of fE (k) using the data up to k + 1,

f̂ E (k |k + 1 ) = x̂(k + 1 |k + 1 ) − A(k)x̂(k |k + 1 ) (8.52)

= W −1
2 (k)P−1(k + 1 |k )

(
x̂(k + 1 |k + 1 ) − A(k)x̂(k |k )

)

= W −1
2 (k)CT (k + 1)R−1(k + 1)

(
y(k + 1) − C(k + 1)x̂(k + 1 |k )

)
.

As a result, on the assumption

rank(E(k)) = k f ,

we have an estimate for f (k) (using the data up to k + 1)
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f̂ (k |k + 1 ) = (
E T (k)E(k)

)−1
E T (k)W −1

2 (k)CT (k + 1)R−1(k + 1)r(k + 1),

r(k + 1) = y(k + 1) − C(k + 1)x̂(k + 1 |k ).

Summary of the estimation algorithms

Below is a summary of the estimation algorithms achieved based on the above dis-
cussions.

Algorithm 8.1 One-step ahead prediction x̂(k + 1 |k ) :

x̂(k + 1 |k ) = A(k)x̂(k |k − 1 ) + L (k + 1 |k )
(
y(k) − C(k)x̂(k |k − 1 )

)
,

L (k + 1 |k ) = A(k)P(k |k − 1 )CT (k)R−1(k),

P(k + 1 |k ) = A(k)P(k |k − 1 )AT (k) − L(k + 1 |k )R(k)LT (k + 1 |k )

+W −1
2 (k),

R(k) = F(k)F T (k) + C(k)P(k |k − 1 )CT (k).

Algorithm 8.2 Estimation x̂(k + 1 |k + 1 ) :

x̂(k + 1 |k + 1 ) = A(k)x̂(k |k ) + L (k + 1)

(
y(k + 1)

−C(k + 1)A(k)x̂(k |k )

)
,

L(k + 1) = (
W −1

2 (k) + A(k)P(k |k )AT (k)
)

CT (k + 1)R−1(k + 1),

P(k + 1 |k + 1 ) = A(k)P(k |k )AT (k) − L(k + 1)R(k + 1)LT (k + 1)

+W −1
2 (k),

R(k + 1) = C(k + 1)
(
W −1

2 (k) + A(k)P(k |k )AT (k)
)

CT (k + 1)

+F(k + 1)F T (k + 1).

Note that due to (8.52), the estimate x̂(k +1 |k + 1 ) can be also equivalently written
as

x̂(k + 1 |k + 1 ) = A(k)x̂(k |k ) + f̂ E (k |k + 1 )

+L1 (k + 1)
(
y(k + 1) − C(k + 1)A(k)x̂(k |k )

)
,

L1(k + 1) = A(k)P(k |k )AT (k)CT (k + 1)R−1(k + 1).

Algorithm 8.3 Fault estimation:

f̂ (k) = F T (k)R−1(k)
(
y(k) − C(k)x̂(k |k − 1 )

)
,

f̂ (k |k + 1 ) = (
E T (k)E(k)

)−1
E T (k)W −1

2 (k)CT (k + 1)R−1(k + 1)r(k + 1),

r(k + 1) = y(k + 1) − C(k + 1)x̂(k + 1 |k ).
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At the end of our discussion, we would like to mention that there are different
ways to solve the optimisation problem (8.16)–(8.18). In Chap.20, we will introduce
an alternative solution. Moreover, it is remarkable that the solution could also be
expressed in a form, which is different from our solution expressed in terms of
x̂(k + 1 |k ), x̂(k |k ) and f̂ (k).

8.3 Fault Estimation: Least Squares Observer VS. Unified
Solution

Asmentioned at the beginning of this chapter, the unified solution delivers an estimate
for the unknown input vector and can be thus applied for estimating the fault vector
as well. This motivates us to compare the estimation performance of the LS observer
introduced in the last section and the unified solution. To this end, we first summarise
the application of the unified solution for fault estimation.

8.3.1 Sensor Fault Estimation Using the Unified Solution

Consider the LDTV system model (8.1)–(8.2) and recall the unified solution pre-
sented in Chap.7 with the unknown (fault) vector f (k) :

x̂(k + 1) = Ax̂(k) + L(k)
(
y(k) − C(k)x̂(k)

)
, (8.53)

L(k) = (
A(k)P(k)CT (k) + E(k)F T (k)

)
R−1(k),

R(k) = F(k)F T (k) + C(k)P(k)CT (k),

P(k + 1) = A(k)P(k)AT (k) + E(k)E T (k) − L(k)R(k)LT (k). (8.54)

For our purpose, (8.53) is equivalently written into

x̂(k + 1) = Ax̂(k) + E(k) f̂ (k) + L1(k)
(
y(k) − C(k)x̂(k)

)
, (8.55)

f̂ (k) := F T (k)R−1(k)
(
y(k) − C(k)x̂(k)

)
, (8.56)

L1(k) = A(k)P(k)CT (k)R−1(k), (8.57)

L(k)
(
y(k) − C(k)x̂(k)

) = L1(k)
(
y(k) − C(k)x̂(k)

) + E(k) f̂ (k),

in which an estimate for f (k), f̂ (k), is introduced. We are interested in analysis of
the estimation performance of f̂ (k).

First of all, from (8.53) it can be clearly seen that x̂(k) is an one-step ahead
prediction of x(k). Moreover, since

F(k)F T (k) ≤ R(k) =⇒ R−1/2(k)F(k)F T (k)R−1/2(k) ≤ I,
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it is clear that

f̂ T (k) f̂ (k) = r T (k)R−1/2(k)F(k)F T (k)R−1/2(k)r(k) ≤ r T (k)r(k)

=⇒
∥∥∥ f̂ (k)

∥∥∥
2

2,[0,N ]
≤ ‖r(k)‖22,[0,N ] = ∥∥y(k) − C(k)x̂(k)

∥∥2
R−1(k),2,[0,N ] ,

r(k) = R−1/2(k)
(
y(k) − C(k)x̂(k)

)
.

It follows from the results achieved in Chap. 7 on the unified solution that

‖r(k)‖22,[0,N ] ≤ ‖ f (k)‖22,[0,N ] + ‖e(0)‖2 ,

with e(0) as the estimation error of the initial state vector. On the assumption that
faulty operations will first occur after a long normal operational period, it is reason-
able to assume e(0) � 0. Thus,

∥
∥∥ f̂ (k)

∥
∥∥
2

2,[0,N ]
≤ ‖ f (k)‖22,[0,N ] .

8.3.2 Comparison Study

In order to compare the unified solution and the LS observer scheme, we add sub-
index “US” to the relevant variables and parameters of the unified solutions and “LS”
to the ones of the LS observer. We have

• one-step ahead prediction of x(k) in comparison

x̂U S(k + 1 |k ) = A(k)x̂U S(k |k − 1 ) + LU S (k)
(
y(k) − C(k)x̂U S(k |k − 1 )

)

LU S (k) = (
A(k)PU S(k)CT (k) + E(k)F T (k)

)
R−1

U S(k),

PU S(k + 1) = A(k)PU S(k)AT (k) − LU S(k)RU S(k)LT
SU (k)

+E(k)ET (k),

RU S(k) = F(k)F T (k) + C(k)PU S(k)CT (k),

x̂L S(k + 1 |k ) = A(k)x̂L S(k |k − 1 ) + L L S (k)
(
y(k) − C(k)x̂L S(k |k − 1 )

)
,

L L S (k) = A(k)PL S(k)CT (k)R−1
L S (k),

PL S(k + 1) = A(k)PL S(k)AT (k) − L L S (k) RL S(k)LT
L S (k) + W −1

2 (k),

RL S(k) = F(k)F T (k) + C(k)PL S(k)CT (k);

• fault estimation in comparison

f̂U S(k) = F T (k)R−1
U S(k)

(
y(k) − x̂U S(k |k − 1 )

)
,

f̂L S(k) = F T (k)R−1
L S (k)

(
y(k) − x̂L S(k |k − 1 )

)
.
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For the comparison sake, it is supposed that

E(k) = I, W2(k) = I.

It is clear that both estimation schemes have the similar form for the one-step predic-
tion of x(k) and the fault vector. The difference lies in the observer gain matrix, and
associated with it, in the solution of the Riccati recursion. Note that both PU S(k) and
PL S(k) have the similar interpretation associated with the estimation performance,
but their updates in the Riccati recursions are slightly different. In fact, the difference
in the observer gain matrix can also be interpreted whether the estimation of the fault
vector f (k) is included in the update of the state estimation from k to k + 1.

For our fault diagnosis study, a reasonable comparison basis for both estimation
schemes is the properties of the residual vectors. Our previous work reveals that

‖rL S(k)‖22,[0,N ] ≤ eT
x (0)P−1(0)ex (0) + ‖ f (k)‖22,W f (k),[0,N ] , (8.58)

‖rU S(k)‖22,[0,N ] ≤ eT
x (0)P−1(0)ex (0) + ‖ f (k)‖22,[0,N ] , (8.59)

rL S(k) = R−1/2
L S (k)

(
y(k) − C(k)x̂L S(k |k − 1 )

)
,

rU S(k) = R−1/2
U S (k)

(
y(k) − C(k)x̂U S(k |k − 1 )

)
.

On the assumption that the term eT
x (0)P−1(0)ex (0) becomes sufficiently small in

comparison with ‖ f (k)‖22,[0,N ] for a large N , it becomes evident from (8.58)–( 8.59)
that ‖rU S(k)‖22,[0,N ] gives a lower bound of the l2-norm of the fault vector, while the
relation between ‖rL S(k)‖22,[0,N ] and the l2 -norm of the fault vector depends on the
weightingmatrices W1(k) and W2(k).When W1(k) and W2(k) are selected according
to (8.48)–(8.49), (8.58) becomes

‖rL S(k)‖22,[0,N ] ≤ eT
x (0)P−1(0)ex (0) + ‖ f (k)‖22,[0,N ] .

Moreover, it is of interest to notice that it holds, in both cases,

∥∥∥ f̂L S(k)

∥∥∥
2

2,[0,N ]
≤ ‖rL S(k)‖22,[0,N ] ,

∥∥∥ f̂U S(k)

∥∥∥
2

2,[0,N ]
≤ ‖rU S(k)‖22,[0,N ] .

In other words, in both cases, the l2-norm of the residual vector gives a better esti-
mation of the l2-norm of fault vector f (k).
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8.4 Least Squares Observer for Process Fault Estimation

We now consider fault estimation issues on the assumption of the LDTV system
model

x(k + 1) = A(k)x(k) + E(k) f (k),

y(k) = C(k)x(k) + v(k),

where x(k) ∈ Rn, y(k) ∈ Rm, v(k) ∈ Rm are process state, output and distur-
bance vectors, respectively. f (k) ∈ Rk f is the unknown fault vector to be estimated,
which represents process faults.We formulate the fault estimation problem as finding
x(k), k = 0, · · · , N , f (k), k = 0, · · · , N −1, such that for given measurement data
y(0), · · · , y(k), · · · , y(N ) the cost function

JN = 1

2

( ‖x(0) − xo‖2P−1(0) + ‖y(k) − C(k)x(k)‖22,[0,N ] +
‖x(k + 1) − A(k)x(k)‖22,[0,N−1]

)
(8.60)

s.t. x(k + 1) = A(k)x(k) + E(k) f (k), (8.61)

y(k) = C(k)x(k) + v(k) (8.62)

is minimised, where
rank (E(k)) = k f ,

P(0) > 0 is given and xo is an initial estimation for x(0) based on a priori knowledge.

Remark 8.3 Considering that the fault vector is only present in the system state
equation, we call it process fault.

We now summarise the problem solution in the following theorem.

Theorem 8.3 The solution of the optimisation problem (8.60) is given by

x̂(k |k ) = x̂(k |k − 1 ) + L(k |k )
(
y(k) − C(k)x̂(k |k − 1 )

)
, (8.63)

x̂(k + 1 |k ) = A(k)x̂(k |k ), x̂(0 |−1 ) := xo, (8.64)

f̂ (k) = L f (k)
(
y(k + 1) − C(k + 1)x̂(k + 1 |k )

)
, (8.65)

L(k |k ) = P(k |k − 1 )CT (k)R−1(k), (8.66)

R(k) = I + C(k)P(k |k − 1 )CT (k), (8.67)

L f (k) = (
E(k)E T (k)

)−1
E T (k)CT (k + 1)R−1(k + 1), (8.68)

P(k + 1 |k ) = I + A(k)P(k |k )AT (k), (8.69)

P−1(k + 1 |k + 1 ) = P−1(k + 1 |k ) + CT (k + 1)C(k + 1). (8.70)
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Moreover,

JN = J (N ) + ∥∥x(N ) − x̂(N |N )
∥∥2

P−1(N |N )
, (8.71)

min
x(k), f (k),k=0,···N−1,x(N )

JN = J (N ) + min
x(N )

∥∥x(N ) − x̂(N |N )
∥∥2

P−1(N |N )
(8.72)

= J (N ) = 1

2

∥∥y(k) − C(k)x̂(k |k − 1 )
∥∥2

R−1(k),2,[0,N ] . (8.73)

Proof The theoremwill be proved using the induction method. To this end, consider,
at first, N = 1, that is

min
x(0),x(1), f (0)

J1,

J1 = 1

2

( ‖x(0) − xo‖2P−1(0) + ‖y(0) − C(0)x(0)‖2 + ‖E(0) f (0)‖2
+‖y(1) − C(1)x(1)‖2

)
,

s.t. x(k + 1) = A(k)x(k) + E(k) f (k)

y(k) = C(k)x(k) + v(k).

Along the lines of the study in Sect. 8.2, we have

J1 = J (0) + 1

2

(∥∥x(0) − x̂(0 |0 )
∥∥2

P−1(0|0 )
+ ‖E(0) f (0)‖2

+‖y(1) − C(1)x(1)‖2
)

,

J (0) = 1

2

∥∥x̂(0 |0 ) − xo

∥∥2
P−1(0) + 1

2

∥∥y(0) − C(0)x̂(0 |0 )
∥∥2

= 1

2

∥
∥y(0) − C(0)x̂(0 |−1 )

∥
∥2

R−1(0) , x̂(0 |−1 ) = xo,

x̂(0 |0 ) = xo + L(0 |0 ) (y(0) − C(0)xo) ,

L(0 |0 ) = P(0)CT (0)R−1(0), R(0) = I + C(0)P(0)CT (0),

P−1(0 |0 ) = P−1(0) + CT (0)C(0).

Viewing

min
x(0), f (0)

1

2

(∥∥x(0) − x̂(0 |0 )
∥∥2

P−1(0|0 )
+ ‖E(0) f (0)‖2

)

s.t. x(1) = A(0)x(0) + E(0) f (0)

as a RLS estimation problem yields
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x(0) − x̂(0 |0 ) = P(0 |0 )AT (0)Q−1
(
x(1) − A(0)x̂(0 |0 )

)
,

Q = I + A(0)P(0 |0 )AT (0),

E(0) f (0) = x(1) − A(0)x(0) = Q−1
(
x(1) − A(0)x̂(0 |0 )

) =⇒
min

x(0), f (0)

1

2

(∥
∥x(0) − x̂(0 |0 )

∥
∥2

P−1(0|0 )
+ ‖E(0) f (0)‖2

)

= 1

2

∥∥x(1) − A(0)x̂(0 |0 )
∥∥2

P−1(1|0 )
,

P(1 |0 ) := Q = I + A(0)P(0 |0 )AT (0).

Thus, it turns out

min
x(1)

J1 = J (0) + min
x(1)

1

2

(∥∥x(1) − A(0)x̂(0 |0 )
∥∥2

P−1(1|0 )
+ ‖y(1) − C(1)x(1)‖2

)

s.t. y(1) = C(1)x(1) + v(1),

which is solved by

x̂(1 |1 ) = x̂(1 |0 ) + L(1 |1 )
(
y(1) − C(1)x̂(1 |0 )

)
,

L(1 |1 ) = P(1 |0 )CT (1)R−1(1),

x̂(1 |0 ) = A(0)x̂(0 |0 ), R(1) = I + C(0)P(1 |0 )CT (0),

and results in

min
x(1)

J1 = J (1) + min
x(1)

∥∥x(1) − x̂(1 |1 )
∥∥2

P−1(1|1 )
= J (1),

J (1) = J (0) + 1

2

(∥
∥x̂(1 |1 ) − A(0)x̂(0 |0 )

∥
∥2

P−1(1|0 )
+

∥∥y(1) − C(1)x̂(1 |1 )
∥∥2

)

= 1

2

(∥∥y(0) − C(0)x̂(0 |−1 )
∥∥2

R−1(0) + ∥∥y(1) − C(1)x̂(1 |0 )
∥∥2

R−1(1)

)
.

Note that the optimal estimation for f (0) is given by

E(0) f (0) = P−1(1 |0 )
(
x(1) − A(0)x̂(0 |0 )

) =⇒
E(0) f̂ (0) = CT (1)R−1(1)

(
y(1) − C(1)x̂(1 |0 )

) =⇒
f̂ (0) = (

E T (0)E(0)
)−1

E T (0)CT (1)R−1(1)
(
y(1) − C(1)x̂(1 |0 )

)
.

It is obvious that for N = 1 the results given in (8.63)–(8.73) are proved. Now, we
check the case for N = k + 1 on the assumption that (8.63)–(8.73) hold for N = k.

We begin with

Jk+1 = Jk + ‖E(k) f (k)‖2 + ‖y(k + 1) − C(k + 1)x(k + 1)‖2 ,
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which can be further written as

Jk+1 = J (k) + ∥∥x(k) − x̂(k |k )
∥∥2

P−1(k|k )

+‖E(k) f (k)‖2 + ‖y(k + 1) − C(k + 1)x(k + 1)‖2 ,

J (k) = 1

2

∥∥y(i) − C(i)x̂(i |i − 1 )
∥∥2

R−1(i),2,[0,k] ,

s.t. x(k + 1) = A(k)x(k) + E(k) f (k),

y(k + 1) = C(k + 1)x(k + 1) + v(k + 1).

Analogue to the study on case N = 1, solving the RLS problem for

∥
∥x(k) − x̂(k |k )

∥
∥2

P−1(k|k )
+ ‖E(k) f (k)‖2

s.t. x(k + 1) = A(k)x(k) + E(k) f (k)

leads to

min
x(i), f (i),i=1,··· ,k,x(k+1)

Jk+1 = J (k)+

min
x(k+1)

∥∥x(k + 1) − A(k)x̂(k |k )
∥∥2

P−1(k+1|k )
+ ‖y(k + 1) − C(k + 1)x(k + 1)‖2

s.t. y(k + 1) = C(k + 1)x(k + 1) + v(k + 1),

which is finally solved with the result

Jk+1 = J (k + 1) + ∥
∥x(k + 1) − x̂(k + 1 |k + 1 )

∥
∥2

P−1(k+1|k+1 )
=⇒

min
x(i), f (i),i=1,··· ,k,x(k+1)

Jk+1 = J (k + 1)

= 1

2

∥∥y(i) − C(i)x̂(i |i − 1 )
∥∥2

R−1(i),2,[0,k+1] ,

x̂(k + 1 |k + 1 ) = x̂(k + 1 |k ) + L(k + 1 |k + 1 )

(
y(k + 1)−

C(k + 1)x̂(k + 1 |k )

)
,

x̂(k + 1 |k ) = A(k)x̂(k |k ),

L(k + 1 |k + 1 ) = P(k + 1 |k )CT (k + 1)R−1(k + 1),

P(k + 1 |k ) = I + A(k)P(k |k )AT (k),

R(k + 1) = I + C(k + 1)P(k + 1 |k )CT (k + 1),

as well as
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E(k) f̂ (k) = CT (k + 1)R−1(k + 1)
(
y(k + 1) − C(k + 1)x̂(k + 1 |k )

)

=⇒ f̂ (k) = L f (k)
(
y(k + 1) − C(k + 1)x̂(k + 1 |k )

)
,

L f (k) = (
E T (k)E(k)

)−1
E T (k)CT (k + 1)R−1(k + 1).

Thus, (8.63)–(8.73) hold for N = k + 1. The theorem is proved.

It is straightforward that the update of P(k |k − 1 ), P(k |k ) can also be done using
the following Riccati recursions:

P(k + 1 |k ) = I + A(k)P(k |k − 1 )AT (k) − L(k + 1 |k )R(k)LT (k + 1 |k ),

L(k + 1 |k ) = A(k)L(k |k ),

P(k + 1 |k + 1 ) = I + A(k)P(k |k )AT (k) − Ψ (k),

Ψ (k) = L(k + 1 |k + 1 )R(k + 1)LT (k + 1 |k + 1 ).

It is evident that it holds

∥∥y(k) − C(k)x̂(k |k − 1 )
∥∥2

R−1(k),2,[0,N ] ≤
‖x(0) − xo‖2P−1(0) + ‖v(k)‖22,[0,N ] + ‖E(k) f (k)‖22,[0,N−1] .

When ‖x(0) − xo‖2P−1(0) + ‖v(k)‖22,[0,N ] is sufficiently small, we also have

∥
∥y(k) − C(k)x̂(k |k − 1 )

∥
∥2

R−1(k),2,[0,N ] ≤ ‖E(k) f (k)‖22,[0,N−1] .

8.5 Notes and References

Fault estimation in dynamic systems is receiving considerable attention in the re-
search field of fault diagnosis and fault-tolerant control. This trend is highly moti-
vated by the argument that the estimate of a fault can be directly applied for fault
detection and further, when dealing with fault-tolerant control, used for achieving
fault compensation as well. As demonstrated in the previous chapters, the use of
fault estimate for fault detection may lead to poor performance, in particular, when
uncertainties exist in the process or process model under consideration. In the last
part of this book, we will also investigate fault-tolerant control issues and give a
critical review of fault compensation based fault-tolerant control strategies.

Observer-based fault estimation schemes are the state of the art in research. One
popular design strategy is the application of the robust unknown input observer
(UIO) technique. The robustness is in general achieved in the l2-gain optimisation
framework, which can be roughly formulated as

∥∥∥ f − f̂
∥∥∥
2

≤ γ ‖d‖2
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with d representing the unknown input vector. In this context, a fault estimator is
designed to minimise the l2-gain γ with respect to d. It is beyond dispute that in
the l2-gain optimisation framework many well-established mathematical and control
theoretical methods can be used as a tool to deal with fault estimation issues for var-
ious types of systems. The reader is referred to the first publications in this thematic
field [1–5], which are helpful to understand the basic ideas and the applied tools.
Moreover, it can be observed that this technique has also been adopted in the inte-
grated design of robust controller and FD systems, as proposed in [6–8]. On the other
hand, it is worth mentioning that this fault estimation strategy and its performance
have been critically reviewed in [9].

In the past two decades, application of augmented observer schemes to fault
estimation has received increasing attention. The underlying idea of the augmented
observer schemes lies in addressing the faults to be estimated as additional state
variables, which are then re-constructed by an augmented observer. The well-known
PI-observer is a special kind of such observers [10, 11]. The augmented observer
technique is strongly related to the UIO scheme. In this context, the augmented
observer is also called simultaneous state and disturbance estimator [12]. Often,
such observers/estimators are designed based on certain assumption on the faults,
for instance the boundedness on the derivative. We refer the reader to [13–17] for
some representative publications on this topic.

In this chapter, we have investigated fault estimation issues from the "least
squares" optimisation viewpoint, which is considerably different from the robust
unknown input observer and the augmented observer schemes. The so-called least
squares observers are in fact the analogue form of the celebrated Kalman filter and
can be applied to the estimation of state variables in processes with deterministic
unknown inputs. Intensive studies on this topic have been reported in the literature in
1970’s, as Kalman filter theory was successfully established [18, 19] . Unfortunately,
in recent research, few attention has been paid to such type of optimal observers and
their potential applications, for instance, in fault detection area. Our work on this
topic has been remarkably motivated by the unified solution for optimal fault detec-
tion and the associated results presented in the last chapter. A Willems’s paper on
"deterministic least squares filtering" [20] has inspired the formulation of fault esti-
mation as a least squares optimisation problem and its interpretation in the context
of fault estimation.

The mathematical tool for the solution of our least squares estimation is the
regularised least squares estimation method, in which a priori knowledge of the
variables to be estimated is embedded in the optimisation. This handling allows us to
extend the static RLS estimation to dynamic processes. Moreover, the minimisation
of the term ‖y − H x‖2W (see equation (8.6)) results in an estimation for

v = y − H x,

which is of the minimum norm (least squares). That is,

∥∥v̂
∥∥
2 ≤ ‖v‖2 ,
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which can be used for estimating the the lower bound of the l2-norm of the fault
vector. Concerning the RLS method, we refer the reader to [21] for a systematic
description.

To our knowledge, there are (very) few publications on LS estimation for LDTV
systems with deterministic unknown inputs formulated in (8.16)–( 8.19). Under this
consideration, we have described the solution and, above all, the procedure of the
solution in details. We have studied two LS fault estimation problems, one for es-
timating sensor type of faults and the other for process faults. Moreover, we have
briefly discussed about the relations between the unified solution (with faults as
unknown inputs) and the LS estimation algorithms given in this chapter.

The formulation of fault estimation as a RLS optimisation problem builds the
basis for applying the existing optimisation techniques to addressing issues like
online optimisation of fault detection systems. In that case, an alternative solution
form will be adopted, as introduced in Chap.20. On the other hand, dealing with
uncertainties remains an open and challenging issue.

Finally, we would like to mention that model-based fault estimation is a vital
research area. The so-called parameter identification technique (PIT) based fault
estimation (identification) builds, in parallel with the observer-based strategy, one of
the mainstreams in this research area. The core of PIT-based fault estimation consists
in the application of the well-established parameter identification technique to the
identification of the faults that are modelled as system parameters. This technique is
especially efficient in dealingwithmultiplicative faults.We refer the interested reader
to [22–26] for a comprehensive study of this technique. Further active fields in the
thematic area of fault estimation include, for example, sliding mode observer-based
fault detection and estimation [27–29], strong tracking filter technique for fault and
parameter estimation [30].
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Chapter 9
Detection and Isolation of Multiplicative
Faults

The previous chapters are mainly dedicated to the diagnosis issues of additive faults.
Even if further efforts are needed to develop novel methods to deal with this class of
faults more efficiently, it is the common opinion that the framework of diagnosing
additive faults is well established. Differently, detecting and isolating multiplicative
faults are challenging and open issues that are of significant research and practical
interests. Multiplicative faults, also those with small size, may cause remarkable
changes in the system structure and dynamics. Often, they rise up in a continuing
process, which hinders, different from those rapid changes, an early and reliable
detection, in particular, when these faults are embedded in a closed-loop control
system. In this chapter, we focus on issues of detecting multiplicative faults in the
open- and closed-loop system configurations. At the end of this chapter, we also deal
with isolation of multiplicative faults.

9.1 System Modelling

9.1.1 Model Forms

We consider LTI systems of the form

y(s) = G(s)u(s), y ∈ Cm, u ∈ C p (9.1)

with minimal state space realisation

G(s) = (A, B,C, D) , (9.2)

where A, B,C, D are systemmatrices of appropriate dimensions. The LCF and RCF
of G(s) are given by
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G(s) = M̂−1(s)N̂ (s) = N (s)M−1(s), (9.3)

respectively, where M̂(s) ∈ RHm×m
∞ , N̂ (s) ∈ RHm×p

∞ , M(s) ∈ RHp×p
∞ , N (s) ∈

RHm×p
∞ .

(
M̂(s), N̂ (s)

)
and (M(s), N (s)) are left and right coprime pairs over

RH∞, for which there exist X̂(s) ∈ RHm×m
∞ , Ŷ (s) ∈ RHp×m

∞ , X (s) ∈ RHp×p
∞ ,

Y (s) ∈ RHp×m
∞ so that

[−N̂ M̂
] [−Ŷ

X̂

]
= Im×m,

[
X Y

] [M
N

]
= Ip×p. (9.4)

With the aid of the above coprime factorisations of LTI systems, we are now in a
position to introduce the systemmodels adopted in our work. We denote the nominal
(fault- and uncertainty-free) plant model, the faulty model and plant model with
uncertainty as well as their LCF and RCF by

Go(s) = M̂−1
o (s)N̂o(s) = No(s)M

−1
o (s), (9.5)

G f (s) = M̂−1
f (s)N̂ f (s) = N f (s)M

−1
f (s), (9.6)

GΔ(s) = M̂−1
Δ (s)N̂Δ(s) = NΔ(s)M−1

Δ (s), (9.7)

respectively. The LC and RC pairs (M̂o, N̂o) and (Mo, No) are called normalised, if

[
M̂o(s) N̂o(s)

] [
M̂o(s) N̂o(s)

]∗ = I,

[
Mo(s)
No(s)

]∗ [
Mo(s)
No(s)

]
= I.

For the state space computation of the normalised LC and RC pairs, the following
theorem is well-known. The reader is referred to the references given at the end of
this chapter.

Theorem 9.1 Given the system model (9.1) with minimal state space realisation
(9.2), then

[
Mo(s)
No(s)

]
=
[

Γ −1/2

DΓ −1/2

]
+
[
Fo

CFo

] (
s I − AFo

)−1
BΓ −1/2,

[
M̂o(s) N̂o(s)

] = [ Γ̄ −1/2 Γ̄ −1/2D
]+ Γ̄ −1/2C

(
s I − ALo

)−1 [−Lo BLo

]

build the normalised RC and LC pair of G, respectively, where

AFo = A + BFo, ALo = A − LoC, BLo = B − LoC,CFo = C + DFo,

Γ = I + DT D, Γ̄ = I + DDT ,

Fo = −Γ −1
(
BT X + DTC

)
, Lo = (BDT + YCT

)
Γ̄ −1

with X ≥ 0,Y ≥ 0 being the solutions of the following Riccati equations
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AT
X X + X AX − XBΓ −1BT X + CT Γ̄ −1C = 0, AX = A − BΓ −1DTC,

AYY + Y AT
Y − XCT Γ̄ −1CX + BΓ −1BT = 0, AY = A − BDT Γ̄ −1C.

For practical applications, the LCF and RCF of G f (s),GΔ(s) are often expressed
in the form given below:

M̂ f (s) = M̂o(s) + ΔM̂ f
(s), N̂ f (s) = N̂o(s) + ΔN̂ f

(s),

M f (s) = Mo(s) + ΔM f (s), N f (s) = No(s) + ΔN f (s),

M̂Δ(s) = M̂o(s) + ΔM̂(s), N̂Δ(s) = N̂o(s) + ΔN̂ (s),

MΔ(s) = Mo(s) + ΔM(s), NΔ(s) = No(s) + ΔN (s),

where

ΔM̂ f
(s),ΔN̂ f

(s),ΔM f (s),ΔN f (s),ΔM̂(s),ΔN̂ (s),ΔM(s),ΔN (s) ∈ RH∞

are some unknown transfer functions.ΔM̂ f
,ΔN̂ f

,ΔM f ,ΔN f represent multiplicative
faults, when they are different from zero. There are numerous ways to model these
terms in more details, depending on available a priori knowledge. For instance,

ΔM̂ f
(s) = M̂o(s)δM̂ f

(s),ΔN̂ f
(s) = N̂o(s)δN̂ f

(s), δM̂ f
(s), δN̂ f

(s) ∈ RH∞

represent those faults with known and unknown parts, denoted by
(
M̂o, N̂o

)
and(

δM̂ f
, δN̂ f

)
, respectively. It is also often the case that we only know the boundedness

of uncertainties, for instance, expressed by

∥∥ΔN̂ (s) ΔM̂(s)
∥∥∞ ≤ δΔ.

Remember that SKRandSIRare alternative system representations,which are related
to the LCF and RCF of a system under consideration. Let

Ko = [−N̂o(s) M̂o(s)
]
, Io =

[
Mo(s)
No(s)

]

be the SKR and SIR of the nominal system, which are possibly normalised, and

K f = [−N̂ f (s) M̂ f (s)
]
, I f =

[
M f (s)
N f (s)

]
,

KΔ = [−N̂Δ(s) M̂Δ(s)
]
, IΔ =

[
MΔ(s)
NΔ(s)

]
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denote the SKR and SIR of the faulty and uncertain system models, respectively. In
our subsequent work, we may also suppose

K f = [−N̂o(s) M̂o(s)
] (

I + ΔK f

)
, I f = (I + ΔI f

) [Mo(s)
No(s)

]
, (9.8)

KΔ = [−N̂o(s) M̂o(s)
]
(I + ΔK) , IΔ = (I + ΔI)

[
Mo(s)
No(s)

]
, (9.9)

where ΔK f ,ΔI f ,ΔK,ΔI ∈ RH∞ are unknown and assumed to be bounded, for
instance ∥∥ΔK f

∥∥∞ < 1,
∥∥ΔI f

∥∥∞ < 1, ‖ΔK‖∞ < 1, ‖ΔI‖∞ < 1.

9.1.2 Relations Among the Model Forms

We now investigate the relations among the model forms presented in the previous
sub-section. Considering that the model uncertainties and multiplicative faults are
handled in an analogue manner in the models introduced above, we will first ad-
dress them uniformly as uncertainties. The following lemmas provide us with the
equivalence between different model forms.

Lemma 9.1 Consider an LTI system with the nominal model Go(s) and its extended
form G(s), including uncertainties or faults. Let

Go(s) = M̂−1
o (s)N̂o(s) = No(s)M

−1
o (s),

G(s) = M̂−1(s)N̂ (s) = N (s)M−1(s)

be their LCFs and RCFs. Then, the SKR and SIR of G(s),

K = [−N̂ M̂
]
, I =

[
M
N

]
,

can be equivalently written as

[−N̂ M̂
] = [−N̂o M̂o

]
(I + ΔK) ,

[
M
N

]
= (I + ΔI)

[
Mo

No

]
,

for some ΔK,ΔI ∈ RH∞.

Proof Let

ΔK =
[−Ŷo

X̂o

] ([−N̂ M̂
]− [−N̂o M̂o

]) ∈ RH∞,
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where

[−Ŷo
X̂o

]
is the right inverse of

[−N̂o M̂o

]
. That is, it satisfies (9.4). It is

obvious that

[−N̂o M̂o

]
ΔK = [−N̂ M̂

]− [−N̂o M̂o

]⇐⇒
[−N̂ M̂

] = [−N̂o M̂o

]
(I + ΔK) .

In the same manner, the result with the SIR can also be proved.

The following lemma is a known result, which provides us with the relation between
ΔK,ΔI in the model forms ( 9.8)–(9.9). The reference is given at the end of this
chapter.

Lemma 9.2 Given

Go(s) = M̂−1
o (s)N̂o(s) = No(s)M

−1
o (s),G(s) = N (s)M−1(s)

with [
M
N

]
= (I + ΔI)

[
Mo

No

]
,ΔI ∈ RH∞.

Then, it holds

[
M̂ N̂

] = [ M̂o N̂o

] (
I + Δ̄K

)−1
, (9.10)

Δ̄K =
[

0 I
−I 0

]
ΔI

[
0 − I
I 0

]
∈ RH∞, (9.11)

and G(s) = M̂−1(s)N̂ (s) is an LCF.

It is straightforward that (9.10)–(9.11) can also be equivalently expressed by

[
M̂ − N̂

] = [ M̂o − N̂o

] (
I + Δ̂K

)−1
, (9.12)

Δ̂K =
[
I 0
0 −I

]
Δ̄K

[
I 0
0 −I

]
=
[
0 I
I 0

]
ΔI

[
0 I
I 0

]
. (9.13)

It is worth noting that when

ΔI =
[

δM 0
0 δN

]
,

it turns out

Δ̂K =
[
0 I
I 0

]
ΔI

[
0 I
I 0

]
=
[

δN 0
0 δM

]
.

A direct application of this result is given in the following theorem.
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Theorem 9.2 Given G(s) = M̂−1(s)N̂ (s) with

M̂(s) =M̂o(s) + M̂o(s)δM̂(s), N̂ (s) = N̂o(s) + N̂o(s)δN̂ (s), (9.14)

δM̂(s), δN̂ (s) ∈ RH∞,
∥∥δM̂
∥∥∞ < 1,

∥∥δN̂
∥∥∞ < 1,

then

M(s) = (I + δN̂
)−1

Mo(s) = (I + δM) Mo(s), (9.15)

N (s) = (I + δM̂
)−1

No(s) = (I + δN ) No(s), (9.16)

δM = − (I + δN̂
)−1

δN̂ , δN = − (I + δM̂
)−1

δM̂ ,

build a RCF of G(s) = N (s)M−1(s).

Proof The proof is straightforward. In fact, (9.14) can be equivalently written as

K = [ M̂o −N̂o

] (
I +
[

δM̂ 0
0 δN̂

])
.

It follows from Lemma 9.2 that
[
M
N

]
= (I + ΔI)−1

[
Mo

No

]
,ΔI =

[
δN̂ 0
0 δM̂

]
.

Since
∥∥δM̂
∥∥∞ < 1,

∥∥δN̂
∥∥∞ < 1, it turns out

I + ΔI ∈ RH∞, I + Δ−1
I ∈ RH∞.

As a result, (M, N ) satisfying (9.15)–(9.16) is a RC pair of G(s). Note that

(I + ΔI)−1 = I − (I + ΔI)−1 ΔI .

Hence, (9.15)–(9.16) are proved.

Thanks to the equivalence between the different forms of model uncertainties and
faults, we will, in our subsequent study, focus on those faults and uncertainties
modelled in the form of the left coprime factor without loss of generality.

9.2 Observer-Based Fault Detection Schemes

In this section, we will present observer-based schemes for detecting multiplicative
faults in LTI systems with model uncertainties, as modelled in the last section.
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9.2.1 Basic Ideas and Major Tasks

We first briefly introduce the basic ideas and formulate the major tasks, which will
then be solved in the subsequent sub-sections.

As described in Sect. 4.1, any stable residual generator can be represented by an
SKR of the system under consideration and further parameterised, for instance, by

r = R
[−N̂o M̂o

] [ u
y

]
, (9.17)

where (M̂o, N̂o) is the (possibly normalised) LC pair of the nominal plant model and
R(s) is a known stable post-filter. In our subsequent study, it is assumed that an FDF
is applied as residual generator. According to Lemma 4.1, any FDF of the form

˙̂x(t) = (A − LC) x̂(t) + (B − LD) u(t) + Ly(t),

r(t) = y(t) − ŷ(t) = y(t) − Cx̂(t) − Du(t)

can be re-written as

˙̂x(t) = (A − LoC) x̂(t) + (B − LoD) u(t) + Loy(t),

r(s) = R(s)
(
y(s) − ŷ(s)

)
, R(s) = I − C (s I − A + LC)−1 (L − Lo) ,

where Lo is the observer gain matrix for the (possibly normalised) LC pair (M̂o, N̂o).

Note that R−1(s) ∈ RH∞ and

R−1(s) = I − C (s I − A + LoC)−1 (Lo − L) .

Remark 9.1 Recall that in the state space computation of the normalised (M̂o, N̂o)

given in Theorem 9.1, an output transformation with transformation matrix Γ̄ −1/2 is
needed. Considering that the assumption of the normalised LC pair (M̂o, N̂o) is often
irrelevant in the observer-based residual generator design, in which an additional
output transformation is not included, we assume, in the sequel and for the sake of
simplifying notation, the system matrices C and D are normalised by Γ̄ −1/2.

Let (M̂, N̂ ) denote the LC pair of the plant model with model uncertainties or/and
faults. In this case,

y(s) = M̂−1(s)N̂ (s)u(s) =⇒ [−N̂ M̂
] [ u

y

]
= 0.

As a result, the dynamics of the residual generator (9.17) is governed by



212 9 Detection and Isolation of Multiplicative Faults

r = R
[−N̂o M̂o

] [ u
y

]
= R
[
ΔN̂ −ΔM̂

] [ u
y

]
, (9.18)

ΔM̂ = M̂ − M̂o,ΔN̂ = N̂ − N̂o.

Next, we analyse the dynamics of the residual generator in the closed-loop configu-
ration. We consider the standard feedback control configuration sketched in Fig. 9.1
with G(s) as the plant model with uncertainties and/or faults, K (s) as the feedback
controller and v as the reference signal. Denote all stabilisation controllers by

K (s) = −U (s)V−1(s) = −V̂−1 (s) Û (s), (9.19)

[
V̂ Û

] = [ Xo − QN̂o Yo + QM̂o

]
,

[
U
V

]
=
[
Ŷo + MoQ
X̂o − NoQ

]
,

where Xo,Yo, X̂o, Ŷo areRH∞ matrices satisfying (9.4) with respect to the LC and
RC pairs of the nominal plant model, and Q(s) ∈ RH∞ is the parameterisation
matrix.

Substituting the closed-loop dynamics

[
u
y

]
=
[

I −K
−G I

]−1 [
I
0

]
v

into the residual dynamics leads to

r = R
[
ΔN̂ − ΔM̂

] [ u
y

]

= R
[
ΔN̂ − ΔM̂

][ V̂ Û
−N̂o − ΔN̂ M̂o + ΔM̂

]−1 [
V̂
0

]
v. (9.20)

By Bezout identity

Fig. 9.1 Schematic description of a feedback control loop
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[
Mo −U
No V

] [
V̂ Û

−N̂o M̂o

]
=
[

V̂ Û
−N̂o M̂o

] [
Mo −U
No V

]
= I,

it is straightforward that

[
V̂ Û

−N̂o − ΔN̂ M̂o + ΔM̂

]−1 [
V̂
0

]

=
(
I +
[−U

V

] [−ΔN̂ ΔM̂

])−1 [
Mo

No

]
V̂ .

It results in

r = R
[
ΔN̂ −ΔM̂

] (
I +
[−U

V

] [−ΔN̂ ΔM̂

])−1 [
Mo

No

]
V̂ (9.21)

= −R

(
I + [−ΔN̂ ΔM̂

] [−U
V

])−1 [−ΔN̂ ΔM̂

] [Mo

No

]
V̂ v. (9.22)

We would like to mention that in the above handling it is assumed that the residual
generator and the LCF adopted in the controller parameterisation share the same
observer gain matrix. Thanks to Lemma 4.1, this assumption loses no generality. It is
evident that the stability of the observer-based FD system is guaranteed, as far as the
feedback control system is stable. Also, the control performance of the closed-loop,
expressed in terms of (

I + [−ΔN̂ ΔM̂

] [−U
V

])−1

,

has significant influence on the dynamics of the FD system.
Concerning the design of the observer-based fault detection system, threshold and

the observer gain matrix should be determined. The threshold setting will be realised
by determining

Jth = sup
KΔ,V̂ v 
=0

⎛
⎝ ‖r‖2∥∥∥V̂ v

∥∥∥
2

⎞
⎠
∥∥∥V̂ v

∥∥∥
2

in the fault-free case, while the design of the observer gain matrix is performed based
on the system dynamics both in the fault-free and faulty cases.

For the analysis of FD in open-loop configuration, let us substitute y by

y(s) = G(s)u(s) = M̂−1(s)N̂ (s)u(s) = N (s)M−1(s)u(s)

into the residual dynamics (9.18), which leads to
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r = R
[−N̂o M̂o

] [ u
y

]
= R
(
M̂o M̂

−1 N̂ − N̂o

)
u (9.23)

= R
[
ΔN̂ −ΔM̂ M̂−1

] [ I
N̂

]
u. (9.24)

Recall that the zeros of an LTI system are invariant with respect to the residual
feedback. Thus, the dynamics of the FD system (9.23) is stable, only if the zeros of
M̂ in the RHP are also the RHP-zeros of M̂o. In the sequel, we assume that

M̂o M̂
−1 ∈ RH∞,

and thus the observer-based FD system (9.23)–(9.24) is stable.
For the design of the observer-based FD system, the threshold will be determined

according to

Jth = sup
KΔ,u 
=0

( ‖r‖2
‖u‖2

)
‖u‖2

in the fault-free case, and the observer gain matrix is to be found based on the system
dynamics given in (9.24).

9.2.2 An FD System Design Scheme for Feedback Control
Systems

Consider residual dynamics (9.21), which is re-written as

• fault-free but with uncertainty

r = −R

(
I + (KΔ − Ko)

[−U
V

])−1

(KΔ − Ko)

[
Mo

No

]
V̂ v, (9.25)

KΔ = [−N̂Δ(s) M̂Δ(s)
]
,Ko = [−N̂o(s) M̂o(s)

]
,

• faulty without considering uncertainty

r = −R

(
I + (K f − Ko

) [−U
V

])−1 (K f − Ko
) [Mo

No

]
V̂ v, (9.26)

K f = [−N̂ f (s) M̂ f (s)
]
.

It follows from Bezout identity and Lemma 9.1 that (9.26) can be further written
into
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r = R

(
K f

[−U
V

])−1

K f

[
Mo

No

]
V̂ v

= R

([−N̂o M̂o

] (
I + Δ f

) [−U
V

])−1 [−N̂o M̂o

] (
I + Δ f

) [Mo

No

]
V̂ v.

Remember that

R−1(s) = I − C (s I − A + LoC)−1 (Lo − L) ∈ RH∞.

It turns out

r = −R

(
I + (KΔ − Ko)

[−U
V

])−1

(KΔ − Ko)

[
Mo

No

]
V̂ v

= −
(
I + RΔK

[−U
V

]
R−1

)−1

R
[−N̂o M̂o

]
(I + ΔK)

[
Mo

No

]
V̂ v, (9.27)

r = −R

([−N̂o M̂o

] (
I + Δ f

) [−U
V

])−1 [−N̂o M̂o

] (
I + Δ f

) [Mo

No

]
V̂ v

= −
([−N̂o M̂o

] (
I + Δ f

) [−U
V

]
R−1

)−1 [−N̂o M̂o

] (
I + Δ f

) [Mo

No

]
V̂ v.

(9.28)

In (9.27) and (9.28), ΔK,Δ f are unknown and, in general, norm-bounded. On the
assumption of a stable residual generator, it holds

∀ω, σmax (T ( jω)) < ∞, T (s) = [−N̂o M̂o

] (
I + Δ f

) [−U
V

]
R−1,

which leads to
∀ω, σmin

(
T−1 ( jω)

) = σ−1
max (T ( jω)) > 0,

where σmax (T ( jω)) , σmin
(
T−1 ( jω)

)
represent the maximum and minimum singu-

lar value of T ( jω) , T−1 ( jω), respectively. Define

∥∥∥∥∥
([−N̂o M̂o

] (
I + Δ f

) [−U
V

]
R−1

)−1
∥∥∥∥∥−

= min
ω

σmin
(
T−1 ( jω)

)
.

It turns out
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∥∥∥∥∥
([−N̂o M̂o

] (
I + Δ f

) [−U
V

]
R−1

)−1
∥∥∥∥∥−

= 1

‖T (s)‖∞

≥ 1
∥∥[−N̂o M̂o

] (
I + Δ f

)∥∥
∞

∥∥∥∥
[−U

V

]
R−1

∥∥∥∥∞

. (9.29)

Moreover, it is a known result that

∥∥∥∥∥
(
I + RΔK

[−U
V

]
R−1

)−1
∥∥∥∥∥∞

≤ 1

1 − ‖RΔK‖∞

∥∥∥∥
[−U

V

]
R−1

∥∥∥∥∞

. (9.30)

The inequality (9.29) gives a lower-bound of

∥∥∥∥∥
([−N̂o M̂o

] (
I + Δ f

) [−U
V

]
R−1

)−1
∥∥∥∥∥−

,

which indicates the minimum influence of the fault on the residual dynamics. On the
other hand, (9.30) provides us with an upper-bound for

∥∥∥∥∥
(
I + RΔK

[−U
V

]
R−1

)−1
∥∥∥∥∥∞

,

which can be understood as the influence of the model uncertainties on the system
stability. As a result of (9.29) and (9.30), reducing

∥∥∥∥
[−U

V

]
R−1

∥∥∥∥∞
leads to

• enhancing the minimum influence of the fault on r and thus increasing the fault
detectability, and simultaneously,

• increasing the system robustness in the context of stability margin of the closed-
loop system.

This motivates us to formulate the design of the observer-based residual generator
as the optimisation problem

min
L

∥∥∥∥
[−U

V

]
R−1

∥∥∥∥∞
. (9.31)

Remark 9.2 In the observer-based FD study on LTI systems, the so-calledH−/H∞
optimal design of the residual generator is a commonly adopted scheme, in which
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H− and H∞ indicate the minimum influence of the additive fault and the maximum
influence of the (additive) disturbance on the residual, respectively, and the ratio
H−/H∞ is to be maximised. Our optimisation problem given in (9.31) can be in-
terpreted as an extension of theH−/H∞ optimal design scheme to the systems with
multiplicative faults and model uncertainties, where

∥∥∥∥∥
([−N̂o M̂o

] (
I + Δ f

) [−U
V

]
R−1

)−1
∥∥∥∥∥−

is the so-called H−-index.

Next, we study the optimisation problem (9.31). To this end, consider first the general

form of

[−U
V

]
,

[−U
V

]
=
[−Ŷo − MoQ

X̂o − NoQ

]
,

and its interpretation as Youla parameterisation of the controllers in the configuration
in Fig. 5.1,

u = −UV−1y.

Recall that in Sect. 5.2 it has been demonstrated that for Q = 0 the above controller
can be written as

˙̂x(t) = Ax̂(t) + Bu(t) + Lr(t), r(t) = y(t) − Cx̂(t) − Du(t),

u(t) = Fx̂(t) =⇒
[
u(s)
y(s)

]
=
[−Ŷo(s)

X̂o(s)

]
r(s).

A straightforward extension to the case Q 
= 0 yields

[
u
y

]
=
[−Ŷo − MoQ

X̂o − NoQ

]
r.

In fact, the controller or the SIR of the controller,

[−U
V

]
, is invariant to the observer

gain matrix L , as illustrated by the following lemma.

Lemma 9.3 Given

[−Ŷi (s)
X̂i (s)

]
=
[
0
I

]
+
[

F
CF

]
(s I − AF )−1 Li , i = 1, 2,

[
Mo(s)
No(s)

]
=
[
I
D

]
+
[

F
CF

]
(s I − AF )−1 B,

Q1(s) ∈ RH∞, AF = A + BF,CF = C + FD,
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then for

R(s) = I − C
(
s I − AL2

)−1
(L2 − L1) ∈ RH∞, AL2 = A − L2C,

it holds

([−Ŷ1
X̂1

]
−
[
Mo

No

]
Q1

)
=
([−Ŷ2

X̂2

]
−
[
Mo

No

]
Q2

)
R, (9.32)

Q2 =
(
Q1 − F

(
s I − AL2

)−1
(L2 − L1)

)
R−1 (9.33)

= Q1R
−1 − F

(
s I − AL1

)−1
(L1 − L2) . (9.34)

Proof Consider

Ŷ2(s)R(s) = −F (s I − AF )−1
(
L1 +

(
I − L2C

(
s I − AL2

)−1
)

(L2 − L1)
)

.

Since

I − L2C
(
s I − AL2

)−1 = (s I − A)
(
s I − AL2

)−1
,

F (s I − AF )−1 (s I − A) = (I + F (s I − AF )−1 B
)
F = Mo(s)F,

it turns out

Ŷ2(s)R(s) = Ŷ1(s) − Mo(s)F
(
s I − AL2

)−1
(L2 − L1) . (9.35)

Next, consider

X̂2(s)R(s) = (I + CF (s I − AF )−1 L2
) (

I − C
(
s I − AL2

)−1
(L2 − L1)

)

=
(
X̂1(s) + CF (s I − AF )−1 (L2 − L1)

) (
I − C

(
s I − AL2

)−1
(L2 − L1)

)
.

Note that

CF (s I − AF )−1 (L2 − L1)
(
I − C

(
s I − AL2

)−1
(L2 − L1)

)

− (I + CF (s I − AF )−1 L1
)
C
(
s I − AL2

)−1
(L2 − L1)

= (CF (s I − AF )−1 (s I − A) − C
) (
s I − AL2

)−1
(L2 − L1)

= No(s)F
(
s I − AL2

)−1
(L2 − L1) ,

which leads to

X̂2(s)R(s) = X̂1(s) + No(s)F
(
s I − AL2

)−1
(L2 − L1) . (9.36)
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Finally, the following straightforward computation,

F
(
s I − AL2

)−1
(L2 − L1) R

−1

= F
(
s I − AL2

)−1
(L2 − L1)

(
I − C

(
s I − AL1

)−1
(L1 − L2)

)

= F
(
s I − AL1

)−1
(L1 − L2) ,

yields

(
Q1 − F

(
s I − AL2

)−1
(L2 − L1)

)
R−1 = Q1R

−1 − F
(
s I − AL1

)−1
(L1 − L2) .

As a result, it is evident that (9.32)–(9.34) are true.

Remark 9.3 Equations (9.32)–(9.33) mean

[−Ŷ1 − MoQ1

X̂1 − NoQ1

]
r1 =

[−Ŷ2 − MoQ2

X̂2 − NoQ2

]
r2, r2 = Rr1,

which is understood as the invariance of the controller with respect to the observer
gain matrix L . In other words, it holds

K (s) = −
(
Ŷ1 + MoQ1

) (
X̂1 − NoQ1

)−1

= −
(
Ŷ2 + MoQ2

) (
X̂2 − NoQ2

)−1
,

Q2 = Q1R
−1 − F

(
s I − AL1

)−1
(L1 − L2) ∈ RH∞,

R−1 = I − C
(
s I − AL1

)−1
(L1 − L2) ∈ RH∞.

In the following example, we demonstrate how to apply Lemma 9.3 for determining
the observer gain matrix for a given controller and the feedback control system
configuration shown in Fig. 9.1.

Example 9.1 Given the feedback control loop shown in Fig.9.1 with an observer-
based controller

u(t) = Fx̂(t) + v(t),
˙̂x(t) = (A − L1C) x̂(t) + (B − L1D) u(t) + L1y(t), (9.37)

where F, L1 are given feedback control gain and observer gain, respectively. Our
task is to find an observer-based residual generator

˙̂x(t) = (A − LC) x̂(t) + (B − LD) u(t) + Ly(t), (9.38)

r(t) = y(t) − Cx̂(t) − Du(t),
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so that the optimisation problem (9.31) is solved. Considering the invariance of the
controller SIR with respect to the observer gain matrix, as demonstrated in Lemma
9.3, we can directly design the observer gain matrix L , as defined in (9.38), as
follows:

• Form [−Ŷ1
X̂1

]
=
[
0
I

]
+
[

F
CF

]
(s I − AF )−1 L1,

where F, L1 are given feedback control gain and observer gain, respectively;
• Apply Lemma 9.3 to find the equivalent SIR of the controller as follows

[−Ŷ1
X̂1

]
R−1 =

[−Ŷ − MQ
X̂ − NQ

]
,

[−Ŷ
X̂

]
=
[
0
I

]
+
[

F
CF

]
(s I − AF )−1 L ,

Q = −F
(
s I − AL1

)−1
(L1 − L) , AL1 = A − L1C,

R = I − C (s I − AL)
−1 (L − L1) , AL = A − LC;

• Solve the optimisation problem

min
L

∥∥∥∥
[−Ŷ − MoQ

X̂ − NoQ

]∥∥∥∥
∞

.

Note that

[−Ŷ − MoQ
X̂ − NoQ

]
can be written as

[−Ŷ − MoQ
X̂ − NoQ

]
= T1(s) + T2(s)L ,

T1 =
[
0
I

]
+
([

I
D

]
+
[

F
CF

]
(s I − AF )−1 B

)
F
(
s I − AL1

)−1
L1,

T2 =
[

F
CF

]
(s I − AF )−1

(
I − BF

(
s I − AL1

)−1
)

−
[
I
D

]
F
(
s I − AL1

)−1
.

Thus, we are able to solve the optimisation problem,

min
L

∥∥∥∥
[−Ŷ − MoQ

X̂ − NoQ

]∥∥∥∥
∞

= min
L

‖T1 + T2L‖∞ ,

for instance, using LMI (linear matrix inequality) technique.

Once the observer gain matrix L ,
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L = argmin
L

∥∥∥∥
[−Ŷ − MoQ

X̂ − NoQ

]∥∥∥∥
∞

,

is determined, we can run the observer-based residual generator (9.38 ) or switch
on the post-filter,

R = I − C (s I − AL)
−1 (L − L1) ,

to the residual generator that is embedded in the controller with the observer (9.37)
as its core. It is of interest to notice that if the observer gain L1 in the observer-based
controller is set so that

L1 = argmin
L1

∥∥∥∥
[−Ŷ1

X̂1

]∥∥∥∥
∞

,

then
L = L1

gives the optimal solution. In other words, we can directly use the observer embedded
in the controller as an optimal residual generator.

As a summary of our study on the FD system design for feedback control systems, we
claim that fault detectability and system robustness in the sense of stability margin
can be consistently achieved byminimising the H∞-norm of the SIR of the controller.
That is, ∥∥∥∥

[−U
V

]∥∥∥∥∞
=
∥∥∥∥
[−Ŷo − MoQ

X̂o − NoQ

]∥∥∥∥
∞

is minimised. In our subsequent investigation on fault-tolerant control issues in
Chap.19, we will reveal additional useful aspects of minimising the H∞-norm of
the SIR of a controller.

We would like to remark that our results in the above work can be generally
formulated as: minimising

∥∥∥∥
[−U

V

]∥∥∥∥∞
=
∥∥∥∥
[−Ŷo − MQ

X̂o − NQ

]∥∥∥∥
∞

• increases the minimum influence of changes in the system on r , and simultane-
ously,

• enhances the system robustness in the context of stability margin, where changes
in the system can be caused by faults or uncertainties.

Concerning the threshold setting, (9.25) is under consideration. Since multiplying a
(non-zero) constant to the residual vector causes no change in the fault detectability,
we assume, without loss of generality, that

‖R‖∞ = 1,
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where R is the post-filter of the observer-based residual generator (9.17). As a result,
the threshold setting is achieved by solving the following optimisation problem

γ = sup
KΔ−Ko

∥∥∥∥∥R
(
I + (KΔ − Ko)

[−U
V

])−1

(KΔ − Ko)

[
Mo

No

]∥∥∥∥∥∞
,

Jth = γ

∥∥∥V̂ v

∥∥∥
2
.

In our study, we assume KΔ − Ko is unknown but norm-bounded by

‖KΔ − Ko‖∞ ≤ δΔ < 1.

It yields

∥∥∥∥∥
(
I + (KΔ − Ko)

[−U
V

])−1
∥∥∥∥∥∞

≤

1

1 − sup‖KΔ−Ko‖∞≤δΔ

∥∥∥∥(KΔ − Ko)

[−U
V

]∥∥∥∥∞

= 1

1 − δΔb
=⇒

γ = sup
‖KΔ−Ko‖∞≤δΔ

∥∥∥∥∥R
(
I + (KΔ − Ko)

[−U
V

])−1

(KΔ − Ko)

[
Mo

No

]∥∥∥∥∥∞
= δΔ

1 − δΔb
, b =

∥∥∥∥
[−U

V

]∥∥∥∥∞
=⇒

Jth = δΔ

1 − δΔb

∥∥∥V̂ v

∥∥∥
2
. (9.39)

9.2.3 An FD System Design Scheme for Open-Loop Systems

Consider the residual generator (9.17) in the fault-free operation, which is further
written as

r = R
[−N̂o M̂o

] [ u
y

]
= R
[−N̂o M̂o

] [MΔ

NΔ

]
ν

for some L2 bounded signal ν satisfying

u = MΔν,

where

[
MΔ

NΔ

]
is the SIR of the uncertain plant. Using the uncertainty model
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[
MΔ

NΔ

]
= (I + ΔI)

[
Mo

No

]

results in

r = R
[−N̂o M̂o

]
(I + ΔI)

[
Mo

No

]
v = R

[−N̂o M̂o

]
ΔI

[
Mo

No

]
ν.

Due to the uncertain ΔI,

d := ΔI

[
Mo

No

]
ν

is also a unknown vector. Hence,

r = R
[−N̂o M̂o

]
d. (9.40)

Recall our discussion on the unified solution and the fact that
[−N̂o M̂o

]
is nor-

malised. As a result, the observer gain matrix Lo, as given in Theorem 9.1, delivers
the optimal solution. That means, on the other hand,

R = I

is the optimal setting for the post-filter.
Next, we study the threshold setting issue. To this end, consider the dynamics of

the residual generator (9.18) for R = I and bring it into the form

r = [ΔN̂ −ΔM̂

] [ u
y

]
=
(

ΔN̂ − ΔM̂

(
M̂o + ΔM̂

)−1 (
N̂o + ΔN̂

))
u

=
(

ΔN̂ − ΔM̂ M̂−1
o

(
I + ΔM̂ M̂−1

o

)−1 (
N̂o + ΔN̂

))
u.

Remembering our discussion on the stability of observer-based residual generators
for open-loop systems, we now assume, for the sake of simplicity,

M̂ M̂−1
o =

(
M̂o M̂

−1
)−1 ∈ RH∞ =⇒ ΔM̂ M̂−1

o ∈ RH∞.

Denote
ΔM̂ M̂−1

o = Δ̄M̂ ,

and re-write the residual dynamics as
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r =
(

ΔN̂ − ΔM̂ M̂−1
o

(
I + ΔM̂ M̂−1

o

)−1 (
N̂o + ΔN̂

))
u

=
((

I + Δ̄M̂

)−1
ΔN̂ − Δ̄M̂

(
I + Δ̄M̂

)−1
N̂o

)
u. (9.41)

For our purpose, the following known inequality is useful.

Lemma 9.4 Let Δ1,Δ2 ∈ H∞ be such that

∥∥∥∥
[

Δ1

Δ2

]∥∥∥∥∞
≤ b < 1.

Then, ∥∥Δ1 (I + Δ2)
−1
∥∥∞ ≤ b√

1 − b2
. (9.42)

It is evident that the dual form of this lemma,

∥∥[Δ1 Δ2
]∥∥∞ ≤ b < 1 =⇒ ∥∥(I + Δ2)

−1 Δ1

∥∥∞ ≤ b√
1 − b2

, (9.43)

also holds.
Now, suppose ∥∥[ΔN̂ Δ̄M̂

]∥∥∞ ≤ δΔ̄ < 1.

It follows from (9.43) that

∥∥∥(I + Δ̄M̂

)−1
ΔN̂

∥∥∥∞ ≤ δΔ̄√
1 − δ2

Δ̄

.

Note further

∥∥∥(I + Δ̄M̂

)−1
∥∥∥∞ ≤ 1

1 − δΔ̄

=⇒
∥∥∥Δ̄M̂

(
I + Δ̄M̂

)−1
∥∥∥∞ ≤ δΔ̄

1 − δΔ̄

.

We have

‖r‖2 ≤ δΔ̄√
1 − δ2

Δ̄

‖u‖2 + δΔ̄

1 − δΔ̄

∥∥∥N̂ou
∥∥∥
2
,

which results in the threshold setting
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Jth = δΔ̄√
1 − δ2

Δ̄

‖u‖2 + δΔ̄

1 − δΔ̄

∥∥∥N̂ou
∥∥∥
2

(9.44)

= δΔ̄

1 − δΔ̄

(√
1 − δΔ̄

1 + δΔ̄

‖u‖2 +
∥∥∥N̂ou

∥∥∥
2

)
. (9.45)

Note that the threshold (9.44) is a so-called adaptive threshold with online computa-

tion of ‖u‖2 ,

∥∥∥N̂ou
∥∥∥
2
. In order to reduce online computations, we can, alternatively,

set

Jth = δΔ̄

1 − δΔ̄

(√
1 − δΔ̄

1 + δΔ̄

+
∥∥∥N̂o

∥∥∥∞

)
‖u‖2 . (9.46)

9.3 System Analysis

In the observer-based fault detection and isolation (FDI) framework, control and
observer theory as well as the associated design methods provide us with a power-
ful tool for the design of observer-based FDI systems. It is remarkable that system
analysis plays an important role in control theory. For instance, the concept of sta-
bility margin is introduced to quantify how far a feedback control loop is from the
instability. Although qualitative FDI performance evaluation has been addressed in
some recent investigations, less attention has been, in comparison with the activities
and efforts in control theory, devoted to this topic. In fact, few methods are available
and applied for the analysis of FDI performance to give quantitative answers to those
questions like how far a multiplicative fault is detectable, or how high the false alarm
rate could become, or how far two different faults could be isolated. A quantisation
of these features is helpful to get a deep insight into the system structural properties
and thus for establishing appropriate design objectives. Analysis of FDI performance
is of considerable practical interests.

The control theoretical tools applied for our investigation on FDI performance
analysis are the coprime factorisation and gap metric techniques. Gap metric tech-
nique is widely applied in robust control theory for the stability analysis in uncertain
closed-loops. Roughly speaking, a gap is a measurement of the distance between
two closed subspaces in Hilbert space. The fact that the core of FDI study is to
distinguish the influences of two variables/signals on the residuals, namely faults
and disturbances/uncertainties for fault detection and two different faults in the fault
isolation regard, motivates us to apply the gap metric technique to the analysis of
fault diagnosis performance.
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9.3.1 Graph and Gap Metrics

We first briefly review the gap metric technique. A good introduction to the gap
metric technique can be found in the monographs by Vinnicombe and Feintuch. Let
H2 denote the subspace of all signals which are of bounded energy and zero for
t < 0. It follows from the SIR (5.4) of system

y = Gu = NM−1u

that for ν ∈ H2, all pairs (u, y) build a subspace inH2 and it is closed. This subspace
is called the graph of the system and denoted by

G =
{
z =
[
u
y

]
=
[
M
N

]
ν, ν ∈ H2

}
. (9.47)

Roughly speaking, a gap is a measurement of the distance between two closed sub-
spaces in Hilbert space. Let G1,G2 be two graphs. The directed gap from G1 to G2,

denoted by δ (G1,G2) , is defined as

δ (G1,G2) = sup
z1∈G1

inf
z2∈G2

‖z1 − z2‖2
‖z1‖2 . (9.48)

It is clear that
0 ≤ δ (G1,G2) ≤ 1.

Let
G1 = N1M

−1
1 ,G2 = N2M

−1
2

be the normalised RCF of G1,G2, respectively. The directed gap δ (G1,G2) with

Gi :
{
zi =

[
ui
yi

]
=
[
Mi

Ni

]
ν, ν ∈ H2

}
, i = 1, 2,

can be calculated by solving the model matching problem (MMP)

δ (G1,G2) = inf
Q∈H∞

∥∥∥∥
[
M1

N1

]
−
[
M2

N2

]
Q

∥∥∥∥∞
. (9.49)

The following two properties and results are known in the gap metric framework and
widely used in robustness analysis of feedback control systems:

• Let G2 = M̂−1
2 N̂2 be the normalised LCF of G2, then it holds

δ (G1,G2) = inf
Q∈H∞

∥∥∥∥
[
M∗

2M1 + N ∗
2 N1 − Q

M̂2N1 − N̂2M1

]∥∥∥∥
∞

. (9.50)
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• Let G = NM−1 be the normalised RCF of G and

G1 = (N + ΔN ) (M + ΔM)−1 ,ΔN ,ΔM ∈ H∞,

then for all 0 < b ≤ 1

{G1 : δ (G,G1) < b} =
{
G1 :

∥∥∥∥
[

ΔM

ΔN

]∥∥∥∥∞
< b

}
. (9.51)

The gap metric between G1 and G2 is defined by

δ (G1,G2) = max {δ (G1,G2) , δ (G2,G1)} . (9.52)

Moreover, if δ (G1,G2) < 1, then

δ (G1,G2) = δ (G2,G1) = δ (G1,G2) . (9.53)

In robust control theory, the so-called ν-gap metric is often applied instead of the
gap given in (9.49). We adopt the definition given by Vinnicombe.

Given
G1 = N1M

−1
1 ,G2 = M̂−1

2 N̂2

being the normalised RCF of G1 and LCF of G2, respectively, then the ν-gap metric
is defined as

δν (G1,G2) =
⎧⎨
⎩

‖K2G1‖∞ , if det (K2G1) ( jω) 
= 0, ω ∈ (−∞,∞)

and wno (det (K2G1)) = 0,
1, otherwise,

(9.54)

wherewno (det (K2G1)) denotes the winding number about the origin of det (K2G1),
and

K2G1 = M̂2N1 − N̂2M1.

Remark 9.4 In the book by Vinnicombe, the winding number is defined and well
described. Since it is not directly used in our work, we will not go into details on
wno (det (K2G1)) .

It is of interest to notice that

• according to (9.50), it holds in general

δν (G1,G2) ≤ δ (G1,G2) ,

and, in this regard, the ν-gap metric is said to be less conservative than gap metric;
• δν (G1,G2) is a metric and hence
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δν (G1,G2) = δν (G2,G1) .

We now remove the winding number condition in the definition (9.54) of δν (G1,G2) ,

which results in the so-calledL2-gapmetric. For our purpose, we adopt the following
definition introduced in the book by Vinnicombe.

Definition 9.1 Given
G1 = N1M

−1
1 ,G2 = N2M

−1
2

being the normalised RCFs of G1 and G2, respectively, then the L2-gap metric is
defined as

δL2 (G1,G2) = inf
Q∈L∞

∥∥∥∥
[
M1

N1

]
−
[
M2

N2

]
Q

∥∥∥∥∞
. (9.55)

Let G2 = M̂−1
2 N̂2 be the normalised LCF of G2. Since

[−N̂2 M̂2

M∗
2 N ∗

2

]∗ [−N̂2 M̂2

M∗
2 N ∗

2

]
=
[
I 0
0 I

]
,

[−N̂2 M̂2

M∗
2 N ∗

2

] [
M2

N2

]
=
[
0
I

]
,
[
M∗

2 N ∗
2

] [M1

N1

]
∈ L∞,

it turns out

δL2 (G1,G2) = inf
Q∈L∞

∥∥∥∥
[

M̂2N1 − N̂2M1

M∗
2M1 + N ∗

2 N1 − Q

]∥∥∥∥
∞

=
∥∥∥
[
M̂2N1 − N̂2M1

]∥∥∥∞ = ‖K2G1‖∞ . (9.56)

As a result, we have the following relationship between the gap, ν-gap and L2-gap
metrics:

δL2 (G1,G2) ≤ δν (G1,G2) ≤ δ (G1,G2) . (9.57)

In fact, it should be proved that δL2 (G1,G2) given in the above definition is a metric.
This is given in the following theorem.

Theorem 9.3 δL2 (G1,G2) defined in Definition 9.1 satisfies

(i) δL2 (G1,G2) ≥ 0, δL2 (G1,G2) = 0 i f and only i f G1 = G2

(i i) δL2 (G1,G2) = δL2 (G2,G1) .

Moreover, it holds, for δL2 (G1,G2) , δL2 (G1,G3) , δL2 (G2,G3) defined in Definition
9.1,

(i i i) δL2 (G1,G2) ≤ δL2 (G1,G3) + δL2 (G2,G3) .
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The proof of this theorem can be done along the lines in the proof of Theorem 3.1
in the book by Vinnicombe.

With the properties (i)-(iii) given above, δL2 (G1,G2) is a metric.

Remark 9.5 In his book, Vinnicombe has pointed out thatL2-gapmetric is, different
from the ν-gap metric, useless in dealing with feedback control systems. In our
subsequent work on FDI performance analysis, it seems that L2-gap metric is a
useful indicator.

9.3.2 TheK-gap

In the literature (see the references given at the end of the chapter), the so-called
(directed) T-gap is introduced using the graph

graph
(
GT
) =
[
M̂T (s)
N̂ T (s)

]
H2,G(s) = M̂−1(s)N̂ (s),

and defined by

δT (G1,G2)

= inf
Q∈H∞

∥∥[ M̂1(s) N̂1(s)
]− Q

[
M̂2(s) N̂2(s)

]∥∥
∞ . (9.58)

Note that

∥∥[ M̂1(s) N̂1(s)
]− Q

[
M̂2(s) N̂2(s)

]∥∥
∞ =

∥∥∥∥
[
M̂T

1 (s)
N̂ T
1 (s)

]
−
[
M̂T

2 (s)
N̂ T
2 (s)

]
QT

∥∥∥∥
∞

.

Hence, the T -gap is a direct extension of δ (G1,G2) defined in (9.49).
Below, we introduce a new gap definition, the so-called K-gap. Although the K-

gap is, from the computation point of view, equivalent to the T -gap, it is introduced
and defined as a measurement of the distance between two kernel subspaces, which
will serve as a tool for our system analysis and synthesis in the FDI framework. For
our purpose, the following graph definition is introduced

K =
{[

u
y

]
: [−N̂ (s) M̂(s)

] [ u
y

]
= 0,

[
u
y

]
∈ H2

}
, (9.59)

which represents the subspace of H2 × H2 consisting of all input and output pairs
(u, y) satisfying

[
M̂(s) −N̂ (s)

] [ y
u

]
= 0.
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It is a closed subspace inH2. It is worthmentioning that the graph can be equivalently
defined using any SKR of G. To measure the distance between two different graphs
K1 and K2 , in light of the definition of a directed gap (9.48), we now introduce the
following definition.

Definition 9.2 Let M̂−1
i (s)N̂i (s) be an LCF of Gi (s), and

Ki =
{[

ui
yi

]
: [−N̂i (s) M̂i (s)

] [ui
yi

]
= 0,

[
ui
yi

]
∈ H2

}
i = 1, 2. (9.60)

We call

δK (K1,K2) = sup⎡
⎣ u1
y1

⎤
⎦∈K1

inf⎡
⎣u2
y2

⎤
⎦∈K2

∥∥∥∥
[
u1
y1

]
−
[
u2
y2

]∥∥∥∥
2∥∥∥∥

[
u1
y1

]∥∥∥∥
2

(9.61)

directed K-gap.

Roughly speaking, K-gap (9.61) is a measurement of the directed distance between
two kernel subspaces inH2,which are spanned by input and output signals from two
different processes, respectively. In the FDI context, these two sets of input and output
signals are understood as input signals of two kernel representations. Moreover, it is
worth noticing that unlike gap metric, we are often more interested in the directedK-
gap. This is due to the fact that from the residual generation perspective, a quantisation
answer of the distance from the nominal plant to the uncertain/faulty system is of
more significance.

Next, in line with the existing results, for instance the ones reported in the paper
by Georgiou (see the reference at the end of the chapter), we study the computation
scheme of the above introduced K-gap.

Theorem 9.4 Given Ki , i = 1, 2, as defined in Definition 9.2 with M̂i (s), N̂i (s)
being the normalised LCF, then it holds

δK (K1,K2)

= inf
Q∈H∞

∥∥[−N̂1(s) M̂1(s)
]− Q

[−N̂2(s) M̂2(s)
]∥∥

∞ . (9.62)

Proof Let K⊥
i be the orthogonal complement of subspace Ki , and ΠKi ,ΠK⊥

i
be the

orthogonal projection onto Ki ,K⊥
i , respectively. Recall that M̂i (s) and N̂i (s) build

the normalised left coprime pair, that is

[−N̂i (s) M̂i (s)
] [−N̂i (s) M̂i (s)

]∗

= [ N̂i (s) M̂i (s)
] [

N̂i (s) M̂i (s)
]∗ = I.

It can be proved that
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ΠKi = I − [−N̂i (s) M̂i (s)
]∗ [−N̂i (s) M̂i (s)

]
, (9.63)

ΠK⊥
i

= [−N̂i (s) M̂i (s)
]∗ [−N̂i (s) M̂i (s)

]
. (9.64)

Since [
u1
y1

]
= ΠK2

[
u1
y1

]
+ ΠK⊥

2

[
u1
y1

]
,

we have

inf⎡
⎣ u2
y2

⎤
⎦∈K2

∥∥∥∥
[
u1
y1

]
−
[
u2
y2

]∥∥∥∥
2∥∥∥∥

[
u1
y1

]∥∥∥∥
2

=

∥∥∥∥ΠK⊥
2

[
u1
y1

]∥∥∥∥
2∥∥∥∥

[
u1
y1

]∥∥∥∥
2

,

which yields

δK (K1,K2) = sup⎡
⎣ u1
y1

⎤
⎦∈K1

∥∥∥∥ΠK⊥
2

[
u1
y1

]∥∥∥∥
2∥∥∥∥

[
u1
y1

]∥∥∥∥
2

=:
∥∥∥ΠK⊥

2
ΠK1

∥∥∥ .

Here,
∥∥∥ΠK⊥

2
ΠK1

∥∥∥ denotes a norm of the operator ΠK⊥
2
ΠK1 . On account of (9.63)

and ( 9.64), it turns out

∥∥∥ΠK⊥
2
ΠK1

∥∥∥ =
∥∥∥∥
(
ΠK⊥

2
ΠK1

)T∥∥∥∥
=
∥∥∥
(
I − KT

1

(KT
1

)∗)KT
2

(KT
2

)∗∥∥∥=
∥∥∥
(
I − KT

1

(KT
1

)∗)KT
2

∥∥∥
Ki = [−N̂i (s) M̂i (s)

]
, i = 1, 2.

In the paper by Georgiou (see the reference in the end of this chapter), it has been
pointed out that using the commutant lifting theorem, it can be proved that

∥∥∥
(
I − KT

1

(KT
1

)∗)KT
2

∥∥∥

= inf
QT ∈H∞

∥∥∥∥
[−N̂ T

1 (s)
M̂T

1 (s)

]
−
[−N̂ T

2 (s)
M̂T

2 (s)

]
QT

∥∥∥∥
∞

= inf
Q∈H∞

∥∥[−N̂1(s) M̂1(s)
]− Q

[−N̂2(s) M̂2(s)
]∥∥

∞ ,

which completes the proof.

It is straightforward from the K-gap computation that
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0 ≤ δK (K1,K2) ≤ 1.

Let
G2(s) = N2(s)M

−1
2 (s)

be the normalised RCF of G2(s), then we have

[−N̂2 M̂2

M∗
2 N ∗

2

] [−N̂2 M̂2

M∗
2 N ∗

2

]∗
= I.

It is easy to see

∥∥([−N̂1 M̂1

]− Q
[−N̂2 M̂2

])∥∥
∞

=
∥∥∥∥
([−N̂1 M̂1

]− Q
[−N̂2 M̂2

]) [−N̂ ∗
2 M2

M̂∗
2 N2

]∥∥∥∥
∞

= ∥∥[ M̂1M̂∗
2 + N̂1 N̂ ∗

2 − Q M̂1N2 − N̂1M2

]∥∥
∞ .

As a result, we present the following corollary, which can be applied as an approxi-
mation of the K-gap computation as given in (9.62 ).

Corollary 9.1 Let M̂1(s), N̂1(s) be the normalised LCF of G1(s), and M2(s), N2(s)
be the normalised RCF of G2(s) , then it holds that

δK (K1,K2) ≥
∥∥∥M̂1N2 − N̂1M2

∥∥∥∞ .

It is of interest to note that analogue to Definition 9.1, we can define

δL2 (K1,K2) := inf
Q∈L∞

∥∥[−N̂1 M̂1

]− Q
[−N̂2 M̂2

]∥∥
∞ , (9.65)

which results in
δL2 (K1,K2) =

∥∥∥M̂1N2 − N̂1M2

∥∥∥∞ .

Recall, on the other hand, that

δL2 (G1,G2) = δL2 (G2,G1) =⇒∥∥∥
[
M̂2N1 − N̂2M1

]∥∥∥∞ =
∥∥∥M̂1N2 − N̂1M2

∥∥∥∞ .

As a result,
δL2 (K1,K2) = δL2 (G1,G2) . (9.66)

Thus, in our subsequent investigations, we use both notations, δL2 (G1,G2) and
δL2 (K1,K2) , for the L2-gap metric.
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It is worth mentioning that although they have been derived in different ways, the
(directed)K-gap and T-gap are equivalent. This can be easily seen from the fact that

δK (K1,K2) = inf
Q∈H∞

∥∥[−N̂1 M̂1

]− Q
[−N̂2 M̂2

]∥∥
∞

= inf
Q∈H∞

∥∥∥∥
([−N̂1 M̂1

]− Q
[−N̂2 M̂2

]) [ 0 −I
I 0

]∥∥∥∥∞
= inf

Q∈H∞

∥∥[ M̂1 N̂1

]− Q
[
M̂2 N̂2

]∥∥
∞ = δT (G1,G2) .

At the end of this sub-section, we recall the fact that any (stable) FDF can be param-
eterised by

r(s) = R(s)
(
−N̂o(s)u(s) + M̂o(s)y(s)

)
,

where the post-filter R(s) ∈ RH∞ is the parameterisation system with R−1(s) ∈
RH∞, and (M̂o, N̂o) is a normalised LC pair. This allows us to substitute the nor-
malised LC pair (M̂2, N̂2) in the computation of δK (K1,K2) and δL2 (K1,K2), as
given in (9.62) and (9.65) respectively, by any (not necessarily normalised) LC pair.
Note that a consequence of this extension is that if

∃R(s) ∈ RH∞,K2 = [−N̂2 M̂2

] = R
[−N̂1 M̂1

] = RK1,

then we have
δK (K1,K2) = 0, δL2 (K1,K2) = 0.

This can be interpreted as the transfer functionG2 being identical withG1. It is worth
mentioning that this extension of the computation of δK (K1,K2) and δL2 (K1,K2)

makes sense from the fault detection point of view. For instance, when

∃R(s) ∈ RH∞ s.t. K f = RKo =⇒ δK
(Ko,K f

) = 0,

then the fault K f cannot be detected.

9.3.3 Residual Dynamics with Respect to Model
Uncertainties in Feedback Control Systems

As discussed in the previous sub-section, the K-gap provides us with quantisation
measures of how far the kernel subspaces of two systems are. This fact motivates
us to apply K-gap as an indicator for the distance from the nominal system (9.1) to
the uncertain model (9.7) in the closed-loop configuration presented in Fig. 9.1, and
associated with it, to study the influence of model uncertainties on the dynamics of
residual generators.
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Consider residual generator (9.17) with ‖R(s)‖∞ = β(> 0) and recall

r = −R

(
I + (KΔ − Ko)

[−U
V

])−1

(KΔ − Ko)

[
Mo

No

]
V̂ v,

KΔ = [−N̂Δ M̂Δ

]
,Ko = [−N̂o M̂o

]
.

It is a well-known result in robust control theory that the set of unstructured model
uncertainties can be equivalently characterised by the gap metric. Analogue to this
result, we give the following lemma without proof.

Lemma 9.5 Given nominal and uncertain system models Go and GΔ with SKRsKo

and KΔ, and let 0 ≤ δΔ < 1, then it holds

{GΔ : δK (Ko,KΔ) < δΔ} = {GΔ : ‖KΔ − Ko‖∞ < δΔ} . (9.67)

Next, we study the residual dynamics from a different aspect than the discussion in
the previous sub-sections, in order to gain a deeper insight into fault detection in the
closed-loop configuration.

Recall that [
Mo −U
No V

]
=
[
Mo − Ŷo
No X̂o

] [
I − Q
0 I

]

is the composition of the SIRs of the controller and the (nominal) plant model, and
thus contains full information of the closed-loop dynamics. Note further

[−N̂o M̂o

] [Mo −U
No V

]
= [0 I

]
,

inf
Q̄∈H∞

∥∥∥∥
([−N̂o M̂o

]− Q̄
[−N̂Δ M̂Δ

]) [Mo −U
No V

]∥∥∥∥∞
∈ [0, 1].

This motivates us to introduce the concept of K-gap of closed-loop systems.

Definition 9.3 Given a feedback control system as shown in Fig.9.1 with

[Io Iu
] =
[
Mo −U
No V

]
,

[ Ko

KΔ

]
=
[ −N̂o M̂o

−N̂Δ M̂Δ

]

as the SIRs of the nominal model and controller as well as the SKRs of the nominal
and uncertain models, respectively,

Kcl
o = [−N̂o M̂o

] [Mo −U
No V

]
,Kcl

Δ = [−N̂Δ M̂Δ

] [Mo −U
No V

]
(9.68)

are called SKRs of the nominal and uncertain closed-loop model, respectively, and
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δK
(Kcl

o ,Kcl
Δ

) = inf
Q̄∈H∞

∥∥Kcl
o − Q̄Kcl

Δ

∥∥∞ (9.69)

is called K-gap of closed-loop system.

In other words,

Kcl
Δ − Kcl

o = (KΔ − Ko)

[
Mo −U
No V

]
(9.70)

can be interpreted as a representation of the difference between the nominal and real
plant SKRs in the closed-loop configuration.

Theorem 9.5 Given the closed-loop SKRs Kcl
Δ,Kcl

o satisfying

δK
(Kcl

o ,Kcl
Δ

) ≤ δclΔ < 1,

then it holds for the residual generator (9.17),

‖r‖2 ≤ βδclΔ√
1 − (δclΔ

)2 w̄, w̄ =
∥∥∥V̂ v

∥∥∥
2
. (9.71)

Proof Since

∥∥∥∥(KΔ − Ko)

[
Mo −U
No V

]∥∥∥∥∞
=
∥∥∥∥∥
[
Mo −U
No V

]T
(KΔ − Ko)

T

∥∥∥∥∥∞
,

r = R

(
I + (KΔ − Ko)

[−U
V

])−1

(KΔ − Ko)

[
Mo

No

]
V̂ v,

and noting the relation (9.67), (9.71) follows immediately from Lemma 9.4.

In comparison with the threshold setting rule given in (9.39), as the upper bound of
the L2-norm of the residual, (9.71) is less conservative and compactly expressed in
terms of the K -gap between Kcl

Δ and Kcl
o .

Example 9.2 As an illustrating example for the above results, we consider such
uncertain systems, which are described by

ẋ(t) = Ax(t) + Bu(t) + Eηη(t), η(t) ∈ Rpη ,

y(t) = Cx(t) + Du(t) + Fηη(t),

γ (t) = Cγ x(t) + Dγ u(t) + Fγ η(t) ∈ Rmγ ,

η(s) = Δ(s)γ (s),Δ(s) ∈ RH∞,

where Δ(s) represents the uncertainty, and matrices Eη, Fη,Cγ , Dγ and Fγ are
known and of appropriate dimensions. It is known that the linear fractional trans-
formation (LFT) model of this system, y(s) = GΔ(s)u(s), is
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GΔ(s) = G11(s) + G12(s)Δ(s) (I − G22(s)Δ(s))−1 G21(s),

G11 = Go = (A, B,C, D) ,G12 = (A, Eη,C, Fη

)
,

G21 = (A, B,Cγ , Dγ

)
,G22 = (A, Eη,Cγ , Fγ

)
.

Note that the transfer function GΔ can be re-written as

GΔ = M̂−1
o

(
N̂o + N̂12Δ(I − G22Δ)−1 G21

)
,

N̂12 = (A − LoC, Eη − LoFη,C, Fη

)
,

where Lo is the observer gain adopted in the normalised LCF Go = M̂−1
o N̂o. As a

result,
KΔ − Ko = [−ΔN̂ 0

]
,ΔN̂ = N̂12Δ(I − G22Δ)−1 G21.

Hence, in the closed-loop configuration, the dynamics of the residual generator (9.17)
is governed by

r = −R
(
I + ΔN̂U

)−1
ΔN̂ MoV̂ v.

Recall

Kcl
Δ − Kcl

o = (KΔ − Ko)

[
Mo −U
No V

]
= −ΔN̂

[
Mo −U

]
.

Thus, for all Kcl
Δ satisfying,

δK
(Kcl

o ,Kcl
Δ

) ≤ δclΔ < 1,

it holds,

‖r‖2 ≤ βδclΔ√
1 − (δclΔ

)2 w̄, w̄ =
∥∥∥V̂ v

∥∥∥
2
.

9.3.4 Fault Detection Performance Indicators

We are now going to apply K-gap and L2-gap metric as a tool for the introduction
of some FD performance indicators, including indicators for fault detectability and
fault-to-uncertainty ratio, as a measurement of detectability in uncertain systems.

The objective of introducing a performance indicator is to study, from the system
structural point of view, how far a multiplicative fault in form of a left coprime factor

can be detected. It is evident from the residual dynamics that, if
(
M̂ f ,−N̂ f

)
is close
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to
(
M̂o,−N̂o

)
, the fault detectability will become weak. Hence, it is reasonable to

apply K-gap as well as L2-gap metrics to quantify the fault detectability.

A fault detectability indicator for closed-loop systems
Remember that∀Q ∈ H∞, the residual dynamics, in the faulty case, can be expressed
as

r = R
[−N̂o M̂o

] [ u
y

]
= R
([−N̂o M̂o

]− Q
[−N̂ f M̂ f

]) [ u
y

]
.

Notice further

[
u
y

]
=
[

I −K
−G f I

]−1 [
I
0

]
v =
[

V̂ Û
−N̂ f M̂ f

]−1 [
V̂
0

]
v

=
[
Mo −U
No V

](
I +
[

0 0
−ΔN̂ f

ΔM̂ f

] [
Mo −U
No V

])−1 [
V̂
0

]
v

=
[
Mo −U
No V

]⎡
⎣

I

−
(
I + (K f − Ko

) [−U
V

])−1 (K f − Ko
) [Mo

No

]
⎤
⎦ V̂ v,

K f − Ko =
[
−ΔN̂ f

ΔM̂ f

]
= [−N̂ f M̂ f

]− [−N̂o M̂o

]
.

Now, let

Kcl
f − Kcl

o = (K f − Ko
) [Mo −U

No V

]
,

Q∗ = arg inf
Q∈H∞

∥∥Kcl
o − QKcl

f

∥∥
∞ .

It turns out

r = R
(Kcl

o − Q∗Kcl
f

)
⎡
⎣

I

−
(
I + (K f − Ko

) [−U
V

])−1 (K f − Ko
) [Mo

No

]
⎤
⎦ V̂ v,

which yields, on the assumption

∥∥Kcl
o − Kcl

f

∥∥
∞ ≤ δclf < 1, (9.72)

and by means of Lemma 9.4 and the definition of K-gap of the closed-loop system,
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‖r‖2 ≤ βδK
(Kcl

o ,Kcl
f

)
√√√√√√1 +

(
δclf

)2

1 −
(
δclf

)2 w̄ =
βδK
(
Kcl

o ,Kcl
f

)
√
1 −
(
δclf

)2 w̄.

As a result, the following theorem is proved.

Theorem 9.6 Given the feedback control loop as shown in Fig.9.1 with con-
troller (9.19), the residual generator (9.17) and the SKR of the faulty system
K f = [−N̂ f M̂ f

]
satisfying (9.72), it holds

‖r‖2 ≤
βδK
(
Kcl

o ,Kcl
f

)
√
1 −
(
δclf

)2 w̄. (9.73)

Motivated by this result, we introduce the following definition.

Definition 9.4 Let Kcl
o ,Kcl

f be the SKRs of the fault-free and faulty systems in the
closed-loop configuration. The K-gap,

Icl
K = δK

(Kcl
o ,Kcl

f

)
(9.74)

is called K-gap indicator for fault detectability in feedback control systems.

It is worth emphasising that

δK
(Kcl

o ,Kcl
f

) ≤ ∥∥Kcl
o − Kcl

f

∥∥
∞

=⇒
δK
(
Kcl

o ,Kcl
f

)
√
1 −
(
δclf

)2 ≤ δclf√
1 −
(
δclf

)2 .

In fact,
δclf = sup

Kcl
Δ

{∥∥Kcl
o − Kcl

Δ

∥∥∞
} = sup

Kcl
Δ

{
δK
(Kcl

o ,Kcl
Δ

)}

can be interpreted as the maximal value of the K-gap for unstructured uncertainty

and δK
(
Kcl

o ,Kcl
f

)
as the K-gap for structured fault. Hence, (9.74) provides us with

a good estimation of the L2-upper bound of the residual signal in the faulty case.
For a given threshold Jth , it is interesting to notice that if

βδK
(
Kcl

o ,Kcl
f

)
√
1 −
(
δclf

)2 w̄ ≤ Jth, (9.75)
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then the fault cannot be detected. In other words, (9.75) is a necessary condition
for a (multiplicative) fault to become detectable in a feedback control system. It can

be seen that in condition (9.75), δK
(
Kcl

o ,Kcl
f

)
is independent of the fault detection

system design and determined by the nominal and faulty system models. This is the
practical interpretation of the K-gap as an indicator for fault detectability. It is ev-

ident that a large δK
(
Kcl

o ,Kcl
f

)
means a reliable detection of the corresponding fault.

A fault detectability indicator for open-loop systems
Recall that in the faulty case

r = R
(
M̂oN f − N̂oM f

)
M−1

f u.

On the assumption M−1
f u ∈ H2, it holds

‖r‖2 ≤ βδL2

(Ko,K f
) ‖ν‖2 , ν = M−1

f u. (9.76)

In this context, it becomes clear that theL2-gapmetric betweenKo andK f also builds
an indicator for the fault detectability. Thus, we introduce the following definition.

Definition 9.5 Let Ko,K f be the SKRs of the fault-free and faulty models, respec-
tively. The L2-gap metric δL2

(Ko,K f
)
,

δL2

(Ko,K f
) =
∥∥∥∥
[−N̂o M̂o

] [M f

N f

]∥∥∥∥∞
=
∥∥∥∥
[−N̂ f M̂ f

] [Mo

No

]∥∥∥∥∞
,

is called L2-gap metric indicator for fault detectability in open-loop systems and
denoted by Iol

L2
.

9.3.5 Fault-to-uncertainty Ratio and Fault Detectability in
Uncertain Systems

Wenow briefly address the issue of quantifying the fault detectability in systemswith
uncertainties. Recall that we have, in the last sub-section, introduced K-gap and L2-
gap metric indicators for the fault detectability. On the other hand, in order to reduce
false alarms caused by model uncertainties, threshold setting becomes necessary. It
is evident that in case of stronger model uncertainties a higher threshold should be
set, in order to keep the false alarm rate to an acceptable level. This will, in turn,
reduce fault detectability. Motivated by this observation, we introduce the following
definition.

Definition 9.6 Given the fault detectability indicators Icl
K, Iol

L2
for closed- and open-

loops, respectively, and the boundedness of the system uncertainties in closed- and
open-loops, δclΔ and δΔ,L2 ,
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∀Kcl
Δ, δK

(Kcl
o ,Kcl

Δ

) ≤ δclΔ,

∀KΔ, δL2 (Ko,KΔ) ≤ δΔ,L2 ,

respectively, we call

Rcl
F2U = Icl

K
δclΔ

, Rol
F2U = Iol

L2

δΔ,L2

(9.77)

fault-to-uncertainty ratio (F2U) of closed- and open-loops, respectively.

In what follows, we are going to apply the RF2U given in (9.77) as an indicator for
quantifying the fault detectability in closed- and open-loop configured systems with
uncertainties. Recall that a multiplicative fault K f cannot be detected if

βδK
(
Kcl

o ,Kcl
f

)
√
1 −
(
δclf

)2 w̄ ≤ Jth

for closed-loops and
βδL2

(Ko,K f
) ‖ν‖2 ≤ Jth

for open-loops. Let

Πcl =
βδK
(
Kcl

o ,Kcl
f

)

Jth,cl

√
1 −
(
δclf

)2 ,Πol = βδL2

(Ko,K f
) ‖ν‖2

Jth,ol
,

and suppose Jth,cl , Jth,ol are the upper bounds given in Theorem 9.6 and inequality
(9.76) for the residual in fault-free operations. It turns out, for closed-loops,

Πcl =
δK
(
Kcl

o ,Kcl
f

)

δclΔ

√√√√√
1 − (δclΔ

)2

1 −
(
δclf

)2 = Rcl
F2U

√√√√√
1 − (δclΔ

)2

1 −
(
δclf

)2 . (9.78)

For open-loops, on account of

M−1
Δ u = M−1

Δ M f M
−1
f u = (I + M−1

o ΔM
)−1 (

I + M−1
o ΔM f

)
M−1

f u,

and moreover on the assumption that

∀ΔM ,
∥∥M−1

o ΔM

∥∥∞ ≤ δM < 1,
∥∥M−1

o ΔM f

∥∥∞ ≤ δM f ,
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it turns out

∥∥M−1
Δ u
∥∥
2 ≤ 1 + δM f

1 − δM

∥∥∥M−1
f u
∥∥∥
2

=⇒

Πol =δL2

(Ko,K f
) (
1 + δM f

)

δΔ,L2 (1 − δM)
= Rol

F2U

1 + δM f

1 − δM
. (9.79)

It follows from (9.78) and (9.79) that Rcl
F2U and Rol

F2U are key indicator for the
detectability of multiplicative faults in systems with uncertainties. It is important
to point out that Rcl

F2U and Rol
F2U are structural property of a dynamic system, and

are independent of the observer design. Moreover, although a larger RF2U means a
better fault detectability, the fault detectability also depends on other parameters and
variables. To be specific,

• it is a function of the uncertainties as well as the input and output signals in the
open-loop configured systems,

• in the feedback control system configuration, it depends on the controller param-
eters.

Example 9.3 We extend the system model considered in Example 9.2 to include the
fault as follows

ẋ(t) = Ax(t) + Bu(t) + Eη(t) + E f f (t),

y(t) = Cx(t) + Du(t) + Fη(t) + Ff f (t),[
γ (t)
ς(t)

]
=
[
Cγ

Cς

]
x(t) +

[
Dγ

Dς

]
u(t) +

[
Fγ η(t)
Fς f (t)

]
,

[
η(s)
f (s)

]
=
[

Δ(s) 0
0 Δ f (s)

] [
γ (s)
ς(s)

]
,Δ,Δ f ∈ RH∞,

whereΔ,Δ f represent the uncertainty and fault, respectively, andall systemmatrices
are known and of appropriate dimensions. The transfer function from u to y is
described by

Gyu(s) = G11(s) + GΔ(s) + G f (s)

with G11,GΔ as given in Example 9.2 and

G f = G12, f Δ f
(
I − G22, f Δ f

)−1
G21, f ,

G12, f = (A, E f ,C, Ff
)
,G21, f = (A, B,Cς , Dς

)
,

G22, f = (A, E f ,Cς , Fς

)
.

Here, for the sake of simplicity, it is assumed that

Cγ (s I − A)−1 E f = 0,Cς (s I − A)−1 E = 0.
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An involved but straightforward computation yields

sup
Kcl

Δ

δK
(Kcl

o ,Kcl
Δ

) = sup
ΔN̂

∥∥[−ΔN̂ Mo ΔN̂U
]∥∥∞ ,

δK
(Kcl

o ,Kcl
f

) = inf
Q∈H∞

∥∥[0 I
]− Q

[−ΔN̂ , f Mo I + ΔN̂ , f U
]∥∥

∞ ,

ΔN̂ , f = N̂12, f Δ f
(
I − G22, f Δ f

)−1
G21, f ,

N̂12, f = (A − LoC, E f − LoFf ,C, Ff
)

with ΔN̂ , Lo as defined in Example 9.2, which allows us to calculate

Rcl
F2U =

δK
(
Kcl

o ,Kcl
f

)

supKcl
Δ
δK
(Kcl

o ,Kcl
Δ

) .

9.4 Fault Isolability

In this and next sections, we address fault isolation issues. In the model-based FDI
framework, isolation of additive faults is a mainstream topic which has received con-
siderable research attention. For an LTI system with additive faults, fault isolability
is often formulated, due to the system linearity, as a structural property that is inde-
pendent of the magnitude (size) of the faults under consideration. In this context, a
fault isolation is typically achieved by means of a bank of residual generators, the
associated residual evaluation and decision logic. The basic procedure consists of (i)
clustering of the faults to be isolated, (ii) design of a bank of residual generators in
such a way that each of them is (highly) sensitive to a group of defined faults and
simultaneously (highly) robust against the other (groups of) faults, and (iii) threshold
settings corresponding to the residual banks.

It is evident that different definitions for fault isolability and design schemes are
needed when dealing with multiplicative faults. Motivated by our previous study on
the application of gap metrics to fault detection issues, whose core is the similarity
or distance measurement of two dynamic systems using K-gap metric, we are going
to investigate fault isolability and isolation issues with the aid of the gap metric
technique. For our purpose, we introduce, analogue to the definition of gap metric
given in (9.52), K-gap metric defined by

δK (K1,K2) = max {δK (K1,K2) , δK (K2,K1)} . (9.80)

Also, it can be, analogue to (9.53), proved that for δK (K1,K2) < 1

δK (K1,K2) = δK (K2,K1) = δK (K1,K2) . (9.81)
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Without loss of generality, K-gap metric defined in (9.80 ) will be applied in the
sequel for the evaluation of the similarity or distance of two SKRs.

9.4.1 A Motivation Example

To motivate our study, we consider the nominal system

G(s) = 4(s + 0.5)

(s + 1)(s + 3)
,

and the faulty plant

G f (s) = 4(s + 0.5)

(s + ς)(s + 3)

with ς being a varying parameter reflecting different faults. Let

G f1(s) = 4(s + 0.5)

(s + 4)(s + 3)
,G f2(s) = 4(s + 0.5)

(s + 0.3)(s + 3)

be the two (multiplicative) faulty plant models. It can be computed that

δK
(K,K f1

) = 0.4878, δK
(K,K f2

) = 0.5317.

Here, K,K f1 ,K f2 represent the SKRs of the nominal and both faulty plant models,
respectively. Although the K-gap metric values from the faulty plants 1 and 2 to the
nominal plant are similar, theK-gap metric value from the faulty plant 1 to the faulty
plant 2,

δK
(K f1 ,K f2

) = 0.8322,

is significantly larger, which indicates that faulty plant modelsK f1 andK f2 are quite
different.

This example reveals that the distance from the faulty plant model to the nominal
plant model cannot sufficiently characterise a multiplicative fault, although it can be
successfully applied for fault detection, as demonstrated in the past section. For the
purpose of fault isolation, the distance between the faults (models) decides whether
a fault can be well isolated from the other faults.

On the other hand, a faulty plant cannot be exactly modelled by a transfer function
or an SKR, since a faulty operation is triggered by, for instance, abnormal operation
conditions or parameter changes, which are in general a random process. This re-
quires the modelling of faulty operations or plants by means of model clustering. To
demonstrate it, let us continue our example and consider
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G f3(s) = 4(s + 0.5)

(s + 4.5)(s + 3)
,G f4(s) = 4(s + 0.5)

(s + 0.35)(s + 3)
.

Obviously, G f3(s) and G f4(s) are slight changes from G f1(s) and G f2(s), respec-
tively. This can be confirmed by calculating δK

(K f1 ,K f3

)
, δK
(K f2 ,K f4

)
,

δK
(K f1 ,K f3

) = 0.0429, δK
(K f2 ,K f4

) = 0.0615.

It is reasonable to cluster K f1 and K f3 as well as K f2 and K f4 to the same set. It is
remarkable to notice that

δK
(K f2 ,K f3

) = 0.8429, δK
(K f1 ,K f4

) = 0.7971,

which implies that K f2 and K f3 as well as K f1 and K f4 do not belong to the same
cluster.

9.4.2 Isolability of Multiplicative Faults

ConsiderG fi (s), i = 1, · · · , M,which representM faulty systemoperationpatterns.
The corresponding SKRs are denoted by K fi , i = 1, · · · , M.

Definition 9.7 The set defined by

C fi ⊆ {K : δK
(K,K fi

) ≤ δi
}
, 0 < δi < 1, (9.82)

is called C fi cluster with the cluster center K fi and cluster radius δi .

It is evident that cluster radius is an indicator for the similarity degree of an element
in the cluster to the cluster center. The smaller δi is, the higher the similarity degree
of the set members to K fi becomes.

Definition 9.8 The faults K fi , i = 1, · · · , M, are said to be isolable, if for i =
1, · · · , M,

∀K ∈ C fi ,K /∈ C f j , j 
= i, j = 1, · · · , M. (9.83)

This definition tells us, the faults under consideration are isolable if there exists no
overlapping among their corresponding clusters.

Remark 9.6 In the above definition, it is assumed that there exists no simultaneous
existence of two or more faults. Different from the additive faults whose influence on
the system dynamics is a linear mapping, the influence of two multiplicative faults
cannot be, in general, handled as the sum of the influence of each of these two faults.
In other words, if two multiplicative faults occur simultaneously, they should be dealt
with together as a faulty operation pattern. That is, they are modelled as a single
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fault. It should be emphasised that this handling does not lead to loss of generality.
For example, suppose that we have two (multiplicative) faults K f1 ,K f2 . In case that
both of themmay occur in the system simultaneously, we define three faulty operation
patterns as

K f1 ,K f2 and K f1,2 , (9.84)

where K f1,2 is the system SKR, when both faults are present in the system. Logically,
according to Definition 9.8, the fault isolation problem of this case is formulated as
isolating the three faulty patterns defined in (9.84). In this context, the isolability
definition given above is also applicable to the systems with simultaneous faults.

In Sect.16.3, modelling issues of fault patterns in the probabilistic framework will
be studied in detail.

Example 9.4 In this example,we illustrate the need to define simultaneous faults as a
fault pattern.Consider anominal systemwith the following state space representation

A =
[−1 0.8
0.2 −0.3

]
, B =

[
0.3 0.1
0.2 0.4

]
,C =

[
1 0
0 1

]
, D = 0

with the corresponding SKR K. Suppose that two multiplicative faults, parameter
fault K f1 and actuator fault K f2 , may simultaneously occur in the system. The pa-
rameter fault K f1 causes changes in A and leads to

A f1 =
[−1 0.2
0.2 −0.3

]
,

while the actuator fault leads to the change in B as

B f2 =
[
0.3 0.1
0.8 0.4

]
.

It follows from the calculation scheme of K-gap that

δK
(K,K f1

) = 0.4332, δK
(K,K f2

) = 0.5251.

The K-gap between these two types of faults is

δK
(K f1 ,K f2

) = 0.5791.

Consider K f1,2 as the system SKR, when both faults are present in the system. Note
that

δK
(K,K f1,2

) = 0.5320,

and moreover,
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δK
(K f1,2 ,K f1

) = 0.5319, δK
(K f1,2 ,K f2

) = 0.4266.

It is clear that the SKR of the faulty system with simultaneous faults K f1,2 is signifi-
cantly different from the SKR of the system with faultK f1 and faultK f2 , respectively.
In other words,K f1,2 defines a new type of (faulty) system dynamics. Thus, when both
faults are present in the system, they should be handled as one fault pattern.

Theorem 9.7 Given faults K fi and the corresponding cluster C fi with the cluster
center K fi and cluster radius δi , i = 1, · · · , M. They are isolable if

∀i, j, j 
= i, i, j = 1, · · · , M, δK
(K fi ,K f j

)
> δi + δ j . (9.85)

Proof Given any K ∈ C fi , i ∈ {1, · · · , M} , it holds

δK
(K,K fi

) ≤ δi .

For all j ∈ {1, · · · , M} , j 
= i, we have

δK
(K fi ,K f j

) ≤ δK
(K,K fi

)+ δK
(K,K f j

)
,

which leads to
δK
(K,K f j

) ≥ δK
(K fi ,K f j

)− δK
(K,K fi

)
.

Due to (9.85) it yields

δK
(K,K f j

)
> δi + δ j − δK

(K,K fi

)
> δ j .

As a result,
K /∈ C f j ,

and it follows from Definition 9.8 that the faults under consideration are isolable.

The condition (9.85) is very essential in our study on isolation of multiplicative
faults and will be adopted in the sequel as the isolability condition. Note that (9.85)
is indeed a sufficient condition for the fault isolability, since the cluster C fi is in
general a sub-set of

{K : δK
(K,K fi

) ≤ δi
}
, i ∈ {1, · · · , M} .

Suppose that
∀i ∈ {1, · · · , M} , δi = δ.

Then, we have the following corollary.

Corollary 9.2 Given faults K fi and the corresponding cluster C fi with the cluster
center K fi and cluster radius δ, i = 1, · · · , M. The faults are isolable if
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min
i, j∈{1,··· ,M}

i 
= j

δK
(K fi ,K f j

)
> 2δ. (9.86)

The proof is straightforward and thus omitted here.
When

∀i, j, j 
= i, i, j = 1, · · · , M, δK
(K fi ,K f j

) = 1, (9.87)

the ideal case of fault isolation is achievable. From the mathematical point of view,
condition (9.87) means, all the subspacesK fi , as defined in (9.60), should be orthog-
onal to each other. This is a very strict condition.

It should be emphasised that the fault isolability definition given in Definition 9.8
and the associated conditions (9.85) and (9.86) describe specified system structural
properties, which are independent of fault isolation schemes possibly adopted for the
fault isolation purpose.

9.4.3 Formulation of Fault Isolation Problems

With the introduction of the fault isolability definition, we are now in a position to
formulate some fault isolation problems.

Optimal systemdesign and configuration aiming at enhancing fault isolability In
many applications, fault detection and isolation play a fundamental role to guarantee
a reliable and stable system operation. Fault isolability is a system structural prop-
erty which cannot be changed after the system is constructed. For this reason, fault
isolability should be taken into account during the system design and configuration.
Theorem 9.7 provides us with a reasonable criterion for an optimal system design
and configuration. For instance, sensor allocation is a challenging issue in system
design and configuration. For an LTI system, sensor allocation can be formulated as
determination of the system output matrix C, which has considerable influence on
the fault isolability. Let J be some cost function for the optimal sensor allocation
(e.g., for the required control performance). The demands for the fault isolability
could be formulated as a constraint and integrated into the following optimisation
problem:

min
C

J

s.t. ∀i, j, j 
= i, i, j = 1, · · · , M, δK
(K fi ,K f j

)
> δi j ,

where K fi ,K f j , j 
= i, i, j = 1, · · · , M, are SKRs of the fault patterns that are
functions ofC, and δi j > 0, j 
= i, i, j = 1, · · · , M, are some pre-defined constants
(indicating the similarity degrees between the faults under consideration) for the fault
isolability.
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We would like to remark that this topic is of considerable research and practical
interests, although it will not be addressed in this book.

Observer- and SKR-based fault isolation Once a fault is detected, fault isolation
can be dealt with

• by formulating the isolation problem as a number of fault detection problems,
which can then be solved using a bank of observers and observer-based decision
units or

• by identifying the fault.

The core of the first fault isolation scheme is the design of the observers and the
associated decision units, while the second scheme consists of an identification of
the SKR of the faulty system. Both of these two schemes will be addressed in the
next section.

9.5 Fault Isolation Schemes

In this section,weconsiderM faulty systemoperationpatterns representedbyclusters
C fi , i = 1, · · · , M, with K fi as the cluster center and δi the cluster radius, where
K fi is the SKR of transfer function matrix G fi (s). On the assumptions that

• the M faults are isolable,
• fault detection has been successfully performed, and
• the faulty system G fi (s) is stable,

we will propose various algorithms for achieving fault isolation.

9.5.1 Observer-Based Fault Isolation Algorithms

Analogue to the standard scheme of isolating additive faults, M residual generators
corresponding to K fi , i = 1, · · · , M, are first constructed. They are driven by the
process input and output signals u, y and deliverM residuals, r fi , i = 1, · · · , M. It is
evident that if the system operation is in theK fi faulty pattern, r fi will be significantly
weaker than r f j , j 
= i, j = 1, · · · , M. Based on this principle, residual evaluation
with evaluation functions Ji , thresholds Jth,i , i = 1, · · · , M , and isolation logic,

{
Ji ≤ Jth,i ,

Jj > Jth, j , j 
= i, j = 1, · · · , M,
=⇒ fault in cluster C fi , (9.88)
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are thendesigned towards a fault isolation.This procedure is sketched inFig. 9.2.Note
that for the threshold computation u or v (reference signal) are used corresponding
to the open- or closed-loop configuration, respectively.

Next, we discuss about the realisation of this fault isolation scheme in details. We
treat the isolation issues for closed- and open-loops separately.

Fault isolation in a closed-loop configuration GivenK fi

(
G fi (s)

)
, i = 1, · · · , M,

our first step is to design M observer-based residual generators. Let

K fi = [−N̂ fi (s) M̂ fi (s)
]

be the normalised LC (NLC) pair of G fi (s). As discussed at the beginning of this
chapter, we construct a residual generator using the NLC pair as follows

ri (s) = M̂ fi (s)y(s) − N̂ fi (s)u(s), (9.89)

which can also be implemented in the state space representation form with the ob-
server gain Lo and post-filter Γ̄ as given inTheorem9.1. In the next step, the threshold
Jth,i will be determined with L2-norm of r as the evaluation function. Recall that
the use of the K fi -based residual generator serves for the purpose of delivering a
strong response to those faults in the fault clusters C f j , j 
= i, j = 1, · · · , M, and
on the other hand, responding to the faults in the cluster C fi weakly. To this end, the
threshold Jth,i will be set according to

Jth,i = sup
K∈C fi

Ji (9.90)

with the cluster radius δi . In the sequel, we assume

Fig. 9.2 Schematic description of an observer-based fault isolation scheme
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C fi = {K : δK
(K,K fi

) ≤ δi ∈ [0, 1)} .

In fact, Jth,i setting given in (9.90) is equivalent to the threshold setting for systems
with model uncertainties, as discussed in Sub-section 9.2.2. To demonstrate it, we
first introduce the following lemma.

Lemma 9.6 Let G(s) = M̂−1(s)N̂ (s) be the normalised LCF of G and

G1(s) =
(
M̂(s) + ΔM̂

)−1 (
N̂ (s) + ΔN̂

)
,ΔN̂ ,ΔM̂ ∈ H∞,

then for all 0 ≤ b ≤ 1

{G1 : δK (K,K1) ≤ b} = {G1 : ∥∥[ΔN̂ ΔM̂

]∥∥∞ ≤ b
}
, (9.91)

where K,K1 are the SKRs of G(s),G1(s), respectively.

Lemma 9.6 is the dual result of the well-known relation between the gap metric and
the set of right-coprime factor uncertainties, presented in (9.51). It is also a general
form of Lemma 9.5. Hence, we omit the proof.

It follows from this lemma that (9.90) can be equivalently written as

Jth,i = sup
C fi

Ji = sup
{K:‖K−K fi ‖∞≤δi}

Ji , (9.92)

in which
ΔK fi := K − K fi

is treated as uncertainty. Moreover, on the assumption of the system stability, the
controller

K (s) = −U (s)V−1(s) = −V̂−1 (s) Û (s),

[
V̂ Û

] = [ Xo − QN̂o Yo + QM̂o

]
,

[
U
V

]
=
[
Ŷo + MoQ
X̂o − NoQ

]
,

stabilises the closed-loop with the plant modelG fi (s).Hence, according to the Youla
parameterisation, K (s) can be re-factorised into

K (s) = −U fi (s)V
−1
fi

(s) = −V̂−1
fi (s) Û fi (s), (9.93)

[
V̂ fi Û fi

] = [ X fi − Q fi N̂ fi Y fi + Q fi M̂ fi

]
,

[
U fi
V fi

]
=
[
Ŷ fi + M fi Q fi

X̂ fi − N fi Q fi

]
,

G fi (s) = M̂−1
fi

(s)N̂ fi (s) = N fi (s)M
−1
fi

(s),
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where
(
X fi ,Y fi

)
,
(
X̂ fi , Ŷ fi

)
are the transfer matrices given in Bezout identity

(9.4) corresponding to the LC and RC pairs of G fi (s),
(
M̂ fi , N̂ fi

)
and
(
M fi , N fi

)
,

and Q fi (s) is the parameterisation matrix under the new factorisation.

Remark 9.7 Note that the factorisation expression (9.93) for controller K (s) holds
for all G fi (s), i = 1, · · · , M.

Analogue to the discussion in Sub-section 9.2.2, it holds

ri = −
(
I + ΔK fi

[−U fi
V fi

])−1

ΔK fi

[
M fi
N fi

]
V̂ fi v.

Let

ΔKcl
fi = ΔK fi

[
M fi −U fi
N fi V fi

]
, δcli = sup

‖ΔK fi ‖∞≤δi

{∥∥ΔKcl
fi

∥∥
∞
}

.

It follows from the proof of Theorem 9.6 that the threshold is set to be

Jth,i = sup
K∈C fi

‖ri‖2 = δcli√
1 − (δcli

)2
∥∥∥V̂ fi v

∥∥∥
2
. (9.94)

Remember that the isolation logic is based on the principle that a fault K ∈ C fi will
result in strong responses in r f j , j 
= i, j = 1, · · · , M. It is thus of interest to analyse
the responses of Jj , j 
= i, j = 1, · · · , M, to such a fault. To simplify our study,
we consider K = K fi , the center of C fi . Recalling our study on the fault detection
performance in Sub-sections 9.3.4 and 9.3.5, we have

Jj = ∥∥r j
∥∥
2 ≤

δK
(
Kcl

f j
,Kcl

fi

)
√
1 −
(
δclf ji

)2
∥∥∥V̂ f j v

∥∥∥
2
,

Kcl
fk = [−N̂ fk M̂ fk

] [M f j −U f j
N f j V f j

]
, k = i, j,

∥∥∥Kcl
f j − Kcl

fi

∥∥∥∞ ≤ δclf ji < 1.

Thus, fault K fi leads to

∥∥r j
∥∥
2 = Jj > Jth, j = δclj√

1 −
(
δclj

)2
∥∥∥V̂ f j v

∥∥∥
2
,

only if
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δK
(
Kcl

f j
,Kcl

fi

)

δclj
>

√√√√√√
1 −
(
δclf ji

)2

1 −
(
δclj

)2 . (9.95)

Condition (9.95) illustrates that for a given control loop, a successful fault isolation
depends considerably on the the distance between the faults, which are expressed by
the closed-loop K-gap. Increasing the ratio,

δK
(
Kcl

f j
,Kcl

fi

)

δclj
, i, j = 1, · · · , M, j 
= i, (9.96)

leads to improvement of the fault isolation performance.

Fault isolation in an open-loop configuration For the residual generation purpose,
the same bank of observer-based residual generators like the ones given in (9.89),
corresponding to the faulty SKRs K fi

(
G fi (s)

)
, i = 1, · · · , M, are used. Hence,

we begin with our study on the threshold setting, which, similar to the closed-loop
configuration, will be done according to (9.90) and using the results achieved in
Sub-section 9.2.3.

Consider the residual generator

ri (s) = M̂ fi (s)y(s) − N̂ fi (s)u(s), i = 1, · · · , M,

in the open-loop configuration whose dynamics is governed by

ri = (K fi − K)
[
u
y

]
= −ΔK fi

[
I

M̂−1 N̂

]
u,

[
−ΔN̂ fi

ΔM̂ fi

]
=
[
−
(
N̂ − N̂ fi

)
M̂ − M̂ fi

]
= ΔK fi ,

K = [−N̂ M̂
] ∈ C fi = {K : ∥∥K − K fi

∥∥∞ ≤ δi
}
,

which yields

‖ri‖2 ≤ ∥∥ΔK fi

∥∥∞
√
1 +
∥∥∥M̂−1 N̂

∥∥∥
2

∞
‖u‖2

= ∥∥ΔK fi

∥∥∞

√
1 +
∥∥∥∥
(
ΔM̂ fi

+ M̂ fi

)−1 (
ΔN̂ fi

+ N̂ fi

)∥∥∥∥
2

∞
‖u‖2 .

Since

(
ΔM̂ fi

+ M̂ fi

)−1 (
ΔN̂ fi

+ N̂ fi

)
=
(
M̂−1

fi
ΔM̂ fi

+ I
)−1

M̂−1
fi

(
ΔN̂ fi

+ N̂ fi

)
,
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on the assumption that

∥∥∥
[
−M̂−1

fi
ΔN̂ fi

M̂−1
fi

ΔM̂ fi

]∥∥∥∞ ≤ δΔ̄ fi
< 1, (9.97)

and using Lemma 9.4, it holds

∥∥∥∥
(
ΔM̂ fi

+ M̂ fi

)−1 (
ΔN̂ fi

+ N̂ fi

)∥∥∥∥∞
≤ δΔ̄ fi√

1 −
(
δΔ̄ fi

)2 +
∥∥G fi

∥∥∞
1 − δΔ̄ fi

=⇒

√
1 +
∥∥∥∥
(
ΔM̂ fi

+ M̂ fi

)−1 (
ΔN̂ fi

+ N̂ fi

)∥∥∥∥
2

∞

≤
√√√√√√

1

1 −
(
δΔ̄ fi

)2 +
∥∥G fi

∥∥2∞(
1 − δΔ̄ fi

)2 + 2δΔ̄ fi

∥∥G fi

∥∥∞√
1 −
(
δΔ̄ fi

)2 (
1 − δΔ̄ fi

)

≤ 1√
1 −
(
δΔ̄ fi

)2 +
∥∥G fi

∥∥∞
1 − δΔ̄ fi

= 1

1 − δΔ̄ fi

(√
1 − δΔ̄ fi

1 + δΔ̄ fi

+ ∥∥G fi

∥∥∞
)

.

This motivates the threshold setting as

Jth,i = sup
K∈C fi

‖ri‖2 = δi

1 − δΔ̄ fi

(√
1 − δΔ̄ fi

1 + δΔ̄ fi

+ ∥∥G fi

∥∥∞
)

‖u‖2 . (9.98)

Next, we study the response of Jj , j 
= i, j = 1, · · · , M, to fault K fi in open-loop
configuration. Recall that in the presence of fault K fi the dynamics of the residual
r j can be described by

r j = K f j

[
u
y

]
= (K f j − QK fi

) [ u
y

]
, Q ∈ H∞.

It turns out
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Jj = ∥∥r j
∥∥
2 ≤ δK

(K f j ,K fi

)√
1 +
∥∥∥M̂−1

fi
N̂ fi

∥∥∥
2

∞
‖u‖2

≤ δK
(K f j ,K fi

)

1 − δΔ̄ f j i

⎛
⎝
√√√√1 − δΔ̄ f j i

1 + δΔ̄ f j i

+ ∥∥G f j

∥∥∞

⎞
⎠ ‖u‖2 ,

with
∥∥∥
[
−M̂−1

f j
ΔN̂ f j i

M̂−1
f j

ΔM̂ f ji

]∥∥∥∞ ≤ δΔ̄ f j i
< 1,

K fi − K f j =
[
−ΔN̂ f j i

ΔM̂ f ji

]
=
[
−
(
N̂ fi − N̂ f j

)
M̂ fi − M̂ f j

]
.

As a result, Jj > Jth, j only if

δK
(K f j ,K fi

)

δ j
> Π̄o, j , (9.99)

Π̄o, j =
1 − δΔ̄ f j

1 − δΔ̄ f j i

√
1−δΔ̄ f j i

1+δΔ̄ f j i

+ ∥∥G f j

∥∥∞
√

1−δΔ̄ f j

1+δΔ̄ f j

+ ∥∥G f j

∥∥∞
,

which demonstrates again the ratio

δK
(K f j ,K fi

)

δ j
, i, j = 1, · · · , M, j 
= i,

plays an important role in improving the fault isolation performance.

Fault isolability indicator

Both inequalities (9.95) and (9.99) reveal that the values of δK
(
Kcl

f j
,Kcl

fi

)
, δclj ,

δK
(K f j ,K fi

)
, δ j , i, j = 1, · · · , M, j 
= i, are system structural properties, which

determine how far the faults K fi , i = 1, · · · , M, can be well isolated using the
observer-based isolation schemes. This observation motivates us to introduce the
following definition.

Definition 9.9 Given the SKRs of faults K fi , i = 1, · · · , M, the value

Icl
fi = min

j=1,··· ,M, j 
=i

δK
(
Kcl

f j
,Kcl

fi

)

δclj
, (9.100)

Iol
fi = min

j=1,··· ,M, j 
=i

δK
(K f j ,K fi

)

δ j
, (9.101)

are called isolability indicators of fault K fi in the closed- and open-loop configura-
tions, and the minimum value of I fi , i = 1, · · · , M
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Icl
f = min

i=1,··· ,M Icl
fi , Iol

f = min
i=1,··· ,M Iol

fi (9.102)

are called fault isolability indicators in the closed- and open-loop configurations.

It is evident that Icl
fi
(Iol

fi
) indicates whether the fault K fi could be isolated from the

other faults, while Icl
f (Iol

f ) indicates how far all the faults could be isolated from
each other. To simplify our study, we assume in the sequel

δcli = δcl , δi = δol , i = 1, · · · , M.

It becomes clear that, in order to enhance the fault isolability, the system should be
constructed to maximise

min
j=1,··· ,M, j 
=i

δK
(
Kcl

f j ,Kcl
fi

)
or min

j=1,··· ,M, j 
=i
δK
(K f j ,K fi

)

for all i = 1, · · · , M. Furthermore, in terms of the fault isolability indicator, the fault
isolability condition given in Corollary 9.2 can also be re-formulated as follows.

Corollary 9.3 Given faults K fi and the corresponding cluster C fi with the cluster
center K fi and cluster radius

δ =
{

δcl , in closed − loop,
δol , in open − loop,

i = 1, · · · , M. They are isolable if

I f > 2, I f =
{Icl

f , in closed − loop,
Iol
f , in open − loop.

(9.103)

Proof The proof is evident by re-writing condition (9.86) as

min
i, j∈{1,··· ,M}

i 
= j

δK
(
Kcl

fi ,Kcl
f j

)
> 2δcl ⇐⇒ min

i, j∈{1,··· ,M}
i 
= j

δK
(
Kcl

fi
,Kcl

f j

)

δcl
= Icl

f > 2,

min
i, j∈{1,··· ,M}

i 
= j

δK
(K fi ,K f j

)
> 2δol ⇐⇒ min

i, j∈{1,··· ,M}
i 
= j

δK
(K fi ,K f j

)

δol
= Iol

f > 2.

Finally, we investigate relations between the fault isolability condition ( 9.103) and
the necessary conditions (9.95) and (9.99) for observer-based fault isolation. We first
consider inequality (9.95) for a more general case: ∀Ki ∈ C fi . It is straightforward
that (9.95) becomes
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δK
(
Kcl

f j
,Kcl

i

)

δclj
>

√√√√√√
1 −
(
δclf ji

)2

1 −
(
δclj

)2 ,

Ki = [−N̂i M̂i

] ∈ C fi ,Kcl
i = [−N̂i M̂i

] [M f j −U f j
N f j V f j

]
,

∥∥∥Kcl
f j − Kcl

i

∥∥∥∞ ≤ δclf ji .

Recall that ∥∥∥Kcl
f j − Kcl

i

∥∥∥∞ > δcl , δclj = δcl , δK
(
Kcl

f j ,Kcl
i

)
> δcl ,

if the isolation condition (9.103) holds. It is therefore clear that

δK
(
Kcl

f j
,Kcl

i

)

δclj
> 1,

√√√√√√
1 −
(
δclf ji

)2

1 −
(
δclj

)2 < 1.

That means, the necessary condition (9.95) for a successful fault isolation in the
closed-loop configuration is satisfied.

In the open-loop configuration, we have, for a more general case ∀Ki ∈ C fi ,

δK
(K f j ,Ki

)

δ j
>

1 − δΔ̄ f j

1 − δΔ̄ f j i

√
1−δΔ̄ f j i

1+δΔ̄ f j i

+ ∥∥G f j

∥∥∞
√

1−δΔ̄ f j

1+δΔ̄ f j

+ ∥∥G f j

∥∥∞
,

∥∥∥
[
−M̂−1

j ΔN̂ f j i
M̂−1

j ΔM̂ f ji

]∥∥∥∞ ≤ δΔ̄ f j i
,

Ki − K f j =
[
−ΔN̂ f j i

ΔM̂ f ji

]
=
[
−
(
N̂i − N̂ f j

)
M̂i − M̂ f j

]
.

When the isolation condition (9.103) holds, it is reasonable to assume that

δΔ̄ f j
≤ δΔ̄ f j i

,

which leads to √
1−δΔ̄ f j i

1+δΔ̄ f j i

+ ∥∥G f j

∥∥∞
√

1−δΔ̄ f j

1+δΔ̄ f j

+ ∥∥G f j

∥∥∞
≤ 1.

Since, on the assumption of the isolation condition (9.103),
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δK
(K f j ,Ki

)

δ j
= γ > 1

it can be concluded that if
1 − δΔ̄ f j

1 − δΔ̄ f j i

< γ,

the necessary condition (9.99) for a successful fault isolation in the open-loop con-
figuration is satisfied.

It is worth emphasising that the fault isolability conditions given in Theorem 9.7
and Corollary 9.2 are conditions of the system structure for the fault isolability, while
the inequalities given in (9.95) and (9.99) are (necessary) conditions for isolating the
faults using the proposed observer-based scheme.

9.5.2 An SKR Identification Based Fault Isolation Strategy

It should be noticed that the observer-based fault isolation algorithms introduced in
the previous sub-section do not guarantee a perfect fault isolation, once a fault is
detected. Since the conditions given in (9.95) and (9.99) are only necessary so that
in the case of fault K fi

∥∥r j
∥∥
2 = Jj > Jth, j , j = 1, · · · , M, j 
= i,

it is possible that

∃ j ∈ {1, · · · , M, j 
= i} ,
∥∥r j
∥∥
2 = Jj ≤ Jth, j .

On the other hand, according to the isolation logic, it holds

‖ri‖2 = Ji ≤ Jth,i .

The consequence is that no decision can be made between fault K fi and fault K f j .

In order to solve the above problem,wepropose belowan alternative fault isolation
scheme, which can be activated when no unique isolation decision could be made,
as the above described situation occurs, or directly after a fault is detected. The core
of this fault isolation scheme is the (online) identification of the (faulty) SKR and,
based on it, a data-driven computation of the K-gap metric.

For our purpose, recall the result in Sect. 4.4 for the data-driven SKR expression
(4.76)

Yk,s − Ŷk,s = Yk,s − KpZ p − K f,uUk,s,

and denote the SKR by
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Kd = [−Kp −K f,u I
]
,

where Kd is identified using process data sets and their LQ decomposition:

⎡
⎣

Z p

Uk,s

Yk,s

⎤
⎦ =

⎡
⎣
L11 0 0
L21 L22 0
L31 L32 L33

⎤
⎦
⎡
⎣
Q1

Q2

Q3

⎤
⎦ ,

[
Kp K f,u

] = [ L31 L32
] [ L11 0

L21 L22

]+
.

In the next step, a normalisation of Kd , denoted by K̃d , is determined by

• first, an SVD of Kd

Kd = U
[
Σ 0

]
V T

• then set
K̃d = Σ−1UTKd . (9.104)

It is evident that K̃d is a data-driven SKR and further

K̃dK̃T
d = I.

Hence, it is a normalised data-driven SKR.
It is assumed that corresponding to the faulty SKRs, K fi , i = 1, · · · , M, the

normalised data-driven K̃d, fi ,i = 1, · · · , M, have been identified and saved. After a
fault is detected, the SKR identification algorithm is activated, which results in K̃d .

In the next step, computation of K-gap metric based on the data-driven SKRs will
be done. To this end, we give the following theorem.

Theorem 9.8 Let K̃d, fi , K̃d be the normalised data-driven SKR for the faulty center
and the identified plant. Then, the data-driven realisation ofK-gap can be calculated
by

δK
(Kd, fi ,Kd

) = σmax

(
K̃T

d − K̃T
d, fi K̃d, fi K̃T

d

)
. (9.105)

The computation algorithm given in the above theorem is the dual result on the com-
putation of gap metric based on data-driven SIR, which has been recently reported,
as cited at the end of this chapter. Thus, the proof is omitted.

Applying (9.105), the fault isolation is finally achieved by running the following
algorithm.

Algorithm 9.1 Data-driven SIR-based fault isolation

• Compute

δK
(Kd, fi ,Kd

) = σmax

(
K̃T

d − K̃T
d, fi K̃d, fi K̃T

d

)
, i = 1, · · · , M; (9.106)
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• Check δK
(Kd, fi ,Kd

)
and make decision

{
δK
(Kd, fi ,Kd

)
> δi =⇒ K fi does not occur,

δK
(Kd, fi ,Kd

) ≤ δi =⇒ K fi occurs.

Remark 9.8 In practice, δK
(Kd, fi ,Kd

)
is in general not equal to one. Thus,

δK
(Kd, fi ,Kd

) = δK
(Kd, fi ,Kd

) = δK
(Kd ,Kd, fi

)
.

It should be kept in mind that an SKR identification requires collection of sufficient
process data, and is time and computation consuming. This is a disadvantage of this
isolation scheme in comparison with the observer-based scheme proposed in the
previous sub-section.

9.6 Notes and References

This chapter ismainly dedicated to the issues of detecting and isolatingmultiplicative
faults in LTI systems with uncertainties. Although our major focus is on a class of
multiplicative faults that are modelled in the form of uncertain left coprime factors,
the achieved results can also be applied to some other classes of multiplicative faults.
The argument for this claim is our discussion in the first section on the equivalent
relations between the different types of model uncertainties and faults. Lemma 9.2
adopted in this investigation is given in [1]. The state space computations of the
normalised RC and LC pairs, as given in Theorem 9.1, are the well-established
results known in robust control, see for instance [2].

Two major issues have been addressed in the first part of this chapter,

• observer-based fault detection system design, including the design of the observer-
based residual generator and the threshold setting, and

• system analysis.

Considering that the impact ofmultiplicative faults on system dynamics considerably
depends on the system configuration, we have studied the above two FD issues for
open-loop and closed-loop configured systems respectively.

In the closed-loop configuration with a given controller, the optimisation of the
observer gain matrix L (for the observer-based residual generator) can be formulated
as

min
L

∥∥∥∥
[−U

V

]
R−1

∥∥∥∥∞
,

where

[−U
V

]
is the SIR of the controller,
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R(s) = I − C (s I − A + LC)−1 (L − Lo) ,

with Lo as the observer gain matrix adopted in the computation of the SIR of the
controller, which is interpreted as the gain of the observer embedded in the controller.
Recall that all stabilisation controllers are residual-driven. The proof of Lemma 9.3
reveals that designing an observer-based residual generator aiming at an optimal fault
detection is equivalent to finding an observer-based residual generator that leads to an
optimal controller in the sense of the above optimisation problem. It is remarkable
that our work reveals a fact that fault detectability and system robustness in the
sense of stability margin can be consistently achieved by minimising the H∞-norm
of the SIR of the controller. This issue will be further addressed in our subsequent
investigation on fault-tolerant control.

Concerning the threshold setting, the adaptive threshold (9.39) has been derived,
which depends on the norm-boundedness of the uncertainties and the controller.

For the observer-based residual generator design of open-loop configurated sys-
tems, it has been proved that the normalised SKR of the plant is the optimal residual
generator. Based on Lemma 9.4, which is given in [3], the threshold settings (9.44)
as well as ( 9.46) have been derived.

Our study on system analysis is devoted to the analysis of the system structure
from the FD aspect. We have introduced the concepts of

• indicators for fault detectability, which is a structural property of the system under
consideration and indicates how far a (multiplicative) fault can be detected,

• fault-to-uncertainty ratio (F2U), which is also a system structural property and
indicates how far a (multiplicative) fault can be detected in a plant with uncertain-
ties.

For our purpose, the well-established gap metric technique has been applied and
extended in our study. The needed preliminaries are introduced in Sub-section 9.3.1,
including gap metric, T -gap, ν-gap and L2-gap metrics. All these results are well
described in the book by Vinnicombe [4]. Some of them can also be found in [3,
5, 6]. In our study, the concept of K-gap δK (K1,K2) has been introduced for the
FD purpose, as a dual form to the directed gap δ (G1,G2) . In the proof of Theorem
9.4 in dealing with K-gap computation, the results given in [7] have been applied.
The relationships between (unstructured) (left) coprime factor model uncertainties
and K-gap metric given in Lemmas 9.5 and 9.6 are the dual results of the relations
between (right) coprime factor uncertainties and gap metric proved, for instance, by
[3].

Although theK-gap between two SKRs can be computed in the H∞-norm setting,
it is worth paying attention to Definition 9.2, which shows clearly that K-gap is a
distance measurement of two kernel subspaces. This definition also holds for other
types of systems and allows us, for instance, to realise K-gap computation in the
data-driven fashion, as demonstrated in the end of this chapter.

It is the state of the art that multiplicative faults are modelled as parametric faults
and detected using the well-established parameter identification technique [8, 9]. In
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comparison, there are few investigations on the application of observer-based FD
methods to detecting multiplicative faults. In fact, it is an open problem to deal with
detection and isolation of multiplicative faults in a systematic manner.

It is observed that the analysis of system structure in view of achievable FDI
performance is of considerable interests in practical applications. For instance, in
their review papers, Wang et al. [10, 11] have demonstrated the importance of fault
diagnosability and, associated with it, the system configurability in spacecraft con-
trol systems. Although intensive attention has been drawn to the design approaches
for FDI systems, limited research efforts have been devoted to the system analysis
in the context of FDI performance. In some recent investigations, qualitative FDI
performance analysis has been addressed for stochastic systems with additive faults
[11–15]. In their recent work, Wang et al. [11] have summarised and analysed the
existing methods for the assessment of FDI performance, and described their poten-
tial applications in practice. In comparison, few research efforts have been dedicated
to the detection and performance analysis issues for multiplicative faults, which can
cause considerable changes in the system dynamics, even instability. In particular,
few methods are available and applied for the system analysis to give quantitative
answers to the questions like how far a multiplicative fault is detectable and how to
detect multiplicative faults in systems with influential uncertainties. A quantisation
of these features is helpful to get a deep insight into the system structural proper-
ties and thus for establishing appropriate design objectives. On the other hand, it is
the nature of any model-based framework that model uncertainty issues should be
continuously addressed. In order to reduce uncertainty-induced false alarms to an
acceptable level, integrating a threshold into an FD system is necessary, which will
in turn affect the fault detectability. On account of these observations, it is reasonable
to address the threshold setting schemes for uncertain systems and define some FDI
performance indicators for multiplicative faults. It is the major intention of our work
to apply the gap metric technique to deal with these issues. In summary, we have
achieved the following results:

• The K-gap and L2-gap metric have been introduced to characterise the distance
between two kernel subspaces.

• The K-gap and L2-gap metric aided analysis of residual dynamics with respect to
model uncertainties has been presented for both open- and closed-loop configured
systems, respectively. Specifically, the concept of K-gap of closed-loop systems
has been introduced, which provides a compact and less conservative assessment
form of the influence of the model uncertainties on the residual.

• K-gap and L2-gap metrics have been applied to the performance analysis of fault
detection systems from system structure aspect by introducing the indicators for
fault detectability and F2U.

The second part of this chapter has been dedicated to the issues of isolating mul-
tiplicative faults. To our knowledge, there are few results reported on this topic. In
fact, a systematic formulation of isolability and isolation of multiplicative faults is
missing. This has motivated us to introduce the definition of the fault cluster char-
acterised by the cluster center and cluster radius. On this basis, fault isolability is
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defined as a system structural property, and the fault isolation problems are formu-
lated. We hope, by this work, a framework for fault isolation study is established. It
is worth remarking that the mathematical tool adopted in building this framework is
the K-gap metric.

For the (online) fault isolation purpose, we have proposed two schemes following
two different strategies. The first one is to formulate the isolation problem as a
number of fault detection problems, which are then solved using a bank of observers
and observer-based decision units. To this end, a number of observer-based residual
generators corresponding to the (fault) cluster centers are constructed. The threshold
setting has adopted the algorithms proposed for the threshold determination aiming
at fault detection. Also in this work, the K-gap metric based method has played an
important role in the analysis of fault isolation performance.

Different from the observer-based algorithms, the second fault isolation scheme is
based on the identification of the (faulty) SKRof the process under consideration once
a fault is detected. To this end, the well-established result for the SKR identification,
which is reviewed in Sect. 4.4 and is also called data-driven realisation of system
SKR, has been adopted. A fault isolation is then achieved by a fault classification,
which is formulated and realised on the basis of the definition of the fault cluster
with its cluster center and cluster radius. For the needed computation of the K-gap
metric between two data-driven SKRs, Theorem 9.8 is introduced. This theorem is
the dual result on the computation of gap metric based on data-driven SIR, which
has been recently reported in [16].

It should be remarked that these two fault isolation schemes follow different
strategies and thus are different in their performance and implementation. While the
observer-based isolation scheme is powerful in performing real-time fault isolation
but limited in its performance, the SKR identification based one delivers high isola-
tion performance but requires collecting sufficient process data, and is thus time and
computation consuming. Both fault isolation schemes could be applied in combina-
tion.

At the end of this chapter, we would like to mention that, in combination with
other design methods and techniques, the results achieved in this chapter can also be
applied to dealing with FDI system design issues, for instance,

• application of the randomised algorithm technique [17] to the K-gap based FDI
system design in the probabilistic framework,

• application of the well-established μ-synthesis technique [18] to the K-gap aided
FDI system using the LFT models, and

• application of K-gap and L2-gap metric of finite frequency range [19] to the FDI
system design.
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Part III
Fault Detection in Nonlinear Dynamic 

Systems



Chapter 10
Analysis and Design of Observer-Based
Fault Detection Systems

Although there exist many open issues in dealing with fault detection and estimation
in linear systems, as can be seen from our works in the previous chapters, the most
challenging topic in the fault detection research and application areas is nonlinear
observer-based fault detection (FD). A review of the literature in the past decades
shows that the application of nonlinear observer theory built the main stream in the
nonlinear observer-based FD study in the 90s. In recent years, much attention has
been paid to the application of some techniques to addressing nonlinear FD issues,
which are newly established for dealing with analysis and synthesis of nonlinear
dynamic systems more efficiently. For instance, fuzzy technique based FD, adaptive
fault diagnosis for nonlinear systems, LPV (linear parameter varying) based FD or
sliding mode observer-based fault detection have been reported.

As we have learnt, an observer-based FD system consists of an observer-based
residual generator, a residual evaluator and a decision maker with an embedded
threshold. Reviewing the publications on nonlinear observer-based FDI studies re-
veals that the major research focus in this area is on the design of nonlinear observer-
based residual generators. Serving as a major methodology, nonlinear observer the-
ory is widely applied for the investigation. While the early studies have been mainly
devoted to the application of feedback-based linearisation, differential algebra and
geometric approach techniques to observer-based residual generator design, the cur-
rent research efforts concentrate on systems with a special class of nonlinearities,
typically Lipschitz nonlinearity, sector bounded nonlinearity or special types of con-
trol systems like nonlinear switched systems and networked control systems. Dif-
ferently, some recent works have investigated residual evaluation, threshold setting
in the context of performance optimisation of nonlinear observer-based FD systems.
In summary, it can be observed that (i) only few of the reported studies have dealt
with residual generator and evaluation as well as decision making in an integrated
way, and (ii) most of efforts have been made on the FD system design but only few
on analysis issues.

Concerning analysis of nonlinear FD systems, it is a surprising observation that
little attention has been paid to the existence conditions of nonlinear observer-based
FD systems and there is, to our best knowledge, no commonly used conditions for
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checking the existence of an observer-based FD system for general type of nonlinear
systems, although this is a fundamental issue for the design of any type of nonlinear
observer-based FD systems. On the other hand, rich studies on the input-state, input-
output stability and stabilisation of nonlinear systems have been reported in the past
decades. And the published results have considerably promoted the development of
nonlinear control systems and techniques.

Thefirst objective of this chapter is to investigate existence conditions for a general
type of nonlinear observer-based FD systems, which would help us to gain a deeper
insight into the fundamental properties of nonlinear observer-based FD systems.
This is also the basis for the development of methods for an integrated design of
observer-based nonlinear FD systems, the second objective of this chapter.

10.1 Preliminaries and Problem Formulation

10.1.1 System Models

Consider nonlinear systems described by

Σ : ẋ = f (x, u), y = h(x, u), (10.1)

where x ∈ Rn, u ∈ Rp, y ∈ Rm denote the state, input and output vectors, respec-
tively. f (x, u) and h(x, u) are continuously differentiable nonlinear functions with
appropriate dimensions. The affine form of Σ,

Σ : ẋ = a(x) + B(x)u, y = c(x) + D(x)u (10.2)

with a(x), B(x), c(x) and D(x) being continuously differentiable and of appropriate
dimensions, is a class of nonlinear systems which are widely adopted in nonlinear
system research. This class of nonlinear systems can be considered as a natural
extension of LTI systems studied in our previous chapters. Analog to the FD study
on LTI systems with additive faults, the fault model of the form

Σw :
{
ẋ = a(x) + B(x)u + Ew(x)w,

y = c(x) + D(x)u + Fw(x)w,
(10.3)

is adopted in our study for modelling nonlinear faulty systems, where Ew(x) and
Fw(x) are continuously differentiable nonlinear functions (matrices) that are known
and of appropriate dimensions.w ∈ Rkw is an unknown vector. Ew(x)w and Fw(x)w
represent the influences of the faults on the systemdynamics andmeasurement vector,
respectively. The system is called fault-free, when w = 0. A more general form of
(10.3) is

Σw : ẋ = f (x, u, w), y = h(x, u, w). (10.4)
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10.1.2 Observer-Based Nonlinear Fault Detection Systems

A standard observer-based FD system consists of an observer-based residual genera-
tor, a residual evaluator and a decision maker with a threshold. For nonlinear residual
generators, we introduce the following definition.

Definition 10.1 Given the nonlinear system (10.1), a system of the form

˙̂x = φ(x̂, u, y), x̂ ∈ Rn, (10.5)

r = ϕ(x̂, u, y), (10.6)

is called observer-based residual generator, if it delivers a residual vector r satisfying
that

(i) for x̂(0) = x(0),
∀u, r(t) ≡ 0,

(ii) for some w �= 0 in the faulty system (10.4), r(t) �=0.

In order to avoid loss of information about the faults, the residual vector should
generally have the same dimension like the output vector. For the sake of simplicity,
also considering the conditions (i) and (ii), we suppose that

r = ϕ(x̂, u, y) = y − ŷ, ŷ = h(x̂, u). (10.7)

Residual evaluation serves the purpose of making a right decision for a successful
fault detection. To this end, a positive definite function of r(t), J, is adopted as
residual evaluation function, where positive definite functions will be defined below.
We define the threshold as

Jth = sup
x0,w=0

J, (10.8)

which is clearly interpreted as themaximum influence of uncertainties on the residual
vector r(t) in the fault-free operation (w(t) = 0).Weadopt a simple formof detection
logic of the form

detection logic:

{
J > Jth =⇒ faulty,

J ≤ Jth =⇒ fault-free.
(10.9)

10.1.3 Problem Formulation

In the subsequent work in this chapter, two essential nonlinear FD issues will be
addressed. The first one deals with the existence conditions of the observer-based
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FD system with the residual generator given in Definition 10.1, residual evaluation
function, threshold (10.8) and detection logic (10.9). It is worth to emphasise that our
work is devoted to the overall observer-based FD system with the residual generator,
the evaluator and the decision maker. The second issue is the design of nonlinear
observer-based FD systems for affine systems (10.2).

10.1.4 Notation

For our purpose, we introduce some definitions and notations which are known in
nonlinear stability theory and will be needed in the subsequent study. Let R+ =
[0,∞).

• A function γ : R+ → R+ is said to belong to class K if it is continuous, strictly
increasing, and satisfies γ (0) = 0. If, in addition, limt→∞ γ (t) = ∞, then γ

belongs to class K∞.

• A function β : R+ → R+ is said to belong to class L if it is continuous, strictly
decreasing, and satisfies lims→∞ β(s) = 0.

• A function φ(s, t) : R+ × R+ → R+ is said to belong to class KL if for each
fixed t the function is of class K and for each fixed s it is of class L.

• Notation || · || stands for the Euclidean norm of a vector in some Euclidean space
and

Br := {x ∈ Rn : ||x || ≤ r for some r > 0}.

• L2(0,∞) is the space of functions u : R+ → Rp which are measurable and
satisfy ∫ ∞

0
||u(t)||2dt < ∞.

• L2,[0,τ ]-norm of u(t) is defined and denoted by

‖uτ‖2 =
(∫ τ

0
||u(t)||2dt

)1/2

,

• and L∞-norm of u(t) by

‖u‖∞ = ess sup {||u(t)||, t ≥ 0} .

• A function f : Rn → R is positive definite if f (x) > 0 for all x > 0, and
f (0) = 0.

• By Vx,x̂ (x, x̂) we denote

Vx,x̂ (x, x̂) = [
Vx (x, x̂) Vx̂ (x, x̂)

] = [
∂V (x,x̂)

∂x
∂V (x,x̂)

∂ x̂

]
.
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10.2 On Observer-Based FD Systems

In this section, we define two classes of nonlinear observer-based FD systems and
study their existence conditions.

10.2.1 Two Classes of Observer-Based FD Systems

Given a residual vector, for the residual evaluation purpose, two norm-based evalu-
ation functions are considered in our work:

• the Euclidean norm-based instant evaluation

JE = α1 (‖r‖) , (10.10)

• the integral evaluation with an evaluation window [0, τ ]

J2 =
∫ τ

0
α2 (‖r‖) dt, (10.11)

where α1 (‖r‖) , α2 (‖r‖) are some K-functions.

Definition 10.2 Given the nonlinear system (10.1), a dynamic system is called

• L∞ observer-based FD system, when it consists of the observer-based residual
generator (10.5) and (10.7), residual evaluation function (10.10) and detection
logic (10.9) with a corresponding threshold,

• L2 observer-based FD system, when it consists of the observer-based residual
generator (10.5) and (10.7), residual evaluation function (10.11) and detection
logic (10.9 ) with a corresponding threshold.

In the subsequent two subsections, we are going to study the existence conditions of
the above two types of FD systems as well as the construction of the corresponding
thresholds.

10.2.2 On L∞ observer-based FD systems

For our purpose, we first introduce the following definition, which ismotivated by the
so-called weak detectability, known and widely used in the study on the stabilisation
of nonlinear systems by output feedback.
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Definition 10.3 System (10.1) is said to be output re-constructible if there exist

• a function φ : Rn × Rp × Rm → Rn,

• functions V (x, x̂) : Rn × Rn → R+, ϕi (·) ∈ K, i = 1, 2, 3, and
• positive constants δ, δu,

such that ∀x, x̂ ∈ Bδ, ‖u‖∞ ≤ δu,

ϕ1 (‖r‖) ≤ V (x, x̂) ≤ ϕ2
(∥∥x − x̂

∥∥)
, r = y − h(x̂, u), (10.12)

Vx (x, x̂) f (x, u) + Vx̂ (x, x̂)φ(x̂, u, y) ≤ −ϕ3
(∥∥x − x̂

∥∥)
. (10.13)

Remark 10.1 Substituting ‖r‖ in ϕ1 (‖r‖) by
∥∥x − x̂

∥∥ , Definition 10.3 becomes
equivalent with the well-known weak detectability. If it is further assumed that

‖h(ζ, u) − h(ς, u)‖ ≤ γ (‖ζ − ς‖)

for some γ ∈ K, then we have

∥∥x − x̂
∥∥ ≥ γ −1 (‖r‖) ,

which leads to
ϕ1

(∥∥x − x̂
∥∥) ≥ ϕ1

(
γ −1 (‖r‖)) .

Since ϕ1
(
γ −1 (·)) ∈ K, the weak detectability implies the output re-constructability.

Remark 10.2 Consider the (overall) system dynamics

ẋ = f (x, u), y = h(x, u), ˙̂x = φ(x̂, u, y), r = y − h(x̂, u)

with u as its input and r as output. Function V (x, x̂) satisfying (10.12)–(10.13) can
be understood as a variant of the IOS (input-output stability) Lyapunov function. In
fact, the residual generation problem can also be studied in the IOS context. The
motivation of introducing the output re-constructability is that in the model-based
FDI framework, the output estimate ŷ is called analytical redundancy, and residual
generation is equivalent with building analytical redundancy.

The following theorem presents a major property of an output re-constructible
system, which provides us with a sufficient condition for the existence of an L∞
observer-based FD system and the threshold setting.

Theorem 10.1 Assume that system (10.1) is output re-constructible. Then, system
(10.5) with (10.7) as its output delivers a residual vector r(t), and it holds

‖r(t)‖ ≤ β
(∥∥x(0) − x̂(0)

∥∥ , t
)
, (10.14)

where β
(∥∥x(0) − x̂(0)

∥∥ , t
) ∈ KL.
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Proof It follows from (10.12) that

∥∥x(t) − x̂(t)
∥∥ ≥ ϕ−1

2

(
V (x, x̂)

)
,

by which (10.13) can be further re-written into

V̇ (x, x̂) ≤ −ϕ3
(
ϕ−1
2

(
V (x, x̂)

))
.

Since ϕ3(ϕ
−1
2 ) ∈ K, it is known from the highly cited paper by Sontag in 1989 (see

the reference given at the end of this chapter) that there exists a KL-function γ so
that

V (x(t), x̂(t)) ≤ γ
(
V (x(0), x̂(0)), t

)
.

Note that (10.12) yields
‖r(t)‖ ≤ ϕ−1

1

(
V (x, x̂)

)
,

which, considering (10.12) and (10.13), results in

‖r(t)‖ ≤ ϕ−1
1

(
γ

(
ϕ2

(∥∥x(0) − x̂(0)
∥∥)

, t
)) =: β

(∥∥x(0) − x̂(0)
∥∥ , t

)
. (10.15)

The theorem is thus proved.

Remark 10.3 A similar proof can be found in the references given at the end of this
chapter using an IOS-Lyapunov function, as pointed out in the above remark.

Remark 10.4 It is evident from the definition of output re-constructability and the
above proof that it also holds

ϕ1 (‖r‖) ≤ γ
(
ϕ2

(∥∥x(0) − x̂(0)
∥∥)

, t
) =: β1

(∥∥x(0) − x̂(0)
∥∥ , t

)
, (10.16)

where β1
(∥∥x(0) − x̂(0)

∥∥ , t
) ∈ KL.

It is obvious that for a given initial estimation error x(0) − x̂(0),

limt→∞ β
(∥∥x(0) − x̂(0)

∥∥ , t
) = limt→∞ β1

(∥∥x(0) − x̂(0)
∥∥ , t

) = 0. (10.17)

Property (10.17) reveals that the influence of the initial estimation error on the residual
evaluation function will disappear with time, as known in the case of LTI systems.

It follows immediately fromTheorem10.1 that the threshold can be schematically
set as

Jth = β (δ, 0) ,

if system (10.1) is output re-constructible. Note that Jth only depends on the initial
estimation error. On the other hand, such a setting could be too conservative. In order
to improve the FD performance, the influence of the process input variables on the
residual vector should be generally taken into account. It will lead to a so-called
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adaptive threshold, which allows a more efficient FD.Moreover, considering that the
L2,[0,τ ]-norm is often used for the residual evaluation purpose, we are motivated to
investigate the following detection scheme.

10.2.3 On L2 observer-based FD systems

We first introduce the definition of weak output re-constructability.

Definition 10.4 System (10.1) is said to be weakly output re-constructible if there
exist

• a function φ : Rn × Rp × Rm → Rn,

• functions V (x, x̂) : Rn × Rn → R+, ϕ1 (·) ∈ K, ϕ2 (·) ∈ K∞ and
• a constant δ > 0,

such that ∀x, x̂ ∈ Bδ

Vx (x, x̂) f (x, u) + Vx̂ (x, x̂)φ(x̂, u, h(x, u)) ≤ −ϕ1(‖r‖) + ϕ2(‖u‖). (10.18)

Comparing Definitions 10.3 and 10.4, it becomes evident that condition (10.18)
is generally weaker than the ones given in Definition 10.3.

The following theorem presents a sufficient condition for the existence of an L2

observer-based FD system.

Theorem 10.2 Assume that system (10.1) is weakly output re-constructible. Then,
an L2 observer-based FD system can be realised using functions ϕ1, ϕ2 and by

• constructing residual generator according to (10.5) and (10.7),
• defining the evaluation function as

J =
∫ τ

0
ϕ1 (‖r(t)‖) dt,

• and setting the threshold equal to

Jth =
∫ τ

0
ϕ2 (‖u‖) dt + γ̄o, γ̄o = sup

x(0),x̂(0)
{γ0} , γo = V

(
x(0), x̂(0)

)
. (10.19)

Proof It follows from (10.18) that

V̇ (x, x̂) ≤ −ϕ1 (‖r(t)‖) + ϕ2 (‖u‖) .

As a result, ∫ τ

0
ϕ1 (‖r‖))dt ≤

∫ τ

0
ϕ2 (‖u‖))dt + V (x(0), x̂(0)). (10.20)
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The theorem is thus proved.

In theoretical study on norm-based residual evaluation, it is the state of the art that
the evaluation window is assumed to be infinitively large. That is

J =
∫ ∞

0
ϕ1 (‖r‖) dt =⇒ Jth =

∫ ∞

0
ϕ2 (‖u‖) dt + γ̄o. (10.21)

In practice, this is not realistic, since a large evaluation window generally results in a
(considerably) delayed fault detection. In dealing with nonlinear FD, a large evalu-
ation window also means a high threshold due to the dependence on u. Considering
that a fault may happen after the system is in operation for a long time, for a large
evaluation window the influence of w on J may be much weaker than u on Jth . As
a result, the FD performance can become poor. For these reasons, in practice the
evaluation function and threshold are often defined by

J =
∫ to+τ

to

ϕ1 (‖r‖) dt =⇒ Jth =
∫ to+τ

to

ϕ2 (‖u‖) dt + γ̄o, (10.22)

where
γ̄o = sup

x(t0),x̂(t0)
{γo}

represents the maximum γo for all (bounded) possible x(t0), x̂(t0).
In this section, we have derived the existence conditions for two types of non-

linear observer-based FD systems. Although the achieved results do not lead to a
direct design of a nonlinear observer-based FD system, they are fundamental for the
application of some established nonlinear techniques for FD system design, which
is investigated in the subsequent section.

10.3 Design of Observer-Based FD Systems

10.3.1 Design of L∞ observer-based FD systems

Suppose that system (10.1) is output re-constructible and for some constant δo > 0

∥∥x(0) − x̂(0)
∥∥ ≤ δo.

Then, we are able to construct residual generator (10.5) using φ(x̂, u, y) defined in
Definition 10.3. Let the evaluation window be [t1, t2] . It follows from Theorem 10.1
that the residual evaluation function can be defined as

JE,1 = ϕ1 (‖r(t)‖) , t ∈ [t1, t2]
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or alternatively
JE = ‖r(t)‖ , t ∈ [t1, t2] .

Corresponding to them, there exist KL-functions β1
(∥∥x(0) − x̂(0)

∥∥ , t
)

and
β

(∥∥x(0) − x̂(0)
∥∥ , t

)
satisfying (10.16) and (10.14), respectively. Consider

max‖x(0)−x̂(0)‖≤δo
t∈[t1,t2]

β
(∥∥x(0) − x̂(0)

∥∥ , t
)

= β

(
max‖x(0)−x̂(0)‖≤δo

∥∥x(0) − x̂(0)
∥∥ , min

t∈[t1,t2]
t

)
= β (δo, t1) ,

max‖x(0)−x̂(0)‖≤δo
t∈[t1,t2]

β1
(∥∥x(0) − x̂(0)

∥∥ , t
)

= β1

(
max‖x(0)−x̂(0)‖≤δo

∥∥x(0) − x̂(0)
∥∥ , min

t∈[t1,t2]
t

)
= β1 (δo, t1) .

Finally, the threshold settings are

Jth,1 = β1 (δo, t1)

corresponding to JE,1 and
Jth = β (δo, t1)

corresponding to JE .

10.3.2 Design of L2-NFDF for affine systems

We now study the design of L2 observer-based FD systems for a class of nonlinear
systems, the affine systems given in (10.2). We restrict our attention to the following
observer-based residual generator

˙̂x = a(x̂) + B(x̂)u + L(x̂)
(
y − c(x̂) − D(x̂)u

)
, (10.23)

r = ϕ(x̂, u, y) = y − c(x̂) − D(x̂)u, (10.24)

which is called nonlinear fault detection filter (NFDF).

Definition 10.5 Given the nonlinear system (10.2), the NFDF (10.23)–(10.24) is
called L2-NFDF if it satisfies that for some constant γu ≥ 0,

‖rτ‖22 ≤ γ 2
u ‖uτ‖22 + γo, (10.25)
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where γo ≥ 0 is a (finite) constant for given x(0), x̂(0).

It follows from (10.25) that by an L2-NFDF the threshold can be, on the assumption
that γo is bounded for all possible x(0), x̂(0), set equal to

Jth = γ 2
u ‖uτ‖22 + sup

x(0),x̂(0)
{γo} . (10.26)

It allows then the application of the following decision logic,

{
J = ‖rτ‖22 > Jth =⇒ faulty,
J = ‖rτ‖22 ≤ Jth =⇒ fault-free,

(10.27)

for a successful fault detection. Note that the L2-NFDF, the residual evaluation
function (10.26) and threshold setting (10.27) build a special realisation of an L2

observer-based FD system. In fact, we have the following relations

J = ‖rτ‖22 =
∫ τ

0
‖r(t)‖2 dt implies ϕ1 (‖r‖) = ‖r‖2 ,

Jth = γ 2
u ‖uτ‖22 + sup

x(0),x̂(0)
{γo} implies ϕ2 (‖u‖) = (γu ‖u‖)2 ,

where ϕ1, ϕ2 are defined in Theorem10.2.
Next, we study the design of L2-NFDF, which means the determination of gain

matrix L(x̂) so that (10.25) holds. Let

[
ẋ
˙̂x
]

= f̄ (x, x̂) + G(x, x̂)u +
[

0
L(x̂)r

]
, (10.28)

r = y − ŷ, ŷ = c(x̂) + D(x̂)u,

f̄ (x, x̂) =
[
a(x)
a(x̂)

]
,G(x, x̂) =

[
B(x)
B(x̂)

]
.

We have the following result.

Theorem 10.3 Given the system (10.2) and the NFDF (10.23 )–(10.24). Suppose
that

• there exists a constant γ > 0 so that

γ 2 I − (
D(x) − D(x̂)

)T (
D(x) − D(x̂)

)
> 0, (10.29)

and set Θ(x, x̂) given by

γ 2 I − (
D(x) − D(x̂)

)T (
D(x) − D(x̂)

) = ΘT (x, x̂)Θ(x, x̂) (10.30)

with Θ(x, x̂) = ΘT (x, x̂) being a p × p matrix,
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• there exists V (x, x̂) ≥ 0 that solves the following Hamilton-Jacobi inequality
(HJI)

Vx,x̂ (x, x̂) f̄ (x, x̂) + 1

2

(
cT (x)c(x) − cT (x̂)c(x̂)

)
(10.31)

+1

2
w(x, x̂)

(
ΘT (x, x̂)Θ(x, x̂)

)−1
wT (x, x̂) ≤ 0,

w(x, x̂) = Vx,x̂ (x, x̂)G(x, x̂) + cT (x)
(
D(x) − D(x̂)

)
,

• there exists L(x̂) solving
Vx̂ (x, x̂)L(x̂) = cT (x̂). (10.32)

Then, it holds
‖rτ‖22 ≤ γ 2 ‖uτ‖22 + 2V (x(0), x̂(0)). (10.33)

Proof Considering

V̇ (x, x̂) = Vx,x̂ (x, x̂)
(
f̄ (x, x̂) + G(x, x̂)u

) + Vx̂ (x, x̂)L(x̂)
(
y − c(x̂) − D(x̂)u

)
and (10.32), it holds

V̇ (x, x̂) = Vx,x̂ (x, x̂)
(
f̄ (x, x̂) + G(x, x̂)u

) + (
ŷ − D(x̂)u

)T (
y − ŷ

)
.

Note that

1

2
‖r‖2 = 1

2
yT y + 1

2
ŷT ŷ − ŷT y,

1

2
‖y‖2 = 1

2
‖c(x)‖2 + 1

2
‖D(x)u‖2 + cT (x)D(x)u,

1

2

∥∥ŷ∥∥2 = 1

2

∥∥c(x̂)∥∥2 + 1

2

∥∥D(x̂)u
∥∥2 + cT (x̂)D(x̂)u,

and moreover

1

2

∥∥Θ(x, x̂)u − Θ−T (x, x̂)wT (x, x̂)
∥∥2 = γ 2

2
‖u‖2 − 1

2

∥∥(
D(x) − D(x̂)

)
u
∥∥2

−w(x, x̂)u + 1

2
w(x, x̂)

(
ΘT (x, x̂)Θ(x, x̂)

)−1
wT (x, x̂).

It turns out, by HJI (10.31), that

V̇ (x, x̂) = Vx,x̂ (x, x̂)
(
f̄ (x, x̂) + G(x, x̂)u

) − 1

2

(
‖r‖2 − ‖y‖2 + ∥∥ŷ∥∥2

)
− (

D(x̂)u
)T (

c(x) − c(x̂) + (
D(x) − D(x̂)

)
u
)
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≤ −1

2

∥∥Θ(x, x̂)u − Θ−T (x, x̂)wT (x, x̂)
∥∥2 + γ 2

2
‖u‖2 − 1

2
‖r‖2

≤ γ 2

2
‖u‖2 − 1

2
‖r‖2 . (10.34)

Thus, by adopting the evaluation window [0, τ ], we finally have

‖rτ‖22 ≤ γ 2 ‖uτ‖22 + 2V (x(0), x̂(0)),

which completes the proof.

Theorem 10.3 provides us with an algorithm for the design of an L2-NFDF. It
consists of

• solving HJI (10.31) for V (x, x̂) and
• solving (10.32) for L(x̂).

It is worth noticing that the solvability of (10.31) and (10.32) leads to (10.34), which
means that the affine system (10.2) is weakly output re-constructible, as given in
Definition 10.4. If they are solvable, the following FD scheme can be applied:

• Run the residual generator (10.23)–(10.24);
• Set the adaptive threshold

Jth = γ 2 ‖uτ‖22 + 2V (x(0), x̂(0));

• Define the decision logic (10.27).

10.3.3 An Extension to L2-RNFDF Design

With a slight modification, themajor result in Theorem 10.3 can be applied to solving
the following (robust) FD problem.

Consider the nonlinear system of the form

Σd :
{
ẋ = a(x) + Ed(x)d,

y = c(x) + Fd(x)d,
(10.35)

where d is the unknown input vector and L2-bounded with

‖dτ‖2 ≤ δd . (10.36)

Definition 10.6 Given the nonlinear system (10.35), the NFDF of the form

˙̂x = a(x̂) + L(x̂)
(
y − c(x̂)

)
, r = y − c(x̂) (10.37)
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is called L2 robust NFDF (RNFDF) if for some constant γ > 0

‖rτ‖22 ≤ γ 2δ2d + γo, (10.38)

where γo ≥ 0 is a (finite) constant for given x(0), x̂(0).

Let

f̄ (x, x̂) =
[
a(x)
a(x̂)

]
,G(x, x̂) =

[
Ed(x)
0

]
.

We have the following theorem.

Theorem 10.4 Consider the system (10.35) and the NFDF (10.37). Assume that

•
γ 2 I − FT

d (x)Fd(x) > 0,

and define
γ 2 I − FT

d (x)Fd(x) = ΘT
d (x, x̂)Θd(x, x̂),

• there exists V (x, x̂) ≥ 0 such that the HJI

Vx,x̂ (x, x̂) f̄ (x, x̂) + 1

2

(
cT (x)c(x) − cT (x̂)c(x̂)

)
+1

2
wd(x, x̂)

(
ΘT

d (x, x̂)Θd(x, x̂)
)−1

wT
d (x, x̂) ≤ 0, (10.39)

wd(x, x̂) = Vx,x̂ (x, x̂)G(x, x̂) + cT (x)Fd(x), (10.40)

is solvable for Vx,x̂ (x, x̂), and
• L(x̂) solves

Vx̂ (x, x̂)L(x̂) = cT (x̂). (10.41)

Then, it holds
‖rτ‖22 ≤ γ 2δ2d + 2V (x(0), x̂(0)). (10.42)

The proof of this theorem is similar to Theorem 10.3 and is thus omitted.
Based on (10.42), corresponding to the evaluation function

J = ‖rτ‖22 ,

the threshold Jth can then be set as

Jth = γ 2δ2d + 2V (x(0), x̂(0)). (10.43)
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10.3.4 On FD Schemes for L2-stable Affine Systems

We now consider the NFDF design problem for L2-stable affine systems. Although
this is a special case of our previous study, it is helpful to gain a deeper insight into
the addressed nonlinear FD problems.

Recall that for the L2-stable system (10.2) it holds, for some γ̄ > 0, γ̄o > 0,

‖yτ‖2 ≤ γ̄ ‖uτ‖2 + γ̄o,

which can be further written as, for some γu > 0, γo > 0,

‖yτ‖22 ≤ γ 2
u ‖uτ‖22 + γo. (10.44)

This means that the original system (10.2) itself can also serve as an NFDF. Using the
process input and output variables u, y, the threshold setting (10.25) and detection
logic (10.27), an FD system is then built. On the other hand, since γ 2

u can be (very)
large, this leads to a high threshold setting. Consequently, the fault detectability
may become poor. To illustrate this fact, consider a simple case with a sensor fault
modelled by

y = c(x) + D(x)u + w,

where w denotes the sensor fault vector. According to the detection logic (10.27), w
is only detectable if

∫ τ

0
‖c(x) + D(x)u + w‖2 dt > Jth,

Jth = γ 2
u

∫ τ

0
‖u‖2 dt + sup γo. (10.45)

It is evident that a large γ 2
u means that only large w can be detected. In other words,

the fault detectability is, in this case, poor.
In order to improve the FDperformance, we now apply a simple residual generator

defined by ˙̂x = a(x̂) + B(x̂)u, r = y − c(x̂) − D(x̂)u. (10.46)

Let γ > 0 ensure

γ 2 I − (
D(x) − D(x̂)

)T (
D(x) − D(x̂)

)
> 0,

and set

γ 2 I − (
D(x) − D(x̂)

)T (
D(x) − D(x̂)

) = ΘT (x, x̂)Θ(x, x̂).
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If there exists V (x, x̂) ≥ 0 that solves the HJI

Vx (x, x̂)a(x) + Vx̂ (x, x̂)a(x̂) + 1

2

∥∥c(x) − c(x̂)
∥∥2

+1

2
w(x, x̂)

(
ΘT (x, x̂)Θ(x, x̂)

)−1
wT (x, x̂) ≤ 0, (10.47)

w(x, x̂) = Vx (x, x̂)B(x) + Vx̂ (x, x̂)B(x̂) + (
c(x) − c(x̂)

)T (
D(x) − D(x̂)

)
,

then we have
‖rτ‖22 ≤ γ 2 ‖uτ‖22 + 2V (x(0), x̂(0)). (10.48)

The proof of (10.48) is straightforward and can be done as follows. Consider

V̇ (x, x̂) = Vx (x, x̂)a(x) + Vx̂ (x, x̂)a(x̂) + (
Vx (x, x̂)B(x) + Vx̂ (x, x̂)B(x̂)

)
u,

‖r‖2
2

= 1

2

∥∥c(x) − c(x̂)
∥∥2 + (

c(x) − c(x̂)
)T (

D(x) − D(x̂)
)
u

+1

2

∥∥(
D(x) − D(x̂)

)
u
∥∥2

,

1

2

∥∥Θ(x, x̂)u − Θ−T (x, x̂)wT (x, x̂)
∥∥2 = γ 2

2
‖u‖2 − 1

2

∥∥(
D(x) − D(x̂)

)
u
∥∥2

−w(x, x̂)u + 1

2
w(x, x̂)

(
ΘT (x, x̂)Θ(x, x̂)

)−1
wT (x, x̂).

It turns out

‖r‖2
2

= γ 2

2
‖u‖2 + 1

2

∥∥c(x) − c(x̂)
∥∥2 − (

Vx (x, x̂)B(x) + Vx̂ (x, x̂)B(x̂)
)
u+

1

2
w(x, x̂)

(
ΘT (x, x̂)Θ(x, x̂)

)−1
wT (x, x̂) − 1

2

∥∥Θ(x, x̂)u − Θ−T (x, x̂)wT (x, x̂)
∥∥2

=⇒ V̇ (x, x̂) ≤ −‖r‖2
2

+ γ 2

2
‖u‖2 .

It yields
‖rτ‖22
2

+ V (x, x̂) ≤ γ 2 ‖uτ‖22
2

+ V (x(0), x̂(0)),

and finally we have (10.48). It follows immediately from (10.48) that the threshold
setting in this case is

Jth = γ 2 ‖uτ‖22 + γo, γo = max
x(0),x̂(0)

2V (x(0), x̂(0)). (10.49)
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We now compare the FD scheme based on (10.48) and the one given in (10.44).
Recall that for the system (10.2), (10.44) holds only if γ 2

u I − DT (x)D(x) > 0, and,
moreover, the following HJI is solvable for given γu

Vx (x, x̂)a(x) + Vx̂ (x, x̂)a(x̂) + 1

2
‖c(x)‖2

+1

2
w(x, x̂)

(
ΘT (x, x̂)Θ(x, x̂)

)−1
wT (x, x̂) ≤ 0, (10.50)

w(x, x̂) = Vx (x, x̂)B(x) + Vx̂ (x, x̂)B(x̂) + cT (x)D(x),

γ 2
u I − DT (x)D(x) = ΘT (x, x̂)Θ(x, x̂).

Assume that x̂ is a good estimate of x in the sense of

x − x̂ ∈ Bδ

for some δ and ensures that ∀x − x̂ ∈ Bδ,(
D(x) − D(x̂)

)T (
D(x) − D(x̂)

)
< DT (x)D(x),∥∥c(x) − c(x̂)

∥∥2
< ‖c(x)‖2 ,

and,moreover, for a γ 2 smaller than γ 2
u , theHJI ( 10.47) is solvable. Then, comparing

the thresholds (10.45) and (10.49) makes it clear that

γ 2
∫ τ

0
‖u‖2 dt < γ 2

u

∫ τ

0
‖u‖2 dt.

That means for a large
∫ τ

0 ‖u‖2 dt, threshold setting (10.49) is lower than the one
given by (10.45). On the other hand, since

ŷ = c(x̂) + D(x̂)u

is independent of any fault, the influence of a fault vector, for instance the sensor fault,
on the residual vector is identical with the one on y. As a result, the FD performance
of the residual generator (10.46) is improved in comparison with an FD system based
on a direct use of the process input and output variables.

The above discussion is of practical interest, since in many automatic control
systems, the plant is stable and a parallel running model is embedded in the system
formonitoring or control purpose. The so-called internalmodel control (IMC) system
is a typical example. By means of the above detection scheme, an L2-NFDF with
satisfactory FD performance can be realised without additional online computation
and engineering costs.
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10.4 Examples

We now illustrate the main results presented in the previous sections by some exam-
ples.

Example 10.1 The first example is adopted from the literature, which is given at the
end of this chapter, and used to illustrate the result given in Theorem 10.1. Consider
the nonlinear system (10.1) with

x =
[
x1
x2

]
, f (x, u) =

[−x31 + x2
−x32 + u

]
, h(x, u) = x1. (10.51)

Suppose that u ∈ U = [−1, 1]. It is given in the literature that for every initial
condition x(0) ∈ R2 and u ∈ U = [−1, 1], the solution x(t) of (10.51) enters the
compact set

S = {x ∈ R2 : W (x) = 1

2
x21 + 1

2
x22 ≤ √

10/2}. (10.52)

For our purpose, we now construct the observer-based residual generator as follows

[ ˙̂x1˙̂x2
]

= φ(x̂, u, y) =
[−x̂31 + x̂2

−x̂32 + u

]
+

[
l1
l2

]
(y − x̂1),

r = y − x̂1.

Let

V (x, x̂) = 1

2
(x − x̂)T P(x − x̂), P =

[
1 −a

−a b

]

for some a, b ensuring P > 0, and denote

e1 = x1 − x̂1, e2 = x2 − x̂2.

Next, assume that
x21 + x22 ≤ c, x̂21 + x̂22 ≤ d

for some c, d. It is straightforward to verify

Vx (x, x̂) f (x, u) + Vx̂ (x, x̂)φ(x̂, u, y)

≤
(
9a

8
(c + d)2 − (l1 − al2)

)
e21 − a

2
e22 + (1 + al1 − bl2)e1e2.

Now, select l1 and l2 such that

9a

8
(c + d)2 − l1 + al2 + a

2
= 0, 1 + al1 − bl2 = 0,
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for a, b, d satisfying b > a2, a > 0 and d > c. As a result, it holds

λ1

2
r T r ≤ V (x, x̂) ≤ λ2

2
(x − x̂)T (x − x̂),

Vx (x, x̂) f (x, u) + Vx̂ (x, x̂)φ(x̂, u, y) ≤ −a

2
(x − x̂)T (x − x̂),

where λ1, λ2 (λ2 ≥ λ1) are eigenvalues of P, which means, according to Definition
10.3, system (10.51) is output re-constructible. Moreover, since

V̇ (x, x̂) ≤ − a

λ2
V (x, x̂),

it is known that
V (x, x̂) ≤ e− a

λ2
t V (x0, x̂0),

which leads to

‖r(t)‖2 ≤ 2

λ1
e− a

λ2
t V (x0, x̂0) =: β

(∥∥x(0) − x̂(0)
∥∥ , t)

This illustrates the result given in Theorem 10.1.

Example 10.2 This example demonstrates the application of Theorem 10.3 for the
design of an L2-NFDF. Consider the following affine system

[
ẋ1
ẋ2

]
=

[
x2 − sin3 x1
−a sin x1

]
+

[
sin x1
0

]
u, y = sin2 x1

with a > 1
2 . Construct the observer-based residual generator

[ ˙̂x1˙̂x2
]

=
[
x̂2 − sin3 x̂1
−a sin x̂1

]
+

[
sin x̂1
0

]
u + L(x̂)r,

r = y − ŷ = sin2 x1 − sin2 x̂1.

Thus, the functions in the system (10.28) and Theorem 10.3 are given by

f̄ (x, x̂) =

⎡
⎢⎢⎣
x2 − sin3 x1
−a sin x1
x̂2 − sin3 x̂1
−a sin x̂1

⎤
⎥⎥⎦ ,G(x, x̂) =

⎡
⎢⎢⎣
sin x1
0

sin x̂1
0

⎤
⎥⎥⎦ ,

c(x) = sin2 x1, c(x̂) = sin2 x̂1, D(x) = D(x̂) = 0,

ΘT (x, x̂)Θ(x, x̂) = γ 2,

for some γ > 0. Let
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V (x, x̂) = a(1 − cos x1) + 1

2
x22 + a(1 − cos x̂1) + 1

2
x̂22 =⇒

Vx,x̂ (x, x̂) = [
a sin x1 x2 a sin x̂1 x̂2

]
,

w(x, x̂) = Vx,x̂ (x, x̂)G(x, x̂) = a sin2 x1 + a sin2 x̂1.

It turns out

Vx,x̂ (x, x̂) f̄ (x, x̂) + 1

2
cT (x)c(x) − 1

2
cT (x̂)c(x̂) + 1

2γ 2 w2(x, x̂)

=
(

−a + 1

2
+ a2

2γ 2

)
sin4 x1 + a2

γ 2 sin2 x1 sin
2 x̂1 +

(
−a − 1

2
+ a2

2γ 2

)
sin4 x̂1

= − a2

2γ 2 (sin2 x1 − sin2 x̂1)
2 +

(
−a + 1

2
+ a2

γ 2

)
sin4 x1 +

(
−a − 1

2
+ a2

γ 2

)
sin4 x̂1

≤
(

−a + 1

2
+ a2

γ 2

)
sin4 x1 +

(
−a − 1

2
+ a2

γ 2

)
sin4 x̂1.

It is evident that for

γ ≥ a√
a − 1

2

,

it holds

−a + 1

2
+ a2

γ 2
≤ 0,−a − 1

2
+ a2

γ 2
≤ 0.

As a result, the HJI (10.31) is satisfied. Next, notice that

L(x̂) =
[

1
a sin x̂1

0

]

solves
Vx̂ (x, x̂)L(x̂) = sin2 x̂1.

Hence, the NFDF can be constructed as

[ ˙̂x1˙̂x2
]

=
[
x̂2 − sin3 x̂1 + u sin x̂1 + sin x̂1

a (sin2 x1 − sin2 x̂1)
−a sin x̂1

]
,

r = sin2 x1 − sin2 x̂1.

In order to verify the L2-stability of the NFDF, we choose the input function
shown in Fig.10.1. The simulation results in Fig.10.2 show that the output sig-
nal r(t) of the NFDF is L2-bounded in the fault-free case with a = 0.6 and
x(0) = (1,−0.3), x̂(0) = (−1,−0.2). For the FD purpose, we choose a constant
sensor fault 0.7 occurred at 60 sec. With residual evaluation and threshold compu-
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Fig. 10.3 Detection of a sensor fault

tation method provided in Theorem 10.3, it is evident that the fault can be detected
as shown in Fig.10.3.

Example 10.3 In this example, we demonstrate the results of Theorem 10.4 for the
design of an L2-RNFDF and its application in fault detection. Consider the system
described by
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ẋ1 = −x2 − 2x31 + 1

2
x1d,

ẋ2 = x1 − x32 − 2x21 x2,

y = x21 + x22 .

To design an L2-RNFDF for the above system, we propose

V
(
x, x̂

) = x21 + x22 + x̂21 + x̂22 .

It can be verified that the HJI (10.39) is satisfied for γ ≥ 1
2 . According to (10.41),

the observer gain matrix is given by

L(x̂) = 1

2

[
x̂1
x̂2

]
,

which leads to the L2-RNFDF of the form

˙̂x1 = −x̂2 − 2x̂31 + 1

2
x̂1r,

˙̂x2 = x̂1 − x̂32 − 2x̂21 x̂2 + 1

2
x̂2r,

r = x21 + x22 − x̂21 − x̂22 .

Example 10.4 In this example, we compare two different fault detection schemes as
discussed in Sub-section10.3.4 and demonstrate that a residual generator delivers
better FD performance in comparison with an FD system based on a direct use of
the process input and output variables.

Consider the system described by

ẋ1 = −x31 + 1

2
x1u, ẋ2 = −x2 − x32 , y = x2 + 2u + w, (10.53)

where w represents a sensor fault.
First, it is demonstrated that the above system is L2-stable, and then (10.44) is

applied for the FD performance. To this end, let

V (x) = x21 + x22 .

It can be proved that the HJI (10.50) is satisfied for γu >
√
6, which leads to

‖yτ‖22 ≤ 6 ‖uτ‖22 + γo.

Assume that ‖x(0)‖ ≤ 0.5. It is then reasonable to set
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Jth = 6
∫ t0+τ

t0

‖u‖2 dt + 1. (10.54)

Next, we consider residual generator

˙̂x1 = −x̂31 + 1

2
x̂1u, ˙̂x2 = −x̂2 − x̂32 , r = y − x̂2 − 2u, (10.55)

and determine γ for the threshold setting given in (10.48) . Let

V (x, x̂) = x21 + x22 + x̂21 + x̂22 .

The HJI (10.47) holds for γ >
√
2
2 . Assume that

‖x(0)‖ ≤ 1,
∥∥x̂(0)∥∥ = 0.

The corresponding threshold is set to be
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Fig. 10.5 Fault detection based on y and u
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Fig. 10.6 Fault detection based on residual r

Jth = 1

2

∫ t0+τ

t0

‖u‖2 dt + 2. (10.56)

Comparing the two threshold setting laws, (10.54) and (10.56 ), makes it clear that
the FD performance delivered by the FD system (10.55) with threshold (10.56) is
(much) better than the one achieved by the FD system (10.53) and (10.54). In order
to demonstrate this, a constant sensor fault w = 1 is considered and added in the
simulation at t = 70 sec. We choose τ = 10 sec and the input function u(t) shown
in Fig.10.4. It can be seen from Fig.10.5 that, with the evaluation based on y and
threshold computation by means of (10.54), the fault cannot be detected, while a
fault detection based on residual evaluation of FD system (10.55) can be realised as
shown in Fig.10.6. The initial conditions are

x(0) =
[
0.3
0.2

]
, x̂(0) =

[
0
0

]
.

10.5 Notes and References

One of the most challenging topics in the FD research and application areas is non-
linear observer-based FDI. The review in [1] shows that the application of nonlinear
observer theory built the main stream in the nonlinear observer-based FD study
since 1990s. While the first studies have been mainly devoted to the application of
feedback-based linearisation and differential algebra techniques to observer-based
residual generator design [2–4], and the geometric approach to nonlinear FD [5], the
recent research efforts address systems with a special class of nonlinearities, typi-
cally Lipschitz nonlinearity [6, 7], sector bounded nonlinearity [8] or special types
of control systems like nonlinear NCSs (networked control systems) [9]. Differently,
[10–12] have investigated residual evaluation, threshold setting and residual genera-
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tor optimisation issues for nonlinear observer-based FD systems. It can be observed
that

• only few of these studies have dealt with residual generator and evaluation as well
as decision making in an integrated way, and

• most of efforts have been made on the FD system design but only few on analysis
issues.

In recent years, much attention has been paid to the application of those techniques
to addressing nonlinear FD issues, which are newly established for dealing with
analysis and synthesis of nonlinear dynamic systems more efficiently. For instance,
fuzzy technique based FD [13–16], adaptive fault diagnosis for nonlinear systems
[17, 18], LPV-based FD [19, 20] or sliding mode observer-based fault detection [21,
22] have been reported.

Having noticed that little attention has been paid to the existence conditions of
nonlinear observer-based FD systems and there is no commonly used conditions for
checking the existence of an observer-based FD system for nonlinear systems, we
have, in collaboration with Prof. Yang and Dr. Li, made considerable initial efforts
of approaching these issues. The first results of this work have been summarised in
[23, 24], which build the core of this and the next chapters.

Our collaborative work has been considerably inspired by the study on the input-
output stability and stabilisation in the past decades [25–28]. We notice that rich
results have been published at that time, and some of them are very helpful for our
tasks described above. For instance, the concept of weak detectability proposed in
[25] has been applied for our study on the existence conditions of FD systems, while
L2 -stability theory [28] is the major tool for our study on the integrated design of
FD systems.

In this chapter, observer-based FD issues for nonlinear systems are addressed. For
the purpose of determining the existence of an observer-based FD system, consisting
of an observer-based residual generator, residual evaluation and decision making,
we have first introduced

• two types of observer-based nonlinear FD systems, theL∞ andL2 observer-based
FD systems, and

• the concepts of output re-constructability aswell asweakoutput re-constructability.

The concept weak detectability was proposed in [25] and is widely used in the study
on the stabilisation of nonlinear systems by output feedback [27, 29].

It is proved that if a nonlinear system is output re-constructible, then an L∞
observer-based FD system exists. For constructing anL2 observer-based FD system,
the weakly output re-constructability is sufficient. As remarked, a similar proof of
Theorem 10.1 can be found in [30, 31] using IOS-Lyapunov function.

In the second part of our work, an integrated design scheme for affine nonlinear
systems with the aid of L2-stability theory is proposed and applied for investigating
FD issues for systems with unknown inputs and L2-stable systems.

We have included four academic examples to illustrate the major theoretical re-
sults. The first example, Example 10.1, is adopted from [32].
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Chapter 11
Parameterisation of Observer-Based
Fault Detection Systems

Recall that for a given LTI system modelled by

ẋ = Ax + Bu, y = Cx + Du,

all corresponding LTI residual generators can be parameterised by

r(s) = R(s)
(
M̂(s)y(s) − N̂ (s)u(s)

)
,

where R(s) is a stable post-filter and M̂(s), N̂ (s) are stable, left coprime and build
the LCF of G(s),

M̂−1(s)N̂ (s) = G(s) = D + C (s I − A)−1 B.

Moreover, it holds
M̂(s)y(s) − N̂ (s)u(s) = y(s) − ŷ(s),

where ŷ is the output estimate delivered by a full-order observer

˙̂x = Ax̂ + Bu + L(y − ŷ), ŷ = Cx̂ + Du.

System parameterisation is essential for system analysis and optimisation. This mo-
tivates us to investigate, in this chapter, the parameterisation issues of nonlinear
observer-based residual generators and fault detection systems. We consider nonlin-
ear systems described by

Σ : ẋ = f (x, u), y = h(x, u), (11.1)

where x ∈ Rn, u ∈ Rp, y ∈ Rm denote the state, input and output vectors, respec-
tively. f (x, u) and h(x, u) are continuously differentiable nonlinear functions with
appropriate dimensions. System (11.1) is called faulty if undesirable changes in the
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system dynamics are caused by some faults. It is supposed that the faulty system
dynamics is modelled by

Σ f : ẋ = f̄ (x, u, w), y = h̄(x, u, w) (11.2)

with w ∈ Rq denoting the fault vector. We call system (11.1) fault-free if

w = 0 and f̄ (x, u, 0) = f (x, u), h̄(x, u, 0) = h(x, u). (11.3)

Remember that the parameterisation of LTI residual generators has been inspired by
the well-known Youla parameterisation of all stabilising controllers and achieved by
means of the coprime factorisation technique. The parameterisation of stabilizing
controllers for nonlinear systems has been extensively investigated in the 90s. As
a powerful tool for this work, the factorisation technique and the nonlinear kernel
and image representations have been applied. Note that, also in this time period,
characterisations of the so-called input-to-output stability (IOS) of nonlinear sys-
tems have been intensively studied. Analogue to these works, in this chapter we will
first apply the nonlinear factorisation and input-output operator techniques to the
configuration study on observer-based residual generators, which leads to a param-
eterisation of observer-based residual generators in form of a cascade connection of
a system kernel representation and a post-filter. Based on a state space realisation of
the proposed parameterisation, a characterisation of the overall observer-based FD
systems including the residual evaluator and the threshold will then be studied. We
will focus on the existence conditions of the FD system parameterisation. To this
end, the concept of the IOS and some methods for system input/output stabilisation
will be applied.

11.1 Problem Formulation

Inspired by the LTI parameterisation form

r(s) = R(s)
(
M̂(s)y(s) − N̂ (s)u(s)

)
= R(s)

(
y(s) − ŷ(s)

)
,

our first task is to study if a nonlinear observer-based residual generator can be
parameterised by

r = ΣQ(y − ŷ), (11.4)

where ŷ will be delivered by a nonlinear FDF and ΣQ represents a (nonlinear)
dynamic system with y − ŷ as its input vector. To this end, we will apply the kernel
and image representations of nonlinear systems known in the literature. Based on
the parameterisation configuration (11.4), our second task is to find the existence
conditions for the parameterised residual generator and the associated thresholds
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with respect to the evaluation functions J2(r) and JE (r),

J2(r) = ‖r(t)‖22,τ or JE (r) = ‖r(t)‖2∞ , (11.5)

where the threshold determination is based on

Jth,2 = sup
w=0

J2(r), Jth,E = sup
w=0

JE (r). (11.6)

11.2 Parameterisation of Nonlinear Residual Generators

In this section, we address the parameterisation of residual generators for systems
described by (11.1). This work is mainly based on the well-established input-output
operator approach. To this end, we will adopt, beside the standard notation and the
notations defined in Sub-section10.1.4, the following notations.

A signal space U denotes a vector space of functions from a time domain to an
Euclidean vector space. U s represents the subset of all the bounded signals in U .
An operator Σ with an input signal space U , an output signal space Y and an initial
condition x0 ∈ X0 is denoted by Σ x0 : U → Y . It is said to be stable if

∀x0, u ∈ U s ⇒ Σ x0(u) ∈ Y s .

The cascade connection of two systems Σ
ξ0
1 : U × Y → Z and Σ

ς0
2 : L → U × Y

is denoted by Σ
ξ0
1 ◦ Σ

ς0
2 : L → Z .

For our purpose, we now introduce some definitions. Let

Σ x0 : U → Y,Σ
x0
f : U × W → Y

be the operator of (11.1) and (11.2), respectively, and assume that

Σ x0(u) = Σ
x0
f

(
u
0

)
.

Definition 11.1 Given Σ x0 ,Σ
x0
f , the fault vector w( 	= 0) is said to be detectable if

for some u, x0,

Σ x0(u) 	= Σ
x0
f

(
u
w

)
.

It is reasonable that in our study only detectable faults are considered.

Definition 11.2 An operator Rξ0
Σ : U s × Y s → Rs is called (stable) residual gen-

erator if
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⎧⎪⎪⎨
⎪⎪⎩

∀u, x0, ∃ξ0 so that R
ξ0
Σ

(
u
y

)
= 0 for w = 0,

Rξ0
Σ

(
u
y

)
	= 0 for detectable w 	= 0.

(11.7)

The output of Rξ0
Σ,

r = Rξ0
Σ

(
u
y

)
,

is called residual vector.

Condition (11.7) means that the residual generator is driven by the process input and
output vectors, u, y, and the residual vector r should be zero in the fault-free case.
Note that x, ξ may have different dimensions.

Definition 11.3 A stable kernel representation (SKR) of the operator Σ x0 : U → Y
is an operator K x̂0

Σ : U s × Y s → Zs such that, for any x̂0 = x0,

K x̂0
Σ

(
u
y

)
= z = 0, z ∈ Rm . (11.8)

A stable image representation (SIR) of the operator Σ x0 : U → Y is an operator
IΣ x0 : Ls → U s × Y s such that ∀x0, u and the resulting y = Σ x0(u) there exists l
so that (

u
y

)
= IΣ x0 (l). (11.9)

The SKR and SIR defined above can be interpreted as an extension of the LTI SKR
and SIR introduced and addressed in the previous chapters. Note that z would be
different from zero when x̂0 	= x0. For an SKR, z is bounded, that is z ∈ Zs . In the
subsequent section, we shall present the existence conditions for this case. As a dual
form, the SIR means, for any l ∈ Ls and initial condition, IΣ x0 (l) delivers

u ∈ U s, y ∈ Y s, y = Σ x0(u).

Notice that by means of an SKR we are able to define an operator for an output
observer as follows

Ŷ x̂0
Σ : ŷ = y − K x̂0

Σ

(
u
y

)
. (11.10)

In other words, designing an output observer can be viewed equivalently as a problem
of finding an SKR, as we know in the LTI case.

The SKR and SIR of Σ x0 are two alternative description forms of Σ x0 , and both
of them are stable operators. It follows directly from SKR and SIR definitions that

K x0
Σ ◦ IΣ x0 = 0. (11.11)
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The following definition is needed for introducing the inverses of K x̂0
Σ , IΣ x0 .

Definition 11.4 The SKR K x̂0
Σ is said to be coprime if it has a stable right inverse

K−
Σ : Zs→ U s×Y s satisfying

K x̂0
Σ ◦ K−

Σ = I. (11.12)

Analogue to it, the SIR IΣ x0 is said to be coprime if it has a stable left inverse
I−
Σ : U s×Y s→ Ls satisfying

I−
Σ ◦ IΣ x0 = I. (11.13)

We would like to remark that the definition of the SKR is known in the literature.
The definition of the SIR is a dual form, which is closely related to the definition
of right coprime factorisation of a nonlinear operator (system), also known in the
literature. In the sequel, SKR will be applied for our study on the configuration of
observer-based residual generators. In the next section, the existence condition for
an SKR will be addressed in the context of FD systems.

We are now in a position to present a parameterisation of the nonlinear residual
generators.

LetΣς0
Q : Zs → Rs,Σ

ς0
Q 	= 0, be a stable system operator that satisfiesΣ

ς0
Q (0) =

0.Consider the cascade connectionΣ
ς0
Q ◦K x̂0

Σ .Since in the fault-free case for x̂0 = x0,

z = K x̂0
Σ

(
u
y

)
= 0,

we have

Σ
ς0
Q ◦ K x̂0

Σ

(
u
y

)
= Σ

ς0
Q (0) = 0.

On the other hand, for a detectable fault w, y = Σ
x0
f (u, w) 	= Σ x0(u), which leads

to

z = K x̂0
Σ

(
u
y

)
	= K x̂0

Σ

(
u

Σ x0(u)

)
= 0 =⇒

Σ
ς0
Q ◦ K x̂0

Σ

(
u
y

)
= Σ

ς0
Q (z) 	= 0.

Thus, according to Definition 11.2, Σς0
Q ◦ K x̂0

Σ builds a residual generator. This result
is summarised in the following theorem.

Theorem 11.1 Let K x̂0
Σ be the coprime SKR of Σ x0 and Σ

ς0
Q be any stable system.

Then,
Rξ0

Σ = Σ
ς0
Q ◦ K x̂0

Σ (11.14)

is a stable nonlinear residual generator with Σ
ς0
Q as a post-filter.
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Note that in the cascade configuration Σ
ς0
Q ◦ K x̂0

Σ , K x̂0
Σ is determined by the system

Σ x0 under consideration. In against, the post-filter Σ
ς0
Q is a stable system and can

be arbitrarily constructed. In this sense, Σς0
Q is understood as a parameter operator

(system) and the cascade configuration is called parameterisation form of nonlinear
residual generators.

In some applications, for instance in a closed-loop feedback control system, the
input vector u is a function of the system state variables or output vector. As a result,
the SKR of the system can be simply written as

K x̂0
Σ (y) = z, z ∈ Rm . (11.15)

In this case, we have the following theorem, which provides us with a parameterisa-
tion of all stable generators in terms of the system SKR.

Theorem 11.2 Let K x̂0
Σ be the coprime SKR given in (11.15) and Σ

ς0
Q be a stable

post-filter. Then, any stable residual generator Rξ0
Σ can be parameterised by

Rξ0
Σ = Σ

ς0
Q ◦ K x̂0

Σ . (11.16)

Proof Since K x̂0
Σ is the coprime kernel, we have stable K−

Σ and (11.12) holds. It
follows from the definition of SKR that

z = K x̂0
Σ ◦ K−

Σ (z) = K x̂0
Σ (y) =⇒ y = K−

Σ (z)

=⇒ Rξ0
Σ (y) = Rξ0

Σ ◦ K−
Σ(z) = Rξ0

Σ ◦ K−
Σ ◦ K x̂0

Σ (y) .

Setting
Σ

ς0
Q = Rξ0

Σ ◦ K−
Σ (11.17)

gives the final result
Rξ0

Σ = Σ
ς0
Q ◦ K x̂0

Σ .

Thus, the theorem is proved.

11.3 Parameterisation of Nonlinear Fault Detection
Systems

In the last section, we have discussed about the configuration of the parameterised
residual generators. We now extend this work to an overall FD system including
a residual generator, an evaluation function and a threshold. Our major focus is
on the state space realisation and the existence conditions of the parameterisation
of observer-based FD systems. We will first describe the state space configuration,
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provide the existence conditions and finally characterise the threshold settings cor-
responding to the two types of evaluation functions, JE (r) and J2(r). In this context,
nonlinear observer-based FD systems will be parameterised.

11.3.1 State Space Configuration

Consider nonlinear systems (11.1) and the parameterisation form of nonlinear resid-
ual generators given in (11.14). We assume that

‖h (x1, u) − h (x2, u)‖ ≤ α (‖x1 − x2‖)

with α (·) being aK-function. Suppose that the state space representation of the SKR
K x̂0

Σ is of the following form

K x̂0
Σ :

{ ˙̂x = φ(x̂, u, y), x̂(0) = x̂0,

z = ϕ(x̂, u, y),
(11.18)

where x̂ ∈ Rn, z ∈ Rm . Recall that

ŷ = y − ϕ(x̂, u, y) (11.19)

delivers an estimate for y. Since for every initial condition x̂(0) = x(0), we have

ϕ(x̂, u, y) = 0 =⇒ ŷ = h
(
x̂, u

)
.

Thus, it is reasonable to write z as

z = y − ŷ = y − h
(
x̂, u

)
. (11.20)

Note that ˙̂x = φ(x̂, u, y), ŷ = h
(
x̂, u

)
(11.21)

is an output observer. We call system (11.18) with

ϕ(x̂, u, y) = y − ŷ = y − h
(
x̂, u

)

nonlinear FDF.
Let the state space form of Σ

xq,0

Q be

Σ
xq,0

Q :
{
ẋq = fq(xq , z), xq(0) = xq,0,

r = hq(xq).
(11.22)
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Then, the state space representation of the parameterised form of the observer-based
residual generators is given by

Rξ0
Σ :

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

˙̂x = φ(x̂, u, y), x̂(0) = x̂0,

z = y − ŷ = y − h
(
x̂, u

)
,

ẋq = fq(xq , z), xq(0) = xq,0,

r = hq(xq),

ξ0 =
[

x̂0
xq,0

]
. (11.23)

Recall that two types of evaluation functions JE (r), J2(r) and, associated with them,
the thresholds Jth,E , Jth,2 have been defined, as given in (11.6). Corresponding to
them and as defined in Definition 10.2, we call

• an FD system with the observer-based residual generator (11.23 ), residual evalu-
ation function JE (r) and threshold Jth,E L∞-class FD system,

• an FD system with the observer-based residual generator (11.23), residual evalu-
ation function J2(r) and threshold Jth,2 L2-class FD system.

Asmentioned in the previous section, x̂0 is in general different from x0.Consequently,
the output of the kernel system is different from zero and depends on x(0) − x̂(0) =
x0 − x̂0 as well as on input u. For the FD purpose, a residual evaluation function and,
associated with it, a threshold are needed to avoid false alarms. This is in fact the
motivation for our subsequent study on the parameterisation of the threshold settings
based on the estimation of the possible influence of x(0)− x̂(0) and u on the residual
vector. In the next two subsections, we are going to address the parameterisation of
the threshold settings for the L∞-class and L2-class FD systems, respectively.

11.3.2 L∞-class FD systems

For our purpose, we first recall a definition which is well known in system stability
analysis and serves the characterisation of the L∞-class FD systems.

Definition 11.5 A nonlinear system

Σ
xq,0

Q :
{
ẋq = fq(xq , z), xq(0) = xq,0,

r = hq(xq)
(11.24)

is said to be input-to-output stable (IOS) if there exist functions β(·, t) ∈ KL and
σ(·) ∈ K such that

||r(t)|| ≤ β(||xq,0||, t) + σ(||z||∞), t ≥ 0. (11.25)

For our purpose, we suppose that system (11.1) is output re-constructible (ORC), as
defined in Chap.10. That is, there exists a nonlinear system
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{ ˙̂x = φ(x̂, u, y), x̂(0) = x̂0,

ŷ = h(x̂, u)
(11.26)

such that ∀x, x̂ ∈ Bδ, ‖u‖∞ ≤ δu,

||y(t) − ŷ(t)|| = ||z(t)|| ≤ β(||x0 − x̂0||, t), (11.27)

where δ, δu > 0, β(·, t) ∈ KL.
The following results follow immediately from Definition 11.5 and ORC.

Theorem 11.3 Assume that system (11.1) is ORC and the post-filter (11.22) is IOS.
Let xq(0) = xq,0 = 0. Then, there exists γ (·) ∈ K so that ∀t ≥ 0

||r(t)|| ≤ γ
(||x0 − x̂0||

) =⇒ Jth,E = (γ (δo))
2 , (11.28)

where δo = max ||x0 − x̂0||.
Proof It follows from the IOS definition that for xq(0) = xq,0 = 0, t ≥ 0,

∃σ(·) ∈ K s.t. ||r(t)|| ≤ σ (||z||∞) .

Furthermore, the output re-constructability of the system (11.1) ensures the existence
of a KL-function β(||x0 − x̂0||, t) so that

||z(t)|| ≤ β(||x0 − x̂0||, t) ≤ max
||x(0)−x̂(0)||≤δo

β(||x0 − x̂0||, t)
= β(δo, 0) ≥ ||z||∞.

Let
γ (δo) = σ (β(δo, 0)) .

It turns out ∀t ≥ 0

JE (r) = ||r(t)||2 ≤ (γ (δo))
2 =: Jth,E .

The theorem is thus proved.

Theorem11.3 reveals that under certain conditions the threshold canbeparameterised
by the parameter function γ and δo, as shown in (11.28). Moreover, applying the
existing results on the existence conditions of IOS and ORC to Theorem 11.3 leads
to the following corollary.
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Corollary 11.1 Given the system (11.1), the post-filter (11.22) and suppose that
there exist

• a function φ : Rn × Rp × Rm → Rn,

• functions V (x, x̂) : Rn × Rn → R+, ϕi (·) ∈ K, i = 1, 2, 3, and constants
δ, δu > 0 such that ∀x, x̂ ∈ Bδ, ‖u‖∞ ≤ δu,

ϕ1
(∥∥y − ŷ

∥∥) ≤ V (x, x̂) ≤ ϕ2
(∥∥x − x̂

∥∥)
,

Vx (x, x̂) f (x, u) + Vx̂ (x, x̂)φ(x̂, u, y) ≤ −ϕ3
(∥∥x − x̂

∥∥)
,

• Vq(xq) : Rnq → R+, α1(·), α2(·) ∈ K∞ as well as χ(·) ∈ K, α3(·) ∈ KL such
that

α1(
∥∥h(xq)

∥∥) ≤ Vq(xq) ≤ α2(
∥∥xq

∥∥),∀xq ∈ Rnq ,

Vq(xq) ≥ χ(‖z‖) =⇒
∂Vq(xq)

∂xq
fq(xq , z) ≤ −α3

(
Vq(xq),

∥∥xq
∥∥)

.

Then, there exists γ (·) ∈ K so that ∀t ≥ 0

||r(t)|| ≤ γ
(||x0 − x̂0||

)
. (11.29)

Proof It follows from Theorem 10.1 that the first two conditions are sufficient for
the system under consideration being ORC. Moreover, the third condition is well-
known as a necessary and sufficient condition for a system being IOS. As a result of
Theorem 11.3, we finally have (11.29).

It is of interest to note that it follows from (11.10) that for x0 = x̂0 it holds y = ŷ.
Thus, if system (11.1) is ORC, there exists an SKR. Conditions 1 and 2 given in the
corollary are sufficient conditions for the existence of the SKR.

11.3.3 L2-class FD systems

In the sequel, we studyL2-class FD systems. To this end,we first review the definition
of L2-stable systems known in the literature.

Definition 11.6 A nonlinear system

Σ
xq,0

Q :
{
ẋq = fq(xq , z), xq(0) = xq,0,

r = hq(xq)

is said to be L2-stable if for some constant γ ≥ 0
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‖r‖22,τ ≤ γ 2 ‖z‖22,τ + γo(xq,0), (11.30)

where γo ≥ 0 is a (finite) constant for given xq,0.

For the existence of L2-class FD systems with the parameterisation configuration
given in Theorem 11.1 we have the following result.

Theorem 11.4 Given the observer-based residual generator (11.23) and assume
that the post-filter (11.22) is L2-stable with xq(0) = 0. If there exist

• a function φ : Rn × Rp × Rm → Rn,

• functions V (x, x̂) : Rn × Rn → R+, ϕ1 (·) ∈ K, ϕ2 (·) ∈ K∞, such that

0 ≤ V (x, x̂) ≤ ϕ1
(∥∥x − x̂

∥∥)
,

and

Vx (x, x̂) f (x, u) + Vx̂ (x, x̂)φ(x̂, u, y)

≤ −‖z‖2 + ϕ2(‖u‖), z = y − h(x̂, u), (11.31)

then it holds

‖r‖22,τ ≤ γ 2
∫ τ

0
ϕ2(||u(t)||)dt + γ0 =⇒

Jth,2 = γ 2
∫ τ

0
ϕ2(||u(t)||)dt + γ0, (11.32)

γ0 = γ 2 max
x0,x̂0

ϕ1
(∥∥x0 − x̂0

∥∥)
.

Proof It follows from (11.31) that

∫ τ

0
‖z‖2 dt ≤

∫ τ

0
ϕ2(||u||)dt + V (x(0), x̂(0)).

Since the post-filter (11.22) is L2-stable with xq(0) = 0 and

V (x(0), x̂(0)) ≤ ϕ1
(∥∥x0 − x̂0

∥∥)
,

it turns out

J2(r) = ‖r‖22,τ ≤ γ 2 ‖z‖22,τ
≤ γ 2

(∫ τ

0
ϕ2(||u(t)||)dt + ϕ1

(∥∥x0 − x̂0
∥∥))

≤ γ 2
∫ τ

0
ϕ2(||u(t)||)dt + γ 2 max

x0,x̂0
ϕ1

(∥∥x0 − x̂0
∥∥)

.
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As a result, we set

Jth,2 = γ 2
∫ τ

0
ϕ2(||u(t)||)dt + γ0,

which completes the proof.

In the FD research, the threshold (11.32) is called adaptive threshold, since it is a
function of ||u(t)||. It is evident that Jth,2 is parameterised by γ, the L2-gain of the
post-filter, ϕ2(||u(t)||) and γ0. It should be pointed out that in the existing studies, an
adaptive threshold is generally parameterised by theL2-gain of the residual generator.
In the above study, additional degree of design freedom is introduced in terms of the
parameter function ϕ2,which can be, for instance, used for the purpose of improving
FD performance.

It can be seen that the threshold settings for Jth,E , Jth,2 depend on the boundedness
of the uncertain initial values x0 − x̂0. In order to cover all possible situations, this
boundedness should be theoretically set very large, which may lead to conservative
threshold setting. One way to solve this problem is to apply the so-called randomised
algorithms, which provides a tool to handle the uncertainty in the statistical frame-
work and thus lead to an efficient threshold setting.

11.4 Notes and References

In this chapter, we have addressed parameterisation of nonlinear observer-based FD
systems. Motivated by the known parameterisation scheme for LTI residual gener-
ators and the important role of a parameterisation in FD system analysis and opti-
misation [1], we have studied the parameterisation issues in two steps. With the aid
of nonlinear factorisation and input-output operator theories, it has been first proved
that any stable residual generator can be parameterised by a cascade connection of
the process SKR and a post-filter that represents the parameter system. In the second
step, based on the state space representation of the parameterised residual generator,
L∞- and L2-classes FD systems have been investigated. As a result, the threshold
settings for both classes of FD systems have been parameterised and, associated with
them, some existence conditions have been characterised.

Nonlinear factorisation and input-output operator theories aremathematicalmeth-
ods that have been intensively applied to the investigation of parameterisation of
nonlinear stabilising controllers in the 90s. We have referred a series of publica-
tions on this topic [2–5] for our work on the parameterisation of nonlinear residual
generations. In our study on L∞-class observer-based FD systems, the concept of
input-to-output stability described in Definition 11.5 and some relevant results play
an essential role. We refer the reader to [6, 7] for details. Concerning the L2-class
FD systems, the definition of L2-stable systems, Definition 11.6, has been adopted,
which can be found in [8].
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In real applications, disturbances can considerably affect the FD performance. In
order to deal with nonlinear systems with unknown inputs like disturbances, most
of the results achieved in this chapter should be extended to take into account the
disturbances.

It is obvious that applying the developed approaches to the design of L∞- and
L2-classes FD systems is a challenging task. It deals with solving those inequalities
as given in Corollary 11.1 or in Theorem 11.4. A possible solution for them is to
apply some well-established nonlinear techniques. The first efforts to this end have
been reported in [9–11], in which the Takagi-Sugeno (T-S) fuzzy technique has been
successfully applied to the design of nonlinear observer-based FD systems.
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Chapter 12
Optimal Fault Detection of a Class of
Nonlinear Systems

Having investigated the existence conditions and parameterisation of nonlinear
observer-based fault detection systems in the previous two chapters, we now de-
vote our attention to the solution of the optimal fault detection problem formulated
in Definition 2.4, the so-called FD with maximum fault detectability, for a class of
nonlinear systems.

Recall that Theorem2.1 provides us with a general form of the solutions for
the problem of FD with maximum fault detectability. For linear dynamic systems,
such a solution can be realised by a co-inner-outer factorisation, as demonstrated in
Chaps. 4 and 7. This motivates our study on a co-inner-outer factorisation of a class
of nonlinear systems aiming at introducing a tool to deal with nonlinear FD issues
in a systematic way.

The basic idea behind this work is sketched in Fig. 12.1, where Σ stands for the
system

y = Σ(d)

with the output vector y and unknown input vector d, and

Σ = Π ◦ Θ

represents the co-inner-outer factorisation ofΣ withΠ as a co-outer andΘ co-inner.
As a result, an optimal residual generation is realised by implementing

r = Π−1y = Π−1 ◦ Π ◦ Θ(d) = Θ(d).

That is, the inverse of the co-outer Π−1 is the post-filter in the configuration of
residual generator parametrisation. It allows then an (optimal) threshold setting

Jth = δd = sup
d

‖d‖2 ,

and the detection logic
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Fig. 12.1 Schematic description of co-inner-outer factorisation based fault detection

J = ‖r‖2 , J − Jth =
{≤ 0, fault-free,

> 0, faulty.

Our subsequent study will focus on the definition and solution of co-inner-outer
factorisation of a class of nonlinear systems. The objective is to introduce a tool to
deal with nonlinear FD issues in a systematic way. Our major attention will be paid
to the basic ideas, concepts and design schemes.

12.1 System Models and Preliminaries

12.1.1 System Model and Hamiltonian Systems

Consider nonlinear affine systems

Σ : ẋ = a(x) + B(x)d, y = c(x) + D(x)d, (12.1)

where x ∈ Rn, y ∈ Rm are process state and output vectors, and d ∈ Rp denotes the
(unknown) input vector. a(x), B(x), c(x), D(x) are smooth functions of appropriate
dimensions. The system model (12.1) can be understood as the dynamic model of
an observer-based residual generator with d denoting the composition of the system
input and disturbance vectors. Our task, remembering the discussion at the beginning
of this chapter, is to design a post-filter. For our purpose, we assume that

• system Σ is stable and x = 0 is the asymptotically stable equilibrium point of
a(x),

• p ≥ m and D(x)DT (x) is invertible.

The Hamiltonian extension of Σ is a dynamic system described by
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ẋ = a(x) + B(x)d,

ṗ = −
(

∂a

∂x
(x) + ∂B

∂x
(x)d

)T

p −
(

∂c

∂x
(x) + ∂D

∂x
(x)d

)T

da,

y = c(x) + D(x)d,

ya = BT (x)p + DT (x)da,

ya ∈ Rp, da ∈ Rm

with inputs (d, da), outputs (y, ya) and state variables (x, p) . Let

da = y = c(x) + D(x)d. (12.2)

We then obtain the Hamiltonian system (DΣ)T ◦ Σ as

ya = (DΣ)T ◦ Σ (d) ,

(DΣ)T ◦ Σ :

⎧⎪⎪⎨
⎪⎪⎩

ẋ = a(x) + B(x)d,

ṗ = − (
∂a
∂x (x) + ∂B

∂x (x)d
)T

p

− (
∂c
∂x (x) + ∂D

∂x (x)d
)T

(c(x) + D(x)d) ,

ya = BT (x)p + DT (x) (c(x) + D(x)d) .

(12.3)

Analogue to it, defining

ya = d =⇒ d = BT (x)p + DT (x)da, (12.4)

leads to the Hamiltonian system

y = Σ ◦ (DΣ)T (da) ,

Σ ◦ (DΣ)T :

⎧⎪⎪⎨
⎪⎪⎩

ẋ = a(x) + B(x)BT (x)p + B(x)DT (x)da,

ṗ = − (
∂a
∂x (x) + ∂B

∂x (x)
(
BT (x)p + DT (x)da

))T
p

− (
∂c
∂x (x) + ∂D

∂x (x)
(
BT (x)p + DT (x)da

))T
da,

y = c(x) + D(x)BT (x)p + D(x)DT (x)da .

(12.5)

Now, let

H (x, p, d) = pT (a(x) + B(x)d) + 1

2
(c(x) + D(x)d)T (c(x) + D(x)d) ,

(12.6)

H (x, p, da) = pT
(
a(x) + 1

2
B(x)BT (x)p + B(x)DT (x)da

)

+ cT (x)da + 1

2
dT
a D(x)DT (x)da (12.7)
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be the Hamiltonian functions, then the Hamiltonian systems (DΣ)T ◦Σ, Σ ◦(DΣ)T

can be further written, respectively, as

(DΣ)T ◦ Σ :
⎧⎨
⎩
ẋ = ∂H

∂p (x, p, d) ,

ṗ = − ∂H
∂x (x, p, d) ,

ya = ∂H
∂d (x, p, d) ,

(12.8)

Σ ◦ (DΣ)T :
⎧⎨
⎩
ẋ = ∂H

∂p (x, p, da) ,

ṗ = − ∂H
∂x (x, p, da) ,

y = ∂H
∂da

(x, p, da) .

(12.9)

In the literature, it is well-known that for LTI systems, the Hamiltonian systems
(DΣ)T ◦ Σ and Σ ◦ (DΣ)T are, on the assumption that Σ is expressed by transfer
function matrix G(s),

(DΣ)T ◦ Σ = GT (−s)G(s),Σ ◦ (DΣ)T = G(s)GT (−s) ,

respectively. For our purpose of investigating co-inner-outer as well as inner-outer
factorisations, the Hamiltonian systems (DΣ)T ◦ Σ and Σ ◦ (DΣ)T are essential.

12.1.2 Inner

Recall that the basic idea behind our work is to construct such a residual generator
whose dynamics is co-inner. To this end, we first study the definition and existence
conditions of a co-inner system. Unfortunately, there are few existing results on this
topic. This motivates us to begin with a review of the definition and associated results
on an inner system, which can be found in the literature to some extent.

For an LTI system y(s) = G(s)d(s), it is inner if

GT (−s)G(s) = I,

which means in turn

ya(s) = d(s), ya(s) = GT (−s) y(s).

From this point of view, Scherpen and van der Schaft have, in their work in 1994,
introduced the definition that the nonlinear affine system (12.1) is inner if it holds,
for the Hamiltonian system (DΣ)T ◦ Σ (12.8),

ya = d. (12.10)

In addition, an important application of an inner system is the property that
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‖y‖2 = ‖d‖2 .

This property can be equivalently described in the framework of energy balance and
is called lossless with respect to the (L2-gain) supply rate

s(d, y) = 1

2
dT d − 1

2
yT y.

That is, there exists a storage function P(x) ≥ 0, P(0) = 0 so that

P (x (t2)) − P (x (t1)) =
t2∫

t1

s(d, y)dτ = 1

2

t2∫
t1

(
dT d − yT y

)
dτ. (12.11)

In their work on inner-outer factorisation, Petersen and van der Schaft have defined
an inner system bymeans of the lossless property of a system. They call the nonlinear
affine system (12.1) inner if it is lossless with respect to the above defined L2-gain
supply rate.

It is awell-known result that the existence condition for the nonlinear affine system
(12.1) being lossless in sense of (12.11) is that

Px (x) = ∂P(x)

∂x

solves the following equations

Px (x) a(x) + 1

2
cT (x)c(x) = 0, (12.12)

Px (x) B(x) + cT (x)D(x) = 0, (12.13)

DT (x)D(x) = I. (12.14)

Recall that for Hamiltonian system (12.3)

ya = BT (x)p + DT (x) (c(x) + D(x)d) .

As a result, for pT (x) = Px (x) , it holds, according to (12.13) and (12.14),

ya = d.

Notice that for pT (x) = Px (x) ,

H (x, p, d) = pT (a(x) + B(x)d) + 1

2
(c(x) + D(x)d)T (c(x) + D(x)d)

= Ṗ (x) + 1

2
yT y.
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On the other hand, it follows from (12.12)–(12.14) that

pT (a(x) + B(x)d) + 1

2
(c(x) + D(x)d)T (c(x) + D(x)d)

= Px (x) a(x) + 1

2
cT (x)c(x) + (

Px (x) B(x) + cT (x)D(x)
)
d + 1

2
dT d

= 1

2
dT d.

Thus, solving (12.12)–(12.14) leads to

Ṗ (x) = 1

2
dT d − 1

2
yT y.

In summary, we can claim that both definitions for the nonlinear affine system (12.1)
being inner, (12.10) and (12.11), are equivalent, when there exists Px (x) that solves
(12.12)–(12.14).

12.2 Definition of Co-Inner

To our best knowledge, there exist rarely reported results on the topic of co-inner
systems. In their work in 1994, Scherpen and van der Schaft have, analogue to the
definition of inner systems, defined a co-inner system as follows: the system (12.1)
is called co-inner if it holds for the Hamiltonian system (12.9)

y = da . (12.15)

Moreover, it has been proved that (12.15) becomes true when there exists P (x) that
solves

c(x) + D(x)BT (x)PT
x (x) = 0, (12.16)

D(x)DT (x) = I. (12.17)

In addition, when P (x) also solves the following equation

Px (x) a(x) + 1

2
Px (x) B(x)BT (x)PT

x (x) = 0, (12.18)

it holds, for pT = Px (x) ,
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H (x, p, da) = pT
(
a(x) + 1

2
B(x)BT (x)p + B(x)DT (x)da

)

+cT (x)da + 1

2
dT
a D(x)DT (x)da

= 1

2
dT
a da = 1

2
yT y.

On the other hand, it can be noticed that

Ṗ (x) + 1

2
yTa ya = Ṗ (x) + 1

2
dT d

= Px (x)
(
a(x) + B(x)BT (x)PT

x (x) + B(x)DT (x)da
)

+ 1

2

(
BT (x)PT

x (x) + DT (x)da
)T (

BT (x)PT
x (x) + DT (x)da

)
,

which is obviously different from H (x, p, da) . That means, in other words, a co-
inner system defined above is not lossless with respect to the supply rate

1

2
dT
a da − 1

2
yTa ya = 1

2
yT y − 1

2
dT d.

This observationmotivates us to introduce a definition of co-inner,which is of lossless
property, as an analogue form of the inner definition given by Petersen and van der
Schaft.

Notice that for pT = Px (x) ,

H (x, p, da) − yT da = Ṗ (x) − 1

2
yTa ya .

In addition, if (12.16)–(12.18) hold, it turns out

H (x, p, da) − yT da = −1

2
dT
a da, y = da .

As a result, we have

Ṗ (x) − 1

2
yTa ya = −1

2
dT
a da =⇒ Ṗ (x) = 1

2
yTa ya − 1

2
dT
a da = 1

2
dT d − 1

2
yT y.

It is known in the literature that

H× (x, p, y) = H (x, p, da) − yT da (12.19)

can be interpreted as the Hamiltonian function of the inverse of Σ ◦ (DΣ)T ,

da = (
Σ ◦ (DΣ)T

)−1
(y) . (12.20)
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Considering that

y = c(x) + D(x)BT (x)p + D(x)DT (x)da =⇒ da = E−1(x)
(
y − ĉ(x, p)

)
,

=⇒ ẋ = a(x) + B(x)BT (x)p + B(x)DT (x)E−1(x)
(
y − ĉ(x, p)

)
,

ĉ(x, p) = c(x) + D(x)BT (x)p, E(x) = D(x)DT (x), ya = d,

system
(
Σ ◦ (DΣ)T

)−1
can be written as

(
Σ ◦ (DΣ)T

)−1 :

⎧⎪⎨
⎪⎩
ẋ = ∂H×(x,p,y)

∂p ,

ṗ = − ∂H×(x,p,y)
∂x ,

da = − ∂H×(x,p,y)
∂y ,

(12.21)

where

H× (x, p, y) = H (x, p, da) − yT da

= pT
(
a(x) + 1

2
B(x)BT (x)p + B(x)DT (x)da

)

+ cT (x)da + 1

2
dT
a D(x)DT (x)da − yT da

= pT
(
a(x) + 1

2
B(x)BT (x)p

)
− 1

2
dT
a D(x)DT (x)da

= pT
(
a(x) + 1

2
B(x)BT (x)p

)
− 1

2

(
y − ĉ(x, p)

)T
E−1(x)

(
y − ĉ(x, p)

)
.

(12.22)

Motivated by the above discussion, we now introduce the definition of a co-inner
system.

Definition 12.1 System (12.1) is called co-inner, when

• the input to output map of the Hamiltonian system (12.21) from y to da is identity,
• there exists a function P(x) ≥ 0, P (0) = 0 such that for all t1 ≥ t0, d

P (x (t1)) − P (x (t0)) = 1

2

t1∫
t0

(
dT d − yT y

)
dτ. (12.23)

We would like to remember that in Sect. 7.4 we have introduced the co-inner def-
inition for linear (time-varying) systems, and discussed about the lossless property
of a co-inner system. From the viewpoint that fault detection is indeed an infor-
mation extraction problem, we have introduced the concept lossless with respect to
information transform rate. According to this definition, we also call
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s(d, y) := 1

2
dT d − 1

2
yT y

information transform rate.
For the existence of co-inner system, we have the following theorem.

Theorem 12.1 System (12.1) is co-inner, when

∂P(x)

∂x
a(x)+1

2

∂P(x)

∂x
B(x)BT (x)

∂PT (x)

∂x
= 0, (12.24)

c(x)+D(x)BT (x)
∂PT (x)

∂x
= 0, (12.25)

D(x)DT (x) = I (12.26)

are solvable for P(x) ≥ 0.

The proof of the above theorem is straightforward along the lines given in the
literature for the proof of the existence conditions of an inner system. See also the
above discussion.

12.3 Co-inner-outer Factorisation

12.3.1 Basic Idea

With the definition of co-inner, we are now in a position to begin with the study on
our initial problem: find a solution for the co-inner-outer factorisation problem. To
this end, we follow the idea of an existing solution for the inner-outer factorisation
problem, which has been reported in the paper by Ball and van der Schaft in 1996.

Suppose that
Σ = Π ◦ Θ

is a co-inner-outer factorisation of the nonlinear affine systemΣ given in (12.1) with
co-inner Θ and co-outer Π. We denote the state space realisation of Π by

Π :
{ ˙̄x = ā(x̄) + B̄(x̄)ȳ,
y = c̄(x̄) + D̄(x̄)ȳ,

(12.27)

where ȳ is the output of the co-inner Θ. Moreover, let

H× (x̄, p̄, y) = p̄T
(
ā(x̄) + 1

2
B̄(x̄)B̄T (x̄) p̄

)

− 1

2

(
y − ĉ(x̄, p̄)

)T
Ē−1(x̄)

(
y − ĉ(x̄, p̄)

)
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be Hamiltonian function of
(
Π ◦ (DΠ)T

)−1
with

Ē(x̄) = D̄(x̄)D̄T (x̄), ĉ(x̄, p̄) = c̄(x̄) + D̄(x̄)B̄T (x̄) p̄.

We have

(
Π ◦ (DΠ)T

)−1 :

⎧⎪⎨
⎪⎩

˙̄x = ∂H×(x̄, p̄,y)
∂ p̄ ,

˙̄p = − ∂H×(x̄, p̄,y)
∂ x̄ ,

d̄a = Ē−1(x̄)
(
y − ĉ(x̄, p̄)

) = − ∂H×(x̄, p̄,y)
∂y .

(12.28)

Since Θ is co-inner, it holds

Σ ◦ (DΣ)T = Π ◦ (DΠ)T =⇒ (
Σ ◦ (DΣ)T

)−1 = (
Π ◦ (DΠ)T

)−1
. (12.29)

It follows from the pioneering work by Ball and van der Schaft that there should
exist a canonical transformation, (x, p) −→ (x̄, p̄), such that

H× (x̄, p̄, y) = H× (x, p, y) . (12.30)

Analogue to the procedure proposed by Ball and van der Schaft for finding an outer
system, in the subsequentworkwewill solve the co-inner-outer factorisation problem
by

• firstly determining the canonical transformation (x, p) −→ (x̄, p̄) which results
in (12.30),

• based on it, finding ā(x̄), B̄(x̄), c̄(x̄), D̄(x̄) in the co-outer (12.27), and
• finally checking if

Θ = Π−1 ◦ Σ

is co-inner.

12.3.2 Solution

Webeginwith the first step aiming at finding the canonical transformation (x, p) −→
(x̄, p̄). To this end, we apply the so-called generating function approach which
is known and well-established in Hamiltonian mechanics. Roughly speaking, the
generating function approach consists in finding a generating function that defines
a coordinates transformation and guarantees the resulted coordinates transformation
being canonical.

There are four types of generating functions. For our purpose, we adopt the type 2
generating function, which should be, for time-invariant systems, a function of x, p̄.
We denote it by

G2 (x, p̄) .
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It is well-known that the following equations,

p = ∂G2 (x, p̄)

∂x
, (12.31)

x̄ = ∂G2 (x, p̄)

∂ p̄
, (12.32)

define the canonical transformation (x, p) −→ (x̄, p̄). For our problem solution, we
define

G2 (x, p̄) = P(x) + p̄T x . (12.33)

It yields

p = PT
x (x) + p̄, Px (x) = ∂P(x)

∂x
, (12.34)

x̄ = x . (12.35)

Having determined the canonical transformation

(x, p) −→ (x̄, p̄) = (x, p − PT
x (x)),

we start with the second step of determining ā(x̄), B̄(x̄), c̄(x̄), D̄(x̄) based on the
equation

H× (x̄, p̄, y) = H× (x, p, y) . (12.36)

To this end, substituting x̄ in H× (x̄, p̄, y) by x and p in H× (x, p, y) by PT
x (x)+ p̄,

respectively, leads to

H× (x̄, p̄, y) = p̄T
(
ā(x) + 1

2
B̄(x)B̄T (x) p̄

)

−1

2

(
y − ĉ(x, p̄)

)T
Ē−1(x)

(
y − ĉ(x, p̄)

)
,

H× (x, p, y) = (
PT
x (x) + p̄

)T (
a(x) + 1

2
B(x)BT (x)

(
PT
x (x) + p̄

))

−1

2

(
y − ĉ(x, PT

x (x) + p̄)
)T

E−1(x)
(
y − ĉ(x, PT

x (x) + p̄)
)
.

Now, comparing H× (x̄, p̄, y) and H× (x, p, y) given above under the condition
(12.36) gives
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yT Ē−1(x)y = yT E−1(x)y =⇒ Ē(x) = E(x) =⇒ D̄(x̄) = E1/2(x),

ĉ(x, PT
x (x) + p̄)T E−1(x)y = ĉ(x, p̄)T Ē−1(x)y =⇒

D̄(x̄)B̄T (x̄) = D(x)BT (x) =⇒ B̄(x̄) = B(x)DT (x)E−1/2(x),

c̄(x̄) = c(x) + D(x)BT (x)PT
x (x) .

Moreover, it holds

p̄T
(
ā(x) + 1

2
B̄(x)B̄T (x) p̄

)
=

(
p̄ + PT

x (x)
)T (

a(x) + 1

2
B(x)BT (x)

(
p̄ + PT

x (x)
)) =⇒

p̄T ā(x) = p̄T
(
a(x) + B(x)BT (x)PT

x (x)
)

=⇒ ā(x) = a(x) + B(x)BT (x)PT
x (x) ,

p̄T
(
B(x)BT (x) − B̄(x)B̄T (x)

)
p̄ = 0 =⇒ p̄ = 0,

Px (x) a(x) + 1

2
Px (x) B(x)BT (x)PT

x (x) = 0. (12.37)

Equation (12.37) is the so-called Hamilton-Jacobi-Bellman (HJB) equation with
Px (x) as its solution. As a result, we have the co-outer Π (as defined in (12.27))
described by

Π :
{
ẋ = a(x) + B(x)BT (x)PT

x (x) + B(x)DT (x)E−1/2(x)ȳ,
y = c(x) + D(x)BT (x)PT

x (x) + E1/2(x)ȳ.
(12.38)

Since the inverse of (12.27) is

Π−1 :
⎧⎨
⎩

˙̄x = ā(x̄) + B̄(x̄)D̄−1(x̄) (y − c̄(x̄))
= ā(x̄) − B̄(x̄)D̄−1(x̄)c̄(x̄) + B̄(x̄)D̄−1(x̄)y,
ȳ = D̄−1(x̄) (y − c̄(x̄)) ,

(12.39)

it follows from (12.38) that

Π−1 :
⎧⎨
⎩

˙̄x = a(x̄) + B(x̄)
(
I − DT (x̄)E−1(x̄)D(x̄)

)
BT (x̄)PT

x (x̄)
+B(x̄)DT (x̄)E−1(x̄) (y − c(x̄)) ,

ȳ = E−1/2(x̄)y − E−1/2(x̄)
(
c(x̄) + D(x̄)BT (x̄)PT

x (x̄)
)
.

(12.40)

Our final step is to check if
Θ = Π−1 ◦ Σ

is co-inner. To this end, denote the state space model of Θ by
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Θ = Π−1 ◦ Σ :
{
ẋθ = aθ (xθ ) + Bθ (xθ )d,

ȳ = cθ (xθ ) + Dθ (xθ )d.
(12.41)

Recall that for p = PT
x (x) ,

da = E−1(x)
(
y − c(x) − D(x)BT (x)PT

x (x)
) =⇒

d = BT (x)PT
x (x) + DT (x)da

= BT (x)PT
x (x) + DT (x)E−1(x)

(
y − c(x) − D(x)BT (x)PT

x (x)
)
, (12.42)

which results in

Π−1 ◦ Σ :

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

˙̄x = a(x̄) + B(x̄)
(
I − DT (x̄)E−1(x̄)D(x̄)

)
BT (x̄)PT

x (x̄)
+B(x̄)DT (x̄)E−1(x̄) (y − c(x̄)) ,

ẋ = a(x) + B(x)
(
I − DT (x)E−1(x)D(x)

)
BT (x)PT

x (x)
+B(x)DT (x)E−1(x) (y − c(x)) ,

ȳ = E−1/2(x̄)y − E−1/2(x̄)
(
c(x̄) + D(x̄)BT (x̄)PT

x (x̄)
)
.

(12.43)

For x(0) = x̄(0), it holds, according to (12.43), x(t) = x̄(t), t ≥ 0. As a result,
Θ = Π−1 ◦ Σ is reduced to

Θ :
⎧⎨
⎩
ẋ = a(x) + B(x)

(
I − DT (x)E−1(x)D(x)

)
BT (x)PT

x (x)
+B(x)DT (x)E−1(x) (y − c(x)) ,

ȳ = E−1/2(x)y − E−1/2(x)
(
c(x) + D(x)BT (x)PT

x (x)
)
,

which can be further written as, considering (12.42),

Θ :
{
ẋ = a(x) + B(x)d,

ȳ = −E−1/2(x)D(x)BT (x)PT
x (x) + E−1/2(x)D(x)d.

(12.44)

In other words,

aθ (xθ ) = a(x), Bθ (xθ ) = B(x), Dθ (xθ ) = E−1/2(x)D(x),

cθ (xθ ) = −E−1/2(x)D(x)BT (x)PT
x (x) .

Note that

Px (x) a(x) + 1

2
Px (x) B(x)BT (x)PT

x (x) = 0,

E−1/2(x)D(x)DT (x)E−1/2(x) = I,

−E−1/2(x)D(x)BT (x)PT
x (x) + E−1/2(x)D(x)BT (x)PT

x (x) = 0.

Therefore, according to Theorem 12.1 Θ, is co-inner.
With co-outer and co-inner given in (12.38) and (12.44) respectively, we have

completed a co-inner-outer factorisation.
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12.4 Application to Fault Detection

12.4.1 Threshold Setting

An immediate application of the co-inner-outer factorisation is the threshold setting.
It follows from (12.23) that, if Π is a co-outer of Σ given in (12.1),

r = Π−1 (y) = Π−1 ◦ Σ (d) = Θ(d)

is a co-inner mapping of d to the residual vector r and thus satisfies, in the fault-free
case,

P (x (τ )) − P (x (0)) = 1

2

τ∫
0

(
dT d − r T r

)
dt =⇒

‖r‖22,τ ≤ ‖d‖22,τ + 2P (x (0)) .

When the upper-bounds of ‖d‖2 , P (x (0)) are known and denoted by

sup
d

‖d‖22 = δ2d , sup
x(0)

P (x (0)) = δo/2,

it holds
sup
d,x(0)

‖r‖22,τ = δ2d + δo,

and thus the threshold can be defined as

Jth = δ2d + δo. (12.45)

In real practical applications, residual evaluation often runs with a moving window
and the length of the evaluation is set short aiming at an early detection of faults in
the system. Correspondingly, we have

P (x (τ2)) − P (x (τ1)) = 1

2

τ2∫
τ1

(
dT d − r T r

)
dt.

On the assumption that in the time interval [τ1, τ2] , P (x (τ2)) ≈ P (x (τ1)) , the
threshold can be simply set as

Jth = δ2d,[τ1,τ2], δ
2
d,[τ1,τ2] = sup

d

τ2∫
τ1

(
dT d

)
dt,
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corresponding to the residual evaluation

J = ‖r‖22,[τ1,τ2] =
τ2∫

τ1

(
r T r

)
dt.

12.4.2 Design of a Post-filter

In Chap.10, we have studied the design of L2-NFDF. In this sub-section, we briefly
describe a fault detection scheme by adding a post-filter to an L2-NFDF in order to
enhance the fault detectability.

Consider a nonlinear affine system

Σ :
{
ẋ = a(x) + B(x)u + E(x)d,

y = c(x) + D(x)u + F(x)d,
(12.46)

where x ∈ Rn, u ∈ Rku , y ∈ Rm are process state, input and output vectors, and
d ∈ Rp denotes the (unknown) input vector. a(x), B(x), c(x), D(x), E(x) and F(x)
are smooth functions of appropriate dimensions. Suppose that an L2-NFDF of the
form

ΣFDF :
{ ˙̂x = a(x̂) + B(x̂)u + L(x̂)

(
y − c(x̂) − D(x̂)u

)
,

ro = y − c(x̂) − D(x̂)u,

is designed such that

‖ro‖22,τ ≤ γ 2
∥∥d̄∥∥2

2,τ + γo, d̄ =
[
u
d

]
.

Let

x̄ =
[
x
x̂

]
, f (x̄) =

[
a(x)

a(x̂) + L(x̂)
(
c(x) − c(x̂)

) ]
,

G(x̄) =
[

B(x) E(x)
B(x̂) + L(x̂)

(
D(x) − D(x̂)

)
L(x̂)F(x)

]
,

h(x̄) = c(x) − c(x̂), D̄(x̄) = [
D(x) − D(x̂) F(x)

]
.

The overall system dynamics of ΣNFDF is governed by

ΣNFDF :
{ ˙̄x = f (x̄) + G(x̄)d̄,

ro = h(x̄) + D̄(x̄)d̄.
(12.47)
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On the assumption that m ≤ p + ku and D̄(x̄)D̄T (x̄) is invertible, we compute
co-inner-outer factorisation, as described in the previous section, and denote it by

ΣNFDF = ΠNFDF ◦ ΘNFDF .

The post-filter and the overall residual generator are given by

Q = Π−1
NFDF , r = Q (ro) = Q ◦ ΣFDF (u, y) ,

respectively. Using the residual evaluation function

J = ‖r‖22,[τ1,τ2] =
τ2∫

τ1

(
r T r

)
dt,

the threshold can be finally set as

Jth = ‖u‖22,[τ1,τ2] + δ2d,[τ1,τ2],

δ2d,[τ1,τ2] = sup
d

τ2∫
τ1

(
dT d

)
dt, ‖u‖22,[τ1,τ2] =

τ2∫
τ1

(
uT u

)
dt,

when in the time interval [τ1, τ2] , P (x (τ2)) ≈ P (x (τ1)) .

12.5 Notes and References

The major focus of this chapter is on investigating co-inner-outer factorisation of
nonlinear affine systems, which results in an optimal solution for the fault detection
problem formulated in Definition 2.4.

The topic of inner-outer factorisation of nonlinear affine systems was extensively
studied in the 1990s. Unfortunately, very few results were reported on co-inner-outer
factorisation of nonlinear systems, although this is a dual problem of the inner-outer
factorisation. This observation has motivated and driven us to deal with co-inner-
outer factorisation of nonlinear affine systems, even though this is not our original
intention for the FD study. Considering that, for the intended FD study, necessary
mathematical knowledge is, more or less, out of the scope of this book, efforts have
been made to solve the addressed problems as simple as possible, even if they may
not be the elegant way of handling.

The so-called Hamiltonian extension of the nonlinear system Σ under consider-
ation was introduced by Crouch and van der Schaft [1] and is essential for dealing
with inner-outer factorisation issues in the state space representation. Analogue to
the expressions in the linear case,
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GT (−s)G(s),G(s)GT (−s) ,

the Hamiltonian systems,

(DΣ)T ◦ Σ,Σ ◦ (DΣ)T ,

have been introduced based on the Hamiltonian extension [2, 3]. The introduction
of Hamiltonian function allows us not only to express (DΣ)T ◦ Σ, Σ ◦ (DΣ)T in a
compact form, but also to deal with inner-outer factorisation issues in the framework
of energy balance. It is remarkable that the definitions of inner introduced in [2] and
[3] are slight different, as mentioned in Sect. 12.1.

For our work, the definition of co-inner plays a central role. Regrettably, we have
only found the definition introduced in [2] using the input and output relation of
Σ ◦ (DΣ)T , instead of a definition in the context of energy balance. This motivates
us to adopt the analogue form of the inner definition introduced in [3, 4]. Moreover,
we have also noticed the problem of using the Hamiltonian function associated with
Σ◦(DΣ)T [2] for the definition of co-inner in the context of energy balance. Inspired
by the discussions in [3, 4], we have decided to study the co-inner issues from the as-
pect of

(
Σ ◦ (DΣ)T

)−1
with the corresponding Hamiltonian function H× (x, p, y)

given in (12.22). In fact, considering that
(
Σ ◦ (DΣ)T

)−1
is driven by y, the system

measurement vector, this view of co-inner is consistent with our intention of inves-
tigating fault detection issues. On the basis of these careful considerations, we have
introduced Definition 12.1 for co-inner.

Along the lines of solving inner-outer factorisation given in [3, 4], we have studied
co-inner-outer factorisation. The key step in our solution of co-inner-outer factori-
sation is to determine the canonical transformation (x, p) −→ (x̄, p̄). A canoni-
cal transformation is a change of canonical coordinates, as we have intended with
(x, p) −→ (x̄, p̄), that preserves the forms of the Hamiltonian function and sys-
tem. Different from the differential geometric methods reported in [3, 4], we have
applied the generating function approach, a classic technique known in Hamiltonian
mechanics [5].

The application of the co-inner-outer factorisation to fault detection is straight-
forward and similar with the handling of linear systems. It results in optimal fault
detectability and an easy setting of threshold. As described in Sect. 12.4, it can be
used in combination with an L2-NFDF.

It should be remarked that

• although an analytical solution has been derived for a co-inner-outer factorisation,
solving HJB equation (12.37) is necessary. It is well-known that solutions of HJB
equations are a challenging task, which is in fact a key issue in the design of
co-inner-outer factorisation aided FD system design;

• in our study, the stability issues of the co-outer as well as its inverse (acting a post-
filter) have not been addressed. We refer the reader to the extensive discussions in
[3, 4] on this topic.
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Part IV
Statistical and Data-driven Fault Diagnosis 

Methods



Chapter 13
A Critical Review of MVA-based Fault
Detection Methods

It cannot be emphasised too much how popular the multivariate analysis (MVA)
based methods are in handling fault diagnosis and process monitoring issues, both
in academic research and practical application domains. It is the common opinion
that statistical MVA techniques are the fundament in the data-driven fault detection
framework. The current enthusiasm for statistical andmachine learning (ML) as well
as for big data has remarkably promoted the application of MVA-based methods to
data-driven fault diagnosis and process monitoring. It can be noticed that, in the
course of this development, major research focuses are on the application of novel
approaches and algorithms known from statistical andmachine learning. Few or even
no attention has been paid to the original fault detection and diagnosis problems with
their distinct statistical background and requirements. This observation motivates a
critical review of basic methods in the framework of MVA-based fault detection
methods in this chapter.

The objectives of our critical review are

• to stress and correct popular but misleading use of some standard techniques or
methods for the FD purpose,

• to pose critical questions on some basic MVA-based FD methods, and
• to motivate development of alternative MVA-based FD methods.

The structure of this chapter is different from the previous ones. In each section, we
are going to address one topic in three steps:

• description and analysis of the method or technique or algorithm to be addressed,
• comments, and
• possible alternative solutions.

© Springer-Verlag GmbH Germany, part of Springer Nature 2021
S. X. Ding, Advanced methods for fault diagnosis and fault-tolerant control,
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13.1 On Projection Technique and Its Use in Fault
Detection

13.1.1 Problem Description

In many data-driven methods, projecting or transforming process data from the mea-
surement subspace to another subspace with a reduced dimension is the state of the
art. Among these methods, PCA is the most typical example and widely recognised
as a standard data-driven fault detection method. For our discussion, we consider
PCA as a reference.

The initial idea of the PCA algorithm is to find a lower dimensional subspace
that contains the variation in the process data as much as possible. In this way, a
dimensionality reduction is achieved, which can then be applied, for instance, for
data compression, data visualisation and interpretation. Below, we briefly summarise
the PCA algorithm, which has been introduced in Sect. 3.4:

• Center the process data yi ∈ Rm, i = 1, · · · , N ,

ȳ(N ) = 1

N

N∑

i=1

yi , ȳi = yi − ȳ(N ), (13.1)

and form the data matrix

YN = [
ȳ1 · · · ȳN

] ∈ Rm×N ;

• Estimate the covariance matrix

Σ̂ = 1

N − 1
YNY

T
N , (13.2)

and do an SVD of Σ̂

Σ̂ = PΛPT ,Λ = diag
(
σ 2
1 , · · · , σ 2

m

)
, σ 2

1 ≥ σ 2
2 ≥ · · · ≥ σ 2

m; (13.3)

• Determine the number of principal components (PCs) l and decompose P,Λ into

Λ =
[

Λpc 0
0 Λres

]
,Λpc = diag

(
σ 2
1 , · · · , σ 2

l

)
, (13.4)

Λres = diag
(
σ 2
l+1, · · · , σ 2

m

) ∈ R(m−l)×(m−l), σ 2
l >> σ 2

l+1,

P = [
Ppc Pres

] ∈ Rm×m, Ppc ∈ Rm×l . (13.5)

The principal components represented by Ppc are the output of the above PCA
algorithm. They span the subspace, onto which the process data are “projected”.
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Thus, Ppc is the solution for the dimensionality reduction. In fact, it is evident that
Ppc, together withΛpc, provides the best estimation of Σ̂ in the sense of minimising

∥∥∥Σ̂ − PpcΛpc P
T
pc

∥∥∥
2

F
=

m∑

i=l+1

σ 2
i ,

once the dimension of the subspace l is fixed. Ppc can also be determined by solving
an optimisation problem,

min
Ppc,Z

N∑

i=1

∥∥ȳi − Ppczi
∥∥2

,

s.t. PT
pc Ppc = I,

Ppc ∈ Rm×l , Z = [
z1 · · · zN

]
, zi ∈ Rl , i = 1, · · · , N ,

which gives a best fitting of the data matrix YN by an l (lower) dimensional subspace.
The questions to be discussed are:

• Is it necessary to “project” the process data onto the principal component subspace
for the fault detection purpose?

• Does such a “projection” bring added-value for fault detection?

13.1.2 Discussion: The Pros and Cons

Pro The PCA technique is well-established. Based on the projection of the process
data onto two subspaces, the principal component subspace and residual subspace,
as described in Sect. 3.4, two test statistics, T 2

PCA and SPE can be defined and
applied for the detection purpose.

Con According to the Neyman-Pearson Lemma and GLR method, the T 2-test
statistic of the form

JT 2 = ỹT Σ̂−1 ỹ

results in the maximal fault detectability for a (given) significance level, when
the process data are (nearly) normally distributed, where ỹ is the centred online
measurement data. Considering that Σ̂−1 can be computed by

Σ̂ = PΛPT =⇒ Σ̂−1 = PΛ−1PT ,

where P,Λ are given in (13.4)–(13.5), the projection P can be used for the purpose
of computing Σ̂−1, which yields

JT 2 = ỹT PΛ−1PT ỹ = ŷTΛ−1 ŷ, ŷ = PT ỹ.
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Note that the introduction of the projection P does not lead to any improvement
of the FD performance. On the other hand, the strong focus on the principal
component subspace in the application of dimensionality reduction is often mis-
interpreted in the FD study, as calling for more attention to the T 2

PCA-test statistic,

T 2
PCA = ỹT PpcΛ

−1
pc P

T
pc ỹ.

As discussed in Sect. 3.4, it is evident that detecting faults in the principal compo-
nent subspace ismuchmore difficult than detecting faults in the residual subspace,
since the uncertainty caused by the noises, represented in form of the covariance
matrix, is stronger in the principal component subspace than the one in the residual
subspace. Indeed, in case that

l << m,

a projection of the process data onto the residual subspace would make sense,
thanks to the weak influence of the uncertainty on the process data projected onto
the residual subspace. It is worth pointing out that, in this case, the test statistic
should be

T 2
res = ỹT PresΛ

−1
res P

T
res ỹ,

if there exists no numerical problem with Λ−1
res .

Pro Nowadays, the amount of process data is huge. People speak about industrial
big data. Given a highly dimensional data set YN , the PCA technique is helpful
to reduce the dimension of the data set so that the data can be well handled in the
reduced subspace.

Con This argument sounds reasonable. However, a projection of the process data
onto the principal component subspace would, as discussed above, result in poor
fault detection performance. Recall that the fault detection performance will be
significantly enhanced if the uncertainty in the process data could be considerably
reduced. To this end, two strategies will provide us with more efficient solutions:
• When the subspace of the potential faults to be detected is known, a projection
of the process data onto this subspace can ensure the required fault detectability
on the one hand, and reduce the influence of the uncertainty on the other hand. In
fact, the subsequent discussion is a realisation of this solution strategy.
• We restrict fault detection in some defined subspaces. In this case, mapping the
process data onto these subspaces can achieve good fault detection performance.
It is clear that the improvement of the fault detection performance depends on the
mapping algorithm adopted. In the next chapter, we will present approaches for
the realisation of this idea towards optimal fault detection in large-scale systems.

Pro On the assumptions that (i) the process under consideration can be modelled
in the context of probabilistic PCA (PPCA), which is described by

y = Ex + ε ∈ Rm, x ∈ Rn,m > n, (13.6)

ε ∼ N (0, σ 2
ε I ), x ∼ N (0, I ), rank (E) = n, (13.7)
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(ii) the faults of interest are modelled by

y = E (x + f ) + ε (13.8)

with fault vector f to be detected, and (iii)

σmin (E) >> σε, (13.9)

a projection onto the principal component subspace given by

EET + σ 2
ε I = P

[
Λpc 0
0 σ 2

ε I

]
PT , P = [

Ppc Pres
]
,

Λpc = diag
(
σ 2
1 , · · · , σ 2

n

)
, σ 2

1 ≥ σ 2
2 ≥ · · · ≥ σ 2

n >> σ 2
ε ,

is reasonable for fault detection and can be applied to build T 2
PCA -test statistic,

because
PΛpc P

T ≈ EET .

Con Atfirst, it should be emphasised that the PPCAmodel is, thanks to the separate
modelling of correlations among the process variables and measurement noises,
well suited for fault detection. On the other hand, it should also be kept in mind
that this is achieved at the cost of (considerably)moremodelling computations. As
an efficient computation tool, the EM algorithm is widely applied for identifying
E and σε. In our subsequent discussion, we consider the case that the process
under consideration could be described using the PPCA model, but the model
matrix E is not separately identified. Note that, when matrix E is known, the fault
detection problem becomes trivial and can be solved using the standard GLR
solution presented in Chap.3. It is clear that the above PCA algorithm can be
successfully applied to fault detection only if the assumptions (13.6)–(13.9) are
satisfied. While (13.6) and (13.8) are, more or less, applicable for many technical
processes, the assumptions,

ε ∼ N (0, σ 2
ε I ), σmin (E) >> σε,

are often unrealistic. This motivates us to discuss about the application of the PCA
algorithm under more general conditions. To this end, the above two assumptions
are substituted by

ε ∼ N (0,Σε),Σε > 0, (13.10)

λmin
(
ET E

) + σ 2
ε,min > σ 2

ε,max, (13.11)

where λmin
(
ET E

)
is the minimum eigenvalue of ET E, and σε,min, σε,max are the

minimum andmaximum singular value ofΣε respectively. Recall that the optimal
fault detection is achieved, according to the discussion in Sect. 3.4, by “projecting”
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the measurement y to
ȳ = E−y

first, and then detecting the fault vector using the standard GLRmethod. Unfortu-
nately, in the data-driven framework, E is often unknown. Below, we discuss how
to apply the PCA algorithm to a successful fault detection using the data matrix
Σ̂. An SVD of Σ̂ leads to

Σ̂ = PΛPT ,Λ = diag
(
σ 2
1 , · · · , σ 2

m

)
, σ 2

1 ≥ σ 2
2 ≥ · · · ≥ σ 2

m,

Λ =
[

Λpc 0
0 Λres

]
,Λpc = diag

(
σ 2
1 , · · · , σ 2

n

)
,

Λres = diag
(
σ 2
n+1, · · · , σ 2

m

) ∈ R(m−n)×(m−n), σ 2
n >> σ 2

n+1,

P = [
Ppc Pres

] ∈ Rm×m, Ppc ∈ Rm×n .

Note that
Σ̂ ≈ EET + Σε,

and Σε can be further written as

Σε = EΣε,1E
T + E⊥Σε,2

(
E⊥)T = [

E E⊥ ] [
Σε,1 0
0 Σε,2

] [
ET

(
E⊥)T

]
,

where [
ET

(
E⊥)T

] [
E E⊥ ] =

[
ET E 0
0 I

]
,

and Σε,1,Σε,2 are some positive definite matrices. As a result, it holds

(
E⊥)T

Σ̂E⊥ = Σε,2.

On the other hand, the assumption (13.11) ensures that

σ 2
i = λi

(
ET

(
I + Σε,1

)
E

)
> σ 2

i+ j = σ 2
ε, j , i = 1, · · · , n, j = 1, · · · ,m − n,

with σε, j , j = 1, · · · ,m − n, denoting the singular values of Σε,2. This means,

E = PpcT1, E
⊥ = PresT2 (13.12)

and T1 ∈ Rn×n, T2 ∈ R(m−n)×(m−n) are some regular matrices. It yields

EET + Σε = PpcT1
(
I + Σε,1

)
T T
1 PT

pc + PresT2Σε,2T
T
2 PT

res

=⇒ T1
(
I + Σε,1

)
T T
1 = Λpc.
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According to the optimal fault detection solution described in Sect. 3.4, the test
statistic for an optimal fault detection is given by

J = ȳTΣ−1
ȳ ȳ, ȳ = E− ỹ,Σȳ = E− (

EET + Σε

)
E−T = I + Σε,1,

which can be further written as

J = ȳTΣ−1
ȳ ȳ = ȳT

(
I + Σε,1

)−1
ȳ = (

E− ỹ
)T (

I + Σε,1
)−1

E− ỹ

= ỹT PpcT
−T
1

(
I + Σε,1

)−1
T−1
1 PT

pc ỹ = ỹT PpcΛ
−1
pc P

T
pc ỹ. (13.13)

It is evident that the test statistic J given in (13.13) is exactly the T 2
PCA-test statistic

used for the PCA fault detection algorithm,

T 2
PCA = ỹT PpcΛ

−1
pc P

T
pc ỹ.

As a result of the above discussion, the following theorem is proved.

Theorem 13.1 Given probabilistic model

y = E (x + f ) + ε ∈ Rm, x ∈ Rn,m > n,

with the fault vector f to be detected,

ε ∼ N (0,Σε),Σε > 0, x ∼ N (0, I ),

and suppose that Σε, E are unknown but satisfy

λmin
(
ET E

) + σ 2
ε,min > σ 2

ε,max, rank (E) = n

and the PCA algorithm is applied to the process data yi , i = 1, · · · , N , where N is
(sufficiently) large. Then, the test statistic

T 2
PCA = ỹT PpcΛ

−1
pc P

T
pc ỹ,

and the threshold

Jth,T 2
PCA

= n
(
N 2 − 1

)

N (N − n)
Fα(n, N − n)

deliver the best fault detectability for a (given) significance level α.

As a summary of this section and the answers to the two questions formulated at the
beginning of this section, we claim that

• the projection technique is a mathematical tool, which can be applied, for instance,
for the computation of T 2-test statistic;
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• for the fault detection purpose, “projecting” the process data onto the principal
component subspace is not necessary, will not bring added-value and should be
handled with care;

• a “projection” of the process data onto to the subspace spanned by the fault vectors
would improve the fault detection performance. In this context, the PPCA algo-
rithm will result in optimal fault detection, when the process and fault model is of
the form and satisfies the conditions, as given in Theorem13.1.

13.2 Data Centering, Time-Varying Mean and Variance

13.2.1 Problem Description

In most of MVA-based fault detection methods, the first step, both in the offline
training and online detection phases, is to center the raw process data. That is, for
given process data yi , i = 1, · · · , N , the mean of the data is first estimated and then
subtracted from each measurement, as done in the following computations

ȳ(N ) = 1

N

N∑

i=1

yi , ȳi = yi − ȳ(N ). (13.14)

See, for instance, the PCA algorithm as an example. From the statistical point of
view, this step is necessary for building the (estimated) covariance matrix

Σ̂ = 1

N − 1
YNY

T
N ,YN = [

ȳ1 · · · ȳN
]
.

Unfortunately, in many publications, this step is not mentioned explicitly and thus
less attention has been paid to the questions that may arise:

• Why is centering the process data necessary and under which conditions it could
be done?

• What is the consequence of centering the process data for fault detection and
diagnosis?

• Which alternative solutions are available and efficient if the conditions for data
centering do not hold?

13.2.2 Data Centering: Conditions and Consequence

Given a random vector y ∈ Rm, its covariance matrix is defined by
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cov (y) = E (y − E y) (y − E y)T .

The sample mean and covariance of y are given by

ȳ = 1

N

N∑

i=1

yi , Σ̂ = 1

N − 1

N∑

i=1

(yi − ȳ) (yi − ȳ)T , (13.15)

respectively, where yi , i = 1, · · · , N , are the sample data. Now, we consider y(k)
as a stochastic process (time series). In general, both

E (y(k)) , cov (y (k)) = E (y(k) − E y(k)) (y(k) − E y(k))T

are time functions. Only if y(k) is weak-sense stationary (WSS) or (strictly) sta-
tionary, E (y(k)) and cov (y (k)) are time-invariant. On this assumption, E (y(k))
and cov (y (k)) can be estimated using sample data yi , i = 1, · · · , N , and formula
(13.15 ). It becomes clear that for the computation of the sample covariance matrix
Σ̂, centering the data, as described in (13.14), makes sense only if y(k) is WSS or
stationary. This essential condition for the application of data centering is often ig-
nored in applying MVA methods to fault detection. In particular, by those “dynamic
versions” of the basic MVA-based fault detection methods like DPCA, DPLS, etc.,
the term “dynamic” can be misinterpreted as a tool or method to deal with fault de-
tection issues in dynamic processes. In fact, the requirement on WSS or stationarity
implies that these methods can only be effectively applied to dynamic systems in the
steady state. That is, there exists no change in the mean and variance of the process
variables.

On the other hand, a question may arise: why is the computation of the covari-
ance matrix so important? It is well known that the covariance matrix represents
variations around the mean value of the process variables. An accurate estimation
of the covariance matrix can significantly improve the detectability of those faults
that cause changes in the mean of the process variables. For this reason, the T 2-test
statistic is, as described in Sect. 3.4, widely used in detecting such faults.

While a correct centering of the process data is often necessary for solving fault
detection problems, it should be carefully used in dealing with fault classification
issues. For instance, applying k-means method for classifying faults in the mean
value of the process variables, data centering may lead to false classification due to
the manipulation of the process data and possible loss of useful information about
the changes in the mean value.



338 13 A Critical Review of MVA-based Fault Detection Methods

13.2.3 On Handling Time-Varying Mean

In real applications, the mean of most processes is time-varying. For a successful
MVA-based fault detection in such processes, handling of time-varying mean plays
an essential role. There are two different strategies to deal with this issue:

• applying data-driven methods for dynamic systems, for instance, the method in-
troduced in Sect. 4.4, to estimating E y(k) and then to build the residual vector,
y(k) − ŷ(k), where ŷ(k) is an estimate of E y(k). This scheme is efficient, when
a dynamic process driven by certain process input variables is concerned;

• transforming the data into another domain and then handling the detection prob-
lem in the new value domain. Typical methods are those time-frequency domain
analysis techniques. In the sequel, we focus on this type of methods.

Roughly speaking, given a signal y(k) at different sampling instants, y
(
k j

)
, j =

0, 1, · · · , N − 1, it can be transformed into

ci =
N−1∑

j=0

y
(
k j

)
ϕi (k j ), (13.16)

where ϕi (k j ), i = 0, 1, · · · , N −1, are basic functions and ci , i = 0, 1, · · · , N −1,
are coefficients. Inversely, y(ki ) can be formally written as

y(ki ) =
N−1∑

j=0

c jφ j (ki ), i = 0, 1, · · · , N − 1, (13.17)

where φ j (ki ), j = 0, 1, · · · , N − 1, define the inverse transform. There are a great
number of such discrete transforms for different applications, for instance, the well-
known discrete Fourier transform (DFT) or discrete wavelet transform, or more gen-
eral, the discrete orthonormal transforms, in which φi (k), ϕ j (k), k = k0, · · · , kN−1,

satisfy

ϕ j (k) = φ∗
j (k),

N−1∑

k=0

φi (k)φ
∗
j (k) = δi− j =

{
1, i = j,
0, i 	= j.

It is remarkable that (13.17) can be viewed as an approximation of function y(k) by
means of a linear combination of the basic functions φi (k), i = 0, 1, · · · , N − 1.
Depending on signal properties, the selection of the set of the basic functions can
deliver (very) good approximation of y(k).



13.2 Data Centering, Time-Varying Mean and Variance 339

Let

y = [
y (k0) · · · y (kN−1)

]
, Φ =

⎡

⎢⎣
φ0(k0) · · · φ0(kN−1)

...
...

...

φN−1(k0) · · · φN−1(kN−1)

⎤

⎥⎦ ,

c = [
c0 · · · cN−1

]
, Ψ =

⎡

⎢⎣
ϕ0(k0) · · · ϕN−1(k0)

...
...

...

ϕ0(kN−1) · · · ϕN−1(kN−1)

⎤

⎥⎦ .

Equations (13.16)–(13.17) can be written into the following compact form

c = yΨ, y = cΦ. (13.18)

Note that Φ,Ψ are invertible and

ΦΨ = I.

Now, suppose that

y(k) =
⎡

⎢⎣
y1(k)

...

ym(k)

⎤

⎥⎦ ∈ Rm

is a random vector with
y(k) = E y(k) + ε (k) ,

ε (k) ∼ N (0,Σε) being white noise. Let y(ki ), i = 1, · · · , N , be the recorded
process data and denote

Y = [
y(k1) · · · y(kN )

] = E (Y ) + Ξ,

E (Y ) = [E y(k1) · · · E y(kN )
]
, Ξ = [

ε(k1) · · · ε(kN )
]
.

By a discrete transform Ψ,

[E yi (k1) · · · E yi (kN )
]
Ψ = [

ci,0 · · · ci,N−1
]
, i = 1, · · · ,m,

we have

YΨ = E (Y ) Ψ + ΞΨ = C + ΞΨ,

C =
⎡

⎢⎣
c1,0 · · · c1,N−1
...

...

cm,0 · · · cm,N−1

⎤

⎥⎦ =: [
C0 · · · CN−1

]
.
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On the assumption that C is (almost) time-invariant, repeating the above step M
times and denoting the resulted C by C(i), i = 1, · · · , M, YΨ can be centered to

YΨ = YΨ − Ĉ := ΞΨ ≈ ΞΨ, Ĉ = 1

M

M∑

i=1

C(i). (13.19)

Once the data are centered, fault detection algorithms can be derived. A popular
fault detection scheme is to use the data corresponding to a column of ΞΨ for fault
detection. The idea behind such a scheme is to make use of a priori knowledge that
the fault will cause evident changes in one of the columns of C, say C j . A typical
example is the fault detection in rotational machines, where a component fault often
causes changes at a special frequency of (vibration) sensor signals. Thus, by DFT
these changes are transformed into the frequency domain, which are described by
the changes in C.

Note that the j-th column of ΞΨ is given by

[
ε(k1) · · · ε(kN )

]
⎡

⎢⎣
ϕ j (k1)

...

ϕ j (kN )

⎤

⎥⎦ =
N∑

i=1

ε(ki )ϕ j (ki ),

which is, considering that ε(k) is a white noise series subject to N (0,Σε), also
normally distributed with zero-mean and constant covariance matrix ΣΨ, j , and can
be thus written as

ε̄ j :=
N∑

i=1

ε(ki )ϕ j (ki ) ∼ N (0,ΣΨ, j ).

It yields the following model for detecting changes in C j :

ȳ j := Y

⎡

⎢⎣
ϕ j (k1)

...

ϕ j (kN )

⎤

⎥⎦ = C j + ε̄ j , ε̄ j ∼ N (0,ΣΨ, j ).

Below, we summarise the above discussions in form of offline training (modelling)
and online detection algorithms.

Algorithm 13.1 Offline training: given (sufficient) process data

• Run the discrete transform Ψ for M times and center the transformed data,
according to (13.19). The output of this step is:

YΨ (i), i = 1, · · · , M, Ĉ,

where YΨ (i) denotes the result of the i-th computation of YΨ ;
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• Form
YΨ, j = [

YΨ (1, j) · · · YΨ (M, j)
]
,YΨ, j Y

∗
Ψ, j := Σ̂Ψ, j

with YΨ (i, j) denoting the j-th column of YΨ (i), i = 1, · · · , M;
• Set the threshold

Jth,T 2 = M2 − 1

M(M − 1)
Fα(1, M − 1).

It is evident that Σ̂Ψ, j is a sample estimate of ΣΨ, j . Therefore, the online detection
is realised using the T 2-test statistic as follows.

Algorithm 13.2 Online detection: given (online) process data y
(
k j

)
, j = 0, 1,

· · · , N − 1

• Run the discrete transform Ψ and center the transformed data, according to
(13.19). Let yΨ ( j) be the j-th column of YΨ ;

• Compute the T 2-test statistic

JT 2 = yTΨ, j Σ̂
−1
Ψ, j yΨ, j ;

• Check
JT 2 − Jth,T 2 .

It should be pointed out that

• the assumption that C is (almost) time-invariant is essential for this detection
scheme. This can be achieved by carefully selecting the transforming functions
ϕi (k), i = 0, 1, · · · , N − 1, when knowledge of E y(k) is known a priori;

• often, a fault may cause changes in serval columns ofC. In this case, a straightfor-
ward extension of the above detection scheme to a fault detection algorithm with
multiple test statistics provides us with an effective solution.

13.3 On Detecting Multiplicative Faults and T 2-test
Statistic

13.3.1 Problem Description

Generally speaking, multiplicative faults are referred to those undesired changes in
system parameters, which may be, for instance, caused by mismatching of operation
conditions and control unit parameters or ageing processes in system components.
The latter type of the faults are often incipient changes and thus their detection re-
quires highly (fault) sensitivemethods. In theMVA-based fault detection framework,
given random (measurement) vector y ∈ Rm, a multiplicative fault is referred to the
changes in the covariance matrix. To be specific, suppose
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y = Hx + ε, (13.20)

where ε represents the measurement noise with zero-mean and covariance matrix
Σε, x ∈ Rn is the vector of process variables that is uncorrelated with ε. H ∈ Rm×n

models the process under consideration and takes different values in fault-free or in
faulty cases as follows:

H =
{
Ho, fault-free,
Hf 	= Ho, faulty.

It is evident that the covariance matrix of the process (measurement) data will change
in the faulty case. Although investigations on detectingmultiplicative faults bymeans
of different test statistics have been reported, T 2-test statistic is still the mostly
used test statistic also for detecting multiplicative faults. In particular, if there is
no specification for which type of faults is under consideration, T 2-test statistic is
the standard choice. On the other hand, we know, from our discussions in Sect. 3.4,
that T 2-test statistic delivers the optimal fault detectability only if additive faults are
addressed. The question arises whether the T 2-test statistic would be efficient for
detecting multiplicative faults. This will be discussed in the next subsection.

13.3.2 Miss Detection of Multiplicative Faults Using T 2-test
Statistic

For the sake of simplicity and without loss of generality, we assume, at first, x is a
zero-mean random vector with a unit covariance matrix. It yields

cov (y) = HHT + Σε =: Σy .

Let Σ̂y,o > 0 be a sample estimate of Σy in the fault-free operation,

Σ̂y,o ≈ HoH
T
o + Σε,

and build the T 2-test statistic
JT 2 = yT Σ̂−1

y,o y.

Let y f denote the measurement vector in the faulty case. It holds

cov
(
y f

) = Hf H
T
f + Σε =: Σ f ,

JT 2 = yTf Σ̂
−1
y,o y f .

For our comparison purpose, we introduce a random vector ȳ by transforming y f to

ȳ = Σ1/2
y,o Σ

−1/2
f y f .
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It is evident that ȳ and process measurement y in the fault-free operation have the
same distribution with the same covariance matrix. Now, re-write JT 2 in the faulty
operation as

y f = Σ
1/2
f Σ−1/2

y,o ȳ =⇒
JT 2 = yTf Σ̂

−1
y,o y f = ȳTΣ−1/2

y,o Σ
1/2
f Σ̂−1

y,oΣ
1/2
f Σ−1/2

y,o ȳ.

It becomes clear that if

Σ
1/2
f Σ̂−1

y,oΣ
1/2
f ≤ I ⇐⇒ Σ̂−1

y,oΣ f ≤ I

=⇒ JT 2 = yTf Σ̂
−1
y,o y f ≤ ȳTΣ−1

y,o ȳ,

the faulty data will be treated as normal operations and a reliable detection becomes
impossible.

Next, we assume that Ex is a constant vector different from zero. It follows from
model (13.20) that a multiplicative fault will also cause changes in the mean of the
process data. In that case, y f is given by

y f = Hf x + ε − Hox̄ = (
Hf − Ho

)
x + Ho (x − x̄) + ε

= : �Hx + yo, yo = Ho (x − x̄) + ε,�H = Hf − Ho,

where x̄ is the sample mean applied for centering the data, and thus JT 2 is subject to

JT 2 = yTf Σ̂
−1
y,o y f = (�Hx + yo)

T Σ̂−1
y,o (�Hx + yo)

= yTo Σ̂−1
y,o yo + xT�HT Σ̂−1

y,o�Hx + 2yTo Σ̂−1
y,o�Hx .

That means, the change in JT 2 test statistic caused by the multiplicative fault strongly
depends on �Hx . A reliable detection of Hf is realistic if ‖�Hx‖ is considerably
large. In other words, an incipient multiplicative fault is hard to be detected using
JT 2 test statistic.

In summary, it can be concluded that alternative test statistics are needed, in order
to achieve a reliable detection of multiplicative faults. This issue will be dealt with
in Chap.15.

13.4 Assessment of Fault Detection Performance

13.4.1 Problem Formulation

In real applications, performance of a fault detection system is generally assessed
and quantified by false alarm rate (FAR) and fault detection rate (FDR). In the frame-
work ofMVA-based fault detection, FAR, FDR or equivalently missed detection rate
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(MDR) are defined in terms of probability, as given in Definitions2.1–2.3. They are

FAR = Pr (J > Jth | f = 0 ) , (13.21)

MDR = Pr (J ≤ Jth | f 	= 0 ) , (13.22)

FDR = 1 − MDR (13.23)

with J, Jth, f denoting the test statistic, threshold and faults to be detected, respec-
tively.

Benchmark (case) study is a popular and widely accepted way for the assessment
andcomparisonof different fault detectionmethods. For instance,TennesseeEastman
Process (TEP) is a mostly used benchmark process for comparison studies on data-
driven andMVA-based fault detectionmethods. Independent of the question whether
such benchmark studies are representative or not, the following questions arise:

• are the computation algorithms for FAR andMDR (or FDR) adopted in the bench-
mark studies correct? Under which conditions can they be applied?

• how far are the computed FAR and MDR (or FDR), considering that all these
computation algorithms are based on sample data, confidential?

13.4.2 On FAR and FDR Computation

In benchmark studies, the most popular algorithm for the FAR computation consists
of two steps:

• collect data simulated in fault-free operations and compute N samples (values) of
J, denoted by J1, · · · , JN ,

• compute

I (Ji ) =
{
1, if Ji > Jth,
0, otherwise,

FAR = 1

N

N∑

i=1

I (Ji ) , (13.24)

and deliver FAR as an estimate for the false alarm rate.

It is clear that FAR is indeed a sample estimate of the probability (13.21), when
J1, · · · , JN are independent and identically distributed (i. i. d.). Therefore, under this
condition, it is reasonable and fair for the estimation of FAR.

Analogue to this algorithm, the following FDR computation algorithm is also
widely adopted:

• collect data simulated during the operation for a given fault, say f = fo, and
compute N samples (values) of J, denoted by J1, · · · , JN ,

• compute
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I (Ji ) =
{
1, if Ji > Jth,
0, otherwise,

FDR = 1

N

N∑

i=1

I (Ji ) , (13.25)

and deliver FDR as an estimate for the fault detection rate.

Notice that this algorithm is a sample estimate of FDR only for the case f = fo,
which does not, unfortunately, match situations in real applications. Recall that, in
general, a fault can be presented in different forms (as time functions), in different
directions when the fault is a vector (multiple faults) and in many possible com-
binations. As a consequence, for computing the probability given in (13.22) (with
f 	= 0), all these possibilities of the fault should be taken into account. In fact, in the
context of fault detection, f can be modelled as a random vector and the probability
given in (13.22) should be computed by means of the law of total probability.

InChaps. 16–17,wewill investigate the issues concerning FAR, FDR (MDR) as
well asmean time to fault detection (MT 2FD) inmore details. In this framework, the
so-called randomised algorithms based computations of FAR, FDR and MT 2FD
will be proposed, based on which a platform for the performance assessment of fault
detection systems will be established.

13.4.3 On Confidential Computations of FAR and FDR

It is clear that the sample estimations of FAR and FDR given in (13.24)–(13.25)
are random variables. Thus, the estimation performance depends on various facts,
among which the sample number plays an essential role. Below, we briefly study the
influence of the sample number on the estimation performance.

In general, our problem can be formulated as follows: given probability

p(γ ) = Pr (J (ω) ≤ γ ) ,

the confidence level of an estimate p̂(γ ) for p(γ ) is the probability, (at least) by
which ∣∣p(γ ) − p̂(γ )

∣∣ < ε,

where ε ∈ (0, 1) is the given accuracy requirement. The confidence level, often
denoted by 1 − δ with δ ∈ (0, 1), and the required accuracy ε are the indicator for
the estimation performance. In our study, the sample estimate for p(γ ) that denotes
either FAR or FDR, is given by

p̂(γ ) = 1

N

N∑

i=1

I (Ji ) , I (Ji ) =
{
1, if Ji ∈ Dγ ,

0, otherwise,
(13.26)
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where Dγ is the set defined by

Dγ = {Ji |Ji > γ, i = 1, · · · N } , γ = Jth .

The following theorem gives the well-known Hoeffding’s inequality.

Theorem 13.2 Let xi ∈ [ai , bi ] , i = 1, · · · , N , be i.i.d random variables. For any
ε > 0, it holds

Pr

(
N∑

i=1

xi − E
(

N∑

i=1

xi

)
≥ ε

)
≤ e

− 2ε2

N∑

i=1
(bi−ai )

2

,

Pr

(
N∑

i=1

xi − E
(

N∑

i=1

xi

)
≤ −ε

)
≤ e

− 2ε2

N∑

i=1
(bi−ai )

2

.

Since

E p̂(γ ) = 1

N

N∑

i=1

EI (Ji ) = p(γ ),

it is straightforward that, for [ai , bi ] = [0, 1], we have the so-called (two-sided)
Chernoff bound

N ≥ 1

2ε2
log

2

δ
=⇒ Pr

(∣∣p(γ ) − p̂(γ )
∣∣ < ε

)
> 1 − δ. (13.27)

That is, to achieve the required accuracy ε with a confidence level 1 − δ, N should
not be less than 1

2ε2 log
2
δ
. For a more detailed study, we refer the reader to Chap.16

as well as to the references given at the end of this chapter.

Example 13.1 To receive an impression of the needed N according to (13.27), we
consider a simple example. For ε = 0.01, δ = 0.001, N should not be less than
16500. In other words, to achieve an accuracy of 1% with a confidence level 99.9%,
we need at least 16500 data. If we have only 1000 data available, we can reach,
with the confidence level 99.9% an estimation accuracy about 4% That means, an
estimated FAR for 5%will statistically make less sense. Unfortunately, such a result
can be observed in many (published) benchmark studies.

13.5 Notes and References

It is the common opinion that the MVA-based fault detection technique is well-
established and its applications in the real engineering world are the state of the art.
Since years, the research interests in this field have been dedicated to the applica-
tion of statistical and machine learning techniques to dealing with fault diagnosis
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issues or applying the existing MVA methods, with slight extensions, to handling
industrial big data. In the course of this development, the basic MVA methods often
serve as a tool, for instance, for data pre-processing or for building test statistics
and determining thresholds. In this context, the three elemental computation steps
(algorithms) of standard MVA-based fault detection methods, data projection, data
centering and T 2 test statistic, are widely embedded into the different phases of
machine learning technique aided fault diagnosis. Due to their importance, misun-
derstandings or even misuse of these methods may lead to significant degradation in
detection performance. This drives us to give a critical review of these algorithms
and their applications in detecting faults.

Data centering is a necessary step in most of MVA methods, statistical and ma-
chine learning-based fault detectionmethods and included in the data pre-processing.
Unfortunately, in many publications this step has not been explicitly mentioned. In
the framework of fault detection, the immediate consequence of this step is that
the centered data only contain information about process uncertainties (variations).
Although such data and information are essential for fault detection, their use, for
example, for fault isolation/classification or root-cause-analysis is questionable. An-
other aspect to be examined is the pre-conditions for data centering, towhich also less
attention has been paid. In our review discussion, it has been clearly demonstrated
that centering data could be done only if the mean of the data is (nearly) constant. It
should be pointed out that the estimation of the mean using (13.1) is efficient only
under the condition that the process data are corrupted with (statistical) measurement
noise. When deterministic disturbances are present in the process data, computation
of mean and then data centering may lose their efficiency for the fault detection
purpose and even lead to incorrect detection results.

Time-frequency domain analysis is a well-established technique to deal with fault
detection in machines [1]. This technique can also be efficiently applied to solving
the problem with time-varying mean in the process measurements. In fact, all those
methods can be viewed as data transforms, as generally described in Sect. 13.2 and
well-known in signal processing techniques [2, 3]. Generally speaking, such trans-
forms will not improve the signal-to-noise ratio and thus no improvement on fault
detectability can be expected. On the other hand, if information about the faults
to be detected is available, these techniques can significantly enhance the fault de-
tectability. Indeed, by such a transform the process data are transformed to a feature
subspace of the faults, in which the influence of the noises can be remarkably reduced
(denoising) and therefore the fault detectability is enhanced.

Projection or more popularly the PCA technique is widely applied in statistical
and machine learning techniques to deal with highly dimensional data sets. Our
discussions in Sect. 13.1 have demonstrated that

• in the context of fault detection, projection could be a useful technique, for instance,
for simplifying problem solutions. But, it cannot, in general, lead to improvement
in fault detection performance;

• this is only possible, when information about the faults to be detected is available.
In this case, a targeted projection of the process data into the subspace, where the
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faults will be present, will reduce the influence of the noises, similar to our above
discussion, thanks to the dimension reduction of the measurement subspace;

• if, on the one hand, no information about the faults is available, and a dimension-
ality reduction is on the other hand necessary, for instance due to large amount of
data, the data should be projected into residual subspace, instead of the principal
component subspace.

In the next chapter, we will investigate fault detection in large-scale and distributed
processes, which is related to the projection technique and can be viewed as an
alternative solution to deal with issues of detecting faults in industrial processes with
big data.

Detecting multiplicative faults is of considerable practical interest. Unfortunately,
as a result of the strong focus on statistical andmachine learning based fault detection
methods in recent years, less attention has been paid to this topic. It is state of the
art that, as a part of the fault detection logic, T 2-test statistic is widely adopted,
although it has been, for instance in Sect. 13.3, demonstrated that it is less effective
in dealing with multiplicative faults. In Chap. 15, we will address this issue and
propose alternative solutions.

Statistical assessment of fault detection performance is not in the focus of MVA-
based methods. On the other hand, a fair and reliable assessment of fault detection
performance requires statistical and MVA knowledge. In fact, in the context of fault
detection, statistical assessment of fault detection performance should be an essential
part of anyMVA-basedmethods.Unfortunately, this aspect has received rare attention
in research efforts. The standard way of demonstrating the capacity of a proposed
fault detection approach and algorithm is to provide some simulation results on a
benchmark process or even to use measurement data from a real process. Without
doubt, TEP [4] is a useful and representative benchmark process. It can be well used
for illustrating the applicationof a new fault detection algorithmanddemonstrating its
potential. But, a meaningful assessment of fault detection performance, in particular,
in the context of a comparison study, is necessary in a strict andwell-defined statistical
framework.As summarised in Sect. 13.3, themajor deficits in the common simulation
and benchmark based performance assessment are:

• insufficient consideration of the faults to be detected in the computation of FDR,

and
• insufficient sample number.

For the latter issue, we have introduced Theorem13.2 given in [5] to illustrate the
relation between the sufficient sample number, the estimation accuracy (of FAR and
FDR) and the confidence level of the estimation. A more detailed study on this and
related issues will be described in Part V.
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Chapter 14
Data-Driven Fault Detection in
Large-Scale and Distributed Systems

14.1 Preliminary Knowledge in Network and Graph
Theory

Today’s large-scale and distributed systems are equipped with communication net-
works, which connect sub-systems and enable necessary data transmissions among
them aiming at optimal system operations. Due to the special role of communication
networks in system operations, analysis of influences of network topology on system
operation and performance has received considerable research attention in the past
decades. In this section, we briefly introduce preliminary knowledge in network and
graph theory which are necessary for our subsequent work.

14.1.1 Basic Concepts in Graph Theory

Consider an interconnected process equipped with a communication network. The
topology of the network is defined by (i) the nodes in the network and (ii) connections
between the nodes. Denote the set of the nodes by N and the set of connections,
which are called edges in the graph theory, by E . Thus, the topology of a network
with M nodes can be expressed by

G = (N , E) ,N = {1, · · · , M} ,

E = {(i, j) |i, j ∈ N , i �= j, they are networked } .

We call
G = (N , E)

graph. In a graph, edge (i, j) is called directed or undirected, when data transmissions
between nodes i and j are performed in one direction or in both directions. A graph is
directed or undirected if its edges are directed or undirected, and it is called connected
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if there is a path from any point to any other point in the graph. A simple graph is
an undirected graph with neither multiple edges nor loops. Corresponding to real
applications, only connected simple graphs are under consideration in our work.

A so-called incidence matrix A associated with a directed graph with M nodes
and N edges is defined by

A ∈ RM×N , ai j =
⎧
⎨

⎩

1, when edge j starts from node i ,
−1, when edge j ends at node i ,
0, otherwise.

(14.1)

The Laplacian matrix of this graph is defined as

L = AAT . (14.2)

We call the minimum length of the paths connecting the node i and node j the
distance between the node i and node j and denote it by d(i, j). It is defined

d(i, i) = 0.

Let di be the greatest distance between the node i and any other nodes in the given
graph G = (N , E). That is

di = max
j∈N

d(i, j).

The diameter d of the graph is defined by

d = max
i∈N

di . (14.3)

In other words, d is the greatest distance between any two nodes in G.

Consider a graph (network) with M nodes. The set of the neighbours of the i-th
node consists of all nodes, which are networked with the node i , and is denoted by
Ni . That is,

Ni = { j |node j is networked with the i-th node, j = 1, · · · , M } .

The number of the edges connected to node i , which is the number of the nodes in
Ni as well, is called degree of node i and denoted by dg(i).

14.1.2 An Introduction to Distributed Average Consensus

The average consensus method is one of the popular algorithms applied to dealing
with distributed optimisation issues in networked systems. In the subsequent sections,
we will apply this method for the fault detection purpose in distributed processes
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equipped with a sensor network. To this end, the basics of average consensus is
shortly introduced.

Given a network with M nodes, the average consensus method is an algorithm
for the iterative computation of vector xi ∈ R1×m at the i-th node as follows

xi,k+1 = wi i xi,k +
∑

j∈Ni

wi j x j,k, i = 1, · · · , M, k = 0, 1, · · · , (14.4)

beginning with some given vector xi,0, where xi,k is the computation value of xi at
the k-th iteration, x j,k denotes the computation value of x j at the k-th iteration and
received from the j-th node. Let

Xk =
⎡

⎢
⎣

x1,k
...

xM,k

⎤

⎥
⎦ ∈ RM×m,W =

⎡

⎢
⎣

w11 · · · w1M
...

. . .
...

wM1 · · · wMM

⎤

⎥
⎦ ∈ RM×M ,

with wi j = 0, when j /∈ Ni , i, j = 1, · · · , M, i �= j. The iteration at all nodes can
now be written as

Xk+1 = WXk =⇒ Xk = WkX0, X0 =
⎡

⎢
⎣

x1,0
...

xM,0

⎤

⎥
⎦ . (14.5)

An average consensus is said to be achieved when

lim
k→∞ Xk = lim

k→∞ WkX0 = llT

M
X0 ⇐⇒ lim

k→∞ Wk = llT

M
. (14.6)

In (14.6),

l =
⎡

⎢
⎣

1
...

1

⎤

⎥
⎦ ∈ RM .

Note that

llT

M
X0 =

⎡

⎢
⎢
⎢
⎢
⎢
⎣

1
M

M∑

i=1
xi,0

...

1
M

M∑

i=1
xi,0

⎤

⎥
⎥
⎥
⎥
⎥
⎦

, (14.7)

which means, the final value at each node is same and equals to the average value of
the overall initial values, xi,0, i = 1, · · · , M.
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In their highly cited paper on distributed average consensus, Xiao and Boyd have
proved the following theorem, which provides us with the necessary and sufficient
conditions for the existence of (14.6).

Theorem 14.1 Given the iteration algorithm (14.5), then (14.6) holds, if and only
if

lTW = lT , (14.8)

W l = l, (14.9)

ρ

(

W − llT

M

)

< 1, (14.10)

where ρ
(
W − llT

M

)
denotes the spectral radius of matrix W − llT

M .

It iswell-known thatweightingmatrices satisfying (14.8)–(14.10) always exist. Since
the iteration algorithm (14.5) describes a dynamic system which converges to llT

M X0,

the convergence rate strongly depends on weighting matrix W. Extensive studies on
the determination and optimisation ofW aiming at the fastest convergence have been
reported and some references are also given at the end of this chapter. Below, we
briefly describe two methods for constructingW, which are introduced in the papers
by Xiao and co-workers.

Let L be the Laplacian matrix of the graph as given in (14.2) and construct

W = I − αL . (14.11)

It is proved that for some constant α,

ρ

(

W − llT

M

)

< 1, (14.12)

if and only if

0 < α <
2

λmax (L)
.

Moreover,

α = 2

λmax (L) + λM−1 (L)
(14.13)

gives the minimum value of ρ
(
W − llT

M

)
,where λM−1 (L) is the (M − 1)-th largest

eigenvalue of L .
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Another way of constructing W satisfying (14.8)–(14.10) is

W = WT ∈ RM×M , wi j =

⎧
⎪⎨

⎪⎩

1 − dg(i)
dg+1 , i = j ,

1
dg+1 , j ∈ Ni ,

0, j /∈ Ni .

(14.14)

14.2 An Intuitive Average Consensus Based Fault Detection
Scheme

14.2.1 System Configuration and Problem Formulation

Suppose that for the purpose of processmonitoring, the process under consideration is
equipped with a sensor network withM sensor blocks, which are properly networked
and modelled by

yi = E yi + εi ∈ Rm, i = 1, · · · , M. (14.15)

Such a process is schematically sketched in Fig. 14.1. In the context of sensor net-
works, a sensor block (vector) is called a node. Thus, we consider a sensor network
with M nodes.

In the model (14.15), εi represents the measurement noise and is assumed to be

εi ∼ N (0,Σi ) ,Σi > 0, E (εiεTj
) =

{
Σi , i = j,
0, i �= j,

i = 1, · · · , M. (14.16)

Moreover, it is assumed that

E yi =
{
ȳi , ȳi = Hi x, fault-free,
ȳi + fi , fi = Hi, f f, faulty,

i = 1, · · · , M, (14.17)

where ȳi = Hi x is some unknown constant vector representing the normal pro-
cess operation measured by the sensor vector (block) yi located at the i-th node.

Fig. 14.1 A process
equipped with a sensor
network consisting of M
nodes
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Concretely, x is used to denote the (constant) state (vector) of the normal process
operation and Hi represents the (unknown) measurement matrix, which can differ at
different nodes (location). fi represents the influence of the (deterministic) process
fault f on the i-th sensor block with the unknown distribution matrix Hi, f .

The M sensor blocks build high degree of measurement redundancy, which can
be utilised for a reliable fault detection and reducing the uncertainty due to the
measurement noises. To this end, the mean of the measurements at the M sensor
blocks is built as follows

ȳ = 1

M

M∑

i=1

(yi − ȳi ) .

It holds in the fault-free case

cov (ȳ) = E ȳ ȳT = 1

M2

M∑

i=1

Σi .

It is evident that

1

M
σmin ≤ cov (ȳ) ≤ 1

M
σmax,

σmin = min {σmin (Σi ) , i = 1, · · · , M} ,

σmax = max {σmax (Σi ) , i = 1, · · · , M} .

On the other hand, in the faulty case

E ȳ = 1

M

M∑

i=1

(yi − ȳi ) = 1

M

M∑

i=1

fi .

On the assumption that

σmin >
1

M
σmax, fi ≈ f j =: f̄ , i, j = 1, · · · , M,

for some fault vector f̄ , we have

cov (ȳ) < σmin,
1

M

M∑

i=1

fi ≈ f̄ ,

which shows that increasing the redundancy (the number of the sensor blocks) can
reduce the influence of the noise and thus simultaneously improve the fault-to-noise
(F2N) ratio defined by
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F2N =
∥
∥ f̄
∥
∥

‖cov (ȳ)‖2
,
∥
∥ f̄
∥
∥2 = f̄ T f̄ , ‖cov (ȳ)‖2 = σmax (cov (ȳ)) .

The main tasks of detecting the process fault are schematically formulated as

• building the mean of the centred measurement data from the M sensor blocks,

ȳ = 1

M

M∑

i=1

(yi − ȳi ) ;

• building the test statistic
J = ȳTΣ−1 ȳ,

where

Σ = E ȳ ȳT = 1

M2

M∑

i=1

Σi ;

• setting the threshold
Jth = χ2

α (m)

for given upper bound of the false alarm rate α, and finally
• defining the (online) detection logic

{
J − Jth > 0 =⇒ faulty,
J − Jth ≤ 0 =⇒ fault-free.

These tasks should be handled in the distributed and data-driven fashion, in which

• a node has only the access to the local data and communicates with the nodes of
its neighbourhood,

• all relevant parameters (matrices) in the model (14.15) are unknown and only
process measurement data in the sub-processes located at the sensor nodes are
available.

14.2.2 A Basic Average Consensus Algorithm for Fault
Detection

We are now in a position to develop a basic scheme of average consensus based fault
detection. Like all data-driven methods, the fault detection scheme to be developed
consists of a training algorithm and an online implementation algorithm. In addition,
the communication protocol should be designed, in order to achieve an average
consensus.
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On the assumption that sufficient process data have been collected and recorded
during the fault-free operation in all sub-systems (nodes), the recorded data are
first centered at each node, and the resulted data set at the i-th node is denoted by
Yi ∈ Rm×Ni ,where Ni is the sample number. A key step in the online implementation
is a normalisation of the measurement data at each node. To this end,

Σ
−1/2
i ,Σi = 1

Ni − 1
YiY

T
i ∈ Rm×m

is calculated and saved at each node. Note that such a normalisation has no influence
on the fault detection performance and is done locally without communication. The
threshold at each node is set to be, for a given FAR upper bound α,

Jth,i = χ2
α (m) , i = 1, · · · , M.

It is clear that the communication protocol should be designed such that matrix W
given in (14.5) satisfies conditions (14.8)–(14.10). Below, we assume that these three
conditions hold.

The online implementation algorithm, parallel running at the nodes i, i =
1, · · · , M, consists of the following steps.

Algorithm 14.1 An intuitive average consensus based fault detection:

Step 0 Set k = 0, sample the measurement data yi at each node, and center and
normalise it as

yTi,k = Σ
−1/2
i (yi − ȳi ) , yi,k ∈ R1×m,

where ȳi is the estimated mean of yi , as defined in the model (14.15)–(14.17) and
calculated during the training phase;

Step 1 Transmit the data yi,k to the neighbours. That is, yi,k is sent to the node(s)
j, i ∈ N j ;

Step 2 Compute
yi,k+1 = wi i yi,k +

∑

j∈Ni

wi j y j,k, (14.18)

and set k = k + 1;
Step 3 Repeat Step 1—Step 2 (iteratively) until

∥
∥yi,k+1 − yi,k

∥
∥ ≤ γ,

where γ is a given tolerance constant, and set

ȳ = yTi,k+1;

Step 4 Run
Ji = MȳT ȳ (14.19)
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and check
Ji − Jth,i = MȳT ȳ − χ2

α (m) ;

Step 5 Make decision

Ji − Jth,i ≤ 0 =⇒ f ault − f ree, otherwise f aulty and alarm;

Step 6 (optional) Estimate the (normalised) fault in case of an alarm

f̂ = ȳ =⇒ E ȳ = 1

M

M∑

i=1

Σ
−1/2
i fi =

(
1

M

M∑

i=1

Σ
−1/2
i Hi, f

)

f.

We call the above algorithm intuitive average consensus, since it is intuitive to
build the average of the measurement data aiming at reducing the influence of the
measurement noise. Moreover, the step with the data normalisation is intuitive as
well, as done in most of data-driven fault detection schemes. But, this step enables
that the training is performed locally and thus without any communications among
the nodes. This is a significant advantage of this “intuitive” fault detection algorithm
over other distributed fault detection schemes, where distributed learning is needed.
On the other hand, it should be noticed that this algorithm does not, in general, deliver
an optimal detection solution, as illustrated in our subsequent study.

14.2.3 Performance Analysis and Discussion

Recall that after centering and normalisation the process measurement at the i-th
node satisfies (approximately)

Σ
−1/2
i (yi − ȳi ) .

Hence,

ȳ ∼ N
(

0,
1

M
Im×m

)

,

which leads to
Ji = MȳT ȳ ∼ χ2 (m) . (14.20)

As a result, the threshold is set to be

Jth = χ2
α (m) ,

and the detection algorithm results in the maximal detection rate for the faults mod-
elled in (14.17). It should be emphasised that, although it is realised in the distributed
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fashion, the fault detection performance in each sub-system (at each node) is identical
with the one achievable by running the centralised optimal fault detection scheme.

Note that in the faulty case,

E ȳ = 1

M

M∑

i=1

Σ
−1/2
i fi =

(
1

M

M∑

i=1

Σ
−1/2
i Hi, f

)

f,

where Σ
−1/2
i can be interpreted as a weighting matrix that enhances the contribution

of fi to the overall change in the mean caused by the fault, when the variance of the
noise at the i-th is weaker.

Remember that the average consensus is an iterative algorithm which delivers
the average of the initial values at each node. For our application, this requires, the
sampling time should be sufficiently large so that the iteration (14.18) converges and
the test statistic satisfies (14.20). Although considerable efforts have been made to
accelerate the convergence speed of the iteration towards consensus, the applicability
of the distributed fault detection scheme proposed above is strongly limited. Two
potential schemes can be followed to deal with this problem: (i) enhancing the fault
detectability at cost of delayed fault detection, (ii) increasing the real-time ability
for fault detection at cost of detectability of small faults. The following algorithm is
proposed for the realisation of the first scheme, whose core is (i) collection of the
process measurement data in a time interval distributed (at each node), (ii) building
the average of the collected data at each node, and (iii) running the consensus-based
fault detection using the average of the collected data over the network. The idea
behind it is the reduction of the variance of the measurement data by means of the
average building. In details, this algorithm consists of the following steps.

Algorithm 14.2 Avariation of the intuitive average consensus based fault algorithm

Step 1a Collect n measurement data yi (1), · · · , yi (n) in the time interval [t0, t1]
at each node,

Step 1b Parallel to Step 1a, set k = 0, and center, average and normalise the
collected data as

ȳTi,k = Σ
−1/2
i

n

n∑

l=1

(yi (l) − ȳi ) , ȳi,k ∈ R1×m,

where ȳi is the estimated mean of yi , as defined in the model, (14.15)-(14.17)
and calculated during the training phase;

Step 2 Transmit the data ȳi,k to the neighbours. That is, ȳi,k is sent to the node(s)
j, i ∈ N j ;
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Step 3 Compute
ȳi,k+1 = wi i ȳi,k +

∑

j∈Ni

wi j ȳ j,k, (14.21)

and set k = k + 1;

Step 4 Repeat Step 2—Step 3 (iteratively) until

∥
∥ȳi,k+1 − ȳi,k

∥
∥ ≤ γ,

where γ is a given tolerance constant, and set

ȳ = ȳTi,k+1;

Step 5 Run
Ji = nM ȳT ȳ (14.22)

and check
Ji − Jth,i = nM ȳT ȳ − χ2

α (m) ;

Step 6 Make decision

Ji − Jth,i ≤ 0 =⇒ fault-free, otherwise faulty and alarm;

Step 7 (optional) In case of an alarm, estimate the (normalised) fault

f̂ = ȳ =⇒ E ȳ = 1

M

M∑

i=1

Σ
−1/2
i fi =

(
1

M

M∑

i=1

Σ
−1/2
i Hi, f

)

f ;

Step 8 In fault-free case, go to Step 1.

It is clear that the average of the data collected in the time interval, say [t0, t1] , is
processed by the consensus iteration algorithm in the time interval [t1, t2] . Simulta-
neously, the measurement data are continuously collected in the time interval [t1, t2] .
At the time instance t2, fault detection (decision making) is performed. The synchro-
nisation of the data collection and performing the consensus-based fault detection
is schematically sketched in Fig. 14.2. In other words, a fault occurring in the time
interval [t0, t1] can be detected first at the end of the next sampling period [t1, t2] .On
the other hand, the fault detectability is remarkably enhanced, since the covariance
matrix of the average of the data collected at each node becomes

cov

(
1

n

n∑

l=1

yi (l)

)

= Σi

n
,
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Fig. 14.2 Synchronisation of the data collection and performing consensus algorithm

and the covariance matrix of the average ȳ after running the average consensus
algorithm is

cov (ȳ) = cov

(
1

M

M∑

i=1

ȳi,0

)

= 1

nM
I.

That means, also small-sized faults can be detected.
In the subsequent section, we will study the realisation of the second scheme,

which would lead to increasing the real-time ability for fault detection.

14.3 Practical Algorithms Towards Average Consensus
Aided Fault Detection

In this section, we present two algorithms which allow average consensus aided
fault detection without the limitation due to the required iteration convergence to-
wards consensus. That means, at each iteration the (online) detection algorithm is
performed, instead of waiting for the end of the iteration procedure. It is evident that
for a reliable detection by means of T 2 test statistic the covariance matrix of the
noise should be well estimated at each iteration. This fact motivates us to update the
estimated covariance matrix at each consensus iteration step.

14.3.1 An Algorithm with Distributed Test Statistic
Computation

Recall that the test statistic (14.19) in the fault detection algorithm proposed in the
last section is computed first after the convergence of the iteration (14.18). The idea
of the algorithmproposed in this sub-section is to embed the test statistic computation
at each node in the iteration procedure and is thus realised in a distributed manner.
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To be specific, we begin with k = 1,

yi,1 = wi i yi,0 +
∑

j∈Ni

wi j y j,0 = WiY0 =⇒ Y1 = WY0,Y1 =
⎡

⎢
⎣

y1,1
...

yM,1

⎤

⎥
⎦ ,

W =
⎡

⎢
⎣

W1
...

WM

⎤

⎥
⎦ ,Wi ∈ R1×M ,Y0 =

⎡

⎢
⎣

y1,0
...

yM,0

⎤

⎥
⎦ , yi,0 ∈ R1×m, i = 1, · · · , M.

Since for i = 1, · · · , M,

yTi,0 = Σ
−1/2
i (yi − ȳi ) ∼ N (0, Im×m) , yi,0 ∈ R1×m,

and yTi,0 and yTj,0, i �= j, are uncorrelated due to (14.16), it yields

yTi,1 ∼ N (
0, γi,1 Im×m

)
,

γi,1 = WiW
T
i = w2

i i +
∑

j∈Ni

w2
i j , i = 1, · · · , M.

For k = 2,

yi,2 = wi i yi,1 +
∑

j∈Ni

wi j y j,1 = WiWY0 =
⎛

⎝wi iWi +
∑

j∈Ni

wi jW j

⎞

⎠ Y0

=
M∑

l=1

⎛

⎝wi iwil +
∑

j∈Ni

wi jw jl

⎞

⎠ yl,0 =⇒ Y2 = W 2Y0,Y2 =
⎡

⎢
⎣

y1,2
...

yM,2

⎤

⎥
⎦

=⇒ yTi,2 ∼ N (
0, γi,2 Im×m

)
, i = 1, · · · , M,

γi,2 =
M∑

l=1

⎛

⎝wi iwil +
∑

j∈Ni

wi jw jl

⎞

⎠

2

.

The following theorem provides us with a general iteration algorithm.

Theorem 14.2 Given the process model (14.15)–(14.17) and average consensus
iteration (14.18), then

yTi,k ∼ N (
0, γi,k Im×m

)
, (14.23)

Vi,k = wi i Vi,k−1 +
∑

j∈Ni

wi j Vj,k−1, Vi,0 = ei , (14.24)

Vi,k = [ vi1,k · · · viM,k
] ∈ R1×M , k = 0, 1, · · · ,
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γi,k =
M∑

l=1

⎛

⎝wi ivil,k−1 +
∑

j∈Ni

wi jv jl,k−1

⎞

⎠

2

, i = 1, · · · , M, (14.25)

where ei ∈ R1×M is a vector with all entries equal to 0 except for the one at the i-th
position.

Proof This theorem can be easily proved by means of mathematical induction. In
fact, we have proved that (14.23)–(14.25) are true for k = 1. Now, assume that
(14.23)–(14.24) hold for k = q and check the result for k = q + 1. Since

yi,q+1 = WiW
qY0 = Vi,qY0, i = 1, · · · , M,

it is clear

Vi,q = WiW
q = WiWWq−1 = wi i Vi,q−1 +

∑

j∈Ni

wi j Vj,q−1.

Considering
E yTi,0y j,0 = 0, j �= i, E yi,q+1 = 0,

it turns out

yTi,q+1 ∼ N (
0, cov

(
yTi,q+1

))
,

cov
(
yTi,q+1

) = EY T
0 V T

i,qVi,qY0 =
M∑

l=1

⎛

⎝wi ivil,q−1 +
∑

j∈Ni

wi jv jl,q−1

⎞

⎠

2

I.

Thus, (14.23)–(14.25) hold for k = q + 1.

It follows from this theorem that for the computation of cov
(
yTi,k
)
at the i-th node,

Vi,k−1 and Vj,k−1, j ∈ Ni , from the neighbours are needed. On the other hand, this
computation delivers the covariance matrix of the noise at each iteration and thus
allows us to detect fault at each iteration. The corresponding algorithm is summarised
as

Algorithm 14.3 The intuitive average consensus based fault detection algorithm
with fault detection during iteration

Step 0a Set k = 0, sample themeasurement data yi at the i-th node, i = 1, · · · , M,

and center and normalise it as

yTi,k = Σ
−1/2
i (yi − ȳi ) , yi,k ∈ R1×m,

where ȳi is the estimated mean of yi , as defined in the model (14.15)–(14.17) and
calculated during the training phase;
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Step 0b Set
Vi,0 = ei ;

Step 1 Transmit the data yi,k, Vi,k to the neighbours. That is, yi,k, Vi,k are sent to
node(s) j, i ∈ N j ;

Step 2 Compute

yi,k+1 = wi i yi,k +
∑

j∈Ni

wi j y j,k, (14.26)

Vi,k+1 = wi i Vi,k +
∑

j∈Ni

wi j Vj,k, (14.27)

γi,k+1 =
M∑

l=1

⎛

⎝wi ivil,k +
∑

j∈Ni

wi jv jl,k

⎞

⎠

2

; (14.28)

Step 3 Run

Ji = 1

γi,k+1
yi,k+1y

T
i,k+1 (14.29)

and check
Ji − Jth,i = Ji − χ2

α (m) ;

Step 4 Make decision

Ji − Jth,i ≤ 0 =⇒ fault-free, otherwise faulty;

Step 5 If fault-free, set k = k + 1 and repeat Step 1—Step 4 (iteratively) until the
next data sampling.

Remark 14.1 It is evident that γi,k only depends on the weighting matrix W and
can be thus offline computed and saved. This can also be done by performing the
above average consensus algorithm for the first time. In this way, the needed data
transmission is reduced. If the number of the iterations is not large, this is a practical
strategy.

The above fault detection algorithm allows us to detect the fault optimally also
during two data samplings. On the other hand, it is of interest to know the conver-
gence rate of γi,k, i = 1, · · · , M, k = 0, 1, · · · , which is related to the covariance
of the noise in the sub-systems and at each iteration. In the literature, much attention
has been paid to the convergence rate of the iteration yi,k . Although the conver-
gence rate of yi,k and its covariance are strongly relevant, to our best knowledge,
few studies have been dedicated to the latter. This motivates our study in the sub-
sequent sub-section. It is remarkable that the result of this work also leads to an
online detection algorithm, which requires no computation and communication for
the implementation of (14.27)–(14.28).
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14.3.2 Analysis of Convergence Rate and an Alternative
Fault Detection Algorithm

For our purpose, we first consider cov
(
yTi,1
)
, i = 1, · · · , M. Write yi,1 as

yi,1 = WiY0 = 1

M
lT Y0 + Δi,1Y0,Δi,1 = Wi − 1

M
lT .

It yields

yTi,1yi,1 = Y T
0

(
1

M
lT + Δi,1

)T ( 1

M
lT + Δi,1

)

Y0.

Following the discussion in the previous sub-section, it turns out

cov
(
yTi,1
) =

M∑

j=1

(
1

M
+ Δi j,1

)2

I,

Δi,1 = [Δi1,1 · · · Δi j,1 · · · ΔiM,1
]
.

Note that

M∑

j=1

(
1

M
+ Δi j,1

)2

=
(

1

M
lT + Δi,1

)(
1

M
lT + Δi,1

)T

= 1

M
+ Δi,1Δ

T
i,1,

since

Δi,1l =
(

Wi − 1

M
lT
)

l = 0.

Therefore, we have

cov
(
yTi,1
) =

(
1

M
+ Δi,1Δ

T
i,1

)

I. (14.30)

Next, wewould like to find a upper bound of cov
(
yTi,1
)
for all i = 1, · · · , M.Noticing

that Δi,1 = Wi − 1
M lT is a row of matrix W − 1

M llT , the value to be found can be
determined in terms of W − 1

M llT . To this end, we first introduce the following
lemma.

Lemma 14.1 Given a matrix X ∈ Rn×m and let xi ∈ R1×m be the i-th row of
X, i = 1, · · · ,m, then it holds

xi x
T
i ≤ σ 2

max (X) = ‖X‖22 .
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Proof Let
X = UΣV T

be an SVD of X. It turns out

xi = uiΣV T =⇒ xi x
T
i = uiΣΣT uT

i

with ui as the i-th row of U. Recall that

ΣΣT =

⎡

⎢
⎢
⎢
⎢
⎣

σ 2
1 0 · · · 0

. . .
...

... σ 2
q 0

0 · · · 0 0

⎤

⎥
⎥
⎥
⎥
⎦

, σ 2
max (X) I ≥ ΣΣT .

It becomes evident that
xi x

T
i ≤ σ 2

max (X) .

Considering that Δi,1 is a row of W − 1
M llT , according to Lemma 14.1, it holds

∀i ∈ {1, · · · , M} ,Δi,1Δ
T
i,1 ≤ σ 2

max

(

W − 1

M
llT
)

.

Thus,

∀i ∈ {1, · · · , M} , cov
(
yTi,1
) ≤

(
1

M
+ σ 2

max

(

W − llT

M

))

I.

For a general case with k ≥ 1, we are able to prove the following theorem.

Theorem 14.3 Given the process model (14.15)–(14.17) and average consensus
iteration (14.18), then

∀i ∈ {1, · · · , M} , cov
(
yTi,k
) ≤

(
1

M
+
∥
∥
∥
∥W − llT

M

∥
∥
∥
∥

2k

2

)

Im×m . (14.31)

Proof Write
yi,k = WiW

k−1Y0, k ≥ 1

as

yi,k = 1

M
lT Y0 + Δi,kY0,Δi,k = WiW

k−1 − 1

M
lT .
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Note that

(
W − 1

M llT
)2 = W 2 − 1

M llT =⇒
∀k ≥ 1,

(
W − 1

M llT
)k = Wk − 1

M llT , and
1
MWi llT = 1

M lT , 1
M lTWk = 1

M lTWk−1 = 1
M lT =⇒

(
Wi − 1

M lT
) (
Wk−1 − 1

M llT
) = WiWk−1 − 1

M lT .

It turns out

Δi,k = WiW
k−1 − 1

M
lT =

(

Wi − 1

M
lT
)(

Wk−1 − 1

M
llT
)

=
(

Wi − 1

M
lT
)(

W − 1

M
llT
)k−1

.

It leads to, along the lines of our discussion on the case k = 1,

cov
(
yTi,k
) = ( 1

M lT + Δi,k
) (

1
M lT + Δi,k

)T
I,

(
1
M lT + Δi,k

) (
1
M lT + Δi,k

)T = 1
M +Δi,kΔ

T
i,k + 2 1

M lTΔT
i,k,

Δi,k l = (Wi − 1
M lT

) (
W − 1

M llT
)k−1

l = 0 =⇒
(
1
M lT + Δi,k

) (
1
M lT + Δi,k

)T = 1
M +Δi,kΔ

T
i,k,

and further

Δi,kΔ
T
i,k = (Wi − 1

M lT
) ((

W − 1
M llT

) (
W − 1

M llT
)T
)k−1 ·

(
Wi − 1

M lT
)T

≤
(
σ 2
max

(
W − llT

M

))k−1 (
Wi − 1

M lT
) (
Wi − 1

M lT
)T

,

which results in

cov
(
yTi,k
) ≤ 1

M
+
(

σ 2
max

(

W − llT

M

))k−1 (

Wi − 1

M
lT
)(

Wi − 1

M
lT
)T

.

By Lemma 14.1, we finally have

cov
(
yTi,k
) ≤

(
1

M
+
(

σ 2
max

(

W − llT

M

))k
)

Im×m

=
(

1

M
+
∥
∥
∥
∥W − llT

M

∥
∥
∥
∥

2k

2

)

Im×m .
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According to this theorem,

∀i ∈ {1, · · · , M} , lim
k→∞ cov

(
yTi,k
) = 1

M
,

if ∥
∥
∥
∥W − llT

M

∥
∥
∥
∥
2

= σmax

(

W − llT

M

)

< 1.

This is proved in the following theorem on the assumption thatW andWT commute.
That is

WWT = WTW.

It is clear thatW commutes withWT ifW is symmetric. It is well-known that, if two
matrices A, B commute, then

ρ (AB) ≤ ρ (A) ρ (B) .

Theorem 14.4 Given W satisfying the conditions (14.8)–(14.10) given in Theorem
14.1 and commuting with WT , then

σmax

(

W − llT

M

)

< 1.

Proof Since

σ 2
max

(

W − llT

M

)

= λmax

((

W − llT

M

)T (

W − llT

M

))

with λmax denoting the maximal eigenvalue of matrix
(
W − llT

M

)T (
W − llT

M

)
, we

consider

(

W − llT

M

)T (

W − llT

M

)

= WTW + llT

M
− WT ll

T

M
− llT

M
W.

Recall
WT l = l,

and thus
(

W − llT

M

)T (

W − llT

M

)

= WTW − llT

M
.

Because
WTW = WWT
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leads to
(

W − llT

M

)T (

W − llT

M

)

=
(

W − llT

M

)(

W − llT

M

)T

,

which means
(
W − llT

M

)
and

(
W − llT

M

)T
being commute, it holds

ρ

((
W − llT

M

)T (
W − llT

M

))

= λmax

((
W − llT

M

)T (
W − llT

M

))

≤ ρ

((
W − llT

M

)T
)

ρ
((

W − llT

M

))
< 1.

The theorem is proved.

Theorem14.3 gives an estimation for the convergence rate of the covariancematrix
of yi,k , which is of special interest for fault detection using the T 2 test statistic. For
our purpose, by the design of the communication protocol, the following optimisation
problem is to be solved for W :

min
W

σmax

(

W − llT

M

)

s.t.W l = l,WT l = l.

In their paper on the distributed average consensus, Xiao and Boyd have provided
an LMI solution for the above optimisation problem.

Since (14.31) holds for the iterations at all nodes, as a by-product of the above
analysis, we propose the following online fault detection algorithm. This algorithm
requires no communication of Vi,k and computation of (14.27)–(14.28), as needed
in the detection algorithm proposed in the last sub-section, but at cost of fault de-
tectability. Below is the algorithm.

Algorithm 14.4 The intuitive average consensus based fault detection algorithm
with fault detection during iteration: the modified version

Step 0a Set k = 0, sample themeasurement data yi at the i-th node, i = 1, · · · , M,

and center and normalise it as

yTi,k = Σ
−1/2
i (yi − ȳi ) , yi,k ∈ R1×m,

where ȳi is the estimated mean of yi , as defined in the model (14.15)–(14.17) and
calculated during the training phase;

Step 0b Compute and save σ 2
max

(
W − llT

M

)
, and set

γk = 1;
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Step 1 Transmit the data yi,k to the neighbours. That is, yi,k are sent to node(s)
j, i ∈ N j ;

Step 2 Compute

yi,k+1 = wi i yi,k +
∑

j∈Ni

wi j y j,k, (14.32)

γk+1 = σ 2
max

(

W − llT

M

)

γk; (14.33)

Step 3 Run

Ji = M

1 + γk+1M
yi,k+1y

T
i,k+1 (14.34)

and check
Ji − Jth,i = Ji − χ2

α (m) ;

Step 4 Make decision

Ji − Jth,i ≤ 0 =⇒ fault-free, otherwise faulty;

Step 5 If fault-free, set k = k + 1 and repeat Step 1- Step 4 (iteratively) until the
next data sampling.

14.3.3 Re-visiting Fault Detection Performance

Remember that the basic idea of the proposed consensus based FD scheme is the
utilisation of the (hardware) sensor redundancy to reduce the uncertainty caused
by noises in the measurements. This is an intuitive solution to the fault detection
problem formulated for distributed processes.On the other hand,wehave, inSect. 3.2,
formulated optimal fault detection problem in static processes and given its solution.
In this sub-section, we would like to re-visit the FD performance of our intuitive
solution in the context of the optimal fault detection formulated in Sect. 3.2.

Consider the process model (14.15)–(14.17). For the simplicity, we assume, in
the faulty case,

Hi, f = I =⇒ E yi = ȳi + f, i = 1, · · · , M. (14.35)

Let

ỹ =
⎡

⎢
⎣

ỹ1
...

ỹM

⎤

⎥
⎦ =

⎡

⎢
⎣

y1 − ȳ1
...

yM − ȳM

⎤

⎥
⎦ ,

which yields
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ỹ =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

⎡

⎢
⎣

ε1
...

εM

⎤

⎥
⎦ := ε ∼ N (0,Σ) , fault-free,

⎡

⎢
⎣

I
...

I

⎤

⎥
⎦ f +

⎡

⎢
⎣

ε1
...

εM

⎤

⎥
⎦ =: Hf f + ε, faulty,

(14.36)

Σ = diag (Σ1, · · · ,ΣM) .

According to the optimal solution given in Sect. 3.2, given process model (14.36),
the optimal test statistic is given by

J = ỹT
(
H−

f

)T
(

H−
f Σ

(
H−

f

)T
)−1

H−
f ỹ, H

−
f =

(
HT

f Σ−1Hf

)−1
HT

f Σ−1.

Note that

H−
f =

(
M∑

i=1

Σ−1
i

)−1
[
Σ−1

1 · · · Σ−1
M

]
,

J =
(

M∑

i=1

Σ−1
i ỹi

)T ( M∑

i=1

Σ−1
i

)−1 ( M∑

i=1

Σ−1
i ỹi

)

. (14.37)

Comparing (14.37) with (14.19) makes it clear that the consensus algorithms pro-
posed in this section delivers the optimal fault detection performance only under
condition

Σi = I, i = 1, · · · , M,

which can be, obviously, merely satisfied.
In order to understand the proposed consensus-based solution, we slightly modify

the process model under consideration to

yi =
{
Hi (x + εi ) , E yi = Hi x, εi ∼ N (0, I ) , fault-free,
Hi (x + εi + f ) , faulty,

(14.38)

Hi = Σ
1/2
i , EεTi ε j = δi j , i, j = 1, · · · , M,=⇒

ỹ =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

⎡

⎢
⎣

H1ε1
...

HMεM

⎤

⎥
⎦ =: ε ∼ N (0,Σ) , fault-free,

⎡

⎢
⎣

H1 (ε1 + f )
...

HM (εM + f )

⎤

⎥
⎦ =: Hf f + ε, faulty,

Σ = diag (Σ1, · · · ,ΣM) = diag
(
H1H

T
1 , · · · , HMHT

M

)
.
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It is straightforward that

H−
f = (HT

f Σ−1Hf
)−1

HT
f Σ−1 = M−1

[

Σ
−1/2
1 · · · Σ

−1/2
M

]
,

J = ỹT
(
H−

f

)T
(

H−
f Σ

(
H−

f

)T
)−1

H−
f ỹ

=
(

1

M

M∑

i=1

Σ
−1/2
i ỹi

)T

M

(
1

M

M∑

i=1

Σ
−1/2
i ỹi

)

,

which is exactly the test statistic given in (14.19). Thus, the proposed consensus
based solution is optimal when the process under consideration can be modelled by
(14.38).

At the end of this section, we would like to emphasise that, although our intuitive
average consensus algorithms do not result in optimal fault detection performance,
they are highly efficient in the context that no data transmissions among the nodes
(sub-systems) are required during the training/modelling phase. This also enables
online updating the model at each node during system operations without increasing
the communication load.

14.4 A General Consensus Based Optimal Fault Detection
Scheme

The study in the previous sub-section motivates us to find a consensus based optimal
fault detection scheme which can be applied for a general process model form.

14.4.1 Problem Formulation, Solution and Algorithm

We consider again process model (14.15)–(14.17), but

• the dimensions of the measurement vectors in sub-systems can be different. That
is

yi ∈ Rmi , i = 1, · · · , M.

• And
fi = Hi, f f ∈ Rmi , Hi, f ∈ Rmi×k f , f ∈ Rk f , i = 1, · · · , M,

with known Hi, f , which represents the sensor configuration, for instance, Hi, f =
Hi .

Remark 14.2 In the data-driven framework, the assumption of the known fault
model Hi, f seems unrealistic, since it is hard to collect data of faulty operations.
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On the other hand, it is helpful in real applications to be able to design a fault
detection system which is efficient in detecting a specified fault (pattern) modelled
by (designed) Hi, f . In fact, in order to increase the reliability of fault detection, a
bank of such systems can be designed and implemented.

For our purpose, let

ỹ =
⎡

⎢
⎣

ỹ1
...

ỹM

⎤

⎥
⎦ =

⎡

⎢
⎣

y1 − ȳ1
...

yM − ȳM

⎤

⎥
⎦ ,

which leads to

ỹ =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

⎡

⎢
⎣

ε1
...

εM

⎤

⎥
⎦ =: ε ∼ N (0,Σ) , fault-free,

⎡

⎢
⎣

H1, f
...

HM, f

⎤

⎥
⎦ f +

⎡

⎢
⎣

ε1
...

εM

⎤

⎥
⎦ =: Hf f + ε, faulty,

∈ RmΣ , (14.39)

Σ = diag (Σ1, · · · ,ΣM) ,mΣ =
M∑

i=1

mi .

As known from Sect. 3.2 and from our discussion at the end of the previous section,
the optimal test statistic is

J = ỹT
(
H−

f

)T
(

H−
f Σ

(
H−

f

)T
)−1

H−
f ỹ, H

−
f =

(
HT

f Σ−1Hf

)−1
HT

f Σ−1.

Since

(

H−
f Σ

(
H−

f

)T
)−1

=
M∑

i=1
HT
i, f Σ

−1
i Hi, f =⇒

H−
f =

(
M∑

i=1
HT
i, f Σ

−1
i Hi, f

)−1
[
HT

1, f Σ
−1
1 · · · HT

M, f Σ
−1
M

]
,

it holds

J =
(

M∑

i=1

HT
i, f Σ

−1
i ỹi

)T ( M∑

i=1

HT
i, f Σ

−1
i Hi, f

)−1 ( M∑

i=1

HT
i, f Σ

−1
i ỹi

)

. (14.40)

Moreover, considering
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H−
f ε ∼ N

(

0, H−
f Σ

(
H−

f

)T
)

, H−
f ε ∈ Rk f , (14.41)

the corresponding (optimal) threshold is set to be

Jth = χ2
α

(
k f
)
. (14.42)

Also, the MLE of f is given by

f̂ = H−
f ỹ =

(
M∑

i=1

HT
i, f Σ

−1
i Hi, f

)−1 ( M∑

i=1

HT
i, f Σ

−1
i ỹi

)

. (14.43)

It is clear that for the optimal fault detection at each node,

M∑

i=1

HT
i, f Σ

−1
i Hi, f ,

M∑

i=1

HT
i, f Σ

−1
i ỹi

are to be calculated, which can be, for instance, realised using the average consen-
sus algorithm. Below is the data-driven realisation of the average consensus based
algorithm for our purpose, which runs in parallel at the nodes i = 1, · · · , M. The
algorithm consists of two parts:

• the training phase, in which the computation of

1

M

M∑

i=1

HT
i, f Σ

−1
i Hi, f := 1

M

M∑

i=1

Ψi

is realised by an average consensus algorithm,
• the online detection, in which the computation of

1

M

M∑

i=1

HT
i, f Σ

−1
i ỹi := 1

M

M∑

i=1

ϕi

is realised by real-time running an average consensus algorithm.

Algorithm 14.5 Optimal average consensus based fault detection algorithm

Step 0a Collect sufficient process data, at each node, for estimating Σi , ȳi , and
compute

Ψi = HT
i, f Σ

−1
i Hi, f

parallel in all nodes i = 1, · · · , M;
Step 0b Run an average consensus algorithm, which delivers
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Ψ̄ = 1

M

M∑

i=1

Ψi (14.44)

at each node;
Step 1 Compute

ỹi = yi − ȳi , ϕi = HT
i, f Σ

−1
i ỹi

in parallel at all nodes i = 1, · · · , M;

Step 2 Run an average consensus, which delivers

ϕ̄ = 1

M

M∑

i=1

ϕi (14.45)

in parallel at all nodes i = 1, · · · , M;

Step 3 Compute
Ji = ϕ̄T Ψ̄ −1ϕ̄ (14.46)

in parallel at all nodes i = 1, · · · , M;

Step 4 Check

Ji − Jth = Ji − χ2
α

(
k f
)

M

for decision

Ji − Jth ≤ 0 =⇒ fault-free, otherwise faulty and alarm

in parallel at all nodes i = 1, · · · , M;

Step 5 In case of an alarm, estimate the fault

f̂ = Ψ̄ −1ϕ̄

in parallel at all nodes i = 1, · · · , M.

14.4.2 Variations of the Algorithm

Analogue to the previous work, we propose two extended variations of the above
algorithm aiming at enhancing the fault detection performance.
Enhancing fault detectability using the average of collected data
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In Sect. 14.2, we have introduced an algorithm for a consensus-based fault detection
using the average of the data collected at each node, in order to enhance the fault
detectability. The idea behind this algorithm is to collect the process data during the
consensus iteration, as sketched in Fig. 14.2, and to use the average of these data
to reduce the variance of the measurement data and so to realise a distributed fault
detection with high performance. To be specific, assume that n measurement data
yi (1), · · · , yi (n) are collected in the time interval [t0, t1] at each node and build the
average

yi,a = 1

n

n∑

l=1

yi (l).

Note that
E yi,a = E yi .

As a result, the process model (14.15)–(14.17) is re-written as

yi,a = E yi + εi,a ∈ Rmi , i = 1, · · · , M,

εi,a ∼ N (
0,Σi,a

)
,Σi,a = Σi/n, E (εTi ε j

) = 0, i �= j,

E yi =
{
ȳi , ȳi = Hi x, fault-free,
ȳi + fi , fi = Hi, f f, faulty.

Now, substituting yi,, Σi in Algorithm 14.5 presented in the previous sub-section
by yi,a,Σi,a, respectively, results in an extended version of this algorithm with the
improved performance. This can be seen clearly by noting that the test statistic given
in (14.46) becomes

Ji =
(

1

M

M∑

i=1

HT
i, f Σ

−1
i,a ỹi

)T (
1

M

M∑

i=1

HT
i, f Σ

−1
i,a Hi, f

)−1 (
1

M

M∑

i=1

HT
i, f Σ

−1
i,a ỹi

)

= nϕ̄T Ψ̄ −1ϕ̄,

where Ψ̄ , ϕ̄ are given in (14.44) and (14.45), respectively. Since there is no change in
the threshold and the associated FAR, the fault detectability is obviously improved.
Adaptive and reliable fault detection
In real applications, environment conditions around the process under consideration
often vary. In many cases, such changes are characterised by time-varying variances
of the sensor noises. In case of a slowly time-varying covariance matrix, this problem
can be efficiently coped with, for instance, by a recursive algorithm

Σ̂i,k = (1 − α) Σ̂i,k−1 + α ỹi (k)ỹ
T
i (k), 0 < α < 1,

where it is assumed that at the time instant k, sensor data yi (k) is collected at the i-th
node, i = 1, · · · , M, k = 0, 1, · · · , Σ̂i,k is the update of the estimate for Σi , and
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ỹi (k) = yi (k) − ȳi .

Considering that for our application, HT
i, f Σ

−1
i and HT

i, f Σ
−1
i Hi, f are needed, the

following recursive algorithm for the computation of Σ̂−1
i,k can be adopted:

Σ̂−1
i,k =

(
(1 − α) Σ̂i,k−1 + α ỹi (k)ỹ

T
i (k)

)−1

= 1

1 − α

⎛

⎝Σ̂−1
i,k−1 − Σ̂−1

i,k−1 ỹi (k)ỹ
T
i (k)Σ̂−1

i,k−1

(1 − α)
(

1
1−α

ỹTi (k)Σ̂−1
i,k−1 ỹi (k) + 1

α

)

⎞

⎠

= 1

1 − α

⎛

⎝Σ̂−1
i,k−1 − α

Σ̂−1
i,k−1 ỹi (k)ỹ

T
i (k)Σ̂−1

i,k−1
(
α ỹTi (k)Σ̂−1

i,k−1 ỹi (k) + 1 − α
)

⎞

⎠ . (14.47)

Remark 14.3 There are a great number of algorithms for a recursive update or
adaptive estimation of a covariance matrix. Since this computation is not the focus
of our study, we just presented the simple algorithm (14.47).

The implementation of the algorithm to be proposed here follows two phases:

• collecting data and running update of (the inverse of) the covariance matrices at
each node according to algorithm (14.47),

• running the consensus-based fault detection algorithm using the (latest) updates
of the covariance matrices, which includes a fault detection at each iteration of the
consensus algorithm.

The two phases of updating the covariance matrices and running the consensus itera-
tion are performed online and synchronised similar to the one described in Fig. 14.2.
Below, we briefly describe the realisation of the consensus based fault detection
algorithm.

Assume that at the time instant tl the estimate Σ̂i is available at the node i , which is
delivered by the algorithm (14.47) running during the time interval

[
tl−1, tl

]
(referred

to Fig. 14.2). For the realisation of the test statistic (14.40), a consensus algorithm
should be now performed to achieve

M∑

i=1

HT
i, f Σ̂

−1
i ỹi ,

and the associated covariance matrix at each node. Note that in the previous fault
detection algorithm, the covariance matrix

Ψ :=
M∑

i=1

HT
i, f Σ

−1
i Hi, f
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is computed offline during the training phase.Differently, due to the update inΣ−1
i , Ψ

should be now computed online. Denote

φi = HT
i, f Σ̂

−1
i ỹi , Ψi = HT

i, f Σ̂
−1
i Hi, f .

The average consensus algorithm for the computation of

φ̄ = 1

M

M∑

i=1

φi , Ψ̄ = 1

M

M∑

i=1

Ψi

is given by

φT
i,k+1 = wi iφ

T
i,k +

∑

j∈Ni

wi jφ
T
j,k =⇒ �k+1 = W�k, (14.48)

W =
⎡

⎢
⎣

W1
...

WM

⎤

⎥
⎦ ,�k =

⎡

⎢
⎣

φT
1,k
...

φT
M,k

⎤

⎥
⎦ , φi,0 = φi = HT

i, f Σ̂
−1
i ỹi ,

Ψi,k+1 = wi iΨi,k +
∑

j∈Ni

wi jΨ j,k, i = 1, · · · , M. (14.49)

For our purpose of performing fault detection at each iteration and each node, we
check the covariance matrix of φT

i,k+1. Note that

φT
i,k+1 = WiW

k−1�0 ∼ N (
0,Σφi ,k+1

)
,

Σφi ,k+1 = E (�T
0

(
Wk−1

)
WT

i WiW
k−1�0

)
.

Recall that ỹi , ỹ j , i �= j, are uncorrelated. It turns out

E (�T
0

(
Wk−1

)
WT

i WiW
k−1�0

) =
M∑

j=1

v2
i, j,k H

T
j, f Σ

−1
j Hj, f , (14.50)

WiW
k−1 = [ vi,1,k · · · vi,M,k

]
.

It is obvious that (14.50) cannot be exactly achieved by running the consensus algo-
rithm for givenW. This motivates us to find an appreciate estimate for the covariance
matrix given in (14.50). For our study, we assume thatW is doubly stochastic, which
means

• all elements of W are nonnegative real numbers and
• conditions (14.8)–(14.9) are satisfied.

It is evident that ∀k ≥ 1, i = 1, · · · , M ,
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WiW
k−1l = Wi l =1,

and all elements of WiWk−1 are nonnegative real numbers. It yields

0 ≤ vi, j,k ≤ 1 =⇒ vi, j,k ≥ v2
i, j,k, j = 1, · · · , M.

As a result, we have

E (�T
0

(
Wk−1)WT

i WiW
k−1�0

) ≤
M∑

j=1

vi, j,k H
T
j, f Σ

−1
j Hj, f = Ψi,k+1, (14.51)

which is then adopted for detecting faults at the k-th iteration in node i . It should be
noticed that as k → ∞,

vi, j,k → 1

M
=⇒

M∑

j=1

vi, j,k H
T
j, f Σ

−1
j Hj, f = 1

M

M∑

j=1

HT
j, f Σ

−1
j Hj, f

> >

M∑

j=1

v2
i, j,k H

T
j, f Σ

−1
j Hj, f = 1

M2

M∑

j=1

HT
j, f Σ

−1
j Hj, f .

In other words, as the iteration process converges, the estimation for

E (�T
0

(
Wk−1

)
WT

i WiW
k−1�0

)

by means of (14.51) becomes (very) conservative. A practical solution to deal with
this problem is to multiply a correction factor α(k) to Ψi,k+1,

α(k)Ψi,k+1 = α(k)
M∑

j=1

vi, j,k H
T
j, f Σ

−1
j Hj, f =: Ψi,k+1,α, (14.52)

which satisfies

lim
k→∞ α(k) = 1

M
.

Considering that ρ
(
W − llT

M

)
is the convergence rate of the applied average consen-

sus algorithm,

α(k) = 1

M
+ ρk

(

W − llT

M

)

→ 1

M
(14.53)

could serve for this purpose.
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We now summarise the above results in the following algorithm. It is supposed
that in the time interval

[
tl−1, tl

]
the recursive algorithm (14.47) for the computation

of Σ̂−1
i is performed and delivers Σ̂−1

i at the time instant tl .

Step 0 Set k = 0 and

φT
i,0 = HT

i, f Σ̂
−1
i ỹi , Ψi,0 = HT

i, f Σ̂
−1
i Hi, f

in parallel at all nodes i = 1, · · · , M;

Step 1 Run algorithm (14.48) and (14.49), and set k = k + 1 in parallel at all
nodes i = 1, · · · , M;

Step 2 Compute
φT
i,kΨ

−1
i,k φi,k,

check and make decision

{
φT
i,kΨ

−1
i,k φi,k − χ2

α

(
k f
) ≤ 0, f ault − f ree,

φT
i,kΨ

−1
i,k φi,k − χ2

α

(
k f
)

> 0, f aulty,

in parallel at all nodes i = 1, · · · , M;
Step 3 Repeat Step 1—Step 2 (iteratively) until

∥
∥φi,k+1 − φi,k

∥
∥ ≤ γ,

where γ is a given tolerance constant, set

φ̄ = φi,k, Ψ̄
−1 = Ψ −1

i,k ,

and compute
Ji = φ̄T Ψ̄ −1φ̄

in parallel at all nodes i = 1, · · · , M;
Step 4 Check

Ji − Jth = Ji − χ2
α

(
k f
)

M

for decision

Ji − Jth ≤ 0 =⇒ f ault − f ree, otherwise f aulty and alarm

in parallel at all nodes i = 1, · · · , M.

Remark 14.4 If the corrected Ψi,k+1, Ψi,k+1,α, as given in (14.52), is adopted in the
algorithm, Ψ̄ −1 in Step 3 will be substituted by
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Ψ̄ −1 = Ψ −1
i,k,α

and the fault detection logic adopted in Step 4 will be changed to

Ji − Jth = Ji − χ2
α

(
k f
)
.

It should be emphasised that the implementation of the above algorithm requires
considerable data transmissions, not only the transmission of the measurement data,
but also the one of the covariance matrices of the sub-systems, as well as intensive
online computation. In comparison, the algorithms proposed in the previous section
with normalisation of the measurement in each sub-system by

Σ
−1/2
i (yi − ȳi )

save communication and computation efforts, in particular in case that recursive
update of the covariance matrices is performed.

14.5 A Distributed Kalman Filter Based Fault Detection
Scheme

14.5.1 Problem Formulation

In the previous three sections, we have studied fault detection issues based on the
process model (14.15)–(14.17), in which the constant state vector x is assumed. In
other words, we have addressed the fault detection issues for static processes. The
objective of this section is to extend our average consensus based fault detection
scheme to the dynamic processes. To this end, it is supposed a state space model is
available with

x (k + 1) = Ax(k), x(0) = x0, x(k) ∈ Rn, (14.54)

where x is the state vector. Similar to our early study, a sensor network is applied
for the purpose of process monitoring. The sensor network under consideration is
composed of M nodes and the corresponding graph is connected. It is assumed that
the (sensor) measurement vector at the node i is modelled by

yi (kTs,i ) = Ci x(kTs,i ) + vi (kTs,i ) ∈ Rmi , i = 1, · · · , M. (14.55)

In the sensor model (14.55), vi (kTs,i ) ∼ N (
0,Σvi

)
represents the measurement

noise vector, which is white and uncorrelated with x(k), v j (k), j �= i, but unknown.
In order to deal with practical applications, we suppose that the sampling rate at
different sensor nodes could be different. Here, Ts,i denotes the sampling time at
sensor node i. To simplify our subsequent work, it is assumed that
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Ts,i = γi Ts, i = 1, · · · , M,

with Ts denoting the sampling time of the process model (14.54) and γi ∈ {1, 2, · · · }
some integer.

To model the process faults to be detected, the process model (14.54) is extended
to

x (k + 1) = Ax(k) + f (k) (14.56)

with f (k) denoting the (deterministic) fault vector. The influence of f (k) on y(kTs,i )
is modelled by

x f (k + 1) = Ax f (k) + f (k), x f (0) = 0, (14.57)
{
f (k) = 0, kTs < t f , fault-free,
f (k) �= 0, kTs ≥ t f , faulty,

yi (kTs,i ) = Ci x(kTs,i ) + fi (kTs,i ) + vi (kTs,i ), (14.58)

fi (kTs,i ) = Ci x f
(
kTs,i

)
.

Here, t f denotes the time instant, at which the fault f occurs in the process.
In the subsequentwork,wewould like to propose an average consensus based fault

detection scheme using a distributed Kalman filter designed for our sensor network.

14.5.2 Modelling

In order to solve the formulated problem, we first re-build the process and sensor
models using the so-called lifting technique, which allows us to deal with multi-
sampling rate issues and to apply the average consensus algorithm. To this end,
define T as the sampling time of the lifted system model. It should hold

T = ηTs = ηi Ts,i = ηiγi Ts, i = 1, · · · , M, (14.59)

with η, ηi ∈ {1, 2, · · · } being some integers. Note

η = ηiγi ⇐⇒ η/γi = ηi , i = 1, · · · , M.

Remark 14.5 In the standard lifting technique, η is the smallest common multiplier
of γi , i = 1, · · · , M. For our application, η is selected so that the average consensus
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algorithm converges in the time period T, which can be greater than the smallest
common multiplier.

It is straightforward that the state spacemodel of the lifted systemduring fault-free
operation is given by

x (ξ + 1) =Alx(ξ), x(ξ) = x (ξT ) = x (ξηTs) , Al = Aη, (14.60)

yi,l(ξ) =Ci,l x(ξ) + vi,l(ξ), yi,l(ξ) =

⎡

⎢
⎢
⎢
⎣

yi (ξT )

yi (ξT + γi Ts)
...

yi (ξT + (ηi − 1) γi Ts)

⎤

⎥
⎥
⎥
⎦

, (14.61)

Ci,l =

⎡

⎢
⎢
⎢
⎣

Ci

Ci Aγi

...

Ci A(ηi−1)γi

⎤

⎥
⎥
⎥
⎦

, vi,l(ξ) =

⎡

⎢
⎢
⎢
⎣

vi (ξT )

vi (ξT + γi Ts)
...

vi (ξT + (ηi − 1) γi Ts)

⎤

⎥
⎥
⎥
⎦

, i = 1, · · · , M.

In the faulty case, we have

x (ξ + 1) = Alx(ξ) + B f,l f̄l(ξ), B f,l = [ Aη−1 · · · A I
]
,

yi,l(ξ) = Ci,l x(ξ) + H̄i, f f̄l(ξ) + vi,l(ξ), f̄l(ξ) =

⎡

⎢
⎢
⎢
⎣

f (ξT )

f (ξT + Ts)
...

f ((ξ + 1) T − Ts)

⎤

⎥
⎥
⎥
⎦

,

H̄i, f =

⎡

⎢
⎢
⎢
⎣

0 · · · 0
Ci Aγi−1 · · · Ci A Ci 0 · · · 0

...
...

. . .
. . .

. . .
...

Ci A(ηi−1)γi−1 Ci A(ηi−1)γi−2 · · · · · · Ci A Ci 0

⎤

⎥
⎥
⎥
⎦

,

for i = 1, · · · , M, which can be summarised as

yl(ξ) = Clx(ξ) + H̄ f f̄l(ξ) + vl(ξ), yl(ξ) =
⎡

⎢
⎣

y1,l(ξ)
...

yM,l(ξ)

⎤

⎥
⎦ , (14.62)

Cl =
⎡

⎢
⎣

C1,l
...

CM,l

⎤

⎥
⎦ , H̄ f =

⎡

⎢
⎣

H̄1, f
...

H̄M, f

⎤

⎥
⎦ , vl(ξ) =

⎡

⎢
⎣

v1,l(ξ)
...

vM,l(ξ)

⎤

⎥
⎦ .

Remark 14.6 To realise a data-driven realisation of distributed Kalman filter based
fault detection, the model (14.60)–(14.62) should be identified in the training phase
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using collected process data. This can be performed, for instance, using the data-
driven SKR realisation schemes introduced in Chap.4.

In the sequel, a distributed Kalman filter based fault detection will be proposed
based on the model (14.60)–(14.62).

14.5.3 Kalman Filter Based Optimal Fault Detection: The
Basic Idea And the Centralised Solution

For our purpose of fault detection, we first consider a steady (time-invariant) Kalman
filter for the residual generation. The delivered residual vector is white and can be
used for an optimal fault detection. To be specific, given model (14.60)–(14.62), we
have the following Kalman filter based residual generator:

x̂ (ξ + 1) = Al x̂(ξ) + Lkalrl(ξ),

rl(ξ) =
⎡

⎢
⎣

r1,l(ξ)
...

rM,l(ξ)

⎤

⎥
⎦ = yl(ξ) − ŷl(ξ), ŷl(ξ) =

⎡

⎢
⎣

ŷ1,l(ξ)
...

ŷM,l(ξ)

⎤

⎥
⎦ = Cl x̂(ξ),

(14.63)

Lkal = Al PCT
l Σ−1

r ,Σr = E (rl(ξ)r Tl (ξ)
) = Cl PCT

l + Σvl ,

Σvl = E (vl(ξ)vT
l (ξ)

) = diag
(
Σv1,l , · · · ,ΣvM,l

)
,Σvi,l =

⎡

⎢
⎣

Σvi 0
. . .

0 Σvi

⎤

⎥
⎦

(14.64)

with P as the solution of Riccati equation

P = Al P AT
l − Al PC

T
l

(
Cl PC

T
l + Σvl

)−1
Cl P AT

l .

Thanks to the whiteness property of the residual vector, the fault detection problem
can be treated as detecting faults in a statistic process. Since we are interested in an
early fault detection, we focus on detecting the fault in its first (lifting) sampling time
period T . Remember that rl(ξ) can be written as
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rl(ξ) =
{

εl ∼ N (0,Σr ) , fault-free,
εl + H̄ f f̄l(ξ), faulty,

(14.65)

H̄ f =
⎡

⎢
⎣

H̄1, f
...

H̄M, f

⎤

⎥
⎦ , f̄l(ξ) =

⎡

⎢
⎢
⎢
⎣

f (ξT )

f (ξT + Ts)
...

f ((ξ + 1) T − Ts)

⎤

⎥
⎥
⎥
⎦

,

H̄i, f =

⎡

⎢
⎢
⎢
⎣

0 · · · 0
Ci Aγi−1 · · · Ci A Ci 0 · · · 0

...
...

. . .
. . .

. . .
...

Ci A(ηi−1)γi−1 Ci A(ηi−1)γi−2 · · · · · · Ci A Ci 0

⎤

⎥
⎥
⎥
⎦

.

It is evident that the first row and column blocks of H̄i, f equal to zero. That means,
the residual vector at the time instance ξT is not affected by the fault vector, and
rl(ξ) is independent of f ((ξ + 1) T − Ts). In order to be able to detect the fault in a
full sampling time period T, we re-define the (lifted) fault vector as

fl(ξ) :=

⎡

⎢
⎢
⎢
⎣

f (ξT − Ts)
f (ξT )

...

f ((ξ + 1) T − 2Ts)

⎤

⎥
⎥
⎥
⎦

.

Recall
x(ξT ) = Ax(ξT − Ts) + f (ξT − Ts).

Let
x0(ξ) := Ax(ξT − Ts) =⇒ x(ξT ) = x0(ξ) + f (ξT − Ts),

that is, x0(ξ) is independent of f (ξT − Ts). It holds

yl(ξ) = Clx0(ξ) + Hf fl(ξ) + vl(ξ), Hf =
⎡

⎢
⎣

H1, f
...

HM, f

⎤

⎥
⎦ ,

Hi, f =

⎡

⎢
⎢
⎢
⎣

Ci · · ·
Ci Aγi · · · Ci A Ci 0 · · ·

...
...

. . .
. . .

. . .

Ci A(ηi−1)γi Ci A(ηi−1)γi−1 · · · · · · Ci A Ci

⎤

⎥
⎥
⎥
⎦

.

Notice that for f (ξT − Ts) = 0,

x(ξT ) = x0(ξ),
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and x̂(ξ) is independent of f (ξT − Ts).
Now, we assume, without loss of generality, that the fault occurs, for the first time,

in the time interval [ξT − Ts, (ξ + 1) T − Ts) . It follows from the above discussion
that the detection model (14.65) can be equivalently written as

rl(ξ) =
{

εl ∼ N (0,Σr ) , fault-free,
εl + Hf fl(ξ), faulty,

∈ Rς , ς =
M∑

i=1

ηimi . (14.66)

It should be emphasised that the model (14.66) describes the residual dynamics for
the case

fl(ξ − 1) = 0, fl(ξ) �= 0.

Next, the test statistic and threshold are to be determined. It is clear that

J = r Tl (ξ)
(
HT

f Σ−1
r

)T (
HT

f Σ−1
r H f

)−1
HT

f Σ−1
r rl(ξ), (14.67)

Jth = χ2
α

(
k f
)
, k f = ηn, (14.68)

perform an optimal fault detection.

Remark 14.7 It should be noticed that, although ηn is generally muchmore smaller
than ς for M ≥ n, it could be a large number, which may result in heavy compu-
tation load. On the other hand, detecting incipient faults is a challenging issue and
of considerable practical interest. Typically, incipient faults are small and change
slowly. In this context, it is reasonable to assume fl(ξ) is almost a constant vector
in the time interval [ξT − Ts, (ξ + 1) T − Ts) ,

f (t) ≈ f, t ∈ [ξT − Ts, (ξ + 1) T − Ts) .

On this assumption, we have

Hi, f fl(ξ) =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

Ci
γi∑

j=0
Ci A j

...
(ηi−1)γi∑

j=0
Ci A j

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

f, k f = n.

As demonstrated in the following example, in this case the threshold can be set
considerably lower than the one given in (14.68) for the same FAR.

Example 14.1 Given the residual model (14.66) and assume that

f (k) = f ∈ Rn
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is a constant vector. It leads to

H f fl(ξ) =
⎡

⎢
⎣

H1
...

HM

⎤

⎥
⎦ f =: H f, Hi =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

Ci
γi∑

j=0
Ci A j

...
(ηi−1)γi∑

j=0
Ci A j

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

, i = 1, · · · , M.

Now, applying the GLR method results in the following test statistic and threshold
setting

J = r Tl (ξ)
(
HTΣ−1

r

)T (
HTΣ−1

r H
)−1

HTΣ−1
r rl(ξ),

Jth = χ2
α (n) .

It is clear that
χ2

α (n) << χ2
α (ηn) .

Thus, the threshold in our example is much lower than the one given in (14.68) for
the same FAR α.

When a fault estimation is additionally required, the MLE of fl(ξ) is given by

f̂l(ξ) = H−
f rl(ξ) = (HT

f Σ−1
r H f

)−1
HT

f Σ−1
r rl(ξ). (14.69)

14.5.4 A Distributed Kalman Filter-Based Optimal Fault
Detection Scheme

The distributed realisation of Kalman filter based residual generator (14.63)–(14.64)
and the test statistic (14.67) as well as fault estimation (14.69) consists of two phases:
(i) distributed offline training (learning), and (ii) distributed online fault detection.
Distributed offline training
On the assumption that at the i-th node, i ∈ {1, · · · , M} ,

• the process model (14.60) with the sampling time T as well as η,
• Ci and sufficient local measurement data yi (k)

are available, Σvi , Hi, f are first computed at the i-th node, before starting with
a consensus based training. The objective of the offline training is to achieve a
consensus at all nodes with the needed parameters (matrices) so that the identical
Kalman filter and test statistic can be performed at all these nodes. To this end, each
node should have, according to (14.63)–(14.64), (14.67) and (14.69), the following
parameters
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CT
l Σ−1

r ,CT
l Σ−1

r Cl, H
T
f Σ−1

r , HT
f Σ−1

r H f .

It follows from the identity

Σ−1
r = (Cl PC

T
l + Σvl

)−1 = Σ−1
vl

− Σ−1
vl

Cl
(
P−1 + CT

l Σ−1
vl

Cl
)−1

CT
l Σ−1

vl

that

CT
l Σ−1

r = P−1
(
P−1 + CT

l Σ−1
vl

Cl
)−1

CT
l Σ−1

vl
,

CT
l Σ−1

vl
= [CT

1,lΣ
−1
v1,l

· · · CT
M,lΣ

−1
vM,l

]
,CT

l Σ−1
vl

Cl =
M∑

i=1

CT
i,lΣ

−1
vi,l

Ci,l,

CT
l Σ−1

r Cl = P−1
(
P−1 + CT

l Σ−1
vl

Cl
)−1

CT
l Σ−1

vl
Cl,

HT
f Σ−1

r = HT
f Σ−1

vl
− HT

f Σ−1
vl

Cl
(
P−1 + CT

l Σ−1
vl

Cl
)−1

CT
l Σ−1

vl
,

HT
f Σ−1

vl
= [ HT

1, f Σ
−1
v1,l

· · · HT
M, f Σ

−1
vM,l

]
, HT

f Σ−1
vl

Cl =
M∑

i=1

HT
i, f Σ

−1
vi,l

Ci,l ,

HT
f Σ−1

r H f = HT
f Σ−1

vl
H f − HT

f Σ−1
vl

Cl
(
P−1 + CT

l Σ−1
vl

Cl
)−1

CT
l Σ−1

vl
H f ,

HT
f Σ−1

vl
H f =

M∑

i=1

HT
i, f Σ

−1
vi,l

Hi, f .

It becomes obvious that

CT
l Σ−1

vl
Cl =

M∑

i=1

CT
i,lΣ

−1
vi,l

Ci,l, H
T
f Σ−1

vl
H f =

M∑

i=1

HT
i, f Σ

−1
vi,l

Hi, f ,

HT
f Σ−1

vl
Cl =

M∑

i=1

HT
i, f Σ

−1
vi,l

Ci,l

are to be found by means of the consensus algorithm, in order to compute

P = Al P AT
l − Al PC

T
l

(
Cl PC

T
l + Σvl

)−1
Cl P Al ⇐⇒

P = Al

(

P−1 +
M∑

i=1

CT
i,lΣ

−1
vi,l

Ci,l

)−1

AT
l ,

(
HT

f Σ−1
r H f

)−1 =

⎛

⎜
⎜
⎜
⎝

M∑

i=1
HT
i, f Σ

−1
vi,l

Hi, f −
M∑

i=1
HT
i, f Σ

−1
vi,l

Ci,l ·
(

P−1 +
M∑

i=1
CT
i,lΣ

−1
vi,l

Ci,l

)−1 ( M∑

i=1
HT
i, f Σ

−1
vi,l

Ci,l

)T

⎞

⎟
⎟
⎟
⎠

−1
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at each node. The following algorithm is proposed for our purpose.

Algorithm 14.6 The training algorithm for distributed Kalman filter based fault
detection

Step 0: Set k = 0 and compute

ΣCi ,k = CT
i,lΣ

−1
vi,l

Ci,l,ΣHi ,k = HT
i, f Σ

−1
vi,l

Hi, f ,ΣHCi ,k = HT
i, f Σ

−1
vi,l

Ci,l

in parallel at nodes i = 1, · · · , M;

Step 1: Start an average consensus algorithm to compute

Σ̄C,k = 1

M

M∑

i=1

CT
i,lΣ

−1
vi,l

Ci,l , Σ̄H,k = 1

M

M∑

i=1

HT
i, f Σ

−1
vi,l

Hi, f ,

Σ̄HCi ,k = 1

M

M∑

i=1

HT
i, f Σ

−1
vi,l

Ci,l;

Step 2: Solve
P = Al

(
P−1 + MΣ̄C,k

)−1
AT
l

for P in parallel at nodes i = 1, · · · , M;
Step 3: Calculate

Ψ̄ = Σ̄H,k − MΣ̄HCi ,k
(
P−1 + MΣ̄C,k

)−1
Σ̄T

HCi ,k

in parallel at nodes i = 1, · · · , M;
Step 4: Output

(
P−1 + CT

l Σ−1
vl

Cl
)−1 = (P−1 + MΣ̄C,k

)−1
, Ψ̄ = 1

M
HT

f Σ−1
r H f ,

Σ̄HCi ,k = 1

M
HT

f Σ−1
vl

Cl

at nodes i = 1, · · · , M.

Distributed online implementation
Re-write the distributed realisation ofKalman filter based residual generator (14.63)–
(14.64), the test statistic (14.67) and the fault estimate (14.69) into
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x̂i (ξ + 1) = Al x̂i (ξ) + Lkalr(ξ) = Al x̂i (ξ) + Al PC
T
l Σ−1

r r(ξ)

= Al x̂i (ξ) + Al
(
P−1 + CT

l Σ−1
vl

Cl
)−1

M∑

j=1

CT
j,lΣ

−1
v j,l

r j (ξ),

r j (ξ) = y j,l(ξ) − ŷ j,l(ξ), ŷ j,l(ξ) = C j,l x̂ j (ξ),

Ji = r T (ξ)
(
HT

f Σ−1
r

)T (
HT

f Σ−1
r H f

)−1
HT

f Σ−1
r r(ξ)

= r TJ (ξ)
(
HT

f Σ−1
r H f

)−1
rJ (ξ),

rJ (ξ) = HT
f Σ−1

r r(ξ)

=
M∑

j=1

(
HT

j, f − HT
f Σ−1

vl
Cl
(
P−1 + CT

l Σ−1
vl

Cl
)−1

CT
j,l

)
Σ−1

v j.l
r j (ξ),

f̂l(ξ) = (HT
f Σ−1

r H f
)−1

rJ (ξ).

Here, x̂i (ξ) denotes the estimate of the state vector x(ξ) delivered by the Kalman
filter running at the node i. Since identical Kalman filters are realised at all nodes, it
holds

x̂i (ξ) = x̂ j (ξ), i, j = 1, · · · , M.

As a result, we can run the following algorithm for an online fault detection in the
time interval [ξT, (ξ + 1) T ).

Algorithm 14.7 The online implementation algorithm for distributed Kalman filter
based fault detection

Step 0: Compute

r j,K F (ξ) = CT
j,lΣ

−1
v j,l

r j (ξ),

r j,J (ξ) =
(
HT

j, f − HT
f Σ−1

vl
Cl
(
P−1 + CT

l Σ−1
vl

Cl
)−1

CT
j,l

)
Σ−1

v j.l
r j (ξ)

in parallel at nodes j = 1, · · · , M;

Step 1: Start an average consensus algorithm to compute

r̄K F (ξ) = 1

M

M∑

j=1

r j,K F (ξ), r̄ J (ξ) = 1

M

M∑

i=1

r j,J (ξ);

Step 2: Calculate

x̂ j (ξ + 1) = Al x̂ j (ξ) + Al
(
P−1 + CT

l Σ−1
vl

Cl
)−1

Mr̄K F (ξ),

Jj = Mr̄TJ (ξ)Ψ̄ −1r̄ J (ξ)
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in parallel at nodes j = 1, · · · , M;
Step 3a: Check

Jj − Jth = Jj − χ2
α

(
k f
)

for decision

Jj − Jth ≤ 0 =⇒ f ault − f ree, otherwise f aulty and alarm

at all nodes j = 1, · · · , M. In the faulty case,

Step 3b (optional) Calculate

f̂l(ξ) = Ψ̄ −1r̄ J (ξ);

Step 4: Output

x̂ j (ξ + 1) , and in faulty case alarm and, optionally, f̂l(ξ)

at nodes j = 1, · · · , M.

The synchronisation of online collecting data and performing the above consensus
based fault detection algorithm is analogue to the workflow sketched in Fig. 14.2.

14.6 Correlation-Based Fault Detection Schemes and
Algorithms

14.6.1 Problem Formulation

The process model considered in this section is a large-scale process consisting of
M sub-systems, which are connected by a communication network, as sketched in
Fig. 14.3.

It is supposed that each sub-system is a node of the network and modelled by

yi = E yi + εi ∈ Rmi , i = 1, · · · , M. (14.70)

Here, εi represents the (local) measurement noise satisfying

εi ∼ N (0,Σi i ) ,Σi i > 0, (14.71)

and

E yi =
{
ȳi , fault-free,
ȳi + fi , faulty,

(14.72)
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Fig. 14.3 A process with M
sub-systems and a
communication network

where ȳi is some unknown constant vector representing the normal process operation
and fi represents the fault to be detected in the i-th sub-system. The overall process
model for the normal process operation is given by

y = E y + ε ∈ Rm,m =
M∑

i=1

mi , y =
⎡

⎢
⎣

y1
...

yM

⎤

⎥
⎦ , E y =

⎡

⎢
⎣

E y1
...

E yM

⎤

⎥
⎦ ,

ε =
⎡

⎢
⎣

ε1
...

εM

⎤

⎥
⎦ ∼ N (0,Σ) ,Σ =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

Σ11 · · · Σ1i · · · Σ1M
...

. . .
...

Σi1 · · · Σi i · · · ΣiM
...

...
. . .

...

ΣM1 · · · ΣMi · · · ΣMM

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

∈ Rm×m .

Note that there may exist (process) couplings between the sub-systems. We assume

• if
E (εTi ε j

) = Σi j = ΣT
ji �= 0, i, j = 1, · · · , M, i �= j,

the nodes i, j are networked and thus (i, j) ∈ E . That is, (i, j) is an edge of the
graph;

• no sub-system is totally decoupled from the other sub-systems, which also means,
the network is connected.

Our task is to detect the faults in sub-systems on the assumption that they do not
occur simultaneously. To be specific, it is formulated as: given
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y = E y + ε ∈ Rm, ε ∼ N (0,Σ) , E y =
{
ȳ, fault-free,
ȳ + Ξi fi , faulty,

(14.73)

Ξi =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

0
...

Imi×mi

...

0

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

=⇒ Ξi fi =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

0
...

fi
...

0

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

,

where i ∈ {1, · · · , M} , ȳ,Σ are unknown, develop a data-driven distributed fault
detection scheme and algorithm aiming at optimally detecting fi . Here, the data-
driven fashion means an identification of ȳ,Σ in a training phase using the recorded
process data, while distributed handling requires that only communications between
the neighbouring nodes, both in the training and online detection phases, are allowed.

In Sect. 3.2 and Sub-section3.3.3, we have discussed about the possible solution
and interpretations of the above fault detection problem, when data processing is per-
formed in the centralised manner. We summarise the relevant results in the following
theorem, which is also the starting point for our subsequent work.

Theorem 14.5 Given the model (14.73), then in the fault-free case

cov
(
Ξ−

i y
) = cov

(
yi − ŷi

)
, (14.74)

where ŷi is the LMS estimation of (yi − E yi ) given by

ŷi = cov
(
yi , y

i
)
cov−1

(
yi
) (

yi − E yi) , (14.75)

cov
(
yi , y

i
) = [Σi1 · · · Σi i−1 Σi i+1 · · · ΣiM

]
, (14.76)

cov
(
yi
) =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

Σ11 · · · Σ1i−1 Σ1i+1 · · · Σ1M
...

. . .
...

...
...

Σi−11 · · · Σi−1i−1 Σi−1i+1 · · · Σi−1M

Σi+11 · · · Σi+1i−1 Σi+1i+1 · · · Σi+1M
...

...
...

...

ΣM1 · · · ΣMi−1 ΣMi+1 · · · ΣMM

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

, yi =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

y1
...

yi−1

yi+1
...

yM

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

,

(14.77)

and
Ξ−

i = (Ξ T
i Σ−1Ξi

)−1
Ξ T

i Σ−1.

Proof For the simplicity of the notation and proof,wefirst introduce a transformation
matrix
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T =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

0 · · · 0 I 0

I
. . .

...
...

...
...

. . . 0 0
...

0 · · · I 0 0
0 · · · 0 0 Im̄i+1×m̄i+1

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

∈ Rm×m, m̄i+1 =
M∑

j=i+1

m j ,

which transforms y to

T y =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

yi
y1
...

yi−1

yi+1
...

yM

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

.

Moreover, it holds

T T T = Im×m, Ξ T
i T

T = [ Imi×mi 0 · · · 0 ] ,

TΣT T =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

Σi i Σi1 · · · Σi i−1 Σi i+1 · · · ΣiM

Σ1i Σ11 · · · Σ1i−1 Σ1i+1 · · · Σ1M
...

...
. . .

...
...

...

Σi−1i Σi−11 · · · Σi−1i−1 Σi−1i+1 · · · Σi−1M

Σi+1i Σi+11 · · · Σi+1i−1 Σi+1i+1 · · · Σi+1M
...

...
...

...
...

ΣMi ΣM1 · · · ΣMi−1 ΣMi+1 · · · ΣMM

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

.

Note that

cov
(
Ξ−

i y
) = (Ξ T

i Σ−1Ξi
)−1 =

(
Ξ T

i T
T
(
TΣT T

)−1
TΞi

)−1
.

According to the well-known rule for the inverse of block matrices,

[
A D
C B

]−1

=
[ (

A − DB−1C
)−1

X
X X

]

,

where only the first block is of interest for our study, we have

Ξ T
i T

T
(
TΣT T

)−1
TΞi =

(
Σi i − cov

(
yi , y

i
) (
cov

(
yi
))−1 (

cov
(
yi , y

i
))T
)−1

.
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On the other hand,

cov
(
yi − ŷi

) = Σi i + cov
(
yi , y

i
) (
cov

(
yi
))−1 (

cov
(
yi , y

i
))T

−2E (yi − E yi )
(
cov

(
yi , y

i
) (
cov

(
yi
))−1 (

yi − E yi)
)T

= Σi i − cov
(
yi , y

i
) (
cov

(
yi
))−1 (

cov
(
yi , y

i
))T

.

Hence, (14.74) is proved.

It follows from this theorem that correlations among the sub-systems can be
utilised to reduce the uncertainty (in the context of variance) and thus to enhance the
fault detectability. To this end, a correlation-based estimation of the variable under
consideration offers an optimal solution. In the next sub-sections, we will investigate
the distributed realisation of a correlation-based fault detection algorithm. The main
task is the development of

• a distributed iteration (learning) algorithm to determine

cov
(
yi , y

i
)
cov−1

(
yi
)
,

which is called regression model and is needed both for the LMS estimate ŷi as
well as covariance matrix computation,

Σi = Σi i − cov
(
yi , y

i
)
cov−1

(
yi
) (
cov

(
yi , y

i
))T

,

at the i-th node, and
• an online distributed algorithm based on the regression model for computing ŷi at
the i-th node.

The major challenge in dealing with these issues is the computation of cov−1
(
yi
)
,

which should be, due to the high dimension of the process and its distributed com-
munication topology, realised in a distributed fashion.

14.6.2 A Basic Iteration Learning Algorithm

For our purpose, we first formulate our task as follows: Given cov
(
yi , yi

)
and

cov
(
yi
)
, as defined in (14.76)–(14.77), find a distributed iterative algorithm for

the computation of the regression model

cov
(
yi , y

i
)
cov−1 (yi

) =: (Zi
)T ∈ Rmi×(m−mi ). (14.78)

Note that we can re-write (14.78) as
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cov
(
yi
)
Zi = (cov (yi , yi

))T =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

ΣT
i1
...

ΣT
ii−1

ΣT
ii+1
...

ΣT
iM

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

. (14.79)

Thus, our task can be formulated as solving linear equation (14.79) for Zi using a
numericalmethod.To this end,we adopt thewell-knownRichardson’smethod,which
is widely applied for the computation of an iterative solution of a (high-dimensional)
linear equation.

A general class of Richardson’s iterations can be written as

Zi
k+1 = Zi

k + λ
((
cov

(
yi , y

i
))T − cov

(
yi
)
Zi
k

)
(14.80)

with k as the iteration number and λ being a constant to be designed to guarantee the
iteration convergence. The following result is known in the literature.

Proposition 14.1 If the iteration (14.80) converges, then Zi
k converges to the solu-

tion of
cov

(
yi
)
Zi = (cov (yi , yi

))T
.

Next, we briefly study the conditions for selecting λ to guarantee the iteration
convergence. Let

Ek = Zi
k − Zi

and re-write (14.80) into

Ek+1 = Ek + λ
(
cov

(
yi
)
Zi − cov

(
yi
)
Zi
k

)

= (I − λcov
(
yi
))

Ek . (14.81)

It is well-known that the convergence of the iteration (14.81) is equivalent to the
stability of a discrete-time dynamic system defined by (14.81). Consequently, (14.81)
converges, when I − λcov

(
yi
)
is a Schur matrix. That means, all eigenvalues of

I −λcov
(
yi
)
are located inside the unit disk. Although such a λ generally exists and

can be, considering cov
(
yi
)
being regular, determined in different ways, it becomes

a challenging issue, when the iteration algorithm should run in a distributed fashion.
This will be addressed in the sequel.

For our purpose, we write Zi into
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Zi =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

Z1
...

Zi−1

Zi+1
...

ZM

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

, Z j ∈ Rm j×mi , j = 1, · · · , M, j �= i.

A distributed realisation of iteration algorithm (14.80) is understood as

• at the j-th node, Z j , j ∈ {1, · · · , M} , j �= i, is computed, and
• for the computation of Z j only cov

(
y j , yl

)
, l ∈ N j , are available.

The distributed iteration can then be formulated as

Z j,k+1 = Z j,k + λ

⎛

⎝ΣT
i j −

∑

l∈N j

Σ jl Zl,k

⎞

⎠ , j ∈ {1, · · · , M} , j �= i. (14.82)

Note that
Σ jl = cov

(
y j , yl

)
, l ∈ N j ,

denotes the correlation between the random variables of the j-th node and the ones
of its neighbouring nodes. The key for a successful implementation of the itera-
tion (14.82) is the cooperative determination of λ so that the iteration converges.
Although there exist a number of algorithms for a distributed selection and even op-
timisation of λ,which is then iteration-depending (and thus varying with iterations),
they are often used for online computation and thus strongly focused on a maximal
convergence rate. Recall that our task of solving (14.78) is a part of the training for
determining the needed parameters for the online estimation of yi , when the process
under consideration is in operation. Hence, there is no high real-time requirement.
Instead, less involved computations are of considerable practical interest. Motivated
by this, we propose below an algorithm for determining λ by means of a cooperation
among the nodes.

The fact that cov
(
yi
)
is symmetric and positive definite ensures that all eigen-

values of cov
(
yi
)
are real and positive. In fact, cov

(
yi
)
can be written, by an SVD,

as

cov
(
yi
) = U�UT ,U ∈ R(m−mi )×(m−mi ),UUT = I,UT = U−1,

� = diag
(
λ1, · · · , λm−mi

)
, λ j > 0, j = 1, · · · ,m − mi ,

with λ j being an eigenvalue (singular value) of cov
(
yi
)
. As a result,

I − λcov
(
yi
) = Udiag

(
1 − λλ1, · · · , 1 − λλm−mi

)
U−1. (14.83)

It is clear from (14.83) that for
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0 < λ <
2

λmax
(
cov

(
yi
)) , (14.84)

all eigenvalues of
(
I − λcov

(
yi
))

will be located inside the unit disk. Here,

λmax
(
cov

(
yi
)) = max

j
λ j , j = 1, · · · ,m − mi .

Recall that for (symmetric) positive definite cov
(
yi
)
,

λmax
(
cov

(
yi
)) = ∥∥cov (yi)∥∥2 ≤ ∥∥cov (yi)∥∥∞ = ∥∥cov (yi)∥∥1 . (14.85)

And moreover
∥
∥cov

(
yi
)∥
∥∞ = max

1≤l≤m−mi

m−mi∑

j=1

∣
∣al j
∣
∣ , (14.86)

where

cov
(
yi
) =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

Σ11 · · · Σ1i−1 Σ1i+1 · · · Σ1M
...

. . .
...

...
...

Σi−11 · · · Σi−1i−1 Σi−1i+1 · · · Σi−1M

Σi+11 · · · Σi+1i−1 Σi+1i+1 · · · Σi+1M
...

...
...

...

ΣM1 · · · ΣMi−1 ΣMi+1 · · · ΣMM

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

= : (al j
)
, l, j = 1, · · · ,m − mi .

As a result, we can set

λ = 2
∥
∥cov

(
yi
)∥
∥∞ + ε

<
2

λmax
(
cov

(
yi
))

with ε > 0 but sufficiently small, as far as
∥
∥cov

(
yi
)∥
∥∞ is known.

Next, we propose a consensus algorithm of determining
∥
∥cov

(
yi
)∥
∥∞ and setting

of λ. The outputs of this algorithm are
∥
∥cov

(
yi
)∥
∥∞ and λ being available at each

node. It is assumed that d is the diameter of the graph of the sub-network with nodes
q = 2, · · · , M, and d is known.

Below is the algorithm. For the simplicity of notation, let i = 1 and suppose that
ε > 0 is a given.

Algorithm 14.8 Distributed determination of
∥
∥cov

(
yi
)∥
∥∞

Step 0 At the q-th node, q = 2, · · · , M, set k = 0 and compute
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γq,k = max
q−1∑

p=1
mp+1≤l≤

q∑

p=1
mp

m−mi∑

j=1

∣
∣al j
∣
∣ ; (14.87)

Step 1 Theq-th node, q = 2, · · · , M, communicateswith its neighbours, including
sending γq,k to node r, r ∈ Nq and receiving γr,k, r ∈ Nq;

Step 2 Compute
γq,k+1 = max

{
γq,k, γr,k, r ∈ Nq

}
, (14.88)

set k = k + 1; If k < d

Step 3 Go to Step 1
Step 4 Otherwise, for k = d, set

λ = 2

γq,k + ε
. (14.89)

Theorem 14.6 After d iterations,

γq,k = ∥∥cov (yi)∥∥∞ , q = 2, · · · , M.

Proof The proof is evident. According to (14.87), after the computations in Step 0,
at least at one node, say node j,

γ j,0 = ∥∥cov (yi)∥∥∞ .

Since the greatest distance between the j-node and any other nodes is equal to d,

thanks to the iterative rule (14.88), γ j,0 should reach all nodes after d iterations.

Having determined λ, the distributed recursion (14.80) or equivalently (14.82) can
be activated and runs until it converges, as the tolerance

∥
∥Z j,k − Z j

∥
∥ ≤ γ

is reached. At the end of this learning procedure,

Z j := Z j,k

is saved in the j-th node, j ∈ {1, · · · , M} , j �= i. Moreover, the node j ∈ Ni sends
Z j to the i-th node so that

Σi = Σi i − cov
(
yi , y

i
)
cov−1 (yi

) (
cov

(
yi , y

i
))T

= Σi i −
∑

j∈Ni

Σi j Z j
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and further Σ−1
i can be computed at the i-th node, which is needed for the online

computation of the T 2 test statistic

JT 2
i

= (yi − ŷi
)T

Σ−1
i

(
yi − ŷi

)
. (14.90)

Note that ŷi is the LMSestimation of (yi − E yi ) , as defined inTheorem14.5. Finally,
the corresponding threshold is

Jth,i = χ2
α (mi ) .

Here, it is assumed that sufficient number of data are collected.

14.6.3 Online Detection Algorithm

Recall that the online detection consists of

• computation of JT 2
i
,

• decision making {
JT 2

i
− Jth,i ≤ 0 =⇒ fault-free,

JT 2
i

− Jth,i > 0 =⇒ faulty.

The computation of ŷi ,

ŷi = cov
(
yi , y

i
)
cov−1 (yi

) (
yi − E yi)

= (Zi
)T (

yi − E yi) =
∑

j∈{1,··· ,M, j �=i}
ZT

j

(
y j − E y j

)
, (14.91)

requires the transmission of ZT
j

(
y j − E y j

)
from the j-th node to the i-th node,

j ∈ {1, · · · , M, j �= i}. For this reason, a transmission protocol will be designed. It
should be remarked that the data transmission from those nodes, which are located
far from the i-th node (in the context of greater distance), takes time and could be
remarkably corruptedwith noises of the communication channels. On the other hand,
the correlation of the process variables at these nodes with the ones of the i-th node
is in general (very) weak. In fact, with the increasing of the distance, the correlation
will become weaker, as will be shown in the subsequent section.
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14.7 Analysis and Alternative Algorithms

In the last section, we have learnt that correlation-based estimation of (local) process
variables is useful to reduce the noise-induced uncertainty and hence improve the
fault detection performance. To this end, the computation of ŷi , which should run in
the i-th node as given in (14.91), plays a central role. Since data transmissions are
needed for being able to run (14.91) in the i-th node, it is of interest to know the
relation between the distance from the j-th node to the i-th node and its contribution
to the estimate ŷi . The motivation for this question is the fact that, due to the channel
noises, the transmitted data will be strongly corrupted with noises as the distance
increases. In this section, we will first try to answer the raised question and then
propose some alternative algorithms.

14.7.1 Couplings, Correlations and Estimation

Recall
ŷi = cov

(
yi , y

i
)
cov−1

(
yi
) (

yi − E yi) .

Here,
cov

(
yi , y

i
) = [Σi1 · · · Σi i−1 Σi i+1 · · · ΣiM

]

represents the correlations between the i-th sub-system and the remaining sub-
systems. If

Σi j �= 0, j ∈ {1, · · · , M, j �= i} ,

we say, from the system point of view, there exists a coupling between the i-th and
the j-th sub-systems, or from the statistic point of view, the i-th and j-th sub-systems
are correlated. It is worth mentioning that large-scale distributed systems are often
characterised by their weak couplings between the sub-systems. Remember our as-
sumption that the i-th and j-th nodes are connected as far asΣi j �= 0. Consequently,
for a large-scale system, most sub-matrices in cov

(
yi , yi

)
are zero. The correspond-

ing communication network is said to be sparse. In fact, the sparseness of the system
and network configurations is the further motivation for our subsequent study.

We now consider the computation of cov
(
yi , yi

)
cov−1

(
yi
)
. For our purpose,

we first define

YNi = {y j , j �= i, j ∈ Ni
}
,YN̄i

= {y j , j �= i, j /∈ Ni
}
,

and order the vectors in YNi ,YN̄i
into two vectors, respectively,
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yNi =

⎡

⎢
⎢
⎣

...

y j
...

⎤

⎥
⎥
⎦ , y j ∈ YNi , yN̄i

=

⎡

⎢
⎢
⎣

...

yl
...

⎤

⎥
⎥
⎦ , yl ∈ YN̄i

.

Without loss of generality, it is assumed that

yi =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

y1
...

yi−1

yi+1
...

yM

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

=
[
yNi

yN̄i

]

(14.92)

and moreover, for the simplification of the description, yNi , yN̄i
are centered (zero

mean).

Remark 14.8 We would like to emphasise that the centralisation of yi can be done
at each node and thus in a distributed manner. Hence, the assumption

E yi = 0

does not affect the generality of our subsequent study. It is made only for the purpose
of simplifying notation.

Now, yNi includes all measurement vectors of the sub-systems which are corre-
lated with the i-th sub-system. In against, the measurement vectors included in yN̄i

are uncorrelated with yi . Corresponding to yNi , yN̄i
, we denote

cov
(
yi
) =

[
ΣNi ,Ni

ΣNi ,N̄i

ΣN̄i
,Ni

ΣN̄i
,N̄i

]

, cov
(
yi , y

i
) = [Σi,Ni

0
]
.

Applying thewell-known formula for the inverse computation of 2×2 blockmatrices
to cov

(
yi , yi

)
cov−1

(
yi
)
results in

cov
(
yi , y

i
)
cov−1

(
yi
) =

[
Σi,Ni

Δ−1 − Σi,Ni
Δ−1ΣNi ,N̄i

Σ−1
N̄i

,N̄i

]
,

Δ = ΣNi ,Ni
− ΣNi ,N̄i

Σ−1
N̄i

,N̄i
ΣN̄i

,Ni
.

This allows us to write ŷi as

ŷi = Σi,Ni
Δ−1

(
yNi

− ΣNi ,N̄i
Σ−1

N̄i
,N̄i

yN̄i

)
. (14.93)
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The alternative computation formof ŷi given in (14.93) is of fundamental significance
for our subsequent work and worth for us to gain a deep insight into it. It is clear that
ΣNi ,N̄i

Σ−1
N̄i

,N̄i
yN̄i

is an LMS estimate for yNi using the data vector yN̄i
. Note that

yN̄i
is composed of all the measurement vectors belonging to YN̄i

. That is, they are
uncorrelated with yi . Moreover, notice the fact that

Δ = ΣNi ,Ni
− ΣNi ,N̄i

Σ−1
N̄i

,N̄i
ΣN̄i

,Ni

is the covariance matrix of

ΔyNi := yNi − ΣNi ,N̄i
Σ−1

N̄i
,N̄i

yN̄i
, (14.94)

which is minimum. As a result, ŷi given in (14.93) can be interpreted as an LMS
estimate of yi based on the data ΔyNi received from its neighbours. ΔyNi is the
difference between the measurement vectors at the nodes in Ni and their estimate
using the measurement vectors in YN̄i

, and is of minimum variance. We would like
to call reader’s attention to the following two aspects from this interpretation.

Firstly, the problem of the LMS estimation of yi is reduced to the LMS estimation
of yNi using the data from the nodes which are not (directly) connected to the i-th
node. Similarly, the LMS estimation of yNi can be further reduced to the LMS esti-
mation of thosemeasurement vectors belonging toYN̄i

but being correlatedwith yNi .

Continuing this procedure, it is clear that the original LMS estimation problem can
be decomposed into a (finite) number of embedded LMS estimation sub-problems,
which can be written in a recursive form. To describe it in detail, we introduce the
following notations:

• N k
i , k = 0, · · · , d, denotes the set of those nodes in the graph whose distance to

the i-th node equals to k,

N k
i = { j, d (i, j) = k} ,N 0

i = i,N 1
i = Ni ,

where d(i, j) denotes the distance between the node i and node j, d is the diameter
of the graph, as defined in (14.3). Note thatN k

i can also be computed recursively

N k
i = { j, j ∈ Nl , l ∈ N k−1

i

} ;

• N̄ k
i , k = 0, · · · , d − 1, is defined by

N̄ k
i = { j, d (i, j) > k} ;

• yN k+1
i

, yN̄ k
i
, k = 0, · · · , d − 1, consist of all measurement vectors of the nodes

belonging to N k+1
i , N̄ k

i , respectively, and are thus given by
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yN k+1
i

=

⎡

⎢
⎢
⎣

...

y j
...

⎤

⎥
⎥
⎦ , j ∈ N k+1

i , yN̄ k
i

=

⎡

⎢
⎢
⎣

...

yl
...

⎤

⎥
⎥
⎦ , l ∈ N̄ k

i ;

• ΣN l
i ,N γ

i
,ΣN̄ l

i ,N γ

i
,ΣN̄ l

i ,N̄ γ

i
are the covariance matrices defined, respectively, by

ΣN l
i ,N γ

i
= cov

(
yN l

i
, yN γ

i

)
,ΣN̄ l

i ,N γ

i
= cov

(
yN̄ l

i
, yN γ

i

)
,

ΣN̄ l
i ,N̄ γ

i
= cov

(
yN̄ l

i
, yN̄ γ

i

)
,

for some integer l, γ .

With the aid of these notations, ŷi given in (14.93) can be (backwards) recursively
computed as follows:

ŷN d
i

= 0,

ŷN k
i

= ΣN k
i ,N k+1

i
Δ−1

k+1

(
yN k+1

i
− ŷN k+1

i

)
, k = 0, · · · , d − 1, (14.95)

Δk+1 = cov
(
yN k+1

i
− ŷN k+1

i

)

= Σ
N k+1

i
,N k+1

i

− Σ
N k+1

i
,N̄ k+1

i

Σ−1

N̄ k+1
i

,N̄ k+1
i

Σ
N̄ k+1

i
,N k+1

i

,

ŷi = ŷN 0
i

= ΣN 0
i ,N 1

i
Δ−1

1

(
yN 1

i
− ŷN 1

i

)
,

whose core is the estimation computation (14.95).
Secondly, the above recursive algorithm reveals that the contribution of the mea-

surement vector of the j-th node to the uncertainty reduction at the node i depends
on the distance between these two nodes. In fact, with the increasing distance, this
contribution will become weaker. To see this clearly, recall

ŷi = cov
(
yi , y

i
)
cov−1

(
yi
)
yi = (Zi

)T
yi =

∑

j∈{1,··· ,M, j �=i}
ZT

j y j .

Let
ZT
N l

i
= [ · · · ZT

j · · · ] , j ∈ N l
i

be the mapping matrix from yN l
i
to ŷi , which consists of the mapping (weighting)

sub-matrices from the measurement vectors of those nodes, whose distance to node
i is l, 1 ≤ l ≤ d, to the estimate ŷi . It follows from (14.95) that

ZT
N l

i
=

l−1∏

k=0

ΣN k
i ,N k+1

i
Δ−1

k+1.
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Since Δ−1
k+1 serves for a normalisation of the process data yN k+1

i
− ŷN k+1

i
,

Σ̄N k
i ,N k+1

i
:= ΣN k

i ,N k+1
i

Δ−1
k+1

can be viewed as the normalised correlation between yN k+1
i

, yN k
i
. In other words, the

mapping from yN l
i
to ŷi is exactly the product of the normalised correlations and so

the couplings
ZT
N l

i
= Σ̄N 0

i ,N 1
i
· · · Σ̄N l−1

i ,N l
i
. (14.96)

Because the process under consideration is weakly coupled, it is evident that for a
larger l, the contribution (via the weighting matrix ZT

N l
i
) of yN l

i
to the estimation of

yi and so that to the uncertainty reduction at the node i is weaker.

14.7.2 Alternative Algorithms

The discussions and the results given in (14.95)–(14.96) motivate us

• to modify the correlation-based fault detection schemes algorithm proposed in the
last section, and

• to propose alternative algorithms.

A modified algorithm
Consider the iterative algorithm proposed in Sub-section14.6.2. On the assumption
that the sub-systems are weakly coupled, it is reasonable to neglect the (weaker)
contributions of those sub-systems to ŷi , which are located far away from the i-th
node. Let l << d be the maximal distance from the i-th node to those nodes, which
are taken into account for estimating yi . We define

N≤l
i =

l⋃

k=1

N k
i

as the set of all nodes whose distance to the i-th node is not greater than l, and

yN≤l
i

=

⎡

⎢
⎢
⎣

...

y j
...

⎤

⎥
⎥
⎦ , j ∈ N≤l

i

as the vector that consists of all the measurement vectors from the nodes inN≤l
i . For

our purpose, the problem to be solved is now formulated as: Given
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cov
(
yi , yN≤l

i

)
= [ · · · Σi j · · · ] , j ∈ N≤l

i ,

cov
(
yN≤l

i

)
=

⎡

⎢
⎢
⎣

. . .
...

...

· · · Σl j · · ·
...

...
. . .

⎤

⎥
⎥
⎦ , l, j ∈ N≤l

i ,

find
(
ZN≤l

i

)T
defined by

(
ZN≤l

i

)T = cov
(
yi , yN≤l

i

)
cov−1

(
ZN≤l

i

)
⇐⇒

cov
(
yN≤l

i

) (
ZN≤l

i

)T = cov
(
yi , yN≤l

i

)
,
(
ZN≤l

i

)T =

⎡

⎢
⎢
⎣

...

ZT
j
...

⎤

⎥
⎥
⎦ , j ∈ N≤l

i (14.97)

in a distributed fashion. We adopt the recursive algorithm (14.82) for solving the
problem as follows

Z j,k+1 = Z j,k + λ

⎛

⎝ΣT
i j −

∑

p∈N 1
j

Σ jl Z p,k

⎞

⎠ , j ∈ N≤l
i , (14.98)

where Z j,k denotes the computed value of matrix Z j at the k-th iteration with Z j

being a sub-matrix in ZN≤l
i

. λ is determined by running the consensus algorithm
given in the last section and using (14.89),

λ = 2

γq,l + ε
, q ∈ N≤l

i . (14.99)

Since the maximal distance between any two nodes in N≤l
i is not greater than l, it

follows from Theorem 14.6 that after l iterations

γq,l =
∥
∥
∥cov

(
yN≤l

i

)∥
∥
∥∞

, q ∈ N≤l
i .

As illustrated in the last section, by means of λ given in (14.99), it holds

lim
k→∞ Z j,k = Z j .

Once ZN≤l
i

is determined,
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ŷi = cov
(
yi , yN≤l

i

)
cov−1

(
yN≤l

i

)
yN≤l

i
=
(
ZN≤l

i

)T
yN≤l

i
, (14.100)

Σi = Σi i − cov
(
yi , yN≤l

i

)
cov−1

(
yN≤l

i

) (
cov

(
yi , yN≤l

i

))T

= Σi i −
∑

j∈Ni

Σi j Z j

can be online and distributed computed for the fault detection purpose.

Remark 14.9 It is worth pointing out that ŷi given in (14.100) is the LMS estimate
of yi using all the measurement vectors available at the node set N≤l

i .

An alternative algorithm
It is state of the art in the parallel computation area that a computation problem
is decomposed into a number of sub-problems, which are then solved in parallel.
For the computation of the inverse of a (high-dimensional) matrix, there are well-
established algorithms performed following this strategy. In fact, the recursive form
(14.95) suggests to realise the estimation in such a manner. Below, we propose an
alternative algorithm that allows us

• similar to the previous algorithm, to estimate yi using the measurement vectors
available at the node set N≤l

i for some l << d, and
• to perform the training (learning) in finite steps instead of a recursive algorithm,
as adopted in (14.82) or (14.98).

Given l(<< d), we first investigate which computations should be performed at a
node belonging to N≤l

i , in order to achieve the LMS estimate of yi . To this end,
consider (14.95), which can be re-formed as

ŷ jN k
i

= Σ j,N k+1
i

Δ−1
k+1

(
yN k+1

i
− ŷN k+1

i

)
, (14.101)

Σ j,N k+1
i

= E y jN k
i
yTN k+1

i
, jN k

i
∈ N k

i

with jN k
i
denoting the node under consideration. It is obvious that the computation

of ŷ jN k
i
depends on the topology of the node jN k

i
and its neighbours. For this reason,

we check the possible configurations.

• When jN k
i
is uncorrelated with any node in N k+1

i or k = l, it holds

ŷ jN k
i

= 0. (14.102)

• When jN k
i
is correlated (and so connected) with some nodes inN k+1

i ,which build
set

N jN k
i

⊂ N k+1
i ,

we further distinguish the following two sub-sets:
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NN jN k
i

=
{
j, j ∈ Nl ⊂ N k+1

i , l ∈ N jN k
i

}
,

N̄N jN k
i

=
{

j, j ∈ N k+1
i , j /∈ NN jN k

i

}

.

If we connect all nodes in N k+1
i during the training, N̄N jN k

i

is empty and thus

N k+1
i = N jN k

i
∪ N̄ jN k

i
, N̄ jN k

i
=
{
j, j ∈ N k+1

i , j /∈ N jN k
i

}
.

Let
ΔyN k+1

i
= yN k+1

i
− ŷN k+1

i

and split it into

ΔyN k+1
i

=
⎡

⎣
ΔyN jN k

i

ΔyN̄ jN k
i

⎤

⎦ ,ΔyN jN k
i

=

⎡

⎢
⎢
⎣

...

Δyl
...

⎤

⎥
⎥
⎦ , l ∈ N jN k

i
.

As a result, we have, according to (14.93),

ŷ jN k
i

=Σ j,N jN k
i

Δ̄−1
j,k

(

ΔyN jN k
i

− ΔŷN jN k
i

)

, (14.103)

ΔŷN jN k
i

=cov

(

ΔyN jN k
i

,ΔyN̄ jN k
i

)

cov−1

(

ΔyN̄ jN k
i

)

ΔyN̄ jN k
i

,

Σ j,N jN k
i

=cov

(

y jN k
i
, yN jN k

i

)

,

Δ̄ j,k =cov

(

ΔyN jN k
i

)

− cov

(

ΔyN jN k
i

,ΔyN̄ jN k
i

)

cov−1

(

ΔyN̄ jN k
i

)

cov

(

ΔyN̄ jN k
i

,ΔyN jN k
i

)

.

In summary, ŷ jN k
i
can be computed according to either (14.102) or (14.103), so

far sufficient information about the topology of the node jN k
i
and its neighbours is

available. Below are two algorithms that will run during the training phase.

Algorithm 14.9 Algorithm of building necessary information and communication
topology:

Step 0: Node i initials the start: set k = 0, l;
Step 1: Form N j , for all j ∈ N k

i , and build

N k+1
i =

⋃

j∈N k
i

N j
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at each node in N k
i by exchanging data among the nodes in N k

i and transmit
N k+1

i to the nodes in N j for all j ∈ N k
i ;

Step 2: Set k = k + 1, label the nodes in N k
i by ik and connect all nodes in N k

i ;
Step 3: If k = l, stop, otherwise, go to Step 1.

It follows from (14.103) that for the online estimate ŷ, j ∈ N k
i , k = 0, 1, · · · , l,

following matrices are needed:

Σ j,N j , cov
(
ΔyN j ,ΔyN̄ j

)
, cov

(
ΔyN̄ j

)
, Δ̄ j,k .

While Σ j,N j can be directly estimated using the process data at node j and the data
received from the nodes in N j ,

cov
(
ΔyN j ,ΔyN̄ j

)
=

⎡

⎢
⎢
⎢
⎣

...

cov
(
Δyl,ΔyN̄ j

)

...

⎤

⎥
⎥
⎥
⎦

, l ∈ N j ,

cov
(
ΔyN̄ j

)
, Δ̄ j,k should be identified during the training phase using sufficient data

and bymeans of data transmissions. The following algorithm serves for this purpose.

Algorithm 14.10 Algorithm to identify the matrices to perform (14.93): Input data
and parameters: l,N k

i , k = 0, 1, · · · , l,Σ j,N j , j ∈ N k
i and sufficient data collected

at each node in N k
i , k = 0, 1, · · · , l.

Step 0: Set k = l and
ξ j = y j , j ∈ N k

i ,

collect sufficient data of ξ j and form the data matrix

Ξ j,k = [ · · · ξ j · · · ] ;

Step 1: Set k = k − 1;
Step 2: For j ∈ N k

i

Step 2-1: If
N k

i = N k+1
i ,

set
ΔΞl = Ξl,k+1, l ∈ N j ,

and transmit ΔΞl, l ∈ N j , to node j and go to Step 2-2. Otherwise, transmit
Ξq,k+1, q ∈ N k+1

i , q /∈ N j to nodes l ∈ N j ; At nodes l ∈ N j , order the data
into
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ΞN̄l
=

⎡

⎢
⎢
⎣

...

Ξq,k+1
...

⎤

⎥
⎥
⎦ , q ∈ N k+1

i , q /∈ N j

and build
ΣN̄l

= ΞN̄l
Ξ T

N̄l
;

In parallel, set
Ξl = Ξl,k+1, l ∈ N j ;

Compute and save at nodes l ∈ N j

Σl,N̄l
= ΞlΞN̄l

= cov
(
Δyl ,ΔyN̄ j

)
,Σ−1

N̄l
= cov−1

(
ΔyN̄ j

)
,

build by sufficient data

ΔΞl = Ξl − Σl,N̄l
Σ−1

N̄l
ΞN̄l

,

and transmit ΔΞl, l ∈ N j , to node j;
Step 2-2: Collect sufficient data at node j, set

Ξ j = [ · · · y j · · · ] ;

Form at node j

ΔΞ j =

⎡

⎢
⎢
⎣

...

ΔΞl
...

⎤

⎥
⎥
⎦ ,Σ j = ΔΞ jΔΞ T

j = Δ̄ j,k,

compute and save
Ψ j = Σ j,N j Σ

−1
j

and using sufficient data to build

Ξ̂ j = Ψ jΔΞ j

Build
Ξ̃ j,k = Ξ j − Ξ̂ j

End (of Step 2)
Step 3: If k = 0, compute and output



412 14 Data-Driven Fault Detection in Large-Scale and Distributed …

1

N − 1
Ξ̃ j,kΞ̃

T
j,k = cov

(
yi − ŷi

)
,

stop, otherwise, go to Step 1, where N is the number of data for forming Ξ j .

Once all neededmatrices are identified and saved distributed, the following algorithm
can run online for the detection purpose.

Algorithm 14.11 Online fault detection:

Step 0: Set k = l and collect

ξ j,k = y j , j ∈ N k
i ;

Step 1: Set k = k − 1;
Step 2: For j ∈ N k

i

Step 2-1: If
N k

i = N k+1
i ,

set
Δξl = ξl,k+1, l ∈ N j ,

and transmit Δξl, l ∈ N j , to node j and go to Step 2-2. Otherwise, transmit

ξq = ξq,k+1, q ∈ N k+1
i , q /∈ N j

to nodes l ∈ N j ; At nodes l ∈ N j , order the data into

ξN̄l
=

⎡

⎢
⎢
⎣

...

ξq
...

⎤

⎥
⎥
⎦ , q ∈ N k+1

i , q /∈ N j

In parallel, set
ξl = ξl,k+1, l ∈ N j

and compute at nodes l ∈ N j

Δξl = ξl − Σl,N̄l
Σ−1

N̄l
ξN̄l

transmit Δξl, l ∈ N j , to node j;
Step 2-2: Collect data y j at node j , form
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Δξ j =

⎡

⎢
⎢
⎣

...

Δξl
...

⎤

⎥
⎥
⎦ , l ∈ N j

and compute
ξ j,k = y j − Ψ jΔξ j ;

End (of Step 2)
Step 3: If k > 0, go to Step 1. Otherwise, set

JT 2
i

= ξ T
j,kcov

−1 (yi − ŷi
)
ξ j,k, ξ j,k = yi − ŷi ;

Step 4: Run detection logic

{
JT 2

i
− Jth,i ≤ 0 =⇒ f ault − f ree,

JT 2
i

− Jth,i > 0 =⇒ f aulty,

Jth,i = χ2
α (mi ) .

14.8 Combined Application of the Consensus and
Correlation Based Schemes

Remember that in our previous study on average consensus based fault detection
schemes no correlation between the process variables at different sub-processes has
been assumed. Also, in our work on fault detection for dynamic processes, no process
input variables and process noises have been taken into account. All these handlings
may considerably limit practical applications of the proposed fault detection schemes.
This motivates us to remove those assumptions and propose a modified scheme.

14.8.1 Models and Problem Formulation

Without loss of generality, we only consider dynamic processes and extend the mod-
els (14.54)–(14.55) to

x (k + 1) = Ax(k) + Bu(k) + w(k), x(0) = x0, (14.104)

y(kTs,i ) = Ci x(kTs,i ) + vi (kTs,i ) ∈ Rmi , i = 1, · · · , M, (14.105)

where w(k) ∼ N (0,Σw) is the process noise vector and uncorrelated with vi as
well as u(k), x(k),
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Evi,l(ξ)vT
j,l(ξ) = E

⎡

⎢
⎢
⎢
⎣

vi (ξT )

vi (ξT + γi Ts)
...

vi (ξT + (ηi − 1) γi Ts)

⎤

⎥
⎥
⎥
⎦

⎡

⎢
⎢
⎢
⎣

v j (ξT )

v j
(
ξT + γ j Ts

)

...

v j
(
ξT + (η j − 1

)
γ j Ts

)

⎤

⎥
⎥
⎥
⎦

T

=

⎡

⎢
⎢
⎢
⎢
⎣

Σv,i j · · ·
...

. . .
...

· · · Σv,i jδki ,k j

· · · . . .

⎤

⎥
⎥
⎥
⎥
⎦

=: Σvl ,i j ,

ki ∈ {γi , · · · , (ηi − 1) γi } , k j ∈ {γ j , · · · ,
(
η j − 1

)
γ j
}
.

u(k) is the process input vector satisfying

xu (k + 1) = Auxu(k) ∈ Rnu , xu(0) = vre f , u(k) = Cuxu(k) (14.106)

with vre f denoting the reference value that varies slowly.

Remark 14.10 Dynamic system (14.106) can be viewed as a feed-forward con-
troller. In case that a feedback control system is addressed, the state vector x and
matrix A represent the closed-loop dynamics.

Let

x̄(k) =
[
x(k)
xu(k)

]

, Ā =
[
A BCu

0 Au

]

, E =
[
I
0

]

, C̄i = [Ci 0
]
.

It turns out

x̄ (k + 1) = Āx̄(k) + Ew(k), (14.107)

yi (kTs,i ) = C̄i x̄(kTs,i ) + vi (kTs,i ), i = 1, · · · , M.

It is straightforward by the same lifting handling, as performed in Sect. 14.5, that the
dynamics of the lifted system is governed by
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x̄ (ξ + 1) = Āl x̄(ξ) + Elwl(ξ), x̄(ξ) = x̄ (ξT ) , Āl = Āη, (14.108)

El = [ Āη−1E · · · E ] , wl(ξ) =

⎡

⎢
⎢
⎢
⎣

w(ξT )

w(ξT + Ts)
...

w((ξ + 1) T − Ts)

⎤

⎥
⎥
⎥
⎦

,

yi,l(ξ) =C̄i,l x̄(ξ) + Fi,lwl(ξ) + vi,l(ξ), C̄i,l =

⎡

⎢
⎢
⎢
⎣

C̄i

C̄i Āγi

...

C̄i Ā(ηi−1)γi

⎤

⎥
⎥
⎥
⎦

,

Fi,l =

⎡

⎢
⎢
⎢
⎣

0 · · · 0
Ci Aγi−1E · · · Ci AE Ci E 0 · · · 0

...
...

. . .
. . .

. . .
...

Ci A(ηi−1)γi−1E Ci A(ηi−1)γi−2E · · · · · · Ci AE Ci E 0

⎤

⎥
⎥
⎥
⎦

for i = 1, · · · , M. The output model can be summarised as

yl(ξ) = C̄l x̄(ξ) + Flwl(ξ) + vl(ξ), C̄l =
⎡

⎢
⎣

C̄1,l
...

C̄M,l

⎤

⎥
⎦ , Fl =

⎡

⎢
⎣

F1,l
...

FM,l

⎤

⎥
⎦ , (14.109)

which becomes, in the faulty case,

yl(ξ) = C̄l x̄(ξ) + Hf fl(ξ) + Flwl(ξ) + vl(ξ). (14.110)

Note that

E (Flwl(ξ) + vl(ξ)) (Flwl(ξ) + vl(ξ))T

=FlEwl(ξ)wT
l (ξ)FT

l + Evl(ξ)vT
l (ξ) =: Σyl ,

Ewl(ξ)wT
l (ξ) = diag (Σw, · · · ,Σw) =: Σwl ,

FlΣwl F
T
l =

⎡

⎢
⎢
⎣

. . .
...

Σwl ,i j
...

. . .

⎤

⎥
⎥
⎦ ,Σwl ,i j = Fi,lΣwl F

T
j,l , i, j = 1, · · · , M,

Evl(ξ)vT
l (ξ) =

⎡

⎢
⎢
⎣

. . .
...

Σvl ,i j
...

. . .

⎤

⎥
⎥
⎦ =: Σvl ,

E (wl(ξ) (Flwl(ξ) + vl(ξ))T
) = Σwl F

T
l .
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14.8.2 Distributed Kalman Filter Based Fault Detection
Scheme

Weare now in the position to derive the distributedKalman filter based fault detection
algorithm.We first introduce the standard Kalman filter based residual generator and
the test statistic for the lifted system model (14.108)–(14.109), which are, due to the
correlation between the noises in the output and state models, different from the ones
given in (14.63)–(14.67) and given as follows:

• Kalman filter based residual generator:

ˆ̄x (ξ + 1) = Āl ˆ̄x(ξ) + Lkalrl(ξ), (14.111)

rl(ξ) = yl(ξ) − ŷl(ξ), ŷl(ξ) = C̄l ˆ̄x(ξ),

Lkal = ( Āl PC̄
T
l + ElΣwl F

T
l

)
Σ−1

r , (14.112)

Σr = E (rl(ξ)r Tl (ξ)
) = C̄l PC̄

T
l + Σyl

with P as the solution of Riccati equation

P = Āl P ĀT
l + ElΣwl E

T
l − LkalΣr L

T
kal;

• Test statistic and the corresponding threshold for detecting a fault occurring in the
time interval [ξT − Ts, (ξ + 1) T − Ts) :

J = r Tl (ξ)
(
HT

f Σ−1
r

)T (
HT

f Σ−1
r H f

)−1
HT

f Σ−1
r rl(ξ), (14.113)

Jth = χ2
α

(
k f
)
, k f = η (n + nu) . (14.114)

Next, we investigate a distributed realisation of (14.111)–(14.114). Again, the reali-
sation is divided into two parts: distributed training (learning) and distributed online
operation. It is evident that for our purpose consensus should be achieved for the
matrices like

C̄T
l Σ−1

r , C̄T
l Σ−1

r C̄l , F
T
l Σ−1

r , FT
l Σ−1

r Fl, H
T
f Σ−1

r , HT
f Σ−1

r H f .

We first consider Σ−1
r ,Σ−1

yl , which can be re-written as

Σ−1
r = (C̄l PC̄

T
l + Σyl

)−1 = Σ−1
yl − Σ−1

yl C̄l
(
P−1 + C̄T

l Σ−1
yl C̄l

)−1
C̄T
l Σ−1

yl ,

Σ−1
yl = (FlΣwl F

T
l + Σvl

)−1 = Σ−1
vl

− Σ−1
vl

Fl
(
Σ−1

wl
+ FT

l Σ−1
vl

Fl
)−1

FT
l Σ−1

vl
.

It yields
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Āl PC̄
T
l Σ−1

r = Āl
(
P−1 + C̄T

l Σ−1
yl C̄l

)−1
C̄T
l Σ−1

yl , (14.115)

ElΣwl F
T
l Σ−1

r = ElΣwl F
T
l

(
Σ−1

yl − Σ−1
yl C̄l

(
P−1 + C̄T

l Σ−1
yl C̄l

)−1
C̄T
l Σ−1

yl

)
,

(14.116)

HT
f Σ−1

r = HT
f Σ−1

yl − HT
f Σ−1

yl C̄l
(
P−1 + C̄T

l Σ−1
yl C̄l

)−1
C̄T
l Σ−1

yl , (14.117)

FT
l Σ−1

yl = Σ−1
wl

(
Σ−1

wl
+ FT

l Σ−1
vl

Fl
)−1

FT
l Σ−1

vl
, (14.118)

C̄T
l Σ−1

yl = C̄T
l Σ−1

vl
− C̄T

l Σ−1
vl

Fl
(
Σ−1

wl
+ FT

l Σ−1
vl

Fl
)−1

FT
l Σ−1

vl
,

HT
f Σ−1

yl = HT
f Σ−1

vl
− HT

f Σ−1
vl

Fl
(
Σ−1

wl
+ FT

l Σ−1
vl

Fl
)−1

FT
l Σ−1

vl
. (14.119)

We now focus on the computation of C̄T
l Σ−1

vl
, FT

l Σ−1
vl

, HT
f Σ−1

vl
, which builds the

core of the above matrix computations. Let

C̄T
l Σ−1

vl
= [ΓC,1 · · · ΓC,M

] =: ΓC , FT
l Σ−1

vl
= [ΓF,1 · · · ΓF,M

] =: ΓF ,

HT
f Σ−1

vl
= [ΓH,1 · · · ΓH,M

] =: ΓH .

It turns out ⎡

⎣
ΓC,1 · · · ΓC,M

ΓF,1 · · · ΓF,M

ΓH,1 · · · ΓH,M

⎤

⎦Σvl =
⎡

⎣
C̄T
1,l · · · C̄T

M,l
FT
1,l · · · FT

M,l
HT

1, f · · · HT
M, f

⎤

⎦ . (14.120)

SinceΣvl is, due to the correlations between the nodes, not diagonal, we propose, on
the assumption that those correlated nodes are also connected, to apply the distributed
iteration learning algorithm given in Sub-section14.6.2 to determine ΓC , ΓF , ΓH .

We would like to call reader’s attention that the necessary data for running iteration
learning algorithm are the local data. That is, at the i-th node only C̄T

i,l , F
T
i,l , H

T
i, f as

well as the i-th row block ofΣvl are needed. As a result (the output of the algorithm),
ΓC,i , ΓF,i , ΓH,i are available at node i, i = 1, · · · , M.

Next, applying the average consensus algorithm delivers

1

M

M∑

i=1

ΓC,i C̄i,l = 1

M
C̄T
l Σ−1

vl
C̄l ,

1

M

M∑

i=1

ΓF,i Fi,l = 1

M
FT
l Σ−1

vl
Fl,

1

M

M∑

i=1

ΓH,i Hi, f = 1

M
HT

f Σ−1
vl

H f ,
1

M

M∑

i=1

ΓF,i C̄i,l = 1

M
FT
l Σ−1

vl
C̄l ,

1

M

M∑

i=1

ΓH,i C̄i,l = 1

M
HT

f Σ−1
vl

C̄l,
1

M

M∑

i=1

ΓF,i Hi, f = 1

M
FT
l Σ−1

vl
H f ,

at all nodes, which allow all nodes to compute C̄T
l Σ−1

yl C̄l, FT
l Σ−1

yl Fl, C̄T
l Σ−1

yl Fl and
further to solve Riccati equation,
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P = Āl P ĀT
l + ElΣwl E

T
l − LkalΣr L

T
kal =⇒ (14.121)

LkalΣr L
T
kal = ( Āl PC̄

T
l + ElΣwl F

T
l

)
Σ−1

r

(
Āl PC̄

T
l + ElΣwl F

T
l

)T
,

C̄T
l Σ−1

r C̄l = P−1
(
P−1 + C̄T

l Σ−1
yl C̄l

)−1
C̄T
l Σ−1

yl C̄l ,

FT
l Σ−1

r Fl = FT
l Σ−1

yl Fl − FT
l Σ−1

yl C̄l
(
P−1 + C̄T

l Σ−1
yl C̄l

)−1
C̄T
l Σ−1

yl Fl,

FT
l Σ−1

r C̄l = FT
l Σ−1

yl C̄l − FT
l Σ−1

yl C̄l
(
P−1 + C̄T

l Σ−1
yl C̄l

)−1
C̄T
l Σ−1

yl C̄l

for P at all nodes. Let

Lkal = [ Lkal,1 · · · Lkal,M
]
, Hr = HT

f Σ−1
r = [ Hr,1 · · · Hr,M

]
.

The final step in the training process is to calculate Lkal,i , Hr,i , respectively,

Lkal = Āl PC̄
T
l Σ−1

r + ElΣwl F
T
l Σ−1

r =
(
Āl − ElΣwl F

T
l Σ−1

yl C̄l
)
ΠC̄T

l Σ−1
yl + ElΣwl F

T
l Σ−1

yl =⇒
Lkal,i = ( Āl − ElΣwl F

T
l Σ−1

yl C̄l
)
Π
(
ΓC,i − ΠC,iΓF,i

)+ ΠE,iΓF,i , (14.122)

Π = (P−1 + C̄T
l Σ−1

yl C̄l
)−1

,ΠE,i = El
(
Σ−1

wl
+ FT

l Σ−1
vl

Fl
)−1

FT
l Σ−1

vl
,

ΠC,i = C̄T
l Σ−1

vl
Fl
(
Σ−1

wl
+ FT

l Σ−1
vl

Fl
)−1

,

Hr = HT
f Σ−1

r = HT
f Σ−1

yl − HT
f Σ−1

yl C̄lΠC̄T
l Σ−1

yl =⇒
Hr,i = ΓH,i − ΠH,iΓF,i − HT

f Σ−1
yl C̄lΠ

(
ΓH,i − ΠC,iΓF,i

)
, (14.123)

ΠH,i = HT
f Σ−1

vl
Fl
(
Σ−1

wl
+ FT

l Σ−1
vl

Fl
)−1

at node i, i = 1, · · · , M, and

HT
f Σ−1

r H f = HT
f Σ−1

yl H f − HT
f Σ−1

yl C̄l
(
P−1 + C̄T

l Σ−1
yl C̄l

)−1
C̄T
l Σ−1

yl H f

(14.124)
at all nodes using the available HT

f Σ−1
yl H f , HT

f Σ−1
yl C̄l, C̄T

l Σ−1
yl C̄l , P . For the online

implementation, the average consensus algorithm is applied to perform

Lkalrl(ξ) =
M∑

i=1

Lkal,i ri,l(ξ), HT
f Σ−1

r rl(ξ) =
M∑

i=1

Hr,i ri,l(ξ),

and further the Kalman filter based residual generator (14.111) as well as the test
statistic (14.113).
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14.8.3 Training and Online Implementation Algorithms

We summarise the above results in the following two algorithms.

Algorithm 14.12 The training algorithm for distributed Kalman filter based fault
detection with correlated measurement noises

Step 0: Identify the covariancematrix of measurement noises Σvl running parallel
at nodes i = 1, · · · , M. At node i , the corresponding i-th row block of Σvl is
available;

Step 1: Run thedistributed iteration learningalgorithmgiven inSub-section14.6.2
to solve (14.120 ) for

ΓC = C̄T
l Σ−1

vl
, ΓH = FT

l Σ−1
vl

, ΓH = HT
f Σ−1

vl
;

Step 2: Run the average consensus algorithm to build

C̄T
l Σ−1

vl
C̄l, F

T
l Σ−1

vl
Fl, H

T
f Σ−1

vl
H f , F

T
l Σ−1

vl
C̄l, H

T
f Σ−1

vl
C̄l , F

T
l Σ−1

vl
H f

at all nodes;
Step 3 Calculate C̄T

l Σ−1
yl C̄l , FT

l Σ−1
yl Fl, C̄T

l Σ−1
yl Fl at all nodes, according to

(14.118)-(14.119);
Step 4 Solve Riccati equation (14.121) for P at all nodes;
Step 5: Calculate Lkal,i , Hr,i according to (14.122) and (14.123) in parallel at

nodesi = 1, · · · , M, and HT
f Σ−1

r H f according to (14.124) and output them.

Algorithm 14.13 The online implementation algorithm for distributed Kal-man fil-
ter based fault detection with correlated measurement noises

Step 0: Compute

ri,K F (ξ) = Lkal,i ri,l(ξ), r j,J (ξ) = Hr,i ri,l(ξ)

in parallel at nodes i = 1, · · · , M;
Step 1: Start an average consensus algorithm to compute

r̄K F (ξ) = 1

M

M∑

j=1

r j,K F (ξ), r̄ J (ξ) = 1

M

M∑

i=1

r j,J (ξ);

Step 2: Calculate

x̂i (ξ + 1) = Āl x̂i (ξ) + r̄K F (ξ), Ji = Mr̄TJ (ξ)
(
HT

f Σ−1
r H f

)−1
r̄ J (ξ)

in parallel at nodes i = 1, · · · , M;
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Step 3: Check
Ji − Jth = Ji − χ2

α

(
k f
)

for decision

Ji − Jth ≤ 0 =⇒ fault-free, otherwise faulty and alarm

at all nodes i = 1, · · · , M;
Step 4: Output

x̂i (ξ + 1) , and in faulty case alarm

at nodes j = 1, · · · , M.

14.9 Notes and References

Fault detection in large-scale, interconnected and distributed systems is a challeng-
ing issue that will certainly become one of the dominant topics in the fault diagnosis
research and application areas in this and the next decade. Our study in this chapter
has been dedicated to two different classes of large-scale processes: (i) large-scale
processes equipped with a distributed sensor (monitoring) network and (ii) intercon-
nected large-scale processes with weakly coupled sub-processes. Correspondingly,
the fault detection objectives are different as well. For the first class of processes, the
focus is on detecting the faults within the process (as a whole) from various sensor
nodes (locations) which are distributed and networked. The basic idea behind that
is to increase fault detection performance by means of redundant sensors and fusion
of sensor data. Differently, the objective of fault detection in the second class of
processes consists in detecting faults in each sub-processes. To this end, the local
fault detection systems located at the sub-processes are networked corresponding to
the coupling/correlation topology, in order to exchange information among the local
fault detection systems. This allows an optimised utilisation of system correlations
towards an optimal fault detection.

Although our main attention in this chapter has been paid to the issues of dis-
tributed fault detection, the formulated fault detection problems have been addressed
in the data-driven and statistic framework. In this context, the handled fault detection
problems are generally solved in two steps: (i) data collection and pre-processing,
which is often understood as training or learning and thus performed offline, and (ii)
online fault detection. Reviewing the existing publications on the topic of distributed
fault detection in networked systems and under consideration of network topology
shows evidently that the major focus in this research domain is on the design of
distributed fault detection systems towards distributed online fault detection. Conse-
quently, model-based methods are mainly applied. So far, our work in this chapter
is different and dedicated both to offline learning and online fault detection in a dis-
tributed fashion. At this point, it should be mentioned that a number of data-driven
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fault detection approaches have been reported under the heading of distributed meth-
ods, although they have mainly addressed distributed or parallel computations, and
not taken into account the data transmissions among the sub-processes or sensor
nodes and their influences on fault detection performance. The major focus of these
methods is mainly on processing of “big data”. From the viewpoint of gathering
information, these methods often lead to a centralised fault detection. This is the
major difference to our work.

It is the state of the art that network topology plays a considerable role in today’s
research investigations on distributed process monitoring, diagnosis and control. For
this reason, at the beginning of this chapter, basic definitions and concepts in network
and graph theory have been introduced. The reader is referred to, for instance, [1, 2]
for a systematic and detailed introduction.

For detecting faults in a large-scale process by means of a distributed sensor
network, we have adopted the average consensus technique for a fusion of process
data received by the sensor network. The average consensus technique has been
successfully applied to data fusion, state estimation in distributed systems, multi-
agent systems, and become a well-established tool to deal with distributed system
issues [3]. The introduction to the basics of the average consensus technique in Sub-
section 14.1.2 with Theorem 14.1 as the main result is given in the highly cited
paper on distributed average consensus by Xiao and Boyd [4]. The construction of
the weighting matrix W given in (14.11) and (14.14) can be found in [4] and [5],
respectively. For further methods, the reader is referred to the survey paper [3].

Applying the average consensus algorithm, we have developed two basic fault
detection schemes as well as a number of their variations for large-scale processes
equipped with distributed sensor networks. The first one is an intuitive realisation
of average consensus based the fault detection idea, in which the average consen-
sus algorithm leads to the availability of the average of all sensor measurements at
each sensor node. Considering that the average of all sensor variables suppresses
uncertainty and variation in the measurements at average, it is expected that the fault
detectability can be enhanced. It is remarkable that the implementation of this fault
detection scheme requires considerably reduced data transmissions in comparison
with other consensus-based methods. In particular, during the training phase, only
local computations are to be performed and no data transmission is necessary. On
the other hand, this fault detection scheme does not result in optimal performance in
the sense of optimal fault detection formulated in Sect. 3.2. Alternatively, we have
proposed the second fault detection scheme that gives a “distributed version” of the
optimal solution to the detection problem defined in Sect. 3.2. This fault detection
scheme consists of two algorithms: a distributed offline learning/training and a dis-
tributed online fault detection. For both of these algorithms, the average consensus
builds the core computation. In comparison to the first scheme, the data transmissions
between the sensor nodes increase significantly.

Although the application of the consensus algorithm can significantly improve
the fault detectability by an optimal data fusion, the iteration computations to be
performed to reach consensus cause delays in fault detection. To deal with this
problem, different variations of the above-mentioned fault detection schemes have



422 14 Data-Driven Fault Detection in Large-Scale and Distributed …

been proposed. Among them, the idea of performing fault detection at each iteration
during the consensus computation has been, to our best knowledge, proposed for
the first time and realised in the consensus manner as well. The core of this idea is
the computation or estimation of the covariance matrix of the random vector being
available at each sensor node during the consensus iteration. In this way, T 2-test
statistic and further detection logic can be implemented at each node during the
iteration. As a result, delays caused by consensus iterations can be significantly
reduced. It is remarkable that in this context the intuitive fault detection scheme is
more efficient. It requires less online data transmission and computations on the one
hand, and allows an exact computation of variance of the test statistic on the other
hand, which results in obviously an optimal fault detection.

On the assumption of an available state space process model, which can be iden-
tified during the training phase using collected process data and by means of, for
instance, data-driven SKR realisation schemes introduced in Chap.4, our consensus
based fault detection schemes have been extended to detecting faults in large-scale
dynamic processes equipped with sensor networks. The core of this extension is the
application of a distributed Kalman filter. Consensus based distributed Kalman filters
are a well-established technique and widely applied to data fusion and distributed
estimation. In an early and highly cited conference paper, Olfati-Saber has proposed
the structure and a design scheme of distributed Kalman filters [6], in which average
consensus is performed for the fusion of measurement data/innovations generated at
all sensor nodes and the update (iteration) of covariance matrix of state estimation
error vector. There are a series of follow-up publications which have adopted the
essential structure of the distributed Kalman filter proposed in [6] and extended the
algorithm to different variations [3, 7–9]. It is natural that such a distributed Kalman
filter is applied for residual generation and, based on it, further for fault detection. On
the other hand, in order to achieve an optimal fault detection, a special fusion of the
local residual vectors becomes necessary, as formulated in Sect. 3.2. Under consider-
ation of our objective, we have proposed a consensus Kalman filter based distributed
fault detection scheme, in which the structure of the distributed Kalman filter pro-
posed in [6] has been adopted, and in addition, an optimal fusion of the residual
vectors from the sensor nodes is implemented. From the technical implementation
point of view, we have introduced a lifting model for the dynamic process under
consideration, based on which the proposed distributed Kalman filter is realised.
Consequently, this allows a reliable and timely well-synchronised implementation
of the consensus-based fault detection, as schematically sketched in Fig. 14.2. More-
over, the determination of the covariance matrices of the state estimation errors and
the residual vector is performed distributed using average consensus algorithm and
during the offline learning phase, so that the online computations can be reduced.

The objective of our study on fault detection in interconnected large-scale pro-
cesses with weakly coupled sub-processes is to improve the fault detectability by
making use of correlation relations among the sub-processes. Different from our
work in the first part of this chapter, the focus in this part of work is on detecting
faults in sub-processes. In this context, the tasks can be formulated as those optimal
fault detection problems formulated in Sect. 3.2 and Sub-section3.3.3. As revealed
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in Theorem 14.5, the optimal solution can be equivalently expressed as a least mean
squares (LMS) estimation of the measurement vector, for instance, the i-th node
by means of the correlated measurement vectors from other nodes. The remaining
works in this part have been dedicated to the realisation of an LMS estimate in a
distributed interconnected large-scale process, whose communication topology is
coincident with the correlation structure of the process under consideration.

Distributed LS (least squares) or LMS estimation issues are a thematic field that
receives considerable research interests both in communication and control commu-
nities [10, 11]. There are numerous strategies to achieve distributed estimation. For
instance, the distributed estimation computations are coordinated by a fusion center
[12] or the consensus strategy, as introduced at the beginning of this chapter, can be
adopted. We have decided to follow the strategy that the LMS estimate is performed
iteratively, distributed and the involved nodes will only deliver a part or a sub-set
of the estimate. In other words, it is not our intention that all nodes should share
an identical estimate or process knowledge, as the consensus strategy does. This
decision is motivated by the facts that

• different sub-processes could have significantly different correlation structures and
thus there is no need for each node to share identical process knowledge,

• the large-scale of such interconnected processes, other than their counterpart ad-
dressed in the first part of our study, demands for distributed computations to
achieve collective process knowledge, and

• in the context of data-driven fault detection, the computationally intensive and
involved solution of the LMS problem is performed in the training phase. In this
sense, the real-time requirement on involved computations is low.

Inspired by the idea in [11] to re-formulate an LMS estimate problem as the solution
of linear equation which is then solved iteratively, we have formulated our task of
finding the distributed regression model (14.78)–(14.79) for the LMS estimation
as solving a group of linear equations distributed and iteratively, as formulated by
(14.80). In fact, the distributed solution of (14.80) is the Richardson’s method that
is well-established in the theoretical framework of parallel computations [13]. The
results given in Proposition 14.1 and condition (14.84) can be found in [13].

Aiming at reducing online communication and computation for an LMS estimate
of the measurement vector of a sub-process (a node), further investigation has been
done on the relation between the distance and the intensity of the correlations between
the nodes. It has been demonstrated by (14.95) that with the increasing distance
between two nodes the correlation between these two nodes will become weaker. In
other words, those nodes, which are far away (in the sense of distance) from a node,
say the i-th node, will contribute less to the estimate of the measurement vector of
the i-th sub-process. This motivates us to propose two alternative schemes for the
LMS estimation. Both of them are approximated solutions of the optimal estimate
using the data from those nodes, which are located close (in the sense of the node
distance) to the node whose measurement vector is to be estimated. In this way, both
the computation and communication load can be (significantly) reduced.
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At the end of this chapter, we have re-studied the average consensus based fault
detection issues, in which the correlations between the sub-processes/nodes are now
taken into account. Althoughwe have only addressed the fault detection issues for dy-
namic processes using distributedKalman filters, the application to static processes is
straightforward. The idea behind this work is to realise the needed computation of the
covariance matrix of the measurement noises (of the overall process), which is, due
to the correlations among the sub-processes, no more diagonal matrix and thus be-
comes computationally involved, using the iteration algorithm adopted for the LMS
estimation. Because the iterative computation of this algorithm is performed during
the training phase, the expected online communication and computation loads for
performing the fault detection algorithm, including the consensus based distributed
Kalman filter and test statistics, are similar to the ones in case of no correlation being
under consideration.

We would like to emphasise that most of the methods and algorithms proposed in
our work can be applied to dealing with distributed fault detection in processes with
(deterministic) unknown inputs and disturbances. In other words, the fault detection
problems formulated in Sect. 2.3 for static processes and the unified solution for
dynamic processes presented in Sect. 4.3 can be realised in a distributed fashion, as
we studied in this chapter for processes with noises. The needed modifications and
extensions are straightforward.
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Chapter 15
Alternative Test Statistics and Fault
Detection Schemes

In Sect. 2.2, we have formulated optimal fault detection problems in the statistic
framework and derived numerous solutions in the subsequent works. Roughly speak-
ing, most of these solutions could deliver optimal fault detection performance when
the faults under consideration only cause changes in the mean value (vector) of the
measurement variables. It can be noticed that the optimal performance is achieved
by the use of χ2- or T 2-test statistics. In fact, these two test statistics are mostly
applied ones in fault diagnosis research and practice. Because they are so popular
and viewed as well-established, only very few users care about (i) the idea behind
them, (ii) on which assumptions they could be applied successfully, and (iii) what
is the achievable performance. In Chap.3, we have discussed about these issues in
detail and demonstrated that

• χ2- or T 2-test statistics are the result of applying the generalised likelihood ratio
method to detecting changes in mean caused by the faults,

• on the assumption that the process measurement (vector) is normally distributed
with constant mean and covariance, and

• the fault detection performance is optimal in the sense that at an acceptable level
of false alarm rate the fault detection rate (probability) reaches maximum.

These facts raise, on the other hand, questions concerning the fault detection perfor-
mance and the test statistics used for decision making, when the assumptions are not
satisfied, for instance, due to distribution other than normal distribution or varying
mean or changes in the covariance caused by the faults. A further concern is the result
of the observation that a metric measuring the distance between two probabilistic
distributions is often adopted to build a test statistic for decision making. Should
we follow Neyman-Pearson Lemma and apply GLR methods for the determination
of the test statistic or apply a metric as the test statistic? Which one of these two
strategies is the optimal one? These questions are the background and motivations
as well for our subsequent investigations.
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15.1 A General Formulation and Solution of GLR-based
Fault Detection

Consider measurement vector y ∈ Rm , which is a random vector with (known) prob-
ability density function (PDF) fθ (y). Here, θ denotes the parameter set of the PDF.
Suppose that the faults under consideration cause changes in the PDF parameters
and are modelled by

θ =
{

θ0, fault-free (nominal),
θ f , faulty.

(15.1)

Let
L (θ |y ) = fθ (y) (15.2)

be the likelihood function of θ given y.The likelihood ratio adopted in theGLR-based
fault detection scheme is defined by

s (y) = L
(
θ f |y )

L (θ0 |y )
. (15.3)

Since θ f is often unknown, θ f in theLR s(y) is substituted by itsmaximum likelihood
estimate (MLE) θ̂ f . That is

θ̂ f = argmax
θ f

L
(
θ f |y )⇐⇒ θ̂ f = argmax

θ f

s (y) . (15.4)

It yields

s (y) =
L
(
θ̂ f |y

)
L (θ0 |y )

=: J (y) . (15.5)

In the framework of fault detection, J (y) is called test statistic. Note that J (y) is
a random variable and a function of y. Hence, for known fθ (y) and some given
number a, the probability

Pr (J (y) ≤ a)

can be, under certain conditions, calculated analytically or using some numerical
methods, when θ̂ f is available.

In the practice of fault detection, log-likelihood ratio is commonly adopted with
n samples y(i), i = 1, · · · , n. It yields
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J = sn (y) = log
n∏

i=1

L
(
θ̂ f |y (i)

)
L (θ0 |y (i) )

=
n∑

i=1

(
L log

(
θ̂ f |y (i)

)
− L log (θ0 |y (i) )

)
,

(15.6)

L log

(
θ̂ f |y (i)

)
= log L

(
θ̂ f |y (i)

)
, L log (θ0 |y (i) ) = log L (θ0 |y (i) ) .

Next, we consider an example of the above GLR-based fault detection scheme.

Example 15.1 Suppose
y ∈ Rm, y ∼ N (μ,�y

)

with the PDF

fθ (y) = 1√
(2π)m det

(
�y
)e− 1

2 (y−μ)T �−1
y (y−μ),

μ = E y =
{

μ0, fault-free (nominal),
μ f , faulty,

(15.7)

�y =
{

�0, fault-free (nominal),
� f , faulty.

(15.8)

Hence, the log-likelihood ratio is given by

s (y) = ln
L
(
μ f,� f |y )

L
(
μ0,�0 |y )

= 1

2

(
ln

det (�0)

det
(
� f
) + (y − μ0)

T �−1
0 (y − μ0) − (y − μ f

)T
�−1

f

(
y − μ f

))

or in more general case with n measurement data y (i) , i = 1, · · · , n,

sn (y) = ln
n∏

i=1

L
(
μ f,� f |y(i) )

L
(
μ0,�0 |y(i) )

= 1

2

(
n ln

det (�0)

det
(
� f
) +

n∑
i=1

(
(y (i) − μ0)

T �−1
0 (y (i) − μ0)

− (y (i) − μ f
)T

�−1
f

(
y (i) − μ f

)
))

.

(15.9)

It is well-known that the MLE estimates of μ f , � f are

μ̂ f = 1

n

n∑
i=1

y (i) , �̂ f = 1

n

n∑
i=1

(
y (i) − μ̂ f

) (
y (i) − μ̂ f

)T
,
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respectively. As a result, the test statistic is defined as

J = n ln
det (�0)

det
(
�̂ f

) +
n∑

i=1

(
(y (i) − μ0)

T �−1
0 (y (i) − μ0)

− (y (i) − μ̂ f
)T

�̂−1
f

(
y (i) − μ̂ f

)
)

. (15.10)

Here, factor 1
2 is omitted without causing changes in the fault detection performance.

On the assumption that only changes in μ are considered, the test statistic becomes

J = μ̂T
f �

−1
0 μ̂ f =

(
1

n

n∑
i=1

y (i)

)T

n�−1
0

(
1

n

n∑
i=1

y (i)

)
, (15.11)

which is the commonly used χ2- or T 2-test statistic.

Remark 15.1 In the data-driven fault detection framework, μ0, �0 are identified
using sufficient number of process data. Also, by centering the process data, μ0 can
be assumed to be zero.

In general, there is no analytical solution for the probability computation based on
the LR-based test statistic sn (y) given in (15.6). As a consequence, threshold setting
is a hard task. Alternatively, numerical solutions can be used. Below is an algorithm
running offline (in the training phase) for the threshold setting.

Algorithm 15.1 Threshold setting, when GLR is used as test statistic

Step 0: Set Jth = 0;
Step 1: For j = 1 to N

Generate n data from the underlying distribution with the PDF fθ0(y), y (i) , i =
1, · · · , n, using the so-called randomised algorithm;
Calculate θ̂ f and J = sn (y) according to (15.4) and(15.6), respectively;
If

J > Jth

then set
Jth = J ;

End.
Step 2: Output Jth .

Remark 15.2 In the next chapter, we shall introduce the randomised algorithm (RA)
technique and its application to fault detection in more details.

Recall that
J 1/2 =

√
μ̂T

f �
−1
0 μ̂ f

in (15.11) is the so-called Mahalanobis distance which is a dissimilarity measure
between two random vectors of the same distribution with the (same) covariance
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matrix �0. In this context, the GLR-induced test statistic J can be interpreted as
the dissimilarity measure between the mean value of the fault-free operation and the
average value of the (present) real-time operation. A larger J is understood as higher
dissimilarity.When J is larger than the threshold, the high dissimilarity is interpreted
as the result of a fault. This observation inspires the idea of applying a dissimilarity
measure between two distributions to a successful fault detection.

15.2 KL Divergence Based Fault Detection Schemes

We consider again the measurement vector y ∈ Rm with PDFs fθ0(y) and fθ f (y)
representing the distributions in the fault-free and faulty operations, respectively.
In statistics, Kullback-Leibler (KL) divergence is a well-established dissimilarity
measure between two distributions and thus its application to fault detection has
received considerable attention. In this section, we investigate KL divergence based
fault detection issues.

15.2.1 On KL Divergence

KL divergence from the distribution denoted by fθ f with PDF fθ f (y) to the one fθ0
with PDF fθ0(y) is defined and denoted by

D
(
fθ f , fθ0

) =
∫

fθ f (y) log
fθ f (y)

fθ0(y)
dy. (15.12)

The KL divergence has fundamental properties:

D
(
fθ f , fθ0

) ≥ 0, D
(
fθ f , fθ0

) = 0, when fθ f (y) = fθ0(y); (15.13)

D
(
fθ f , fθ0

) �= D
(
fθ0 , fθ f

) =
∫

fθ0(y) log
fθ0(y)

fθ f (y)
dy. (15.14)

Inequality (15.14) tells us, KL divergence is asymmetric and thus is not a metric.
In fact, the asymmetry plays an important role in dealing with fault detection is-
sues, which has, unfortunately, not received reasonable attention by reviewing the
published results. This motivates us to address this issue in the sequel.

Recall that

log
fθ f (y)

fθ0(y)
= log

L
(
θ f |y )

L (θ0 |y )
= s (y)

is the log-likelihood ratio. Hence, the KL divergence from fθ f to fθ0 can also be
written as
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D
(
fθ f , fθ0

) =
∫

fθ f (y)s (y) dy = Es (y) . (15.15)

That is, the KL divergence from fθ f to fθ0 is the expectation of LR when θ = θ f .

In the context of fault detection study, that means D
(
fθ f , fθ0

)
is the expected value

of the LR in case of faulty operations. Analogue to D
(
fθ f , fθ0

)
, the KL divergence

from fθ0 to fθ f is given by

D
(
fθ0 , fθ f

) =
∫

fθ0(y) log
fθ0(y)

fθ f (y)
dy = −

∫
fθ0(y)s (y) dy = −Es (y) .

(15.16)

We would like to call reader’s attention that the expected values Es (y) in (15.15)
and (15.16) are different, and the one in (15.16) is achieved in case of fault-free
operations. In order to distinguish these two different operation modes, which are of
fundamental significance in fault detection, we denote them respectively by

D
(
fθ f , fθ0

) = Eθ f s (y) , D
(
fθ0 , fθ f

) = −Eθ0s (y) .

15.2.2 KL Divergence Based Fault Detection

In this sub-section, we schematically introduce the basic idea and principle of KL
divergence-based fault detection. Given the PDF fθ (y) of the process measure-
ment y with θ satisfying (15.1), our first task is to choose a test statistic between
D
(
fθ f , fθ0

)
and D

(
fθ0 , fθ f

)
due to the asymmetry of KL divergence. We suggest

to use D
(
fθ0 , fθ f

)
instead of D

(
fθ f , fθ0

)
for the following reasons:

• our objective is to solve the optimal fault detection problem formulated in Defi-
nition 2.4, which requires the determination of the threshold using the fault-free
distribution or operation data,

• that is, for given α, the threshold is determined according to

Pr (J > Jth |θ = θ0 ) = α ⇐⇒ Pr
(
J−1 < J−1

th |θ = θ0
) = α, (15.17)

• D
(
fθ0 , fθ f

)
is the expectation of the inversed LR during fault-free operation, and

• as a rule for the application of KL divergence from distribution P to Q, P typically
represents the “true”distribution of data. This is, in our case, θ = θ0.

Suppose that for the online fault detection, y (i) , i = 1, · · · , n, are collected. For
the computation of D

(
fθ0 , fθ f

)
given in (15.16) using y (i) , i = 1, · · · , n, collected

from the underlying distribution fθ0 , we have to (i) estimate θ f , since it is unknown,
and (ii) approximate the expectation computation in (15.16). As a solution, we pro-
pose to use MLE of θ f ,
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θ̂ f = argmax
θ f

n∑
i=1

log L
(
θ f |y (i)

)
, (15.18)

and the empirical expectation of D
(
fθ0 , fθ f

)
,

D̄n
(
fθ0 , fθ f

) = 1

n

(
n∑

i=1

log L (θ0 |y (i) ) −
n∑

i=1

log L
(
θ̂ f |y (i)

))
. (15.19)

Recall that
D
(
fθ0 , fθ f

) = −Es (y) .

Hence, for the determination of the threshold satisfying (15.17) and on the use of
D
(
fθ0 , fθ f

)
as the test statistic, we have

Pr (J > Jth |θ = θ0 ) = α ⇐⇒ Pr
(
D
(
fθ0 , fθ f

)
< Jth |θ = θ0

) = α

⇐⇒ Pr
(
D−1
(
fθ0 , fθ f

)
> J−1

th |θ = θ0
) = α, (15.20)

and correspondingly the detection logic

{
Dn
(
fθ0 , fθ f

)− Jth ≥ 0, fault-free,
Dn
(
fθ0 , fθ f

)− Jth < 0, faulty.

Below is the algorithm running offline (in the training phase) for the threshold setting.

Algorithm 15.2 Step 0: Set γ = 0;
Step 1: For j = 1 to N

Generate n data from the underlying distribution with the PDF fθ0(y), y (i) , i =
1, · · · , n, using the randomised algorithm;
Calculate θ̂ f and D̄n

(
fθ0 , fθ f

)
according to (15.18) and (15.19), respectively;

If

D̄−1
n

(
fθ0 , fθ f

)
> γ (15.21)

then set
γ = D̄−1

n

(
fθ0 , fθ f

) ; (15.22)

End.

Step 2: Output Jth = γ −1.

The number of iterations N is determined according to the following inequality

N ≥ log 1
δ

log 1
1−α

, (15.23)
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whereα is the FAR, 1−δ is the confidence level with δ ∈ (0, 1).With (15.21)-(15.22)
in Step 2 and N satisfying (15.23), we have, with a probability greater than 1 − δ,

that

Pr
(
D−1 ( fθ0 , fθ f

) ≤ J−1
th

) ≥ 1 − α ⇐⇒ Pr
(
D−1 ( fθ0 , fθ f

)
> J−1

th

) ≤ α,

which, according to (15.20), results in

Pr
(
D
(
fθ0 , fθ f

)
< Jth |θ = θ0

) ≤ α.

The background information and the proof of the above results will be given in the
next chapter in our study on threshold setting using randomised algorithms technique.

It is clear that once Jth is set, the online fault detection can be performed using
the following algorithm.

Algorithm 15.3 KL divergence based online fault detection

Step 1: Collect data y (i) , i = 1, · · · , n;
Step 2: Compute θ̂ f and D̄n

(
fθ0 , fθ f

)
according to (15.18) and (15.19), respec-

tively;
Step 3: Check

D̄n
(
fθ0 , fθ f

)− Jth

and run detection logic

{
D̄n
(
fθ0 , fθ f

)− Jth ≥ 0, fault-free,

D̄n
(
fθ0 , fθ f

)− Jth < 0, faulty.

15.2.3 KL Divergence and GLR Based Methods

Reviewing the published studies on applying KL divergence to fault detection shows
that D

(
fθ f , fθ0

)
has been commonly adopted as the test statistic for the detection

purpose. According to (15.15), it can be understood as applying the expected value of
the LR in case of faulty operations as the test statistic. This suggests that there should
exist relations between the KL divergence and GLR. It is of considerable practical
interests to reveal and understand these relations in the context of fault detection.
Along the line in the study by Eguchi and Copas on interpreting KL divergence with
Neyman-Pearson Lemma (the reader is referred to the reference given at the end of
this chapter), we shall below investigate KL divergence andGLR based test statistics.

Consider D
(
fθ f , fθ0

)
and re-write it into
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D
(
fθ f , fθ0

) =
∫

fθ f (y) log
fθ f (y)

fθ0(y)
dy = Eθ f L log

(
θ f |y )− Eθ f L log (θ0 |y ) ,

Eθ f L log
(
θ f |y ) =

∫
fθ f (y) log L

(
θ f |y ) dy,

Eθ f L log (θ0 |y ) =
∫

fθ f (y) log L (θ0 |y ) dy.

In practice of fault detection, Eθ f L log
(
θ f |y ) , Eθ f L log (θ0 |y ) and so D

(
fθ f , fθ0

)
will be replaced by their empirical realisations, analogue to our discussion in the last
sub-section, as follows: for given n samples from the underlying distribution fθ f (y),
y (i) , i = 1, · · · , n,

L̄ log,θ f (θ0 |y ) = 1

n

n∑
i=1

L log,θ f (θ0 |y (i) ) ,

L̄ log,θ f

(
θ f |y ) = 1

n

n∑
i=1

L log,θ f

(
θ f |y (i)

) =⇒

D̄n
(
fθ f , fθ0

) = L̄ log,θ f

(
θ f |y )− L̄ log,θ f (θ0 |y )

= 1

n

(
n∑

i=1

L log,θ f

(
θ f |y (i)

)−
n∑

i=1

L log,θ f (θ0 |y (i) )

)
,

where L̄ log,θ f (θ0 |y ) , L̄ log,θ f

(
θ f |y ) and D̄n

(
fθ f , fθ0

)
denote the empirical realisa-

tions of Eθ f L log
(
θ f |y ) , Eθ f L log (θ0 |y ) and D

(
fθ f , fθ0

)
, respectively, and

L log,θ f

(
θ f |y (i)

) = log L
(
θ f |y (i)

)
, L log,θ f (θ0 |y (i) ) = log L (θ0 |y (i) )

with y (i) being generated from the distribution fθ f (y) . Since θ f is generally un-

known andwill be substituted by itsMLE θ̂ f in the fault detection practice, we finally
have

D̄n
(
fθ f , fθ0

) = 1

n

(
n∑

i=1

L log,θ f

(
θ̂ f |y (i)

)
−

n∑
i=1

L log,θ f (θ0 |y (i) )

)
. (15.24)

It seems formally that, apart from the factor 1/n, D̄n
(
fθ f , fθ0

)
given in (15.24) is

identical with the GLR given in (15.6). This is, however, not true and inapplicable
in the practice of fault detection.

Remember that the principle of applying GLR based test statistic for fault de-
tection is to check if the test statistic during the fault-free operation is bounded by
the threshold. And the threshold should be determined based on the fault-free dis-
tribution or the data collected during the fault-free operations. In other words, the
samples y(i), i = 1, · · · , n, used in (15.6) should be from the distribution fθ0(y).
As discussed in the last sub-section, for the purpose of determining the threshold,
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the empirical realisation of D
(
fθ0 , fθ f

)
,

D̄n
(
fθ0 , fθ f

) = −1

n

(
n∑

i=1

L log,θ0

(
θ̂ f |y (i)

)
−

n∑
i=1

L log,θ0 (θ0 |y (i) )

)
(15.25)

= 1

n

n∑
i=1

log
Lθ0 (θ0 |y (i) )

Lθ0

(
θ̂ f |y (i)

) ,

can be adopted. Here, the n samples, y (i) , i = 1, · · · , n, are from the underly-
ing distribution fθ0(y), and being analogue and consistent to the above-introduced
notations, and

1

n

n∑
i=1

L log,θ0 (θ0 |y (i) ) ,
1

n

n∑
i=1

L log,θ0

(
θ̂ f |y (i)

)
,

are the empirical realisations of

Eθ0L log (θ0 |y ) , Eθ0L log

(
θ̂ f |y

)
,

respectively. It is evident that−D̄n
(
fθ0 , fθ f

)
is, apart from the factor 1/n, equivalent

with the GLR in (15.6). Since two test statistics deliver the identical fault detection
performance, when their ratio is a constant, it can be concluded that the KL diver-
gence D̄n

(
fθ0 , fθ f

)
and GLR based test statistics are equivalent with respect to fault

detection performance. Note that, corresponding to−D̄n
(
fθ0 , fθ f

)
the threshold will

be determined by

Pr

⎛
⎝ n∑

i=1

log
Lθ0 (θ0 |y (i) )

Lθ0

(
θ̂ f |y (i)

) ≤ Jth

⎞
⎠ = α.

As a summary, we claim that D
(
fθ0 , fθ f

)
can be, equivalent to the GLR, applied to

solving the fault detection problem formulated in Definition 2.4. In other words, the
achieved solution leads to the maximum fault detectability for a given acceptable
false alarm rate α.

Recall that in Definition 2.5, a dual optimal fault detection problem is formulated,
in which the minimum false alarm rate would be reached for a given fault detection
rate. That means, the threshold is first set for a given fault detection rate β, which is
defined by

Pr (J > Jth |θ �= θ0 ) = β.

Thus, the threshold setting should be realised using the data from the underlying
distribution fθ f (y). In this case, it is reasonable to use D

(
fθ f , fθ0

)
as the test statistic.
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15.3 Asymptotic Behaviour of GLR and KL Divergence as
Test Statistics

The asymptotic behaviour of GLR and KL divergence has been well studied in the
statistical research. In this section, we briefly summarise those existing results, which
are useful for our fault detection work, without providing statistical descriptions and
handlings in more details.

Recall that the online implementation of GLR and KL divergence based test
statistics is performed using n (online) collected measurement data (samples). Cor-
responding to this, the threshold setting, for instance, performed in the offline training
phase usingAlgorithm 15.1, should be realised on the assumption of n available sam-
ples. It is of considerable practical interests to know the statistical properties of the
test statistic under consideration like its distribution, expectation or covariance, if
sufficient number of data are available. That is, when n is sufficiently large. The
statistical properties of the sample function for n → ∞ are called asymptotic be-
haviour.

We first consider the likelihood function

L log
(
θ f |y ) =

n∑
i=1

L log
(
θ f |y (i)

)
.

Let
θ̂ f = argmax

θ f

L log
(
θ f |y )

be the MLE of θ f using n samples which are generated (or collected) from the fault-
free distribution fθ0(y). It is a well-known result in statistics that under certain trivial
conditions the MLE almost surely converges to its true value as n i. i. d. samples
approach to infinity. In our case,

θ̂ f
n→∞−→ θ0,

since the data are generated from the fault-free distribution fθ0(y). Moreover, θ̂ f

converges in distribution to a normal distribution satisfying

√
n
(
θ̂ f − θ0

)
−→ N (0, I−1

F

)
, (15.26)

where IF is the so-called Fisher information matrix whose (i, j) entry is given by

IF (i, j) = −E
(

∂2

∂θi∂θ j
log fθ (y |θ )

)
, θ = θ0.

We now consider L log
(
θ f |y ) and its second order approximation using the Taylor

series expansion at θ0,
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L log

(
θ̂ f |y

)
≈ L log

(
θ̂ f |y

) ∣∣∣θ̂ f =θ0
+

∂L log

(
θ̂ f |y

)

∂θ̂ f

∣∣∣θ̂ f =θ0

(
θ̂ f − θ0

)

+1

2

(
θ̂ f − θ0

)T
G
(
θ̂ f − θ0

)
,

G (i, j) = ∂2

∂θi∂θ j
L log

(
θ̂ f |y

) ∣∣∣θ̂ f =θ0
.

Since the MLE θ̂ f reaches the maximum at θ0, which yields

∂L log

(
θ̂ f |y

)

∂θ̂ f

∣∣∣θ̂ f =θ0
= 0,

and G (i, j) converges to, as n → ∞,

1

n
G (i, j) → E

(
∂2

∂θi∂θ j
log fθ (y |θ )

)
,

we have, by noting (15.26),

L log (θ0 |y ) − L log

(
θ̂ f |y

)
≈ n

2

(
θ̂ f − θ0

)T
IF
(
θ̂ f − θ0

)
=⇒

2
(
L log (θ0 |y ) − L log

(
θ̂ f |y

))
∼ χ2 (dim (θ)) .

In otherwords, the asymptotic behaviour of sn (y) can be described byχ2-distribution
with the degrees of freedom equal to the dimension of θ,

− 2sn (y) ∼ χ2 (dim (θ)) . (15.27)

Moreover, it follows from (15.25) that for n → ∞

2nD̄n
(
fθ0 , fθ f

) ∼ χ2 (dim (θ)) . (15.28)

It is worth mentioning that (15.28) is coincident with the well-known result that

D
(
fθ0 , fθ f

) ≈ 1

2

(
θ f − θ0

)T
IF
(
θ f − θ0

)
.

We would like to call reader’s attention to the conditions that lead to the relation
(15.27):

• n → ∞,

• the second order approximation of L log
(
θ f |y ) using its Taylor series expansion

at θ0.



15.4 SPD Matrix Based Test Statistics and Fault Detection Schemes 437

The latter requires that θ f should differ from θ0 only very slightly. In the context of
fault detection, this fact can be understood as a rule that in case of incipient faults,
the distribution of the LR can be well approximated by χ2 distribution. On the other
hand, the requirement n → ∞ makes the use of this nice result in practice more
difficult. The well-known Hoeffding’s inequality could help us to find a reasonable
trade-off between the (limited) number n and the use of the asymptotic property
(15.27) of the LR.

Lemma 15.1 (Hoeffding’s inequality) Given i. i. d. random variables x1, · · · , xn
and xi ∈ [a, b] , then for some ε > 0

Pr

(∣∣∣∣∣
1

n

n∑
i=1

xi − E 1

n

n∑
i=1

xi

∣∣∣∣∣ ≥ ε

)
≤ 2e− 2nε2

(b−a)2 .

The Hoeffding’s inequality gives a probabilistic relation between the empirical mean
and the true mean value depending on the sample number. We now apply this result
for our purpose. To be specific, we would like to find n so that

Pr

(∣∣∣∣ sn(y)n
− E sn(y)

n

∣∣∣∣ ≥ ε

)
= Pr

(∣∣D̄n
(
fθ0 , fθ f

)− E D̄n
(
fθ0 , fθ f

)∣∣ ≥ ε
) ≤ γ.

(15.29)
Here, sn(y), D̄n

(
fθ0 , fθ f

)
are given in (15.6) and (15.19), respectively. ε > 0, γ ∈

(0, 1) are some constants. Suppose that

s (y (i)) =
(
L log

(
θ̂ f |y (i)

)
− L log (θ0 |y (i) )

)
∈ [a, b] .

It is evident that (15.29) holds if

2e− 2nε2

(b−a)2 ≤ γ,

which leads to

n ≥ (b − a)2

2ε2
ln

2

γ
.

15.4 SPD Matrix Based Test Statistics and Fault Detection
Schemes

In the previous sections, we have studied GLR and KL divergence based fault detec-
tion schemes. Roughly speaking, such schemes are established on the basis of known
distributions or data-driven realisation of distributions of relevant random variables.
In practice, due to uncertainties within and around the process under considera-
tion, identifying a distribution to cover the overall (normal) operation of a process
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variable (possibly vectorised) is often a technical challenge that demands for con-
siderable engineering efforts. On the other hand, it is often the case that during (the
normal) operations, numerous data sets have been recorded, each of which or some
of which as a group represent an operation mode under certain conditions. When
we summarise these observations from the viewpoint of information geometry, the
overall process operations can be abstracted as a manifold, and the distribution or
the data representing an operation mode can be interpreted as a point in the mani-
fold under consideration. To be specific, we denote an m-dimensional manifold by
M, a point in M with the local coordinate system by Pi and the geodesic distance
between two points inM, Pi and Pj , by d

(
Pi , Pj

)
. In this context, we propose the

following fault detection schemes: given Pi ∈ M, i = 1, · · · , n, which model the
normal (fault-free) process operations,

• FD scheme I: find the mean of Pi , i = 1, · · · , n, denoted by PM and defined by

PM = argmin
P

n∑
i=1

d2 (Pi , P) ,

and set a threshold Jth, so that for any new point inM, Pnew,which is built during
online process operation, the following decision logic is performed

{
Jth − d2 (Pnew, PM) ≥ 0 ⇒ fault-free,
Jth − d2 (Pnew, PM) < 0 ⇒ faulty;

• FD scheme II: Let ξ ∈ R be a measurement variable that represents, for instance,
operation conditions. Suppose that for i ∈ {1, · · · , n} , ξi ∈ R is associated with
Pi . Let

P = M
(
Pξ , P0

) ∈ M, Pξ , P0 ∈ M,

model the normal operations with Pξ , P0 as model parameters to be identified.
Here, Pξ is a function of ξ . Find Pξ , P0 using data (Pi , ξi ) , i = 1, · · · , n, by
solving the following optimisation problem

(
P̂ξ , P̂0

)
= arg min

Pξ ,P0

n∑
i=1

d2
(
Pi , M

(
Pξi , P0

))
, (15.30)

and set a threshold Jth, so that for any newpoint inMwith the associated operation
condition, (Pnew, ξnew) , the following decision logic is implemented

{
Jth − d2

(
Pnew, M

(
P̂ξnew , P̂0

))
≥ 0 ⇒ fault-free,

otherwise faulty.

These two FD schemes can be applied for the detection purpose for processes running
under different operational conditions. The first scheme is analogue to the commonly



15.4 SPD Matrix Based Test Statistics and Fault Detection Schemes 439

adopted fault detection strategy of detecting changes around the mean by taking into
account uncertain variations in form of a threshold. The second scheme is in fact an
extension of the first detection scheme. The idea behind that is, in addition to the
constantmatrix (parameterised asmean in thefirst FDscheme), to define an additional
model parameter (matrix), which is a function of the operation conditions, so that the
normal operation model can also reflect possible changes in the measurement data
sets caused by the variation of the normal operation conditions. The challenge for
the realisation of this FD scheme is the solution of the optimisation problem (15.30).

In the sequel, we will realise these ideas on the basis of measurement data in the
format of symmetric and positive-definite (SPD) matrices.

15.4.1 Manifold of Symmetric and Positive-definite Matrices

Motivation In the framework of MVA, covariance matrices are commonly assumed
to be SPD and used as a measurement of variations of a random vector around its
(known) expectation (vector). In this context, the mean and covariance matrix of a
vectorised random variable are of essential statistical importance for a successful
fault detection. In practice, it is the nature of many industrial processes that process
data are batchwise available. Let a batch data set be denoted by

Y = [ y (1) · · · y (l)
] ∈ Rm×l ,

typically with l >> m. In industrial applications, due to the existing uncertainties
it is often impossible to re-construct the expectation and covariance of a random
variable from such a data set. Alternatively, we consider

P = 1

l
YY T ∈ Rm×m,

which can be interpreted as an approximation of the second moment of measurement
vector y. In our subsequent work, we assume P is positive-definite and will study
fault detection issues using measurement data in the format of SPD matrices.

All m × m dimensional SPDs form a m(m+1)
2 dimensional manifold, denoted by

P (m) . This allows to deal with our problems by applying existing differential-
geometric methods. To this end, we first, in the sequel, briefly introduce some very
basic differential-geometric properties of manifold P (m) as well as concepts and
methods needed for our study. For details, the reader is referred to the references cited
at the end of this chapter. We would like to emphasise that differential-geometric
rather than statistical properties of SPD matrices lie in the focus of our subsequent
investigation. Thus, no assumption is made on any statistical properties of our mea-
surement variables.
Riemannian structure of P (m) Although for two matrices, A ∈ Rm×m, B ∈
Rm×m, the Frobenius-norm of A − B,
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Fig. 15.1 Schematic
description of some concepts
in Riemannian manifold
P (m)

dF (A, B) = ‖A − B‖F =
√
tr
(
(A − B)T (A − B)

)
,

defines the Euclidean distance on the set ofm×m real matrices, we are interested in
P (m) as a special type of Riemannian manifolds and its geometric properties, like
tangent space, geodesic curves, exponential and logarithmic maps and Riemannian
distance, which are essential for our subsequent work. These concepts are schemat-
ically sketched in Fig. 15.1 and explained in detail below.

We denote the tangent space at P ∈ P (m) by TPP (m) , which is a m(m+1)
2

dimensional linear subspace, and call vectors in TPP (m) tangent vectors at P . A
tangent vector VP belongs to S (m) , where S (m) is the vector space of all m × m
symmetric matrices, and can be interpreted as a directional derivative. Thus, in the
context of our work on process monitoring, VP represents (directional) variation at
P ∈ P (m) . On the tangent space at P, the inner product is defined as

〈
VP,1, VP,2

〉
P = tr

(
P−1VP,1P

−1VP,2
)
, VP,1, VP,2 ∈ TPP (m) .

Correspondingly, the norm of VP ∈ TPP (m) is given by

‖VP‖P = 〈VP , VP〉1/2P = tr1/2
(
P−1VP P

−1VP
)

= tr1/2
(
P−1/2VP P

−1/2P−1/2VP P
−1/2
) = ∥∥P−1/2VP P

−1/2
∥∥
F . (15.31)

This also leads to a natural definition of the Riemannian metric,

ds = ∥∥P−1/2(dP)P−1/2
∥∥
F

,

which is the “infinitesimal length” at P ∈ P (m) as well. Equipped with the metric,
Riemannian manifold P (m) is complete.

Let A be a regular m × m matrix. For

P̂ = AT P A, P ∈ P (m) , (15.32)
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it holds

P̂ ∈ P (m) ,

‖VP‖P̂ = tr1/2
(
A−1P−1A−T VP A

−1P−1A−T VP
)

= tr1/2
(
A−1P−1A−T VP A

−1P−1A−T VP A
−1A
)

= tr1/2
(
P−1A−T VP A

−1P−1A−T VP A
−1
) = ∥∥A−T VP A

−1
∥∥
P ,

from which we have

ds = ∥∥P−1/2(dP)P−1/2
∥∥
F = ∥∥A−1P−1A−T AT (dP)A

∥∥
F .

That means, the Riemannian metric is invariant to the transformation (15.32).
Given VP ∈ TPP (m) , P ∈ P (m) , the exponential map at P, denoted by

expP (VP) , maps the tangent vector VP to P (m) . The inverse of expP is called
logarithmic map and denoted by logP . That is

logP : P (m) → TPP (m) , logP

(
expP (VP)

) = VP .

Let  (t) be the (unique) geodesic satisfying

 (0) = P, ̇ (0) = VP .

The exponential map at P, expP (VP) , is defined as

expP (VP) =  (1) .

It is proved that for Riemannian manifold P (m) with the tangent space TPP (m) ,

 (t) = P1/2(P−1/2QP−1/2)t P1/2, Q ∈ P (m) , t ∈ [0, 1] , (15.33)

is the geodesic. It is straightforward that

 (0) = P, ̇ (0) = P1/2 log
(
P−1/2QP−1/2

)
P1/2 = VP . (15.34)

It becomes clear that

expP (VP) = P1/2 exp
(
P−1/2VP P

−1/2
)
P1/2, (15.35)

logP (Q) = P1/2 log
(
P−1/2QP−1/2

)
P1/2, Q ∈ P (m) , (15.36)

are Riemannian exponential and logarithmic maps, where log
(
P−1/2QP−1/2

)
and

exp
(
P−1/2VP P−1/2

)
are matrix logarithm and exponential, respectively. Note that
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expP (VP) = P1/2 exp
(
P−1/2VP P

−1/2
)
P1/2 = Q =  (1) ,

and thus the geodesic  (t) can be written as

 (t) = P1/2(P−1/2QP−1/2)t P1/2 = P1/2 exp
(
t P−1/2VP P

−1/2) P1/2.

We would like to remark that for the complete Riemannian manifold P (m) the
exponential map is defined for all tangent vectors at P ∈ P (m) .

Remark 15.3 In the above descriptions, the following definition of Pt , P ∈ P (m) ,

t ∈ R, is adopted
Pt = et log P , (15.37)

which can be found in the textbooks on functions of matrices. The reader is referred
to the references given in the last section of this chapter. It follows from (15.37) that

Pt1 Pt2 = e(t1+t2) log P = P (t1+t2), log Pt = t log P.

In general, geodesic distance on a manifold defines the shortest distance between
two points in themanifold. For Pi and Pj inP (m), the geodesic distance, also known
as Riemannian distance, is given by

d
(
Pi , Pj

) =
∥∥∥log P−1/2

i Pj P
−1/2
i

∥∥∥
F

. (15.38)

By means of an SVD of P−1/2
i Pj P

−1/2
i ,

P−1/2
i Pj P

−1/2
i = Ui j�i jU

T
i j ,

�i j = diag
(
λ1

(
P−1/2
i Pj P

−1/2
i

)
, · · · , λm

(
P−1/2
i Pj P

−1/2
i

))

with λk

(
P−1/2
i Pj P

−1/2
i

)
being the k-th eigenvalue of matrix P−1/2

i Pj P
−1/2
i , k =

1, · · · ,m, it turns out

log P−1/2
i Pj P

−1/2
i = Ui j log�i jU

T
i j .

It yields

d
(
Pi , Pj

) = ∥∥log�i j

∥∥
F =
(

m∑
k=1

log2 λk

(
P−1/2
i Pj P

−1/2
i

))1/2

. (15.39)

Since
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λk

(
P−1/2
i Pj P

−1/2
i

)
= λk

(
P−1/2
i P−1/2

i Pj P
−1/2
i P1/2

i

)
= λk

(
P−1
i Pj

)
,

λk

(
P−1/2
i Pj P

−1/2
i

)
= λk

(
P1/2
i P−1/2

i Pj P
−1/2
i P−1/2

i

)
= λk

(
Pj P

−1
i

)
,

it is evident that

d
(
Pj , Pi

) = d
(
Pi , Pj

) = d
(
P−1
i , P−1

j

)
,

d
(
Pi , Pj

) =
(

m∑
k=1

log2 λk
(
P−1
i Pj

))1/2

, (15.40)

where λk
(
P−1
i Pj

)
denotes the k-th eigenvalue of matrix P−1

i Pj , k = 1, · · · ,m.

Next, we introduce the concept of Riemannian mean. Given n SPD matrices,
Pi , i = 1, · · · , n, it can be easily proved that the arithmetic mean,

P̄ = 1

n

n∑
i=1

Pi ,

is the solution of the minimisation problem

min
P̄

n∑
i=1

d2
F (Pi , P̄).

That is, P̄ is a point in P (m), which minimises the sum of its distances to the
given point Pi , i = 1, · · · , n. In the same context, the Riemannian mean of Pi , i =
1, · · · , n, which is also called geometric mean, is defined by

Pg = argmin
P

n∑
i=1

d2(Pi , P) (15.41)

with d(Pi , P) denoting the geodesic distance defined in (15.40).

Theorem 15.1 The optimisation problem (15.41) is solvable if and only if

n∑
i=1

log P−1
i Pg = 0. (15.42)

This is a well-established result. The reader is referred to the references cited in
the last section of this chapter. In general, the optimisation problem (15.41) cannot
be solved in a closed-form. It has been reported in the literature cited at the end of
this chapter that software aided numerical solutions based on the condition (15.42)
are available.
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15.4.2 Riemannian Distance Based Fault Detection Schemes

In this sub-section, we introduce numerous Riemannian distance based fault detec-
tion schemes as the realisations of the two fault detection schemes described at the
beginning of this section.
Fault detection by checking variations around the Riemannian mean Suppose
that, during the training phase, process data are recorded and formatted as Pi ∈
P (m) , i = 1, · · · , n. Solving nonlinear equation (15.42) gives the Riemannian
mean, Pg. For performing the online fault detection with new measurement data
Pnew using the detection logic,

J = d2
(
Pg, Pnew

) =⇒
{
Jth − J ≥ 0 ⇒ fault-free,
Jth − J < 0 ⇒ faulty,

(15.43)

the threshold Jth is to be determined. To this end, we propose four different schemes:

• Scheme I: The threshold is set to be

Jth := max
i∈{1,··· ,n} d

2
(
Pg, Pi

) ; (15.44)

• Scheme II: The threshold is set to be

Jth := 1

n

n∑
i=1

d2
(
Pg, Pi

) ; (15.45)

• Scheme III: Define n0 so that
n0
n

≤ α

with α being the acceptable FAR. The threshold Jth is set so that the number of
the data matrices, Pj , j ∈ {1, · · · , n}, which lead to

d
(
Pg, Pj

)
> Jth,

is not larger than n0;
• Scheme IV: Recall that the geodesic curve is parameterised by t ∈ [0, 1] in (15.33).
Hence,

g (ti ( j)) = P1/2
g (P−1/2

g Pi P
−1/2
g )ti ( j)P1/2

g

represents a point in the geodesic curve connecting Pg and Pi with ti ( j) ∈ [0, 1]
as a parameter. Note that

g (ti ( j)) ∈ P (m) , d
(
Pg, g (ti ( j))

) ≤ d
(
Pg, Pi

)
.
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Thus, g (ti ( j)) is viewed as being in the range of normal (fault-free) operations.
On this assumption, the following randomised algorithm is proposed for deter-
mining the threshold.

Algorithm 15.4 A randomised algorithm aided threshold setting

Step 0: Determine N, the sampling number according to (15.23);
Step 1: Generate random samples

ti ( j) ∼ U[0,1], i = 1, · · · , n, j = 1, · · · , N ,

where U[0,1] denotes the uniform distribution in the interval [0, 1] ;
Step 2: Compute, for i = 1, · · · , n, j = 1, · · · , N ,

d2
(
Pg, g (ti ( j))

) =
m∑

k=1

log2 λk
(
(P−1/2

g Pi P
−1/2
g )ti ( j)

) ; (15.46)

Step 3: Determine the threshold, for instance, using threshold determination
Scheme III given above.

In the above algorithm, ti ( j) (as parameter) is generated randomly using a ran-
domised algorithm (see the next two chapters for details). As a result of (15.39) for
the Riemannian distance computation, we finally have (15.46) for the Riemannian
distance from Pg to g (ti ( j)) .

On the assumption that the data set includes sufficient data, (threshold determi-
nation) Scheme I can be (very) conservative. This could be the case as well even
if Schemes II–IV are adopted, when the measurement points (data) are less uni-
formly distributed in “directions”and “amplitudes”. Inspired by the Mahalanobis
distance (the χ2-test statistic), we propose to use an SPD matrix to “concentrate”the
data points. Remember that tangent vectors in TPP (m) represent variations at point
P ∈ P (m) . The idea behind our effort is to concentrate the variations represented
by the tangent vectors in TPgP (m) . Let VPg (i), i = 1, · · · , n, be the tangent vector
at the mean Pg in direction Pi . It follows from (15.34) that

VPg (i) = P1/2
g log

(
P−1/2
g Pi P

−1/2
g

)
P1/2
g , i = 1, · · · , n.

Corresponding to the norm of a tangent vector at P ∈ P (m) defined in (15.31), we
introduce

�g = 1

n

n∑
i=1

(
P−1/2
g VPg (i)P

−1/2
g

)2 = 1

n

n∑
i=1

log2
(
P−1/2
g Pi P

−1/2
g

) ∈ P (m) ,

(15.47)
whose inverse is then adopted for concentrating the variations. As a result, we define
the following evaluation function



446 15 Alternative Test Statistics and Fault Detection Schemes

J = tr
(
P−1/2
g VPg (Pnew)P−1/2

g �−1
g P−1/2

g VPg (Pnew)P−1/2
g

)
(15.48)

= tr
(
log
(
P−1/2
g PnewP

−1/2
g

)
�−1

g log
(
P−1/2
g PnewP

−1/2
g

))
.

Here, Pnew is the new measurement data for the online fault detection. We would
like to call reader’s attention that for �g = I,

J = tr
(
log
(
P−1/2
g PnewP

−1/2
g

)
log
(
P−1/2
g PnewP

−1/2
g

)) = d2
(
Pg, Pnew

)
.

In other words, J 1/2 defined in (15.48) with the concentrating matrix �−1
g can be

viewed as the distance with weighting. For the computation of J, we suggest the use
of the following algorithm.

Algorithm 15.5 A modified version with data concentration

• Offline computation (embedded into the training phase):

– Do SVD

P−1/2
g Pi P

−1/2
g = Ui�iU

T
i ,

�i = diag
(
λ1
(
P−1/2
g Pi P

−1/2
g

)
, · · · , λm

(
P−1/2
g Pi P

−1/2
g

))

and calculate

�g = 1

n

n∑
i=1

Uidiag
(· · · , log λ2

k

(
P−1/2
g Pi P

−1/2
g

)
, · · · )UT

i ;

– Do SVD
�g = Ug�̄gU

T
g , �̄g = diag (λ1, · · · , λm)

and save Ug, λk, k = 1, · · · ,m;
• Online computation (for fault detection):

– Do SVD

P−1/2
g PnewP

−1/2
g = Unew�newU

T
new,

�new = diag
(
λ1
(
P−1/2
g PnewP

−1/2
g

)
, · · · , λm

(
P−1/2
g PnewP

−1/2
g

)) ;
– Calculate

J = tr

(
diag

(
· · · , log λ2

k

(
P−1/2
g PnewP

−1/2
g

)
, · · ·
)

·
·UT

newUgdiag
(
λ−1
1 , · · · , λ−1

m

)
UT

g Unew

)
. (15.49)

Equation (15.49) is the result of the following computation
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J = tr
(
log
(
P−1/2
g PnewP

−1/2
g

)
�−1

g log
(
P−1/2
g PnewP

−1/2
g

))
= tr

(
Unew log�newU

T
newUgdiag

(
λ−1
1 , · · · , λ−1

m

)
UT

g Unew log�newU
T
new

)
= tr

(
log2 �newU

T
newUgdiag

(
λ−1
1 , · · · , λ−1

m

)
UT

g Unew
)
.

In (15.49), UT
newUg can be interpreted as “concentration” in directions and

diag
(
λ−1
1 , · · · , λ−1

m

)
as “concentration” in amplitudes.

The threshold setting corresponding to evaluation function J given in (15.48) or
(15.49) can be realised analogue to the threshold determination schemes proposed
at the beginning of this sub-section.

Fault detection using a simple model on Riemannian manifold P (m) The idea
behind the fault detection scheme to be proposed in this sub-section is to identify a
(simple)model embedded in RiemannianmanifoldP (m), which is parameterised by
the operation conditions like speed, temperature etc. In a certain sense, this concept
is similar to the linear parameter varying (LVP) paradigm known in control theory.

As cited at the end of this chapter, Fletcher has proposed a simple model based on
the exponential map on Riemannian manifold in 2013, in which the tangent vector is
multiplied by a (scalar) measurement variable representing the operation condition.
We adopt this model for our purpose, since it well fits our needs and requirements,
viewed from the following two aspects:

• it is a natural extension of the “mean model”introduced in the last sub-section to
include variations in form of a tangent vector in the model,

• the possible variations caused by the changes in the operations are modelled by
the tangent vector together with the (scalar) variable representing the operation
condition.

For our purpose, the exponential map on P (m) , as given in (15.35), is extended to

P̂ (ξ) = expPM

(
VPM (ξ)

) = P1/2
M exp

(
P−1/2
M VpM (ξ) P−1/2

M

)
P1/2
M ∈ P (m)

(15.50)
with PM being a point in P (m) and

VPM (ξ) = ξVPM , VPM ∈ TPP (m) , ξ ∈ R.

The exponential map expPM

(
VPM (ξ)

)
is the model to be identified, which delivers an

estimate for a point inP (m)with respect to the operation condition described by the
(measurement) variable ξ. To this end, the following optimisation problem will be
solved: given data pairs, (Pi , ξi ) , i = 1, · · · , n, here, Pi ∈ P (m) is themeasurement
data set and ξi ∈ R represents a certain operation condition, find PM , VPM so that

C =
n∑

i=1

d2
(
Pi , P̂ (ξi )

)
(15.51)
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is minimised. It is clear that

C =
n∑

i=1

tr
(
log2
(
P−1/2
i P̂ (ξi ) P

−1/2
i

))
.

Once the model (15.50) is successfully identified with PM ∈ P (m) , VPM ∈
TPP (m) , we can apply the following algorithm for online fault detection:

Algorithm 15.6 Operation condition depending fault detection

• Collect data and build Pnew with the corresponding operation condition ξnew;
• Compute

P̂ (ξnew) = expPM

(
VPM (ξnew)

)

and further

J = d2
(
Pnew, P̂ (ξnew)

)
;

• Run the detection logic

{
Jth − J ≥ 0 ⇒ fault-free,
Jth − J < 0 ⇒ faulty.

Here, Jth can be set, for instance, equal to

Jth := 1

n

n∑
i=1

d2
(
Pi , P̂ (ξi )

)
. (15.52)

15.4.3 Clustering and Clustering Based Fault Detection
Schemes

Although the operation conditions are taken into account in the simplemodel (15.50),
its fault detection performance may be limited if the collected (fault-free operation)
data are sparely distributed in the P (m) manifold, for instance, due to significantly
different operation conditions. A good solution to this problem is to perform clus-
tering of the process data before applying the fault detection algorithms proposed in
the last sub-section. To this end, the well-established k-means strategy is adopted as
follows.

For the simplicity, we assume that k (an integer) normal operation conditions are
known and Pi ∈ P (m) , i = 1, · · · , n, are collected for the clustering purpose.

Algorithm 15.7 Riemannian distance based k-means algorithm clustering

Step 0: Define k initial geometric means P0
g,i , i = 1, · · · , k, with super index 0

denoting the initial iteration. Set j = 0;
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Step 1: Build the clusters

C j+1
i =

{
Pj : d

(
Pj , P

j
g,i

)
≤ d
(
Pj , P

j
g,l

)
, l �= i, l = 1, · · · , k,

j ∈ {1, · · · , n}

}

for i = 1, · · · , k;
Step 2: If

∀i ∈ {1, · · · , k} ,C j+1
i = C j

i ,

stop and output
Ci = C j+1

i , i = 1, · · · , k,

otherwise
P j+1
g,i = argmin

P

∑
Pi∈C j+1

i

d2(Pi , P)

and j = j + 1, go to Step 1.

Once the clustering is successfully performed, a fault detection can be realised by
means of the following detection logic: given a new measurement Pnew ∈ P (m) ,

∀i ∈ {1, · · · , k} , J (Pnew,Ci ) ≤ Jth,i =⇒ fault-free, otherwise faulty.

Here, J (Pnew,Ci ) represents one of the evaluation functions introduced in the last
sub-section, (15.43) or (15.48), and formed using the SPD points (data set) in Ci .

Remark 15.4 The above clustering based fault detection scheme can also be ex-
tended to dealing with fault isolation problems as far as measurement data during
faulty operations could be collected.

In practice, it could be the case that a certain cluster may include (very) limited
number of data sets. As a consequence, the geometric mean defined in (15.41) is
less representative and insufficient for a reliable clustering and fault detection. As
a solution of this problem, we adopt the so-called convex model, which has been
proposed recently for clustering on the SPD Riemannian manifold.

Recall that a geodesic curve connecting P1, P2 ∈ P (m) is expressed by

12 (t) = P1/2
1 (P−1/2

1 P2P
−1/2
1 )t P1/2

1 = P1/2
1 exp

(
t P−1/2

1 VP2 P
−1/2
1

)
P1/2
1

for t ∈ [0, 1] , and it is well-known as well that

Pg,12 = argmin
P

2∑
i=1

d2(Pi , P) = P1
(
P−1
1 P2

)1/2 = P2
(
P−1
2 P1

)1/2
(15.53)
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is the geometricmean of P1 and P2.Using the relations given in the following lemma,
it becomes clear that the geometric mean of P1 and P2 is the middle point of the
geodesic curve connecting P1, P2.

Lemma 15.2 Given P1, P2 ∈ P (m) and P satisfying

2∑
i=1

log P−1
i P = 0,

then the following relations hold

P = P1
(
P−1
1 P2

)1/2 = P2
(
P−1
2 P1

)1/2 = (P2P−1
1

)1/2
P1 = (P1P−1

2

)1/2
P2

= P1/2
1 (P−1/2

1 P2P
−1/2
1 )1/2P1/2

1 = P1/2
2 (P−1/2

2 P1P
−1/2
2 )1/2P1/2

2 . (15.54)

The proof of this lemma can be found in the reference given at the end of this
chapter.

It is of interest to notice that (15.53) can be equivalently written as

Pg,12 = argmin
P

1

2

2∑
i=1

d2(Pi , P) = argmin
P

2∑
i=1

wi d
2(Pi , P), w1 = w2 = 1

2
.

For a more general case, we first give the following lemma.

Lemma 15.3 Given P, Q ∈ P (m) and

G (Q) = ∥∥log P−1Q
∥∥2
F , (15.55)

then the gradient of G (Q) is given by

∇G (Q) = (log P−1Q
)
P−1. (15.56)

The proof of this lemma is in fact a part of the proof of existence condition (15.42)
given in Theorem 15.1, which can be found in the references cited at the end of this
chapter.

We now in a position to give a more general problem formulation and its solution.
Given P1, P2 ∈ P (m) , find the weighted geometric mean as defined as

Pg = argmin
P

2∑
i=1

wi d
2(Pi , P), w1 + w2 = 1, w1, w2 ≥ 0. (15.57)

For the sake of simplicity and without loss of generality, it is assumed that P1 is
achieved by a normalisation of the data sets. The solution of the optimisation problem
(15.57) is described in the following theorem.
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Theorem 15.2 Given P1, P2 ∈ P (m) , then for w1, w2 ≥ 0, w1 + w2 = 1,

Pg = argmin
P

2∑
i=1

wi d
2(Pi , P) = P1/2

1 (P−1/2
1 P2P

−1/2
1 )w2 P1/2

1 . (15.58)

Proof Since

C (P) =
2∑

i=1

wi d
2(Pi , P)

is a convex function, the optimisation problem (15.2) is solvable if and only if

∇ (Pg) = 0,

which, following Lemma 15.3, is equivalent to

2∑
i=1

wi log P−1
i Pg = 0. (15.59)

Note that
2∑

i=1

wi log P−1
i Pg = w1 log P1/2

1 Pg + w2 log P−1
2 Pg.

Substituting Pg in the above equation by P1/2
1 (P−1/2

1 P2P
−1/2
1 )w2 P1/2

1 given in (15.2)
yields

w1 log P−1
1 Pg = w1 log P−1/2

1 Pg P
1/2
1 = w1 log(P

−1/2
1 P2P

−1/2
1 )w2

= w1w2 log(P
−1/2
1 P2P

−1/2
1 ),

w2 log P−1
2 Pg = w2 log P1/2

1 P−1
2 P1/2

1 P−1/2
1 Pg P

−1/2
1

= w2 log
(
P1/2
1 P−1

2 P1/2
1 (P−1/2

1 P2P
−1/2
1 )w2

)

= w2 log(P
−1/2
1 P2P

−1/2
1 )−1+w2 = −w1w2 log(P

−1/2
1 P2P

−1/2
1 )

=⇒
2∑

i=1

wi log
(
P−1
i Pg

) = 0,

since P−1/2
1 P2P

−1/2
1 ∈ P (m) . Thus, according to (15.2)

Pg = P1/2
1 (P−1/2

1 P2P
−1/2
1 )w2 P1/2

1

is the solution of the optimisation problem (15.2).

Recall that P1/2
1 (P−1/2

1 P2P
−1/2
1 )w2 P1/2

1 is the point at
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t = w2

in the geodesic curve connecting P1, P2. In otherwords, finding aweighted geometric
mean of two points in P (m) is equivalent to finding a point in the geodesic curve
connecting these two points. For a cluster with n points, this formulation can be
written as: given a cluster C with SPD points Pi ∈ P (m) , i = 1, · · · , n, for any
wi , w j satisfying

w j = 1 − wi , i �= j, i, j ∈ {1, · · · , n} ,

n∑
k=1

wk = 1, (15.60)

the weighted geometric mean defined by

Pg,i j = argmin
P

n∑
k=1

wkd
2(Pk, P) = argmin

P

(
wi d

2(Pi , P) + w j d
2(Pj , P)

)
(15.61)

is a point in the geodesic curve connecting Pi and Pj . That means, the set with all
SPD points in the geodesic curve connecting any two points inC can be equivalently
expressed by the solution of the optimisation problem given in (15.61) with different
weighting factors satisfying (15.60). We now remove the assumption w j = 1 − wi

and consider a more general case: let

Pg = argmin
P

n∑
i=1

wi d
2(Pi , P),

n∑
i=1

wi = 1

be the weighted mean of Pi ∈ P (m) , i = 1, · · · , n, for given weighting factors
{w1 ≥ 0, · · · , wn ≥ 0} . We call the set

Pg =
{
Pg : ∀wı́ ≥ 0, i = 1, · · · , n,

n∑
i=1

wi = 1, Pg = argmin
P

n∑
i=1

wi d
2(Pi , P)

}
(15.62)

the convex set of the cluster C and use it to represent operations for the cluster C. In
other words, for a given cluster C with (very) limited number of measurement data
sets, Pi , i = 1, · · · , n, the multivariate interpolations based on the support points
Pi , i = 1, · · · , n, result in additional (many) points in C, which would be helpful
for a successful fault detection. Note that Pg is indeed a sub-manifold in P (m).

To check if a measurement data set belongs to the cluster C and moreover to
distinguish two clusters,we introduce below the definitions of (i) distance of a point in
P (m) to the sub-manifoldPg inP (m), (ii) distance between sub-manifoldP1,g,P2,g

in P (m) .

Definition 15.1 Given P ∈ P (m) andPg ⊂ P (m) defined by (15.62), the distance
from P to Pg, d

(
P,Pg

)
, is defined by
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d
(
P,Pg

) = min
Pg∈Pg

d
(
P, Pg

)
. (15.63)

Moreover, given P1,g,P2,g ⊂ P (m) with Pi,g, i = 1, 2, being defined by (15.62),
the distance between P1,g and P2,g, d

(P1,g,P2,g
)
, is defined by

d
(P1,g,P2,g

) = min
Pi∈P1,g ,Pj∈P2,g

d
(
Pi , Pj

)
. (15.64)

Remark 15.5 The above definitions are standard for the distance between a point
(in a subspace/manifold) to a set/sub-manifold as well as the distance between two
sets/sub-manifolds.

Recall that any point in Pg is the weighted geometric mean of Pi , i = 1, · · · , n, for

given wı́ ≥ 0, i = 1, · · · , n, satisfying
n∑

i=1
wi = 1. Moreover, according to Lemma

15.3, a necessary and sufficient condition for

Pg = argmin
P

n∑
i=1

wi d
2(Pi , P)

is
n∑

i=1

wi log
(
P−1
i Pg

) = 0.

Thus, the minimisation problem (15.63) can be also equivalently written as

d
(
P,Pg

) = min
wı́≥0,i=1,··· ,n d

(
P, Pg

)
, (15.65)

s.t. (i)
n∑

i=1

wi log
(
P−1
i Pg

) = 0,

(ii)
n∑

i=1

wi = 1.

In terms of the distance defined above, we are now in the position to perform
clustering or fault detection as follows: given a new measurement Pnew ∈ P (m) ,

d
(
Pnew,Pg

) ≤ Jth =⇒ Pnew ∈ C,

otherwise Pnew belongs to another cluster or faulty.

Here, Jth is the threshold and can be determined, for instance, using randomised
algorithms technique.

In order to evidently distinguish two clusters, C1 and C2, represented by their
convex sets, P1,g,P2,g ⊂ P (m) with support points, P1,i ∈ P1,g, P2, j ∈ P2,g, we
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suggest to apply the following alternating minimisation based iterative algorithm
proposed by Amari (see the reference given in the next section).

We begin with an arbitrary point P1,0 in P1,g and solve the optimisation problem
(15.65) with

d
(
P1,0,P2,g

) = min
wı́≥0,i=1,··· ,n d

(
P1,0, P2,g

)
,

s.t. (i)
n∑

i=1

wi log
(
P−1
2,i P2,g

) = 0, (ii)
n∑

i=1

wi = 1, P2,i ∈ C2.

Suppose that the solution of the above optimisation problem is

P2,1 = arg min
wı́≥0,i=1,··· ,n d

(
P1,0, P2,g

) ∈ P2,g.

Now, solve the optimisation problem (15.65) with

d
(
P2,1,P1,g

) = min
wı́≥0,i=1,··· ,n d

(
P2,1, P1,g

)
,

s.t. (i)
n∑

i=1

wi log
(
P−1
1,i P1,g

) = 0, (ii)
n∑

i=1

wi = 1, P1,i ∈ C1,

which delivers

P1,1 = arg min
wı́≥0,i=1,··· ,n d

(
P2,1, P1,g

) ∈ P1,g.

It is evident that
d
(
P2,1, P1,1

) ≤ d
(
P2,1, P1,0

)
.

In general, we have

d
(
P2,i+1, P1,i

) ≤ d
(
P2,i , P1,i

) ≤ d
(
P2,i , P1,i−1

)
.

Thus, repeating the above computations iteratively will lead to a converging solution.

15.4.4 Examples

Next, we consider two special types of fault detection problems to illustrate the
theoretical results and fault detection schemes presented in the previous sub-sections.
Example 1 Consider Pi ∈ P (m) , i = 1, · · · , n, collected during the fault-free
operations. Let
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Pi = U�iU
T , �i = diag (σi1, · · · , σim) , i = 1, · · · , n,

be the SVD of Pi . Suppose that

�i �= � j , i �= j, i, j = 1, · · · , n,

whichmeans, operationuncertainties donot cause changes in the directions expressed
by U (consisting of the eigen-vectors) but may lead to variations of the length of
some directions (expressed by the singular values).

To determine the geometric mean of Pi , i = 1, · · · , n, we use the relation

n∑
i=1

log P−1
i Pg =

n∑
i=1

log�−1
i U PgU

T

and set
Pg = UT�gU, �g = diag

(
σg1, · · · , σgm

)
,

which yields

n∑
i=1

log P−1
i Pg =

n∑
i=1

log diag
(
σ−1
i1 σg1, · · · , σ−1

im σgm
)

= diag

(
log σ n

g1

n∏
i=1

σ−1
i1 , · · · , log σ n

gm

n∏
i=1

σ−1
im

)
.

As a result, it becomes clear that

σ n
g j =

n∏
i=1

σi j , j = 1, · · · ,m, Pg = UT�gU (15.66)

solve the equation
n∑

i=1

log P−1
i Pg = 0

and so the optimisation problem (15.41).
Based on the solution (15.66), we are able, for instance, to set threshold (15.44)

defined in Scheme I equal to

Jth = max
i∈{1,··· ,n} d

2
(
Pg, Pi

) = max
i∈{1,··· ,n}

∥∥log P−1
i Pg

∥∥2
F

= max
i∈{1,··· ,n}

m∑
j=1

(
1

n

n∑
k=1

log σk j − log σi j

)2
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or threshold (15.45) defined in Scheme II equal to

Jth = 1

n

n∑
i=1

d2
(
Pg, Pi

) = 1

n

n∑
i=1

∥∥log P−1
i Pg

∥∥2
F

= 1

n

n∑
i=1

m∑
j=1

(
1

n

n∑
k=1

log σk j − log σi j

)2

.

Next, we derive the convex set built by Pi ∈ P (m) , i = 1, · · · , n, according to

(15.62). Recall that for given wı́ ≥ 0, i = 1, · · · , n, and
n∑

i=1
wi = 1,

Pg = argmin
P

n∑
i=1

wi d
2(Pi , P) ⇐⇒

n∑
i=1

wi log
(
P−1
i Pg

) = 0.

Since for Pg = UT�gU,

n∑
i=1

wi log P−1
i Pg =

n∑
i=1

log diag
(
σ

−wi
i1 σ

wi
g1 , · · · , σ

−wi
im σwi

gm

)

= diag

⎛
⎝log σ

n∑
i=1

wi

g1

n∏
i=1

σ
−wi
i1 , · · · , log σ

n∑
i=1

wi

gm

n∏
i=1

σ
−wi
im

⎞
⎠ ,

it turns out

σg j =
n∏

i=1

σ
wi
i j , j = 1, · · · ,m.

Hence,

Pg =

⎧⎪⎪⎨
⎪⎪⎩

Pg = UTdiag

(
· · · ,

n∏
i=1

σ
wi
i j , · · ·

)
U :

∀wı́ ≥ 0, i = 1, · · · , n,
n∑

i=1
wi = 1

⎫⎪⎪⎬
⎪⎪⎭

,

and it becomes evident that any point in Pg is a function of wı́ ≥ 0, i = 1, · · · , n.

Example 2 We now consider two clusters of data sets, C1 and C2,

C1 = {P1i ∈ P (m) , i = 1, · · · , n1} ,C2 = {P2i ∈ P (m) , i = 1, · · · , n2} .

It is assumed that

P1i = U1�1iU
T
1 , �1i = diag

(
σ1,i1, · · · , σ1,im

)
, i = 1, · · · , n1,

P2i = U2�2iU
T
2 , �2i = diag

(
σ2,i1, · · · , σ2,im

)
, i = 1, · · · , n2.
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That is, both clusters are of the property of the data sets studied in Example 1. In
order to get a deep insight into the problem formulations and the associated solutions,
we suppose the m × m dimensional unit matrix, I, is the reference point in P (m),
and the points in C1 and C2, P1i , P2 j ∈ P (m) , i = 1, · · · , n1, j = 1, · · · , n2, are
connected with I by the geodesic curves expressed by

1i (t) = Pt
1i , t ∈ [0, 1] , i = 1, · · · , n1,

2i (t) = Pt
2i , t ∈ [0, 1] , i = 1, · · · , n2.

Recall that a tangent vector is associated with each geodesic curve and given by

VP1i = ̇1i (0) = log P1i , i = 1, · · · , n1,

VP2i = ̇2i (0) = log P2i , i = 1, · · · , n2.

In the sequel, we consider an extreme case that

�1i > I, �2 j < I, i = 1, · · · , n1, j = 1, · · · , n2. (15.67)

Since
VP1i = log P1i , VP2i = log P2i ,

the assumption means, 1i (t) and 2i (t) move in (totally) different directions. This
should allow an evident clustering between the two clusters, which will be studied
below.

Remember that the geometric mean of C1, for instance, is

P1g = UT
1 �1gU1, �1g = diag

⎛
⎝· · · ,

(
n1∏
i=1

σ1i j

)1/n1

, · · ·
⎞
⎠

and it holds

Jth,1 = max
i∈{1,··· ,n1}

d2 (P1g, P1i) = max
i∈{1,··· ,n1}

m∑
j=1

(
1

n1

n1∑
k=1

log σ1k j − log σ1i j

)2

=
m∑
j=1

(
1

n1

n1∑
k=1

log σ1k j − log σ1q j

)2

,

P1q := arg max
i∈{1,··· ,n1}

d2
(
P1g, P1i

)
.

We now check the distance between P1g and any point in C2, P2i ∈ C2,

d2
(
P1g, P2i

) = ∥∥log P−1
2i P1g

∥∥2
F =
∥∥∥log P1/2

1g P−1
2i P1/2

1g

∥∥∥2
F

.
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Notice that

P−1
2i − 1

σ̄2,i
I ≥ 0, σ̄2,i = max

{
σ2,i1, · · · , σ2,im

}

=⇒ log P1/2
1g P−1

2i P1/2
1g ≥ log

(
1

σ̄2,i
P1/2
1g P1/2

1g

)

= diag

(
· · · ,

1

n1

n1∑
k=1

log σ1k j − log σ̄2,i , · · ·
)

=⇒ d2
(
P1g, P2i

) ≥
m∑
j=1

(
1

n1

n1∑
k=1

log σ1k j − log σ̄2,i

)2

.

As a result, due to equation (15.67) that leads to

n1∑
k=1

log σ1k j > 0,− log σ̄2,i > 0,− log σ1i j < 0,

it turns out

d2
(
P1g, P2i

) ≥
m∑
j=1

(
1

n1

n1∑
k=1

log σ1k j − log σ̄2,i

)2

>

m∑
j=1

(
1

n1

n1∑
k=1

log σ1k j

)2

>

m∑
j=1

(
1

n1

n1∑
k=1

log σ1k j − log σ1q j

)2

= Jth,1. (15.68)

The inequality (15.62) tells us, any point inC2 will be correctly clustered toC2 using
the detection scheme introduced in the previous sub-sections.

We now extend this result to the convex sets of the clusters C1 and C2 defined by

P1g =

⎧⎪⎪⎨
⎪⎪⎩

P1g : ∀wı́ ≥ 0, i = 1, · · · , n1,
n1∑
i=1

wi = 1,

P1g = argminP

n1∑
i=1

wi d2(P1i , P), P1i ∈ C1

⎫⎪⎪⎬
⎪⎪⎭

,

P2g =

⎧⎪⎪⎨
⎪⎪⎩

P2g : ∀wı́ ≥ 0, i = 1, · · · , n2,
n2∑
i=1

wi = 1,

P2g = argminP

n2∑
i=1

wi d2(P2i , P), P2i ∈ C2

⎫⎪⎪⎬
⎪⎪⎭

.

Using the results achieved in Example 1 yields
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P1g =

⎧⎪⎪⎨
⎪⎪⎩

P1g = UT
1 diag

(
· · · ,

n1∏
i=1

σ
wi
1i j , · · ·

)
U1 :

∀wı́ ≥ 0, i = 1, · · · , n1,
n1∑
i=1

wi = 1

⎫⎪⎪⎬
⎪⎪⎭

,

P2g =

⎧⎪⎪⎨
⎪⎪⎩

P2g = UT
2 diag

(
· · · ,

n2∏
i=1

σ
βi
2i j , · · ·

)
U2 :

∀βı́ ≥ 0, i = 1, · · · , n2,
n2∑
i=1

βi = 1

⎫⎪⎪⎬
⎪⎪⎭

.

We now check the distance of a point P2g ∈ P2g to the sub-manifoldP1g, as given in
Definition 15.1. To this end, consider the distance between any two P1g ∈ P1g and
P2g ∈ P2g :

d2
(
P1g, P2g

) =
∥∥∥log P1/2

1g P−1
2g P1/2

1g

∥∥∥2
F

=
∥∥∥∥∥∥log P1/2

1g UT
2 diag

(
· · · ,

n2∏
i=1

σ
βi
2i j , · · ·

)−1

U2P
1/2
1g

∥∥∥∥∥∥
2

F

.

Let

γ = max

{
n2∏
i=1

σ
βi

2i1, · · · ,

n2∏
i=1

σ
βi

2im

}
.

It yields

d2
(
P1g, P2g

) ≥ ∥∥log P1g/γ
∥∥2
F

=
m∑
j=1

(
log

n1∏
i=1

σ
wi
1i j − log γ

)2

.

Recall that

∀i ∈ {1, · · · , n1} , j ∈ {1, · · · ,m} , σ1i j > 1 =⇒
n1∏
i=1

σ
wi
1i j > 1,

∀i ∈ {1, · · · , n2} , j ∈ {1, · · · ,m} , σ2i j < 1 =⇒ γ < 1 =⇒

d2
(
P1g, P2g

) ≥
m∑
j=1

(
log

n1∏
i=1

σ
wi
1i j − log γ

)2

> 0. (15.69)

Since inequality (15.69) is true for any point in P1g, it can be concluded that

d
(
P2g,P1g

) = min
P1g∈P1g

d
(
P2g, P1g

)
> 0.

This demonstrates a clear and unique clustering, as expected.
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Example 3Our third example deals with an application of the proposed Riemannian
distance based fault detection schemes to performance monitoring of dynamic feed-
back control systems. In Chaps. 21 and 22, issues of performance monitoring and
degradation detection for dynamic systems are addressed and numerous algorithms
are proposed. Roughly speaking, the core of these schemes is the prediction and
computation of the cost function

J (i) =
∞∑
k=i

(
yT (k)Qy y(k) + uT (k)Quu(k)

)
, Qy ≥ 0, Qu > 0,

using the online process data. On the assumption of a state feedback controller
u(k) = Fx(k), the value of J (i) can be expressed by

J (i) = xT (i)Px(i).

Here, x(i) is the vector of the process state variables and P is an SPD matrix and
identified using process data (the reader is referred to Chaps. 21 and 22 for different
forms of the algorithms and solutions). The idea behind these schemes is utilisation
of the fact that changes in the system dynamics will cause changes in P matrix and
so in turn in J (i). As well-known in control theory, SPD matrix P is in fact the
solution of Lyapunov equation

P = AT
F P AF + Q, AF = A + BF, (15.70)

for discrete-time LTI systems or

AT
F P + PAF = −Q. (15.71)

for continous-time systems. Here, it is assumed that the system under consideration
has the minimal realisation (A, B,C) with A representing the system matrix, and
Q > 0 is often a function of B or C.

The following known results motivate us to apply Riemannian metric of P as a
detection evaluation function to detect performance degradation:

• as a solution of Lyapunov equation, P can be expressed either by

P =
∞∑
k=i

(
Ak
F

)T
QAk

F

for Lyapunov equation (15.70) or by

P =
∞∫
t0

eA
T
F τ QeAF τdτ
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for Lyapunov equation (15.71),
• the system matrix AF can be parameterised by P

AF = P−1/2U (P − Q)1/2

for discrete-time LTI systems or

AT
F = −1

2
QP−1 + V P−1

for continous-time systems, where U, V are unitary and skey-symmetric matrix,
respectively.

In other words, changes in P do reflect variations in the system dynamics.
For the performance-based detection purpose, we propose the following two

schemes:

• data-driven scheme:

– collect process data under different operation conditions;
– identify Pi,i = 1, · · · , N , using the algorithms given in Chaps. 21 and 22;
– realise performance-based fault detection or isolation or clustering on the basis
of Pi,i = 1, · · · , N , using the algorithms proposed in this section.

• model-based detection scheme:

– generate N random samples using RA on the basis of the (system) uncertainty
model (see Chap. 17);

– compute the corresponding Pi,i = 1, · · · , N ;
– determine Pg and the threshold, for instance, using Algorithm 15.4;
– For online detection: (i) identify P (see the algorithms given in Chaps. 21 and
22), and (ii) compute the Riemannian distance between P and Pg, and run
detection logic.

15.5 Notes and References

χ2- or T 2-test statistics are commonly adopted in dealing with fault detection issues,
both in the research and practical application domains. The mostly convincing argu-
ment for their popular use is their simple computation form that is parameterised by
the mean and covariance matrix of the measurement variables under consideration.
In other words, once the mean and covariance matrix are determined (or estimated),
the computation of χ2- or T 2-test statistics is straightforward. From the statistical
point of view, χ2- and T 2-test statistics are the Mahalanobis distance that can be
used as a dissimilarity measure between two random vectors of the same distribution
with the identical covariance matrix. Initially, the Mahalanobis distance is used for
checking the deviation of a measurement point (data) from the given mean (center)
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[1]. Applying it for fault detection, the associated test statistics can be interpreted as
the dissimilarity measure between the fault-free and the faulty operations.

Our work in this chapter on the alternatives to χ2- and T 2-test statistics is initially
an answer to the question arising from the use of χ2- and T 2-test statistics: how to
deal with the case that the mean and covariance matrix are varying and corrupted
with uncertainties. Our ambition for an optimal fault detection drives us, on the other
hand, to present a general (alternative) solution for optimally detecting faults which
may cause changes in any parameter of a distribution rather than in mean only, for
which χ2- and T 2-test statistics knowingly provide the best solution.

Our work consists of two parts. The first part is dedicated to the general solution
for optimal fault detection. Motivated by the Neyman-Pearson Lemma, we propose
to apply the GLR method and maximal likelihood ratio (MLR) for building the
test statistic, which would lead to the optimal fault detection performance in the
sense of maximising the fault detectability when false alarm rate is limited to an
acceptable level. Two major problems we have to face by the implementation of the
GLR algorithm are

• MLE of the parameters in the faulty distribution (using the online measurement
data) and

• the threshold setting.

The first one is an optimisation problem for which extensive results can be found
in the literature. In case of normal distribution the MLE of the mean (vector) and
covariancematrix arewell-known, as demonstrated in our example study. The second
problem is the difficulty with the probability computation based on the MLR, which
is necessary for the determination of the threshold, even if the PDFs of the fault-free
and faulty distributions are known. As a solution, we propose to use the so-called RA-
technique to determine the threshold. The RA-technique and its application to fault
detection and diagnosis including threshold settings are the topics to be addressed
in the next part (Chaps. 16–18). For instance, Algorithm 18.1 presented in Chap.18
can be applied for the purpose of threshold setting.

The Kullback-Leibler divergence is a well-known dissimilarity measure between
two distributions [2]. Inspired by the idea of formulating fault detection problems
as checking the dissimilarity between two distributions, KL divergence has been
adopted as a test statistic and applied in the fault detection and diagnosis research
recently [3–6]. In our work, we have given an empirical algorithm for the application
of KL divergence for fault detection, in which the threshold setting can be realised
in a data-driven fashion or by using the RA-technique. It is remarkable that we
have proposed to adopt the KL divergence from the fault-free distribution to the
faulty distribution as the test statistic, different from the existing works. Due to the
asymmetry of KL divergence, it is known that the KL divergence from fault-free
distribution to the faulty distribution is generally different from the one from the
faulty distribution to the fault-free distribution. Motivated by this observation, the
relationships between the GLR and KL divergence based test statistics and fault
detection schemes are investigated. This work is performed along the line in the
study by Eguchi and Copas [7]. Eguchi and Copas have demonstrated that



15.5 Notes and References 463

• KL divergence is indeed the expectation of the GLR and
• the empirical realisations of the KL divergence and the GLR are, up to a constant,
equivalent.

Under consideration that the GLR based fault detection scheme results in, according
toNeyman-PearsonLemma, optimal fault detectability, the results of this study reveal
that the KL divergence from the fault-free distribution to the faulty distribution is a
more reasonable and convincing test statistic.

The last topic in the first part of our study is the asymptotic behaviour of the KL
divergence and the GLR based test statistics. It is the common results in statistics [8,
9] that

• the MLE of parameters converges (in probability) to their true value of the distri-
bution, from which the samples are generated, and

• the estimation error multiplied by
√
n converges to zero-mean normal distribution

with the inverse of the fisher information matrix [10] as covariance, where n is the
number of the i. i. d. samples.

Based on these results, it can be proved that

• KL divergence and MLR as test statistics can be well approximated, by sufficient
large number of samples, by χ2 distribution with the degrees of freedom equal to
the number of the (estimated) parameters, and

• this approximation is of high accuracy in case of incipient faults.

It is verified again that the KL divergence from the fault-free distribution to the faulty
distribution should be adopted for the fault detection purpose.

The Hoeffding’s inequality given in Lemma 15.1 is a well-known result in statis-
tics, see, for instance, [11].

The second part of our study consists in the effort to find data evaluation functions
and the associated fault detection schemes aiming at efficiently dealing with possible
variations or uncertainties in the process variables under consideration. Also, no
assumption on the statistical distributions of the process variables should be made
in this investigation. That is, we are seeking for a data evaluation function as an
alternative to the existing test statistics. Moreover, the data should be presented in a
format so that there is no information loss. As a proper data format we have decided
to adopt the empirical second moment of the measurement data given by

Y = [ y (1) · · · y (l)
] ∈ Rm×l , P = 1

l
YY T ∈ Rm×m, l >> m.

It is worth mentioning that industrial data are often collected batchwise. Hence, ma-
trix P is a natural format without involved data pre-processing. Note that different
from the existing test statistics and the associated fault detection schemes, in which
normal process models (distributions) and variations are handled separately, matrix
P includes all information about normal operations, faults, unexpected variations
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and uncertainties. It is our intention to distinguish normal operations with uncertain-
ties and faulty operations in terms of changes in P matrix. To this end, a powerful
(mathematical) tool is needed. On the assumption that P is positive-definite, the
collected data in the SPD format form a m(m+1)

2 dimensional manifold P (m) . This
allows us to apply the existing differential-geometric methods, rather than MVA,
as a tool for our problem solutions. For our purpose, we have first introduced very
basic differential-geometric properties of P (m) as a Riemannian manifold as well
as some relevant concepts and methods in Sub-section 15.4.1. The reader is referred
to [12, 13] for essential knowledge of differential-geometric methods and Rieman-
nian manifolds. All definitions and relations of the tangent space, geodesic curves,
exponential and logarithmic maps as well as Riemannian distance in P (m) can be
found in [14–16]. The definition (15.37) in Remark 15.3 is given in [17]. The def-
inition of geometric mean and the existence condition given in Theorem 15.1 play
a central role in developing fault detection schemes. We refer the reader to [14, 15]
for the detailed description and the associated algorithm for the computation of the
geometric mean. The proof of Theorem 15.1 can be found in [14].

In two steps, the mathematical results on Riemannian manifoldP (m) are applied
to dealing with fault detection issues. In the first step, a basic fault detection scheme
is proposed in Sub-section 15.4.2, whose core is the use of the Riemannian distance
between the geometricmean of the (collected) data sets and a point (data set) inP (m)

as the evaluation function. A modified version of this algorithm by concentrating the
data is given in Algorithm 15.5. Following the idea proposed by Fletcher [18] to
model the data points (sets) in a Riemannian manifold using geodesic regression, the
basic fault detection scheme is extended, in which the tangent vector is multiplied
by a measurement variable. In this way, we are able to model variations caused by
the changes in the operations in terms of the tangent vector together with the (scalar)
variable representing the operation condition. This allows us to build an evaluation
function as a function of the operation conditions. For the realisation of the relevant
computations, the reader is, for instance, referred to [19].

In order to deal with typicalmultimode operations of industrial processes, we have
studied, in the second step, clustering on Riemannianmanifolds and its application to
fault detection and diagnosis. To this end, the standard k-means clustering algorithm
[20] is applied with the modification that the Euclidean distance is substituted by
the Riemannian distance, and presented as Algorithm 15.7. Considering that some
clusters may be sparse with their support points, the convex model recently proposed
by Zhao et al. [21] is adopted. The convex model can be interpreted as multivariate
interpolations based on the support points and thus used for modelling the operations
represented by the clusters. In order to gain insight into the interpolation on the
Riemannian manifold P (m) and its re-formulation as a weighted mean problem, we
have studied a special case with two support points in a cluster. Lemma 15.2 is a
result given in [14] and the result in Lemma 15.3 is a part of the proof of Theorem
15.1 given by [14] as well. At the end of our work, we have introduced the definitions
of the distance from a point to a sub-manifold on the Riemannian manifold P (m) as
well as the distance between two sub-manifolds on the Riemannian manifoldP (m) .

These two definitions as well as the iterative algorithm for the computation of the
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distance between two sub-manifolds are inspired by the definitions related to the
divergences from a point or from a sub-manifold to a sub-manifold as well as their
computations introduced by Amari in [13]. These definitions and their computations
are essential for clustering based fault detection and diagnosis.

At the end of this chapter, we have presented three examples. While the first two
examples serve for illustrating the theoretical results and fault detection schemes
in the regard of the Riemannian manifold P (m) , the third example deals with an
application of the proposed Riemannian distance based fault detection schemes to
achieving performance monitoring in control systems, both in the data-driven and
model-based fashions. To our best knowledge, no research result has been reported
on this topic. It can be expected that sophisticated investigations on Riemannian dis-
tance based fault detection would make valuable contributions to the fault diagnosis
technique for dynamic systems.
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Chapter 16
Probabilistic Models and Randomised
Algorithms

16.1 Motivation

In the previous chapters, we have introduced numerous fault detection and diagnosis
methods. In fact, there are a huge number of fault diagnosis methods published in
the recent decade. This rapid development and the amazingly increasing number of
publications provide us with rich theoretical solutions for most fault diagnosis issues.
On the other hand, engineers and researchers may have the similar experience that
it is often a hard work to find a right one among a great number of available fault
diagnosis methods, whenwe are facing a practical fault detection case. The following
two reasons, among numerous possible ones, may call our attention:

• only few approaches are dedicated to the design of fault diagnosis systems on
practical demands for such systems,

• although most of existing design approaches should contain certain novelty in
designing a fault diagnosis system, a direct comparison of these or some of these
approaches seems difficult.

In industrial applications, performance of a fault diagnosis system is generally mea-
sured/quantified by false alarm rate (FAR), fault detection rate (FDR) ormean time to
fault detection (MT2FD), as suggested by industrial recommendations, regulations
and guidelines. This aspect has been described in Chap.2, and also in many mono-
graphs on fault diagnosis. Unfortunately, only few research efforts to integrate such
performance criteria into the fault diagnosis system design have been reported, in
particular in case of dealing with model- and observer-based fault diagnosis design
methods.

Benchmark (case) study is a popular way of comparing different fault diagnosis
methods. For instance, Tennessee Eastman Process (TEP) is a mostly used bench-
mark process for comparison studies on data-driven fault diagnosis methods. Due to
the limitation of simulation capacity and data amount, inmost TEP-based benchmark
studies the FAR and FDR computations have been realised on certain assumptions

© Springer-Verlag GmbH Germany, part of Springer Nature 2021
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and based on approximation. In general, results from a benchmark study are, al-
though useful and valuable, less representative in the statistical sense, often due to
the technical specifications of the benchmark process under consideration.

False alarms are caused by uncertainties like disturbances, parameter varia-
tions etc. within and around the process under supervision, while fault detectability
strongly depends on the size, form or the energy level of the faults to be detected.
Viewing from this aspect, it is reasonable to study FAR, FDR and MT2FD issues in
the probabilistic framework, since both uncertainties and faults are in their nature
random variables.

Motivated by the above observations and considerations, in this part we try to
establish a probabilistic framework to deal with assessment and design issues of
fault diagnosis systems. This framework will consist of three functional levels:

I. probabilistic models for faults and uncertainties, which will be introduced in this
chapter,

II. performance assessment of fault diagnosis systems in terms of FAR, FDR and
MT2FD as well as the associated computation algorithms. These issues will be
addressed in Chap.17, and

III. design of fault diagnosis systems in the context of trade-off between FAR and
FDR. This topic will be handled in the last chapter of this part.

The fundament for our work is probabilistic methods, which have been successfully
applied to the analysis and design of robust control systems. With the help of the
technique for generating random samples, control performance of uncertain systems
can be evaluated in the context of probability or expectation value which are esti-
mated using the generated random samples. Such algorithms are called randomised
algorithms (RA). They will also be adopted in our work and introduced at the end of
this chapter.

16.2 Probabilistic Models for Uncertain Systems

The objective of introducing probabilistic models is to deal with uncertainties in
system models in a probabilistic framework. In order to model different types of
uncertainties, including parameter variations, disturbances as well as their combina-
tions, we introduce three different model forms. They are

• probabilistic parameter model (PPM),
• probabilistic time function parameter model (PTFPM) and
• probabilistic uncertainty mode model (PUMM).
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16.2.1 Probabilistic Parameter Model

A PPM describes the random (uncertain) behaviour of the parameters of a process
model under consideration. Let θi be a parameter vector or matrix of a process model
and write it as

θi = θio + ΔPiΔθi , (16.1)

where θio is known and constant, represents the nominal operation value and is the
mean of θi ,Δθi ∈ [

Δθi,−,Δθi,+
]
is a randomvariable (vector ormatrix) representing

possible variations of the parameter around itsmean. It is assumed that the distribution
of Δθi is known. ΔPi is a known constant matrix. As a result, the distribution of θi
is known as well.

Example 16.1 The probabilistic model adopted in the PPCA method, which is in-
troduced in Sub-section 3.5.4,

y = Ex + ε ∈ Rm, x ∈ Rn, rank (E) = n,m > n,

ε ∼ N (0, σ 2
ε I ), x ∼ N (0, I ),

is an example of the PPM in (16.1). In the above model, Ex can be viewed as the
(vector-valued) mean of y,which has a nominal value θo = 0, and random variation
is described by

ΔPΔθ = Ex ∼ N (0, EET ).

Example 16.2 Another example is the so-called polytopic type uncertainty widely
used in the robust control research. Consider the process model

x(k + 1) = Ax(k) + Bu(k), y(k) = Cx(k) + Du(k), (16.2)
[
A B
C D

]
=

[
Ao Bo

Co Do

]
+

ξ∑

i=1

Δθi

[
Ai Bi

Ci Di

]
.

The system matrices A, B,C, D are of appropriate dimensions with Ao, Bo, Co, Do

denoting the known nominal system matrices. The matrix

Δ =
ξ∑

i=1

Δθi

[
Ai Bi

Ci Di

]

represents the polytopic uncertainty, which can be viewed as a special case of the
PPM with

θo =
[
Ao Bo

Co Do

]
,ΔPi =

[
Ai Bi

Ci Di

]
.
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16.2.2 Probabilistic Time Function Parameter Model

Uncertainties could be caused by manufacturing error of a system component or by
linearisation error of a nonlinear function around an operating point, or by distur-
bances and noises. In case that they are time functions, we introduce the PTFPM
to describe the random behaviour in the parameters of such time functions. In our
work, we only consider l2-bounded functions. Let

φi (k, θi ) ∈ H2, i ∈ {1, 2, · · · } . (16.3)

θi is the parameter (vector) of the time function. It is assumed that θi is a random
variable whose distribution is known and θi ∈ [

θi,−, θi,+
]
.

Example 16.3 The most popular forms of such time functions are

off-set function: φi (k, θi ) = θiσT (k),

ramp function: φ j
(
k, θ j

) = θ j kσT (k),

exponential function: φl (k, θl) = θl,1e
θl,2kσT (k), θl =

[
θl,1
θl,2

]
,

σT (k) =
{
1, 0 ≤ k ≤ T,

0, otherwise,

or their combinations.

We denote the set of all parameters of the probabilistic parameter models, PPM and
PTFPM, for uncertainties by Θ.

A key step in a randomised algorithm is the generation of random samples ac-
cording to a given distribution. It is known that distributions of the random variables
may remarkably influence the final result returned by the applied RA. In order to
establish a common basis for a fair performance assessment, it is necessary to find
a “most random” distribution. In information theory, this is the maximum entropy
problem. It is well known that the uniform distribution on the interval [a, b] is the
maximum entropy distribution among all distributions which are supported in the
interval [a, b]. Also, studies have demonstrated that uniform distribution can be ap-
plied in the robustness analysis if, in the worst-case, no distribution knowledge is
available. In considering these arguments, we assume that all random parameters
defined in PPM and PTFPM are uniformly distributed. It should be pointed out that
any other distributions can be used for generating random samples when they are
known.
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16.2.3 Probabilistic Uncertainty Mode Model

Motivated by the fact that different types of model uncertainties and unknown inputs
may be present in the system in different combinations, we introduce M uncertainty
modes Θi , i = 1, · · · , M,

Θi = {θi in PPM (16.1), i = 1, · · · , l} ∪ {θi in PTFPM (16.2), i = 1, · · · , κ}
= :

{
θ

(i)
j ∈ Θ, j = 1, · · · , αi

}
(16.4)

representing different combinations of the model uncertainties and unknown inputs,
and call them PUMM. In our subsequent study, we denote the support and PDF of
θ

(i)
j by D

θ
(i)
j
and Di, j , respectively.

We assume that process knowledge is available about the present frequency of
each uncertaintymode during process operation and express it in terms of a (discrete)
random variable Θ with M values, Θ1, · · · ,ΘM , and its probabilistic mass function
(PMF),

Pr (Θ = Θi ) , i = 1, · · · , M, (16.5)

is thus known. Note that for M = 1, we have

Θ = Θ1,Pr (Θ = Θ1) = 1.

This is the situation that all possible model uncertainties and unknown inputs are
present in the process simultaneously, a popular way of today’s handling of uncer-
tainties and disturbances.

16.3 Probabilistic Fault and Evaluation Function Models

16.3.1 Probabilistic Fault Models

In practice, faults are present in a process either in additive or in multiplicative form.
In general, the emergence of a fault is a dynamic process. The emergence rate, the size
of the fault or its form and direction (distribution) could be random, depending on
the operation conditions and relevant process components. Under this consideration,
we model each fault, analogue to the PTFPM, by

fi
(
k, θ fi

) ∈ H2, i ∈ {1, · · · , } . (16.6)

Here, θ fi is the parameter (vector) of the time function, which is a random variable
with a known distribution. The most reasonable form for such a time function is
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fi
(
k, θ fi

) = θ fi ,1
(
1 − eθ fi ,2k

)
σT (k), θ fi =

[
θ fi ,1

θ fi ,2

]
,

where θ fi ,1 indicates the size (and direction, when fi
(
k, θ fi

)
is vector-valued), while

θ fi ,2 determines the emergence rate. We denote the set of all parameters of the prob-
abilistic fault model (16.6) by Θ f .

It is natural that faults may be present in a process in different fault patterns which
can be modelled as combinations of the probabilistic fault functions given in (16.6).
We suppose, there are K fault patterns, Θ f,i , i = 1, · · · , K , representing possible
simultaneous combinations

Θ f,i = {
θ f j , θ f j in model (16.6), j ∈ {1, · · · , }}

= :
{
θ

(i)
f j

∈ Θ f , j = 1, · · · , βi

}
, (16.7)

and the support and PDF of θ
(i)
f j

are denoted by D
θ

(i)
f j
and D f j ,i , respectively.

For our purpose of addressing different fault patterns, we assume Θ f ={
Θ f,1, · · · ,Θ f,K

}
is a (discrete) random variable, and the probability of a fault

in pattern Θ f,i , i = 1, · · · , K , is known and denoted by

Pr
(
Θ f = Θ f,i

)
, i = 1, · · · , K .

It is worth remarking that the determination of Pr
(
Θ f = Θ f,i

)
requires a prior

knowledge of e.g. failure rates of components embedded in the system like sensors,
actuators etc. In fact, an intelligent maintenance system would deliver such infor-
mation. In case that no knowledge is available, it can be, according to the maximum
entropy principle, assumed that

Pr
(
Θ f = Θ f,i

) = 1/K .

To support our subsequent study, the major notations introduced above are sum-
marised in the following table (Table16.1).

Table 16.1 Notations adopted in the probabilistic models

Θ,Θ f Parameter sets of the probabilistic models

Θi ,Θ f,i Uncertainty mode and fault pattern

θ
(i)
j , θ

(i)
f j

The j-th parameter in Θi ,Θ f,i

αi , βi No. of the parameters in Θi ,Θ f,i

D
θ

(i)
j

,D
θ

(i)
f j

Supports of θ
(i)
j and θ

(i)
f j

Di, j , D f j ,i PDFs of θ
(i)
j and θ

(i)
f j
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16.3.2 Probabilistic Models of Test Statistics and Evaluation
Functions

Let J denote a test statistic or a residual evaluation function. It is clear that J is also
a function of the uncertainties and faults in the process under monitoring. It follows
from the probabilistic models of systems with uncertainties and faults that J can also
be modelled as

J = J (Θ) (16.8)

during fault-free operations and

J = J (
Θ,Θ f

)
(16.9)

in the faulty case. As a function of random variables Θ,Θ f , J is a random variable
as well. In fact, the definitions and computations of FAR, FDR and MDR will be
introduced based on the models (16.8) and (16.9).

16.4 Preliminaries of Randomised Algorithms

Recalling the definitions of FAR, FDR and MDR given in Chap. 2 makes it clear
that the core of their computations consists in the determination of the probability
that J > Jth under certain (fault) conditions. This problem is similar to the RA-
based probabilistic performance verification studied in robust control, see for instance
the references given at the end of this chapter. Schematically, the problem to be
addressed can be formulated in two different forms: Given a performance function
J (x), random variable x with the known density D(x) and support Dx ,

• finding an estimate p̂(γ ) for the probability

p(γ ) = Pr (J (x) ≤ γ ) ,

which should satisfy

∣∣p(γ ) − p̂(γ )
∣∣ < ε or p(γ ) < p̂(γ ) + ε (16.10)

with probability at least 1 − δ,

• finding an estimate γ̂max of themaximumvalueof J (x), satisfying,with probability
greater than 1 − δ,

p(γ̂max) = Pr
(
J (x) ≤ γ̂max

) ≥ 1 − ε, (16.11)

where ε ∈ (0, 1) is the given accuracy requirement and 1 − δ the confidence level
with δ ∈ (0, 1).
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In the RA framework, the estimate p̂(γ ) will be computed using N random
samples of x .Below are some elemental results for the RA-based estimation of p(γ )

and the determination of the needed sample number N given in the monograph by
Tempo et al.

Given random variable x with known PDF D(x) and support Dx , it holds

p(γ ) = Pr (J (x) ≤ γ ) =
∫

Dγ

D(x)dx,

Dγ = {x ∈ Dx : J (x) ≤ γ } ⊂ Dx .

For the estimation of p(γ ), N i.i.d. random samples, x (1), · · · , x (N ) ⊂ Dx , are first
generated, and correspondingly J

(
x (i)

)
, i = 1, · · · N , are calculated. An estimate

for p(γ ) is then given by

p̂(γ ) = 1

N

N∑

i=1

IDγ

(
x (i)

)
, IDγ

(
x (i)

) =
{
1, if x (i) ∈ Dγ ,

0, otherwise.
(16.12)

It is evident that the accuracy and reliability of estimate p̂(γ ) depend on the sample
number N . In the following theorems, some results on the determination of N are
summarised.

Theorem 16.1 (Hoeffding’s inequality) Let xi ∈ [ai , bi ] , i = 1, · · · , N , be inde-
pendent bounded random variables. For any ε > 0, it holds

Pr

(
N∑

i=1

xi − E
(

N∑

i=1

xi

)

≥ ε

)

≤ e

− 2ε2

N∑

i=1
(bi−ai )

2

, (16.13)

Pr

(
N∑

i=1

xi − E
(

N∑

i=1

xi

)

≤ −ε

)

≤ e

− 2ε2

N∑

i=1
(bi−ai )

2

. (16.14)

It is straightforward that, for [ai , bi ] = [0, 1], we have

• two-sided Chernoff bound

N ≥ 1

2ε2
log

2

δ
=⇒ Pr

(∣∣p(γ ) − p̂(γ )
∣∣ < ε

)
> 1 − δ, (16.15)

• one-sided Chernoff bound

N ≥ 1

2ε2
log

1

δ
=⇒ Pr

(
p(γ ) < p̂(γ ) + ε

)
> 1 − δ, (16.16)

where p̂(γ ) is the random variable defined in (16.12).
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Theorem 16.2 For any ε ∈ (0, 1), δ ∈ (0, 1), if

N ≥ log 1
δ

log 1
1−ε

, (16.17)

then, with probability greater than 1 − δ, we have

Pr
(
J (x) ≤ γ̂N

) ≥ 1 − ε, γ̂N = max
i=1,··· ,N J

(
x (i)

)
, (16.18)

where J (x) is a cost function with random variable x, and x (i), i = 1, · · · , N , are
N i.i.d. samples of x generated according to its PDF, D(x), with support Dx .

16.5 Notes and References

The objective of this part is to establish a probabilistic framework for the performance
analysis, assessment and design of fault detection systems. Although in many indus-
trial sectors like aerospace, automotive and process industries it is recommended to
assess fault diagnosis performance in the probabilistic context [1–4], few attention
is paid to this issue in the research domain, in particular in the model-based thematic
field.

Today’s commonway to demonstrate the application performance of a fault detec-
tionmethod or system is to perform a benchmark (case) study and to use the achieved
results as an assessment of the fault diagnosis performance. Tennessee Eastman Pro-
cess [5, 6] is a mostly used benchmark process for such studies. On the other hand,
it is clear that such benchmark studies are less representative in the statistical sense,
even though the TE benchmark platform is well-established.

As the first step towards the probabilistic framework, we have introduced, in this
chapter, diverse probabilistic models for uncertainties and faults. They build the basis
level of the probabilistic framework and allow us to have a fair assessment of fault
diagnosis performance using the concepts like FAR, FDR and MT2FD. Note that
the probabilistic models presented in this work can be divided into two levels: (i) the
functional and parameter (lower) level, and (ii) the mode and pattern (higher) level.

In the second part of this chapter, we have briefly introduced randomised algo-
rithms, a probabilistic method, which has been successfully applied to the analysis
and design of robust control systems [7–9]. The basic idea behind this application
is the randomisation of uncertainties in the control system under consideration and,
based on it, the estimation of system performance. Analogue to it, we will apply the
RA-method to the computation of FAR, FDR and MT2FD and further to the design
of fault detection systems.



478 16 Probabilistic Models and Randomised Algorithms

The brief introduction to the essentials of the RA-method in Sect. 16.4 can be
found in the monograph by Tempo et al. [9]. Theorems 16.1–16.2 are well-known
and can be found, for instance, in [9] as well. We refer the reader to [7–9] for more
details and advanced study on this topic.
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Chapter 17
Assessment of Fault Detection
Performance and Computation
Algorithms

In Chap.2, definitions of the important indicators for fault detection performance
like FAR and FDR have been introduced. They will be re-viewed in this chapter in
the context of the probabilistic models presented in the last chapter. On this basis,
RA-aided computation algorithms will be investigated. Moreover, we will also study
the definition and computation of MT2FD.

17.1 False Alarm Rate and RA-aided Assessment

A false alarm is triggered by uncertainties in the process under monitoring. Consider-
ing the probabilistic model (16.8) for test statistics and residual evaluation functions,
the condition for a false alarm is

J (Θ) > Jth,Θ f = O,

under the use of the detection logic

{J (Θ) > Jth =⇒ faulty,
J (Θ) ≤ Jth =⇒ fault-free.

(17.1)

Here,Θ f = O is the notation for fault-free operations. On the other hand, according
to the probabilistic models, the uncertainties can be present in the process in different
modes. Under this consideration, we introduce below two definitions for FAR.

Definition 17.1 Given a fault detection system with evaluation function (or test
statistic) J (Θ) , threshold Jth and detection logic (17.1), we call the conditional
probability

pF AR(Θi ) := Pr(J (Θ) > Jth |Θ = Θi )
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false alarm rate (FAR) with respect to (w.r.t.) uncertainty mode Θi , and the marginal
probability

pF AR(Θ) =
M∑

i=1

pF AR(Θi )Pr (Θ = Θi )

average false alarm rate (AFAR).

Next,we study theFARcomputation issues.Note that the support andPDFofΘi ,DΘi

and DΘi , are

DΘi = D
θ

(i)
1

∪ · · · ∪ D
θ

(i)
αi

, DΘi (θ) =
αi∏

j=1

Di, j (θ) .

For our purpose, let

DF A(Θi ) = {
θ, θ ∈ DΘi ,J (Θi ) > Jth

} ⊂ DΘi

be the parameter set of those uncertainties which trigger false alarms. As a result, it
holds

pF AR(Θi ) =
∫

DF A(Θi )

DΘi (θ)dθ. (17.2)

Now, applying the RA-based estimation of a probability given in Sub-section 16.4,
the FAR w.r.t. uncertainty mode Θi can be estimated as follows

p̂F AR(Θi ) = 1

N

N∑
j=1

IDF A

(
θ

(i)
j |Θi

)
, (17.3)

IDF A

(
θ

(i)
j |Θi

)
=

{
1, if θ

(i)
j ∈ DF A(Θi ),

0, otherwise,
(17.4)

where θ
(i)
j , j = 1, · · · , N , are i.i.d. random samples generated from DΘi according

to the known PDF DΘi (θ) . It follows from the two-sided Chernoff bound ( 16.15)
given in Theorem 16.1, the number of the samples is set to be

N ≥ 1

2ε2
log

2

δ
,

for given ε, δ, to ensure that

Pr
(∣∣ p̂F AR(Θi ) − pF AR(Θi )

∣∣ < ε
)

> 1 − δ. (17.5)

The following algorithm is the realisation of p̂F AR(Θi ) given in (17.3).
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Algorithm 17.1 FAR estimation w.r.t. uncertainty mode Θi : Given ε ∈ (0, 1), δ ∈
(0, 1),

• Set integer N ≥ 1
2ε2 log

2
δ
;

• Generate N samples θ
(i)
j , j = 1, · · · , N , according to DΘi (θ) ;

• Set n = 0;
• For j = 1 to N

– Compute J
(
θ

(i)
j

)
(by means of simulation)

– If

J
(
θ

(i)
j

)
> Jth,

set
n = n + 1;

• End for
• Return

p̂F AR(Θi ) = n

N
.

Note that setting

p̂F AR(Θ) =
M∑

i=1

p̂F AR(Θi )Pr (Θ = Θi )

yields

p̂F AR(Θ) − pF AR(Θ) =
M∑

i=1

(
p̂F AR(Θi ) − pF AR(Θi )

)
Pr (Θ = Θi ) =⇒

∣∣ p̂F AR(Θ) − pF AR(Θ)
∣∣ ≤

M∑
i=1

∣∣ p̂F AR(Θi ) − pF AR(Θi )
∣∣ Pr (Θ = Θi ) .

Hence,

∣∣ p̂F AR(Θi ) − pF AR(Θi )
∣∣ < ε =⇒

M∑
i=1

∣∣ p̂F AR(Θi ) − pF AR(Θi )
∣∣ Pr (Θ = Θi ) < ε

M∑
i=1

Pr (Θ = Θi ) = ε =⇒
∣∣ p̂F AR(Θ) − pF AR(Θ)

∣∣ < ε,

which results in

∀i ∈ {1, · · · , M},Pr (∣∣ p̂F AR(Θi ) − pF AR(Θi )
∣∣ < ε

)
> 1 − δ

=⇒ Pr
(∣∣ p̂F AR(Θ) − pF AR(Θ)

∣∣ < ε
)

> 1 − δ. (17.6)
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This suggests, repeated use ofAlgorithm17.1would deliver an estimate p̂F AR(Θ) for
AFAR, which satisfies (17.6). On the other hand, such way of estimating pF AR(Θ)

is less efficient for large M . Instead, we propose to perform the following alternative
algorithm.

Consider that

Pr(J (Θ) > Jth,Θ = Θi ) = Pr(J (Θ) > Jth |Θ = Θi )Pr (Θ = Θi ) .

The probability pF AR(Θ) can be re-written as

pF AR(Θ) =
M∑

i=1

Pr(J (Θ) > Jth,Θ = Θi ).

Therefore, the support and PDF of Θ as the random parameter set,DΘ and DΘ, are

DΘ =
M⋃

i=1

(DΘi ∩ (Θ = Θi )
)
, DΘ (θ) =

M∏
i=1

DΘi (θ)Pr (Θ = Θi ) ,

respectively. Let

DF A(Θ) = {θ, θ ∈ DΘ,J (Θ) > Jth} ⊂ DΘ.

It holds

pF AR(Θ) =
∫

DF A(Θ)

DΘ(θ)dθ. (17.7)

Based on (17.7), an estimate of pF AR(Θ) can be achieved using the following ran-
domised algorithm.

Algorithm 17.2 AFAR estimation: Given ε ∈ (0, 1), δ ∈ (0, 1),

• Set integer N ≥ 1
2ε2 log

2
δ
;

• Generate N samples θ j , j = 1, · · · , N , according to DΘ (θ) ;
• Set n = 0;
• For j = 1 to N

– Compute J
(
θ j

)
(by means of simulation);

– If
J (

θ j
)

> Jth,

set
n = n + 1;

• End for
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• Return
p̂F AR(Θ) = n

N
.

17.2 Fault Detection Rate and RA-aided Assessment

We now study FDR issues in the probabilistic framework using the probabilistic
models for faults. We denote residual evaluation functions or test statistics in the
faulty process operation and without considering model uncertainties by

J = J (
Θ f , k

)
,

as given in the probabilisticmodel (16.9) forΘ = O denoting the (ideal) uncertainty-
free case.Due to the possible delay in detecting a fault and considering the importance
of the time instance, at which the fault is detected, J is explicitly expressed as a time
function. Let k0 be the sampling number at which the fault is present for the first
time. Considering that by fault detectability study, only faulty operations are under
consideration, we assume that k0 = 0 without loss of generality. We call a fault being
detected if the time before the first detection is within an acceptable time limit kstop.
In this context, a fault in pattern Θ f,i is detected if

∃k ∈ [0, kstop], s.t. J (
Θ f,i , k

)
> Jth .

Definition 17.2 Given an FD system with the residual evaluation function or test
statistic J (

Θ f , k
)
, threshold Jth and detection logic (17.1), we call the conditional

probability

pF DR(Θ f,i ) := Pr(J (
Θ f , k

)
> Jth, k ∈ [0, kstop]

∣∣Θ f = Θ f,i )

fault detection rate (FDR) w.r.t. fault pattern Θ f,i , and the marginal probability

pF DR(Θ f ) =
K∑

i=1

pF DR(Θ f,i )Pr
(
Θ f = Θ f,i

)

average fault detection rate (AFDR).

We now address the FDR computation issues in the context of the above definition.
Since the proposed RA-aided algorithms are similar to Algorithms 17.1–17.2 for
the FAR computations, we only briefly describe the major steps without detailed
descriptions. Denote the support and PDF of Θ f,i ,DΘ f,i and DΘ f,i , by

DΘ f,i = D
θ

(i)
f,1

∪ · · · ∪ D
θ

(i)
f,βi

, DΘ f,i =
βi∏

j=1

D f j ,i (θ) ,
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and the parameter set of those detectable faults in pattern Θ f,i by

DF D(Θ f,i ) = {
θ, θ ∈ DΘ f,i ,J

(
Θ f,i , k

)
> Jth

} ⊂ DΘ f,i .

Correspondingly, we propose the RA-based estimations of pF DR(Θ f,i ) and
pF DR(Θ f ) using the randomised algorithms as follows:

p̂F DR(Θ f,i ) = 1

N

N∑
j=1

IDF D

(
θ

(i)
j

∣∣Θ f,i

)
, (17.8)

IDF D

(
θ

(i)
j

∣∣Θ f,i

)
=

{
1, if θ

(i)
j ∈ DF D(Θ f,i ),

0, otherwise,
(17.9)

p̂F DR(Θ f ) =
K∑

i=1

p̂F DR(Θ f,i )Pr
(
Θ f = Θ f,i

)
, (17.10)

where θ
(i)
j , j = 1, · · · , N , are i.i.d. random samples generated fromDΘ f,i according

to the known PDF DΘ f,i and

N ≥ 1

2ε2
log

2

δ

for given ε, δ, which guarantees

Pr
(∣∣ p̂F DR(Θ f,i ) − pF DR(Θ f,i )

∣∣ < ε
)

> 1 − δ, (17.11)

Pr
(∣∣ p̂F DR(Θ f ) − pF DR(Θ f )

∣∣ < ε
)

> 1 − δ. (17.12)

As an example, we propose the following algorithm for the realisation of p̂F DR(Θ f,i )

given in (17.8).

Algorithm 17.3 FDR estimation w.r.t. fault pattern Θ f,i : Given ε ∈ (0, 1), δ ∈
(0, 1),

• Set integer N ≥ 1
2ε2 log

2
δ
;

• Generate N samples θ
(i)
j , j = 1, · · · , N , according to DΘ f,i ;

• Set n = 0;
• For j = 1 to N

– Compute J
(
θ

(i)
j

)
(by means of simulation)

– If

J
(
θ

(i)
j

)
> Jth,

set
n = n + 1;

• End for
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• Return
p̂F DR(Θ f,i ) = n

N
.

17.3 Mean Time to Fault Detection and RA-aided
Assessment

In practice, a process operator is often interested in the time of the first detection of
a fault, which is in general also a random event. For our purpose, we introduce the
concept ofmean time to detection of faults in a certain fault pattern as an indicator for
FDperformance. Recall that not all the faults in patternΘ f,i can be detected. Sincewe
are interested in the detection time for a detectable fault, those undetectable faults are
removed from themean time computation.Wedenote the probability that a detectable
fault of pattern Θ f,i is detected, for the first time, at time instant k ∈ [0, kstop] by
pF D(Θ f,i , k).

Definition 17.3 The expected value

ρ(Θ f,i ) := E (k) =
kstop∑
k=0

k · pF D(Θ f,i , k) (17.13)

is called mean time to fault detection (MT2FD) w.r.t. fault in pattern Θ f,i .

It is clear that for MT2FD estimation we have to compute pF D(Θ f,i , k). Let
p(Θ f,i , k) be the probability that a fault (not necessarily detectable) of pattern Θ f,i

is detected for the first time at time instant k ∈ [0, kstop]. Thus, the probability that
a fault in pattern Θ f,i is detected (in the time interval [0, kstop]), which is also the
FDR w.r.t. pattern Θ f,i , is given by

pF DR(Θ f,i ) =
kstop∑
k=0

p(Θ f,i , k).

Note that

pF D(Θ f,i , k) = p(Θ f,i , k)

pF DR(Θ f,i )
. (17.14)

That means, pF D(Θ f,i , k) can be computed in terms of p(Θ f,i , k), pF DR(Θ f,i ). The
focus of our subsequent study is on estimating p(Θ f,i , k) using the RA technique,
because the estimation/computation of pF DR(Θ f,i ) can be realised using Algorithm
17.3. To this end, we define the support of the random parameters of those faults,
which are detected at k for the first time, by
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DF D,k(Θ f,i ) =
⎧⎨
⎩

{
θ, θ ∈ DΘ f,i ,J

(
Θ f,i , 0

)
> Jth

}
, k = 0,{

θ, θ ∈ DΘ f,i ,J
(
Θ f,i , k

)
> Jth,

J (
Θ f,i , k − j

) ≤ Jth, j = 1, · · · , k,

}
k > 0.

We now propose the following randomised algorithm for estimating MT2FD, whose
performance will be then analysed.

Algorithm 17.4 MT2FD estimation:

• Generate N i.i.d. random samples, θ
(i)
l , l = 1, · · · , N , from DΘ f,i according to

the known PDF DΘ f,i ;
• Set

n(k) = 0, k = 0, · · · , kstop;

• For l = 1 to N

– Set k = 0;
– Compute J

(
θ

(i)
l , k

)
;

– If

J
(
θ

(i)
l , k

)
> Jth,

set
n(k) = n(k) + 1,

otherwise, set
k = k + 1;

– If
k ≤ kstop,

go to Step "Compute J
(
θ

(i)
l , k

)
"

• End for
• Compute

NF D =
kstop∑
k=1

n(k), p̂F D(Θ f,i , k) = n(k)

NF D
;

• Return

ρ̂(Θ f,i ) =
kstop∑
k=1

k · p̂F D(Θ f,i , k).

It is clear that
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n(k) =
N∑

l=1

IDF D,k

(
θ

(i)
l

∣∣Θ f,i

)
,

IDF D,k

(
θ

(i)
l

∣∣Θ f,i

)
=

{
1, if θ

(i)
l ∈ DF D,k(Θ f,i ),

0, otherwise,

NF D =
kstop∑
k=1

N∑
l=1

IDF D,k

(
θ

(i)
l

∣∣Θ f,i

)
.

Note that

p̂(Θ f,i , k) = 1

N

N∑
l=1

IDF D,k

(
θ

(i)
l

∣∣Θ f,i

)
, p̂F DR(Θ f,i ) = NF D

N

are estimates of p(Θ f,i , k), pF DR(Θ f,i ), respectively. As a result, the estimate for
pF D(Θ f,i , k) is given by

p̂F D(Θ f,i , k) = p̂(Θ f,i , k)

p̂F DR(Θ f,i )
= 1

NF D

N∑
l=1

IDF D,k

(
θ

(i)
l

∣∣Θ f,i

)
, (17.15)

and further MT2FD is estimated by

ρ̂(Θ f,i ) =
kstop∑
k=1

k · p̂F D(Θ f,i , k) =
kstop∑
k=1

k

NF D

N∑
l=1

IDF D,k

(
θ

(i)
l

∣∣Θ f,i

)
, (17.16)

which is delivered by the above algorithm.
Next, we determine the necessary number N of the i.i.d. random samples. Note

that ρ(Θ f,i ) is the expectation value of the detection time instant and we are not
able to apply Theorem 16.1 for the determination of N . Instead, considering that
ρ(Θ f,i ) ∈ [0, kstop], it is reasonable to find a lower bound for N so that for given
ε ∈ (0, 1), δ ∈ (0, 1),

Pr

(∣∣ρ(Θ f,i ) − ρ̂(Θ f,i )
∣∣

kstop
< ε

)
> 1 − δ ⇐⇒

Pr
(∣∣ρ(Θ f,i ) − ρ̂(Θ f,i )

∣∣ < kstopε
)

> 1 − δ.

Sinceweonly consider detectable faults, it is reasonable to assume that p̂F DR(Θ f,i ) �=
0. It follows from (17.14) and ( 17.15) that
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pF D(Θ f,i , k) − p̂F D(Θ f,i , k) = pF DR(Θ f,i )

p̂F DR(Θ f,i )
pF D(Θ f,i , k) − p̂F D(Θ f,i , k)

− pF DR(Θ f,i ) − p̂F DR(Θ f,i )

p̂F DR(Θ f,i )
pF D(Θ f,i , k) =⇒

∣∣pF D(Θ f,i , k) − p̂F D(Θ f,i , k)
∣∣ ≤

∣∣∣∣ pF DR(Θ f,i )

p̂F DR(Θ f,i )
pF D(Θ f,i , k) − p̂F D(Θ f,i , k)

∣∣∣∣
+

∣∣∣∣ pF DR(Θ f,i ) − p̂F DR(Θ f,i )

p̂F DR(Θ f,i )
pF D(Θ f,i , k)

∣∣∣∣
≤

∣∣p(Θ f,i , k) − p̂(Θ f,i , k)
∣∣ + ∣∣ p̂F DR(Θ f,i ) − pF DR(Θ f,i )

∣∣
p̂F DR(Θ f,i )

. (17.17)

Recall that according to Theorem 16.1 for

N ≥ 1

2ε2
log

2

δ
,

we have

∣∣p(Θ f,i , k) − p̂(Θ f,i , k)
∣∣ < ε,

∣∣ p̂F DR(Θ f,i ) − pF DR(Θ f,i )
∣∣ < ε

with probability 1 − δ, which results in

∣∣pF D(Θ f,i , k) − p̂F D(Θ f,i , k)
∣∣ ≤ 2ε

p̂F DR(Θ f,i )
=: ε̄(Θ f,i ). (17.18)

Based on (17.18), we are able to prove the following theorem, which provides us
with the rule for the determination of sample number N in relationship with the
estimation accuracy.

Theorem 17.1 Given ρ(Θ f,i ) defined in Definition 17.3, its estimate ρ̂(Θ f,i ) de-
livered by Algorithm 17.4 and ε̄(Θ f,i ) given in (17.18) on the assumption that
p̂F DR(Θ f,i ) �= 0, then for δ ∈ (0, 1), ε ∈ (0, 1) and

N ≥ 1

2ε2
log

2

δ
,

it holds

Pr

(∣∣ρ̂(Θ f,i ) − ρ(Θ f,i )
∣∣

kstop
< ε̄(Θ f,i )

)
> 1 − δ. (17.19)

Proof It follows from (17.16) that
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ρ̂(Θ f,i )

kstop
=

N∑
l=1

⎛
⎝ 1

NF D

kstop∑
k=1

k

kstop
IDF D,k

(
θ

(i)
l

∣∣Θ f,i

)⎞
⎠ ∈ [0, 1] .

Moreover,
E (

ρ̂(Θ f,i )
) = ρ(Θ f,i ).

Hence, according to Chernoff bound given in (16.15) and considering ( 17.18), we
finally have inequality (17.19), and thus the theorem is proved.

It is evident that for a relatively small pF DR(Θ f,i ), ε̄(Θ f,i ) can become large. In
order to achieve a reliable estimation of MT2FD, ε should be selected sufficiently
small, for instance, by means of an iterative computation.

17.4 Notes and References

This chapter has been dedicated to the realisation of the second component of our
probabilistic framework: definitions and computation algorithms towards perfor-
mance assessment of fault detection systems. To be specific, definitions of FAR and
FDR have been re-visited and specified based on the probabilistic models introduced
in the previous chapter, while the definition of MT2FD has been introduced and
discussed.

Considering that model uncertainties and faults can be presented in different
modes and patterns, both FAR and FDR have been defined with respect to a given
mode or pattern as well as in the average sense. Correspondingly, algorithms have
been provided for their computations.

The MT2FD is a random variable, whose definition has been introduced on a
number of assumptions. To be close to practice applications, we have defined the
time to fault detection as the time between the occurrence of a fault (of certain
pattern) and the first detection of this fault. We have also assumed that only those
detectable faults are under consideration. A RA-based algorithm is proposed for the
MT2FD computation.

It is worth emphasising that two important parameters/conditions are included in
the proposed RA-based assessment algorithms: (i) the i.i.d. samples which should
be generated according to some distribution, (ii) the number of samples. The former
condition is important to guarantee a correct statistic assessment of the overall op-
erations, while the latter parameter N decides the confidential level and estimation
accuracy of the applied algorithm. Unfortunately, in most of the published bench-
mark studies, no attention has been paid to these important points. Consequently,
such studies are not representative and cannot be accepted as convincing demon-
strations for the (in most cases very good) performance of the addressed methods.
On the other hand, our studies suggest that a common software platform for run-
ning those proposed RAs would be very helpful for a fair assessment of any fault
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detection method. In fact, the RA-based definitions and the computation algorithms
are independent of the fault detection methods applied. They can be realised either
in the data-driven or in the model-based fashion. The process under consideration
could be linear, nonlinear, static or dynamic. Motivated by this consideration, as a
part of our work, great efforts have been made for the development of a MATLAB
platform/tool, which is now available in the test stage. It should be pointed out that
a successful application of the proposed algorithms only becomes possible if it is
sufficiently supported by a software tool running on a powerful computer.

Some preliminary results of our work in this chapter have been published in [1].
The proposed RA-based assessment algorithms have also be successfully tested in
research studies reported in [2, 3].
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Chapter 18
RA-based Design of Fault Detection
Systems

After building the basis of our probabilistic framework and introducing the needed
computation algorithms, we are now in the position to complete the last level of
the framework by developing RA-based design schemes and algorithms for fault
detection systems.

18.1 Randomised Algorithms Based Threshold Settings

The major objective of introducing a threshold into a fault detection system is to
reduce the FAR to an acceptable level. In the norm-based evaluation framework, a
threshold is generally set as, adopting the notation introduced in our probabilistic
models and used in our study presented in the previous chapter,

Jth = sup
θ∈Θ

J (θ). (18.1)

Although this setting law leads to zeroFAR, this is, unfortunately, achieved at cost of a
(very) lowFDR. In fact, threshold setting is a highly challenging topic both in research
and applications, when uncertainties are concerned. It is state of the art in practice
that threshold is set by sufficient number of repeated tests under different process
operation conditions. For instance, threshold settings for sensor fault detection in
Electronic Stability Program (ESP) for vehicles are optimised by huge number of
driving tests under different driving maneuvers, as described in the reference given at
the end of this chapter. Below, we propose twoRA-based algorithms for the threshold
setting, which is similar to this practice.
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18.1.1 Algorithm I

For our purpose, we first apply one-sided Chernoff inequality given in Theorem 16.1,
equation (16.16). According to it, for given ε ∈ (0, 1), δ ∈ (0, 1), if

N ≥ 1

2ε2
log

1

δ
, (18.2)

then we have
Pr
(
pFAR(Θi ) < p̂FAR(Θi ) + ε

)
> 1 − δ, (18.3)

where, as defined and denoted in the previous chapter, pFAR(Θi ) is the real FAR
w.r.t. uncertainty mode Θi and p̂FAR(Θi ) is its estimate returned by the RA-based
algorithm given below.

Algorithm 18.1 Threshold setting Algorithm I: Given the acceptable FAR ∈ (0, 1)
and δ ∈ (0, 1), let ε > 0 be some constant satisfying FAR − ε > 0 and Δ > 0 be
the iteration tolerance.

• Set J0(> 0) but very small, and

Jth = J0;

• Choose integer N according to (18.2);
• Call Algorithm 17.1 with N as input parameter and n/N as output;
• If

n/N ≤ FAR − ε,

then return Jth and exit,
• Else

Jth = Jth + Δ,

go to Step 3 (call Algorithm 17.1).

Theorem 18.1 Algorithm 18.1 returns Jth that ensures

Pr {Pr (J (Θi ) > Jth) < FAR} > 1 − δ.

Moreover,

Jth,min ≤ Jth ≤ Jth,min + Δ, (18.4)

Jth,min = min
{
J̄th : Pr (J (Θi ) > J̄th

∣∣Θ f = O
)

< FAR
}
.

Proof It is evident that n/N returned by Algorithm 17.1 is an estimate for the real
false alarm rate, which satisfies, according to Theorem 16.1,
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pFAR(Θi ) = Pr (J (Θi ) > Jth | f = 0 ) < n/N + ε

with probability larger than 1 − δ. The update of Jth in the last step ensures that in
finite iterations, it holds

n/N ≤ FAR − ε,

which leads to
pFAR(Θi ) < n/N + ε ≤ FAR.

That (18.4) is true follows directly from the update law of Jth .

It is clear that for a sufficiently small Δ, Algorithm 18.1 returns (almost) the lowest
threshold,

Jth � Jth,min,

bywhich the real false alarm rate is lower than FAR. A lower thresholdmeans higher
fault detectability. Consequently, the threshold setting by Algorithm 18.1 leads to the
(almost) maximum fault detectability by simultaneously satisfying the requirement
on FAR at probability larger than 1 − δ.

Remark 18.1 It is worth emphasising that Algorithm 18.1 can be applied for any
type of fault detection systems.

Remark 18.2 Algorithm 18.1 delivers a threshold that guarantees that FAR w.r.t.
uncertainty mode Θi meets the requirement. An extension of this algorithm to deal
with the threshold setting guaranteeing required AFAR is straightforward and thus
is not presented.

18.1.2 Algorithm II

Alternative to Algorithm 18.1, we propose below an algorithm for the threshold
setting, which is based on Theorem 16.2.

Algorithm 18.2 Threshold setting Algorithm II: Given ε as the acceptable FAR
w.r.t. Θi and δ ∈ (0, 1),

• Set integer

N ≥ log 1
δ

log 1
1−ε

; (18.5)

• Generate N samples θ
(i)
j , j = 1, · · · , N , according to DΘi (θ) ;

• Set
Jth = 0;
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• For j = 1 to N

– Compute J
(
θ

(i)
j

)
(by means of simulation),

– If

J
(
θ

(i)
j

)
> Jth,

set
Jth = J

(
θ

(i)
j

)
;

• End for
• Return Jth .

Theorem 18.2 Algorithm 18.2 returns Jth that ensures

Pr
{J (Θi ) > Jth

∣∣Θ = Θi ,Θ f = O
} ≤ ε.

Proof It is evident that Jth returned by Algorithm 18.2 guarantees

∀θ
(i)
j , j = 1, · · · , N ,J

(
θ

(i)
j

)
≤ Jth

or equivalently,

Jth = max
j=1,··· ,N J

(
θ

(i)
j

)
.

It follows from Theorem 16.2 that for given ε ∈ (0, 1), δ ∈ (0, 1), if (18.5) holds,
then we have, with probability larger than 1 − δ,

Pr
(J (Θi ) ≤ Jth

∣∣Θ = Θi ,Θ f = O
) ≥ 1 − ε ⇐⇒

Pr
(J (Θi ) > Jth

∣
∣Θ = Θi ,Θ f = O

) ≤ ε.

Note that Pr
(J (Θi ) > Jth

∣∣Θ = Θi ,Θ f = O
)
is the FAR w.r.t. Θi . Considering

that
log 1

δ

log 1
1−ε

could be much smaller than 1
2ε2 log

1
δ
, Algorithm 18.2 is more efficient

from the computational point of view in comparison with Algorithm 18.1.

18.2 A RA-based Design of Observer-based Fault Detection
Systems

Fault detection in uncertain dynamic systems is a challenging issue. In this section,we
apply the RA-technique to dealing with this issue. We first propose a design scheme
for observer-based fault detection systems and furthermore study its realisation using
RA-technique.
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18.2.1 Basic Idea and Problem Formulation

Consider the probabilistic process model introduced in Chap. 16

x(k + 1) = Ax(k) + Bu(k) + Edd(k), y(k) = Cx(k) + Du(k) + Fd(k),
[
A B
C D

]
=
[
Ao Bo

Co Do

]
+

l∑

i=1

θi

[
Ai Bi

Ci Di

]
,

where x ∈ Rn, y ∈ Rm, u ∈ Rku , d ∈ Rkd denote the process state, output, input
and unknown input vectors, respectively. The system matrices A, B,C, D, Ed , Fd

are of appropriate dimensions with Ao, Bo, Co, Do, Ed , Fd denoting the known
nominal system matrices. The matrix

Δ :=
[
AΔ BΔ

CΔ DΔ

]
:=

l∑

i=1

θi

[
Ai Bi

Ci Di

]

represents the polytopic uncertainty with known matrices

[
Ai Bi

Ci Di

]
, i = 1, · · · , l,

and random variable θi ∈ [θi,−, θi,+
]
representing possible variations of the param-

eter around zero.
For our purpose of residual generation, an FDF together with a post-filter of the

form

x̂(k + 1) = Aox̂(k) + Bou(k) + Lro(k),

ro(k) = y(k) − Cox̂(k) − Dou(k),

r(z) = R(z)ro(z)

is applied, where R(z) is the stable post-filter and the observer gain matrix L is
selected to guarantee the observer stability. In fault-free operations, the dynamics of
the residual generator is governed by
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xr (k + 1) = Ar xr (k) + Bru (k) + Erd(k), (18.6)

ro(k) = Cr xr (k) + DΔu(k) + Fdd(k), (18.7)

xr (k) =
[

x(k)
x(k) − x̂(k)

]
, Ar =

[
Ao + AΔ 0
AΔ − LCΔ Ao − LCo

]
,

Br =
[

Bo + BΔ

Bo − LDΔ

]
,Cr = [CΔ Co

]
, Er =

[
Ed

Ed − LFd

]
,

xp(k + 1) = Apxp(k) + Bpro (k) , xp(0) = 0, (18.8)

r(k) = Cpxp(k) + Dpro(k), (18.9)

where (18.8)–(18.9) is the (minimal) state space realisation of the post-filter R(z).
It is assumed that the above uncertain system is stable. For the residual evaluation
purpose, we use the truncated l2,[k−s,k] norm of the residual vector,

J = ‖r‖22,[k−s,k] =
k∑

i=k−s

||r(i)||2. (18.10)

Now, re-write (18.6)–(18.9) as

rs(k) = Hro,s
(
HoA

γ
r xr (k − s − γ ) + Hs+γ d̄s+γ (k)

)
, (18.11)

rs(k) =
⎡

⎢
⎣

r(k − s)
.
.
.

r(k)

⎤

⎥
⎦ , d̄s+γ (k) =

[
us+γ (k)
ds+γ (k)

]
, us+γ (k) =

⎡

⎢
⎣

u(k − s − γ )

.

.

.

u(k)

⎤

⎥
⎦ ,

ds+γ (k) =
⎡

⎢
⎣

d(k − s − γ )

.

.

.

d(k)

⎤

⎥
⎦ , Ho =

⎡

⎢
⎣

Cr
.
.
.

Cr As
r

⎤

⎥
⎦ , Hs+γ = [ Hu,s+γ Hd,s+γ

]
,

Hro,s =

⎡

⎢⎢
⎢⎢
⎢
⎣

Dp 0

CpBp
. . .

. . .

.

.

.
. . .

. . . 0
Cp As−1

p Bp · · · CpBp Dp

⎤

⎥⎥
⎥⎥
⎥
⎦

,

Γu = Ho
[
As−1
r Br · · · Ar Br Br

]
, Hu,s+γ =

⎡

⎢
⎢⎢
⎢⎢
⎣

Γu

DΔ 0

Cr Br
. . .

. . .

.

.

.
. . .

. . . 0
Cr As−1

r Br · · · · · · DΔ

⎤

⎥
⎥⎥
⎥⎥
⎦

,

Γd = Ho
[
As−1
r Er · · · Ar Er Er

]
, Hd,s+γ =

⎡

⎢⎢
⎢
⎢⎢
⎣

Γd

Fd 0

Cr Er
. . .

. . .

.

.

.
. . .

. . . 0
Cr As−1

r Er · · · · · · Fd

⎤

⎥⎥
⎥
⎥⎥
⎦

.
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In the above equation,

HoA
γ
r xr (k − s − γ ) + Hs+γ d̄s+γ (k)

represents the dynamics of the residual vector ro in the time interval [k− s, k],while
matrix Hro,s reflects the dynamics of the post-filter driven by ro. Since the residual
generator is assumed to be stable, for a large γ,

Aγ
r ≈ 0,

which implies
rs(k) = Hro,s Hs+γ d̄s+γ (k).

Recall that all data ro(i), i ∈ [k − s, k], are available for the evaluation purpose,
the restriction on the structure of Hro,s due to the causality of post-filter R(z) can be
removed. This allows us to substitute Hro,s by an arbitrary matrix W̄ and write rs(k)
as

rs(k) = W̄ Hs+γ d̄s+γ (k). (18.12)

As a result, with evaluation function

J = ‖rs(k)‖2 = ‖r‖22,[k−s,k] = d̄T
s+γ (k)HT

s+γ WHs+γ d̄s+γ (k)

the observer-based residual generator design can be now formulated as finding

W = W̄ T W̄ .

Remark 18.3 In fact, fault detection schemes by means of the time-frequency do-
main analysis of residual signals, as reported in the references given at the end of
this chapter, are a special realisation of (18.12). The additional degree of design
freedom thanks to W̄ can be utilised for improving the fault detection performance.

18.2.2 Optimal Solution and the RA Realisation Algorithm

Suppose that Hs+γ is of full row rank. For a given Hs+γ , let

Hs+γ = U
[
Σ 0

]
V T

be an SVD of Hs+γ , and set

W̄ = Σ−1UT ⇒ W = (Hs+γ H
T
s+γ

)−1
. (18.13)
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It turns out for W satisfying (18.13), when Hs+γ is known,

‖rs(k)‖2 ≤ ∥∥us+γ (k)
∥∥2 + ∥∥ds+γ (k)

∥∥2 ,

which allows us to set the threshold as

Jth = ∥∥us+γ (k)
∥∥2 + δ2d,[k−s−γ,k] (18.14)

with δ2d,[k−s−γ,k] being the known l2,[k−s−γ,k] boundedness of d(k).

Remark 18.4 Given model (18.12), the optimal fault detection issue is in fact the
standard optimal fault detection problem formulated and solved in Sect. 3.4. The
above solution given in (18.13) and the threshold setting law (18.14) are identical
with the solution given in Sect.3.4 and thus optimal, when Hs+γ is constant and
known.

Considering that us+γ (k), ds+γ (k) may have (significantly) different influences on
rs(k), we further propose an alternative threshold setting with different weighting
for us+γ (k), ds+γ (k). To this end, consider

‖rs(k)‖ = ∥∥W̄ Hu,s+γ us+γ (k) + W̄ Hd,s+γ ds+γ (k)
∥∥

≤ γu
∥∥us+γ (k)

∥∥+ γdδd,[k−s−γ,k], (18.15)

where γu, γd are respectively themaximumsingular value of W̄ Hu,s+γ and W̄ Hd,s+γ .

As a result, the threshold can be set as

Jth = (γu
∥∥us+γ (k)

∥∥+ γdδd,[k−s−γ,k]
)2

. (18.16)

It is of interest to notice that threshold setting (18.16) is less conservative than (18.14)
if (

γu
∥
∥us+γ (k)

∥
∥+ γdδd,[k−s−γ,k]

)2
<
∥
∥us+γ (k)

∥
∥2 + δ2d,[k−s−γ,k].

It is straightforward to prove that this is true, when

(
1 − 2γ 2

u

)
∥∥us+γ (k)

∥∥2

δ2d,[k−s−γ,k]
> 2γ 2

d − 1, (18.17)

because inequality (18.17) leads to

∥
∥us+γ (k)

∥
∥2 + δ2d,[k−s−γ,k] > 2

(
γ 2
u

∥
∥us+γ (k)

∥
∥2 + γ 2

d δ2d,[k−s−γ,k]
)

≥ γ 2
u

∥∥us+γ (k)
∥∥2 + γ 2

d δ2d,[k−s−γ,k] + 2γuγd
∥∥us+γ (k)

∥∥ δd,[k−s−γ,k]

= (γu
∥∥us+γ (k)

∥∥+ γdδd,[k−s−γ,k]
)2

.
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Now, we are in the position to propose a RA to deal with the fault detection system
design for uncertain Hs+γ . For the sake of simplicity, we only consider model uncer-
tainties in mode Θi and denote the residual vector, the residual evaluation function
and the corresponding FAR by

rs(k) = W̄ Hs+γ (θ) d̄s+γ (k), θ ∈ DΘi , (18.18)

J (Θi ,W ) = d̄T
s+γ (k)HT

s+γ (θ)WHs+γ (θ) d̄s+γ (k),

pFAR (Θi ,W ) = Pr
(J (Θi ,W ) > Jth

∣∣Θ = Θi ,Θ f = O
)
.

The problem to be solved for the observer-based FD system design is formulated as
follows: Given ε ∈ (0, 1), δ ∈ (0, 1), Jth satisfying (18.14) or (18.16), solve

max
W>0

trace (W ) (18.19)

s.t. Pr (pFAR (Θi ,W ) < ε) ≥ 1 − δ.

Remark 18.5 Recall that Jth (18.14) or (18.16) only dependsonus+γ (k), δ2d,[k−s−γ,k].
As a result, a smaller W leads to a lower FAR and, at the same time, a lower FDR.
Design problem ( 18.19) is a trade-off between FDR and FAR. The latter is in general
limited to the acceptable level ε.

We propose to apply the following algorithm to solving the above optimisation prob-
lem.

Algorithm 18.3 Optimisation of weighting matrix W: Given ε ∈ (0, 1), δ ∈ (0, 1),

• Choose integer

N ≥ 1

2ε2
log

1

δ
,

and generate N i. i. d. random samples θ( j), j = 1, · · · , N , according to DΘi ;
• Form Hs+γ

(
θ(1)
)
and set

W1 = (Hs+γ

(
θ(1)) HT

s+γ

(
θ(1)))−1 ;

• For j = 2 to N Form Hs+γ

(
θ( j)
)
and solve

min
Δ j≥0

trace(Δ j ) (18.20)

s.t.
(
Hs+γ

(
θ( j)
)
HT

s+γ

(
θ( j)
))−1 − Wj−1 + Δ j ≥ 0,

Wj−1 − Δ j > 0

for Δ j and set
Wj = Wj−1 − Δ j ;
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• End for
• Return

W = WN .

With W we set threshold either according to (18.14) or ( 18.16).

Theorem 18.3 Algorithm 18.3 delivers a solution that solves

max
W

trace (W ) (18.21)

s.t. 0 < W ≤ Wj ≤ (Hs+γ

(
θ( j)
)
HT

s+γ

(
θ( j)
))−1

, (18.22)

Pr (pFAR (Θi ,W ) < ε) ≥ 1 − δ, (18.23)

where θ( j) is the i. i. d. random sample generated according to DΘi , j = 1, · · · , N .

Proof The proof is straightforward. Note that running the optimisation problem
( 18.20) in Algorithm 18.3 leads to

W = WN = W1 −
N∑

j=2

Δ j =⇒

trace (W ) = trace
((

Hs+γ

(
θ(1)
)
HT

s+γ

(
θ(1)
))−1

)
−

N∑

j=2

trace
(
Δ j
)

and minimisation of trace
(
Δ j
)
in each iteration yields furthermore

WN = argmax
W

trace (W )

subject to the constraint (18.22). Since

∀ j, HT
s+γ

(
θ( j)
)
Wj Hs+γ

(
θ( j)
) ≤ I =⇒

d̄T
s+γ (k)HT

s+γ

(
θ( j)
)
Wj Hs+γ

(
θ( j)
)
d̄s+γ (k)

≤ ∥∥us+γ (k)
∥∥2 + δ2d,[k−s−γ,k] = Jth,

as well as

d̄T
s+γ (k)HT

s+γ

(
θ( j)
)
Wj Hs+γ

(
θ( j)
)
d̄s+γ (k)

≤ (γu
∥∥us+γ (k)

∥∥+ γdδd,[k−s−γ,k]
)2 = Jth,

which implies for both thresholds (18.13) and (18.14),

p̂FAR(Θi ) = 0.
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As a result, it follows from the discussion in the last sub-section and the one-sided
Chernoff inequality given in Theorem 16.1 that for N given in Algorithm 18.3,
(18.23) is satisfied.

Remark 18.6 Alternatively, for the threshold setting Algorithm 18.2 can be applied.
In that case, N can also be set equal to

N ≥ log 1
δ

log 1
1−ε

.

18.3 A Multiple Monitoring Indices Based Fault Detection
Scheme

18.3.1 Motivation and Review of Fault Detection

Adopting the notation introduced in the last two chapters, fault detection system
design and implementation, both in the data-driven or model-based fashion, can be
roughly described as

• building a monitoring index (test statistic or residual evaluation function)
J (Θ,Θ f

)
,

• setting threshold Jth and
• running (online) detection logic

J (Θ,Θ f
) ≤ Jth =⇒ fault-free, otherwise faulty. (18.24)

In order to increase the robustness of the fault detection system against uncertainty,
it is desirable that ∀θ ∈ Θ and ∀θ f ∈ Θ f ,

{J (θ) ≤ Jth − ε, in the fault-free case,
J (θ f

) ≥ Jth + ε, in the faulty case,
(18.25)

for some ε > 0. If condition (18.25) holds, the fault-free and faulty operations can
be evidently separated, which allows a reliable and robust fault detection. It is worth
mentioning that in this case the distance between the fault-free and faulty data sets
equals to 2ε.

We observe that the use of multiple features expressed in terms of multiple mon-
itoring indices is the common practice in machine learning aided fault diagnosis.
And it could considerably improve fault detectability in comparison with a single
monitoring index. This motivates us to adopt multiple monitoring indices for our
fault detection purpose.

Denote the multiple monitoring indices by a vector
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J (Θ,Θ f
) =

⎡

⎢
⎣

J1
(
Θ,Θ f

)

...

JM
(
Θ,Θ f

)

⎤

⎥
⎦ ∈ RM .

Here, monitoring indices could be, for example, χ2-test statistic or l2-norm or RMS
of a residual vector. They could also be frequency-time domain features of a signal. It
is obvious that in case of multiple monitoring indices the fault detection logic (18.24)
with a number as the threshold cannot be adopted. On the other hand, notice that the
condition (18.25) can be written as

{J (Θ,Θ f
)− Jth ≤ −ε : fault-free case,

J (Θ,Θ f
)− Jth ≥ ε : faulty case,

⇐⇒
{ −1

ε
J (Θ,Θ f

)+ 1
ε
Jth ≥ 1 : fault-free case,

−1
ε
J (Θ,Θ f

)+ 1
ε
Jth ≤ −1 : faulty case, (18.26)

and analogue to it, the fault detection logic (18.24) can be defined as

−1

ε
J (Θ,Θ f

)+ 1

ε
Jth ≥ 0 =⇒ fault-free, otherwise faulty.

This inspires us to introduce the following detection logic with the monitoring index
vector J

wJ + b > 0 =⇒ fault-free, otherwise faulty, (18.27)

and write the condition (18.26) as

{
wJ + b ≥ 1 : fault-free case,
wJ + b ≤ −1 : faulty case, (18.28)

where
w = [w1 · · · wM

] ∈ RM

is the weighting vector and b is some constant. It should be remarked that the forms
of the decision logic (18.27) and the condition (18.28) are well-known in support
vector machine (SVM) technique and widely applied for fault classification.

Note that
wJ + b = 1, wJ + b = −1

are two parallel hyperplanes and the distance between them is 2/ ‖w‖. Thus, in the
SVM-framework, the cost function is often defined as ‖w‖ , and its minimisation
yields the maximal distance between the two data sets.

According to the detection logic (18.27), the threshold setting is now formulated
as finding the hyperplane

wJ + b = 0, (18.29)
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which is parameterised by the weighting vector w and constant b.

18.3.2 SVM- and RA-based Design of Threshold Hyperplane

Due to the similar form, it seems likely to apply the standard SVM method to find
the threshold hyperplane (18.29). On the other hand, SVM is a data-driven method
that delivers the parameters w and b by means of data-based training (optimisa-
tion). Considering our intention to deal with model uncertainties and potential faults
efficiently, we propose

• to apply RA-technique to generating fault-free and faulty data, and then
• to use the existing SVM algorithms to determine w and b.

Let
θ(i) ∈ Θ, i = 1, · · · , N1, θ

(i)
f ∈ Θ f , i = 1, · · · , N2

be the fault-free and faulty sample sets, respectively. The samples are i. i. d. and
generated using a RA. Correspondingly, the monitoring index vector is denoted by

J (θ(i)
)
, i = 1, · · · , N1,J

(
θ

(i)
f

)
, i = 1, · · · , N2.

Define
I+ = {1, · · · , N1} , I− = {N1 + 1, · · · , N1 + N2} ,

and correspondingly denote

J (i) = J (θ(i)
)
, i ∈ I+,J (i) = J

(
θ

(i−N1)
f

)
, i ∈ I−.

By these definitions and notations, and according to the detection logic ( 18.27),

wJ (i) + b > 0, i ∈ I− (18.30)

indicates a miss detection. Conversely,

wJ (i) + b ≤ 0, i ∈ I+ (18.31)

releases a false alarm. Note that conditions (18.30) and (18.31) can also be equiva-
lently written as

∃ξi > 0 s.t. wJ (i) + b > ξi , i ∈ I−, (18.32)

∃ξi > 1 s.t. wJ (i) + b ≤ 1 − ξi , i ∈ I+, (18.33)

respectively. For a sufficiently large number N1, the number
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p̂FAR : = 1

N1

N1∑

i=1

I
(
θ(i)
)
,

I
(
θ(i)
) =

{
1, if condition (18.33) is satisfied,
0, otherwise,

is a reliable estimate of the false alarm rate defined in Definition 17.1 (either AFAR
or FAR w.r.t. a uncertainty mode). It is clear that

p̂FAR = 1

N1

N1∑

i=1

I
(
θ(i)
) ≤ 1

N1

N1∑

i=1

ξi , (18.34)

ξi ≥ 0, wJ (i) + b ≤ 1 − ξi , i ∈ I+. (18.35)

In the sequel, the number 1
N1

N1∑

i=1
ξi with ξi satisfying (18.35) will be adopted as an

indicator (upper-bound) for FAR. Similarly, the number

p̂MDR = 1

N2

N2∑

j=1

I
(
θ( j)
)
, (18.36)

I
(
θ( j)
) =

{
1, if condition (18.32) is satisfied,
0, otherwise,

is an estimate of the miss detection rate (MDR), which is equal to 1 − pFDR . Note
that p̂FAR, p̂MDR given in (18.34 ) and (18.36) can also be equivalently expressed in
terms of the so-called l0-norm (even though it is indeed not a norm, but this term is
widely used) as

p̂FAR = 1

N1
‖ξi‖0 , ‖ξi‖0 =

N1∑

i=1

I (ξi ) , I (ξi ) =
{
1, ξi �= 0,
0, ξi = 0,

wJ (i) + b ≤ ξi , ξi ≥ 0, i ∈ I+,

p̂MDR = 1

N2

∥∥ξ j

∥∥
0 ,
∥∥ξ j

∥∥
0 =

N2∑

j=1

I
(
ξ j
)
, I
(
ξ j
) =

{
1, ξ j �= 0,
0, ξ j = 0,

wJ ( j) + b > ξ j , ξ j ≥ 0, j ∈ I−,

respectively. Now, we are in the position to formulate our optimisation problem for
the determination of w, b as follows: for given acceptable FAR = α and

J (i) = J (θ(i)
)
, i ∈ I+,J (i) = J

(
θ

(i−N1)
f

)
, i ∈ I−,

solve the following optimisation problem
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min
w,b,ξi ,i∈I−

(
1

N2
‖ξi‖0 + λ ‖w‖2

)
(18.37)

s.t. wJ (i) + b ≤ ξi , ξi ≥ 0, i ∈ I−, (18.38)

wJ (i) + b > −ξi , ξi ≥ 0, i ∈ I+, (18.39)

1

N1
‖ξi‖0 ≤ α, i ∈ I+, (18.40)

where λ > 0 is a weighting factor. The meaning of this optimisation problem is
obvious. Optimisation (18.37) leads to the minimisation of the distance between the
two data sets as well as MDR, which is defined by the constraint condition (18.38),
while the constraint conditions (18.39)–(18.40) guarantee that FAR is bounded by
given α.Knowing that the optimisation problem with l0-norm is NP-hard, which can
be approximated by an l1-norm optimisation, we propose the following alternative
optimisation problem

min
w,b,ξi ,i∈I−

⎛

⎝ 1

N2

∑

i∈I−
ξi + λ ‖w‖2

⎞

⎠ (18.41)

s.t. wJ (i) + b ≤ ξi , ξi ≥ 0, i ∈ I−, (18.42)

wJ (i) + b > 1 − ξi , ξi ≥ 0, i ∈ I+, (18.43)

1

N1

∑

i∈I+
ξi ≤ α, i ∈ I+, (18.44)

in which ∑

i∈I−
ξi =

∑

i∈I−
|ξi | = ‖ξi‖1 ,

and conditions (18.39)–(18.40) are substituted by (18.43)–(18.44). The reason why
‖ξi‖0 in (18.40) has not been replaced by ‖ξi‖1 is that ‖ξi‖0 is not bounded by ‖ξi‖1 .

Instead, we know from (18.34) that

1

N1
‖ξi‖0 ≤ 1

N1

N1∑

i=1

ξi , wJ (i) + b < 1 − ξi , ξi ≥ 0, i ∈ I+,

and thus the requirement that FAR is bounded by α is satisfied.
We would like to emphasise that the optimisation problem (18.41)–( 18.44) is

a standard SVM-based two-class classification problem and there exist number of
algorithms for its solution, although our formulation has been motivated by the
technical demands on fault detection and derived in this context.
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18.3.3 Randomised Algorithm of Designing the Threshold
Hyperplane

Below is the summary of the major results for the design of the threshold superplane
in form of an algorithm.

Algorithm 18.4 Design of the threshold superplane: Given ε ∈ (0, 1), δ ∈ (0, 1), α
and

J =
⎡

⎢
⎣

J1
(
Θ,Θ f

)

...

JM
(
Θ,Θ f

)

⎤

⎥
⎦ ∈ RM ,

• Choose integers

N1 ≥ 1

2ε2
log

1

δ
, N2 ≥ 1

2ε2
log

1

δ

and generate N1, N2 i. i. d. random samples θ( j), j = 1, · · · , N1, θ
(i)
f , i =

1, · · · , N2, according to DΘ, DΘ f , respectively;
• Compute (by means of simulations)

J (i) = J (θ(i)
)
, i ∈ I+,J (i) = J

(
θ

(i−N1)
f

)
, i ∈ I−,

I+ = {1, · · · , N1} , I− = {N1 + 1, · · · , N1 + N2} ;

• Solve the optimisation problem (18.41)–(18.44) for w, b;
• Output w, b.

We would like to remark that N1 ≥ 1
2ε2 log

1
δ
guarantees

Pr
(
pFAR < p̂FAR + ε

)
> 1 − δ.

Since

p̂FAR ≤ 1

N1

N1∑

i=1

ξi ≤ α,wJ (i) + b < 1 − ξi , ξi ≥ 0, i ∈ I+,

it holds
Pr (pFAR < α + ε) > 1 − δ.

Note that there is no specified requirement on the FDR (1− MDR). Hence, setting

N2 ≥ 1

2ε2
log

1

δ

is in fact optional.
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18.4 Benchmark Study on a Three-tank System

This section is dedicated to a benchmark study on the real laboratory three-tank
system TTS20 aiming at testing

• the randomised algorithms for the FAR, FDR and MT2FD estimations given in
Chap.17,

• Algorithm 18.3 for the observer-based fault detection system design, and finally
• Algorithm 18.4 for the design of the threshold superplane.

18.4.1 System Setup and Models

A three-tank system, as sketched in Fig. 18.1, has typical characteristics of tanks,
pipelines and pumps used in chemical industry and thus often serves as a benchmark
process in laboratories for process control. The model and the parameters of the
three-tank system introduced here are from the laboratory setup TTS20.

Applying the incoming and outgoing mass flows under consideration of Torri-
celli’s law, the dynamics of TTS20 is modelled by

Aḣ1 = Q1 − Q13,Aḣ2 = Q2 + Q32 − Q20,Aḣ3 = Q13 − Q32,

Q13 = a1s13sgn(h1 − h3)
√
2g|h1 − h3|,

Q32 = a3s23sgn(h3 − h2)
√
2g|h3 − h2|, Q20 = a2s0

√
2gh2,

h1

h3

h2

A AA

sn

H
m

ax

Fig. 18.1 Setup of a three-tank system
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where

• Q1, Q2 are incoming mass flow (cm3/s),
• Qi j is the mass flow (cm3/s) from the i-th tank to the j -th tank,
• hi (t), i = 1, 2, 3, are the water level (cm) in each tank andmeasurement variables,
and

• s13 = s23 = s0 = sn.

The parameters are given in Table 18.1.
In most of our studies, we deal with linear systems. The linear form of the above

model can be achieved by a linearisation at an operating point as follows:

ẋ = Ax + Bu, y = Cx,

x =
⎡

⎣
h1 − h1,o
h2 − h2,o
h3 − h3,o

⎤

⎦ , u =
[
Q1 − Q1,o

Q2 − Q2,o

]
, Qo =

[
Q1,o

Q2,o

]
,

A = ∂ f

∂h

∣∣
h=ho , B =

⎡

⎣
1
A 0
0 1

A
0 0

⎤

⎦ ,C =
⎡

⎣
1 0 0
0 1 0
0 0 1

⎤

⎦ ,

where x ∈ R3 denotes the state vector with the tank levels as state variables, u ∈ R2

the two pump flows and y ∈ R2 the tank levels x1 and x2, hi,o, i = 1, 2, 3, Q1,o, Q2,o

denote the operating point under consideration and

Tab. 18.1 Parameters of TTS20

Parameters Symbol Value Unit

Cross section area of
tanks

A 154 cm2

Cross section area of
pipes

sn 0.5 cm2

Max. height of tanks Hmax 62 cm

Max. flow rate of
pump 1

Q1max 100 cm3/s

Max. flow rate of
pump 2

Q2max 100 cm3/s

Coeff. of flow for pipe
1

a1 0.46

Coeff. of flow for pipe
2

a2 0.60

Coeff. of flow for pipe
3

a3 0.45
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f (h) =
⎡

⎢
⎣

−a1s13sgn(h1−h3)
√
2g|h1−h3|

A
a3s23sgn(h3−h2)

√
2g|h3−h2|−a2s0

√
2gh2

A
a1s13sgn(h1−h3)

√
2g|h1−h3|−a3s23sgn(h3−h2)

√
2g|h3−h2|

A

⎤

⎥
⎦ , h =

⎡

⎣
h1
h2
h3

⎤

⎦ .

In the steady state at the operating point, it holds

A

⎡

⎣
h1,o
h2,o
h3,o

⎤

⎦+ B

[
Q1,o

Q2,o

]
= 0 ⇐⇒ [

A B
] [ ho

Qo

]
= 0.

In TTS20 setup, it is possible to implement a nonlinear controller that leads to a full
decoupling of the three tank system into

• two linear sub-systems of the first order and
• a nonlinear sub-system of the first order.

This controller can be schematically described as follows:

u1 = Q1 = Q13 + A (a11h1 + v1 (w1 − h1)) ,

u2 = Q2 = Q20 − Q32 + A (a22h2 + v2 (w2 − h2)) ,

where a11, a22 < 0, v1, v2 represent two prefilters and w1, w2 are reference signals.
The nominal (fault-free) closed-loop dynamics is described by

⎡

⎣
ḣ1
ḣ2
ḣ3

⎤

⎦ =
⎡

⎣
(a11 − v1) h1
(a22 − v2) h2

a1s13sgn(h1−h3)
√
2g|h1−h3|−a3s23sgn(h3−h2)

√
2g|h3−h2|

A

⎤

⎦

+
⎡

⎣
v1 0
0 v2
0 0

⎤

⎦
[

w1

w2

]
.

In the steady state, we have

⎡

⎣
(a11 − v1) h1
(a22 − v2) h2

a1s13sgn(h1−h3)
√
2g|h1−h3|−a3s23sgn(h3−h2)

√
2g|h3−h2|

A

⎤

⎦+
⎡

⎣
v1 0
0 v2
0 0

⎤

⎦
[

w1

w2

]
= 0.

The laboratory three-tank system TTS20 is a modified setup of the laboratory three-
tank system DTS200 (see reference given at the end of this chapter). In TTS20, 6
electrical control valves are additionally installed, which enable accurate control of
the flow cross section of the connection pipes. In our study, the three-tank system
works around the operating point: 30 cm water level in tank 1 and 20 cm in tank 2. A
linearisation at this operating point with sampling time Ts = 5 s results in the system
matrices in model (16.2) with Do = 0 and
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Ao =
⎡

⎣
0.9305 0.0025 0.0670
0.0025 0.8853 0.0653
0.0670 0.0653 0.8660

⎤

⎦ , Bo =
⎡

⎣
0.0324 0.0000
0.0000 0.0316
0.0012 0.0011

⎤

⎦ .

18.4.2 FAR, FDR and MT2FD Assessment

In the first benchmark study on the assessment of FAR, FDR and MT2FD, uncer-
tainties caused by the identification of the flow coefficients using experimental data
are considered, which depend on the room and operation conditions. It is assumed
that the variations are uniformly distributed in (0.25, 0.65), which can be further
modelled as

Δi = θΔi Ai , i = 1, · · · , 4,

with

θΔi = θ̂Δi∑4
j=1 θ̂Δ j

∈ [0, 1], θ̂Δi ∼ U(0, 1), i = 1, · · · , 4,

representing the normalised value range of variations. Furthermore, the disturbances
in the two pumps d1, d2 are under consideration and assumed to be

d1(k) = −2 + 4
∑

i=0

θ1σ(k − 5i), d2(k) = −1 + 2
∑

i=0

θ2σ(k − 5i)

with

θ1 ∼ U(0, 1), θ2 ∼ U(0, 1), σ (k − j) =
{
1, k = j,

0, k �= j.

Two different types of faults are considered. The first fault is a multiplicative fault
in the level sensor of tank 2 and modelled as

C f = θ f1

[
0 0 0
0 1 0

]
, θ f1 = φ1

(
k, θθ f1 ,1 , θθ f1 ,2

)
,

φ1
(
k, θθ f1 ,1 , θθ f1 ,2

) =
{
0, k < k f ault ,

−θθ f1 ,1

(
1 − e−θθ f1 ,2 (k−k f ault )

)
, k ≥ k f ault ,

θθ f1 ,1 ∼ U(0.02, 0.5), θθ f1 ,2 ∼ U(0.04, 0.08)

with k f ault as the time for the occurrence of the fault. The second fault is a leakage
in tank 1 and modelled as
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f2(k) = φ2
(
k, θ f2

)
, θ f2 ∼ U(10, 30),

φ2
(
k, θ f2

) =
⎧
⎨

⎩

0, k < k f ault ,

0.01
(
k − k f ault

)
, k f ault ≤ k ≤ k f ault + θ f2 ,

0.01θ f2 , k > k f ault + θ f2 .

For our purpose, a linear observer-based residual generator is applied with the fol-
lowing observer gain matrix

L =
[
0.9329 0.0048 0.0982
0.0049 0.8876 0.0967

]T
.

Running Algorithm 18.3 for

ε = 0.01, δ = 10−7,

which leads to

N = 6905 ≥ log 1
δ

log 1
1−ε

,

returns W ∈ R12×12 and moreover γu, γd in (18.16) are computed equal to

γu = 0.00934, γd = 1.

Next, the RA-aided assessment of FAR, FDR andMT2FD for the proposed observer-
based FD system is demonstrated. With

δ2d,[k−s−γ,k] = 40,

and γu, γd given above, it is checked that (18.17 ) is satisfied for the process operation.
As a result, threshold (18.16) is adopted.

FAR Assessment

Weassume that bothmodel uncertainty and unknown input vector are simultaneously
present in the three-tank system. The probabilistic parameter model for the model
uncertainty and unknown input is

Θ =
{
θ̂Δi , i = 1, · · · , 4, θ1, θ2

}
:= {θ j , j = 1, · · · , 6

}
, DΘ =

6⋃

j=1

U(0, 1).

The assessment procedure consists of the following steps:

• By each (fault-free) simulation, u, y are first generated;
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• Driven by u, y, the FD system delivers rs(k), which is then evaluated. The simu-
lation time, which is also defined as time limit for detection, is

Tsim = τstop = 1000 s;

• Running Algorithm 17.1 for ε = 0.02, δ = 0.001, which gives

N = 9502 ≥ 1

2ε2
log

2

δ
,

results in
p̂FAR = 0.0132.

FDR and MT2FD Assessment

Let
Θ f,1 = {θ f1

}
,Θ f,2 = {θ f2

}

denote two fault patterns for the sensor and leakage fault respectively with the prob-
abilistic parameter model for the faults:

Θ f,1 =
{
θ

(1)
f1

= θθ f1 ,1 , θ
(1)
f2

= θθ f1,2

}
,Θ f,2 =

{
θ

(2)
f1

= θ f2

}
,

D f1,1 = U(0.02, 0.5), D f2,1 = U(0.04, 0.08), D f1,2 = U(10, 30).

For each fault pattern, the following assessment procedure is completed:

• k f ault is set to be 500 s;
• For every simulation with faults, u, y are first generated. The FD system delivers
rs(k). The simulation time is set as Tsim = 1000 s. The time limit for detection is
set equal to kstop = 50 samplings (250 s);

• Run Algorithm 17.3 with

N = 9502 ≥ 1

2ε2
log

2

δ

for ε = 0.02, δ = 0.001. It returns:

p̂FDR(Θ f,1) = 0.9502, p̂FDR(Θ f,2) = 1;

• Applying Algorithm 17.4 for estimating MT2FD returns:

ρ̂(Θ f,1) = 3.1630 ≤ 4 samplings, ρ̂(Θ f,2) = 7.3294 ≤ 8 samplings.
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Comparisons with Nominal Weighting Matrix

A comparison study on the fault detection performance between the proposed design
approach and a fault detection approach without considering the uncertainties is
performed. For this purpose, the nominal weighting matrix is set as

Wn = (Hd,s+γ H
T
d,s+γ

)−1
.

The corresponding FAR, FDR and MT2FD are

p̂FAR = 0.3993, p̂FDR(Θ f,1) = 0.9971, p̂FDR(Θ f,2) = 1.

It is evident that the weighting matrix W returned by Algorithm 18.3 delivers a
much better fault detection performance with a similar FDR but considerably smaller
FAR (0.0132 vs. 0.3993) in comparison with a design without considering model
uncertainties.

18.4.3 Fault Detection Results with Real Data

In order to demonstrate the effectiveness of the proposed fault detection scheme,
the designed fault detection system is implemented for real-time fault detection. For
demonstration purpose, a multiplicative fault in the level sensor of tank 2 with

θ f1 = 0.12

is realised between 520 s and 1150 s (the 104-th to 230-th samples). The detection
result is shown in Fig. 18.2. For comparison, an algorithm known in the literature
for the norm-based fault detection for systems with polytopic uncertainty (see the
reference given at the end of this chapter) is applied, which returns a threshold

Jth,2 = 0.0713
(||uτ ||2 + δd,[k−τ,k]

)
.

The comparison results of these two fault detection approaches are also shown in
Fig. 18.2. For the comparison purpose, the result achieved using Algorithm 18.3 is
labelled by “Algorithm 1”, while the result delivered by the algorithm known for the
norm-based fault detection is labelled by “norm-based”. Next, a leakage in tank 1
( f2) is realised by setting the electrical control valve at the bottom of tank 1 for

θ f2 = 13.

The leakage fault occurs at 1525 s (the 305-th sample). The detection result and
its comparison with norm-based fault detection approach is given in Fig. 18.3. It is
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Fig. 18.2 Detection of the sensor fault

obvious that in both cases, with the weighting matrixW delivered by Algorithm 18.3
(labelled by “Algorithm 1”), the fault detectability can be significantly improved.

18.4.4 Multiple Monitoring Indices Based Fault Detection
using Algorithm 18.4

In our second study, the SIMULINK model of the laboratory three-tank system
TTS20 with the technical data as given in Sub-section 18.4.1 is used. In addition,
measurement noises are introduced in tank 1 and tank 2, respectively, with

n1 ∼ N (0, 0.2027), n2 ∼ N (0, 0.0051).

In the simulation study, a nonlinear controller is used to achieve a feedback lineari-
sation, and the total simulation time is set to be 500 s.

Using randomised algorithm, fault-free data are generated under the following
conditions with parameter uncertainties and disturbances:

• the variation of the outflow coefficients ai , i = 1, 2, of tank i is uniformly dis-
tributed in (0.25, 0.65), and

• for every 5 s, the disturbances in the pumps, d1, d2, are added with
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Fig. 18.3 Detection of leakage

d1 = −2 + 4θ1, d2 = −1 + 2θ2,

θi ∼ U(0, 1), i = 1, 2.

For the evaluation purpose, three evaluation functions are generated sequentially,
which give three monitoring indices:

• the absolute value of the mean value

Javerage(k) =
√
r̄21 (k) + r̄22 (k)

with r̄i , i = 1, 2, defined as

r̄i = 1

N

k+N−1∑

j=k

ri ( j),

• the root mean square (RMS) value

JRMS(k) =
√√√√ 1

N

k+N−1∑

j=k

(r21 ( j) + r22 ( j)),
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• the peak value

Jpeak(k) = max
j∈[k,k+N−1]

√
r21 ( j) + r22 ( j).

By running Algorithm 18.4 with ε = 0.05 and δ = 0.01, 1060 samples are generated
for the uncertainties and disturbances (in the fault-free case). After calibration, the
residual signals from 201 s to 450 s (50 samples) are used for building the evaluation
functions (three monitoring indices) Javerage(k), JRMS(k) and Jpeak(k). Due to the
large amount of samples, the residual data are processed in batch with N = 5.
Correspondingly, for each sample of the uncertainties and disturbances, we have

k = 1, 2, · · · , 10.

That means a total sample number

N1 = 10 × 1060 = 10600.

In our study, the following faults are simulated:

• the sensor fault of water level in tank 2, modelled as (in percentage, 100% indicates
fault-free)

f1(t) =
{
100, t < t f ault ,
100

(
1 − θ f1,1

(
1 − e−θ f1 ,2(t−t f ault )

))
, t ≥ t f ault ,

θ f1,1 ∼ U(0.02, 0.5), θ f1,2 ∼ U(0.04, 0.08),

• the leakage fault in tank 1 with

f2(t) =
⎧
⎨

⎩

0, t < t f ault ,
0.01

(
t − t f ault

)
, t f ault ≤ t ≤ t f ault + θ f2 ,

0.01θ f2 , t > t f ault + θ f2 ,

θ f 2 ∼ U(10, 30),

where value 0 indicates fault-free.

By running Algorithm 18.4 with ε = 0.05 and δ = 0.01, 738 faulty samples are
generated for each faulty scenario. It is simulated that the fault occurs at 300 s and
the residual signals from 301 s to 450 s are recorded for the evaluation purpose. By
the same evaluation scheme as given for the fault-free case, we have a total faulty
sample number

N2 = 6 × 738 = 4428.

As a result, Algorithm 18.4 delivers a threshold hyperplane equal to

w = [−1.032 − 1.082 − 1.700], b = 1.4142.



18.5 Notes and References 517

Fig. 18.4 Plot of the threshold hyperplane and the training data

In Fig. 18.4, the threshold hyperplane and the fault-free and faulty training data are
plotted.

To verify the above threshold setting, two simulation examples with a (constant)
sensor fault in tank 2,

θ f1 = 0.26,

and a (constant) leakage fault in tank 1 by setting the electrical control valve at the
bottom of tank 1

θ f2 = 18.

Both faults occur at 5000 s and residual signals are recorded starting from 1000 s. The
simulation results are shown in Figs. 18.5 and 18.6, respectively, which demonstrate
a successful detection.

18.5 Notes and References

As the last component of our probabilistic framework, we have introduced, in this
chapter, RA-based approaches for designing fault detection systems. The first ap-
proach has been devoted to the issue of threshold setting. Threshold is a part of
any fault detection logic, and its setting is a highly challenging topic, when a trade-
off between fault detectability and false alarm rate is concerned. The RA-based
threshold setting algorithms proposed in this chapter can be viewed as a software- or
simulation-based realisation of the common industrial practice. Analogue to the ESP
example, where threshold settings for sensor fault detection are optimised by a huge
number of driving tests under different driving maneuvers [1], in the RA-framework,
the threshold setting is optimised using sufficient number of samples generated by
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Fig. 18.5 Detection of the sensor fault
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Fig. 18.6 etection of the leakage

randomised algorithms based on probabilistic parameter models. To this end, we
have developed two algorithms, Algorithms 18.1 and 18.2. Both of them can be used
for the threshold setting for any type of fault detection systems, for instance, in the
application of Riemannian metric based fault detection schemes (with SPD matrices
data sets) presented in Sub-section 15.4.2. It is worth remarking that, in comparison
of both algorithms, Algorithm 18.2 is more efficient.

The second approach presented in this chapter consists of two parts. In the first
part, the basic idea of an approach to the optimal design of observer-based fault
detection systems (without uncertainty) has been described. It can be viewed as an
extension of the fault detection schemes based on time-frequency domain analysis
of residual signals, as reported in [2, 3]. To be specific, the design of a dynamic
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post-filter is replaced by an optimal selection of a weighting matrix. The second part
of this work has been dedicated to the RA-based realisation of an optimal selection
of the weighting matrix, when uncertainties modelled by the probabilistic models
are under consideration. A preliminary version of Algorithm 18.3 has been reported
in [4].

The last fault detection scheme addressed in this chapter is, to our knowledge, new
in the model-based fault detection framework, but common in the field of machine
learning aided fault diagnosis. It is the use of multiple monitoring indices. From the
viewpoint of problem formulation, it seems identical with an SVM-based two-class
classification problem [5]. However, it is not a classical SVM method in the sense
that

• it is not a data-driven method in the classical sense. The data used in the optimi-
sation of the threshold hyperplane are i. i. d. samples generated using RA. That
means, for our purpose, process models including probabilistic models for uncer-
tainties and faults should be available;

• the problem formulation is motivated and derived by the common specification
of optimal fault detection: given an acceptable FAR, find a threshold hyperplane
such that the fault detectability (FDR) is maximised. In this context, it is a natural
extension of the single monitoring index based fault detection schemes to the case
with multiple monitoring indices.

It can be noticed that, also for the above mentioned reasons, the variable ξi in our
optimisation problem (18.37)–(18.40) or (18.41)–(18.44) has been introduced in the
context of miss detection and false detection, which is different from the use as
the so-called slack variable in the SVM-framework for the optimisation purpose
(in sense of soft margin) [6]. Moreover, the use of the so-called l0-norm in the
original problem formulation (18.37)–(18.40) is the result of the RA-based MDR
and FAR computation, rather than for achieving sparsity as its objective. On the
other hand, knowing the optimisation problem with l0-norm is NP-hard, but can
be approximated by an l1-norm optimisation [7], we have proposed an alternative
optimisation problem (18.41)–(18.44). It should be emphasised that the constraint
(18.44) plays an important role in this optimisation problem,whichmeets the demand
for the FAR.

Thanks to the identical optimisation problem formulation, the existing optimisa-
tion algorithms commonly used in the SVM-technique can be directly applied for
our problem solution [6, 8].

We would like to provide background information about this work, which is a part
of the DFG (German Research Foundation) project entitled “Application of random-
ized algorithms to the analysis and synthesis of model-based and data-driven fault
diagnosis systems”. During a project workshop in year 2016, Dr.Mingzhu Tang from
theChangshaUniversity of Science&Technology, P.R.China, has presented applica-
tion of the advanced SVM-algorithm CLDM (cost-sensitive largemargin distribution
machine) to fault diagnosis [9]. His presentation and the follow-up discussions have
inspired the idea of applying RA-technique to multiple monitoring indices based
fault detection and formulating the associated optimal fault detection problems with
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the help of SVM-formalism. This idea and the established problem formulation have
been later presented at Peking University, P.R. China. Mr. Zhou, at that time a Mas-
ter student of that university, has then applied these results to fault detection in ship
propulsion systems and reported the ideas in form of a paper with a focus on the
SVM interpretation of the ideas [10].

In our benchmark study, the laboratory three-tank system TTS20 has been used.
It is an update of three-tank system DTS200, which is well described in [11]. In our
comparison study using real test data in Sub-section 18.4.3, the result achieved by
means of Algorithm 18.3 proposed in this chapter has been compared with the ones
delivered by Algorithm 9.2 given in [11], which has been proposed for designing
norm-based fault detection for systems with polytopic uncertainty.
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Chapter 19
Residual Centered Control and Detection

In our reviewon feedback control systems inChap. 5, a so-called fault-tolerant control
architecture has been introduced, whose core is an observer as well as an observer-
based residual generator. In this context, we have claimed that each dynamic (output)
feedback controller is driven by the residual signal and can be understood as an esti-
mator for a state feedback law.Our furtherwork on fault detection in feedback control
loops in Chap.9 has revealed that maximising fault detectability and maximising sta-
bilitymargin can be achieved in a unifiedmanner. This result is in contradiction to the
common consensus that a good (feedback) controller reduces the fault detectability.

In this chapter, we will study some of these issues from the perspective of sys-
tem performance as well as performance degradation caused by faults. This work
will unify control and detection studies and establish the fundament for our subse-
quent work on fault-tolerant control and performance degradation recovery, in which
residual signals play a central role.

19.1 Residuals and Residual-based Unified System Models

Suppose that the nominal (fault- and uncertainty-free) system under consideration is
an LTI system of the form

y(z) = G(z)u(z), y ∈ Cm, u ∈ C p, (19.1)

whose minimal state space realisation is given by

G : x (k + 1) = Ax (k) + Bu(k), x(0) = x0, y(k) = Cx(k) + Du(k). (19.2)

Here, x ∈ Rn is the state vector, and A, B,C, D are system matrices of appropriate
dimensions. Let
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x̂ (k + 1) = Ax̂ (k) + Bu(k) + L
(
y(k) − ŷ(k)

)
, (19.3)

r(k) = y(k) − ŷ(k), ŷ(k) = Cx̂(k) + Du(k) (19.4)

be a state observer as well as an observer-based residual generator. It is remarkable
that system (19.3)–(19.4) can be re-written as

x̂ (k + 1) = Ax̂ (k) + Bu(k) + Lr(k), (19.5)

y(k) = r(k) + Cx̂(k) + Du(k), (19.6)

whose input-output dynamics is fully identical with the one of the nominal system
(19.1). In fact, for

x̂ (0) = x0,

we have
x̂ (k) = x(k)

as well. In other words, the dynamic system described by (19.5)–(19.6) is an alter-
native input-output model for the dynamics of the nominal system (19.1).

Definition 19.1 The dynamic system (19.5)–(19.6) is called observer-based input-
output model of the nominal system (19.1).

We now consider feedback control systems. Recall that any feedback controller can
be parameterised by

u(z) = Fx̂ (z) − Q(z)r(z), Q(z) ∈ RH∞. (19.7)

It is evident that, different from the nominal model (19.1), all variables needed for
realising a feedback controller given in (19.7) are available in the observer-based
input-output model (19.5)–(19.6). This feature is of essential importance for our
subsequent work.

Using the model (19.5)–(19.6), it is straightforward (see also our discussion in
Sect. 5.2) to find out that, for

u(z) = Fx̂ (z) − Q(z)r(z) + v(z) (19.8)

with v as a reference signal, it holds

[
u (z)
y (z)

]
=

[−Ŷ (z) − M (z) Q (z)
X̂ (z) − N (z) Q (z)

]
r (z) +

[
M (z)
N (z)

]
v (z) . (19.9)

Equation (19.9) is the closed-loop model of the nominal system (19.1) with the

transfer matrix pairs (M(z), N (z)) and
(

X̂(z), Ŷ (z)
)
given by



19.1 Residuals and Residual-based Unified System Models 525

M(z) = (A + B F, B, F, I ) , N (z) = (A + B F, B, C + DF, D) , (19.10)

X̂(z) = (A + B F, L , C + DF, I ) , Ŷ (z) = (A + B F,−L , F, 0) . (19.11)

Remark 19.1 It should be remarked that the control law of the feedback control
loop configuration shown in Fig. 9.1,

u(z) = K (z)y(z) + v(z), (19.12)

is slightly different from the one given in (19.8). The difference lies in the feed-forward
controller. This can be illustrated as follows. According to the Youla parameterisa-
tion, the feedback gain matrix K is written as

K (z) = −
(

X (z) − Q(z)N̂ (z)
)−1 (

Y (z) + Q(z)M̂(z)
)

,

where

M̂(z) = (A − LC,−L , C, I ) , N̂ (z) = (A − LC, B − L D, C, D) ,

X (z) = (A − LC,−(B − L D), F, I ) , Y (z) = (A − LC,−L , F, 0) .

It yields

X (z)u(z) + Y (z)y(z) + Q(z)
(

M̂(z)y(z) − N̂ (z)u(z)
)

=
(

X (z) − Q(z)N̂ (z)
)

v(z).

Writing the observer as

x̂ (k + 1) = (A − LC) x̂ (k) + (B − L D) u(k) + Ly(k)

makes it clear that

X (z)u(z) + Y (z)y(z) = u(z) − Fx̂ (z) .

As a result, the observer-based realisation of the control law (19.12) in the loop
configuration shown in Fig. 9.1 is

u(z) = Fx̂ (z) − Q(z)r(z) +
(

X (z) − Q(z)N̂ (z)
)

v(z),

which demonstrates the difference to the control law (19.8) in the term with the ref-
erence signal v. Since our study is focusing on the influences of system uncertainties
and faults, we view

v̄ (z) =
(

X (z) − Q(z)N̂ (z)
)

v(z)
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as a reference signal and thus neglect this difference without loss of generality.

We now study the influences of unknown inputs, parameter uncertainties and faults
on the system dynamics. For our purpose, we will not distinguish between faults and
disturbances, instead, summarise them as system uncertainties. We adopt the model

x (k + 1) = Ax (k)+ Bu(k)+ Edd(k), y(k) = Cx(k)+ Du(k)+ Fdd(k) (19.13)

to represent additive uncertainties (unknown input vector) with d(k) ∈ Rkd and
Ed , Fd being known system matrices of appropriate dimensions. The dynamics of
the residual vector r with respect to d is governed by

e (k + 1) = (A − LC) e (k) + (Ed − L Fd) d(k), r(k) = Ce(k) + Fdd(k),

where
e (k) = x(k) − x̂(k).

In the case of coprime factor uncertainties, for instance, modelled by

y(z) = G(z)u(z) =
(

M̂(z) + ΔM̂

)−1 (
N̂ (z) + ΔN̂

)
u(z), (19.14)

the dynamics of the residual vector r is described by

r(z) = ΔN̂ u(z) − ΔM̂ y(z).

In the above model, the transfer matrix pair
(

M̂(z), N̂ (z)
)
is the LCF pair of the

nominal system (19.1) and [
ΔM̂ ΔN̂

] ∈ H∞

denotes (stable) uncertainty.Recalling the relations between the left and right coprime
factor uncertainties, as given in Chap.9, it is sufficient to consider the above left
coprime factor uncertainty without loss of generality.

A further class of uncertainties is modelled by

x (k + 1) = Ax (k) + Bu(k) + Ew(k), (19.15)

y(k) = Cx(k) + Du(k) + Fw(k), (19.16)

d(k) = Cd x(k) + Ddu(k) + Fdw(k), (19.17)

w(z) = Δdd(z),Δd ∈ H∞, (19.18)

where d ∈ Rkd , w ∈ Rkw and E, F, Cd , Dd , Fd are known system matrices of
appropriate dimensions.Δd is stable but unknown, and represents systemuncertainty.
It is the LFT model. It yields
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y(z) = G yu (z) u(z) + G yw(z)w(z),

d(z) = Gdu(z)u(z) + Gdw(z)w(z), w(z) = Δdd(z),

G yu (z) = G(z) = (A, B, C, D) , G yw(z) = (A, E, C, F) ,

Gdu(z) = (A, B, Cd , Dd) , Gdw(z) = (A, E, Cd , Fd) ,

which leads to

y(z) = (
G yu (z) + G yw(z)Δd (I − Gdw(z)Δd)

−1 Gdu(z)
)

u(z). (19.19)

Here, it is assumed that I − Gdw(z)Δd is invertible. Recall that the observer-based
residual generator (19.3)–(19.4) can be written as

r(z) = M̂(z)y(z) − N̂ (z)u(z),

M̂(z) = (A − LC,−L , C, I ) , N̂ (z) = (A − LC, B − L D, C, D) .

We have the dynamics of the residual generator as

r(z) = N̂w(z)Δd (I − Gdw(z)Δd)
−1 Gdu(z)u(z),

N̂w(z) = (A − LC, E − L F, C, F) ,

which, on the assumption that

N̂w(z)Δd (I − Gdw(z)Δd)
−1 Gdu(z) ∈ H∞,

is stable. In the sequel, this class of uncertainty will be addressed as a special case
of the left coprime factor uncertainty with

[
ΔM̂ ΔN̂

] = [
0 N̂w(z)Δd (I − Gdw(z)Δd)

−1 Gdu(z)
] ∈ H∞.

It is remarkable that all these types of uncertainties affect the model parameters
or/and the dynamics of the system under consideration directly. In general, they
are not measurable and accessible. On the contrary, the existence of the system
uncertainties will not cause any change in the observer-based input-output model
(19.5)–(19.6) explicitly. Information about the uncertainties is fully embedded in the
residual vector, as demonstrated in the above study, which is available and accessible
in the model (19.5)–(19.6). These two different model forms for the same system
under consideration are schematically demonstrated in Fig. 19.1, in which Δ is used
to denote system uncertainties.
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Fig. 19.1 From the standard model to the observer-based I/O-model: a schematic description

19.2 Control Performance Degradation, Assessment and
Monitoring

Loop transfer recovery (LTR) is a classic topic of control theory. Roughly speaking,
LTR deals with recovering control performance degradation caused by the use of the
state estimate, instead of the state variables themselves, in a state feedback controller.
In this section, we are going to extend this concept to the assessment and monitoring
of system performance degradation in a more general context.

19.2.1 Loop Performance Degradation

For our purpose, we first define the ideal (reference) system performance. Consider
the nominal model (19.2) and re-write it as

xideal (k + 1) = Axideal (k) + Buideal(k), (19.20)

yideal (k) = Cxideal (k) + Duideal(k). (19.21)

With xideal (k) , yideal(k)we denote the ideal state and output variables, respectively,
which are decoupled from any uncertainty. Moreover, we define

uideal(k) := Fxideal (k) + v(k). (19.22)

Recall that
u(z) = Fx̂ (z) − Q(z)r(z) + v(z)

is the parameterisation form of the feedback controller and Fx̂ (z) − Q(z)r(z) is an
estimate for Fxideal as well. Thus, the difference eu(z),

eu(z) = uideal(z) − u(z) = Fex (z) + Q(z)r(z),

ex (z) = xideal(z) − x̂(z),
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quantifies the (performance) loss in the control signal caused by the use of the
estimate for the state vector x . Similarly, we define the difference,

ey(z) = yideal(z) − y(z) = yideal(z) − ŷ(z) − r(z)

= (C + DF) ex (z) + DQ(z)r(z) − r(z),

that indicates the loss in the output (performance). Using the observer-based input-
output model (19.5)–(19.6) yields

ex (z) = (z I − AF )−1 (B Q(z) − L) r(z), AF = A + B F,

eu(z) = F (z I − AF )−1 (B Q(z) − L) r(z) + Q(z)r(z),

ey(z) = (C + DF) (z I − AF )−1 (B Q(z) − L) r(z) + DQ(z)r(z) − r(z),

which can be further written as, noting (19.10)–(19.11),

eL P D(z) =
[

eu(z)
ey(z)

]
=

[
Ŷ (z) + M(z)Q(z)

−X̂(z) + N (z)Q(z)

]
r(z). (19.23)

We call system (19.23) (control) loop performance degradation model (LPDM) with
the residual vector r as input and eL P D as output. Note that eL P D(z) can be (online)
computed using either (19.23) or

eL P D(z) =
[

M (z)
N (z)

]
v (z) −

[
u (z)
y (z)

]
.

Consequently, eL P D(z) can be understood as the difference between the SIR of the
nominal system (the ideal state feedback control case) and the real system input and
output signals (u(z), y(z)).

We would like to emphasise that the dynamic system in the LPDM,

[
Ŷ (z) + M(z)Q(z)

−X̂(z) + N (z)Q(z)

]
,

is the SIR of the feedback controller used. Thus, tuning the controller can directly
reduce the (control) loop performance degradation (LPD) caused by themodel uncer-
tainties. Moreover, as discussed in Chap.9, both the controller and observer design
can change the dynamics of the residual generator with respect to the model uncer-
tainties.
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19.2.2 Assessment and Monitoring of Control Performance
Degradation

In this and next sub-sections, we will propose two performance degradation assess-
ment and monitoring schemes. The first one is dedicated to the assessment of control
performance with respect to an ideal linear quadratic (LQ) controller (regulator). The
second one addresses the performance assessment issue based on loop data eL P M

with respect to any given controller.

Ideal LQ Controller

For our purpose, we design an LQ controller as the ideal controller for the nominal
system (19.20). Let the cost function be

J (i) =
∞∑

k=i

γ k−i
[

xT
ideal(k) uT

ideal(k)
] [

Qx Qxu

Qux Qu

] [
xideal(k)

uideal(k)

]
, (19.24)

[
Qx Qxu

Qux Qu

]
≥ 0, Qu > 0, Qux = QT

xu, 0 < γ ≤ 1.

Applying dynamic programming technique to solving the LQ optimisation problem,

min
uideal

J (i)

s.t. xideal (k + 1) = Axideal (k) + Buideal(k),

results in

min
uideal

J (i) = xT
ideal(i)Pxideal (i) ,

u∗
ideal(i) = argmin

uideal

J (i) = K xideal (i) ,

K = − (
Qu + γ BT P B

)−1 (
Qux + γ BT P A

)
,

with

P =γ AT P A + Qx + K T
(
Qu + γ BT P B

)
K

+ K T
(
Qux + γ BT P A

) + (
γ AT P B + Qxu

)
K ⇐⇒

P =γ AT P A + Qx − K T
(
Qu + γ BT P B

)
K ⇐⇒

P =γ AT
K P AK + Qx + K T Qu K + K T Qux + Qxu K ,

AK =A + BK , P > 0.
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Reference System

We consider a reference system described by

x(k + 1) = A(k)x(k) + B(k)u(k) + w(k), (19.25)

y(k) = C(k)x(k) + D(k)u(k) + q(k), (19.26)

wherew(k), q(k) are process and measurement noise vectors. It is assumed that they
are uncorrelated with the state and input vectors, and

w(k) ∼ N (0,Σw) , q(k) ∼ N (
0,Σq

)
, (19.27)

E

⎛

⎜
⎝

⎡

⎣
w(i)
q(i)
x (0)

⎤

⎦

⎡

⎣
w( j)
q( j)
x (0)

⎤

⎦

T
⎞

⎟
⎠ =

⎡

⎣

[
Σw Swq

ST
wq Σq

]
δi j 0

0 �0

⎤

⎦

with known matrices Σw,Σq , Swq . Applying a (steady) Kalman filter for the state
estimation and residual generation purposes leads to

x̂(k + 1 |k ) = Ax̂(k |k − 1 ) + Bu(k) + Lr(k), x̂(0) = 0, (19.28)

r(k) = y(k) − ŷ(k |k − 1 ), ŷ(k |k − 1 ) = Cx̂(k |k − 1 ) + Du(k),

(19.29)

Y = AY AT + Σw − LΣr LT , L = (
AY CT + Swq

)
Σ−1

r ,

Y = E
((

x(k) − x̂(k |k − 1 )
) (

x(k) − x̂(k |k − 1 )
)T

)
,

Σr =E (
r(k)r T (k)

) = CY CT + Σq , Y > 0

with the residual vector r(k) ∈ Rm being white and L as the Kalman filter (observer)
gain matrix.

Since our reference system is a stochastic process, the cost function under con-
sideration is modified to

JR(i) =E
∞∑

k=i

γ k−i
[

xT (k) uT (k)
] [

Qx Qxu

Qux Qu

] [
x(k)

u(k)

]
, (19.30)

[
Qx Qxu

Qux Qu

]
≥ 0, Qu > 0, Qux = QT

xu, 0 < γ < 1.

Minimising JR(i) is the well-established linear quadratic Gaussian (LQG) con-
trol problem. Below, we solve this optimisation problem alternatively based on the
observer-based input-output model (19.5)–(19.6) with

x̂(k) = x̂(k |k − 1 ), ŷ(k) = ŷ(k |k − 1 ).
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Let
min

u
JR(i) = x̂ T (i |i − 1 )Px̂(i |i − 1 ) + c

andwrite theminimisation of JR(i) as, following the dynamic programmingmethod,

min
u

JR(i) = min
u(i)

E
⎛

⎝
[

xT (i) uT (i)
] [

Qx Qxu

Qux Qu

] [
x(i)
u(i)

]

+γ x̂ T (i + 1 |i )Px̂(i + 1 |i ) + γ c

⎞

⎠

= min
u(i)

E

⎛

⎜⎜
⎝

[
xT (i) uT (i)

] [
Qx Qxu

Qux Qu

] [
x(i)
u(i)

]

+γ
(

Ax̂(i |i − 1 ) + Bu(i) + Lr(i)
)T

P
· (Ax̂(i |i − 1 ) + Bu(i) + Lr(i)

) + γ c

⎞

⎟⎟
⎠ .

Since r(k) is independent of x̂(k |k − 1 ), u(k) and

E (x(k)) = x̂(k |k − 1 ), E (r(k)) = 0,

E (
xT (k)Qx x(k)

) = ExT (k)QxEx(k)

+ tr
(
QxE (x(k) − Ex(k)) (x(k) − Ex(k))T

)

= x̂ T (k |k − 1 )Qx x̂(k |k − 1 ) + tr (Qx Y ) ,

E (
(Lr(k))T P Lr(k)

) = tr
(
P LE (

r(k)r T (k)
)

LT
) = tr

(
P LΣr LT

)
,

it yields

min
u(i)

JR(i) = min
u(i)

([
x̂ T (i |i − 1 ) uT (i)

]
Q

[
x̂(i |i − 1 )

u(i)

])

+tr (Qx Y ) + γ tr
(
P LΣr LT

) + γ c,

Q =
[

Qx + γ AT P A Qxu + γ AT P B
Qux + γ BT P A Qu + γ BT P B

]
.

Note that the minimisation in the first term of the above equation is an LQ control
problem. As a result, we have the final solution as follows:

min
u(i)

JR(i) = x̂ T (i |i − 1 )Px̂(i |i − 1 ) + c,

u∗(i) = argmin
u(i)

JR(i) = K x̂(i |i − 1 ),

K = − (
Qu + γ BT P B

)−1 (
Qux + γ BT P A

)
,

with
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P = γ AT P A + Qx − K T
(
Qu + γ BT P B

)
K , P > 0,

c = γ c + tr (Qx Y ) + γ tr
(
P LΣr LT

) =⇒ c = tr (Qx Y ) + γ tr
(
P LΣr LT

)

1 − γ
.

Assessment and Monitoring

On the assumption of steady state operation, it holds

ΔJre f (i) = min
u

JR(i) − min
uideal

J (i) = tr (Qx Y ) + γ tr
(
P LΣr LT

)

1 − γ
. (19.31)

ΔJre f represents the performance degradation caused by (i) the use of an observer
(Kalman filter) for the state estimation, and (ii) process and measurement noises.
Considering that the existence of process and measurement noises is the nature of
any industrial process and a Kalman filter delivers the minimum covariance matrices
of the state estimation error (x(k) − x̂(k |k − 1 )) and residual signal (r(k)), ΔJre f

is the minimum performance degradation. In other words, model uncertainties and
unknown inputs, as described in the last section (as given in (19.13), (19.14) as well
as (19.19)), may cause

J (i) = x̂ T (i |i − 1 )Px̂(i |i − 1 ) +
tr

(
Qx Ŷ (i)

)
+ γ tr

(
P LΣ̂r (i)LT

)

1 − γ

becoming considerably large during real operations, so that

ΔJ (i) = J (i) − xT
ideal(i)Pxideal (i) >>

tr (Qx Y ) + γ tr
(
P LΣr LT

)

1 − γ
. (19.32)

In (19.32), Ŷ (i), Σ̂r (i) are the estimates for

E (
x(i) − x̂(i |i − 1 )

) (
x(i) − x̂(i |i − 1 )

)T
, E (

r(i)r T (i)
)
,

respectively. This observation motivates us to introduce the following definition.

Definition 19.2 Given ΔJre f (i) and ΔJ (i) defined in (19.31) and (19.32) respec-
tively, the value

PC P D(i) = 1 − ΔJre f (i)

ΔJ (i)
(19.33)

is called the degree of control performance degradation (DCPD).

It is clear that in general
0 ≤ PC P D(i) < 1,
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and a larger PC P D-value corresponds to a higher degree of performance degrada-
tion. In fact, PC P D(i) can also be applied for the purpose of performance-based fault
detection. Given a threshold Jth,C P D (>0) that represents the tolerant limit to the per-
formance degradation caused by changes in the control system under consideration,
an alarm is released when

PC P D(i) > Jth,C P D.

19.2.3 Loop Performance Degradation Assessment and
Monitoring

Recall that for the computation of ΔJ (i), Ŷ (i) is needed, which is generally not
available. Alternatively, the loop variable eL P D and LPDM (19.23) can be used
for assessing and monitoring loop performance degradation. In this sub-section, we
propose an alternative control performance assessment andmonitoring scheme based
on the loop variable eL P D.

Reference System

Suppose that the ideal (nominal) system is modelled by (19.20)–(19.21) and the
feedback control gain matrix F in control law (19.22) is given. Again, we adopt
the system model (19.25)–(19.26) as the reference system and apply the Kalman
filter (19.28)–(19.29) for the residual generation and state estimation purpose. The
corresponding control law is

u(k) = Fx̂(k |k − 1 ) + v(k).

The state space representation of LPDM (19.23) is

ex (k + 1) = (A + B F) ex (k) − Lr(k), (19.34)

ex (k) = xideal(k) − x̂(k |k − 1 ),

eu(k) = Fex (k), ey(k) = (C + DF) ex (k) − r(k). (19.35)

We now introduce the following index as a reference for loop performance degrada-
tion:

JL P D,R(i) = E
∞∑

k=i

γ k−i
(
eT

y (k)Qyey(k) + eT
u (k)Queu(k)

)
, (19.36)

Qy ≥ 0, Qu ≥ 0, 0 < γ < 1.

Write JL P D,R(i) into
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JL P D,R(i) = E ((
eT

y (i)Qyey(i) + eT
u (i)Queu(i)

) + γ JL P D,R(i + 1)
)
.

Note that

E
(

eT
y (i)Qyey(i) + eT

u (i)Queu(i)
)

= EeT
x (i)Qex (i) + Er T (i)r(i)

= tr (Qcov (ex (i)) + Σr ) ,

Q = (C + DF)T Qy (C + DF) + FT Qu F,

cov (ex (i)) = E (
xideal (i) − x̂(i |i − 1 )

) (
xideal (i) − x̂(i |i − 1 )

)T
,

and recall

cov (ex (i + 1)) = (A + B F) cov (ex (i)) (A + B F)T + LΣr LT

with (A + B F) being a Schur matrix, which yields

lim
i→∞ cov (ex (i)) = Σex > 0,

Σex = (A + B F)Σex (A + B F)T + LΣr LT .

As a result, it holds in the steady state,

JL P D,R(i) = tr
(
QΣex + Σr

) + γ JL P D,R(i + 1).

Let
JL P D,R(i) = c.

We finally have

c = tr
(
QΣex + Σr

)

1 − γ
=⇒ JL P D,R(i) = tr

(
QΣex + Σr

)

1 − γ
. (19.37)

Assessment and Monitoring

Now, we are in the position to introduce the assessment and monitoring scheme for
performance degradation. Assume that the dynamics of the real control system is
described by the observer-based closed-loop model (19.9) with model uncertainties
or unknown inputs described by (19.13) or/and (19.14) or/and (19.19). Using (online)
measurement data, state observer and residual generator as well as ideal (nominal)
system model (19.20), r(k), x̂(k), xideal(k), k = i, i + 1, · · · , can be computed
online and further used for estimating Σex ,Σr ,
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Σ̂ex = 1

N

N+i∑

k=i

(
xideal(k) − x̂(k)

) (
xideal(k) − x̂(k)

)T
,

Σ̂r = 1

N

N+i∑

k=i

r(k)r T (k).

An estimate for the (online) performance degradation is then given by

JL P D(i) =
tr

(
QΣ̂ex + Σ̂r

)

1 − γ
. (19.38)

With the same arguments for the definition of DCPD, we now introduce the concept
of degree of loop performance degradation.

Definition 19.3 Given JL P D,R(i) and JL P D(i) defined in (19.37) and (19.38)
respectively, the value

PL P D(i) = 1 − JL P D,R(i)

JL P D(i)
(19.39)

is called the degree of loop performance degradation (DLPD).

DLPD can also be used for the fault detection purpose. It measures, to some degree
and generally speaking, the difference between the ideal process input and output
values and the real operating ones. If the DLPD-value is larger than a given threshold
Jth,L P D,

PL P D(i) > Jth,L P D,

an alarm will be released. This indicates the loop performance degradation caused
by changes in the control system cannot be accepted.

19.3 SIR of Feedback Controller and System Performances

The transfer matrix,

[
Ŷ (z) + M(z)Q(z)

−X̂(z) + N (z)Q(z)

]
=

[
Ŷ (z) + M(z)Q(z)

−
(

X̂(z) − N (z)Q(z)
)

]

,

is the SIR of the feedback controller,

u(z) = K (z)y(z), K (z) = −
(

Ŷ (z) + M(z)Q(z)
) (

X̂(z) − N (z)Q(z)
)−1

.
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Fig. 19.2 Feedback control loop

In the rich collection of the existing methods for the design of (LTI) feedback con-
trollers, very few methods could be identified as being dedicated to the controller
design in the context of the controller SIR. In this section, we summarise some
important relations between a norm of the controller SIR and different system (con-
trol) performances, which are useful for online optimisation and reconfiguration of
feedback controllers in the fault-tolerant control framework.

19.3.1 Stability Margin

Stability margin is an essential control performance that, roughly speaking, indicates
the stability reserve of a feedback control loop. In other words, stability margin
measures the tolerant degree of a feedback controller to loop uncertainties in the
context of system stability. Consider the standard feedback loop sketched in Fig.
19.2. The loop dynamics is governed by

[
u(z)
y(z)

]
=

[
I −K (z)

−G(z) I

]−1 [
v1(z)
v2(z)

]

=
[

(I − K (z)G(z))−1 (I − K (z)G(z))−1 K (z)
(I − G(z)K (z))−1 G(z) (I − G(z)K (z))−1

] [
v1(z)
v2(z)

]

=
[

(I − K (z)G(z))−1 (I − K (z)G(z))−1 K (z)
G(z) (I − K (z)G(z))−1 I + G (z) (I − K (z)G(z))−1 K (z)

] [
v1(z)
v2(z)

]

=
[

I + K (z) (I − G(z)K (z))−1 G(z) K (z) (I − G(z)K (z))−1

(I − G(z)K (z))−1 G(z) (I − G(z)K (z))−1

] [
v1(z)
v2(z)

]
.

In the literature, there are different concepts for introducing the definition of stability
margin. For instance,

bRC F =
∥
∥∥∥

(I − K (z)G(z))−1 (I − K (z)G(z))−1 K (z)
G(z) (I − K (z)G(z))−1 G (z) (I − K (z)G(z))−1 K (z)

∥
∥∥∥

−1

∞
(19.40)
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or its dual form

bLC F =
∥∥∥∥

K (z) (I − G(z)K (z))−1 G(z) K (z) (I − G(z)K (z))−1

(I − G(z)K (z))−1 G(z) (I − G(z)K (z))−1

∥∥∥∥

−1

∞
(19.41)

is a widely adopted definition. The transfer matrix in (19.40) is the one from (v1, v2)

to (u, α), while the one in (19.41) describes the dynamics from (v1, v2) to (β, y) ,

as shown in Fig. 19.2. Equivalently, we have the following relations

[
(I − K (z)G(z))−1 (I − K (z)G(z))−1 K (z)

G(z) (I − K (z)G(z))−1 G (z) (I − K (z)G(z))−1 K (z)

]

=
[

(I − K (z)G(z))−1 (I − K (z)G(z))−1 K (z)
G(z) (I − K (z)G(z))−1 I + G (z) (I − K (z)G(z))−1 K (z)

]
−

[
0 0
0 I

]
,

[
K (z) (I − G(z)K (z))−1 G(z) K (z) (I − G(z)K (z))−1

(I − G(z)K (z))−1 G(z) (I − G(z)K (z))−1

]

=
[

I + K (z) (I − G(z)K (z))−1 G(z) K (z) (I − G(z)K (z))−1

(I − G(z)K (z))−1 G(z) (I − G(z)K (z))−1

]
−

[
I 0
0 0

]
.

The following results are well-known in the literature for the computation of stability
margin defined in (19.40) or (19.41)

bRC F = ∥∥ Xo(z) − Q(z)N̂ (z) Yo(z) + Q(z)M̂(z)
∥∥−1

∞ , (19.42)

bLC F =
∥∥∥∥

X̂o(z) − N (z)Q(z)
Ŷo(z) + M(z)Q(z)

∥∥∥∥

−1

∞
, (19.43)

where (Xo(z), Yo(z)) ,
(

X̂o(z), Ŷo(z)
)
satisfy Bezout identity corresponding to the

normalised RC and LC pairs of G(z). In order to well understand this issue and
considering that some of the results will be useful for our subsequent work, we are
going to demonstrate (19.42) schematically. Equation (19.43) is the dual result of
(19.42).

Since
[

(I − K (z)G(z))−1 (I − K (z)G(z))−1 K (z)
G(z) (I − K (z)G(z))−1 G (z) (I − K (z)G(z))−1 K (z)

]

=
[

I
G(z)

]
(I − K (z)G(z))−1 [

I K (z)
]
,

G(z) = N (z) M−1(z),

K (z) = −
(

X (z) − Q(z)N̂ (z)
)−1 (

Y (z) + Q(z)M̂(z)
)

,

it turns out by Bezout identity
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[
I

G(z)

]
(I − K (z)G(z))−1 [

I K (z)
]

=
[

M(z)
N (z)

] [
X (z) − Q(z)N̂ (z) − Y (z) − Q(z)M̂(z)

]
.

Let (Mo(z), No(z)) be the normalised RC pair of G(z). Recall the result

[
Mo(z)
No(z)

]
=

[
M(z)
N (z)

]
Qo(z), Qo(z) = I + (Fo − F)

(
z I − AFo

)−1
B,

AFo = A + B Fo,

where Fo, F are the state feedback gain adopted in (Mo, No) and (M, N ) , respec-
tively. It holds

∥∥∥∥

[
M(z)
N (z)

] [
X (z) − Q(z)N̂ (z) − Y (z) − Q(z)M̂(z)

]
∥∥∥∥∞

=
∥∥∥∥

[
Mo(z)
No(z)

]
Q−1

o (z)
[

X (z) − Q(z)N̂ (z) − Y (z) − Q(z)M̂(z)
]
∥∥∥∥∞

= ∥∥Q−1
o (z)

[
X (z) − Q(z)N̂ (z) − Y (z) − Q(z)M̂(z)

]∥∥
∞ ,

Q−1
o (z) = I + (F − Fo) (z I − AF )−1 B, AF = A + B F.

The following lemma provides us with a useful relation between

Q−1
o (z)

[
X (z) − Q(z)N̂ (z) − Y (z) − Q(z)M̂(z)

]
and

[
Xo(z) − Q(z)N̂o(z) Yo(z) + Q(z)M̂o(z)

]
.

Lemma 19.1 Given Q−1
o (z), X (z), Y (z), it holds

Q−1
o (z)X (z) = Xo(z) − QF (z)N̂ (z), Q−1

o (z)Y (z) = Yo(z) + QF (z)M̂(z),

QF (z) = − (F − Fo) (z I − AF )−1 L ∈ RH∞,

Xo(z) = (A − LC,−(B − L D), Fo, I ) , Yo(z) = (A − LC,−L , Fo, 0) .

Proof Since

Q−1
o (z)F = F + (F − Fo) (z I − AF )−1 B F

= Fo + (F − Fo) + (F − Fo) (z I − AF )−1 B F

= Fo + (F − Fo) (z I − AF )−1 (z I − A) ,

it turns out

Q−1
o (z)Y (z) = Yo(z) − (F − Fo) (z I − AF )−1 (z I − A) (z I − AL)−1 L .
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The relation

(z I − A) (z I − AL)−1 L = (
I + LC (z I − A)−1

)−1
L

= L
(
I − C (z I − A + LC)−1 L

) = L M̂(z)

results in
Q−1

o (z)Y (z) = Yo(z) + QF (z)M̂(z).

Now, consider Q−1
o (z)X (z), which can be written as

Q−1
o (z)X (z) = Q−1

o (z) − Q−1
o (z)F (z I − AL)−1 (B − L D).

It holds, analogue to the above study,

Q−1
o (z)F (z I − AL)−1 (B − L D) = Fo (z I − AL)−1 (B − L D)

− (F − Fo) (z I − AF )−1
(
I − LC (z I − A + LC)−1

)
(B − L D),

which yields

Q−1
o (z)X (z) = Xo(z) + (F − Fo) (z I − AF )−1 B

− (F − Fo) (z I − AF )−1
(
I − LC (z I − A + LC)−1

)
(B − L D)

= Xo(z) + (F − Fo) (z I − AF )−1 L
(
D + C (z I − A + LC)−1 (B − L D)

)

= Xo(z) − QF (z)N̂ (z).

The lemma is proved.

It follows from Lemma 19.1 that

Q−1
o (z)

[
X (z) − Q(z)N̂ (z) − Y (z) − Q(z)M̂(z)

]

= [
Xo(z) − Q̄(z)N̂ (z) − Yo(z) − Q̄(z)M̂(z)

]
,

Q̄(z) = Q−1
o (z)Q(z) + QF (z) ∈ RH∞.

Moreover,

∥
∥ Xo(z) − Q̄(z)N̂ (z) − Yo(z) − Q̄(z)M̂(z)

∥
∥

∞
= ∥∥ Xo(z) − Q̄(z)N̂ (z) Yo(z) + Q̄(z)M̂(z)

∥∥
∞ ,

which finally leads to the computation formula (19.42).

Remark 19.2 It is well-known that the RCF of a transfer matrix G is not unique
and depends on state feedback gain matrix F. As the dual result of Lemma 4.1, there
exists the relation
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[
M2(z)
N2(z)

]
=

[
M1(z)
N1(z)

]
Q21(z), Q21(z) = I + (F2 − F1) (z I − A − B F2)

−1 B,

Mi (z) = (A + B Fi , B, Fi , I ) , Ni (z) = (A + B Fi , B, C + DFi , D) , i = 1, 2.

According Bezout identity, there exist (Xi (z), Yi (z)) , i = 1, 2, so that

Xi (z)Mi (z) + Yi (z)Ni (z) = I.

Now, multiplying Q21(z) to the right side of

X1(z)M1(z) + Y1(z)N1(z) = I

yields
X1(z)M2(z) + Y1(z)N2(z) = Q21(z),

which shows that

Q12(z)
[

X1(z) Y1(z)
]
, Q12(z) = Q−1

21 (z) ∈ RH∞

should be a left inverse of [
M2(z)
N2(z)

]
,

like
[

X2(z) Y2(z)
]
. Lemma 19.1 and its proof verify this result, which can be for-

mulated in a more general form

Q12(z)
[

X1(z) Y1(z)
] = [

X2(z) Y2(z)
] + Q (z)

[−N̂2(z) M̂2(z)
]

=⇒ Q12(z)
[

X1(z) Y1(z)
] [

M2(z)
N2(z)

]
= I,

Q(z) = − (F1 − F2) (z I − A − B F1)
−1 L ∈ RH∞.

A further definition of stability margin known in the literature is given by

bLC F =
∥∥∥
∥

[
K (z)

I

]
(I − G(z)K (z))−1 M̂−1 (z)

∥∥∥
∥

−1

∞
. (19.44)

Note that

[
K (z)

I

]
(I − G(z)K (z))−1 M̂−1 (z) =

[−Ŷ (z) − M (z) Q (z)
X̂ (z) − N (z) Q (z)

]

is the transfermatrix from the residual vector r to the process input and output vectors
(u, y) . Thus,
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bLC F =
∥∥∥
∥

[
K (z)

I

]
(I − G(z)K (z))−1 M̂−1 (z)

∥∥∥
∥

−1

∞

=
∥∥∥∥

−Ŷ (z) − M (z) Q (z)
X̂ (z) − N (z) Q (z)

∥∥∥∥

−1

∞
=

∥∥∥∥
Ŷ (z) + M (z) Q (z)
X̂ (z) − N (z) Q (z)

∥∥∥∥

−1

∞
. (19.45)

Below, we introduce the concept of stability margin on the basis of our closed-
loop model (19.9). Without loss of generality, suppose that the uncertainty under
consideration is modelled in form of the left coprime factor

[
ΔM̂ ΔN̂

] ∈ H∞.

It holds

[
u (z)
y (z)

]
=

[−Ŷ (z) − M (z) Q (z)
X̂ (z) − N (z) Q (z)

]
r (z) +

[
M (z)
N (z)

]
v (z) =⇒

[
u (z)
y (z)

]
=

(
I −

[−Ŷ (z) − M (z) Q (z)
X̂ (z) − N (z) Q (z)

] [
ΔN̂ −ΔM̂

])−1 [
M (z)
N (z)

]
v (z) .

It follows from the small gain theorem that the closed-loop dynamics is stable for all(
ΔM̂ ,ΔN̂

)
if and only if

∥
∥∥∥

[−Ŷ (z) − M (z) Q (z)
X̂ (z) − N (z) Q (z)

]
[
ΔN̂ −ΔM̂

]
∥
∥∥∥

∞
< 1,

which is equivalent to the conclusion that the closed-loop dynamics is stable for all(
ΔM̂ ,ΔN̂

)
if and only if

∥∥∥∥

[−Ŷ (z) − M (z) Q (z)
X̂ (z) − N (z) Q (z)

]∥∥∥∥

−1

∞
>

∥∥[
ΔN̂ −ΔM̂

]∥∥∞ .

In this context, we introduce the concept of stability margin.

Definition 19.4 Given feedback control loop model (19.9), then

bLC F =
∥∥
∥∥

Ŷ (z) + M (z) Q (z)
X̂ (z) − N (z) Q (z)

∥∥
∥∥

−1

∞
(19.46)

is called loop stability margin (LSM).

It is evident that LSM defined in (19.46) is consistent with the definitions given in
(19.43) and (19.44). The dual form of bLC F is

bRC F = ∥∥ X (z) − Q(z)N̂ (z) Y (z) + Q(z)M̂(z)
∥∥−1

∞ . (19.47)
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Both bLC F and bRC F will be applied in our fault-tolerant control and performance
degradation recovery framework.

Remark 19.3 The sub-indices of bLC F and bRC F stand for left and right coprime
factor uncertainties.

In order to reach the maximum LSM value, we can solve the following optimisation
problem

b−1
opt = min

Q(z)∈RH∞
b−1

LC F = min
Q(z)∈RH∞

∥
∥∥∥

Ŷ (z) + M (z) Q (z)
X̂ (z) − N (z) Q (z)

∥
∥∥∥

∞
. (19.48)

Theorem 19.1 Given (M (z) , N (z)) and
(

X̂ (z) , Ŷ (z)
)

as defined in (19.10)–

(19.11), and let (Mo (z) , No (z)) be normalised (M (z) , N (z)) with the correspond-

ing matrix pair
(

X̂o(z), Ŷo(z)
)

satisfying

X̂o(z) = (A + B Fo, L , C + DFo, I ) , Ŷo(z) = (A + B Fo,−L , Fo, 0) .

Then,

b−1
opt = min

Q(z)∈RH∞

∥∥∥∥
Ŷo (z) + Mo (z) Q (z)
X̂o (z) − No (z) Q (z)

∥∥∥∥
∞

. (19.49)

In order to prove this theorem, we first introduce the following known lemma. The
reference is given at the end of this chapter.

Lemma 19.2 Given

Mi (z) = (A + B Fi , B, Fi , I ) , Ni (z) = (A + B Fi , B, C + DFi , D) ,

X̂i (z) = (A + B Fi , L , C + DFi , I ) , Ŷi (z) = (A + B Fi ,−L , Fi , 0) , i = 1, 2,

then it holds

[
X̂1(z)
Ŷ1(z)

]
=

[
X̂2(z)
Ŷ2(z)

]
+

[
M2(z)

−N2(z)

]
Q̄(z),

Q̄(z) = Q12(z) (F1 − F2) (z I − A − B F2)
−1 L ,

Q12(z) = I + (F1 − F2) (z I − A − B F1)
−1 B.

Proof (Proof of Theorem 19.1) It follows from the relation

[
M2(z)
N2(z)

]
=

[
M1(z)
N1(z)

]
Q21(z), Q21(z) = I + (F2 − F1) (z I − A − B F2)

−1 B,

and Lemma 19.2 that
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[
Ŷ (z) + M (z) Q (z)
X̂ (z) − N (z) Q (z)

]

can be written as

[
Ŷ (z) + M (z) Q (z)
X̂ (z) − N (z) Q (z)

]
=

[
Ŷo (z) + Mo (z) Q̂ (z)
X̂o (z) − No (z) Q̂ (z)

]
,

Q̂ (z) = Qo(z)
(
Q (z) + (F − Fo) (z I − A − B Fo)

−1 L
) ∈ RH∞,

Qo(z) = I + (F − Fo) (z I − A − B F)−1 B.

As a result,

min
Q(z)∈RH∞

∥∥∥∥
Ŷ (z) + M (z) Q (z)
X̂ (z) − N (z) Q (z)

∥∥∥∥
∞

= min
Q̂(z)∈RH∞

∥
∥∥∥

[
Ŷo (z) + Mo (z) Q̂ (z)
X̂o (z) − No (z) Q̂ (z)

]∥
∥∥∥

∞
.

The theorem is thus proved.

A dual form of this result,

min
Q(z)∈RH∞

∥∥ X (z) − Q(z)N̂ (z) Y (z) + Q(z)M̂(z)
∥∥

∞

= min
Q(z)∈RH∞

∥∥ Xo(z) − Q(z)N̂ (z) Yo(z) + Q(z)M̂(z)
∥∥

∞ ,

can be proved using Lemma 19.1.

19.3.2 Residual and Fault Detectability

As discussed inChap. 9 and Sect. 19.1, an observer-based residual vector is a function
of system uncertainties (including faults). Without loss of generality, we consider
uncertainty [

ΔM̂ ΔN̂

] ∈ H∞

and unknown input v2 in the feedback control loop sketched in Fig. 19.2. On the
basis of model (19.5)–(19.6), we have



19.3 SIR of Feedback Controller and System Performances 545

[
u (z)
y (z)

]
=

[−Ŷ (z) − M (z) Q (z)
X̂ (z) − N (z) Q (z)

]
r (z) +

[
M (z)
N (z)

]
v̄(z),

v̄(z) =
(

X (z) − Q(z)N̂ (z)
)

v1 (z) ,

r(z) =M̂(z)y(z) − N̂ (z)u(z) = ΔN̂ u(z) − ΔM̂ y(z) +
(

M̂(z) + ΔM̂

)
v2(z),

which leads to

r(z) =
(

I + [
ΔN̂ ΔM̂

] [
U (z)
V (z)

])−1

⎛

⎜
⎝

[
ΔN̂ −ΔM̂

] [
M (z)
N (z)

]
v̄(z)

+
(

M̂(z) + ΔM̂

)
v2(z)

⎞

⎟
⎠ , (19.50)

U (z) = Ŷ (z) + M (z) Q (z) , V (z) = X̂ (z) − N (z) Q (z) . (19.51)

We are interested in the influence of the SIR of the controller,

[
U (z)
V (z)

]
, on the

residual vector r and on the fault detectability. To this end, we check

rL2 :=
∥∥∥∥∥

(
I + [

ΔN̂ ΔM̂

] [
U (z)
V (z)

])−1
∥∥∥∥∥∞

,

r− := inf
θ

σmin

((
I + [

ΔN̂ ΔM̂

] [
U

(
e jθ

)

V
(
e jθ

)
])−1

)

.

Here, σmin (·) denotes the minimum singular value of a matrix. When l2-norm of r is
adopted for the evaluation purpose, rL2 indicates the maximal l2-gain, while r− can
be interpreted as the minimum l2-gain. Notice the following two inequalities:

∀ [
ΔM̂ ΔN̂

] ∈ H∞,
∥∥∥∥
∥

(
I + [

ΔN̂ ΔM̂

] [
U (z)
V (z)

])−1
∥∥∥∥
∥∞

≤ 1

1 − ∥∥ΔN̂ ΔM̂

∥∥∞

∥
∥∥∥

[
U
V

]∥
∥∥∥∞

, (19.52)

inf
θ

σmin

((
I + [

ΔN̂ ΔM̂

] [
U

(
e jθ

)

V
(
e jθ

)
])−1

)

(19.53)

≥ 1

1 + ∥∥ΔN̂ ΔM̂

∥∥∞

∥∥∥∥

[
U
V

]∥∥∥∥∞

.

Moreover, for some
[
ΔM̂ ΔN̂

] ∈ H∞, it holds
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∥∥
∥∥∥

(
I + [

ΔN̂ ΔM̂

] [
U (z)
V (z)

])−1
∥∥
∥∥∥∞

= 1

1 − ∥∥ΔN̂ ΔM̂

∥∥∞

∥∥∥∥

[
U
V

]∥∥∥∥∞

,

inf
θ

σmin

((
I + [

ΔN̂ ΔM̂

] [
U

(
e jθ

)

V
(
e jθ

)
])−1

)

= 1

1 + ∥∥ΔN̂ ΔM̂

∥∥∞

∥∥∥∥

[
U
V

]∥∥∥∥∞

.

The reader is called to pay attention to the following facts:

• a robust controller will lead to a smaller rL2 ,

• the threshold setting is proportional to rL2 : a smaller rL2 results in a lower thresh-
old, and

• for a given threshold, the larger r− is, the more sensitive r is for the changes in the
loop.

In this context, we introduce the following concept.

Definition 19.5 Given rL2,r− defined by (19.52) and (19.53), the ratio

Idet := r−
rL2

(19.54)

is called indicator of fault detectability in a feedback control loop.

It is evident that a larger Idet value indicates a higher fault detectability, and

1 − ∥∥ΔN̂ ΔM̂

∥∥∞

∥∥∥∥

[
U
V

]∥∥∥∥∞

1 + ∥∥ΔN̂ ΔM̂

∥∥∞

∥
∥∥∥

[
U
V

]∥
∥∥∥∞

≤ r−
rL2

≤ 1. (19.55)

Remark 19.4 It should be emphasised that, in the context of performance-based
fault detection, a fault is understood as the changes (uncertainty) in the process
under consideration (the feedback control loop in this case) that are beyond the limit
of technical tolerance.

It follows from inequalities (19.52) and (19.53) that reducing

∥
∥∥∥

[
U
V

]∥
∥∥∥∞

• enhances the system robustness against the uncertainties (including faults) in the
regard of the system stability, and simultaneously results in a lower threshold, and

• increases r−, which enhances the sensitivity of the residual to the faults (to be
detected).

As a result, the lower bound of the ratio Idet becomes larger. In this context, it can

be concluded that reducing

∥
∥∥∥

[
U
V

]∥
∥∥∥∞

improves fault detectability. The inequality

(19.55) reveals that a good fault detectability is achieved when
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1 − ∥
∥ΔN̂ ΔM̂

∥
∥∞

∥∥
∥∥

[
U
V

]∥∥
∥∥∞

1 + ∥∥ΔN̂ ΔM̂

∥∥∞

∥∥∥
∥

[
U
V

]∥∥∥
∥∞

is (very) close to 1. In this regard, the following optimisation problem is formulated

sup
K (z)

1 − ∥∥ΔN̂ ΔM̂

∥∥∞

∥∥∥∥

[
U
V

]∥∥∥∥∞

1 + ∥∥ΔN̂ ΔM̂

∥∥∞

∥∥∥∥

[
U
V

]∥∥∥∥∞

(19.56)

⇐⇒ min
Q(z)∈RH∞

∥
∥∥∥

Ŷ (z) + M (z) Q (z)
X̂ (z) − N (z) Q (z)

∥
∥∥∥

∞
,

where K (z) denotes stabilising controllers with (U, V ) as their RC pair and being
parameterised by (19.51).

19.3.3 Performance Degradation

Performance degradation issues have been intensively discussed in Sect. 19.2. In this
sub-section, we continue this discussion and summarise the major results related to
the RCF of the controller.

It follows from the LPDM (19.23) and the residual dynamics (19.50) that

eL P D(z) =
[

Ŷ (z) + M(z)Q(z)
−X̂(z) + N (z)Q(z)

]
r(z)

=
[

U (z)
V (z)

] (
I + [

ΔN̂ ΔM̂

] [
U (z)
V (z)

])−1

ς (z) ,

ς (z) = [
ΔN̂ −ΔM̂

] [
M (z)
N (z)

]
v̄(z) +

(
M̂(z) + ΔM̂

)
v2(z),

and thus

‖eL P D(z)‖2 ≤ γL P D ‖ς (z)‖2 ,

γL P D =
∥
∥∥
∥
∥

[
U (z)
V (z)

] (
I + [

ΔN̂ ΔM̂

] [
U (z)
V (z)

])−1
∥
∥∥
∥
∥∞

(19.57)

≤

∥∥
∥∥

[
U (z)
V (z)

]∥∥
∥∥∞

1 − ∥
∥ ΔN̂ ΔM̂

∥
∥∞

∥∥
∥∥

[
U (z)
V (z)

]∥∥
∥∥∞

.
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Definition 19.6 Given value γL P D defined in (19.57) and assume that

∥∥ΔN̂ ΔM̂

∥∥∞ ≤ δ,

then
γ̄L P D := sup∥

∥
∥ ΔN̂ ΔM̂

∥
∥
∥∞

≤δ

γL P D (19.58)

is called loop performance degradation coefficient.

It is obvious that γ̄L P D is a function of the feedback controller and parameterised by
Q (z) ∈ RH∞. Moreover,

min
Q(z)∈RH∞

∥∥∥
∥

Ŷ (z) + M (z) Q (z)
X̂ (z) − N (z) Q (z)

∥∥∥
∥

∞
= min

Q(z)∈RH∞

∥∥∥
∥

[
U (z)
V (z)

]∥∥∥
∥∞

leads to

min
Q(z)∈RH∞

γ̄L P D = min
Q(z)∈RH∞

sup∥
∥
∥ ΔN̂ ΔM̂

∥
∥
∥∞

≤δ

γL P D =: γ ∗
L P D. (19.59)

19.3.4 Summary: A Unified Perspective

In this section, we have defined and discussed three different system performances.
They are

• stability margin,
• fault detectability indicator and
• loop performance degradation coefficient.

Although these three different system performances represent and reflect three differ-
ent structural properties of a feedback control loop, their optimisation can be achieved
unifiedly by minimising theH∞-norm of the SIR of the adopted feedback controller.
This result seems a little surprised, but can be well understood and interpreted from
the following unified perspective.

Recall that the SIR of the feedback controller is in fact an observer driven by the
residual signal r . Moreover, the outputs of the SIR, u and y, can be written as

u(z) = Fx̂(z) − Q(z)r(z), y(z) = (C + DF) x̂(z) + (I − DQ(z)) r(z),

which are the estimates for

Fx(k) and (C + DF) x(k),
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as described in Sect. 5.3 and according to the parameterisation of functional ob-
servers. Here, x(k) is the state variables of the nominal system that is free of dis-
turbances and uncertainties, and x̂(k) is its estimate. On the other hand, the residual
signal r is driven by the disturbances and uncertaintieswhich exist in the control loop.
Thus, minimising the SIR of the feedback controller is equivalent to theminimisation
of the transfer function from the disturbances and uncertainties to the estimates for
Fx(k) and (C + DF) x(k). This is the unified perspective of our study on the three
system performances, which can also be called information and estimation perspec-
tive of control and detection. In fact, this insight interpretation gives a more general
form of the well-known separation principle, in which the design (and optimisation)
of a feedback controller can be performed by

• the design of a state feedback gain matrix F and
• an optimal estimator for Fx(k) and (C + DF) x(k), parameterised by

[
Ŷ (z) + M (z) Q (z)
X̂ (z) − N (z) Q (z)

]
.

19.4 Notes and References

In this chapter, some essential control and detection issues have been addressed from
the aspects different from those known in the well-established control theoretical
framework. Our focus has been on the handling of uncertainties, which include
faults, and their representation by residual signals, and on performance degradation
caused by the uncertainties. Some of the results are new, and all discussions serve
for our works in the subsequent chapters.

The observer-based input-output model (19.5)–(19.6) is the first novel result,
which not only provides us with a new type of model forms, but also opens a new
way to deal with uncertainties and faults, and thus is of essential importance for our
subsequent investigation. We would like to emphasise the role of the residual signal
in this model, which allows to handle uncertainties, being typically not accessible,
by means of the available residual signal, as illustrated in Fig. 19.1. In fact, this
model can be applied to dealing with some standard control problems alternatively,
as done in Sect. 19.2 for solving an LQG-like optimisation problem. The interested
reader may try, for instance, to solve H2-controller design problem based on this
model. Indeed, this model can also be understood as a natural demonstration of the
well-known separation principle.

LTR is a classic topic of control theory and its introduction can be found, for in-
stance, in [1, 2]. The classic LTR concept deals with recovering control performance
degradation caused by the use of a state estimate in an observer-based state feedback
controller. In our study, we have extended the LTR concept to the assessment and
monitoring of system performance degradation in a more general context and with
the focus of system performance degradation caused by the uncertainties. We have
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introduced the vector-valued variable eL P D representing the difference between the
ideal and real system input and output vectors, and derived the loop performance
degradation model (19.23). For the control performance assessment and monitoring,
two schemes have been introduced. The first one is dedicated to the assessment of
control degradation performance in real operations with respect to an ideal LQ con-
troller. It is evident that this scheme is less practical, since not every controller would
be designed in the sense of LQ-optimum. The second scheme is more applicable and
provides us with a real-time loop performance assessment with respect to a given
(state feedback) controller. In both schemes, the reference process is assumed to be
corrupted with white process and measurement noises. Correspondingly, a Kalman
filter is applied for the state estimation and residual generation. As a result, the
performance degradations in real operations are measured with respect to the refer-
ence values, which indicate the performance degradations caused by the use of the
Kalman filter and the existence of the white process and measurement noises. In this
context, the concepts of degree of control performance degradation PC P D as well as
degree of loop performance degradation PL P D have been introduced. In our study,
some standard design and analysis methods have been applied, including dynamic
programming, LQ and LQG controller design. We refer the reader to [3–5] for more
details.

The last part of our work in this chapter deals with the relations between the SIR
of a feedback controller and three different system performances, including stability
margin, fault detectability indicator and loop performance degradation coefficient.
Stability margin is a classic concept in robust control theory, although there exists no
clear definition. The definition of stability margin bLC F as well as its dual form bRC F

are commonly used in the literature, for instance, in [6–8]. In book [9] , a slightly
different definition of stability margin is given. In our work, we have defined stability
margin in Definition 19.4 on the basis of the loop model (19.9). Independent of the
original definitions, the computation formula for the stability margin is identical and
given by

∥∥∥∥
Ŷ (z) + M (z) Q (z)
X̂ (z) − N (z) Q (z)

∥∥∥∥

−1

∞
.

That is the inverse of theH∞-norm of the SIR of the adopted controller.
Our study on fault detectability is in fact a summary of the major results in Chap.9

on the similar topic.We have introduced the concept of indicator of fault detectability
Idet, which gives the ratio of the minimum influence of uncertainties on the residual
to the maximum influence. Recalling the fact that threshold is set proportional to
the maximum influence of the uncertainties on the residual, increasing the value of
this ratio leads to improvement of fault detectability. We have demonstrated that the
difference of the real Idet value to the ideal value (equal to one) can be reduced by
minimisingH∞-norm of the controller SIR.

Finally, we have introduced loop performance degradation coefficient γ̄L P D as a
measurement of loop performance degradation, which can be, for example, used in



References 551

system design work. Also γ̄L P D depends on theH∞-norm of the controller SIR and
can be reduced by minimising it.

At the end of this work, we have given an insight understanding why minimising
theH∞-norm of the controller SIR results in unified optimisation of all three system
performances: stability margin, fault detectability indicator and loop performance
degradation coefficient. We would like to emphasise this unified perspective. The
outputs of the SIR of the adopted controller, u and y, are in fact the estimates for

Fx(k) and (C + DF) x(k),

the ideal state feedback gain and the corresponding process output. Minimising the
SIR leads to the minimisation of the transfer function from the uncertainties to the
estimates for Fx(k) and (C + DF) x(k). This is a more general form of the well-
known separation principle.
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Chapter 20
Performance Recovery and
Fault-Tolerant Control Schemes

20.1 Reviewing LQ Control Problems

In this section, we review the LQ control problems from the viewpoint of fault-
tolerant control and recovering performance degradation. It builds the fundament
for our work on fault-tolerant control, performance degradation recovery, and online
observer optimisation.

20.1.1 LQG Control Problem

We consider an extended form of the nominal LTI system given in (19.1) as well as
its minimal state space realisation (19.2), which is described by

x (k + 1) = Ax (k) + Bu(k) + w(k), x(0) = x0, (20.1)

y(k) = Cx(k) + Du(k) + q(k). (20.2)

Here,w, q arewhite noises satisfying (19.27). Bymeans of the observer-based input–
output model (19.5)–(19.6) with the following observer and observer-based residual
generator,

x̂ (k + 1) = Ax̂ (k) + Bu(k) + L
(
y(k) − ŷ(k)

)
, (20.3)

r(k) = y(k) − ŷ(k), ŷ(k) = Cx̂(k) + Du(k), (20.4)

the system (20.1)–(20.2) is written into

x̂ (k + 1) = Ax̂ (k) + Bu(k) + Lr(k), (20.5)

y(k) = r(k) + Cx̂(k) + Du(k). (20.6)
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Note that the dynamics of the residual generator is governed by

e (k + 1) = (A − LC) e (k) + w(k) − Lq(k),

r(k) = Ce(k) + q(k), e (k) = x(k) − x̂(k) ⇐⇒
r(z) = C (z I − AL)

−1 (w(z) − Lq(z)) + q(z), AL = A − LC.

The (nominal) LQG control problem addressed in the subsequent work is formulated
as: Given system model (20.1)–(20.2) and observer (20.3)–(20.4), find the feedback
gain matrix F of the control law

u(k) = Fx̂(k) + v(k)

and the observer gain matrix L so that the cost function

J (i) = E
∞∑

k=i

γ k−i
(
yT (k)Qy y(k) + uT (k)Quu(k)

)
, (20.7)

Qy ≥ 0, Qu + DT QyD > 0, 0 < γ < 1,

is minimised.

Remark 20.1 It is noteworthy to mention that the expectation in the above cost
function is a conditional expected value. That is, the expectation under condition of
given measurement data up to the sampling time k = i.

LQG problem with the cost function (20.7) is standard in control theory, and
well described in many textbooks on modern control theory. This problem can be
approached using various well-established techniques and the solutions are well-
known. For our purpose, we will re-study the formulated LQG problem based on
the observer-based input–output model (20.5)–( 20.6) and focus on some aspects,
which are of special interests and importance for our work on fault-tolerant control
and recovering performance degradation.

20.1.2 On Solutions of LQG Control Problem

Case I: F is given, and r(k) and x̂(k) are uncorrelated
We first derive the value of the cost function for a given feedback control gain F

and observer gain L . For our purpose, re-write the cost functions (20.7) on the basis
of the observer-based input–output model (19.5)–(19.6). It yields
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yT (k)Qy y(k) + uT (k)Quu(k)

= (
CF x̂(k) + r(k)

)T
Qy

(
CF x̂(k) + r(k)

) + (
Fx̂(k)

)T
QuF x̂(k)

= [
x̂ T (k) r T (k)

] [CT
F QyCF + FT QuF CT

F Qy

QyCF Qy

] [
x̂(k)
r(k)

]
,

CF = C + DF.

For the sake of simplicity, v(k) is set equal to zero in the above expression. We
assume, at first, that

• r(k) is uncorrelated with x̂(k),
• the observer (20.3)–(20.4) is operating in the steady state and thus

Er(k) = 0, Er(k)r T (k) = Σr > 0,

E (
x(k) − x̂(k)

) (
x(k) − x̂(k)

)T =: Σx .

Let

J (i) = E
∞∑

k=i

γ k−i
[
x̂ T (k) r T (k)

] [CT
F QyCF + FT QuF CT

F Qy

QyCF Qy

] [
x̂(k)
r(k)

]

= x̂ T (i)Px̂(i) + c. (20.8)

By defining

Qxr =
[
CT

F QyCF + FT QuF CT
F Qy

QyCF Qy

]
, AF = A + BF,

write J (i) into

J (i) = E
([

x̂ T (i) r T (i)
]
Qxr

[
x̂(i)
r(i)

]
+ γ J (i + 1)

)

= E [
x̂ T (i) r T (i)

]
Qxr

[
x̂(i)
r(i)

]
+ Eγ x̂ T (i + 1)Px̂(i + 1) + γ c

= x̂ T (i)
(
γ AT

F P AF + CT
F QyCF + FT QuF

)
x̂(i)

+tr
((
CT

F QyCF + FT QuF
)
Σx

) + tr
((
Qy + γ LT PL

)
Σr

) + γ c.

Note that in the above computation, the assumptions on x̂(i), r(k) are utilised. As a
result, (20.8) holds if P > 0 solves the following Lyapunov equation

P = γ AT
F P AF + CT

F QyCF + FT QuF,
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and c satisfies

c = tr
((
CT

F QyCF + FT QuF
)
Σx

) + tr
((
Qy + γ LT PL

)
Σr

) + γ c

=⇒ c = tr
((
CT

F QyCF + FT QuF
)
Σx

) + tr
((
Qy + γ LT PL

)
Σr

)

1 − γ
.

Case II: Optimal Solution
Now, we would like to find the optimal feedback gain F on the above assumptions

on r(k) and x̂(k). Write

yT (k)Qy y(k) + uT (k)Quu(k)

= [
x̂ T (k) uT (k) r T (k)

]
Qxur

⎡

⎣
x̂(k)
u(k)
r(k)

⎤

⎦ ,

Qxur =
⎡

⎣
CT QyC CT QyD CT Qy

DT QyC Qu + DT QyD DT Qy

QyC QyD Qy

⎤

⎦ ,

and further, on the assumption of (20.8),

J (i) = E
⎛

⎝[
x̂ T (i) uT (i) r T (i)

]
Qxur

⎡

⎣
x̂(i)
u(i)
r(i)

⎤

⎦ + γ J (i + 1)

⎞

⎠

= E
⎛

⎝[
x̂ T (i) uT (i) r T (i)

]
Qxur

⎡

⎣
x̂(i)
u(i)
r(i)

⎤

⎦ + γ x̂ T (i + 1)Px̂(i + 1) + γ c

⎞

⎠

=
⎛

⎝
[
x̂ T (i) uT (i)

]
Qxu

[
x̂(i)
u(i)

]
+ tr

(
CT QyCΣx

)

+tr
((
Qy + γ LT PL

)
Σr

) + γ c

⎞

⎠ ,

Qxu =
[

γ AT P A + CT QyC γ AT PB + CT QyD
γ BT P A + DT QyC Qu + DT QyD + γ BT PB

]
.

It is straightforward that

F = − (
Qu + DT QyD + γ BT PB

)−1 (
γ BT P A + DT QyC

)
(20.9)

leads to
J (i) = min

F
J (i) = x̂ T (i)Px̂(i) + c
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with P > 0 solving the following Riccati equation

P = γ AT P A + CT QyC − FT
(
Qu + DT QyD + γ BT PB

)
F

and c given by

c = tr
(
CT QyCΣx

) + tr
((
Qy + γ LT PL

)
Σr

)

1 − γ
.

Recall our assumptions on r(k) and x̂(k). r(k) is uncorrelated with x̂(k) if and
only if r(k), r(k − 1), . . . , are uncorrelated. It implies that r(k) should be white.
Consequently, the adopted observer (20.3)–(20.4) must be a Kalman filter.

Summarising the above results makes it clear that the optimal solution to the LQG
problem is given by (20.9) for F and Kalman filter gain for L , as we know from the
standard solution.

Case III: F,L are given, r(k) and x̂(k) are correlated
At the end of this study, we would like to give a general solution for the case

that both the feedback gain F and observer gain L are given with L being different
from the Kalman filter gain matrix. In other words, r(k) and x(k) are correlated. The
assumption that the observer is operating in the steady state with

Er(k) = 0, Er(k)r T (k) = Σr > 0, E (
x(k) − x̂(k)

) (
x(k) − x̂(k)

)T = Σx

still holds. It is obvious that the cost function also depends on r(k). This requires, as
the problem solution, to take the dynamics of the residual generator,

e (k + 1) = (A − LC) e (k) + w(k) − Lq(k),

r(k) = Ce(k) + q(k), e (k) = x(k) − x̂(k),

into account. Consider the cost function (20.8). It turns out

J (i) = E
([

x̂ T (i) r T (i)
]
Qxr

[
x̂(i)
r(i)

]
+ γ J (i + 1)

)

=
(
E [

x̂ T (i) r T (i)
]
Qxr

[
x̂(i)
r(i)

]
+ γ E x̂ T (i + 1)Px̂(i + 1) + γ c

)
.

According to the rule,

E (
ζ TΨ ζ

) = Eζ TΨ Eζ + tr
(
Σζ Ψ

)
,Σζ = E (

(ζ − Eζ ) (ζ − Eζ )T
)
,
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where ζ is a random vector and Ψ a matrix of appropriate dimensions, it turns out

E [
x̂ T (i) rT (i)

]
Qxr

[
x̂(i)
r(i)

]
= E [

x̂ T (i) (Ce(i) + q(i))T
]
Qxr

[
x̂(i)

Ce(i) + q(i)

]

= [
x̂ T (i) 0

]
Qxr

[
x̂(i)
0

]

+ tr

([
0 CT

]
Qxr

[
0
C

]
Σx

)
+ tr

(
QyΣq

)

= x̂ T (i)
(
CT
F QyCF + FT Qu F

)
x̂(i) + tr

(
CT QyCΣx

)

+ tr
(
QyΣq

)
,

E x̂ T (i + 1)Px̂(i + 1) = E x̂ T (i + 1)PE x̂(i + 1) + tr
(
LE

(
r(i)rT (i)

)
LT P

)

= x̂ T (i)AT
F P AF x̂(i) + tr

(
LT PLΣr

)
.

It yields

J (i) = x̂ T (i)Q̄x x̂(i) + tr
(
CT QyCΣx

)
+ tr

(
QyΣq

) + γ tr
(
LT PLΣr

)
+ γ c,

Q̄x = CT
F QyCF + FT Qu F + γ AT

F P AF .

Finally, we have
J (i) = x̂ T (i)Px̂(i) + c (20.10)

with P > 0 solving

P = γ AT
F P AF + CT

F QyCF + FT QuF, (20.11)

and c given by

c = tr
(
CT QyCΣx

) + tr
(
QyΣq

) + γ tr
(
LT PLΣr

)

1 − γ
. (20.12)

Equations (20.10)–(20.12) demonstrate that

• controller and observer optimisation can be realised separately, and
• the value of the cost function J (i) will be reduced, when Σx ,Σr become weak.
This can be achieved by optimising the observer.

20.1.3 On Solutions of LQR Control Problem

LQ control for systems with deterministic disturbances is often called LQR (regula-
tor) or H2 control problem. In the LQR study, the disturbance under consideration
is the (unknown) initial state variables, which can also be equivalently formulated
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as an impulse disturbance. In the framework of H2 control, the controller design is
achieved by minimising theH2-norm of the transfer function from the disturbances
under consideration to the control output variables. Although the control problems
are handled in different ways, these two problems are equivalent, since the transfer
function is the z-transform of the impulse response (of the control output to the im-
pulse disturbance). In the following, we will focus on the LQR problem.Wewill also
briefly illustrate the H2 control solution based on the observer-based input–output
model (19.5)–(19.6).

Consider the observer-based input–outputmodel (20.5)–(20.6 )with the dynamics
of the residual generator

e (k + 1) = (A − LC) e (k) , r(k) = Ce(k), e (0) = x(0) − x̂(0) �= 0,

and the cost function

J (i) =
∞∑

k=i

γ k−i
(
yT (k)Qy y(k) + uT (k)Quu(k)

)
, (20.13)

Qy ≥ 0, Qu + DT QyD > 0, 0 < γ ≤ 1.

For given F, L , the cost function can be further written as

J (i) =
∞∑

k=i

γ k−i

([
x̂ T (k) eT (k)

]
Qxe

[
x̂(k)
e(k)

])
,

Qxe =
[
CT

F QyCF + FT QuF CT
F QyC

CT QyCF CT QyC

]
.

It is well-known that if

AF = A + BF, AL = A − LC

are Schur matrices,

J (i) = [
x̂ T (i) eT (i)

]
P

[
x̂(i)
e(i)

]
,

P = Qxe + γ

[
AF LC
0 AL

]T

P

[
AF LC
0 AL

]
> 0.

This can be demonstrated by the following computation,
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J (i) = [
x̂ T (i) eT (i)

]
Qxe

[
x̂(i)
e(i)

]
+ γ J (i + 1)

= [
x̂ T (i) eT (i)

]
(

Qxe + γ

[
AF LC
0 AL

]T

P

[
AF LC
0 AL

])[
x̂(i)
e(i)

]

= [
x̂ T (i) eT (i)

]
P

[
x̂(i)
e(i)

]
.

To study the coupling between x̂(i) and e(i) and also to be consistent with the
standard H2 control formulation, we introduce

α(k) = Cαx(k) + Dαu(k) ∈ Rm, rank
(
DT

α Dα

) = p

and write the cost function in terms of

J = ‖α(k)‖22 =
∞∑

k=0

αT (k)α(k).

Moreover, it is assumed that the system model under consideration is

x (k + 1) = Ax (k) + Bu(k) + Edd(k), x(0) = x0, (20.14)

y(k) = Cx(k) + Du(k) + Fdd(k), (20.15)

where

d(k) =
⎡

⎢
⎣

d1(k)
...

dkd (k)

⎤

⎥
⎦ ∈ Rkd , di (k) = δ(k) =

{
1, k = 0,
0, k �= 0,

, i = 1, · · · kd ,

and Ed ∈ Rn×kd , Fd ∈ Rm×kd are known matrices of appropriate dimensions with

rank
(
Fd F

T
d

) = m.

Note that the dynamics of the residual generator is, in this case, governed by

e (k + 1) = ALe (k) + ELd(k), r(k) = Ce(k) + Fdd(k),

AL = A − LC, EL = Ed − LFd .

It follows from the observer-based input–output model (20.5)–(20.6) that
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α(k) = Cα,F x̂(k) + Cαe(k),Cα,F = Cα + DαF =⇒
α(z) = Cα,F (z I − AF )−1 Lr(z) + Cαe(z)

= Cα,F (z I − AF )−1 LGrd(z) + CαGed(z),

Grd(z) = C (z I − AL)
−1 EL + Fd ,Ged(z) = (z I − AL)

−1 EL .

Denote the response of α(k) to di (k) by αi (k). Since δ(k) is the unit impulse, it holds

J =
kd∑

i=1

‖αi (k)‖22 = ∥∥Cα,F (z I − AF )−1 LGrd(z) + CαGed(z)
∥∥2
2 . (20.16)

We would like to call the reader’s attention that the norm on the left hand side of
the above equation is the sum of the l2-norm of signals αi (k), i = 1, · · · , kd , and
the norm on the right hand side is the H2-norm of the transfer function from the
disturbances to α(k). Now, let the observer-based residual generator (20.3)–( 20.4)
be the so-called unified FDF described in Sect. 4.3, which is also an H2-observer.
We know

Ged(z)G
T
ed(z

−1) = CXCT + Fd F
T
d

with X > 0 solving the Riccati equation

AX AT + Ed E
T
d − L

(
CXCT + Fd F

T
d

)
LT = X > 0, (20.17)

L = (
AXCT + Ed F

T
d

) (
CXCT + Fd F

T
d

)−1
. (20.18)

As a result, it holds

∥∥Cα,F (z I − AF )−1 LGrd(z) + CαGed(z)
∥∥2
2

=
∥∥∥Cα,F (z I − AF )−1 L

(
CXCT + Fd F

T
d

)1/2 + CαGed(z)U
T (z−1)

∥∥∥
2

2
,

U (z) = (
CXCT + Fd F

T
d

)−1/2
Ged(z) =⇒ U (z)UT (z−1) = I.

It is straightforward to check

CαGed(z)U
T (z−1) ∈ RH⊥

2 ,

and moreover

Cα,F (z I − AF )−1 L
(
CXCT + Fd F

T
d

)1/2 ∈ RH2,
∥∥CαGed(z)U

T (z−1)
∥∥2
2 = ‖CαGed(z)‖22 .

Thus, we have
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J = ‖α(k)‖22 = ∥∥Cα,F (z I − AF )−1 L̄
∥∥2
2 + ‖CαGed(z)‖22 , (20.19)

L̄ = L
(
CXCT + Fd F

T
d

)1/2 = (
AXCT + Ed F

T
d

) (
CXCT + Fd F

T
d

)−1/2
.

Equation (20.19) reveals that

• once the observer gain matrix L is set according to (20.18 ), which gives a unified
FDF and an H2-observer, the influence of the residual signal r(k) and the state
estimation error e(k) on the cost function J is decoupled,

• from the control and estimation point of view, tuning feedback control gain matrix
F can reduce the first term in the cost function,

∥∥Cα,F (z I − AF )−1 L̄
∥∥2
2 ,

while optimising the observer gain matrix L will lead to reduction in the second
term ‖CαGed(z)‖22 , and

• this allows a separate and parallel optimisation of the controller and observer
towards an overall optimisation of the control loop.

It is evident that

F = − (
DT

α Dα + BT PB
)−1 (

DT
α Cα + BT P A

)
,

P = AT P A + CT
α Cα − FT

(
DT

α Dα + BT PB
)
F > 0

is the solution of the optimisation problem

min
F

∥∥Cα,F (z I − AF )−1 L̄
∥∥2
2 ,

which is equivalent to the LQ control problem

min
u(k)

‖α(k)‖22
s.t. x (k + 1) = Ax (k) + Bu(k), x(0) = x0.

In summary, the optimal LQR problem consists of the optimal solution of LQ (state
feedback) control and an H2-optimal observer (the unified FDF), as we expect and
know from the standard solution.

20.2 An LQ Optimal Observer Design Approach

Our study in the previous section clearly demonstrates the important role of an opti-
mal observer in LQR or LQG optimal control. For our purpose of online optimisation
of observers, we are going to deal with LQ optimal observer issues for LTI systems in
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this section. Our problem formulation is analogue to the LS fault estimation problem
for LTV systems addressed in Chap.8. On the other hand, for our purpose we will
solve the optimal estimation problem using an alternative method which allows us
to perform a cost function based online optimisation of an LTI observer.

20.2.1 Problem Formulation and the Basic Idea of the
Solution

To simplify our study, we consider LTI systems described by

x (k + 1) = Ax (k) + Ed1(k) ∈ Rn, (20.20)

y(k) = Cx(k) + Fdd2(k) ∈ Rm . (20.21)

Here, d1 ∈ Rkd1 , d2 ∈ Rkd2 are l2-norm bounded unknown input vectors, and E, Fd

are known matrices of appropriate dimensions. Our estimation problem is formu-
lated as: given measurement data, y (k0) , · · · , y(k), solve the optimisation problem
described by

min
x(k0),d1,d2

1

2

(
‖x(k0)‖2P−1

0
+ ‖d1‖22,[k0,k] + ‖d2‖22,[k0,k]

)
, P0 > 0, (20.22)

s.t. x (i + 1) = Ax (i) + Ed1(i), (20.23)

y(i) = Cx(i) + Fdd2(i), i = k0, · · · , k. (20.24)

By introducing Lagrange multipliers λx (i) ∈ Rn, λy (i) ∈ Rm, we re-write the
above optimisation problem as

min
d1,d2,x(i)

J, (20.25)

J =

⎛

⎜⎜⎜⎜
⎜⎜⎜
⎝

1
2 ‖x(k0)‖2P−1

0
+ 1

2

k∑

i=k0

‖d1(i)‖2 + 1
2

k∑

i=k0

‖d2(i)‖2

+
k∑

i=k0

λT
y (i) (y (i) − Cx (i) − Fdd2(i))

+
k∑

i=k0

λT
x (i + 1) (x (i + 1) − Ax (i) − Ed1(i))

⎞

⎟⎟⎟⎟
⎟⎟⎟
⎠

=

⎛

⎜⎜⎜⎜⎜
⎜⎜⎜⎜
⎝

1
2 ‖x(k0)‖2P−1

0
+ 1

2

k∑

i=k0

‖d1(i)‖2 + 1
2

k∑

i=k0

‖d2(i)‖2

+
k∑

i=k0

λT
y (i) (y (i) − Cx (i) − Fdd2(i))

−
k∑

i=k0

λT
x (i + 1) (Ax (i) + Ed1(i)) +

k∑

i=k0

λT
x (i) x (i)

−λT
x (k0) x (k0) + λT

x (k + 1) x(k + 1)

⎞

⎟⎟⎟⎟⎟
⎟⎟⎟⎟
⎠

.
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Solving

∂ J

∂x(k0)
= 0,

∂ J

∂x(k + 1)
= 0,

∂ J

∂x(i)
= 0,

∂ J

∂d1(i)
= 0,

∂ J

∂d2(i)
= 0,

∂ J

∂λx (i + 1)
= 0,

∂ J

∂λy(i)
= 0,

for i = k0 + 1, · · · , k, yields

P−1
0 x (k0) − λx (k0) = 0, λx (k + 1) = 0,

λx (i) − CTλy(i) − ATλx (i + 1) = 0,

d̂1(i) = ETλx (i + 1), d̂2(i) = FT
d λy(i),

x̂ (i + 1) = Ax̂ (i) + Ed̂1(i), y(i) = Cx̂ (i) + Fdd̂2(i).

It holds

λx (i) = ATλx (i + 1) + CTλy(i), λx (k + 1) = 0, (20.26)

Fd F
T
d λy(i) = y(i) − Cx̂ (i) , (20.27)

x̂ (i + 1) = Ax̂ (i) + EETλx (i + 1), x̂ (k0) = P0λx (k0). (20.28)

We would like to remark that x̂(i), d̂1(i) and d̂2(i) are the estimates for x(i), d1(i)
and d2(i) given data y (k0) , y(k0+1), · · · , y(k). For the sake of simplicity, we adopt
these notations for x̂(i |k ), d̂1(i |k ) and d̂2(i |k ).

20.2.2 A Solution

We now solve (20.26)–(20.28), which build a 2n-dimensional LTI system with cou-
plings between the state and co-state variables x̂(i) and λx(i), λy(i), and is driven
by y(i). This brings us to assume that

x̂(i) = P(i)λx (i) + α(i) (20.29)

with P(i), α(i) to be determined. Consider

x̂(i + 1) = P(i + 1)λx (i + 1) + α(i + 1)

and (20.28). It yields

Ax̂ (i) + EETλx(i + 1) = P(i + 1)λx (i + 1) + α(i + 1). (20.30)
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From (20.26), (20.27) and (20.29) we have, on the other hand,

CP(i)ATλ(i + 1) + CP(i)CTλy(i) + Cα(i) = y(i) − Fd F
T
d λy(i)

=⇒ λy(i) = R−1(i)
(
y(i) − Cα(i) − CP(i)ATλx (i + 1)

)
, (20.31)

x̂(i) = P(i)
(
AT − CT R−1(i)CP(i)AT

)
λx (i + 1) (20.32)

+ P(i)CT R−1(i) (y(i) − Cα(i)) + α(i),

R(i) = FT
d Fd + CP(i)CT .

Substituting x̂ (i) into (20.30) gives

(
AP(i)AT + EET − AP(i)CT R−1(i)CP(i)AT

)
λx (i + 1)

+ AP(i)CT R−1(i) (y(i) − Cα(i)) + Aα(i)

= P(i + 1)λx (i + 1) + α(i + 1).

This results in

P(i + 1) = AP(i)AT + EET − L (i) R(i)LT (i), (20.33)

α(i + 1) = Aα(i) + L (i) (y(i) − Cα(i)) , (20.34)

L (i) = AP(i)CT R−1(i), (20.35)

and furthermore the boundary values

x̂ (k0) = P0λx (k0) =⇒ α(k0) = 0, P(k0) = P0.

It follows from the boundary condition in (20.26) that

x̂(k + 1) = α(k + 1).

Recall that x̂(k + 1) is the one-step ahead prediction of x(k + 1) (using data up to
k). Hence, (20.34) gives the one-step prediction (estimation) formula for x(k),

x̂(k + 1 |k ) = Ax̂ (k |k − 1 ) + L (k)
(
y(k) − Cx̂ (k |k − 1 )

)
, (20.36)

x̂ (k |k − 1 ) = α(k),

and (20.33) as well as (20.35) are the recursion and update forms for the computation
of P(k), L (k), respectively. Because k could be any integer larger than k0, this
estimator is indeed identical with the LS observer studied in Chap.8.

Note that x̂(i) given in (20.32) can be further written as

x̂(i) = α(i) + P(i)CT R−1(i) (y(i) − Cα(i))

+P(i)
(
AT − CT R−1(i)CP(i)AT

)
λx (i + 1). (20.37)
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Moreover, as shown in the example given below, the first two terms in the above
equation are indeed the estimation for x(i) using the data up to i. That is

x̂(i |i ) = α(i) + P(i)CT R−1(i) (y(i) − Cα(i)) .

Thus,
x̂(i) = x̂(i |i ) + P(i)

(
AT − CT R−1(i)CP(i)AT

)
λx (i + 1).

In summary, the estimations of x̂(i), d̂1(i) as well as d̂2(i) can be performed by the
following algorithm:

Algorithm 20.1 LQ observer

Step 0: Computation of P(i), α(i) (as one-step ahead prediction of x(i)) according
to (20.33)-( 20.35);

Step 1: Computation of x̂(i) according to ( 20.37) for given λx (i + 1), α(i);
Step 2: Computation of λy(i) according to (20.31) and

d̂1(i) = ETλx (i + 1), d̂2(i) = FT
d λy(i);

Step 3: Computation of λx (i) using (20.26), i + 1 → i and go to Step 1.

Example 20.1 As an example, the computation of

x̂(k) = x̂ (k |k )

is illustrated. It follows from (20.32) and the relations

λx (k + 1) = 0, α(k) = x̂ (k |k − 1 )

that
x̂(k) = x̂ (k |k − 1 ) + P(k)CT R−1(k)

(
y(k) − Cx̂ (k |k − 1 )

)
,

which is identical with the LS estimate x̂ (k |k ) for x(k). By this example, it can also
be seen that

x̂(k + 1) = x̂(k + 1 |k ) = Ax̂ (k |k ) ,

since

x̂(k + 1) = P(k + 1)λx (k + 1) + α(k + 1), λx (k + 1) = 0,

x̂(k + 1) = Ax̂(k) + EETλx(k + 1).

Note that for k0 = −∞, the LTV (one-step prediction) observer becomes an LTI
system given by
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x̂(k + 1 |k ) = Ax̂ (k |k − 1 ) + L
(
y(k) − Cx̂ (k |k − 1 )

)
,

L = APCT R−1, R = Fd F
T
d + CPCT ,

P = APAT + EET − LRLT .

20.2.3 The Dual Form

In the previous study, we have introduced the co-state vector λx(k) as an auxiliary
variable to solve the optimisation problem. The dynamics of λx (k) and x̂(k) are cou-
pled and build a 2n -dimensional system. In this sub-section, we derive an alternative
form of approaching the optimisation problem, which is expressed in terms of the
dynamics of λx (k) and can be interpreted as the dual form of the LQ control problem.

We first consider (20.26) and re-write it, using relation (20.31), into

λx (i) = ATλx(i + 1) −CT LT (i) λx (i + 1) +CT R−1(i) (y(i) − Cα(i)) . (20.38)

Moreover, by (20.27) and (20.31), we have

y(i) − Cx̂(i) = Fd F
T
d

(
R−1(i) (y(i) − Cα(i)) − LT (i) λx (i + 1)

)
. (20.39)

Equations (20.38) and (20.39) reveal that

• the dynamic system (20.38) with λx (i) as the state vector can be interpreted as
closed-loop configured with −LT (i) λx(i + 1) as feedback,

• analogue to the observer-based system model (20.5), system ( 20.38) is driven by
the residual signal y(i) − Cα(i) as well, and

• the feedback of y(i) − Cx̂(i) in the observer consists of the feedback of −LT (i)
λx (i + 1) and the residual signal y(i) − Cα(i).

Remember further

d̂1(i) = ETλx (i + 1), d̂2(i) = FT
d λy(i). (20.40)

Hence, the co-state variables λx (i), λy(i) can be viewed as a carrier of information
about unknown input and uncertainties to be estimated. This is the further motivation
of our subsequent work.

We are now in the position to formulate our LQ estimation problem as the dual
form of LQ control. For our purpose, we consider steady state estimation towards an
LTI optimal observer and thus set k0 = −∞. The cost function (20.22) becomes

1

2

(∥∥ETλx(i + 1)
∥∥2
2,(−∞,k] + ∥∥LTλx (i + 1)

∥∥2
2,(−∞,k]

)
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and the LQ optimal estimation problem is formulated as

min
L

1

2

(∥∥ETλx (i + 1)
∥∥2
2,(−∞,k−1] + ∥∥LTλx (i + 1)

∥∥2
2,(−∞,k−1]

)
(20.41)

s.t. λx (i) = ATλx (i + 1) − CT LTλx (i + 1) + CT R−1r(i), (20.42)

i ∈ (−∞, k], λ(k + 1) = 0.

In (20.42), r(i) represents (y(i) − Cα(i)) , which, recalling α(i) being the one-step
ahead prediction of x(i), is the residual vector. When d1(i), d2(i) are white noises,
r(i) is also white. It follows from our discussion in the last section that r(i) has
indeed no influence on the optimisation solution, and thus, for our discussion, r(i)
is assumed to be zero.

The optimisation problem (20.41)–(20.42) is the dual form to the optimal state
feedback problem

min
F

1

2

(‖x(i)‖2Q,2,[k,∞) + ‖Fx(i)‖2W,2,[k,∞)

)

s.t. x(i + 1) = Ax(i) + Bu(i), u(i) = Fx(i), i ∈ [k,∞),

with the substitution in sense of the duality

A → AT , B → CT , F → −LT , (20.43)

where Q,W are the weighting matrix equal to

Q = EET ,W = Fd F
T
d .

The solution of this problem is well-known and given by

F = − (
W + BT PB

)−1
BT P A,

P = AT P A + W − FT
(
W + BT PB

)
F.

Thus, by means of the duality relations (20.43), we have exactly the optimal solution
L given by

L = APCT
(
W + CPCT

)−1
,

P = APAT + Q − LRLT .

Below, as an example, we derive the solution for the optimisation problem ( 20.41)–
(20.42) directly.
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Example 20.2 Let

J (k) = ∥
∥ETλ(i + 1)

∥
∥2
2,(−∞,k−1] + ∥

∥LTλ(i + 1)
∥
∥2
W,2,(−∞,k−1]

=
k−1∑

i=−∞
λT (i + 1)

(
EET + LWLT

)
λ (i + 1)

= J (k − 1) + λT (k)
(
EET + LWLT

)
λ (k) ,

W = Fd F
T
d .

Assume
J (k) = λT (k)Pλ (k) .

It holds

λT (k)Pλ (k) = λT (k − 1)Pλ (k − 1) + λT (k)
(
EET + LWLT

)
λ (k)

= λT (k)
((

AT − CT LT
)T

P
(
AT − CT LT

) + EET + LWLT
)

λ(k).

Now, minimising λT (k)Pλ (k) with respect to L leads to

L = APCT
(
W + CPCT

)−1
.

Moreover,

P = (
AT − CT LT

)T
P
(
AT − CT LT

) + EET + LWLT

= APAT + EET − L
(
W + CPCT

)
LT .

This result is identical with the solution achieved by the duality given above.

It is worth remarking that the optimisation problem (20.41)–(20.42) can also be
solved using the dual form of dynamic programming technique. It has been proved
in Sect. 8.2 (referred to (8.51)) that

min
L

J (k) = min
L

k−1∑

i=−∞
λT (i + 1)

(
EET + LWLT

)
λ (i + 1) (20.44)

= min
L

(
λT (k)

(
EET + LWLT

)
λ (k) + min

L
J (k − 1)

)
.
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Equation (20.44) is the dual formof thewell-knowndynamic programming principle.
In general, it can be written as

min
L(i),i∈[k0,k−1]

J (k) = min
L(k−1)

(
λT (k)

(
EET + L(k − 1)WLT (k − 1)

)
λ (k)

+minL(i),i∈[k0,k−2] J (k − 1)

)
,

which results in an LTV observer.

20.2.4 LQ Observers for Systems with Input Vector

The simplified systemmodel considered in the previous Sect. (20.20)–(20.21), is now
extended to

x (k + 1) = Ax (k) + Bu(k) + Ed1(k), (20.45)

y(k) = Cx(k) + Du(k) + Fdd2(k), u(k) ∈ Rp, (20.46)

in order to include the influence of the system input vector u(k).With the same design
objective, we further adopt the cost function (20.22) with the constraints given by
(20.45)–(20.46). Repeating the solution procedure presented in the last sub-sections
results in the optimal observer. We summarise the main results as follows without
providing detailed computations:

• one-step ahead optimal observer

x̂(k + 1 |k ) = Ax̂ (k |k − 1 ) + Bu(k) + L (k) r(k), (20.47)

r(k) = y(k) − Cx̂ (k |k − 1 ) − Du(k), (20.48)

where L (k) is given below;
• recursive algorithm for x̂(i) = x̂(i |k ), d̂1(i) = d̂1(i |k ), d̂2(i) = d̂2(i |k ), i =
k0, · · · , k,

α(i + 1) = Aα(i) + Bu(i) + L (i) r(i),

α(i) = x̂ (i |i − 1 ) , r(i) = y(i) − Cα(i) − Du(i),

x̂(i |i ) = α(i) + P(i)CT R−1(i)r(i),

x̂(i) = x̂(i |i ) + P(i)
(
AT − CT R−1(i)CP(i)AT

)
λx (i + 1),

λx (i) = (A − CL(i))T λx (i + 1) + CT R−1(i) (y(i) − Cα(i)) ,

λy(i) = R−1(i)
(
y(i) − Cα(i) − CP(i)ATλx(i + 1)

)
,

d̂1(i) = ETλx (i + 1), d̂2(i) = FT
d λy(i),

P(i + 1) = AP(i)AT + EET − L (i) R(i)LT (i),

L (i) = AP(i)CT R−1(i), R(i) = Fd F
T
d + CP(i)CT



20.3 LQ Control Performance Monitoring and Recovering 571

with the boundary conditions

α(k0) = 0, λx (k + 1) = 0, P(k0) = P0;

• some useful relations

x̂ (i) = P(i)λx (i) + α(i),

x̂ (i + 1) = Ax̂ (i) + Bu(i) + EETλx (i + 1), x̂ (k0) = P0λx (k0).

It is evident from the above equations that the co-state vector λx (i) is a function
of estimation errors caused by uncertainties in the system under supervision, for
instance, the unknown input vectors d1, d2, and independent of u(i).

20.3 LQ Control Performance Monitoring and Recovering

Having intensively studied theLQcontrol techniques for nominal systemswith noises
or disturbances, we begin in this section with our initial task: performance recovery
and fault-tolerant control. The objective of this section is to propose a basic scheme
for the LQ control performance recovery by updating the state feedback control
gain F. We would like to emphasise that this scheme will be generally embedded
in a fault-tolerant control system as a functionality module, although it can work
independently.

20.3.1 Problem Formulation

We consider a (nominal) feedback control loop with the plant model (20.1) and a
state feedback controller described by

x̄ (k + 1) = Ax̄ (k) + Bū(k) + w(k), ū(k) = F0 x̄(k) + v(k),

A = A0, B = B0.

Here, w(k) ∼ N (0,Σw) is white process noise and uncorrelated with x̄(k), v(k). It
is assumed that the control system is operating in the steady state

E x̄ (k + 1) = E (
AF0 x̄ (k) + Bv(k) + w(k)

) = E x̄ (k) =⇒
E x̄ (k) = (

I − AF0

)−1
Bv(k) =: x0,

v(k) = vo, AF0 = A + BF0.

The dynamics of the closed-loop is governed by
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x (k + 1) = Ax (k) + Bu(k) + w(k), x (k) = x̄ (k) − x0, (20.49)

u(k) = F0x(k).

As control performance, the quadratic cost function

J (i) = E
∞∑

k=i

γ k−i
(
xT (k) Qx (k) + uT (k)Ru(k)

)
, (20.50)

R > 0, Q ≥ 0, 0 < γ < 1,

is under consideration. It is noteworthy that the cost function J (i) is a prediction of
the control performance for a given controller, also called control policy. It indicates
which value of the control performance is to be expected when the actual controller
(control policy) is continuously applied in the time interval [i,∞] . Here, k = ∞
can be interpreted, in the engineering sense, as the end of a production process or a
mission.

It is assumed that some faults or mismatching in the system cause changes in the
system matrices A and B modelled by

A = A0 + ΔA, B = B0 + ΔB,

where ΔA,ΔB are some unknown constant matrices. On the assumption that the
closed-loop is asymptotically stable, the dynamics of the closed-loop becomes

x (k + 1) = Ax (k) + Bu(k) + w(k) + d0, u(k) = F0x(k), (20.51)

d0 = (ΔA + ΔBF0) x0 + ΔBv0.

Next, we will study how to detect such changes and to update the controller (control
policy) to be tolerant to them.

20.3.2 Reference-Model Based Detection of Performance
Degradation

Following our discussions in the previous sections and remembering that x(k) (in fact
x̄(k)) is a measurement variable, straightforward computations lead to the following
value of the cost function during the fault-free (steady state) operation

Jre f (i) = xT (i) Px (i) + c, (20.52)

P = γ AT
F0 PAF0 + Q + FT

0 RF0, c = γ tr (ΣwP)

1 − γ
, AF0 = A0 + B0F0.
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This value of the cost function is defined as the reference for monitoring performance
degradation in the system under consideration. Performance degradation is detected,
when

J (i) > Jre f (i).

Given a tolerance threshold Jth , an action of recovering performance degradation is
to be activated, if

J (i) − Jre f (i) > Jth (> 0).

Remark 20.2 In practical applications, it is realistic to set a constant reference like

Jre f = max
i∈[k1,k2]

xT (i) Px (i) + c, (20.53)

where [k1, k2] is the time interval of interest and could be defined by the user.

Next, an approach is proposed to evaluate performance degradation. To this end,
assume that the cost function (20.50) is

J (i) = E
∞∑

k=i

γ k−i
(
xT (k) Qx (k) + uT (k)Ru(k)

)

= xT (i) Px (i) + xT (i) c1 + c2 (20.54)

with some constant vector c1 ∈ Rn and constant c2, and write it as

J (i) = E
(
xT (i)

(
Q + FT

0 RF0
)
x (i) + γ

(
xT (i + 1) Px (i + 1)
+xT (i + 1) c1 + c2

))
. (20.55)

It turns out, by taking into account (20.51) and some straightforward computations,

P = γ (A + BF0)
T P (A + BF0) + Q + FT

0 RF0, (20.56)

c1 = 2γ
(
I − γ (A + BF0)

T
)−1

(A + BF0)
T Pd0, (20.57)

c2 = γ
tr (ΣwP) + dT

0 Pd0 + dT
0 c1

1 − γ
. (20.58)

Thus, (20.54) is a performance (degradation) prediction model with P, c1, c2 as the
model parameters that are functions of unknown matrices ΔA,ΔB. In other words,
in order to predict the performance degradation, P, c1, c2 should be online identified
using measurement data. To this end, re-write (20.54) into

J (i) = xT (i) Px (i) + xT (i) c1 + c2 = ωTφ(i), (20.59)
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where ω is the parameter vector including all parameters to be identified, φ(i) is a
vector of time functions consisting of the process data. Concretely, ω is composed
of n(n + 1)/2 parameters of the n × n dimensional matrix P (as an SPD matrix), n
parameters of c1 and c2 and hence

ω =
⎡

⎢
⎣

ω1
...

ωη

⎤

⎥
⎦ ∈ Rη, η = (n + 1)n/2 + n + 1 = (n + 1) (n + 2)/2.

The vector φ(i) is

φ(i) =
⎡

⎢
⎣

φ1(i)
...

φη(i)

⎤

⎥
⎦ ∈ Rη,

φ j (i) ∈ {
1, xq(i), q = 1, · · · , n, xq(i)xr (i), q, r = 1, · · · , n

}
, j = 1, · · · , η.

Now, we are able to write (20.55) into the following form, based on which the
parameter vector ω is identified,

ωTφ(i) = xT (i)
(
Q + FT

0 RF0
)
x (i) + γωTφ(i + 1) =⇒

ωT (φ(i) − γφ(i + 1)) = xT (i)
(
Q + FT

0 RF0
)
x (i) . (20.60)

Consequently, we are in a position to run the following algorithm for performance
degradation monitoring and detection.

Algorithm 20.2 Performance degradation monitoring and detection

Step 0: Compute Jre f (i) or Jre f according to (20.52) or (20.53);
Step 1: Collect measurement data x(i), x(i + 1), · · · , x(i + N + 1);
Step 2: Form

Φ = [
φ(i) − γφ(i + 1) · · · φ(i + N ) − γφ(i + N + 1)

]
,

ϕ = [
xT (i)

(
Q + FT

0 RF0
)
x (i) · · · xT (i + N )

(
Q + FT

0 RF0
)
x (i + N )

] ;

Step 3: Run LS parameter estimation, for instance,

ω̂T = ϕΦT
(
ΦΦT

)−1 ;

Step 4: Compute

J (i) = ω̂Tφ(i);
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Step 5: If

J (i) > Jre f (i) =⇒ alarm,

otherwise go to Step 1.

Remark 20.3 In order to achieve a good prediction, the number N is to be suf-
ficiently large. In addition, sufficient excitation should be guaranteed for the LS
estimation. Alternatively, regularised LS can be adopted. The recursive LS is also a
practical solution.

20.3.3 Performance Residual Based Detection of
Performance Degradation

The online identification of the system performance model, as performed in Algo-
rithm 20.2, delivers sufficiently accurate prediction of the system performance. On
the other hand, the necessary online computation and time for collecting sufficient
number of data could be, from the application viewpoint, problematic. Alternatively,
we propose an approach based on the so-called the performance residual.

Suppose that the systemunder consideration is running under the normal operation
condition with the nominal controller and, by collecting sufficient data, the cost
function (performance) model (20.54) is identified. Note that this identification will
be done one time and there is no real-time requirement on its performing. Recall that
J (i) can be written into a recursive form

J (i) = E (
xT (i) Qx (i) + uT (i)Ru(i) + γ J (i + 1)

)
.

This allows us to model the performance function by the following difference equa-
tion,

xT (i) Px (i) − γ xT (i + 1)Px(i + 1) + (x (i) − γ x(i + 1))T c1

+ (1 − γ ) c2 − xT (i) Qx (i) − uT (i)Ru(i) = 0, (20.61)

which is also called Bellman equation. On the basis of the above performance model,
we introduce the definition of performance residual.

Definition 20.1 Given the closed-loop system model (20.51) and the corresponding
performance model (20.61), the signal rP(i),

rP(i) = xT (i) Px (i) − γ xT (i + 1)Px(i + 1) + (x (i) − γ x(i + 1))T c1

+ (1 − γ ) c2 − xT (i) Qx (i) − uT (i)Ru(i), (20.62)
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is called performance residual, and the system (20.62) is called performance residual
generator.

The performance residual generator is generally a nonlinear dynamic system that
delivers the performance residual signal with slight variations around zero during
normal operation. In order to detect performance degradation, it is expected that sig-
nificant changes in rP(i) would be observed, when variations in the system matrices
A and B are caused by performance degradation. According to (20.56)–(20.58), they
will lead to variations in P, c1, c2 in the performance model (20.54). To be specific,
let δAF , δd0 be the (unknown) changes in A+ BF0, d0, and denote the corresponding
solutions of P, c1, c2 by

P + ΔP =γ
(
A + BF0 + δAF

)T
(P + ΔP)

(
A + BF0 + δAF

) + Q + FT
0 RF0,

c1 + Δc1 =
2γ

(
I − γ

(
A + BF0 + δAF

)T )−1 (
A + BF0 + δAF

)T
(P + ΔP)

(
d0 + δd0

)
,

c2 + Δc2 = γ tr (Σw (P + ΔP))

1 − γ

+ γ

(
d0 + δd0

)T
(P + ΔP)

(
d0 + δd0

) + (
d0 + δd0

)T
(c1 + Δc1)

1 − γ
.

It turns out

ΔP =γ
(
A + BF0 + δAF

)T
ΔP

(
A + BF0 + δAF

) + γ δTAF
PδAF

+ γ δTAF
P (A + BF0) + γ (A + BF0)

T PδAF ,

Δc1
2γ

=
(
I − γ

(
A + BF0 + δAF

)T )−1

⎛

⎝
δTAF

(P + ΔP)
(
d0 + δd0

)+
(A + BF0)T ΔP

(
d0 + δd0

)+
(A + BF0)T Pδd0

⎞

⎠

+
(
I − γ

(
A + BF0 + δAF

)T )−1
δTAF

(
I − γ (A + BF0)

T
)−1

(A + BF0)
T Pd0,

Δc2 = γ
tr (ΣwΔP) + (

d0 + δd0
)T

ΔP
(
d0 + δd0

) + δTd0 Pδd0 + 2δTd0 Pd0

1 − γ

+ γ
dT0 Δc1 + δTd0c1 + δTd0Δc1

1 − γ
.

Finally, rP(i) satisfies

rP(i) = xT (i) ΔPx (i) − γ xT (i + 1)ΔPx(i + 1) + (x (i) − γ x(i + 1))T Δc1
+ (1 − γ )Δc2. (20.63)

For our purpose of building an evaluation function and determining the threshold
correspondingly, we analyse the influence of ΔP,Δc1,Δc2 on J (i). Write rP(i) as
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rP(i) = (
xT (i) ⊗ xT (i) − γ xT (i + 1) ⊗ xT (i + 1)

)
vec (ΔP)

+ (x (i) − γ x(i + 1))T Δc1 + (1 − γ )Δc2
=: ϕ (x (i) , x(i + 1)) φ (Δ)

with

ϕ (x (i) , x(i + 1)) =
[
xT (i) ⊗ xT (i) − γ xT (i + 1) ⊗ xT (i + 1) (x (i) − γ x(i + 1))T 1 − γ

]
,

φ (Δ) =
⎡

⎣
vec (ΔP)

Δc1
Δc2

⎤

⎦ .

It yields

r2P(i) = ϕ (x (i) , x(i + 1)) φ (Δ) φT (Δ) ϕT (x (i) , x(i + 1))

≤ φT (Δ) φ (Δ) ϕ (x (i) , x(i + 1)) ϕT (x (i) , x(i + 1)) . (20.64)

This suggests to define the evaluation function as

J (i) = r2P(i)

ϕ (x (i) , x(i + 1)) ϕT (x (i) , x(i + 1))
. (20.65)

Define �ΔP ,�Δc1 ,�Δc2 as the value ranges of ΔP,Δc1,Δc2, which are accepted
as (normal) operational variations and denote

�Δ := {
�ΔP ,�Δc1 ,�Δc2

}
.

Correspondingly, the threshold is set to be

Jth = max{ΔP,Δc1,Δc2}∈�Δ

φT (Δ) φ (Δ) , (20.66)

since, according to (20.64) and (20.65),

J (i) ≤ φT (Δ) φ (Δ) .

Consequently, the detection logic

{
J (i) ≤ Jth, normal operation,
J (i) > Jth, performance degradation,

is adopted. Note that it is hard to solve (20.66) analytically. Alternatively, the RA-
technique aided threshold setting algorithms introduced in Chap. 18, for instance,
Algorithm 18.2, can be used.
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20.3.4 Performance Recovery by Updating the State
Feedback Gain

Once not allowed performance degradation is predicted, action to recover the perfor-
mance will be activated. In this sub-section, wewill study updating the feedback gain
matrix F for this purpose. To be specific, we will find a solution for the following
optimisation problem: given the feedback control loop

x (k + 1) = (A + BF0) x (k) + BΔu(k) + w(k) + d0,

Δu(k) = Fx(k),

find a feedback gain updating F so that cost function

J (i) = E
∞∑

k=i

γ k−i
(
xT (k) Q (k) + (Fx(k))T RFx(k)

)
,

is minimised. The overall control loop will be optimised by adding an additional
control signal

Δu(k) = ΔFx(k).

In other words, the total control input is

u(k) = F0x(k) + Δu(k) = (F0 + ΔF) x(k).

The idea for our solution is inspired by the so-called Q-learning known in the re-
inforcement learning based LQ-controller optimisation. Recall that the LQ optimal
control gain should be

F = F0 + ΔF = −γ
(
R + γ BT PB

)−1
BT P A, (20.67)

P = γ AT P A + Q − γ 2AT PB
(
R + γ BT PB

)−1
BT P A ⇐⇒ (20.68)

P = γ AT
F P AF + Q + FT

(
R + γ BT PB

)
F, P > 0, (20.69)

in which B, A are, however, unknown. The key step to solve this problem is an
iterative computation of the solution of Riccati equation (20.68 ) without knowledge
of A and B. To this end, we propose the following scheme along the lines described
by Lewis et al. in 2012 in their survey paper on the application of reinforcement
learning technique to optimal adaptive control (the reference is given at the end of
this chapter). We first introduce a known result that builds the theoretical basis of
our solution.

Theorem 20.1 Let Pi , i = 0, 1, · · · , be the solutions of

Pi = AT
Fi Pi AFi + Q + FT

i RFi , AFi = A + BFi , i = 0, 1, · · · , (20.70)
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where
Fi+1 = − (

R + BT Pi B
)−1

BT Pi A, i = 0, 1, · · · , (20.71)

AF0 should be a Schur matrix, A, B are the system matrices given in the system
model (20.1) and R, Q are the weighting matrices adopted in the cost function
(20.50). Then,

P ≤ Pi+1 ≤ Pi · · · , i = 0, 1, · · · ,

lim
i→∞ Pi = P,

where P is the solution of Riccati equation

P = AT P A + Q − AT PB
(
R + BT PB

)−1
BT P A > 0. (20.72)

This theoremwas published byHewer in 1971, and the corresponding reference is
given at the end of this chapter. In order to implement the iterative algorithm (20.70)–
(20.71) without knowledge of the system dynamics, we propose to add a test signal
in the control loop to identify the needed parameters for building the control law
(20.71) that converges to (20.67).

Remark 20.4 Note that the result in the above theorem holds for any γ ∈ (0, 1). In
fact, ∀γ ∈ (0, 1), the initial optimisation problem can be equivalently formulated
as

min
F

J (i) = E
∞∑

k=i

(
xT (k) Q (k) + (Fx(k))T RFx(k)

)
,

s.t. x (k + 1) = Āx (k) + B̄u(k) + w(k), Ā = √
γ A, B̄ = √

γ B.

Let

Δu(k) = ϑ(k) =⇒ u(k) = Fj x(k) + ϑ(k), j = 0, 1, · · · , (20.73)

ϑ(k + 1) = Aϑϑ(k) + �(k), ϑ(0) = ϑ0, (20.74)

where ϑ0 is some constant (vector) as design parameter and �(k) is a white noise
with

E�(k) = 0, E�(k)� T (k) = Σ�,

and independent of x(k), w(k), and Aϑ is schur and can be set as a design parameter.
Now, we write the overall system dynamics in the following compact form

[
x(k + 1)
ϑ(k + 1)

]
=

[
A + BFj B

0 Aϑ

] [
x(k)
ϑ(k)

]
+

[
d0
0

]
+

[
w(k)
�(k)

]
,

and consider the cost function
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Jj (i) = E
∞∑

k=i

γ k−i
(
xT (k) Q j x (k) + ϑT (k)Rϑ(k)

)
, Q j = Q + FT

j RFj .

Similar to (20.54)–(20.58), we have

Jj (i) = xT (i) Pj x (i) + xT (i) c1, j + c2, j , j = 0, 1, · · · ,

= [
xT (i) ϑT (i)

] ([ Pj Pxϑ, j

PT
xϑ, j Pϑ, j

] [
x(i)
ϑ(i)

]
+ c1, j

)
+ c2, j ,

Pj = γ AT
Fj
Pj AFj + Q j , AFj = A + BFj , (20.75)

Pxϑ, j = γ AT
Fj

(
Pj B + Pxϑ, j Aϑ

)
, (20.76)

Pϑ, j = γ
(
BT Pj B + AT

ϑ P
T
xϑ, j B + BT Pxϑ, j Aϑ + AT

ϑ Pϑ, j Aϑ

) + R, (20.77)

c1, j = 2γ

(

I − γ

[
AFj B
0 Aϑ

]T
)−1 [

AFj B
0 Aϑ

]T [
Pj

PT
xϑ, j

]
d0, (20.78)

c2, j = γ

1 − γ

(
tr

([
Σw 0
0 Σ�

] [
Pj Pxϑ, j

PT
xϑ, j Pϑ, j

])
+ dT

0 Pjd0 + dT
0 c̄1, j

)
, (20.79)

c̄1, j = 2γ
(
I − γ AT

Fj

)−1
AT
Fj
Pjd0. (20.80)

Moreover, the results on the identification of parameters P, c1, c2 in the cost function
(20.54) and the associated Algorithm 20.1 presented in the last sub-section can be
directly applied for identifying

P̄j =
[

Pj Pxϑ, j

PT
xϑ, j Pϑ, j

]

and c1, j , c2, j given in (20.78) and (20.79). Remember that, for building the feedback
control gain matrix Fj+1,

Fj+1 = −γ
(
R + γ BT Pj B

)−1
BT Pj A

= −γ
(
R + γ BT Pj B

)−1 (
BT Pj AFj − BT Pj BFj

)
,

matrices BT Pj B, BT Pj A are needed, which are embedded in (20.76) and (20.80).
We propose the following approximation as a solution.

Recall that Aϑ is a design parameter (matrix). We set

Aϑ = ρ I, (20.81)

and furthermore |ρ| is sufficiently small,
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|ρ| � 1, (20.82)

so that

BT Pj B+AT
ϑ P

T
xϑ, j B + BT Pxϑ, j Aϑ + AT

ϑ Pϑ, j Aϑ ≈ BT Pj B,

γ AT
Fj

(
Pj B + Pxϑ, j Aϑ

) ≈ γ AT
Fj
Pj B.

As a result, the feedback control gain matrix is approximated by

Fj+1 = −γ
(
R + γ BT Pj B

)−1 (
BT Pj AFj − BT Pj BFj

)

≈ −P−1
ϑ, j

(
PT
xϑ, j − (

Pϑ, j − R
)
Fj

)
. (20.83)

In fact, considering

∀μ > 0, BT Pxϑ, j + PT
xϑ, j B ≤ μI + 1

μ
BT Pxϑ, j P

T
xϑ, j B,

it holds

∀ε > 0, ∃ρ, so that AT
ϑ P

T
xϑ, j B + BT Pxϑ, j Aϑ = ρ

(
BT Pxϑ, j + PT

xϑ, j B
)

≤ ρ

(
μI + 1

μ
BT Pxϑ, j P

T
xϑ, j B

)
≤ ε I.

Moreover,
γ
(
A + BFj

)T
Pxϑ, j Aϑ = γρ

(
A + BFj

)T
Pxϑ, j .

Thus,

lim
ρ→0

(
AT

ϑ P
T
xϑ, j B + BT Pxϑ, j Aϑ

) = 0, lim
ρ→0

γρ
(
A + BFj

)T
Pxϑ, j = 0.

It can be claimed that

lim
ρ→0

Fj+1 = − lim
ρ→0

P−1
ϑ, j

(
PT
xϑ, j − (

Pϑ, j − R
)
Fj

)

= −γ
(
R + γ BT Pj B

)−1
BT Pj A. (20.84)

We summarise the main results on updating the feedback gain matrix according to
(20.67) in the following algorithm.

Algorithm 20.3 Update of feedback gain aiming at recovering performance degra-
dation

Step 0: Input data: R, Q, F0 (the existing controller to be updated), set j = 0
and the tolerance value β;
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Step 1-1: Set Aϑ according to (20.81)–(20.82) with a sufficiently small ρ and gen-
erate ϑ(k), k = i, · · · , i + N + 1, according to (20.74);

Step 1-2: Apply the control law

u(k) = Fj x(k) + ϑ(k)

to the process and collect data x(k), k = i, · · · , i + N + 1;
Step 1-3: Identify P̄j using Algorithm 20.2 with data x(k), ϑ(k), k = i, · · · , i +

N + 1;
Step 1-4: Set j = j + 1 and the feedback control gain Fj according to (20.83);
Step 1-5 If ∥∥Fj − Fj−1

∥∥
2 > β,

go to Step 1-2, otherwise
Step 2: Output the feedback control gain

F = Fj .

Remark 20.5 Recall that ϑ(k) is an additional test signal for the identification
purpose. In real applications,ϑ(k) should be selected carefully, when updating of the
control gain is performed during the system operation, so that the system operation
will not be remarkably affected.

As mentioned, our work is inspired by the Q-learning method towards (real-time)
optimal adaptive LQ controller, which is also known in the literature as Q-learning
method of reinforcement learning technique. Our scheme and the updating algorithm
are different from the Q-learning algorithms published in the literature. In fact, the
core of our work is the identification of the system performance as well as some
related system matrices based on Bellman equation. In this regard, Step 1-1 to Step
1-2 in Algorithm 20.3 can be viewed as (control) performance monitoring.We notice
different handlings in the published Q-learning algorithms, and summarise some of
them as follows:

• Without considering noises, the cost function

J (i) =
∞∑

k=i

γ k−i
(
xT (k) Qx (k) + uT (k)Ru(k)

)

can be expressed in terms of the so-called Q-function as

J (i) = [
xT (i) uT (i)

]
[

γ AT P A + Q γ BT P A
γ AT PB R + γ BT PB

] [
x(i)
u(i)

]
.

One possibility to identify the kernel matrix
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S =
[

γ AT P A + Q γ BT P A
γ AT PB R + γ BT PB

]

is the use of Bellman equation. Note that this is only possible when

u(i) = Fx(i). (20.85)

As a result, we have

J (i) = (
xT (i) Qx (i) + uT (i)Ru(i)

) + γ J (i + 1) ⇐⇒
ϕT (i)Sϕ(i) − γ ϕT (i + 1)Sϕ(i + 1) = xT (i) Qx (i) + uT (i)Ru(i),

ϕT (i) = [
xT (i) uT (i)

]
.

It seems that γ AT PB, R+γ BT PB could be identified using ϕ(i).Unfortunately,
due to the relation (20.85),J (i) becomes

J (i) = xT (i)

(
γ AT P A + Q + γ FT BT P A + γ AT PBF

+FT
(
R + γ BT PB

)
F

)
x(i)

and thus a direct identification of γ AT PB, R + γ BT PB is impossible. In fact,
the relation (20.85), [

x (i)
u(i)

]
=

[
I
F

]
x (i) ,

implies that the excitation for the identification of the kernel matrix S is not suffi-
cient.

• In order to solve this problem, it has been suggested to add noise θ(i) to the control
signal,

u(i) = Fx(i) + θ(i), (20.86)

and apply x (i) , u(i) to identify γ AT PB, R + γ BT PB. Unfortunately, there is
no well-established rule for the selection of θ(i). A direct use of θ(i) in the form
of (20.86 ) does not lead to the solution. This can be seen from the following
discussion. Assume that

J (i) = [
xT (i) θT (i)

]
S

[
x(i)
θ(i)

]
=⇒ (20.87)

J (i + 1) = [
xT (i + 1) θT (i + 1)

]
S

[
x(i + 1)
θ(i + 1)

]
.

But, J (i) cannot be expressed in terms of Bellman equation like

J (i) = (
xT (i) Qx (i) + uT (i)Ru(i)

) + γ J (i + 1),



584 20 Performance Recovery and Fault-Tolerant Control Schemes

since θ(i + 1) is not a (linear) mapping of θ(i). In other words, the assumption
(20.87) does not hold.

• In the literature, an alternative scheme has been proposed, in which the kernel
matrix S and the feedback gain matrix F are identified and determined in an
iterative process. To be specific, the iterative algorithm is described schematically
by

[
xT (i) uT (i)

]
S j+1

[
x(i)
u(i)

]
= xT (i) Qx (i) + uT (i)Ru(i) (20.88)

+
[
xT (i + 1)

(
F j x(i + 1)

)T
]
S j

[
x(i + 1)

F j x(i + 1)

]
,

F j+1 = −
(
S j+1
22

)−1
S j+1
21 , j = 0, 1, · · · ,

where j is the iteration number,

S j+1 =
[
S j+1
11 S j+1

12

S j+1
21 S j+1

22

]

, S j+1
12 =

(
S j+1
21

)T
,

and for the sake of simplicity, γ is set equal to one. The core of this algorithm
is the identification of S j+1 based on (20.88) using the process data (x(i), u(i)) .

Note that for the identification reason, u(i) could be a random signal, but should
not be set equal to F j x(i). It should be also noticed that (20.88) is not a Bellman
equation. In other words,

[
xT (i) uT (i)

]
S j+1

[
x(i)
u(i)

]

is not the true performance value until S j converges, and thus it cannot be used
for the performance monitoring purpose.

The above discussion illustrates also why system (20.74) has been introduced in our
solution. On the other hand, we would like to emphasise that applying our solution
γ AT PB, R+γ BT PB can be satisfactorily identified thanks to the relation ( 20.84).

20.4 Real-Time Monitoring and Optimisation of Observers

This section is dedicated to monitoring and updating observers and observer-based
residual generators. To be specific, we will focus on real-time optimisation of an
observer to match changes in the system dynamics. The basis for our efforts is the
dual form of the observer design presented in Sect. 20.2.
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20.4.1 Problem Formulation and Basic Idea

Consider LTI systems described by (20.45)–(20.46) with

A = Ao, B = Bo,C = Co, D = Do

as nominal system matrices. Here, d1, d2 will be specified in the sequel. We first
formulate our problems of assessing and recovering estimation performance in a
broader sense. Let

x̂(k + 1 |k ) = Ax̂ (k |k − 1 ) + Bu(k) + Lr(k), (20.89)

r(k) = y(k) − Cx̂ (k |k − 1 ) − Du(k) (20.90)

be a (stable) optimal state observer that delivers a one-step ahead prediction of the
state vector x(k) and residual vector r(k). Roughly speaking, the state estimation
error,

e(k) = x(k) − x̂ (k |k − 1 ) ,

is the key indicator for the estimation performance of an observer. Since e(k) is not
measurable, its assessment during system operations is challenging. Consequently,
detection of estimation performance degradation caused by changes in the system
dynamics and, associatedwith it, recovery of the estimation performance degradation
are problems remaining to be solved.

By our study on LQ optimal observers in Sect. 20.2, we have introduced the co-
state vector λx and the associated dual system,

λx (i) = ATλx(i + 1) − CT LTλx (i + 1) + CT R−1r(i), (20.91)

λx(k + 1) = 0,

r(i) = y(i) − Cx̂ (i |i − 1 ) − Du(i), i = k0, · · · , k,

and demonstrated that

• driven by the residual vector r, system (20.91) is the information carrier about the
uncertainties in the system expressed in terms of d1, d2,

• the LS estimations for d1, d2 are linear mappings of the co-state vector λx (as well
as λy),

• the optimal observer problem can be equivalently expressed in terms of an LQ
regulation problem with the dual system (20.91).

These results and conclusions inspire us to propose applying the dual system (20.91)
for monitoring estimation performance and detecting performance degradation. In
this context, we call system (20.91) estimation performance observer. We propose

J (k) =
k∑

i=−∞
λT
x (i)Qλx (i), Q > 0 (20.92)
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as the general form of the cost function for performance assessment, and formulate
the assessment and monitoring tasks as

• determination of the nominal value of the cost function (20.92 ) and
• development of performance monitoring algorithms with respect to the cost func-
tion (20.92).

A further task dealswith updating the observer to recover the estimation performance,
when strong performance degradation is detected. It is supposed that the estimation
performance degradation is caused by d1(k), d2(k)which are either l2-norm bounded
unknown inputs or modelled by

d1(k) = ΔAx(k) + ΔBu(k) + w(k),

d2(k) = ΔCx(k) + ΔDu(k) + q(k),

whereΔA,ΔB,ΔC,ΔD are someunknown constantmatrices representing changes
in the system matrices A, B,C, D and w(k), q(k) are noises. The basic idea behind
the performance degradation algorithm is the application of the LQ observer for
estimating ΔA,ΔB,ΔC,ΔD.

20.4.2 Monitoring and Detection of Estimation Performance
Degradation

Nominal Performance
As a reference for assessing estimation performance, we first define the (optimal)

operation conditions and, under them, determine the referencevalue. For this purpose,
let the reference system model be the following state space realisation,

x (k + 1) =Aox (k) + Bou(k) + w̄(k), x(0) = x0, (20.93)

y(k) =Cox(k) + Dou(k) + q̄(k), (20.94)

w̄(k) =Ew(k) ∼ N (
0, Σ̄w

)
, Σ̄w = EΣwE

T , w(k) ∼ N (0,Σw) ,

q̄(k) =Fdq(k) ∼ N (
0, Σ̄q

)
, Σ̄q = FdΣq F

T
d > 0, q(k) ∼ N (

0,Σq
)
,

E

⎛

⎜
⎝

⎡

⎣
w(i)
q(i)
x (0)

⎤

⎦

⎡

⎣
w( j)
q( j)
x (0)

⎤

⎦

T
⎞

⎟
⎠ =

⎡

⎣

[
Σw 0
0 Σq

]
δi j 0

0 �0

⎤

⎦ .

It is reasonable to run a Kalman filter,

x̂(k + 1 |k ) = Aox̂ (k |k − 1 ) + Bou(k) + Lor(k), (20.95)

r(k) = y(k) − Cox̂ (k |k − 1 ) − Dou(k), (20.96)
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P = AoP AT
o + Σ̄w − Lo

(
Σ̄q + CoPC

T
o

)
LT
o , (20.97)

Lo = AoPC
T
o

(
Σ̄q + CoPC

T
o

)−1
, (20.98)

for an optimal estimation of the state vector and residual generation. It follows from
our study in Sect. 20.2 that the estimation performance observer,

λ(i) = AT
o λ(i + 1) − CT

o L
T
o λ(i + 1) + CT

o R
−1r(i), λ(k + 1) = 0, (20.99)

r(i) = y(i) − Cox̂ (i |i − 1 ) − Dou(i), R = Σ̄q + CoPC
T
o , i = k0, · · · , k,

can be applied for the assessment of the estimation and monitoring performance.

Remark 20.6 To simplify the notation, λ(i) is adopted for λx (i). Since we only
consider the nominal system model without disturbance in the output model, it will
not cause any confusion.

Remember that the residual vector r(i) is white noise satisfying

r(i) ∼ N (
0,

(
Σ̄q + CoPC

T
o

))
.

It is also clear that λ(i + 1), r(i) are uncorrelated. Now, we define the cost function
as

J (k) = E
k∑

i=−∞
γ k−iλT (i)

(
Σ̄w + LoΣ̄q L

T
o

)
λ(i), 0 < γ < 1. (20.100)

In order to determine the performance value J (k), assume

J (k) = λT (k)Pλ (k) + c, P > 0. (20.101)

It holds

J (k) = E (
λT (k)

(
Σ̄w + LoΣ̄q L

T
o

)
λ(k) + γ J (k − 1)

) =⇒
λT (k)Pλ (k) + c =

E
(

λT (k)

(
γ
(
AT
o − CT

o L
T
o

)T
P
(
AT
o − CT

o L
T
o

)

+Σ̄w + LoΣ̄q LT
o

)
λ (k)

)
+ γ tr

(
CoPC

T
o R

−1
)
.

Thus, it is evident that P in (20.101) is the solution of the Riccati equation (20.97)
and

c = γ tr
(
CoPCT

o R
−1

)

1 − γ
.

As a result, the performance value given in (20.101) is the nominal value and con-
sidered as a reference.

Performance degradation detection
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When the systemunder consideration operates around the optimal operating point,
the estimation performance can be calculated by means of (20.101). On the other
hand, the cost function J (k) is the solution of the following difference equation,

J (k) = E (
λT (k)

(
Σ̄w + LoΣ̄q L

T
o

)
λ(k) + γ J (k − 1)

)
. (20.102)

Substituting relation (20.101) into (20.102) yields

λT (k)
(
P − Σ̄w − LoΣ̄q L

T
o

)
λ(k) − γ λT (k − 1)Pλ (k − 1) + (1 − γ ) c = 0.

Now, we define rP ,

rP(k) = λT (k)
(
P − Σ̄w − LoΣ̄q L

T
o

)
λ(k) (20.103)

−γ λT (k − 1)Pλ (k − 1) + (1 − γ ) c

as the (estimation) performance residual signal. It is clear that any change in the
system will cause rP differing from zero. In this way, degradation in the estima-
tion performance caused by changes in the system is detected. For the real-time
realisation, we propose the algorithm given below.

Algorithm 20.4 Detection of estimation performance degradation

Step 0: Compute and save P, c based on the model ( 20.93)–(20.94);
Step 1: Run estimation performance observer (20.99) and collect λ (k − 1) , λ (k);
Step 2: Compute performance residual rP according to (20.103);
Step 3: Run the detection logic

{
Jth,low ≤ rP(k) ≤ Jth,high =⇒ f ault − f ree =⇒ go to Step1,
otherwise, faulty,

where Jth,low, Jth,high are thresholds, which should be set depending on sys-
tem operation conditions.

Alternatively, the control performance degradation detection method presented in
Sect. 20.3.3 can be adopted for the same purpose.

20.4.3 Performance Degradation Recovery

Problem formulation
Consider the system model

x (k + 1) = Ax (k) + Bu(k) + w̄(k) = Aox (k) + Bou(k) + Ed1(k), (20.104)

y(k) = Cx(k) + Du(k) + q̄(k) = Cox(k) + Dou(k) + Fdd2(k) (20.105)
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with d1(k), d2(k) being either l2-norm bounded unknown inputs or modelled by

d1(k) = ΔAx(k) + ΔBu(k) + w(k),

d2(k) = ΔC x(k) + ΔDu(k) + q(k).

Here, w(k), q(k) are noises as defined previously, and

Δ =
[

ΔA ΔB

ΔC ΔD

]

represents uncertainties in the system matrices. Suppose that d1, d2 cause estimation
performance degradation (in sense of our discussion in the previous sub-section)
and triggers updating the Kalman filter (20.95) aiming at recovering performance
degradation. In the sequel, we assume that sufficient process data, y(i), u(i), i =
k0, · · · , k, have been collected, and E, Fd in themodel (20.104)–(20.105) are known,
and

rank

[
E 0
0 Fd

]
= dim

([
d1
d2

])
.

Recall the following equations achieved during our study on LQ optimal observers
in Sect. 20.2:

x̂ (i + 1 |i ) = Aox̂ (i |i − 1 ) + Bou(i) + Lr(i), (20.106)

r(i) = y(i) − Cox̂ (i |i − 1 ) − Dou(i), (20.107)

x̂(i |i ) = x̂ (i |i − 1 ) + PCT
o Rr(i), (20.108)

x̂(i) = x̂(i |i ) + P
(
AT
o − CT

o R
−1CoP AT

o

)
λx(i + 1), (20.109)

λx (i) = (Ao − LCo)
T λx(i + 1) + CT

o R
−1r(i), λx (k + 1) = 0, (20.110)

λy(i) = R−1r(i) − LTλx (i + 1), (20.111)

d̂1(i) = ETλx (i + 1), d̂2(i) = FT
d λy(i), (20.112)

for i = k0, · · · , k, where

L = AoPC
T
o R

−1, P = AoP AT
o + EET − LRLT ,

R = Fd F
T
d + CoPC

T
o ,

and the standard notations
x̂(i) = x̂(i |k ),



590 20 Performance Recovery and Fault-Tolerant Control Schemes

x̂(i |i ) as well as x̂(i |i − 1 ) represent the estimates of x(i) using the data {y(k0), · · ·
, y(k)}, and {y(k0), · · · , y(i)} as well as {y(k0), · · · , y(i − 1)} , respectively. Our
tasks are

• to analyse the estimation performance of x̂(i), d̂1(i) and d̂2(i) delivered by the LQ
observers,

• to apply them for the control performance degradation recovery, and
• in case of d1(i), d2(i) representing model uncertainties, to estimate Δ, on account
of the model [

d1(i)
d2(i)

]
=

[
ΔA ΔB

ΔC ΔD

] [
x(i)
u(i)

]
+

[
w(i)
q(i)

]
, (20.113)

and using data

d̂1(i + j), d̂2(i + j), x̂(i + j), u(i + j), j = 0, 1, · · · , N , [i, i + N ] ⊂ [k0, k] .

Estimation performance analysis
For our estimation purpose, we first analyse the performance of d̂1(i), d̂2(i) de-

livered by the LQ observer. It follows from (20.106)–(20.112) that

λx (i) = (Ao − LCo)
T λx (i + 1) + CT

o R
−1r(i), λx (k + 1) = 0, (20.114)

[
d̂1(i)
d̂2(i)

]
=

[
ET

−FT
d LT

]
λx (i + 1) +

[
0

FT
d R−1

]
r(i). (20.115)

That is, d̂1(i), d̂2(i) are the output of a dynamic system with λx(i + 1) as its state
vector and residual r(i) as its input. It is straightforward to write d̂1(i), d̂2(i) as

[
d̂1(i)
d̂2(i)

]
=ET

L

(
AT
L

)s−1
λx (i + s) +

s−1∑

j=1

ET
L

(
AT
L

) j−1
C̄T r(i + j) + F̄T

d R−1r(i)

=ET
L

(
AT
L

)s−1
λx (i + s) + Hr,s−1r̄s−1(i + s − 1),

AL =Ao − LCo, E
T
L =

[
ET

−FT
d LT

]
, F̄T

d =
[

0
FT
d R−1/2

]
, C̄T = CT

o R−1/2,

Hr,s−1 =
[
F̄T
d ET

L C̄
T ET

L AT
L C̄

T · · · ET
L

(
AT
L

)s−2
C̄T

]
,

r̄s−1(i + s − 1) =
⎡

⎢
⎣

R−1/2r(i)
.
.
.

R−1/2r(i + s − 1)

⎤

⎥
⎦ .
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On the other hand, it is known that

e (i + 1) = ALe(i) + [
E − LFd

] [ d1(i)
d2(i)

]
,

r(i) = Coe(i) + [
0 Fd

]
[
d1(i)
d2(i)

]
, e(i) = x(i) − x̂ (i |i − 1 ) ,

r̄s−1(i + s − 1) = Γs−1e(i) + Hd,s−1ds−1(i + s − 1),

Γs−1 =

⎡

⎢
⎢⎢
⎣

R−1/2Co

R−1/2CoAL
.
.
.

R−1/2CoA
s−1
L

⎤

⎥
⎥⎥
⎦

, Hd,s−1 =

⎡

⎢
⎢⎢
⎣

F̄d 0 · · · 0
R−1/2CoEL F̄d · · · 0

.

.

.
. . .

. . .
.
.
.

R−1/2CoA
s−2
L · · · R−1/2CoEL F̄d

⎤

⎥
⎥⎥
⎦

,

ds−1(i + s − 1) =
⎡

⎢
⎣

d(i)
...

d(i + s − 1)

⎤

⎥
⎦ , d( j) =

[
d1( j)
d2( j)

]
.

Suppose that i is the time instant before the uncertainty has caused significant changes
in the system dynamics. Hence, it is reasonable to assume

e(i) ≈ 0. (20.116)

Moreover, for large s, (
AT
L

)s−1 ≈ 0.

As a result, we have

[
d̂1(i)
d̂2(i)

]
≈ Hr,s−1Hd,s−1ds−1(i + s − 1). (20.117)

Note the relations

[
E 0

] [ 0
FT
d

]
= 0,

[
0 Fd

] [ 0
FT
d

]
= Fd F

T
d ,

[
E 0

] [ ET

0

]
= EET ,

[
E 0

] − L
[
0 Fd

] = [
E − LFd

]
,

which allow us to write L , R and the Riccati equation equivalently as
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L =
(
AoPC

T
o + [

E 0
] [ 0

FT
d

])
R−1, (20.118)

R = [
0 Fd

] [ 0
FT
d

]
+ CoPC

T
o , (20.119)

P = AoP AT
o + [

E 0
] [ ET

0

]
− LRLT . (20.120)

It follows from the result given in Lemma 7.1 that

Hd,s−1H
T
d,s−1 = I, (20.121)

when L , R are set according to (20.118) and P solves the Riccati equation (20.120).
Thus, if Hd,s−1 is a square matrix, which is equivalent with

dim(y) = dim(d) = m,

it holds
HT

d,s−1Hd,s−1 = I. (20.122)

Notice that
Hr,s−1 = HT

d,s−1 (1 : m, :)

is the first m rows of HT
d,s−1. It yields

Hr,s−1Hd,s−1 = [
I 0 · · · 0 ] =⇒

[
d̂1(i)
d̂2(i)

]
=

[
d1(i)
d2(i)

]
.

Remark 20.7 In the study on Lemma 7.1, the initial condition is taken into account
by extending the unknown input vector d(k1, k2) to d̄(k1, k2) with the corresponding
matrix Hd̄,o(k1, k2). Its influence is then expressed by means of Po, the initial con-
dition of the Riccati equation (20.120). In our above result, this influence is directly
included in the solution of the Riccati equation in form of Po due to the formulation
of the optimisation problem (20.25).

It is straightforward that (20.122) still holds true by an output transformation,
when

dim(y) = m > dim(d).

In case
dim(y) < dim(d),

matrix HT
d,s−1 is in fact a pseudo-inverse of Hd,s−1 due to relation (20.121). In this

sense, Hr,s−1Hd,s−1 is an LS approximation of matrix
[
I 0 · · · 0 ] . Considering
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[
d̂1(i)
d̂2(i)

]
−

[
d1(i)
d2(i)

]
≈ (

Hr,s−1Hd,s−1 − [
I 0 · · · 0 ]) ds−1(i + s − 1),

it is suggested to check if

∥∥Hr,s−1Hd,s−1 − [
I 0 · · · 0 ]∥∥

F ≤ γ

holds, before

[
d̂1(i)
d̂2(i)

]
is adopted for our estimation purpose. Here, γ > 0 is the

tolerance defined by user.

Remark 20.8 The above discussion also reveals another aspect (interpretation) of
the dynamic system (20.114)–(20.115) with λx (i + 1) as its state vector, residual
r(i) as the input and d̂1(i), d̂2(i) as the output. The dynamics of this system is in fact
the first kd = dim(d) rows of the pseudo-inverse of Hd,s−1. Recall that the proof of
Lemma 7.1, (20.122) holds true only if the recursion

P(i + 1) = AP(i)AT + EET − L (i) R(i)LT (i)

converges to the constant matrix P. Moreover, the assumption (20.116) holds for
k0 → −∞. As a result, a good estimate for d(i) is achievable only for i → −∞.

We now briefly address the estimates for the state vector x(i). They are, as given
in (20.106)–(20.112),

x̂ (i + 1 |i ) = Aox̂ (i |i − 1 ) + Bou(i) + Lr(i),

x̂(i |i ) = x̂ (i |i − 1 ) + PCT
o Rr(i),

x̂(i) = x̂(i |i ) + P
(
AT
o − CT

o R
−1CoP AT

o

)
λx (i + 1). (20.123)

It is clear that x̂(i), different from x̂(i |i ), x̂ (i + 1 |i ) , not only depends on the
current and past process data y(i − j), u(i − j), j = 0, 1, · · · , but also on the
"future" process data y(i+ j), u(i+ j), j = 1, · · · , k− i, as it is driven by λx (i+1).
In other words, x̂(i) delivers the best estimate for x(i) among these three estimates.
It is of interest to notice that x̂(i) is computed using Algorithm 20.1 from i = k to
i = k0 downwards and, for instance, according to (20.123), instead of (20.28). On
the other hand, multiplying Ao to both sides of (20.123) leads to

Aox̂(i) = Aox̂(i |i ) + AoP
(
AT
o − CT

o R
−1CoP AT

o

)
λx (i + 1),

and further by Riccati equation (20.118)

Aox̂(i) = Aox̂(i |i ) + (
P − EET

)
λx(i + 1).

Finally, according to
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x̂(i + 1) = Pλx (i + 1) + x̂ (i + 1 |i ) , x̂ (i + 1 |i ) = Aox̂(i |i ),

we have
x̂(i + 1) = Aox̂(i) + EETλx (i + 1) = Aox̂(i) + Ed̂1(i),

which is (20.28). From these computations it becomes clear that x̂(i) gives a good
estimation of x(i), when d(i) is well estimated. Moreover, we would like to call the
reader’s attention to Remark 20.8, which tells us the best estimation d̂(i) and x̂(i) is
achieved for i → −∞. In other words, by the backwardly recursive computation of
x̂(i), the estimation performance will become better with the increasing number of
the iterations.

An application of an LQ observer for recovering control performance degra-
dation

It is known and also demonstrated in Sect. 20.1 that theH2 optimal control can be
solvedbyoptimising anLQregulator and anLQobserver, separately and respectively.
In Sect. 20.3, Algorithm 20.3 has been introduced for the online optimisation of the
LQ regulator on the assumption of availability of the state vector x(k) but without
knowledge of the variations in the system model. Below, we give a modified version
of Algorithm 20.3, in which x(k) is replaced by x̂(i |k ) delivered by an LQ observer.

Algorithm 20.5 Update of feedback gain based on the LQ state estimation

Step 0: Set Aϑ according to (20.81)–(20.82) with a sufficiently small ρ and gen-
erate ϑ(k), k = i, · · · , i + N + 1, according to (20.74);

Step 1-1: Apply the control law (20.73) to the process and collect y(k), u(k), k =
i, · · · , i + N1 + 1, · · · , i + N2;

Step 1-2: RunLQobserver (20.106)–(20.112) using the data y(k), u(k), k = i, · · · ,

i + N2 and save

x̂(i) = x̂(i |i + N2 ), · · · , x̂(i + 1 + N1) = x̂(i + 1 + N1 |i + N2 );

Step 1-3: Identify P̄ using Algorithm 20.2 with data x̂(k), ϑ(k), k = i, · · · , i +
N1 + 1;

Step 2: Repeat Step 1-1 to Step 1-3 until the update of the state feedback gain
converges;

Step 3: Output the feedback control gain (20.84).

It is followed by our discussion in the end of the last sub-section that N2 should
be sufficiently large so that x(k), k = i, · · · , i + N1 + 1, N1 << N2, can be well
estimated. It is of considerable interest to notice that the optimisation of both LQ
regulator and LQ observer is performed without perfect model knowledge.

Identification and Recovery Algorithm
Next, we introduce an algorithm for the estimation of uncertainty Δ on the basis

of the model (20.113), once d̂1(i), d̂2(i), x̂(i) have been estimated with satisfactory
performance. To this end, sufficient number of data are first collected to build
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Ψd =
[
d̂1(i) · · · d̂1(i + N )

d̂2(i) · · · d̂2(i + N )

]
, Ψxu =

[
x̂(i) · · · x̂(i + N )

u(i) · · · u(i + N )

]
.

On the assumption that Ψxu has full row rank, which means sufficient excitation, an
LMS estimate for Δ is given by

Δ̂ =
[

Δ̂A Δ̂B

Δ̂C Δ̂D

]
= ΨdΣ

−1
wqΨ T

xu

(
ΨxuΣ

−1
wqΨ T

xu

)−1
, (20.124)

Σwq =
[

Σw 0
0 Σq

]
.

Next, an update of Kalman filter (20.95)–(20.97) is performed, using the estimated
Δ̂, as follows

x̂ (i + 1 |i ) = Âx̂ (i |i − 1 ) + B̂u(i) + Lr(i), (20.125)

r(i) = y(i) − Ĉ x̂ (i |i − 1 ) − D̂u(i), (20.126)

L = ÂPĈT
(
Σ̄q + Ĉ PĈT

)−1
, P = ÂP ÂT + Σ̄w − L

(
Σ̄q + Ĉ PĈT

)
LT ,

Â = Ao + EΔ̂A, B̂ = Bo + EΔ̂B , Ĉ = Co + FdΔ̂C , D̂ = Do + FdΔ̂D .

It is followed by a check of the estimation performance, for instance, by means of
Algorithm 20.4 with estimation performance observer

λ(i) = ÂTλ(i + 1) − ĈT LTλ(i + 1) + ĈT R−1r(i), λ(k + 1) = 0,

R = Σ̄q + Ĉ PĈT , i = k0, · · · , k.

In case that the performance requirement is not satisfied, the above steps will be
repeated. Below is the summary of the above performance degradation recovering
procedure.

Algorithm 20.6 Recovery of estimation performance degradation

Step 0: Set j = 0 and

A j = Ao, Bj = Bo,C j = Co, Dj = Do;

Step 1: Run LQ observer (20.106)–(20.112) by substituting Ao, Bo,Co and Do with
A j , Bj ,C j and Dj , and collect sufficient data

d̂1(i + j), d̂2(i + j), x̂(i + j), u(i + j), j = 0, 1, · · · , N , [i, i + N ] ⊂ [k0, k] ;

Step 2: Build Ψd , Ψxu and compute LMS estimate of Δ̂ according to (20.124);
Step 3: Set j = j + 1,
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A j = A j−1 + EΔ̂A, Bj = Bj−1 + EΔ̂B,C j = C j−1 + FdΔ̂C ,

Dj = Dj−1 + FdΔ̂D,

and run Kalman filter (20.125)–(20.126) by substituting Â, B̂, Ĉ and D̂
with A j , Bj ,C j and Dj ;

Step 4: Run Algorithm 20.4 and check if the estimation performance requirement
is satisfied. If yes=⇒ stop, otherwise go to Step 1.

20.5 Notes and References

This chapter serves for four purposes,

• reviewing the standard LQG and LQR (or H2) control problems and providing
the alternative solutions based on the observer-based input–output model (19.5)–
(19.6), which allows us to handle control performance degradation monitoring and
recovery problems separately as LQ controller and LQ observer optimisation,

• formulating and solving performance degradationmonitoring and recovering prob-
lems for feedback control loops with an LQ controller,

• formulating LQ optimal observer design problem, studying its solution and some
relevant issues, and finally

• formulating and solving LQ observer performance degradation monitoring and
recovering problems.

Although our reviewing study on LQG and LQR/H2 control issues has been per-
formed on the basis of the observer-based input–output model (19.5)–(19.6), the
well-known methods and algorithms for dealing with LQ or LQG/LQR problems,
for instance, the ones given in [1, 2], have been applied.

As a dual form of the LQ control scheme, the so-called LQ optimal observer has
been introduceddirectly after the sectiononLQGandLQRcontrol issues. It should be
emphasised that the objective of this work is to establish a framework for monitoring
and recovering of the observer-based estimation performance degradation, instead
of addressing observer optimisation issues. In fact, from the viewpoint of the cost
function, LQ optimal observer or estimation problem is similar to the LS observer
defined by [3] and studied in Chap.8. On the other hand, different from the study on
LS observer in Chap.8, in which the focus is on the solution of the one-step ahead
prediction of the state and unknown input vectors, our major attention of the work
on LQ optimal estimation is paid to

• the role and interpretation of the co-state vector λx (k),
• the (smoothing) estimates of the state and unknown input vectors, x̂ (i |k ) ,

d̂ (i |k ) , i = k0, · · · , k, and
• the dual form and relations between the LQ optimal controller and observer.
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On account of this work, the LQ optimal estimation can be equivalently expressed
in terms of an optimisation problem consisting of (i) a cost function with λx(k)
as its variables, and (ii) a dynamic system with λx (k) as the state vector and the
residual signal as the input. This re-formulated optimisation problem is the basis for
the monitoring and recovering of observer performance degradation.

In the following two sections, performance degradationmonitoring and recovering
issues for control and estimation systems are investigated, respectively.

In order to detect control performance degradation, two algorithms have been
proposed: (i) reference model-based approach, and (ii) performance residual model-
based approach. In the first approach, an LTI system with a state feedback controller
and driven by white process and measurement noises is first defined as the reference
model. The quadratic performance value is computed according to

Jre f (i) = xT (i) Px (i) + c

with a constant c and P > 0 as the solution of a Lyapunov equation. It should be
kept in mind that the performance (degradation) value is in fact a prediction of the
performance function

J (i) = E
∞∑

k=i

γ k−i
(
xT (k) Qx (k) + uT (k)Ru(k)

)
.

That means, what is to be assessed is the performance development beginning from
the current time instant, when the current controller is continuously in use. For the
online assessment of the performance degradation, the degradation model (20.54)
is adopted and re-written into a regression model which enables an online identi-
fication of the parameter vector of the regression model and thus prediction of the
performance degradation. This approach is computationally involved and requires
collecting sufficient process data online.

The second approach is based on the degradation model (20.54) and the fact that
the performance value J (i) can also be written into a recursive form

J (i) = E (
xT (i) Qx (i) + uT (i)Ru(i) + γ J (i + 1)

)
.

They allow us to model performance degradation by the difference equation (20.61)
and further to build the performance residual generation model (20.62). With the
help of an analysis of the residual dynamics with respect to the variations in the
performance model (20.61), residual evaluation function (20.65) is finally defined. It
is evident that the needed online computation for the implementation of the second
approach is, in comparison with the first approach, considerably less involved. Also,
no significant detection delay is expected, since the detection algorithm is performed
at each time instant without collecting a great number of data.

We would like to call the reader’s attention to the essential role of the degradation
model (20.54) and the corresponding difference equation ( 20.61) in our performance
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degradation detection schemes. In fact, the difference equation (20.61) is the Bellman
equation [4] well-known in optimal control theory. This model provides us with a
powerful computation tool to deal with issues like performance value prediction.
Indeed, (system) performance value computation is a key step in the reinforcement
learning technique that is well established in the machine learning theory. Since
years, this technique has been drawing considerable research attention devoted to its
application to real-time learning and optimisation in engineering systems [5]. In this
context, the detection schemes proposed in this chapter can also be embedded in a
learning-based online controller optimisation procedure. It is worth mentioning that
in the reinforcement learning framework the performance residual rP(i) defined in
(20.62) is called temporal difference (TD) and used for the value function updates
[5, 6].

Ourwork dedicated to the control performance degradation recovery is inspired by
the so-calledQ-learningmethod, which is a well-establishedmethod in the reinforce-
ment learning technique [5] andwidely applied in online andmodel-free optimisation
of LQ controllers [7]. Although we have applied the Q-learning method for recov-
ering control performance degradation, the basic idea and the relevant mathematical
handlings are similar. We have followed the ideas described by Lewis et al. in their
survey paper [6] and proposed a scheme for updating state feedback gain matrix,
once significant control performance degradation is detected. In this scheme, Theo-
rem 20.1 published by Hewer in [8] plays a key role and builds the theoretical basis
for updating the state feedback gain. Our work has focused on iteratively solving the
associated Riccati equation using the process data. For our purpose, a method has
been proposed to add certain noise for the identification of the kernel matrix needed
for building the optimal control law. As discussed in the end of Sect. 20.3.4, this
work is necessary. In fact, it is common knowledge that, for the identification of the
kernel matrix, additional noise should be injected into the input [6]. Nevertheless,
few results have been reported on the issues like

• how to create the noise and, above all,
• which signal should be used for the identification purpose.

In our work, we have proposed to generate the noise using the dynamic system
(20.73)–(20.74) and proved that the influence of the noise on the control performance
can be arbitrarily reduced to an acceptable level. Moreover, we have illustrated that
the injected noise, instead of the input signal, should be used to identify the kernel
matrix.

It should be noticed that the Hewer’s iterative algorithm can also be, alternatively
and without knowledge of the system dynamics, realised by a direct identification
of the system matrices A and B, instead of the identification of the kernel matrix
implemented in the Q-learning method. In fact, on the assumption of the system
model

x(k + 1) = Ax(k) + Bu(k) + w(k),

matrices A and B can be well identified using the available data (x(k), u(k)) , k =
i, i + 1, · · · , i + N + 1, and LS estimation algorithm,
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[
Â B̂

] = X (i + 1) ZT (i)
(
Z(i)ZT (i)

)−1
,

X (i + 1) = [
x(i + 1) · · · x(i + N + 1)

]
,

Z(i) =
[
x(i) · · · x(i + N )

u(i) · · · u(i + N )

]
.

From the viewpoint of the needed online computations, we know for n > p + 1,
which is generally the case in practice,

(n + p + 1)(n + p)

2
= n(n + p)

2
+ (p + 1)(n + p)

2
< n(n + p).

Here, (n+p+1)(n+p)
2 , n(n+ p) are the numbers of the parameters to be identified for the

kernel matrix and the matrices A and B, respectively. Nevertheless, the identification
of the kernel matrix in the Q-learning should be performed repeatedly, while the
identification of A and B can be theoretically realised by performing theLS algorithm
one time. On the other hand, the solution Pj of the Lyapunov equation (20.70) is
needed by each iteration when the matrices A and B are used, while in the Q-
learning iteration, the control gain matrix is built directly using the sub-matrices of
the identified kernel matrix.

From the viewpoint of recovering control performance degradation, the Q-
learning algorithm proposed in our work is of two important advantages:

• a performance monitoring is performed at each iteration, and
• the performance recovery is realised step by step.

Indeed, these properties also allow us to stop the iteration running in Algorithm 20.3,
as far as the required system performance is satisfied. For this reason, we prefer the
use of the performance degradation recovering scheme proposed in this chapter.

The last part of our work addresses the monitoring and performance recovering
issues of observers which are applied both for the control and fault detection pur-
poses. To our best knowledge, there are rarely investigations dedicated to such topics.
One key issue is how to define the (performance) cost function. It seems that the es-
timation errors of the state and unknown input vectors would be the reasonable and
logic candidates. Unfortunately, they are not directly measurable. On account of our
discussions in Sect. 20.2, we have proposed, alternatively, the cost function (20.92)
with the co-state vector λx (i) as variables. The vector λx (i) consists of the state
variables of the dynamic system (20.91) that is driven by the residual vector. Thanks
to the duality, the detection issue of observer performance degradation can be then
formulated and solved analogue to detecting LQ control performance degradation,
as described in Algorithm 20.4.

The observer performance (degradation) recovery is, in its core, an estimation
problem. The LQ observer delivers an estimation for variations in the system param-
eters. In most of applications, for instance, in real-time control, the user is interested
in the estimates for x(k), d(k) using the process data up to the time instant k. In our
study on the estimation performance, we have demonstrated that
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• the (optimal) estimates for x(i), d(i), i = · · · , 0, 1, · · · , k, using data up to the
time instant k, are delivered by the dynamic system (20.114)–(20.115),

• the estimation accuracy will increase with i converging to −∞, and
• under certain conditions, the best estimates are achieved with i = −∞, as pointed
out in Remark 20.8.

On account on these facts, we have proposed Algorithms 20.5 and 20.6 for updat-
ing the feedback gain based on the LQ state estimation and recovering estimation
performance degradation.
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Chapter 21
Performance-Based Fault-Tolerant
Control and Performance Recovery

21.1 Motivation and Basic Ideas for Performance-Based
FTC

With steadily increasing demands for high product quality and production reliability
as well as safety in industrial processes, FTC has received considerable attention in
recent years, in both research and industrial application domains. This trend is well
reflected by the great number of publications on FTC methods, some of them are
given at the end of this chapter. Most of the FTC schemes are model-based and can
be classified as

• passive FTC, in which the controller is designed as a prior to be robust against
potential faults,

• active FTC, in which the controller parameters or algorithms are online adapted
or even the controller is (online) re-configured, triggered by alarms or information
of some detected faults.

The active FTC schemes promise

• optimal performance during the fault-free process operations, and
• efficient management of faulty process operations and recovering the system per-
formance (up to certain required level).

On the other hand, due to the system complexity and often high real-time require-
ments, the design and implementation of an active FTC system are in general a
challenging task. For these reasons, investigations on active FTC methods build the
mainstream in the research field.

It can be observed that the major attention of the existing FTC systems including
the embedded fault diagnosis unit are mainly dedicated to faults in process (hard-
ware) components like sensors and actuators. By means of redundant components
with the same or similar functionality or applying certain compensation technique,
the functionality of the faulty component will be recovered or partially recovered

© Springer-Verlag GmbH Germany, part of Springer Nature 2021
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so that the overall system performance degradation is limited. We call these meth-
ods component oriented FTC. It should be mentioned that in automation industry,
considerable efforts have been made in the recent decade to increase the component
reliability and, more recently, to enhance the intelligent degree of those key system
components. Smart sensors and actuators are nowadays the state of the art. And the
new generation of smart system components are of the ability being self-diagnosis
and self-repair.

In this and the next chapters, we study the so-called performance-based fault-
tolerant control strategies. The major differences to the component oriented FTC
schemes are summarised as follows:

• performance degradation detection is integrated into the FTC system and triggers
FTC algorithms (action),

• in this context, any process operation and operation conditions, which cause un-
acceptable system performance degradation, are viewed as faults. Note that not
only those component faults like sensor or actuator faults, but also, for instance,
mismatching between system or controller parameters, changes in operation con-
ditions, could cause performance degradation,

• the objective of the FTC scheme to be addressed is to recover the system perfor-
mance to an acceptable level. For this reason, we often use the term performance
recovery instead of FTC.

As a consequence of this FTC strategy, we will focus on those faults which could
cause changes in the system dynamics like multiplicative or parametric faults. Also,
we will not strictly distinguish between model uncertainties and faults. All those
changes in the system under consideration will be viewed as uncertainties as far as
they will not cause strong performance degradation. Once the system performance
degradation approaches the unacceptable level, the system operation is viewed as
faulty.

Although various types of system performances could be considered in the
performance-based FTC framework, we only focus on those mostly considered con-
trol performances expressed in terms of system stability or indices introduced in
Sect. 19.3.

The basic ideas of establishing a performance-based FTC framework are illus-
trated in Fig. 21.1 schematically. One of the key issues and cornerstones of the frame-
work is monitoring and detection of performance degradation, which triggers the
performance recovery and is also a part of the performance recovering process. To
this end, a performance degradation model is to be established, whose input vari-
ables are process measurements and parameters depending on process operations
and operation conditions. This allows us

• to assess the system performance real-time,
• to detect changes in system performance (performance degradation),
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Fig. 21.1 Performance-based FTC: the schematic procedure

• to estimate the actual value of the performance (degradation) by identifying the
model parameters after the changes in system performance have been detected,
and

• based on which, the controller is optimised aiming at recovering the performance
degradation.

It is worth remarking that the optimisation (update) of the controller will be realised
in an iterative procedure, in which the performance (value) as the cost function is
optimised with respect to the controller.

21.2 An Approach of Recovering Stability Margin
Degradation

Stability is a fundamental characteristic of any feedback control system. Correspond-
ingly, guaranteeing system stability is an essential task of all feedback controllers.
In many industrial applications, in particular in those safety relevant sectors, the
stable process operation mode is often referred as fail-safe, which is the ultimate
requirement on a fault-tolerant control system.

Roughly speaking, stabilitymargin is a quantitative indicator for the assessment of
the stability of a feedback control system. As discussed in Sect. 19.3, changes in the
plant of a feedback control system could cause degradation of the stability margin.
Real-time recovering the stability margin degradation is of considerable practical
interest. This is the motivation of our work in this section towards developing an
approach of recovering stability margin degradation. Recall our conclusion in Sect.
19.3 that (i) recovering stability margin, (ii) loop performance degradations, and (iii)
optimal fault detection can be achieved in a unified manner. It is expected that the
approach to be developed in this section will simultaneously result in recovering
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the control loop performance degradation and enhancing the fault detectability. It is
worth mentioning that our study in this section is strongly related to the work in Sect.
19.3. In fact, this section is a continuation of our study in Sect. 19.3, in which an
approach will be proposed for real-time controller optimisation aiming at recovering
stability and loop performance degradations as well as increasing fault detectability.

21.2.1 Preliminaries and Problem Formulation

Process description Consider the standard feedback control loop presented in Fig.
21.2 withG(z) as the plant model, K (z) as the feedback controller, d ∈ Rm denoting
the possible stochastic noises or deterministic disturbances, and v ∈ Rp representing
the reference signal or the output of a feed-forward controller driven by the reference
signal.

Let the nominal model that describes fault-free system operations be

y(z) = G(z)u(z) + d(z), y ∈ Rm, u ∈ Rp (21.1)

with minimal state space realisation

G = (A, B,C, D) , A ∈ Rn×n, B ∈ Rn×p,C ∈ Rm×n, D ∈ Rm×p.

The LCF and RCF of G(z) are respectively given by

G(z) = M̂−1
o (z)N̂o(z) = No(z)M

−1
o (z), (21.2)

and
(
M̂o, N̂o

)
and (Mo, No) are left and right coprime pairs overRH∞.Correspond-

ingly, there exist X̂o, Ŷo, Xo,Yo ∈ RH∞ of appropriate dimensions and satisfying
the Bezout identity. According to Youla parameterisation, any stabilising controller
can then be parameterised by

Fig. 21.2 Schematic description of the feedback control loop under consideration
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K (z) = −U (z)V−1(z) = −V̂−1 (z) Û (z),

[
V̂ Û

] = [
Xo − QN̂o Yo + QM̂o

]
,

[
V
U

]
=

[
X̂o − NoQ
Ŷo + MoQ

]

with the parameterisation matrix Q(z) ∈ RH∞.
We model faulty process operations by

y(z) = G f (z)u(z) + d(z) = M̂−1(z)N̂ (z)u(z) + d(z), (21.3)

where G f (z) denotes the faulty plant model with M̂ ∈ RHm×m
∞ , N̂ ∈ RHm×p

∞ . It is
evident that by defining

[
ΔN̂o

ΔM̂o

] = [
N̂ − N̂o M̂ − M̂o

]
, (21.4)

the faulty plant (21.3) can be described by

G f =
(
M̂o + ΔM̂o

)−1 (
N̂o + ΔN̂o

)
. (21.5)

It is obvious that [
ΔN̂o

ΔM̂o

] ∈ RH∞.

In Sect. 9.1, we have studied different forms of model uncertainties and illus-
trated that the coprime factor form (21.5) is representative and does not lead to loss
of generality. Here, we would like to emphasise that in the context of monitoring and
detecting performance degradation, ΔM̂o

,ΔN̂o
can be generally addressed as uncer-

tainties. Once they cause performance degradation, in our case the degradation in
stability margin, approaching to an unacceptable level, they are called faults and the
corresponding process operation is said to be faulty.

Recall that the LCF and the corresponding SKR of a plant is not unique. That
means, the representation form (21.2) or (21.5) is also not unique. Suppose that[−N̂1 M̂1

]
and

[−N̂2 M̂2

]
are two different realisations of the SKR for the faulty

plant. Notice that for any SKR
[−N̂1 M̂1

]
, there exists R(z) ∈ RH∞ such that

[−N̂2 M̂2

] = R
[−N̂1 M̂1

]
, R−1(z) ∈ RH∞.

Hence, in a more general case, we have

[−ΔN̂o
ΔM̂o

] = [−RN̂ + N̂o RM̂ − M̂o

]
,
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with R(z) being any transfer matrix that belongs to RH∞. It is known that the
feedback control loop is stable if and only if

∥∥[−ΔN̂o
ΔM̂o

]∥∥
∞

∥∥∥∥
[−Ŷo − MoQ

X̂o − NoQ

]∥∥∥∥
∞

< 1.

Indeed, the different realisation forms for the SKR should not influent the stability
of the process, although with different SKRs,

∥∥[−ΔN̂o
ΔM̂o

]∥∥
∞ can be different.

Notice that

∥∥[−ΔN̂o
ΔM̂o

]∥∥
∞ ≥ inf

R∈RH∞

∥∥[
N̂o −M̂o

] − R
[
N̂ −M̂

]∥∥
∞ .

Thus, along the line of our discussion in Chap. 9, the influence of the uncertainty/fault
on the system stability is to be uniquely represented by

[−ΔN̂o
ΔM̂o

] = [
N̂o −M̂o

] − R∗ [
N̂ −M̂

]
, (21.6)

where
R∗ =arg inf

R∈RH∞

∥∥[
N̂o −M̂o

] − R
[
N̂ −M̂

]∥∥
∞ . (21.7)

Problem formulation
Themain focus of our subsequent study is on the analysis of the performance degrada-
tion caused byΔM̂o

,ΔN̂o
, and based on it, establishing a performance-based detection

and performance degradation recovering strategy. For our purpose, we first introduce
an indicator, the so-called fault-tolerant margin, to characterise the degradation of
the stability margin caused by ΔM̂o

,ΔN̂o
. Notice that in the context of performance-

based framework, we do not distinguish model uncertainties and the so-called faults
in terms of ΔM̂o

,ΔN̂o
. Instead, normal and faulty operations will be determined by

the performance degradation. To ensure the robustness against the model uncertain-
ties and avoid false alarms, a threshold setting scheme should be thus proposed.
Next, the fault-tolerant margin is estimated in the observer-based residual genera-
tion context, which is further implemented for the detection purpose. Moreover, a
performance degradation recovering strategy is proposed, and associated with it, the
design methodologies are investigated.

Below, the assumptions made in our subsequent work are summarised:

• the LC pair
(
−N̂o(z), M̂o(z)

)
of G(z) is known,

• the reference signal v satisfies the persistently excitation condition, and
• the measurements u(k) and y(k) are available.
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21.2.2 Performance Degradation Detection and Recovering
Schemes

Performance degradation detection
During process operations, the closed-loop dynamics for the feedback control system
can be described by

[
u
y

]
=

[
I −K

−G f I

]−1 [
v

d

]
=

[
V̂ Û

−N̂ M̂

]−1 [
V̂ v

M̂d

]
. (21.8)

Considering that

[
V̂ Û

−N̂ M̂

]−1

=
([

V̂ Û
−N̂o M̂o

]
+

[
0 0

−ΔN̂o
ΔM̂o

])−1

=
[
Mo −U
No V

] (
I +

[
0 0

−ΔN̂o
ΔM̂o

] [
Mo −U
No V

])−1

,

it follows from small gain theorem that the closed-loop system is stable if

∥∥∥∥
[−ΔN̂o

ΔM̂o

] [
Mo −U
No V

]∥∥∥∥∞
< 1.

It is clear that fault ΔN̂o
,ΔM̂o

affects the system stability. For the purpose of perfor-
mance degradation recovery, we introduce the following definition.

Definition 21.1 Given the feedback control system (21.8), the value

b(K ) =
∥∥∥∥
[−ΔN̂o

ΔM̂o

] [
Mo −U
No V

]∥∥∥∥∞
(21.9)

is called fault-tolerant margin.

It is evident that b(K ) is a stability performance indicator and characterises the
performance degradation in the system stability. Indeed, if b(K ) is close to one, it
indicates that the system is approaching the stability margin. It is worth noting that
b(K ) is closely related to the loop stability margin introduced in Sect. 19.3. In fact,
the higher value of the loop stability margin implies a smaller b(K ) and so a higher
fault-tolerant margin.

In practice, the process is generally in a critical operation condition when b(K ) is
approaching one. Let bth < 1 be the maximum tolerance bound of the process, then
the stability performance of the process can be monitored by applying the following
decision logic
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{
b(K ) < bth =⇒ stable,

b(K ) ≥ bth =⇒ stability margin is approached.

As the detection threshold, determination of bth depends strongly on the system
dynamics, application requirements and the applied FTC algorithm, and should be
achieved by a trade-off between FAR and stability guarantee. Theoretically, when
no knowledge of ΔM̂o

,ΔN̂o
is available, it holds, for some (constant) δΔ (> 0),

sup∥∥∥
[ −ΔN̂o

ΔM̂o

]∥∥∥∞
≤δΔ

b(K ) = δΔ

∥∥∥∥
[
Mo −U
No V

]∥∥∥∥∞
.

So, the threshold bth can be determined by varying the constant δΔ such that

bth ≤ bth,0,

where bth,0 is the (maximal) acceptable margin of b(K ).
Next, we address the issue of online estimation of b(K ). To this end, the following

residual generator is adopted

r(z) = −N̂o(z)u(z) + M̂o(z)y(z),

which can be constructed using the available model-based or data-driven methods.
It is known that the dynamics of the residual generator is governed by

r(z) = ΔN̂o
u(z) − ΔM̂o

y(z) + M̂(z)d(z)

= [
ΔN̂o

−ΔM̂o

] [
V̂ (z) Û (z)

−N̂ (z) M̂(z)

]−1 [
v̄(z)

M̂(z)d(z)

]
+ M̂(z)d(z), (21.10)

v̄(z) = V̂ (z)v(z).

Note that

[
V̂ Û

−N̂ M̂

]−1

=
(
I +

[−U
V

] [−ΔN̂o
ΔM̂o

])−1 [
Mo −U
No V

]
.

Moreover, since

[−ΔN̂o
ΔM̂o

] (
I +

[−U
V

] [−ΔN̂o
ΔM̂o

])−1

=
(
I + [−ΔN̂o

ΔM̂o

] [−U
V

])−1 [−ΔN̂o
ΔM̂o

]
,

we have
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r(z) = PΔ(z)v̄(z) + d̄(z), (21.11)

PΔ = −
(
I + [−ΔN̂o

ΔM̂o

] [−U
V

])−1 [−ΔN̂o
ΔM̂o

] [
Mo

No

]
,

d̄ =
(
I + [−ΔN̂o

ΔM̂o

] [−U
V

])−1 (
M̂o + ΔM̂o

)
d.

For our purpose, the relation between the fault-tolerant margin b(K ) and PΔ is
presented in the following theorem.

Theorem 21.1 For b(K ) < 1, it holds

‖PΔ‖∞ ≤ b(K )√
1 − b2(K )

. (21.12)

Proof Write b(K ) as

b(K ) = ∥∥[
Δ1 Δ2

]∥∥∞ ,

Δ1 = [−ΔN̂o
ΔM̂o

] [
Mo

No

]
,Δ2 = [−ΔN̂o

ΔM̂o

] [−U
V

]
.

Note that
PΔ = (I + Δ2)

−1 Δ1.

It follows from Lemma 9.4 that for

∥∥[
Δ1 Δ2

]∥∥∞ = b(K ) < 1,

it holds ∥∥(I + Δ2)
−1 Δ1

∥∥∞ = ‖PΔ‖∞ ≤ b(K )√
1 − b2(K )

.

The theorem is thus proved.

Inequality (21.12) implies

b2(K ) ≥ ‖PΔ‖2∞
1 + ‖PΔ‖2∞

. (21.13)

That means, by means of ‖PΔ‖∞ we are able to compute a lower bound of b(K ). On
the assumption of d̄ = 0 and according to (21.11), ‖PΔ‖∞ can be computed using
the online data v̄ and r. This motivates us to define

J (K ) = ‖PΔ‖∞
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as the performance (assessment) indicator that is adopted for the assessment of the
stability degradation.

H∞ norm estimation of a transfer function (matrix) using data is known in robust
control theory (the reader is referred to the reference given at the end of the chapter).
The estimation algorithm for J (K ) is summarised in the following algorithm.

Algorithm 21.1 Estimation of stability degradation indicator J (K )

Step 1: Online collecting the measurement data r(k), v̄(k);
Step 2: Constructing the Hankel matrices

Rk,l,N =
⎡
⎢⎣
r(k − l) · · · r(k − l + N )

...
. . .

...

r(k) · · · r(k + N )

⎤
⎥⎦ ,

V̄k,l,N =
⎡
⎢⎣

v̄(k − l) · · · v̄(k − l + N )
...

. . .
...

v̄(k) · · · v̄(k + N )

⎤
⎥⎦ ;

Step 3: Recursively computing the maximal singular value

J (K ) = σmax

(
Rk,l,N V̄

T
k,l,N

(
V̄k,l,N V̄

T
k,l,N

)−1
)

. (21.14)

Here, l and N denote sufficiently large positive integers. Generally speaking, to
achieve good estimation performance, a large N is necessary, which will, in turn,
result in enormous computation efforts and detection delay. From the application
perspective, it is of great significance to choose a proper N to achieve a proper
trade-off between the estimation performance and the computation efforts.

As the next step, a detection threshold is to be determined. Recall that bth is the
maximum fault-tolerant margin. It follows from (21.12) that the upper bound for
J (K ) should be correspondingly set as

Jth = bth√
1 − b2th

.

It can be seen from (21.13) that

J (K ) ≥ Jth =⇒ b(K ) ≥ bth .

Since J (K ) can be estimated online, the faulty operation caused by the performance
degradation is detected by applying the following detection logic

{
J (K ) < Jth =⇒ stable,

J (K ) ≥ Jth =⇒ stability margin is approached.
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Now, we consider the more general case for d̄ 	= 0. It is obvious that unknown
input vector d̄ will cause estimation error, as Algorithm 21.1 is applied for ‖PΔ‖∞
estimation. In what follows, we characterise the deviation caused by d̄ . Let

∥∥∥P̂Δ

∥∥∥∞
= σmax

(
Rk,l,N V̄

T
k,l,N

(
V̄k,l,N V̄

T
k,l,N

)−1
)

denote the estimate of ‖PΔ‖∞ using r, v̄. It turns out

∥∥∥P̂Δv̄

∥∥∥
2

≈ ‖r‖2 = ∥∥PΔv̄ + d̄
∥∥
2 ,

which implies, in general,

‖PΔv̄‖2 − ∥∥d̄∥∥
2 ≤

∥∥∥P̂Δv̄

∥∥∥
2

≤ ‖PΔv̄‖2 + ∥∥d̄∥∥
2 .

As a result, for any v̄ 	= 0, the following inequality holds

‖PΔv̄‖2
‖v̄‖2 −

∥∥d̄∥∥
2

‖v̄‖2 ≤
∥∥∥P̂Δv̄

∥∥∥
2

‖v̄‖2 ≤ ‖PΔv̄‖2
‖v̄‖2 +

∥∥d̄∥∥
2

‖v̄‖2 .

It yields

sup
v̄ 	=0

(
‖PΔv̄‖2
‖v̄‖2 −

∥∥d̄∥∥
2

‖v̄‖2

)
≤ sup

v̄ 	=0

∥∥∥P̂Δv̄

∥∥∥
2

‖v̄‖2 ≤ sup
v̄ 	=0

(
‖PΔv̄‖2
‖v̄‖2 +

∥∥d̄∥∥
2

‖v̄‖2

)

=⇒

⎧⎪⎨
⎪⎩
supv̄ 	=0

∥∥∥P̂Δv̄

∥∥∥
2

‖v̄‖2 ≤ supv̄ 	=0
‖PΔv̄‖2
‖v̄‖2 + supv̄ 	=0

‖d̄‖2
‖v̄‖2

supv̄ 	=0

∥∥∥P̂Δv̄

∥∥∥
2

‖v̄‖2 ≥ supv̄ 	=0
‖PΔv̄‖2
‖v̄‖2 − inf v̄ 	=0

‖d̄‖2
‖v̄‖2

=⇒
⎧
⎨
⎩

∥∥∥P̂Δ

∥∥∥∞
≤ ‖PΔ‖∞ + supv̄ 	=0

‖d̄‖2
‖v̄‖2 ,∥∥∥P̂Δ

∥∥∥∞
≥ ‖PΔ‖∞ − inf v̄ 	=0

‖d̄‖2
‖v̄‖2 ≥ ‖PΔ‖∞ − supv̄ 	=0

‖d̄‖2
‖v̄‖2 .

That means, the error of the estimated and the real ‖PΔ‖∞ is bounded by

|J (K ) − ‖PΔ‖∞| ≤ sup
v̄ 	=0

∥∥d̄∥∥
2

‖v̄‖2 .
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Definition 21.2 The value RD2R defined by

RD2R = sup
v̄ 	=0

∥∥d̄∥∥
2

‖v̄‖2
is called disturbance-to-reference ratio.

It is evident that the accuracy and reliability of the estimations depend on the size
of the disturbance-to-reference ratio RD2R . For the case of a small RD2R , Algorithm
21.1 delivers a reliable estimation of ‖PΔ‖∞ with adequate degree of accuracy.

It is to emphasise that the residual generator adopted in the proposed detection
approach is standard. In spite of this, the advantages of the proposed approach, in
comparison with the existing fault detection methods, lie in

• detecting/estimating the control performance degradation by using the available
data in the real-time manner, and

• delivering an indicator to show whether the system is approaching the stability
margin.

To our best knowledge, very limited attention has been paid on the detection and
estimation issues of the control performance changes in the research domain, which
are, however, of practical application interests. Our proposed approach makes a use-
ful contribution in this thematic field.

Performance-based fault-tolerant control: a general description
It is evident that performance model J (K ) is a function of the controller and thus a
function of the fault-tolerant margin as well. Once a fault leads to unacceptable per-
formance degradation, a fault-tolerant controller will be applied to accommodate the
performance degradation. Consider the observer-based realisation of all stabilising
controllers,

x̂(k + 1) = Ax̂(k) + Bu(k) + Lr(k),

r(k) = y(k) − Cx̂(k) − Du(k),

u(z) = Fx̂(z) + Q(z)r(z),

with x̂(k) representing the state estimation. Recall that two parameters are available
in this fault-tolerant control architecture for different functionalities:

• F, L , as high-priority parameters, are used to ensure the system stability, and
• Q(z), as a low-priority parameter, is generally implemented for robustness and
fault-tolerance purpose.

If a fault alarm is released by the detection logic, the low-priority parameter Q(z)
can be first plugged in/activated to recover the performance degradation without re-
configuring the operational controller. For instance, the fault-tolerant margin can be
optimised by setting Q(z) as
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Q∗ = arg inf
Q∈RH∞

∥∥∥∥
[−ΔN̂o

ΔM̂o

] [
Mo −Ŷo − MoQ
No X̂o − NoQ

]∥∥∥∥
∞

.

However, it is not always in the situation that all the degradation caused by the fault
can be recovered by tuning/plugging in the lower priority parameter. That is to say,
once

b(K ∗) ≥ bth or J (K ∗) ≥ Jth,

K ∗ = −
(
Ŷo + MoQ

∗
) (

X̂o − NoQ
∗
)−1

, (21.15)

it is necessary to re-configure the operational controller (the high priority controller)
to maintain the performance of the system. Considering in this light, we propose the
following performance degradation recovering (PDR) strategy:

• if J (K ) ≥ Jth , the controller Q∗(z) is first implemented to accommodate the
performance degradation. We label this action as PDR phase I;

• if J (K ∗) ≥ Jth , the operational controller is re-constructed to recover the stability
performance. We rate this scheme as PDR phase II.

In the sequel, we are going to address the above two PDR phases in the data-driven
fashion.

Performance-based fault-tolerant control: PDR phase I
The core of thePDRphase I lies inminimising b(K ) by tuning Q(z). This is achieved
by solving the following optimisation problem

Q∗ = arg inf
Q∈RH∞

∥∥∥∥
[−ΔN̂o

ΔM̂o

] [−Ŷo − MoQ
X̂o − NoQ

]∥∥∥∥
∞

.

To achieve it, an algorithm for identifying
[−ΔN̂o

ΔM̂o

]
is applied. It follows directly

from (21.4) that this can be realised by identifying the SKR
(
−N̂ , M̂

)
for the plant

with performance degradation.
In what follows, we are devoted to a recursive data-driven realisation of SKR

using input/output (I/O) data. Recall the notations

wl(k) =
⎡
⎢⎣

w(k − l)
...

w(k)

⎤
⎥⎦ ,Wk,l = [

wl(k) · · · wl(k + N − 1)
]
,
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where l and N denote sufficiently large positive integers, and w can be any signal.
Let

z p =
[
ulp (k + N − 1)
ylp (k + N − 1)

]
, Z p =

[
Uk−1,l p
Yk−1,l p

]

with l p being a sufficiently large integer. It is easy to see that Kd,l is a data-driven
realisation of the SKR, when it satisfies

Kd,l

[
Uk+l,l

Yk+l,l

]
= 0.

For the identification of Kd,l , the LQ-decomposition based algorithm given in
Sect. 4.4 is recalled, which is summarised below.

Algorithm 21.2 SKR identification

Step 1: Collect the I/O data of the system and build Uk+l,l ,Yk+l,l , Z p;
Step 2: Do an LQ-decomposition

Φ =
⎡
⎣

Z p

Uk+l,l

Yk+l,l

⎤
⎦ =

⎡
⎣
L f,11 0 0
L f,21 L f,22 0
L f,31 L f,32 L f,33

⎤
⎦

⎡
⎣
Q f,1

Q f,2

Q f,3

⎤
⎦ ;

Step 3: Do an SVD of

[
L f,21 L f,22

L f,31 L f,32

]
= [

U1 U2
] [

Σ1 0
0 Σ2(≈ 0)

] [
V T
1

V T
2

]
;

Step 4: Set Kd,l = UT
2 .

For the purpose of online update of Kd,l , a recursive form of LQ decomposition can
be applied. Once new measurement data is available, we have

Φnew =
⎡
⎣

Z p

Uk+l,l

Yk+l,l

∣∣∣∣∣∣
z p

ul(k + l + N )

yl(k + l + N )

⎤
⎦ = [Φ| φ] = LnewQnew.

Recall that with Givens-transformation, Lnew can be recursively updated by

[Lnew| 0] = [
εL f

∣∣ φ] Qgivens,

where 0 < ε ≤ 1 is a forgetting factor to weight the past information, and Qgivens is
a Givens matrix. Associated with it, the data-driven realisationKd,l can be iteratively
updated.
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In Sect. 4.4, a state space realisation of a parity vector has been introduced. Let[
βl αl

]
be one row of Kd,l . The state space representation of the identified SKR is

given by

xz(k + 1) = Azxz(k) + Bzu(k) + Lz y(k), (21.16)

r0(k) = Gy(k) − Czxz(k) − Dzu(k),

where xz(k) represents the state vector for the SKR, and

Az =

⎡
⎢⎢⎢⎣

0 0 · · · 0
1 0 · · · 0
...

. . .
. . .

...

0 · · · 1 0

⎤
⎥⎥⎥⎦ , Bz =

⎡
⎢⎢⎢⎣

βl(1, 1 : p)
βl(1, p + 1 : 2p)

...

βl(1, (n − 1)p + 1 : np)

⎤
⎥⎥⎥⎦ ,

Cz = [
0 · · · 0 1

]
, Dz = βl(1, np + 1 : (n + 1)p),

Lz = − [
αl,0 αl,1 · · · αl,l−1

]T
,G = αl,l .

Let

r(k) = y(k) − C f xz(k) − D f u(k), (21.17)

C f = G−1Cz, D f = G−1Dz .

The transfer functions for the SKR are then given by

M̂ f = (Az, Lz,−C f , I ), N̂ f = (Az, Bz,C f , D f ). (21.18)

With the SKR (21.18) at hand, once J (K ) ≥ Jth ,
[−ΔN̂o

ΔM̂o

]
can be estimated by

dealing with the model matching problem (MMP) given in (21.6) and (21.7) online.
As a result, we have

R∗ [−N̂ f M̂ f

] [−Ŷo − MoQ
X̂o − NoQ

]
− I =: �1 − �2Q,

�1 = R∗(N̂ f Ŷo + M̂ f X̂o) − I,�2 = R∗(N̂ f Mo + M̂ f No),

which means in turn
Q∗ = arg inf

Q∈RH∞
‖�1 − �2Q‖∞ . (21.19)

It yields that the fault-tolerant margin can be optimised by tuning Q in handling
MMP problem (21.19). To sum up, we propose Algorithm 21.3 to realise PDR
phase I.
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Algorithm 21.3 Realisation of PDR phase I

Step 1: If J (K ) ≥ Jth, run Algorithm 21.2 or the recursive algorithm for identifying
M̂ f (z), N̂ f (z);

Step 2: Solve R∗(z) according to (21.7);
Step 3: Solve Q∗(z) according to (21.19);
Step 4: Implement Q∗(z)r(z).

Performance-based fault-tolerant control: PDR phase II
We are now in a position to present an algorithm for the optimisation in the PDR
phase II using process data. Remember that our task is to construct an observer-based
feedback controller to recover the stability performance.

Once J (K ∗) ≥ Jth , based on the recursive SKR, the residual generator (21.16)-
(21.17) is first constructed which delivers the state estimation xz(k) and residual
signal r(k) for the fault-tolerant purpose. Let us re-write the residual generator as

xz(k + 1) = A f xz(k) + B f u(k) + L f r(k),

r(k) = y(k) − C f xz(k) − D f u(k), (21.20)

where

A f = Az + L f C f , B f = Bz + L f D f ,

C f = G−1Cz, D f = G−1Dz, L f = Lz .

As a result, the feedback controller can be given by

u(z) = Ff xz(z) + v(z),

where Ff is the controller parameter to be determined. To this end, the following
cost function is minimised with respect to Ff

V = lim
N→∞

1

N

(
xTz (k)W f xz(k) + uT (k)R f u(k)

)
.

Here, W f ≥ 0, R f > 0 are weighting matrices. It follows from the separation
principle that the estimation and control issues can be handled independently. From
the control perspective, the controller gain Ff can be determined by solving the LQR
problem as

P = AT
f P A f − AT

f PB f
(
BT

f PB f + R f
)−1

BT
f P A f + W f ,

Ff = − (
BT

f PB f + R f
)−1

BT
f P A f . (21.21)

The needed computations for PDR phase II are summarised in Algorithm 21.4.

Algorithm 21.4 Realisation of PDR phase II
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Fig. 21.3 Performance
degradation recovering
strategy

Step 1: If J (K ∗) ≥ Jth, construct the residual generator (21.20) based on the
recursive SKR;

Step 2: Calculate Ff according to (21.21);
Step 3: Set the observer-based feedback controller equal to Ff xz(k).

Finally, the schematic of the overall PDR strategy is illustrated by Fig. 21.3.

21.3 An Approach to Loop Performance Recovery

Although the approach proposed in the previous section can be applied to the recovery
of loop performance degradation, as defined and discussed in Sect. 19.2,wewill study
in this section an alternative approach dedicated to the loop performance recovering
issue. To be specific, we would like to reduce

∥∥∥∥
eu(k)
ey(k)

∥∥∥∥
2

=
∥∥∥∥
uideal(k) − u(k)
yideal(k) − y(k)

∥∥∥∥
2

by tuning the parameterisation matrix Q(z) of a dynamic output feedback or an
observer-based state feedback controller. Here, uideal(k) and yideal(k) represent the
ideal state feedback control signal and the corresponding plant output response. The
reader is referred to Sect. 19.2 for the detail about the definitions and formulation
related to the loop performance degradation.

The basic idea behind the approach is to model and identify the faulty part in the
process which causes loop performance degradation, and to manage performance
recovery by tuning the controller parameter Q(z).
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21.3.1 Dual Form of Youla Parameterisation and
Parameterisation of Process Uncertainty

In Sect. 5.2, we have described the so-called parameterisation of Bezout-Identity. In
fact, this is the mathematical form of the so-called dual form of the Youla parame-
terisation. To be specific, consider a feedback control loop with the plant model

y(z) = G(z)u(z),

G(z) = C(z I − A)−1B + D = No(z)M
−1
o (z) = M̂−1

o (z)N̂o(z),

and the feedback controller

u(z) = K (z)y(z), K (z) = −Ŷo(z)X̂
−1
o (z) = −X−1

o (z)Yo(z), (21.22)

as described in the previous section. Here, (Mo, No) ,
(
M̂o, N̂o

)
are the RC and LC

pairs of G(z), and (Xo,Yo) ,
(
X̂o, Ŷo

)
the RC and LC pairs of K (z), respectively.

These eight transfer matrices form the Bezout identity. It is imaginable that the
controller (21.22) is able to stabilise a number of plants. The dual form of the Youla
parameterisation, well-known in robust control theory (see the reference given at the
end of this chapter), provides us with a parameterisation of all those plant models,
which can be stabilised by the controller (21.22). It is described by

G f (z) =
(
No(z) − X̂o(z)S(z)

) (
Mo(z) + Ŷo(z)S(z)

)−1

=
(
M̂o(z) + S(z)Yo(z)

)−1 (
N̂o(z) − S(z)Xo(z)

)
(21.23)

with the parameterisationmatrix S(z) ∈ RH∞. In the context of FTC (robust control
as well) S(z) is adopted to model uncertainties that lead to control performance
degradation.

In order to get a deeper understanding of S(z) and, associated with it, some
important facts, we recall our discussion on Xo(z),Yo(z) in Sect. 5.2. A state space
realisation of [

Xo(z) Yo(z)
] [

u(z)
y(z)

]

is the observer-based state feedback control,

x̂(k + 1) = (A − LC) x̂(k) + (B − LD) u(k) + Ly(k),

u(k) = Fx̂(k) + v(k) ⇐⇒ v(k) = u(k) − Fx̂(k)

=⇒ [
Xo(z) Yo(z)

] [
u(z)
y(z)

]
= v(z).
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Remark 21.1 Signal vector v may consist of the (known) reference signal and some
unknown inputs representing uncertainties, as demonstrated in the sequel.

It is straightforward from (21.23) that

y(z) = G f (z)u(z) =⇒(
M̂o(z) + S(z)Yo(z)

)
y(z) =

(
N̂o(z) − S(z)Xo(z)

)
u(z) =⇒

M̂o(z)y(z) − N̂o(z)u(z) = r(z) = −S(z)v(z). (21.24)

As expected, the residual vector r is driven by v due to the existence of the uncertainty
S(z).

Now, we consider a controller in the general form

K (z) = −U (z)V−1(z) = −V̂−1 (z) Û (z),

[
V̂ Û

] = [
Xo − QN̂o Yo + QM̂o

]
,

[
V
U

]
=

[
X̂o − NoQ
Ŷo + MoQ

]
.

It is evident that the uncertainty S(z) will affect system stability. To illustrate it, we
check the condition, under which

[
I −K (z)

−G f (z) I

]−1

∈ RH∞.

From the following computations,

[
I −K

−G f I

]−1

=
[
Xo − QN̂o Yo + QM̂o

SXo − N̂o M̂o + SYo

]−1 [
Xo − QN̂o 0

0 M̂o + SYo

]
,

[
Xo − QN̂o Yo + QM̂o

SXo − N̂o M̂o + SYo

]
=

[
I Q
S I

] [
Xo Yo

−N̂o M̂o

]
,

[
Xo Yo

−N̂o M̂o

]−1

=
[
Mo − Ŷo
No X̂o

]
,

it becomes clear that the closed-loop system is stable if and only if

[
I Q
S I

]−1

∈ RH∞. (21.25)

It is remarkable that, for the given controller

u(z) = −
(
Xo(z) − Q(z)N̂o(z)

)−1 (
Yo(z) + Q(z)M̂o(z)

)
y(z),
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it holds
(
Xo(z) − Q(z)N̂o(z)

)
u(z) = −

(
Yo(z) + Q(z)M̂o(z)

)
y(z) =⇒

v(z) = −Q(z)r(z). (21.26)

Relations (21.24) and (21.26) imply a closed-loopwith (−Q,−S) as controller-plant
pair and (r, v) as input–output signal pair. The stability condition of this feedback
loop is given by (21.25).

21.3.2 Loop Performance Degradation Model and Problem
Formulation

We now integrate the relations (21.24) and (21.26) into the LPDM established in
Sect. 19.3, in order to model the loop performance degradation caused by S(z). It
yields

eLPD(z) =
[
eu(z)
ey(z)

]
=

[
Ŷo(z) + Mo(z)Q(z)

−X̂o(z) + No(z)Q(z)

]
r(z) (21.27)

=
[

Ŷo(z) −Mo(z)
−X̂o(z) −No(z)

] [
r(z)
v(z)

]
. (21.28)

In addition, noise w̄(k) in the actuator modelled as

u(z) = K (z)y(z) + w̄(z) = u0(z) + w̄(z),

and further measurement noise vector η̄(k),

y(z) = G f (z)u(z) + η̄(z),

are taken into account. We assume that, for the residual generation and state estima-
tion purpose, only u0(z) and y(z) are available and used. That means in turn,

r(z) = M̂o(z)y(z) − N̂o(z)u0(z),

v(z) = Yo(z)y(z) + Xo(z)u0(z)

can be computed and are thus available. Notice the relations,
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y(z) =G f (z)u(z) + η̄(z) ⇐⇒(
M̂o(z) + S(z)Yo(z)

)
(y(z) − η̄(z)) =

(
N̂o(z) − S(z)Xo(z)

)
u(z) =⇒

r(z) = − S(z) (v(z) + Xo(z)w̄(z) − Yo(z)η̄(z)) + M̂o(z)η̄(z) + N̂o(z)w̄(z),

and write the last one as

r(z) = −S(z) (v(z) + w(z)) + η(z), (21.29)[
w(z)
η(z)

]
=

[
Xo(z) − Yo(z)
N̂o(z) M̂o(z)

] [
w̄(z)
η̄(z)

]
. (21.30)

Finally, we have the new LPDM,

[
r(z)
v(z)

]
=

[
I S(z)

Q(z) I

]−1 [−S(z)w(z) + η(z)
0

]
=⇒

[
eu(z)
ey(z)

]
=

[
Ŷo(z) −Mo(z)

−X̂o(z) −No(z)

] [
I S(z)

Q(z) I

]−1 [
ϑ(z)
0

]
, (21.31)

ϑ(z) = −S(z)w(z) + η(z) = [−S(z) I
] [

Xo(z) −Yo(z)
N̂o(z) M̂o(z)

] [
w̄(z)
η̄(z)

]
.

Since (Mo, No) and
(
X̂o, Ŷo

)
are fixed, once the nominal system model and the state

feedback gain F are given, reducing eLPD(z) or recovering the loop performance is
achievable by tuning Q(z) so that the norm of the signals,

[
r(z)
v(z)

]
=

[
I S(z)

Q(z) I

]−1 [
ϑ(z)
0

]
⇐⇒ (21.32)

r(z) = −S(z) (v(z) + w(z)) + η(z), v(z) = −Q(z)r(z), (21.33)

decreases. In this way, the original loop performance recovering problem is trans-
formed into change detection and optimal control in the feedback control loop
(21.32), as schematically sketc.hed in Fig. 21.4.

Fig. 21.4 Schematic description of problem re-formulation
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In the previous chapters, for instance inChap.9 or Chap.19, numerous approaches
and algorithms have been introduced to deal with fault or change detection and
control issues for the feedback control loop (21.32). Below, we propose an alternative
approach. It consists of two steps:

• performance monitoring and loop performance degradation detection, and
• recovering algorithms.

21.3.3 Loop Performance Monitoring and Degradation
Detection

To simplify our study, we assume that

w̄(k) = 0, η̄(k) ∼ N (
0,Ση̄

)
,

and the observer gain matrix L adopted for building
(
M̂o, N̂o

)
is the Kalman filter

gain that delivers the white residual vector with minimum covariance in case of the
existence of noise η̄(z). Note that the state space realisation of η(z) = M̂o(z)η̄(z) is
given by

xη̄(k + 1) = (A − LC) xη̄(k) + L η̄(k),

η(k) = η̄(k) − Cxη̄(k),

which is obviously the dynamics of the Kalman filter based residual generator. In
other words, η(k) is white and satisfies

η(k) ∼ N (
0,Ση

)
.

In order to handle the color noise vector w(z) = −Yo(z)η̄(z), we extend the sub-
system S(z) to

S̄(z) = S(z)
[
I − Yo(z)

] =⇒
− S(z) (v(z) + w(z)) = −S(z) (v(z) − Yo(z)η̄(z)) = −S̄(z)

[
v(z)
η̄(z)

]
.

As a result, the overall system dynamics is described by

r(z) = −S̄(z)

[
v(z)
η̄(z)

]
+ η(z), v(z) = −Q(z)r(z) (21.34)

with measurement vectors r(z), v(z), and driven by the white noises η(z), η̄(z).
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Remark 21.2 The assumptions on w̄(k) and L does not lead to the loss of generality.
Analogue to the above handling of color noises, the more general case (without
assumptions) can be addressed by extending the uncertain system S(z) so that the
overall system is driven by white noises η̄(k), w̄(k) with measurements r(k), v(k).

We are now in the position to present the monitoring scheme. Denote the state
space realisation of the feedback control loop (21.34) by

xCL(k + 1) = ACLxCL(k) + BCLθ(k), xCL(k) =
[
xQ(k)
xS(k)

]
, (21.35)

[
r(k)
v(k)

]
= CCLxCL(k) + DCLθ(k), (21.36)

θ(k) =
[

η(k)
η̄(k)

]
∼ N (0,Σθ) , (21.37)

where xCL(k) represents the state vector of the control loop consisting of the state
vectors of systems Q(z) and−S̄(z), xQ(k) and xS(k), respectively, and θ(k) is white,
uncorrelated with xCL(k). Since the closed-loop is stable, the value of the perfor-
mance function,

J (i) = E
∞∑
k=i

γ k−i
(
r T (k)r(k) + vT (k)v(k)

)
, 0 < γ < 1, (21.38)

is given by, as shown in Chap.19–20,

J (i) = xTCL(i)PxCL(i) + c, (21.39)

where P ≥ 0 is the solution of the following Lyapunov equation,

P = γ AT
CL P ACL + CT

CLCCL ,

and c is a constant satisfying

c = tr
((
DT

CL DCL + γ BT
CL PBCL

))
Σθ

1 − γ
.

Equation (21.39) is the online assessment and prediction model for the loop perfor-
mance degradation and builds the basis for LPD monitoring and detection. Since the
overall system (21.35)–(21.36) is unknown and thus P, c in model (21.39) are to be
determined. The idea behind LPD monitoring and detection based on (21.39) is to
identify P, c using the collected process data.

Recall that xCL(k) consists of xQ(k) and xS(k), where xQ(k) as the state vector
of the known system Q(z) is available, while xS(k) is, as the state vector of −S̄(z),
unknown. On the other hand, we have demonstrated in Sect. 4.4.1 that state vector
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can be well estimated using process input and output data. Applying this result to
our case leads to

x̂S(k) = L p

[
vs(k)
rs(k)

]
, L p ∈ Rn×(m+p)(s+1), (21.40)

with some sufficiently large integer s. Substituting xS(k) by x̂S(k) in (21.40) results
in finally an approximation model for the online prediction of LPD value,

J (i) = xTCL(i)PxCL(i) + c ≈ ζ T (i) Pζ ζ (i) + c, (21.41)

ζ (i) =
⎡
⎣
xQ(i)
vs(i)
rs(i)

⎤
⎦ , Pζ =

[
I 0
0 LT

p

]
P

[
I 0
0 L p

]
.

For the online identification of Pζ , c, the approach proposed inSect. 20.3.2 is applied.
We summarise the major computation steps as follows without detailed discussion.

Write (21.41) into

J (i) = ζ T (i) Pζ ζ (i) + c = ωTφ(i), (21.42)

where ω ∈ Rη,

η = (
nq + (m + p)(s + 1) + 1

) (
nq + (m + p)(s + 1)

)
/2 + 1,

is the parameter vector including all parameters to be identified with nq as the order
of system Q(z), and φ(i) is the corresponding vector of time functions consisting of
the available process data. Considering that

J (i) = r T (i)r(i) + vT (i)v(i) + γ J (i + 1),

and substituting J (i), J (i + 1) by ωTφ(i), ωTφ(i + 1), we have finally

ωT (φ(i) − γφ(i + 1)) = r T (i)r(i) + vT (i)v(i). (21.43)

Model (21.43) allows us to identify ω, and, based on it, to compute J (i). Thus, by
a given threshold Jth, and detection logic,

J (i) > Jth =⇒ alarm and activating recovery algorithm,

LPD monitoring and detection is achieved. For the online implementation of the
above scheme, it is recommended to run Algorithm 20.1.
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21.3.4 Loop Performance Degradation Recovery

Concerning the loop performance degradation recovery by tuning Q(z), different
schemes can be applied. One possibility is to

• identify −S̄(z) using control loop data v(k), r(k), and, based on it,
• online optimise Q(z).

For the realisation of the above two steps, algorithms developed in the previous
chapters can be applied. We summarise them into the following algorithm.

Algorithm 21.5 Loop performance degradation recovery

Step 1: Run Algorithm 21.2 or the recursive algorithm for identifying the SKR of
−S̄(z) using control loop data v(k), r(k);

Step 2: Set the state space model of −S̄(z) equal to

xS(k + 1) = ASxS(k) + BSv(k) + LSr(k),

r(k) = CSxS(k) + DSv(k),

where the system matrices are as defined in (21.16);
Step 3: Run a Kalman filter based on the above model;
Step 4: Run an LQG controller as the optimal Q(z),

Q :
⎧⎨
⎩
x̂S(k + 1) = (AS − LSCS) x̂S(k) + (BS − LSDS) v(k)

+LK
(
r(k) − CSx̂S(k) − DSv(k)

)
,

v(k) = Fx̂S(k),

where LK , F are the Kalman filter gain and LQ gain matrices, respectively.

Alternatively, we can also apply the data-driven algorithms proposed in the next
chapter for our purpose of loop performance degradation recovery.

21.4 Notes and References

Fault-tolerant control has become, without any doubt, one of the vital thematic areas
in control theory in recent years. The great number of publications on FTC methods
verify this development. Representatively, we would like to mention the monographs
[1–3] and the survey papers [4–6]. It can be observed that major application and
research attention has been paid to the active FTC strategies in recent years, see for
instance [7–11].Moreover, it is the state of the art in the FTC research that the existing
schemes andmethods are component orientedFTC.That is, they aremainly dedicated
to the development of fault-tolerant control algorithms with respect to faulty system
components like sensors, actuators and some other hardware components. In this
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context, most of the existing FTC schemes follow the strategy of compensating the
influence of the faulty component on the system dynamics.

We would like to call the reader’s attention to the considerable efforts in automa-
tion industry to increase the component reliability and to the trend of enhancing the
intelligent degree of those key system components. Nowadays, smart sensors and
actuators are state of the art in many industrial sectors, and the new generation of
smart system components are of the ability of self-diagnosis and self-repair. Consid-
ering this industrial development, our research focus should be on FTC at the system
level.

In this chapter, we have proposed to deal with FTC issues at the system per-
formance level. Performance-based FTC is an active FTC strategy. In its early
development, this class of FTC schemes has mainly focused on the real-time perfor-
mance optimisation, in order to recover the control performance degradation [12–14],
in which standard fault diagnosis schemes, typically observer-based ones, have been
applied to triggering the FTC algorithm. This is also the major difference to the
performance-based FTC strategy investigated in this chapter. As illustrated in Fig.
21.1, a performance-based fault detection builds the basis for our FTC schemes,
which has a double role: serving (i) as a process monitoring sub-system and (ii) as
a performance evaluator embedded in the FTC algorithm. It should be emphasised
that, as a consequence of applying performance-based fault detection strategy, we do
not strictly distinguish between model uncertainties and faults. We consider all those
changes in the system as uncertainties as far as they only causemoderate performance
degradation, and assess system operations as faulty, when the system performance
degradation reaches an unacceptable level.

In this chapter, we have introduced two performance-based FTC approaches. The
first one is dedicated to recovering the degradation in the system stability margin. In
fact, this approach is developed on the basis of our study in Sect. 19.3, in which the
relation between the system stability margin and the SIR of the controller plays an
essential role. For our purpose, we have

• defined the fault-tolerant margin b(K ) as an indicator for the stability degradation,
• derived a lower bound of b(K ), J (K ), and adopted it for assessing the stability
degradation.

Moreover, we have

• proposed an algorithm for the online computation of J (K ), in which H∞ norm
estimation of a transfer function using data is to be performed. To this end, we
have applied the method described in [15].

In this manner, an online monitoring of the control performance (here the stability
margin) is realised. For the performance recovering objective, a two-phase procedure
has been proposed, in which

• the parameterisation matrix Q(z) is updated to accommodate the performance
degradation in the PDR phase I, and
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• in the PDR phase II, an SKR identification of the plant is first performed and,
based on it, the controller is optimised.

It is noteworthy that thanks to the relations between the SIR of the controller and
stability margin, loop performance degradation and fault detectability, as revealed in
Sect. 19.3, the proposed approach can also be applied to recovering loop performance
degradations as well as to increasing fault detectability. Recently, this FTC strategy
has been extended to singular systems [16] and general nonlinear systems [17]. It
has also been successfully applied to the laboratory three-tank system [18].

The second approach is an alternative scheme to the first approach towards re-
covering loop performance degradation. Based on the well-established dual form of
Youla parameterisation [19], the problem of recovering loop performance degrada-
tion is transformed into a feedback control problem with (Q, S) as the system pair
of the control loop and (r, v) as control output–input signal pair. This allows us

• to model the loop performance degradation as a quadratic cost function of the
control output–input signal pair (r, v) , and based on it,

• to monitor and to predict loop performance degradation using the algorithms pro-
posed in Sect. 20.3.2.

Concerning recovering loop performance degradation by tuning the parameterisation
matrix Q(z), we can apply either the algorithms proposed in the first approach or
the data-driven methods to be presented in the subsequent chapter.

At the end of our discussion, we would like to point out that successful FTC and
performance degradation recovery often presuppose sufficient configurability of the
control system under consideration [20]. This issue has not be addressed in our work,
although it is of considerable practical importance. We refer the reader to the survey
paper by Wang et al. [20] for a systematic and excellent review and investigation on
this topic.
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Chapter 22
Data-Driven Fault-Tolerant Control
Schemes

In the previous chapters, fault-tolerant control and performance degradation recover-
ing issues have been addressed mainly in the model-based fashion. Even so, identifi-
cation of data-driven SIR and SKR models is often embedded in an FTC algorithm,
as for instance adopted in Sect. 21.2. This motivates us to study issues of closed-
loop identification of data-driven SKR and SIR in the first part of this chapter. On
the basis of data-driven SKR and SIR models, we will then investigate data-driven
FTC issues. The objective of this work is to deal with such a scenario often met in
industrial applications: the system performance degrades to a level and an additional
controller should be added to recover the performance reaching a satisfactory level.

22.1 Closed-Loop Identification of Data-Driven
SIR and SKR

We begin with the identification of data-driven SIR and SKR of feedback control
systems.

22.1.1 Data-Driven SIR, SKR, and Problem Formulation

We consider (internally) stable feedback control loops modelled by

y(z) = G(z)u(z) + η(z), y ∈ Rm, u ∈ Rp, (22.1)

u(z) = K (z)y(z) + w(z), (22.2)

K (z) = −U (z)V−1(z) = −V̂−1 (z) Û (z), (22.3)
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and suppose that

G = (A, B,C, D) , A ∈ Rn×n, B ∈ Rn×p,C ∈ Rm×n, D ∈ Rm×p,

is the minimal state space realisation, η(k) ∼ N (
0,Ση

)
is white noise vector,(

V̂ , Û
)
and (V,U ) are the LC and RC pair of the controller K (z), respectively, and

w(z) is the reference vector. Recall the definitions of SIR and SKR for the plant
model G(z),

[
u(z)
y(z)

]
=

[
M(z)
N (z)

]
υ(z),

r(z) = [−N̂ (z) M̂(z)
] [

u(z)
y(z)

]

with υ(z) representing some l2-bounded signal and r(z) the residual vector. Recently,
definitions of data-driven SIR and SKRhave been introduced in the literature. It is the
first task of this section to define data-driven SIR and SKR for the feedback control
loops given by (22.1)–(22.2).

We begin with the observer-based input–output model introduced in Sect. 19.1,

x̂ (k + 1) = Ax̂ (k) + Bu(k) + Lr(k), r(k) = y(k) − ŷ(k), (22.4)

y(k) = r(k) + Cx̂(k) + Du(k), (22.5)

and substitute the controller by

u(z) = K (z)y(z) + w(z) = Fx̂ (z) − Q(z)r(z) + V̂ (z)w(z),

which yields

x̂ (k + 1) = (A + BF) x̂ (k) + Bw̄(k) + r1(k), (22.6)

u(k) = Fx̂ (k) + r2(k) + w̄(k), (22.7)

y(k) = r3(k) + (C + DF) x̂(k) + Dw̄(k), (22.8)

w̄(z) = V̂ (z)w(z),

⎡

⎣
r1(z)
r2(z)
r3(z)

⎤

⎦ =
⎡

⎣
L − BQ(z)

−Q(z)
I − DQ(z)

⎤

⎦ r(z).

In the above loop model, L is the observer gain matrix adopted in the observer-based
realisation of Youla parameterised feedback controller, and r is the corresponding
residual signal. r1(k), r2(k) and r3(k) are color noises, and in the steady state

r1(k) ∼ N (
0,Σr1

)
, r2(k) ∼ N (

0,Σr2

)
, r3(k) ∼ N (

0,Σr3

)
.
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It is evident that the (model-based) SIR of the above loop is

[
u(z)
y(z)

]
=

[
M(z)
N (z)

]
w̄(z).

Remember that the loop is stable and, for a large integer s,

As
F ≈ 0, AF = A + BF.

Hence, the loop dynamics (22.6)–(22.8) can be well approximated by means of the
following input–output model:

[
us(k)
ys(k)

]
=

[
Γu,s

Γy,s

]
L pw̄s−1(k − s − 1) +

[
Hu,w̄,s

Hy,w̄,s

]
w̄s(k) +

[
αu,s(k)
αy,s(k)

]
, (22.9)

[
αu,s(k)
αy,s(k)

]
=

[
Γu,s

Γy,s

]
Lαr1,s−1(k − s − 1) +

[
Hu,r,s

Hy,r,s

]
r1,s(k) +

[
r2,s(k)
r3,s(k)

]
,

Γy,s =

⎡

⎢⎢⎢
⎣

CF

CF AF
...

CF As
F

⎤

⎥⎥⎥
⎦

∈ R(s+1)m×n, Γu,s =

⎡

⎢⎢⎢
⎣

F
FAF

...

FAs
F

⎤

⎥⎥⎥
⎦

∈ R(s+1)p×n,

CF = C + DF, L p = [
As−1
F B · · · B ]

, Lα = [
As−1
F · · · I ]

,

Hu,w̄,s =

⎡

⎢⎢⎢
⎢
⎣

I 0

FB
. . .

. . .

...
. . .

. . . 0
FAs−1

F B · · · FB I

⎤

⎥⎥⎥
⎥
⎦

, Hy,w̄,s =

⎡

⎢⎢⎢
⎢
⎣

D 0

CF B
. . .

. . .

...
. . .

. . . 0
CF A

s−1
F B · · · CF B D

⎤

⎥⎥⎥
⎥
⎦

,

Hu,r,s =

⎡

⎢⎢
⎢⎢
⎣

0 0

F
. . .

. . .

...
. . .

. . . 0
FAs−1

F · · · F 0

⎤

⎥⎥
⎥⎥
⎦

, Hy,r,s =

⎡

⎢⎢
⎢⎢
⎣

0 0

CF
. . .

. . .

...
. . .

. . . 0
CF A

s−1
F · · · CF 0

⎤

⎥⎥
⎥⎥
⎦

.

Remark 22.1 The definition of the notations us(k), ys(k), w̄s(k) is consistent with
ωs(k) defined in Sub-section 4.4.1. That is, ωs(k) is a column vector composed of
ω( j), j ∈ [k − s, k] . Similar to it, ωβ,s(k) is adopted to denote

ωβ,s(k) =
⎡

⎢
⎣

ωβ(k − s)
...

ωβ(k)

⎤

⎥
⎦ .

Here, β could be an alphabetic character or a number. In our subsequent work, we
will consistently adopt these notations.



632 22 Data-Driven Fault-Tolerant Control Schemes

Remark 22.2 In the model (22.9), it is generally assumed that s ≥ n, in order to
achieve a good approximation of the system dynamics. In the data-driven framework,
a sufficiently large s is often selected, since n is generally unknown.

On the basis of the model (22.9), we now introduce the definitions of data-driven
SIR and SKR for the feedback control loops given by (22.1)–(22.2).

Definition 22.1 Given the input–output model (22.9) of the feedback control loop
(22.1)–(22.2), the matrices Is and Ks,

zs(k) =
[
us(k)
ys(k)

]
= Isw̄2s(k), Is =

[
Γu,s L p Hu,w̄,s

Γy,s L p Hy,w̄,s

]
, (22.10)

Ks Is = 0 =⇒ Ks

[
us(k)
ys(k)

]
= Ks Isw̄2s(k) = 0, Ks �= 0, (22.11)

are called data-driven SIR and SKR of the control loop, respectively.

Note that
[

Γu,s

Γy,s

]
∈ R(s+1)(m+p)×n,

[
Γu,s L p Hu,w̄,s

Γy,s L p Hy,w̄,s

]
∈ R(s+1)(m+p)×(2s+1)p.

Thus,
rank (Is) ≤ n + (s + 1)p.

When s ≥ n, there exists Ks �= 0, so that (22.11) holds.
The task of our subsequent work is to identify Is, Ks using sufficient process data,

y(k), u(k), w̄(k). Note that w̄(z) = V̂ (z)w(z) and V̂ (z) is a part of the LCF of the
controller. Hence, w̄(k) is known and can be computed online.

22.1.2 Identification of Is, Ks

Suppose that sufficient process data are collected and ordered into the data sets with
the notations introduced in Sub-section 4.4.1,

U f = Uk,s = [
us(k) · · · us(k + N − 1)

] ∈ R(s+1)p×N ,

Y f = Yk,s = [
ys(k) · · · ys(k + N − 1)

] ∈ R(s+1)m×N ,

W f = Wk,s = [
w̄s(k) · · · w̄s(k + N − 1)

] ∈ R(s+1)p×N ,

Wp = Wk−s−1,s−1 = [
w̄s−1(k − s − 1) · · · w̄s−1(k − s − 2 + N )

] ∈ Rsp×N .

Correspondingly, we have the input–output data set model,
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[
U f

Y f

]
=

[
Γu,s

Γy,s

]
L pWp +

[
Hu,w̄,s

Hy,w̄,s

]
W f + Ψ,

Ψ =
[

αu,s(k)
αy,s(k)

· · · αu,s(k + N − 1)
αy,s(k + N − 1)

]
∈ R(s+1)(m+p)×N .

We assume that

• the reference vector w(k) is independent of r1(k), r2(k), r3(k) (for instance, it is a
deterministic signal),

• w(k) satisfies the persistently exciting condition

rank

[
Wp

W f

]
= (2s + 1)p.

On these assumptions, it is clear that

lim
N→∞

1

N
Ψ

[
Wp

W f

]T

= 0

and thus

Îs =
[
U f

Y f

] [
Wp

W f

]T
([

Wp

W f

] [
Wp

W f

]T
)−1

(22.12)

is an LS and unbiased estimate for Is .
As introduced in Sect. 4.4, the LS estimate (22.12) can also be computed using the

numerically reliable LQ decomposition algorithm, as summarised in the following
algorithm.

Algorithm 22.1 Identification of data-driven SIR in control loops

Step 0: Collect data and form Wp,W f ,Y f ,U f ;
Step 1: Do an LQ decomposition:

⎡

⎣
Wp

W f

Z f

⎤

⎦ =
⎡

⎣
L11 0 0
L21 L22 0
L31 L32 L33

⎤

⎦

⎡

⎣
Q1

Q2

Q3

⎤

⎦ , Z f =
[
U f

Y f

]
;

Step 2: Set

Îs = [
L31 L32

] [
L11 0
L21 L22

]−1

.

It is clear that once Îs is found, an estimate K̂s for Ks can be determined by solving
the equation

K̂s
[
L31 L32

]
[
L11 0
L21 L22

]−1

= 0 ⇐⇒ K̂s
[
L31 L32

] = 0.
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And the solution can be parameterised by an SVD of
[
L31 L32

]
,

[
L31 L32

] = [
U1 U2

] [
Σ 0
0 0

] [
V T
1

V T
2

]
,

with a parameter matrix P as

K̂s = PUT
2 , P �= 0. (22.13)

22.2 Recursive SIR and SKR Based Loop Models

In order to develop data-driven algorithms for detecting and recovering performance
degradation, we are going to introduce two data-driven models that are derived on
the basis of recursive SIR and SKR. These two models are presented in a state space
form with accessible state variables.

22.2.1 A Recursive SIR Based Closed-Loop Model

Consider the data-driven SIR model (22.9) and suppose that

Is =
[

Γu,s L p Hu,w̄,s

Γy,s L p Hy,w̄,s

]

has been successfully identified. From the model (22.9), it can be seen that

y(k − s) = Kp,w̄ (1 : m, :) w̄s−1(k − s − 1) + Dw̄(k − s) + αy(k − s),

Kp,w̄ = Γy,s L p

with Kp,w̄ (1 : m, :) denoting the first m rows of Kp,w̄ and αy(k − s) being the first
m entries of αy,s(k − s). To simplify our study, it is assumed that D = 0. We now
re-write the above system equation as

y(k) = Kp,w̄ (1 : m, :) w̄s−1(k − 1) + αy(k). (22.14)

For the purpose of recovering control performance, an additional dynamic output
feedback controller of the following general form is added: ∀k,
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w̄(k) =
s−1∑

i=1

Fw,i w̄ (k − i) +
s−1∑

j=0

Fy,i y (k − j) (22.15)

= Fww̄s−2(k − 1) + Fy ys−1(k).

Remark 22.3 It is evident that the above controller is a dynamic system of the
(s − 1)-th order. In real applications, the order of the applied controller could be
much lower than s − 1. For a controller of the l-th order, l < s − 1, the expression
of the control law (22.15) can still be adopted with

Fw,i = 0, Fy,i = 0, i = l + 1, · · · , s − 1.

Remark 22.4 In our subsequent study, notation of the form ξs− j (k− i) is frequently
adopted. The reader should be familiar with its definition:

ξs− j (k − i) =
⎡

⎢
⎣

ξ(k − i − s + j)
...

ξ(k − i)

⎤

⎥
⎦ .

The following two recursive equations for w̄s−1(k) with w̄(k) defined in (22.15)
are useful in our subsequent work:

w̄s−1(k) =
[

w̄s−2(k − 1)
w̄(k)

]
=

[
0 I 0
0 Fw Fy

]⎡

⎣
w̄(k − s)

w̄s−2(k − 1)
ys−1 (k)

⎤

⎦

= : [
Fw,s−1 Fy,s−1

] [
w̄s−1(k − 1)
ys−1 (k)

]
, (22.16)

w̄s−2(k) =
[

w̄s−3(k − 1)
w̄(k)

]
=

[
0 I
0 0

] [
w̄(k − s + 1)
w̄s−3(k − 1)

]
+

[
0
I

]
w̄(k)

= : Aww̄s−2(k − 1) + Bww̄(k). (22.17)

Let us define ys−1(k−1) as a state variable vector. That is, y(k− j) ∈ Rm, j ∈ [1, s] ,
is a sub-vector of the state vector ys−1(k − 1),

ys−1(k − 1) =

⎡

⎢⎢⎢
⎣

y(k − s)
y(k − s + 1)

...

y(k − 1)

⎤

⎥⎥⎥
⎦

∈ Rsm . (22.18)

This allows us to write the input–output model (22.14) in the following state space
representation form
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ys−1(k + 1) = AI ys−1(k) + BI w̄s−1(k) + Esαy(k), (22.19)

AI =
[
AI,1

0

]
∈ Rsm×sm, AI,1 = [

0 I(s−1)m×(s−1)m
]
,

BI =
[

0
Kp,w̄ (1 : m, :)

]
∈ Rsm×sp, Es =

[
0

Im×m

]
∈ Rsm×m .

Moreover, together with the dynamics of the controller expressed by (22.17), the
overall system dynamics is modelled by

[
ys−1(k + 1)

w̄s−2(k)

]
=

[
AI BI,1

0 Aw

] [
ys−1(k)

w̄s−2(k − 1)

]
+

[
BI,2

Bw

]
w̄(k) +

[
Es

0

]
αy(k)

= : Ayw

[
ys−1(k)

w̄s−2(k − 1)

]
+ Byww̄(k) +

[
Es

0

]
αy(k), (22.20)

BI w̄s−1(k) = [
BI,1 BI,2

] [
w̄s−2(k − 1)

w̄(k)

]
.

The state space model (22.19) will be applied, in the sequel, for performance degra-
dation detection, while (22.20) will be adopted for the online recovery of the perfor-
mance degradation. The model (22.20) is called (data-driven) recursive SIR of the
feedback control loop.

It is of interest to notice that, due to the special forms of AI , Aw, models (22.19)
and (22.20) are stable.

Remark 22.5 It is worth noting that the dimension of the state vector ys−1(k − 1)
defined in (22.18) can be selected significantly lower than s−1. Let l be some integer
smaller than s and satisfy

(l + 1)m ≥ n.

We define

yl(k − 1) =
⎡

⎢
⎣

y(k − l − 1)
...

y(k − 1)

⎤

⎥
⎦ ∈ R(l+1)m

as the state vector. Correspondingly, the state space model (22.19) becomes

yl(k + 1) = AI yl(k) + BI w̄s−1(k) + Esαy(k),

AI =
[
AI,1

0

]
∈ R(l+1)m×(l+1)m, AI,1 = [

0 Ilm×lm
]
,

BI =
[

0
Kp,w̄ (1 : m, :)

]
∈ R(l+1)m×sp, Es =

[
0

Im×m

]
∈ R(l+1)m×m,

and the controller is set to be
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w̄(k) =
s−1∑

i=1

Fw,i w̄ (k − i) +
l∑

j=0

Fy,i y (k − j) = Fww̄s−2(k − 1) + Fy yl(k).

As a result, the order of the system eigen-dynamics, (l+1)m, becomes (significantly)
lower, which is of considerable practical interest for the online implementation. For
the sake of simplicity and without loss of generality, in our subsequent study, it is
assumed that l = s − 1.

22.2.2 A Recursive SKR Based Closed-Loop Model

In Sect. 4.4, a data-driven SKR based input–output model has been introduced as
follows:

ys(k) =Kp,y ys−1(k − s − 1) + Kp,uus−1(k − s − 1) + K f,uus(k) + θs(k),

(22.21)

[
Kp K f,u

] = [
L31 L32

] [
L11 0
L21 L22

]+
,
[
Kp,y K p,u

] = Kp,

θs(k) ∼ N (
0, L33L

T
33

)
.

Analogue to the handling in the previous sub-section, y(k − s) can be written as

y(k − s) = Kp,y (1 : m, :) ys−1(k − s − 1) + Kp,u (1 : m, :) us−1(k − s − 1)

+K f,u (1 : m, :) us(k) + θ(k − s)

with Kp,y (1 : m, :) , Kp,u (1 : m, :) and K f,u (1 : m, :) denoting the first m rows of
Kp,y, Kp,u and K f,u, respectively, and θ(k − s) being the firstm entries of θs(k). On
the assumption D = 0, it holds

y(k) = Kp,y (1 : m, :) ys−1(k − 1) + Kp,u (1 : m, :) us−1(k − 1) + θ(k),

θ(k) ∼ N (
0, L33 (1 : m, 1 : m) LT

33 (1 : m, 1 : m)
)
.

Let the dynamic output feedback controller of the following general form be applied,

∀k, u(k) =
s−1∑

i=1

Fu,i u (k − i) +
s−1∑

j=0

Fy,i y (k − j)

= Fuus−2(k − 1) + Fy ys−1(k). (22.22)

It yields
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us−1(k) =
[
us−2(k − 1)

u(k)

]
=

[
0 I 0
0 Fu Fy

]⎡

⎣
u(k − s)

us−2(k − 1)
ys−1 (k)

⎤

⎦

= : [
Fu,s−1 Fy,s−1

] [
us−1(k − 1)
ys−1 (k)

]
(22.23)

as well as

us−2(k) =
[
us−3(k − 1)

u(k)

]
=

[
0 I
0 0

] [
u(k − s + 1)
us−3(k − 1)

]
+

[
0
I

]
u(k)

= : Auus−2(k − 1) + Buu(k). (22.24)

Remark 22.6 Analogue to Remark 22.3, we would like to mention that the order of
the controller could be set lower than s − 1.

By defining ys−1(k − 1) as a state variable vector

ys−1(k − 1) =

⎡

⎢⎢⎢
⎣

y(k − s)
y(k − s + 1)

...

y(k − 1)

⎤

⎥⎥⎥
⎦

∈ Rsm,

we have the following state space representation forms

ys−1(k + 1) = AK ys−1(k) + BKus−1(k) + Esθ(k), (22.25)

AK =
[

AK ,1

Kp,y (1 : m, :)
]

∈ Rsm×sm, AK ,1 = [
0 I(s−1)m×(s−1)m

]
,

BK =
[

0
Kp,u (1 : m, :)

]
∈ Rsm×sp, Es =

[
0

Im×m

]
∈ Rsm×m,

as well as
[
ys−1(k + 1)
us−2(k)

]
=

[
AK BK ,1

0 Au

] [
ys−1(k)

us−2(k − 1)

]
+

[
BK ,2

Bu

]
u(k) +

[
Es

0

]
θ(k)

= : Ayu

[
ys−1(k)

us−2(k − 1)

]
+ Byuu(k) +

[
Es

0

]
θ(k), (22.26)

BKus−1(k) = [
BK ,1 BK ,2

] [
us−2(k − 1)

u(k)

]
.

The model (22.26) is called (data-driven) recursive SKR of the control loop.
At the end of this section, wewould like to emphasise that in bothmodels, ( 22.19)

and (22.25), the state vector, ys−1(k), consists of the process output vectors and are
thus measured. Moreover, both control inputs, w̄s−1(k − 1) and us−1(k − 1), are of
the recursive forms given in (22.16) and (22.23), respectively.
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22.3 Performance Monitoring and Performance
Degradation Recovery

In the subsequent study, we assess the system control performance defined by

J (i) =
∞∑

k=i

γ k−i
(
yT (k)Qy y(k) + w̄T (k)Qww̄(k)

)
, (22.27)

Qy ≥ 0, Qw > 0, 0 < γ ≤ 1,

when (weak) process noises are neglected or by

J (i) = E
∞∑

k=i

γ k−i
(
yT (k)Qy y(k) + w̄T (k)Qww̄(k)

)
, (22.28)

Qy ≥ 0, Qw > 0, 0 < γ < 1,

where the influence of process noises on the control performance is taken into
account. Since the process models (22.19) ((22.20) as well) and (22.25) have the
similar form, we adopt (22.19) as well as (22.20) as the process models under con-
sideration without loss of generality.

In the sequel, we will investigate

• detection of performance degradation, and
• online optimisation of the feedback controller to recover the performance degra-
dation.

22.3.1 Performance Degradation and Its Detection

We first consider performance cost function (22.27) and derive a model to describe
control performance degradation. To this end, write J (i) as

J (i) = yT (i)Qy y(i) + w̄T (i)Qww̄(i) + γ J (i + 1). (22.29)

Next, we prove that the solution of (22.29) is given by

J (i) = zTs−1(i)Pzs−1(i), zs−1(i) =
[
ys−1 (i)
w̄s−1(i)

]
(22.30)

with P satisfying the following Lyapunov equation

P = γ ÃT P Ã + R, (22.31)
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where matrices R and Ã are given in (22.33) and (22.34), respectively. The proof
can be achieved by substituting J (i), J (i + 1) given by (22.30) into (22.29), which
gives

zTs−1(i)Pzs−1(i) = yT (i)Qy y(i) + w̄T (i)Qww̄(i) + γ zTs−1(i + 1)Pzs−1(i + 1).
(22.32)

It follows from the control law (22.16) and model (22.19) that

w̄(i) = Iww̄s−1(i), y(i) = Iy ys−1(i), Iw = [
0 Ip×p

]
, Iy = [

0 Im×m
]

=⇒ yT (i)Qy y(i) + w̄T (i)Qww̄(i) = [
yTs−1(i) w̄T

s−1(i)
]
R

[
ys−1 (i)
w̄s−1(i)

]
,

R =
[
I Ty Qy Iy 0

0 I Tw Qw Iw

]
, (22.33)

J (i + 1) = [
yTs−1 (i + 1) w̄T

s−1(i + 1)
]
P

[
ys−1 (i + 1)
w̄s−1(i + 1)

]

= [
yTs−1 (i) w̄T

s−1(i)
]
ÃT P Ã

[
ys−1 (i)
w̄s−1(i)

]
.

Here,

Ã =
[

AK BK

Fy,s−1 Fw,s−1

]
. (22.34)

As a result, Lyapunov equation (22.31) holds and J (i) given by (22.30) solves the
difference equation (22.29).

For our purpose of performance monitoring, it seems that (22.32) could serve as
the performance degradation model. On the other hand, we would like to draw the
reader’s attention with the following remark.

Remark 22.7 Equation (22.30) can be understood as the so-called Q-function,
which is widely applied in the reinforcement learning technique. It should be, how-
ever, remembered that (22.30), as the solution of the cost function (22.27), holds only
on the assumption of the control law (22.15) or (22.16). As discussed in Sub-section
20.3.4, the matrix P cannot be well identified using data w̄s−1(i), ys−1(i) and on the
basis of (22.32), due to linear relation between w̄(i) and ys−1(i), w̄s−2(i − 1) given
by (22.15). In fact, the control law (22.15) leads to

J (i) = zTs−1(i)Pzs−1(i) =
⎡

⎣
ys−1 (i)

w̄s−2(i − 1)
w̄(i)

⎤

⎦

T

P

⎡

⎣
ys−1 (i)

w̄s−2(i − 1)
w̄(i)

⎤

⎦

= [
yTs−1 (i) w̄T

s−2(i − 1)
] [

I 0
(
Fy

)T

0 I (Fw)T

]
P

⎡

⎣
I 0
0 I
Fy Fw

⎤

⎦
[

ys−1 (i)
w̄s−2(i − 1)

]
.

As a result, (22.32) becomes
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z̄Ts−1(i)P̄ z̄s−1(i) = yT (i)Qy y(i) + w̄T (i)Qww̄(i) + γ z̄Ts−1(i + 1)P̄ z̄s−1(i + 1),
(22.35)

P̄ =
[
I 0

(
Fy

)T

0 I (Fw)T

]
P

⎡

⎣
I 0
0 I
Fy Fw

⎤

⎦ , z̄s−1(i) =
[

ys−1 (i)
w̄s−2(i − 1)

]
.

We call (22.35) the performance degradation model. In order to identify P̄ online,
we re-write J (i), analogue to the study in Sect. 20.3.2, into

J (i) = z̄Ts−1(i)P̄ z̄s−1(i) = ωTφ(i), (22.36)

where

ω =
⎡

⎢
⎣

ω1
...

ωη

⎤

⎥
⎦ ∈ Rη, η = (s(p + m) − p + 1)(s(p + m) − p)/2,

is the parameter vector including all parameters to be identified, and

φ(i) =
⎡

⎢
⎣

φ1(i)
...

φη(i)

⎤

⎥
⎦ ∈ Rη, φ j (i) ∈ R, j = 1, · · · , η,

is a vector of time functions consisting of the process data. Note that φ j (i) is a scalar
function composed of the terms from the set defined below

⎧
⎪⎪⎨

⎪⎪⎩

yq(i − α)yl(i − β), q, l = 1, · · · ,m, α, β = 0, 1, · · · , s − 1,
w̄q(i − α)w̄l(i − β), q, l = 1, · · · , p, α, β = 1, · · · , s − 1,

yq(i − α)w̄l(i − β), q = 1, · · · ,m, l = 1, · · · , p,
α = 0, 1, · · · , s − 1, β = 1, · · · , s − 1,

⎫
⎪⎪⎬

⎪⎪⎭
.

Here, yq(i − α), yl(i − β), w̄q(i − α), w̄l(i − β) are the components of vectors
y(i − ξ) and w̄(i − ξ),

y(i − ξ) =

⎡

⎢⎢
⎣

...

yς (i − ξ)
...

⎤

⎥⎥
⎦ ∈ Rm, w̄(i − ξ) =

⎡

⎢⎢
⎣

...

w̄ς (i − ξ)
...

⎤

⎥⎥
⎦ ∈ Rp,

ξ = α, β, ς = q, l.

Substituting (22.36) into the performance degradation model (22.35) yields



642 22 Data-Driven Fault-Tolerant Control Schemes

ωTφ(i) = yT (i)Qy y(i) + w̄T (i)Qww̄(i) + γωTφ(i + 1) =⇒
ωT (φ(i) − γφ(i + 1)) = yT (i)Qy y(i) + w̄T (i)Qww̄(i). (22.37)

We call (22.37) the regressionmodel of the performance degradation. Based onmod-
els (22.35) and (22.37), the following two-step detection algorithm can be performed
aiming at detecting performance degradation.

Algorithm 22.2 Detection of performance degradation

Step 0: Qy, Qw and γ are given, P̄ is determined, and sufficient process data are
collected;

Step 1: Perform a preliminary performance degradation detection (PPDD) by
means of the following detection algorithm:
• Compute performance residual

Δ = z̄Ts−1(i)P̄ z̄s−1(i) − yT (i)Qy y(i) − w̄T (i)Qww̄(i)

−γ z̄Ts−1(i + 1)P̄ z̄s−1(i + 1); (22.38)

• Run the detection logic

{
Jth,low ≤ Δ ≤ Jth,high =⇒ fault-free =⇒ repeat PPDD,
otherwise, faulty =⇒ go to the next step,

where Jth,low, Jth,high are thresholds;
Step 2: Identify P̄ using the regression model (22.37);
Step 3: Detect the performance degradation, based on the identified SPD matrix

P̄, using a Riemannian distance-based fault detection algorithms presented in
Example 3 in Sub-section 15.4.2.

For the use of the above algorithm, we would like to make some noteworthy com-
ments.

The idea behind the two-step detection scheme is to reduce online computations,
on the one hand, and to ensure reliable detection on the other hand. In the first step
detection, the computation of the performance residual (22.38) is straightforward and
less computationally demanding. The threshold setting can be achieved by training
using historical process data so that it is robust against the influence of the process
and measurement noises. When the condition

Δ < Jth,low or Δ > Jth,high

is satisfied, performance degradation caused by changes in the system dynamics is
detected and thus it triggers the second step detection, in which P̄ is to be identified.
The involved computation in this case is much more demanding than computing Δ,

but delivers, on the other hand, rich information about the performance degradation.
As discussed in Sect. 15.4, Riemannian distance-based assessment of SPD matrices
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is a powerful and also helpful tool for us to analyse the change in P̄ and, based on
it, to make a decision for a right fault-tolerant action.

Next, we study the performance degradation issue with the performance cost
function (22.28) and taking into account the process noises. Notice that for
Eαy(k) = 0,

E (
αy(k)

[
yTs−1(k − 1) w̄T

s−2(k − 1)
])

= E (
αy(k)

[
yTs−1(k − 1) − E yTs−1(k − 1) w̄T

s−2(k − 1) − Ew̄T
s−2(k − 1)

])
,

(22.39)

and moreover vector [
ys−1(k − 1) − E ys−1(k − 1)
w̄s−2(k − 1) − Ew̄s−2(k − 1)

]

consists of process andmeasurement noises.Hence, on the assumptionof the involved
stochastic process being stationary, the covariance matrix

E (
αy(k)

[
yTs−1(k − 1) − E yTs−1(k − 1) w̄T

s−2(k − 1) − Ew̄T
s−2(k − 1)

])

is a constant matrix. As a result, it can be proved

J (i) = z̄Ts−1(i)P̄ z̄s−1(i) + c, (22.40)

and furthermore

z̄Ts−1(i)P̄ z̄s−1(i) + c = yT (i)Qy y(i) + w̄T (i)Qww̄(i)

+ γ
(
z̄Ts−1(i + 1)P̄ z̄s−1(i + 1) + c

)
. (22.41)

Equation (22.41) is the performance degradationmodel, based onwhich performance
degradation detection can be achieved. To this end, Algorithm 22.2 can be applied
with a slight extension.

22.3.2 Performance Degradation Recovery

As considerable changes in P̄ have been detected, which indicate unacceptable trend
of system performance degradation, switching an additional controller to the system
is an efficient and practical strategy to recover the system performance.

Suppose that the system operation is well described by the model (22.19) or
equivalently (22.20). Due to the variation in the system dynamics that leads to the
changes in P̄, the system matrices become unknown. For our purpose of recovering
the system performance, we apply the iterative (updating) Algorithm 20.3 given in
Sect. 20.3.4. To this end, we first introduce some useful theoretical results.
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For the simplicity of discussion, the cost function (22.27) is considered, which
can be further written into

J (i) =
∞∑

k=i

γ k−i
(
yTs−1(k)Q̄y ys−1 (k) + w̄T (k)Qww̄(k)

)
, Q̄y = I Ty Qy Iy,

with Iy defined in (22.27). The optimisation problem is then formulated as

min
w̄(k)

J (i)

s.t.

[
ys−1(k + 1)

w̄s−2(k)

]
= Ayw

[
ys−1(k)

w̄s−2(k − 1)

]
+ Byww̄(k).

The optimal solution is given by

w̄(k) = [
Fy Fw

] [
ys−1 (k)

w̄s−2(k − 1)

]
= Fz̄s−1(k),

F = −γ
(
Qw + γ BT

ywPwByw
)−1

BT
ywPwAyw, Pw > 0, (22.42)

with Pw as the solution of the Riccati equation

Pw = AT
ywPwAyw + Q̃y − γ 2AT

ywPwByw
(
γ BT

ywPwByw + Qw

)−1
BT
ywPwAyw,

(22.43)

Q̃y =
[
Q̄y 0
0 0

]
.

In order to update the controller online and iteratively to approach the optimal con-
troller (22.42), we can apply the Hewer’s algorithm given in Theorem 20.1. As
demonstrated in Sect. 20.3.4, using the cost function,

Jj+1(i) =
∞∑

k=i

γ k−i
[
yTs−1 (k) w̄T

s−2(k − 1)
]
Q j

[
ys−1 (k)

w̄s−2(k − 1)

]
,

Q j = Q̃y + FT
j QwFj ,

which is the performance value corresponding to the controller at the j-th iteration,
Fj z̄s−1, and the update of the control gain matrix,

Fj+1 = −γ
(
Qw + γ BT

ywPw, j+1Byw
)−1

BT
ywPw, j+1Ayw,

Pw, j+1 = AT
yw,Fj

Pw, j+1Ayw,Fj + Q j , Ayw,Fj = Ayw + BywFj , (22.44)

we are able to achieve
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lim
j→∞ Fj = −γ

(
Qw + γ BT

ywPwByw
)−1

BT
ywPwAyw.

Recall that the core of Algorithm 20.3 is the identification of BT
ywPw, j Byw and

BT
ywPw, j Ayw using process data collected online. Below we describe the realisa-

tion of the solution for our case. For the sake of simplifying the notation, we drop
out the sub-index j + 1 as well as j.

Suppose that a signalϑ(k) is added into the input signal of the existing closed-loop
system,

w̄(k) =ϑ(k),

ϑ(k + 1) =ϑ(k)ρ + �(k), |ρ| << 1, (22.45)

where �(k) is a white noise vector with

E�(k) = 0, E�(k)� T (k) = Σ�,

and independent of ys−1(k), w̄s−2(k − 1). Consider the cost function

J (i) = E
∞∑

k=i

γ k−i
(
z̄Ts−1(i)Q̃z̄s−1(i) + w̄T (k)Qww̄(k)

)
, (22.46)

Q̃ = Q̃y + FT QwF,

where F is the existing state feedback gain matrix, which, for instance, is equal to
Fj after the j-th iteration. Similar to (22.30), we write J (i) as

J (i) =
[
z̄s−1 (i)
ϑ(i)

]T

P̃

[
z̄s−1 (i)
ϑ(i)

]
+ c, P̃ =

[
P̃11 P̃12
P̃21 P̃22

]
. (22.47)

Next, sub-matrices P̃i j , i, j = 1, 2, are determined. Since

J (i + 1) =
[
z̄s−1 (i + 1)
ϑ(i + 1)

]T

P̃

[
z̄s−1 (i + 1)
ϑ(i + 1)

]
+ c

=
[
z̄s−1 (i)
ϑ(i)

]T [
Ayw Byw

0 ρ I

]T

P̃

[
Ayw Byw

0 ρ I

] [
z̄s−1 (i)
ϑ(i)

]
+ c,

it turns out

P̃ =
[
Q̃ 0
0 Qw

]
+ γ

[
Ayw Byw

0 ρ I

]T

P̃

[
Ayw Byw

0 ρ I

]
=⇒

P̃22 = Qw + γ
(
BT
yw P̃11Byw + ρ P̃21Byw + ρ

(
BT
yw P̃12 + ρ P̃22

))
,
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P̃21 = γ
(
BT
yw P̃11Ayw + ρ P̃21Ayw

)
,

P̃11 = Q̃ + γ AT
yw P̃11Ayw.

It is evident that for |ρ| << 1

P̃ =
[
Q̃ 0
0 Qw

]
+ γ

[
Ayw Byw

0 ρ I

]T

P̃

[
Ayw Byw

0 ρ I

]
=⇒

P̃22 ≈ Qw + γ BT
yw P̃11Byw, P̃21 ≈ γ BT

yw P̃11Ayw,

P̃11 = Q̃ + γ AT
yw P̃11Ayw.

That means, identifying P̃22, P̃21 delivers a good approximation of the (optimal)
feedback control gain matrix

[
Fy Fw

] : = −P̃−1
22

(
P̃21 −

(
P̃22 − QwF

))
(22.48)

≈ − (
BT
ywPwByw + γ −1Qw

)−1
BT
ywPwAyw.

Analogue to Algorithm 20.3, we propose the following algorithm for recovering
performance degradation.

Remark 22.8 It is noteworthy to call the reader’s attention on the discussion in
Sect.20.3.4, in which it has been illustrated why an additional signal is needed for
the identification of matrix P̃.

Algorithm 22.3 Data-driven recovery of performance degradation

Step 0: Input data: Qw, Q̃, F0 (the existing controller to be updated), set j = 0
and the tolerance value β;

Step 1-1: Set a sufficiently small ρ and generate ϑ(k), k = i, · · · , i + N + 1,
according to (22.45);

Step 1-2: Apply the control law

u(k) = Fj z̄s−1(k) + ϑ(k)

and collect process data z̄s−1(k), k = i, · · · , i + N + 1;
Step 1-3: Identify P̃ using Algorithm 20.2 with data z̄s−1(k), ϑ(k), k = i, · · · ,

i + N + 1;
Step 1-4: Set j = j + 1 and the feedback control gain Fj according to (20.53);
Step 1-5: If ∥∥Fj − Fj−1

∥∥
2 > β,

go to Step 1-2, otherwise
Step 2: Output the feedback control gain

F = Fj .
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22.3.3 Performance Degradation Recovery by Reduced Order
Controllers

Recall that the order of the controller (22.15) or (22.22) is (very) high with a lager
number s − 1, which could be too high for a practical implementation. This mo-
tivates us to propose an online optimisation algorithm for recovering performance
degradation by means of a controller of the lower order. Let

0 < lw < s − 1, 0 < ly < s − 1.

We consider the following control law:

w̄(k) =
lw∑

i=1

Fw,i w̄ (k − i) +
ly∑

j=0

Fy,i y (k − j) = Fww̄lw−1(k − 1) + Fy yly (k)

= [
0 Fw

] [
w̄s+lw−2(k − lw − 1)

w̄lw−1(k − 1)

]
+ [

0 Fy
] [

ys+ly−2(k − ly − 1)
yly (k)

]

= F̄ww̄s−2(k − 1) + F̄y ys−1(k), F̄w = [
0 Fw

]
, F̄y = [

0 Fy
]
. (22.49)

Therefore, our optimisation problem is to find F̄w, F̄y satisfying the structural restric-
tions given in (22.49) so that the cost function J (i) given in (22.27) is minimised.

Recall that our performance degradation recovering algorithms have been devel-
oped in the well-established framework of the reinforcement learning technique. Our
online optimisation strategy can be classified as the so-called policy iteration strategy,
which consists of two main steps, (i) policy evaluation, and (ii) policy improvement.
To be specific, in Algorithm 22.3, Step 1-1 to Step 1-3 is the realisation of policy
evaluation, in which the performance value with respect to the running controller
is estimated (predicted), while Step 1-4 results in policy improvement by updating
the feedback gain matrix. Notice that due to the structural restriction of

(
F̄w, F̄y

)
,

the feedback gain matrix cannot be determined according to (22.48). In order to
solve this problem, we propose the following solution for the realisation of policy
improvement.

Denote the controller at the j-th iteration by

w̄ j (i) = Fj z̄s−1 =: F̄ j
ww̄s−2(i − 1) + F̄ j

y ys−1(i).

Policy evaluation at the ( j + 1)-th iteration is the value computation of the cost func-
tion using the online measurement data collected during operations with controller
w̄ j (i). This is achieved by running Step 1-1 to Step 1-3 of Algorithm 22.3. Denote
the value of the cost function by Jj+1(i), which satisfies



648 22 Data-Driven Fault-Tolerant Control Schemes

Jj+1(i) = yT (i)Qy y(i) + (
w̄ j (i)

)T
Qww̄ j (i) + γ Jj+1(i + 1)

=
[
z̄s−1(i)
w̄ j (i)

]T

P̃j+1

[
z̄s−1(i)
w̄ j (i)

]
, (22.50)

P̃j+1 :=
[
Pj+1,11 Pj+1,12

Pj+1,21 Pj+1,22

]
(22.51)

≈
[

γ AT
ywPw, j+1Ayw + Q̃y γ AT

ywPw, j+1Byw

γ BT
ywPw, j+1Ayw γ BT

ywPw, j+1Byw + Qw

]
, (22.52)

where Pw, j+1 is the identified solution of the Lyapunov equation (22.44).
Next, policy improvement at the ( j + 1)-th iteration is to be performed by solving

the following optimisation problem:

min
F̄ j+1

w ,F̄ j+1
y

J j+1(i),

Jj+1(i) = yT (i)Qy y(i) + (w̄(i))T Qww̄(i) + γ Jj+1(i + 1),

which yields the update of the controller w̄ j+1(i),

w̄(i) = F̄ j+1
w w̄s−2(k − 1) + F̄ j+1

y ys−1(k) =: w̄ j+1(i),
(
F̄ j+1

w , F̄ j+1
y

) = arg min
F̄ j+1

w ,F̄ j+1
y

J j+1(i).

Considering the structural restriction of
(
F̄w, F̄y

)
, we propose to apply the standard

gradient descent algorithm to solve the above optimisation problem iteratively.
Let

Fj+1 =
[
F j+1
y F j+1

w

]

and denote the l-th iteration of Fj+1 by F j+1
l . It follows from the gradient descent

algorithm that

F j+1
l+1 = F j+1

l − δ∇ Jj+1

(
i, F j+1

l

)
, (22.53)

where∇ Jj+1

(
i, F j+1

l

)
is the gradient of the cost function Jj+1 (i) at Fj+1 and δ > 0

is a tuning parameter. In order to determine ∇ Jj+1

(
i, F j+1

l

)
, consider (22.50) and

write it into

Jj+1(i) =
[
z̄s−1(i)
Fz̃lyw (i)

]T

P̃j+1

[
z̄s−1(i)
Fz̃lyw (i)

]
,

F = [
Fy Fw

]
, z̃lyw (i) =

[
yly (i)

w̄lw−1(i − 1)

]
.

It turns out
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∂ Jj+1(i)

∂F
= 2

∂ z̃Tlyw (i)FT Pj+1,21 z̄s−1(i)

∂F
+ ∂ z̃Tlyw (i)FT Pj+1,22Fz̃lyw (i)

∂F

= 2
∂ z̄Ts−1(i) Ī

T FT Pj+1,21 z̄s−1(i)

∂F
+ ∂ z̄Ts−1(i) Ī

T FT Pj+1,22F Ī z̄s−1(i)

∂F
,

Ī = [
0 I

]
.

According to the rules

∂tr (AB)

∂A
= BT ,

∂tr
(
ABATC

)

∂A
= CAB + CT ABT ,

it holds

∂ z̄Ts−1(i) Ī
T FT Pj+1,21 z̄s−1(i)

∂F
= Pj+1,21 z̄s−1(i)z̄

T
s−1(i) Ī

T ,

∂ z̄Ts−1(i) Ī
T FT Pj+1,22F Ī z̄s−1(i)

∂F
= 2Pj+1,22F Ī z̄s−1(i)z̄

T
s−1(i) Ī

T .

As a result, the iteration computation of (22.53) is

F j+1
l+1 = F j+1

l − 2δ
(
Pj+1,21 + Pj+1,22F

j+1
l Ī

)
z̄s−1(i)z̄

T
s−1(i) Ī

T . (22.54)

Using the Kronecker product and the associated operation rules, the vectorised form
of (22.54) is given by

vec
(
F j+1
l+1

)
= vec

(
F j+1
l

)
− 2δ

(
Z(i) ⊗ Pj+1,22

)
vec

(
F j+1
l

)
− 2δvec (Ψ (i))

= (
I − 2δ

(
Z(i) ⊗ Pj+1,22

))
vec

(
F j+1
l

)
− 2δvec (Ψ (i)) ,

Z(i) = Ī z̄s−1(i)z̄
T
s−1(i) Ī

T , Ψ (i) = Pj+1,21 z̄s−1(i)z̄
T
s−1(i) Ī

T .

Although Pj+1,22 is in general positive definite, matrix Z(i) is positive semi-definite.
Consequently, matrix Z(i) ⊗ Pj+1,22 is also positive semi-definite, a well-known
result from the framework of the Kronecker product. In other words, some of the
eigenvalues of matrix

I − 2δ
(
Z(i) ⊗ Pj+1,22

)

are equal to one for all possible δ > 0. In order to guarantee the iteration conver-
gence, we suggest the following simple solution. At first, sufficient data are collected,
z̄s−1(i), · · · , z̄s−1(i + N ). It is straightforward that the optimisation problem
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min
F

1

N + 1

N∑

k=0

Jj+1(i + k)

= min
F

N∑

k=0

[
z̄s−1(i + k)
Fz̃l(i + k)

]T

Pw, j+1

[
z̄s−1(i + k)
Fz̃l(i + k)

]

N + 1

can be solved by the following iteration algorithm:

F j+1
l+1 = F j+1

l − 2δ
(
Pj+1,21 + Pj+1,22F

j+1
l Ī

)
N∑

k=0

(
z̄s−1(i + k)z̄Ts−1(i + k) Ī T

)

N + 1
.

(22.55)
On the assumption that the process data are sufficiently excited so that the matrix

Ī
N∑

k=0

(
z̄s−1(i + k)z̄Ts−1(i + k)

)
Ī T

is positive definite, the matrix

Z̄(i) ⊗ Pj+1,22, Z̄(i) = 1

N + 1
Ī

N∑

k=0

(
z̄s−1(i + k)z̄Ts−1(i + k)

)
Ī T ,

is positive definite. This guarantees the iteration

vec
(
F j+1
l+1

)
= vec

(
F j+1
l

)
− 2δ

(
Z̄(i) ⊗ Pj+1,22

)
vec

(
F j+1
l

)
− 2δvec

(
Ψ̄ (i)

)

= (
I − 2δ

(
Z̄(i) ⊗ Pj+1,22

))
vec

(
F j+1
l

)
− 2δvec

(
Ψ̄ (i)

)
,

Ψ̄ (i) = Pj+1,21

N∑

k=0

(
z̄s−1(i + k)z̄Ts−1(i + k)

)
Ī T ,

converges by selecting δ satisfying

0 < δ <
1

λmax
(
Z̄(i) ⊗ Pj+1,22

) .

Here, λmax
(
Z̄(i) ⊗ Pj+1,22

)
is the maximum eigenvalue of Z̄(i) ⊗ Pj+1,22.

Remark 22.9 The value,
1

N + 1

N∑

k=0

Jj+1(i + k),
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can be interpreted as an approximation of E Jj+1(i). Thus, the modified solution is
of certain robustness against noises.

Readers may notice that the online computation of λmax
(
Z̄(i) ⊗ Pj+1,22

)
would

be challenging due to the possibly high dimension of matrix Z̄(i) ⊗ Pj+1,22. One
possibility is to set δ sufficient small.On the other hand, thiswill lead to a considerably
low convergence rate. We would like to draw the reader’s attention to the discussion
in Sect. 14.6.2. It has been demonstrated that for a positive semi-definite matrix
A ∈ Rm×m, it holds

λmax (A) ≤ ‖A‖∞ = ‖A‖1 ,

‖A‖∞ = max
1≤l≤m

m∑

j=1

∣
∣al j

∣
∣ , A = (

al j
)
, l, j = 1, · · · ,m. (22.56)

Because the computation for ‖A‖∞ can bewell online performed, as given in (22.56),
we suggest to set δ as

0 < δ <
1

∥∥Z̄(i) ⊗ Pj+1,22

∥∥∞
. (22.57)

We now summarise the major results on recovering performance degradation using
a reduced order controller as an algorithm.

Algorithm 22.4 Data-driven recovery of performance degradation by a reduced
order controller

Step 0: Set j = 0, and collect process data;
Step 1: Identify P̃ using Algorithm 22.3 (Step 1-1 to Step 1-3) and set

Pw, j+1 = P̃;

Step 2: Collect data and build Z̄(i) ⊗ Pj+1,22, determine
∥∥Z̄(i) ⊗ Pj+1,22

∥∥∞ ac-
cording to (22.56) and further set δ according to (22.57);

Step 3: Run iterative algorithm (22.55) for Fj+1, and check the iteration conver-
gence. If not, go to the next step, otherwise stop;

Step 4: Set j = j + 1 and go to Step 1.

It is remarkable that Algorithm 22.4 enables online performance recovery using any
LTI dynamic output feedback controller.

22.4 Notes and References

Although the main objective of this chapter is to study fault-tolerant control issues in
the data-driven fashion, we have begun with closed-loop identification of data-driven
SIR and SKR. The background of this work is the fact that fault-tolerant control be-
comes urgently necessary if the existing controller cannot deliver satisfactory control
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performance. In this case, when an identification of the process model is performed
with the existing controller, this has to be realised in the closed-loop configuration. A
further aspect is that the so-called data-driven forms of SIR and SKR can be directly
identified using the process data collected online and, based on them, a data-driven
re-configuration of an (optimal) controller can be handled in a systematic manner,
see also the discussion in Sect. 21.2.

System identification in feedback control loops is a classic topic in control theory
and engineering [1, 2]. A challenging issue in this thematic field is the handling of
correlations between the measurement noise and the process control variables due
to the feedback effect. In the (very) few publications related to the identification of
data-driven SIR and SKR in closed-loops [3, 4], this issue has not been systematically
addressed. Consequently, the estimated data-driven SIR and SKR may not be free
of bias. On the basis of the observer-based input–output model introduced in Sect.
19.1, we have proposed in the first section of this chapter an algorithm that allows
us to achieve a bias-free identification of the data-driven form of SIR and SKR in a
closed-loop.

The state space models of the data-driven SIR, (22.19) and (22.20), and SKR,
(22.25) as well as (22.26), have been derived based on the recursive SIR and SKR.
Thesemodels can be either identified and then adopted for the controller and observer
design or serve as a basis for the online performance monitoring and performance
degradation recovery. The most convincing argument for applying these models
for performing online monitoring and control tasks is that all state variables are
accessible. They are indeed the process output variables in the models (22.19) and
(22.25), and output as well as input variables in the models (22.20) and (22.26). This
allows us to apply the existing algorithms presented in Chaps. 20–21 to achieving
performancemonitoring and performance degradation recovering.On the other hand,
it should be noticed that the dimension of these state space models is considerably
high. Also, the structural properties like controllability and observability have not
been investigated. In fact, our intention for this study is to build a framework, in
which further investigations on, for instance, model reduction, structural analysis
etc. can be well carried out.

Based on the above state space models, performance degradation detection and
recovery algorithms have been developed. They are the immediate application of
the algorithms proposed in Chaps. 20–21 with some straightforward extensions. It
should be noticed that this is only possible when the controller is of the form (22.15)
or (22.22) with a (very) higher system order. In order to achieve performance degra-
dation recovery by means of a reduced controller, we have proposed, in the last part
of our work, an iteration algorithm for the policy adaptation. From the optimisation
point of view, we have applied the standard gradient descent method [5] for the
controller optimisation with constraints on the structure of the feedback gain matrix,
induced by the restriction on the order of the controller. Based on a convergence anal-
ysis of the applied gradient descent algorithm, we have further proposed a modified
version for the iterative optimisation with a guarantee of the iteration convergence.
In this work, some well-known rules for the derivative computations of matrix trace
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[6] and Kronecker product as well as some associated computations [7, 8] have been
applied.

We would like to mention that our work in Sect. 22.3.2 on the performance degra-
dation recovery can be viewed as an alternative realisation of the Q-learning aided
LQR controller optimisation using output data (instead of the direct measurement
of the state variables). In the literature [9, 10], the popular strategy to deal with this
issue has been reported, which generally consists of a two-step procedure:

• approximation of the state variables by means of the system input and output data,
and based on it,

• the optimisation problem is solved in a similar way like the original LQR optimi-
sation algorithm.

As we know from the parity-space approach and its state space realisation in form
of an observer [11], the first step is in fact a dead-beat observer. Consequently, we
can understand this optimisation strategy as a deadbeat observer-based LQ control,
whose performance, in comparison with the H2 control scheme, is obviously less
than optimal. In our alternative scheme proposed in Sect. 22.3.2, we have handled
this problem in a different way. The key step is the (data-driven) model (22.19),
which enables an optimisation of a dynamic output controller with flexible structure.
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topology, 351

γ̄LPD : loop performance degradation
coefficient, 548

H
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, 239

Information transform rate, 158, 317
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, 255
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, 255

K
K-gap
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data-driven recursive SKR of control
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data-driven SKR of control loops, 632
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SKR of faulty systems, 208
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234

SKR of uncertain closed–loop models,
234

SKR of uncertain systems, 208
SKR of operator �x0 , K x̂0

� , 298
stable kernel representation (SKR), 87
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112

Kullback-Leibler (KL) divergence,
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L
L2-gap, definition, 228
l2 norm residual evaluation functions, 143

batch scheme, 143
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moving horizon (MH), 143
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model, 235, 526

Loop Performance Degradation Model
(LPDM), 529
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M
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Maximal Likelihood Estimate (MLE), 46
Mean time to fault detection (MT2FD), 485

ρ(� f,i ) : MT2FD w.r.t. fault in pattern
� f,i , 485

Missed Detection Rate (MDR)
definition, 33

Multiple monitoring indices, definition, 501
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N
Nonlinear observer-based FD systems,

definitions
L2 observer-based FD system, 271
L∞ observer-based FD system, 271

ν-gap metric, 227

O
Observer-based fault-tolerant control

architecture, 119
Observer-based input-output model,

definition, 524
Optimisation indices for LDTV systems
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