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xv

Preface
This book deals with different aspects of surface science and its applications. While 
the chapters are freestanding, there is a logical progression: knowledge of previous 
chapters will enhance the understanding of subsequent ones. 

This second edition is both an extension and reorganization of the material in the 
first edition. Major additions include the recent progress in axisymmetric drop shape 
analysis (ADSA, Chapter 3); a new chapter on image processing methods for drop 
shape analysis (Chapter 4); a new chapter on advanced applications and generaliza-
tions of ADSA (Chapter 5); recent studies of contact angle hysteresis (Chapter 7); a 
new chapter on contact angles on inert fluoropolymers (Chapter 8); and an updated 
presentation of line tension and the drop size dependence of contact angles (Chapter 
13).

Philosophically, the book is firmly anchored in Gibbsian thermodynamic think-
ing. The first two chapters generalize Gibbs classical theory of capillarity including 
discussions of highly curved interfaces. The next three chapters discuss liquid–fluid 
interfacial tension and its measurement, using drop shape techniques. Chapters 6 
through 9 are contact angle chapters, dealing with experimental procedures, ther-
modynamic models, and the interpretation of contact angles in terms of solid surface 
tension. Chapter 10 discusses theoretical approaches to determine solid surface ten-
sion, whereas Chapters 11 and 12 deal with interfacial tensions of particles and their 
manifestations. Finally, Chapter 13 contains material on drop size dependence of 
contact angles and line tension.

Chapter 1 presents a generalized theory of capillarity. The approach is entirely 
Gibbsian; however, it differs from the classical theory in that it is not restricted to 
moderately curved liquid–fluid interfaces. It also includes line phases in addition to 
surface and volume phases. While the mathematical complexities of the minimiza-
tion of the resulting free energy function are considerable (but not presented here), 
we believe that this generalized theory is, conceptually, easier to grasp than the 
classical theory. The second half of this chapter presents simple derivations of the 
generalized Laplace equation of capillarity, as well as a verification of the funda-
mental equation for surfaces from hydrostatic considerations. The chapter concludes 
by demonstrating that the appropriate free energy function for capillary systems is 
the grand canonical potential, and that the Gibbs dividing surface can be shifted 
freely within the framework of the generalized theory, but not the classical theory.

Chapter 2 deals exclusively with axisymmetric liquid–fluid interfaces. While it 
is more restrictive geometrically than Chapter 1, it is more general in that it does, 
among other things, consider compressible as well as incompressible interfaces. Its 
importance may well lie in such insights as the interplay between line tension and 
compressibility in surfactant monolayers.

The next three chapters deal with the determination of liquid–fluid interfacial 
tension, primarily via drop shape methods.
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Chapter 3 describes recent advances in a methodology called ADSA. The meth-
odology is based on numerical integration of the Laplace equation of capillarity 
and computer-based matching of experimental drop profiles to theoretical ones, with 
the interfacial tension as one of the parameters in the optimization scheme. The 
methodology is applicable to sessile and pendant drops/bubbles alike. Illustrations 
of its applicability include, among others, pressure dependence of interfacial tension, 
ultra-low liquid–liquid interfacial tensions, and the use of ADSA as a film balance.

Chapter 4 delves further into image processing techniques, which are a critical 
component of drop shape methods for automated measurement of interfacial prop-
erties with high accuracy. Advanced methods are presented for overcoming noise 
encountered in images of biological samples, for example, lung surfactant prepara-
tions and bacterial cell lines.

Chapter 5 discusses three advanced applications of ADSA in depth, and presents 
an alternative drop shape algorithm originating in ADSA. The first application con-
cerns the use of ADSA to study lung surfactant, a phospholipid–protein complex that 
lowers surface tension in the lung, allowing normal breathing. The second applica-
tion is the development of ADSA as a fully functional miniature Langmuir film 
balance with the capacity of subphase replacement. In the third application, ADSA 
is extended to analyze the shapes of liquid drops subjected to external electric fields. 
Finally, an alternative algorithm called theoretical image fitting analysis (TIFA) is 
presented. TIFA measures interfacial properties from whole drop images without the 
use of edge detection to extract liquid–fluid profiles.

Chapters 6 through 10 discuss measurement of contact angles and their use for the 
determination of interfacial tensions involving a solid phase.

Chapter 6 offers a general guide to many of the techniques used to measure con-
tact angles. It focuses on two versions of the drop shape method ADSA, namely 
ADSA-Profile and ADSA-Diameter. Also provided in this chapter are protocols for 
the careful preparation and handling of solid surfaces and liquids for conducting 
contact angle measurements.

Chapter 7 deals with conceptual aspects of contact angles on imperfect solid sur-
faces. The main topics include thermodynamic models of contact lines on chemi-
cally heterogeneous and rough solid surfaces. Experimental studies of contact angle 
hysteresis are presented, emphasizing its link not only to heterogeneity and rough-
ness, but also to sorption. Contact angles on surfaces covered by a thin liquid film 
are considered as well.

Chapter 8 presents a detailed study of contact angles of various liquids on certain 
well-characterized polymer surfaces. Contact angles of different liquids on the same 
low-energy solid surface follow a pattern. Minor deviations from this pattern are 
interpreted in terms of specific solid–liquid interactions.

Chapter 9 presents two approaches for measuring solid surface tensions from 
contact angle data—surface tension components and an equation of state—with the 
focus on the latter. The formulation of an equation of state is described and inde-
pendent experimental data using a variety of methods are used to examine each 
approach. The chapter concludes by describing a method for predicting solid surface 
tensions from molecular properties.
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Chapter 10 discusses approaches for measuring solid surface tensions that rely 
on the shapes of solid–liquid solidification fronts and use the Gibbs–Thomson equa-
tion. Gradient theory and Lifshitz theory are used to estimate solid–liquid interfacial 
tensions. These results strongly favor the contact angle approaches of Chapter 9. A 
critique of the applicability of the Gibbs–Thomson equation to solidification fronts 
is presented.

Chapters 11 and 12 concern the thermodynamic study of particles at interfaces.
Chapter 11 deals with wetting phenomena of particles, starting with a discussion 

of approaches to determine contact angles and surface tensions of particles. It is 
concluded that direct approaches often do not yield useful information; therefore, 
indirect approaches, such as the sedimentation volume technique and the capillary 
penetration method, are considered in detail.

Chapter 12 deals exclusively with the behavior of small particles at solidification 
fronts. In the first instance the method is an excellent tool for testing surface ener-
getic theories such as those considered in Chapter 9. In later sections the experiment 
is developed into a method to determine the surface tensions of the particles. Finally, 
experiments are described that allow determination of the actual force between poly-
meric particles and the solidification front, in which the microscopic observations of 
engulfment or rejection of a particle by the solidification front are interpreted using 
van der Waals interactions at the interface.

Chapter 13 revisits a topic of Chapters 1 and 2, line tension, and examines its pos-
sible link to the drop size dependence of contact angles. Theoretical approaches for 
estimating line tension are reviewed. The literature data for contact angles are then 
surveyed and their implications for the value of line tension discussed.

As a final note, we would like to acknowledge the extensive work of Zdenka 
Policova during the preparation of this book. Her contributions ranged from secre-
tarial to organizational to providing cohesion between the authors. We would also 
like to thank Professor Daniel Kwok for his efforts in generating the outline of the 
book. In addition, we thank Tatjana Ljaskevic, Ting Zhou, and Regina Park for their 
help with formatting text and reproducing figures.
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1

1 Outline of the 
Generalized Theory 
of Capillarity

John Gaydos, Yehuda Rotenberg, Pu Chen, 
Ladislav Boruvka, and A. Wilhelm Neumann

1.1 Outline Of the Generalized theOry Of Capillarity

1.1.1 IntroductIon

It is the purpose of this chapter to give an introduction to the macroscopic ther-
modynamics of interfaces, sometimes called the theory of capillarity. The entire 
foundation of classical thermodynamics in general and surface thermodynamics in 
particular was laid by Gibbs [1–3], who created a “pure statics of the effects of tem-
perature and heat” [4]. The development given here is Gibbsian in the sense that it is 
based on his concept of the dividing surface; however, the treatment of curved sur-
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faces and three-phase lines is more general [5] than Gibbs treatment and, we believe, 
easier to grasp than Gibbs moderate curvature approximation.

The chapter consists of two parts. The first part is a concise outline of the gener-
alized theory of capillarity. The emphasis is on establishing the proper fundamen-
tal equation for curved interfaces and the derivation of the generalized mechanical 
equilibrium conditions. The second part discusses applications, implications, and 
corollaries of the theory presented in the first part.

1.1.2 the Fundamental equatIon For Bulk Phases

The relation postulated by Josiah Willard Gibbs between the internal energy of a 
simple thermodynamic bulk system U(V) and the various modes of energy transfer 
between the system and the surroundings is called the fundamental equation; allow-
ing for heat transfer, mechanical work, and chemical work, we may characterize the 
change in the internal energy dU(V) of the system as

 dU TdS PdV dMV V
j

j

j
V( ) ( ) ( ) ,= − +∑µ  (1.1)

where T denotes the bulk temperature, S(V) is the total entropy, P is the pressure, V is 
the volume, µj is the chemical potential of component j, and M j

V( ) represent the total 
mass of component j within the bulk system. Quite often the chemical potentials, 
µj, are expressed in terms of energy per unit mole, Nj; however, in this case we shall 
define the chemical potential as an energy per unit mass, Mj. These quantities, Nj and 
Mj, represent the total number of moles and total mass in the system of component j, 
respectively. The superscript (V) denotes the fact that all quantities in Equation 1.1 
are volume or bulk phase quantities. Equation 1.1 also implies that there is a func-
tional relationship between the internal energy and the other quantities given above, 
which may be written as

 U U S V MV V V
j
V( ) ( ) ( ) ( ), , .=    (1.2)

Thus, for a simple thermodynamic system the internal energy is completely specified 
by the independent extensive properties given in Equation 1.2. Associated intensive 
parameters (i.e., parameters independent of the size of the system), namely, the tem-
perature T, the pressure P, and the chemical potentials µj for j = 1,2,…,r are defined 
from the fundamental equation by differentiating Equation 1.2 with respect to S(V), 
V, and, M j

V( ) to obtain the usual definitions of the intensive quantities for a homoge-
neous phase, or

 T
U
S

V

V
V Mj

V

= ∂
∂





 { }

( )

( )
, ( )

 (1.3)
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 − = ∂
∂





 { }

P
U

V

V

S MV
j
V

( )

,( ) ( )

,  (1.4)

and

 µ j

V

j
V

S V M

U

M
j

V
k j
V

= ∂
∂







=
≠{ }

( )

( )
, ,( ) ( )

for 1,, , ,2… r chemical components,  (1.5)

where the curly brackets { } indicate that all component masses are held constant. 
The other familiar forms of the fundamental equation are expressed either as a varia-
tional relation (e.g., see Equation 1.1), or as the integrated relation

 U TS PV MV V
j j

V

j

( ) ( ) ( )= − +∑µ ,  (1.6)

which is known as the Euler equation. Finally, an isolated, composite, simple ther-
modynamic system is governed by a minimum principle. At equilibrium, the inter-
nal energy of the composite system is less than it is for any other thermodynamic 
state having the same overall entropy, volume, and chemical components. The 
mathematical formulation of this principle leads to equality of temperature, pres-
sure, and chemical potentials throughout the composite system at equilibrium. The 
reader requiring more background on these fundamental matters may wish to refer 
to Callen [6] or any one of a number of other excellent texts [7–20].

The above development assumed tacitly that the physical properties are homo-
geneous throughout the simple system. When a fluid phase is placed in an external 
force field, a redistribution of matter takes place and the bulk phase becomes het-
erogeneous, although it remains macroscopically continuous and isotropic [21,22]. 
Therefore, the thermodynamic parameters of a bulk phase inside a finite volume will 
generally depend on the external field and the shape of the volume. The fundamental 
Equation 1.2 for a bulk phase may then be considered either in terms of the exten-
sive quantities inside an infinitesimal volume as done by Gibbs or, equivalently, in 
terms of volume densities of these parameters. The densities may be defined either 
as quantities per unit mass or as quantities per unit volume. Both definitions are used 
in thermodynamics; however, when physical properties like mass vary with location 
as would occur for a gas or fluid in a gravitational field our preference is to define the 
density as a quantity per unit volume. This latter approach is consistent with the defi-
nition taken in fluid mechanics [13,21–23]. It is this latter form of the fundamental 
equation that may be applied to both homogeneous and heterogeneous bulk phases to 
determine all equilibrium thermodynamic properties or tendencies of a bulk phase. 
Thus, the fundamental equation per unit volume is written as

 u u sv v v
j
v( ) ( ) ( ) ( ), ,=  ρ  (1.7)
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where u U V s S V M Vv V v V
j

v
j

V( ) ( ) ( ) ( ) ( ) ( ), , ,= = =/ / /ρ  and the specific volume superscript 
(v) is introduced at this point to indicate those quantities whose definition is depen-
dent upon the existence of a well-defined volume element. The symbol ρ j

v( )  denotes 
the r component densities present in the bulk phase. The intensive parameters (i.e., 
the temperature T, the pressure P, and the chemical potentials µj for j = 1,2,…,r) are 
now defined from the fundamental Equation 1.7 as

 T
u
s

v

v
j

v

= ∂
∂







( )

( )
{ }( )ρ

 (1.8)

 µ
ρ

ρ
j

v

j
v

s

u
j

v
k j
v

= ∂
∂







=
≠{ }

( )

( )
,( ) ( )

for 1, 2,, , chemical components,… r  (1.9)

and

 P Ts M uv
j j

v v

j

= + −∑( ) ( ) ( ) ,µ  (1.10)

where Equation 1.10 is identical to the (integrated) Euler relation. The fundamental 
equation may be written in the differential form as

 du Tds dMv v
j j

v

j

( ) ( ) ( ).= +∑µ  (1.11)

The extensive quantities for a finite volume V are calculated from their respective 
volume densities by volume integrals; that is

 U u dVV v

V

( ) ( )= ∫∫∫ ,  (1.12)

 S s dVV v

V

( ) ( ) ,= ∫∫∫  (1.13)

 M dV j rj
V

j
v

V

( ) ( )= =∫∫∫ρ for 1, 2, , .…  (1.14)

In the absence of external force fields the densities u(v), s(v), and ρ j
v( )  are constant 

at every location throughout the entire bulk phase at equilibrium [i.e., the bulk 
phase is homogeneous only when ∇ =ϕ( )


r 0 where ϕ( )


r  represents the potential 
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of the external field given as a function of position]. In this case, we have the simple 
identities

 U Vu S Vs M V jV v V v
j
V

j
v( ) ( ) ( ) ( ) ( ) ( ), ,= = = =ρ for 1, 22, , .… r  (1.15)

Otherwise, the total energy of a bulk phase consists of both the internal energy and 
the potential energy associated with the external field. If the volume density of the 
total energy is denoted as et

v( )  and the volume density of the total mass of the phase 
as ρt

v( ), then

 e ut
v v

t
v( ) ( ) ( ) ,= + ρ ϕ  (1.16)

where

 ρ ρt
v

j
v

j

( ) ( )= ∑ ,  (1.17)

and the total quantities are determined from the integral relations given in Equations 
1.12 through 1.14.

1.1.3 GeneralIzatIon oF the classIcal thermodynamIcs oF surFaces

In this section, we shall demonstrate how the Gibbsian formalism of bulk thermody-
namics can be extended to the surface phase.

A molecule in the neighborhood of the interface between any two bulk phases 
will experience a different environment than if that same molecule were deep within 
the bulk of a similar bulk phase. Consequently, the density of the various compo-
nents and their energy and entropy densities in the neighborhood of the interface will 
be different from the corresponding densities in the bulk phases. Furthermore, the 
time-averaged densities will most likely change continuously from one bulk phase 
to another and not in a discontinuous or stepwise fashion. Thus, for an equilibrium 
system that is subjected to external body and/or surface forces and that is suffi-
ciently small (i.e., the boundaries are not infinitely removed) so that the interfacial 
regions need consideration one finds that u(v), s(v), and ρj

v( )  will be functions of posi-
tion that will vary slowly through each bulk phase due to the influence of gravity or 
other external body forces and will, in general, vary rapidly across each interface. 
Figure 1.1 presents a simple model of the time-averaged density ρ(v) of a liquid in 
equilibrium with its saturated vapor across the liquid–vapor interface. In most cases 
of interest, the influence of the interface is limited and does not extend beyond sev-
eral molecular diameters (about 10–9–10–8 metres) into the bulk phases. Therefore, 
the bulk phases forming the interface may in most cases be considered as extend-
ing uniformly right up to the interface. The most noticeable exceptions occur with 
liquid–vapor interfaces near the critical point of the fluid. To reiterate, the interface 
formed between two bulk phases is in reality a thin region in which the physical 
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properties (like the density) vary rapidly and continuously from the bulk proper-
ties of one phase to the bulk properties of the other phase. However, because this 
interface region is very thin, it may be considered to a first approximation, as done 
by Gibbs [1,2,24], as a mathematical, two-dimensional boundary between two bulk 
phases that extend uniformly right up to the mathematical dividing surface (shown 
as a dashed line in Figure 1.1). From the Gibbsian viewpoint, the dividing surface or 
surface of discontinuity is a mathematically constructed surface of only two dimen-
sions that is “sensibly” placed within the thin interface region to separate the bulk 
regions that make contact when forming the interface. Bulk properties in each phase 
are assumed to persist uniformly right up to the dividing surface and the excess 
properties, formed as a result of this assumed model for the interface, are attributed 
to the dividing surface. Therefore, the dividing surface that is initially constructed as 
a geometrical surface of bulk separation may be transformed into a thermodynamic, 
autonomous system governed by a suitable fundamental equation for the interface, 
which is dependent only on excess or surface quantities [25]. Surface or excess quan-
tities like the surface internal energy are defined as

 U U U UA V( ) ( ) ( ) ( ),= − −total
α β  (1.18)

where the quantities denoted by the superscripts (α) and (β) are those for the hypo-
thetical bulk systems (α) and (β) that extend right up to the dividing surface. The 
variable U(A) represents the difference in energy between the real system, of total 
energy U V

total
( ) , with an interface of nonzero volume and a hypothetical system of 

energy U(α) + U(β) in which the bulk phases (α) and (β) are completely uniform right 
up to the dividing surface. Thus, U(A) represents the excess energy arising from 
the Gibbsian model of an interface or equivalently it represents the total internal 
energy of the surface phase. In the same sense S(A) is the corresponding total surface 
entropy for an interface formed by bulk phases (α) and (β). Finally, M j

A( ) is the total 
surface mass of the jth component. The superscript (A) is used to denote a surface 
or two-dimensional phase variable. It should also be noted that in the process of 

Gibbs dividing surface

Positive contribution

Negative contribution

Distance across interface

Phase(β)Phase(α)

ρ(β)

ρ(α)

fiGure 1.1 Schematic of the time-averaged variation of the density across a deformable 
liquid-fluid interface showing the placement of the dividing surface and the regions of the 
density profile that contribute to the final value for the surface density.
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introducing a dividing surface to model the interface region one ensures that the 
total energy, total entropy, and total mass of the system do not change (i.e., they are 
all conserved).

The fundamental equation for a planar interface without external field influence 
is readily established by considering modes in which the internal energy U(A) of the 
interface can be changed. There is, just as in the case of the bulk phases, the possibil-
ity of transfer of mass and heat into and out of the interface. Instead of the volume, 
as in the case of the bulk phase, we are now concerned with the interfacial area, A. 
The work done in generating an interfacial area increment dA is γdA where γ is the 
interfacial tension. Overall we obtain

 dU TdS dA dMA A
j j

A

j

( ) ( ) ( ) ,= + +∑γ µ  (1.19)

so that the fundamental equation for the total surface may be expressed as

 U U S A MA A A
j
A( ) ( ) ( ) ( ), , .=    (1.20)

The interfacial tension, defined as

 γ = ∂
∂







( )

{ }( ) ( )

U
A

A

S MA
j
A

,

,  (1.21)

is the two dimensional counterpart of the three dimensional bulk pressure P. Both 
quantities are isotropic (same magnitude in all directions), but the surface or inter-
facial tension is tensile rather than compressive like the pressure. The term γdA rep-
resents the work required to change the area of the planar dividing surface just as 
the term –PdV represents the work required to increase the volume of the system. 
Therefore, Equation 1.19 holds for all positions and variations of a planar dividing 
surface.

In the presence of an external field we require that the arguments of the sur-
face internal energy density u(a) be all surface densities of extensive surface; that is, 
of the dividing surface quantities. Ultimately, this means that we assume that it is 
physically meaningful to discuss surface densities defined at a point on the dividing 
surface. Thus, surface densities defined at a point in the dividing surface will be con-
sidered in exactly the same manner as volume densities defined at a point in the bulk 
fluid. We notice that, as far as the geometric variables are concerned, the funda-
mental equation for bulk phases is complete since a volume region has no extensive 
geometric variables (besides its volume), and hence no geometric point-variables 
upon which the volume densities u(v) could be assumed to depend. Likewise, we 
require that a fundamental equation for surfaces be complete as far as the geomet-
ric variables are concerned. Other than u(a) and ρ j

a( )  where j = 1, 2, … , r, the only 
other required variables are geometric ones; any other properties would have to be 
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considered also in the fundamental equation for bulk phases and the resulting theory 
would be more general (e.g., electrocapillarity) than presently desired.

For a planar dividing surface we can see that a surface domain in two-dimensional 
space (analogous to a volume region in three-dimensional space) has no extensive 
geometric properties other than its surface area. Therefore, the complete fundamen-
tal equation for planar surfaces is identical to the one suggested by Gibbs more than 
a century ago, namely

 u u sa a a
j
a( ) ( ) ( ) ( )=  , .ρ  (1.22)

The corresponding extensive or total quantities are defined in analogy with the bulk 
phase definitions provided by Equations 1.12 through 1.14; however, all integrations 
are carried out over the surface instead of the volume. Next, we consider the case of 
a nonplanar, curved surface.

For a nonplanar surface there are geometric quantities in addition to the surface 
area A that need to be considered. Physically, one needs to realize that work can 
be performed on the system by bending the interface (i.e., by changing its curva-
ture). The best known quantities for describing the curvature of a surface at a point 
are the so called principal (orthogonal) curvatures c1 = 1/R1 and c2 = 1/R2, where R1 
and R2 are the principal radii of curvature [26,27]. If one were to enter the analysis 
with the principal radii of curvature, the problem would quickly become intractable, 
because c1 and c2 are not differential invariants. Therefore, it is desirable to replace 
c1 and c2 by equivalent curvature related quantities that are invariant. With these 
considerations in mind, the simplest geometric parameters that possess the desired 
characteristics are the first (mean) curvature J and the second (Gaussian) curvature 
K defined by

 J c c K c c= + =1 2 1 2and .  (1.23)

Using J and K as the two scalar differential invariants of the surface, permits one to 
write the generalized fundamental equation in the energetic density form as

 u u s J Ka a a
j
a( ) ( ) ( ) ( ), , , .=  ρ  (1.24)

In analogy with bulk phases we introduce, in addition to temperature and chemi-
cal potentials, three intensive parameters for the dividing surface as

 C
u
JJ

a

s Ka
j
a

= ∂
∂





 { }

( )

, ,( ) ( )
,

ρ

 (1.25)

 C
u
KK

a

s Ja
j
a

= ∂
∂





 { }

( )

, ,( ) ( )

,
ρ

 (1.26)
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and

 γ µ ρ= − − − −∑u Ts C J C Ka a
j j

a
J K

j

( ) ( ) ( ) ,  (1.27)

where T is the surface temperature, µj is the surface chemical potential of component 
j, CJ, and CK are certain mechanical or curvature potentials that may be called the 
first and second bending moments of the surface and γ (the surface analogy of –P) is 
the surface tension. The differential form of Equation 1.24 can be written as

 du Tds d C dJ C dKa a
j j

a

j

J K
( ) ( ) ( ) ,= + + +∑µ ρ  (1.28)

and the integrated (Euler relation) form is given by Equation 1.27. The corresponding 
surface density of the total energy of the dividing surface is given by

 e ut
a a a( ) ( ) ( ) ,= + ρ ϕ  (1.29)

where

 ρ ρ( ) ( )a
j

a

j

= ∑  (1.30)

is the surface density of the total mass in the surface phase.
The analogous extensive parameters for a finite area A of a surface phase are 

calculated from their respective surface densities by surface integrals. The corre-
sponding extensive (because of their explicit definition in terms of the surface area) 
curvature terms are given by

 J = ∫∫ JdA,  (1.31)

and

 K = ∫∫KdA.  (1.32)

The quantities J and K although less often encountered than J and K, have been 
discussed previously in the differential geometry literature [27]. Specifically, we are 
assuming that the curvature densities indicate that the surface is of sufficient con-
tinuous and local uniformity that a continuum definition for the curvature is possible. 
This is analogous to assuming that the bulk system is sufficiently near a continuum 
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that one may define a localized density ρ(v) everywhere within the bulk system. A 
discussion of the physical applicability of such a point-thermodynamic approxima-
tion may be found in Rowlinson [28].

For a homogeneous portion of a dividing surface, with surface area A and con-
stant curvatures, the extensive parameters are expressed as

 U Au S As M A jA a A a
j
A

j
a( ) ( ) ( ) ( ) ( ) ( ), ,= = = =ρ for 1, 22, , r…   (1.33)

and

 J K= =JA KA, .  (1.34)

The fundamental equation for a homogeneous dividing surface expressed in terms of 
the extensive quantities is then given by

 U U S A M M MA A A A A
r

A( ) ( ) , , , ,..., ,= ( ) ( ) ( ) ( )[ J,K]1 2 ,,  (1.35)

and its differential and integrated forms by

 dU TdS dA dM C d C dA A
j j

A
J

j

K
( ) ( ) ( )= + + + +∑γ µ J K,  (1.36)

and

 U TS A M C CA A
j j

A
J

j

K
( ) ( ) ( )= + + + +∑γ µ J K. (1.37)

Equations 1.35 through 1.37 are the surface analogs of the fundamental equations for 
bulk phases (i.e., Equations 1.2, 1.1, and 1.6, respectively).

1.1.4 extensIon to three-Phase lInear systems

The extrapolation of Gibbsian thermodynamics to composite systems with linear 
phases was alluded to by Gibbs in a footnote when he stated [29]:

We may here remark that a nearer approximation to the theory of equilibrium and 
stability might be obtained by taking special account, in our general equations, of the 
lines in which surfaces of discontinuity meet. These lines might be treated in a manner 
entirely analogous to that in which we have treated surfaces of discontinuity. We might 
recognize linear densities of energy, of entropy, and of the several substances which 
occur about the line, also a certain linear tension.

Following this line of thought we extrapolate the properties of the dividing sur-
faces by assuming that the fundamental equation for each surface holds at every 
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point of the surface right up to the dividing line. Thus, the actual parameters of inter-
nal energy, entropy, and masses in the vicinity of the dividing line are represented 
partially by the extrapolated volume densities, partially by the extrapolated surface 
densities, and partially by whatever is remaining (i.e., the excess) that is attributed 
to the dividing line in the form of linear densities u(l), s(l), and ρ j

l( ) for j = 1, 2, … r. In 
order to set up a general fundamental equation for dividing lines, additional geomet-
ric variables must be considered. These additional geometric variables must be:

 1. Scalar geometric parameters
 2. Linear densities of extensive properties just as u(l), s(l), and ρ j

l( )

 3. The lowest order scalar differential invariants of a line on a surface or of a 
line as an intersection of surfaces

There are two types of geometric quantities relevant for the description of three-
phase lines: contact angles and linear curvature terms. There are, at any point on a 
three-phase contact line, at least three contact angles that can be defined. We denote 
these angles as

  θjk  where (jk) = (12), (23), (31). (1.38)

It is also well known from differential geometry that for a line in three-dimensional 
space, the curvature κ and the torsion τ, specified at each point on the line, are the 
only two geometric parameters that are needed to describe the line in space. Despite 
their close analogy with the surface parameters J and K, the curvature of the dividing 
line cannot be characterized exclusively by κ and τ because they do not possess a rela-
tion to the dividing surfaces as required by the third condition. Therefore, as thermo-
dynamic subsystems, the dividing lines are nonautonomous to a greater extent than 
the dividing surfaces. A set of curvature terms that satisfies all three requirements is

  κnj, κgj, τgj  for j = 1, 2, 3, (1.39)

where κnj, κgj,and τgj are the normal curvature, the geodesic curvature, and the geo-
desic torsion of the dividing line at each point along the length of the line [26,27], 
relative to the jth dividing surface. This set of variables, listed in Equations 1.38 and 
1.39, is highly symmetrical at the expense of not being entirely independent since the 
variables are related by the relations

 θ πjk

jk( )

,∑ = 2  (1.40)

or, for a three-phase system, by

 θ θ θ θ πjk

jk( )

( ),( ),( )

,
12 23 31

12 23 31 2∑ = + + =  (1.41)
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and

 κ κ κnj gj
2 2 2+ = ,  (1.42)

or, for a three-phase system, by

 κ κ κ κ κ κ κn g n g n g1
2

1
2

2
2

2
2

3
2

3
2 2+ = + = + = .  (1.43)

Thus, by analogy with the fundamental equations for bulk and surface phases, the 
general fundamental equation for dividing lines in the density formalism is

 u u sl l l
j
l

jk nj gj gj
( ) ( ) ( ) ( ), , , , , .=  ρ θ κ κ τ  (1.44)

These parameters characterize the way in which the specific energy u(l) depends on 
the shape or curvature of the dividing line in three dimensions, as defined by the 
curvatures κnj, κgj, and torsion τgj of the dividing line at each point along the length 
of the line, and by the angles θjk that are formed by the jth and kth adjacent dividing 
surfaces at the point in which they intersect to form the dividing line. In analogy 
with Equation 1.27, which defines the surface tension γ, we are led to the definition 
of line tension σ as

 σ µ ρ θ κθ= − − − − +∑ ∑u Ts C Cl l
j j

l

j

jk

jk

nj njjk
( ) ( ) ( )

( )

CC Cgj gj j gj

j

κ ττ+( )∑ ,  (1.45)

where C
jkθ , Cnj, Cgj, and Cτj are linear mechanical potentials or bending moments of 

the equilibrium dividing line, entirely analogous to the bending moments introduced 
in Equations 1.25 and 1.26; and σ (the linear analog of the surface tension γ) is the 
line tension. The differential and integrated forms of the linear fundamental equa-
tion are expressed as

 du Tds d C d C dl l
j j

l

j

jk

jk

njjk
( ) ( ) ( )

( )

= + + +∑ ∑µ ρ θ κθ nnj gj gj j gj

j

C d C d+ +( )∑ κ ττ  (1.46)

and by Equation 1.45, which is the linear version of the Euler relation. The summa-
tions with indices j and ( jk) are over all the dividing surfaces and over all pairs of 
adjacent dividing surfaces (nonrepeated summation) that are connected to a particu-
lar dividing line, respectively.

For a homogeneous segment of dividing line (with completely uniform linear den-
sities) of length L, the fundamental equation in terms of extensive parameters can 
be expressed as

 U U S L ML L L
j
L

jk nj gj gj
( ) ( ) ( ) ( ), , , , , , , .=  Θ K K T  (1.47)
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The quantities Θjk, Knj, Kgj, and Tgj are introduced, in general, as differentially 
invariant, extensive parameters defined by

 Θ jk jk
L

dL= ∫ θ ,  (1.48)

 Knj nj
L

dL= ∫ κ ,  (1.49)

 Kgj gj
L

dL= ∫ κ ,  (1.50)

 Tgj gj
L

dL= ∫ τ .  (1.51)

The differential and integrated forms of U(L) may be written down in a similar man-
ner to the expressions given previously for u(l) in the density formalism.

In summary, the fundamental equation for dividing lines, as given by Equation 
1.44, defines the energy of the dividing line in terms of the “linear densities” to which 
Gibbs alluded and in terms of suitable differentially invariant, intensive parameters 
that uniquely define the curvature and the contact angle configuration of the line at 
every point in three dimensions.

In addition to the confluent zones represented by dividing surfaces (interfaces) 
and the ones represented by dividing lines, a fluid system may contain yet another 
dimensional class of confluent zone, namely that represented by dividing points. 
When several dividing lines intersect, the common point of intersection may be 
described in terms of excess properties of the point in analogy with the excess prop-
erty descriptions of both dividing surfaces and lines [5].

1.1.5 mechanIcal equIlIBrIum condItIons

The descriptive formalism of equilibrium thermodynamics for fluid systems is based 
on the fundamental equations described above and a minimum principle. We shall 
consider a multicomponent, multiphase fluid system governed by the above funda-
mental equations (i.e., Equations 1.7, 1.24, and 1.44). Any particular configuration of 
the total system in which the thermodynamic parameters are distributed in compli-
ance with the fundamental equations and also in compliance with the constraints 
on and within the system is called a possible state of the system. In our case, this 
means that we maintain the total entropy and the total mass of each component in the 
 system as a constant. Therefore, the fundamental equations determine and describe 
the thermodynamic states in all parts of the fluid system, while the minimum prin-
ciple is a necessary condition that allows determination of the equilibrium states 
from the multitude of thermodynamic states allowed by the governing fundamental 
equations. Mathematically, the thermal, chemical, and mechanical equilibrium con-
ditions are obtained through application of the calculus of variations.
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Gibbs applied the criterion necessary for equilibrium of a volume region to the 
internal portion of a fluid system with the condition of isolation imposed by enclos-
ing the internal portion of the composite system with an imaginary envelope or 
bounding wall [30]. Following this approach, we may write the necessary condition 
for equilibrium of a composite system with volume, area, line, and point phases as

 δ( ) ,( ) ( ), ,
Et S V Mt

V
tj
V{ } = 0  (1.52)

where the total energy Et = Ut + Ωϕ represents the total internal energy and external 
field energies of the composite system. The expression for Ut is given by Equation 1.55 
below, while the corresponding expression for Ωϕ is given by an identical Equation 
1.55 if one replaces u(v) with ρ(v) ϕ, u(a) with ρ(a)ϕ, u(l) with ρ(l)ϕ, and U(0) with M(0)ϕ 
(cf. the form of Equations 1.16 and 1.29). The three subsidiary conditions denoted 
by the subscripted quantities above are necessary if one requires that the calculus of 
variations problem remain equivalent to the problem stated by Gibbs for an isolated 
composite system. In other words, an isolated system does not permit the transfer of 
heat, mass, or work across its outer boundary. If these restrictions are imposed on our 
system and on the formulation of the calculus of variations problem that accompanies 
the system, then we must force all dissipation processes to vanish, restrict the total 
mass of each species in the system to remain fixed and require that all outer bound-
ary variations that would perform work be zero. We impose the first condition that 
all dissipation processes vanish in the composite system by requiring that the total 
entropy remain fixed. Imposition of the second condition simply requires that the 
mass of each species remain constant. The final boundary condition, which requires 
that no virtual work be possible on the outer wall, requires that position variations

 δr Aw j,
,{ }= 0  (1.53)

and normal displacement variations

 δ ˆ ,
,

n Lw k{ }= 0  (1.54)

where {Aw,j} denotes the union of all internal surfaces that would intersect the bound-
ing wall during a variation and {Lw,k} denotes the union of all internal contact lines 
that would intersect the bounding wall during a variation. The first condition fixes 
the “imaginary” bounding wall by imposing the condition that all internal surfaces 
remain unvaried along the bounding wall while the second condition fixes the unit 
normals to the dividing surfaces along all contact lines that contact the bounding 
wall.

The outer wall may have arbitrary shape, however, to insure that the total internal 
energy Ut is unambiguously determined it is necessary to place certain geometric 
constraints on the manner in which internal surfaces, lines, and points contact the 
outer wall. Specifically, it shall be required that no portion of a dividing surface, 
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with the exception of its boundary lines or points (i.e., no amount of its area), lie on 
the outer wall. In addition, it shall also be required that no segment of a dividing 
line, with the exception of its end points (i.e., no amount of its length), may lie on the 
outer wall. Finally, it is necessary to require that a dividing point not be an outer wall 
point. If any of these conditions are violated, then one would obtain a constrained 
variation or the mechanical equilibrium conditions for the dividing surfaces, lines, 
or points would be connected to the geometric shape of the imaginary bounding 
surface of the composite, fluid system.

The total free energy is divided into parts assigned to the bulk, surface, line, and 
point regions of the composite system. If the total number of bulk phases, dividing 
surfaces, dividing lines and dividing points inside the composite system are denoted 
by the symbols Vk1, Ak2, Lk3, and Pk4, respectively, then it is possible to write the total 
internal energy of the system as

 U u dV u dA u dLt
v
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k

k

k
k

= + + +∫∫∫∑ ∫∫ ∫
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 (1.55)

where Vk denotes a particular volume region with a particular specific internal energy 
and it is one out of a total of Vk1 volume regions that contribute to the composite sys-
tem. Likewise, Ak, Lk, and Pk denote particular dividing surfaces, lines, and points, 
respectively. The k subscripts on the symbols Vk1, Ak2, Lk3, and Pk4 acquire values, in 
general, such that k1 ≠ k2 ≠ k3 ≠ k4. However, these seemingly unrelated quantities 
are in fact connected by a topological or combinatorial quantity, denoted by the sym-
bol χ, which is called the Euler characteristic [31–35]. For any compact surface in 
three-dimensional space, the Euler characteristic χ is related to the geometric genus 
of the surface gs by the relation χ = 2(1 – gs). Furthermore, if the surface can be seg-
mented and represented by a large number of regions or patches, then the number of 
vertices Ps4, edges Ls3, and patches As2 are related to the Euler characteristic by the 
expression χ = As2 –Ls3 + Ps4. A surface that is representable in this fashion is known 
as a differential geometric surface.

Upon solution of the calculus of variations Problem 1.52, one finds that the condi-
tion of thermal equilibrium in isolation is

 T T= .  (1.56)

Physically, this states that the equilibrium temperature T  is the same in all bulk 
phases, dividing surfaces, and linear regions. Similarly, considering the chemical 
components to be independent (with no chemical reactions permitted), one finds that 
the conditions of chemical equilibrium for each component are

 µ φ µj j j r+ = =for 1, 2, , chemical components…  (1.57)

throughout the system, where µ j  are the equilibrium chemical potentials of the 
chemical constituents of the system at the reference surface, ϕ(r) = 0.
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In addition to the thermal and chemical equilibrium conditions that are given by 
Equations 1.56 and 1.57, there are two kinds of mechanical equilibrium conditions that 
also arise from the mathematical analysis. One condition is for liquid–fluid interfaces 
(i.e., dividing surfaces), while the other condition is for three-phase dividing lines. The 
simplest forms of these mechanical equilibrium conditions are explicitly derived in 
Chapter 2 for both incompressible and compressible axisymmetric capillary systems.

When the surface fundamental Equation 1.24 is used, it can be shown that the 
condition of mechanical equilibrium across each dividing surface is given by [5]

 J KC C K C n P PJ J K
aγ ρ φ β+ − ∇ − ∇ ⋅ ∇ + ∇ = −2 2

2
2 2
* ( ) ( ) (( ) ˆ × αα) , (1.58)

where n̂  is the unit normal by which the dividing surface is oriented, P(β) is the 
pressure in the bulk phase for which n̂  is directed outward, and ∇ 22 and ∇*2 are sur-
face differential operators [27]. Relation 1.58 expresses the balance that exists in 
equilibrium between the internal surface forces and the forces external to the divid-
ing surface, namely gravity and the pressure difference; it is the most general form 
of the Laplace equation of capillarity. When gravity or the surface mass density 
is negligible, the last term on the left-hand side of Equation 1.58, ρ φ( ) ˆa n × ∇  , can 
be dropped. Hence, if the surface mechanical potentials γ, CJ, and CK are constant 
along the dividing surface the condition of mechanical equilibrium for each dividing 
surface reduces to

 J KC P P PJγ β α+ = − =2 ( ) ( ) .∆  (1.59)

The condition of mechanical equilibrium for dividing lines (i.e., the most general 
case of the Neumann relation corresponding to Equation 1.58) is extremely complex 
and available elsewhere [5]. However, if the linear curvature potentials Cθjk, Cnj, Cgj, 
and Cτj and the line tension σ are also constant along the dividing line, then the equi-
librium condition reduces to

 σ θ κ γ κθ θ θ+








 = + −∑C C C

jk jj jjjk

jk

j

( )

( )( ( )


1 2 nnj j

j

m) ˆ ,∑  (1.60)

where the subscripts on the angle, denoted as j1 and j2, are arranged such that the 
order of the dividing surfaces clockwise about the dividing line is j1, j, and j2. The 
vectors 


κ  and m̂  are defined in terms of the surface normal n̂  direction and the 

tangent normal to the dividing line t̂  so that

 ˆ ˆ ˆ ,m t n t r= × = =and
  κ  (1.61)

where the latter two quantities denote arc-length derivatives of the (nonnormal) tan-
gent vector and the position vector, respectively.

Relation 1.60 represents the generalized Neumann triangle relation. It serves as 
the natural boundary condition for Equation 1.59 and balances the internal forces in 
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a dividing line with the forces external to the line, namely gravity and surface forces, 
to determine the equilibrium shape of the dividing surfaces meeting at the dividing 
line. The conditions of mechanical equilibrium at dividing points may be found else-
where and will not be discussed further [5].

In a manner similar to that used by Gibbs we shall apply the formalism just 
developed to a dividing line at a solid surface. We consider a rigid, insoluble solid 
with a smooth surface and assume that the two solid–fluid dividing surfaces and 
the dividing line are governed by fundamental equations of the same form as those 
for a fluid system. For convenience, we shall introduce the following changes in 
notation. The bulk phases, previously labeled by the subscripts j or k, will be 
denoted by the superscripts (s) for the solid phase, (l) for liquid, and (v) for vapor, 
gas, or second liquid, while the dividing surfaces, previously labeled by the sub-
scripts j, will now be denoted by the double superscripts (sv) for solid–vapor sur-
face, (lv) for liquid–vapor, and (sl) for solid–liquid. Thus, in place of Equation 
1.60, the condition of mechanical equilibrium for a dividing line at a solid surface 
is given by [5]

σ θ κ γ κ θθ θ θ θ+ −( )( ) + + −( ) −C C C C
l v l vl gs

lv
ns l

( ) cos κκ θ θ

γ γ κθ θ

gs l l

sv sl
nsC C

l v

cos cos

( ) ( )

( )( )
= − + −( ) ..

 (1.62)

This relation is the generalized Young equation of capillarity for a solid–liquid–
vapor interface; it serves, inter alia, as a boundary condition for the generalized 
Laplace equation of capillarity given by Equation 1.59.

A further restriction that brings the above results closer to the classical equations 
is obtained by neglecting all remaining curvature and contact angle potentials. The 
surface equilibrium condition, Equation 1.59, then reduces to

 J P P Plv lv l v( ) ( ) ( ) ( ) ,γ = − = ∆  (1.63)

which is identical to the classical Laplace equation of capillarity. Conditions 1.60 
and 1.62 also simplify to

 γ σκ( ) ˆ ,j
j

j

m − =∑  
0  (1.64)

and

 σκ γ θ γ γgs
lv

l
sv sl+ = −( ) ( ) ( )cos .  (1.65)

The mechanical equilibrium conditions expressed in Equations 1.63 through 1.65 
apply locally at every point on the two-phase dividing surface and the three-phase 
dividing line, respectively. At the lowest level of generality, where one ignores the 
effect of curvature and contact angle potentials on the condition(s) of mechanical 
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equilibrium, the classical Laplace equation of capillarity, Equation 1.63, as origi-
nally stated in 1805 is recovered; however, the classical Young equation of capillarity 
and the classical Neumann triangle relation must be corrected via additional terms 
that represent the influence of the line tension σ into the overall “force” balance at 
the three-phase contact line. Equation 1.64 is equivalent to two orthogonal scalar 
relations. One of these relations may be shown to be equivalent to the Young equa-
tion of capillarity (cf. derivation in Chapter 2 for axisymmetric capillary systems), 
while the second relation represents the mechanical equilibrium condition in a direc-
tion that is orthogonal to the first relation. In general, the curvature, 


g , of the contact 

line is arbitrarily directed; however, for axisymmetric systems the curvature must lie 
perpendicular to the gravitational vector 


g  and within the same plane as m̂ j for j = 1, 

2, 3 as sketched in Figure 1.2.
If we employ the notation in Figure 1.2, we may write the vector expression given 

by Equation 1.64 as two scalar relations; one resulting from projecting the vectors 
into the horizontal plane and another from a corresponding projection into the verti-
cal plane [36]. Both relations represent balances of surface and linear forces in their 
respective planes. In the horizontal direction one obtains a relation that is similar to 
the Young equation of capillarity and given by the expression

 γ θ γ θ γ θ σκκ κ κ
( ) ( ) ( )cos cos ,j

j
j

j
j

jcos + + + =1
1

2
2

0  (1.66)

while the projection into the vertical plane yields the result

 γ θ γ θ γ θκ κ κ
( ) ( ) ( )cos sin ,j

j
j

j
j

j+ + =1
1

2
2

0sin  (1.67)

where θ

κ j is the angle of contact between the curvature vector 


κ  of the contact line 

and the jth dividing surface, θ js,k is the angle of contact between the curvature vec-
tor and the jsth dividing surfaces (where s = 1 or s = 2) and θj1j2 is the angle between 
the j1th dividing surface and the j2th dividing surface; that is, the angle between the 
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fiGure 1.2 Schematic of (a) a side view of an axisymmetric liquid lens at the contact line, 
and (b) a quadrilateral composition of the three surface tensions, one line tension, and angles 
present at the contact line.
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surface unit vectors m̂ j1
and m̂ j2

 (cf. the definition of the “cusp angle” in Chapter 2). 
One should notice that with this particular orientation (i.e., horizontal and vertical) 
one obtains mechanical equilibrium equations at the line of contact that are identi-
cal to the classical expressions, save for the one additional term σκ that appears in 
Equation 1.66. If these two projection relations are squared and added, then one 
obtains a “cosine-rule” expression among the various forces at the contact line. The 
expression contains three angles of contact and is given by

 
( ) ( ) ( )( ) ( ) ( ) ( ) ( )γ γ γ γ γ θj j j j j

jj
2 2 21 2 1

1
2+ + + cos

++ + =2 22
2

1 2
1 2

γ γ θ γ γ θ σκ( ) ( ) ( ) ( )cos (j j
j j

j j
j jcos )) .2

 (1.68)

It is possible to eliminate two of these three angles in favor of the cusp angle θj1j2 by 
performing a rotation of the horizontal and vertical axes. This result, which is dem-
onstrated elsewhere [36], yields the interesting relation

 γ σκ σκγ θ γ γκ
( ) ( ) ( ) ( )j j

j
j j( ) + ( ) + = ( ) + (2 2 2

2 1 2cos )) +2
2 1 2

1 2
γ γ θ( ) ( ) cos ,j j

j j  (1.69)

which permits one to see that one recovers the classical “cosine-rule” Neumann 
triangle relation among the surface tensions when the magnitude of σκ is insignifi-
cant. In addition, the presence of the σκ term changes the Neumann triangle into a 
quadrilateral as illustrated in Figure 1.2b and if the quantity σκ


 vanishes, then the 

quadrilateral transforms into a triangle.

1.1.6 Free enerGy VarIatIon and alternatIVe curVature measures

It is possible to transform the constrained calculus of variations problem, stated by 
Equation 1.52, into an unconstrained (free energy) calculus of variations problem if 
we use the method of Lagrange multipliers to modify the complete energy integral 
Et beforehand. This approach will also be discussed in more detail in the second 
section of this chapter. The modified energy integral (free of constraints) is given by 
the expression

 Ωt t t j tj

j

r

U S M= − −
=

∑λ λ ,
1

 (1.70)

where λ and λj are the Lagrange multipliers for the entropy constraint and the jth 
component mass constraint. Any variation of the total free energy Ωt, together with 
the boundary conditions (Equations 1.53 and 1.54), can be handled as an uncon-
strained problem. The Lagrange multipliers can be evaluated from the bound-
ary conditions. The final equilibrium conditions are obtained by eliminating the 
Lagrange multipliers using the constraint conditions that the total entropy and 
the total mass of each component must remain fixed. Two specific examples are 
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presented in detail in Chapter 2. Accordingly, the variation of the total free energy 
can be written as

 δ δ δ δΩ Ω Ω Ωt k
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and
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The solution of the calculus of variations problem posed by Equation 1.71 will 
depend critically upon the choice of parameterization and upon the generality of 
the functional expression that is adopted for the specific free energies ω(v), ω(a), ω(l) 
and point energies Ω(o). We shall return to this problem in the first part of the next 
section.

The earliest attempts at solving this problem of determining the mechanical equi-
librium conditions that would render the integrals stationary usually considered a cap-
illary system as a composite system of at most three bulk phases with three surface 
phases and one contact line of mutual intersection. Any mobile interface that existed 
between adjacent deformable bulk phases was considered to possess an energy that 
was proportional to the surface area of the interface. In virtually all cases, this propor-
tionality factor was treated as a constant or uniform tension on the surface. The only 
real exception to this state of affairs, until the studies of Buff and Saltsburg [37–42] 
and Hill [43], was the impressive fundamental capillarity work of Gibbs [44].

The mechanical equilibrium condition for the surface that arises from the solu-
tion to this calculus of variations problem simplifies approximately to a problem that 
renders the area of the interface a minimum, or

 δ dA =∫∫ 0.  (1.76)
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When solved, this problem yields a minimal surface of negligible thickness and 
mass whose mean curvature J = c1 + c2 vanishes. If the surface bounds a bulk phase 
of fixed volume, a constraint must be added to the problem that leads to a surface of 
constant, but not vanishing, mean curvature. The unique properties of these surfaces 
with either fixed or zero mean curvature soon captivated the imagination and inter-
est of many mathematicians. In both cases, the problem was restricted by fixing the 
position of the boundary so that no boundary conditions occur because the boundary 
was not free to vary. In addition, alternative surface integral expressions such as

 δ J dA2 0=∫∫ ,  (1.77)

designed by Poisson in the nineteenth century to characterize the potential energy 
of a membrane started to appear [45]. Another example, in 1889, was provided by 
Casorati [46]

 δ ( ) ,J K dA2 2 0− =∫∫  (1.78)

where K = c1c2 is the Gaussian curvature. It might be argued that, as was done by 
Nitsche [47], a more appropriate surface integral to investigate would be

 δ Φ( , ) ,J K dA =∫∫ 0  (1.79)

where Φ(J,K) denotes a positive, symmetric but not necessarily homogeneous 
function of the mean and Gaussian curvatures. Simple polynomial examples are: 
Φ = a + bJ2 – cK, with both constants b and c much less than a [47] and Φ = b(J – 
Jο)2 + cK [48]. If Φ = ψ(J)–cK, then the Euler–Lagrange equation, which is a neces-
sary condition for the variation of the surface integral to vanish, is given by [47]

 ∆ Ψ Ψ Ψb J
J K

J
J

δ
δ

δ
δ

+ − −





=( ) ,2 0  (1.80)

where Δb denotes the Beltrami operator [49]. For the special case Φ = J2, the differ-
ential Equation 1.80 reduces to

 ∆bJ
J

J K+ − =
2

4 02( )  (1.81)

and was derived by Schadow in 1922 [50]. Regardless what particular expression is 
adopted for the surface energy, the Euler–Lagrange equation arising from the cal-
culus of variations problem Equation 1.79 is lengthy and involves the fourth-order 
derivatives of the position vector for the surface. Recent mathematical investigations 
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have centered on the Expression 1.77 and its higher dimensional extensions. The case 
of surfaces with nonfixed or free boundaries “requires the discussion of appropriate 
boundary conditions and has not attracted much attention so far” [49,51]. Extensions 
and elucidations of Gibbs and Buff’s efforts, which consider nonfixed boundary con-
ditions, by Murphy [52], Melrose [53–55], Cahn and Hoffman [56,57], Helfrich [48], 
Boruvka and Neumann [5], Scriven et al. [58,59], Rowlinson and Widom [60,61], 
Alexander and Johnson [62,63], Shanahan and de Gennes [64–67], Markin et al. 
[68,69] and Kralchevsky et al. [70–73] have been primarily directed at the deter-
mination of the appropriate mechanical equilibrium conditions across a surface 
(i.e., Laplace’s equation) and at a contact line boundary (i.e., either Young’s equa-
tion or Neumann’s triangle relation) for quite general differential geometric surfaces. 
However, a certain amount of contention among these investigators has occurred 
over the particular functional expression that one might expect for the free energies 
[74–76].

One result of importance in this connection is the Gauss–Bonnet theorem, which 
states for sufficiently smooth boundaries that

 KdA gs= = −∫∫ 2 4 1πχ π( ).  (1.82)

As a consequence of this result, we see that for any calculus of variations problem 
in which the genus gs of the surface is fixed and the surface integral is homogeneous 
of first degree with Gaussian curvature K, that the Euler-Lagrange equation will 
be unaffected by the presence of the Gaussian curvature [77]. Therefore, the varia-
tion problems given by Expressions 1.77 and 1.78 are equivalent for closed surface 
systems.

1.2 appliCatiOns, impliCatiOns, and COrOllaries

1.2.1 IntroductIon

The preceding part of this chapter contains an outline of a generalized theory of 
capillarity. While the generalized theory uses all of the available building blocks 
of thermodynamics, it does not explicitly attempt a comparison with the historical 
development of this field; specifically, it does not develop, nor compare with, Gibbs 
classical theory of capillarity. The most important differences between the classical 
and the generalized theory are as follows:

 1. The classical theory invokes a “moderate curvature” approximation, 
whereas the generalized theory should be applicable for high curvature 
situations as well. This is best appreciated by considering mechanical equi-
librium conditions (e.g., Equations 1.58 and 1.59), which, depending on the 
level of generalization, contain various curvature related terms.

 2. The classical theory does not consider contact lines and hence did not intro-
duce any thermodynamic definition for the line tension. The generalized 
theory introduces a line tension term into the Young equation for situations 
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of moderate curvature, implying that line tension is not necessarily a small 
quantity that might be safely omitted.

 3. The classical theory introduces contact angles as a form of boundary condi-
tion that is separate from the thermodynamic formalism. This fact may well 
have enhanced general doubts with respect to the status and significance 
of contact angles. In contrast, the generalized theory introduces contact 
angles as thermodynamic quantities that are just as fundamental as, say, 
curvatures or interfacial area.

 4. Positioning and shifting of dividing surfaces is a matter of practical and theo-
retical importance; however, the question of the legitimacy of such shifts has 
often been disregarded. As no a priori choice of a dividing surface (e.g., to 
coincide, as in Gibbs classical theory, with the position of the surface of ten-
sion) is necessary in the generalized theory we may expect greater flexibility 
from this theory than from the classical one with regards to this choice.

It is the purpose of the subsequent sections in this chapter to explore the differ-
ences between the two theories and to corroborate further the generalized theory of 
capillarity.

1.2.2 the Free enerGy rePresentatIon

A thermodynamic investigation into the equilibrium of any system begins with 
the selection of a suitable thermodynamic potential (i.e., a fundamental equation) 
and the appropriate equilibrium principle or condition. The fundamental equation 
describes the thermodynamic states in all parts of the fluid system, while the mini-
mum principle determines only the equilibrium states possible from the multitude 
of thermodynamic states permitted by the fundamental equation. Various forms or 
representations of the minimum principle and the fundamental equation are pos-
sible. Conversion between the various expressions of the fundamental equation (i.e., 
the thermodynamic potentials) is performed by means of a mathematical technique 
known as a Legendre transformation [6,11,14,17,19]. Using this technique, param-
eters defining the fundamental equation may be replaced by their corresponding 
intensive quantities. Therefore, in essence, it becomes possible to reformulate the 
thermodynamic formalism so that parameters like the entropy, volume, or interfacial 
areas that are not easily manipulated experimentally, may be replaced by quantities 
like the temperature, pressure, and surface tension that are much easier to control. 
Below, we shall consider some of the alternative, Legendre transformed versions of 
the fundamental equations for capillary systems.

As noted by Callen [6], the energy formulation (i.e., internal energy plus gravita-
tional) is not really suited for capillary systems because the representation does not 
take advantage of the thermal equilibrium present in the system; that is, temperature 
is constant throughout and known. The next thermodynamic potential one frequently 
finds considered is the Helmholtz function. In this representation the entropy as an 
independent variable is replaced by the temperature that is kept constant throughout 
the system. The Helmholtz function is “admirably” [78] suited to assure thermal equi-
librium since the search for configurations that are at complete equilibrium is reduced 
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to configurations that already are at thermal equilibrium. However, the equilibrium 
principle for the Helmholtz function still requires fixed component masses inside a 
fixed system volume that eliminates the possibility of considering open systems. If the 
Helmholtz function is used, then the desired constant pressure within each phase and 
the composition of the phase can only be obtained indirectly. The next thermodynamic 
potential, the Gibbs function, is rejected immediately for capillary systems because it 
requires that each pressure be controlled by a pressure reservoir [79]. This is impos-
sible for a small bubble or drop phase surrounded by another larger fluid phase since it 
is obvious that the smaller phase does not have a pressure reservoir. At this point, the 
well-known thermodynamic potentials have been exhausted. Thus, to no surprise, it is 
the Helmholtz function that is usually selected when treating capillary systems.

Conceptually, the relevant Legendre transformations have not really been 
exhausted, because neither the Helmholtz nor the Gibbs potential considers the pos-
sibility of changes in mass or mole numbers, and hence the possibility of chemical 
equilibrium with one or more components, expressed by the equality of chemical 
potentials. Thus, the thermodynamic potential in which the independent variables 
“entropy” and “masses” of the individual chemical constituents are replaced, respec-
tively, by the temperature and the chemical potentials is a suitable fundamental 
equation for investigating capillary systems. This thermodynamic potential, often 
called the grand canonical potential and denoted by the symbol Ω, does not seem 
to have been used much in the field of thermodynamics (e.g., Gibbs refers to it once 
without a name), although it is well known in statistical mechanics [80]. When it 
comes to capillary systems there are many instances of either the Helmholtz or the 
Gibbs functions being used in applications where the free energy or grand canonical 
potential would have been far more suitable and appropriate.

As a consequence, since the conditions of thermal and chemical equilibrium are 
the same throughout the system this presents the possibility of using the conditions 
of thermal and chemical equilibrium beforehand to reduce the minimum (internal 
energy) problem described above in Equation 1.52 to that formulated in Equation 1.71. 
Evidently, in the reduced minimum problem, the state of complete equilibrium is sought 
only among those thermodynamic states that already are in thermal and chemical equi-
librium. Thus, using the equilibrium conditions that exist between the temperature and 
the chemical potentials throughout the system (i.e., Equations 1.56 and 1.57) we may 
write the grand canonical potential density for the bulk phase (cf. Equation 1.72) as

 ω µ ρ( ) ( ) ( ) ( ) ,v v v
j j

v

j

u Ts= − −∑  (1.83)

where all the quantities are to be evaluated at the equilibrium temperature T = T  
and chemical potentials µ µ φj j= −  for the chemical components labeled j = 1, 2, 
… , r. In essence, Equation 1.83 defines a Legendre transformation from the specific 
volume internal energy u(v) to the specific grand canonical potential

 ω ω µ µ µ( ) ( ) ( , , , , ),v v
rT= 1 2 …  (1.84)
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which is the specific free energy representation of the fundamental equation for bulk 
phases that are known to be in thermal and chemical equilibrium. Expression 1.84 
simultaneously replaces the entropy density by the temperature and the mass densi-
ties by the chemical potentials as the independent parameters in the fundamental 
equation. The differential form of the fundamental equation is obtained by taking a 
total differential of Equation 1.83 and using Equation 1.11 for du(v) to obtain

 d s dT dv v
j
v

j

j

ω ρ µ( ) ( ) ( ) .= − −∑  (1.85)

A comparison with the Euler relation given by Equations 1.10 and 1.83 yields the 
simple connection that

 ω(v) = – P, (1.86)

which shows that the negative of the pressure in a bulk phase is the expression for the 
specific free energy. Alternatively, the quantity ω(v) dV = – PdV can be interpreted as 
representing the work done on the bulk system when there is an associated volume 
change dV. The contribution of the bulk phases to the total free energy, Ω t, is then 
written as

 Ω( ) ( ) ( , , , , ) .V v
r

V

T dV= − − −∫∫∫ω µ φ µ φ µ φ1 2 …  (1.87)

Despite its appearance, this expression is considerably reduced, in the sense that 
the independent functions of ω(v) that remain in the integrand of Equation 1.87 are 
known, so that ω(v) becomes a known function of position through the given external 
potential φ( )


r . However, to evaluate Ω(v) one still needs to know the exact functional 

relation for the fundamental equation, ω( ) ( )v r


.
The reduction of the dividing surface part of ΩΣ can be carried out in complete 

analogy with that of the bulk phase. The conditions of thermal and chemical equi-
librium permit one to use Equation 1.24 to write (cf. Equation 1.73) the specific free 
energy as

 ω µ ρ( ) ( ) ( ) ( ) ,a a a
j j

a

j

u Ts= − −∑  (1.88)

which introduces the free energy representation of the fundamental equation for 
surfaces as

 ω ω µ µ µ( ) ( ) , , , , , , .a a
rT J K= [ ]1 2 …  (1.89)
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The differential form of Equation 1.89 is given by

 d s dT d C dJ C dKa a
j
a

j

j

J Kω ρ µ( ) ( ) ( )= − − + +∑  (1.90)

and, from Equations 1.88 and 1.27, the surface version of the Euler relation is given 
by [81,82]

 ω γ( ) ,a
J KC J C K= + +  (1.91)

which defines the specific free energy of a dividing surface. Thus, only in the restric-
tive case of a flat interface, where both curvatures J and K are identically equal to 
zero, will the surface free energy ω(a) be equal to the surface tension γ. The contribu-
tion of the dividing surfaces to the total free energy function ΩΣ becomes

 Ω( ) ( ) , , , , , , ,A a
r

A

T J K dA= − − −[ ]∫∫ω µ φ µ φ µ φ1 2 …  (1.92)

where the integrand becomes a known function of the potential φ( )

r  and the surface 

curvatures J and K on each dividing surface in the system. Once again, the func-
tional expression for ω( ) ( )a r


 remains unknown.

Reduction of the total free energy ΩΣ into its separate geometric contributions, 
when the system also contains linear and point phases, follows directly and in an 
analogous manner to that of the bulk and surface phases discussed above. After a 
suitable reduction, the total free energy ΩΣ remains a thermodynamic potential with 
the same extremum properties (yielding the same solution) as any other suitable ther-
modynamic potential. Mathematically, the difference between the total energy and 
the total free energy extremum formulations is that the constraints in the first defini-
tion (total entropy and masses remaining constant) are replaced by the subsidiary 
conditions T = T  (a constant) and µj + φ =  µ j  (a constant) in the second definition, 
such that both problems yield the same solution. The transformations between such 
conjugate extremum problems are known as involutory transformations [83]. Finally, 
the advantage of employing the free energy ΩΣ is that there is a direct connection 
between the variation δΩΣ and the virtual work, as demonstrated later.

1.2.3 a sImPle derIVatIon oF the GeneralIzed laPlace equatIon

In this section we shall apply the free energy methodology, which decouples the 
thermal and chemical equilibrium conditions from the mechanical equilibrium con-
ditions, to a particular class of two phase capillary system with the explicit purpose 
of arriving at the mechanical equilibrium condition for a dividing surface (i.e., the 
Laplace equation of capillarity) in a more direct manner. Only spherical and cylindri-
cal interfacial geometries will be considered for illustration; however, the approach 
is completely general and applies to any geometry.
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Physically, the particular class of two-phase capillary systems we shall consider 
is one in which one phase contains a small bubble or droplet of the second phase, 
either attached to a phase boundary or free. The effect of gravity is neglected in 
the latter case. The larger phase is kept at constant temperature, pressure, and 
composition either directly through contacts with appropriate reservoirs, or indi-
rectly by using a rigid adiabatic enclosure that is sufficiently large that the appear-
ance and growth of the second phase will not affect the first phase appreciably. 
This general prescription covers a rather large class of capillary systems, such as 
homogeneous and heterogeneous nucleation systems, capillary condensation sys-
tems, and some of the model systems for investigation of contact angle hysteresis, 
and so forth.

Regardless of the system considered, the free energy Ω∑ can be written as

 Ω ∆∑ = −∫∫ ∫∫∫ω( ) ,a

A V

dA PdV  (1.93)

where geometries A and V represent the bubble area and volume, ω(a) is given by 
Equation 1.91, and ΔP is the pressure difference across the interface. If gravity is 
neglected, then all intensive parameters, including the pressure, remain constant in 
the system and Equation 1.93 simplifies to [81]

 Ω ∆∑ = + + −γA C C PVJ KJ K .  (1.94)

A completely identical approach was used above when we restricted our attention 
to mechanical equilibrium conditions (i.e., Equations 1.59, 1.60, and 1.62) where all 
curvature and contact angle potentials, along with the surface tension, remained con-
stant. Now, according to the free energy minimum principle, the equilibrium radius 
of either a spherical or cylindrical (as constrained between parallel plates) bubble is 
determined by the condition

 
d

dR T j

Ω∑

{ }







=
,

,
µ

0  (1.95)

where the temperature and chemical potentials are held constant. Differentiating 
Equation 1.94, according to the constraints above, yields
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= + + −
, µ

γ J K
RR

= 0  (1.96)

after employing the surface Gibbs–Duhem relations

 d JdC KdC dT dJ K jγ µ+ + = = =0 0.  (1.97)



28 John Gaydos, et al.

Case 1: The Cylindrical Bubble

The relevant geometric parameters for a section of cylindrical bubble, constrained 
between parallel plates, with radius R and length L are

 

V R L

A RL

JA L

=

=

= =

π

π

π

2

2

2

( )

( )

(

Volume

Surface area

J TTotal Mean curvature
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)

(K = =KA 0 curvature)

Therefore, Equation 1.96 becomes

 
d

dR
L PRL

T j

Ω ∆∑

{ }







= − =
,

,
µ

πγ π2 2 0  (1.98)

which means that the surface mechanical equilibrium radius of a cylindrical bubble 
has to satisfy the simple well-known equation

 γ 1
R

P






= ∆ .  (1.99)

Case 2: Spherical Bubble

The relevant geometric parameters for a spherical bubble of radius R are
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Therefore, Equation 1.96 becomes

 
d

dR
R C PR

T
J

j

Ω ∆∑

{ }







= + − =
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µ

πγ π π8 8 4 02  (1.100)

which means that the surface mechanical equilibrium radius of a spherical bubble 
has to satisfy

 γ 2 2
2R

C
R

PJ






+ 





= ∆ .  (1.101)
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Obviously, both Equations 1.99 and 1.101 are just specialized forms of the general-
ized Laplace equation of capillarity given by Equation 1.59.

1.2.4 a dIrect derIVatIon oF the GeneralIzed laPlace equatIon

Consider a simple, two-phase capillary system with constant surface tension and 
curvature potentials (i.e., mechanical potentials) along the entire interface. That is, 
we restrict our consideration to an interfacial system that is homogeneous over the 
dividing surface. The free energy minimum principle states that, for a system in 
equilibrium, the variation of the total free energy dΩ∑ vanishes (i.e., dΩ∑ = 0). This 
total free energy Ω∑ consists of two free energy terms for the two bulk phases and 
one free energy term for the interface between the bulk phases; that is,

 Ω Ω Ω Ω∑ = + +( ) ( ) ( ) ,V V A1 2  (1.102)

with the total volume of the system maintained constant; that is,

 V V VV V
∑ = +( ) ( )1 2 (A constant value).  (1.103)

If the free energy, using Equations 1.83 to 1.87, for each homogeneous, bulk phase 
is written as

 Ω( ) ( ) ( ) ( ) ,V V V
j j

V

j

U TS M PV= − − = −∑µ  (1.104)

and the corresponding expression for the surface phase, using Equations 1.88 and 
1.91, is used to obtain

 Ω( ) ( ) ( ) ( ) ,A A A
j j

A

j

J KU TS M A C C= − − = + +∑µ γ J K  (1.105)

one may obtain the complete variation, in extensive notation, from Equations 1.102 
through 1.105 as

 d A C C P V
T u J K

j
Ω ∆∑ { }( ) = + − =

,
.γδ δ δ δJ K+ 0  (1.106)

We simplify all terms above by considering a small variation, δz, produced in a 
direction that is normal to the dividing surface defined by the explicit function z = (x, 
y) [83]. As illustrated in Figure 1.3, a small rectangular portion of dividing surface, 
with side-lengths x and y and area A = xy, is considered for variation. The corre-
sponding variations of all other variables can be obtained readily. First, the variation 
of the bulk phase volume can be written as

 δ δV A z= .  (1.107)
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At constant temperature and constant chemical potentials, the variation of the total 
free energy of the combined bulk phases is obtained from Equation 1.104 as

 d P V P V P A z P A z P P A zVΩ( ) = − − = − + = − −( )1 1 2 2 1 2 1 2δ δ δ δ δ ..  (1.108)

The corresponding variation of the dividing surface area, δA, caused by the normal 
displacement δz can be written as

 δ δ δ δ δA x x y y xy x y y x= + + − ≈ +( )( ) .  (1.109)

In order to find these length variations δx and δy, the following equality can be 
obtained using the geometric similarity between triangles ΔOBD and ΔOB′D′ as 
shown in Figure 1.3

 
x x

x
R z

R
+ = +δ δ1

1

,  (1.110)

where R1 is the radius of the curvature c1 of the area along side x; that is, side BD. As 
a consequence, Equation 1.110 can be simplified to

 δ δ δx
x
R

z xc z= =
1

1 .  (1.111)
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fiGure 1.3 The variation of the surface area due to the variation δz.
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Similarly, δy can be expressed as

 δ δy yc z= 2 ,  (1.112)

where c2 is the curvature of the area along side y. Substituting these two results, 
Equations 1.111 and 1.112, into Equation 1.109 results in

 δ δ δ δ δA xyc z yxc z c c xy z JA z= + = + =2 1 1 2( ) ,  (1.113)

which represents the change in area of the planar patch in terms of the mean curva-
ture, the original area and the normal displacement.

The next term in Equation 1.106 that we consider involves the variation of the 
total mean curvature

 δJ = δ(JA) = AδJ + JδA, (1.114)

where δJ can be evaluated as

δ δ δJ c c
R R R R

= +( ) = +





= − +








1 2

1 2
2 2

1 1 1 1

1 2

δδ δ δz c c z K J z= +( ) = −( )1
2

2
2 22 .

(1.115)

Substitution of Equations 1.113 and 1.115 into Equation 1.114 results in

 δ δJ = 2KA z.  (1.116)

Similarly, the third term in Equation 1.106, involving the variation of the total 
Gaussian curvature δK can be obtained as

 δ δ δ δ δK = + = − + =A K K A KJA z KJA z 0.  (1.117)

After using Equations 1.113, 1.116, and 1.117 in Equation 1.106, the variation of the 
three free energy of the surface terms can be expressed as

 δ γδ δ δ γ δ δΩ( ) .A
J K JA C C JA z C KA z= + + = +J K 2  (1.118)

Finally, substitution of Equations 1.108 and 1.118 into Equation 1.106 yields an 
expression that is, subject to the constraints of this derivation, the Laplace equation 
of capillarity as written in Equation 1.59. Once again, by assuming as done here that 
the surface tension and the curvature potentials are constant a priori, one simpli-
fies the mathematical complexity. Furthermore, these examples illustrate in a simple 
fashion and by using a number of common geometries that the free energy represen-
tation appropriate for a nonmoderately curved capillary system produces a modified 
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form of the Laplace equation; that is, Equation 1.59. This version of the Laplace 
equation that acts as the mechanical equilibrium relation across the nonmoderately 
curved surface includes the bending moment CJ and the Gaussian curvature K in an 
additional term. Only if the product of these two quantities is small with respect to 
the surface tension term will this modified Laplace equation simplify to the well-
known classical version.

1.2.5 hydrostatIc aPProach to caPIllarIty

The fundamental equation for surfaces, Equation 1.24, satisfies completely all known 
thermodynamic requirements: The independent properties are all densities of extensive 
quantities and the curvatures are differential invariants. However, it is still a postulated 
equation and, as such, it remains in need of confirmation and physical interpretation. 
Furthermore, in retaining the second curvature term, we have ignored the question of 
whether this term is or is not negligible for all practical purposes [85,86].

It is at this point that the hydrostatic approach to capillarity makes its contribution 
[87]. Buff and Saltsburg [37-42] have shown that this nonthermodynamic approach 
to capillarity, based on the introduction of an interfacial stress tensor field, is capable 
of an independent confirmation of some of the results of the generalized thermody-
namic theory.

In Buff’s hydrostatic theory, the excess hydrostatic equation is integrated across 
the interface. This procedure leads to the Laplace equation as one of the equilibrium 
conditions. However, our motivation is not merely to re-derive an equilibrium con-
dition, but to corroborate the form of the proper fundamental equation for curved 
interfaces. The necessary connection between the hydrostatic approach and ther-
modynamics can be obtained by extending the concept of virtual work. Since, in 
a hydrostatic analysis, thermal and chemical equilibrium are tacitly assumed, the 
principle of virtual work will be equivalent to the minimum principle for the free 
energy (i.e., the grand canonical potential), as developed above.

If one has a single-component, two-phase capillary system with a plane parallel 
interfacial zone, then all physical properties like the density ρ, the normal stress 
σN, and tangential stress σT (see Figure 1.4) will vary along a direction λ that is ori-
ented in some fashion across the interfacial zone. In the presence of a gravitational 
field, these properties will change slightly with position; however, this effect will 
not be explicitly considered or illustrated here. The orientation of λ is arbitrary until 
one attempts to model the interfacial zone as a two-dimensional (dividing) surface; 
then the unit normal to the surface provides the orientation. Extrapolated and excess 
quantities with respect to the surface are defined in terms of both the position of the 
dividing surface and the orientation of the surface. Surface excess quantities like u(a), 
s(a), ρ j

a( ), or σ(a) are assigned to a particular point on the surface and are obtained by 
integration through the interfacial zone in the direction of the surface’s unit normal
n̂. For example, when the dividing surface is positioned at λ = 0 (see Figure 1.5) the 
excess tangential stress σTE is defined by

 σ σ σTE T T= − ( ) ,Extrapolated
 (1.119)
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so that

 σ σ λTE T EP= + <− for 0,  (1.120)

and

 σ σ λTE T EP= + >+ for 0,  (1.121)

where Equation 1.119 is analogous in form to Equation 1.18 and the subscript E± on 
the pressure denotes an extrapolated quantity. In general, one could define an inter-
facial excess stress tensor, sE, as

 s s 1E EP= + ,  (1.122)

where s is the stress tensor, PE is the extrapolated pressure, and  denotes a unit 
tensor. The positive sign on the right-hand side denotes the fact that work done by 

ρ1 
(v)

ρ2 
(v)

σ, –P

σT

σT = σN = –P1
σT = σN = –P2σN

ρ(v) Density

0 λ

0 λ

fiGure 1.4 Schematic of the time-averaged variation of the density and the stress across 
a deformable liquid–vapor interface where λ is a coordinate directed normal to the interface, 
ρ(v) is the mass density, and σN and σT are the normal and tangential stresses, respectively.
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the stress on the surface is tensile, whereas the three-dimensional analog, –PdV, is 
compressive. As a consequence of Definition 1.119, the surface excess stress σ(a), or 
the surface tension γ is defined by [88]

 γ σ σ λ= = ∫( ) ,a
TEd  (1.123)

where the integration is across the interfacial zone and the magnitude of σ(a) cor-
responds to the shaded region of Figure 1.5. In general, if either the position or the 
orientation of the surface changes, then σ(a) will also change. For example, if divid-
ing surfaces are positioned at λ = λ1 and λ = λ2 as shown in Figure 1.6, then the σTE 
stress distributions will differ by the shaded area and the two surface excess stresses 
will be related by

 σ σ λ λ λ λ2 1 1
( ) ( ) , ,a a P= − −∆ ∆ ∆when = 2  (1.124)

and ΔP is the pressure difference across the interface. It is obvious from this relation 

that σ2
( )a  will never equal σ1

( )a  for arbitrary shifts Δλ unless ΔP = 0, and this pres-
sure condition is satisfied only for plane parallel surfaces whose radii of curvature 
are infinite. Similar considerations also apply to the excess densities and the corre-
sponding surface excess densities [89].

While external body forces as well as external surface forces may well be 
operative in general, we are concerned here only with virtual work arising from 
internal forces. This virtual work due to internal forces consists of two parts: that 

σT

σTE at λ = λ2

σTE at λ = λ1 λ2λ1

λ

–P2

–P1
0

fiGure 1.5 Schematic of the time-averaged variation of the stress across a deformable 
liquid–vapor interface, where λ is a coordinate directed normal to the interface, σT and σTE 
are the tangential and excess tangential stresses, and P1 and P2 are the pressures in the two 
adjacent bulk phases. The shaded portion corresponds to the magnitude of the surface ten-
sion, γ = σ(a), calculated from Equation 1.123 when the position of the dividing surface is 
selected as λ = 0. Alternative positions of the dividing surface are denoted by λ1 and λ2.
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due to the extrapolated bulk pressure, PE, and that due to the excess stress tensor 
sE; that is,

 δ δW dViE E

V

= − ∇( )∫∫∫s : ,r  (1.125)

where ∇δr  is the virtual strain tensor, V is the volume of the interfacial layer, and 
the colon between the symbols represents the double dot product of two tensors. The 
excess stress tensor, sE, is zero outside the interfacial region. The reason for consider-
ing the internal work δWiE is that it corresponds closely to the variation of the grand 
canonical potential as discussed above, which considers work done by interfacial 
tension and the two bending moments.

To make Equation 1.125 tractable, two approximations are needed. The first one 
requires a division of the excess stress tensor into tangential and normal components. 
The form of the corresponding excess stress tensor will be

 sE TE NE= +σ σ1 nn2 ˆ ˆ ,  (1.126)

where the first term on the right-hand side represents the two identical, isotropic, 
tangential stress components and the second term represents the normal stress 
component of the interface [87]. The second approximation or restriction limits 
the variation of the shape of the interface. The stress tensor field as expressed by 

σT

λ2

λ

∆λ

∆P

λ1

–P1

–P2

fiGure 1.6 Schematic of the time-averaged variation of the stress across a deformable 
liquid–vapor interface, where λ is a coordinate directed normal to the interface, σT and σTE 
are the tangential and excess tangential stresses, and P1 and P2 are the pressures in the two 
adjacent bulk phases. The shaded rectangle corresponds to the amount by which the surface 
tension γ = σ(a) changes if the dividing surface is shifted from a position at λ = λ1 to a position 
at λ = λ2.
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Equation 1.126 is exact only for a spherical interface, and in this case the normal 
and tangential excess stress components (i.e., σTE and σNE) will be some function 
of the interfacial thickness alone. Thus, even when the curvature of the surface is 
not uniform (constant) the implicit assumption invoked via this construction is that 
the constant density surfaces within the interface are taken as parallel and that the 
stress is transversely isotropic. To this end, consider a family of parallel surfaces 
inside the interfacial region. While the dividing surface can be deformed arbitrarily 
the surfaces must remain parallel and are not allowed to slip with respect to one 
another.

With these restrictions in place it may be shown mathematically [87] that the 
volume integral in Equation 1.125 may be replaced by an equivalent surface integral 
such that

 δ δW WiE i
A= ( ) ,  (1.127)

where

 δ δ δ δW X dA X d X di
A

A

( ) .= − − +( )∫∫ 0 1 2J K  (1.128)

The factors Xk in Equation 1.128 are given by the moment expressions

 X d kk
k

TE= =∫λ σ λ for 0 1 2, , ,  (1.129)

where λ is a coordinate directed normal to the interface. The limits of integration 
over λ are implied by the vanishing of sE outside the interfacial region.

The free energy representation provides a convenient link between the thermo-
dynamic and the hydrostatic approaches to capillarity. Consider a single bulk phase 
inside a fixed volume, where both the volume and the external system boundary are 
fixed. In this case, the free energy equilibrium principle simply requires that the first 
variation of Ω(V) vanishes. Thus, from Equations 1.85 and 1.87 and allowing for arbi-
trary variations of the position vector, r, inside the volume V, we have

 δ ρ φ δ δΩ( ) ( ) ( ) ,V v

V V

dV P dV= ∇ ⋅ − ∇ ⋅ =∫∫∫ ∫∫∫r r 0  (1.130)

where the first term is the virtual work done by the external field (gravity), and the 
second term

 δ δ δW P dV P dVi
V

V V

( ) ( )= ∇ ⋅ =∫∫∫ ∫∫∫r  (1.131)
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is the virtual work done by internal forces. After employing Gauss’s divergence theo-
rem for the virtual work of internal forces, Equation 1.130 reduces to the well-known 
equation of hydrostatics

 ∇ = − ∇P vρ φ( ) .  (1.132)

For the more complicated case of two bulk phases, separated by an interface, it can 
be shown that the first variation of the total free energy of the system is

 
δ δ δ ρ φ δ δ

ρ

Ω Ω Ω∑ = + = ∇ ⋅ −
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∫∫∫ ∫∫∫( ) ( ) ( )
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V A v

V V

dV P dVr

aa

A

J K

A

dA dA C d C d) ,∇ ⋅ − + +( ) =∫∫ ∫∫φ δ γδ δ δr J K 0

 (1.133)

where the volume integral extends over the volume of both bulk phases; the third 
term represents the (negative) virtual work of gravity on the interface and the 
last term is the work done by internal forces on the interface. Further mathemati-
cal treatment of the above equation yields the generalized Laplace equation for 
the interface, along with the surface analog of the hydrostatic condition given by 
Equation 1.132 [84].

From the above general thermodynamic theory of capillarity in the free energy 
formalism, and specifically by Equation 1.133, it was shown that the following 
expression holds for the free energy and hence for the virtual work of internal forces 
in a dividing surface

 δ γδ δ δW dA C d C di
A

J K

A

( ) ,= − + +( )∫∫ J K  (1.134)

where, as before, γ is the surface tension and CJ and CK are the first and the second 
bending moments, respectively. Equation 1.134 is matched term by term to Equation 
1.128 by setting

 γ = = =X C X C XJ K0 1 2, .and  (1.135)

Physically, this identification shows that the three thermodynamic quantities γ, CJ, 
and CK correspond to the first three moments of the tangential excess stress com-
ponent, σTE, about the dividing surface at λ = 0. Furthermore, the close correspon-
dence between Equations 1.128 and 1.134 indicates that the hydrostatic approach 
to capillarity is equivalent and consistent with the mechanical portion of the gen-
eral thermodynamic theory. Thus, the agreement between the two approaches sug-
gests that the form of the fundamental equation for surfaces, Equation 1.24, with 
extensive geometric curvatures given by the total mean curvature, J, and the total 
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Gaussian curvature, K, is the proper expression required to generalize the theory of 
capillarity.

1.2.6 hydrostatIc derIVatIon oF the GeneralIzed laPlace equatIon

Having confirmed the form of the fundamental equation in the generalized theory 
of capillarity, the next logical step is to confirm the generalized Laplace equation by 
using a hydrostatic approach. An interfacial system may be treated as a continuum 
mechanical system; in other words, spatial smoothing is carried out for the variables 
under consideration limited to situations where the surface mechanical potentials are 
constant along the dividing surface [84]. Following Equation 1.132, the basic equa-
tion of hydrostatics is written as

 ∇ ⋅ = ∇s ρ φ( ) ,v  (1.136)

where s has replaced –P in Equation 1.132, to account for the fact that the interfacial 
stress tensor is anisotropic. However, inside a bulk phase and away from the influ-
ence of the interface, the stress tensor is isotropic and the hydrostatic equation may 
be written as

 ∇ = − ∇P o
vρ φ( ) ,  (1.137)

where the symbol ρo
v( )  is used to denote the volume density of mass well inside the 

bulk.
Subtracting Equation 1.137 from Equation 1.136 and using the definition of the 

interfacial excess stress tensor, Equation 1.122, one obtains

 ∇ ⋅ = ∇sE E
vρ φ( ) ,  (1.138)

where ρE
v( ) is the excess density of mass assigned to the surface; that is, ρ ρ ρE

v v
o
v( ) ( ) ( ) .= −

In preparation for the following analysis, we outline mathematical identities for 
dividing surfaces that are parallel to one another. First, the volume element dV 
can be written in terms of the principal curvatures, c1 and c2, of the surface as 
[39–41,84]

 dV c c dAd= +( ) +( )1 11 2λ λ λ,  (1.139)

where λ denotes the distance along the normal to the surface placed at λ = 0 and dA 
denotes an area element of the dividing surface. As shown in Figure 1.7, the radius 
r1(λ) of the surface A′, with principal curvature c1(λ), at a point on this surface can 
be expressed as

 r1(λ) = r1 + λ, (1.140)
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where r1 is the radius of curvature of the surface A defined at the location λ = 0. 
Invoking the definition r1 = 1/c1 permits one to express Equation 1.140 as

 c
c

c1
1

11
( ) .λ

λ
=

+
 (1.141)

Similarly, the relationship between the other principal curvature c2(λ) of surface A′ 
and c2 can be written as

 c
c

c2
2

21
( ) .λ

λ
=

+
 (1.142)

Next, the divergence of the unit surface normal n̂  can be written as [84]

 ∇ ⋅ = + =2 1 2ˆ ( ) ( ) ( ),n c c Jλ λ λ  (1.143)

where J(λ) is the mean curvature of shifted surface A′.
It follows from Equation 1.138 that, using Equations 1.126 and 1.143, the normal 

component of the hydrostatic equilibrium condition (i.e., the condition correspond-
ing to the Laplace equation), is given by [84]

 

( ) ˆ ( ˆ ) ˆ :

ˆ ( )

∇ = ∇ − ∇

= ∇ ( ) − +

× × × ×

×

s s sE E E

NE c

n n n

nσ λ1 cc TE

E
v

2( )

ˆ( )

λ σ

ρ φ

( )
= ∇ × n

 (1.144)

λ

λ = 0

Á
A

n

fiGure 1.7 Coordinate system for parallel surfaces, where surface A′ is displaced from 
the surface A by a normal displacement λ, where λ is a coordinate directed normal to the 
surfaces considered.
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The dividing surface A splits the whole system into two subvolumes, V1 and V2, which 
are bounded by surfaces A and A1, and by surfaces A and A2, respectively. Surfaces 
A1 and A2 denote the outer boundaries of the system (see Figure 1.8). Integration of 
Equation 1.144 over the regions V1 and V2, with the use of the divergence theorem, 
leads to [84]

 σ σ λ λ σ ρ φNE NE TE E
vdA dA c c∫∫ ∫∫− = ( ) + ( )( ) + ∇1 1 2

( ) ˆ× nn{ }∫∫∫
V

dV

1

1,  (1.145)

and

 − + = ( ) + ( )( ) + ∇∫∫ ∫∫σ σ λ λ σ ρ φNE NE TE E
vdA dA c c2 1 2

( ) × ˆˆ ,n{ }∫∫∫
V

dV

2

2  (1.146)

where σTE is expressed by Equations 1.120 and 1.121, and σNE can be obtained simi-
larly. This interfacial excess stress σNE is zero inside the bulk and away from the 
influence of the interface so the integrations at the outer boundaries A1 and A2 in 
Equations 1.145 and 1.146 disappear. Summation of these two expressions results 
in the cancellation of the area integrals for σTE at the chosen dividing surface A. 
Substitution of Equations 1.120 and 1.121 into this summation, with the use of 
Equations 1.139, 1.141, and 1.142, leads to

 

( ) ( )

( )

P P c c d c c dTE TE

E
v

1 2 1 2 1 22− − +{ −

−

∫∫ ∫ ∫σ λ σ λ λ

ρ ∇∇ ⋅ + + } =∫ φ λ λ λˆ ( )( )n 1 1 01 2c c d dA

 (1.147)

The assumption of parallel dividing surfaces and constant densities along each divid-
ing surface insures that the area integration drops out. Hence, Equation 1.147 is sim-
plified to

 P P J C K J K dJ E
v

1 2
22 1− = + + ∇ ⋅ + +∫γ ρ φ λ λ λ( ) ˆ ( ) .n  (1.148)

V2 A2
A

Interfacial
zoneV1

Dividing
surface

A1

fiGure 1.8 Schematic of the dividing surface A splitting the interfacial system into two 
subvolumes, V1 and V2, which are bounded by surfaces A and A1, and by A and A2.
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where γ and CJ are defined in Equations 1.123, 1.129, and 1.135. When the external 
force is gravity

 ∇ =φ g ˆ ,k  (1.149)

where g is the gravitational constant and k̂  is a unit vector directed opposite to the 
gravity force. Substitution of Equation 1.149 into Equation 1.148 results in

 P P J C K gJ
a

1 2 2− = + + ⋅γ ρ( ) ˆ ˆ ,k n  (1.150)

where density ρ(a) is defined as

 ρ ρ λ λ λ( ) ( ) ,a
E
v c c d= +( ) +( )∫ 1 11 2  (1.151)

which is the surface density of mass in the surface phase. These results demonstrate 
that Equation 1.150 agrees with Equation 1.58 for the situation were the surface 
mechanical potentials are constant along the dividing surfaces; that is, the surface 
gradients of the curvature potentials are zero so both ∇2

2CJ  and K∇*
2 ⋅ (∇2CK) in 

Equation 1.58 vanish. Finally, if the effect of the surface mass density ρ(a) is negli-
gible, then Equation 1.150 will reduce to Equation 1.59.

1.2.7  InVarIance oF the Free enerGy aGaInst 
shIFts oF the dIVIdInG surFace

We have explained earlier that, in order to satisfy conservation requirements for the 
system, excess quantities defined in the Gibbsian model of capillarity, such as mass 
and energy, have to be attributed to the dividing surface. Obviously, shifting the 
dividing surface within the interfacial region will change the extensive properties of 
each of the homogeneous bulk phases. As a consequence, the corresponding surface 
excess quantities will normally also change. In certain circumstances, it is desirable 
to be able to shift the dividing surface. The motivation for shifting dividing surfaces 
often stems from the realization that various mathematical simplifications can be 
obtained by placing the dividing surface in such a position that certain excess prop-
erties vanish. A well-known example is the Gibbs adsorption equation, which relates 
the excess surface density per unit area of a solute to the isothermal derivative of the 
interfacial tension with respect to the activity of the solute [90]. In deriving the Gibbs 
adsorption equation, the dividing surface is positioned such that the excess surface 
density of the solvent is zero.

In the classical theory of capillarity as developed by Gibbs, shifting of the divid-
ing surface is not possible, in general. This limitation arises because Gibbs dealt only 
with systems of moderate curvature and because he specifically chose the position 
of the dividing surface at the so-called surface of tension position [91]. It stands to 
reason that one cannot simply change one of the assumptions on which the theory 
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rests without affecting the theory. Gibbs was very much aware of the constraints that 
he imposed on the formalism. Thus, when he considered, for instance, the surface 
tension γ, he was very careful to distinguish between its value at the surface of ten-
sion and its value at any other dividing surface location. As a tension, Gibbs noted, 
its position is at the surface that is called the surface of tension and nowhere else 
[92]. Clearly Gibbs had no intention of generalizing his analysis beyond systems 
with moderate curvatures [74]. However, other researchers investigating the shifting 
of dividing surfaces have apparently disregarded the limitations of Gibbs’s classi-
cal theory [61,76,93,94]. It is the purpose of this section first to show that dividing 
surfaces cannot be shifted within the classical theory and then that such shifts are 
possible within the framework of the generalized theory of capillarity. The strategy 
used to demonstrate this is to calculate the free energy for two arbitrary positions 
of the dividing surface and then to impose the condition of invariance of the total 
free energy of the system against shifts of the dividing surface for both theoretical 
frameworks.

In the absence of gravity, a system consisting of a bulk fluid phase and an inter-
face has a free energy given by Equation 1.94. In the classical theory of capillarity 
there is no explicit dependence of the free energy on curvature, thus the second and 
third terms in Equation 1.94 are not present in the Gibbsian formalism. Next, we 
consider a specific geometry (e.g., a spherical capillary system), and we let the total 
free energy of this capillary system with respect to one position of a dividing surface, 
say at r = R, be denoted by ΩΣ and we let ΩΣ

*  be the value of the total free energy 
with respect to another varied position, say at r = R*. The free energy of the system 
will only be conserved, without physically changing the size of the composite sys-
tem, if the position of the dividing surface is changed such that the total free energy 
is invariant, or

 Ω ΩΣ ΣT r R T r Rj j, , * , , * .µ µ=( ) = =( )  (1.152)

For a classical or Gibbsian description of this spherical capillary system, the formal-
ism requires that

 γ γA V P A V P− = −∆ ∆* * * ,  (1.153)

where A, V and γ are, respectively, the area, the volume, and the surface tension of a 
spherical drop whose surface radius occurs at r = R, and A*, V* and γ* are, respec-
tively, the area, the volume, and the surface tension of the drop in the same system 
but with a radius r = R*. It should be noted that ΔP, the pressure difference across the 
interface, is the only property contained in the free energy expression that does not, 
and must not, change when the dividing surface is shifted. The equilibrium condition 
for the system is the Laplace equation

 γ 2
R

P r R






= =∆ for position  (1.154)
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and, after shifting the dividing surface

 γ *
*

*.
2

R
P r R







= =∆ for position  (1.155)

Combining these three relations, substituting the proper expressions for the areas 
and volumes, and solving the system of equations for R* and γ* in terms of R and γ 
shows that the only solution is R = R* and γ = γ*; that is, shifting the dividing surface 
is not possible.

On the other hand, shifting of the dividing surface in the generalized formalism 
is possible. This can be shown as follows: From Equation 1.94 we see that, in order 
to calculate the difference in the free energy ΩΣ for the two dividing surfaces, it is 
necessary to be able to calculate the changes in the surface quantities γ, CJ, and CK 
upon changing the position of the dividing surface. This becomes feasible through 
the use of Equations 1.128 through 1.131. It can be shown that, when shifting the 
dividing surface from one location, say position “1,” to another location, say position 
“2,” the values of the quantities γ, CJ, and CK at the second position can be expressed 
as functions of the equivalent properties at the original position by [95]

 γ γ λ( ) ( ) ,2 1= − ∆ ∆P  (1.156)

 C C PJ J
( ) ( ) ( ) ( ) ,2 1 1 21

2
= + −γ λ λ∆ ∆ ∆  (1.157)

and

 C C C PK K J
( ) ( ) ( ) ( ) ( ) ( ) ,2 1 1 1 2 32

1
3

= + + −∆ ∆ ∆ ∆λ γ λ λ  (1.158)

where ΔP is the pressure difference across the interface and Δλ = λ2 – λ1 is the dis-
placement of (i.e., distance between) the dividing surfaces. It is seen that a parallel 
shift of a dividing surface causes changes γ, CJ, and CK that depend on their original 
values, on ΔP and on the amount of the shift, Δλ. The dependencies on the stress ten-
sor component σTE in Equation 1.129 cancel out. From Equation 1.94 and Equations 
1.156 through 1.158 the difference in the overall free energy of the system for the two 
positions of the dividing surface becomes

 

Ω Ω ∆ ∆∑ ∑− = − + +{( ) ( ) ( ) ( ) ( ) ( ) ( )( )2 1 1 2 1 2 2 2γ λ λA A J K }}

+ − +{ } + −{C CJ K
( ) ( ) ( ) ( ) ( ) ( ) ( )1 2 1 2 1 2 12J J K K∆λ K }}

+ − − − +∆ ∆ ∆ ∆P V V A( ) ( ) ( ) ( ) (( ) ( )1 2 2 2 2 31
2

1
3

λ λ λJ K 22) .{ }
 (1.159)
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At this point, further progress can be made by considering specific capillary geom-
etries. The cases of cylindrical and spherical geometries are most easily dealt with.

Case 1: The Cylindrical Bubble

The relevant geometric parameters for a cylindrical bubble of radius R and length L 
are V = πR2L (volume), A = 2πRL (surface area), J = JA = 2πL (first total curvature) 
and K = KA = 0 (second total curvature). Using all these relations with the appro-
priate subscripts in Equation 1.159 along with Δλ = λ2 – λ1 = –R2–(–R1) = R1–R2, it 
turns out that Ω(2) – Ω(1) = 0. Thus, the free energy for a cylindrical bubble is inde-
pendent of the position of the dividing surface. It should be noted that in this case 
the second bending moment CK is immaterial since it is multiplied by K = 0, but the 
first bending moment CJ is indispensable in making the free energy of the system 
independent of the position of the dividing surface.

Case 2: The Spherical Bubble

The relevant geometric parameters for a spherical bubble of radius R are the bub-
ble’s V = 4/3πR3 (volume), A = 4πR2 (area), J = JA = 8πR (first total curvature), and 
K = KA = 4π (second total curvature). Again, Equation 1.159 becomes Ω(2) – Ω(1) = 0, 
which means that the free energy for a spherical bubble is independent of the posi-
tion of the dividing surface. However, in this case both curvature potentials, CJ and 
CK, of the generalized thermodynamic theory are necessary to achieve this result.

We conclude that shifting of the dividing surface is possible within the framework 
of the generalized theory of capillarity without violating the conservation require-
ment for the total free energy of the system.

1.2.8 summary and conclusIons

The generalized theory of capillarity outlined in the first section, while following 
Gibbs thinking very closely, is a more general theory than the classical theory. It has 
no limitations on curvature of the interface, and it considers the role of the contact 
line explicitly. The approach identifies contact angles as fundamental properties, 
just as, say, curvatures, surface area, surface entropy, or the contact line length. In 
spite of the considerable mathematical complexities, the theory is conceptually sim-
pler than the classical theory. There is no moderate curvature assumption or explicit 
choice of a dividing surface. The choice of a dividing surface position remains open. 
The approach implements the thermodynamic method, as described by Callen [6], 
for capillary systems.

The grand canonical potential is identified as the appropriate specific free energy 
for a capillary system. It is shown that the difference between the surface tension and 
the free energy of a surface is contained in the curvature terms. For a flat surface, the 
specific free energy and the surface tension become identical.

One of the main features of the generalized theory is the introduction of two 
extensive curvature terms into the fundamental equation for surfaces. While these 
curvature terms also satisfy the necessary requirements of invariance, the fundamen-
tal equation remains, just like the fundamental equation for any nonsimple system, a 
postulate, and hence is in need of corroboration. To this end, a hydrostatic approach 
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is presented through which an expression for the virtual work of the internal forces 
in the surface is developed. As the principle of virtual work is equivalent to the 
minimization of the free energy, a link with the thermodynamic theory is possible. 
It turns out that the first three moments of the virtual work expression correspond, in 
turn, to the surface tension and the two curvature potentials, reaffirming the correct-
ness of the postulated fundamental equation for surfaces.

The derivation of the mechanical equilibrium conditions is mathematically so 
complex that corroboration through simpler types of analyses is desirable. Thus, 
two derivations of the generalized Laplace equation, where constancy of surface 
tension and curvature potentials is assumed a priori for curved interfaces, are given: 
one based on hydrostatics and the other on thermodynamics. These two approaches 
are independent but both lead to the generalized Laplace equation, Equation 1.59. In 
addition, a simple derivation of the generalized Laplace equation is given for both 
cylindrical and spherical interfaces.

The generalized theory of capillarity introduces into both the Young equation 
and the Neumann triangle relation a line tension term; even when at low or moderate 
curvatures, the classical Laplace equation is still applicable.

Finally, it is a convenience, if not a necessity, to be able to shift dividing surfaces. 
It is shown that the classical theory of capillarity does not allow shifting of dividing 
surfaces without a violation of the conservation of free energy. In the generalized 
theory, on the other hand, a shifting of dividing surfaces is possible.
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2.1  the meChaniCs Of axisymmetriC 
inCOmpressible equilibrium systems

A generalized, thermodynamic approach to systems with nonignorable surface and 
line regions in Chapter 1 derived extended mechanical equilibrium relations for both 
the surface and the line boundary regions of uncharged capillary systems [1]. The 
conditions so obtained are generalizations of the Laplace equation of capillarity and 
the corresponding Young equation or Neumann triangle relation originally consid-
ered by Gibbs [2]. In the general formulation these relations, on the one hand, are 
quite complex because they include a detailed analysis of the higher-order curvature 
dependence of both the surface and the line boundaries. On the other hand, the rela-
tions are limited since they are restricted to one particular form of the free energy, 
namely the specific free energy expression ω γαβ αβ( ) ( ) ,= + +∞ C J C KJ K where γ αβ

∞
( )  

denotes the usual surface tension between the bulk phases (α) and (β) where these 
bulk phases can be solid, liquid, or vapor. The remaining two terms denote free 
energy contributions associated with the surface’s mean curvature J = c1 + c2 and 
its Gaussian curvature K = c1c2 where c1 and c2 are the principal normal curvatures 
of the surface [3]. The factors CJ and CK denote the associated bending moments, 
respectively. Furthermore, these very general mechanical equilibrium conditions are 
so general that they are not of immediate necessity in many experimental studies that 
deal with either spherically symmetric or axisymmetric systems.

In this chapter an investigation of common axisymmetric systems (see Figures 2.1 
and 2.4) that include contact lines illustrates the generalized theory and its use in 
many common experimental situations. Along with detailed calculations that show 
the manner by which the mechanical equilibrium conditions (i.e., the Laplace equa-
tion, Young equation, and Neumann triangle relation) are derived using calculus of 
variations, this section also provides a mathematical justification for the influence 
of surface-phase compressibility on the estimate of the line tension. In other words, 
the slope of a plot of cosθ1 (the cosine of the contact angle) versus 1/R (the reciprocal 
of the contact line radius) does not yield the line tension directly [4] if the surface 
phase can be noticeably compressed upon going from one size of drop to another size 
where θ1 denotes the usual contact angle and R is the radius of the drop’s solid-liquid 
surface. It is also demonstrated for liquid–fluid lens systems that, without line ten-
sion, the underlying surface (that is, the curve that we shall denote by the function 
ξ1(r) in Figure 2.4), has a cusp at the location where all surfaces intersect to form the 
contact line. As a direct consequence of this cusp occurrence, the underlying sur-
face may have a point of infinite curvature along the axisymmetric curve that forms 
the boundary between the lower liquid and the remainder of the surface system. 
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Consequently, one must, even for this relatively common situation, either abandon 
the “moderate curvature approximation” of Gibbs (see discussion in Chapter 1) or 
introduce a boundary or line tension to prevent this cusp occurrence for moderately 
curved systems. Thus, consideration of line tension effects would seem unavoidable.

This chapter contains a formulation of what we consider to be the proper funda-
mental equations for bulk, surface, and linear regions of an axisymmetric capillary 
system. For these systems, governed by these fundamental equations, the explicit 
equilibrium conditions and the nature of the internal forces are derived by exact 
mathematical means using calculus of variations and the principle of energy mini-
mization. This energy principle can be stated as follows: A possible state of an open 
system is a stable equilibrium state if and only if its total free energy is a local 
minimum on the set of all possible states of the system with the same thermal and 
chemical conditions.

We consider a typical axisymmetric solid surface bounding a liquid–fluid system 
to have a geometry as shown in Figure 2.1. In Figure 2.1, the boundary surfaces are 
illustrated by the curve ξ2(r), which is the axisymmetric curve that separates the lower 
solid phase from the liquid and fluid phases and the curve ξ1(r), which separates the 
liquid phase from the upper fluid phase. These curves are arbitrary functions that 
generate their axisymmetric surface by revolving their curve about the vertical axis 
of symmetry, denoted here as the z(r) axis. The contact line is included directly into 
the deliberations by endowing the boundary or contact line with a specific linear free 
energy ω(l) = ω(l) (T, µ) that is equal to a constant line tension σ σ µ∞ ∞=( ) ( ) ( , )l l T  in the 
first approximation. This notation is used to indicate that the linear free energy and 
the line tension are dependent on the thermal and chemical condition of the capil-
lary system. When operative, the line tension, as shown by the contact line boundary 
condition or Young equation, will influence the magnitude of the contact angle. One 
conclusion of importance is that for a liquid in an axisymmetric cylinder or capillary 
tube, even a very large line tension value will have no effect on the contact angle that 
the liquid forms with the solid surface of the cylinder.

z(r)

z = h

ϑl

rb rc r

z = ξ1(r)
z = ξ2(r)

fiGure 2.1 Schematic of an idealized solid–liquid–fluid capillary system with one deform-
able liquid–fluid interface and one contact line at radial position r = rb.
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2.1.1  the solId–lIquId–FluId system

In the arrangement illustrated in Figure 2.1, a liquid is shown to be in equilibrium with 
another fluid (this situation also includes the case where the other fluid is the liquid’s 
vapor) and it is in contact with a rigid solid wall [5]. The solid does not react chemi-
cally in any fashion with the liquid and the wetting liquid forms a unique contact angle 
on the wall. Whenever a liquid–fluid surface comes into contact with a solid phase 
there are a number of associated phenomena that contribute to the equilibrium shape 
of the interface. In this section, these phenomena are characterized in terms of the 
principle of virtual work, first proposed by Gauss [6], whereby all effects behave such 
that the energy of the total system from all contributions does not vary under arbitrary 
virtual displacements that are compatible with the system’s constraints. The system’s 
total energy will consist of contributions from the bulk, surface, and line regions of the 
composite system that are subject to a single constraint (as described below).

If a free surface separating two fluids (either both liquids or one liquid and one 
gas) is to exist and be in equilibrium, then the elements of a given fluid in the neigh-
borhood of the interface must be more attracted to fluid elements of their own kind 
than to fluid elements of the other fluid near the interface. If this were not the case, 
then the interfacial configuration would soon vanish as the two fluids would mix and 
destroy the interface. The difference in the strength of attraction between the two 
fluids in the vicinity of the interface causes a reduction in the density of the fluid at 
that location since each distinct fluid phase attempts to pull itself away from the zone 
of contact. The energy associated with this pulling away of mass from the interfacial 
region must be proportional to the interfacial area so that

 Ω = =( ) ( ) ( ) ( ) {( ),( )},αβ αβ αβω αβA lv lfwhere  (2.1)

where Ω(αβ) is the grand canonical potential of either a liquid–vapor (lv) or a liquid-
fluid (lf) interface, ω(αβ) is the specific (with respect to area) free energy, and A(αβ) 
denotes the boundary area separating the two bulk phases. In addition to the energy 
associated with this mobile interface, there is also an analogous surface energy cor-
responding to a liquid or fluid when it wets a solid, rigid boundary. In this case, 
the solid boundary or wall will not vanish (i.e., as in the case of liquids that mix 
to form solutions) if the net attraction of fluid elements in the neighborhood of the 
wall is toward the wall since the wall is rigid. What does occur is a translation of the 
liquid–fluid boundary parallel to the solid boundary. The energy corresponding to 
this effect can be written as

 Ω Ω( ) ( ) ( ) ( ) ( ) ( ) ,s s s s s sA Aα β α α β βω ω+ = +  (2.2)

whereas ω(sα) and ω(sβ) are specific free energies for the solid–liquid and the solid–
fluid surfaces, A(sα) is the solid wall area wetted by the liquid that must include the 
three-phase contact line formed by the intersection of solid–liquid–fluid phases, and 
A(sβ) is the solid wall area wetted by the other fluid.

For exactly the same reason that surface tension arises among two fluids that 
are more attracted to themselves than to each other, one realizes that an analogous 
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effect may occur in the three-phase intersection zone that characterizes the meeting 
of solid–liquid–fluid phases. This contact line force is known as the line tension. It 
is likely to be very small in comparison with the other energy contributions in most 
systems and only subtle changes to quantities like the contact angle or line curvature 
may be expected. The energy associated with the line tension contribution [4,7] is 
given by the product of the specific, linear free energy of the contact line region ω(sαβ) 
and the total length of the contact line L(sαβ), or

 Ω( ) ( ) ( ).s s sLαβ αβ αβω=  (2.3)

In most capillary systems, the dominant energy contribution to the system is from 
the intrinsic bulk free energy of each phase (i.e., ω(v) = −P(v), where P(v) is the pressure 
of the volume phase). Also present is a gravitational potential energy, denoted by φ 
per unit mass, which is a function of position within the system. The contribution of 
this external field to the energy is integrated over the entire volume of interest that 
includes both the liquid-fluid boundary and the three-phase contact line boundary.

Finally, if the amount of liquid present in the system is finite, then one must con-
sider either the mass or the volume to be a constraint placed upon the system. For an 
incompressible system, a common method of handling the restriction is to introduce 
a Lagrangian multiplier, say λ, which multiplies the liquid volume V(l) to form a new 
energy term.

2.1.2  the PrIncIPle oF VIrtual Work

According to the principle of virtual work, the total free energy, denoted herein 
by ΩΣ, must vanish for any arbitrary variation that does not violate the constraints 
placed upon the system. For an incompressible system, the volume constraint is the 
only constraint that is present. One finds—in complete agreement with intuition—
that one obtains a mechanical equilibrium condition across the liquid-fluid inter-
face and another condition along the three-phase contact line where all three phases 
intersect to form the contact line. No condition exists across the solid boundary 
since it is considered to be rigid and not subject to any variation. The next sections 
develop axisymmetric free energy expressions for bulk, surface, and line regions 
of the system that sum to give this total free energy. For simplicity, we consider a 
single-component, incompressible, three-phase system as shown in Figure 2.1 con-
sisting of a solid bowl enclosing the two-phase, single component.

2.1.3  Free enerGy exPressIons For the Bulk reGIons

The free energy of each bulk phase is written as an integral over the volume of the 
phase in question. For the lower liquid phase illustrated in Figure 2.1 the volume 
integral is given by

 Ω( ) ( ) ,l
r

lr dzdr
b

= ∫ ∫2
0 2

1

π ω
ξ

ξ

 (2.4)
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where ω(l) represents the specific free energy density of the liquid phase and the 
second integral implies that the volume considered is between the solid surface and 
the liquid–fluid surface. For an isotropic fluid phase, the specific free energy ω(l) is 
equal to the negative of the local pressure (i.e., ω(l) = − P(l)). For the upper fluid phase 
the corresponding term is

 Ω( ) ( ) ( )v
r

v

xi

h
v

h

r
r dzdr r dzdr

b

b

= +∫ ∫ ∫2 2
0 1 2

π ω π ω
ξ

rrc

∫ , (2.5)

where ω(v) represents the specific free energy density of the upper fluid phase and 
the second integral implies that the volume considered is between the liquid-fluid 
surface and the upper boundary of the system. If it is assumed that the intrinsic bulk 
free energy is completely independent of any contribution to the free energy from 
any external potential field, then it may be assumed that both ω(l) and ω(v) are inde-
pendent of the vertical z-coordinate. Thus, after a single integration, the total bulk 
expressions are given as

Ω Ω Ω( ) ( ) ( )

( ) ( ) (( ) (

V l v

v
r

l
c

h rdr

= +

= − + −∫2
0

2π ω ξ ω ω vv
r

l v
r

rdr rdr
b b

) ( ) ( )) ( ) .ξ ω ω ξ1
0

2
0

− −



∫ ∫

 (2.6)

2.1.4  external Body Forces

The presence of an external gravitational potential or force field also influences the 
total expression for the system’s free energy. This influence arises because the exter-
nal field changes the local value of the stress tensor and any change in the stress 
tensor will mean that there will be an alteration in both the pressure (in the bulk 
regions) and the surface tension (in the surface regions). In the derivation to follow, 
the gravitational field strength g is assumed to be uniform over the extent of the 
system and to be directed opposite to the axis of symmetry (i.e., the z-axis as shown 
in Figure 2.1).

The free energy associated with the gravitational potential acting on the bulk 
regions of the system is given by two expressions. For the lower liquid the appropri-
ate term is

 Ωg
l l

r

r gzdzdr
b

( ) ( ) ,= ∫∫2
2

1

0
π ρ

ξ

ξ

 (2.7)

where ρ(l) represents the density of the liquid phase and the second integral implies 
that the volume considered is between the solid surface and the liquid-fluid surface. 
For the upper fluid phase the corresponding term is

 Ωg
v v

hr
vr gzdzdr r gzdzdr

b
( ) ( ) ( )= +∫∫2 2

1 20
π ρ π ρ

ξ ξ

hh

r

r

b

c

∫∫ ,  (2.8)
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where ρ(v) represents the density of the upper fluid phase and the integrals imply that 
the volume considered is between the liquid-fluid surface and the upper boundary 
of the system. It is also possible to write free energy expressions for the influence of 
gravity on the density of both the surface phases and the linear phase that is associ-
ated with the contact line. Essentially, one needs only the geometric expressions 
for the surface area and the contact line length to be able to write the free energy 
expressions.

The free energy associated with the gravitational potential of the liquid–solid 
interface is given by

 Ωg
sl sl

A

sl
r

g dA g r
sl

b
( ) ( ) ( )

( )

( )= =∫∫ ∫ρ ξ π ρ ξ2 2
0

2 1++( )[ ( )] ,/ /ξ2
2 1 2

r rdr  (2.9)

where ρ(sl) is the surface density (defined per unit area) of the liquid-solid interface and 
ξ2

/ ( )r  denotes differentiation of the curve ξ2(r) with respect to the radius. The curve 
ξ2(r) is an arbitrary, axisymmetric function that describes the position of the liquid–
solid interface (as shown in Figure 2.1). Analogous expressions arise for the fluid–
liquid interface and the fluid–solid interface. They are given, respectively, by

 Ωg
lv lv lv

r

g dA g r r
b

( ) ( ) ( ) /( ) ( )= = +∫ρ ξ π ρ ξ ξ1 1
0

12 1 [[ ]( )∫∫ 2
1 2

A lv

rdr
( )

/

,  (2.10)

where ξ1(r) is the function for the position of the axisymmetric fluid-liquid interface 
and

 Ωg
sv sv sv

r

r

g dA g r r
b

c
( ) ( ) ( ) /( ) (= = +∫ρ ξ π ρ ξ ξ2 2 22 1 )) ,

( )

/

[ ]( )∫∫ 2
1 2

A sv

rdr  (2.11)

where ρ(lv) is the surface density of the fluid-liquid interface and ρ(sv) is the surface 
density of the fluid–solid interface. Finally, to complete the specification of the grav-
itational energy expressions for this system one can include a linear term to represent 
the free energy associated with the mass content of the three-phase contact line as

 Ωg
slv

b
slv

br g r( ) ( ) ( ),= 2 1π ρ ξ  (2.12)

where 2πrb is the total circumference or length of the contact line and ρ(slv) represents 
the linear density (per unit length) of the contact line. The contact line free energy 
may also be expressed as an integral expression by writing

 Ωg
slv slv

r

g dr
b

( ) ( ) .= ∫2 1
0

π ρ ξ  (2.13)
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Their total contribution to the final summed energy would, in most cases, be quite 
small and we shall not discuss their potential influence. However, in a casual sense 
it is possible to conclude that in situations where these effects are not ignorable one 
would find that the value of specific surface potential energy would depend upon the 
direction of the external gravitational field as a result of the dependence of Ωg

( )αβ  on 
the slope ξ j

/  of the surface denoted by superscript (αβ).

2.1.5  Free enerGy exPressIons For the surFace and lIne reGIons

The free energy or grand canonical potential for each interface region is expressed 
in the following manner. For the liquid–solid interface one has

 Ω( ) ( ) ( ) / ( )
( )

sl sl sl
r

A

dA r
b

sl

= = + [ ]( )∫ω π ω ξ2 1 2
2

0∫∫∫
1 2/

,rdr  (2.14)

where ω(sl) denotes the specific surface grand canonical potential or specific surface 
free energy (defined per unit area) of the liquid–solid interface and ξ2

/ ( )r  denotes 
 differentiation of the solid surface curve ξ2(r) with respect to the radius. For the fluid–
liquid interface and the fluid–solid interface the corresponding expressions are given by

 Ω( ) ( ) ( ) /

/

( )
(

lv lv lv
r

A

dA r
b

= = + [ ]( )∫ω π ω ξ2 1 1
2

0

1 2

llv

rdr
)

,∫∫  (2.15)

and

 Ω( ) ( ) ( ) /
/

( )sv sv sv

r

r

A

dA r
b

c

= = + [ ]( )∫ω π ω ξ2 1 2
2 1 2

(( )

.
sv

rdr∫∫  (2.16)

Finally, to complete the specification of the energy expressions for this system a linear 
term to represent the energy content of the three-phase contact line is included as

 Ω( ) ( ) ,slv
b

slvr= 2π ω  (2.17)

where 2πrb is the total circumference or length of the contact line and ω(slv) represents 
the specific free energy (per unit length) of the contact line. The contact line free 
energy may also be expressed as an integral expression by writing

 Ω( ) ( ) ,slv

b

slv
b

r

r
r dr

b

= ∫2

0

π ω  (2.18)

provided the specific linear free energy ω(slv) is a constant that is independent of the 
radius.
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For a system that is closed and isolated from the outside universe, both the heat 
content (entropy) and the mass of the system must remain constant. However, if 
both deformable phases are open and incompressible, then the mass constraint can 
be replaced by an equivalent volume constraint. The volume of each portion of the 
deformable system, sketched in Figure 2.1, is given by

 V rdrl
rb

( ) ,= −( )∫2 1 2
0

π ξ ξ  (2.19)

and

 V h rdr h rdrv
r

r

rb

b

c
( ) ,= −( ) + −( )∫ ∫2 21

0
2π ξ π ξ  (2.20)

where V(l) is the volume of the lower liquid phase and V(v) is the volume of the upper 
fluid phase forming the capillary system of interest. Obviously, if the volume of one 
phase in the system is incompressible, then both the total volume and the volume of the 
other phase in the two phase fluid-liquid system must be constant. Mathematically, this 
means that the volume constraint is considered to consist of requiring that either vol-
ume V(l) or V(v) remain constant and variations on the total energy ΩΣ to determine the 
mechanical equilibrium conditions are performed subject to this volume constraint.

2.1.6  the VarIatIonal ProBlem

The mechanical equilibrium conditions arise directly from the conditions that are 
necessary to insure that the total free energy integral is stationary. The total free 
energy integral, ignoring both surface and line gravitational energies, is given by the 
energy summation

 Ω Ω Ω Ω Ω Ω Ω ΩΣ = + + + + + + +( ) ( ) ( ) ( ) ( ) ( ) ( )l v
g
l

g
v sl sv lv ΩΩ( )slv  (2.21)

or, more explicitly, as
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where the density difference Δρ = ρ(l) − ρ(v) must be greater than zero for the system 
to be stable and where

 f r lv sl sv( ) ( ) /
/

( ) ( ) /= + [ ]( ) −( ) + [ ]ω ξ ω ω ξ1 11
2 1 2

2
22 1 2

1
2

1
1
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(2.23)

is a composite function that depends implicitly on the radius.



58 John Gaydos and A. Wilhelm Neumann

The calculus of variations problem for this situation is written in the form

 δ λ( ) ,( )ΩΣ + =V l 0  (2.24)

so that the volume constraint is included directly in the function that is subject to the 
variations. The solid is assumed to be rigid and undeformable so that no variation 
in the position of the curve z = ξ2(r) is possible; however, the boundary point r = rb 
is considered to slide along the solid and continuous variations in the position of 
the curve z = ξ1(r) are permissible. It is also assumed that the bulk, surface, and line 
phases or regions are perfectly homogeneous energetically, that the liquid and fluid 
phases are completely deformable, and that each phase is discrete so that mixing 
and adsorption effects are ignored. This free energy integral, with dependent vari-
able ξ1(r), gives rise to a calculus of variations problem with one free end point at 
r = rb. The Laplace equation of capillarity for the liquid-fluid interface arises from 
the Euler-Lagrange equation for the curve ξ1(r), subject to the subsidiary condition 
that the system is incompressible with constant volume. The contact line equilibrium 
condition, called the Young equation of capillarity, comes from the transversality 
condition that applies at the end point r = rb.

It is possible to collect three functions of the form

 f r z z f r jj j, , , , , ,/ /( ) = ( ) =ξ ξ where 1 2  (2.25)

which are given by the expressions
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and
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Using these definitions, the calculus of variations problem, defined by Equation 2.24, 
can be recast into the simple integral forms

 δ ξ ξ ξ ξf r rdr f r rdr f
r rb c
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The necessary conditions for three stationary integrals consist of three Euler-
Lagrange equations for each of the surfaces under consideration and two trans-
versality conditions for the behavior of the contact line [8–13]. The first integral, 
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which corresponds to the liquid-fluid surface term, yields the Euler-Lagrange 
equation
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The lower end point of the integration range, at r = 0, is fixed by the symmetry of the 
system to vary in such a fashion that only its elevation changes. Therefore, the radial 
position of the lower end point remains fixed and its elevation (i.e., position along the 
z-axis) satisfies the natural boundary condition
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which may be evaluated to show that the slope ξ1 0/ ( )r =  of the liquid-fluid surface is 
zero at the origin of the system. This conclusion is then used to determine the value 
of the arbitrary constant (i.e., the undetermined multiplier λ). The upper end point, at 
r = rb  j , is free to slide along the solid surface according to the transversality condition

 f r
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1 2 1
1
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The second integral has no free end points (since the incompressible liquid 
assumption means that the system’s total volume is fixed by the condition r = rc or 
z = h being constant; see Figure 2.1) so there are no transversality conditions for this 
term. The corresponding Euler-Lagrange equation is given by
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Finally, for the third integral in Equation 2.29 the Euler-Lagrange equation is
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and the only transversality condition at r = rb is given by

 f r
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3 2 2
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which shows explicitly that the last term vanishes. Physically, this result occurs 
because the solid surface was assumed to be rigid and unable to undergo shear.
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2.1.7  the mechanIcal equIlIBrIum condItIons

The mathematical manipulations required to solve Equations 2.30 through 2.35 are 
tedious but straightforward. The solutions for Equations 2.30 through 2.35 are given 
[14], respectively, by

 ∆ρ ξ λ ω ω ω ξ ξgr r rl v lv
1 1

2 3 2

1+ + −( ) − + [ ]( )−
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11 1
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 ξ1 0 0/ ( ) ,r = =  (2.37)

and
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for the first integral. In Expression 2.38, we used ξ1(r = rb) = ξ2(r = rb) to insure that 
the curve representing the liquid-fluid surface contacts or intersects the curve rep-
resenting the solid-liquid surface at radius rb that corresponds to the contact line. 
Equation 2.33 yields

 ρ ξ ω ξ ξ ξ ξ( ) ( ) /
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/ / /v svgr r2 2
2 3 2

2 2
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21+ + [ ]( ) + [ ] +
−

// ,( ) = 0  (2.39)

for the Euler-Lagrange equation of the second integral in Equation 2.29. For the third 
integral in Equation 2.29, one obtains Equation 2.34 that becomes
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and the transversality condition Equation 2.35 for the third integral gives
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Once again, the equality ξ1(r = rb) = ξ2(r = rb) was used in Relation 2.41 to insure 
contact between the two curves at the contact line.
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Rearranging Equation 2.36 gives the surface mechanical equilibrium condition 
for the liquid–fluid interface as
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or
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where R lv
1
( )  and R lv

2
( )  are the principal radii of curvature of the liquid–fluid interface 

[15–18].
The next step in the evaluation of Equation 2.43 is to determine an expres-

sion for the single Lagrange multiplier λ. At the r = 0 plane of symmetry, where 
z = ξ1(r = 0), the ξ1(r) curve has a local extremum so that its slope vanishes (i.e., 
ξ1 0/ = at r = 0). This location provides a convenient and necessary boundary in 
which to evaluate the multiplier λ. A careful observation of Equation 2.42 reveals 
that all quantities can be evaluated at this location, but that the first term inside 
the brackets is indeterminate since it yields a value of 0/0 at the point (0, ξ1(r = 0)). 
However, by applying l’Hôpital’s rule [19] to this term, one finds that a well-defined 
value is obtained at this point, which is given by
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Substituting this result into Equation 2.42 and evaluating all remaining terms at the 
symmetry point (0, ξ1(r = 0)) where the result in Equation 2.37 applies yields

 λ ξ ω ρ ξ ω ω= = − = − −2 0 01 1
/ / ( ) ( ) ( )( ) ( ) ( ).r g rlv l v∆  (2.45)

The second derivative of the function ξ1(r) may be replaced by its radius of curva-
ture, R(lv), evaluated in the plane of Figure 2.1. The general expression for the radius 
of curvature of a planar arc is given by [15–18]
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When Relation 2.46 is evaluated at the symmetry point, one obtains the result 
that
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01R
r

o
lv( )

/ / ( ),= =ξ  (2.47)

where the subscript o has been added to indicate the location at which the radius of 
curvature is evaluated (i.e., the origin). Replacing the function ξ1

/ /  by its radius of 
curvature at the origin yields an expression for the constant λ of
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where the pressure of the bulk phase, near to but not at the location of the interface, 
is derived from the specific grand canonical potentials ω(l) and ω(v). The final version 
of Equation 2.30 is obtained by replacing λ using the expression above so that
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This equation can also be expressed in terms of the bulk liquid and the bulk fluid 
phase pressures, which are measured on opposite sides of the liquid-fluid surface but 
in close proximity to the surface. The pressure just below the surface in the liquid 
phase will be denoted by P ro

l( ) ( )  to indicate that it is measured at a distance r from 
the axis of symmetry, that it is measured just below the surface in the liquid phase, 
and that it is a relative pressure with respect to the datum position r = 0 as indicated 
by the subscript O. In the upper fluid phase, the pressure is denoted by P ro

v( ) ( ) . Once 
again, the pressure is measured with respect to the datum at r = 0 and at a distance 
r from the axis of symmetry; however, in this case the measurement is made above 
the surface in the vapor phase. When these definitions of pressure are used, one 
obtains
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where the pressure jump across the liquid-vapor surface is defined as
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and it is greater than zero since the liquid pressure is greater than the fluid (vapor) 
pressure.
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Relation 2.50 represents the mechanical equilibrium condition for the liquid–fluid 
surface when the specific surface free energy ω(lv) is fixed but not necessarily a uni-
form constant at all points on the surface. It is very similar to the common form 
of Laplace’s equation of capillarity (compare this result to Equation 2.61 below); 
however, it is not identical because the traditional form of Laplace’s equation of 
capillarity assumes that the specific free energy is ω γ( ) ( )lv lv= ∞  (where the symbol 
γ ∞

( )lv  denotes the usual constant surface tension for a flat surface) at every point on 
the surface whereas Relation 2.50 requires only that the energy ω(lv) have a fixed (but 
potentially stratified) value on the surface.

The boundary condition of the liquid–fluid interface at the solid wall, which is 
known as the Young equation of capillarity, is derived from the end point relation 
that is given by Equation 2.38. The constant multiplier λ in Equation 2.38 can be 
eliminated from the final form of the boundary condition by using Equation 2.41 
since ξ1(r = rb) = ξ2(r = rb) in both of these relations. This equality insures that contact 
between liquid-fluid surface and the solid is maintained at the contact line regardless 
of the variation considered. Equation 2.38 can be written in the form
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where both ξj(r) surface functions are evaluated at the contact line radius r = rb. 
Using Equation 2.41, one has that
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Substituting the quantity to the right of λξ1 from Equation 2.53 into Equation 2.52 
eliminates λ and yields
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whereupon the two terms involving the density difference Δρ also cancel out. 
Factoring Equation 2.54 further yields
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Multiplying the terms inside the {…} brackets by 1 1
2+ [ ]/ξ  and simplifying yields
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which represents the Young equation of capillarity in terms of the ξj(r) surface 
functions.

Equation 2.56 can be expressed in the more commonly quoted form by introduc-
ing the angle relations

 ξ ϑ ξ ϑ1 1 2 2
/ /tan tan= =and  (2.57)

between the slope or tangent of the ξj(r) functions and the angles ϑj between the tan-
gent and the horizontal (see Figure 2.2). With these definitions replacing the slopes 
ξ j r/ ( )  in Equation 2.56, one has a further simplification to
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A quick perusal of Figure 2.2 shows that the contact angle ϑl, the difference between 
the slope of the liquid–fluid interface, and the slope of the solid wall as measured 
through the liquid, can be defined by the relation

 ϑ ϑ ϑl = −2 1.  (2.59)

Using this definition in Equation 2.58 enables one to obtain
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Vapor

Solid

ϑl

ϑ1

ϑ2

z = ξ1(r)

z = ξ2(r)

fiGure 2.2 Schematic of the contact line region of an idealized solid–liquid–fluid capil-
lary system showing the surface slope angles ϑj where j = 1, 2. The relation of slope to angle is 
provided by Equation 2.57 and the angle difference, ϑ2 – ϑ1, represents the contact angle ϑl.
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which is the Young equation of capillarity or the boundary condition for the liquid–
fluid interface on the rigid solid at the position r = rb. In contrast to Equation 2.54, 
this expression is, in terms of the specific free energies of the surfaces that intersect 
at the contact line, the specific free energy of the contact line and the contact angle 
of the liquid on the solid. Once again, we have assumed that the surface free energies 
are fixed (or stratified) in value on the surface and we have included the line tension 
effect explicitly with the last term in Equation 2.60.

2.1.8  the mechanIcal equIlIBrIum condItIons For 
moderately curVed BoundarIes

A boundary in a capillary system is considered to be moderately curved if the local 
or specific free energy of the boundary (either surface or line) is a pure tension in the 
fashion suggested by Gibbs [2]. Thus, for a moderately curved surface and line region 
where the radius of curvature of the boundary is large one obtains the equalities

 ω γ( ) ( ) ( ) ( ),( ),( )jk jk jk sl sv lv= = { }∞ where aand ω σ( ) ( )slv slv= ∞  (2.61)

between the specific surface or line free energies and the usual tensions of the 
boundary regions. Employing these definitions, one may write the Laplace equation 
of capillarity (Equation 2.49) as
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or, after eliminating λ, as
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and the Young equation of capillarity (Equation 2.60) as
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2.1.9  InterPretatIon oF the surFace Boundary condItIon

Strictly speaking, it has not been shown that the liquid–fluid interface is stable, since 
the Euler-Lagrange equation that is used here only yields a stationary value for the 
integral in question and not an extremum value. Mathematically, the conditions nec-
essary for a stable stationary value are obtained from the second-order variation 
of the integral in question. This procedure is complex but tractable. However, on 
physical grounds, it should be obvious that the liquid-fluid interface will be stable 
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if the density of the lower liquid phase is greater than the density of the upper fluid 
phase. If the local value of gravity is zero or sufficiently close to zero, the solution 
to Equation 2.63 is straightforward and requires the function ξ1(r) to represent a sec-
tion of a circular arc. This result is physically realistic since the system will attempt 
to minimize its free energy by reducing its surface area to that of a sphere. From 
dimensional analysis, it is recognized that external body forces like gravity are char-
acterized by length scales that are of the order (length)3, whereas surface forces like 
surface tension are of characteristic length scale (length)2 so that smaller capillary 
systems will be nearer to a spherical shape than larger systems [20]. Similarly, if the 
liquid and fluid phases have nearly identical densities, one would also expect that 
surface geometry could be well approximated by spherical shapes.

Finally, it should be noted that Equation 2.63 is not a new result, but was derived 
initially by Laplace [21] who showed that the pressure difference across a deform-
able surface is directly proportional to the surface’s mean curvature J. However, 
Equation 2.63 only arises when the specific surface free energy equals the planar 
surface tension, or ω γ( ) ( )lv lv= ∞  at all points on the surface. When this condition is 
not satisfied one must use the more general Expression 2.50. This situation could 
occur, for example, if ω γ( ) ( )jk jk= + ⋅∞ p E  where p denotes the polarization and E 
the electric field at the surface. In 1830, Gauss proposed an alternative, conceptu-
ally superior method that has been adopted throughout this chapter, based on the 
principle of virtual work [22]. According to this approach, the energy of a mechani-
cal system in equilibrium is invariant under arbitrary virtual displacements that are 
consistent with the constraints. For the axisymmetric system considered here, which 
is in thermal and chemical equilibrium a priori, we have considered arbitrary vir-
tual displacements subject to a constant volume constraint that leaves the system’s 
total free energy invariant. Similar approaches have been used by others to derive 
Expressions 2.63 and 2.64 [23–28].

2.1.10  InterPretatIon oF the contact lIne Boundary condItIon

If the surface of the solid wall is parallel to the z-axis, then ϑ2 = π / 2 and cos ϑ2 = 0. 
In this case, the wall forms a solid of revolution (i.e., a capillary tube), whose major 
axis is the z-axis and whose radius is rb. For any solid container that assumes this 
cylindrical shape, the classical Young equation, without the line tension term, is 
recovered as

 γ γ γ ϑ∞ ∞ ∞− =( ) ( ) ( ) cos ,sv sl lv
l  (2.65)

and this relation describes the behavior of the liquid’s surface at the solid bound-
ary. Thus, it may be seen from this result that one cannot measure the effect of line 
tension on the shape of the three-phase contact line with a cylindrical geometry. In 
contrast, the magnitude of the term containing the line tension is a maximum when 
the slope of the solid wall is zero; that is, when cos ϑ2 = 1 and the solid wall is a hori-
zontal plane so that the liquid phase achieves the shape of a sessile drop.

The Young equation, as stated in Equation 2.65, is often derived using a mech-
anistic approach that considers the surface tensions γ αβ

∞
( )  to be two-dimensional 
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stresses that can be resolved in a horizontal (i.e., in the tangential plane of the solid-
liquid surface) direction. This approach was vehemently disfavored by Bikerman 
[29,30] who strongly advocated that Young’s equation be rejected on the grounds that 
it failed to properly consider the vertical force balance in a direction perpendicular to 
the solid surface. According to Bikerman, there must be some deformation or strain 
in the solid to compensate for the force γ αβ

∞
( ) sinϑl  that is directed away from the 

solid surface. However, our analysis of an undeformable solid surrounding a liquid-
fluid system shows quite clearly that the Young equation by itself is the only bound-
ary condition at the three-phase contact line. Furthermore, the uncompensated stress 
on the solid-liquid surface predominantly arises from the weight of the liquid and 
not from surface tension effects. This weight-related loading of the solid is approxi-
mately equal to

 ∆ ϑρ ξ ξg 1 2 21−( ) −( )sin  (2.66)

plus the effect of the pressure jump across the solid-liquid surface, see Equation 
2.40. Finally, if the underlying substrate is deformable, then the Young Equation 
2.64 must be replaced by two scalar relations [14].

2.1.11  nonmoderately curVed BoundarIes

If it is assumed that the dividing surface is not in the surface of tension position 
of Gibbs [2,31,32] and that C1 + C2 ≠ 0 (Gibbs’s notation for bending moments is 
used) as a result, then on a shifted dividing surface, the mechanical behavior of the 
interface can still be represented by a uniform surface tension, γ αβ

∞
( ). However, on the 

shifted dividing surface, the values of both the surface tension and the surface area 
would be different from the values for these quantities on the dividing surface in the 
surface of tension position [33]. This conclusion, however, violates physical reality. It 
is well known from mechanics that if there is a pure tension along one surface, then 
a shifted surface must be described by a tension and one or two distributed bending 
moments; otherwise, the system described by the shifted surface will not be stati-
cally equivalent to the original, unshifted surface [34].

When one uses the classical fundamental equation (see Chapter 1) given by

 U U S A M M M( ) ( ) ( ) ( ) ( ) ( ), , , , ,αβ αβ αβ αβ αβ
η
αβ=  1 2 …  ,  (2.67)

one finds that the surface of tension position for the dividing surface is the only 
position that is in equilibrium. The discussion of this restriction may seem slightly 
excessive; however, one often encounters cases in the literature where the dividing 
surface is shifted to another position even when Equation 2.67 is taken as the expres-
sion for the fundamental equation and the classical Laplace equation, as given by 
Equation 2.63, is taken as the mechanical equilibrium condition across the surface. 
This restriction is not a severe drawback to the classical theory of capillarity since 
Gibbs envisaged the theory dealing primarily with surfaces that may be regarded as 
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nearly planar; that is, surfaces where the radii of curvature are very large in propor-
tion to the thickness of the nonhomogeneous interface. However, as established by 
Rotenberg, Boruvka, and Neumann [35], the position of the dividing surface in this 
case is invariant if total energy is to be conserved.

What should be apparent from this argument is that any fundamental equation 
that leads to a differential expression in the form

 dU TdS dA dM C dcj j
( ) ( ) ( ) ( ) ( )αβ αβ αβ αβ αβγ µ= + + + +1 1 CC dc

j

2 2

1=
∑

η

 (2.68)

is limited. When one employs this equation to describe a system with a dividing 
surface not in the surface of tension position, one finds that it is not even able to 
reproduce the classical behavior of an interface, let alone any high-curvature refine-
ments [35]. Any comparison of the generalized theory of capillarity with the theory 
of Gibbs based on an equation

 U U S A M c cJ
( ) ( ) ( ) ( ), , , ,αβ αβ αβ αβ=  1 2  (2.69)

should realize that this form of the fundamental equation is not suitable if one wishes 
to describe surface systems with arbitrarily curved surfaces. We believe that Gibbs 
was well aware of this deficiency but that he used Equation 2.68 only as a procedural 
means to get to a formulation for a fundamental equation for moderate curvature 
without explicit curvature terms. These difficulties with Gibbs’s theory were recti-
fied in the generalized theory of capillarity [1,14,33,35–38], which is based on the 
fundamental equation

 U U S M j
( ) ( ) ( ) ( ), , , , ,αβ αβ αβ αβ=  A J K  (2.70)

where the total mean and Gaussian curvatures [15–18] are defined by the extensive, 
rather than intensive, curvatures

 J = ∫∫ JdA (2.71)

and

 K = ∫∫KdA  (2.72)

with the mean and Gaussian curvatures defined by J = c1 + c2 and K = c1c2, 
respectively.

The definition of the surface tension, which is completely analogous to the defini-
tion of the pressure, follows directly from the assumed form of Equation 2.70 as
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or
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after a suitable Legendre transformation from the total internal energy U(αβ) to the 
total grand canonical potential Ω(αβ). If all surface properties are uniform or con-
stant at each point on the surface, then one may replace the integral expressions 
in Equations 2.71 and 2.72 for J and K by JA and KA, respectively. These expres-
sions for J and K are not as general as those considered in the generalized theory of 
Boruvka and Neumann [1], but are sufficiently general to illustrate the generalized 
theory for nonmoderately curved, axisymmetric surfaces [39,40]. Finally, with the 
moderate curvature restriction removed in the fashion suggested by the generalized 
theory of capillarity, one finds that the specific surface free energy has three terms

 ω γαβ αβ( ) ( ) ,= + +∞ C J C KJ K  (2.75)

where CJ and CK are mechanical curvature potentials. For our axisymmetric, liquid-
vapor surface this surface free energy can be written as (see Equations 2.42 and 
2.43)
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ξ ξ ξ
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to show the explicit curvature dependence of the specific free energy; that is,
ω ξ ξ ξ( ) / / /, , ,lv r 1 1 1( ) . The importance of these conclusions cannot be overestimated: 
for highly curved surfaces, which are described by Equation 2.75 or Equation 2.76, 
one finds that the presence of these additional terms influences or modifies virtually 
all mechanical equilibrium conditions. The specific surface free energies, as defined 
in Equation 2.61, are no longer constant and, as a direct result, all expressions in 
the necessary stationary conditions become significantly more complicated (i.e., the 
Euler-Lagrange equations and the transversality conditions). Expressions for the free 
energy with alternative curvature measures are provided elsewhere [14,41].

The situation is somewhat simpler when the surface is axisymmetric; however, 
even in this case one can easily see from Equation 2.76 that the specific surface free 
energy ω(lv) is not a constant but is a function of the variables r r r r, ( ), ( ) ( )./ / /ξ ξ ξ1 1 1and  
Consequently, if one wishes to visualize the influence of the assumption that the 
specific surface free energy is not a constant but is dependent upon higher-order 
bending or curvature terms, then it will be necessary to generalize the previous 
analysis sufficiently that one may consider integrals up to and including the second 
derivative of the surface function ξ1(r). The details of this analysis are presented by 
Gaydos [14].

As described in Chapter 1, the additional quantities characterizing the contact 
line involve the collection of contact angles ϑjj /  that represent the contact angles in 
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the bulk phases between the jth and j/th dividing surfaces meeting at the contact 
line, the curvatures and the torsion of the contact line [1]. For the axisymmetric 
arrangement illustrated in Figure 2.1, the collection of angles can be represented 
by just three contact angles: ϑv for the vapor phase angle between the solid-vapor 
surface and the liquid-vapor surface measured in the usual counterclockwise fashion 
around the contact point, ϑl for the liquid phase contact angle between the liquid-
vapor surface and the solid–liquid surface, and ϑs for the solid phase angle between 
the solid–liquid surface and the solid–vapor surface (see Figure 2.3). These angles 
are not independent but are constrained by the relation

 ϑ ϑ
jj

v l s

jj

/

/( )

/ /,= + + =∑ ϑ ϑ π ξ ξ2 1 2and (2.77)

which indicates that any two of the three angles or a related quantity like the surface 
slopes ξ ξ1 2

/ /and  (see Equation 2.57) can be used as independent quantities for the 
contact line. In general, a contact line can curve in the plane of the jth surface with 
a geodesic curvature κgj and it can curve perpendicular to this surface in the normal 
plane with normal curvature κnj [1,17]. These curvatures are not independent but are 
related by the relation

 κ κ κgj nj
2 2 2+ = ,  (2.78)

which, in our axisymmetric case, has the expression

 κ = 1
rb

.  (2.79)

Vapor

Liquid

Solid

ϑl
ϑs

ϑv

fiGure 2.3 Schematic of the contact line region of an idealized solid–liquid–fluid capillary 
system showing the bulk phase angles: ϑs (within the solid phase), ϑl (the usual contact angle 
measured within the liquid phase), and ϑv (within the vapor phase).
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This result would suggest that the radius rb could be used in our axisymmetric situa-
tion as an independent variable to characterize the curvature of the contact line since 
only one of the three quantities κgj, κnj or κ is independent. The final quantity for 
consideration is the torsion or twist of the contact line. For the axisymmetric cases 
shown in Figures 2.1 to 2.3, the contact line is created by revolving a contact point 
around the system’s vertical axis and this one-dimensional point cannot have a twist 
so the torsion quantity is not relevant here [7]. To summarize, the generalized theory 
of capillarity, described in Chapter 1, is highly symmetrical in its choice of contact 
line variables at the expense of not being entirely independent. An alternative view, 
with an explicit choice of variables, has also been considered for a three-phase sys-
tem [42]. However, if we maintain the benefit of this symmetry we obtain the linear 
free energy for the contact line as

 ω σ ϑ κ κ τϑ τ
( ) ( )

/

(
/

l l
jj gj gj nj nj j j

j

C C C C
jj

= + + + +( )
))( /)

,∑∑
jj

 (2.80)

which can be simplified for the axisymmetric case to

 ω σ ϑ ϑ ϑ κ κϑ ϑ ϑ
( ) ( )l l

v l s gj gj nj njC C C C C
v l s

= + + + + +( )
(( , , )j sl sv lv=
∑  (2.81)

subject to the constraints (Equations 2.77 and 2.78). If a particular choice of angles 
and curvatures is used, then it is possible to simplify Equation 2.81 further to

 ω σ ϑ ϑ κϑ ϑ κ
( ) ( )l l

v lC C C
v l

= + + +  (2.82)

without any subsidiary constraints. This situation may appear somewhat simpler; 
however, even in this case, one can easily see that the specific surface free energy 
ω(l) is not a constant but is a complicated function of the surfaces that meet to form 
the contact line; that is,

 ω ω ξ ξ ξ ξ ξ ξ( ) ( ) / / / / / /, , , , , , .l l r= ( )1 2 1 2 1 2  (2.83)

Consequently, if one wishes to visualize the influence of the assumption that the 
specific contact line free energy is not a constant but is dependent upon angles (or 
slopes), higher-order bending or curvature terms, then it will be necessary to gen-
eralize the previous analysis sufficiently that one may consider integrals up to and 
including the second derivative of the surface functions. The details of this analysis 
are presented by Gaydos [14].
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2.2  the neumann trianGle (quadrilateral) relatiOn

The main emphasis in this section will be upon the three-phase fluid contact line 
condition known as the Neumann triangle relation. The Neumann triangle relation 
[31,32] is the appropriate boundary condition when the three surfaces that intersect 
to form the contact line are all deformable (see location r = ra in Figure 2.4). Some, 
estimates of the line tension have been performed using capillary systems that are 
arrayed in this fashion (i.e., the three surfaces forming the contact line are deform-
able). When one or two of the surfaces intersecting to form the contact line are rigid, 
then the previous Young equation is the appropriate boundary condition.

2.2.1  the solId–lIquId-lIquId–FluId system

The axisymmetric arrangement considered in Figure 2.1 is easily adjusted to include 
another immiscible liquid in the composite system. The additional (small) quantity of 
liquid is required to have a density between that of the lower liquid and the upper fluid 
of Figure 2.1 and to float in a zone between these two bulk phases when in equilibrium. 
Both the upper fluid and the lower liquid are in contact with a rigid solid wall. Analogous 
considerations to those discussed above also apply to this situation. Once again, the 
state of the composite system is characterized in terms of the principle of virtual work, 
whereby the energy of the total system from all contributions is unvaried under arbitrary 
virtual displacements that are compatible with the system’s constraints [8–13].

2.2.2  Free enerGy exPressIons For the Bulk reGIons

For the system illustrated in Figure 2.4, the bulk phase free energy of the lowest 
liquid is given by the integral

 Ω( ) ( ) .l
r

lr dzdr
b

= ∫ ∫2
0 1

2

π ω
ξ

ξ

 (2.84)

ra rb rc r

z(r)

z = h

z = ξ1(r) z = ξ3(r)

z = ξ2(r)

fiGure 2.4 Schematic of an idealized solid–liquid-liquid–fluid capillary system with 
three deformable liquid–fluid or liquid–liquid surfaces and one deformable contact line at 
radial location r = ra.
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For the middle fluid phase, the expression is

 Ω( ) ( ) ,o o
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while for the upper fluid phase, the term is
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where ω(k) for k = l, o, v represents the specific free energy density of the bulk phases. 
When the contribution of the intrinsic bulk free energy is independent of the con-
tribution to the free energy from the external potential field, then the ω(k); k = l, o, 
v quantities are independent of the vertical z-coordinate and the three free energy 
integrals can be integrated with respect to the z-coordinate to yield
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2.2.3  external Body Forces

The presence of an external gravitational potential or force field also influences the 
total expression for the system’s free energy. When the gravitational field strength g 
is uniform over the extent of the system, the expressions for the free energy or grand 
canonical potential for the various portions of the system are given as three volume 
integrals. For the lower liquid, one has the expression

 Ωg
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r
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b
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0 2
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 (2.90)

where ρ(l) represents the density of the lower liquid phase. An analogous expression 
applies for the middle liquid phase, of density ρ(o),
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while the upper fluid phase expression is given by
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where ρ(v) represents the density of the upper fluid phase.

2.2.4  Free enerGy exPressIons For the surFace and lIne reGIons

The free energy or grand canonical potential for each interface region is expressed 
in the following manner. For the liquid–solid interface, one has

 Ω( ) ( ) ( ) / /
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[ ( )]sl sl

A

sl

sl

dA r= = +( )∫∫ω π ω ξ2 1 2
2 1 22

0
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where the independent variable r represents the radius of the system, ω(sl) is the spe-
cific surface grand canonical potential or specific surface free energy (defined per 
unit area) of the liquid–solid interface, and ξ2

/ ( )r  denotes differentiation of the curve 
ξ2(r) with respect to r. For the fluid–liquid interface and the fluid–solid interface, the 
corresponding expressions are given by
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and
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These three expressions are essentially the same as the expressions given by 
Equations 2.14 through 2.16. For this particular lens arrangement, the new contribu-
tions to the surface energies arise from the interface between the middle liquid and 
the upper fluid and from the interface between the middle liquid and the lower liquid. 
The surface contributions are given, respectively, by
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and

 Ω( ) ( ) ( ) / /

( )

[ ( )]ov ov

A

ov

ov

dA r= = +( )∫∫ ω π ω ξ2 1 3
2 1 22

0
rdr

ra

∫ .  (2.97)



Thermodynamics of Simple Axisymmetric Capillary Systems 75

Finally, to complete the specification of the energy expressions for this system, one 
must include two linear terms to represent the energy content of the three-phase con-
tact lines at r = rb (i.e., the previous Expressions 2.12 and 2.13 apply) and at r = ra. 
At the location r = rb, the solid–liquid–fluid three-phase contact line energy is given 
by the expression

 Ω( ) ( ) ( ) ,slv
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slv

b
b

slv
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r
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r dr
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= = ∫2
2

0
π ω π ω  (2.98)

where 2πrb is the total circumference or length of the contact line and ω(slv) represents 
the specific free energy (per unit length) of the r = rb contact line. The correspond-
ing energy expression for the liquid-liquid-fluid contact line at the r = ra location is 
given by

 Ω( ) ( ) ( ) ,lov
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r

r
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= = ∫2
2
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π ω π ω  (2.99)

where 2πra is the total circumference or length of the liquid-liquid-fluid contact line 
and ω(lov) represents the specific free energy (per unit length) of this line. Once again, 
both specific linear free energies, ω(slv) and ω(lov), must be independent of the radius 
r and constant. Furthermore, in equating the function and the line integral we must 
also require that ra be constant under the integral sign. It is possible to drop this last 
requirement, as demonstrated by Gaydos [14].

2.2.5  constraInts

If one assumes that all phases are incompressible, then the volumes of those bulk 
portions that compose the system must remain constant. Thus, for a completely 
incompressible system one can use a constant volume constraint as an equivalent 
replacement to the statement of mass conservation. The constant volume constraints 
(i.e., there are two constraints for the system illustrated in Figure 2.4) act as addi-
tional integral constraints or subsidiary conditions on the range of permissible 
variations. In addition to these two integral constraints, there is one nonholonomic 
constraint that restricts ra to be less than rb. This latter condition insures that the 
liquid-liquid-fluid contact line L(lov) exists, that it is unique, and that it does not 
coincide with the solid–liquid–fluid line L(slv). The volume of each portion of the 
system is given by

 V rdrl
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and
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where V(l) is the volume of the lower liquid phase, V(o) is the volume of the middle 
liquid phase, and V(v) is the volume of the upper fluid phase. Given that all phases 
are incompressible, one knows that by holding V(l) and V(o) fixed one will, by conse-
quence of

 V V Vl o v( ) ( ) ( )+ + = a constant,  (2.103)

also hold V(v) constant. Thus, the introduction of the two integral constraints (i.e., 
Equations 2.100 and 2.101) will necessitate the introduction of two Lagrange multi-
pliers, say λ1 and λ2.

2.2.6  the VarIatIonal ProBlem

The mechanical equilibrium conditions arise directly from the conditions that are 
necessary to insure that the total free energy integral ΩΣ is stationary subject to its 
constraints. The total free energy integral is given by the summation of the contribu-
tions from all bulk, surface, and linear regions in the system and is given (for the 
system illustrated in Figure 2.4) by the expression
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or, after some manipulation, by
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Consequently, for this composite arrangement, the complete calculus of variation 
problem is written in the mathematical form

 δ λ λΩ + +( ) =Σ 1 2 0V Vl o( ) ( ) ,  (2.106)

so that the two volume constraints are included directly in the function, which is 
subject to the variations. Each constraint insures that a particular volume remains 
constant. Variations are permissible in both the position of the curves z = ξ1(r) and 
z = ξ3(r) and in the position of the contact points r = ra and r = rb. The solid is assumed 
to be rigid so that no variation in the position of the curve z = ξ2(r) is possible; how-
ever, the boundary point is considered to slide along the solid. Unlike the solid-
liquid-fluid system considered above, the liquid lens system considered here yields 
three, rather than just one, Laplace equations. In essence, there is a Laplace equation 
for each deformable surface in the system. Along with the three Laplace equations 
and the previous contact line equilibrium condition; that is, the Young equation of 
capillarity that arises from the transversality condition at the point r = rb, a new con-
tact line condition—called the Neumann triangle (quadrilateral) relation—appears 
from the boundary conditions at the point r = ra.

The complete calculus of variations problem is easier to handle if the total free 
energy integral is broken up into five terms such that each integral or functional has 
an integrand of the form

 f r z r z r f r r r jj j, ( ), ( ) , ( ), ( ) ,/ /( ) = ( ) =ξ ξ where 1 2,, .3  (2.107)

The integrands are given by the longish expressions
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and
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Using these definitions, the calculus of variations problem, defined by Equation 
2.106, can be recast into the form of the integral expression
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Given that each integral above has the same functional dependence as the integrals 
in Equation 2.29 it stands to reason that the same necessary conditions for a station-
ary integral that apply to the integrals in Equation 2.29 also apply to each of the 
integrals present in Equation 2.113. These conditions consist of five Euler-Lagrange 
equations for each of the five surfaces present in the composite system and possibly 
two boundary conditions for each end point of the integral.

If the radial variation δr is not independent of the surface variation δξj, then the 
two possible boundary conditions are combined into one transversality condition 
that describes the manner by which the boundary point slides or varies along a spe-
cific fixed curve (e.g., the solid wall curve defined by z = ξ2(r)). If the radial variable 
is not permitted to vary (i.e., δr = 0), then one boundary condition vanishes and 
from the other condition one obtains the natural boundary condition, as discussed 
above, in which the boundary point may only vary vertically at fixed r (e.g., this 
was the condition attached to the boundary point r = 0 that yielded Equation 2.31). 
Finally, if a relationship does not exist between the independent and the dependent 
variables, then there are two boundary relations or conditions for each end point of 
the integral (i.e., each integral has a total of four boundary conditions two at each 
end).

Recognizing that the integrand f rb1 1( ), , 1
/ξ ξ , in Equation 2.110 corresponds closely 

to the integrand f r1 1 1( , , )/ξ ξ  considered in Equation 2.26, permits one to write the 
appropriate Euler-Lagrange equation as
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with natural boundary condition
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and transversality condition
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Similarly, the integrand f rb2 2 2, , /ξ ξ( )  corresponds closely to the integrand 
f r3 2 2, , /ξ ξ( )  considered in Equation 2.28, so that the appropriate Euler-Lagrange 
equation is given by
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with the transversality condition at r = rb as
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Finally, the integrand f rc2 2 2, , /ξ ξ( )  corresponds closely to the integrand f r2 2 2, , /ξ ξ( )  
considered in Equation 2.27, with corresponding Euler-Lagrange equation
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This integral has no free end points since the incompressible liquid assumption 
means that the system’s total volume is fixed by the condition r = rc or z = h being 
constant (see Figure 2.4) and thus no boundary condition of any kind exists for this 
term.

The two new integrands, not previously considered in the solid-liquid-fluid sys-
tem, are given by the integrals whose integrands are f ra1 1 1, , /ξ ξ( )  and f ra3 3 3, , ./ξ ξ( )  
The integral with integrand f ra1 1 1, , /ξ ξ( )  involves the behavior of the liquid-liquid 
surface (i.e., defined by the curve z = ξ1(r)) below the lens from the origin to the con-
tact line position at r = ra where the liquid-liquid surface intersects the liquid-fluid 
surface (i.e., defined by the curve z = ξ3(r)). The integral with integrand f ra3 3 3, , /ξ ξ( )  
involves the behavior of the liquid-fluid surface (i.e., defined by the curve z = ξ3(r)) 
that forms the upper surface boundary of the lens. The appropriate Euler-Lagrange 
equation and boundary conditions for the first integral that is defined in Equation 
2.113 are
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with natural boundary condition
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and boundary conditions
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for the independent variation, and
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for the dependent variation. Similarly, the appropriate Euler-Lagrange equation and 
boundary conditions for the second integral that is defined in Equation 2.113 are
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with natural boundary condition
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and boundary conditions
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for the independent variation, and
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for the dependent variation.
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2.2.7  the classIcal mechanIcal equIlIBrIum condItIons

The mathematical manipulations required to solve Equations 2.120 through 2.127 
are completely analogous to those performed previously and, for this reason, we 
shall restrict comments in this section to those conditions that are either new or 
slightly different from those discussed already. However, it would be remiss not to 
point out a few explicit connections between the relations above and the correspond-
ing relations in this section.

The close connection between the two integrands f r1 1 1( , , )/ξ ξ  (see Equation 2.26), 
and f rb1 1 1( , , )/ξ ξ  means that the Euler-Lagrange Equation 2.30 and the boundary con-
ditions Equations 2.26 and 2.27 also apply, without much change, to the integrand
f rb1 1 1( , , )/ξ ξ . The essence of the change in description between the solid–liquid–

vapor system considered above and the three-phase system considered in this section 
is the necessity of allowing for the possibility that a cusp might exist in the function 
z = ξ1(r) at the location r = ra. Thus, it is more accurate to consider the function ξ1(r) 
as two piecewise continuous segments with one segment running from zero to ra and 
the other segment from ra to the solid–liquid–fluid contact line location at rb. Similar 
statements, without the necessity of considering any cusps, apply for the pair of inte-
grands f r3 2 2( , , )/ξ ξ  and f rb2 2 2( , , )/ξ ξ  and for the pair f r2 2 2( , , )/ξ ξ  and f rc2 2 2( , , )./ξ ξ  
Consequently, it is not necessary to describe in detail, since this was already per-
formed above, the manner by which the Laplace and Young equations of capillarity 
follow from these integrals. For the new integrands f ra1 1 1( , , )/ξ ξ  and f ra3 3 3( , , )/ξ ξ , 
the situation, with regards to the Laplace equation, is similar to the situation already 
encountered.

A comparison of the integrands involved shows that all of these expressions have 
the same form and will, as a consequence, result in a Laplace equation for each of 
the deformable surfaces involved in the composite system. This conclusion is to be 
expected and simply asserts the intuitive claim that an identical mechanical equilib-
rium relation should also exist at the liquid-fluid (lo) surface and at the liquid-vapor 
(ov) surface.

The most significant difference between the mechanical equilibrium conditions 
considered here and those considered above involves the variational end point con-
ditions at the location r = ra, where the three surfaces (lv), (lo), and (ov) intersect to 
form a contact line (denoted in superscript). The liquid-fluid-vapor (lov) boundary, 
unlike the solid-liquid-vapor (slv) contact line, is not restricted to vary along a fixed 
ξ2(r) curve, but is permitted to deform freely provided the three surfaces remain 
connected. Mathematically, the connectivity is effected by requiring the equality 
ξ1(r = ra) = ξ3(r = ra). When both the specific surface free energies and the specific 
linear free energies are assumed constant, the end point conditions that result from 
the solution of Equations 2.122, 2.123, 2.126, and 2.127 (see [14] for details) yield the 
following relations. In the radial direction, variations in the horizontal r̂  direction 
must satisfy the condition

 ω ω ξ ω ω( ) ( ) / / ( )
( )[ ]lo lv

lov

a

ov

r
−( ) +( ) + +−

1 11
2 1 2 ++( ) =−

[ ] ,/ /ξ3
2 1 2

0  (2.128)
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while in the vertical ẑ  direction the condition is given by

 ω ω ξ ξ ω ξ ξ( ) ( ) / / / ( ) /[ ] [lo lv ov−( ) +( ) + +−
1 1

2 1 2
31 1 33

2 1 2
0/ /

] .( ) =−
 (2.129)

Equations 2.128 and 2.129 may be expressed in a form that is similar to the Young 
equation of capillarity by introducing the relations

 ξ ϑl ar r/ tan= =<
−1 0when  (2.130)

and

 ξ ϑ1 1 0
/ tan= =>

+when r ra  (2.131)

between the slope or tangent of the ξ1(r) liquid-fluid surface function and the angles 
ϑ1

<  and ϑ1
> . The symbol ϑ1

<  denotes the angle between the horizontal line, which 
passes through the contact line at r = ra and the tangent to the ξ1(r) curve that may be 
defined by approaching the r = ra point from a value of the radius that is less than ra 
(see Figure 2.5). The symbol ϑ1

>  denotes the angle between the horizontal line that 
passes through the contact line at r = ra and the tangent for the ξ1(r) curve that may be 
defined by approaching the r = ra point from a value of the radius that is greater than 
ra. Using these two symbols for the angle that the ξ1(r) curve forms with the hori-
zontal through the point r = ra permits one to investigate situations where the surface 
defined by the curve ξ1(r) is not continuous, but has a cusp at an isolated number of 
axisymmetric gradient singularities (in the arrangement shown in Figure 2.5 there 
is only one gradient singularity at r = ra). Therefore, by employing the definitions in 

Phase (l)

Phase (o)

r = ra

Phase (v)

Z

ϑ1
<

ϑ3

m (ov)

m (lv)

m (lo)

rϑ1
>

z = ξ1(r)

z = ξ1(r)

z = ξ3(r)

fiGure 2.5 Magnified view of the region around the deformable contact line at r = ra 
showing the local (r, z) coordinate system that is fixed to the contact point and about which 
the rotation αϑ ϑ= <

1  occurs. Also shown are the orientations of the angles ϑ ϑ1 1
< >,  and ϑ3 as 

well as the directions of the unit surface tangent vectors ˆ , ˆ ˆ( ) ( ) ( )m m mlo lv ovand .
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Equations 2.130 and 2.131, it is possible to write the horizontal or radial variation 
condition (Equation 2.128), after simplifying, as

 ω ϑ ω ϑ ω ω ϑ( ) ( )
( )

( )cos cos coslo lv
lov

a

ov

r1 1 3
< >− + + == 0,  (2.132)

where ξ ϑ3 3
/ tan .=  For this situation, the ϑ1

<  angle is associated with the liquid-
fluid (lo) surface, which occurs (as shown in Figure 2.5) at a radial location r ≤ ra. 
Analogously, the ϑ1

>  angle is associated with free energy ω(lv) and the liquid-vapor 
(lv) surface, which occurs at a radial location r ≥ ra. Likewise, we may use these 
angle definitions to write the vertical variation condition (Equation 2.129) as

 ω ϑ ω ϑ ω ϑ( ) ( )sin sin sin .lo lv ov
1 1 3 0< >− + =  (2.133)

Alternatively, one may consider these two relations as representing an in-plane 
(i.e., the plane formed by the radial r̂  vector and the vertical ẑ  vector) force balance 
between the three surface energies and the single line energy that are involved in the 
formation of the liquid-fluid-vapor (lov) boundary. If one adopts this perception of 
these two in-plane orthogonal scalar boundary conditions, then one can express the 
in-plane force balance as a two-dimensional matrix expression. When this is done, 
one can write, in terms of the unit vectors, that

 f
r

z
r zrz r z r zf f f f= { }








= +
ˆ

ˆ
ˆ ˆ  (2.134)

where the components of the force vectors are

 f
rr

lo lv
lov

a

ov= − + +< >ω ϑ ω ϑ ω ω( ) ( )
( )

( )cos cos co1 1 ssϑ3  (2.135)

and

 fz
lo lv ov= − +< >ω ϑ ω ϑ ω ϑ( ) ( ) ( )sin sin sin .1 1 3  (2.136)

It is obvious from Equations 2.132 and 2.133 that these force components will van-
ish, as required, when the composite system is in static equilibrium.

Equations 2.128 and 2.129 can also be combined and written as an in-plane vec-
tor relation. In the (ˆ, ˆ)r z  plane, the direction of each surface at the point where they 
intersect to form the liquid-fluid-vapor (lov) contact line is given by an outward unit 
normal, which will be defined by the vector ˆ ( )m jk  where (jk) = (lv), (lo), (ov), see 
Figure 2.5. The curvature of the contact line is written in terms of a curvature vector 
κ(lov) that has two in-plane components

 κ ( )
ˆ

ˆ ,lov

ar
= ⋅








r
z

T

0  (2.137)
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where the superscript T on the vector indicates the transpose. The two scalar rela-
tions (Equations 2.135 and 2.136) combine with Equation 2.137 to give the equiva-
lent vector relation

 ω ω ω ω κ( ) ( ) ( ) ( ) ( ) ( ) ( )ˆ ˆ ˆlo lo lv lv ov ov lovm m m+ + + (( ) .lov = 0  (2.138)

If the scheme, analogous to that proposed in Equation 2.61, for replacing the spe-
cific surface free energies ω( jk) in terms of their corresponding surface tensions is 
adopted and the linear term is dropped, one obtains the classical Neumann triangle 
relation from Equation 2.138.

2.2.8  an alternatIVe exPressIon For the neumann trIanGle relatIon

At that location in the composite system where the three deformable surfaces intersect 
to form a contact line one may select the origin of the horizontal and vertical (r, z) 
coordinate system so that it coincides with the contact line (see Figure 2.5). A positive 
rotation of the coordinate system about an axis that passes through the contact point 
and points outward from the plane of Figure 2.5 (i.e., the rotation turns in an anticlock-
wise sense) of magnitude αϑ will rotate the old coordinate axes (r, z) to the new coor-
dinate axes ( , )r z . In this new coordinate system, the vector frz whose old components 
were fr and fz are now related to the new component values by the relations [43,44]
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The Young equation, as expressed by Equation 2.64, for a moderately curved 
solid–liquid–fluid boundary may also be thought of as a horizontal force balance. In 
complete analogy with the Young equation one may express the boundary condition 
for the liquid-fluid-vapor (lov) boundary by rotating the force vector frz about the 
contact line point at r = ra by an amount α ϑϑ = <

1  to yield a force vector frz  with 
new components. Substituting the expressions for fr and fz from Equations 2.135 and 
2.136, respectively, into Equation 2.139 gives the new components as

 fr
lo ov lv= + −( ) − −( )< < >ω ω ϑ ϑ ω ϑ ϑ( ) ( ) ( )cos cos1 3 1 1 ++ <ω ϑ

( )

cos
lov

ar
1  (2.140)

and

 fz
lv ov

lov

= −( ) − −( ) −< > <ω ϑ ϑ ω ϑ ϑ ω( ) ( )
(

sin sin1 1 1 3

))

sin .
ra

ϑ1
<  (2.141)

It is possible to simplify these two expressions further by using the following two 
definitions (see Figure 2.6 for angular orientations). First, we note that

 ϑ ϑ ϑc + − =< >
1 1 0,  (2.142)
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where all three angles are defined in an anticlockwise or positive sense. The cusp 
angle, ϑc, represents the angle between the two outward surface normals ˆ ( )m lo  and
ˆ .( )m lv  Second,

 ϑ ϑ ϑll = −<
1 3,  (2.143)

where ϑll denotes the liquid-lens contact angle that is defined in an anticlockwise 
sense so that it is also positive.

Using Equation 2.142 it is possible to eliminate the angle difference ( )ϑ ϑ1 1
< >−  

in favor of the cusp angle ϑc and from Equation 2.143 to eliminate angle ϑ3 in favor 
of ϑll. Therefore, with these substitutions, the force vector components in the rotated 
coordinate system become
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rr

lo ov
ll
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a

= + − +ω ω ϑ ω ϑ ω( ) ( ) ( )
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cos cos cosϑϑ1
<  (2.144)

and
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( )

sin sin sin .1  (2.145)

Once the components of the force vector are known, then static equilibrium 
requires that all forces vanish. This, in turn, means that Equations 2.144 and 2.145 
are expressible as

 ω ϑ ω ω ϑ ω ϑ( ) ( ) ( )
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cos cos coslv
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1 == 0  (2.146)
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fiGure 2.6 Magnified view of the region around the deformable contact line at r = ra 
showing the orientation of both the cusp angle ϑc and the liquid-lens contact angle ϑll.
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and

 ω ϑ ω ϑ ω ϑ( ) ( )
( )

sin sin sin .lv
c

ov
ll

lov

ar
+ + =<

1 0  (2.147)

In contrast with Equations 2.128 and 2.129, these expressions are in terms of the 
specific free energies of the surfaces that intersect at the contact line, the specific 
free energy of the contact line, the liquid-lens contact angle ϑll, and the cusp angle 
ϑc. For moderately curved surface and line regions, where the radius of curvature of 
the boundary is effectively quite large, one obtains the equalities

 ω γ( ) ( ) ( ),( ),( )jk jk jk lv lo ov= = { }∞ where ( ) annd ω σ( ) ( )lov lov= ∞  (2.148)

between the specific surface free energies and the tensions of the boundary regions. 
When these constant tensions are inserted into Relations 2.146 and 2.147 one obtains 
the mechanical equilibrium conditions

 γ ϑ γ γ ϑ σ
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and
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∞ <+ + =( ) ( )
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sin sin sin .lv
c

ov
ll

lov

ar
1 0  (2.150)

These conditions together, or an equivalent in-plane orthogonal scalar set, are 
known as the Neumann quadrilateral relations for the liquid-lens (lov) boundary or 
contact line [45]. In the absence of the line tension terms one recovers the classi-
cal Neumann triangle relations as expected. The scalar set of equations (i.e., repre-
sented by either Equations 2.149 and 2.150 or by Equations 2.132 and 2.133 with the 
ω( jk) values replaced with surface tension γ ∞

( )jk  values) or the corresponding in-plane 
vector relation (i.e., represented by either Equation 2.134 with components defined 
by Equations 2.135 and 2.136 or by Equation 2.139 with components defined by 
Equations 2.140 and 2.141) is the most general boundary condition possible when 
the specific surface free energies forming the boundary are assumed constant (e.g., 
expressed by Equation 2.148).

Equation 2.149, which represents the force balance in the direction of the tan-
gent to the liquid-fluid (lo) surface at the point r = ra−0, is similar to the Young equa-
tion of capillarity derived in Equation 2.64. The orthogonal force balance condition, 
Equation 2.150, has no counterpart in the solid–liquid–fluid system since the sup-
porting substrate (i.e., the solid surface boundary defined by the curve z = ξ2(r)) was 
assumed to be completely rigid and undeformable. When deformation is possible (e.g., 
the liquid-liquid surface defined by the curve z = ξ1(r) undergoes deformation by the 
fluid lens) an additional force balance condition is possible. This condition, given by 
Equation 2.150, states that a nonzero cusp angle, ϑc, is a real possibility when a liquid 
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lens of nonzero lens angle, ϑll, is present. According to the classical theory of capil-
larity, which excludes the possibility of line tension, a nonzero value of ϑll means that 
the cusp angle ϑc must also be nonzero. Obviously, a nonzero cusp angle ϑc means 
that there is a discontinuity in the slope of the z = ξ1(r) curve that describes the liquid-
fluid surface below the lens. The presence of the discontinuity implies that either the 
moderate curvature approximation for the liquid-fluid surface defined by z = ξ1(r) is 
inappropriate, or that the classical exclusion of the line tension is inappropriate. In 
Chapter 13, discussing line tension and a liquid in contact with a strip-wise wall, we 
shall see another example of this type of discontinuity [46–48]. However, it should be 
realized that no real system with a surface phase will behave as if its surface is exactly 
two-dimensional. For example, if the underlying substrate were solid, then a cusp-like 
solution at some location on the solid surface would not be realized since the liquid 
would either move along the solid’s surface or the solid would fracture/deform at that 
contact line location before the curvature became too large.

2.3  the meChaniCs Of axisymmetriC 
COmpressible equilibrium systems

In our previous derivations it was assumed that the capillary systems were incompress-
ible so that the volumes of the respective bulk phases were constant. In many situations 
this incompressible assumption provides a satisfactory model of the true physical sys-
tem, but in some arrangements the requirement of incompressibility is too restrictive. In 
particular, unsupported and, to some degree, supported films may exercise enormous 
changes in surface density or mass concentration in their transition from a gas-like 
structure to a liquid-like structure. In this section the mathematical procedure to model 
these systems as compressible phases will be developed so that the appropriate adjust-
ments to the previous incompressible mechanical equilibrium conditions are possible.

2.3.1  Free enerGy exPressIons For the Bulk, surFace, and lIne reGIons

We shall begin with the case discussed above where a liquid, in equilibrium with 
another fluid, makes contact with a rigid solid wall (see Figure 2.1). The free energy 
of each bulk, surface, and linear phase is written as an integral over the volume of the 
phase in question. These expressions remain unchanged from those developed above. 
Similarly, the presence of an external gravitational potential influences the expression 
for the system’s total free energy and is given by the expressions developed above.

2.3.2  comPressIBle system constraInts

Once again, it is required to determine what, if any, quantities are held constant in 
the system when the system is subjected to arbitrary, weak variations [12]. In all pre-
vious sections, it was assumed that all phases were incompressible so that we could 
assume that, in the variational problem, the volume of the system and of certain 
portions of the system would remain constant. For a compressible system, however, 
it is necessary to replace the constant volume constraint with an equivalent constant 
mass constraint.
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The mass expressions for the two bulk phases in the system are
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where M j
l( )  represents the total mass in the lower liquid bulk phase of the jth chemi-

cal component and M j
v( )  represents the total mass of the jth component in the upper 

fluid phase. When summed, the bulk contributions can be written in the form
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The total surface and line mass contributions are given by
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and

 M rj
slv

b j
slv( ) ( )= 2π ρ  (2.157)

where the bracketed superscripts denote the solid–liquid, liquid–vapor, and solid–vapor 
surface phases and the superscript (slv) denotes the solid–liquid–vapor contact line.

In many capillary systems it may seem irrefutable that the surface and line mass 
contributions are insignificant, however, for completeness, we shall define the total 
mass of the composite capillary system as the sum of the mass terms that are given 
by Equations 2.153 through 2.157, or

 M M M M M M Mj j
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j
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j
sv

j
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j
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j
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Σ = + + + + +( ) ( ) ( ) ( ) ( ) ( )).  (2.158)
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As written, this expression is general. However, should a jth chemical component not 
be present in a particular phase, then the appropriate mass term would have a value 
of zero in that phase. Thus, for a closed, isolated composite system, the appropriate 
constraint on a compressible system is that the total mass MΣj remain fixed for all 
potential variations of the system.

2.3.3  the VarIatIonal ProBlem

As with our previous derivations, the mechanical equilibrium conditions arise directly 
from the conditions that are necessary to insure that the total free energy integral, 
Equation 2.21, is stationary, subject to the mass constraint given by Equation 2.158. 
Mathematically, the calculus of variations problem for the compressible capillary 
system is written in the form

 δ µΩ + =( )Σ Σj jM 0  (2.159)

so that the mass constraint is included directly in the function that is subject to the varia-
tions. The solid is assumed to be rigid so that no variation in the position of the curve 
z = ξ2(r) is possible; however, the contact line boundary point at r = rb is considered 
to slide along the solid. Consequently, the above free energy integral with dependent 
variable ξ1(r) gives rise to a calculus of variations problem with one free end point at 
rb. In addition, and unlike the previous situations considered, the upper boundary of 
the system, where r = rc, is not fixed since preservation of mass is not equivalent to the 
preservation of the system’s total volume at a fixed constant. The Laplace equation of 
capillarity for the liquid-fluid interface comes from the Euler-Lagrange equation for the 
curve ξ1(r), subject to the subsidiary condition that the system is compressible so that the 
total mass is constant. The contact line equilibrium condition, called the Young equation 
of capillarity, comes from the transversality condition that applies at the point r = rb.

2.3.4  the Bulk mass only solutIon

If we substitute the appropriate expressions into Equation 2.159 and assume that all 
surface densities and the line density vanish, then we may write the expression for 
(ΩΣ + µjMΣj), after division by 2π, as
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where ∆ = − = ∑ − ∑= =ρ ρ ρ ρ ρη η( ) ( ) ( ) ( )l v
j j

l
j j

v
1 1  denotes the summed density difference 

and η denotes the number of individual chemical components. For each unique 
component there will be a Lagrange multiplier µj. Thus, the term µ ρ ρj j

l
j
v( )( ) ( )−  in 

Equation 2.160 represents a summation over all chemical components and we have 
dropped the explicit summation sign for convenience.

We follow the methodology above and define three integrand functions to be 
of the form f r z z f r k k( , , ) ( , , )/ /= ξ ξ  where k = 1, 2 so that we can write the three 
expressions
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and
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Using these definitions, the calculus of variations problem, defined by Equation 
2.159, can be recast into the form of the integral expression

 δ ξ ξ ξ ξf r rdr f r rdr f
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Once the variational problem is expressed in this form, it is easy to see that each of 
the above integrals has the same functional dependence as the integrals in Equation 
2.29. Consequently, the same necessary conditions for a stationary integral, which 
applied to the integrals above in Equation 2.29, also apply to each of the integrals 
present in Equation 2.164. These conditions consist of three Euler-Lagrange equa-
tions for each of the surfaces under consideration, two transversality conditions for 
the behavior of the contact line and one mass-related condition for the outer bound-
ary at r = rc that affects the second integral in Equation 2.164. The Euler-Lagrange 
equations and the boundary conditions for the problem posed by Equation 2.164 are 
identical with the expressions given by Equations 2.30 through 2.35. The only differ-
ence occurs because the upper r = rc limit on the second integral of Equation 2.164 is 
not fixed, but must be free to slide along the solid surface curve ξ2(r) if one wishes to 
maintain the total mass MΣj of the composite system constant for arbitrary variations 
of the liquid-vapor or liquid-fluid surface.



Thermodynamics of Simple Axisymmetric Capillary Systems 91

2.3.5  mechanIcal equIlIBrIum condItIons For 
the Bulk mass only solutIon

Before proceeding with the derivation of the mechanical equilibrium condi-
tions for a compressible capillary system it is necessary to make the additional 
 assumption—in this section only—that the specific surface and line free energies 
are constants. The mathematical manipulations required to solve Equations 2.30 
through 2.35 with Equations 2.161 through 2.163 are straightforward when we refer 
to the detailed calculations above. However, the presence of the Lagrange multipli-
ers µj in the defining integrand f1(…), rather than the single Lagrange multiplier λ, 
causes slight alterations to the expressions so that the final expressions for Equations 
2.30 through 2.32 are
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 ξ1 0 0/ ( ) ,r = =  (2.166)

and
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for the first integral. Comparison of these three equations (i.e., Equation 2.165 through 
2.167 with Equations 2.36 through 2.38) show that the essence of this change is the 

replacement of the Lagrange multiplier λ with the products µ ρ ρj j
l

j
v( )( ) ( )− . In a simi-

lar manner, it can be shown that the change to the integrand f2(…) results in a change 
to the surface expression so that Equation 2.33 yields
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for the Euler-Lagrange equation for the second integral in Equation 2.164. For the 
third integral in Equation 2.164 one finds that Equation 2.34 becomes
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and the transversality condition, Equation 2.35, for the third integral gives
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Equation 2.165 permits one to derive both an expression for the Lagrange multipliers 
µj and an expression for the surface mechanical equilibrium condition for the liquid-
fluid interface as
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or
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where R lv
1
( )  and R lv

2
( )  denote the principal radii of curvature for the liquid-fluid inter-

face. The Lagrange multipliers µj are evaluated at the symmetry point [0, ξ1(r = 0)] 
using the same procedure that was illustrated above for the single multiplier λ. After 
these steps are performed, the expressions for the constants µj is given by

 µ ρ ρ ω ξ ρ ξj j
l

j
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or by

 µ ρ ρ ω ρ ξj j
l

j
v

lv

o
lv oR

g r P( ) ( )
( )

( )
(( )−( ) = − ∆ = +2

01
ll

o
vP) ( )−( )  (2.174)

after the function ξ1 0// ( )r =  is replaced by its radius of curvature at the origin and 
the specific bulk free energies ω(l) and ω(v) are replaced by the pressure of the bulk 
phase, near to but not at the location of the interface. All quantities in Definitions 
2.173 and 2.174, including the density difference Δρ, which is a function of the 
radius, are evaluated at the origin. The final version of Equation 2.30 is obtained by 
replacing all µ ρ ρj j

l
j
v( )( ) ( )−  terms, using the expression above (i.e., Equation 2.174), 
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so that one obtains the previous expression for the Laplace equation (i.e., Equation 
2.50). In the section above, the Lagrange multiplier λ was shown to be related to 
particular volumes in the composite system. In this section, the Lagrange multi-
pliers µj, defined by either Equation 2.173 or Equation 2.174, have units of joules 
per kg and represent the chemical potentials of the jth chemical components. The 
three terms that occur in Equation 2.173 represent contributions to the chemical 
potentials from the bulk phases, the surface boundary, and the gravitational field 
strength. The key result from this derivation, for the situation in which all phases 
are compressible and all of the mass in the system resides only in the two bulk 
phases, is that the surface mechanical equilibrium condition is identical with the 
relation that was derived above, Equation 2.50, where we assumed that all phases 
were incompressible.

The boundary condition of the liquid-fluid interface at the solid wall (i.e., the 
Young equation of capillarity) is derived from the end point relation that is given 
by Equation 2.167. The constant multipliers µj and the terms in which they occur in 
Equation 2.167 can be eliminated from the final form of the boundary condition by 
using Equation 2.170 since ξ1(r = rb) = ξ2(r = rb) in both relations, which apply only at 
the location of the contact line. Equation 2.167 can be written in the form
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where both ξk(r), k = 1, 2 surface functions are evaluated at the contact line radius 
r = rb. From Equation 2.170, we have that
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Substituting the quantity to the right of µ ρ ρ ξj j
l

j
v

br( ) ( )( ) ( )− 1  from Equation 2.176 into 
Equation 2.175 eliminates all chemical potential terms and yields
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which is identical with the Equation 2.54 obtained previously for the boundary con-
dition at the liquid-fluid surface in contact with the solid wall. Upon simplifying this 
expression, we obtain the Young equation of capillarity in the form given by Equation 
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2.60. If the specific surface and line free energies are given in terms of their surface 
and line tensions, then the Laplace equation and the Young equation are expressible 
as Equations 2.63 and 2.64, respectively. It can also be shown that, although we 
shall not perform the calculation, the appropriate Neumann triangle (quadrilateral) 
relation for the bulk mass only situation is given by the usual scalar force balance 
relations (i.e., Equations 2.132 and 2.133 or Equations 2.149 and 2.150).

2.3.6  mechanIcal equIlIBrIum condItIons For the 
case oF constant Phase densIty

In the previous two sections, it was assumed for simplicity that the total mass in the 
composite system was distributed such that there was no excess mass (see Chapter 1 for 
a definition of excess mass) present at any of the interfaces or at the solid–liquid–fluid 
three-phase contact line. Therefore, in essence, it was assumed that the total mass MΣj, 
defined in Equation 2.158, was composed of only two contributions, namely, M j

l( ) and
M j

v( ). When the composite system’s mass is restricted to occur only within the bulk 
phases one recovers the incompressible forms of the Laplace equation and the Young 
equation of capillarity. However, in the section to follow we shall demonstrate that the 
form of the mechanical equilibrium conditions changes when nonignorable amounts 
of mass are permitted to exist within the surface and linear phases.

It is still possible to cast the variational problem in the form of three integral 
expressions subject to arbitrary, weak variations as written in Equation 2.164, how-
ever, we must modify the integrand functions f rk l l( , , )/ξ ξ  where k = 1, 2, 3 and 
l = 1, 2 that were given in Equations 2.161 through 2.163 to the expressions
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If one compares Equations 2.161 and 2.178, 2.162 and 2.179 or 2.163 and 2.180, it 
will be readily apparent that the latter three relations are mathematically similar 
in form to the previous three relations, but with a different type of specific surface 
free energy quantity. Thus, in each of the three Integrands 2.161 through 2.163 we 
have effectively replaced the specific surface free energy ω(αβ) with a three-term 
quantity ω ρ ξ µ ρ αβαβ αβ αβ( ) ( ) ( ) ( ) ( ),(+ + =g sv slk j j where )),( )lv{ } . It is possible to take 
advantage of this structure by defining three specific surface free energies for these 
compressive systems as
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and the one compressive specific linear free energy as
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slv slv slv

j j
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where the density factor in the gravitational term is a sum over all j chemical compo-
nents (e.g., ρ ρη( ) ( )sl

j j
sl= =Σ 1 ). It should he noted that even when the specific free ener-

gies and the phase densities are all constant, the presence of the surface functions ξk 
(where k = 1, 2) in all of these definitions means that these specific, compressive free 
energies are not constant. Consequently, if one wishes to replace the triplet of terms 
that occur in the Integrands 2.178 through 2.180 with these compressive free ener-
gies, then one must, when evaluating the Euler-Lagrange equation and the boundary 
conditions, remember that these energies are not constant.

For the purpose of illustration and comparison with the results above, only the first 
Euler-Lagrange Equation 2.30 with Integrand 2.178 and corresponding Definition 
2.182 will be considered. The other two Euler-Lagrange equations are evaluated in a 
similar manner. For the case when the specific surface free energy is position depen-
dent, one has from the Euler-Lagrange Equation 2.30
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This expression permits one to write the Lagrange multipliers as
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where the first term in brackets is the mean curvature J(lv); see Equations 2.75 and 
2.76.

At the axis of symmetry where r = 0, the slope of the liquid-vapor surface van-
ishes; that is, ξ1 0 0/ ( )r = = as indicated by Equation 2.166, and the mean curvature 
simplifies to J lv( ) / /= 2 1ξ  so that Equation 2.186 also simplifies to
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where the subscript o symbol is used to denote quantities evaluated at the axis of 
symmetry location and the density difference Δρo is the sum over j of all density 
differences ( )( ) ( )ρ ρoj

l
oj
v−  also evaluated at the axis of symmetry. If the expression for 

ωc
lv( )  from Equation 2.182 is substituted into the partial derivative in Equation 2.187 
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then the chemical potentials can be written as
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Furthermore, if the component density ρ ρ ρoj
lv
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l

oj
v( ) ( ) ( )( )<< − , then we can approximate 

the denominator of Equation 2.190 as
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so that the chemical potential can be written as

µ ξ ω
ρ ρ

ξ ρ
ρoj

o
lv

oj
l

oj
v

o

o

g≈
−

− ∆2 0
01

1

/ / ( )

( ) ( )

( )
( )

jj
l

oj
v

o
l

o
v

oj
l

oj
v( ) ( )

( ) ( )

( ) ( )

/ /

−
− −

−

+

ρ
ω ω
ρ ρ

ξ2 1 (( )
( )( )

( ) ( )

/ / ( )

(
0

2 01ρ
ρ ρ

ξ ω
ρ

oj
lv

oj
l

oj
v

o
lv

oj
l− )) ( ) ( ) ( )

( ) (

( )
−

− ∆
−

− −
ρ

ξ ρ
ρ ρ

ω ω
oj
v

o

oj
l

oj
v

o
l

o
v

g 1 0
))

( ) ( )
.

ρ ρoj
l

oj
v−







 (2.192)

Comparison of this expression with the chemical potential Expression 2.173 shows 
that the presence of a nonzero surface density ρoj

lv( )  slightly modifies the constant 
values of the chemical potentials µoj when it is assumed that most of the mass within 
the composite system is present in the bulk liquid phase as density ρoj

l( )  so that the 
inequality just above Equation 2.191 applies. However, if most of the mass is present 
within a surface film between two low density bulk phases, then one might consider 
treating both densities ρoj

l( )  and ρoj
v( )  as small with respect to ρoj

lv( ) . Under this approxi-
mation, Equation 2.189 could be simplified to
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If the definition of µoj, provided by Equation 2.189, is used to eliminate these 
quantities in favor of the variables on the right-hand side of Equation 2.189, then it 
is possible to substitute the result for µoj from Equation 2.189 into Equation 2.185 to 
obtain an expression that is the Laplace equation of capillarity for the arrangement 
where the liquid-vapor surface phase has nonvanishing surface density and the spe-
cific surface free energy ω(lv) is a constant. The specific steps require one to write 
Equation 2.189 as
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and Equation 2.186 as
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Equating the right-hand side of Equations 2.195 and 2.196 yields, after some rear-
ranging, the expression
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for the Laplace equation. After substituting the result from Equation 2.188 for one 
partial derivative and a zero for the partial derivative with respect to r, one obtains 
the compressible form of the Laplace equation as
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where we have assumed that the densities ρ j
l( )  and ρ j

v( )  do not vary appreciably with 
position in the gravitational field. It is interesting to note that, in comparison with 
Equation 2.50, the apparent specific free energy is not equal to ω γc

lv lv( ) ( ) ,= ∞  but it is 
(approximately) a combination of the surface tension γ ∞

( ) ,lv  the gravity term ρ(lv) gξ1, 
and the terms µ ρj j

lv( )  where the chemical potentials µj are constant as specified by 
either Equation 2.190 or its approximation, Equation 2.192.

Evaluation of the boundary condition at the solid–liquid–fluid contact line to 
determine the form of the Young equation of capillarity requires the evaluation 
of the transversality conditions Equations 2.32 and 2.35 at r = rb. These transver-
sality conditions involve a term of the form ∂ ∂( ) /f rk kξ  that must be evaluated 
because the surface energies ω αβ

c
( )  are position dependent. Consequently, for the 

integrand defined by Equation 2.178 the transversality condition Equation 2.32 
simplifies to
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while the transversality condition Equation 2.35, for the integrand defined by 
Equation 2.180, simplifies to

 ω ω ξ ρ ξ ω
c
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(2.200)

At the contact point r = rb, where all surfaces need to meet, one must have ξ1(rb) = ξ2(rb); 
otherwise, the two surfaces described by these curves would not intersect. With this 
connectivity requirement, Equation 2.199 can be written as
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1
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Substituting this expression for the last term in Equation 2.200 eliminates the quanti-
ties µj, ω(l) and ω(v), and yields the Young equation of capillarity expressed in terms 
of the surface functions ξk(r) where k = 1 or 2 as
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Eliminating the surface derivatives ξk
/  in favor of the surface angles ϑk, following 

the procedure above, yields the Young equation of capillarity or the boundary condi-
tion of the liquid-fluid interface on the solid at the position r = rb as

 ω ω ω ωc
sv

c
sl

c
lv

l c
slv

br
( ) ( ) ( ) ( )cos

cos
.− = +ϑ ϑ2  (2.204)

In contrast to Equation 2.203, this expression is in terms of the specific, compressible 
free energies of the surfaces that intersect at the contact line; the specific, compressible 
free energy of the contact line and the contact angle of the liquid on the solid. However, 
unlike the situation presented in Equation 2.60, the specific, compressible free energies 
ω αβ

c
( )  are functions that depend upon the surface tension if ω γαβ αβ( ) ( )= ∞ , the surface 

excess densities ρ αβ
j
( ) , and the orientation of the surface, through the surface function 

ξk(r), with respect to the gravitational field.
For an axisymmetric liquid lens, the appropriate Neumann triangle (quadrilateral) 

relation for a compressible system is similar to the previous Expression 2.138, but 
with the specific surface free energies ω(αβ) replaced by the specific, compressible sur-
face free energies ω αβ

c
( )  and the specific linear free energy ω(slv) replaced by ωc

slv( ) .
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2.3.7  InterPretatIon oF the comPressIBle 
mechanIcal equIlIBrIum condItIons

Unlike the incompressible variational problem posed above, which considered arbi-
trary virtual displacements subject to a constant volume constraint, there are very 
few, if any, comparable calculations involving a constant mass constraint. However, 
from the calculations above, we can see that for a composite capillary system in 
which nearly all of the mass occurs in the bulk phases that the mechanical equi-
librium conditions (i.e., the Laplace equation, Young equation, and Neumann tri-
angle or quadrilateral relation) are identical to the expressions that occur when one 
assumes that the system is incompressible. On the other hand, when one does not 
restrict the system’s mass to lie exclusively in the bulk phases, then the form of all 
mechanical equilibrium conditions changes to reflect this more complicated picture 
of the interfacial regions. Stated succinctly, it is as if the compressible capillary sys-
tem obeys exactly the same mechanical equilibrium conditions but with a slightly 
different definition for the specific surface and line free energies. These definitions 
are given explicitly by Equations 2.181 through 2.184. In essence, the specific, com-
pressible free energies ω αβ

c
( )  are nonconstant functions that depend upon the sur-

face tension if ω γαβ αβ( ) ( ) ,= ∞  surface excess densities ρ αβ
j
( ) , and the orientation of the 

surface with respect to the gravitational field through the surface function ξk(r). 
Consequently, the compressible version of the Laplace equation (e.g., Equation 
2.198) is not identical to the classical, incompressible version of the Laplace equa-
tion (e.g., Equation 2.50) when the terms ρ ξ µ ραβ αβ( ) ( )g k j j+  are a significant fraction 
of the magnitude of ω αβ

c
( ) . From the boundary conditions (e.g., the Young Equation 

2.204 or the Neumann triangle (quadrilateral) relation) similar conclusions also fol-
low. The effect of this difference between ω(αβ) and ω αβ

c
( )  is most easily illustrated 

by a simple example.
If we consider the case of a sessile drop resting on a horizontal solid surface, then 

the solid surface’s curve is ξ2 (r) = 0. Furthermore, if we assume that all solid surface 
excess densities; that is, ρ ρj

sl
j
sv( ) ( )and vanish and we also require that the specific 

surface free energies are constants; that is, ω γ ω γ( ) ( ) ( ) ( )sl sl sv sv= =∞ ∞and , then we can 
write Equation 2.204 as

 γ γ ω σ
∞ ∞

∞− = +( ) ( ) ( )
( )

cos ,sv sl
c
lv

l

slv

br
ϑ  (2.205)

where we have also assumed that, for simplicity, the linear excess densities vanish 
and the specific linear free energy equals σ∞

( ).slv  Recognizing that the left-hand side 
of Equation 2.205 will still apply when the capillary system is very large; that is, as 
r → ∞, we can write

 γ γ ω∞ ∞ ∞ ∞− =( ) ( ) ( ) cos .sv sl
c

lv
lϑ  (2.206)

Combining Equations 2.205 and 2.206 to eliminate the solid surface tension differ-
ence we obtain the expression
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which was used by Gaydos and Neumann [4] and others [49–51] to determine the 
magnitude and sign of the line tension σ∞

( ).slv  However, in those situations in which 
the terms ρ ξ µ ραβ αβ( ) ( )g j j1 +  are a significant fraction of the magnitude of ω αβ

c
( )  it 

must be expected that this procedure will lead, in general, to incorrect estimates of 
the angle ϑ∞l and the line tension. If we write the two specific surface free energies 
in Equation 2.207, using Equation 2.182, as

 ω ξ γ µ ρ ρ ξc
lv lv

j j
lv lv g r( ) ( ) ( ) ( ) ( )1 1( ) = +( ) +∞  (2.208)

and
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then we may calculate the ratio of these two quantities, which appears in Equation 
2.207, as
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where ρ ρ µ ρ µ ρη η( ) ( ) ( ) (lv
j j

lv
j j

lv
j j j

lv= ∑ = ∑= =1 1and )). When the gravitational contribution is 
small, we can write ρ ξ γ µ ρ( ) ( ) ( )( ) ( ),lv lv

j j
lvg r1 << +∞  and approximate Equation 2.210 as
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which will be close to unity (under this assumption) but not exactly equal to one since 
the liquid-vapor surface density term slightly alters this ratio unless the solid surface 
is horizontal. Should the inequality above Equation 2.211 not apply, then one must 
retain the exact expression given by Equation 2.210. When Equation 2.210 applies, 
then setting the ratio of specific free energies multiplying cos ϑ∞l in Equation 2.207 
equal to one may cause a slight error. In a similar manner, it is possible to approxi-
mate the value of the ratio
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which appears in Equation 2.207 as
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when it is possible to assume that γ ρ ξ µ ρ∞ >> +( )( ) ( ) ( )( ) .lv lv
j j

lvg r1

Equation 2.213, which is an approximation, shows that the estimate of the line 
tension will be slightly influenced by the excess surface densities ρ j

lv( ) . For solid– 
liquid–vapor systems like those studied by Gaydos and Neumann [4] one might be 
able to argue that most, if not all, excess surface density effects would be insig-
nificant given the magnitude of reported line tensions on these solid surfaces [51]. 
Similar conclusions about the difficulty of decoupling the influence of line tension 
from the influence of excess surface density effects also apply for thin fluid films. 
In these thin fluid film systems, the fraction of mass in the surface and line regions 
is considerably larger and the measurements of the line tension are considerably 
smaller [52–61] than comparable estimates for sessile drop systems. Consequently, 
these thin film systems might present an experimental situation where it is not pos-
sible to obtain an unambiguous estimate of the magnitude of the line tension because 
of the masking effect of the excess surface density term.

2.4  COnClusiOns

A generalized, thermodynamic approach to axisymmetric systems with nonignor-
able surface and line regions has been considered to derive extended mechani-
cal equilibrium relations for both the surface and the line boundary regions of 
uncharged capillary systems. The conditions so obtained are generalizations of 
the Laplace equation of capillarity and the corresponding Young equation or 
Neumann triangle relation. The key relations are the Laplace equation of cap-
illarity expressed by Equation 2.50, the Young equation of capillarity given by 
Equation 2.60, and the generalized Neumann triangle relation, Equation 2.138, 
which is actually a quadrilateral relation. It is possible to express Equation 2.138 
as two orthogonal scalar relations as given by Equation 2.146 and 2.147. These key 
relations provide a mechanical equilibrium description for any open axisymmetric 
capillary system. A limited description of nonmoderately curved, axisymmetric 
capillary systems was considered in Section 2.11. The selection of suitable vari-
ables for both the surface phase and the linear phase in an axisymmetric capillary 
system was considered. It was shown that surface free energies related to the mean 
and Gaussian curvature can be carried over directly from the generalized theory 
[1] but that linear free energies involving angles, line curvatures, and line torsions 
should be altered for axisymmetric system to account for the capillary system’s 
symmetry and for those angles that are likely to be experimentally obtainable 
through measurement.

For a compressible, axisymmetric capillary system the forms of the Laplace, 
Young, and Neumann relations remain almost the same provided the specific surface 
free energies ω(αβ) (where the two separating bulk phases are denoted by the Greek 
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symbols α and β) are replaced by the triplet of terms given by the compressive sur-
face free energy ω αβ

c
( )  or

 ω ρ ξ µ ραβ αβ αβ( ) ( ) ( )( ) ,+ +g rk j j  (2.214)

where subscript j denotes the chemical species present at the surface and subscript k 
denotes the surface curve. Thus, Equation 2.198 provides the compressible version 
of the Laplace equation of capillarity, while Equation 2.204 gives the corresponding 
Young equation of capillarity. One consequence of this “replacement” is that the 
energy ω αβ

c
( )  requires one to deal with a more complicated version of the Euler-

Lagrange equation and associated boundary conditions since this energy depends 
explicitly on the surface functions ξk(r). However, one benefit of treating a capillary 
system as compressible is that it permits one to estimate the ratios

 
ω
ω

σ
ω

∞ ∞c
lv

c
lv

slv

c
lv

br

( )

( )

( )

( )
and

1
 (2.215)

occurring in Equation 2.207 provided one can obtain values for the surface excess 
densities ρ αβ

j
( )  and associated chemical potentials µj. For axisymmetric liquid-fluid 

systems, such as a sessile drop on a horizontal solid surface, these ratios are most 
likely given by
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since ξ1(r) − ξ1(∞) ≈ 0 in Equation 2.211 and surface tension will likely dominate 
in Equation 2.213, whereas for thin liquid films it is not as obvious that one can 
decouple the influence of line tension from excess surface density effects.
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3.1 intrOduCtiOn

Numerous methodologies have been developed for the measurement of interfacial 
properties including contact angles and surface tensions. Contact angles are most 
commonly measured by aligning a tangent with the profile of a sessile drop at the 
point of contact with the solid surface. Liquid surface tension measurements com-
monly involve the determination of the height of a meniscus in a capillary or on a 
fiber or a plate. Some of the major methods including the Wilhelmy plate technique 
and Du Nouy ring method [1–5], the drop weight method [2–5], the oscillating jet 
method [3,4], the capillary wave method [3,4], and the spinning drop method [2–5] 
are briefly reviewed in this section. An overview of these techniques reveals that, 
in most instances, a balance must be struck between the simplicity, the accuracy, 
and the flexibility of the methodology. Alternative approaches to obtain the interfa-
cial properties are drop shape methods developed to determine the liquid–vapor or 
liquid–liquid interfacial tensions and the contact angle from the shape of a sessile 
drop, pendant drop, or captive bubble. These methods are widely used due to their 
simplicity and accuracy. In this section, the drop shape methods are described in 
detail.

3.1.1 WIlhelmy Plate and du nouy rInG method

The Wilhelmy plate technique is both accurate and relatively simple to use. The 
standard method of conducting an experiment with this technique is to raise the 
liquid sample until it just touches a thin platinum plate, which is suspended from an 
electrobalance. The measured downward force acting on the plate is related directly 
to the liquid surface tension [6]. The additional pulling force acting on the plate after 
touching the liquid sample, F is

 F p V glv= −γ θ ρcos ,  (3.1)

where p is the perimeter of the plate, V is the volume of displaced liquid by the 
submerged plate, ρ is the density of the liquid, and g is gravitational acceleration. 
In general, if only the measurement of surface tension is desired, then the plate is 
roughened to produce a zero contact angle (complete wetting). The contact angle 
may be determined, provided the surface tension is known.
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This approach has a relatively high degree of accuracy (results are typically given 
with an error of approximately 0.2%), but there can be a number of experimental com-
plications: vapor adsorption at parts of the hang-down mechanism, solute adsorption/
precipitation on the plate or cylinder, and the possibility of swelling and absorption 
of the liquid by the solid are typical examples. A major disadvantage of the Wilhelmy 
plate technique is the requirement of a relatively large amount of liquid. The use of a 
large reservoir can also make it difficult to maintain a high degree of purity, which is 
of critical importance to all surface tension measurements since the introduction of 
impurities (even minute quantities) can dramatically affect the interfacial properties 
[7]. Finally, this method relies on perfect wetting (a zero contact angle) with the solid 
measuring probe, a condition that cannot always be ensured.

The commonly used Du Nouy ring method [3,5] is similar, in principle, to the 
Wilhelmy plate except that a circular loop of wire is used in place of a platinum plate. 
The method does not offer any advantage and is perhaps more awkward because of 
the requirement that the ring be kept horizontal (to within 1º) and the susceptibility 
of the ring to damage.

3.1.2 droP WeIGht method

More than a century ago, a method based on the drop weight was proposed [2–5]. In 
this method, the weight of a drop falling from a capillary is measured. The weight of 
the drop falling off the capillary correlates with the interfacial tension through the 
following equation [8–10]

 γ ρ
π

= V g
rf

∆
2

,  (3.2)

where V is the drop volume, r is the radius of the capillary, and f is an empirical 
factor tabulated as a function of r / Rc (Rc is a characteristic dimension defined as 
V1/3 [9–11]).

The measurement of the interfacial tension with the drop weight technique is very 
simple but sensitive to vibrations [5]. More precisely, the vibrations of the apparatus 
can cause premature separation of the drop from the end of the capillary before the 
drop reaches the critical size. Also, the surface tension measurements of multicom-
ponent solutions, in which adsorption occurs, may not reflect equilibrium saturation 
of the solutes at the interface [5]. There is another concern about the results obtained 
from the drop weight method when it is used especially for surface tension mea-
surements of solutions. The reason lies in the fact that the method depends on an 
empirical factor. While one might argue that such a factor, even if in error, should 
still register small changes in surface tension, it is conceivable that the concomitant 
change in viscosity with solute concentration might affect the empirical factor.

3.1.3 oscIllatInG Jet method

The oscillating jet method is a dynamic method for surface tension measurement. 
The oscillating jet is generated by forcing the liquid through an elliptical orifice that 
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produces a jet with properties of standing waves [3,4,12]. In the absence of viscosity 
and compressibility, the surface tension is related to measurable physical properties 
including the wavelength of the oscillations, liquid density, mean radius of the orifice 
(i.e., average of the minimum and maximum radii), and flow rate [4]. In this method, 
the wavelengths are measured by passing parallel light waves perpendicular to the jet 
stream [4]. Bohr [13] applied the method to a real liquid by taking into account the 
influence of the velocity profile of the jet on surface tension.

The oscillating jet method has been used to study the surface tension of surfactant 
solutions [3]. As the surface tension of the liquid jet changes, because of surfactant 
diffusion in the air/liquid interface, each succeeding wave will have longer wave-
length that corresponds to a lower surface tension value.

The main attraction of this method is its capability to record a very early surface 
age [4]; that is, the length of time from surface formation to some specified time 
(usually until a measurement is taken). This method also gives reasonably accurate 
values of surface tension even if the jet velocity profile is not included in the calcula-
tions. A major problem associated with this method is the cost of equipment, which 
can be prohibitive [4]. The nature of the parameters necessitates measurement with 
sophisticated equipment, especially because of the high degree of accuracy required 
in measuring wavelengths.

3.1.4 caPIllary WaVe method

If a deep body of liquid is perturbed by a vibrator, the surface of the liquid will 
oscillate where the wavelength of the surface waves depends on the liquid surface 
tension and gravity [3]. Such waves are called capillary-gravitational waves. Kelvin 
formulated the theory of capillary-gravitational waves [14]. His theory leads to the 
following relationship

 ν λ
π

πγ
ρλ

2

2
2= +g

,  (3.3)

where ν is the velocity of propagation, λ is the wavelength, g is acceleration due to 
gravity, γ is surface tension, and ρ is the liquid density. It is clear in Equation 3.3 that 
the propagation velocity is determined by gravity for long waves and by surface ten-
sion for short waves (i.e., capillary waves) [4].

Experimentally, the waves are measured as standing waves, and the situation 
might be thought to be a static one. However, individual elements of the liquid in 
the surface region undergo a roughly circular motion, and the surface is alternately 
expanded and compressed [3]. As a result, damping occurs even with a pure liquid, 
and much more so with solutions or film-covered surfaces for which transient surface 
expansions and compressions may be accompanied by considerable local surface 
tension changes and by material transport between surface layers [15].

The theory of the capillary waves (Equation 3.3) is more complicated for vis-
cous liquids, especially for surfactant solutions with viscoelastic surface proper-
ties [4]. Similar to the oscillating jet method, the theory of oscillations at a flat 
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interface is based on the analysis of the Navier-Stokes hydrodynamic equations 
and the boundary conditions at an interface (see details [15–18]). It should be men-
tioned that capillary waves are spontaneously present due to small temperature 
and hence density fluctuations [3]. These minute waves (about 5 Å amplitude and 
0.1 mm wavelength) can be detected by laser light-scattering techniques [19–22]. 
Again, similar to the oscillating jet method, the major problem associated with the 
capillary method is the cost of equipment. In general, this method is more com-
plex than other methods in both theoretical and experimental aspects. Another 
disadvantage of this method can be the large amount of liquid required for each 
experiment.

3.1.5 sPInnInG droP method

In this technique, a drop of liquid (or a bubble) is suspended in a denser liquid, and 
both the drop and the surrounding liquid are contained in a horizontal tube spun 
about its longitudinal axis [4]. As a result of spinning, gravity has little effect on the 
shape of the drop. At low rotational velocities (ω), the drop (bubble) has an ellipsoi-
dal shape, but when ω is sufficiently large, it becomes cylindrical. Under the latter 
condition, the interfacial tension is calculated from the following equation [23]:

 γ ρω= 1
4

3 2r ∆ ,  (3.4)

where r is the radius of the cylindrical drop, and Δρ is the density difference between 
the drop and the surrounding liquid.

The spinning drop method can be used to determine ultralow interfacial tensions 
down to 10–6 mJ/m2 [5]. Another advantage of the spinning drop method is its appli-
cability to the determination of surface tension of highly viscous liquids when many 
traditional methods are unsuitable. For instance, this method is appropriate for poly-
mer melts with a viscosity of 300–500 Pa·s [4]. In these experiments, a solid polymer 
is initially placed in the tube that is heated to the melting temperature of the polymer 
while spinning in an oven with a control window [4]. However, the experiments show 
a smooth drop profile forms only in the case when at least one of the phases is of a 
rather high viscosity. For instance, the experiments are unsuccessful for bubbles in 
easily mobile liquids like water.

3.1.6 droP shaPe technIques

Drop shape methods have been developed to determine the liquid–vapor or liquid–
liquid interfacial tensions and the contact angle from the shape of a sessile drop, 
pendant drop, or captive bubble. In essence, the shape of a drop is determined by a 
combination of surface tension and gravity effects. Surface tension tends to make a 
drop spherical whereas gravity tends to elongate a pendant drop or flatten a sessile 
drop. When gravity and surface tension forces are comparable, then, in principle, one 
can determine the surface tension from an analysis of the shape of the drop.
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The advantages of drop shape methods are numerous. In comparison with a 
method such as the Wilhelmy plate technique, only small amounts of the liquid are 
required. Drop shape methods are easy to handle. They can be used in many diffi-
cult experimental conditions such as studies of temperature or pressure dependence 
of liquid–fluid interfacial tensions. Also, they do not depend on adjustable param-
eters to determine interfacial tensions and contact angles. Drop shape methods have 
been applied to materials ranging from organic liquids to molten metals and from 
pure solvents to concentrated solutions. Also, since the profile of the drop may be 
recorded by digital images, it is possible to study interfacial tensions in dynamic 
systems, where the properties are time dependant.

Mathematically, the balance between surface tension and external forces, such 
as gravity, is reflected in the so-called Laplace equation of capillarity. The Laplace 
equation is the mechanical equilibrium condition for two homogeneous fluids sepa-
rated by an interface [24,25]. It relates the pressure difference across a curved inter-
face to the surface tension and the curvature of the interface:

 γ 1 1

1 2R R
P+





= ∆ ,  (3.5)

where R1 and R2 are the two principal radii of curvature, and ΔP is the pressure dif-
ference across the interface. In the absence of any external forces other than gravity, 
ΔP may be expressed as a linear function of the elevation:

 ∆ ∆ ∆P P gz= + ( )0 ρ ,  (3.6)

where ΔP0 is the pressure difference at a reference plane, and z is the vertical height 
of the drop measured from the reference plane. Thus, for a given value of γ, the shape 
of a drop may be determined from known physical parameters, such as density and 
gravity, and known geometrical quantities, such as the radius of curvature at the 
apex. The inverse (i.e., determination of the interfacial tension, γ, from the shape) is 
also possible, in principle, although this is a much more difficult task.

Mathematically, the integration of the Laplace Equation 3.5 is straightforward 
only for cylindrical menisci; that is, menisci for which one of the principal curva-
tures, 1/R, is zero. For a general irregular meniscus, mathematical analysis would 
be more difficult. For the special case of axisymmetric drops, numerical procedures 
have been devised. Fortunately, axial symmetry is not a very significant restriction 
for most pendant drop and sessile drop systems.

The earliest efforts in the analysis of axisymmetric drops were those of Bashforth 
and Adams [26]. They generated sessile drop profiles for different values of surface 
tension and radius of curvature at the apex of the drop. This was long before digital 
computers appeared and their work required tremendous labor. Hence, the task of 
determining interfacial tension and contact angle from the actual profile became a 
matter of interpolation from their tables, which contained the solutions of the differ-
ential equations describing the profile. Blaisdell [27] and Tawde and Parvatikar [28] 
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extended Bashforth and Adams' tables, and Fordham [29] and Mills [30] generated 
equivalent tables for pendant drops (see Paddy [31]).

Hartland and Hartley [32] collected numerous solutions for determining the 
interfacial tensions of axisymmetric fluid-liquid interfaces of different shapes. A 
FORTRAN computer program was used to integrate the appropriate form of the 
Laplace equation and the results were presented in tabulated form. However, the 
major source of errors in their methods stems from data acquisition. The descrip-
tion of the whole surface of the drop is reduced to the measurement of a few prese-
lected critical points, which are compatible with the tables used. These points are 
critical since they correspond to special characteristics, such as inflection points on 
the interface, and they must be determined with high accuracy. Also, for the deter-
mination of the contact angle, the point of contact with the solid surface where the 
three phases meet must be established. However, these measurements are not easily 
obtained. Furthermore, the use of these tables is limited to drops of a certain size 
and shape range.

Malcolm and Paynter [33] proposed another method for the determination of con-
tact angle and surface tension from sessile drop systems. However, as with some of 
the previous approaches, the data points are specific geometric points on the drop 
interface and the method is also limited to sessile drops with contact angles greater 
than 90º.

Maze and Burnet [34,35] developed a more satisfactory scheme for the deter-
mination of interfacial tensions from the shape of sessile drops. They developed a 
numerical algorithm consisting of a nonlinear regression procedure in which a calcu-
lated drop shape is fitted to a number of arbitrarily selected and measured coordinate 
points on the drop profile by varying two parameters until a best fit is obtained. In 
other words, the measured drop shape (one-half of the meridian section) is described 
by a set of coordinate points and no particular significance is assigned to any of 
the points. In order to start the calculation, reasonable estimates of the drop shape 
and size are required; otherwise the calculated curve will not converge to the mea-
sured one. The initial estimates are obtained, indirectly, using values from the tables 
of Bashforth and Adams [26]. Despite the progress in strategy, there are several 
shortcomings in this algorithm. For example, the error function (i.e., the difference 
between the theoretical drop profile and the experimental drop profile) is computed 
by summing the squares of the horizontal distance between the theoretical drop 
profile and the experimental profile. This computation is not particularly suitable 
for sessile drops whose shapes are strongly influenced by gravity. For instance, large 
drops of low surface tensions tend to flatten near the apex. Therefore, any data point 
near the apex may cause a large error, even if it lies very close to the best-fitting 
curve, and lead to considerable bias of the solution. Also, the identification of the 
apex of the drop is of paramount importance since it acts as the origin of the calcu-
lated curves. Huh and Reed [36] developed a similar approach, but they used a poor 
approximation of the normal distance to define the objective function [37] and the 
apex point must still be predetermined by the user. Also, their method is applicable 
only to sessile drops with contact angles greater than 90º.

Anastasiadis et al. [38] proposed another technique that couples digital image 
processing with robust shape comparison routines [39]. In general, it is recognized 
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that “outliers,” which are erroneous data points of an experimental drop profile, have 
a large impact on the results of the least squares method. Instead of comparing indi-
vidual points on the two curves (as it is compared in the least squares method), the 
robust shape comparison routines compare vectors or line segments on the experi-
mental profile with the corresponding vectors on the theoretical profile. Anastasiadis 
et al. claimed that their technique requires considerably less computer power and 
that it is intrinsically resistant to the presence of outliers. The major problem in their 
technique is that it requires the specification of a reference point on the profile to 
which the positions of all other points on the profile are related. The reference point 
can be either the drop apex or the “center” of the drop, defined as the intersection of 
the vertical axis of symmetry and the horizontal maximum diameter. Thus, the accu-
racy of the results depends not only on the accuracy of the drop profile coordinates 
but also on the accuracy of the determination of the reference point [40,41].

Rotenberg et al. [42,43] developed a more powerful technique, Axisymmetric 
Drop Shape Analysis-Profile (ADSA-P), which predates the work of Anastasiadis 
et al. The ADSA-P technique fits the measured profile (i.e., experimental curve) to 
a Laplacian curve. To evaluate the discrepancy between the theoretical Laplacian 
curve and the actual profile, an objective function is defined as the sum of the squares 
of the normal distances between the measured points and the calculated curve. This 
function is minimized by a nonlinear regression procedure, yielding the interfacial 
tension and the contact angle in the case of a sessile drop. The location of the apex 
of the drop is assumed to be unknown and the coordinates of the origin are consid-
ered as independent variables of the objective function. Thus, the drop shape can 
be measured from any convenient frame and any measured point on the surface is 
equally important. A specific value is not required for the surface tension, the radius 
of curvature at the apex, or the coordinates of the origin. The program requires as 
input several coordinate points along the drop profile, the value of the density dif-
ference across the interface, the magnitude of the local gravitational constant, and 
the distance between the base of the drop and the horizontal coordinate axis. An 
initial guess of the location of the apex and the radius of curvature at the apex are not 
required. The solution of the ADSA-P program yields not only the interfacial tension 
and contact angle, but also the volume, surface area, radius of curvature, and contact 
radius of the drop. Essentially, ADSA-P employs a numerical procedure that unifies 
the method for both the sessile drop and the pendant drop. No table is required, nor 
is there any drop size restriction on the applicability of the method.

The simplicity and accuracy of ADSA-P were further improved as Cheng [40,44] 
implemented image processing techniques to detect the edge of the drop automati-
cally. He incorporated an automated edge detection technique into the ADSA-P pro-
gram that considerably improved the accuracy of the results and the efficiency of the 
ADSA-P technique developed by Rotenberg. Cheng et al. [40,44,45] also evaluated 
the performance of ADSA-P for both pendant and sessile configurations using syn-
thetic drops. The points at five different locations on the profile were individually 
perturbed to test the influence of each location on the results. It was found that data 
points near the neck of a pendant drop or near the liquid-solid interface for a sessile 
drop have more impact on the results than points from other locations. The numerical 
scheme of ADSA-P developed by Rotenberg was found to give very accurate results 
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except for very large and flat sessile drops, where the program failed. In  addition, it 
was difficult to achieve perfect alignment of the camera with a plumb line; there are 
errors associated with the coordinates of the plumb lines defined manually on the 
screen of the computer using a mouse.

Finally, del Río [41,46] developed a new version of ADSA-P that overcomes the 
deficiencies of the numerical schemes of the original algorithm (i.e., Rotenberg algo-
rithm) using more efficient and accurate numerical methods. The new algorithm uses 
the curvature at the apex (rather than the radius of curvature), permits an additional 
optimization parameter (i.e., the vertical misalignment of the camera), and gives 
improved initial estimates of the apex location and shape. The new version is writ-
ten in the C language (rather than FORTRAN); it is also superior to the original 
program in terms of computation time and range of applicability [41]. Del Río also 
developed a new program called Axisymmetric Liquid-Fluid Interface (ALFI) that 
performs in an opposite manner to ADSA-P. It generates theoretical Laplacian curves 
by integrating the Laplace equation for known values of surface tension and curvature 
at the apex; that is, it essentially automates the procedure of Bashforth and Adams.

ADSA-P has been used to study a wide variety of systems, ranging from biologi-
cal to industrial [47]. Recently, it has been found that despite the general success of 
ADSA-P, inconsistent results may be obtained for drops close to spherical shape. 
Preliminary experiments have shown that Rotenberg and del Río ADSA-P fail when 
dealing with near spherical drop shapes, although the latter has a somewhat larger 
range of applicability. For a large drop with a “well-deformed” shape (i.e., a drop 
with inflection points in the neck area), both ADSA-P algorithms perform accurately. 
For example, Figure 3.1a presents an image of a large pendant drop of water formed 
at the end of a Teflon tube with an outer diameter of 3 mm. The surface tension value 
obtained from both algorithms of ADSA-P is 72.25 ± 0.01 mJ/m2 in good agree-
ment with the literature value of the surface tension of water (72.28 mJ/m2 at 24ºC). 
The surface tension value is the mean of the surface tension values of twenty drops 
of the same size. The error limit is calculated using the standard deviation of the 
surface tension values of the twenty drops at the 95% confidence level. As the drop 
is made smaller and hence close to spherical in shape, the results of both ADSA-P 
algorithms deviate from the correct value. For example, for the small drop of water 
shown in Figure 3.1b, the surface tension values obtained from Rotenberg ADSA-P 
and del Río ADSA-P are 83.02 ± 0.27 mJ/m2 and 79.32 ± 0.19 mJ/m2, respectively. 
The surface tension values and the error limits were obtained in a similar fashion as 
explained above. Since water is a pure liquid, it is expected that its surface tension 
remains constant regardless of the size of the drop. Therefore, one can conclude that 
the surface tension value obtained from ADSA-P for small drops cannot be true. It is 
noted that the error limits (i.e., ±0.27 or ±0.19 mJ/m2) do not include the true value 
for the surface tension of water. Thus, it is concluded that ADSA-P (or any drop 
shape technique) works accurately only for “well-deformed” drops. It is apparent that 
a criterion is needed to decide whether a given drop is well-deformed. Simply mak-
ing drops very large is not always possible or desirable. For instance, when ADSA-P 
is used as a film balance, very interesting patterns are observed at high compression 
of a surface film (i.e., necessarily for small and hence relatively spherical drops; 
see Section 3.3.7.4). To evaluate the quality of the surface tension measurements, a 
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quantitative criterion called “shape parameter” will be described in Section 3.3.6. In 
essence, the shape parameter determines the range of drop shapes in which ADSA-P 
succeeds or fails. Such a parameter was formulated using the fact that the curvature 
along the periphery of a spherical drop is constant whereas it changes markedly for 
a well-deformed drop.

For contact angle determinations, with most techniques it becomes increasingly 
difficult to make measurements for flat sessile drops with very low contact angles, 
say below 20° (Figures 3.2c and 3.2d). The accuracy of ADSA-P also decreases 
under these circumstances since it becomes more difficult to acquire accurate coor-
dinate points along the edge of the drop profile. For these situations, it is more useful 
to view a drop from above and determine the contact angle from the contact diameter 
of the drop. Initially, Bikerman [48] proposed to calculate the contact angle from the 
contact diameter and volume of a sessile drop by neglecting the effects of gravity and 
assuming that the drops are sections of a sphere. Obviously, this simple approach is 
only applicable to small drops and/or to very large liquid surface tensions. A modi-
fied version of ADSA, called Axisymmetric Drop Shape Analysis-Contact Diameter 
(ADSA-CD), was developed by Rotenberg and later implemented by Skinner et al. 
[49]. This version does not ignore the effects of gravity. ADSA-CD requires the 
contact diameter, the volume and the liquid surface tension of the drop, the density 

(a) (b)

fiGure 3.1 (a) An image of a large pendant drop of water formed at the end of a Teflon 
tube with an outer diameter of 3 mm. The drop is well-deformed with a maximum diameter 
of 4.7 mm. The surface tension value obtained from ADSA-P (i.e., the latest version) is 72.25 
± 0.01 (mJ/m2), which agrees well with the literature value (i.e., 72.28 mJ/m2 at 24°). (b) An 
image of a small drop of water formed at the end of a Teflon tube with an outer diameter of 
3 mm. The drop is close to spherical shape with a maximum diameter of 4.5 mm. The calcu-
lated surface tension is 79.32 ± 0.19 (mJ/m2). (Hoorfar, M. and Neumann, A. W., Advances in 
Colloid and Interface Science, 121, 25–49, 2006. With permission from Elsevier.)
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difference across the liquid–vapor interface, and the gravitational constant as inputs 
to calculate the contact angle by means of a numerical integration of the Laplace 
equation of capillarity (Equation 3.5).

It has been found that drop shape analysis utilizing a top view is quite useful 
for the somewhat irregular drops that often occur on rough and heterogeneous 
surfaces. In these cases, an average contact diameter leads to an average con-
tact angle. The usefulness of ADSA-CD for averaging over irregularities in the 
three phase contact line proved to be such an asset that it became desirable to 
use it instead of ADSA-P for large contact angles as well. Unfortunately, for 
contact angles above 90°, the three phase line is not visible from above. For 
such cases, yet another version of ADSA has been developed by Moy et al. [50], 
called Axisymmetric Drop Shape Analysis-Maximum Diameter (ADSA-MD). 
The ADSA-MD technique is similar to ADSA-CD; however, it relies on the 
maximum equatorial diameter of a drop to calculate the contact angle. The 
ADSA-CD and ADSA-MD techniques have been unified into a single program 
called Axisymmetric Drop Shape Analysis-Diameter (ADSA-D). Chapter 6 pro-
vides a full description of ADSA-D.

This chapter provides an account of ADSA-P. First, the mathematical formula-
tion of the Laplace equation of capillarity for axisymmetric fluid-liquid interfaces 
is introduced. Following this is a description of the numerical integration schemes, 
the formation of the objective function, the criterion for its minimization, and the 
ALFI program for the generation of Laplacian curves. The two ADSA-P algorithms 
(i.e., Rotenberg and del Río) are then compared for different theoretical drop shapes 

(a)

(b)

fiGure 3.2 (a) side and (b) top view of a sessile drop with a small contact angle.
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to evaluate the range of applicability of the ADSA-P algorithms. The experimental 
setup of ADSA-P for image acquisition and the automated image analysis process for 
detection of the experimental drop profile coordinates are illustrated. Also included 
are details of the shape parameter, a tool to control the quality of the surface tension 
measurements and to quantify the range of applicability of the ADSA-P algorithms. 
Finally, the applicability of ADSA-P is illustrated for the investigation of contact 
angles, pressure dependence of interfacial tensions, ultralow interfacial tensions, 
film balance measurements of insoluble monolayers, density measurement of poly-
mer melts, and measurements of tissue surface tension.

3.2 laplaCe equatiOn Of Capillarity

As described above, the classical Laplace Equation 3.5 describes the mechani-
cal equilibrium condition for two homogeneous fluids separated by an interface. 
Figure 3.3 illustrates a coordinate system for describing such a system. The two radii 
of curvature at any point of a curved surface can be obtained by erecting a normal 
to the surface at the point in question and then passing a plane through the surface 
that contains the normal. In general, the line of intersection between the plane and 
the surface is curved, thus generating the first radius of curvature. The second radius 
of curvature can be obtained by passing a second plane through the surface that is 
perpendicular to the first plane and also contains the normal. If the first plane is 
rotated through a full circle, the first radius of curvature will go through a minimum, 
and its value at this minimum is called the principal radius of curvature. The second 
principal radius of curvature is the corresponding radius in the second plane kept at 
right angles to the first. The pressure difference across the interface does not depend 
upon the manner in which R1 and R2 are chosen and it follows that the sum (1 / R1 + 1 
/ R2) is independent of how the first plane is chosen. In the absence of external forces 
other than gravity, the pressure difference, ΔP, is a linear function of the elevation 
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R1

s

dx

ds dz

z

fiGure 3.3 Definition of the coordinate system for two homogeneous fluids separated by 
an interface. At a point (xi, zi), the turning angle is ϕ. The arc length, s, is measured along the 
drop. R1 and R2 are the two principal radii of curvature; R1 turns in the plane of the paper, and 
R2 rotates in the plane perpendicular to the plane of the paper.
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as described by Equation 3.6. Since the interface is assumed to be symmetric about 
the z-axis, the principal radius of curvature, R1, is related to the arc length, s, and the 
angle of inclination of the interface to the horizontal, ϕ, by (see Figure 3.3)

 
1

1R
d
ds

= φ
.  (3.7)

The second radius of curvature is given by

 
1

2R x
= sin

.
φ

 (3.8)

Due to the axial symmetry of the interface, the curvature at the apex is constant in 
all directions and the two principal radii of curvature are equal; that is,

 
1 1 1

1 2 0R R R
b= = = ,  (3.9)

where R0 and b are the radius of curvature and the curvature at the origin, respec-
tively. Then, from Equation 3.5, the pressure difference at the origin (i.e., at s = 0) 
can be expressed as

 ∆P b0 2= γ .  (3.10)

Substituting Equations 3.7, 3.8, and 3.10 into Equation 3.5 and defining the capil-
lary constant, c, yields

 
d
ds

b cz
x

φ φ= + −2
sin

 (3.11)

 c
g

= ( )∆ρ
γ

,  (3.12)

where the capillary constant, c, has positive values for sessile drops and negative 
values for pendant drops.

Equation 3.11 together with the geometrical relations

 
dx
ds

= cosφ  (3.13)

 
dz
ds

= sinφ  (3.14)
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forms a set of first-order differential equations for x, z, and ϕ as functions of the arc 
length, s, with the boundary conditions

 x z( ) ( ) ( ) .0 0 0 0= = =φ  (3.15)

Also, at s = 0

 
d
ds

b
φ = .  (3.16)

Therefore, the complete shape of the Laplacian axisymmetric fluid-liquid inter-
face curve is obtained by simultaneous integration of the above set of equations 
(i.e., Equations 3.11, 3.13, and 3.14) for given values of b and c. However, there is 
no known general analytical solution for this system of equations, and a numerical 
integration scheme must be used to generate the Laplacian curves.

3.3 axisymmetriC drOp shape analysis: prOfile (adsa-p)

The flowchart presented in Figure 3.4 shows the general procedure of ADSA-P for 
the determination of the interfacial properties from the shapes of pendant or sessile 
drops. The drop profile coordinates (i.e., the experimental profile) are obtained from 
the image of the drop using an image analysis process. The experimental profile and 
physical properties are the input to numerical schemes that are used to fit a series 
of Laplacian curves with known surface tension values to the experimental profile. 
The best fit gives liquid-fluid interfacial tension, contact angle (in the case of sessile 
drops), drop volume, surface area, radius of curvature at the apex, and the radius of 
the contact circle (formed between the liquid and solid in sessile drop experiments).

Physical
properties (ρ, g) 

Numerical optimization

Image

Image analysis

= ∆P0 + (∆ρ)gzγ
R2R1

1+1

Surface tension, contact angle,
surface area, drop volume, and

curvature at the apex

fiGure 3.4 General procedure of Axisymmetric Drop Shape Analysis-Profile (ADSA-P). 
(Hoorfar, M. and Neumann, A. W., Advances in Colloid and Interface Science, 121, 25–49, 
2006. With permission from Elsevier.)
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3.3.1 numerIcal Procedure

The numerical procedure of ADSA-P consists of three parts: (1) the integration of 
the Laplace equation for known values of b and c, (2) the formation of the objective 
function based on the error between the experimental profile and the theoretical 
curve obtained from the previous step, and (3) the minimization of the objective 
function (through an optimization procedure) to calculate the optimization param-
eters. One of the differences between the two ADSA-P algorithms (i.e., Rotenberg 
and del Río) is the number of optimization parameters utilized in the numerical 
procedure. The Rotenberg algorithm uses four optimization variables; that is, 1 / b, 
c / b2, x0, and z0 (x0 and z0 are the coordinates of the apex). However, the del Río algo-
rithm uses five optimization parameters; that is, b, c, x0, z0, and α (the angle of the 
vertical alignment). Although the misalignment of the camera is corrected through 
the image analysis process (see Section 3.3.5), in some experimental situations (e.g., 
image acquisition with very low magnification) it is difficult to achieve perfect verti-
cal alignment. The del Río ADSA-P also resolved the convergence problem of the 
original algorithm for very flat sessile drops. As the sessile drop becomes very large 
and flat (i.e., sessile drops with ultralow surface tensions) the Rotenberg algorithm 
becomes unstable since the radius of curvature at the apex, R0, becomes very large. 
The del Río algorithm overcomes this limitation by replacing the radius of curvature 
at the apex (1/b) with the curvature at the apex (b), which approaches zero for very 
flat sessile drops. Also, the del Río algorithm uses the capillary constant, (Δρ)g / γ, 
instead of the Bond number, (Δρ)gR0

2 / γ, which was used in the Rotenberg algo-
rithm, to make all optimization parameters independent of each other. In addition to 
the optimization parameters, the two ADSA-P algorithms utilize different numerical 
methods for both the integration and the optimization procedures explained in the 
following sections.

3.3.1.1 integration of the laplace equation
The integration of the Laplace equation is necessary not only to construct tables like 
those of Bashforth and Adams [26], and Hartland and Hartley [32], and to gener-
ate theoretical drop profiles or “synthetic” drops that can be used to evaluate the 
performance of ADSA-P [42,45], but it is also a very important part of the ADSA-P 
algorithm. There are several numerical methods available to integrate systems of dif-
ferential equations for initial value problems. A review of some of the best numerical 
integration schemes is presented by Press and colleagues [51]. The ideal scheme 
would perform a given integration with a minimum required computational time 
and with the highest degree of numerical accuracy. The three most commonly used 
numerical methods for solving initial value problems for ordinary differential equa-
tions (ODEs) are: Runge–Kutta, Predictor-Corrector, and Richardson extrapolation. 
The method most widely used is the fourth-order Runge–Kutta procedure because 
of its accuracy. However, it is not usually the fastest. Predictor-Corrector methods, 
since they use past information, are somewhat more difficult to begin and they are 
useful only for smooth problems. Richardson extrapolation uses the powerful idea 
of extrapolating a computed result to the value that would have been obtained if the 
step size had been very much smaller than it actually is. In particular, extrapolation 
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to zero step size is the desired goal. When combined with a particular way of taking 
individual steps (the modified midpoint method) and a particular kind of extrap-
olation (rational function extrapolation), Richardson extrapolation produces the 
Bulirsch-Stoer method. In recent years, Bulirsch-Stoer has become the method of 
choice in many applications. Each of the three types of methods can be organized 
to monitor internal consistency. This allows numerical errors, which are inevitably 
introduced into the solution, to be controlled by automatic adaptive changing of the 
fundamental step size. It is recommended that adaptive step size control always be 
implemented, but this can fail for rather complicated systems of ODEs.

After testing and comparing these methods, it was found that the Bulirsch-Stoer 
scheme executes much faster than Runge–Kutta (two to three times faster, depend-
ing on the system of equations), especially when the adaptive step size control is 
implemented [41]. The reason for such improved speed is that step sizes 16 to 32 
times larger may be taken for the same degree of precision. The results obtained with 
the above integration schemes agree very well (to the numerical precision specified) 
with those published by Hartland and Hartley [32] and Couch [52].

The original version of ADSA-P (i.e., Rotenberg ADSA-P) employs an implicit 
second-order Euler method, whereas the latest version of ADSA-P (i.e., del Río 
ADSA-P) uses the Bulirsch-Stoer method, leaving Runge Kutta for those cases 
where the former fails. The Bulirsch-Stoer method is a more efficient numerical 
integrator than the Euler method as it includes higher-order error terms. Also, the 
use of adaptive step size in the del Río ADSA-P improves the convergence of the 
numerical integrator.

3.3.1.2 error estimation and formation of the Objective function
In essence, ADSA-P fits a Laplacian curve to the experimentally recorded profile. 
Thus, the first step in the analysis of a drop is the determination of the deviation of 
its profile from the shape dictated by the Laplace equation of capillarity, Equation 
3.5. Experimental profile points Ui, i = 1, 2,…, N that describe the meridian interface 
are compared with u = u(s), a calculated Laplacian curve, by computing the normal 
distance, di, between Ui and u as illustrated in Figure 3.5. The Ui points are obtained 
from image analysis techniques (Section 3.3.5). The “error” for the ith point, ei, can 
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X

(xi, zi)
(Xi, Zi)u

di

x0

z0

zUi
Z

fiGure 3.5 Comparison between experimental points and a Laplacian curve. (Hoorfar, M. 
and Neumann, A. W., Advances in Colloid and Interface Science, 121, 25–49, 2006. With 
permission from Elsevier.)
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be computed as the square of the minimum distance, di, assuming that the coordi-
nate systems for the experimental and the calculated profile coincide.

 e d x X z Zi i i i i i= = −( ) + −( )





1
2

1
2

2 2 2
,  (3.17)

where (Xi, Zi) is an experimental point and (xi, zi) is the point on the Laplacian curve 
closest to it. However, the two coordinate systems do not coincide in general; thus, 
their offset and rotation angle must be considered. Then, Equation 3.17 can be writ-
ten (dropping the subscript i) as

 e e ex z= +1
2

2 2( ),  (3.18)

 e x x X Zx = − − +0 cos sin ,α α  (3.19)

 e z z X Zz = − − −0 sin cos ,α α  (3.20)

where (x0, z0) is the offset between the coordinate systems and α is the rotation 
angle.

However, to evaluate these equations for every experimental point, it is neces-
sary to determine the closest point on the Laplacian curve. The distance between 
any experimental point and the computed Laplacian profile is a function of the arc 
length, s, and its minimum or normal distance corresponds to that for which

 
de
ds

f s= =( ) ,0  (3.21)

where derivatives of Equations 3.18 through 3.20 are taken for constant values of the 
parameters b, c, x0, z0, and α. Equation 3.21 must be solved numerically for s. The 
most efficient method to do so is the iterative Newton-Raphson method:

 s s
f s
f s

i i
i

i
+ = −

′
1 ( )

( )
,  (3.22)

where the second derivatives of Equations 3.18 through 3.20 with respect to s are 
required to calculate f ′(si). Newton–Raphson must be initialized with a first guess for 
s to ensure convergence to a minimum. Thus, a value of s—which is in the proxim-
ity of the experimental profile point Ui—is provided. The Laplace equation is then 
integrated to that estimated value of s, the derivatives of Equations 3.18 through 3.20 
are evaluated, and a new value of s is obtained using Equation 3.22. Iteration is con-
tinued until convergence is achieved, with the final outcome being the identification 
of all (xi, zi) points.
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To measure the agreement between the measured or experimental profile and an 
assumed or calculated Laplacian curve, a merit or objective function, E, is defined as 
the sum of the weighted individual errors

 E w ei i

i

N

=
=

∑
1

,  (3.23)

where ei can be evaluated from Equation 3.18 and wi is a weighting factor to account 
for the influence of the location of the ith point on the fitted curve. Until more infor-
mation is available on the appropriate form of the weight values, the wi can be set 
equal to 1.0.

The value of the objective function, E, is a function of a set of parameters, a, 
with elements ak, k = 1, …, M. The goal of this analysis is to calculate the values of 
ak that minimize E; that is, to find the parameter set a that gives the best fit between 
the measured points and a Laplacian curve. The objective function E will assume a 
single absolute minimum value at one point in the M-dimensional space of E. In the 
latest version of ADSA-P, a is the vector of five parameters (M = 5) or any subset 
of it

 a = [ ]b c x z
t

0 0 α ,  (3.24)

where t signifies that Equation 3.24 is a transpose matrix.
As seen in Equations 3.18 through 3.20, ei is a function of the parameter set a as 

well as of the position of the point (xi, zi) determined by its arc length, si. Moreover, 
si itself clearly depends upon the values of the parameters in a. Thus, the objective 
function, E, can be expressed as

 E w e si i i

i

N

( ) ( ), .a a a= [ ]
=

∑
1

 (3.25)

The necessary conditions for an extremum in the value of E are
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3.3.1.3 Optimization procedure: newton’s method
The extremum conditions of E, Equations 3.26, form a set of nonlinear algebraic 
equations in the variables ak, k = 1, …, M. In order to solve for these variables, an 
iterative solution is required. There exist several methods to solve these systems of 
equations [53,54]. In fact, there are no general or perfect methods for solving sys-
tems of nonlinear equations. Every method has advantages and disadvantages, and 
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the choice of a particular method depends on the characteristics of the problem. The 
best known and most powerful one is Newton’s method (also known as the Newton-
Raphson method) for several variables. The iterative procedure of Newton’s method 
can be expressed as

 a a ai i i+ = −1 ∆ ,  (3.27)

where ai is the vector of unknown variables at the ith iteration step, and Δai is a cor-
rection vector resulting from the solution of the associated linear system

 H Ei i i( ) ( ),a a a∆ =  (3.28)

where H(ai) is a Hessian matrix and the components of the vector E(ai) are the first 
partial derivative terms obtained from Equations 3.26 and evaluated at the ith step. 
One important advantage of this algorithm is that the value of the objective function 
and its first and second partial derivatives are all evaluated with the same degree of 
accuracy since they can be evaluated analytically in terms of ordinary first-order 
differential expressions that can then be integrated numerically.

The Newton method is very easy to implement and its asymptotic convergence 
rate is quadratic. It has the disadvantage that partial derivatives are required, which 
are not easily evaluated in many cases, and the method is unpredictable if only a 
poor initial approximation to the solution is available. Several methods attempting 
to overcome these limitations have evolved from Newton’s method. Amongst them, 
the method of incremental loading, steepest descent, and the Levenberg-Marquardt 
method are well known, together with several Newton-like methods. For instance, 
Rotenberg ADSA-P uses incremental loading to alleviate the local minima problem; 
however, this method reduces the convergence rate of the original Newton-Raphson 
method. The latest version of ADSA-P, on the other hand, uses the original Newton-
Raphson method, but the user can adopt the Levenberg-Marquardt method when 
good initial values are unavailable. The Levenberg-Marquardt method needs only 
the first derivative and takes advantage of numerical properties particular to least 
square problems, which are known to be globally convergent, although at a much 
slower rate.

3.3.2 GeneratIon oF laPlacIan curVes usInG alFI

Prior to the use of ADSA-P in actual experiments, it is desirable if not necessary to 
evaluate its accuracy and applicability with synthetic drops obtained by a numerical 
integration of the Laplace Equation 3.5. Experimental drops suffer from errors asso-
ciated with the identification of the true edge of the drop, and thus the coordinates 
of the profile. On the other hand, simulated drops eliminate these errors and, in fact, 
allow the effects of various experimental errors to be estimated by perturbation of 
drop profile points.

Del Río has developed a program called ALFI that not only generates Laplacian 
curves for given values of c, that is, (Δρ)g/γ), and b (i.e., curvature at the apex), but 
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also facilitates the simulation of experimental errors in the drop profile. Some of the 
features of the ALFI program are as follows:

The coordinates of the origin of the drop, •	 x0 and z0, are specified by the 
user. In the measurement of the interfacial properties using ADSA-P, the 
coordinates of the origin are obtained through the optimization process as 
they cannot be readily obtained from the experimental profile.
The profile can be rotated through a specified angle, •	 α, allowing for tests of 
the effect of the vertical misalignment of the camera.
The drops can be scaled in both coordinates by the values •	 Xs and Zs to per-
mit studies on the effect of errors of scaling and/or aspect ratio.
Every point on the profile can be randomly perturbed in the normal direc-•	
tion with a specified maximum perturbation, δmax.

To perturb the points of the Laplacian curve by a distance δ, and to translate 
and rotate the coordinate system, the following relations are used (as illustrated in 
Figure 3.6):

 X x= + δ φsin ,  (3.29)

 Z z= − δ φcos ,  (3.30)

 X
X

x x z z
s

= − + −[ ]1
0 0( )cos ( )sin ,α α  (3.31)

 Z
Z

z z x x
s

= − − −[ ]1
0 0( )cos ( )sin ,α α  (3.32)
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fiGure 3.6 (a) Translation and rotation of the coordinate system; (b) normal perturbation 
of the points of a Laplacian curve by a distance δ.
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where (x, z) are the coordinates of the original Laplacian point, (X, Z) are the 
 coordinates of the new point, α is the angle of rotation of the coordinate system, and 
δ is the normal perturbation distance computed as a random number in the range 
[−δmax, + δmax].

The ALFI program is written in C language using the Bulirsch-Stoer integra-
tion scheme and it performs much faster than the FORTRAN program written by 
Hartland and Hartley [32] using Runge-Kutta. The ALFI program can be run inter-
actively or in batch mode using input files. Another useful feature is that comments 
are allowed in the input file, making it much easier to modify the file from one run 
to another. The output of the program can be directed to a file or to standard output, 
usually the console.

The program generates a number of points according to the step size, Δs, pro-
vided by the user without affecting the precision of the results. A precision of 10–10 
is always used. The program integrates the Laplace equation until a specified value 
of s is reached or until the angle ϕ is greater than 180° for sessile drops or negative 
for pendant drops. The ALFI program can generate the whole drop profile or only 
half of it at the request of the user. Although the algorithm of ALFI is relatively 
simple, it has been found to be useful for general applications in the study of capil-
lary phenomena.

3.3.3 comParIson oF tWo adsa-P alGorIthms

In essence, the del Río algorithm was developed to overcome certain deficiencies 
of the original numerical method especially for flat sessile drop shapes, occurring 
for ultralow surface tensions [46]. As an illustration, Figure 3.7 shows an extremely 
flat synthetic drop generated using ALFI for a known surface tension value. The 
coordinates of this drop profile are given to the two ADSA-P algorithms and it is 
observed that Rotenberg ADSA-P fails to converge to the correct surface tension 
value, whereas del Río ADSA-P determines the correct surface tension value of 
0.001 mJ/m2 to the fourth decimal place.
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fiGure 3.7 Analysis of an extremely flat synthetic drop (R0 = 1000 cm, volume = 0.1 µl, 
equatorial diameter 1.2 mm) of known surface tension, γ = 0.001 mJ/m2. The del Río algo-
rithm gives the correct γ value, but the Rotenberg algorithm fails to converge to the correct 
surface tension value.
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Despite the general success of the latest version of ADSA-P, inconsistent results 
can be obtained for nearly spherical drop shapes. In many studies, it is not possible 
to avoid drop shapes approaching spherical shape. For instance, in the study of film 
stability [55–61], interesting patterns are frequently observed at high compression; 
(i.e., necessarily for small and hence relatively spherical drops; see Section 3.3.7.4). 
Therefore, it is necessary to evaluate the performance of the ADSA-P algorithms for 
nearly spherical drop shapes. The strategy for such an evaluation is to use theoreti-
cal (i.e., ideal) drop coordinate points as input into ADSA-P instead of experimen-
tal points. Any deviation from the known surface tension, which is used as input 
to obtain the theoretical profile, is then obviously due to limitations of ADSA-P. 
Figure 3.8a shows a well-deformed theoretical drop shape where b = 5.11 (cm−1) and 
c = 13.62 (cm−2), which corresponds to a surface tension value of 72 mJ/m2 provided 
that Δρ = 1 (g/cm3) and g = 980.43 (cm/s2). For all intents and purposes, this profile 
is perfect and comparable to a hypothetical experimental profile obtained with eight 
significant figures. Surface tension values were obtained using the two ADSA-P 
algorithms for different cutoff levels. Experimentally, the cutoff level is selected as 
near to the holder as possible so that the largest portion of the experimental profile 
is given to ADSA-P. In this study, however, the cutoff level was lowered step by step 
toward the apex to scrutinize the performance of the two algorithms when only a 
portion of the drop profile is given to ADSA-P. At the “starting cutoff level” shown in 
Figure 3.8a, the two ADSA-P algorithms give the correct surface tension value to at 
least six significant places (i.e., well beyond any possible experimental accuracy). As 
the cutoff level is placed lower and lower, it becomes apparent that the del Río algo-
rithm is more stable than the Rotenberg algorithm. Quite generally, the Rotenberg 
algorithm fails (i.e., |γADSA – γtrue| > 0.1 mJ/m2) in certain situations where the del Río 
algorithm continues to work properly. Finally, del Río ADSA-P also fails, although 
not as easily, when the drop shape near the apex becomes indistinguishable from 
spherical. Basically, at this portion of the drop profile near the apex, the Laplacian 
curves with different surface tension values are not distinguishable from each other. 
In this condition, any numerical scheme can become unstable and fail to converge to 
correct values. The above study was repeated for a more spherical theoretical drop 
where b = 7.46 (cm−1) and c = 13.62 (cm−2) (see Figure 3.8b). The results show that 
the del Río algorithm still performs better than the Rotenberg algorithm at the lower 
cutoff levels, but it requires a significantly larger portion of the profile near the apex 
(i.e., a much higher cutoff level) for a near spherical drop shape compared to a well-
deformed drop shape (see Figure 3.8a and b).

To study the performance of the two algorithms closer to real experimental situ-
ations, the ideal drop profiles shown in Figure 3.8a and b were perturbed randomly 
by the equivalent of one pixel. Figure 3.9a and b show the perturbed well-deformed 
and close to spherical theoretical drop shapes, respectively. It is apparent that the two 
algorithms fail sooner for the perturbed profiles than for the ideal profiles.

The results of the above investigation show that the del Río algorithm also fails, 
although not as easily, as the given drop profile becomes indistinguishable from 
spherical. To illustrate further the source of the above limitation, the optimization 
scheme of the del Río algorithms was scrutinized using two different drop sizes of 
water; that is, a large (well-deformed) drop and a small (close to spherical in shape) 
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drop. The value of the objective function, E, that is, the sum of the normal distances 
between the points of the experimental profile and those of the theoretical curve, 
was recorded during the optimization process, which minimizes the objective func-
tion to find the best fitted Laplacian curve. First, the effect of the cutoff level (as 
shown in Figures 3.8a and 3.9a) on the performance of the optimization scheme 
is illustrated for the well-deformed drop of water at 24°C. Figure 3.10a shows the 
variations of E for different Laplacian curves with different values of γ as a function 
of b. Figure 3.10b shows the results of the same analysis at a lower cutoff level. The 
vertical axis E is presented in a logarithmic scale. It is clear that the global minimum 
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fiGure 3.8 (a) The performance of the two ADSA-P algorithms at different cutoff levels 
for a well-deformed synthetic drop profile generated with eight significant figures for each 
coordinate point. The profile was generated for the values of b = 5.11 (cm–1) and c = 13.62 
(cm–2). (b) The performance of the two ADSA-P algorithms at different cutoff levels for a 
synthetic drop profile that is close to spherical in shape. The profile was generated for the 
values of b = 7.46 (cm–1) and c = 13.62 (cm–2). (Hoorfar, M. and Neumann, A. W., Advances in 
Colloid and Interface Science, 121, 25–49, 2006. With permission from Elsevier.)



130 Mina Hoorfar and A. Wilhelm Neumann

of the objective function is distinct when the cutoff level is near the capillary tube 
(see Figure 3.10a). This minimum value corresponds to a Laplacian curve generated 
for b = 5.11 (cm−1) and γ = 72.25 mJ/m2; that is, a value that is virtually identical with 
the known surface tension value of water (i.e., 72.28 mJ/m2 at 24ºC). Thus, ADSA-P 
performs accurately for a well-deformed drop that has inflection points (in the neck 
area). On the other hand, the objective function does not have a distinct minimum 
value when the cutoff level is placed lower and only the portion of the drop profile 
around the apex is given to ADSA-P (see Figure 3.10b). Specifically, the optimiza-
tion process may choose any Laplacian curve with surface tension values within the 
range of 63.21 mJ/m2 to 79.32 mJ/m2. For the above cutoff level, the surface tension 
value obtained from ADSA-P is 63.21 mJ/m2, which is obviously erroneous. This 
limitation is due to the fact that the Laplacian curves for different values of surface 
tension are not distinguishable near the apex. A similar effect has been observed for 
drops close to spherical in shape. For instance, Figure 3.11 shows the variations of 

0.0

0.2

0.4

0.6

Z 
(c

m
) Starting

cutoff level
Rotenberg

fails

Del Río
fails

(a)

0.0

0.2

0.4

–0.3 –0.2 –0.1 0.0 0.1 0.2 0.3
X (cm)

–0.4 –0.2 0.0 0.2 0.4
X (cm)

Z 
(c

m
)

Starting
cutoff levelRotenberg

fails

Del Río
fails

(b)

fiGure 3.9 (a) The performance of the two ADSA-P algorithms at different cutoff levels 
for a well-deformed theoretical drop profile perturbed randomly by the equivalent of one pixel. 
(b) The performance of the two ADSA-P algorithms at different cutoff levels for a perturbed 
theoretical drop profile that is close to spherical in shape. (Hoorfar, M. and Neumann, A. W., 
Advances in Colloid and Interface Science, 121, 25–49, 2006. With permission from Elsevier.)
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E as the optimization process minimizes the objective function for a small drop of 
water (i.e., near spherical shape). It is noted that there is no distinct minimum value 
for the objective function, which means that a wide range of theoretical Laplacian 
curves can satisfy the optimization process. Thus, the numerical scheme may eas-
ily become unstable and yield erroneous results. The surface tension value obtained 
from ADSA-P for this drop of water is 79.32 mJ/m2, which differs significantly from 
the known surface tension value of water.

Further improvement of the numerical schemes of ADSA-P may have an incremen-
tal impact, but a big breakthrough is not expected. The del Río algorithm is mature, 
although limited by numerical truncation and accumulation of round-off errors that 
are the ultimate limitations of all numerical schemes. Theoretically, each drop shape 
corresponds to a certain surface tension value. However, for nearly spherical drop 
shapes, significantly different surface tension values correspond to only slightly dif-
ferent drop shapes. Thus, the numerical solver can easily become unstable and con-
verge to a wrong value. In this situation, the output of the numerical scheme changes 
dramatically due to small variations of the input. This difficulty cannot be overcome 
within the framework of the numerical schemes. Thus, to increase the range of appli-
cability of ADSA-P, it becomes necessary to improve the accuracy of the experi-
mental profile coordinates by (1) improving the quality of the image and (2) using 
advanced image analysis techniques as explained in the following sections.

3.3.4 adsa-P setuP

The image of a pendant or sessile drop is obtained using the experimental setup of 
ADSA-P shown in Figure 3.12. (See also Chapter 6 for the general experimental 
setup of ADSA-P.) A spot light source is used to illuminate the drop from behind. A 
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heavily frosted diffuser is used in front of the light source to provide a uniformly lit 
background and to minimize heat transfer to the drop during image acquisition. In 
pendant drop experiments, the drop is formed inside a sealed quartz cuvette (Hellma 
Ltd) to minimize evaporation and to isolate the drop from vibration due to air cur-
rents. A Teflon stopper is used to seal the quartz glass cuvette that is located in a 
temperature/pressure cell. Usually, the pendant drop is formed at the end of either a 
Teflon capillary or a stainless steel holder (Section 3.3.6.2). The capillary (or holder) 
is connected to a 2.5 ml syringe (Gastight®, Hamilton Co.) by a Teflon tube with 
an outer diameter of 1.6 mm. The plunger of the syringe is connected to a stepper 
motor (Model 18705, Oriel Corp., USA), which is used to change the volume of the 
drop and facilitate the determination of surface tension in dynamic experiments. For 
a range in drop volume of 75 µl, the travel distance of the motor is 1500 steps. The 
available speed range of the motor is 0–500 steps per second.

In sessile drop experiments, the drop is formed on a solid surface (or on top of a 
stainless steel pedestal used in constrained sessile drop configurations explained in 
Section 3.3.6.5). The size of the drop is then increased by injecting the liquid from 
below the surface using the motorized syringe [62]. Such a mechanism leads to an 
increase in the drop volume and in the three-phase contact radius. The sessile drop 
arrangement is covered by an inverted cuvette to reduce contamination and evapora-
tion. The entire experimental setup of ADSA-P is mounted on a vibration-free table 
(Model 78443-20, Technical Manufacturing Corp.).

A microscope and a CCD monochrome camera are used to obtain a magnified 
image of the drop. The CCD camera provides an analog video signal of the drop that 
is digitized using a frame grabber installed in a host computer. The digitized image 
consists of a fixed number of pixels that determines the resolution of the image. 
Each pixel specifies the intensity of light or gray level (in the black-and-white case) 
in a minute fractional area of the image. The gray level is registered using an 8-bit 
number, so it is defined in the 0–255 interval where 0 and 255 correspond to black 
and white, respectively. Thus, a digitized image is mathematically represented by an 
array of real numbers from 0 to 255. Once a digital image of the drop is generated 
and stored in memory, the image analysis and numerical schemes of the software 
detect the experimental profile and calculate the interfacial properties of the drop, 
respectively.

Figure 3.13 presents a typical output of ADSA-P obtained in a pendant drop 
experiment. The results were obtained using the del Río ADSA-P. This figure shows 
the output response to changes of volume and surface area of a pendant drop of 
cyclohexane. Cyclohexane was chosen because it is a cycloalkane and hence can be 
readily purified. The surrounding of the drop was maintained at 20ºC. To obtain a 
wide range of drop sizes, the volume of the drop was changed continuously using a 
stepper motor. First, a large drop with a volume of 26 µl was formed at the end of 
a Teflon tube with outer and inner diameters of 3 mm and 2 mm, respectively. The 
volume of the drop was then decreased (at a rate of 3.2 µl/sec) until the drop was 
relatively small and close to spherical in shape. At this position the drop volume was 
10 µl. The volume was then increased back to the initial size at the same rate. This 
procedure was repeated for 10 cycles. Since cyclohexane is a pure liquid (with purity 
greater than 99.9%), its surface tension is expected to remain constant regardless of 
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the size of the drop. However, the results as determined by ADSA-P show that the 
surface tension value changes (in this case increases) as the surface area (or the vol-
ume) of the drop decreases. Clearly, such findings must be erroneous. One cycle of 
the above experiment is magnified and shown in Figure 3.14. For a large drop with 
a well-deformed shape (i.e., a drop with inflection points in the neck area), ADSA-P 
calculates the correct surface tension value; that is, the well-known value of the 
surface tension of cyclohexane (25.24 mJ/m2 at 20ºC) [63]. It is also noted that for a 
certain range of drop sizes, surface tension values are fairly constant within a range 
of ±0.1 mJ/m2. On the other hand, as the drop volume decreases, the drop shape 
becomes closer to spherical and the results start deviating from the correct value. 
This error is due to (1) the limitation of the numerical schemes (explained in Section 
3.3.3) and (2) noise in the experimental profile. As discussed above, for nearly spheri-
cal drop shapes, significantly different surface tension values correspond to only 
slightly different drop shapes. Thus, even small errors in the experimental profile 
detected from the image of the drop can slightly shift the selected Laplacian curve, 
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which can cause the surface tension value to deviate dramatically from the true 
value. In essence, the accuracy of the experimental profile coordinates depends on 
the quality of the image and the performance of the image analysis technique; the 
latter is explained in Section 3.3.5.

The factors contributing to the quality of the image are focusing, the range of 
light wavelengths, quality of the lens, and camera resolution. Obviously, focusing 
has a major effect on the quality of the image. Cheng [40] has studied this effect and 
developed an automated focusing procedure that alleviates the problems associated 
with the manual focusing carried out by inspection. In this method, first, the image 
of the drop is acquired at a preliminary focus position obtained manually. Then, sev-
eral images from different focus positions in the vicinity (i.e., some further and some 
closer) of the preliminary focus position are acquired. The Sobel gradient method 
[44,64–72] is applied to these images. The focus position of the image with the high-
est Sobel gradient at the edge is selected for focusing, since the highest gradient cor-
responds to the sharpest optical edge.

In the following sections, the effects of light source, microscope lens, and CCD 
camera on the quality of the image are described.

3.3.4.1 light source
White light sources are usually used to illuminate the pendant as well as the sessile 
drops. Composed of a wide range of wavelengths, white light undergoes chromatic 
aberration that can cause blurring of the image of the drop at the edge [73–78]. These 
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chromatic effects can be reduced using light with a narrow range of wavelengths. 
Therefore, a band-pass filter (i.e., a filter that transmits wavelengths between the two 
cutoff wavelengths of the filter) can be used to pass only a narrow band of the visible 
wavelengths. The choice of an optical filter involves a tradeoff between the intensity 
and the bandwidth of light. In other words, the wider the bandwidth, the higher the 
intensity of light. An appropriate filter is expected to reduce the effect of chromatic 
aberration while maintaining sufficient intensity for the illumination.

The experiment with cyclohexane explained above was repeated using different 
optical filters with different ranges of wavelengths. The results of these experiments 
are summarized in Table 3.1. The results for the largest drops are given in the third 
column and those for the smallest drops in the fourth column. The values given are 
averages of the surface tension values in 10 cycles. The error limits were obtained 
at the 95% confidence level. It is apparent that for sufficiently large and hence well-
deformed drops, ADSA-P produces correct surface tension values for all lighting 
conditions. On the other hand, for small drops, different lighting conditions yield 
different results that differ from the literature value.

The results also show that the use of any optical filter (red, green, or blue) reduces 
the discrepancy between the surface tension values obtained for large and small 
drops. This is presumably due to the fact that filters reduce chromatic effects and 
hence improve the quality of the image.

Finally, the results in the last row of Table 3.1 indicate that the use of the Mikkle 
blue filter (with a wavelength range of 400–500 nm) reduces the discrepancy between 
the surface tension values obtained for large and small drops more than the other fil-
ters examined here. Thus, blue filters are most effective, as expected from optics.

3.3.4.2 microscope lens
Geometrical distortion and spherical aberration are the most significant problems of 
a lens in an optical system regardless of the type of illumination used [75]. Spherical 

table 3.1
surface tension Values of large drops (v = 26 μl) and 
small drops (v = 10 μl) of Cyclohexane Obtained from 
the Cycling experiment using different filters

White light With
Wavelength 
range (nm)

γ (mJ/m2) for 
large drop

γ (mJ/m2) for 
small drop

No filter 390–720 25.23 ± 0.02 27.99 ± 0.19

Light reda 600–700 25.23 ± 0.02 27.50 ± 0.17

Velvet greena 450–550 25.23 ± 0.02 27.29 ± 0.12

Mikkle bluea 400–500 25.24 ± 0.02 27.06 ± 0.08

Note: The literature value of the surface tension of cyclohexane is 25.24 mJ/
m2 at 20ºC.

a These are commercial names for the filters purchased from LEE Filters 
Company (Toronto, Ontario).
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aberration is caused by the failure of a lens to bring parallel rays of light into a single 
focus. Typically, the center and edges of a spherical lens have different focal points 
so that the images of objects, as seen through the whole surface of the lens, may be 
blurry.

A simple way to alleviate the effect of the spherical aberration is to step down the 
aperture and use only the center of the lens. However, this will increase the depth 
of field, which is not desired in this application because the image processing of 
ADSA-P requires a distinct image of the meridian plane. From this point of view, it 
is preferable to open the aperture as wide as possible, which will increase the spheri-
cal aberration. In general, a compromise between these conflicting requirements 
may have to be found. In the setup shown in Figure 3.12, an apochromatic lens (i.e., 
a series of lenses arranged in a row to reduce spherical aberration) is used, which 
minimizes the spherical aberration and hence allows the aperture to be fully open. 
Table 3.2 summarizes the surface tension values of cyclohexane measured with two 
choices of aperture (i.e., fully open and partially open) in the cycling experiment 
described before. In these experiments, a white light source was used. The results 
show that the discrepancy between the surface tension values obtained for large and 
small drops is smaller when the aperture is fully open.

In order to avoid the effect of geometrical distortion, a software module was 
incorporated into the original version of ADSA-P to eliminate the effect of the opti-
cal distortion of the lens using a calibration grid pattern engraved on an optical glass 
slide (see Section 3.3.5) [44].

3.3.4.3 Camera
Image resolution is expected to affect the results. Table 3.3 summarizes the sur-
face tension values of cyclohexane measured in a cycling experiment with both high 
(1280 × 960) and low (640 × 480) image resolutions. For sufficiently large and hence 
well-deformed drops, ADSA-P produces correct surface tension values regardless of 
the image resolution and lighting condition. For small drops, on the other hand, the 
use of the higher image resolution (i.e., 1280 × 960 pixels) improves the results since 
the deviation between the surface tension values of large and small drops is reduced 
compared to the low image resolution. It should be noted that the use of a blue filter is 
a more effective way of improving the outcome than an increased image resolution.

table 3.2
surface tension Values of large drops (v = 26 μl) and small 
drops (v = 10 μl) of Cyclohexane Obtained from the Cycling 
experiment using two different Choices of aperture

aperture γ (mJ/m2) for large drop γ (mJ/m2) for small drop

Partially open 25.31 ± 0.15 28.26 ± 0.26

Fully open 25.23 ± 0.02 27.99 ± 0.19

Note: The literature value of the surface tension of cyclohexane is 25.24 mJ/m2 at 
20ºC.
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The range of possible improvements by hardware modification is illustrated in 
Figure 3.15.

3.3.5 adsa-P ImaGe ProcessInG

Once an image of a drop is obtained and stored in the computer memory, the ADSA-P 
program automatically finds the drop profile coordinates. Besides the quality of the 
image, the performance of the image analysis process has a significant effect on the 

table 3.3
surface tension Values of large drops (v = 26 μl) and small drops 
(v = 10 μl) of Cyclohexane Obtained in a Cycling experiment using 
two different image resolutions and two lighting Conditions

image resolution 
(pixel × pixel) light

With subpixel resolution algorithm

γ (mJ/m2) for large 
drop

γ (mJ/m2) for 
small drop

Low (640 × 480)
White 25.23 ± 0.02 27.99 ± 0.19

Blue 25.24 ± 0.02 27.06 ± 0.08

High (1280 × 960)
White 25.23 ± 0.02 27. 81 ± 0.15

Blue 25.24 ± 0.02 26.98 ± 0.07

Note: The literature value of the surface tension of cyclohexane is 25.24 mJ/m2 at 20ºC.
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accuracy of the experimental profile. Cheng [40,44] developed the original image 
analysis process of ADSA-P, which consists of four steps: (1) edge detection, (2) sub-
pixel resolution, (3) correction of optical distortion, and (4) correction for the mis-
alignment of the camera. First, the edge is found by applying the Sobel edge operator 
with a 3 × 3 convolution mask (see Chapter 4 for details) [40,64,65]. Basically, the 
image is divided into small areas that are 3 × 3 pixels in size. Then, a best least-
squares plane is fitted through nine gray-level pixels of the 3 × 3 array, and the slope 
of this plane in the x and y directions is calculated. From these two directional gradi-
ents, the overall gradient of this plane is calculated. This procedure is then repeated 
for the whole digitized image such that each pixel point is the central point of the 
3 × 3 array. In this fashion, a gray-level gradient for each pixel point of the whole 
image is determined, leading to a gradient image. The drop profile is established 
by searching for the pixels with maximum gradient along the drop profile. In other 
words, the drop profile is approximated by the pixel of the steepest gray-level gradi-
ent, moving from the outside of the drop image to the inside, through the boundary.

After the edge detection process, the error in each drop profile coordinate can be 
expected to be of order one pixel. For a sessile drop of 5 mm in contact diameter, this 
corresponds to an error of 20 µm. To further improve the precision of the detected 
edge, a subpixel resolution algorithm was implemented. This was achieved by fitting 
a gray-level profile perpendicular to the drop interface with the so-called natural 
cubic spline fit [40,79]. The end condition for the natural cubic spline fit is that the 
second derivative equals zero at each end, since the gray level profile across the drop 
interface should approach linearity at each end. For the digitized drop image, it is 
generally not possible to fit a natural cubic spline curve exactly perpendicular to 
the drop interface using the existing gray level values. This fitting can only be done 
in three directions: horizontal, vertical, and diagonal. Hence, the direction closest 
to the perpendicular is chosen from this set of three principal directions, and the 
natural cubic spline fit for the gray levels is calculated in this preferred direction for 
each drop profile point. Figure 3.16 shows a typical example of a gray level profile 
perpendicular to the drop interface fitted with a natural cubic spline curve. Point 
A is the pixel that is selected by the Sobel edge detection as the drop profile coor-
dinate. Various choices can be made for the selection of more precise drop profile 
coordinates from the curve. There are two obvious choices: (1) the point that has the 
maximum slope on the fitted curve (i.e., point A), or (2) the point whose gray level 
is the midpoint of the high and low plateaus of the fitted curve. The first choice is 
found to be unsatisfactory in some cases because of high sensitivity to noise [40]. 
Therefore, the second is utilized (i.e., point B in Figure 3.16). Repeating the above 
procedure for all the pixels improves the accuracy of all the drop profile coordinates. 
It is possible to further improve the accuracy of each drop profile point using a lateral 
smoothing technique and hence further improve the precision of the results. After 
all the profile coordinates of a drop are determined to subpixel resolution, the drop 
profile is then divided into groups of five consecutive drop profile coordinates. For 
example, the data in the first group are (x1, y1),…,(x5, y5) the data in the second group 
are (x2, y2),…,(x6, y6) and the data in the ith group are (xi, yi),…,(xi + 4, yi + 4). The slope 
of each group of data is calculated by fitting a straight line between the first point and 
the last point of the group. The data are then rotated using a transformation matrix so 
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that the slope of the fitted straight line becomes zero. A second-order least squares 
polynomial, x = ay2 + by + c, is then fitted to the group of rotated data points. The 
midpoint of the fitted polynomial is then calculated. Figure 3.17 shows an example of 
the procedure for the first group of data after rotation. As illustrated, to find the mid-
point of the fitted polynomial for the first group of data, y3 is substituted into the 
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fiGure 3.16 Example of a profile with 13 points fitted with a natural spline curve.
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fiGure 3.17 Example of the procedure in applying the smoothing technique for the first 
group of data after rotation. The point (x3, y3) is determined from natural spline fitting and the 
point (x′3, y3) is determined from the smoothing technique.
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above least squares polynomial equation to evaluate the new value of x3, say x′3. The 
point (x3, y3) is then rotated back to the original slope and inputted as one of the drop 
profile coordinates. This smoothing technique is repeated for each group of data.

At this level, the coordinates of the experimental profile are presented in terms 
of pixels. However, the theoretical Laplacian curves (generated by integrating the 
Laplace equation of capillarity for known surface tension values) are obtained in 
centimeters. Therefore, a calibration grid is used to obtain the coordinates of the 
experimental profile in terms of centimeters. The grid is also used for correction 
of the optical distortion caused by the lens of the microscope. Cameras and micro-
scopic lenses tend to produce slightly distorted images, and this distortion can cause 
errors in the final results, particularly in the interfacial tension [40]. To correct opti-
cal distortion, Cheng [40] used an approach similar to that of Green [66]. Consider 
the image of the grid (distorted because of the camera and microscope lens) and the 
original (corrected) grid. The grid consists of many small cells. Correction of optical 
distortion is accomplished by mapping each rectangular cell on the distorted image 
of the grid to the corresponding square cell on the corrected grid. Following this 
procedure, the optical distortion is corrected by mapping the image of the drop or 
its coordinates. A significant advantage of this method is that the aspect ratio of the 
digitizing board does not have to be known [40].

Finally, the misalignment of the camera with respect to the true vertical line as 
given by a plumb line is corrected by means of an appropriate transformation matrix 
[40]. At the beginning of the experiment, an image of a plumb line is acquired. The 
coordinates of the plumb line are detected and also corrected through the optical 
distortion correction process. Then, the angle of the plumb line with respect to a 
nominally vertical line is calculated. This angle represents the vertical misalignment 
of the camera, α. Although the misalignment of the camera is corrected through the 
above process, in some experimental situations it is difficult to achieve perfect verti-
cal alignment. For instance, it is difficult to obtain the coordinates of the plumb line 
as well as the angle, α, between the plumb line and a true vertical line accurately 
when images are acquired with very low magnification. Therefore, in the numerical 
schemes of ADSA-P (see Section 3.3.1.3), α is also obtained through the optimiza-
tion process.

In the original image analysis of ADSA-P developed by Cheng [40], the compo-
nents of the image analysis process are mixed so that the study of the effect of each 
component as well as further improvement is difficult, if not impossible. Recently, 
the image analysis part has been redeveloped in a fully modular form [80,81] so 
that the significance of each module in the performance of ADSA-P can be evalu-
ated separately. For instance, Table 3.4 shows the effect of each step of the image 
analysis part on the surface tension measurements obtained for large pendant drops 
of cyclohexane (after the improvement of the hardware explained in Section 3.3.4). 
Each column of the table contains: (1) the average of the surface tension values of the 
largest drops in 10 cycles, and (2) the range of error obtained based on the standard 
deviation of the surface tension values in 10 cycles at the 95% confidence level. It is 
clear that the surface tension value approaches the correct value (i.e., 25.24 mJ/m2 
at 20ºC) and the error significantly decreases as each step is taken. Also, the effect 
of the optical distortion correction process is, at least in the case considered, more 



142 Mina Hoorfar and A. Wilhelm Neumann

significant than the other modules of the image analysis part. The above type of 
result has also been observed in other pendant drop experiments conducted with dif-
ferent liquids [82]. Obviously, the use of a microscope lens with higher quality will 
reduce the above effect.

Since the image analysis of ADSA-P is modular, it is possible to compare dif-
ferent edge detection techniques with the Sobel edge operator, implemented in the 
original image analysis process of ADSA-P. The Sobel operator was explained 
before. The other edge detection techniques considered here are Roberts, Prewitt, 
Laplacian of Gaussian (LoG), and Canny (see Chapter 4 for details of these differ-
ent edge detectors). The Roberts operator [83] is the earliest operator developed to 
approximate the gradient in digital images. It uses a 2 × 2 convolution mask. The 
Prewitt operator [84] uses a 3 × 3 convolution mask (like the Sobel operator) and it 
performs better than the Sobel operator for a vertical edge. However, for a diagonal 
edge, the Sobel operator is superior [85]. The LoG [65] operator first smoothens the 
image by a convolution filter with a Laplacian of Gaussian mask. Then, it finds the 
edge as the location where the gradient of the gray level of the smoothened image is 
at the maximum. In other words, LoG locates the edge where the second derivative 
of the gray level is zero. Finally, the Canny operator [86] finds edges by searching 
for local maxima of the gradient of the digital image. The gradient is calculated 
using the derivative of a Gaussian filter. The method uses two thresholds to detect 
strong and weak edges, and includes the weak edges in the output only if they are 
connected to strong edges. Table 3.5 summarizes the surface tension values of large 
drops of cyclohexane obtained using different edge detection methods in two dif-
ferent conditions: (1) with drop profile corrections (i.e., cubic spline fitting, optical 
distortion correction, and misalignment correction of the camera), and (2) without 
drop profile corrections. It will become clear that the drop profile corrections have 
a considerable impact on the quality of the results no matter what edge detection 
method is used.

The effect of different edge detection techniques on ADSA-P output is shown 
in Table 3.6 for large and small drops. The results for cyclohexane indicate that the 
effect of different edge detection techniques is also significant for the small drops. 
The Canny method [86] may have particular merit, as the deviation between the 
surface tension values obtained for small and large drops is smaller than the val-
ues obtained using other edge detection techniques. The improvement of the results 
is possibly due to the fact that the Canny edge detection removes noise from the 

table 3.4
effect of each step of the image analysis part on the surface tension 
measurements Obtained for large pendant drops of Cyclohexane

image 
analysis steps

sobel edge 
detection

Cubic spline 
fit

Optical distortion 
Correction

Camera misalignment 
Correction

γ (mJ/m2) 26.36 ± 0.11 26.30 ± 0.08 25.47 ± 0.04 25.24 ± 0.02

Note: The literature value of the surface tension of cyclohexane is 25.24 mJ/m2 at 20ºC.
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image using a convolution Gaussian filter prior to the edge detection and that it uses 
two  different threshold values for “strong” and “weak” edges. More detailed and 
advanced image analysis techniques for ADSA will be described in Chapter 4.

3.3.6 shaPe Parameter

The results in Table 3.6 suggest that even after the improvement of the image 
quality (hardware) and use of more sophisticated edge detection techniques and 

table 3.5
surface tension Values of large drops of 
Cyclohexane Obtained With and Without drop 
profile Corrections using different edge 
detection techniques

edge detection

γ (mJ/m2) for large drop

With drop profile 
Corrections

Without drop profile 
Corrections

Sobel 25.24 ± 0.02 26.36 ± 0.08

Roberts 25.24 ± 0.02 26.38 ± 0.10

Prewitt 25.24 ± 0.02 26.37 ± 0.09

LOG 25.24 ± 0.02 26.41 ± 0.06

Canny 25.24 ± 0.02 26.26 ± 0.06

Note: The literature value of the surface tension of cyclohexane is 
25.24 mJ/m2 at 20ºC.

table 3.6
surface tension Values Obtained using different 
edge detection techniques for small and large 
drops of Cyclohexane using all drop profile 
Corrections

edge detection
γ (mJ/m2) for large 

drop
γ (mJ/m2) for 
small drop

Sobel 25.24 ± 0.02 27.06 ± 0.08

Roberts 25.24 ± 0.02 27.18 ± 0.14

Prewitt 25.24 ± 0.02 27.11 ± 0.13

LOG 25.24 ± 0.02 26.91 ± 0.07

Canny 25.24 ± 0.02 26.79 ± 0.06

Note: The literature value of the surface tension of cyclohexane is 
25.24 mJ/m2 at 20ºC.
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efficient numerical schemes, there are still errors in surface tension measurement of 
ADSA-P for nearly spherical drops. In view of this limitation, it becomes necessary 
to identify the range of drop sizes for which surface tension values are obtained 
with a certain accuracy, say ±0.1 mJ/m2. For this purpose, a quantitative criterion 
called shape parameter is introduced. The shape parameter expresses quantitatively 
the difference in shape between a given experimental drop and a spherical shape. 
Such a parameter is formulated using the fact that the curvature along the periphery 
of a spherical drop is constant whereas it changes markedly for a well-deformed 
drop. Various definitions are possible. A possible definition for the shape parameter 
would be the difference between the drop volume and the volume of a sphere with 
radius R0 (i.e., the radius of curvature at the apex of the drop). A seemingly simple 
way would be to use the volume of the drop obtained from ADSA-P and compare 
it to the volume of a sphere. However, it is not logical to use ADSA-P outputs to 
evaluate ADSA-P. In other words, the shape parameter should be obtained indepen-
dently from ADSA-P. An alternative approach would be to calculate numerically 
the volume of the drop from the experimental profile of the drop and compare it 
to the volume of a sphere. A similar but less computationally involved approach is 
to calculate the difference between the projected area of the drop and an inscribed 
circle with radius R0. This definition is preferred to formulate the shape parameter. 
Based on this definition, the shape parameter is zero for a completely spherical drop 
and larger than zero for a well-deformed drop. The above different definitions of the 
shape parameter were compared for different sizes and shapes of drops. The results 
show that the pattern of the shape parameter for different drop shapes is almost the 
same for all the above definitions and does not affect any conclusions one might 
want to draw.

To eliminate the effect of the image size or optical magnification of the drop, it is 
desired to define the shape parameter as a dimensionless parameter. One approach 
would be to normalize the shape parameter with the area of the inscribed circle. The 
difficulty with the above definition is that the shape parameter would not have an 
upper limit for the case of well-deformed drops. This difficulty is removed by nor-
malizing the shape parameter with respect to the projected area of the drop instead 
of the circle. Thus, the final choice for the shape parameter is
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where the numerator represents the absolute value of the difference between the 
projected area of the drop and the inscribed circle with radius R0 (see the hatched 
area in Figure 3.18a); the denominator represents the projected area of the drop that 
is calculated numerically from the experimental profile obtained from the image of 
the drop. The radius R0 is calculated by fitting tangent lines to the drop profile at any 
two points in the apex region, (X1, Z1) and (X2, Z2). These lines are described by the 
equations Z = a1X + b1 and Z = a2X + b2. The perpendicular lines to these tangent 
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lines (i.e., the lines that are normal to the profile) intersect and form radii r1 and r2 
equal to

 r
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1 2
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If several pairs of points are selected such that they are close to the apex but 
far enough apart, their tangents (and normals) are not parallel. Thus, the radius of 
curvature at the apex can be averaged using Equations 3.34 and 3.35 for each pair 
of points. This approach gives better results than the commonly used method of 
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fiGure 3.18 (a) The shape parameter Ps corresponds to the hatched area between the 
drop profile and an inscribed circle with a radius of R0. (b) The shape parameter Ps for two 
drops of cyclohexane formed at the end of a Teflon capillary. (Hoorfar, M. and Neumann, 
A. W., Advances in Colloid and Interface Science, 121, 25–49, 2006. With permission from 
Elsevier.)
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fitting a circumference to some points in the apex region [41]. Also, in this way, the 
 coordinates of the apex are not required. The value of the shape parameter for each 
drop profile is calculated using a program written using MATLAB® scripts [80].

The shape parameter obtained based on Equation 3.33 has two key features: (1) 
it shows the percentage of the projected drop area that deviates from the circle, and 
(2) it is bounded between zero and unity for pendant drops. This is normally true 
for sessile drops also, except for drops with very low surface tension where the drop 
can be quite flat even for large contact angles and the radius of curvature at the apex 
becomes quite large so that the tangent sphere will be quite large as well (see the 
results in Section 3.3.6.6). Figure 3.18b presents the shape parameter values (i.e., 
calculated based on Equation 3.33) of two different drop sizes of cyclohexane formed 
at the end of a Teflon capillary. It is noted that the shape parameter of the well-
deformed drop (i.e., a large drop) is significantly larger than that of the near spherical 
drop (i.e., a small drop).

3.3.6.1 Critical shape parameter
The result of a pendant drop experiment is used to illustrate how the shape param-
eter can be used to quantify the range of applicability of ADSA-P. Figure 3.19 pres-
ents the surface tension measurements obtained for cyclohexane in a sequence of 
static experiments. In this type of experiment, the volume of the drop is increased/
decreased slowly (i.e., at a rate of 0.1 µl/sec) in a finite number of intervals where 
the stepper motor is stopped for about one minute at the end of each interval to 
ensure that the drop reaches equilibrium. The experiment was conducted at 20ºC. 
The drop was formed at the end of the Teflon capillary (with an outer diameter of 
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fiGure 3.19 Experimental results of a sequence of static experiments conducted for a 
pendant drop of cyclohexane formed at the end of a Teflon capillary with an outer diameter 
of 3 mm. For a certain range of drop sizes shown in the surface tension graph, the differ-
ence between the surface tension values obtained from ADSA-P and the true surface tension 
of cyclohexane is less than ±0.1 (mJ/m2). (Hoorfar, M. and Neumann, A. W., Advances in 
Colloid and Interface Science, 121, 25–49, 2006. With permission from Elsevier.)
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3 mm and an inner diameter of 2 mm). Again, cyclohexane was chosen because it is 
a cycloalkane and hence can be readily purified. Since cyclohexane is a pure liquid 
(with purity greater than 99.9%), its surface tension is expected to remain constant 
regardless of the size of the drop. However, the results of ADSA-P show that the 
surface tension value changes (in this case increases) as the volume (or the surface 
area) of the drop decreases. Obviously, the surface tension obtained for small drops 
must be erroneous.

It is clear that for a certain range of drop sizes (see Figure 3.19), the difference 
between the surface tension values obtained from ADSA-P and the literature value 
of the surface tension of cyclohexane (25.24 mJ/m2 at 20ºC) [63] is less than ±0.1 
mJ/m2. Outside of that range, the surface tension obtained from ADSA-P deviates 
considerably from the literature value. For each drop size in the above experiment, 
the value of the shape parameter was calculated based on Equation 3.33. Figure 3.20 
shows the variation of the surface tension values versus the shape parameter calcu-
lated for each drop size. The vertical axis presents the relative error, εrel, which is 
defined as the difference between the surface tension value obtained from ADSA-P 
for each drop size and the true surface tension. The relative error has been normal-
ized with respect to the true surface tension. The relative error is given by

 ε γ γ
γ

γ
γrel

ADSA true

true true

= − = ∆
.  (3.36)

For the drops with larger values of the shape parameter, the error is relatively 
constant near zero; however, from a certain point on, it increases rapidly as the shape 
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fiGure 3.20 Relative error of surface tension as a function of the shape parameter for dif-
ferent drop sizes of a pendant drop of cyclohexane in a sequence of static experiments. The 
drop was formed at the end of a Teflon capillary with an outer diameter of 3 mm. (Hoorfar, M. 
and Neumann, A. W., Advances in Colloid and Interface Science, 121, 25–49, 2006. With 
permission from Elsevier.)
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parameter decreases. The range of acceptable drop shapes depends on the desired 
accuracy. Here the desired accuracy is chosen as 0.1 mJ/m2 (i.e., |Δγ | ≤ 0.1), which 
corresponds to a relative error of 0.004 (i.e., |εrel| ≤ 0.004) for the above experiment of 
cyclohexane. Based on the above value, the graph is divided into two parts. The cutoff 
line will be at the shape parameter of 0.29 for the above experiment. The threshold 
of 0.29 is referred to as the “critical shape parameter” (i.e., Ps (critical) = 0.29). A shape 
parameter above the critical value guarantees the error to be less than 0.1 mJ/m2. 
The results in Figure 3.20 also show that the deviation of the  surface tension val-
ues (obtained from ADSA-P) from the true value increases as the shape parameter 
decreases. This deviation can be positive (Figure 3.20) or negative (Figures 3.32 and 
3.33). It will be shown in Section 3.3.6.6 that the sign of the error also depends on 
the numerical schemes.

Similar considerations will apply to other desired or needed accuracies. If a dif-
ferent accuracy is chosen, the value of the critical shape parameter as well as the 
range of applicability of ADSA-P will be different. For instance, for some purposes 
the accuracy needed may be as modest as ±1 mJ/m2 (see Section 3.3.6.5). As a result, 
the critical value will be much smaller, and hence the range of the acceptable drop 
shapes will be significantly larger.

It is anticipated that the above critical shape parameter (i.e., Ps (critical) = 0.29) 
changes as certain experimental conditions change. The factors that may affect the 
critical shape parameter are: (1) the material, size, and shape of the holder used 
to form the drop; (2) liquid properties (such as density and surface tension); and 
(3) dynamic effects (such as momentum and viscous forces) that can influence the 
drop shape as the drop volume is changed rapidly (in dynamic experiments). The 
effects of these factors are scrutinized in the following sections.

3.3.6.2  effect of the material, size, and shape of the 
holder on the Critical shape parameter

Different drop arrangements are shown in Figure 3.21. Figure 3.21a presents a 
pendant drop of a liquid formed at the end of a Teflon capillary. The second shape 
is a pendant drop formed at the end of a stainless steel holder (Figure 3.21b). In 
essence, the holder is an “inverted pedestal.” The pedestal is used in a constrained 
sessile drop configuration shown in Figure 3.21c (see Chapter 5 for more details of 
the constrained sessile drop configuration). The edge of the holder is sharp with an 
angle of approximately 45° to prevent spreading of the liquid on the outer surface 
of the holder [87]. It is apparent that different types of holders produce different 
drop shapes. Thus, it is expected that the material and size of the holder affect the 
critical shape parameter and hence the range of applicability of ADSA-P. To eluci-
date this possibility, the experiment conducted with the Teflon capillary (Figures 
3.19 through 3.20) was repeated using a stainless steel holder with the same diam-
eter as the Teflon capillary (i.e., 3 mm). The chosen liquid was again cyclohexane. 
The drop is formed at the circular edge (i.e., the outer diameter) since the holder 
is hydrophilic. The experiment was conducted in a stepwise fashion. Figure 3.22 
presents the relative error in surface tension as a function of the shape parameter. 
It is clear that the range of drop shapes yielding surface tensions with an accuracy 
of ±0.1 mJ/m2 is larger in the case of the stainless steel holder than in the case of 
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the Teflon capillary (see Figure 3.20). For large values of the shape parameter, 
the error is relatively constant, near zero and bounded, verifying that ADSA-P 
performs accurately for well- deformed drops. On the other hand, for small val-
ues of the shape parameter, the relative error increases as the shape parameter 
decreases so that the accuracy of ADSA-P deteriorates although not as much as 
in the case of the Teflon capillary. Based on the desired accuracy (i.e., |Δγ | ≤ 0.1 
that corresponds to |εrel| ≤ 0.004 for cyclohexane), the critical shape parameter was 

(a) (b) (c)

fiGure 3.21 (a) Image of a pendant drop formed at the end of a Teflon capillary. (b) Image 
of a pendant drop formed at the end of a stainless steel holder. (c) Image of a constrained sessile 
drop formed on top of a stainless steel pedestal. (Hoorfar, M. and Neumann, A. W., Advances 
in Colloid and Interface Science, 121, 25–49, 2006. With permission from Elsevier.)

0.10
Ps(critical) ≈ 0.18

0.08

0.06

ε re
l

Ps ≥ 0.18
0.04

|Δγ| ≤ 0.1 (mJ/m2)

0.02
|εrel| ≤ 0.004

0.00

–0.02
0.0 0.1 0.2 0.3 0.4 0.5 0.6

PS

fiGure 3.22 Relative error of surface tension as a function of the shape parameter for differ-
ent drop sizes of a pendant drop of cyclohexane formed at the end of a stainless steel holder with 
an outer diameter of 3 mm and inner diameter of 0.5 mm. (Hoorfar, M. and Neumann, A. W., 
Advances in Colloid and Interface Science, 121, 25–49, 2006. With permission from Elsevier.)
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found as Ps (critical) = 0.18. The comparison between Figures 3.20 and 3.22 shows 
that the critical shape parameter obtained for the case of the stainless steel holder 
(i.e., Ps (critical) steel = 0.18) is significantly smaller than that obtained for the case of 
the Teflon tube (i.e., Ps (critical) Teflon = 0.29). In other words, the more hydrophilic the 
material of the holder, the larger the range of applicability of ADSA-P. Thus, the 
stainless steel holder is recommended for surface tension measurements.

In addition to the material of the holder, its size could affect the critical shape 
parameter as it has been observed that different sizes of the holder produce differ-
ent shapes. To illustrate the above effect, stainless steel holders with different sizes 
ranging from 1.5 mm to 6 mm in diameter were used. For each size of holder, the 
above experiment with cyclohexane was repeated and the values of the critical shape 
parameter were determined. Figure 3.23 shows the critical shape parameter as a func-
tion of the size of holder. It is clear that the larger the size of the holder, the smaller 
the critical shape parameter. In other words, larger holders provide larger ranges of 
drop shapes that are acceptable for surface tension measurements. Although holders 
with large diameters are generally recommended for surface tension measurements 
using the drop shape techniques, there is a limit. The diameter of the holder must be 
selected within a range where the effect of gravity and the effect of surface tension 
on the drop (formed at the end of the holder) are comparable. If the effect of grav-
ity is significantly larger than the effect of surface tension, the drop will fall off the 
capillary (holder). On the other hand, the drop becomes close to spherical in shape if 
the effect of surface tension is significantly larger than that of gravity.

Another important inference from Figure 3.23 is that the critical shape parameter 
changes fairly linearly with the size of the holder. Therefore, it is possible to use 
interpolation to find the critical shape parameter for a given size of holder.

The results presented in this section suggest that the more hydrophilic and the 
larger the size of the holder, the larger the range of applicability. Thus, the use of the 
stainless steel holder with a large outer diameter is preferable. The circular edge of 
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fiGure 3.23 The critical shape parameter as a function of the outer diameter of the  circular 
contact area of the holder for the pendant drop configuration. (Hoorfar, M. and Neumann, A. W., 
Advances in Colloid and Interface Science, 121, 25–49, 2006. With permission from Elsevier.)
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the stainless steel holder should be a knife edge as shown in Figure 3.21b to prevent 
spreading of the liquid, especially with ultralow surface tension, over the exterior of 
the holder. However, the angle of the edge has no effect on the shape parameter since 
the drop is formed at the circular edge. This has been elucidated in the experiment 
conducted using a stainless steel capillary, which is essentially a holder with an edge 
angle of 90º [80,81]. The critical shape parameter was found as Ps (critical) = 0.18; that 
is, the same as that obtained for the case of the stainless steel holder with an edge 
angle of 45º. Thus, the edge has no effect on the critical shape parameter and only 
facilitates the experimental process by preventing the spreading of the liquid over 
the wall of the holder. Similar to the angle of the edge, the size of the inner diameter 
of the holder has no effect on the critical shape parameter since the holder is hydro-
philic and the drop is attached (hinged) at the outer diameter. This was confirmed 
by an experiment using a holder with a larger inner diameter (i.e., 2 mm [80,81]). 
Nevertheless, the question of the inner diameter may arise in dynamic experiments 
where the momentum of the liquid that is pumped into or out of the drop depends on 
the size of the inner diameter.

3.3.6.3 effect of liquid properties on the Critical shape parameter
The shape parameter and the critical shape parameter were scrutinized in the previ-
ous section for the effect of hydrophobicity and the shape of a capillary or other solid 
surface supporting the liquid drop. The shape parameter may very well also depend 
on liquid properties. This was elucidated experimentally using four liquids with dif-
ferent surface tensions and densities. Table 3.7 summarizes the results obtained for 
pendant drops of different liquids formed at the end of a stainless steel holder with 
an outer diameter of 3 mm. The results show that the critical shape parameter is 
constant from one liquid to another, and that surface tension values obtained from 
ADSA-P for large drops agree very well with those obtained from the literature [63]. 
Similar results were found in experiments using a Teflon capillary tube instead of a 
stainless steel holder [82]. Thus, it can be concluded that the liquid properties have 
no effect on the critical shape parameter. This finding can be explained by the fact 
that the shape parameter is a geometrical property and not a physical property of the 
drop. Thus, the critical shape parameter obtained for a certain material and size of 

table 3.7
the Values of the Critical shape parameter of 
pendant drops of different liquids Obtained With a 
stainless steel holder of an Outer diameter of 3 mm

liquid γtrue (mJ/m2) γ∞ (mJ/m2) Ps (critical)

Cyclohexane 25.07 (at 21.5°) 25.06 ± 0.01 0.18

Hexadecane 27.47 (at 20°) 27.43 ± 0.02 0.17

Diethyl phthalate 36.54 (at 20°) 36.54 ± 0.01 0.18

Glycerol 63.35 (at 20°) 63.34 ± 0.01 0.19
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holder can be used to identify the range of acceptable drop shapes in the experiments 
involving solutions or pure liquids with unknown surface tension values.

3.3.6.4 impact of dynamic effects on the Critical shape parameter
The Laplace equation is an equilibrium condition, not necessarily applicable for flow 
situations. However, it is known that surface tension equilibrium is reached quickly, 
so that total quiescence of the liquid may not be strictly necessary. Of course, at suf-
ficiently high flow rates of liquid into the drop, deviations from the Laplacian shape 
are to be expected. It will be shown below that ADSA-P can nevertheless be used up 
to remarkably large flow rates. Not unexpectedly, the effect of liquid flow expresses 
itself in an increase of the critical shape parameter. That is, larger deviations from 
spherical shape are necessary for the measurement to remain meaningful.

A systematic study of dynamic parameters in such a drop constellation might be 
difficult. In the experiments shown below, a constant volume flow rate into the drop 
will be used. Since the volume will change continuously, the constant volume flow 
rate cannot be expected to have a time invariant influence on the drop shape. In view 
of these complexities, the shape parameter provides a useful tool to establish confi-
dence limits for the surface tension measurement.

Figure 3.24 presents the surface tension measurements obtained for cyclohexane 
in a dynamic cycling experiment. The drop was formed at the end of a Teflon capil-
lary with an outer diameter of 3 mm. The size of the drop was changed at a rate of 
3.2 µl/sec. The experiment was conducted at 20ºC. For each size of the drop, the 
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fiGure 3.24 Experimental results of a pendant drop of cyclohexane in a dynamic cycling 
experiment. (Hoorfar, M. and Neumann, A. W., Advances in Colloid and Interface Science, 
121, 25–49, 2006. With permission from Elsevier.)
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shape parameter and relative error in surface tension measurement were calculated 
using Equations 3.33 and 3.36, respectively. Figure 3.25 shows the relative error as a 
function of the shape parameter for the dynamic experiment. Just as for static drops, 
for large values of the shape parameter the error is relatively constant and near zero, 
but it increases from a certain point on as the shape parameter decreases. The range 
of the acceptable drop shapes is obtained based on the desired accuracy. An error of 
±0.1 mJ/m2 (i.e., |Δγ | ≤ 0.1) corresponds to a relative error of 0.004 (i.e., |εrel| ≤ 0.004) 
for cyclohexane. Based on the above value, the critical shape parameter for the above 
dynamic experiment was found as Ps (critical) = 0.33.

Comparison between Figures 3.20 and 3.25 shows that the critical shape param-
eter is smaller in the static experiment compared to the dynamic experiment. Since 
other experimental conditions (such as the material and size of the holder) are the 
same in the above two types of experiments, the difference in the values of the criti-
cal shape parameter is due to dynamic effects such as momentum of the liquid that 
is pumped into, or out of, the drop. Dynamic effects possibly deform the shape of the 
drop so that the underlying Laplace equation is no longer satisfied. ADSA-P responds 
by finding a value for the surface tension that minimizes the error function (Equation 
3.23), assuming wrongly that the Laplace equation is satisfied. For a well-deformed 
drop shape, the relative errors in surface tension measurements in both types of 
experiment are small because (i) the role of dynamic effects is less pronounced for 
large drops as the amount of liquid that is pumped in and out of the drop represents 
a smaller volume fraction of the drop, and (ii) significantly different surface tension 
values correspond to significantly different drop shapes. Thus, the deformation of 
the drop due to dynamic effects is not significant enough to cause deviation of the 
surface tension values from the true value (the literature value). However, as the drop 
is made smaller, the role of dynamic effects is more pronounced. For nearly spherical 
drop shapes, significantly different surface tension values correspond to only slightly 
different drop shapes. Thus, even a small deformation can cause the results to deviate 
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from the correct value. Therefore, in the dynamic experiment, not only is the critical 
shape parameter larger (i.e., Ps (critical) dynamic = 0.33 compared to Ps (critical) static = 0.29), 
but the error in the surface tension measurements also increases more significantly 
as the shape parameter decreases. For instance, for a drop shape with Ps = 0.1, the 
relative error obtained in the dynamic experiment is |εrel| = 0.04, which corresponds 
to an error of 1 mJ/m2 in the surface tension measurements. However, for the drop 
shape with the same shape parameter (i.e., Ps = 0.1), the relative error is quite small 
(i.e., |εrel| = 0.01) in the static experiment.

3.3.6.5 shape parameter of Constrained sessile drops
A new sessile drop configuration “constrained sessile drop” [87–89] (see Figure 3.21c) 
has been developed in which the drop is formed on top of a machined and smooth cir-
cular stainless steel holder. The edge of the holder is sharp with an angle of approxi-
mately 45° to prevent spreading of the liquid on the outer surface of the holder. Since 
the holder is hydrophilic, the drop is attached (hinged) at the outer diameter, and 
hence remains axisymmetric even when increasing/decreasing the volume of the 
drop. Recently, the constrained sessile drop configuration has been extensively used 
to measure extremely low surface tensions of lung surfactant [87,88] (see Chapter 5), 
which cannot be measured in conventional pendant drop experiments due to film 
leakage [90]. The arrangement can also be used to measure surface tension and 
density of polymer melts simultaneously [89] (see Section 3.3.7.5). In view of the 
frequent use of the constrained sessile drop configuration in different experimental 
situations [87–89], the accuracy of the surface tension measurements of ADSA-P for 
this configuration has been studied. Several experiments were conducted using pure 
liquids again. One of the chosen liquids is diethyl phthalate with a surface tension 
of 36.54 mJ/m2 (at 20°C) [63]. A pedestal with an outer diameter of 6 mm was used. 
Figure 3.26 shows the results obtained from ADSA-P. It is clear that for large and 
hence well-deformed drops, ADSA-P produces correct results. However, it appears 
that the range of the acceptable drop shapes for the above experiment is considerably 
smaller than that obtained from the pendant drop experiments conducted using the 
same size of the stainless steel holder. To quantify the above range, the shape param-
eter and the relative error were calculated for each drop size. Figure 3.27 shows the 
variation of the relative error over the shape parameter. It is noted that in general the 
values of the shape parameter of constrained sessile drops are significantly smaller 
than those calculated for pendant drops. In fact, for constrained sessile drops, the 
deviation of the drop shape from a spherical shape is quite small even for large drops. 
Based on the desired accuracy (i.e., |Δγ | ≤ 0.1 that corresponds to |εrel| ≤ 0.003 for 
diethyl phthalate), the critical shape parameter was identified as Ps (critical) = 0.17. It is 
also noted that the range of the drop shapes for which the shape parameter is larger 
than the critical value is quite small. The results for a different liquid, octamethyl-
cyclotetrasiloxane (OMCTS) with a surface tension of 18.20 mJ/m2 (at 24°C) [63], 
are shown in Figure 3.28. The comparison between Figures 3.27 and 3.28 shows 
that the range of drop sizes for which surface tensions are accurate is larger for the 
liquid with lower surface tension. This was expected, because the lower the surface 
tension of the liquid, the larger the range of the well-deformed drops. It is also noted 
that the critical shape parameter of OMCTS is identical to that of diethyl phthalate. 
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Thus, for this configuration, the critical shape parameter appears to be independent 
of the type of liquid.

The critical shape parameter is expected to depend on the diameter of the ped-
estal. This is illustrated for two additional diameters (i.e., 3.8 mm and 2.7 mm). 
Figure 3.29 shows that the critical shape parameter increases fairly linearly with the 
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diameter of the pedestal. Thus, it is possible to use interpolation and some extrapola-
tion to find the critical shape parameter for any given diameter of the pedestal. Also, 
unlike the pendant drop configuration (see Figure 3.23), the critical shape parameter 
decreases with decreasing size of pedestal. The difference may be related to the 
effect of gravity on the shapes of pendant and constrained sessile drops. In the case 
of pendant drops, gravity elongates the drop whereas surface tension tends to make it 
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fiGure 3.28 Relative error of surface tension as a function of the shape parameter for 
different drop sizes of a constrained sessile drop of OMCTS formed on top of a holder with 
an outer diameter of 6 mm. (Hoorfar, M. and Neumann, A. W., Advances in Colloid and 
Interface Science, 121, 25–49, 2006. With permission from Elsevier.)
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more spherical. Obviously, larger holders allow for larger drops for which the effect 
of gravity, and hence the deformation of the drop, is more pronounced. On the other 
hand, for constrained sessile drops, the drop is pushed down on the pedestal by grav-
ity. Thus, the deformation of the drop is more pronounced as the top portion (around 
the apex) becomes relatively flat. In this situation, the sides of the drop are pushed 
outward since the drop is hinged at the edge of the pedestal. It is expected that this 
effect is more pronounced for small sizes of the pedestal.

As an illustration, the constrained sessile drop configuration has been extensively 
used to study the behavior of a therapeutic lung surfactant (Bovine Lipid Extract 
Surfactant, BLES; see Chapter 5 for details). The adsorption and stability of the sur-
factant film for different concentrations of BLES have been studied using the surface 
tension results obtained from ADSA-P [87,88]. In such studies, involving changing 
drop size and changing surface tension, it is desirable to be able to evaluate the accu-
racy of the surface tension measurements prior to the interpretation of the results. 
Figure 3.30 presents the ADSA-P output obtained in a dynamic cycling experiment 
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conducted for BLES with a concentration of 2 mg/ml. The drop was formed on top 
of a stainless steel pedestal with an outer diameter of 2.7 mm. The surfactant adsorbs 
at the surface of the drop and a film is formed. In each cycle, the film is compressed/
expanded by decreasing/increasing the drop surface area by changing the drop vol-
ume. The duration of each cycle is three seconds, which simulates the function of the 
lung in normal breathing. During the compression of the film, the surface tension 
changes from 35 mJ/m2 to 0.6 mJ/m2. For each size of the drop, the shape parameter 
was calculated in order to evaluate the accuracy of the results. Figure 3.31 presents 
the surface tension value as a function of the shape parameter for each size of the 
drop in the above experiment. It is observed that the value of the shape parameter 
increases as the surface tension decreases (or as the drop surface area is compressed). 
For low surface tension values, the shape parameter becomes quite large (even larger 
than 1) since the drop becomes quite flat. On the other hand, the shape parameter 
becomes quite small for higher surface tension values (e.g., 35 mJ/m2). For the 2.7 
mm pedestal, the critical shape parameter is 0.09 (see Figure 3.29) regardless of the 
type of liquid or surface tension. Thus, drop shapes for which the values of the shape 
parameter are larger than 0.09 guarantee the error to be less than 0.1 mJ/m2. The 
acceptable range of drop shapes corresponds to the surface tension values smaller 
than 10 mJ/m2 (see Figure 3.31). It is noted that the larger surface tension values (i.e., 
larger than 10 mJ/m2), which were obtained for drop shapes outside the acceptable 
range, may not be reliable based on an accuracy of ±0.1 mJ/m2. However, for the pur-
poses of most lung surfactant studies, the desired accuracy can be relaxed to 1 mJ/m2 
for higher surface tension values. If a different accuracy is chosen, the value of the 
critical shape parameter will be different. More precisely, the larger the limit of the 
desired accuracy, the larger the range of applicability of ADSA-P or the smaller the 
value of the critical shape parameter. Figure 3.29 presents the values of the critical 
shape parameter obtained for different sizes of pedestal as the desired accuracy is 
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extended to 1 mJ/m2. For a 2.7 mm pedestal, the critical shape parameter was found 
as Ps ( )critical (mJ/m )2± =1 0.03 (see Figure 3.29). Based on this value of the critical shape 
parameter, larger surface tension values (i.e., larger than 10 mJ/m2) obtained in the 
lung surfactant experiment are acceptable, within the accuracy of ±1 mJ/m2.

3.3.6.6  evaluation of the numerical schemes of 
adsa-p using shape parameter

The shape parameter is a useful criterion that can be used not only to evaluate the 
accuracy of the surface tension measurements, but also to study the effect of each 
part of ADSA-P (e.g., hardware, image analysis, and numerical scheme) on the range 
of applicability of the method. Specifically, the shape parameter has been used 
to evaluate the performance of two different numerical schemes of ADSA-P (i.e., 
Rotenberg [42] and del Río [41]) in a typical pendant drop experiment. Figure 3.32 
presents the relative error of surface tension values calculated using the two ADSA-P 
algorithms for different drop sizes of a pendant drop of cyclohexane formed on a 4 
mm outer diameter stainless steel holder. Based on the desired accuracy of ±0.1 mJ/
m2, the value of the critical shape parameter has been found for the results of each 
algorithm. The range of applicability of the more recent algorithm (i.e., del Río) is 
larger than the original algorithm (i.e., Rotenberg) as the critical shape parameter 
obtained for the more recent ADSA-P version (i.e., Ps (critical) del Río = 0.16) is smaller 
than that obtained for the original version (i.e., Ps (critical)Rotenberg = 0.22). Nevertheless, 
the error in the surface tension measurements always increases as the values of the 
shape parameter become smaller than the critical value. Interestingly, for the same 
image of the drop, the sign of the relative error obtained from the two algorithms is 
different.
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Similar observations were reported by other researchers [91–93] using  numerical 
optimizations for the measurement of interfacial tensions from drop shape tech-
niques (i.e., pendant and sessile drops). In their study, the surface tension values of 
large drops are calculated accurately; but, when the drop volume decreases, the sur-
face tension value decreases. It is apparent from Figure 3.32 that such trends in the 
surface tension measurement do not necessarily represent a drop size dependence 
of surface tensions, but more likely an artifact of the measurement. Attempts were 
made to correlate the applicability of drop shape techniques to a more physical prop-
erty, specifically the Bond number

 B
gR= ρ
γ

0
2

,  (3.37)

where R0 is the radius of curvature at the apex and γ is the literature value of surface 
tension.

Figure 3.33 shows that there is no clear pattern for the accuracy of the surface 
tension measurement and the Bond number. More precisely, a critical Bond number, 
in which the error in the surface tension measurement is less than ±0.1 (mJ/m2), 
apparently depends in part on liquid properties other than surface tension. On the 
other hand, a critical shape parameter that guarantees an error of less than ±0.1 (mJ/
m2) is unique and independent of the type of liquid (see Table 3.7). These results 
are not surprising as the accuracy of the surface tension measurement using drop 
shape techniques (such as ADSA-P) depends on the performance of the numerical 
scheme and the accuracy of the detected experimental profile. Pragmatically, the 
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performance of a drop shape technique cannot be evaluated by a single physical 
quantity.

3.3.7 aPPlIcatIon oF adsa-P

ADSA-P has been used to study a wide variety of systems, ranging from biological 
to industrial [47]. A few examples of such applications will be discussed below to 
illustrate the potential scope of ADSA-P.

3.3.7.1 Contact angle measurement
Contact angles provide insight into the interfacial tension of the solid phase through 
the use of Young’s equation given as

 γ γ γ θsv sl lv− = cos ,  (3.38)

where the subscripts lv, sv, and sl in Equation 3.38 refer to liquid–vapor, solid–
vapor, and solid–liquid interfaces, respectively, and θ is the contact angle formed 
between the liquid and the solid surface. The accurate measurement of contact angle 
is an avenue for the determination of solid interfacial tensions. The measurement of 
meaningful contact angles is not straightforward [6]. The issue is complicated by dif-
ficulties in preparing a proper solid surface, which must be smooth, homogeneous, 
and chemically inert (to the liquid used in the measurement). Satisfaction of these 
criteria is not a trivial task. The traditional means of contact angle measurement is a 
goniometer technique that depends on establishing a tangent to the drop at the three 
phase line. The procedure can lead to significant error. On the other hand, ADSA-P 
calculates the contact angle by integrating Equation 3.11 for the surface tension 
value and the radius of curvature obtained from the best fitted Laplacian curve. The 
technique is automated, which allows the acquisition and analysis of large amounts 
of data, making large scale dynamic studies feasible. As an illustration, Table 3.8 
summarizes the ADSA-P surface tensions of 16 liquids and their calculated contact 
angles on FC-721 fluorocarbon compound, dip coated onto smooth sheets of mica. 
The reproducibility of the surface tension and contact angle values was generally 
better than 0.1 mJ/m2 and 0.2°, respectively. More examples of using ADSA-P for 
measuring contact angle can be found in Chapter 6.

The high accuracy of ADSA-P also allows the study of the drop size dependence 
of contact angles, under certain conditions (see Chapter 13).

3.3.7.2 pressure dependence of interfacial tensions
The measurement of the pressure dependence of interfacial tension requires a very 
accurate method due to the fact that its value is quite small (typically of the order of 
10–11 m). A large number of techniques can be used to measure interfacial tension, 
although drop shape methods are best suited for measuring γ under high pressure. 
Thus, ADSA-P with its high degree of accuracy, as illustrated above, is an appropri-
ate method for such investigations and can be used to detect changes in interfacial 
tension over relatively small pressure ranges.



162 Mina Hoorfar and A. Wilhelm Neumann

For liquid–liquid pendant-drop experiments, a pressure/temperature (P/T) cell 
was utilized (Figure 3.34). The cell consisted of a 316 stainless steel cylinder with 
1 inch thick optical glass windows fitted at each end. All lines and connections were 
316 stainless steel. The cell was rated at 350 bars (5000 psi; 1 bar = 105 Pa) and 
200°C. An Eldex HPLC pump was used to pressurize the system by pumping water 
into the P/T cell. Since the cell is sealed completely, it is possible to measure the 
interfacial tension at relatively high pressure.

The pressure and time dependences of the interfacial tension measured by 
ADSA-P at 21.5°C are presented in Figure 3.35 [94]. A pendant drop of n-decane 
was formed at the tip of a stainless steel needle immersed in water. Initially, the 
system was pressurized, then a new drop was formed, and a time-dependent study 
was undertaken using ADSA-P to acquire and analyze the drop images. The proce-
dure was then repeated at a higher pressure. A time dependence for γ is observed at 
each pressure, P. This is probably due to surface active impurities that migrate to 
the liquid-liquid interface and decrease the interfacial tension. The isochronic γ-P 
plot reveals a linear relationship between γ and P in the pressure range studied. The 
[∂γ / ∂P]T is found to be of the order of 10–11 m. Nevertheless, the observed pressure 
dependence is found to be significant at the 99% confidence level. This attests to 
the suitability of the apparatus and the ADSA-P methodology for the measurement 

table 3.8
surface tension Values, γ, of 16 liquids (measured by the pendant drop 
method), and their Contact angle Values, θ, on an fC-721 Coated mica 
surface, measured by adsa-p

liquid
γ

(mJ/m2)

± 95% 
Confidence 

limits (mJ/m2)
number 
of drops

θ
(deg.)

± 95% 
Confidence 
limits (deg.)

number 
of 

drops

Decane 23.43 0.02 10 65.97 0.24 6

Dodecane 25.44 0.02 10 69.82 0.25 9

Tetradecane 26.55 0.05 10 73.31 0.14 6

Hexadecane 27.76 0.04 12 75.32 0.27 7

trans-Decalin 29.50 0.06 13 76.71 0.18 9

cis-Decalin 31.65 0.05 13 79.87 0.18 9

Ethyl cinnamate 38.37 0.03 10 88.20 0.14 10

Dibenzylamine 40.63 0.09 10 92.06 0.13 11

Dimethylsulfoxide 
(DMSO)

43.58 0.08 13 94.47 0.29 9

1-Bromonaphthalane 44.01 0.06 16 95.29 0.23 8

Diethylene glycol 45.04 0.07 16 96.84 0.17 7

Ethylene glycol 47.99 0.02 17 99.03 0.23 8

Thiodiglycol 54.13 0.11 10 103.73 0.24 7

Formamide 57.49 0.08 10 107.32 0.11 6

Glycerol 63.11 0.06 12 111.38 0.21 7

Water 72.75 0.06 10 119.05 0.17 6
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of interfacial tensions as a function of pressure; contact angles may be studied in a 
similar manner. Moreover, the P/T cell readily facilitates the study of the tempera-
ture dependence of γ.

The accurate measurement of interfacial tension under high pressure is impor-
tant in oil recovery [40,95]. At the beginning of the tertiary phase of oil recovery, 
approximately 70% of the petroleum is trapped in an oil reservoir by the capillary 
forces; that is, the interfacial tension of the oil-water system is quite large in propor-
tion to the viscous forces so that pumping water into the reservoir will not liberate 
the oil. Thus, it is necessary to lower the interfacial tension by adding surfactants 
or raising the temperature of the reservoir [95]. However, if the interfacial tension 
is lowered too much, an emulsion could form that makes subsequent separation of 
the hydrocarbon from the water an expensive process. Clearly, an optimal use of 
surfactant is required and since oil recovery must be conducted under pressure, 
it is desirable to test various prospective surfactants in the laboratory to observe 
their effect on interfacial tension. ADSA-P has been extensively used to study the 
pressure or  temperature dependence of interfacial tension for different liquid-liquid 
systems [95,96].

3.3.7.3 ultralow liquid–liquid interfacial tensions
The ADSA-P methodology is particularly suited to measure very low interfacial 
 tensions. For example, ADSA-P measurements on sessile drops of a mixture of 
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dibutyl/dioctyl phthalate (1:1) and cholesterol immersed in an aqueous solution of 
0.005 M sodium dodecyl sulfate (SDS) result in interfacial tensions in the range 
of 10–3−10–4 mJ/m2 [97]. A sessile drop of the organic liquid in the aqueous phase 
formed on an FC-721-coated glass surface is shown in Figure 3.36. The diameter of 
the pipette is 0.304 mm and provides a scale for the size of the drops. The drop is part 
of a series of 10 drops evaluated. The average value of the interfacial tension for the 

52.4

52.2

52.0

51.8

51.6

51.4
0 200 400 600 800 1000

P = 3.8 bara
P = 132 bara
P = 241 bara
P = 336 bara
P = 359 bara

1200
t (s)

γ 
(m

J/m
2 )

fiGure 3.35 Measurement of the pressure dependence of the interfacial tension, γ, of a 
drop of n-decane immersed in water at constant temperature (21.5°C). The time dependence 
of γ may be attributed to system impurities.

γ = 5.57 × 10–3 mJ/m–2

fiGure 3.36 Sessile drops of various mixtures of dibutyl/dioctyl phthalate (1:1) and cho-
lesterol in an aqueous solution of 0.005 M sodium dodecyl sulfate (SDS). The diameter of the 
pipet is 0.304 mm; γ is the computed interfacial tension.



Axisymmetric Drop Shape Analysis (ADSA) 165

whole series was (5.45 ± 0.17) × 10–3 mJ/m2, where the error represents the 95% con-
fidence limits. Two drops of even lower interfacial tension are shown in Figure 3.37. 
This system is similar to Figure 3.36 except that the cholesterol concentration was 
increased. The pipette tip is 0.04 mm in diameter and the diameter of the droplet 
was approximately 0.3 mm. In this case, interfacial tensions of 7.91 × 10–4 mJ/m2 
and 8.08 × 10–4 mJ/m2 were obtained.

Another example of a system of low interfacial tension is a series of phase-
 separated aqueous polymers [98]. Dextran (MW: 2 × 106) and polyethylene glycol 
(PEG; MW: 2 × 104) dissolved in 0.9% NaCl were used to make 11 two-phase sys-
tems of concentrations between 3 and 13.6 wt% at 22°C. Droplets of the denser 
dextran-rich phase (volume c. 0.1–5 µl) were formed on a clean glass plate immersed 
in the lighter PEG-rich bulk phase and photographed. Figure 3.38 shows a graph of 
the measured interfacial tensions by ADSA-P for the system plotted as a function 
of concentration. The above investigations illustrate the applicability of ADSA-P to 
systems with a broad range of interfacial tensions.

3.3.7.4 adsa-p as a film balance
The alteration of the drop volume in a controlled manner combined with the 
 monitoring of the interfacial tension and area changes make ADSA-P suitable for 
film-balance measurements [99]. The possibility of using surface tension measure-
ments to obtain the surface pressure depends on the well-known relation

 π γ γ= −0 ,  (3.39)

where π is the surface pressure, γ0 is the surface tension of the pure liquid, and γ is 
the surface tension of the liquid covered with the monolayer. In a film balance, the 
monolayer film is expanded and compressed by a floating barrier separating the pure 
liquid from the liquid covered with the monolayer. The corresponding compression 
and expansion of the film can also be performed by decreasing and increasing the 
volume of a pendant drop. The experimental scheme is as follows. Initially, a few 

γ = 7.91 × 10–4 mJ/m2 γ = 8.08 × 10–4 mJ/m2

fiGure 3.37 Two sessile drops of the SDS/cholesterol system. In this case, the concentra-
tion of cholesterol in the dibutyl/dioctyl phthalate mixture is 0.031 M. The diameter of the 
pipet is 0.040 mm; γ is the computed interfacial tension.
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pictures of a pendant drop of the pure liquid are taken to determine γ. The desired 
amount of the insoluble surfactant is weighed and dissolved in a solvent (such as 
heptane), and a known amount of the surfactant solution is deposited onto the surface 
of the drop. Upon evaporation of the solvent, the drop carries an insoluble mono-
layer. A sequence of images of the drop profile is acquired while the drop volume is 
decreased continuously until the drop becomes very small. Subsequently, the drop 
volume is increased to the original value. To ensure reproducibility of the results, 
the same cycle of compression and expansion is repeated. The measured surface ten-
sions and surface areas can be transformed into the corresponding surface pressure 
as a function of the area per molecule by using Equation 3.39 and the known amount 
of insoluble surfactant on the drop surface. A typical result for a film of purified 
octadecanol on water with alteration of the surface area at the rate of 7.2 Å2/molecule 
-minute is illustrated in Figure 3.39. It is apparent that the two runs are quite simi-
lar, illustrating the reproducibility of the results. Moreover, these measurements are 
in close agreement with film-balance results of the same sample of octadecanol. 
However, ADSA-P offers several distinct advantages over conventional film-balance 
methodology for determination of surface pressures. First, only small quantities of 
liquid and spreadable material are required. Second, both liquid-vapor and liquid-
liquid interfacial tensions can be studied. Third, environment control (contamina-
tion, temperature, and pressure) is a relatively straightforward matter. The latest 
development of ADSA-P as a film balance can be found in Chapter 5.
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3.3.7.5  simultaneous determination of surface 
tension and density of polymer melts

The surface tension of polymer melts is an important thermodynamic parameter that 
plays a key role in many processes such as wetting, coating, polymer blending, and 
the reinforcement of polymers with fibers [100,101]. However, the high viscosity and 
the limited thermal stability of polymer melts as well as the high temperatures cause 
difficulties in the determination of the interfacial properties of polymer melts.

Considerable efforts have been made to modify the Wilhelmy plate technique 
and drop shape methods for the surface tension measurement of polymer melts [102–
107]. For the Wilhelmy technique, thin fibers are used as solid probes instead of the 
thin platinum plate or wire. In this way, no correction for buoyancy has to be made 
and hence the knowledge of the polymer melt density at elevated temperature is not 
necessary [105]. A drawback of the Wilhelmy plate technique is that the surface ten-
sion is not measured directly. Specifically, since the measured quantity equals the 
so-called wetting tension, γ cos θ, complete wetting of the fiber through the polymer 
melt (contact angle θ = 0º) is required to obtain the surface tension γ [104,105].

Drop shape methods have the advantage over the Wilhelmy technique that the 
surface tension is obtained directly from the shape of the pendant or sessile drops 
so that complete wetting is not crucial. Also, drop shape techniques can be used 
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fiGure 3.39 Expansion and compression of a purified monolayer of octadecanol on a 
pendant drop of water. Measurement of the liquid surface tension and drop surface area result 
in surface pressure measurements, which closely resemble film-balance measurements of the 
same system.
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to study both liquid-vapor and liquid-liquid interfacial tensions of polymer melts. 
However, since gravity is involved, the density of the polymers at elevated tem-
perature is required. Traditionally, the density of polymer melts has been obtained 
separately using time-consuming methods of dilatometry [108,109]. Recently, the 
ADSA-P algorithm has been modified [101] in a fashion that allows simultaneous 
measurement of the surface tension and density of a polymer melt within a single 
experiment. In the modified version of ADSA-P, the density is calculated from the 
mass and volume of the polymer melt drop. The mass of the polymer granulate is 
measured using a highly accurate microbalance (with an accuracy of ±0.002 mg) 
[100,101]. Through the minimization of the objective function, ADSA-P calculates b 
and c (i.e., Δρg /γ) as well as the drop surface area and volume. The value of surface 
tension is obtained based on c and the calculated density.

For the measurement of surface tension and density of polymer melts, a closed 
high-temperature chamber whose temperature can be precisely controlled is 
required. Also, a sessile drop configuration is more desirable since weighing is dif-
ficult for pendant drops because some of the polymer material is inside the capillary. 
However, for the accurate determination of the volume from the drop profile, the for-
mation of highly axisymmetric sessile drops is required. This condition can readily 
be satisfied using a pedestal in the constrained sessile drop configuration. The details 
of the experimental apparatus and procedure have been explained by Wulf and col-
leagues [100]. As an illustration, Figure 3.40 presents the density of a polystyrene 
(PS-38) melt at elevated temperatures [100].

During several experiments with different polymer melts [100,101], the den-
sity values obtained from ADSA-P have been compared to the results obtained 
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fiGure 3.40 Density of a polystyrene (PS-38) melt at elevated temperatures. The bold 
lines are the mean densities at a specific temperature.
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independently from the PVT method, which defines a temperature dependant density 
based on the density at the room temperature [110]. The results show that ADSA-P 
and PVT density values are comparable. However, unlike the PVT measurement, 
ADSA-P density measurement does not require a reference density [100,101].

The density measurement using ADSA-P is not limited to polymer melts. ADSA-P 
can also be used to measure the density of low molecular weight liquids at different 
temperatures.

3.3.7.6 tissue surface tension
During the development of the embryo, tissues move and change shape due to motion 
of their constituent cells. Such intercellular migration also takes place during wound 
healing and tumor metastasis. The integrity of the tissue is meanwhile maintained by 
adhesion between cells, due to chemical bonds between molecules such as cadherin 
that protrude from the cell membranes.

Due to cell adhesiveness and motility, when an aggregate (cluster) of cells from 
a single tissue is removed from the embryo and kept alive in aqueous solution, it 
will slowly round up into a ball, maximizing mutual cell contact. In this and other 
respects, cell aggregates behave as if they possess surface tension, with each cell 
analogous to a liquid molecule [111]. Such tissue surface tensions can in fact be quan-
tified by compressing rounded aggregates of cells between plates and measuring the 
resisting force [112].

In order to use a drop shape method to measure tissue surface tension, the shapes 
of cell aggregates must be deformed from their spherical equilibrium by a gravita-
tional or equivalent force. Normal gravity may be insufficient because of the combi-
nation of the small sizes of aggregates, and the small density difference between the 
aggregates and the surrounding medium. The required deforming force can instead 
be provided by centrifugation [113,114].

Centrifuged aggregates adopt shapes resembling sessile drops (Figure 3.41). 
With a separate measurement of the density difference between cells and medium, 
the tissue surface tension can be determined by ADSA-P. Individual cells within 
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fiGure 3.41 Example of a raw image of an aggregate of ectodermal cells from X. laevis 
with the Laplacian fit by ADSA superimposed. The measured aggregate/medium surface 
tension was 3.23 mJ/m2.
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aggregates are often delineated in images, making extraction of the profile edge 
somewhat tricky. For best results, manual elimination of edge noise may be needed. 
Unlike those of liquid drops, the profiles of aggregates are also bumpy due to the 
relatively small number of cells; this adds noise to the ADSA objective function 
and careful initial value finding is required in order to guarantee convergence [115]. 
Surface tensions of ectodermal cells from the embryo of the frog Xenopus laevis 
have been measured in this fashion [115], as well as with an earlier iteration of the 
method called ADSA-IP [114].
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4.1 intrOduCtiOn

As introduced in Chapter 3, Axisymmetric Drop Shape Analysis (ADSA) is a sur-
face tension and contact angle measurement methodology based on drop shape anal-
ysis. ADSA determines the surface tension and contact angle from the experimental 
profile of drops or bubbles by means of computational parameter optimization. The 
drop/bubble profile can be obtained from a digital image either by manual digitiza-
tion or by automatic image analysis. However, manual digitization suffers from sev-
eral serious limitations: it is very time-consuming, the accuracy of the digitization 
is low, and much depends on the operator skill. Moreover, if photographic negatives 
or prints are involved in the manual digitization, there are storing problems as the 
prints may shrink, warp, or the contrast may fade after a period of time.

In recent years, due to the rapid development of computer vision and pattern rec-
ognition, digital image analysis has become a powerful tool for the drop shape meth-
ods to facilitate fully automatic measurements of surface tension and contact angle. 
In contrast to manual digitization, the use of image analysis has a number of advan-
tages: the measurements can be carried out with minimum human intervention and 
are therefore less dependent on the skill of the experimenter. With automatic image 
analysis, it is feasible to study the dynamic properties of surfaces (e.g., dynamic 
surface tension, contact angle hysteresis, and rate-dependent contact angle). In these 
studies, usually a large amount of time-dependent images needs to be processed, 
which makes automation a necessity. Moreover, the accuracy of measurements rely-
ing on automatic image analysis is expected to be higher than for manual digitization 
due to the removal of human subjectivity.

This chapter reviews the image analysis techniques commonly used in drop 
shape methods for determining surface tension and contact angle. The focus is on 
the step-by-step development of two practical image analysis schemes, which are 
used in conjunction with the ADSA-P (Profile) and ADSA-D (Diameter) algorithms 
introduced in Chapter 3, for automatic measurements of surface tension and contact 
angle, respectively.

4.2 fundamentals Of imaGe analysis

A variety of image analysis techniques, such as image enhancement and image seg-
mentation (including both edge detection and region detection), have been increas-
ingly applied to a broad range of scientific and industrial applications involving 
surfaces, such as the study of cell adhesion, biomembranes, and surface energetics 
[1,2]. Specifically, in the determination of surface tension and contact angle using 
drop shape analysis, the essential operation of image analysis is to detect the drop/
bubble profile; that is, the shape of two-phase interfaces (e.g., air–liquid, liquid–liquid 
interfaces). The most commonly used image analysis methods for edge detection are 
thresholding and derivative edge operators [2].

4.2.1 thresholdInG

Thresholding is a simple, noncontextual segmentation technique [2]. A thresholded 
image g(x, y) is defined as
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where f(x, y) is the gray level of point (x, y) in the original grayscale image (con-
taining 256 gray levels for an 8-bit image); T is the global threshold value, which is 
a user-specified parameter determined prior to the segmentation. Pixels labeled 1 
correspond to the objects, whereas pixels labeled 0 correspond to the background. 
After thresholding, a grayscale image is converted into a binary image composed 
of only black and white pixels that represent the foreground and background, 
respectively.

Due to its simplicity, global thresholding has been broadly used in drop shape 
methods for segmenting the drop/bubble profile [3–6]. The success of thresholding 
is crucially dependent on the selection of an appropriate threshold value to separate 
the object from the background. However, this is usually not an easy task. As dem-
onstrated in Figure 4.1a, the gray level of a step edge varies continuously to form a 
slope instead of a sharp step. Hence, it is difficult to accurately determine the gray 
level that represents the edge. An intensity histogram is usually established a priori 
to provide a reference for determining the threshold value. However, only a histo-
gram with a distinctive bimodal shape is capable of providing an appropriate thresh-
old. This is usually the case for a clean and high contrast image with approximately 
equal areas of foreground and background. Most experimental drop/bubble images 
have fuzzy edges for which the thresholding method may not function well [7]. It has 
been found that the accuracy of surface tension measurement using thresholding as 
the edge detection method is generally one order of magnitude less than that using 
derivative methods [7,8]. Such a reduced accuracy is not acceptable for precise sur-
face tension measurement and it may even fail for more sophisticated measurements 
involving the determination of drop/bubble geometry [9]. The effect of thresholding 
on the accuracy of measuring surface tension and drop/bubble geometry has been 
discussed in detail elsewhere [7,10].

4.2.2 derIVatIVe edGe oPerators

The main characteristic of an edge in a digital image is the discontinuity in intensity, 
usually corresponding to a sharp change of some physical properties, such as reflec-
tivity and density, across an interface. Hence, the most popular approach to develop 
an edge operator is based on derivative algorithms [2,11]. Both the first- and second-
order derivatives have been used. Figure 4.1 illustrates how these two derivatives are 
related to an edge. The first-order derivatives are usually determined by taking the 
intensity gradient. A local minimum or maximum of the gradient indicates an edge. 
Some pioneer gradient edge operators are the Roberts operator, the Prewitt opera-
tor, and the Sobel operator. The second-order derivatives are usually implemented 
by taking the Laplacian, in which an edge is located by finding the zero-crossings 
of the Laplacian. Laplacian of Gaussian (LoG) is the most popular operator in this 
category.
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The Sobel edge detector has been used in ADSA to analyze images of pendant/
sessile drops (see also Chapter 3) [12]. The Sobel edge detector is one of the earliest 
gradient operators with small convolution masks: the gradient of intensity at each 
pixel is evaluated using its neighbors within a square region of 3 × 3 pixels. The 
convolution masks of the Sobel operator are shown in Equation 4.2.
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fiGure 4.1 Illustration of the derivative methods for detecting a real step edge. (a) The 
gray level profile of the step edge, image of the step edge is shown in the insert; (b) the first 
derivative of the edge profile, the edge is indicated by the local minimum; and (c) the second 
derivative of the edge profile, the edge is detected by finding the zero-crossing.
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4.2.3 adVanced edGe detectors roBust aGaInst noIse

Similar to thresholding, the efficiency of derivative edge detectors can be signifi-
cantly reduced by noise. Noise in image analysis is an unexplained variation in inten-
sity values [2]. It can be introduced into an image during the acquisition process from 
various sources. Some sources of noise are the uncertainty due to electronic devices 
(e.g., uncertainties of the sensors, fluctuation in the light intensity, salt-and-pepper 
noise in signal transmission), blur due to drop evaporation and condensation, and 
ambiguity due to poor focus. In certain studies such as a liquid–liquid system or a 
captive/pendant bubble surrounded by a turbid liquid, extensive noise can be intro-
duced due to the existence of impurities and other insoluble substances. The study 
of lung surfactants (an aqueous suspension of insoluble phospholipid vesicles/aggre-
gates, detailed in Chapter 5) using the captive bubble method is one such example.

Figures 4.2a through c show images of a pendant drop, a sessile drop, and a cap-
tive bubble in a lung surfactant suspension. It is noted that the images of the pendant/
sessile drops exhibit a distinctive edge; that is, a dark object (the drop) against a bright 
background (the air). Thanks to the sharp edge of the pendant/sessile drop, the Sobel 
edge detector is usually adequate to extract an undisturbed edge (see Figures 4.2d 
and e for the Sobel detected edges from the drop images). In contrast, the captive 
bubble image shows extensive noise that prevents the Sobel detector from extracting 
a smooth edge (Figure 4.2f).

Most of the traditional edge detectors, such as Sobel and LoG, are not robust 
against noise due to the relatively small size of the convolution masks. Promoted 

(a) (b) (c)

(d) (e) (f )

fiGure 4.2 Typical images of three commonly used drop/bubble configurations for 
 surface tension measurement: (a) pendant drop, (b) sessile drop, and (c) captive bubble. 
The Sobel detected edges of these three configurations are shown in (d) through (f), 
respectively.
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by the rapid development of image analysis, recent edge detectors are increasingly 
strong in noise reduction. These algorithms are based on optimal filters [13,14], 
fuzzy techniques [15], neural networks [16], discrete singular convolution algo-
rithms [17], and entropic methods [18,19]. All these advanced edge operators claim 
some level of noise-resistance and have the potential to be used in determining sur-
face properties from noisy images. In the rest of the chapter, advanced edge detec-
tors will be used with ADSA for automatic measurements of surface tension and 
contact angle.

4.3  imaGe analysis fOr surfaCe tensiOn 
measurement usinG adsa-p

As illustrated in Figure 4.2, despite the success in processing images of pendant/
sessile drops, the Sobel edge detector is incapable of analyzing the captive bubble 
image because it is susceptible to noise [7]. In this section, a sophisticated image 
analysis scheme robust against noise will be developed for processing images of cap-
tive bubbles in turbid lung surfactant suspensions. This new image analysis scheme 
consists of four main parts:

 (i) Edge detection: extraction of drop/bubble profile from the raw image
 (ii) Edge smoothing: removal of outliers/noise from the extracted edge
 (iii) Edge restoration: correction of optical distortion
 (iv) Edge selection: selection of edge points for surface tension calculation using 

ADSA-P

Reliability of the scheme will be illustrated by analyzing images with different 
optical conditions, including images that are highly noisy and/or lacking in contrast. 
Accuracy of the scheme will be validated by measuring the surface tension of pure 
water. Automation of the scheme will be demonstrated by analyzing a sequence of 
images with only one set of user-specified parameters. Finally, a recent development 
in noise reduction using region detection will be introduced.

4.3.1 deVeloPment oF the ImaGe analysIs scheme

4.3.1.1 edge detection
As introduced above, many advanced edge detectors have been developed. Among 
these methods, the Canny edge detector [13] was selected to be incorporated with 
ADSA due to its superior performance in eliminating fine noise [7]. The Canny is a 
sophisticatedly defined gradient operator and has been used as a standard method for 
edge detection. The Canny strategy satisfies three optimal criteria for performance 
evaluation: (i) good detection: a detected edge should have a high probability of 
matching the actual edge and a low probability of reporting a false edge; (ii) good 
localization: the distance between the detected edge and the actual edge should be as 
small as possible; and (iii) single response to one edge: a single edge should not cause 
a multiple-edge response. With these three criteria, Canny introduced an optimal 
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filter, which can be efficiently approximated by the first derivative of a Gaussian 
function defined as
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where σG is the standard deviation of the Gaussian. Convolving an image with this fil-
ter smoothes (“blurs”) the image, with the degree of blurring being determined by the 
value of σG. The smoothing step is followed by an optimal localization strategy which 
consists of a combination of nonmaximum suppression and hysteresis thresholding.

In the nonmaximum suppression, a pixel with a gradient magnitude that is not a 
local maximum is removed and the edge is thinned down to only one pixel width. 
If the gradient magnitude at a pixel is larger than that at its two neighbors in the 
gradient direction, the pixel is marked as an edge. Otherwise, the pixel is marked as 
background. In the hysteresis thresholding, two thresholds are applied to ensure an 
accurate and continuous edge. If the gradient magnitude at a pixel is above the high 
threshold (Th), the pixel is marked as a definite edge. On the other hand, any pixels 
having gradient magnitudes less than the low threshold (Tl) are marked not to be edge 
pixels. Any pixels adjacent to the edge pixels and having gradient magnitudes greater 
than Tl are also selected to constitute the edge. The procedures of the Canny edge 
detector on analyzing a noisy captive bubble image are illustrated in Figure 4.3.

A straightforward procedure has been developed to determine the user-specified 
parameters for the Canny. These parameters are σG used in the Gaussian filter and Th 
and Tl used in the hysteresis thresholding. The σG controls the amount of smoothing 
and Th and Tl determine the continuity of the detected edge. Figure 4.4 shows the 
recommended procedures to set up the optimal input parameters: (i) an initial value 
of σG is assigned as 1.0 for a clean image and 2.0 for a noisy image; (ii) Th is selected 
as 90%. That is, the gradient magnitude represented by Th should be greater than that 
of 90% of the total pixels. The Tl is set as half of Th; (iii) the Canny edge detection is 
performed; (iv) the quality of the detected edge is evaluated. If significant noise still 
remains in the extracted edge, σG is increased by 0.2; otherwise, σG is decreased by 
0.2. Then, step three is repeated until a smooth edge is obtained using the smallest 
σG; and (v) after step three, if significant discontinuity exists in the extracted edge, Th 
is decreased by 10%. Then, step three is repeated until there is no significant break in 
the extracted edge. The resultant σG, Th, and Tl will be the optimal input parameters.

It should be noted that the Canny edge detector is not sensitive to the selection of 
the user-specified parameters. As will be shown later, the Canny would output accur-
ate and consistent results with a wide range of input parameters. In most cases, the 
three input parameters can be further reduced down to only one (i.e., σG). It has been 
found that Th equal to the value of 90% and Tl equal to one half of Th (i.e., 45%) are 
adequate for most images.

4.3.1.2 edge smoothing
After edge detection, noise due to insufficient suppression in the Canny may still 
exist. As illustrated in Figure 4.5, there are usually two types of noise in a captive 
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bubble image depending on the relative distance to the main bubble profile: iso-
lated noise (i.e., the noise far away from the main bubble profile) and adhering noise 
(i.e., the noise close to the main bubble profile). For best performance, separate edge 
smoothing techniques are necessary to remove these two types of noise. In most 
cases, the isolated noise can be simply removed by measuring edge cohesion: the 
binary image after edge detection is raster scanned from left to right and top to bot-
tom. Any assumed edge pixel away from the main profile by 50 pixels is eliminated 
as isolated noise. Although applicable to most cases, the cohesion method may fail 
due to the difficulty of identifying the main profile a priori. If a noise pixel were 
erroneously picked as part of the main profile in the first place, all the subsequent 
cohesion measurement and noise removal would be wrong. To solve this problem, a 
region detection method for removing the isolated noise has been developed. Details 
of this new development are presented later in this chapter.

Adhering noise is more difficult to remove because of its adjacency to the main 
drop/bubble profile. A novel technique, called Axisymmetric Liquid Fluid Interfaces–
Smoothing (ALFI-S), has been developed for removing adhering noise from a drop/
bubble profile. Detailed in Chapter 3, ALFI is a numerical method of generating 
theoretical drop/bubble profiles governed by the Laplace equation of capillarity. In 
ALFI-S, the Canny-detected experimental bubble profile is fitted to the best matched 

Raw image(a) Magnitude of gradient(b)

(c) Nonmaximum suppression (d) Hysteresis thresholding

fiGure 4.3 Procedures of the Canny edge detection: (a) the raw image; (b) the image 
of the magnitude of the gradient after smoothing using the first derivative of the Gaussian; 
(c) the image with thinned edge after nonmaximum suppression; and (d) the binary image 
after hysteresis thresholding.
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theoretical profiles generated by ALFI. Then, a standard deviation (σ) is evaluated 
from the normal distance between the experimental profile and the theoretical pro-
file. A 3σ criterion is used to eliminate outliers; that is, any assumed edge point that 
deviates from the best matched theoretical profile by more than three times σ is elim-
inated as noise. ALFI-S is run iteratively until no more noise is found.

4.3.1.3 edge restoration
All images inevitably suffer, more or less, from optical distortion due to the image 
acquisition hardware (microscope, camera, and digital video processor). This distortion 
can cause major error in the surface tension measurement and hence needs to be cor-
rected [12]. To do so, an image of a calibration grid pattern (square pattern with 0.25 mm 

Yes

Rough evaluation of 
the quality of images 

Noisy image

High σG: about 2.0 Low σG: about 1.0 
Yes

No

Th: 90%

Evaluate the quality of
Canny detected edge 

Noise still
exists

Edge is
discontinuous 

End

Give σG a 0.2 
increment

Give Th a 10%
decrement

Tl: Th/2 

Give σG a 0.2
decrement

Yes

No

NoNo

Yes

σG is smaller than
in last iteration 

fiGure 4.4 Flow chart to set up optimal parameters for the Canny edge detector.



184 Yi Zuo and A. Wilhelm Neumann

spacing, Graticules Ltd., Tonbridge Kent, UK) on an optical glass slide is taken at the 
same position where the drop/bubble images are acquired. A mapping function based 
on the comparison between the distorted grid image and the original grid pattern (with-
out optical distortion) is built. Subsequently, this mapping function is applied to all the 
drop/bubble images. The accuracy of this correction is ±1 pixel [12]. Details about the 
distortion correction algorithm can be found in Chapter 3 and elsewhere [12].

4.3.1.4 edge selection
There are two commonly used ways to select edge points for ADSA calculation. One 
apparent way is to use all the edge points on a bubble profile. An alternative is to use 
only a small fraction of randomly selected points along the profile and to repeat the 
selection and calculation several times (i.e., conduct multiple calculations on the same 
drop/bubble profile). The latter has been recommended in the past as it was thought 
to help average out the random errors associated with the edge points [12,20,21]. 
Moreover, by conducting multiple calculations on the same profile, this strategy is 
able to yield the 95% confidence intervals for all the ADSA results. This strategy also 
consumes less computer time due to the reduced total number of edge points to be pro-
cessed. Cheng and Neumann [20] found that good ADSA results can be obtained by 
only calculating 20 randomly selected points 10 times (i.e., in total using 200 points). 

(d) Adhering
noise due to

sticking particles

(c) Adhering
noise due to a

satellite bubble

(b) Isolated noise
due to suspended

particles

(a) Isolated noise
due to the

highlight spot

fiGure 4.5 A sample image showing typical noise in a captive bubble image. There are 
four types of noise: (a) isolated noise due to the central light reflection zone; (b) isolated 
noise due to dark particles (surfactant aggregates in this case); (c) adhering noise due to satel-
lite bubbles (minor bubbles formed during experiment); and (d) adhering noise due to dark 
particles.
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Increasing the randomly selected points to 50 would significantly increase the accu-
racy [22]. Therefore, here we will use the calculation scheme of randomly selecting 
50 points 10 times and compare it with the calculation using the whole profile.

4.3.2 eValuatIon oF the ImaGe analysIs scheme

4.3.2.1 dependence of the user-specified parameters
Despite the fact that the performance of an edge detector is inevitably dependent on the 
relevant user-specified parameters, these parameters should not significantly affect the 
final results. That is, a desired image analysis scheme should function properly with 
the least user-interference to avoid subjectivity. We have examined the dependence of 
ADSA results on the primary user-specified parameter of the Canny edge detector (i.e., 
the σG of the Gaussian filter). The noisy captive bubble image shown in Figure 4.2c was 
analyzed using a wide range of σG. The results are shown in Table 4.1. One additional 
significant digit is deliberately kept in the mean values to demonstrate the repeatability. 
It is clear that over a large range of σG, from 1.0 to 4.0, the ADSA results (i.e., surface 
tension, bubble area, volume, and curvature at the bubble apex) are very consistent and 

table 4.1
adsa results as a function of the standard deviation (σG) of the Gaussian 
filter used in the Canny edge detector

σG

surface tension
(mJ/m2)

area
(cm2)

Volume
(cm3)

Curvature at apex
(cm–1)

1.0 23.65 0.3612 0.01906 4.271

1.2 23.68 0.3613 0.01906 4.272

1.4 23.74 0.3616 0.01908 4.274

1.6 23.74 0.3616 0.01908 4.274

1.8 23.74 0.3616 0.01908 4.274

2.0 23.72 0.3615 0.01908 4.273

2.2 23.70 0.3615 0.01907 4.272

2.4 23.70 0.3615 0.01907 4.272

2.6 23.70 0.3615 0.01907 4.272

2.8 23.64 0.3614 0.01906 4.270

3.0 23.63 0.3615 0.01906 4.269

3.2 23.64 0.3615 0.01906 4.269

3.4 23.63 0.3615 0.01906 4.269

3.6 23.64 0.3614 0.01906 4.270

3.8 23.64 0.3614 0.01906 4.270

4.0 23.64 0.3614 0.01906 4.270

Mean 23.677 ± 6.69 × 10–4 0.36146 ± 1.71 × 10–6 0.019067 ± 
1.37 × 10–7

4.2713 ±
2.85 × 10–5

Note: The calculations are based on the captive bubble image shown in Figure 4.2c using the whole 
profile without correction of optical distortion; the mean values are shown with 95% confidence 
intervals.
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there is no apparent trend or dependence of the results on the σG. The errors associated 
with the mean values are small. The results suggest that the Canny edge detector is not 
sensitive to the selection of the user-specified parameter.

4.3.2.2 analysis of sample images
As shown in Figure 4.6, six captive bubble images are selected to represent a wide 
range of noise and contrast. A detailed description of the captive bubble method can 
be found in Chapter 5. Each captive bubble rests against the ceiling of a chamber and 
is surrounded by a liquid. These liquids are: (a) distilled water; (b) 0.5 mg/mL bovine 
lipid extract surfactant (BLES); (c) 0.5 mg/mL BLES + 30 mg/mL polyethylene gly-
col (PEG); (d) 0.5 mg/mL endogenous bovine surfactant; (e) 1.0 mg/mL BLES + 50 
mg/mL PEG; (f) 0.8 mg/mL BLES + 27 mg/mL PEG. Here, (a) and (b) represent 

(a) (b)

(c) (d)

(e) (f)

fiGure 4.6 Six sample images of captive bubbles in different liquids. They are: (a) dis-
tilled water; (b) 0.5 mg/mL BLES; (c) 0.5 mg/mL BLES + 30 mg/ml PEG; (d) 0.5 mg/mL 
endogenous bovine surfactant; (e) 1 mg/mL BLES + 50 mg/ml PEG; (f) 0.8 mg/mL BLES + 
27 mg/ml PEG.



Image Analysis for ADSA 187

clean images free of noise; (c) and (d) represent images with extensive noise; and (e) 
and (f) are examples of fuzzy images.

The extracted edges right after performing the Canny edge detection are shown 
in Figure 4.7. For each image, an optimal set of input parameters was developed 
based on the procedures shown in Figure 4.4. The σG used in the image analysis is 
summarized in Table 4.2. It is noted that even though some noise points still exist, 
the Canny edge detector successfully extracts all edges. For the clean images shown 
in Figure 4.6a and b, the extracted edges are very smooth. For the noisy and low 
contrast images, satisfactory edges are also obtained. The incomplete edge shown in 
Figure 4.7d is due to the nonuniform intensity distribution in the raw image. However, 
in spite of the deficiency on the left side, the right side of the edge is completely 
preserved. Since the bubble profile is assumed to be axisymmetric, one side of the 
bubble profile is adequate for the ADSA calculation. Figure 4.8 shows the smoothed 
edges after removing isolated noise using the cohesion method and removing adher-
ing noise using ALFI-S. It is noted that ALFI-S is able to remove the fine noise in the 

(a) (b)

(c) (d)

(e) (f)

fiGure 4.7 Extracted edges from the images shown in Figure 4.6 right after the Canny 
edge detection. The arrows point at fine adhering noise.
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edges, for example, the small bumps indicated by the arrows in Figure 4.7c, d, and e. 
After ALFI-S, all the edges are quite smooth.

The surface tensions measured from the images shown in Figure 4.6 are sum-
marized in Table 4.2. The calculation for each edge is conducted in four different 
ways: calculations using the whole profile, with/without optical distortion correction 
(WP ± DC); and calculations using 50 randomly selected edge points 10 times with/
without optical distortion correction (50 × 10 ± DC). The surface tensions calculated 
using randomly selected points are shown with 95% confidence intervals.

4.3.2.3 experimental Validation
Previous studies have found that the accuracy-limiting step in ADSA is not the math-
ematical scheme but the image analysis [20]. Therefore, increasing the quality of the 
detected edge is expected to significantly enhance the accuracy of the surface tension 
measurement. To validate the accuracy, ADSA with the new image analysis scheme 
was used to measure the surface tension of distilled water at 20oC. Twenty images of 
a static captive bubble were taken within 10 seconds at a rate of two images per sec-
ond. The first of these 20 images is shown in Figure 4.6a. Table 4.3 lists the surface 
tensions for these 20 images, calculated using the four different ways as described 
above (i.e., WP ± DC and 50 × 10 ± DC).

Mean values of the surface tensions calculated by the four different ways are 
very close. However, it is noted that the 95% confidence intervals associated with 
the mean values using randomly selected points are about three to four times greater 
than those obtained using the whole profile. The use of the whole profile produces 
the highest accuracy. It was not recommended in previous work mainly because 
it requires more computation time; however, this issue has become relatively triv-
ial in view of the increasing availability of high power computers. Therefore, a 
calculation using the whole profile is recommended for accurate surface tension 
measurement.

table 4.2
surface tension (mJ/m2) measured for the images shown in figure 4.6

images σG
a Wp – dCb Wp + dCc 50 × 10 – dCd 50 × 10 + dCe

a 0.4 72.78 72.89 72.26 ± 1.11 73.17 ± 0.91

b 1.4 28.63 29.23 28.58 ± 0.42 29.62 ± 0.32

c 3.6 25.73 26.55 25.55 ± 0.18 26.34 ± 0.28

d 3.0 28.17 27.97 27.86 ± 0.24 27.88 ± 0.31

e 1.4 23.65 23.56 23.56 ± 0.21 23.75 ± 0.24

f 3.2 24.53 25.03 24.36 ± 0.34 24.91 ± 0.29

a The optimal standard deviation of the Gaussian filter used in the Canny edge detector, which 
is determined based on the procedure shown in Figure 4.4.

b Calculation using the whole profile (WP) without optical distortion correction (DC).
c Calculation using the whole profile with optical distortion correction.
d Calculation using randomly selected 50 points 10 times without optical distortion correction.
e Calculation using randomly selected 50 points 10 times with optical distortion correction.
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Another inference from Table 4.3 is that the effect of optical distortion on surface 
tension seems to be much less in this case than previously reported [12]. The previ-
ous study was based on the pendant drop configuration [12]. Possibly the geometrical 
arrangement of a captive bubble is not as sensitive to optical distortion as a pendant 
drop. Literature values for the surface tension of water at 20oC are given as 72.75 
mJ/m2 in [23] and 72.88 mJ/m2 in [24]. As it stands, it is not possible to conclude if 
the distortion correction improves the results when considering the whole profile, as 
one of the two mean values agrees closely with one literature value and the other one 
with the second literature value. However, when randomly selected points (50 × 10) 
are used for calculation, a notable improvement in the surface tension (~0.1 mJ/m2) 
is observed with the correction of optical distortion, as the mean value obtained 
without distortion correction is clearly too high. Be that as it may, it appears that 
ADSA with the new image analysis scheme can produce very accurate surface ten-
sion results.

(a) (b)

(c) (d)

(e) (f)

fiGure 4.8 Smoothed edges after removing isolated noise using cohesion method and 
adhering noise using ALFI-S.
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4.3.2.4 automatic analysis of multiple images
Automation of the above image analysis scheme is illustrated by analyzing a sequence 
of images corresponding to the aging of a lung surfactant film, using only one set of 
input parameters without further human intervention. (Details of the lung surfactant 
experiments can be found in Chapter 5.) To demonstrate the importance of the new 
image analysis scheme, the experimental results are compared to those calculated 
using ADSA in conjunction with thresholding [8].

Figure 4.9a and b shows the dynamic surface tensions measured from the threshold-
ing version and the Canny version of ADSA, respectively. As seen from Figure 4.9a, 
the thresholding version results in considerable scatter, especially between 40 and 
300 seconds. This scatter is due to the sudden appearance of a satellite bubble near 
the ceiling at 40.48 seconds (see the inserts in Figure 4.9b for the satellite bubble). 
The rapid formation of small satellite bubbles is a troublesome problem in cap-
tive bubble experiments and it usually occurs during bubble injection and dynamic 

table 4.3
surface tension (mJ/m2) measured for distilled Water at 20°C

bubble no. Wp – dCa Wp + dCb 50 × 10 – dCc 50 × 10 + dCd

1 72.78 72.89 72.26 ± 1.11 73.17 ± 0.91

2 72.80 72.91 73.75 ± 1.60 73.28 ± 0.81

3 72.75 72.86 72.05 ± 1.29 72.19 ± 1.42

4 72.92 73.04 73.38 ± 1.13 73.74 ± 1.42

5 72.85 72.97 73.41 ± 1.19 72.69 ± 1.11

6 72.91 73.02 73.67 ± 0.65 73.28 ± 0.77

7 72.53 72.63 71.20 ± 0.71 72.75 ± 1.67

8 72.53 72.64 72.09 ± 1.16 73.22 ± 1.28

9 72.76 72.85 72.37 ± 0.76 73.54 ± 1.49

10 72.87 72.99 73.14 ± 1.53 73.19 ± 0.76

11 72.36 72.46 72.68 ± 1.54 72.59 ± 0.64

12 72.52 72.63 72.01 ± 1.08 72.79 ± 1.05

13 72.69 72.79 73.42 ± 1.30 72.58 ± 0.99

14 72.64 72.75 74.42 ± 1.32 72.95 ± 1.72

15 72.85 72.99 73.38 ± 1.44 74.02 ± 0.97

16 72.58 72.69 73.95 ± 1.19 72.16 ± 1.58

17 73.07 73.13 73.06 ± 1.20 72.09 ± 1.01

18 72.87 72.97 73.82 ± 1.38 72.32 ± 1.15

19 72.88 72.99 73.55 ± 1.34 72.45 ± 0.92

20 72.94 72.94 73.05 ± 1.32 72.94 ± 0.85

Mean 72.755 ± 0.003 72.857 ± 0.002 72.984 ± 0.010 72.897 ± 0.008

a Calculation using the whole profile (WP) without optical distortion correction (DC).
b Calculation using the whole profile with optical distortion correction.
c Calculation using randomly selected 50 points 10 times without optical distortion correction.
d Calculation using randomly selected 50 points 10 times with optical distortion correction.
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cycling [25]. From the point of view of image analysis, the satellite bubble consti-
tutes major adhering noise. More importantly, due to its critical location (i.e., near 
the three-phase contact line), the satellite bubble has the most deleterious effect on 
the surface tension measurement [10].

Figure 4.9b shows the dynamic surface tensions measured from the Canny ver-
sion of ADSA. The results obtained with this new image analysis scheme show a 
fairly smooth decrease of surface tension due to surfactant adsorption, as expected. 
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fiGure 4.9 Dynamic surface tensions of a typical static captive bubble experiment (an 
oxygen bubble in a lung surfactant suspension) analyzed using (a) the thresholding version of 
ADSA; and (b) the Canny version of ADSA.
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The superior performance of the new image analysis scheme is due to both the 
Canny edge detector and ALFI-S. First, the Canny edge detector is robust against 
noise. Second, ALFI-S is very powerful in removing the adhering noise and highly 
automatic owing to the iteration algorithm and the adaptive noise detection and 
removal (i.e., the 3σ criterion). Figure 4.10 shows the iteration information of 
ALFI-S associated with the analysis shown in Figure 4.9b. It is noted that the 
number of iterations and rejected points change automatically, depending on the 
quality of the images. For a less noisy image as shown in the insert in Figure 4.9a, 
the number of iterations is 5 and the number of rejected points is 24. In contrast, 
for an image with a satellite bubble as shown in the insert in Figure 4.9b, seven 
iterations are executed and 44 noise points are deleted automatically. After the 
automatic noise reduction, the number of remaining points on the smoothed edges 
is relatively constant.

0 100 200 300 400 500 600
600

650

700

750

800
0

20

40

60

80

0

5

10

15

Time (s)

Number of remaining edge points

Number of rejected edge points

Number of iterations

fiGure 4.10 Iteration information from ALFI-S for the dynamic surface tension mea-
surements shown in Figure 4.9b: number of iterations, number of rejected edge points, and 
number of remaining edge points.
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4.3.3 Further deVeloPment In noIse reductIon

As alluded to above, the cohesion method to remove isolated noise may encounter 
difficulties in differentiating the bubble profile a priori through computer vision. In 
case isolated noise is erroneously picked as part of the bubble profile, the real edge 
will be in danger of being removed subsequently. This may cause a major error in 
ADSA calculations.

This difficulty has provoked new thinking on removing isolated noise in the pre-
edge detection stage (i.e., the raw image). As shown in Figure 4.5, a typical captive 
bubble image features a bubble located in the center of the image, resting against the 
ceiling and surrounded by an aqueous suspension. The bubble accounts for a con-
siderable portion of the image and shows remarkable uniformity of intensity lower 
than that of the background. The dominant area and the prominent contrast of the 
bubble against the background allow for easy localization of the bubble in the raw 
image and thus permit an alternative way of detecting and removing the isolated 
noise before edge detection. A component labeling based region detection technique 
has been developed for this purpose [26].

Component labeling refers to the process of detecting connected objects in a 
digital image [27]. A connected component in a digital image refers to a set of pixels 
in which each pixel is connected to all others [27]. In a 2-D image, the connectivity 
can be defined by 4-way or 8-way adjacency. The former only considers the nondi-
agonal neighbors, while the latter considers all eight possible neighbors of a pixel 
[27]. Finding connected components in a binary image is one of the most funda-
mental operations in computer vision and pattern recognition. Its applications cover 
a broad range of scientific and industrial fields, such as medical image processing, 
remote sensing, volume visualization, and character recognition [28]. After compon-
ent labeling, a binary image is converted into a symbolic image in which each con-
nected component is assigned a unique label [28].

In some sense, component labeling is a region-based binary image segmentation 
technique [29]. During component labeling, each image pixel is examined in the 
context of its neighbors and a region is grown by addition of new pixels if they are 
connected. Compared with contour-based segmentation methods (in which a region 
is identified by first determining its boundary pixels), the region-based methods are 
relatively insensitive to shape degradation and noise since these methods rely on the 
entire set of the interior region pixels [29]. Hence, it is possible and desirable to use 
component labeling for the purpose of noise (especially isolated noise) reduction.

The component labeling based noise reduction consists of three steps. First, the 
original grayscale image is converted into a binary image (black-and-white image) 
using Otsu’s thresholding. In the second step, a modified two-pass sequential label-
ing process is performed on the binary image. In the first pass, the image is raster 
scanned and connected pixels are temporarily labeled to be one component. In the 
second pass, regions connected to each other but with different labels are merged 
into one component and all components are re-labeled correspondingly. After this 
step, information on the number of components, area (i.e., number of pixels), location 
(i.e., coordinates of pixels) and color (i.e., black or white, indicating foreground or 
background pixels) of each component is recorded. Also, the detected components 
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are ranked in descending order based on their areas in the second pass of the com-
ponent labeling. The components with the first and the second largest areas usually 
represent the background and the primary foreground object. The other components 
with much smaller areas represent the noise. After localizing the main object and 
the noise (i.e., knowing the coordinates of these components), in the third step, the 
noise can be safely removed. To do so, in the original grayscale image the intensi-
ties of the pixels in the noise components are replaced by the average intensity of 
their background neighbors, to provide a smoother transition from the regions of 
the original isolated noise to the background. This action is similar to the applica-
tion of low-pass filters to the background of the image. The flowchart of the entire 
image analysis scheme used in ADSA, including the component labeling based noise 
reduction module, is shown in Figure 4.11.

It is noteworthy that although thresholding is used as an intermediate step in com-
ponent labeling, it does not decrease the accuracy of the subsequent surface tension 

Component labeling
based noise reduction

Raw image

Otsu’s thresholding 

First pass: labeling

Second pass: merging
and re-labeling

Noise smoothing

Canny edge detection

ALFI-S

Optical distortion
correction

ADSA

Input

Isolated noise
removal

Edge detection

Adhering noise
removal

Edge restoration

Output

fiGure 4.11 Flowchart of the innovative image analysis scheme used in ADSA-P. The 
new image analysis scheme consists of pre-edge detection isolated noise reduction using 
component labeling, Canny edge detector, adhering noise reduction using ALFI-S, and cor-
rection of optical distortion.
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measurement. This is due to the fact that thresholding is used here only to facili-
tate the subsequent component labeling procedure rather than to segment the drop/
bubble profile. The labeling procedure only collects information on the localization 
of the main object and the isolated noise in an image. Therefore, the grayscale image 
after component labeling still keeps the original drop/bubble contour. The detection 
of the drop/bubble profile still relies on the subsequent Canny edge detector.

The implementation of the component labeling method for smoothing a noisy 
captive bubble image is illustrated in Figure 4.12. First, the original grayscale image 
(Figure 4.12a, resolution 480 × 640) is converted into a black-and-white image 
(Figure 4.12b) using Otsu’s thresholding. Next, the binary image is scanned for 
component labeling. Figure 4.12c shows the grayscale image after component label-
ing. In total, 89 components have been detected. The background accounts for the 
biggest component that consists of 177,324 pixels. The complex of the bubble and 
the ceiling accounts for the second biggest component, containing 126,658 pixels. 
The next is the reflection zone in the bubble center, containing 2118 pixels. The big-
gest isolated noise component contains 68 pixels and the smallest consist of only 1 
pixel. Although too small to be caught by the eye, the component labeling method 
has successfully detected this 1-pixel noise, which proves that the method is highly 
sensitive and reliable.

After all the components have been labeled, the noise components are smoothed 
by replacing the original intensities of the noise pixels with the average of their 
neighbors’. In this way, the isolated noise “islands” in the background “ocean” are 
filled. The resultant image (Figure 4.12d) shows much smoother intensity transitions 
in the original noise regions as seen by comparison between Figure 4.12a and d. This 
less noisy image facilitates the subsequent edge detection. Figure 4.12e shows the 
Canny detected bubble profile, which is very smooth. Figure 4.12f shows the final 
smoothed edge after ALFI-S. It is noted that the small, almost imperceptible bump 
on the Canny detected edge (i.e., the adhering noise) is removed. The surface tension 
value calculated from this smoothed edge is 23.67 mJ/m2, which is consistent with 
data reported before [10].

4.4  imaGe analysis fOr COntaCt anGle 
measurement usinG adsa-d

As discussed in Chapter 3, contact angles can be measured from the meridian profile 
of a sessile drop using ADSA-P. However, there are several limitations of ADSA-P 
for contact angle measurement: first, in cases where flat sessile drops (contact angle 
below 20°) are encountered, it becomes increasingly difficult to acquire accurate 
coordinate points along the drop profile; second, the roughness and/or heterogeneity 
inherent in nonideal substrates, such as biological surfaces, will cause deviations 
from axial symmetry and/or irregular three-phase contact lines in sessile drops. 
These limitations substantially reduce the accuracy of any method relying on the 
side view of a sessile drop for determining contact angles.

To overcome these shortcomings, an alternative drop shape method, ADSA-D 
(Diameter), can be used to measure contact angles using sessile drop images taken 
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from the top view. In ADSA-D, the contact angle is determined by minimizing the 
difference between the actual drop diameter and the theoretical diameter obtained by 
solving the Laplace equation of capillarity. By viewing the drop from above, contact 
diameter (for contact angle less than 90o) or equatorial diameter (for contact angle 
larger than 90o) can be measured without a decrease in measurement accuracy due to 

(a) (b)

(c) (d)

(e) (f)

fiGure 4.12 Implementation of the image analysis in ADSA for a noisy captive bubble 
image. (a) Original grayscale image; (b) binary image after Otsu’s thresholding; (c) gray-
scale image showing 89 detected isolated components (each component is represented by one 
gray level) after component labeling; (d) grayscale image after removing isolated noise; (e) 
Canny detected edge (with pre-edge detection removal of the isolated noise); and (f) ALFI-S 
smoothed edge (removing adhering noise).
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flatness. Moreover, for noncircular sessile drops or those with irregular three-phase 
contact lines, an equivalent contact or equatorial diameter can be used to find the 
average contact angle. For some anisotropic surfaces, for example, wood or stone, 
the drop contour can be fitted to an ellipse through which the contact angles in dif-
ferent directions of the surfaces can be examined [30]. Detailed description of the 
ADSA-D algorithm can be found in Chapter 6.

In addition to the drop diameter, other input required in ADSA-D is the volume 
of the drop and the surface tension of the liquid. The volume of the sessile drop 
can be obtained precisely by means of the microsyringe used to form the drop. The 
surface tension of the liquid is either known or can be measured readily by other 
means (e.g., pendant drop experiments). Hence the only experimental parameter to 
be determined is the drop diameter. It can be determined by manual image digitiza-
tion [31,32]: first, the perimeter of the drop is manually acquired by marking 8 to 
10 points along the boundary; second, coordinates of this set of points are fitted to 
a circle using least squares fitting. Finally, the average drop diameter is calculated 
from the fitted circle.

Undoubtedly, manual digitization is time-consuming and can be subjective. 
Therefore, an automatic image analysis scheme was developed to replace the manual 
scheme [33]. As depicted in Figure 4.13, this image analysis scheme consists of three 
main parts:

 (i) Noise reduction: reduction of the background noise using a combination of 
grayscale morphological filters and median filters

 (ii) Edge detection: segmentation of the drop perimeter using binary morpho-
logical filters

 (iii) Area detection: determination of the total area of the drop, as viewed from 
the top, using region growing. The area is then used to calculate the equiva-
lent drop diameter, which will be used for the contact angle measurement 
using ADSA-D.

The robust design of the image analysis scheme enables it to accurately process 
many different types of drop images. As an example, the new image analysis scheme 
is illustrated by analyzing an image of a drop of water on a biological surface, heli-
cobacter mustelae, as shown in Figure 4.14a. Accuracy of the image analysis scheme 
is tested by comparing with the contact angles measured from carefully performed 
manual digitization.

4.4.1 deVeloPment oF the ImaGe analysIs scheme

4.4.1.1 noise reduction
The noise reduction consists of filtering on both the grayscale images and the inten-
sity histograms. Grayscale morphological filters are first applied to the images. 
These filters are advantageous as they conserve the edges in the images while sig-
nificantly reducing noise. The basic morphological filter operations are erosion and 
dilation. In an erosion operation, the center pixel of an n × n pixel neighborhood is 
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assigned the minimum grayscale value found in that neighborhood. A new image is 
produced by convolving the neighborhood with the entire image. A dilation opera-
tion is similar to the erosion operation, except the maximum grayscale in the neigh-
borhood is assigned instead. These operations are applied in different sequences to 
produce the morphological filters. Several different neighborhood sizes and opera-
tion sequences were tested. Experiments showed that optimal noise reduction and 
edge preservation were achieved when an erosion operation followed by a dila-
tion operation was applied to the image using a 9 × 9 pixel neighborhood. Further 
details describing the filter size and sequence selection process can be found in 
[2]. These morphological filters are particularly effective for images of drops on 

Input

Dilation + Erosion

Median filter

Mean filter

Median filter

Threshold

Sequence of erosion and
dilation operations

Subtract

8-Connectivity 

Copy

Erosion
operation

4-Connectivity 

Diameter

Raw image

Process
image

Noise
reduction

Process
histogram

Process
image Edge

detection 

Process
image Area

detection

Output

fiGure 4.13 Flowchart of the image analysis scheme used in ADSA-D.
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biological surfaces (e.g., bacterial layers; see Figure 4.14a), as these filters discard 
strands of bacteria touching the drop profile so that they are not considered to be 
part of the drop periphery.

As a result of applying these morphological filters, however, a degree of image 
pixelization (i.e., blurring due to reduced resolution) may be introduced to the 
images. Further noise reduction to eliminate the pixelization is achieved in a second 
step through the implementation of a 5 × 5 pixel median filter. The median filter 
involves a single operation similar to the erosion, but only the median grayscale in 
the neighborhood is assigned to the center pixel. The result of noise reduction on 
Figure 4.14a, by applying the morphological filters and the median filter, is shown 
in Figure 4.14b.

After the noise reduction, the grayscale image is converted into a binary image 
using thresholding. The threshold value used to segment the drop from the back-
ground is determined from a histogram smoothed by a 20 point neighborhood mean 
filter followed by a nine point neighborhood median filter. Details of the smoothing 
of the histogram can be found elsewhere [2]. The resultant binary image after histo-
gram smoothing and thresholding is shown in Figure 4.14c.

4.4.1.2 edge detection
Before the edge detection, additional noise reduction is applied to the binary image 
using binary morphological filters. The operation of the binary morphological fil-
ters is similar to the grayscale morphological filters described above. It operates 
on images with only two rather than 256 gray levels. The image is filtered using 
the following sequence of operations: dilation, two erosions, and a final dilation. 
Neighborhood sizes used for all erosion and dilation operations are 3 × 3 pix-
els. To extract the edge, the image is first copied and then an erosion operation is 
applied to it. The transformed copy of the image is subsequently subtracted from 
the original image, resulting in a new image that only contains the edge, as shown 
in Figure 4.14d.

Aside from the edge of the drop, there may be other edges present in the image, 
for example, the substrate boundary, the reflection of the light from the drop center, 
or large strands of bacteria, as seen in Figure 4.14d. To establish the drop edge, 
the user is required to supply the coordinates of a point inside the drop. This point 
will be projected in the y direction of the image plane, until it reaches the drop 
edge. Once the edge is reached, the drop profile will be detected by measuring 
 eight-connectivity. The resulting image that contains only the edge of the drop is 
shown in Figure 4.14e.

4.4.1.3 area detection
In order to calculate the equivalent drop diameter, it is necessary to find the drop 
area as viewed from the top (i.e., the summation of the pixels contained within the 
extracted edge). The true area can then be calculated by multiplying the area, in 
pixels, by an appropriate scale factor obtained from the calibration. The number of 
pixels inside the extracted edge is obtained using a region growing algorithm: begin-
ning with a single pixel inside the edge contour, a region is formed and grown by 
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(a) (b)

(c) (d)

(e) (f)

fiGure 4.14 Illustration of the image analysis in ADSA-D for automatic contact angle 
measurement. (a) A typical image of a water droplet on a biological surface, helicobacter 
mustelae; (b) the image after noise reduction using a combination of a morphological filter 
(erosion and dilation operations) and a 5 × 5 median filter; (c) the binary image after histo-
gram filtering and thresholding; and (d) the extracted edges. Aside from the drop edge there 
are other edges in this figure including substrate edges and the edge that results from the 
reflection of the light source on the drop; (e) the drop edge isolated from all other edges pres-
ent in (d); and (f) region growing is used to compute the area within the edge contour in pixel 
units. The black region is the result after 20,000 iterations and contains 3,000 pixels.
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iteratively adding four-connected pixels until reaching the edge boundary. During 
this process the number of pixels is counted. Figure 4.14f shows the grown region 
after 20,000 iterations. Once the area (A) is determined, the equivalent drop diameter 
(d) can be calculated as d A= 2 / π .

4.4.2 eValuatIon oF the ImaGe analysIs scheme

The accuracy of the automatic image analysis scheme was tested by comparing it to 
the contact angle results obtained from careful manual image processing. It should 
be noted that in both the manual and automatic image analysis schemes, the same 
core algorithms of ADSA-D were used for computing the contact angles. Hence, the 
differences in the contact angle measurements depend only on the diameters deter-
mined using the two different image analysis schemes.

Table 4.4 shows the contact angles measured using ADSA-D with the two image 
analysis schemes for water drops on a bacteria surface (i.e., helicobacter mustelae, see 
Figure 4.14a). It is found that the average contact angle difference between the two 
schemes is only 0.14o. The student t-test indicates no significant difference between the 
results obtained using these two methods. However, the automatic version is deemed to 
be more accurate as it calculates the real area within the extracted perimeter rather than 
the area within an estimated perimeter calculated by fitting a circle to the points on the 
profile. Thus, the automatic image analysis scheme should at least have an accuracy of 

table 4.4
Contact angles of Water drops on a Helicobacter 
Mustelae surface, measured using adsa-d with 
manual image digitization and automatic image 
analysis, respectively

drop no.

adsa-d Calculated Contact 
angles (°)

difference 
(°)manual Version automatic Version

1 12.94 13.21 0.27

2 13.86 13.92 0.08

3 12.99 13.25 0.26

4 12.51 12.65 0.14

5 12.99 13.06 0.07

6 8.40 8.56 0.16

7 12.00 12.08 0.08

8 12.22 12.37 0.15

9 12.96 13.12 0.16

10 13.11 13.22 0.11

11 12.27 12.38 0.11

Mean ± SD 12.39 ± 1.42 12.53 ± 1.42

Note: A typical image of such a sessile drop is shown in Figure 4.14a.
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±0.5° (which is that of the manual scheme). More tests of the automatic image analysis 
scheme using different surfaces can be found elsewhere [33].

4.5 COnCludinG remarks

Computer-based calculation of surface tension and contact angle from the shape 
of drops/bubbles is a well-established technique. ADSA, for example, determines 
surface tension and contact angle by numerical integration of the Laplace equation 
followed by a nonlinear least squares optimization (detailed in Chapter 3). These 
computational procedures are automatic and accurate. The only obstacle remaining 
for fully automatic measurements is the extraction of drop/bubble profiles from the 
digital images.

Image analysis provides a powerful tool for the automatic detection of drop/bub-
ble profiles and hence contributes toward the fully automatic measurement of surface 
tension and contact angle. A key development in the image analysis scheme for real 
experimental images is noise reduction, as in the cases of surface tension measure-
ment of lung surfactant using a captive bubble and of contact angle measurement on 
nonideal surfaces.

The two image analysis schemes developed in this chapter are both robust against 
noise. It should be noted that these image analysis schemes are independent of 
ADSA. They can be used as a standard software package in combination with any 
other surface tension and contact angle measurement algorithms, for example, sur-
face tension measurement based on the evaluation of drop height to diameter ratios 
[21,34]. The individual image analysis techniques, such as ALFI-S and component 
labeling, are also free-standing. ALFI-S can be used as a standard filter for remov-
ing adhering noise from any Laplacian-type profile. The component labeling method 
developed in the surface tension measurement scheme would also be very suitable 
for contact angle measurement using ADSA-D. In such a context, the actual contour 
of a drop is not of importance but rather the area or the equivalent diameter of the 
drop is needed.
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5.1 intrOduCtiOn

In Chapters 3 and 4, the fundamental algorithms of Axisymmetric Drop Shape 
Analysis (ADSA) have been developed. Several classical applications of ADSA 
in determining surface tensions and contact angles have been discussed. In this 
 chapter, more advanced applications and up-to-date generalization of ADSA will be 
 introduced. These advanced applications are: (1) the use of ADSA to study  interfacial 
and gas transfer properties of lung surfactant films, an example of biomedical appli-
cation of ADSA (Section 5.2); and (2) the development of ADSA as a  miniaturized 
Langmuir-type film balance, in which advanced experimental  techniques are 
 combined with ADSA to realize system miniaturization and integrity (Section 5.3). 
The generalizations involve: (1) the use of ADSA to study drop deformation in an 
electric field and its influence on surface tension (Section 5.4); and (2) the reformu-
lation of ADSA to study external menisci, such as liquid bridges and liquid lenses 
(Section 5.5). Given the fact that ADSA has been extensively used all over the world 
in a variety of scientific and industrial fields, the applications and generalizations 
presented here are not complete or superior to those unmentioned. Instead, the inten-
tion is to show the versatility of ADSA and its extraordinary potential in both scien-
tific and industrial applications.

5.2  adsa fOr lunG surfaCtant studies

5.2.1  IntroductIon

Lung surfactant is a complicated mixture of approximately 90% lipids and 10% pro-
teins [1]. It forms a thin film at the air–water interface of alveoli and plays a crucial 
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role in maintaining the normal respiratory mechanics by reducing the alveolar sur-
face tension to near-zero values. Deficiency or dysfunction of lung surfactant causes 
respiratory distress syndrome (RDS), one of the major contributors to neonatal mor-
bidity and mortality in industrialized countries [2]. Exogenous surfactant replace-
ment therapy has been used as a standard therapeutic intervention for patients with 
RDS [3]. Different formulations, either synthetic or natural surfactants extracted 
from mammalian lungs, have been developed as surfactant substitutes. Owing to 
the surfactant therapy, the mortality rate of premature infants in the United States 
dropped by 24% between 1989 and 1990 and continued decreasing thereafter [4,5].

The clinical application of lung surfactant necessitates the in vitro assessment 
of its biophysical properties; that is, the properties related to highly dynamic and 
very low surface tensions. A variety of in vitro techniques, such as the Langmuir-
Wilhelmy balance (LWB) [6], pulsating bubble surfactometer (PBS) [7], and captive 
bubble surfactometer (CBS) [8], have been developed for measuring surface tension 
of lung surfactant. Detailed discussion of these methods can be found elsewhere [9].

ADSA has been found to be particularly suitable for lung surfactant studies due to 
a number of facts: (1) the amount of liquid sample required in a drop shape technique 
such as ADSA is very small (as little as a few microliters), which minimizes the cost 
of the experimental materials. (2) ADSA is capable of simultaneously measuring 
surface tension and surface area, thus allowing for recording surface tension–area 
isotherms. This feature makes ADSA a microfilm balance [10], an intriguing alterna-
tive to the traditional Langmuir-type film balance. (3) ADSA allows measurement of 
dynamic surface tension. Therefore, it is possible to investigate the highly dynamic 
properties of lung surfactant, for example, rapid film formation and dynamic cycling 
at the physiologically relevant rate. (4) ADSA is capable of measuring very low 
 surface tensions (less than 1 mJ/m2) occurring in lung surfactant systems. (5) ADSA 
is highly automated and hence operation is less dependent on the skill of the experi-
menter (detailed in Chapter 4).

5.2.2  exPerImental setuP

Figure 5.1 shows the general experimental setup of ADSA. It consists of six funda-
mental subsystems: the drop/bubble configurations, the lighting system, the image 
acquisition system, the environmental control system, the liquid flow control sys-
tem, and the antivibration system. Among these components, the drop/bubble con-
figurations play a central role as they determine the applicability of each specific 
experimental setup. The three configurations used in lung surfactant studies will be 
discussed in the next section. The other five peripheral subsystems are described as 
follows.

The lighting system is composed of a light source (Newport Corp, Fountain 
Valley, CA) and a diffuser made of frosted glass, which is used to provide uniform 
incident light. If rigorous lighting conditions are required, monochromatic filters can 
be used to provide monochromatic illumination instead of white light [11].

The image acquisition system comprises a microscope (Apozoom, Leitz 
Wetzlar, Germany), a CCD camera (Cohu Corp), a digital video processor (Parallax 
Graphics, CA) and a computer. The microscope is equipped with a polarizing filter 
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that reduces the glare and enhances the contrast of the image. The digital video 
processor performs both frame grabbing and image digitizing. Image acquisition 
can be performed at a speed of up to 30 images per second. Each image is digi-
tized to a matrix of 640 × 480 pixels with 256 gray levels for each pixel, where 
0 represents black and 255 represents white. The acquired images are stored in 
the computer for further analysis by the image processing program (detailed in 
Chapter 4).

The key environmental parameters to be controlled are temperature and humidity. 
To mimic the physiological conditions, the atmosphere surrounding the drop/bubble 
needs to be maintained at 37ºC and saturated with water vapor. Different thermo-
static chambers have been developed for different drop/bubble configurations. The 
temperature of these chambers is thermostatically maintained at 37 ± 0.2ºC by a 
water bath (Neslab Instruments Inc, Portsmouth, NH).

The control of liquid flow is necessary for drop formation, in which a drop is 
grown, and for the subsequent dynamic cycling, in which a drop/bubble is com-
pressed and expanded periodically. For a drop arrangement, the flow control is per-
formed by directly adding or withdrawing liquid into or out of the drop by means 
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fiGure 5.1 Picture and schematic diagram of the ADSA experimental setup. 1. light 
source; 2. diffuser; 3. thermostatic drop/bubble chamber; 4. microscope; 5. CCD camera; 
6. digital video processor; 7. workstation; 8. water bath; 9. motorized syringe; 10. motor 
controller.
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of a motor-driven syringe (2.5 mL, Gastight, Hamilton Corp, Reno, NY). The rate 
and fashion of the motor movement (i.e., the liquid flow), is precisely controlled by 
a programmable motor controller (Oriel Instruments, Stratford, CT). For a bubble 
arrangement, a motor-driven syringe (5 mL, Gastight) is used to manipulate liquid 
into or out of the bubble chamber, thereby increasing or decreasing the pressure of 
the liquid subphase.

The entire experimental setup, except the computer, is mounted on a vibration-
free table (Technical Manufacturing Corp, Peabody, MA).

5.2.3  dIFFerent droP/BuBBle conFIGuratIons

The selection of an appropriate drop/bubble configuration depends on the purpose 
of the measurement and the desired accuracy. Three configurations have been used 
in conjunction with ADSA for lung surfactant studies: pendant drop (PD), captive 
 bubble (CB), and constrained sessile drop (CSD). The main applications of these 
three  configurations and their relative merits and limitations are summarized in 
Table 5.1.

5.2.3.1  pendant drop
The PD is an early developed drop configuration used for surface tension measure-
ment. A drop is suspended at the end of a capillary made of Teflon or quartz (see 
Figure 5.2a). The other end of the capillary is connected to the liquid flow control 
system. The capillary commonly used has an inner diameter of 1.0 mm and an outer 
diameter of 3.0 mm. Volume of the drop varies from 10 to 20 µL, corresponding 
to a variation in the maximum diameter from 3.0 to 3.3 mm. The vertical align-
ment of the capillary is maintained by a metal guide tube, which is mounted onto 

table 5.1
summary of typical applications and relative merits and limitations of the 
three drop/bubble Configurations in Conjunction with adsa for lung 
surfactant studies

Configurations
main 

applications advantages disadvantages

Pendant drop 
(PD)

Adsorption Easy to operate and clean•	
High accuracy (±0.01 mJ/m•	 2)

Film leakage at low surface •	
tensions

Captive bubble 
(CB)

Film 
compressibility 
and stability

Leakage proof•	 Difficult to operate and clean•	
Limitation on the maximum •	
concentration (1–2 mg/mL)
Uncontrolled humidity•	

Constrained 
sessile drop 
(CSD)

High surfactant 
concentrations 
and very low 
surface tensions

Easy to operate and clean•	
Leakage proof•	
No concentration limitation•	
Full environmental control•	

No apparent fundamental •	
limitations
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a three-way micromanipulator (Leica, Germany). The drop is enclosed in a quartz 
glass cuvette (Hellma), which is thermostatically controlled by a stainless steel tem-
perature cell (Ramé-Hart). A reservoir of distilled water is placed in the cuvette 
well before starting the experiment to ensure a vapor-saturated atmosphere. A Teflon 
stopper is used to seal the cuvette to prevent evaporation and contamination from the 
outer environment.

In addition to the apparent advantages of simplicity and flexibility, the PD method 
has high accuracy (i.e., ±0.01 mJ/m2) [12]. However, the conventional PD arrange-
ment suffers from the problem of film leakage [13]. Film leakage occurs for surface 
thermodynamic reasons: a film formed at an air–water interface spreads onto a solid 
support that contacts the film if the surface tension of the film is lower than that of 
the solid surface. For Teflon, this limiting surface tension is near 18 mJ/m2. Due 
to the loss of film material from the air–water interface, the surface tension—area 
isotherms and the surface rheological properties measured using the PD could be 
erroneous.

To avoid film leakage, a special pedestal has been developed recently. As 
shown in Figure 5.2b, this pedestal is made of stainless steel and features a sharp 
knife-edge. Benefits from this pedestal are twofold: first, the hydrophilicity of 
the pedestal allows the formation of well-deformed drops that is favorable for 
accurate surface tension measurement [14]. Second, the sharp knife-edge is able 
to prevent the lung surfactant film from spreading over the pedestal at low surface 
tension (i.e., it prevents film leakage). This modified PD configuration is termed 
“constrained” pendant drop (CPD) due to the fact that the drop is confined by 

PD

To flow control system

(a) (b)

CPD

Pedestal

Sharp knife -
edge

40°–60°

Capillary
tube

fiGure 5.2 Schematics of pendant drops (PDs). (a) A PD formed at a capillary, and 
(b) a constrained PD (CPD) formed at a pedestal. The pedestal features a sharp knife-edge to 
prevent film leakage.
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the sharp knife-edge of the pedestal. With the CPD, a surface tension as low as 
1 mJ/m2 can be recorded.

ADSA-PD is well suited for the study of lung surfactant adsorption as the limi-
tation of film leakage is relatively unimportant in such a case. The equilibrium 
surface tension of lung surfactant films is approximately 22–25 mJ/m2, which is 
well above the threshold value at which leakage may occur. ADSA-PD has been 
used to study the dependence of adsorption rate on the bulk concentration of lung 
surfactant [15] and the influence of nonionic polymers on the adsorption kinetics of 
lung surfactant [16]. With the addition of a subphase exchange system, ADSA-PD 
has been further developed to be a miniaturized Langmuir film balance that is 
capable of studying film penetration. Details of this development can be found in 
Section 5.3.

5.2.3.2  Captive bubble
Figure 5.3 shows a schematic of a CB with adsorbed lung surfactant film. In a CB 
arrangement, a bubble with a volume of approximately 20 µL (~3 mm in  diameter) is 
injected by a microsyringe into a chamber filled with a lung surfactant  suspension. 
After injection, the bubble immediately rests against the ceiling and the shape 
of the bubble is controlled by the surface tension. A CB chamber currently used 
consists of three metal plates made of stainless steel and two viewing windows 
[17]. Before each experiment, the chamber is assembled by  sandwiching the two 
windows within the metal plates. The middle plate provides a spacer of ~1 mL to 
hold the surfactant sample. The top of the reservoir is slightly concave to confine 
the bubble. Due to the hydrophilicity of the stainless steel ceiling, the air bubble 
is separated from the ceiling by a thin wetting film (estimated to be  100–500 nm 
thick [18]), thus eliminating film leakage. The temperature and gauge pressure 
in the chamber are continuously monitored by an ultrafine thermo couple (Omega 
Eng Inc, Laval, Quebec, Canada) and a pressure transducer (Validyne Eng Corp, 
Northridge, CA), respectively. A universal data acquisition card (Validyne) 
installed in a computer is used to simultaneously process both the temperature and 
pressure signals.

Hydrophilic
ceiling

Wetting film

Captive bubble

Bubble
chamber

To hydraulic pressure control

Stir bar

Surfactant
subphase

fiGure 5.3 Schematic of the experimental setup of a captive bubble (CB) with adsorbed 
lung surfactant multilayers.
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Precise humidity control in a CB is difficult; however, it has been long assumed 
that a CB would provide full humidification although ambient air is routinely used for 
bubble formation. Accumulating evidence, however, suggests otherwise: an air bubble 
may not be instantly saturated with water vapor, presumably due to a transport bar-
rier on water evaporation posed by the rapidly adsorbed insoluble surfactant film [19]. 
Another limitation of the CB method is that the maximum surfactant concentration that 
can be tested is restricted to 1–2 mg/mL [20], far less than the physiological concentra-
tion. This constraint arises from optical limitations since lung surfactant suspensions 
become murky and eventually opaque at higher concentrations. This shortcoming can 
be removed by a recent development of a spreading technique in the CB [21].

Owing to its leakage-proof characteristics, ADSA-CB is suited for the study of film 
compressibility and stability, especially at low surface tensions. ADSA-CB has been 
used to investigate the stability of lung surfactant [22] and polymer enhanced lung 
surfactant films [23,24], and phase separation and transition of lung surfactant films 
[25]. Pison and his colleagues [26,27] used ADSA-CB to study surface dilatational 
properties, such as surface viscosity and elasticity, of dipalmitoyl phosphatidylcholine 
(DPPC) and DPPC/protein films. By spreading DPPC inside a bubble, ADSA-CB was 
also used to study the interaction between the monolayer and the evaporated spread-
ing solvents [28]. In combination with gas chromatography, ADSA-CB has been used 
to study the dissolution characteristics of anesthetic vapors and gases [29].

5.2.3.3  Constrained sessile drop
The CSD is a novel drop configuration for surface tension measurement [30]. As 
shown in Figure 5.4, a sessile drop is sitting on a pedestal (similar to the  pedestal 
used for the CPD but upside-down), which employs a horizontal sharp knife-edge 
to prevent film leakage. The pedestal is machined from stainless steel with a 
 diameter of 2.5–4 mm. The angle between the horizontal and the lateral surfaces 
of the pedestal is in the range of 45º–60º. The pedestal has a central hole of 0.5 mm 
in diameter, through which the drop is connected to the liquid flow control system 
by a Teflon capillary. A sessile drop with a volume of 4~8 µL (dependent on the 
size of the pedestal) is formed by a motor-driven syringe (2.5 mL, Gastight). The 
time of forming the drop is less than 0.5 s, precisely controlled by a programmable 
motor controller (Oriel). This rapid drop formation ensures that the subsequent 

Environmental
control chamber

Sessile drop

Drop holder
Surfactant

reservoir

To motor-driven syringe

Stir bar

Water
reservoir

45°–60°

fiGure 5.4 Schematic of the experimental setup of a constrained sessile drop (CSD) with 
spread lung surfactant monolayer.
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 adsorption of surfactant molecules occurs at a fresh, clean air–water interface. The 
film formation in a CSD can be also completed by spreading.

The CSD is enclosed in an environmental control chamber (80 × 35 × 40 mm3) 
made of stainless steel. The chamber ensures sophisticated control of relative humid-
ity (RH) and gas compositions, thus permitting the study of environmental effects, 
such as humidity and different gas compositions, such as carbon dioxide, on the 
surface activity of lung surfactant films.

So far, no apparent limitation of the CSD has been found. It eliminates both the 
problems of film leakage, as in the PD, and of concentration restriction, as in the CB. 
In addition, compared to the CB arrangement, the CSD is much simpler and easier to 
operate and clean, and it requires a much smaller amount of test liquid, typically 1% 
of that used in a CB experiment.

ADSA-CSD is very suitable for the measurement of very low surface tension of 
lung surfactant films formed at physiologically relevant surfactant concentrations. 
Preliminary tests have shown good agreement between the measurements with CSD 
and CB [30]. ADSA-CSD has been used in the study of the effect of humidity on the 
film stability [31], and the study of polymeric additives to lung surfactant [32].

5.2.4  tyPIcal aPPlIcatIons

At least three biophysical properties of lung surfactant are essential to the normal 
respiratory physiology, especially in the neonatal period [33]. They are: (1) rapid 
film formation (i.e., within seconds) via adsorption from the alveolar hypophase; 
(2) low film compressibility (i.e., < 0.01 (mJ/m2)–1) associated with very low surface 
tension (i.e., near-zero values) during lung deflation; and (3) effective replenishment 
of the lung surfactant film during lung inflation. These biophysical properties can 
be evaluated using ADSA with different drop/bubble configurations. Some funda-
mental applications will be addressed here to show the applicability of ADSA in the 
study of lung surfactant. These applications are the study of: (1) the effect of bulk 
concentration on the adsorption kinetics [15], (2) the effect of compression ratio on 
film stability and compressibility [9,22], and (3) the very low surface tension at high 
surfactant concentrations [30]. Finally, a novel application of using ADSA to study 
interfacial gas transfer will be presented [18,34]. Details of the physiological and 
biophysical aspects of lung surfactant can be found elsewhere [1,2].

The lung surfactant used here is called bovine lipid extract surfactant (BLES 
Biochemicals Inc., London, ON, Canada). BLES is a clinically used lung surfactant 
and is commercially available. It is prepared from bovine natural lung surfactant 
obtained by bronchopulmonary lavage with organic extraction. BLES contains about 
98% phospholipids and 2% proteins. BLES was stored frozen in sterilized vials with 
an initial concentration of 27 mg/mL. It was diluted to the desired concentration 
using 0.6% saline with 1.5 mM CaCl2 on the day of experiment.

5.2.4.1  study of adsorption kinetics using a pendant drop
Figure 5.5 shows four adsorption curves of BLES at a concentration of 0.1  mg/mL. 
The measurements were conducted using ADSA-PD at 37ºC. Time zero refers to 
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the end of drop formation at which a surface tension close to the value of a clean 
 air–water interface (~70 mJ/m2) is recorded. After that, the surface tension decreases 
as a result of surfactant adsorption. It is found that the adsorption curves are not 
smooth; instead, a number of random, stepwise jumps occurring within a very short 
period (< 0.2 s) are observed. The magnitude of these jumps can be large (~35 mJ/m2) 
or moderate (1–5 mJ/m2). These sudden decreases in surface tension are referred to 
as adsorption clicks [35]. These clicks significantly enhance the adsorption toward 
reaching the equilibrium surface tension of 22–25 mJ/m2. As seen from Figure 5.5, 
in run (a) a surface tension of only 55 mJ/m2 is reached after 300 s. However, run (d) 
goes well below 30 mJ/m2 in the first 100 s, due to a large click at about 30 s.

Figure 5.6 shows four adsorption curves of BLES at 10 mg/mL. It is found that 
these curves are very different from those at 0.1 mg/mL. First, the adsorption clicks 
are absent. As a result, the adsorption curves measured from individual runs are very 
consistent. Second, the surface tensions at time zero are already less than 28 mJ/ m2, 
indicating very rapid adsorption that occurs during drop formation. After time zero, 
the surface tension decreases rapidly only in the first 50 s, and levels off at the equi-
librium value.

Adsorption at a series of BLES concentrations in the range of 0.1–10 mg/mL was 
also tested [15]. It was found that the adsorption clicks are not significant except for 
concentrations lower than 1 mg/mL. Table 5.2 collects the averaged surface tension 
values after 2, 20, and 300 s of the adsorption for BLES concentrations from 1 to 
10 mg/mL. It can be seen that increasing BLES concentration from 1 to 10 mg/mL 
does not significantly enhance adsorption in a PD.
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fiGure 5.5 Four individual adsorption curves of 0.1 mg/mL BLES, measured using 
ADSA-PD at 37°C.
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It is concluded that the adsorption kinetics of lung surfactant depend strongly 
on the bulk concentration of the phospholipids. At a concentration as low as 0.1 mg/
mL, the adsorption kinetics is controlled by the adsorption clicks, which may reflect 
the quick movement of large flakes of aggregated surfactant molecules into the 
 air–liquid interface. The addition of these massive aggregates dramatically increases 

table 5.2
surface tensions after 2 s, 20 s, and 300 s 
of the adsorption, for bles Concentrations 
in the range of 1–10 mg/ml

Concentration
(mg/ml)

surface tension (mJ/m2)

2 s 20 s 300 s

 1 26.0 ± 0.1 24.7 ± 0.1 24.0 ± 0.2

 2 25.6 ± 0.1 24.7 ± 0.1 23.9 ± 0.1

 3 26.0 ± 0.1 24.5 ± 0.1 23.9 ± 0.1

 6 25.8 ± 0.2 24.3 ± 0.3 23.6 ± 0.2

 8 25.1 ± 0.1 24.0 ± 0.1 23.4 ± 0.1

10 24.9 ± 0.1 23.9 ± 0.1 22.9 ± 0.1

Note: Each value shows as an average of four individual 
runs with 95% confidence intervals.
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fiGure 5.6 Four individual adsorption curves of 10 mg/mL BLES, measured using 
ADSA-PD at 37°C.
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the surface concentration of the surfactant, thereby abruptly decreasing the surface 
tension. The fact that both the magnitude and the occurrence of the adsorption clicks 
are unpredictable agrees with this hypothesis. Increasing surface concentration up 
to 1 mg/mL significantly improves the adsorption kinetics. The air–water interface 
is quickly saturated with the surfactant molecules, thus preventing adsorption clicks. 
Further increasing the BLES concentration from 1 mg/mL to 10 mg/mL has no pro-
nounced improvement on the in vitro adsorption kinetics. It should be noted that, in 
addition to the surfactant concentration, the adsorption kinetics of lung  surfactant 
studied in a drop/bubble configuration should also be dependent on the area-to-
volume ratio of this configuration. Hence direct comparison of these in vitro data 
established by a PD to surfactant adsorption in the lungs is difficult. However, taking 
into account the high surfactant concentration in the lungs (i.e., >3 mg/mL [36]), the 
formation of surfactant film in vivo due to adsorption is expected to be completed 
within only a few seconds, at the most.

5.2.4.2  study of film stability and Compressibility 
using a Captive bubble

The stability and compressibility of surfactant films were studied using ADSA-CB. In 
these experiments, the surfactant films were continuously compressed and expanded 
at a rate of 5 s per cycle to simulate breathing. Figure 5.7 shows typical surface 
tension–relative area isotherms of a BLES film upon normal compression; that is, 
compression within the normal physiological range (no more than 30% area reduc-
tion [37]). Only the first five cycles are shown since the cycles afterward are essen-
tially identical. It is found that except the first cycle, the compression and expansion 
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fiGure 5.7 Surface tension–area isotherms of reversible cycling, showing overlapped 
compression (open symbols) and expansion (solid symbols) portions in each cycle. The BLES 
film was compressed at a normal compression ratio (~17%) using ADSA-CB at 37°C.



Generalization and Advanced Application of ADSA 217

portions of these isotherms coincide completely; i.e., there is no surface tension–area 
hysteresis. A cycle with such a feature is termed a “reversible cycle,” which indicates 
that no film collapse occurs [22]. The minimum surface tension reached by the ~15% 
film compression is less than 5 mJ/m2 and the maximum surface tension at the end 
of expansion is no more than 30 mJ/m2. The film compressibility, dlnA/dγ, calculated 
at 15 mJ/m2 is only 0.0065 (mJ/m2)–1, which is close to the  compressibility of pure 
DPPC films [8].

Figure 5.8 shows the surface tension–area isotherms of a BLES film upon 
overcompression (i.e., ~60% compression used here). These isotherms show com-
pletely different patterns from those at low compression ratios. First, significant 
hysteresis loops appear. A cycle with this feature is termed an “irreversible cycle” 
[22]. Second, except for the first cycle, a compression shoulder appears at a sur-
face tension of 20–25 mJ/m2. Third, two plateaus appear at the ends of compres-
sion and expansion, in which the surface tension only slightly varies even though 
the bubble area changes significantly. The compression plateau occurs at a surface 
tension near or below 1 mJ/m2, which is an indication of film collapse [38]. The 
expansion plateau occurs at the surface tension of 30–35 mJ/m2, in which the 
effect of film dilation is balanced by replenishment of the lung surfactant mol-
ecules from the subphase or from the multilayer structures associated with the 
interfacial monolayer.

From these in vitro tests, it is concluded that the natural surfactant film has a low 
compressibility; that is, it reaches low surface tension effectively upon only moderate 
area reduction. Overcompressing the films decreases the film stability (i.e., inducing 
film collapse). Film collapse causes pronounced surface tension hysteresis between 
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fiGure 5.8 Surface tension–area isotherms of irreversible cycling, showing pronounced 
hysteresis loops of compression (open symbols) and expansion (solid symbols) portions in 
each cycle. The BLES film was overcompressed (~62%) using ADSA-CB at 37°C.
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compression and expansion. This is unfavorable for the lungs since it causes a loss of 
mechanical work; but it may be of interest in connection with mechanical ventilation 
in clinical settings.

5.2.4.3  study of high surfactant Concentration 
using a Constrained sessile drop

Figure 5.9a shows the surface tension-area-volume isotherms of a BLES film 
recorded using ADSA-CSD. This experiment was conducted at room temperature. 
The surfactant film was adsorbed from 5 mg/mL BLES and the film was cycled at 
a relatively slow rate of 20 s per cycle. It is noted that near-zero surface tensions are 
readily achieved.

Figure 5.9b is the enlargement of the rectangular region in Figure 5.9a, showing 
the surface tensions during the first compression. The compression curve clearly 
shows patterns of film collapse as indicated by the three surface tension jumps. 
These jumps indicate the film instability upon overcompression. However, before 
the first jump occurs, a surface tension as low as 0.23 ± 0.01 mJ/m2 is recorded. 
Reaching such a low surface tension clearly shows that there is no film leakage in 
the CSD.

To simulate the physiological conditions, BLES at 5 mg/mL was also studied at 
37ºC. The BLES films were cycled at a rate of 3 s per cycle and with a compression 
ratio of approximately 18%. Typical results are shown in Figure 5.10. It is noted that 
a minimum surface tension of approximately 1 mJ/m2 can be readily obtained in 
the first cycle. Such a study that closely mimics the physiological conditions is not 
 readily feasible with other in vitro methods.

5.2.4.4  adsa studies beyond surface tension: Gas 
transfer through interfacial films

ADSA has also been extended to study transport phenomena. In conjunction with a 
CB, it was used as a miniaturized film balance to study the physicochemical effect 
of lung surfactant films on interfacial oxygen transfer [18,34]. The interfacial gas 
transfer, quantified by a steady-state mass transfer coefficient, was determined 
by analyzing shrinkage of a pure oxygen bubble due to gas diffusion across the 
surfactant film adsorbed on the bubble surface. Meanwhile, the surface tension was 
continuously measured by analyzing the shape of the bubble. In addition to simul-
taneously acquiring surface tension and interfacial gas transfer, ADSA-CB offers 
other advantages over the traditional Langmuir balance. First, only a small amount 
of liquid sample is required; this allows the study of adsorbed lung surfactant films 
at a reasonable cost. Second, no equilibrium in gas transfer is required; hence, the 
measurements can be completed within a relatively short period (e.g., five minutes). 
Third and most important, surface tension well below the  equilibrium value can be 
easily obtained and maintained for a prolonged period, owing to the leakage-proof 
capacity of the CB technique [8]. Consequently, the effect of compressed lung sur-
factant films, at a low surface tension range, on interfacial oxygen transfer can be 
readily studied.

The principle of the procedures is as follows: ADSA outputs surface tension 
(γ), bubble area (A), volume (V), height (HB), and curvature (1/R0) at the bubble 
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apex, as a function of time (t). Hence, the rate of bubble shrinkage due to gas dif-
fusion can be estimated directly as ΔV/Δt. To calculate the rate of mass transfer 
(M), the ideal gas law can be used to estimate the gas density, which is a function 
of the gas partial pressure in the bubble (Pg) at each time. Even though only pure 
oxygen was used to form the bubble, the bubble would be a mixture of oxygen 
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fiGure 5.9 (a) Surface tension-area-volume isotherms for dynamic cycling of 5 mg/mL 
BLES; (b) enlargement of the rectangular region shown in (a). The dynamic cycling was con-
ducted at a low rate of 20 s per cycle using ADSA-CSD at 23°C.
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and water vapor. Pg at time i can be evaluated from Dalton’s law and the Laplace 
equation,
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where Pl is the pressure of the liquid subphase, which was continuously measured by 
a pressure transducer (Validyne); ΔP is the average Laplace pressure in the bubble, 
which is equal to the sum of the Laplace pressure at the bubble apex and the averaged 
hydrostatic pressure increasing with bubble height (HB). Pv is the partial pressure of 
water vapor, which is assumed to be constant and equal to the saturation pressure at 
the experimental temperature.

Using the mass transfer data calculated above, an average mass transfer coefficient 
(kL) can be developed from a simple steady-state gas transfer model as follows,
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fiGure 5.10 Surface tension-area-volume isotherms for dynamic cycling of 5 mg/mL 
BLES. The dynamic cycling was conducted at a high rate of 3 s per cycle using ADSA-CSD 
at 37°C.
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where Am is the mass transfer area, which changes with time due to bubble shrink-
age and surface tension variation in the presence of surfactant. Here, the real-time 
lateral area (Al) instead of the entire bubble area (A) was used. This is due to the 
extremely small thickness of the wetting film (as sketched in Figure 5.3) in contact 
with the bubble. This thin aqueous layer is most likely to be saturated with oxygen 
within  seconds (i.e., right after bubble formation), thus preventing further gas trans-
fer through this region [18]. CA

* and CA
0  are the gas concentrations at the gas–liquid 

interface and in the bulk liquid phase, respectively. After formation of the bubble 
(i.e., time zero), CA

* can be assumed to be constant and equal to the saturation con-
centration in equilibrium with the gas in the bubble. In other words, CA

* can be cor-
related to the gas partial pressure (Pg) in the bubble by Henry’s law. H is Henry’s law 
constant of oxygen in water at 37ºC. CA

0 is the average concentration of the dissolved 
gas in the bulk liquid, which is assumed to be unchanged throughout the observa-
tion. This assumption is valid only when the liquid phase is much larger than the gas 
phase and the amount of gas transfer is small (i.e., both the time and area of con-
tact should be limited). To ensure that this assumption is satisfied, each gas transfer 
experiment was restricted to five minutes and the liquid subphase was replaced after 
each experimental run. kL is averaged throughout the entire observation to rule out 
any spatial and temporal fluctuation. N is the number of discrete ADSA measure-
ments, which depends on the rate of image acquisition. Hence, all the parameters 
used in Equations 5.1 and 5.2 are either output by ADSA (e.g., γ, V, Al, 1/R0, HB) or 
controlled during the experiment (e.g., T, Pl, CA

0 ). More detailed validation and cor-
rection of this gas transfer model according to the experimental setup and protocol 
can be found elsewhere [18].

Figure 5.11 shows the surface tension of water and 0.5 mg/mL BLES as a func-
tion of subphase gauge pressure (i.e., different film compressions), where pressure 
equal to zero refers to the case of no compression. The measured surface tension of 
water is close to the literature value of 70 mJ/m2 and relatively unchanged within 
the range of pressure variation. This suggests that the surface tension of water is 
relatively independent of the system pressure, which is in line with previous studies 
[39]. In contrast, the surface tension of BLES decreases with increasing subphase 
pressure. This is due to the lateral compression of the lung surfactant film adsorbed 
on the bubble surface. With increasing subphase pressure, the film is compressed to 
an increasing extent, thus increasing the surface density of the lung surfactant film 
and decreasing surface tension. The surface tension reduction in BLES is illustrated 
by bubble flattening shown in Figure 5.11. It should be noted that at moderate and 
high subphase pressures (i.e., 6, 8, and 10 psi), surface tensions less than 10 mJ/m2 
are recorded. Such low surface tensions are difficult, if not impossible, to reach and 
maintain in a conventional Langmuir trough method, due to film leakage.

Figure 5.12 shows the mass transfer coefficients in water and in 0.5 mg/mL BLES 
as a function of the subphase pressure. At low and moderate system pressures (i.e., 
0–6 psi), kL in water and in BLES change relatively in parallel as the system pres-
sure increases. However, at the high pressure range (i.e., 6–10 psi), kL in water and 
in BLES significantly diverges from each other: kL in BLES decreases substantially 
as the system pressure increases from 6 to 10 psi; in contrast, kL in water is relatively 
unchanged in the same range of pressure increase.
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Figure 5.13 shows the normalized kL of oxygen in BLES to kL in water at the same 
controlled subphase pressure, as a function of surface tension. Despite the relatively 
large errors associated with these normalized results after error propagation, it is 
evident that within the limitation of the maximum errors, decreasing the surface 
tension of a BLES film from the equilibrium value of ~24 mJ/m2 to a low value of 
~2 mJ/m2 causes an approximately 25% decrease in oxygen transfer, indicating a 
significant surface resistance to oxygen transfer due to highly compressed lung sur-
factant films.

Direct measurement at the alveolar surface has established that the surface ten-
sion in the lungs likely varies from a value of no more than 30 mJ/m2 near the total 
lung capacity (TLC) [40,41] to as low as 1 mJ/m2 when deflating to the functional 
residual capacity (FRC) [42]. The experimental data, hence, cover the physiologi-
cally relevant surface tension range of normal tidal breathing. The results indicate a 
possible role of lung surfactant films as a one-way gate for oxygen transfer; that is, 
in facilitating oxygen transfer during inspiration due to the increased surface tension 
and hindering oxygen transfer during expiration due to the decreased surface tension. 
This hypothesis makes intuitive sense in that oxygen transfer from the inspired air 
(with a high oxygen partial pressure of approximately 159 mmHg) to the capillary 
blood occurs mainly during inspiration; after oxygenation of the capillary blood, 
the alveolar gas (with a lower oxygen partial pressure of approximately 105 mmHg) 
is exhaled out of the lungs. The lung surfactant film may play a role in preserving 
oxygen in the capillary blood during expiration.
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fiGure 5.13 The normalized mass transfer coefficient in 0.5 mg/mL BLES to that in water 
(kLBLES/kLwater) as a function of BLES surface tension.



224 Yi Zuo et al.

5.3  adsa as a miniaturized lanGmuir film balanCe

5.3.1  IntroductIon

In this section, an ADSA-based Langmuir film balance will be described, which 
consists of a pendant drop, a rapid-subphase-exchange technique and a fuzzy logic 
control algorithm. This new film balance allows the performance of noninvasive 
kinetic studies of adsorption/desorption and penetration and reaction of surface lay-
ers. Therefore, it arises as a versatile accessory to the PD technique and offers innu-
merable applications.

The studies of film penetration/desorption are of key importance in surface sci-
ence [43]. Interactions between different adsorbed species or reversibility of protein 
adsorption are two examples of interest that still remain unclear in the literature. 
Unfortunately, there is a scarcity of experimental techniques suitable for studies of 
penetration/desorption from interfacial layers. The classical way was to obtain a sur-
face layer in a Langmuir trough and then exchange the subphase by injection with 
a syringe underneath the surface layer [44,45]. The PD technique has advantages 
in these kinds of experiments due to its smaller dimensions requiring considerably 
smaller quantities of material and permits a more stringent control of the environ-
mental conditions. However, a number of experimental complications had to be over-
come. Cabrerizo et al. designed an innovative experimental accessory to the PD that 
enables the performance of reliable penetration/desorption experiments by using a 
coaxial double capillary system that enables a subphase exchange with no distur-
bance of the interface [46]. Since then, due to the interest of these kinds of studies, 
this technique has been recently applied and modified. For instance, Miller et al. 
employed a similar device [47] and Svitova et al. proposed a convection cell in which 
the liquid in a cuvette is exchanged at a known flow rate [48].

As a consequence, the subphase exchange now offers a wide range of possibilities 
and can be applied in the study of very different systems. In this section, first the 
experimental setup is briefly described and subsequently three different applications 
are explained in detail: a new methodology to obtain adsorbed protein monolayers, a 
study of the surface interaction of proteins and surfactants, and a direct observation 
of interfacial enzymatic hydrolysis. Such diverse applications point out the versatil-
ity of the technique.

5.3.2  exPerImental setuP

The experimental setup is a constant surface pressure penetration Langmuir bal-
ance based on ADSA, which is described in detail elsewhere [49]. In this device, 
the normal capillary tip has been substituted by an arrangement of two  coaxial 
 capillaries, each one being connected to one of the channels of a Hamilton 
Microlab 500 microinjector. These can operate independently, permitting to vary 
the interfacial area by changing the drop volume and to exchange the drop content 
by through-flow [50]. A schematic diagram of the arrangement of the coaxial cap-
illaries connected independently to the two syringes of the microinjector is shown 
in Figure 5.14.
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The whole setup, including the image capturing, the microinjector, the ADSA 
algorithm, and the fuzzy pressure control is managed by a Windows® integrated 
program (DINATEN). The program fits experimental drop profiles, extracted from 
digital drop micrographs, to the Laplace equation of capillarity by using ADSA, and 
provides as outputs the drop volume V, the interfacial tension γ, and the interfacial 
area A. The interfacial/surface pressure values are obtained from the relationship 
π = γ0 – γ, where π is the interfacial/surface pressure, γ0 is the interfacial/surface 
tension of pure liquid–fluid interface, and γ is the interfacial/surface tension of the 
liquid covered with the surface active material.

Pressure and area are controlled by varying the drop volume with a modulated 
fuzzy logic PID algorithm (Proportional, Integral, and Derivative control). The π-A 
isotherms recorded in the monolayer studies are generated by changing the drop 
volume in a controlled manner and simultaneously measuring surface tension and 
surface area. To perform studies at liquid–liquid interfaces, a glass cuvette contain-
ing a drop of the denser liquid is filled with the less dense liquid.

The double capillary offers a wide range of possibilities toward the interfacial 
characterization of a system. The exchange is done by simultaneously extracting 
bulk liquid of the drop with one of the capillaries and injecting the new solution 
with the other capillary, illustrated in Figure 5.14. Cabrerizo-Vilchez et al. showed 
that this rapid subphase exchange does not disrupt monolayers at the interface and 
that it is complete if at least 250% of the drop volume is pumped through the drop 
[49]. This accessory allows multiple experiments such as a study of the possible 
desorption of adsorbed material [51] or the penetration of soluble surfactants into 
a previously adsorbed interfacial layer [52]. Moreover, it enables the formation of 

fiGure 5.14 Schematic diagram of the arrangement of the coaxial capillaries connected 
independently to the two syringes of the microinjector.
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protein monolayers at liquid–fluid interfaces [51,53], and the study of the penetra-
tion of insoluble monolayers by some reactant dissolved in the subphase [54,55]. 
Finally, the combination of the subphase exchange technique with the constant pres-
sure accessory permits the study of adsorption/penetration/reaction kinetics. These 
applications will be discussed in detail below.

5.3.3  tyPIcal aPPlIcatIons

5.3.3.1  adsorbed protein monolayers
Proteins constitute a significant group of natural emulsifiers and many of their 
functional properties are derived from the structure that they adopt at inter-
faces. In this sense, the monolayer technique arises as a useful tool in the study 
of  protein interfacial conformation in the literature [43]. Monolayer studies have 
been  frequently performed in conventional surface balances by applying Trurnit’s 
method for spreading proteins at the air–water interface [56]. Most proteins are 
soluble in water and the Trurnit method solves this difficulty by denaturing the 
proteins prior to deposition onto the surface. However, because of the experimental 
difficulties added by the presence of a second liquid at the interface, there is a lack 
of experimental studies dealing with protein monolayers at the oil–water inter-
face. Thus, the denaturation process of proteins at liquid interfaces remains fairly 
unclear in the literature. Likewise, monolayer studies of globular proteins, which 
are very resistant to denaturation, are also scarce in the literature. The subphase 
exchange technique provides a new methodology of studying protein  monolayers, 
which overcomes the abovementioned difficulties with globular proteins and 
 liquid–liquid interfaces. In order to test this novel methodology by comparison 
with literature results, a model protein, β-casein, was studied. β-casein is a well-
known protein, present in dairy products, which has a molecular weight of 24 kda 
and a random coil structure in solution [44,57]. The oil chosen is a model alkane, 
tetradecane, which was purified prior to use in order to remove surface active 
contaminants.

The experimental procedure is schematized in Figure 5.15. A protein solution 
drop is formed at the tip of the capillary and kept at constant surface area while 
the protein adsorbs freely at the interface forming a layer. Once the desired surface 
pressure is attained, the bulk solution in the drop is substituted by the aqueous sub-
phase. This is done by extracting simultaneously the bulk solution through the outer 
capillary and injecting through the inner one the same amount of aqueous subphase 
at the same flow rate. Details of the experimental procedure at the air–water inter-
face can be found elsewhere [51] as well as for the oil–water interface [53]. After 
exchange, the behavior at constant surface area is analyzed and the effect of the 
interfacial pressure of the adsorbed β-casein film can be tested by changing the film 
pressure at which the subphase exchange is performed.

This technique proposed for obtaining protein films by adsorption from bulk 
solution has clear advantages over the conventional spreading methods; much less 
perturbation of the interface and minus diffusion into the bulk, absence of  spreading 
solvents, no losses of protein remaining in the glass rod, and no external contami-
nation of the interface. Furthermore, it generates a reliable interfacial structure 
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exclusively attained by interfacial unfolding and promises to be very useful toward 
the better understanding of very complex systems practically inaccessible before.

Figure 5.16 shows the time evolution of the interfacial tension of a solution droplet 
of β-casein before and after the subphase exchange at three different interfacial pres-
sures at the (a) air–water and (b) the tetradecane–water interface. Note that a refer-
ence curve without exchange is included in both cases. After the subphase exchange 
at a fixed interfacial pressure, the behavior of the adsorbed protein layer was moni-
tored at a constant surface area.

It can be seen in Figure 5.16 that in all cases, the values of the interfacial tension 
immediately before and after exchange remain unchanged, indicating that the protein 
film endures the process at all pressures. Moreover, once the subphase is depleted of 
protein, the interfacial tension remains essentially constant at both interfaces. This 
feature suggests not only that the protein is well attached to the interface, but also 
that the adsorption of β-casein onto the air–water and the tetradecane–water inter-
face is probably accompanied by a conformational change. Moreover, the stability of 

(a) (b)

(c)

fiGure 5.15 Visualization of the stages of the formation of an adsorbed protein mono-
layer with methylene blue: (a) the protein adsorbs onto the drop surface, (b) the subphase is 
depleted of protein, and (c) an adsorbed protein monolayer remains at the interface.
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the interfacial tension after the exchange suggests that such conformational changes 
should occur upon contact with the interface and provide a new structural configura-
tion to the protein that seems to be irreversibly anchored at both the air–water and 
the tetradecane–water interface. Hypothetically, an increase in interfacial tension 
would possibly indicate desorption of molecules from the adsorbed layer.

The stability of the adsorbed layers as deduced from Figure 5.16 suggests that 
they are suitable for compression-expansion isotherms. These are easily obtained 
by injecting and extracting clean buffer solution at a certain compression-expansion 
speed. The compression rate is a critical parameter in the acquisition of reliable 
isotherms. The films should be compressed slowly enough so that the π-A isotherms 
obtained represent the equilibrium isotherm and only when π(A) is a single-valued 
function for all compression-expansion cycles, the layer is considered stable and the 
data are used for the isotherms.

Figure 5.17 shows the π-A isotherms obtained for adsorbed β-casein layers at 
(a) the air–water and (b) the tetradecane–water interface. In order to discriminate 
whether we have an adsorbed monolayer at the interface or not, the experimental iso-
therms of spread β-casein monolayers at the same two interfaces have been included 
in each of the figures. The spread monolayer’s isotherms have been taken from pre-
vious work and were obtained by means of an adaptation of Trurnit’s method to the 
requirements of the PD technique [51,53]. At interfaces, the adsorbed and spread 
monolayer isotherms are represented versus the area of the drop in Figure 5.17 
(upper axis), allowing a direct comparison of the respective isotherms. Furthermore, 
the spread protein monolayers are also represented versus the specific area of the 
protein, knowing the amount of protein spread onto the surface (lower axis). This 
provides structural information of the molecules at the two interfaces. The great 
similarity of the curves for the two methods is noteworthy.

Regarding the conformation adopted by β-casein at the air–water and the oil– water 
interface, two features arise from the comparison of Figure 5.17a and b: hysteresis 
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fiGure 5.16 Reversibility of protein adsorption (β-casein 1.25 × 10–3 mol/m3) at (a) the 
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phenomena and the larger surface area per molecule of β-casein at the oil–water 
interface. The former might be related to the enhanced solubility of the more hydro-
phobic amino acid residues of the protein in the oil. This interaction between protein 
and tetradecane seems to result in a partially irreversible unfolded configuration that 
is not completely recovered upon expansion of the interface. Accordingly, a further 
unfolding of the polypeptide chain might be expected, resulting in a higher effective 
area per molecule at the oil–water interface than found at the air–water interface. 
Details on the different conformations of β-casein monolayers at the air–water and 
oil–water interfaces can be found elsewhere [58].

5.3.3.2  surface interaction of proteins and surfactants
The interfacial behavior of mixtures of proteins and surfactants is a question of 
increasing interest because of important technological applications. The structural 
differences between both types of molecules can result in important differences in 
their interfacial structure as the behavior of mixed systems can be very complex. 
Despite its enhanced interest, the behavior of mixed protein/surfactant systems still 
presents unsolved questions. In this sense, the subphase exchange is a powerful 
tool in the study of the interaction of two different types of soluble surfactants at 
the surface. The use of this technique, combined with the usual adsorption studies, 
facilitates the interpretation of the surface pressure isotherms providing innovative 
structural information about the mixed surface layer. As an illustration, a protein and 
a soluble surfactant are studied. The protein is β-casein from bovine milk and the 
surfactant is Tween 20. The latter is a nonionic surfactant of a molecular weight of 
1,228 Da. The detailed study can be found elsewhere [52].

Surface characterization of the mixed system is performed in two steps. On 
the one hand, the surface behavior of the mixed system is evaluated in terms of 
the competitive adsorption of the mixture onto the surface as compared to that 
of the individual components. To this end, the surface pressure isotherms of the 
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protein, the surfactant and the mixture of both are recorded. On the other hand, 
the sequential adsorption is studied by evaluating the effect of surfactant added 
in the bulk using subphase exchange on a previously adsorbed protein layer at 
the surface. It will be seen that the combination of both strategies yields crucial 
information about the behavior of the system that is not readily available by other 
methods.

Figure 5.18a shows the surface pressure isotherms obtained for β-casein, Tween 
20 and the mixed system under the same experimental conditions. The mixtures 
are formed with a constant concentration of β-casein of 5 × 10–3mol/m3 and differ-
ent concentrations of Tween 20 between 10–5 mol/m3 and 1 mol/m3. For the surface 
pressure isotherms of pure Tween 20 and the mixed system, the x-axis corresponds 
to the surfactant concentration. For the surface pressure isotherm of pure β-casein, 
the x-axis corresponds to the protein concentration. The surface pressure isotherms 
suggest that the mixed system shows two different patterns at the surface. At low 
surfactant concentrations, the system behaves like a pure protein solution, whereas 
at higher surfactant concentration the film shows properties similar to those of the 
pure surfactant solution.

In detail, at low surfactant concentration, the surface pressure remains practically 
constant and coincides with that of the protein alone at the concentration used in the 
mixture. Thus, it may be assumed that the final adsorbed layer is composed basically 
of protein and that the presence of surfactant does not significantly affect the surface 
tension. At a well-defined surfactant concentration, 10–2 mol/m3, the behavior of the 
mixed system changes abruptly. From this concentration on, the surfactant seems 
to control the adsorption process, and the isotherm recorded for the mixed system 
practically coincides with that of the surfactant alone. The surface pressure increases 
very steeply in a narrow range of surfactant concentration and the saturation also 
occurs at the critical micelle concentration (cmc) of Tween 20 (2 × 10–2 mol/m3). 
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fiGure 5.18 (a) Surface pressure isotherms of β-casein (solid squares), Tween 20 (solid 
triangles), and the mixture of 5 × 10–3 mol/m3 β-casein and Tween 20 (hollow circles) at dif-
ferent concentrations; (b) adsorption kinetics of 5 × 10–3 mol/m3 β-casein (solid squares). The 
arrow indicates the beginning of subphase exchange by buffer (hollow squares), by 10–3  mol/
m3 Tween 20 (hollow circles) and by 10–1 mol/m3 Tween 20 (hollow triangles).
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These experimental results suggest that the surface layer at this high concentration 
of Tween 20 is composed essentially of surfactant. Apparently, the surfactant might 
have forced the protein molecules out of the surface layer.

In order to elucidate the phenomena occurring in the surface layer and the pos-
sible interaction taking place between the adsorbed protein and the surfactant at the 
surface, sequential adsorption of the two components onto the surface has been stud-
ied by means of the subphase exchange technique. First, the β-casein is allowed to 
adsorb freely from the pure protein solution onto the surface until a saturated surface 
layer is achieved; that is, the change in the surface pressure is negligible. Second, the 
subphase is depleted of protein by exchanging the bulk solution with a buffer (0.05M 
Tris buffer of pH 7.4). As illustrated in the first application, the adsorbed β-casein 
layer remains intact after subphase exchange. Under these conditions, the evolution 
of the surface pressure, after adding Tween 20 to the bulk solution underneath the 
protein layer, provides direct information of the effect of the surfactant on such a 
surface protein layer.

Figure 5.18b shows the time evolution of the surface pressure of a solution of 
β-casein and the effect of exchanging the protein subphase by a surfactant solu-
tion at two different bulk concentrations, one below (10–3 mol/m3) and one above 
(10–1 mol/m3) the cmc of Tween 20. It is found that the surface pressure increases 
after the exchange with both surfactant concentrations. The increase in surface pres-
sure obtained for the two concentrations clearly indicates that the Tween 20 is able 
to penetrate the preformed layer of β-casein. Furthermore, in view of the adsorption 
results of the mixed system (Figure 5.18a), this penetration into the surface layer 
apparently produces a complete displacement of the protein by the surfactant at the 
high surfactant concentration. This effect has also been reported by other authors 
[59]. Accordingly, the surface exchange technique allows an in situ observation of 
the displacement of the protein by the surfactant at high surfactant concentrations, 
and provides a satisfactory explanation of the behavior of the mixed system at the 
surface as shown in Figure 5.18a.

5.3.3.3  interfacial hydrolysis
A further application of the subphase exchange technique is to the study of the pen-
etration of insoluble monolayers by soluble surfactants. Here, the exchange is applied 
to the study of the surface interaction between a lipase (porcine pancreatic phospho-
lipase, PLA2) and a phospholipid monolayer at the air–water interface. Lipases are 
very important compounds in nature since they are responsible for fat digestion. The 
digestion of lipids is based on the hydrolysis of dietary glycerides. Pancreatic lipase 
is able to induce a very fast hydrolysis reaction. This enzyme catalyzes the intraduo-
denal conversion of long chain triglycerides into the more polar β-monoglycerides 
and free fatty acids [60]. This process can be reproduced in the PD by looking into 
the effect of PLA2 on a monolayer of phospholipids as displayed in Figure 5.19. The 
products of the hydrolysis are more soluble in the aqueous phase and, hence, the 
addition of PLA2 may result in diminishing the interfacial concentration of phos-
pholipids due to solubilization, thus reducing the surface pressure of the system. 
Therefore, the interest of this application of the subphase exchange is twofold since it 
also enables the in situ observation of the interfacial catalysis. Accordingly, in order 
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to study the surface interaction of these two components and, more importantly, to 
try to obtain quantitative information of the hydrolysis phenomenon, the following 
experimental procedure can be used.

First, a spread monolayer of dimyristoyl phosphatidylcholine (DMPC) is formed 
on a drop of Tris buffer as described in detail elsewhere [54]. Once the spreading 
solvent has evaporated, the drop is enclosed in the cuvette and is grown to a larger 
size (typically 30 × 10–9 m3, i.e., an area of 0.5 × 10–4 m2), providing sufficient sur-
face area for the monolayer to be in the gas-analogous state (π < 1 mJ/m2). Then, the 
microinjector slowly decreases the drop volume, compressing the monolayer until the 
desired compression state is reached (π > 5 mJ/m2). Then, the film pressure is kept 
constant by the controller for approximately one minute, allowing the film to equili-
brate. Next, the subphase under the monolayer is exchanged with the same buffer 
containing PLA2 and the pressure control is then activated. The setup maintains the 
surface pressure constant during the period of enzymatic hydrolysis. The hydrolysis 
products of DMPC are lyso-MPC and myristic acid, which are more soluble in the 
aqueous subphase than DMPC. Hence, after the hydrolysis the resultant molecules 
can be expelled from the monolayer and solubilized. As a result, due to the decrease 
of interfacial concentration, the surface area of the drop decreases to compensate for 
the decrease in surface concentration. This decrease continues until the drop is too 
small to provide reliable surface tension values. This process is repeated for various 
fixed interfacial pressures and the rate of area decrease depends on the decrease of 
interfacial concentration. The compression rate hence provides important informa-
tion about the interfacial hydrolysis occurring in the system.

Figure 5.20a shows the time evolution of the relative interfacial area of a mono-
layer of DMPC after the subphase exchange with PLA2 (3 g/L or ~0.2 mol/m3) occur-
ring for each of the fixed surface pressures as explained above. The rate of change 
of the surface area can be interpreted as a measure of the activity of the enzyme 
as a function of the concentration of DMPC in the monolayer. In particular, PLA2 
seems to be very active for intermediate amounts of phospholipids at the interface 

PLA2

Phospholipid

Lysophospholipid

Fatty acid

fiGure 5.19 Schematic of the interfacial hydrolysis of a phospholipid monolayer by 
PLA2.
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(i.e., intermediate values of the surface pressure), whereas the interfacial hydrolysis 
is substantially reduced as the concentration either increases or decreases. This com-
plex behavior is shown more clearly in Figure 5.20b, in which the reduction of the 
relative interfacial area of the DMPC monolayer after 30 minutes is plotted for each 
of the interfacial pressures studied. The activity of the enzyme shows a very clear 
maximum at intermediate interfacial concentration of phospholipids. The actual 
concentration can be estimated from the isotherm of DMPC with no PLA2 recorded 
in the same experimental conditions [54]. Moreover, this experimental methodology 
provides a clear visualization of the activity of the enzyme.

The subphase exchange applied in this manner to the study of interfacial catalysis 
offers many advantages compared to penetration studies in conventional film balances 
since a unique interface is combined with the fact that in a few seconds the whole 
subphase is replaced, avoiding further enzyme transport over macroscopic distances 
and providing a homogeneous enzyme subsurface concentration. Undoubtedly, this 
experimental procedure provides key and reliable information about the activity of 
the enzyme toward the better understanding of lipids digestion.

5.4  adsa fOr eleCtriC fields (adsa-ef)

5.4.1  IntroductIon

Understanding the influence of an electric field on surface properties of liquids is 
important from both fundamental and practical standpoints. Charged or electrified 
drops play a key role in various applications, ranging from microfluidic devices to 
agricultural treatments. Nevertheless, the effects of the electric field on surface prop-
erties of drops are not understood yet, mainly due to the lack of reliable tools and 
methodologies to measure such effects.

Generally, an electric field may have two kinds of effects on liquid drops or bub-
bles. First is that the shape of the drop is changed in the electric field. As shown in 
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fiGure 5.20 Enzymatic activity of PLA2. (a) Time evolution of the relative interfacial area 
of a DMPC monolayer after the subphase exchange with PLA2 (3 g/L), at fixed interfacial 
pressures; (b) reduced relative interfacial area of a DMPC monolayer 30 minutes after the 
subphase exchange with PLA2 (3 g/L).
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Figure 5.21, this is a pronounced effect and can be easily observed in an experiment. 
Second is the possible effect of the electric field on the surface tension of liquids. 
This is a relatively subtle effect and is more difficult to detect or measure experi-
mentally. Any study on the effect of electric fields on the surface tension of liquids 
requires an accurate methodology and experimental procedure.

As described in Chapter 3, ADSA is a powerful methodology for surface tension 
measurements. However, the standard version of ADSA relies on the assumption 
that gravity is the only external force deforming the shape of a drop. This assump-
tion is not valid in electric fields (see Figure 5.21), which limits the applicability of 
ADSA in the presence of such fields. This section presents a generalization of the 
ADSA methodology to account for both gravity and electric field as operative exter-
nal forces. The new methodology is called Axisymmetric Drop Shape Analysis for 
Electric Fields (ADSA-EF).

In essence, the equilibrium shape of a drop in an electric field is determined by 
balancing the surface tension and the external forces, such as gravity and electric 
field. Surface tension tends to make a drop spherical, gravity tends to flatten a ses-
sile drop and elongate a PD, and the electric field typically elongates a drop along 
the direction of the field. The mechanical equilibrium between the surface tension, 
the electric field and gravity can be described mathematically by the augmented 
Laplace equation of capillarity [61,62]

 γ ρ1 1

1 2
0R R

P gz Pe+





= + +∆ ∆ ∆( ) ,  (5.3)

where γ is the surface tension, R1 and R2 are the two principal radii of curvature, ΔP0 
is the pressure difference across the interface at the reference (i.e., the apex of the 
drop), Δρ is the density difference across the interface, g is the gravitational accelera-
tion, z is the vertical distance of any point on the drop surface from the reference, and 

5 kV0 kV

fiGure 5.21 The effect of an electrostatic field on the shape of sessile drops of water on 
Teflon coated silicon wafers. The figure shows that the shape of the drop is changed signifi-
cantly when a 5 kV electric potential is applied to the capacitor with 6 mm distance between 
the two plates. Note that the two drops are not of the same volume.
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ΔPe is the electrical pressure (i.e., the jump in the normal component of the Maxwell 
stress tensor across the interface).

The value of ΔPe at each point of the drop surface depends on the intensity of the 
electric field at that point, which is unknown for most practical systems. Therefore, 
Equation 5.3 needs to be solved in conjunction with the Laplace equation for the 
electric field, which governs the distribution of the electrostatic potential [63–65]

 ∇ =2 0U .  (5.4)

The values of the electric field along the drop surface can then be calculated as the 
gradient of the electric potential, U.

The principle behind the ADSA-EF algorithm is similar to that of ADSA. 
ADSA-EF generates numerical drop profiles as a function of surface tension at a 
given electric field. Then it calculates the actual value of the surface tension of a real 
drop by matching the numerical profiles with the shape of the experimental drop, 
taking the surface tension as an adjustable parameter. The distribution of the elec-
tric field along the drop surface is an input for the above calculations, which is not 
known a priori. No analytical approach is known for solving either the drop shape or 
electric field distribution for general conditions. Thus, numerical schemes have been 
developed for this purpose.

Despite the conceptual similarities between ADSA and ADSA-EF, the algorithm 
and the implementation of ADSA-EF are more complex. For instance, typical ver-
sions of ADSA deal with the gravitational force, which is known and constant over 
the drop surface; ADSA-EF, in addition to gravity, deals with the electric field force. 
This force is unknown and its magnitude and direction are variable from point to 
point over the drop surface. Calculation of the distribution of the electric field force at 
the drop surface is sophisticated and requires precise modeling of the experimental 
system.

Numerical calculation of drop shapes in the electric field is another challenge in 
the development of ADSA-EF. Calculation of drop shapes in gravity for given sur-
face tension is fairly straightforward, while drop shape calculation in the presence of 
an electric field, even when the distribution of the operative forces is known, is not 
trivial, and by itself is the subject of many studies.

The overall algorithm of ADSA-EF and its main modules are shown in Figure 5.22. 
A drop is formed in the electric field and experimental images are acquired from 
its equilibrium shape. The drop profile is extracted from the image using an edge 
detector. The extracted profile along with the physical geometry of the system and 
the magnitude of the applied voltage is fed to the electric-field module. This module 
numerically solves Equation 5.4 to calculate the distribution of the electric field along 
the drop surface. The electric field distribution and the optimization parameters (e.g., 
surface tension and apex curvature) are then used as input for the drop-shape module 
that generates numerical drop profiles by solving Equation 5.3. The optimization 
scheme of ADSA-EF adjusts the optimization parameters to match the numerical 
profile with the experimental shape of the drop.

This part of the chapter focuses on the new components of ADSA-EF that do 
not exist in the other versions of ADSA. The electric-field and the drop-shape 
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modules are the key components developed for ADSA-EF (see Figure 5.22). The 
former calculates the electric field distribution; the latter generates numerical drop 
shapes in an electric field, which is significantly different from that of the standard 
ADSA. The optimization scheme, too, was substantially improved for ADSA-EF. 
Such improvements were needed to ensure the convergence of the scheme to the 
global optimum (i.e., convergence of the numerical profile to the experimental drop 
shape). Furthermore, particular considerations were needed with respect to con-
ducting experiments in the electric field. A new experimental configuration was 
designed for this purpose. These four components of ADSA-EF are described in 
detail below.

5.4.2  constraIned sessIle droP conFIGuratIon For electrIc FIelds

Surface tension measurement using drop shape methods relies on careful experi-
mental procedure and image acquisition from the equilibrium shape of the drop. 
Conducting such experiments in the presence of an electric field requires certain 
considerations that are described here. In particular, the development of a CSD con-
figuration for electric fields is described.

As mentioned earlier, the effect of the electric field on the surface tension is fairly 
small. Measuring such an effect is a goal of ADSA-EF. This requires measurements 
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fiGure 5.22 The algorithm and the structure of the ADSA-EF methodology. The two 
key modules; that is, the electric field and the drop shape modules, calculate the distribu-
tion of the electric field and simulate the shape of the drop, respectively. The optimization 
scheme (showed by dotted ellipse) calculates the optimum values of the surface tension and 
the apex curvature, by finding the best match between the numerical and the experimental 
drop profiles.
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at a wide range of electric fields to ensure that a detected effect is real and is not a 
consequence of experimental error. Pendant drop configuration would be an ideal 
experimental system for this purpose. However, early investigations showed that PDs 
are not stable at high electric fields, since the electric field detaches the drop from the 
holder. Consequently, early versions of ADSA-EF were limited to the sessile drop 
configuration. Typical images of sessile drops of water in an electric field are shown 
in Figure 5.21. A schematic of the experimental configuration for a sessile drop sys-
tem is shown in Figure 5.23a. In this configuration the electric field is applied using 
a parallel plate capacitor.

Generally, it was found that sessile drop experiments are sufficient to show the 
overall effect of an electric field on surface tension, but they failed to reveal more 
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fiGure 5.23 Schematic of the experimental configuration and the integration domain of 
ADSA-EF for (a) sessile and (b) constrained sessile drop systems. The pedestal and the lower 
disc of the capacitor were manufactured as an integrated part. The sharp edge of the pedestal 
prevents liquid leakage. The symbols Γi show the boundaries of the integration domain.
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sophisticated patterns. More specifically, surface tension measurements using a ses-
sile drop configuration may suffer from the following shortcomings:

 1. Irregularities of the solid surface (e.g., roughness and heterogeneity) 
may affect the shape of the drop, and hence reduce the accuracy of 
surface tension results. A drop contact area may not be quite circular, 
and hence the drop shape violates the axisymmetric assumption of the 
methodology.

 2. The procedure of sessile drop experiments is laborious. It requires careful 
preparation of a solid sample (i.e., a Teflon-coated silicon wafer) for each 
run of the experiment.

 3. It is cumbersome to model the effect of the Teflon-coated silicon wafer 
on the distribution of the electric field. The coated wafer sits on the 
lower plate of the capacitor just beneath the drop (see Figure 5.23a), and 
hence it affects the distribution of the electric field on the drop surface. 
Modeling of such effects is not possible due to variable thickness of 
the coating, limited knowledge about the electrical properties of Teflon, 
and the complexity of numerical models dealing with nonconducting 
materials.

To overcome the above limitations, a CSD setup has been developed for 
ADSA-EF. As described in Section 5.2.3.3, the CSD is a sessile drop formed on a 
pedestal that employs a sharp knife-edge to prevent drop spreading at low surface 
tensions (see Figure 5.23b for a schematic of the CSD) [30,66,67]. Figures 5.24a 
and 5.24b show the experimental images of a pedestal and a CSD, respectively. 
Details of the design and manufacturing of the pedestal for the electric field can be 
found in [68].

(a)

YL = YR = 406 

Horizontal leveling of pedestal

(b)

Cutoff level

fiGure 5.24 (a) Image of the pedestal before forming a drop, used to level the pedestal 
and to determine the cutoff level in pixels (i.e., YL and YR); and (b) the position of the pedestal 
and the camera remain unchanged during an experiment, hence the cutoff level is calculated 
once and is used to process images of several runs.
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Development of the CSD for electric fields enhances experimental work in the 
electric field on several fronts:

 1. The pedestal enforces a circular base for the drop, which in turn guarantees 
an axisymmetric shape. Consequently, this setup has the advantages of both 
PD configuration (i.e., accurate surface tension measurement) and sessile 
drop configuration (i.e., stability in a strong electric field).

 2. The preparation of the pedestal for an experiment only involves sonication 
with alcohol and water, which is far easier than the coating process required 
for Teflon surfaces. Moreover, unlike coated surfaces, the pedestal is not 
disposable and does not interact with the liquids under consideration.

 3. The influence of the pedestal on the distribution of the electric field can 
be modeled without difficulty, since (a) unlike Teflon coated surfaces, the 
geometry of the pedestal is precisely known; and (b) the pedestal is made 
of a stainless steel, hence it can be dealt with as a perfect conductor. That 
is, the surface of the pedestal forms an equipotential area, which simplifies 
the formulation of the problem (see the next section for more details).

 4. Unlike typical sessile drop experiments, advance of the drop front is not 
necessary for CSDs. Experiments on solid surfaces often involve advancing 
of the three-phase line to avoid complications due to contact angle hys-
teresis. This is not required for experiments on a pedestal. Among advan-
tages of a static (not advancing) experiment are: (a) higher reproducibility 
and better confidence limits of the results—this is essential for sensitive 
experiments in the electric field, (b) easier focusing of the camera and better 
image acquisition, and, most importantly, (c) better control of the stability 
of the drop. The stability of a drop in the electric field significantly depends 
on its volume (the larger the drop, the less stable it is). Hence, conducting 
an experiment with an advancing three-phase line (i.e., increasing the drop 
volume during the experiment) is not readily possible in a high electric field 
where the drop is close to its stability limit.

 5. Horizontal leveling of the pedestal is straightforward. A common diffi-
culty for sessile drop experiments is to ensure that the surface of the Teflon 
coated wafer is indeed horizontal; that is, the right and left contact points 
of the drop are at the same horizontal level in the digital image. This can 
be easily accomplished for a pedestal configuration using an image of the 
pedestal before forming the drop (see Figure 5.24a) and employing simple 
image processing techniques.

 6. Detection of the cut-off levels (contact point of the drop) is simple for the new 
configuration. The position of the camera/pedestal system is kept unchanged 
during a round of experiment that may consist of several runs; hence, the 
cutoff levels need to be calculated only once (see Figure 5.24b). Inaccurate 
detection of cutoff levels is a major source of error in sessile drop methods.

Employing the above experimental configuration is fast and simple in the electric 
field and it leads to accurate and reliable measurements. The distortion of the electric 



240 Yi Zuo et al.

field caused by the pedestal-drop system should be calculated next. This calcula-
tion requires precise modeling of the experimental system (including the capacitor, 
pedestal, and drop) and is performed in the electric field module of ADSA-EF. This 
module is described next. Further details regarding the experimental procedure in 
the electric field can be found in Section 5.4.6.

5.4.3  electrIc FIeld module

The electric field module of ADSA-EF calculates the distribution of the electrostatic 
field along the surface of the drop by solving Equation 5.4 [61]. The electric field 
values are then substituted in Equation 5.3 to calculate the shape of a drop in the 
electric field [61]. It is known that the accuracy of the calculated drop shapes, as 
well as the ultimate accuracy of ADSA-EF, significantly depends on the quality of 
the numerical techniques used for the electric field calculation [68,69]. Suitability of 
different numerical approaches for this purpose is examined, and the features of the 
numerical model particularly developed for ADSA-EF are described here.

5.4.3.1  mathematical formulation
The mathematical formulation of the electrostatic field problem is derived by express-
ing Equation 5.4 as a family of two-dimensional differential equations [70,71]. 
Figure 5.23a and b show the integration domain and the boundaries for a case where 
a conducting drop is formed on a Teflon-coated silicon wafer or a pedestal in a paral-
lel plate capacitor. In this case, no electric field exists within the conducting drop or 
the pedestal, so the integration domain is limited to the area outside the drop. Taking 
advantage of the axisymmetric nature of the problem, the governing equation of this 
problem in a cylindrical coordinate system can be expressed as
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Ω is the integration domain, x is the radial (horizontal) coordinate, z is the vertical 
coordinate (axis of symmetry), Γ1 is the drop and pedestal boundary (grounded), Γ2 
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is the lower plate of the capacitor (grounded), Γ3 is a boundary at which the gradient 
of the electric potential is known; that is, g(x,y), Γ4 is the upper plate of the capacitor 
(hot plate), Γ5 is the axis of symmetry at which the radial (horizontal) component of 
the electric field is zero, and f(x,y) is the distribution of the possible charge density 
within the integration domain.

The above formulation is valid for various geometries and charge distributions. 
For a simple case where the drop is formed in a parallel disc capacitor, the bound-
ary Γ3 is defined far from the drop so that the electric field is uniform along Γ3 and 
g(x,y) = 0. Moreover, for most practical cases, no free charge density exists within 
the capacitor, hence f(x,y) = 0. All the variables are cast into a dimensionless form so 
that the magnitude of the applied potential (i.e., the potential of the hot plate) and the 
distance between the capacitor plates are unity.

5.4.3.2  numerical scheme
The choice of the numerical method for solving the above system of partial differen-
tial equations is critical for accuracy and efficiency of ADSA-EF. In principle, this 
system can be solved using various numerical methods; however, the choice of the 
optimum method depends on the particular application. The feasibility of two differ-
ent approaches (i.e., finite difference and finite element methods) for the electric field 
module of ADSA-EF is examined here.

As the first alternative, a second-order finite difference scheme with a Cartesian 
grid has been developed. This method employs a difference formula to calculate 
the magnitude of the electric potential at the nodal (mesh) points. The nodal points 
are distributed evenly over the integration domain. The difference formula is not 
applicable to the nodal points that do not coincide with the boundary (e.g., the points 
next to the curved drop boundary). Linear interpolation techniques were employed 
to approximate the electric potentials at these points [72,73].

The following third-order difference formula [73–75] was used to calculate the 
component of the electrostatic field along the radial coordinate (x direction) from the 
values of the electric potential at the nodal points

 

∇ = − + −+ + + +U

U U U U
hx

i i i i2 9 18 11
6

4 3 2 1 ,  (5.6)

where h is the distance between the nodes and i is an index referring to the nodal 
points in the radial direction. A similar formula was used for the calculation of the 
component of the electrostatic field along the axis of symmetry (i.e., z direction).

The sensitivity of the numerical results to the number of mesh points is used to 
determine the optimum mesh size. The value of the electric field at the drop apex is 
considered for this purpose. Table 5.3 shows the numerical values of the dimension-
less electric field at the apex of a hemispherical drop for different numbers of mesh 
points. The results converge to the true electric field, which is equal to three (see 
below), with increasing number of mesh points.

The accuracy of the finite difference results is further improved by calculating the 
order of the discretization error [73]. Let Ei be the calculated electric field at the drop 
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apex for mesh length hi. Taking the leading term in the discretization error propor-
tional to hp, the value of p can be estimated from [73]

 2 2 1

3 2

p E E
E E

= −
−

,  (5.7)

where h1 = 2 × h2 = 4 × h3. Using the values of Table 5.3 for 250, 500, and 1000 mesh 
points as input results in a value of p = 0.938 for the order of the discretization error. 
Then the magnitude of the electric field at any node can be calculated with higher 
accuracy as [73]
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For instance, by substituting the results of Table 5.3 for 100 and 150 mesh points 
in Equation 5.8 the electric field at the apex is calculated as E = 3.012, signifi-
cantly more accurate than the original values shown in Table 5.3. This analysis was 
conducted for different numbers of mesh points. It was found that by solving the 
problem using 200 and 400 mesh points and taking advantage of Equation 5.8, the 
electric field can be calculated fairly efficiently and with a maximum error of less 
than 1%.

table 5.3
the Calculated (numerical) electric field at the 
apex of a hemispherical drop

number of mesh points numerical electric field at the apex

  20 2.287

  50 2.628

 100 2.801

 150 2.868

 200 2.903

 250 2.924

 300 2.939

 400 2.958

 500 2.969

 800 2.986

1000 2.992

Note: The first column corresponds to the number of mesh points in 
the radial direction (i.e. along the capacitor plate). Electric field 
values are dimensionless (see Figure 5.25). The results con-
verge to the true value of the electric field, which is equal to 
three (see Figure 5.26), as the number of mesh points increase.
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Figure 5.25 illustrates the calculated distribution of the electrostatic field (arrows) 
and the equipotential lines. The dimensionless magnitude of the electric field is unity 
far from the drop where its distribution is uniform. The figure shows that the elec-
tric field is maximum at the apex, and it is almost zero at the contact point of the 
drop. This was anticipated since the drop is conducting and there is no charge den-
sity at the contact point. Furthermore, it should be noted that the plotted equipoten-
tial curves are dimensionless; that is, they are independent of the magnitude of the 
applied potential and only depend on the shape and geometry of the drop-capacitor 
system. (More numerical results regarding the effect of the drop geometry on the 
electric field are shown in Figure 5.28.)

In order to validate the formulation and the implementation of the numerical 
scheme, the results were compared with the analytical solutions that exist for the 
simple case of hemispherical drops. For this case, the method of images [76] can be 
used to calculate the distribution of the electric field at the drop surface as [77]:

 E = ≤ ≤3cos( , 0θ θ π
) ,

2
 (5.9)

where θ is the polar angle measured from the drop apex. Figure 5.26 shows the 
numerical and analytical electric fields calculated along the drop surface.

Further verification of finite difference results revealed a fluctuation in electric 
field values unless a very fine mesh (e.g., 1000 × 500 nodes) was used. This error is 
believed to be due to the fact that the nodal points at which the electric potential is 
calculated do not coincide with the curved boundary of the drop, causing an error in 
the numerical calculations [72–75].
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fiGure 5.25 The distribution of the electrostatic field along with the equipotential lines 
calculated over the integration domain. The length of the arrows signifies the magnitude of 
the electric field. Dimensionless variables were used for the calculation, so that the electric 
field is one (E = 1) far from the drop, where the electric field is uniform. The maximum elec-
tric field (the highest density of equipotential lines) occurs at the apex of the drop. The electric 
field then decreases continually from the apex to the contact point.
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A Galerkin finite element scheme was developed as a second alternative for the 
electric field module and to remedy the above shortcoming [68,69]. This scheme 
takes advantage of various advanced capabilities of the finite element approach 
that lead to higher accuracy and performance. Examples of the features of this 
scheme are:

 1. The mesh can be generated so that element vertices (i.e., the nodal points) 
coincide with the drop boundary.

 2. Smaller elements can be used for the area close to the drop surface, where 
(a) the maximum gradient of the electric potential exists, and (b) the high-
est accuracy is required. Similarly, large elements can be used far from 
the drop where the electric field is almost uniform to gain computational 
efficiency.

 3. The new scheme can account for various geometries, which allows study 
of different experimental configurations. For instance, it can be applied to 
pedestals with any given size and geometry, as well as to typical sessile 
drop configurations.

 4. The scheme can be easily modified in the future to account for nonconduct-
ing liquids. For that case, the electric field needs to be calculated both inside 
and outside the drop. Hence, a discontinuity (caused by the drop surface) 
will exist in the integration domain. Such a problem can be easily formu-
lated using a finite element method.
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fiGure 5.26 Comparison of the analytical solution (solid line) with the numerically cal-
culated electric field at several points along the drop surface (circles). The good agreement 
validates the numerical scheme. The illustrated radial (arch-shaped) and vertical (S-shaped) 
components of the electric field were used in the calculation of the numerical electric field. 
The polar angle was measured from the apex to the contact point.
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Several components of the Galerkin finite element scheme that were specifically 
developed for ADSA-EF (i.e., the techniques used for modeling the geometry, dis-
cretizing the domain, and calculating the electric field) are described in the rest of 
this section. Other technical details regarding the numerical scheme (e.g., deriving 
the weak formulation of the problem, deriving the characteristic matrices and vec-
tors, and the elemental construction) are not described here.

5.4.3.3  modeling the Geometry
The geometry of the experimental system (i.e., the capacitor, pedestal, and drop) 
should be precisely modeled as it defines the boundaries of the integration domain. 
An important advantage of the finite element scheme developed for ADSA-EF is its 
versatility to model various configurations. In particular, the scheme is applicable 
to both pedestal and sessile drop configurations (see Figure 5.27). The geometry of 
a given capacitor/pedestal is defined simply by providing the dimensionless coordi-
nates of the corner points. However, defining the drop boundary is more complex. 
ADSA-EF provides several alternative approaches for defining the drop boundary. 
The choice of the approach depends on the particular application.

In the first approach, the boundary can be generated analytically as a section of an 
ellipse. This option is particularly useful to test and evaluate the scheme and to study 
theoretically the effect of the drop geometry on the distribution of the electric field 
[61]. Various hypothetical drop shapes can be generated by defining the horizontal 
and vertical diameters of the ellipse. Figure 5.28 shows the effect of drop geometry 
on the distribution of the electric field on the drop surface. This approach is appli-
cable to both sessile drop and pedestal configurations. When a pedestal is used, the 
horizontal diameter is equal to the diameter of the surface of the pedestal, assuming 
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fiGure 5.27 The geometry of the electric field problem defined for (a) an experimental 
sessile drop, and (b) a hypothetical constrained sessile drop defined using a portion of an 
ellipse with the vertical and horizontal diameters of 0.8 and 1.0 (dimensionless). The shape of 
any given pedestal is determined using three geometries, G1 to G3. The origin of the coordi-
nate system is defined at the base of the drop.
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that the drop completely covers the pedestal. As an illustration, Figure 5.27b shows 
the domain of the problem for a hypothetical drop formed on a pedestal.

As a second alternative, the drop boundary can be defined using a numerical 
drop profile, often generated by solving Equation 5.3 [61]. This option is required 
when no experimental drop shape is available, and particularly to predict the shape 
of a drop in the electric field using a successive approximation approach; that is, 
ALFI-EF (details of ALFI-EF can be found in [61,68]). In this case, the boundary 
is not described by a continuous analytical function; it is rather defined by a list of 
coordinate points connected by linear interpolation, a more complex algorithm. The 
ultimate accuracy of the scheme will depend on the number of coordinate points 
used to define the drop profile. For this reason, a fixed and small step size is preferred 
while Equation 5.3 is solved to generate the drop profile. (Employing an adaptive 
step size is not recommended for this purpose although it would allow larger steps.) 
Generally, it was found that defining a drop profile by 1000 coordinate points results 
in the same accuracy as a drop defined by an analytical function (see Figure 5.29).

A third option for defining the drop geometry is to use an experimental image of 
the drop in conjunction with edge detection. This option is useful when ADSA-EF is 
employed to measure surface tension by analyzing experimental drop images. Similar 
to the second option, the drop is defined by a list of coordinate points. However, it was 
found that the pixel coordinates obtained from the edge detection are not sufficient to 
provide enough accuracy, since (a) the number of pixel points (the image resolution) 
is inadequate, and (b) a profile extracted by an edge detection is not smooth enough 
for our purpose (see Figure 5.30). It was found that the jagged shape of an experi-
mental profile significantly affects the calculated electric field, as the electric field 
tends to be higher at a sharp edge (see Figure 5.31). Interestingly, this effect becomes 
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fiGure 5.28 The effect of the drop geometry on the distribution of the electric field. 
Hypothetical drop shapes were generated analytically as portions of an ellipse.
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more significant as the number of nodal points on the drop surface increases (i.e., the 
mesh is refined) since it is more likely that a fine mesh detects the sharp edges on the 
profile. Consequently, experimental drop profiles are smoothed using a cubic spline 
method (see Figure 5.30). Then, a sufficient number of coordinate points is chosen 
from the smoothed curve and used to define the drop geometry.

Figure 5.27 shows the geometry of the numerical model defined for (a) an experi-
mental sessile drop (i.e., the third alternative above), and (b) a hypothetical CSD 
configuration (i.e., the first alternative above). The shape of any given pedestal is 
determined using three parameters, G1 to G3. In this figure, G1 = 0.05, G2 = 0.05 
and G3 = 0.35, and the horizontal and vertical diameters of the drop are equal to 0.50 
and 0.40, respectively. The geometry is defined in a dimensionless form such that the 
distance between the two plates of the capacitor is unity. The origin of the coordinate 
system is always defined at the base of the drop. It was found that the electric field 
distribution is uniform beyond the radial coordinate of x = 1; therefore, for better com-
putational efficiency, the integration domain was limited to a 1 × 1 square (i.e., the 
boundary Γ3 is defined at x = 1; see Figure 5.23 for details).

5.4.3.4  discretization of the domain
After defining the boundaries of the model, the integration domain is discretized by 
a triangular mesh generator [78–80]. The quality of the mesh is controlled by defin-
ing the maximum area and the minimum angle constraints for the elements. The 
number of nodal points on the drop boundary is also prescribed to control the accu-
racy of the electric field calculated on the drop surface. The optimum combination 
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fiGure 5.29 The electric field distribution (dimensionless) along the surface of a hemi-
spherical sessile drop with diameter of 0.5, where the drop profile is defined analytically 
(solid line) and numerically using a list of 1000 coordinate points (circles). The good agree-
ment suggests that the number of points in the numerical approach is sufficient to accurately 
define the boundary.
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of these three parameters is determined by evaluating the accuracy of the resulting 
electric field versus the computational time.

The discretization of the domain leads to a system of linear equations. Two dif-
ferent numerical methods were used to solve the resulting system of equations: the 
direct Gauss-Jordan elimination [70] and the iterative conjugate gradient method 
[71]. Both methods were validated by comparing the results. However, conjugate 
gradient method was employed in the final version due to several advantages: (a) 
it is known to be efficient for finite element matrices; (b) it will converge to the 
final (exact) numerical solution using a finite number of iterations; and (c) it can be 
developed in a form that does not require assembly of the matrices. Hence, it is more 
efficient than other techniques regarding both time and memory usage [68].

5.4.3.5  electric field Calculation
Finally, the electric field distribution can be calculated from the values of the 
electric potential calculated at the nodal points. Gradient calculations are fairly 
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fiGure 5.30 (a) An experimental image of a constrained sessile drop of water; (b) the 
experimental profile of the drop, extracted by the Canny edge detector, along with the fitted 
cubic spline curve; and (c) the magnified view of the section shown by the dotted square. 
The cubic spline curve was calculated using the coordinates of the 30 pixels highlighted by 
circles.
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straightforward for a finite element scheme compared to finite difference meth-
ods that require additional approximations [61]. In the first-order finite element 
scheme developed here, the electric potential is approximated linearly over each 
element:

 u u u uk = + +1 1 2 2 3 3ξ ξ ξ ,  (5.10)

where uk is the approximated (linear) electric potential over a given element k, the 
ui’s are the calculated nodal values, and ξi is the natural coordinate system for ele-
ment k. Consequently, the slope (gradient) of the electric potential is simply calcu-
lated over each element as:
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This equation, along with the following relations, is employed to calculate the hori-
zontal and vertical components of the electric field over a given element [71,81–84]:
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fiGure 5.31 The electric field distribution calculated along the surface of the sessile drop 
shown in Figure 5.30. Employing experimental pixels to define the drop boundary resulted in 
a fluctuation in the electric field distribution (circles). This problem was solved by smoothing 
the drop profile using a cubic spline fit (see Figure 5.30).



250 Yi Zuo et al.

 
∂
∂

=
×

−( )+ +
ξi

k i
k

i
k

y
x x

kΩ

1
2 2 1area [ ] [ ] ,  (5.11c)

 area k
i
k

i
k

i
k

i
k

i

x x y y

x

= − −+ +

+

1
2

0 0 1

01 1

2

[ ] [ ] [ ] [ ]

[ ]] [ ] [ ] [ ]

,
k

i
k

i
k

i
kx y y− −+2 0

 (5.11d)

where x[i] and y[i] are the coordinates of the vertex i (i = 1, 2, or 3) of the element and 
areak is the area of the element k.

In order to calculate the distribution of the electric field along the surface of the 
drop, all the elements adjacent to the drop boundary (i.e., having two nodes on the 
boundary) were selected (see Figure 5.32). The calculated value of the electric field 
at each element was assigned to the center point of the element edge bordering the 
drop surface (see Figure 5.32). Figures 5.29 and 5.30 show the graph of calculated 
electric field as a function of the radial coordinate and the polar angle, respectively. 
In these graphs, each data point represents the electric field over an element adjacent 
to the drop boundary.

5.4.3.6  evaluation and tuning of the electric field module
The accuracy of the scheme is evaluated by comparing the numerical electric field 
with the analytical solution that exists only for the apex (see Figure 5.26). This evalu-
ation is particularly useful to optimize the discretization parameters.

The quality of the mesh generated in this module is controlled using three param-
eters: (a) the minimum angle of the elements, A, (b) the maximum area of the ele-
ments, S, and (c) the number of nodes on the drop boundary, N. Elements with equal 
angles, i.e., 60º, produce the best accuracy. However, it is difficult (often impossible) 
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fiGure 5.32 (a) A typical triangular discretization of the domain, and (b) a magnified 
view of the mesh close to the drop apex. The electric field is calculated over the elements 
adjacent to the drop boundary; that is, elements having two nodes on the boundary (shaded). 
The calculated value of the electric field over each element was assigned to the midpoint of 
the element edge bordering the drop surface.
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to discretize a domain using such triangles. Figure 5.33 shows that a minimum angle 
of 30º for the element is feasible with respect to the computational time.

The other two criteria both affect the size of the elements; hence, they must be 
evaluated simultaneously. The number of nodes on the drop boundary, N, determines 
the size of elements close to the drop, as well as the number of data points for the 
distribution of the electric field. The maximum area constraint, A, determines the 
general size of elements over the domain. Comprehensive analysis was performed 
to evaluate the effect of these parameters on the generated mesh and the calculated 
electric fields (details of this analysis can be found in [68]). Figure 5.34 shows that 
prescribing 100 nodes on the drop boundary using a maximum element size of 0.001 
(dimensionless) results in a numerical error of the order of 0.01%. Such an error will 
have a negligible influence on the ADSA-EF results, and hence is accepted for this 
study. This error is one tenth of the error of the finite difference scheme described 
before (see Table 5.3).

Normally, the tolerance of the iterative solver needs to be evaluated and adjusted. 
The solver implemented in this module (i.e., conjugate gradient), converges to the 
exact numerical solution using a finite number of iterations (less than 500 iterations 
for a typical mesh). Therefore, no analysis was required to determine the tolerance 
for the solver.

5.4.4  droP-shaPe module

The drop-shape module numerically integrates the Laplace equation of capillarity 
(i.e., Equation 5.3), to simulate the shape of conducting drops when both gravity 
and electric field are present. The values of the surface tension, drop apex curvature, 
and the electric field distribution are needed as input to this module; they are cal-
culated by the optimization scheme and the electric field module (see Figure 5.22). 
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fiGure 5.33 Time required for generating a mesh with parameters of S = 0.001 and 
N = 100 for a typical domain as a function of the minimum angle constraint, A. The graph 
suggests that a minimum angle of 30º is feasible with respect to the computational time. 
Calculations were performed using an Intel Pentium 1.6 GHz processor.
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The calculated numerical drop profiles will then be fitted to the experimental ones 
through an optimization process (see Figure 5.22).

The electrical pressure on the right-hand side of Equation 5.3, ΔPe, depends on 
the magnitude and direction of the electric field, as well as the permittivity of the 
fluids [77,85,86]

 ∆P E E Ee
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a b
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where En and Et are the normal and the tangential components of the electric field at 
the drop surface, ε is the permittivity of the fluid, and superscripts a and b refer to the 
surrounding fluid and the drop liquid, respectively. When the drop is a conducting 
liquid there is no electric field inside the drop and the electric field is normal to the 
drop surface. Thus, the governing equation (i.e., Equation 5.3), for conducting drops 
can be simplified as
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The two-dimensional differential form of Equation 5.13 can be obtained when 
the principal radii of curvature (i.e., R1 and R2) are replaced with the corresponding 
differential terms for the axisymmetric shape (See Chapter 3)
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fiGure 5.34 Evaluation of the electric field distribution along the surface of a hemispher-
ical drop with a radius of 0.2 (dimensionless). An analytical solution exists for this problem 
indicating that the electric field is equal to 3 (dimensionless) at the apex. The electric field can 
be calculated accurately by prescribing 100 nodes along the drop boundary (i.e., N = 100), 
and by restricting the maximum size of the elements to 0.001 of the area of the integration 
domain (i.e., S = 0.001).
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where φ is the angle of inclination of the interface to the horizontal and s is the arc 
length from the apex (see Figure 5.35).

Due to the symmetric nature of the problem, the curvature at the apex is constant 
in all directions; that is, the two principal radii of curvature are equal:

 
1 1 1

1 2 0R R R
b s= = = =at the apex ( 0),  (5.15)

where R0 is the radius of curvature and b is the curvature, both at the apex. Moreover, 
by defining the apex as origin (i.e., z = 0 at the apex), the gravitational term vanishes 
and Equation 5.13 for this point reduces to

 2
1
20

2b P E sa
n
aγ ε= + × =∆ ( ) ( ) at the apex ( 0).  (5.16)

The second term on the right-hand side of Equation 5.16 is a known constant and 
its value can be calculated using the electric field module. Therefore, the pressure 
difference at the reference (apex of the drop) can be expressed as

 ∆P b
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where K is the known electric-field term in Equation 5.16. Substituting Equations 
5.14 and 5.17 into Equation 5.13 yields

 
d
ds

b
K

E
x

a
n
aφ

γ γ
ε φ= − + × −2

1
2

2( ) ( ) sin
.  (5.18)

s

z

x

(x, z)
or

(s, ϕ)

ϕ

O

fiGure 5.35 The coordinate system used for the integration of the drop shapes in the 
electric field (i.e., the drop-shape module).
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Equation 5.18 together with the geometric relations

 
dx
ds

= cosφ  (5.19)

 
dz
ds

= sinφ  (5.20)

forms a set of first-order differential equations in terms of φ, x, and z as functions of 
the arc length, s. The boundary conditions for the drop-shape problem can be defined 
as (see Figure 5.35):

 φ( ) ( ) ( )0 0 0 0= = = =x z sat the apex ( 0),  (5.21)
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dz
ds

s= =0 at the apex ( 0).  (5.22c)

A fourth-order Runge–Kutta [70] scheme with an adaptive stepsize control was imple-
mented to solve the above system of differential equations (i.e., Equations 5.18 through 
5.22). The stability of the scheme was tested by generating numerical drop profiles 
for a wide range of input parameters (within the stability limit of the drop); that is, 
surface tension, apex curvature, and magnitude of the electric field. No limitation was 
observed with respect to the computational effort or stability of the program.

5.4.5  deVeloPment oF an automated oPtImIzatIon scheme

As described earlier, ADSA-EF calculates surface tension of liquids by fitting numer-
ical drop profiles to the experimental profile of the drop. This requires calculation 
and minimization of an error function that quantifies the difference between the two 
profiles. In principle, this process is similar to that of the standard versions of ADSA. 
However, it was found that the optimization methods employed in current versions 
of ADSA fail to converge to the minimum error function when the electric field is 
high (i.e., >3 kV applied electric potential). Consequently, an improved  optimization 
scheme was developed.

The deviation of the numerical curve from the experimental profile is quantified 
using a least square error function ε (γ, b, xa, ya) (See Chapter 3). The value of this 
function depends on surface tension, γ, and apex curvature, b, which determine the 
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shape of the numerical profile, as well as on the coordinates of the apex, (xa, ya), 
which determine the position of the numerical curve with respect to the experimental 
profile. Therefore, minimization of the error function involves a four-parameter 
optimization.

The established Gauss-Newton method was employed to minimize the error 
function [87]. The method is known to be robust and reliable; however, as all multi-
variable optimization methods, it essentially relies on good estimates (initial values) 
of the optimization parameters. Cabezas et al. [88,89] have shown that the key for 
calculation of sufficiently accurate initial values is to estimate the parameters in a 
particular order; that is, the coordinates of the apex, the curvature at the apex, and, 
finally, the surface tension.

In the new optimization module, the coordinates of the apex are estimated using 
a simple image processing procedure (see Figure 5.36). First, the experimental drop 
profile is extracted using an edge detection method. Next, the position of the drop 
axis is determined as follows:

 1. an arbitrary horizontal row, j, of the digital image is chosen;
 2. the two pixels of the drop profile corresponding to the row j of the image are 

identified; and
 3. the center point of the two pixels is calculated.

The above steps are repeated for a number of different rows of the image and the 
position of the axis is calculated as the average of the x-coordinate of the center 
points. During this calculation, anomalous values (that may be caused by experimen-
tal noise) are rejected through a statistical process. Finally, the coordinate of the apex 
is calculated by intersecting the drop axis with the experimental drop profile. The 
last step requires interpolation of the drop profile, since the pixels of the profile are 
integers but the position of the drop axis is a real number (see Figure 5.36).
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fiGure 5.36 Estimating the position of the apex for the drop shown in Figure 5.30a: (a) 
the extracted experimental profile, several arbitrary horizontal lines, and the calculated axis 
of the drop; and (b) the magnified view of the apex area, a fitted cubic spline curve, and the 
intersection of the axis with the profile (i.e., the drop apex).
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The curvature of the apex is estimated in the next step. It was shown [88,89] that 
numerical curves, which are calculated using a constant apex curvature and different 
surface tensions, coincide closely near the apex (i.e., over a vertical distance of about 
1/6 of the drop length). This suggests that the shape of numerical (Laplacian) profiles 
close to the apex is a function of apex curvature only and is almost independent of 
surface tension. Taking advantage of this finding, the apex curvature is estimated as 
follows:

 1. the coordinates of the apex are estimated as explained above;
 2. numerical (Laplacian) drop profiles are generated using the estimated coor-

dinates of the apex and an arbitrary value of surface tension; and
 3. 1/6 of the experimental drop profile close to the apex is fitted to the numeri-

cal curve by adjusting the apex curvature as the only optimization param-
eter. The best fit represents the estimate of the apex curvature.

The value of the surface tension is estimated next by analyzing the whole drop 
 profile. A Laplacian curve is fitted to the experimental profile using the  estimated 
coordinates and curvature of the apex, and employing a single-parameter  optimization. 
Figure 5.37 shows the resulting numerical curve after each stage of the  estimating 
process.

Finally, the Gauss-Newton optimization method is employed to fit a Laplacian 
curve into the experimental profile through a four-parameter optimization, starting 
from the numerical curve obtained by the above estimating process. It was found 
that the estimated parameters are sufficiently accurate to guarantee the convergence 
of the algorithm to the “global” minimum. Furthermore, the above optimization 

(i) γ = 80.00 mJ/m2, b = 8.00 cm–1

(ii) γ = 80.00 mJ/m2, b = 7.26 cm–1

(iii) γ = 71.56 mJ/m2, b = 7.26 cm–1

Cutoff Level

fiGure 5.37 Numerical Laplacian curves at different stages of estimating the optimiza-
tion parameters: (i) after the position of the apex is estimated but using initial (arbitrary) 
values of apex curvature and surface tension, (ii) after apex curvature, b, is estimated, and 
(iii) after the surface tension, γ, is estimated.
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procedure is robust enough to converge to the optimum parameters regardless of the 
arbitrary initial values.

5.4.6  exPerIments and results

This section presents the results of an experimental study to investigate the effect 
of electric fields on surface tension of conducting liquids. This study became pos-
sible only after the development of advanced versions of ADSA-EF, as described 
above. The measurements are focused on three conducting liquids: distilled water 
(pH = 5.3), formamide, and propylene carbonate (with electrical conductivities of 
4 × 10–8 ohm–1cm–1, 4 × 10–6 ohm–1cm–1, and 3 × 10–6 ohm–1cm–1, respectively, at 
room temperature) [90].

These liquids are considered as conductors in this study. Notz and Basaran [91,92] 
evaluated the validity of this assumption for distilled water. They showed that the 
conductivity of water is sufficiently high for similar drop experiments when the liq-
uid flow rate in the drop is small. The other two liquids under study have higher 
electrical conductivities than distilled water, so it is believed that they also satisfy the 
underlying assumption of ADSA-EF.

A range of alcohols, from pentanol to undecanol, were also investigated in this 
study. The electrical conductivity of alcohols is of the order of 10–11 ohm–1cm–1 at 
room temperature [90], which is less than that of the above three liquids. Therefore, 
ADSA-EF may not be strictly applicable to alcohols and the reported results should 
be interpreted with circumspection. Such results may, however, be valuable for 
means of comparison with other studies.

5.4.6.1  experimental procedure
The experimental procedure used for this study is fairly simple and straightforward. 
No sophisticated solid surface preparation is required. Before each experiment, the 
pedestal is sonicated in alcohol (three times, 15 minutes each), then in distilled water 
(15 minutes), and is dried under a heat lamp. Details of the optics and setups used for 
ADSA experiments can be found in Section 5.2.2 [93,94].

Each round of experiments consists of several runs carried out at different volt-
ages (normally from 0 kV to 7 kV). At each run, a CSD is formed, the camera is 
focused, the electric field is applied, and image acquisition is started after five 
seconds. Experiments with suspended glass beads were conducted previously to 
ensure that no induced liquid flow exists in the drop as a result of the electric field 
[95]. Existence of such flow could affect the equilibrium shape of the drop.

Each run of the experiment lasts for only 10 seconds after the beginning of image 
acquisition. The liquids under investigation (i.e., water, formamide, and propylene 
carbonate) are polar with high surface tension; hence, such runs are preferred to 
reduce the chance of contamination of the drop during the experiment. In total, 11 
images (at the rate of one image per second) were acquired during each run, providing 
11 surface tension measurements at any given voltage. The pattern and scatter of the 
results were scrutinized and anomalous runs/observations were rejected or repeated.

It was found that the volume of the drop can significantly affect the measure-
ments. Small drops are stable over a wider range of applied electric field; however, 
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they are not well-deformed by gravity, and hence cannot produce accurate results at 
low voltages. Large drops, on the other hand, are less stable in the electric field and 
will spark or splash at a high voltage. Their shape, however, is sensitive to both grav-
ity and electric field; hence, they can result in more accurate surface tension mea-
surements. Another criterion is that the drop should be large enough to completely 
cover the surface of the pedestal (diameter of 6 mm), as assumed in the numerical 
model. Our experience showed that conducting drops with a volume within the range 
of 0.08–0.12 cm3 are stable up to an electric potential of 6 kV and can produce reli-
able surface tension measurements throughout this electric field range.

All the results reported here were generated using drops of about 0.1 cm3, a par-
allel plate capacitor with a distance of 12.5 mm between the plates, and a pedestal 
with integrated electric field disc with a diameter of 38 mm (see Figure 5.23). All 
experiments were conducted at room temperature (i.e., 24.5 ± 0.5º), and a RH of 
50 ± 10%.

5.4.6.2  experimental results
Table 5.4 shows the measured surface tension of CSD of water in the electric field 
along with the calculated mean, standard error, and 95% confidence interval for 
each voltage. The mean values show an increase with increasing electric potential, 
indicating that the surface tension of water is affected by the electric field. Table 5.5 
shows the summary of results (i.e., mean and 95% confidence interval) for the three 
conducting liquids under consideration (i.e., water, propylene carbonate, and forma-
mide). Similarly, Table 5.6 summarizes the surface tension measurements for alco-
hols. Both Tables 5.5 and 5.6 show an increase in the surface tension of liquids due 
to the applied electric field.

The fact that surface tension depends on the electric field suggests that a surface 
tension gradient may exist along the drop surface, as the magnitude of the electric 
field varies along the surface (see Figure 5.26). Measuring or modeling such a gradi-
ent is beyond the scope of this study; hence, the reported results should be considered 
as the average (or effective) surface tension of the drop.

Table 5.7 compares the surface tension of alcohols obtained in this study (using 
ADSA-EF) with the corresponding results obtained in a different study, which was 
based on the interpretation of contact angle measurement in electric fields [95]. The 
contact angle measurements were performed using an Automated Polynomial Fitting 
(APF) method (see Chapter 6 for details of the APF method) [96] and interpreted 
in terms of surface tension using the equation of state for interfacial tensions (see 
Chapter 9 for the equation of state approach).

Both methodologies show the same trend and order of magnitude of the change 
in surface tension with the electric field. However, ADSA-EF results generally show 
a higher increase in the surface tension than the APF method. Such a difference 
between the two methodologies indicates that these studies are still in an early 
stage. Different experimental setups were used for the two studies: a stainless steel 
pedestal was used for the ADSA-EF experiments while a Teflon coated substrate 
was used for the APF measurements. These two  setups generate different magni-
tudes of the electric field at the drop surface for a given applied voltage, and thus 
have different effects on the surface tension. Moreover, it should be noted that both 
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ADSA-EF and APF results reported in Table 5.7 are approximate: ADSA-EF is not 
strictly applicable to alcohols (with intermediate conductivity) and APF results are 
indirect; that is, an interpretation of contact angle measurements using thermo-
dynamic relations.

The level of agreement found in Table 5.7 is adequate to confirm that contact angle 
measurements can be used to deduce information about surface tension of liquids 
in general, and in the electric field in particular. Table 5.7 also compares the mea-
surements of ADSA-EF at 0 kV with the corresponding results obtained from PD 
experiments. The PD experiments were conducted using current versions of ADSA 
designed for gravity and are believed to be accurate. The comparison generally shows 
a difference of less than 1%, verifying the accuracy of ADSA-EF at 0 kV.

Figure 5.38 graphically illustrates the mean surface tension of water in the elec-
tric field. A simple analysis of regression was carried out by fitting first- and second-
order polynomials to the data points and calculating the correlation coefficients, R2. 
A higher correlation coefficient was obtained for the second-order curves, suggesting 
that the influence of the electric field on the surface tension of conducting liquids is 
proportional to the square of the applied electric potential (or electric field). Similar 
results were obtained for all liquids under investigation. This interesting finding 
agrees with theory, since the electric field pressure at the drop surface (i.e., the jump 
in the normal component of the Maxwell stress tensor across the interface) is also 
proportional to the square of the electric field.

table 5.5
the surface tension and 95% Confidence interval of 
Constrained sessile drops of distilled Water, 
propylene Carbonate and formamide in an electric 
field, measured by adsa-ef

applied 
Voltage (V)

average surface tension (mJ/m2)

Water propylene Carbonate formamide

0 72.63 ± 0.31 41.39 ± 0.16 58.30 ± 0.22

1000 72.53 ± 0.32 41.25 ± 0.11 58.66 ± 0.17

2000 73.28 ± 0.30 41.22 ± 0.16 58.54 ± 0.22

3000 72.91 ± 0.31 41.47 ± 0.12 58.91 ± 0.28

4000 73.90 ± 0.49 41.60 ± 0.17 58.98 ± 0.19

5000 74.42 ± 0.56 41.93 ± 0.24 59.50 ± 0.47

6000 75.40 ± 0.41 41.87 ± 0.28 59.63 ± 0.50

7000 77.42 ± 0.69 42.27 ± 0.29 60.12 ± 0.57

Note: Each data point represents the average of a run of experiments. All 
measurements were conducted at room temperature (24.5 ± 0.5ºC). 
The literature values for surface tension of propylene carbonate and 
formamide are 40.9 mJ/m2 and 57.82 mJ/m2, respectively, in the 
absence of an electric field (at 24.5ºC).
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fiGure 5.38 The surface tension of constrained sessile drops of water in the electric field, 
measured by ADSA-EF. A straight line and a second-order polynomial are fitted to the data 
points. The correlation coefficients, R2, suggest that the influence of the electric field on  surface 
tension is of second order. The minimum observed at 1 kV is unlikely to be physically real.

table 5.7
Comparison of adsa-ef and apf to determine the effect of the electric 
field on surface tension of alcohols

methodology pendant drop Vs. adsa-ef adsa-ef apf

liquid

γlv
o 

(mJ/
m2)

γlv
o 

(mJ/
m2)

deviation 
at

 0 kV (%)
γlv

e 

(mJ/m2)

Change 
in γlv

(%)
γlv

e 

(mJ/m2)

Change 
in γlv 

(%)

Pentanol 26.01 26.13 0.46 26.77 2.92 — —

Hexanol 26.05 26.15 0.38 26.74 2.65 26.28 0.88

Heptanol 26.85 26.86 0.04 27.48 2.35 27.12 1.01

Octanol 27.50 27.49 –0.04 28.82 4.80 27.83 1.20

Nonanol 27.55 27.87 1.16 28.46 3.30 27.93 1.38

Decanol 28.29 28.55 0.92 29.31 3.61 28.76 1.66

Undecanol 28.88 29.28 1.39 29.88 3.46 — —

Dodecanol 29.41 — — — — 30.00 2.01

Note: The first row shows the methodologies used. The second column from left shows the surface 
tension of alcohols at 0 kV measured using a pendant drop configuration. The third and fourth 
columns show the measured surface tension at 0 kV using ADSA-EF and the percentage devi-
ation from the corresponding pendant drop measurements. The fifth and sixth columns show 
the measured surface tensions at 5 kV using ADSA-EF and its percentage increase as a result 
of the applied voltage. Columns seven and eight show the calculated surface tensions at 4.5 kV 
using APF and the percentage increase as a result of the applied voltage. All the measurements 
were conducted at room temperature (24.5 ± 0.5ºC).
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An alternative interpretation, assuming a threshold level for the electric field below 
which the liquid surface tensions are unaffected, cannot be excluded. This threshold 
could be about 1 or 2 kV for the water surface tensions shown in Figure 5.38. In this 
scenario, the data points beyond the threshold level fall roughly on a straight line. 
Furthermore, it is unlikely that the minimum observed at 1 kV (see Figure 5.38) has 
physical significance. It is believed that such minima are only due to experimental 
fluctuations.

Table 5.8 shows the least square error for the surface tension measurements of 
water in the electric field (corresponding to the results shown in Table 5.4). The error 
represents the deviation of the fitted Laplacian curve from the experimental drop 
profile, and hence the reliability of the ADSA-EF measurements. Figure 5.39 plots 
both the mean value of the least square errors (shown in Table 5.8) and the standard 
errors (calculated in Table 5.4) versus the applied electric potential. The graph shows 
that both errors slightly increase with increasing electric field. Then, there is a jump 
in the least square error at 7 kV.

The graph suggests that the surface tension measurements up to 6 kV are at the 
same level of reliability as those in the absence of an electric field (corresponding 
to the same order of magnitude of the least square error) but, the measurements at 
7 kV should be interpreted with circumspection. However, it should be noted that 
the measured value at 7 kV falls on a smooth curve with the rest of the observations 
(See Figure 5.38). A possible explanation for a higher error at 7 kV is that the drops 
at such voltage are close to their stability limit, so their shape may deviate from the 
Laplace equation, which is valid only for stable and equilibrium conditions. This 
error analysis was repeated for formamide and propylene carbonate, resulting in a 
similar pattern for both liquids.

The operative mechanism for the observed increase in the surface tensions in 
the electric field is not understood yet. However, it is believed that rearrangement 
of liquid molecules in an electric field alters the intermolecular interactions and 
force balance, and hence changes the surface tension. For instance, it is known 
that the molecules and free charges in a conducting liquid react to the external 
electric field, as they rearrange to produce an internal field exactly equal but in 
the reverse direction to the external one [97]. As a result, no electric field can 
exist within a conducting drop. Similarly, an external electric field aligns polar 
(dipole) molecules of the liquid in the direction of the field [97]. The magnitude 
of this alignment depends on the dielectric constant of the liquid, as well as 
the temperature. The relation between the molecular alignment and its effect 
on the surface tension is expected to depend on the size or chain length of the 
molecules.

Alternatively, the observed increase in surface tensions could be a result of a 
similar decrease in the liquid density in the electric field. Such an effect (i.e., elec-
trostriction) was reported before in the literature [98,99]. Further investigation is 
required to shed light on this issue. If the density change were found to be an opera-
tive mechanism, ADSA-EF would need to be modified to use the mass of a liquid 
drop, instead of its density, as input.
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5.5  an alternatiVe tO adsa: theOretiCal 
imaGe fittinG analysis (tifa)

5.5.1  IntroductIon

As detailed in Chapter 3, ADSA determines surface tension and contact angle by 
comparing the experimental shape of a drop or a bubble with the theoretical predic-
tion obtained by solving the Laplace equation. An image of a drop/bubble configura-
tion is acquired in an experiment, and the profile (i.e., the liquid–fluid interface) is 
extracted using edge detection. Then, an error function that measures the deviation 
of the theoretical curve from the experimental profile is defined. The value of the 
surface tension used to generate the theoretical curve, together with other param-
eters, is adjusted to minimize this error function (i.e., to find the best fit between 
the theoretical profile and the experimental one). The measured value of the surface 
tension is that corresponding to the best fit.

As discussed in Chapter 4, the accuracy of ADSA depends crucially on the qual-
ity of the drop/bubble profile extracted by edge detection. Current image analysis 
schemes of ADSA employ advanced edge detection methods, such as the Canny edge 
detector, together with other correction procedures, such as distortion correction and 
cubic spline interpolation (see Chapters 3 and 4 for details). Nevertheless, edge detec-
tors may fail when the acquisition of sharp and clear images of the drop/bubble is not 
possible due to experimental or optical limitations. One example is CB experiments 
for lung surfactant research, where the images are fuzzy or noisy due to  opacity of 
the surfactant suspension (see Chapter 4).
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fiGure 5.39 The least square errors (shown in Table 5.8) and the standard errors (calcu-
lated in Table 5.4) versus the applied electric potential. Overall, both errors increase slightly 
with increasing the voltage, except for a significant jump in the least square error at 7 kV.
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Two strategies have been developed for analyzing noisy images. One is the 
advanced image analysis scheme (i.e., edge detection and smoothing) developed in 
Chapter 4. The other one is called Theoretical Image Fitting Analysis (TIFA), to be 
discussed in detail in what follows.

In TIFA, entire theoretical and experimental images are compared, eliminating 
the need for an independent edge detection technique. The quantity to be minimized 
is then not the deviation (i.e., distance) between experimental and theoretical pro-
files, but the pixel-by-pixel intensity difference between experimental and theoretical 
images. The parameters determining the theoretical image (e.g., the surface tension) 
are adjusted to minimize the error; that is, to find the theoretical image that best fits 
the experimental one. The measured value of the surface tension (or other surface 
properties) provided by TIFA is that corresponding to the best fit.

More precisely, the gradient of the experimental image, rather than the raw image, 
is employed in TIFA in order to minimize the effect of contrast and lighting condi-
tions, which may vary between experiments. A comparison between the ADSA and 
TIFA procedures is shown in Figure 5.40. One drawback of TIFA relative to ADSA 
is that, in its current form, the running time of TIFA is considerably longer (a few 
minutes vs. ~2 s per image with a 2 GHz CPU computer).

Originally, TIFA was developed for the analysis of images of drops and bubbles 
in a version called TIFA-Pendant Drops (TIFA-PD) [88,89,100]. The configurations 
analyzed by TIFA-PD utilize the presence of the drop/bubble apex. The latest ver-
sion, TIFA-Axisymmetric Interfaces (TIFA-AI), is applicable to practically any axi-
symmetric fluid configuration, with or without apex [100,101]. In Section 5.5.2, the 
principles of TIFA are presented, and the following sections describe how TIFA is 
applied to different fluid configurations, such as drops and bubbles, configurations 
without apex, and liquid lenses.

5.5.2  FormulatIon oF the oBJectIVe FunctIon

In essence, TIFA builds a theoretical image of the entire fluid configuration and 
compares it with the experimental configuration.
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fiGure 5.40 Comparison of the ADSA and TIFA procedures.
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Figure 5.41a shows a typical image of an axisymmetric PD obtained in an experi-
ment. Mathematically, a digital image is characterized by the gray level function 
I(i, j) that takes a value between 0 (black) and 255 (white) for each pixel. The pixels 
(i, j) are numbered starting from the origin of the coordinate system (xI, zI) at the top 
left corner of the image. In TIFA, the gradient G(i, j) of the experimental image I(i, j) 
is calculated using the 3 × 3 Sobel operator (See Chapter 4 for details). Figure 5.41b 
shows the gradient image for the experimental image shown in Figure 5.41a. The 
value of the gradient function G(i, j) is high (light pixel) near the contour line of the 
interface (where the gray level I(i, j) changes rapidly) and low (dark pixel) away from 
the interface. In a sharp image, moving perpendicularly across the interface, the 
peak in the gradient may be several pixels wide; in a blurry image, it is even wider 
(see also Chapter 4). Thus, while the edge detection in ADSA selects just one of these 
pixels to represent the interface location, all the gradient information is preserved in 
TIFA (see the discussion below, as well as Figure 5.44, for more details).

The theoretical counterpart of G(i, j) is a gradient image generated from the theo-
retical profile of the interface (numerically calculated by integrating the Laplace equa-
tion of capillarity). Since the theoretical profile and its gradient are continuous, and 
the experimental gradient image G(i, j) is a pixelated (digital) image, a transformation 
must take place to allow the difference between them to be calculated. The details of 
this transformation will be described below; for the moment, we will assume that we 
have a pixelated theoretical gradient image GT(i, j) that has the value 255 (white pixel) 
along the theoretical interface and zero (black pixel) everywhere else (see Figure 5.41c). 
In other words, GT(i, j) is what G(i, j) would be if the experimental profile lay exactly 
along the theoretical profile, and if the experimental image I(i, j) was perfectly sharp.

We may write

 GT i j
i j i jp p,
, ,

( ) =
( ) ( ){ }255

0

for in the set

otherwiise{  (5.23)

where {(ip, jp)} are the pixels that constitute the theoretical profile. The set {(ip, jp)} 
depends on certain unknown properties, such as the surface tension. Therefore, the 

(c)(b)(a)
i/xI

j/z
I

fiGure 5.41 (a) Experimental image of a drop of cyclohexane in air, and coordinate sys-
tem associated with the image; (b) corresponding gradient image after applying the 3 × 3 
Sobel operator; and (c) theoretical gradient image corresponding to a calculated theoretical 
profile.
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value of those properties can be calculated by fitting the theoretical gradient image, 
GT(i, j), to the experimental gradient image, G(i, j). An error function is defined that 
describes the difference between the two images:

 ε = ( ) − ( )[ ]
( )
∑ G i j GT i j

i j

, , .
,

2
 (5.24)

Substituting Equation 5.23 into Equation 5.24 yields

 ε = − × × ( ) −[ ]
( )
∑K G i j
i jp p

255 2 255, ,
,

 (5.25)

where K is a constant for each experimental image that does not play a role in the 
minimization of the error function. Note that the summation in Equation 5.25 is lim-
ited to the pixels {(ip, jp)} corresponding to the theoretical interface. TIFA searches 
for the value of the unknown properties, such as the surface tension, leading to the 
set of pixels {(ip, jp)} corresponding to the minimum error, Equation 5.25. In this 
sense, TIFA works similarly to any gradient based edge detection technique, search-
ing for the pixels in the experimental image with maximum gradient. However, the 
pixels are not considered individually in TIFA, but as a set {(ip, jp)}, which corre-
sponds to a Laplacian profile.

We now return to the subject of how the experimental gradient image is com-
pared with the theoretical gradient image. As explained in Chapter 3, optical 
devices (e.g., microscope lenses) often produce distortion in the experimental 
images. These effects should be considered when building the theoretical image. 
Distortion of the images is discovered and corrected by analyzing the image of 
a calibration grid. Figure 5.42a shows an assumed ideal calibration grid and the 
coordinate system (xG, zG) associated with it. Note that symbols (i, j) are used for 
discrete (pixel) coordinate systems, while symbols (x, y), with various superscripts, 

xG i/xI

zG j/z
I

(a) (b)

fiGure 5.42 (a) Sketch of an ideal calibration grid and coordinate system (xG, zG) associ-
ated with the grid; and (b) image of the calibration grid acquired in an experiment, and coor-
dinate system (xI, zI) associated with the image.
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are used for continuous (analytical) coordinate systems. Figure 5.42b shows the 
(actual)  distorted image of the grid and the corresponding coordinate system (xI, zI). 
In TIFA, the same calibration procedure as in ADSA is used to map any point of the 
grid to the corresponding point in the image. Two functions are constructed with 
the calibration results: the Optical Correction function, fOC(xI, zI), which calculates 
the coordinates (xG, zG) of any point in the grid coordinate system as a function 
of the corresponding coordinates (xI, zI) on the image; and its inverse the Optical 
Effects function, fOE(xG, zG), which calculates the coordinates of any point (xI, zI) in 
the image coordinate system as a function of the corresponding coordinates (xG, zG) 
on the grid.

The theoretical profile of the interface is given by the Laplace equation. The 
coordinate system (xL, zL) used to solve the Laplace equation is usually shifted and 
rotated with respect to the grid coordinate system (see Figure 5.43, for example). The 
position of the Laplace coordinate system in the grid coordinate system is defined 
by the position (xG

0, zG
0 ) of its origin (e.g., the apex for a drop), whereas its orientation 

is given by the angle α between the zG axis and the direction of gravity (i.e., the zL 
axis). The coordinates of the theoretical profile in the grid {(xp

G, zp
G)} are therefore 

given by the relations:
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α

fiGure 5.43 The Laplace coordinate system used to calculate the drop profile is shifted 
and rotated with respect to the grid coordinate system. The position is defined by the coordi-
nates (xG

0, zG
0 ) of the apex of the drop and the orientation by the angle α.
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where {(xp
L, zp

L)} are the coordinates of the interface calculated by numerically solv-
ing the Laplace equation. Finally, the image coordinates of the theoretical profile 
{(xp

I, zp
I)} can be calculated from the grid coordinates {(xp

G, zp
G)} via

 x z f x zp
I

p
I

OE p
G

p
G, , .( ){ } = ( ){ }[ ]  (5.27)

Therefore, the shape of the theoretical profile in the image depends on the position 
and orientation of the Laplacian profile in the grid, characterized by the parameters 
{x0

I, z0
I, α}. These parameters are initially unknown, so they must be calculated in 

the minimization of the error function, Equation 5.25.
In this way, the TIFA program transforms the continuous theoretical profile of 

the interface given by the Laplace equation into a continuous profile in the image 
coordinates. The continuous profile must then be discretized into a set of points 
{(ip, jp)} for comparison with the experimental gradient image; different alternatives 
for accomplishing this were analyzed by Cabezas et al. [88]. It was found that the 
most advantageous method was to discretize the profile in only the z dimension, and 
to interpolate the experimental image in the x dimension. Thus, the discrete profile 
is formed by the points xp

I(zI) of the continuous Laplacian profile for which the verti-
cal coordinate takes an integer value zI = j (shown as dots in Figure 5.44). Then, the 
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fiGure 5.44 The line in the x-z plane is the continuous theoretical profile in the image 
coordinates. The dots are the points chosen on this line for each integer value of zI = j. 
The squares represent the gray levels of the experimental gradient image G in a horizontal 
(x- direction) 11 pixel neighborhood of the particular profile point for the row j = 378. The 
line drawn through the squares is a cubic spline interpolation. The cross is therefore the 
interpolated experimental gradient at the profile point for the row j = 378. Similar 11-point 
splines could be drawn at each other integer value of zI = j, but are omitted for clarity. If they 
were drawn, each would produce a corresponding heavy dotted line like the one shown; TIFA 
maximizes the sum of squares of the lengths of these lines.
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experimental image gradient is interpolated in the horizontal (x) direction to obtain 
the value G(xp

I, j), shown as a cross in Figure 5.44. A cubic spline over an 11-pixel 
neighborhood of the profile point is used for the interpolation. The values G(xp

I, j) 
obtained from the interpolation in each image row (each value of j) are then used in 
the error Equation 5.25.

In the current version of TIFA, the Nelder-Mead simplex technique is employed 
as the minimization method for all fluid configurations. As in most multidimensional 
minimization processes, this technique requires good initial values of the unknown 
parameters in order to converge to the global minimum. Different procedures for 
estimating initial values of the unknown parameters are used in different applica-
tions of TIFA.

In the following sections, TIFA is applied to various fluid configurations. For each 
configuration, the unknown parameters are identified, and an estimation procedure 
is developed for finding the initial values to be input into the final, Nelder-Mead 
minimization. Then, results calculated by TIFA are compared with those calculated 
by ADSA from the same images.

5.5.3  tIFa For droPs and BuBBles

The theoretical profile of the drop is generated numerically by solving the Laplace 
equation of capillarity (see Axisymmetric Liquid Fluid Interfaces, ALFI, in 
Chapter 3). The shape of the drop is calculated as a function of a set of four param-
eters: the surface tension γ, the curvature at the apex b, the density difference Δρ, 
and the gravity g. The last two are usually considered as known, leaving only {γ, b} 
to be calculated in the optimization procedure. As explained above (Figure 5.43), 
the parameters determining the position and orientation of the drop profile in the 
image {x0

I, z0
I, α} are also unknown. Therefore, as in ADSA, the error function ε(γ, 

b, x0
I, z0

I, α) depends on five unknown parameters that must be adjusted to obtain the 
theoretical image that best fits the experimental one (i.e., the minimum error). Good 
estimates of these parameters need to be used as initial values in the minimization 
of the error.

A special estimation procedure has been designed for TIFA-PD. The order in 
which the parameters are estimated was found to be crucial. For the best results, 
the orientation of the drop and the position of the apex are estimated first, then the 
curvature at the apex, and finally the surface tension.

The orientation of the drop profile in the image (Figure 5.43) is defined by the 
angle α formed by gravity g and the vertical axis of the grid (zG). The direction of 
gravity is estimated by analyzing a plumb-line image acquired in the experiment. 
Then, the position of the drop in the image is defined by the position of its apex 
(x0

I, z0
I). To estimate this, pairs of points on the left and right profiles are detected. 

The horizontal position of the apex is estimated as the mean value of those of the 
detected points. The initial value for the vertical coordinate of the apex is obtained 
by detecting the point where the axis intersects the profile of the drop (details on this 
procedure can be found elsewhere [88]).

The parameters {b, γ} that define the shape of the drop are estimated next. The 
estimates of {α, x0

I, z0
I} obtained previously are used in this calculation. The shape 
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of the drop close to the apex is mainly determined by the curvature b. For that rea-
son, this parameter can be estimated by using only a portion of the image near the 
apex. In particular, the error function Equation 5.25 is used such that the summation 
is applied only to pixels (ip, jp) close to the apex (1/8 of the length of the whole drop). 
This error function, ε1/8, essentially depends only on b, being almost independent of 
γ. The apex curvature b is estimated by finding the minimum of ε1/8 for an arbitrary 
value of γ. It has been proved that the final measured value of the surface tension 
does not depend on the arbitrary value of γ used in this step [89].

Once a good estimate for the curvature has been calculated, the shape of the 
whole drop mainly depends on the value of the surface tension. Therefore, the 
initial value of the surface tension is found by fitting the whole theoretical image 
to the experimental one while holding {α, x0

I, z0
I, b} fixed at their estimated 

values. Thus, the error function in this step depends only on the surface tension. 
A single-parameter minimization is used to estimate the value of the surface 
tension.

In the final step, the estimates of {γ, b, x0
I, z0

I, α} thus obtained are used as initial 
values in the full Nelder-Mead multivariate optimization.

The accuracy of TIFA-PD can be assessed by direct comparison with output for 
the same images from ADSA. Results from such a comparison are presented in 
Table 5.9, where excellent agreement between the two methods is seen. In Figure 5.45, 
TIFA-PD results are compared with those of ADSA for images from a CB experi-
ment. Again, good agreement is found between the two methods.

5.5.4  tIFa For axIsymmetrIc InterFaces WIthout aPex

In some common experimental geometries, the liquid–fluid interface does not have 
an apex. Note that this is distinct from a situation in which an apex exists but is not 

table 5.9
Comparison of surface tension Values 
(mJ/m2), with 95% Confidence 
intervals, Obtained by tifa-pd and 
adsa for identical images of pds of 
Various liquids

liquid tifa-pd adsa

Cyclohexane 25.26 ± 0.02 25.24 ± 0.02

Hexadecane 26.92 ± 0.01 26.89 ± 0.01

Water 71.39 ± 0.03 71.37 ± 0.03

Glycerine 59.84 ± 0.01 59.77 ± 0.01

Note: Note that due to experimental error, the results 
may not correspond to literature values.
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visible in the image of the interface due to for example, an obstruction. Figure 5.46a 
shows an example of a geometry with no apex—the liquid bridge (another  example, 
the liquid lens, will be discussed in the next section). In the absence of the apex, the 
origin of the coordinate system is located at one end of the interface profile. The 
Laplace equation shows that the shape of the interface depends on the set of para-
meters {γ, b0, Δρ, g}, where b0 is the local mean curvature of the interface at the 
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fiGure 5.45 Surface tension values calculated by TIFA-PD (squares) and ADSA (tri-
angles) for a series of images obtained as a function of time t using the captive bubble con-
figuration. The liquid was a mixture of 1 mg/mL bovine lipid extract surfactant (BLES) and 
30 mg/mL polyethylene glycol (PEG).

zL

zG

(b)(a)
xG

ZL

xL

g

α

α

L

xL

2 R0

L

g

0
φ0

(x0 
G, z0 

G)

fiGure 5.46 (a) Coordinate system (xL, zL) used in the numerical integration of the Laplace 
equation for axisymmetric liquid–fluid interfaces without apex; (b) position and orientation 
of the interface coordinate system in the grid.
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reference level zL = 0. The shape of the interface is calculated by considering the 
boundary conditions at the reference level:

 xL(0) = R0, zL(0) = 0, ϕ(0) = ϕ0, (5.28)

where R0 is the radius of the interface at the reference level and ϕ0 the inclination 
of the interface at the same point [100,101]. The interface profile is calculated as a 
function of the set of six parameters {γ, b0, Δρ, g, R0, ϕ0}, of which Δρ and g are 
known.

The position and orientation of the axisymmetric interface in the image are given 
by the set of parameters {x0

I, z0
I, α}. It has been found, however, that the value of the 

coordinate z0
I can be fixed at its initial estimate (detailed below) without loss of accu-

racy. So, TIFA-AI adjusts the values of six parameters {γ, b0, R0, ϕ0, x0
I, α} to obtain 

the theoretical image that best fits the experimental one. Good initial estimates of 
these parameters need to be used in the minimization procedure to converge to the 
global minimum. The procedure used by TIFA-AI estimates the orientation of the 
interface and the position and radius at the reference level first, then the inclination 
and curvature at the reference level, and finally the surface tension.

As in TIFA-PD, the orientation of the interface α, given by the direction of grav-
ity, is obtained by analyzing the plumb-line image acquired in the experiment. 
Analysis of the image of the axisymmetric interface allows four other parameters 
to be estimated as follows. A set of 15 points of the interface profile close to the 
reference level is detected at each side. The horizontal coordinate of the origin x0

I is 
estimated as the mean value of those of the detected points. Then a parabola is fitted 
to the profile points, and the estimates of R0, b0, and ϕ0 are calculated as those of the 
parabola at the reference level.

However, it was found that better estimates of the curvature and the inclination at 
the reference level are necessary for the multivariate minimization. The shape of the 
interface close to the reference level is mainly determined by the parameters b0 and 
ϕ0. Therefore, the values of these parameters can be estimated from a section of the 
interface close to the reference level. TIFA-AI calculates a second estimate of these 
parameters by fitting a theoretical image to the area close to the reference level in the 
experimental image. In particular, the error function Equation 5.25 is used such that 
the summation is applied only to pixels (ip, jp) close to the reference level (1/5 of the 
length of the interface). This error function, ε1/5, essentially depends on just b0 and 
ϕ0, being almost independent of γ. TIFA-AI estimates the curvature and inclination 
at the reference level by finding the minimum of ε1/5 for an arbitrary value of γ using 
as initial values of b0 and ϕ0 those calculated from the parabola. It has been proved 
that the arbitrary value used for γ does not affect the final measured value of the 
surface tension [101].

Once good estimates of the rest of the parameters have been calculated, the shape 
of the whole interface mainly depends on the value of the surface tension. TIFA-AI 
estimates the value of the surface tension by fitting the whole theoretical image 
to the experimental one. The estimated values of the orientation of the interface 
and of its position, radius, curvature, and inclination at the reference level are kept 
fixed at this stage so that the error function depends only on the surface tension. A 
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 single-parameter minimization is used to estimate the value of the surface tension. 
Finally, the estimates of {γ, b0, R0, ϕ0, x0

I, α} thus obtained are used as initial values 
in the full Nelder-Mead multivariate optimization.

Table 5.10 presents the results of TIFA-AI, TIFA-PD, and ADSA for identical 
images of PDs of hexadecane and water. (The reference level for TIFA-AI was set 
slightly away from the apex so that TIFA-AI ignores a small region of the image near 
the apex.) As well, results are shown for liquid bridges of the same liquids as analyzed 
by TIFA-AI. Good agreement is seen, with differences of about 1% and below. 

Figure 5.47 displays results for a sequence of 16 images from an experiment with 
o-xylene in the sessile drop configuration. The drop was growing during the experi-
ment to allow measurement of advancing contact angles. Experimental images were 
acquired approximately every 1.5 seconds and were processed using both ADSA and 
TIFA-AI. The results show good agreement between the two methods. However, the 
scatter of the measurements (i.e., the 95% confidence interval) is slightly higher for 
the TIFA-AI method, possibly because TIFA-AI uses less experimental information 
as it neglects a section of the drop near the apex.

5.5.5  tIFa For lIquId lenses

In line tension research (see Chapter 13), the liquid lens is a geometry that allows the 
tension of a liquid-liquid-fluid contact line to be measured. This configuration avoids 
the use of a solid surface and the accompanying complications of roughness and/
or chemical heterogeneity. In order to hold the lens in place during the experiment, 
the lens may be suspended from a needle. However, the needle prevents formation 
of the lens apex, meaning that methods such as ADSA and TIFA-PD cannot be 
applied to analyze its shape. Thus, contact angles for suspended liquid lenses have 

table 5.10
surface tensions (mJ/m2), with 95% Confidence intervals, 
Obtained from liquid bridge images processed by tifa-ai, and 
from pendant drop images processed by tifa-ai, tifa-pd, and 
adsa

Configuration liquid bridge pendant drop

liquid—experiment tifa-ai tifa-ai tifa-pd adsa

Hexadecane A 27.07 ± 0.02 26.93 ± 0.02 26.92 ± 0.01 26.89 ± 0.01

B 27.10 ± 0.03 27.05 ± 0.02 27.03 ± 0.01 27.02 ± 0.01

C 27.13 ± 0.01 27.02 ± 0.02 27.04 ± 0.01 27.00 ± 0.01

Water A 71.95 ± 0.11 71.36 ± 0.05 71.39 ± 0.03 71.37 ± 0.03

B 71.84 ± 0.04 71.85 ± 0.09 71.93 ± 0.08 72.12 ± 0.09

C 71.93 ± 0.03 71.94 ± 0.07 72.12 ± 0.02 72.21 ± 0.04

Note: A series of 10 images of each configuration is obtained in each experiment. The 
results presented here are the averages of the measurements from the 10 images.
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been previously measured only by fitting polynomials to the liquid surfaces in the 
vicinity of the contact line (see Chapter 6). The contact angles are subsequently used 
to measure deviation from the Neumann triangle relation, which, if found, may be 
attributed to line tension.

Liquid lenses are formed by two axisymmetric interfaces (see Figure 5.48), the 
shapes of which are each given by the Laplace equation. As explained above, the 
shape of any axisymmetric interface without apex depends on the set of param-
eters {γ0, b0, Δρ, g, R0, ϕ0}. For liquid lens problems, gravity g, the upper and 
lower interfaces’ density differences, Δρ1 and Δρ2, and the interfacial tensions γ1 
and γ2 are usually known. Fixing the reference level at the liquid-liquid contact 
line, the radius of both (upper and lower) interfaces at that level is equal to that of 
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fiGure 5.48 Liquid-lens profile and the associated coordinate system (xL, zL).
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the three-phase line, R. Then, the shape of the profile of the whole configuration 
depends on the set of unknown parameters {R, b0,1, ϕ0,1, b0,2, ϕ0,2}. The parameters 
{x0

I, z0
I, α} determine the orientation and position of the fluid configuration in the 

image. Therefore, a set of eight parameters, {R, b0,1, ϕ0,1, b0,2, ϕ0,2, x0
I, z0

I, α}, must 
be adjusted to find the theoretical image that best fits the experimental one. The 
minimization method requires good initial values of the parameters to converge to 
the global minimum.

The estimation procedure developed for this application of TIFA first estimates 
the orientation of the interface α from the plumb-line image, and then calculates the 
rest of the parameters by analyzing the liquid-lens image. A set of 10 profile points 
are detected for both interfaces (upper and lower) close to the contact line. A second-
order polynomial is fitted to the set of points of the upper profile and a circle is fitted 
to the set of points of the lower one. The intersection of these curves corresponds to 
a diameter of the three-phase line, and is used to calculate the estimates of {R, x0

I, 
z0

I}. The curvatures and inclinations of the interfaces are calculated as those of the 
polynomial and the circle at the intersection point.

To assess accuracy, TIFA results for liquid lenses are compared to results obtained 
by APF in Figure 5.49 (see Chapter 6 for details of the APF method). While there is 
some discrepancy, since APF does not account for optical distortion, fits each side of 
the image separately, and only considers a small region of the image near the contact 
line, the TIFA results are expected to be more accurate.
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fiGure 5.49 Results for TIFA (squares) and APF (triangles) for a liquid lens of dodecane 
on water, as a function of time t. Top panel: dodecane contact angle; middle panel: water 
contact angle; bottom panel: contact line diameter.
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6.1 intrOduCtiOn

Contact angles have been a subject of interest in pure and applied sciences. 
Technologically, contact angles are utilized as a means of characterizing the wet-
tability of a wide range of materials in various industries including aviation, auto-
mobiles, oil and gas, printing, and pharmaceuticals as well as wetting properties 
of biological surfaces such as cells, tissues, and lipids. From a purely scientific 
viewpoint, contact angles provide a unique means to evaluate solid surface ten-
sions and line tension. The broad applicability of contact angles has generated 
great interest in developing measurement techniques. The measurement of contact 
angles with an acceptable accuracy and reproducibility is essential to many areas 
of applied surface thermodynamics. When first encountered, the measurement of 
contact angles appears to be quite straightforward. This apparent simplicity is, 
however, very misleading, and experience shows that the acquisition of thermo-
dynamically significant contact angles requires rigorous experimental designs and 
reliable analysis tools.

The importance of establishing a proper advancing contact angle cannot be over-
emphasized since, on properly prepared solid surfaces, this is the only contact angle 
that is unique and of thermodynamic significance. The thermodynamic status of 
contact angles and advancing and receding angles will be discussed in detail in 
Chapter 7. In the following sections, available conventional and new methods of 
contact angle measurements will be overviewed and their utility will be discussed 
with regard to various types of solid surfaces on which contact angles are measured. 
It is emphasized upfront that of the many techniques developed for the measurement 
of contact angles [1], only a few are widely used today: axisymmetric drop shape 
analysis (ADSA), capillary rise at a vertical plate, and the goniometer telescope. 
These techniques will be presented in greater detail. Application of ADSA for the 
measurement of different modes of contact angles including static, advancing, and 
receding angles, contact angles on nonideal surfaces, contact angles on wetting 
surfaces, and contact angles on superhydrophobic surfaces will all be discussed. 
Temperature dependence of contact angles will be the next subject of discussion as 
an example of broad applicability of the capillary rise technique. Finally, techniques 
of preparation of nonbiological and biological solid surfaces will be presented.
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6.2  measurement Of COntaCt anGles: 
COnVentiOnal teChniques

A widely used technique for contact angle measurement involves simply aligning 
a tangent with the sessile drop profile at the point of contact with the solid surface. 
This is most frequently done directly using a telescope equipped with a goniom-
eter eyepiece. The telescope is tilted down slightly (1°–2°) out of the horizontal. On 
smooth reflecting surfaces, a portion of the profile is reflected by the surface and a 
cusp is created at the point of contact with the solid. Observations are facilitated by 
a brightly lit, diffuse background against which the drop appears as a black silhou-
ette. The tangent is aligned to the profile at the contact point and the contact angle 
is measured. This is usually done at relatively high magnifications (up to 50 ×) that 
allow the detailed examination of the intersection of the drop profile and the solid 
surface and yield more accurate measurements compared to lower magnifications. 
To establish an advancing contact angle, it is best to slowly grow the sessile drop to 
a diameter of approximately 5 mm using a micrometer syringe and a narrow gauge, 
stainless steel or Teflon needle. The needle must not be removed from the drop as 
this may cause vibrations that can decrease the advancing contact angle to a value 
corresponding to a metastable state. Contact angles should be measured on both 
sides of the drop profile. Repeated addition of small amounts of liquid to the drop 
and advancing it over fresh areas of the solid yields a large number of contact angle 
data whose average is represen tative of a relatively large area of the surface. The 
goniometer technique is easy to implement and straightforward to use, nevertheless 
the results are subjective and dependent on the experience of the operator. With some 
training, contact angles with a best accuracy of ±2° may be obtained [1]. It is noted 
that an alternative strategy developed by Zisman and his coworkers may be used to 
form a sessile drop on a surface [2]. A fine platinum wire was dipped in the liquid 
and then was gently flicked to create a pendant drop hanging from the tip of the wire. 
The drop was slowly brought into contact with a solid surface, making it flow from 
the wire and form a sessile drop. This technique is easy to use; nevertheless, the 
kinetic energy associated with the flowing liquid and the detachment from the wire 
can vibrate the drop and result in a lower metastable contact angle.

Phillips and Riddiford analyzed photographs of sessile drop profiles with a “tan-
gentometer” instrument, which was simply a plane mirror mounted at right angles to a 
straight edge and positioned so that it was normal to the photograph at the drop tip [3]. 
The device was rotated until the profile formed a smooth, continuous curve with its mir-
ror image, causing the straight edge to be tangent at that point. This technique is subjec-
tive because identification of the point at which the profile edge and the reflected image 
merge to form a smooth curve relies on user expertise [4]. Langmuir and Schaeffer used 
the specular reflection from a drop surface to measure the contact angle [5]. A light 
source was pivoted about the three-phase line. The angle at which reflection from the 
drop surface just disappeared was simply identified as the contact angle.

The sessile drop approach has also proved useful for measuring contact angles on 
compressed pharmaceutical powder or granules [6–12]. However these contact angles 
should be interpreted with great caution as the roughness and porosity of the surface 
and possible solubility of the powder in the probe liquid may result in misleading 
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data [13–15]. Alternatively, a so-called h-ε method may be used to obtain contact 
angles on compressed powders [16,17]. The sample is saturated with the probe liquid 
and a liquid drop is placed onto the surface. The contact angle is calculated from the 
height of the drop, cake porosity, and the liquid density and surface tension.

Contact angles can also be measured using the captive bubble method [18]. A 
bubble is formed beneath the solid surface while immersed in the liquid of interest. 
To establish the equivalent of an advancing contact angle, air is withdrawn from the 
bubble using a micrometer syringe. As with sessile drops, the needle should remain 
in the bubble throughout the experiment to ensure that the drop profile is not dis-
turbed. The needle also serves to keep the bubble from drifting over the surface if 
the latter is not perfectly flat and horizontal. On smooth and homogeneous polymer 
surfaces, the captive bubble technique yields contact angles comparable to those 
from sessile drops.

Adam and Jessop developed the tilting plate method for contact angle measure-
ments [19]. A flat solid surface is attached at one end to a beam and immersed in 
the probe liquid. It is then tilted until the meniscus becomes horizontal on one side 
of the plate. The angle the plate makes with the liquid surface is the contact angle. 
The major drawbacks of this method are the difficulty in establishing an advancing 
contact angle and the need for a relatively large plate and a large volume of high-
purity liquid. Nevertheless, the method has been used for the measurement of con tact 
angles as small as 10° [20].

Two rather specialized methods were also developed to measure contact angles 
less than approximately 60°. Interference microscopy makes use of fringe patterns 
reflected from the drop surfaces to calculate the contact angle [21]. Fisher obtained 
comparable results for contact angles less than 30° by simultaneously measuring the 
mass of the drop and the radius of the three-phase line [22]. The contact angle was 
then derived from a semiempirical relationship involving these two quantities.

For a probe liquid with known surface tension, the Wilhelmy balance can be used 
to calculate contact angles from the measured force of the liquid on a plate of interest 
using the following relation [1]:

 f p V glv= −γ θ ρcos ∆ ,  (6.1)

where p is the perimeter of the plate, γlv is the liquid surface tension, θ is the contact 
angle, V is the volume of displaced liquid, Δρ is the difference in density between 
the liquid and air (or the second liquid), and g is the accelera tion of gravity. If the 
perimeter of the plate is accu rately known, the plate is of uniform composition and 
roughness along the entire perimeter, and absorption of the liquid by the solid is 
insignificant, the Wilhelmy balance can provide advancing and receding contact 
angles, free of operator subjectivity. The technique is the best means of measuring 
contact angles on individual fibers of known diameter. Alternatively, the goniometer 
and the capillary depression techniques can be employed to measure contact angles 
on individual fibers [23,24]. It is noted that the apparent contact angle of a sessile 
drop on a mat of fibers or on a woven fabric should not be interpreted as the con-
tact angle that the liquid would make on an individual fiber of the same material. 
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The positions of the fibers affect the local geometry of the three-phase line and the 
apparent contact angle. For this reason, only qualitative tests of fabric wettability are 
available [25].

The Wilhelmy balance can also be used to measure the contact angle of a liquid 
in a capillary tube with identical inner and outer composition [1]. For tubes of a small 
enough diameter, the meniscus may be considered to be spherical and the capillary 
rise, h, is given by

 h
rg
lv= 2γ θ

ρ
cos

,
∆

 (6.2)

where r is the capillary radius. In many cases, both h and r can be determined 
optically.

The majority of contact angle studies in the literature rely on techniques involv-
ing sessile drops. However, these techniques pose certain limitations that should 
be taken into account, especially for the purpose of interpretation of contact angles 
in terms of surface energetics. An inherent limitation with sessile drop methods is 
that the camera is focused on the largest meridian section, and hence reflects only 
the contact angle at the point in which the meridian plane intersects the three-phase 
line. The presence of surface heterogeneity and/or roughness could well cause varia-
tions in the contact angle along the three-phase line. To avoid this problem, contact 
angles may be inferred from the contact diameter of the sessile drop (see Section 
6.3.3). Nevertheless for drops up to approximately 1 cm in diameter, contact angles 
show a systematic change with the drop size, possibly due to line tension effects (see 
Chapter 13). An alternate popular technique that does not involve such complexi-
ties is the capillary rise at a vertical plate. A solid surface is aligned vertically and 
brought into contact with the probe liquid, which rises to a certain height, h, on the 
surface (Figure 6.1). Assuming that the vertical plate is infinitely wide, the Laplace 
equation integrates to [1]

Z

h P
φ

θ

X

fiGure 6.1 Schematic of capillary rise at a vertical plate, where ϕ is the angle between the 
vertical axis and the normal at a point on the liquid–vapor surface, P; θ is the contact angle; 
and h is the capillary rise at a vertical plate.



288 Hossein Tavana

 sin .θ ρ
γ

= − ∆
1

2

2gh

lv

  (6.3)

If three parameters; that is, the density difference between liquid and vapor (Δρ), the 
gravitational acceleration (g), and the liquid surface tension (γlv), are known, then the 
contact angle (θ) can be obtained from a measurement of the capillary rise (h) from 
Equation 6.3. Thus, the task of contact angle measurement is reduced to measuring 
a length, which can be performed optically with a very high degree of accuracy by 
means of a cathetometer. Since the contact line is observed directly, any irregulari-
ties due to imperfections of the solid surface can be detected and handled, through 
averaging.

The capillary rise technique can facilitate dynamic contact angle measurements 
too. A vertical plate is immersed into or withdrawn from the liquid at essentially 
stationary three-phase line and advancing and receding contact angles are measured, 
respectively [26–28]. For example, Sedev et al. employed an automated version of the 
capillary rise to study advancing and receding dynamic contact angles of n-octane 
on dry, pre-wetted, and soaked fluoropolymer FC-722 (3M Inc.) surfaces [27]. Such 
measurements provided preliminary evidence for changes in the surface properties 
of a polymer due to contact with liquids as inert as n-alkanes.

The technique of capillary rise can also be used to determine γlv and θ separately. 
For example when contact angles and surface tensions are time-dependent due to 
change in the temperature or adsorption at the interfaces, both of these parameters 
can be obtained through combining the capillary rise and the Wilhelmy plate tech-
niques. Thus, measurements of contact angles and surface tensions are reduced to 
the measurements of the capillary rise, h, and the change in weight of the vertical 
plate as a function of time [1,29].

Crystalline and amorphous solid surfaces may undergo conformational and 
molecular rearrangement due to changes in temperature. Neumann et al. utilized the 
capillary rise technique, which is amenable to contact angle measurements at dif-
ferent temperatures, to study allotropic phase transitions in  polytetrafluoroethylene 
(PTFE), n-hexatriacontane, cholesteryl acetate, and chlorinated rubber [30,31]. For 
example with the PTFE surfaces, the samples were heated to 330°C and then cooled 
down to room temperature at a rate of 36°C/h [30]. The capillary rise values and 
the corresponding contact angles, θ, and solid surface tensions, γsv, are shown in 
Figure 6.2. The data reveal a glass transition at –10°C, as well as two crystalline 
transitions near 17°C and 25°C. Changing the cooling rate of the solid surfaces 
shifted both the glass transition and the crystalline transitions states. Similar solid-
solid phase transitions were observed with other solid surfaces using the capillary 
rise technique [31].

6.3 measurement Of COntaCt anGles: neW teChniques

Conventional techniques for the measurement of contact angles have greatly con-
tributed to the progress in the field and much of the current understanding of contact 
angle phenomena is due to a wealth of information generated using these techniques. 
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During the past two decades, significant advancements were made in the design 
and manufacture of precision hardware tools as well as in computational sciences. 
Incorporation of new hardware and software capabilities in the area of contact angle 
research has led to the development of experimental strategies and numerical schemes 
that enhance the precision of measurements. Today, methodologies such as ADSA 
[32,33] and theoretical image fitting analysis-axisymmetric interfaces (TIFA-AI) 
[34,35] enable contact angle measurements with a reproducibility of ±0.2°.
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fiGure 6.2 The temperature dependence of capillary rise, h, contact angles, θ, and solid 
surface tension, γsv, of PTFE. The peaks near –10°C, 17°C, and 25°C are due to the glass 
transition and the two well-known allotropic transitions of the crystalline phase. Different 
symbols represent different runs. (Reprinted from Neumann, A. W. and Tanner, W., Journal 
of Colloid and Interface Science, 34, 1, 1970. With permission from Academic press.)
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6.3.1 axIsymmetrIc droP shaPe analysIs-ProFIle (adsa-P)

Determination of liquid surface tension and contact angle in ADSA is based on 
drop shape. Details have been presented in Chapter 3; nevertheless, the procedure is 
briefly discussed below for the purpose of contact angle determination from sessile 
drops in ADSA.

After an edge operator (e.g., Sobel) is applied to the image of an experimental 
drop, differences in the gray level of the pixel points in the vicinity of the drop edge 
are used to calculate a gray level gradient for each pixel and to construct a gradient 
image. To find drop profile coordinates from the gradient image to pixel resolution, a 
reference point inside the drop is determined by the user, for example, point R(xr, zr) 
in Figure 6.3. Starting from this point, the program searches for a point S(xs, zs) with 
the highest gradient magnitude along zs = zr while x < xr. Once point S is identified, 
the rest of the drop profile coordinates are determined in the clockwise and counter-
clockwise directions from point S using a compass directional search method. In the 
case of sessile drops, the search must stop at the points of contact of the liquid–vapor 
interface with the solid surface.

Identification of the contact points primarily relies on comparing the x  coordinates 
of successive pixel points along the drop profile. The program prompts the user to 
input whether the contact angle is less than, more than, or about 90º. For the case of 
a contact angle less than 90º, pixel points in the clockwise direction whose x coordi-
nates are either equal to or greater than that of the preceding pixel point are identi-
fied as drop profile coordinates. If a pixel point (i + 1) is reached whose x coordinate 
(xi + 1) is less than that of the preceding point (xi), the search stops and the pixel point 
with the largest x coordinate (xi) is selected as the right contact point of the sessile 
drop with the solid (Figure 6.4). A similar algorithm is applied in the counterclock-
wise direction to find the left contact point with the criterion being that the x coor-
dinate of a pixel point (xi + 1) must not be greater than that of the preceding one (xi); 
otherwise, the preceding pixel i is taken as the left contact point.

O x

s–z–

x–

R1

R2

R(xr , zr)

S(xs, zs)

ds dz s

ϕ

ϕ

ϕ
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z

fiGure 6.3 R(xr, zr) is a user-defined reference point inside the drop where ADSA starts 
the search for a point S(xs, zs) with the highest gradient magnitude along zs = zr while x < xr. 
The schematic also represents the definition of the coordinate system for two homogeneous 
fluids separated by an interface. At a point (xi, zi), the turning angle is φ. The arc length, s, is 
measured along the drop. R1 and R2 are the two principal radii of curvature; R1 turns in the 
plane of the paper, and R2 rotates in the plane perpendicular to the plane of the paper.
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A similar strategy is used to find the contact points of sessile drops with a contact 
angle of greater than 90º. The right contact point is reached when the x coordinates 
of two consecutive pixel points along the extracted profile in the clockwise direction 
shift from xi + 1 < xi to xi + 1 > xi (Figure 6.4). And in the counterclockwise direction, 
the condition for finding the left contact point is change in the x coordinates of two 
consecutive pixel points from xi + 1 > xi to xi + 1 < xi.

It often happens that two or three pixels with the same x coordinates exist at the 
contact point region of the drop profile. The strategy to resolve this issue in the cur-
rent version of ADSA-P is to choose the upper pixel of two pixel points with a similar 
x coordinate and the middle pixel of three pixels points with the same x coordinate 
as the contact point. The rationale behind this strategy is as follows. Detection of 
contact points of the liquid–vapor interface with the solid surface is experimentally 
facilitated by slightly tilting the camera such that the edges of the drop close to the 
solid–liquid–vapor interface are reflected on the shiny surface of the solid. Applying 
an edge operator to the experimental image of a sessile drop results in a profile that 
consists of the actual drop profile and the reflection of parts of it close to the two 
contact points on the solid surface. When two pixel points with a similar x coordinate 
are obtained, it is assumed that the upper pixel belongs to the actual drop profile 
and the lower one to its reflection on the solid surface. In the case of three pixels of 
similar x coordinates, the middle pixel is taken as an average and is assumed as the 
contact point of the drop profile with the solid surface.

It is noted that there might be more than three pixels with similar x coordinates 
for sessile drops whose contact angles are close to 90°. The above strategy may 
introduce significant errors in such cases. However, an option has been incorporated 
in the ADSA-P program that allows the user to manually determine two points on 
the left and right sides of the drop, each being located on the same plane as the con-
tact points are. The search for the contact point stops when a pixel point is reached 
along the extracted drop profile, whose z coordinate is similar to that of the manu-
ally determined point. Experience shows that, with some practice, using magnified 
images of the drop and selecting these two points from a region in close vicinity of 
the contact points produces consistent contact angle results.

θ < 90°

Drop profile

Reflection

Drop profile

Reflection

z

x

xi+1 > xi

xi+1 > xi

xi+1 < xi

xi+1 > xixi+1 > xi

θ > 90°

fiGure 6.4 Criteria for the identification of contact points of the liquid–vapor interface 
with the solid surface for the cases of contact angle smaller and greater than 90°.
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This procedure of contact point selection is followed by correction of optical distor-
tion, further refining of the drop profile to subpixel resolution through a cubic spline 
fit technique (cf. Chapter 3), rotation of the profile according to the vertical alignment 
of the camera, and in the case of a sessile drop, rotation to the horizontal based on the 
slope between a line connecting left and right contact points. At this stage, the follow-
ing set of first-order differential Equation 6.4a through f is simultaneously integrated:

 
d
ds

b cz
x

ϕ ϕ= + −2
sin

,  (6.4a)
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ds

= cos ,ϕ  (6.4b)
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where b is the curvature at the apex, c = (Δρg)/γ is the capillary constant, and φ is the 
tangential angle that, for sessile drops, becomes the contact angle at the three-phase 
contact line. Although the surface area A and the volume V are not required to define 
the Laplacian profile, their integration along with the above set of equations does not 
require significant extra computational time. Details of the integration procedure are 
given in the numerical scheme of ADSA in Chapter 3. Once b and c are known, other 
parameters are readily calculated. As shown in Figure 6.3, φ is the turning angle 
measured between the tangent to the interface at (x, z) and the plane of reference. 
The contact angle is determined as the value of φ at the contact point by integrating 
the differential Equation 6.4 with the known coefficients.

Since determination of contact angles in ADSA-P is indirect and subsequent to 
computation of surface tension of the liquid, the accuracy of contact angle data very 
much depends on the value of surface tension. In Chapter 3, the accuracy of surface 
tension values from the ADSA-P algorithm has been discussed in detail. The influ-
ence of various parameters such as b, c, the number of points selected from the drop 
profile, and drop profile acquisition errors on the calculated surface tension from 
ADSA-P was investigated and compared to the surface tension of a computer-gener-
ated theoretical profile with a known surface tension. In all cases, ADSA-P surface 
tension reproduces the theoretical value with a precision of 10–5 mJ/m2 (convergence 
criteria in the program). It is expected that the numerical integration of Equation 6.4 
with known coefficients for the determination of contact angles will not generate 



Contact Angle Measurements: General Procedures and Approaches 293

any significant numerical error in the calculated results, as long as contact points are 
selected correctly.

A new variation of ADSA; that is, ADSA-NA (ADSA-No Apex), has been 
developed to broaden its application for drop configurations without an apex [36]. 
ADSA-NA is useful for configurations such as liquid bridges and floating lenses 
where a capillary protrudes into the liquid lens to provide mechanical stability to 
it. A methodology different from ADSA was also developed to determine surface 
 tension and contact angles by analyzing the shape of axisymmetric liquid–fluid 
interfaces without use of apex coordinates and edge detection procedures; it is called 
Theoretical Image Fitting Analysis-Axisymmetric Interfaces (TIFA-AI) [34] (see 
Chapter 5). A recent study shows that contact angles from these two methods agree 
within 0.1º [36]. The agreement of results from these two methods with contact angle 
data from ADSA methodology using apex coordinates is approximately 0.2º–0.3º.

6.3.2 aPPlIcatIons oF adsa-P For contact anGle measurement

The applications of ADSA-P for the measurement of liquid–fluid interfacial tensions 
in various surface phenomena were presented in Chapter 3. A second major area 
of application for ADSA-P is the measurement of contact angles of different solid–
liquid–fluid systems. Apart from its greater accuracy over conventional methods, 
the ADSA-P methodology facilitates measuring different modes of contact angles 
including static (θstat), advancing (θa), and receding (θr) contact angles over a wide 
range and in a highly reproducible manner. This enables studying various contact 
angle phenomena such as contact angle hysteresis, time dependence of contact 
angles, drop size dependence of contact angles, rate dependence of contact angles, 
and contact angles on superhydrophobic surfaces. These topics will be discussed in 
the light of contact angle measurements in ADSA-P next.

6.3.2.1 static Contact angles (θstat)
Li and Neumann used a motor-driven syringe mechanism to measure static contact 
angles [37]. First a measurement stage was leveled using a sensitive bubble level. 
A test surface containing a hole of approximately 1 mm in diameter at the cen-
ter was placed on the stage such that the needle of the syringe passed through the 
hole slightly above the test surface. Teflon tape was wrapped around the neck of the 
needle to seal the hole and prevent leakage of the test liquid during measurements. 
An initial small drop was formed by carefully depositing liquid on the surface to 
cover the needle tip. Then liquid was pumped slowly into the drop from below the 
surface until the radius of the three-phase contact line reached about 4 mm. The 
motor was stopped and the sessile drop was allowed to relax for about 30 seconds 
to reach equilibrium. Then three images of the drop were taken successively at time 
intervals of 30 seconds. More liquid was then injected into the drop until the contact 
line reached another desired size, and the above procedure was repeated. Finally, the 
images were processed and contact angles were reported as the average of measure-
ments on several surfaces. It is noted that supplying liquid from below the surface, 
rather than depositing from above, was done to ensure that measured contact angles 
were proper “advancing contact angles.” In contrast, if one deposits a drop from 
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the top, inevitable vibrations of the drop may lead to a contact angle intermediate 
between advancing and receding contact angles.

This strategy was employed to measure contact angles of different liquids on three 
different solid surfaces (FC-721 fluoropolymer, Teflon fluorinated ethylene propyl-
ene (FEP), and polyethylene terephthalate (PET) prepared by dip coating or heat 
pressing techniques [37]. Table 6.1 shows the results on PET surfaces. The accuracy 
of the contact angles is better than 0.2°. These carefully measured contact angles 
were used to modify the formulation of the equation of state for interfacial tensions, 
which is used to determine the surface tension of the solid substrates from contact 
angle and liquid surface tension (see Chapters 8 and 9). It is noted that existing static 
contact angles in the literature should be treated with caution when the goal is deter-
mination of solid surface tensions from contact angles. This is due to measurement 
errors inherent to goniometer and similar direct methods.

The static contact angle measurement strategy of Duncan et al. facilitated the 
investigation of the drop-size dependence of contact angles [38]. Figure 6.5 shows 
contact angles of n-dodecane on FC-721 surfaces from two sets of experiments started 
with an initial droplet diameter of about 1 mm and ended when the contact radius of 
the sessile drop was approximately 5 mm, as limited by the field of the camera lens. 
Each point in the plot represents the average calculated from the contact angle results 
of three successively recorded images of one sessile drop. The figure shows that the 
contact angles decrease by approximately 3° as the contact radius increases from 
approximately 1–5 mm. For large drops, the contact angle size dependence vanishes. 
This drop-size dependence of contact angles was interpreted as a line tension effect 
implying a value of the line tension in the range of 10–6 J/m (see Chapter 13).

6.3.2.2 dynamic advancing (θa) and receding (θr) Contact angles
The experimental approach of Kwok et al. was utilized to measure dynamic advanc-
ing (θa) and receding (θr) contact angles [39]. A motor-driven syringe was used to 
pump liquid steadily into the sessile drop from below the surface. A quartz cuvette 

table 6.1
average static Contact angles of different liquids measured on pet surfaces 
and the Corresponding standard deviation and 95% error limits

liquid γlv (mJ/m2) θmean (°) std. dev. (°)
±95% error 

limits (°) no. of drops

Diethylene glycol 45.04 41.19 0.20 0.09 8

Ethylene glycol 47.99 47.52 0.20 0.10 7

Thiodiglycol 54.13 55.57 0.34 0.17 6

Formamide 57.49 61.50 0.37 0.18 6

Glycerol 63.11 68.10 0.27 0.13 6

Water 72.75 79.09 0.12 0.08 6

Note: Reprinted from Li, D. and Neumann, A. W., Journal of Colloid and Interface Science, 148, 190, 
1992. With permission from Academic press.
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(5 × 5 × 5 cm3) was used to isolate the drop from its surroundings, although it has 
been found that there is virtually no difference between measured contact angles 
with or without a cuvette. Dynamic advancing and receding contact angle measure-
ments were performed, respectively, by continuously pushing or pulling the plunger 
of the motorized syringe. This resulted in an increase or decrease in the drop vol-
ume and advancing or retreating of the three-phase contact line. A schematic of this 
mechanism is shown in Figure 6.6. Measurements are usually performed at low rates 
of motion of the three-phase line in the range 0.1–1 mm/min. Table 6.2 shows a typi-
cal result of advancing and receding contact angle measurement with ADSA-P for 
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fiGure 6.5 Typical results for the drop-size dependence of contact angles measured by 
ADSA-P. Contact angles decrease by approximately 3° as the contact radius increases from 1 
to 5 mm. (Reprinted from D. Li et al., Colloids and Surfaces, 43, 195, 1990. With permission 
from Elsevier.)

table 6.2
advancing and receding Contact angles of n-decane and n-tridecane on 
teflon af 1600 films at different rates of motion of the three-phase 
measured with adsa-p

n-decane n-tridecane

rate 
(mm/
min) θa (°)

rate 
(mm/
min) θr (°)

rate 
(mm/
min) θa (°)

rate 
(mm/
min) θa (°)

0.48 59.35 ± 0.24 0.69 53.33 ± 0.24 0.42 65.32 ± 0.24 0.50 59.30 ± 0.25
0.53 59.33 ± 0.32 0.72 53.30 ± 0.26 0.51 65.34 ± 0.24 0.60 59.48 ± 0.21
0.69 59.27 ± 0.19 0.84 53.32 ± 0.21 0.67 65.33 ± 0.29 0.74 59.49 ± 0.18
0.76 59.17 ± 0.25 1.01 53.36 ± 0.24 0.91 65.21 ± 0.22 0.84 59.24 ± 0.23
0.91 59.40 ± 0.26 1.12 53.33 ± 0.18 1.18 65.04 ± 0.27 1.13 59.21 ± 0.19

Mean 59.30 ± 0.06 53.33 ± 0.06 65.25 ± 0.11 59.34 ± 0.10
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n-decane and n-tridecane on Teflon AF 1600 surfaces. The data show the reproduc-
ibility of contact angle measurements from one experiment to another and extremely 
small confidence intervals. Indeed, for a given set of solid–liquid systems, similar 
contact angles were measured by different operators at different times [40]. This 
indicates the consistency and robustness of the ADSA-P methodology for dynamic 
contact angle measurements. Details about the reproducibility of ADSA-P contact 
angles are presented in Chapter 8.

It is important to note from Table 6.2 that contact angles obtained at this range 
of three-phase line velocity are rate independent. A simple test by Kwok et al. con-
firmed that for well-prepared smooth surfaces, low-rate advancing contact angles are 
essentially identical to static contact angles [39]. The test was performed as follows: 
A drop of cis-decalin was first selected to advance at a rate of 0.41 mm/min from 
approximately 0.36–0.41 cm while a sequence of images was recorded. The volume 
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f.  Driving
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fiGure 6.6 Schematic of a motorized syringe mechanism for dynamic contact angle mea-
surements. (Reprinted from D.Y. Kwok et al., Advances in Colloid and Interface Science, 81, 
167, 1999. With permission from Elsevier.)
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of the drop correspondingly increased from 0.05–0.07 cm3. The motor was then 
stopped and a sequence of drop images was acquired at R = 0.41 cm. The contact 
angles were found to be independent of slow rates of advancing (see Figure 8.2), sug-
gesting that low-rate dynamic contact angles θdyn are identical to properly measured 
static contact angles θstat. This result also reconfirmed the validity of the experi-
mental protocol established by Li and Neumann for static contact angle measure-
ments [37]. Similar conclusions were reached by static and dynamic contact angle 
measurements for tetradecane/FC-721 and dodecane/Teflon (FEP) systems using the 
capillary rise technique [26,27].

The dynamic contact angle measurement capability of the ADSA-P methodology 
is a major advantage over conventional techniques for detecting various experimental 
complexities that may arise during contact angle measurements. Two such cases where 
measured contact angles vary with solid–liquid contact time are discussed below.

6.3.2.3 time-dependent Contact angles
Extensive studies have shown that not all liquids yield essentially constant advanc-
ing contact angles [41–43]. Figure 6.7 shows the results for formamide on a poly 
(propene-alt-N-(n-propyl)maleimide) copolymer. It can be seen that as drop volume 
increases initially, the contact angle increases from 60° to 63° at essentially con-
stant three-phase line radius. As the drop volume continues to increase, θ suddenly 
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fiGure 6.7 Low-rate dynamic contact angles of formamide on a poly(propene-alt-N-
(n-propyl) maleimide) copolymer. (Reprinted from Kwok, D. Y., Gietzelt, T., Grundke, K, 
Jacobasch, H.-J., and Neumann, A. W., Langmuir, 13, 2880, 1997. With permission from 
American Chemical Society.)
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decreases to 60° and the three-phase contact line starts to move. As R increases 
further, the contact angle decreases slowly from 60° to 54°. The surface tension 
time plot indicates that the surface tension of formamide decreases with time. This 
suggests that dissolution of the copolymer occurs, causing γlv and θ to change from 
those of pure formamide. Thus, the resulting contact angles from this and similar 
solid–liquid systems cannot be meaningful. It would be virtually impossible for the 
goniometer technique to detect such complexities.

It is occasionally found that during contact angle measurements with certain 
solid– liquid systems, the drop front does not move smoothly on the solid surface, 
but rather shows a jerky motion [42–45]. As liquid is pumped into the drop and the 
volume increases, the drop front remains hinged on the surface (i.e., the contact 
angle increases at a constant contact radius). Then the three-phase line slips sud-
denly on the solid surface as more liquid is supplied. This is accompanied by an 
abrupt decrease in the contact angles and by a sudden increase in the contact radius. 
By supplying more liquid, the three-phase line again sticks to the solid surface at a 
new location, and the radius remains constant. This pattern is repeated as the mea-
surement continues (cf. Chapter 7 for details). The thermodynamic significance of 
the corresponding contact angles is not well understood and it is difficult to decide 
unambiguously whether or not Young’s equation is applicable. Therefore, these con-
tact angles should be disregarded for interpretation in terms of surface energetics. 
While pronounced cases of stick-slip behavior can be observed by the goniometer, it 
is almost impossible to record an entire stick-slip period manually.

6.3.2.4 rate dependence of Contact angles
It has been reported in the literature that contact angles may be dependent on the rate of 
motion of the three-phase contact line [46–53], especially for viscous liquids [50]. The 
dynamic contact angle measurement capability of ADSA-P has allowed studying this 
phenomenon using a large number of solid–liquid systems over a wide range of three-
phase line velocity (i.e., ~0.2–10 mm/min). It was found that on smooth and homo-
geneous solid surfaces, both advancing and receding contact angles of liquids with a 
dynamic viscosity of well below 10 cP are independent of the rate of motion [54]. This 
is in agreement with the findings from other studies of contact angles of low viscosity 
liquids on different fluorinated solid surfaces using the sessile drop [55] and [26–28] 
the capillary rise techniques. However, as the viscosity of probe liquids increased to 
greater than ~10 cP, viscous forces affected the contact angles and increasing the rate of 
motion of the three-phase contact line caused advancing angles to increase and reced-
ing angles to decrease [54]. Thus, the velocity dependence of contact angles appeared 
to be an issue only for fairly viscous liquids (see Chapter 7 for details).

6.3.2.5 small and extremely large Contact angles
ADSA-P can also accommodate measurements of a wide range of contact angles with 
ease and convenience. Contact angles as low as 20°–25° have been measured with a 
reasonable accuracy. For example, cis-decalin yielded a contact angle of 28.81° on 
poly(propene-alt-N-(n-hexyl)maleimide) copolymer with an error of ±0.67° [41,44]. 
It is noted that a separate algorithm (i.e., ADSA-D) has been developed for more 
accurate measurements of small contact angles as discussed below. ADSA-P has 



Contact Angle Measurements: General Procedures and Approaches 299

also been applied to measure very large contact angles such as those of water on 
superhydrophobic surfaces of n-hexatriacontane [56]. An average contact angle of 
170.90° was reported for this system with an error of only ±0.90° (cf. Chapter 7).

6.3.3  adsa-d For measurement oF small contact anGles 
and contact anGles on nonIdeal surFaces

In practice, many solid–liquid pairs produce low contact angle values. For example, 
saline solutions on many biological surfaces typically produce contact angles less 
than 20° [57]. As the contact angle decreases, the accuracy of direct meth ods, such 
as a goniometer, is adversely affected. The resulting decrease in accuracy is due 
primarily to the difficulty in determining the location of the three-phase contact line 
(Figure 6.8). The same problem affects computational methods including ADSA-P, 
which rely on the profile of a drop to determine the contact angle. A second phase of 
ADSA methodology, ADSA-D (diameter), has been developed exclusively for con-
tact angle studies in response to such experimental difficulties.

The ADSA-D program circumvents this problem by utilizing a top view of the 
drop. Essentially, the contact angle is computed numerically through minimizing 
the difference between the volume of the drop, as predicted by the Laplace equa-
tion of capillarity, and the experimentally measured volume. ADSA-D consists of 

(a) (c)

(b) (d)

fiGure 6.8 (a) Side and (b) top view of a sessile drop with a large contact angle; (c) side 
and (d) top view of a sessile drop with a small contact angle. (Reprinted from Skinner, F. K., 
Rotenberg, Y., and Newmann, A. W., Journal of Colloid and Interface Science, 130, 25, 1989. 
With permission from Academic press.)
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two modules, ADSA-CD (contact dia meter) for contact angles < 90° and ADSA-MD 
(maximum diameter) for contact angles > 90°. The contact diameter (or maximum 
diameter for contact angles greater than 90°), the volume and the surface tension of 
the liquid under consideration, the density difference across the liquid–fluid inter-
face, and the gravitational constant are used as input to calculate the contact angle of 
the drop. The flatness of the drop does not affect the accuracy with which the contact 
diameter can be measured.

ADSA-CD was originally developed to measure the contact angles of very flat 
drops (drops with very low contact angles). Additionally, it has been a very useful 
approach for the measurement of contact angles of drops on nonideal surfaces, which 
are usually rough and heterogeneous. It is practically impossible to form an axisym-
metric drop on such surfaces. The ADSA-CD routine circumvents this problem and 
utilizes an average contact diameter to determine the contact angle. This average 
contact diameter is obtained by a least-squares fit of a circle to the experimentally 
measured points along the three-phase line of the drop (Figure 6.9), and is used as 
the input to the ADSA-CD routine to determine the contact angle. Details of the 
digital image processing procedure for ADSA-D are presented in Chapter 4.

The generation of a nonsymmetrical drop on rough and heterogeneous surfaces 
is not limited to cases where the contact angle is less than 90°. For cases where the 
contact angle is greater than 90°, the three-phase line is obscured by the free surface 
of the drop in a top view. In such cases, the ADSA-MD routine utilizes the maximum 
or equatorial diameter instead of the contact diameter. The equatorial diameter can 
be obtained with relative ease by viewing the drop perpendi cular to its apex. Other 
required inputs are similar to those for ADSA-CD and include the drop volume, the 
liquid–fluid interfacial tension, the liquid–fluid density difference, and the gravita tional 
acceleration. ADSA-MD retains the same advantages that ADSA-CD has over con-
ventional goniometric and drop shape methods for systems with nonideal substrates.

fiGure 6.9 Schematic of the determination of the perimeter of a sessile drop on a video 
screen using a cursor controlled by a mouse to select perimeter points. (Reprinted from 
Duncan-Hewitt, W. C., Policova, Z., Cheng, P., Vargha-Butler, E. I., and Neumann, A. W., 
Colloids and Surfaces, 42, 391, 1989. With permission from Elsevier.)
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6.3.3.1 numerical procedure
The ADSA-D program utilizes integration of the Laplace equation of capillarity, 
which may be expressed in differential form as Equation 6.4a, along with the geo-
metric relations Equation 6.4b through e and the boundary conditions Equation 6.4f 
to determine the contact angle. For a sessile drop, the angle φ at the point of inter-
section of the solid surface with the fluid interface defines the contact angle, θ (see 
Figure 6.3). For this system with known surface tension, γ, density difference, Δρ, 
and gravitational constant, g (i.e., the capillary constant, c, is an input parameter), the 
coordinates of the system may be expressed as

 x = x(s, R0), z = z(s, R0), φ = φ(s, R0),

where s is the arc length variable and R0, the radius of curvature at the apex, is a geo-
metrical parameter of the system. Thus, if the value of R0 and the volume of the drop 
are assumed to be known, the above set of differential equations can be integrated to 
determine the contact angle. It is seen that the numerical procedure for ADSA-D is 
simpler than for ADSA-P.

To solve for the proper value of the parameter R0, the volume of the drop is uti-
lized, which is calculated as

 V x ds= ∫ π ϕ2 sin .  (6.5)

With a known value of the surface tension of the drop, and experimentally measured 
values of the volume and the contact diameter, the volume can form the basis for the 
establishment of an objective function (which is to be minimized) for the determination 
of R0, and thus the contact angle. The objective function, ε( )R0 , may be expressed as

 ε π ϕ( ) sin ,
( )

R x ds VOL
S Rc

0
2

0

0

= −∫  (6.6)

where Sc(R0) is a boundary point that depends on the value of R0, and is equal to 
the value of the arc length at the contact point; that is, the value of s for which 
x(s, R0) – xc = 0, and VOL is the experimentally determined volume of the sessile 
drop. Minimization of this function leads to the determina tion of R0, and hence to 
the determination of a Laplacian drop (via the above set of differential equations) 
with the given values of xc, VOL, and c. The value of φ at Sc on the Laplacian curve 
is the contact angle, θ, of the experimental drop. The solution for R0 is not available 
in an analytical form, and thus is sought by numerical means. The value of R0 is 
calculated using Newton’s method:
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R
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k k
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ε
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where ′ε ( )R0  is calculated using the Leibniz rule. The value of R0 in Equation 6.7 
is updated until ε( )R0 = 0 . This condition terminates the iteration and yields the 
value of R0.
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For the case of contact angles less than 90°, using the above set of differential 
equations with known R0 and c, contact angle, θ, is calculated as the value of φ 
at the contact point x = xc (the ADSA-CD program). For drops with contact angles 
greater than 90°, the contact diameter of the drop, xc, cannot be deter mined simply 
by viewing the drop from above and the maximum diameter is used instead. As an 
initial guess of the parameter R0, it is assumed that the sessile drop has the shape of a 
hemi sphere with diameter equal to the maximum diameter of the drop, dmax, so that 
R0 = dmax/2. Once the parameter R0 for the given sessile drop is known, the contact 
angle can be obtained by solving for the value of Sc(R0). However, since in this case 
the value of xc is unknown, the value of Sc(R0) is obtained numerically by integrating 
Equation 6.5 until the condition

 VOL x ds
S Rc

− =∫ π ϕ2

0

0

sin
( )

0  (6.8)

is met. Once Equation 6.8 is satisfied, the values of x(Sc) and φ(Sc) corre spond to the 
contact diameter and contact angle, respectively.

For a sessile drop with a given volume, VOL, and contact diameter, xc, three config-
urations are possible depending on the solid–liquid system: the contact angle can be 
less than, equal to, or greater than 90°. Let the 90° drop with contact radius, xc, have 
radius of curvature at the apex (or the origin of the coordinate system) R

0
90°. If the 

contact angle of a drop of diameter xc is not 90°, it is either less than 90° (“wetting 
drop”) or greater than 90° (“nonwetting drop”). The radius of curvature at the apex, 
R0, for these two configurations is such that R R0 0

90> °; that is, these drops have a 
lower curvature than the 90° drop. Correspondingly, the volume of the wetting drop 
is less than that of the 90° drop and the volume of the nonwetting drop is greater 
than that of the 90° drop. To initialize ADSA-D, it is necessary to determine, for 
given values of VOL and xc, which of the above is the case so that the ADSA-CD 
or ADSA-MD approach is utilized accordingly. On occasion, the user can give this 
information as input. But in many cases, especially for contact angles near 90°, it 
is difficult to make a sound judgment. The approach implemented in the program 
is as follows: (i) If the user knows whether the drop is wetting or nonwetting, solve 
the respective problem and exit; otherwise, (ii) assume the contact angle is greater 
than 90°, solve the corresponding problem for the given xc and compute volume 
VOL90° for θ = 90° by numerically integrating the set of differential Equations 6.4a 
through f. If VOL90° ≤ VOL, the initial assumption was correct, compute θ, and exit; 
otherwise, (iii) solve the problem for contact angle less than 90°.

The ADSA-CD algorithm readily lends itself to averaging procedures and can be 
used to determine the average contact angle of irregular drops on rough and heteroge-
neous surfaces. These advan tages also apply to measurements of large contact angles 
on hydrophobic surfaces using ADSA-MD. Both programs have simpler numerical 
analysis than ADSA-P since the liquid surface tension is used as an input.

6.3.3.2 adsa-d setup
A schematic of the experimental setup for ADSA-D is shown in Figure 6.10. Before 
any measurements are taken, the measurement stage is leveled by adjusting the set 
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screws of the platform. A freshly prepared solid surface is then placed on the stage. 
Using a Gilmont micrometer syringe fitted with an angled needle, a drop is placed 
on the surface. The syringe-needle assembly is mounted on a stage with a micro-
manipulator. This allows the pendent drop formed at the tip of the needle to be 
lowered slowly, minimizing vibrations. Images are acquired immediately after drop 
deposition. Drop images are acquired from above using a vertically mounted Wild 
Heerbrugg M7S Zoom stereomicroscope fitted with a Cohu 4800 CCD camera and 
a coaxial incident illuminator (Volpi Intralux 5000 fiber optic system). The images 
are stored in a computer for later analysis. The measurement location on the platform 
can be shifted to facilitate formation of another drop on the same surface.

6.3.3.3 experimental evaluation of adsa-d accuracy
ADSA-D has been evaluated for accuracy using experimental drops both for contact 
angles less and greater than 90°. Comparison of the output of ADSA-D with the results 
from ADSA-P provides a con venient means for the evaluation of the accuracy of the 
ADSA-D methodologies for contact angle measurements. Table 6.3 illustrates a direct 
comparison of the results obtained by ADSA-P and ADSA-D from the same drop for 
the case of contact angles greater than 90° [58]. Sessile drops of water were formed on 
smooth FC-721 coated mica sheets. Images of the profile and the top view of the drop 
were acquired simultaneously and used in subsequent analyses. The contact angles 
computed from ADSA-D were within 0.4° of the values computed from ADSA-P.

1

2

4

5
3

fiGure 6.10 Schematic of the ADSA-D setup. (1) Camera, (2) stereomicroscope, (3) light 
source, (4) solid surface, and (5) leveling table. (Reprinted from Skinner, F. K., Rotenberg, Y., 
and Newmann, A. W., Journal of Colloid and Interface Science, 130, 25, 1989. With permis-
sion from Academic press.)
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Table 6.4 compares ADSA-D and ADSA-P results for contact angles smaller than 
90° obtained with ethylene glycol or undecane on siliconized glass substrates [59]. 
The solid surfaces were prepared by either the vapor deposition method (VM) or the 
soaking method (SM). The errors given for the ADSA methodologies are the 95% 
confidence limits. The results from the two ADSA techniques are in close agree-
ment, confirming the accuracy of the ADSA-D program. For low contact angles 

table 6.3
Contact angle results from adsa-p and adsa-md for the same 
sessile drops of Water on fC-721 Coated mica

drop number
Volume 

(ml)
maximum 

diameter (cm)

Contact angle ± Cl (°)

adsa-p adsa-md

1 0.0892 0.6728 117.00 ± 0.13 117.34

2 0.0894 0.6735 117.20 ± 0.13 117.63

Note: Measurements were performed at 23°C. Errors are 95% confidence limits (CL). 
(Reprinted with permission from Moy, E., Cheng, P., Policova, Z., Treppo, S., 
Kwok, D., Mack, D. R., Sherman, P. M., and Neumann, A. W., Colloids and 
Surfaces, 58, 215, 1991. With permission from Elsevier.)

table 6.4
Comparison of Contact angles measured by adsa-Cd, adsa-p, and the 
Goniometer techniques

substratea/liquidb drop number adsa-Cd adsa-p Goniometer

VM/EG 1 84.1 ± 0.4 83.2 ± 0.6 84

2 84.9 ± 0.2 84.7 ± 0.5 83

3 85.2 ± 0.3 85.2 ± 0.5 84

SM/EG 1 84.3 ± 0.3 83.6 ± 0.4 83

2 84.3 ± 0.3 84.3 ± 0.6 84

VM/UN 1 19.5 ± 0.2 18.5 ± 0.6 18

2 18.8 ± 0.2 20.9 ± 0.6 18

SM/UN 1 22.7 ± 0.2 21.8 ± 0.7 19

2 21.2 ± 0.2 22.2 ± 0.6 20

3 21.5 ± 0.2 22.2 ± 0.5 20

Note: The errors for ADSA measurements are the 95% confidence limits. The error of the direct mea-
surements is estimated to be 3°. The contact diameters for ADSA-CD were determined using a 
digitization tablet. (Reprinted from Skinner, F. K., Rotenberg, Y., and Newmann, A. W., Journal 
of Colloid and Interface Science, 130, 25, 1989. With permission from Academic press.)

a The substrates were siliconized glass prepared by either a soaking method (SM) or a vapor deposi-
tion method (VM).

b The liquids were ethylene glycol (EG) or undecane (UN).
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(n-undecane), ADSA-D exhibits a higher degree of precision than ADSA-P. This is 
not unexpected due to the difficulties of measuring small contact angles from the 
profile of a drop as discussed above. The contact angle results for these solid–liquid 
systems using a direct goniometric measurement have an error of 3°. Both ADSA 
techniques provide greater accuracy and reproducibility than the direct method.

6.3.3.4 applications of adsa-d
The ADSA-D methodology is particularly useful for, although not limited to, mea-
surement of contact angles on rough, heterogeneous, and hydrophilic surfaces. 
Biological materials are a prime example of such surfaces. The surface tension of 
biological particles, such as bacterial cells, plays an important role in processes such 
as cell adhesion and phagocytosis. Obviously, layers of cells are necessarily rough, 
and absorb water and other liquids so that the drop sinks into the layer of cells. 
In addition, they are typically hydrophilic, producing small time-dependent contact 
angles that make the identification of the contact point of the drop with the surface 
exceedingly difficult. ADSA-D circumvents these problems.

Figure 6.11 illustrates the typical shape of drops of double-distilled water formed 
on a layer of Thiobacillus ferrooxidans cells. For these drops, points at the drop 
perimeter were selected to estimate the average drop diameter. Complications due 
to small perturbations, possibly a result of “sticking” of the three-phase line at some 
inhomogeneity, or “fingers,” which could form in particularly rough regions due to 
wicking, are avoided. Figure 6.9 shows a schematic of selected contact points. The 
results of such measurements on three different species of bacteria (T. thiooxidans, 
Staphylococcus epidermidis, and two strains of T. ferrooxidans) are illustrated in 
Figure 6.12 [60]. The bacterial layers are deposited on cellulosic membrane filters by 
suction. The membrane filter and the deposited layer of cells are then rapidly trans-
ferred to the surface of a freshly prepared 2% solidified agar plate. The agar plate 
acts as a water reservoir and decreases the rate at which the cells dry, thus maintain-
ing them in their fully hydrated state. It is apparent that the measured contact angles 
remain in a fairly narrow range as the cell layers dry slowly over approximately 

(a) (b)

fiGure 6.11 Images of sessile drops of water on a layer of Thiobacillus ferrooxidans cells. 
The contact angles calculated using ADSA-CD are (a) 12.7° and (b) 11.3°. (Reprinted from 
Duncan-Hewitt, W. C., Policova, Z., Cheng, P., Vargha-Butler, E. I., and Neumann, A. W., 
Colloids and Surfaces, 42, 391, 1989. With permission from Elsevier.)
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two hours. The average contact angles of 16 drops for Staph. epidermidis and T. 
thiooxidans are found to be 20.6 ± 0.9° and 16.9 ± 0.9°, respectively, where the errors 
represent the 95% confidence limits. Note that a relatively high degree of accuracy is 
attained from a relatively small number of measurements. The two strains of T. fer-
rooxidans do not exhibit a statistically significant difference in their contact angles.

Similar measurements were performed on Helicobacter pylori to characterize its 
surface hydrophobicity [61]. The adhesion of these bacteria to the gastric epithelium 
has been associated with both active gastritis and duodenal ulcer diseases in children 
and adults. The ADSA-D methodology may also be used to quantitate the surface 
hydrophobicity of different regions of the intestinal tract to which bacteria adhere 
during initial stages of infection. Figure 6.13 illustrates the variation of water contact 
angles measured on various intestinal segments of male New Zealand White rabbits. 
The data reveal that the small-intestinal segments are significantly less hydrophobic 
than the segments of the large bowel. These tissues are highly nonideal surfaces for 
contact angle measurements. The surface roughness leads to the formation of some-
what asymmetrical drops. The use of conventional methodologies, such as direct 
goniometric measurements, would be extremely difficult and prone to error in such 
cases. However, ADSA-D allows for an estimation of the contact or maximum diam-
eter, thus providing an average contact angle for such drops.

6.3.4 automated PolynomIal FIttInG (aPF) methodoloGy

The calculation of surface tension and contact angle in ADSA-P relies on major 
assumptions that the drop is axisymmetric and Laplacian and gravity is the only 
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fiGure 6.12 The contact angles of sessile drops of water on layers of different bacterial 
cells measured using ADSA-CD. The horizontal axis represents that time after formation of 
the layer at which the drops were deposited. The mean contact angles (±95% confidence lim-
its) are: (■) 20.6 ± 0.9° (Staphylococcus epidermidis); (○) 16.9 ± 0.9° (Thiobacillus thiooxi-
dans); (♦) 11.7 ± 1.0° (T. ferrooxidans strain 23270); and (◊) 10.5 ± 0.9° (T. ferrooxidans strain 
19859). (Reprinted from Duncan-Hewitt, W. C., Policova, Z., Cheng, P., Vargha-Butler, E. I., 
and Neumann, A. W., Colloids and Surfaces, 42, 391, 1989. With permission from Elsevier.)
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operative external field. In the presence of an electric field, the Laplace equation 
contains an additional term and the ordinary ADSA approach is not applicable. An 
appropriate algorithm for such situations is termed ADSA-EF (electric field; see 
Chapter 5) [62]. In such situations and the more common ones where sessile drops 
are not axisymmetric, direct methods such as the goniometer can be used, but the 
reproducibility of the contact angle is subject to the experience of the operator and 
the best accuracy of the results is usually ±2°–3°. 

To address the need for a robust method for calculating contact angles of non-
axisymmetric sessile drops, Bateni et al. developed an automated polynomial fitting 
(APF) technique [63] that built upon an earlier version by del Rio et al. [64]. The 
new version of APF consisted of an image processing module and a curve fitting 
module. Contact angle experiments were performed at low rates of advancing of the 
three-phase contact line and high magnification images (35×) of the contact area 
of the sessile drop were acquired. In a highly magnified image, each pixel repre-
sents a smaller physical area when compared to lower magnifications and therefore, 
a smaller error will be caused by the digital resolution of the image. Also, magnified 
profiles have smaller curvature and can be better described by low order polynomials 
that are less sensitive to experimental noise. The performance of four different edge 
operators (Sobel, Canny, Prewitt, and Laplacian of Gaussian or LOG), were com-
pared for extracting the drop profile from digital images and it was found that the 
LOG method generates the smoothest profiles with the least amount of background 
noise when its sensitivity threshold and filtering parameters are tuned. Figure 6.14 
shows a high magnification image of the right contact area of a water sessile drop on 
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fiGure 6.13 Contact angles of water formed on intestinal segments from normal adult 
rabbits measured using ADSA-CD. Results are expressed as average ±1 standard deviation. 
There are no differences in contact angles between regions of the small intestine (duodenum, 
jejunum, and ileum; ANOVA, p > .05) or large intestine (proximal colon and distal colon; 
ANOVA, p > .05). All small intestinal segments have lower contact angles compared with 
both segments of large bowel (ANOVA, p < .05).
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a polymethylmethacrylate (PMMA) surface and the corresponding extracted drop 
profile using the LOG method. 

In the next step, the extracted drop profile was sent to the curve fitting module of 
APF. The left and right contact points of the drop with the surface were defined as 
the pixels with the lowest and the highest value of the x coordinate for contact angles 
smaller than 90°. Then, a series of coordinate points, P, close to the contact point were 
selected and a polynomial of the order O, which is expressed asY a xi

O
i

i
polynomial = =Σ 0 , 

was fitted to them. The contact angle was computed from the first derivative of the 
polynomial at the point of contact with the solid surface. Optimization of P and O 
was performed simultaneously because of strong correlation between them (higher 
order polynomials require more pixel coordinates in the fitting process). Analysis was 
carried out for P = 10–260 pixels with increments of 10 pixels and the order of poly-
nomial O = 1–6. It was found that the largest range of stability of contact angles cor-
responds to 120–140 pixels and a third-order polynomial. Below and above this range 
of pixels, contact angles showed significant variations. Analysis of the standard error 
resulted in a minimum over a narrow range of 120–140 pixels for different orders of 
polynomial, including the third-order one. This confirmed that the third-order poly-
nomial with 120–140 pixels for curve fitting gives optimum results. Measured contact 
angles were consistent and showed small scatter around the mean value (Figure 6.15). 
The relatively small 95% confidence limit values of the contact angles from different 
solid–liquid systems measured by APF are shown in Table 6.5. 

Nevertheless, there is still a discrepancy of up to 1.5° between APF contact angles 
and those measured with ADSA-P. The difference is believed to be mainly due to 
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fiGure 6.14 (a) A high magnification image of the right contact area of a water sessile 
drop on a polymethylmethacrylate (PMMA) surface, and (b) the corresponding extracted 
drop profile using the LOG method. (Reprinted with permission from Bateni, A., Susnar, 
S. S., Amirfazli, A., and Neumann, A. W., Colloids and Surfaces A, 219, 215, 2003. With 
permission from Elsevier.)
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different strategies these methods employ to determine contact angles. In ADSA-P 
the entire profile of the drop is analyzed and assuming the drop to be axisymmetric 
and Laplacian, a theoretical Laplacian curve is fitted to the drop profile. On the other 
hand in APF, only a small section of the drop profile close to the contact point is con-
sidered for the polynomial fitting. One consideration is that a polynomial cannot be 
a perfect fit to a Laplacian profile and only a Laplacian curve can properly describe 
it. Additionally, minor irregularities of the contact line due to surface inhomogeneity 
may affect the drop profile in the meridian plane close to the contact line, whereas 
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fiGure 6.15 Advancing contact angles of water/PMMA system calculated by the APF 
program using a third-order polynomial and 130 pixel. (Reprinted with permission from 
Bateni, A., Susnar, S. S., Amirfazli, A., and Neumann, A. W., Colloids and Surfaces A, 219, 
215, 2003. With permission from Elsevier.)

table 6.5
summary of Contact angle measurements by the 
apf and the adsa schemes

Contact angle (°)

solid/liquid system apf adsa-p
Teflon AF 1600/Decane 56.92 ± 0.48 58.19 ± 0.45

Teflon AF 1600/Decanol 73.29 ± 0.49 73.83 ± 0.38

DF55/Formamide 69.62 ± 0.68 68.45 ± 0.73

DF13/Formamide 88.13 ± 0.84 86.47 ± 0.96

Note: Each contact angle represents the average of several runs and 
the errors are the standard deviation. DF55 and DF13 are fluo-
rinated polymers. Reprinted with permission from Bateni, A., 
Susnar, S. S., Amirfazli, A., and Neumann, A. W., Colloids and 
Surfaces A, 219, 215, 2003. With permission from Elsevier.
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the drop profile far from the contact line will reflect average properties of the solid 
surface. The local nature of the APF contact angle measurement renders it more 
sensitive to such irregularities.

6.4 temperature dependenCe Of COntaCt anGles

As discussed above in Section 6.2, there are certain experimental conditions where 
available sessile drop techniques for contact angle measurements are limited. One 
such difficulty is encountered in the measurement of the temperature dependence 
of contact angles, which is often not very pronounced and requires an experimental 
setup more complicated than those of sessile drop-based approaches. This problem 
was resolved by using the technique of capillary rise at a vertical plate and design-
ing an experimental setup that accommodated measurements of temperature depen-
dence of contact angles [31].

The setup consisted of various elements including the solid surface, a glass cell of 
relatively large surface area containing a test liquid, a liquid dispensing mechanism 
to compensate for the evaporation of liquid from the cell, and appropriate heating and 
cooling mechanisms. The assembled unit was installed inside a doubly enclosed cham-
ber and several temperature control units helped monitor the temperature to maintain 
it uniform. To measure advancing angles, the vertically mounted solid surface was 
dipped into the bath of the test liquid maintained at a constant temperature. Dipping 
the plate was performed at a constant rate, typically in the range 10–3 mm/sec, and opti-
cal measurement of the capillary rise, h, was carried out by means of a cathetometer or 
a measuring microscope, with a precision of 2 × 10–4 cm. During measurements, the 
three-phase line remained essentially fixed with respect to the telescope of the cathe-
tometer, while the immersion of the plate increased steadily. Receding angles were 
measured in a similar manner by withdrawing the plate from the liquid.

Neumann developed this setup to measure the contact angles of distilled water and 
long chain n-alkanes (n-decane, n-dodecane, n-tetradecane, and n-hexadecane) on sili-
conized glass at different temperatures [31]. It is noted that no contact angle hyster-
esis was observed on siliconized glass with several test liquids (water, four n-alkanes, 
and glycerol), presumably due to the smoothness and homogeneity of surfaces and the 
inertness of the surfaces with respect to the test liquids. Water contact angles showed 
an overall increase of about 2° by increasing the temperature from ~5 to ~50°C. For 
n-alkanes, contact angles showed a linear decrease with increase in temperature from 
~20 to ~70°C. A larger decrease in contact angles was observed for liquids with shorter 
hydrocarbon chains. In all cases, contact angles were measured with very good repro-
ducibility. Calculation of solid surface tension values from the contact angles of n-al-
kanes using an equation of state for interfacial tensions (see Chapters 8 and 9) indicated 
significant adsorption of hydrocarbon chains on the solid surface. This suggested that 
the contact angles were not measured on a surface consisting exclusively of methyl 
groups, but rather one that consisted of a considerable amount of CH2 groups, suggest-
ing adsorption of alkane molecules on the solid surface.



Contact Angle Measurements: General Procedures and Approaches 311

6.5 sOlid surfaCe preparatiOn teChniques

Contact angles can be used to characterize the fundamental surface proper ties of a 
solid material and to study the effective properties of the material in its natural or 
as-manufactured state. The acquisition of thermodynamically significant contact 
angle data for fundamental studies is largely dependent on the quality of the sub-
strate surface. The effects of roughness and hetero geneity can easily overshadow 
the role of interfacial energetics. Therefore, in fundamental scientific studies it is 
important to make solid surfaces of high quality to ensure that the contact angles 
manifest the interactions between the solid and the liquid as given by Young’s 
equation.

Historically, contact angle hysteresis has been proposed as a measure of non-
ideality of rough and chemically heterogeneous surfaces. Recent studies have sug-
gested that in addition to roughness and heterogeneity, other mechanisms can also 
cause contact angle hysteresis (see Chapters 7 and 8). If hysteresis is indeed due 
to heterogeneity consisting of high- and low-energy surface patches, then accord-
ing to a simple model (see Chapter 7), both advancing and receding contact angles 
should be “Young contact angles” in the sense that they may be used in conjunction 
with Young’s equation [31,65]. In this case, the advancing contact angle represents 
the equilibrium contact angle on an ideal surface composed entirely of the low-en-
ergy component, and the receding angle similarly corresponds to the higher-energy 
patches. Between these two angles are a range of metastable contact angles that are 
mean ingless in terms of Young’s equation. Since most real surfaces may be hetero-
geneous on a microscopic scale (e.g., due to presence of impurities), contact angles 
must always be measured in the advancing mode if the goal is to infer the solid 
surface tension. Based on analytical models, Neumann suggested that the scale of 
surface heterogeneities must be held below approximately 0.1 µm in order to elimi-
nate hysteresis [31].

If surface roughness is the primary cause of hysteresis, the advancing contact 
angle is not a Young contact angle because it is influenced by the surface geometry 
as well as interfacial energetics. In practice, very smooth surfaces are required in 
order to eliminate all roughness effects. For example, on layers of organic pigment, 
contact angle hysteresis due to roughness was absent if roughness was less than 
0.1 µm [66].

From a practical standpoint, it may not be necessary to completely eliminate all 
evi dence of roughness and heterogeneity. If the average contact angle and liquid 
surface tension measurements for a variety of liquids all give the same solid sur-
face tension via the equation of state (Chapters 8 and 9), then the surface is of suf-
ficient quality. The required level of accuracy, whether contact angles are used for 
the interpretation of solid surface tensions or just as a measure of surface wettability 
in industrial settings, will often determine the acceptability of solid surface quality. 
The rest of this chapter discusses techniques for the preparation of solid surfaces. 
The methods are grouped according to the form of the solid material; that is, plate 
(sheet or film), fiber, powder, and so on.
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6.5.1 nonBIoloGIcal materIals

A variety of techniques can be used to prepare solid surfaces for contact angle exper-
iments, but regardless, morphological and energetic properties of a surface should 
be independent of the preparation technique. While there might be slight submi-
cron morphological differences in well-prepared surfaces from different methods, 
they usually are not expected to alter the energetics of the surface. It is advisable 
that when a surface is prepared using a new approach, its morphological and ener-
getic properties are examined, and if possible, compared with available data on the 
same type of surface prepared previously using other techniques. Surface morphol-
ogy can be examined using different microscopic techniques such as atomic force 
microscope (AFM) and scanning electron microscope (SEM), whereas contact angle 
measurements provide information about energetics of the surface. Contact angles 
can also reveal indirect information about quality of solid surfaces. This can be 
achieved by measurements at different locations on the solid surface using accurate 
methods such as the capillary rise technique or ADSA. For example, with the former 
method, two types of investigations can be carried out: one along the vertical axis 
of the solid and the other on the horizontal axis. For the first test, the solid surface 
(plate) is immersed at a constant rate and the capillary rise, h, readings are taken at 
certain time intervals. For the horizontal investigation, the surface is held station ary. 
An image of the contact line is taken midway, and then the microscope is translated 
to the right and to the left, on the same vertical plane, by 10 steps of, say, 100 µm 
intervals. Following every step, an image is taken.

As an illustration, five surfaces—FC-721 dip coated on mica and on glass, heat-
pressed FEP against mica and against quartz glass, and siliconized glass—were 
compared with respect to their surface quality. Measurements of contact angle as a 
function of the position along the five different surfaces at arbitrarily chosen constant 
immersion rates are shown in Figure 6.16, with 95% confidence limits [37]. The 
result for FC-721 coated on mica and immersed in 1-octanol at a constant immersion 
speed of 0.49 mm/min is shown in Figure 6.16a. There is less than 0.1° variation in 
θ over a total length of 14 mm. For comparison, Figure 6.16d shows the dode cane 
contact angle for FC-721 coated on a glass slide, at a constant immer sion speed of 
0.31 mm/min over a 40 mm length. This measurement indicates that there is very 
little variation in θ from point to point. The quality of this surface, reflected by the 
constant contact angle, is thus very similar to the FC-721 coated on mica.

A similar comparison is shown in Figure 6.16b and e for the heat-pressed FEP 
against mica and against quartz glass, respectively. Figure 6.16e reveals a significant 
difference in θ from point to point, suggesting that the surface is not uniformly smooth 
and/or homogeneous. Improvements in fabrication procedure and pressing against 
mica instead of quartz glass resulted in contact angles with very little variation for 
dodecane (Figure 6.16b). In the case of siliconized glass, nearly constant contact angles 
are measured for water on the surface over a total length of 14 mm (Figure 6.16c).

The lateral variation over the solid surface is illustrated in Figure 6.17 for four 
solid surfaces: FC-721, heat-pressed FEP against mica and against quartz glass, and 
heat-pressed polyethylene (PE) against quartz glass. The left Y-axis represents the 
calculated contact angle and the right Y-axis the corresponding capillary rise, h, on 
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the vertical plate. Figure 6.17a shows the contact angle and capil lary rise as func-
tions of lateral displacement for 1-octanol on FC-721 coated mica. The three-phase 
contact line on this surface was observed to be nearly straight and horizontal. Thus, 
the contact angle was found to be nearly independent of the lateral location on the 
surface. Figure 6.17b and c show similar plots for dodecane on FEP heat-pressed 
against quartz glass and against mica, respectively. As can be seen in Figure 6.17b, 
there is considerable scatter, which is indicative of a relatively poor surface quality. 
Heat pressing against mica instead of quartz glass yielded a straight contact line and 
nearly no variation in the contact angle along the surface (Figure 6.17c). In the case 
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fiGure 6.16 Contact angles as a function of position of (a) 1-octanol at a constant immer-
sion speed of 0.49 mm/min on FC-721 coated on mica, (b) n-dodecane at a constant immersion 
speed of 0.31 mm/min on FEP heat pressed against mica, (c) water at a constant immersion 
speed of 0.49 mm/min on siliconized glass, (d) n-dode cane at a constant immersion speed of 
0.31 mm/min on FC-721 coated on glass slide, and (e) n-dodecane at a constant immersion 
speed of 0.31 mm/min on FEP heat pressed against quartz glass. Note that parts (a), (b), and 
(c) have a different position scale than do (d) and (e). (Reprinted with permission from Kwok, 
D. Y., Budziak, C. J., and Neumann, A. W., Journal of Colloid and Interface Science, 173, 
143–50, 1995. With permission from Academic press.)
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of the PE surface and dimethylformamide shown in Figure 6.17d, a relatively large 
variation in contact angle of almost 2° is observed, over a very short distance.

These experiments show that contact angles can be employed to qualitatively 
evaluate solid surfaces. It is apparent that local roughness and/or heterogeneity of the 
solid sur face can cause variations of the contact angle between different locations on 
the solid surface. It is noted that such variations cannot be detected by conventional 
contact angle measurement techniques, such as the goniometer technique, with an 
accu racy of ±2°.

The following subsections deal with preparation of organic and inorganic mate-
rials of a nonbiological nature. Section 6.5.2 covers the preparation of biological 
surfaces, such as proteins and cells, for contact angle measurement.
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fiGure 6.17 Capillary rise, h, and the corresponding contact angle, θ, as a function of 
lateral location for (a) 1-octanol on FC-721-coated mica, (b) n-dodecane on FEP heat pressed 
against quartz glass, (c) n-dodecane on FEP heat-pressed against mica, and (d) dimethylforma-
mide on PE (polyethylene) heat pressed against quartz glass. Note that the lateral location scale 
of part (d) differs from that of (a) through (c). (Reprinted with permission from Kwok, D. Y., 
Budziak, C. J., and Neumann, A. W., Journal of Colloid and Interface Science, 173, 143–50, 
1995. With permission from Academic press.)
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6.5.1.1 heat pressing
This method involves pressing a thermoplastic poly mer (particles, film, or block) 
such as FEP, polyethylene, polypropylene, or polysulfone between two very clean, 
smooth surfaces at an elevated temperature [1,4]. Typically, glass plates are used 
as the platens, which are squeezed together with clamps in an oven or between 
the heated steel surfaces of a hydraulic heat press. The pressure and temperature 
employed during the heat-pressing process must be sufficient to cause the polymer 
to conform to the glass, but not so high as to cause any changes in the polymer 
chemistry. In practice to produce smooth surfaces, a thermoplastic must be heated 
to (or near) the glass transition temperature and then be pressed. The required tem-
perature and pressure must be established empirically for each system. Care should 
be taken to avoid the fracture of polymer surfaces that may adhere to the platens. It 
has been found that immersing the polymer and platens together in warm water for 
24 hours will facilitate the separation without damaging the surface.

6.5.1.2 solvent Casting
When the solid material can be dissolved in a volatile solvent, solvent casting 
becomes an option for the preparation of smooth substrates. The method has been 
applied to a wide variety of materials including polymers [67], pharmaceuticals [68], 
and bitumen [69].

Although many variations of the basic procedure have been used, the following 
is a typical method. A solution of the substrate material with concentrations of the 
order of 1% is prepared with a volatile solvent. Glass microscope slides, cleaned 
with chromic acid, are mounted on a specially designed flat-bed centrifuge rotor 
head, which holds the slides in a horizontal position during centrifugation. A 500 µl 
drop of the solution is deposited on each 75 × 25 mm slide. The centrifuge is then 
operated at moderate speed and under slightly evacuated conditions (created by con-
necting the centrifuge to a vacuum pump or a water aspirator) until all the solvent 
has evaporated, leaving a thin, smooth film on the glass slide. The substrate selected 
for the film deposition is arbitrary as long as it has a smooth surface, can easily be 
cleaned, and is wettable by the solution.

On very hydrophobic substrates such as siliconized glass, thin free-standing 
films of solid solutes can be obtained by this technique. The solvent-casting method 
is also recommended for the preparation of hydrogel layers [70] as described in 
Section 6.5.2.

6.5.1.3 dip Coating
Substrates may be dip coated in solutions or melts of the solid of interest. The tech-
nique has been applied to the fabrication of smooth surfaces of various materials 
including perfluorinated acids on platinum foil [71], fluorosurfactants on glass or 
mica [37,67,72], fluoropolymers on silicon, and to the production of elastomeric films 
of butyl rubber [73]. The morphology and the thickness of the resulting film depend 
on the concentration of the solution and on the speed of the substrate immersion into 
and withdrawal from the liquid. Generally, low solution concentrations and slow 
speeds (<1 mm/sec) result in a smooth surface. The immersion and withdrawal speed 
is best controlled by attaching the substrate to a variable speed electric motor.
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6.5.1.4 langmuir–blodgett film deposition
Langmuir–Blodgett film deposition is basically a variation of the dip coat ing pro-
cess [74–76]. The technique is used to create monomolecular layers of amphiphilic 
molecules on high-energy substrates such as quartz, glass, mica, and metals. Such 
long-chain organic molecules have a polar head group, which is well distinguished 
from the nonpolar hydrocarbon chain.

Typically, these films are deposited using the following procedure. A flat, shallow 
container, such as a Langmuir–Adam surface balance, is filled with water (or other 
suitable liquids) and the substrate to be coated is immersed in it. Then a solution of 
the amphiphilic material, in a solvent insoluble in water, is deposited dropwise onto 
the water, thereby forming an oriented monomolecular surface film upon evapora-
tion of the solvent. This film can then be compacted by reducing the surface area 
until the surface pressure reaches a maximum. The solid substrate is then withdrawn 
from the water through this insoluble surface film at a very low speed (approximately 
2 mm/min) while the surface pressure is kept constant. This creates an oriented 
monolayer of the amphiphilic material on the substrate.

The nature of the deposited monolayer depends on the interaction of the polar head 
group and the substrate surface. For example, if a glass micro scope slide is raised 
up through a barium stearate monolayer spread on distilled water, the molecules in 
the film will be oriented with the hydro carbon chains pointing outward, and hence 
the adsorbed film is hydrophobic [77]. When a previously coated plate is dipped 
back into the surfactant-coated water, a second oriented layer will be deposited and 
the coated surface again becomes hydrophilic as the head groups point outward. It 
should be noted that Langmuir–Blodgett films are not very stable, making them dif-
ficult to use for many contact angle studies. If the test liquid alters the deposited film, 
successive advancing contact angle measurements at the same location will generate 
inconsistent results.

6.5.1.5 self-assembled monolayers
Monolayers of certain organic molecules can be produced on metal oxide or gold sur-
faces by means of self-assembly [78,79]. Alkanethiols on gold have proved to be a par-
ticularly useful system because the strong specific interaction between the sulfur atom 
and the gold surface results in the formation of relatively robust self-assembled mono-
layers upon immer sion in dilute solutions. Moreover, by varying the tail group of the 
thiol molecules, a wide range of solid surface tensions can be achieved; water contact 
angles from 118° to less than 10° have been reported on treated gold surfaces [78,79].

Self-assembled monolayers of hydrolyzed octadecyltriethoxysilane (OTE) on 
cleaved mica have been found to be quite stable and well suited to surface investiga-
tions requiring exceptional smoothness and uniformity [80]. The coating procedure 
is relatively straightforward and involves the immersion of freshly cleaved mica in a 
solution of OTE and HCl in tetrahydrofuran and cyclohexane.

6.5.1.6 Vapor and molecular deposition techniques
Vapor deposition has been found to yield very smooth surfaces for low molecular 
weight nonpolar and polar materials such as n-hexatriacontane and cholesteryl ace-
tate [1,31], organic pigments [66], and some silicone com pounds [59]. In all cases, 
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the deposited material must not decompose at the elevated temperatures required for 
evaporation.

In general, vapor deposition is carried out in a vacuum chamber. The clean, 
smooth substrate is placed horizontally above the shuttered aperture of a Knudsen 
furnace containing the coating material in a ceramic dish. The temperature of the 
furnace is then raised and held constant until equilibrium is established, at which 
point the shutter is opened and a stream of the evaporating coating material rises to 
impinge and condense on the substrate. The smoothness of the resulting surface is 
dependent on the rate of evapora tion and on the temperature of the substrate. The 
latter may be controlled separately with heating elements in the fixture used to hold 
the substrate above the Knudsen furnace.

Rather than depositing films by evaporation, radio frequency (RF) sputtering 
has been used to form PTFE films on quartz and stainless steel [81]. In this case, 
the cathode in a high vacuum chamber is bulk PTFE positioned before the target 
substrate along the dis charge axis. The resulting sputtered films are between 0.05 
and 0.06 µm thick, and have properties (e.g., fluorine to carbon ratio, cross linking, 
branching) that can be varied over a wide range.

Glow discharge polymerization is a third film deposition technique [82–84]. 
Plasma is generated, for example, by an inductively coupled (electrodeless) RF coil 
surrounding a glass vacuum chamber containing a clean glass substrate. Plasma of 
a gas such as argon is generated at a very low pressure and then a gaseous monomer 
is introduced into the chamber where it fragments. The molecular segments deposit 
on the substrate and the chamber walls where they crosslink and form a continuous 
film. The properties and uniformity of the resulting film are a complex function of 
many parameters such as the type of monomer and inert gas, pressure, flow rates, 
electrical power input, and chamber and substrate geometry.

6.5.1.7 siliconization
There are a wide variety of silicone-based compounds that adsorb strongly to clean 
glass, producing high quality hydrophobic surfaces. Such surfaces have been manu-
factured by exposing glass to silicone oil at elevated tem perature [66], or to silane 
solutions [72] or vapor [59]. For the latter, a typical procedure is to place clean glass 
slides in a vacuum desiccator containing a small amount of, for example, dimethyl-
dichlorosilane. The desiccator is then evacuated and left at room temperature for 48 
hours. After removal, the slides are thoroughly washed twice in toluene, followed by 
a final rinse in acetone and air drying.

Alternatively, clean glass surfaces can be placed in a solution of 20vol% dim-
ethyldichlorosilane in highly pure n-hexane [66]. After 1 hour, the glass is removed 
and baked for a further hour at 100°C, followed by two rinses in toluene and one in 
acetone before drying. The resulting surfaces have an advancing water contact angle 
of 105° with very little hysteresis.

6.5.1.8 surface polishing
For certain materials, such as rock and coal, polishing is the typical method for the 
preparation of surfaces for contact angle measurements [85,86]. Polymers have also 
been prepared using this approach [87]; however, it is important to note that polished 
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surfaces are mechanically deformed and may contain embedded contaminants from 
the polishing agents. The details of the pro cedure depend on the material being 
polished. For example, some polymer surfaces and natural crystals of fluoro- and 
hydroxyapatite might be polished on a cloth-covered rotating wheel, first with dia-
mond paste (1 µm particle size) and then with a slurry of aluminum oxide (0.05 µm). 
The polished surfaces then require careful cleaning in an ultrasonic bath of dis tilled 
water in order to eliminate traces of the polishing media. For rocks and coal, small 
pieces are produced from the bulk sample and then wet-ground with a sequence of 
silicon carbide papers (e.g., numbers 220, 460, and 600) resulting in progressively 
smoother surfaces. Finer surfaces may then be obtained by polishing, as above, on a 
cloth-covered wheel saturated with a slurry of water and grit. To minimize the risk of 
surface contamina tion, commercial polishing compounds should be avoided, if pos-
sible, since they may contain unknown chemicals. Unfortunately, when the specimen 
is heterogeneous like coal, polishing exposes a new surface that may be significantly 
different from that of the natural surface.

Metals can also be electropolished to produce a smooth surface that is free of the 
deformed layer obtained by mechanical polishing [77]. The metal of interest is set up 
as the anode in a conducting liquid, undergoing a controlled corrosion reaction.

6.5.1.9 preparation of powders for Contact angle measurements
The process used for the preparation of powders depends on the method selected to 
measure contact angles. Powdered samples are used either in their original particu-
late form or they are compressed into a cake (tablet). The former implies that the 
powder will be analyzed using the packed-bed penetration methods of Washburn 
[6] or Bartell and Osterhof [7], the sedimentation volume technique (Chapter 11), 
or the solidification front technique (Chapter 12). In all of these cases, careful 
cleaning and degassing of the powders is essential to eliminate possible impuri-
ties and air bubbles that may adhere to the surface of particles. The solvents used 
to clean the powder should be chemically inert and should not swell the particles. 
Multiple washings in an ultrasonic bath are recom mended. Alternatively, crystal-
line powders can be purified by recrystallization provided that the correct form of 
the crystal results. Polymorphic crystal forms can be a function of the solvent used 
and can have significantly different surface properties. The contact angle measure-
ment techniques that use the actual powder rather than a compressed tablet usually 
perform best when the particle size distribution is as narrow as possible, achieved 
perhaps by sieving.

Contact angles measured directly on tablets of compressed powder are also 
improved if the particle size range is narrow. The surface structure (porosity and 
roughness) is more uniform, leading to less variability in the contact angles. Prior 
to the compression, therefore, the powder should be sized, recrystallized or oth-
erwise cleaned by sonication in an appropriate solvent, and thoroughly dried in 
air or vacuum. The powder should be kept in a desiccator at constant temperature 
and relative humidity before tablet preparation. Tablets are made by compressing 
a known mass of powder (usually between 0.05 and 0.50 g depending on den-
sity, size, and shape) into a cake by using a hydraulic press and a highly polished 
die and punch. The die should be carefully cleaned with acetone and distilled 
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water, and dried prior to tablet formation. A pressure of between 400 and 600 MPa 
applied for 2–5 minutes is found to be sufficient for most low molecular weight 
organic powders [8,10,12,68]. The exact pressure and time should be determined 
empirically in order to obtain the most reproducible contact angles. The use of a 
highly polished die provides a macroscopically smooth tablet surface; however, the 
surface is actually porous and, as noted above, may be altered by plastic deforma-
tion during compression [13].

Alternate methods of powder preparation for contact angle measurement include 
melting and subsequent dip coating on another substrate, solvent casting if the mate-
rial is sensitive to heat, and heat pressing if the powder is a thermoplastic.

6.5.2 BIoloGIcal materIals

This section discusses the preparation of various biological surfaces, specifically 
teeth and skin, cell and protein layers, liposomes, and hydrogels, for contact angle 
measurements.

6.5.2.1 teeth and skin
The wettability of tooth enamel and human skin is of interest in the study of phar-
maceuticals, cosmetics, soaps, and other cleansing agents. The wettabil ity of bovine 
incisors can be studied by first grinding flat the labial surface of the teeth and cutting 
it into small pieces a few square millimeters in area. Subsequently, the enamel slabs 
are polished with a slurry of aluminum oxide (0.05 µm) in distilled water. The slabs 
are then ultrasonically cleaned in distilled water and dried in an incubator overnight 
at 25°C. The polishing and cleaning procedure can be repeated on the same speci-
mens several times without affecting the results [88–90].

Contact angles on the labial surfaces of the human upper central incisors can also 
be measured in situ. The preparation of the measurement site consists of not eating, 
drinking, or smoking after brushing the teeth prior to the measurement. The subjects 
are seated in a dental chair so that the labial surfaces are horizontal. The tooth sur-
face is dried for 60 seconds and then an advancing sessile drop is established and 
photographed [91].

Wettability studies of human skin in situ utilize the dorsal areas of the ring and 
forefingers because the skin surface between the joints is relatively smooth and con-
venient for contact angle measurements [92]. Contact angles of sessile drops are 
studied with a goniometer equipped with a specially designed finger holder [93]. 
Measurements can also be done on the underside of the forearm.

Experiments may be performed in vitro with cleaned, excised skin (usually from the 
breast), which is washed with soap, ethanol, and distilled water, and then dried in hot 
air. Untreated human skin is very hydrophobic, having a water contact angle between 
87° [94] and 100° [93]. Contact angles have been measured on rabbit intestines that were 
washed with sterile saline at 4°C [95]. Depending on the location of the sample and the 
age and condition of the rabbit, water contact angles varied between 38 and 93°.

Due to the presence of surface roughness, heterogeneity, and impurities on skin 
and teeth, it is neces sary to average large numbers of contact angle measurements to 
obtain reliable data.
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6.5.2.2 bacteria, Cells, proteins, and liposomes
Contact angles have been used in a wide variety of studies of the wettability of 
bacteria [57,88,96–98], mammalian cells [96,97,99–101], plant cells [102–105], 
liposomes [11,12,106], and proteins [57,96,100,107,108]. Layers of these substances 
that are usually prepared by membrane filtration are hydrophilic because of their 
hydrated state. Due to different physiological constraints such as osmotic pressure, 
ionic strength, and chemical compatibility, a saline solution of 0.9 wt% (0.15 M) 
purified sodium chloride in deionized distilled water is usually recommended as the 
contact angle measuring liquid. When a drop of saline is placed on the surface of 
a highly hydrated biolo gical layer, a zero contact angle is observed initially. When 
the excess surface water evaporates, the contact angles of subsequently placed 
drops become finite, progressively increasing with time to finally reach a plateau 
value. The contact angle corresponding to the plateau is taken as the characteristic 
contact angle.

 (a) Bacteria. After being harvested from the culture broth, the bacteria are 
usually washed several times with physiological saline to remove contami-
nants. A layer of bacteria is formed on a membrane filter (typically cellulose 
acetate with a pore size < 0.45 µm) by depositing a small amount of the 
washed suspension on a filter in a glass holder and applying suction. The 
layer of bacteria should be washed at least three times with distilled water 
or saline. Suction is stopped after the final rinse, when most of the wash-
ing liquid has been removed. The bacterial layer should, however, remain 
slightly moist. This is facilitated by placing the filter membrane on a freshly 
prepared 2% solidified agar plate (see below) that acts as a water reservoir 
and decreases the rate at which the bacterial layer dries. This ensures that 
contact angles of water or saline drops can be measured while the bacteria 
are still in their fully hydrated state. As mentioned above, air drying is 
usually necessary to reach the optimal water content of the bacterial layer 
and obtain contact angle measurements independent of time. This condition 
might be judged by the disappearance of surface glossiness and the appear-
ance of a more matted surface [96].

  It should be noted that some filter membranes may contain surfactants 
that aid in wetting and facilitate the filtration process. Surfactants can con-
taminate the sessile drop liquid and affect the contact angle. The presence 
of surfactants in the membrane can be determined by soaking the mem-
brane in ultra pure distilled water for at least 1 hour, then measuring the 
surface tension of the soaking water. The filter must be washed copiously 
with distilled water prior to use if the surface tension is too low [98].

 (b) Human and Animal Cells. Layers of human and animal cells can be pro-
duced using membrane filtration as described above [96,100]. Care should 
be taken not to produce more than a monolayer coverage because of the 
excessive roughness that can complicate contact angle measurements. This 
is facilitated by controlling the number of cells per unit volume of the sus-
pension applied to the membrane filter.
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 (c) Proteins. Protein layers have been prepared for contact angle measurements 
using in vitro and in vivo techniques. The former has been done in two ways: 
(i) A 1–2 wt% protein solution can be filtered through a cellulose acetate mem-
brane without stirring the solution. As with cell layers, contact angles can be 
measured on the coated filter membrane after a period of air drying. (ii) Protein 
solution can be deposited directly onto a filter membrane with a pipette and 
allowed to partially dry. This procedure requires less protein and is somewhat 
faster. In both cases, it should be recognized that excessive drying may result 
in protein denaturation, giving rise to increased contact angles [96].

  Contact angles have been measured on salivary protein layers formed in 
vivo. Clean and siliconized discs of glass and germanium were placed in 
the mouth for varying lengths of time prior to removal, rinsing, and mea-
surement [107].

 (d) Plant Cells. Contact angles have been used to model spontaneous immo-
bilization of plant cells to different bioreactor substrates [102–105]. Cells 
of Catharanthus roseus were harvested from a culture, diluted in distilled 
water, and filtered through a series of nylon meshes (500, 350, and 210 µm) 
under gentle vacuum. The resulting suspension was then centrifuged and 
resuspended in distilled water three times. The final suspension consisted 
of more than 97% small aggregates (2–5 cells) with low levels of extracel-
lular polysaccharides and proteins in the suspending liquid. Contact angles 
were then measured on a 1–2 mm layer produced by the membrane filtra-
tion of a suspension having a packed cell volume of 1% [102].

 (e) Liposomes. Hydrated phospholipid vesicles, or liposomes, are extremely 
hydrophilic agents and useful as means of delivering encapsulated drugs to 
targeted tissues of the body. Steiner and Adam measured contact angles on 
phospholipid films deposited onto a number of substrates: glass microscope 
slides, glass siliconized with dimethyldichlorosilane, and cell culture sub-
strates of both polystyrene and PMMA [11]. It was observed that liposome 
films, which were formed on very hydrophilic (glass) and very hydrophobic 
(siliconized glass) surfaces, became partly resuspended in the sessile drops 
of water, thereby invalidating the contact angle measurements. On the plas-
tic cell culture surfaces, when the liposome deposition reached approxi-
mately 10 times monolayer coverage, the contact angle reached a minimum 
value of 15–20°, which corresponds to a very hydrophilic surface [11].

  Liposome layers have also been produced using membrane filtration 
[12,106]. A few milliliters of a 5 wt% aqueous dispersion of liposomes was 
filtered through a cellulose membrane filter with a pore size of 0.45 µm. A 
thin liposome layer was formed by a slight vacuum suction for a few hours 
and was placed on 2% solidified agar to prevent dehydration.

6.5.2.3 hydrogels
The aqueous nature of gels makes them an important component of biomedical 
applica tions involving cells, tissue, and blood [109]. Water contact angle measure-
ments on hydrogels are complicated due to the flexibility of the interface that can 
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undergo appreciable deformation. The procedures used to prepare hydrogel surfaces 
are different from those used with cells, and vary depending on the parti cular type 
of gel. The following examples illustrate the techniques used with several commonly 
used hydrogels.

For natural macromolecules such as gelatin, agar, or agarose, a 1–2 wt% solu-
tion is prepared by mixing the substance with cold distilled water or saline solution. 
The solution is then heated to 75°C and stirred continuously for approximately 20 
minutes until the agar is completely dissolved. Excessive air bubbles in the gel are 
removed by applying a moderate vacuum. The solution is then poured carefully onto 
a chromic acid-cleaned glass surface (alternatively, on cotton gauze glued to the 
glass slide to retain the gel) to form a 2 mm thick layer, which is cooled to room 
temperature in a covered Petri dish. Using this solution, the gel formation is expected 
within 15 minutes. After gelation, the Petri dish is uncovered and placed in an oven 
at a low temperature for 30 minutes to allow excess water to evaporate from the gel 
surface. This surface is designated as the “air-exposed” surface. “Glass-exposed” 
surfaces can be prepared by pouring the agar solution into the 1.5 mm gap created 
by placing gauze between two glass plates. After cooling, one of the glass plates is 
separated from the agar. Similarly, “silane-exposed” gel surfaces are produced using 
dichlorodimethylsilane coated glass plates [101].

The preparation of synthetic polyacrylamide gels involves the polymer ization 
of purified acrylamide monomers with the monomer cross linking agent bis (N,N’-
methylene bis-acrylamide) using a free radical-generating catalyst system [100]. To 
produce gels with different surface proper ties, the concentration of the total gel com-
position and the percentage of the cross-linking agent can be varied. Prior to the 
polymerization reaction, the mixture should be subjected to vacuum suction in order 
to degas the solu tion as the reaction is strongly retarded by oxygen. After degassing, 
the solution with all components is poured into small Petri dishes where the gel is 
formed. The dishes must be filled completely. The gel is then soaked in distilled 
water and/or saline (to which 0.02% sodium azide is added as a bacteriostatic agent) 
for 4 days, changing the soaking liquid every day. This is done to completely remove 
unreacted monomers and to ensure that the gel is equilibrated with water or saline 
solution. After removing excess surface water in a drying oven, the contact angle of 
distilled water or saline (depending on the liquid used for equilibration) and the liq-
uid content of the gel sample may be determined. A fresh preparation of gel should 
be used for each experiment.

Solvent casting has also been used to prepare polymeric hydrogels [70]. Andrade 
et al. prepared different PMMAs using dilute solutions of various methacrylate ester 
monomers containing the cross-linking agent hexamethylene diisocyanate. The solu-
tions were cast onto aminopropylsilane-treated glass slides and resulted in the bond-
ing of the polymer to the substrate as the polymer itself cross linked. The slides with 
the polymer film were then cured at 60°C for 24 hours, and vacuum dried at 60°C for 
another 24 hours to remove residual solvent. The thin gel coatings on the slides were 
then washed three times in distilled water, and immersed in water to allow them to 
equilibrate prior to contact angle measurement using the captive bubble technique.

It is noted that biological surfaces such as those of cells, tissues, and gels of extra-
cellular matrices must be kept in an aqueous environment to remain viable. As a 
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result, the surfaces will be either wetting or yield very small contact angles. The 
ADSA-D technique is a particularly useful approach for the measurement of contact 
angles on such surfaces with reasonable accuracy and reproducibility.

6.5.3 cleanInG and handlInG solId surFaces

Surface cleaning is a critical process for ensuring good contact angle measurements 
as well as for the production of high quality coatings in industrial settings. There 
are different procedures to clean solid or semisolid surfaces. For glass or quartz 
substrates, the surfaces can first be washed with high-purity organic solvents, then 
soaked in chromic acid, and thoroughly rinsed with warm distilled water to remove 
acid residues. Cleaning glass or other substrates with a RF glow discharge in a vac-
uum chamber or in an ultrasonic bath are additional means of removing organic con-
taminants. High energy surfaces such as glass, mica, and metals can also be heated 
in a vacuum oven to over 200°C in order to remove adsorbed contaminants.

Proper handling and storage of clean solid surfaces is also crucial. Surfaces 
should never be touched with bare fingers or even with rubber gloves, which might 
themselves be covered with organic contaminants. Chromic acid-cleaned forceps 
with Teflon tips are recommended for hand ling samples by the edges, away from 
the areas that will be used for contact angle measurements. During handling and 
measurement, care should be taken not to breathe on the surface nor expose it to 
contaminated labora tory atmosphere. Contact angles should be measured in a clean 
environment or a chamber, away from motors, pumps, and sources of organic chemi-
cals. High energy surfaces such as glass, metals, quartz, and mica should be stored 
under a high-purity organic sol vent, inert gas, or high vacuum. Hydrogel surfaces 
may be stored under water or saline solution. It is always desir able to eliminate con-
cern about storage contamination by mea suring contact angles immediately after 
the surfaces are prepared. In some cases, such as heat pressing and hydrogel casting 
between glass plates, most of the preparation can be done in advance, with only the 
final separa tion and exposure of the surface performed immediately prior to the 
contact angle measurement.
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7.1  intrOduCtiOn

From daily experience we know that a drop of water deposited onto the surface of a 
plastic plate will form a sessile drop. Also, we often see that many liquids can climb up 
in a capillary tube to a certain height and form a meniscus at the top. In these phenom-
ena, the angle formed between the liquid–vapor interface and the liquid–solid inter-
face at the solid–liquid–vapor three-phase contact line is defined as the contact angle. 
It should be noted that, at the molecular level, the three phases do not meet in a line 
but within a zone of small but finite dimensions in which the three interfacial regions 
merge. Therefore, the microscopic contact angles may be different from their macro-
scopic counterparts measured by techniques such as axisymmetric drop shape analy-
sis (ADSA). Discussion of microscopic contact angles lies beyond the scope of this 
chapter. For our purposes, the macroscopic contact angles will be the center of atten-
tion. The systems considered in this chapter consist of three bulk phases: solid, liquid, 
and vapor; and three interface phases: solid–liquid, solid–vapor, and liquid–vapor.

The interest in contact angles is twofold: they play a major role in a number 
of technological, environmental, and biological phenomena and processes; they 
are also a manifestation of the surface tension of the solid on which the con-
tact angle is formed. Presently, the interpretation of contact angles is one of the 
better prospects to determine surface tensions of solids (see Chapters 8 and 9). 
Unfortunately, in spite of their seeming simplicity, contact angle phenomena are 
complex. This complexity is most easily appreciated by invoking the classical 
theory of capillarity [1]. Minimizing the overall free energy of a system consisting 
of a liquid in contact with a solid yields the Laplace equation of capillarity (see 
Chapters 1 and 2) [2]

 γ ρlv R R
gz c P

1 1

1 2

+





= + =∆ ∆ ,  (7.1)
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and Young’s equation [3]

 γ θ γ γlv e sv slcos = − ,  (7.2)

where R1 and R2 are the principal radii of curvature at a point of the liquid sur-
face, Δρ is the density difference between the liquid and vapor phases, g is the local 
gravitational acceleration, z is the ordinate of a point of the liquid surface at which 
the principal radii of curvature are R1 and R2, c is a constant, ΔP is the capillary 
pressure or pressure of curvature, γlv is the liquid–vapor interfacial tension, γsv is the 
solid-vapor interfacial tension, γsl is the solid–liquid interfacial tension, and θe is the 
equilibrium contact angle.

The derivation of these relations assumes that the solid surface in contact with 
the liquid is smooth, homogeneous, isotropic, and nondeformable. This assumption 
is of little or no consequence for the range of validity of the Laplace equation, since 
Equation 7.1 essentially describes the shape of the liquid-vapor or liquid–liquid inter-
face, away from the solid–vapor and solid–liquid interfaces. The Young equation, on 
the other hand, is an equilibrium condition involving properties that are a function 
of the solid surface; that is, γsv and γsl. The validity and applicability of Young’s 
equation and the thermodynamic status of contact angles have been the subject of 
debates in the past, mainly due to the difficulty of preparing solid surfaces meeting 
the above conditions.

The above statement that the Laplace equation describes the shape of the liquid–
vapor interface requires some further elaboration. To be more specific, the Laplace 
equation prescribes, for a given liquid of surface tension, γlv, a value of the mean 
curvature

 J
R R

= +1 1

1 2

,

as a function of the ordinate z at any point on the liquid–vapor interface. In addi-
tion, in many cases it will be necessary to introduce, as a boundary condition, what 
we shall term the phenomenological contact angle, θ. It is the angle between the 
solid–liquid interface and the tangent to the liquid–vapor interface at the three-phase 
line measured in a plane normal to the solid–liquid and the liquid–vapor interfaces. 
The phenomenological contact angle, θ, may or may not be the equilibrium contact 
angle, θe, and it may or may not be a dynamic contact angle. It will, in any case, 
represent the appropriate boundary condition that determines the shape of the liquid 
meniscus.

The equilibrium contact angle, θe, on the other hand, is a unique function of the 
interfacial tensions, γlv, γsv, and γsl, given by Young’s equation. In the vast majority of 
cases, however, experimentally observed contact angles are not uniquely determined 
by the surface tensions of the solid and the liquid; there usually exists a range of 
contact angles in which any one contact angle gives rise to a mechanically stable 
liquid meniscus. The largest and the smallest of these angles are termed the advanc-
ing contact angle, θa, and the receding contact angle, θr, respectively. The differ-
ence between the advancing and the receding contact angles is called contact angle 
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hysteresis. Contact angle hysteresis may be conveniently observed by first advancing 
and then receding a liquid drop over a solid surface. If the surface tension of the 
solid, γsv, and the interfacial tension γsl were modified due to contact with the liquid, 
we would, in fact, expect a change of the equilibrium contact angle, θe. If this were 
so, then the fact that the observed contact angles are not a unique property for any 
given solid–liquid system would not necessarily conflict with Young’s equation. It 
will be demonstrated below (Section 7.3) that in addition to traditionally considered 
causes for contact angle hysteresis, for example, roughness and heterogeneity, such a 
true hysteresis is indeed operative in many solid–liquid systems.

It was only in 1936 that Wenzel recognized that Young’s equation (Equation 7.2) 
may not be a universal equilibrium condition for the physical interaction between a 
solid and a liquid where the solid surface is rough [4]. He argued that, if the solid 
surface is rough, the interfacial tensions γsv and γsl should not be referred to the geo-
metric area, but to the actual surface area. If we let

 r = actual surface area
geometric surface area

,,  (7.3)

the so-called Wenzel equation

 γ θ γ γlv W sv slrcos = −( )  (7.4)

results, where θW may be called the Wenzel contact angle, which we shall see later is, 
in fact, the equilibrium contact angle, θe, on a rough solid surface. Equation 7.4 was 
subsequently also derived more rigorously by Good [5].

The same type of reasoning was applied to heterogeneous and porous surfaces by 
Cassie and Baxter [6–8]. A heterogeneous solid surface is one that contains domains 
of different surface tension. Examples of heterogeneous solid surfaces are surfaces 
on which patches of a monomolecular film are adsorbed, or a surface of a polycrys-
talline material that exposes different crystallographic planes at its surface. For a 
solid surface consisting of two domains with the intrinsic contact angles θe1 and θe2 
with respect to a given liquid, Cassie obtained

 cos cos cosθ θ θC e ea a= +1 1 2 2,  (7.5)

where a1 and a2 are the fractional surface areas of the two types of surfaces such 
that

 a1 + a2 = 1, (7.6)

and θC may be called the Cassie contact angle [6]. We shall see below that θC defined 
by Equation 7.5 is, like θW for a rough surface, the appropriate equilibrium contact 
angle for a heterogeneous solid surface.

One of the difficulties with relations such as the Cassie or the Wenzel equations is 
that they seemingly conflict with experimental observation. For example, the Wenzel 
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equation predicts that the contact angle on a rough surface should be smaller than the 
contact angle on the smooth surface if the contact angle on the latter is smaller than 
90°. If the contact angle on the smooth surface of the same material is larger than 90°, 
then a larger contact angle is predicted on the rough surface. Experimentally, how-
ever, one finds that with increasing roughness, the advancing contact angle increases 
and the receding contact angle decreases in many situations [9,10]. In addition to 
these difficulties, the explanations of the relation between roughness and heteroge-
neity on the one hand, and the phenomenon of contact angle hysteresis on the other, 
made further investigations necessary. The first more quantitative results linking 
contact angle hysteresis and heterogeneity, as well as roughness, are due to Johnson 
and Dettre [11,12]. Neglecting gravity, they considered a drop of liquid, centered 
on an alternating array of two types of smooth and narrow concentric rings of con-
stant width, one type having an equilibrium contact angle θe1 and the other θe2 [11]. 
This arrangement represents their model heterogeneous surface. In order to obtain a 
homogeneous but rough model surface, they considered a surface of the same sym-
metry as their model heterogeneous surface by combining grooves and hills in such 
a way that a cut normal to the surface through the origin results in a sinusoidal wave-
form [12]. Neglecting gravity and assuming the local validity of Young’s equation, 
Johnson and Dettre demonstrated, by minimization of the overall free energy of the 
system, the existence of a large number of metastable states.

In spite of the considerable insight into contact angle hysteresis provided by 
Johnson and Dettre, there remain three immediate reservations with respect to their 
model. First, a treatment of the capillarity phenomenon neglecting gravity is not 
general. Second, the concentric ring model is not very realistic physically; although 
it corresponds well to the symmetry of sessile drops, it is not easily modified to con-
form to actual patterns of heterogeneous solid surfaces. Third, it assumes the local 
validity of Young’s equation. Although we shall see below (Section 7.2) that this 
latter assumption is essentially correct, it will be obtained as a result of an analysis 
based solely on the Laplace equation rather than on postulating the validity of the 
Young equation. Nevertheless, the important point remains that these models show 
that heterogeneity and roughness can produce contact angle hysteresis. The analysis 
in Sections 7.2.1–7.2.4 below presents a mathematically straightforward free energy 
analysis of contact angles on model heterogeneous and rough surfaces based solely 
on the Laplace equation. This type of analysis is then generalized to the flotation of 
heavy particles at the liquid/fluid interface in Section 7.2.5. Section 7.2 concludes 
with a discussion of models different from the Gibbsian one, Section 7.2.6. In that 
section, rather than considering the interface as a sharp mathematical plane and pos-
tulating the existence of surface excess quantities as in Chapter 1, the solid–vapor 
interface will be assumed to carry a thin film of the liquid that forms the drop.

Significant progress has been made in the past few years with respect to the prep-
aration and characterization of solid surfaces. This has facilitated the fabrication of 
extremely smooth and chemically homogeneous surfaces that were not easily achiev-
able a few decades ago. Despite the smoothness and homogeneity of such solid sur-
faces, contact angle hysteresis is still present, indicating that causes other than those 
related to the surface topography also give rise to hysteresis. More recently explored 
causes of hysteresis will be discussed in detail in Section 7.3, below.



334 Hossein Tavana

The Gibbs phase rule is an often-used tool to gain insight into thermodynamic 
systems and their descriptions. That topic is pursued in Section 7.4 considering par-
ticularly possible implications for the formalism developed in Chapters 8 and 9 for 
the determination of solid surface tension from experimental contact angles.

Contact angle hysteresis is not the only difficulty in establishing equilibrium in con-
tact angle systems. In many instances a phenomenon called “stick-slip” occurs: When, 
say, liquid is fed continuously into a sessile drop by means of a capillary, the three 
phase line does not necessarily move smoothly. Instead it may hinge at a certain point, 
while the drop volume and the contact angle increase continuously. The three phase 
line then jumps to a new position, where the contact angle is markedly smaller, and the 
whole process repeats. Such phenomena are discussed in Section 7.5.

Probably more often than not, the phenomenological contact angle is not the 
thermodynamic equilibrium contact angle. One particular group of contact angle 
phenomena on certain rough solids has found widespread interest in recent years: 
Certain rough surfaces cause very large contact angles, approaching 180o. This phe-
nomenon, called superhydrophobicity, is introduced in Section 7.6. Finally, contact 
angles in the presence of an electric double layer are discussed in Section 7.7, and 
Section 7.8 presents a glossary of contact angle terminology.

7.2  thermOdynamiC mOdelinG and free enerGy 
analysis Of sOlid-liquid-fluid systems

7.2.1  the VertIcal Plate model

To avoid difficulties associated with the Johnson and Dettre model, Neumann and 
Good developed a vertical plate model [13]. They considered a vertical plate consist-
ing of two types of parallel strips to represent the smooth but heterogeneous model 
surface. In their ideal rough surface model [14], they considered a vertical plate that 
consists of a number of smooth and homogeneous inclined surfaces, the angle of 
inclination changing discontinuously at constant increments in the vertical direction. 
Gravity was taken into account in both models.

In the following section, Neumann and Good’s work will be discussed. The start-
ing point of these models is a smooth and homogeneous vertical plate dipping into 
a pool of liquid, as illustrated in Figure 7.1. Depending on the equilibrium contact 
angle, the liquid will either rise or be depressed near the vertical wall.

The thermodynamic model of the wetting behavior of the vertical plate in contact 
with a liquid can be set up by calculating the change in free energy for any change 
in the configuration of the system. In order to perform the calculations, it is neces-
sary to choose a reference state for which the free energy will be arbitrarily defined 
as zero. For convenience, the reference configuration is chosen to correspond to an 
instantaneous value of contact angle θ = 90°. Moving from the reference state to an 
adjacent configuration, there will be a change in the total free energy of the system 
due to the following three terms.

 1. ΔFl; this is due to a change in the solid–vapor interfacial area and a cor-
responding change in the solid–liquid interfacial area.
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 2. ΔF2; this is due to a change in the liquid–vapor interfacial area.
 3. ΔF3; this is due to the work that has to be done against gravity for such a 

change in configuration.

Therefore, the overall free energy change, ΔF, for any hypothetical change in the 
configuration of the system is given by

 ΔF = ΔFl + ΔF2 + ΔF3. (7.7)

To calculate the three free energy terms in Equation 7.7, the validity of the Laplace 
equation will be assumed, since it describes the equilibrium shapes of the liquid sur-
face independent of the properties of the solid surface. On the other hand, no a priori 
assumption will be made regarding the validity of the Young equation. The surface 
area will be calculated based on a unit length, L (e.g., 1 cm), in the y-direction per-
pendicular to the plane of the paper (Figure 7.1).

7.2.1.1  the driving force term, ΔF1

The driving force term, ΔF1, represents the work done by the system in replacing the 
area, Lh, having interfacial free energy γsv, by the same area having interfacial free 
energy γsl:

 ∆F Lh sv sl1 = − −( ).γ γ  (7.8)

The capillary rise, h, may be obtained from an integration of the Laplace equation 
that may be written for the geometry of this model, that is, for a cylindrical liquid 
surface, as
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fiGure 7.1 Capillary rise of a liquid at a vertical plate.
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where C ≡ Δρg/γlv and ϕ is defined as the angle between the normal at a point P and 
the z axis, as shown in Figure 7.1. When P is on the z axis, we have z = h and ϕ = 90° 
– θ, where θ is the instantaneous contact angle. Integrating Equation 7.9 yields

 − = + ′cos .φ Cz
C

2

2
 (7.10)

Since z = 0 at ϕ = 0, it follows that C’ = –1, so that

 h
g
lv= −2

1
γ
ρ

θ
∆

sin .  (7.11)

Thus, Equation 7.8 becomes

 ∆
∆

F L
gsv sl
lv

1
2

1= − − −( ) sin .γ γ γ
ρ

θ  (7.12)

7.2.1.2  the free energy Change of the liquid–Vapor interface, ΔF2

Going from the reference state to any other configuration, work has to be done on the 
system to expand the liquid surface; therefore

 ΔF2 = LγlvΔl, (7.13)

where Δl is the increase in length of a line along the surface of the liquid, lying in 
the x-z plane (Figure 7.1)

 ∆l ds dx
x

x

= −
=

=∞

∫ ( ).
0

 

Since ds2 = dx2 + dz2, then

 ∆l dx dz dx
x

x

= + −
=

=∞
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0

 (7.14)

From Equation 7.9

 dz
d

Cz
= − cos

,
φ

 (7.15)

and from elementary calculus

 dx
dz= − cos

sin
.

φ
φ

 (7.16)

Using Equations 7.15 and 7.16 and also Equation 7.l0, Equation 7.14 becomes
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Using the result of integrating Equation 7.17, Equation 7.13 can be written as

 ∆
∆

F L
glv
lv

2
2

2 1= − +[ ]γ γ
ρ

θsin  (7.18)

7.2.1.3  Work done against Gravity, ΔF3

Work must also be done on the system against gravity to raise the liquid near the ver-
tical plate above the undisturbed level. Consider a small column of liquid of rectan-
gular cross section L dx; the column is composed of successive increments of volume 
L dx dz. The work done in lifting each of these elements to its proper position, z, is 
ΔρgLz dx dz. Integrating over all elements of the column, one obtains

 ∆ ∆
F

gLz dx
3

2

2column = ρ
,  (7.19)

and integrating over all the columns

 ∆ ∆F L g z dx
x

x

3
2

0

1
2

=
=

=∞

∫ρ .  (7.20)

Using Equations 7.15, 7.16, and 7.10 to integrate Equation 7.20 will yield

 ∆
∆

F L
glv
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3
1
3

2
2 1 2= − + −[ ]γ γ

ρ
θ θ( sin ) sin .  (7.21)

The sum of ΔF2 and ΔF3 can be written in the following simpler form

 ∆ ∆
∆

F F L
glv
lv

2 3
3 21

3
2

2 2 1+ = − +[ ]γ γ
ρ

θ( sin ) ./  (7.22)

From dΔF/dθ = 0, one recovers γsv–γsl–γlvcosθe = 0; that is, Young’s equation. 
Therefore ΔF1 (Equation 7.12) can be rewritten as

 ∆
∆

F L
glv e
lv

1
2

1= − −γ θ γ
ρ

θcos sin .  (7.23)

Combining Equations 7.22 and 7.23 gives the overall free energy change, ΔF

 ∆
∆

F L
glv
lv

e= − + − −1
3

2
2 2 1 3 13 2γ γ

ρ
θ θ θ( sin ) cos sin/[[ ].  (7.24)
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Thus, one may characterize any specific system by giving the values of γlv and θe, 
instead of γlv, γsv, and γsl. Assuming a hypothetical liquid with γlv = 50.0 mJ/m2 and 
Δρ = 1000 kg/m3, free energy curves ΔF versus θ, for a number of θe values, are 
reproduced in Figure 7.2 using Equations 7.7, 7.12, 7.18, and 7.21. It can be seen that 
each curve passes through a minimum at θ = θe.

7.2.2  contact anGles on a smooth But heteroGeneous 
surFace consIstInG oF horIzontal strIPs

In practice, various processing conditions can give rise to surface heterogeneity. For 
example, increasing the annealing temperature of films of polystyrene/poly(vinyl 
methyl) ether blend from 130 to 170°C induces phase separation between poly-
styrene (PS) and PVME moieties, resulting in a heterogeneous surface film [15]. 
Annealing of thin films of a polystyrene-block-poly(methyl methacrylate) diblock 
copolymer causes the PS and polymethylmethacrylate (PMMA) blocks to undergo 
microphase-separation [16]. Varying the annealing time changes the morphology of 
the film from a disordered state to a nanoscale depression morphology and finally 
to a striped morphology. Chemical incompatibility between the hydrocarbon and 
the fluorocarbon side chains of poly(octadecene-alt-N-(4-(perfluoroheptylcarbonyl)
aminobutyl)maleimide) results in microscale phase-separation between the side 
chains and domains with different chemical compositions [17]. For similar reasons, 
the films of polymer blends of polybutadiene/polystyrene [18] as well as polybutadi-
ene/poly(methyl methacrylate) [19] contain heterogeneous domains. Due to the dif-
ference in the chemistry of heterogeneous patches, there exist domains with different 
surface energies on a solid surface. The following energetic analysis demonstrates 
how surface heterogeneity causes contact angle hysteresis.

To avoid the limitations of the concentric rings model developed by Johnson and 
Dettre [11,12], Neumann and Good [13] considered a different but more realistic 
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fiGure 7.2 Free energy changes as a function of instantaneous contact angle, θ, on smooth, 
homogeneous solid surfaces of various equilibrium contact angles, θe; γlv = 50.0 mJ/m2; 
Δρ = 1000 kg/m3. (Reprinted from Neumann, A. W. and Good, R. J., Journal of Colloid and 
Interface Science, 38, 341, 1972. With permission from Academic Press.)
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heterogeneous surface model: a vertical plate with two different horizontal strips of 
approximately equal width, one type having an equilibrium contact angle θe1, and the 
other θe2. For convenience, the strip widths, Δhl and Δh2, are assumed to vary sys-
tematically so that constant increments of θ can be used as input (see Equation 7.11). 
Consider that this vertical plate is dipped into a hypothetical liquid with γlv = 50.0 
mJ/m2 and Δρ = 1000 kg/m3. Since the ΔF2 and ΔF3 terms depend only on the instan-
taneous contact angle θ, and not on the properties of the two types of solid, these 
two terms can be calculated, as in the previous section, from Equations 7.18 and 
7.21. Moving from the reference state θ = 90° to other configurations, the solid-liq-
uid-vapor three-phase line will traverse a number of type-1 and type-2 strips with 
equilibrium contact angles θel and θe2, respectively. Therefore, to calculate ΔF1 for a 
particular capillary rise, h, it is necessary to calculate the change in free energy for 
passage across every strip of type-1 and type-2, up to the specified value of h.

The general procedure to calculate ΔF1 can be easily illustrated by a specific 
example. For convenience, the strips chosen are fairly wide so that the movement of 
the three-phase line from a θel/θe2 boundary to the next θe2/θe1 boundary corresponds 
to a 2° increment in contact angle (according to Equation 7.11). The 90° configura-
tion is located so that the three-phase line lies in the center of a θe2 strip. Thus, 
going from the θ = 90° configuration to the 89° configuration, the three-phase line 
traverses only θe2 surface:

 ∆
∆

F L
glv e
lv

1
90 89

2
2

1 89 1− ° = − − ° − −γ θ γ
ρ

cos ( sin sin990° ).  (7.25)

Equation 7.25 is essentially equivalent to Equations 7.12 and 7.23, except that the term 
due to the lower limit of integration (cf. Equations 7.9 through 7.12), 1 90− °sin , is 
retained. It should be noted that this term vanishes only if the lower limit of integra-
tion is θ = 90°.

Now going from the configuration θ = 89° to θ = 88°, the contact line traverses 
θe1 surface area:

 ∆
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glv e
lv

1
89 88
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1 88 1− ° = − − ° − −γ θ γ
ρ

cos ( sin sin889° ).  (7.26)

The free energy change, ΔF1, for the process of going from θ = 90° to θ = 88° 
will be

 ∆ ∆ ∆F F F1
90 88

1
90 89

1
89 88− ° − ° − °= + .  (7.27)

From θ = 88° to θ = 87°, the three-phase line will still move across the θe1 surface 
area; hence, the free energy change can be calculated as

 ∆
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cos ( sin sin888° ),  (7.28)
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and

 ∆ ∆ ∆F F F1
90 87

1
90 88

1
88 87− ° − ° − °= + .  (7.29)

If continuing to θ = 86°, the three-phase line will traverse θe2 surface area again. 
Thus
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and

 ∆ ∆ ∆F F F1
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As shown above, these calculations can be continued to any value of instantaneous 
contact angle θ.

For the range of contact angles from θ = 90° to θ = 0°, the computations of 
ΔFl = ΔFl + ΔF2 + ΔF3 were performed for θe1 = 40°, θe2 = 30°, and a strip width 
equivalent to 2°. The same type of computation was also performed for a strip width 
equivalent to (2/3)°. These two ΔF versus θ curves are given in Figure 7.3a and b, 
respectively.

The most significant feature of Figure 7.3 is that both curves have local minima. 
Between 30° and 40°, the free energy curves have a sawtooth structure that cor-
responds to a number of metastable equilibrium configurations. Outside the contact 
angle range from 30° to 40°, the sawtooth structure is still present but there are no 
more local minima: hence, there are no more metastable equilibrium configurations. 
Further away from the range of 30°–40°, the free energy curves become almost 
smooth.

From the above thermodynamic model and Figure 7.3, several conclusions can be 
drawn as follows:

 1. If strips with a much smaller width are chosen for the model and the cor-
responding envelope of the sawtooth structure is examined, it will be found 
that the absolute minimum is given by the Cassie Equation 7.5. Therefore, 
it can be concluded that the thermodynamic equilibrium contact angle θES 
of the system under consideration is the Cassie angle θC; that is, θES = θC. It 
should be noted that, however, experimental determination of θC might be 
difficult because of the existence of a large number of metastable contact 
angles. 

 2. Due to the presence of the metastable equilibrium states shown in Figure 7.3, 
if the system initially stays in any hypothetical configuration outside the 
range of contact angles from 30° to 40°, when released, the system will 
spontaneously decrease its free energy and hence change its contact angle θ 
until it reaches θe1 = 40° or θe2 = 30°, depending on whether the initial con-
tact angle θ is greater than 40° or less than 30°. To decrease the free energy 
of the system further, the free energy barriers shown in Figure 7.3 would 
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have to be overcome. It can be seen that the particular heterogeneity of this 
model predicts contact angle hysteresis.

 3. From Figure 7.3, it can be seen that there are a number of metastable states 
within the contact angle range from 30° to 40°; the first local minimum 
on the lower angle side corresponds to the intrinsic contact angle θe2 of 
the higher energy strips, and the first local minimum on the higher angle 
side corresponds to the intrinsic contact angle θe1 of the lower energy 
strips. Therefore on such a heterogeneous surface, the three-phase line will 
advance only if the experimental contact angle becomes equal to θe1, and 
will recede if the experimental contact angle becomes equal to θe2; that is,

 advancing angle, θa = θe1, receding angle, θr = θe2. (7.32)

Although neither θa nor θr is equal to the equilibrium contact angle, θES, of this 
system, they are the intrinsic equilibrium contact angles of the two types of strips, 
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fiGure 7.3 Free energy changes as a function of instantaneous contact angle, θ, on two 
surfaces consisting of two types of horizontal strips of equal width. The equilibrium contact 
angles of type-1 and type-2 strips are θe1 = 40° and θe2 = 30°, respectively. (a) Strip width 2°; 
(b) strip width (2/3)°. (Reprinted from Neumann, A. W. and Good, R. J., Journal of Colloid 
and Interface Science, 38, 341, 1972. With permission from Academic Press.)
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θe1 and θe2, respectively; hence, they may be used in the Young equation. In order 
to keep in mind the fact that the advancing and receding contact angles are not the 
equilibrium angle θES, we designate them as

 θa = θY1, θr = θY2. (7.33)

In other words, the subscript Y indicates that the contact angles so designated may 
be used in conjunction with Young’s equation. Thus, the equilibrium angle θES = θe 
on a smooth and homogeneous solid surface is a Young angle, whereas the Cassie 
angle, θC, in spite of being the thermodynamic equilibrium angle, is not a Young 
contact angle, θY. This result implies the validity of Young’s equation in the follow-
ing forms

 (γsv)1 – (γsl)1 = γlvcosθa, (7.34)

 (γsv)2 – (γsl)2 = γlvcosθr. (7.35)

It is apparent from the above discussion that if an ideal heterogeneous surface is 
modeled as a smooth surface consisting of two types of horizontal strips, the hetero-
geneity of the model surface will cause metastable states or contact angle hysteresis, 
because moving from a type-1 strip to the next type-2 strip will cause a fluctuation 
of the free energy of the system [13].

7.2.3  contact anGles on a smooth But heteroGeneous 
surFace consIstInG oF VertIcal strIPs

Above, we considered a specific type of heterogeneity (i.e., horizontal strips). In 
practice, heterogeneity is often patchwise; that is, the solid surface is composed of 
one type of surface patches distributed over a second type of surface. We will con-
sider now a surface composed of vertical strips of fractional widths al and a2. This 
model will shed light on the behavior of patchwise heterogeneous surfaces.

The three-phase line is assumed first to be a horizontal straight line. That is to say, 
we assume the Laplace equation to hold, but do not insist that the Young equation 
must hold locally. Again, the ΔF2 and ΔF3 terms will be independent of any proper-
ties of the solid surface and, therefore, can be computed from Equations 7.18 and 
7.21. The ΔF1 term, however, will be broken into two terms:
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so that

 ΔF1 = ΔF11 + ΔF12. (7.38)

It is a simple matter to demonstrate that the thermodynamic equilibrium contact 
angle is again the angle θC given by the Cassie Equation 7.5. Differentiation of ΔF as 
defined by Equation 7.7, where ΔF1 is now given by Equation 7.38, leads to
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The equilibrium condition
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= 0  (7.40)

leads immediately to the Cassie Equation 7.5.
Retaining the parameters used in Figure 7.3 (i.e., θe1 = 40°, θe2 = 30°, γlv = 50.0 

mJ/m2, and Δρ = 1000 kg/m3), and choosing a1 = a2 = 0.5, ΔF was calculated using 
Equations 7.7, 7.18, 7.21, and 7.38. The result is shown in Figure 7.4. The minimum 
occurs at the Cassie angle θC, as proven above.

From Figure 7.4, we can reach a preliminary conclusion regarding patchwise het-
erogeneous surfaces. If the three-phase line is always straight and if the average 
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fiGure 7.4 Free energy changes as a function of instantaneous contact angle on a surface 
consisting of vertical strips assuming a straight line of contact. θe1 = 40°, θe2 = 30°, γlv = 50.0 
mJ/m2, and Δρ = 1000 kg/m3. (Reprinted from Neumann, A. W. and Good, R. J., Journal of 
Colloid and Interface Science, 38, 341, 1972. With permission from Academic Press.)
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composition of the surface is constant, there will be no metastable state and hence 
no contact angle hysteresis, and the capillary rise will be exactly that corresponding 
to the Cassie angle. 

From experimental observations with real solid surfaces, we know that the three-
phase line is not always straight. The cause of contortions of the three-phase line 
may most reasonably be considered to be the need for local compliance with Young’s 
equation. The free energy arguments developed so far also make it plausible that 
contortions of the three-phase line may produce contact angle hysteresis. Let us 
envisage a patchwise heterogeneous solid surface where the two types of surface 
have equilibrium contact angles θe1 and θe2 with a certain liquid of surface tension 
γlv. Let us further consider a hypothetical configuration such that the line of contact 
is straight and the instantaneous contact angle has a value intermediate between θe1 
and θe2. If we now relax the constraint of the straightness of the line of contact, the 
system may be able to decrease its overall free energy by forming a contorted line of 
contact such that the capillary rise on θe1 patches decreases and that on θe2 increases. 
If we then apply a force to the system, which moves the contorted line of contact, 
say, upward, the portions of the line of contact on the θe2 area will not move onto 
the θe1 area since this process would increase the free energy, ΔF. Therefore, the 
externally imposed motion of the line of contact will tend to straighten out this line, 
a process that will also increase the free energy of the system. If the external force 
keeps building up, the line of contact will eventually be able to overcome the energy 
barrier connected with the crossing of the type-1 patches.

The movement of the three-phase line will thus be connected with fluctuations 
in the corrugation of the line of contact, and these fluctuations will also lead to fluc-
tuations in the free energy curve ΔF versus θ. The latter fluctuations, if sufficiently 
pronounced, will represent free energy barriers of the type shown in Figure 7.3. It 
follows that contact angle hysteresis on a patchwise heterogeneous solid surface can 
occur if the three-phase line has the ability to deviate from a straight line. Similar 
conclusions were drawn by other researchers regarding hysteresis on heterogeneous 
surfaces [20,21].

The discussion given so far shows that heterogeneity of the solid surface may give 
rise to contact angle hysteresis. On an atomic or molecular scale, most surfaces are 
heterogeneous. Although the occurrence of contact angle hysteresis is, in fact, the 
rule rather than the exception, contact angle hysteresis is not observed on certain 
well-prepared solid surfaces [22–26]. We therefore conclude that there must be a 
lower limit for the lateral dimensions of patchwise heterogeneities, above molecular 
dimensions, below which heterogeneities do not contribute to contact angle hyster-
esis. This limit has been estimated to be of order 0.1 µm [13].

7.2.4  contact anGles on homoGeneous But rouGh surFaces

The basic thermodynamic model described above has been applied to idealized 
rough surfaces [14]. Essentially, this application was made by considering, instead 
of a smooth and homogeneous vertical surface, a smooth and homogeneous inclined 
surface and changing the angle of inclination discontinuously at constant increments 
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of the ordinate z. A cut through such a surface, parallel to the x – z plane, is shown 
schematically in Figure 7.5. The first step toward the evaluation of the free energy 
ΔF for a liquid in contact with an idealized rough surface, as depicted in Figure 7.5, 
is to compute the ΔF1, ΔF2, and ΔF3 terms for a unit length of an infinitely wide 
inclined plate (Figure 7.6).

7.2.4.1  the driving force term, ΔF1

The term ΔF1 again represents the work done by the system in replacing the area Lh, 
having interfacial tension γsv, by the same area having interfacial tension γsl. The cap-
illary rise, h, is measured along the inclined solid surface, in the x – z plane. Thus, 
ΔF1 is again given by Equation 7.8 or, when inserting Young’s Equation 7.2, by

 ∆F Lh lv e1 = − γ θcos .  (7.41)

Integration of the Laplace Equation 7.1 leads again to

Level of undisturbed liquid

β2

β1

fiGure 7.5 Vertical section through the model rough surface. The angles β1 and β2 are 
chosen symmetrically about 90° so that, when we switch from the microscopic picture given 
in this Figure to the macroscopic picture, we have a flat, vertical surface. (Reprinted from 
Eick, J. D., Good, R. J., and Neumann, A. W., Journal of Colloid and Interface Science, 53, 
235, 1975. With permission from Academic Press.)
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It is to be noted that for the configuration given in Figure 7.6, the relation between 
ϕ and θ is given by

 180° = β + θ + ϕ, (7.43)

where β is the angle of inclination. From Figure 7.6, it can be seen that
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 (7.44)

so that
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Equation 7.45 reduces to Equation 7.23 for the special case of a vertical plate (i.e., 
for β = 90°).

7.2.4.2  the free energy Change of the liquid–Vapor interface, ΔF2

Going from the reference state to any other configuration, work has to be done on the 
system to expand the liquid surface; the resulting ΔF2 term consists of two parts:

 ΔF2 = ΔF21 + ΔF22. (7.46)

θ

0 β
x

φ

Inclined plate

Liquid meniscus

h z

fiGure 7.6 Capillary rise of a liquid at an inclined wall. (Reprinted from Eick, J. D., 
Good, R. J., and Neumann, A. W., Journal of Colloid and Interface Science, 53, 235, 1975. 
With permission from Academic Press.)
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The term ΔF21 is analogous to the ΔF2 term in the analysis of the homogeneous, 
smooth solid surface (see Equation 7.18):
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β θ[ cos( )].  (7.47)

The ΔF22 term arises from the fact that by going from the reference state, that is, 
the undisturbed liquid surface, to some other configuration, for example, the one 
depicted in Figure 7.6, the liquid surface area L(OX) is annihilated. We therefore 
have

 ∆F L xlv22 = − γ ,  (7.48)

where

 x OX= .  (7.49)

Since
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β
 (7.50)

it follows from Equation 7.42 that
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Since cotβ will change sign when β passes through 90°, and since ΔF22 has to 
change sign at this same point, it follows that Equation 7.51 is valid for 0 < β < 180°. 
We therefore have
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and finally
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In the special case β = 90°, Equation 7.53 reduces to Equation 7.18.
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7.2.4.3  Work done against Gravity, ΔF3

Similar to the ΔF2 term, the work done against gravity, ΔF3, also will consist of two 
parts:

 ΔF3 = ΔF31 + ΔF32. (7.54)

The first one of these terms represents the work done in lifting the liquid between X 
and ∞ and corresponds to the term given by Equation 7.21:
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For the ΔF32 term we obtain (cf. Equation 7.20)
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The relation between z and x needed to evaluate the integral in Equation 7.56 is given 
by Equation 7.50. It follows that
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For the special case β = 90°, Equation 7.54 again reduces to Equation 7.21. To check 
for the internal consistency of the model, free energy calculations ΔF versus θ were 
performed for a number of angles of tilt β. The minima of these curves did, in fact, 
in all cases occur at θ = θe; that is, the model is in agreement with Young’s equation. 
It is also apparent that Young’s equation can be derived for an inclined plate from the 
preceding analysis in a way similar to the one used to derive it for the vertical wall.

7.2.4.4  application to idealized rough surfaces
We shall now apply the analysis given above to idealized rough surfaces. As indi-
cated above, this may be accomplished by changing the angle of tilt β (Figure 7.6) 
at some specific value h = H discontinuously to some other value, and after the same 
distance H back again to the original angle of tilt. Continuing in this way, if the two 
angles of tilt are symmetrical about 90° (i.e., if β1 = 180° – β2), we generate an ide-
alized rough vertical surface, as shown in Figure 7.5. At this point, we also have to 
introduce a new contact angle concept. If H becomes very small, the optical systems 
normally employed to observe contact angle phenomena will no longer reveal that 
we are dealing with a surface having two types of area that differ from each other 
by their inclination. Operationally, we are dealing with a vertical surface on which 
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we may measure a capillary rise Z  that we may relate to a phenomenological or 
macroscopic contact angle, θM, by (cf. Equation 7.11)

 sin .θ ρ
γM

lv

gZ= −1
2

2∆
 (7.58)

It is important to note that this phenomenological contact angle is of physical sig-
nificance. Although it will, in general, not be identical with the microscopic contact 
angle θ, and therefore will not satisfy the Young Equation 7.2, it determines the shape 
of the liquid meniscus and therefore the pressure of curvature. Wetting kinetics will 
be determined entirely by this phenomenological contact angle, without regard to its 
thermodynamic status.

It will be apparent by now that the thermodynamics of contact angles on rough 
surfaces is considerably more involved than the thermodynamics of contact angles on 
heterogeneous surfaces. A substantial additional difficulty arises when we consider 
the mechanism of the capillary rise or capillary depression at a surface of the kind 
given in Figure 7.5. Assuming again that the Laplace equation is satisfied at all times, 
there will be a smooth change in the macroscopic contact angle θM, as we increase the 
capillary rise across a number of ridges. The instantaneous microscopic contact angle 
θ, however, will change discontinuously whenever the line of contact moves across 
the boundary between two strips of different inclinations. Adhering to the restrictions 
imposed by the Laplace equation, situations may arise in which the liquid meniscus 
would have to intersect the next lower ridge. Such cases are not considered here. This 
occurrence would obviously introduce conceptual and practical difficulties. In order to 
calculate, for the model surface shown in Figure 7.5, the changes in free energy ΔF as 
a function of the macroscopic contact angle θM, only the free energy terms ΔF22 and 
ΔF32 given in the analysis of the smooth inclined plate (Equations 7.52 and 7.57) have 
to be modified. The ΔF22 term will cycle between zero and some finite value that will 
be reached for the first time when h = H. The ΔF32 term comprises the work done in 
lifting the liquid elements to fill all the horizontal crevices of the model surface. The 
correctness of the procedure was checked by setting H = 100 µm, θe = 40°, γlv = 50 mJ/
m2, Δρ = 1000 kg/m3, and L = 1 cm, and letting β1 = β2 = 90°. The results were identi-
cal with those previously obtained for a smooth and homogeneous vertical plate.

Two typical examples of ΔF versus θM curves for two idealized rough surfaces are 
shown in Figures 7.7 and 7.8. The specific parameters used are the same as above 
except that β1 = 45° and β2 = 135° for both Figures, and θe = 70° for Figure 7.7, and 
θe = 40° for Figure 7.8. We note that this model rough surface produces metastable 
states, as do the horizontal strips. It is interesting to note that only the system in 
Figure 7.7 has an equilibrium contact angle θES; that is, the envelope of the curve in 
Figure 7.7 does exhibit a minimum at the Wenzel angle θW (i.e., θES = θW). However, 
in the case of θe = 40°, there is no minimum (Figure 7.8). Therefore, the most favor-
able configuration for the system in Figure 7.8 is the lowest angle that is physically 
possible (i.e., θM = 0°). The highest metastable state is at θM = 115° in Figure 7.7 and 
θM = 85° in Figure 7.8; that is, it occurs where Young’s equation is satisfied locally. 
This may be seen by noting first that, for a given geometry, there exists the following 
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purely geometric relation between the macroscopic contact angle θM and the micro-
scopic contact angle θ (cf. Figure 7.6)

 θM = θ + β – 90°. (7.59)

It should be noted that θM and θ represent any pair of instantaneous contact angles. 
The metastable state with the largest θM is reached when θ = θe, where θe designates 
a microscopic contact angle, which is identical with the equilibrium contact angle of 
the corresponding smooth solid surface. In the case of Figure 7.7, we have θe = 70°, 
and θM reaches its first metastable state at θ = θe, or, since β2 = 135°, at θM = 115°. 
The last metastable state occurs at β1 = 45° (i.e., at θM = 25°). Assuming that hyster-
esis on this model surface is only due to surface roughness, clearly θM = 115° and 
θM = 25° represent advancing and receding contact angles, respectively. In the case 
of Figure 7.8, where there is no equilibrium contact angle θES, the receding contact 
angle is equal to θM = θr = 0. Obviously, this particular idealized rough surface pre-
dicts contact angle hysteresis.

The analysis of the heterogeneous surface consisting of horizontal strips has 
shown that the advancing contact angle is equal to the equilibrium contact angle on 
low energy portions of the solid surface. This result led us to the introduction of the 
concept of the Young contact angle, θY, which, although not being the equilibrium 
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fiGure 7.7 Free energy change as a function of the macroscopic contact angle; that is, 
the contact angle between the liquid and the envelope of the model solid surface. θe = 70°; 
H = 100 µm, γlv = 50 mJ/m2, Δρ = 1000 kg/m3; L = 1 cm; β1 = 45° and β2 = 135°. (Reprinted 
from Eick, J. D., Good, R. J., and Neumann, A. W., Journal of Colloid and Interface Science, 
53, 235, 1975. With permission from Academic Press.)
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contact angle of the system, could be inserted into Young’s equation. It is apparent 
from the above results that this is not so for a model rough surface; that is,

 (θM)a ≠ θY, (7.60a)

and

 (θM)r ≠ θY. (7.60b)

In spite of representing the thermodynamic equilibrium condition, the Wenzel 
contact angle cannot easily be determined experimentally, because of the adjacent 
metastable states. Furthermore, there is no easy procedure to correlate it to measured 
(advancing or receding) contact angles. The Wenzel contact angle is also not a Young 
contact angle; that is, it may not be inserted into Young’s Equation 7.2.

Further analysis of idealized rough surfaces using other angles of tilt, other 
microscopic equilibrium contact angles θ, and other values of H is available else-
where [14].

7.2.5  FlotatIon oF cylIndrIcal PartIcles at lIquId–FluId InterFaces

The interfacial energetics and wettability of small particles are of technological inter-
est in many areas of applied science. Examples are preparation of stable suspensions 
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fiGure 7.8 Free energy change as a function of the macroscopic contact angle; that is, 
the contact angle between the liquid and the envelope of the model solid surface. θe = 40°, 
H = 100 µm, γlv = 50 mJ/m2, Δρ = 1000 kg/m3, L = 1 cm, β1 = 45° and β2 = 135°. (Reprinted 
from Eick, J. D., Good, R. J., and Neumann, A. W., Journal of Colloid and Interface Science, 
53, 235, 1975. With permission from Academic Press.)
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of particles, adhesion of particles to solid surfaces, and the dispersion of particles 
into a liquid or melt of a polymer. In this context, one of the important properties 
of particles directly related to wettability and surface free energy is floatability at 
liquid–fluid interfaces. This section will give a brief review of a free-energy analy-
sis for particles with a particular geometry; that is, cylindrical particles, floating at 
liquid–vapor interfaces [27,28].

A solid particle, under the influence of gravity, may approach an interfacial region 
between two fluids. Depending on the relative densities of the two fluids and the 
particle, the size of the particle, and the nature of the interface, either the particle 
will pass through the interface and be engulfed, or it will come to some equilibrium 
position at the interface.

If the density of the solid particle (ρ1) is intermediate in magnitude between that 
of the lower fluid (ρ2), usually a liquid, and that of the upper fluid (ρ3), usually a gas 
(but possibly another liquid), the solid particle will always take up an equilibrium 
position and float. In this instance, when ρ3 < ρ1 < ρ2, buoyancy effects are sufficient 
to ensure equilibrium at the interface. When ρ1 is greater than either of ρ2 and ρ3 (and 
still ρ2 > ρ3), buoyancy effects are not sufficient to ensure that the particle be sup-
ported at the interface. In this case, surface energies (or alternatively, surface forces) 
will begin to have an effect on the possible equilibrium position of the particle at the 
interfacial region. If the interfacial properties of the system are such that the surface 
energies contribute positively to the support of the particle, then there is a possibil-
ity that an appropriately sized particle will not pass completely through interface 23 
(between fluids 3 and 2) into fluid 2.

This section discusses the equilibrium of cylindrical particles with their long axes 
parallel to the interface. Traditionally, studies of the equilibrium position of particles 
at fluid interfaces have been undertaken by means of a force analysis that predicts 
equilibrium when the net vertical force acting on the particle at an interface is zero. 
The drawback of the force analysis is that it does not clarify the status of the contact 
angle concepts employed.

In addition, all of the analytical work so far available refers to ideal (i.e., homo-
geneous and smooth) solid surfaces. Work on contact angles on idealized heteroge-
neous and idealized rough solid surfaces is in terms of a more general free-energy 
analysis [11,13,14,29]. This body of work cannot be readily transformed into a force 
analysis. It therefore appears desirable to formulate a flotation theory for particles in 
terms of a free-energy analysis as well, in order to generate a broader basis for the 
study of the behavior of nonideal particles at fluid interfaces. In a sense, the free-
energy analysis proves to be the global description of the behavior of the system 
because it is sensitive to the possible states that the whole system may assume. Also, 
it has been shown that the free-energy analysis clarifies the status of the contact 
angle in terms of standard thermodynamic theory [13,29].

Figure 7.9 illustrates one possible configuration of a system consisting of a solid 
particle at a fluid interface. The diagram serves to define properties of the system that 
appear in the subsequent analysis. The radius of the particle is R, Z0 is the  capillary 
rise, and α is the angle from the vertical that locates the extended undeformed free 
surface on the solid surface. The angle ϕ is a position coordinate that locates the 
three-phase line on the solid surface, θ is the contact angle measured through fluid 
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2 between tangents of surfaces 12 and 23 at the three-phase line. The free-energy 
analysis shows that the contact angle, θ, equals the equilibrium contact angle, θe. The 
angle β is the parameter of the profile of the meniscus; it is the angle between the 
horizontal and the tangent of the meniscus at any point on the profile. The following 
conditions apply: angle β > 0 if measured counterclockwise and β < 0 if measured 
clockwise. At the three-phase line, β = β0 = θe + ϕ –180°.

Consider a cylindrical particle, with its long axis perpendicular to the plane of 
the paper, entirely within fluid 3 and that, under the influence of gravity, approaches 
interface 23 between fluids 2 and 3. Immediately after the particle touches the inter-
face, a meniscus is formed to the surface of the particle and, as a consequence, the 
free energy of the system changes. Figure 7.9 illustrates a general stationary state 
assumed by the particle after such a process.

The reference state of the system will be chosen as that stationary state of the sys-
tem when the bottom of the cylinder just touches the undeformed interface 23. Since 
it is desired to study the free energy as a function of the position coordinate, ϕ, which 
locates the three-phase line at the surface of the particle, the particle is allowed, in 
successive mechanically enforced stationary states, to penetrate the interface by spe-
cific increments of the angle α (locating the extended line of the free surface at the 
solid) such that ϕ changes in increments of 1°, and is allowed to achieve static condi-
tions characterized by the cessation of capillary action. With reference to the case 
of the fixed cylindrical shell at a fluid interface, it has been shown that the capillary 
action will cease under these circumstances only when the instantaneous contact 
angle, θ, equals the thermodynamic equilibrium contact angle, θe [27]. This estab-
lishes the validity of the Young equation at the three-phase line for any mechanically 
enforced stationary state after transitory phenomena have stopped.

Of the full range of such conceptual mechanically enforced stationary states, there 
will be, at most, one for which the free energy of the system is a local minimum; 
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fiGure 7.9 Stationary state of a small solid particle at a fluid interface. (Reprinted from 
Rapacchietta, A. V., Neumann, A. W., and Omenyi, S. N., Journal of Colloid and Interface 
Science, 59, 541, 1977. With permission from Academic Press.)
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there will be none when it is impossible for the particle to stabilize at the interface. 
Such a state of minimum free energy corresponds to the thermodynamic and physi-
cal equilibrium state of the system. No conceptual or mechanical devices have to be 
employed to maintain the system in this state.

The total free energy change for the system undergoing a process that takes it 
from the reference state to some stationary state may be expressed as the sum of four 
distinct parts as follows.

7.2.5.1  the driving potential, ΔFl

The driving potential, ΔFl, represents the work done by the system in replacing the 
area ABC (Figure 7.9) having interfacial free energy γ12. The dimensionless form of 
this driving potential is given by

 ∆F e1 2= − φ θcos .  (7.61)

7.2.5.2  Work to alter interface 23, ΔF2

Work has to be done on the system to alter interfacial area 23 as the system goes from 
the reference state to some other configuration. The change in free energy associated 
with this amount of work is ΔF2. For reasons that will become immediately apparent, 
it is convenient to consider this change in the free energy as made up of two parts; 
that is,

 ΔF2 = ΔF21 + ΔF22, (7.62)

where, in dimensionless form,
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where

 C R g= −2
2 3 23( ) .ρ ρ γ/  (7.64)

When the liquid-vapor interface is altered to form a meniscus, its area changes; 
the change in free energy associated with this change in area is ΔF21. During the 
deformation of interface 23, the geometry of the cylindrical particle will neces-
sitate, simultaneously with and independently of establishing the meniscus, the 
liquid–vapor interface contract or expand horizontally to retain contact with the 
solid surface. The term ΔF22 represents the change in free energy associated with 
this phenomenon.
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7.2.5.3  Work done against Gravity (on the liquid), ΔF3

Work must be performed either to depress or to raise the volume of fluid bounded by 
the meniscus, the extended line of the undeformed free surface, and the solid surface 
of the particle. This work is given by

 ΔF3 = ΔF31 + ΔF32, (7.65)

where ΔF31 is the work required to displace the fluid bounded by the meniscus, the 
undeformed free surface level, and the vertical plane through the three-phase line. 
In dimensionless form, it is

 ∆F
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1 22
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The term ΔF32 is the amount of work required to displace the volume of fluid 
bounded by the undeformed free surface level, the solid surface, and the vertical 
plane through the three-phase line; ΔF32 is negative or positive depending on the 
particular configuration. In dimensionless form
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This expression is dependent solely on the geometry of the particle.
When the top surface of the particle is below the level of the undeformed free 

surface, the latter expression does not apply because the extraneous volume of fluid 
cannot be bounded in the manner described. In this case, the appropriate, dimen-
sionless expression is
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where CG2 is the centroid distance of volume ADC (Figure 7.9) from its flat 
base [28].

7.2.5.4  Work done against Gravity (on the particle), ΔF4

The work done against gravity, in dimensionless form, to displace the cylindrical 
particle vertically from the reference state to a stationary state is

 ∆F
CG

R
DC C

CG

R4

1 2= −





− − + 





( )( sin cos )α α α  − + −DC DC( sin cos ) ,π α α α π

  (7.68)
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where CG1 is the centroid distance of volume ABC (Figure 7.9) from its flat side 
[27], and

 D = − −( ) ( ).ρ ρ ρ ρ1 3 2 3/  (7.69)

The angle α must be used in these terms because the only changes in position of the 
particle giving rise to work against gravity are those with respect to the undeformed 
free surface.

When the entire particle is below the level of the undeformed free surface, 
Equation 7.68 does not apply. In a new and approximate form, ΔF4 is

 ∆F DC C Z R DC4 0= − × − −{ }π φ( ) [cos ( )] ,/  (7.70)

which is applicable when Z0 < 0 and ⎮Z0⎮ > r(1 + cosϕ).
The total free-energy expression is then given by

 ΔF = ΔF1 + ΔF2 + ΔF3 + ΔF4, (7.71)

where each term has been properly defined. The expression has been nondimension-
alized with division by LRγ23, where L is the length of the cylinder.

Figure 7.10 is an illustration of the free-energy diagrams of several systems, plot-
ted against ϕ with the equilibrium contact angle, θe, of each system. The curves in 
Figure 7.10 begin at successively higher values of ϕ as the parameter θe decreases 
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fiGure 7.10 Free-energy diagrams for a cylindrical particle at fluid interfaces with C = 2.8 
and D = 1.25. The ordinate is the ratio of the free energy of the system and the energy factor 
LRγ23. (Reprinted from Rapacchietta, A. V., Neumann, A. W., and Omenyi, S. N., Journal of 
Colloid and Interface Science, 59, 541, 1977. With permission from Academic Press.)
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for the following reasons. Recall that the reference state of the system is the one in 
which the bottom of the particle just touches interface 23 while still immersed in 
fluid 3. Immediately after contact, a meniscus takes shape until a stationary state is 
achieved (with the bottom of the particle still level with the undeformed free surface) 
having θ = θe. The value of ϕ compatible with this stationary state is determined by 
the surface properties of the system. It is, in general, greater than zero, so that any 
stationary state with a value of ϕ less than this first value is impossible.

Figure 7.10 indicates that the more complete the wetting, the larger the first 
permissible value of ϕ. For θe = 180°, when there is no wetting, the first value of ϕ 
is 0°; for θe = 0°, when there is complete wetting, the first value of ϕ is about 80°. 
In any case, intermediate values of ϕ between zero and the first realizable value 
would be possible only if necking were permitted, a state of the system in which 
a particle elevated off the undeformed free surface level is connected to fluid 2 by 
means of a raised column of the fluid. These states, however, violate the model 
of the system based, in part, on the assumption that the particle can have only a  
downward motion as it seeks equilibrium; such states would imply that the particle 
first makes contact with interface 23 and then travels upward against the influ-
ence of gravity. An occurrence of this sort would require that the free energy of 
the system increase, violating the condition that the system is free only to achieve 
states with lower free energies. For these reasons, the stationary states that involve 
necking are ignored.

For systems with D > 1 (that is, when ρ1 > ρ2 > ρ3) and with constant material 
properties, the size, R, of a cylindrical particle at a fluid interface could become 
so large that equilibrium at the interface would be impossible for any value of ϕ. 
It is evident that there exists some limiting value of R, above which stability at an 
interface is impossible. This limiting size is called the critical radius and is directly 
dependent on the character of the rest of the system, as determined by (ρ2 – ρ3)g/γ23, 
(ρ1 – ρ2)/(ρ2 – ρ3), and θe. The critical radius is of practical importance in problems of 
flotation and engulfment, and in separation techniques. The correlation between the 
critical radius and other parameters of the system will be addressed below.

The free-energy analysis of cylindrical particles at fluid interfaces may be modi-
fied to produce the results appearing in Figures 7.11 and 7.12. Since equilibrium 
states are identified as the minima of ΔF versus ϕ curves, to develop a relation from 
the free-energy analysis that applies only to equilibrium states, it is necessary only 
to form the first derivative of the free energy with respect to ϕ and to set the result 
equal to zero.

Figure 7.11 represents five systems that have different values of D but the same 
contact angle (θe = 180°). The maxima of these curves correspond to equilibrium 
states in which R is the largest possible value that may be tolerated without the cylin-
drical particle passing through interface 23. All points on the plots to the left of the 
maxima are stable equilibrium states (since R is always less than critical size).

Figure 7.11 reveals that the critical size of the cylindrical particle decreases as 
the value of D increases. This is expected because a denser particle (with larger D) 
will be under the influence of a proportionally larger sinking force than less dense 
particles. If the surface properties (which provide support for the particle at the inter-
face) of the system remain constant, it is evident that particles of smaller critical sizes 
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will be supported at the interface as D increases. Figure 7.11 also indicates that the 
critical position of equilibrium (the value of ϕ when R is the critical size) occurs for 
smaller values of ϕ as D increases. Thus, as D increases there is a smaller number of 
stable equilibrium states available for systems with differently sized particles. The 
limit would be a point particle of infinite density at a fluid interface; such a particle 
could not achieve a stable equilibrium position at the interface.

The perspective of the analysis may be modified slightly so that systems with the 
same value of D may be investigated by plotting C versus ϕ with θe as the parameter. 
Figure 7.12 reveals that the critical radius, once again represented by C with constant 
(ρ2 – ρ3)g/γ23, decreases with decreasing value of the equilibrium contact angle. For 
complete wetting (i.e., when θe = 0°), no supportive surface tension force exists and 
so any particle in a system with D > 1 will sink. Figure 7.12 also shows that the criti-
cal equilibrium state occurs later; that is, for larger values of ϕ, as θe decreases. This 
is so because more of the particle needs to be submerged so that the other supportive 
force, buoyancy, will be proportionally larger than the decreasing surface tension.

A similar analysis was conducted for spherical particles. Assuming that Figure 7.9 
represents a spherical particle, the total free energy change of the system was derived 
similarly to that of cylindrical particles. It is noted that unlike the analysis of cylin-
drical particles that is performed analytically, solving the resulting equations for 
spherical particles involves numerical methods [28]. The free energy change, ΔF, 
was plotted as a function of ϕ for fluid systems of specified properties with different 
θe values. The critical radius of spherical particles, that is, the largest radius that can 
be supported at the interface, was inferred from the maxima of these curves. Similar 
to the case of cylindrical particles, the critical radius of spherical particles at a fluid 
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fiGure 7.11 Equilibrium states of variable-sized cylindrical particles at fluid interfaces 
with θe = 180°. (Reprinted from Rapacchietta, A. V., Neumann, A. W., and Omenyi, S. N., 
Journal of Colloid and Interface Science, 59, 541, 1977. With permission from Academic 
Press.)
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interface decreases as θe decreases, and the critical equilibrium state occurs at larger 
values of ϕ. A key finding was that for very large contact angles (>135°), a fluid 
 system can support a sphere of larger radius than a cylinder. For contact angles less 
than 90°, the opposite is true. Details are available elsewhere [28].

7.2.6  contact anGle Phenomena In the Presence oF a thIn lIquId FIlm 

It should be realized that the Young equation in the form of Equation 7.2 is not a 
 universal formulation in all situations. As an illustration, it will be shown in this 
section that the equilibrium condition for the three-phase contact line will be quite 
different from Equation 7.2 in the presence of a thin liquid film.

It is well known that the adsorption of the liquid on the surface of a solid sub-
strate may affect the magnitude of the contact angle. Generally, there are two ways to 
consider adsorption on a solid surface: one is the classical surface thermodynamics 
approach established by Gibbs [1], which takes adsorption into account by consider-
ing a solid–vapor interface with a surface tension γsv, rather than a pure solid–vacuum 
interface with a surface tension γs. The difference between γs and γsv is defined as the 
equilibrium spreading pressure

 π γ γ= −s sv .  (7.72)

A second way to consider the adsorption of the liquid component on solid surfaces 
is given in the theory of thin liquid films [30–41]. When the adsorbate on the sur-
face of a solid substrate forms a thin film with a thickness ranging from 10 to a few 
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fiGure 7.12 Equilibrium states of variable-sized cylindrical particles at fluid interfaces 
with D = 2.0. (Reprinted from Rapacchietta, A. V., Neumann, A. W., and Omenyi, S. N., 
Journal of Colloid and Interface Science, 59, 541, 1977. With permission from Academic 
Press.)
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hundred Angstroms, the above interface model may become untenable, and a liquid 
film can probably no longer be modeled as a single, two-dimensional interface. The 
thickness of the thin film may be much greater than the thickness of a heterogeneous 
interfacial region between two uniform bulk phases, which is usually not more than 
a few molecular diameters. Although such a film is relatively thick, the long-range 
intermolecular interactions of the two heterogeneous boundary regions of the thin 
film overlap, causing the adsorbate inside this film to have different properties from 
those of the bulk phase and those of an interface.

Thin liquid films have been studied extensively; the modern theory of thin liq-
uid films has been developed by Derjaguin, Churaev, and many other researchers 
[30–41]. An excellent summary can be found in Derjaguin, Churaev, and Muller’s 
monograph Surface Forces [40]. To account for the intermolecular forces in a thin 
liquid film, Derjaguin introduced “disjoining pressure” as a distinctive property of 
the thin liquid film. In addition to the microscopic approach to thin liquid films, 
there have also been several thermodynamic descriptions [35,42–51].

For a system consisting of a liquid–vapor meniscus in equilibrium with a thin 
liquid film on a solid surface, an immediate concern is the effect of the presence of 
the thin liquid film on the basic thermodynamic relations, such as the Young equa-
tion. This section will present a model for a thin liquid film/contact angle system [48] 
and then focus only on the effects of the thin liquid film on some of the fundamental 
aspects of contact angle phenomena.

7.2.6.1  thermodynamic model
Consider a sessile drop of liquid resting on an ideal solid substrate, in equilibrium 
with the vapor of the liquid and a thin film, as illustrated in Figure 7.13. The solid 
surface is assumed to be isotropic, homogeneous, smooth, rigid, and insoluble in the 
liquid.

Physically, between the flat film and the free liquid–vapor meniscus, there is a 
transition zone. For the sake of simplicity, such a small transition zone will not be 
considered in the present model. In other words, only a flat film intersecting with 
a liquid–vapor meniscus governed by the Laplace equation will be considered, as 
shown in Figure 7.13. Since the thermodynamic fundamental equations for all the 
bulk phases and the liquid–vapor and the solid-liquid interface phases are well known 
from Chapters 1 and 2, attention will be focused only on the thin liquid film.

In this model, the film will be considered to be a simple thermodynamic phase, 
as are all the other phases in the system. That is, all the phases are assumed to be 
homogeneous and not subject to any chemical reactions or interactions with external 
fields. Since the main difference in the physical nature of a thin film and that of an 
interface separating two bulk phases stems from the overlap of long-range intermo-
lecular interactions of the two interfacial regions of a thin liquid film, the thickness 
of the film is a characteristic parameter; hence, the thin liquid film will be considered 
as a three dimensional phase. Within Gibbsian thermodynamics, a simple thermody-
namic system can be characterized by three types of fundamental variables: a ther-
mal variable, geometric variables, and chemical variables. Generally, the thermal 
variable is the entropy of the system; the chemical variables are the mole numbers 
of the independent chemical components in the system; and the geometric variables 



Thermodynamic Status of Contact Angles 361

must be the appropriate mechanical work coordinates: for instance, volume, for a 
bulk phase, or surface area, for a moderately curved interface phase. As mentioned 
above, the distinct physical properties of a thin liquid film result from the overlap of 
the long-range intermolecular interactions of the two boundary regions of the film. 
The film thickness, thus, is critical to the physical properties and the energy of a thin 
liquid film phase. The film thickness, h, must be considered as a geometric variable, 
in addition to the film area, Af. Therefore, the energy form of the fundamental equa-
tion for a thin liquid film can be written as

 Uf = Uf(Sf, Af, h, Nlf, ..., Nrf), (7.73)

where Uf is the internal energy of a simple, uniform, thin liquid film phase, Sf is the 
entropy of the simple, uniform, thin liquid film phase, Af is the film area, h is the film 
thickness, and Nif is the mole number of the ith independent chemical component in 
this thin film.

The differential form of the fundamental equation for such a film is
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where the intensive variables are defined by
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fiGure 7.13 A sessile drop in equilibrium with a thin liquid film. The transition zone 
between the flat film and the liquid–vapor interface is neglected. (Reprinted from Li, D. and 
Neumann, A. W., Advances in Colloid and Interface Science, 36, 125, 1991. With permission 
from Elsevier.)
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(chemical pottential).  (7.75d)

From the perspective of the classical Gibbsian interface model, the film tension, 
γf, and the disjoining pressure, Π, are novel quantities. The microscopic origin of the 
film tension and the disjoining pressure basically includes the contributions of all 
intermolecular forces—resulting from the thermal motion, hydrogen bonds, Born 
repulsion forces, van der Waals forces, electrostatic forces, and so forth [30–41]. 
However, only the macroscopic aspects of these two quantities will be discussed here. 
In addition, as implied by this simple thermodynamic model, the effects of electro-
static forces are not considered (see Section 7.7). Generally the film tension, γf, will 
depend on the molecular nature of both the liquid and the solid, and will be different 
from both the liquid–vapor interfacial tension, γlv, and the solid–liquid interfacial 
tension, γsl, since the intermolecular interactions from the two “interfacial” regions 
(film-vapor and solid-film) are overlapping. The disjoining pressure, Π, is the force 
required to separate a unit area of the two “interfaces” of the film. In other words, in 
order to compress the film thickness by dh, an amount of work, dW = AfΠdh, must 
be done on the film. There may be a difference between the definition of the disjoin-
ing pressure given by Equation 7.75c and that given by Derjaguin et al. [40]. Further 
discussion of this matter, however, is beyond the scope of this chapter.

By the Euler theorem, the integral form of the fundamental equation is
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The corresponding Gibbs-Duhem relation for the thin liquid film is
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or, dividing the above equation by the film area, Af
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From Equation 7.78, one can readily see that
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That is, the film tension always increases as the disjoining pressure increases. The 
grand canonical free energy of the thin film can be defined as follows:
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It is noted that strictly speaking, it is always the grand canonical potential that should 
be discussed in the analysis of surface thermodynamic systems, but it is customary to 
just speak about “the free energy ΔF” such as in earlier sections of this chapter.

7.2.6.2  mechanical equilibrium Conditions
For the system illustrated in Figure 7.13, it can be proven that the thermal and chemi-
cal equilibrium conditions are the same as those in the absence of a liquid film; that 
is, the temperature, T, and the chemical potentials, µi (i = 1, 2, . . . , r), are constant 
through all phases in the system. However, the mechanical equilibrium conditions 
are different and are of more interest here. They can be derived by minimizing the 
total grand canonical free energy of the system while the intensive parameters, T and 
µi, in the grand canonical free energy, are held constant.

The total grand canonical free energy can be written as

 Ω = Ωl + Ωv + Ωs + Ωlv + Ωsl + Ωf

 = − − − + + +∫ ∫ ∫ ∫PdV P dV P dV dA dA dl l v v s s lv lv sl sl fγ γ γ AA hdAf f∫∫ ∫− Π ,  (7.81)

where the subscripts l, v, s, lv, sl, and f denote the liquid phase, the vapor phase, the 
solid phase, the liquid–vapor interface phase, the solid–liquid interface phase, and 
the thin film phase, respectively.

The equilibrium condition is that the variation of the total grand canonical free 
energy is zero; that is,

 δΩ = 0. (7.82)
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In the above, the symbol δ refers to a variation of the system in the sense of a virtual 
work variation; the symbol d refers to an element or differential of a quantity. In this 
model, the solid substrate is considered as an ideal, rigid solid phase and hence its 
volume and pressure are constant (i.e., independent of the interaction with a liquid 
drop). Therefore, combining Equation 7.81 with Equation 7.82 will give
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A virtual variation of the system is illustrated in Figure 7.14. The virtual variation 
terms in Equation 7.83 can then be obtained as follows.

The variation of the volume of the liquid drop consists of two parts: one due to the 
variation of the liquid–vapor interface position, the other due to the variation of the 
position of the three-phase (liquid drop/vapor/thin film) intersection; therefore,

 δ δ δPdV P N dA Ph TdLl l
V

l lv lv
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l
Ll lv

∫ ∫ ∫= + .  (7.84)

The variation of the volume of the vapor phase also consists of two parts: one due 
to the variation of the liquid–vapor interface position, the other due to the variations 
of the film thickness. Therefore,

 δ δ δP dV P N dA P A hv v
V

v lv lv
A

v f
v lv

∫ ∫= − − .  (7.85)

The variation of the liquid–vapor interface area also has two parts: one due to the 
variation of the position of the three-phase intersection, the other due to the variation 
of curvature, or the shape, of the liquid–vapor interface [51]. Hence,
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Solid
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fiGure 7.14 An illustration of a virtual variation from an equilibrium state. (Reprinted 
from Li, D. and Neumann, A. W., Advances in Colloid and Interface Science, 36, 125, 1991. 
With permission from Elsevier.)
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The variations of the solid–liquid interface area and the film area are due to the 
variation of the three-phase intersection, but they are in opposite directions, so that
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Realizing that hdAf = dVf, one can express the variation of the film volume by two 
terms: one due to the variation of the film thickness, the other due to the variation of 
the position of the three-phase intersection. Therefore,

 δ δ δΠ Π ΠhdA A h h TdLf f
LASL

= − ∫∫ .  (7.88)

In Equations 7.84 through 7.88, δNlv is the normal component of motion of the 
element of the liquid–vapor interface into the vapor, dL is the element length of the 
three-phase (liquid drop/vapor/thin film) intersection, δT is the virtual motion of this 
line normal to dL along the solid and in a direction that increases with Asl, θ is the 
contact angle, and R1 and R2 are the principal radii of curvature of dAlv.

Substituting Equations 7.84 through 7.88 into Equation 7.83 and collecting simi-
lar terms yields
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Since the variations are arbitrary, it is necessary and sufficient that each integrand in 
the first two terms and the coefficient of the last term in Equation 7.89 be zero. This 
gives the following three equations:
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R Rl v lv− = +





γ 1 1

1 2

 (7.90)

 Π = Pv  (7.91)

 γ θ γ γlv l f slP hcos ( ) .= − + −Π  (7.92)
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Equation 7.90 is the well-known Laplace equation of capillarity, governing the 
 liquid–vapor meniscus. Equation 7.91 is the mechanical equilibrium condition 
between the flat film and the bulk vapor phase. It clearly states that the disjoining 
pressure in the flat thin film must balance the external compressive force exerted by 
the vapor. It should also be noted that, as indicated by Equation 7.92, the disjoin-
ing pressure, Π, is a positive quantity just like the vapor pressure, Pv, for such a 
simple system (i.e., without considering, say, electrical effects). Equation 7.92 is the 
mechanical equilibrium condition at the intersection of the solid–liquid interface, 
liquid–vapor interface, and the thin liquid film. Although Equation 7.92 is similar 
to the classical Young equation (Equation 7.2), here γsv is replaced by (Pl – Π)h + γf. 
Equation 7.92 accounts for the effects of a thin liquid film on the equilibrium contact 
angle in terms of the disjoining pressure, Π, the film thickness, h, and the film ten-
sion, γf. It should be noted that γf, intrinsically, is also a function of h. When h → 0, 
that is, the thin liquid film vanishes from the solid surface, the first term, (Pl  – Π)h, 
will drop off Equation 7.92 and the second term, γf, can be expected to revert to the 
solid surface tension, γs. That is, Equation 7.92 becomes the Young equation for the 
case of no adsorption on the solid surface.

It should be noted that there is generally a transition zone between the free liquid–
vapor meniscus and the flat thin liquid film that was not considered in the above 
model. A thermodynamic model has been developed to address this issue and details 
can be found elsewhere [52,53].

7.3  COntaCt anGle hysteresis phenOmena: 
OVerVieW and Current VieW

The central relation used for the interpretation of contact angles is the Young 
 equation. For a given solid–liquid–vapor system, Young’s equation implies a unique 
contact angle. In practice, however, the contact angle of a liquid drop advancing on a 
solid surface (θa) is usually different from that obtained when it is receding (θr) and 
the difference represents the contact angle hysteresis (θhyst). Because of the existence 
of hysteresis, the interpretation of contact angles in the context of Young’s equation 
is contentious. Numerous studies have been conducted in the past several decades to 
understand contact angle hysteresis; nonetheless, the underlying causes and origins 
of this phenomenon are not completely understood.

Earlier studies of contact angles attributed the discrepancy between theory and 
practice to imperfections of solid surfaces due to surface roughness and surface het-
erogeneity. Wenzel was the first to recognize that Young’s equation might not be 
a universal equilibrium condition and the contact angle measured on a rough sur-
face could not be used as the Young contact angle [4]. The same type of reasoning 
was applied to heterogeneous and porous surfaces by Cassie and Baxter [6–8]. They 
argued that a heterogeneous solid surface consists of domains of different solid sur-
face tensions. Therefore, the contact angle on a heterogeneous surface should not be 
the same as the Young contact angle.

In 1946, Derjaguin introduced the concept of metastable states in conjunction 
with heterogeneous surfaces [54]. Further developments of this important concept by 
Johnson and Dettre (concentric ring model) [11,12] and Neumann and Good (vertical 
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plate model) [13] have provided a framework for the understanding of contact angle 
hysteresis. This notion was pursued further by Marmur [55], Joanny and de Gennes 
[56], and Chen et al. [57]. The presence of metastable states yields more than one 
mechanically stable contact angle and, therefore, contact angle hysteresis.

In 1948, Shuttleworth and Bailey explained how roughness might produce con-
tact angle hysteresis [58]. Bartell and Shepard examined the effect of roughness on 
contact angle hysteresis in 1953 [59]. Johnson and Dettre were the first to illustrate 
the relation of contact angle hysteresis, heterogeneity, and roughness with quanti-
tative experimental results [11,12,60]. In 1985, Schwartz and Garoff examined the 
effects of a particular geometry of surface heterogeneity on contact angle behavior 
[61]. They found that contact angle hysteresis is strongly dependent on the patch 
structure, not just chemical heterogeneity. From their calculations, it was suggested 
that contact angle hysteresis on heterogeneous surfaces might vanish for patch sizes 
of the order of micrometers. Nevertheless, a study by McCarthy and coworkers in 
1999 suggested that roughness on a molecular scale may also cause hysteresis [62]. 
Overall, these studies provide ample evidence that roughness and heterogeneity of 
solid surfaces can indeed cause contact angle hysteresis, as shown earlier in this 
chapter too.

Progress made in the past several years in the area of characterization of solid 
surfaces using spectroscopy and microscopy techniques has allowed analysis of sur-
face topography and constituent moieties at the surfaces of solids and tuning them in 
order to prepare high quality smooth and homogeneous surfaces. It has been exten-
sively reported that even on molecularly smooth surfaces, contact angle hysteresis 
does not vanish [22,26,63,64]. It is interesting to note that, for example, two solid 
surfaces that are prepared using two Teflon-type fluoropolymers, both homogeneous 
and with a mean surface roughness below one nanometer, exhibit considerably dif-
ferent hysteresis when exposed to a given liquid; that is, a few degrees on one surface 
but several times larger on the other [22]. Such evidence suggests that surface rough-
ness and heterogeneity are not the only contributors to hysteresis and that there must 
be additional causes. Many studies have been conducted in recent years to resolve 
the complexities of the hysteresis phenomenon. It is the purpose of this section to 
report recent advances in understanding of contact angle hysteresis.

7.3.1  InterPretatIon oF tIme-dePendent recedInG anGles

One of the earliest studies that discussed hysteresis more in the sense of a true hyster-
esis and not in terms of metastable states is that of Sedev et al. [65,66]. Two key find-
ings of this work are as follows: (i) Contact angle measurements with three n-alkanes 
(n-octane, n-dodecane, n-hexadecane) on well-prepared FC-722 fluoropolymer sur-
faces showed that the receding angles decrease monotonically with the time of con-
tact between solid and liquid. As a result, contact angle hysteresis increased with the 
contact time. (ii) Contact angle hysteresis was found to be related to the chain length 
of n-alkane molecules such that liquids with shorter molecular chains yielded larger 
contact angle hysteresis. These preliminary findings suggested that the polymer 
surface is modified over time due to contact with the liquid, giving rise to contact 
angle hysteresis. To understand the underlying mechanisms, Lam et al. performed a 
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systematic study of the contact angles of a homologous series of n-alkanes (n-hexane 
to n-hexadecane) and 1-alcohols (1-ethanol to 1-undecanol) on films of FC-732 fluo-
ropoymer [26,63]. It is noted that FC-732 contains the same film-forming chemical 
as the FC-722 fluorocarbon, but is provided in perfluorobutyl methylether rather than 
1,1,2,-trichloro-1,2,2,-tri-fluoroethane (FC-722). The solid surfaces were prepared by 
a dip-coating technique (cf. Chapter 6). Atomic force microscopy (AFM) analysis 
showed that the rms mean roughness of the FC-732 surfaces is about 0.4 nm and 
that the films are quite homogeneous. The experiments were performed at low rates 
of advancing of the three-phase line using a motor-driven syringe mechanism, as 
described in Chapter 6. To ensure reproducibility, the measurements were repeated 
at least five times for each liquid. The contact angles of n-alkanes are plotted on the 
same time scale and are shown in Figure 7.15.

For the sake of discussion, the graphs were divided into three domains. The 
first domain (I) ranges from the beginning of the experiment to time t0 when the 
motor was switched to the reverse mode and the liquid started to flow back into the 
syringe. Up to t0, advancing contact angles are measured. Since the contact angles 
were constant upon advancing of the three-phase line, they were averaged to yield a 
mean advancing contact angle ( θa ) for each n-alkane, as given in Figure 7.15. The 
second domain (II) ranges from time t0 to time tr = 0, starting upon reversal of the 
motor. This second domain is characterized by a rapid decrease in the contact angles 
from advancing to receding with the three-phase line remaining stationary. This 
pattern continues until tr = 0 at which the periphery starts to recede—the beginning 
of the third domain. The third domain (III) ranges from time tr = 0 to the end of the 
 experiment. Receding contact angles are measured during this third period. Unlike 
the advancing contact angles, the receding angles of all n-alkanes change with time. 
These results are consistent with the earlier findings of Sedev et al. [65,66]. From 
the contact angle graphs of Figure 7.15, it is conceivable that there are two contrib-
uting mechanisms to hysteresis: (i) A fast process that takes place in the second 
domain and brings about a fast decrease in the contact angles with time. The short 
time frame of this domain implies that the operative mechanism involves a surface 
effect. Retention of liquid molecules on the solid surface (surface retention) is the 
most likely explanation. (ii) A slow process that is operative in the third domain 
and causes the receding angles to decrease slowly but continuously with time. This 
process must involve a bulk effect. Penetration of liquid into the bulk of the polymer 
film is the most likely cause. The following detailed consideration of the receding 
angles supports this view.

Since the receding contact angles decrease with time, mean receding angles 
cannot be obtained. Unfortunately, it is conceptually impossible to measure a 
receding contact angle on a dry solid surface. Therefore, it was proposed to 
extrapolate the continuously decreasing receding angles of n-alkanes back to 
time t0, when the motor was reversed [63]. The result is shown in Figure 7.15. 
One might expect that the extrapolation of the receding contact angles back to 
zero contact time t0 should lead to the advancing contact angle. The fact that this 
is not so indicates that there is indeed more than one mechanism of solid–liquid 
interaction, and a very fast one would obviously not be detected by extrapolation 
of a slower one back to time zero (t0). It is noted that contact angle experiments 
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with 1-alcohols on FC-732 surfaces yielded results similar to those of n-alkanes 
and are not presented here [63].

To demonstrate the influence of these two processes on contact angle hysteresis, 
contact angles of n-alkanes were studied on the films of four other fluoropolymers 
with known properties as follows:

 i. Poly(4,5-difluoro-2,2-bis(trifluoromethyl)-1,3-dioxole-co-tetrafluoro-
ethylene), 65 mole% dioxole (Teflon AF 1600). This polymer has a glass 
transition temperature (Tg) of 160ºC [67].

 ii. Poly(2,2,3,3,4,4,4-heptafluorobutyl methacrylate) (EGC-1700) is a fluori-
nated acrylate polymer [68] with Tg = 30ºC.

 iii. Poly(ethene-alt-N-(4-(perfluoroheptylcarbonyl)aminobutyl)maleimide) 
(ETMF) is a maleimide copolymer possessing a long fluorinated side chain 
[69], with Tg = 100ºC.

 iv. Poly(octadecene-alt-N-(4-(perfluoroheptylcarbonyl)aminobutyl)malei-
mide) (ODMF) is a maleimide copolymer similar to ETMF but possesses 
an additional n-hexadecyl side chain [69]. The Tg of ODMF is 65ºC.

The repeat unit of each polymer is shown in Figure 7.16. From the study of advanc-
ing contact angles with these polymers it was known that they behave very differently 
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fiGure 7.16 Repeat unit of: (a) Poly(4,5-difluoro-2,2-bis(trifluoromethyl)-1,3-dioxole-co-
tetrafluoroethylene), 65 mole% dioxole (Teflon AF 1600), (b) Poly(2,2,3,3,4,4,4-heptafluorobutyl 
methacrylate) (EGC-1700), (c) Poly(ethene-alt-N-(4-(perfluoroheptylcarbonyl)aminobutyl)
malei mide) (ETMF), (d) Poly(octadecene-alt-N-(4-(perfluoroheptylcarbonyl)aminobutyl)
maleimide) (ODMF). (Reprinted from Tavana, H., Jehnichen, D., Grundke, K., Hair, M. L., 
and Neumann, A. W., Advances in Colloid and Interface Science, 134–135, 236, 2007. With 
permission from Elsevier.)
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when exposed to one and the same probe liquid [17,70], due to the  differences in the 
structural properties of these fluoropolymers (see Chapter 8).

Advancing contact angles of n-alkanes on the surfaces of Teflon AF 1600, 
EGC-1700, ETMF, and ODMF were constant over time and an average value was 
obtained for each liquid on a given solid surface (see Table 7.1). But similar to the 
findings of previous studies [26,63–66], the receding angles of n-alkanes depended 
on the contact time between solid and liquid; that is, they decreased continuously 
with the time of contact. As an example, the contact angles of n-undecane on the 
films of four polymers are illustrated in Figure 7.17. The time-dependence of the 
receding angles varies from polymer to polymer. To quantify this effect, the reced-
ing angles were extrapolated to time t0 and the slope of the regression line of 
the receding angles on each polymer was calculated (Δθr/Δt). As seen, Δθr/Δt is 
significantly different from one fluoropolymer to another, translating into various 
degrees of contact angle hysteresis (see Table 7.1; note: the contact angle hysteresis 
for each solid–liquid system was determined as the difference between the advanc-
ing and the extrapolated receding angles). Overall, the contact angle hysteresis of 
n-alkanes on Teflon AF 1600 and EGC-1700 films is significantly larger than that 
on ODMF and particularly ETMF surfaces. Considering that all solid surfaces are 
well-prepared and smooth, the difference in the receding angle patterns and the 
hysteresis results must be caused by different structural properties of the polymers, 
as discussed below.

Teflon AF 1600 is an amorphous polymer and comprises randomly distributed 
molecular chains that do not pack into ordered crystals [67,71,72]. To demonstrate 
this point, the x-ray diffraction pattern of a Teflon AF 1600 film was examined using 
wide angle x-ray scattering (WAXS) that is often used to determine polymer crystal-
linity and arrangement of polymer chains through Bragg’s law:

 n dλ θ= 2 sin ,  (7.93)

where n is a positive integer, λ is the x-ray wavelength, d represents net plane 
 distances of the crystalline structure, and θ is the angle of the incident x-ray beam 
with respect to the vertical. The WAXS pattern of the Teflon AF 1600 showed 
only a broad maximum at 2θ = 10° rather than a sharp intensity peak, suggesting 
lack of any crystalline structure. Teflon AF 1600 is optically transparent [i.e., 
contains no crystallites to scatter light and, hence, the refractive index is very 
low (1.31)] [73,74]; and it contains large fractional free volumes [67,75] and is 
highly permeable to gases and vapors [72,76–78], facts that also support the lack 
of crystallinity. EGC-1700 is also an amorphous fluoropolymer and is expected 
to present a WAXS pattern somewhat similar to that of Teflon AF 1600; that is, 
without any sharp peak. 

Unlike Teflon and EGC-1700, the H-bonding interactions within the perfluori-
nated amide groups of the ETMF polymer support formation of a layered structure 
in the bulk and in the top layer of the surface [69]. The WAXS pattern of an annealed 
ETMF film displayed a sharp peak at the low angle 2θ = 2.62° and less intense peaks 
at higher angles. The presence of this sharp peak indicates that the polymer chains 
are well-ordered and form a layered structure with distances of ~3.34 nm between 
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the main chains. This organization of ETMF chains was also confirmed by molecu-
lar modeling [69].

ODMF has a main chain structure similar to that of ETMF with a 4-N-
(perfluoroheptylcarbonyl)aminobutyl side chain. In addition, ODMF possesses an 
n-hexadecyl side chain. According to the angle-dependent XPS investigations of 
the annealed ODMF surfaces, the presence of n-hexadecyl side chains suppresses 
good self-organization of the perfluoroalkyl side chains on the outermost layer of 
the surface [69]. This specific structure only supports a weak self-organization of 
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fiGure 7.17 Contact angles of n-undecane on the films of four fluoropolymers: (a) Teflon 
AF 1600, (b) EGC-1700, (c) ETMF, (d) ODMF. Rates of change in deg/min.
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the perfluoroalkyl side chains on the top layer of ODMF films. Additional x-ray 
diffraction analysis at low angles showed only a very broad signal from 2θ = 1.2° to 
2θ = 2.52° (d values of 7.4–3.5 nm, respectively). These results suggest a remarkable 
difference between the structural properties of ODMF and ETMF films.

Considering these differences in the chain configuration of the polymers, the 
receding contact angle patterns and the contact angle hysteresis of n-alkanes are 
plausible in terms of surface retention (fast process) and liquid penetration (slow 
process), as discussed below.

The primary cause of contact angle hysteresis is operative in region II. As the 
motor is reversed to decrease drop volume, the three-phase line remains hinged and 
the contact angles decrease rapidly over a relatively short time period. Examining the 
contact angle graphs of n-undecane in Figure 7.17 shows that the smallest decrease 
in the contact angles in region II takes place for ETMF with ~3° over 8 seconds 
whereas the largest decrease happens for EGC-1700 with ~9° over 25 seconds (both 
experiments were performed at a similar volume flow rate of the liquid). Taking 
into account that the rms roughness of the polymer films are 0.4 nm for ETMF and 
1.4 nm for EGC-1700, it is conceivable that the larger decrease of contact angles on 
the latter polymer is due to more extensive surface retention of the liquid by the solid 
surface.

As discussed above, liquid penetration is the most likely event in region III and 
the slope of the regression line for the receding angles (Δθr/Δt) represents the extent 
of this process. The larger slope of n-alkanes on Teflon AF 1600 and EGC-1700 
surfaces compared to that on ETMF films is immediately plausible in terms of liquid 
penetration into the solid surface. The amorphous structure of these two polymers 
facilitates this process, whereas the layered molecular chains of ETMF significantly 
reduce liquid penetration. With the ODMF polymer, Δθr/Δt of n-alkanes is intermedi-
ate between those for the two amorphous polymers. This may seem counterintuitive 
considering that ODMF has a superior chain organization and is therefore expected 
to allow less extensive liquid penetration. However, AFM analysis of ODMF sur-
faces showed that the surface film comprises microscale hydrocarbon islands dis-
tributed over a fluorocarbon matrix. Existence of hydrocarbon patches facilitates 
adsorption of hydrocarbon molecules from the liquid phase. Most likely, it is the 
cooperative action of adsorption and liquid penetration that increases hysteresis on 
ODMF films beyond that expected for a homogeneous fluorocarbon surface of simi-
lar chain configuration.

Comparing the receding contact angle patterns of n-alkanes on the films of the 
two amorphous polymers, EGC-1700 and Teflon AF 1600, also sheds light on this 
discussion. The rate of decrease in the receding angles is larger on the surfaces of 
the former polymer, especially for those n-alkanes with shorter molecular chains 
[22]. For example, Δθr/Δt for n-heptane, n-undecane, and n-hexadecane on EGC-
1700 films are –6.06, –2.41, and –1.63, respectively, whereas the corresponding val-
ues on Teflon AF 1600 surfaces are –1.14, –0.80, and –0.67 (all in degrees/minute). 
The data can be related to the difference in structural properties of the polymers. 
EGC-1700 contains mobile and flexible chains that can assume different configura-
tions, whereas Teflon consists of stiff molecular chains. This is supported by the very 
different glass transition temperature of the two polymers (Tg, Teflon AF 1600 = 160ºC 
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versus Tg, EGC-1700 = 30ºC). The mobility and flexibility of EGC-1700 chains allows 
liquid molecules to be more easily accommodated. Consequently, liquid penetra-
tion will be more extensive and the polymer film is modified to a greater extent by 
the hydrocarbon molecules. This is manifested by the larger rate for decrease in the 
receding angles.

Overall, the results in Table 7.1 indicate that contact angle hysteresis correlates 
well with the configuration of the polymer chains. For a given liquid, the smallest 
hysteresis is measured with well-packed ETMF surfaces. The contact angle hyster-
esis on ODMF surfaces, whose chains have a poorer packing, is almost twice as large 
as that on ETMF surfaces. The largest hysteresis is obtained with the two amorphous 
polymers, Teflon AF 1600 and EGC-1700.

7.3.2  dynamIc cyclInG contact anGle (dcca)

The influence of liquid penetration into the solid surface as the cause of the slower 
contact angle hysteresis was further studied by dynamic cycling contact angle 
(DCCA) measurements with n-alkanes (n-nonane, n-dodecane, n-hexadecane) 
and 1-alcohols (1-hexanol, 1-nonanol, 1-undecanol) on the films of fluoropolymer 
FC-732 [64]. Each experiment consisted of at least 12 cycles, all on the same solid 
surface. Figure 7.18 illustrates a typical result obtained from a cycling experiment 
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with n-hexadecane. In this experiment, 26 cycles of advancing and receding contact 
angle measurements were performed consecutively in approximately three and a 
half hours. A complete cycle consists of expansion of the liquid drop from the ini-
tial volume/radius to the final (maximum) volume/radius and contraction back to 
the initial point, which can be identified from both the radius and the volume plots 
in Figure 7.18b and c. As expected, the receding contact angles are time-dependent 
in all cycles and the minimum values decrease with increasing number of cycles. 
Furthermore, beyond the first cycle, the advancing angles also depend on the solid–
liquid contact time and increase as the drop radius increases. The observation is 
quite plausible considering the contact time between the liquid and the solid surface: 
At the end of the first cycle, wetted circular domains of the solid surface nearest the 
point where liquid retraction starts will have had the shortest contact time with the 
liquid and, therefore, are least modified by the liquid, yielding the maximum value 
in each cycle. On the other hand, domains closer to the center of the drop will have 
had longer contact times with the liquid and therefore are modified most, giving the 
minimum value. It also appears that both maximum and minimum values decrease 
over time. It is suggested that the contact angle at any given drop radius should 
follow a similar trend. This is illustrated in Figure 7.19 where both the advancing 
contact angle θa and receding contact angle θr at two different radii; that is, R = 0.45 
and R = 0.50 cm, are plotted as a function of the number of cycles (the mean θa value 
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fiGure 7.19 The advancing and receding contact angles of n-hexadecane on a FC-732 
surface obtained for the two radii (R = 0.45 and 0.50 cm) versus the number of cycles; mean 
θa denotes the average value of advancing contact angles measured from the first cycle. 
(Reprinted from Lam, C. N. C., Ko, R. H. Y., Yu, L. M. Y., Li, D., Hair, M. L., and Neumann, 
A. W., Journal of Colloid and Interface Science, 243, 208, 2001. With permission from 
Academic Press.)
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for the first cycle is also shown). Evidently, both θa and θr values at the two radii 
decrease with increasing number of cycles and, therefore, the solid-liquid contact 
time. Furthermore, it can be seen from Figure 7.19 that values of θa and θr obtained 
at the outer radius (R = 0.50 cm) are larger than those obtained at the inner radius 
(R = 0.45 cm). This is expected since the time of solid–liquid contact is longer at 
the inner radius than at the outer radius. These results indicate that the solid surface 
is modified due to contact with the liquid in a relatively slow process, presumably 
liquid penetration.

Direct evidence was found for penetration of liquid into polymer surfaces by Hennig 
et al. [79]. Dynamic cycling contact angle experiments with water on  polyimide films 
yielded results similar to those in Figures 7.18 and 7.19 in terms of time-dependence 
of the contact angles, change in the minimum and maximum values of contact angles 
with time, and different contact angle values at different radii. To quantify the effect of 
liquid on the polymer film, a variable angle spectroscopic ellipsometry (VASE) tech-
nique was employed. The initial thickness of the dry polyimide film was first deter-
mined as 4952 nm. Then a sessile drop of water was deposited on the sample and left 
for 60 minutes. The volume and the contact area of the drop were 0.3 cm3 and 0.1 cm2, 
respectively. The drop was then removed from the surface using a motorized syringe. 
Immediately afterward, the ellipsometric data at three angles of incidence (65º, 70º, 
75º) were collected from the dewetted surface near the central point of the drop contact 
area. Using an optical model; that is, the Bruggeman effective medium approximation 
(EMA), the ellipsometric data were translated into optical constants and layer thick-
ness. Comparing the data from dry and dewetted polyimide surfaces, it was concluded 
that modification of the surface due to contact between the polymer surface and water 
can be very well described by a thickness increase of 10 nm of an EMA layer consist-
ing of 98.6% polyimide and 1.4% water. This study verified the conclusions that the 
time-dependent receding angles are caused by a slow process described above as liquid 
penetration into the polymer film.

7.3.3  contact anGle hysteresIs For lIquIds WIth Bulky molecules

The above discussion highlighted the fact that the molecular properties of probe liq-
uids play a role as important as those of solid surfaces in contact angle hysteresis phe-
nomena. To further elucidate this issue, a number of liquids consisting of nonlinear 
molecules were considered. They are labeled liquids with “bulky” molecules and will 
be described in detail in the subsequent chapter, Chapter 8. The molecules of these 
liquids are round and nonflexible with a diameter of 0.6–1.0 nm and are therefore 
quite distinct from n-alkanes [70,80]. The liquids are:  octamethylcyclotetrasiloxane 
(OMCTS), decamethylcyclopentasiloxane (DMCPS), p-xylene, o- xylene, cis-
 decalin, trans,trans,cis-1,5,9-cyclododecatriene, methyl salicylate, lepidine (4-meth-
ylquinoline), 1-fluoronaphthalene, 1-chloronaphthalene, 1-bromonaphthalene, and 
1-iodonaphthalene.

Contact angle measurements with liquids consisting of bulky molecules on the 
films of the above four fluoropolymers of Figure 7.16 resulted in different receding 
angle patterns: (i) The receding angles of all these liquids on Teflon AF 1600 sur-
faces were independent of solid–liquid contact time [71,81]. (ii) On EGC-1700 and 
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ETMF surfaces, the receding angles were constant only for the siloxane-based liq-
uids OMCTS and DMCPS but were time-dependent for other liquids [71]. (iii) With 
ODMF films, only OMCTS and DMCPS yielded useful contact angles. The other 
liquids either dissolved the polymer film or showed a stick-slip behavior [82]. As an 
example, the contact angles of DMCPS and cis-decalin are plotted in Figures 7.20 
and 7.21, respectively. For all four polymers, the receding angles of DMCPS are 
almost constant. The receding angles of cis-decalin, however, are constant only on 
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Teflon AF 1600 surfaces. They decrease with time on the EGC-1700 and ETMF 
films. The slope of the regression line (Δθr/Δt) in these Figures shows the extent of 
the time-dependence of the receding angles. 

Table 7.2 lists the advancing and receding angles of the liquids with bulky mol-
ecules on the films of all four polymers. For the systems showing time-dependence, 
the receding angles were obtained by the extrapolation technique, as described 
above. The contact angle hysteresis corresponding to each solid–liquid system is 
also given. Likely explanations for the receding angles and contact angle hysteresis 
on each polymer surface are given below.

(a) Teflon AF 1600: The receding angles of liquids with bulky molecules are 
independent of solid–liquid contact time. This suggests that the Teflon films are not 
modified by liquid penetration. As discussed above, the penetration process involves 
a continuous migration of liquid molecules into the solid matrix that would cause 
the receding angles to decrease over time. Most probably, the bulky molecules of 
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the probe liquids eliminate this process. Thus, the main contributor to contact angle 
hysteresis in these systems is surface retention. The fact that contact angle hysteresis 
on Teflon AF 1600 films is almost the same for all liquids (i.e., ~6º–7º), supports this 
conclusion because the molecules of the liquids are similar in size and are expected 
to be retained on the Teflon films to a similar extent.

(b) EGC-1700: The receding angles of OMCTS and DMCPS on EGC-1700 sur-
faces are independent of time (cf. Figure 7.20b). Thus, surface retention is the likely 
cause for the contact angle hysteresis of these two liquids. On the other hand for 
other probe liquids, the receding angles are time-dependent and the contact angle 
hysteresis differs significantly from one liquid to the next (9°–16°). The molecules of 
this series of liquids are similar in terms of shape and size and surface retention is 
expected to be fairly similar with these liquids. Bearing this in mind, if liquid pen-
etration was the only process causing time-dependent receding angles, one would 
expect similar hysteresis for all liquids due to their similar shape and size. The fact 
that this is not so indicates that other form(s) of solid–liquid interaction must be 
operative.

EGC-1700 contains mobile and flexible molecular chains. When it is exposed to a 
liquid whose molecules contain double bonds or exposable electronegative moieties 
(i.e., all liquids except OMCTS and DMCPS), EGC-1700 chains undergo major reori-
entation, exposing groups other than CF2 and CF3 at the surface (i.e., methyl or ester 
groups). The time-dependence of the receding angles suggests that the extent of this 
process increases with the contact time between the solid and the liquid, causing the 
solid–liquid interfacial tension (γsl) to decrease over time (see Chapter 8 for details of 
this process). Support for this explanation comes from the following simple experi-
ment: Contact angles of cis-decalin were measured on a fresh EGC-1700 film and 
the average advancing angle was 72.75° ± 0.12. The sample was then blown dry with 
nitrogen and kept under vacuum for 24 hours. The contact angle measurement was 
repeated. The advancing contact angle of cis-decalin was now only 66.30° ± 0.09 
(i.e., 6.45° lower). This simple test indicates that the conformation of the polymer 
changes due to contact with the test liquid and the contribution of the CF2 and CF3 
groups at the outermost layer of the polymer surface decreases. It appears that the 
perturbations in the EGC-1700 chains are not reversible and the moieties that moved 
away from the top surface layer cannot easily relax back to the surface. A similar test 
with Teflon AF 1600 films showed that the contact angles were accurately reproduc-
ible, after thorough drying. This provides a clear indication of the fact that, depend-
ing on the structural properties of polymer films, different mechanisms contribute to 
the hysteresis phenomenon. Evidence also exists in the literature regarding change in 
the organization of chains of a polymer surface upon contact with a liquid [83–89]. 
These changes can take place through short-range motions of chains such as rota-
tion around the chain axis or even long-range motions such as diffusion of specific 
moieties into the bulk. Therefore, reorientation of polymer chains due to contact 
with liquid molecules is the most likely cause of time-dependent receding angles on 
EGC-1700 surfaces.

(c) ETMF: The smallest hysteresis for a given liquid is obtained on ETMF sur-
faces. Even those liquids that show stick-slip on the EGC-1700 and ODMF films due 
to strong solid–liquid interactions yield a smooth motion on ETMF surfaces. These 
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results imply that the long fluorinated side chains in ETMF provide a protective 
shield around the hydrophilic backbone. This is supported by the presence of the 
H-bonding interactions within the perfluorinated amide groups in ETMF that give 
rise to the formation of a layered structure both in the bulk and in the top layer of the 
surface film. The ordered molecular chains of ETMF as well as the bulky molecules 
of the probe liquids eliminate liquid penetration as the cause (Note: Even with n-al-
kanes that possess smaller and chain-like molecules, liquid penetration was insig-
nificant; see Section 7.3.1). Therefore, time-dependence of the receding angles must 
have a different cause. The particular conformation of ETMF surface films makes 
major reorientation/perturbation of chains an unlikely event. Only minor changes in 
the arrangement of side chains are probable. Thus, surface retention and mobility of 
side chains are suggested as the main contributors to the contact angle hysteresis on 
ETMF surfaces.

(d) ODMF: On ODMF surfaces, only the two siloxane liquids (OMCTS and 
DMCPS) yielded useful contact angles. The more or less constant receding angles 
of these two liquids again suggest surface retention as the most likely cause of the 
hysteresis. Penetration of liquid molecules into the polymer film is less likely in 
these systems because it would be expected to cause the receding angles to decrease 
with time.

In conclusion, the contact angle results for liquids with bulky molecules on four 
different fluoropolymers strongly suggest the following causes for contact angle 
hysteresis: Surface retention, liquid penetration into the solid surface, major reori-
entation of polymer chains due to contact with certain probe liquids, and minor 
changes in the arrangement of the side chains of a polymer surface upon contact 
with a test liquid. The operative mechanism is determined by the morphological 
properties of the polymer film, configuration of the chains at the surface film, 
and chemistry of the solid surface and the test liquid. Furthermore, OMCTS and 
DMCPS show the smallest contact angle hysteresis on all four fluoropolymers, 
suggesting that they are the most inert liquids with respect to these, and most 
likely, other fluoropolymers.

7.3.4  sIze oF n-alkane molecules and contact anGle hysteresIs

An interesting trend can be observed in the contact angle hysteresis of the n-alkanes 
on the Teflon AF 1600 and EGC-1700 surfaces (Table 7.1). As the size of the hydro-
carbon molecules increases from n-heptane to n-hexadecane, the contact angle 
 hysteresis decreases by ~2.2º for Teflon AF 1600 and ~5.8º for EGC-1700 [22]. 
Again, the results are plausible in terms of surface retention and liquid penetration. 
Larger molecules do not fit into the morphological patterns of the polymer surface 
as easily as shorter molecular chains, reducing surface retention. Furthermore, lon-
ger chain n-alkanes penetrate the polymer films less readily than those with shorter 
molecular chains. Thus, both the fast and the slow mechanisms of contact angle 
hysteresis diminish significantly. It is noted that Zisman and coworkers reported 
a similar finding in the 1960s. They measured contact angles of various liquids on 
condensed monolayers of 17-(perfluoroheptyl)heptadecanoic acid adsorbed on pol-
ished chromium [90]. Hysteresis was shown to be related to the molecular volume 
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of the liquid and to result from the penetration of liquid molecules into the porous 
monolayer. Contact angle hysteresis was negligible when the average diameter of 
liquid molecules was larger than the average cross-sectional diameter of the intermo-
lecular pores. It was concluded that liquid penetration, even into pores of molecular 
dimensions, is a cause of significant hysteresis. Based on this investigation, they even 
proposed to estimate the intermolecular pore dimensions of such adsorbed monolay-
ers from contact angle hysteresis data.

In order to test the expectation that contact angle hysteresis will become negli-
gible for very long n-alkane chains, Lam et al. plotted the advancing contact angles 
and extrapolated initial receding angles versus the inverse number of carbon atoms 
for n-alkanes/FC-732 systems, as shown in Figure 7.22 [26]. The advancing contact 
angles and the extrapolated receding angles were approximated by two straight lines. 
When subjected to linear regression, it was found that the two straight lines merge 
near the zero inverse number of carbon atoms; that is, at infinite chain length. The 
contact angle hysteresis of an n-alkane, which would have an infinite number of 
carbon atoms, would be 0.7°; that is, essentially zero. In other words, the receding 
contact angle equals the advancing contact angle when the n-alkane molecules have 
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fiGure 7.22 Advancing and extrapolated initial receding contact angles of 11 alkanes on 
FC-732 surfaces versus inverse number of carbon atoms. (Reprinted from Lam, C. N. C., Wu, 
R., Li, D., Hair, M. L., and Neumann, A. W., Advances in Colloid and Interface Science, 96, 
169, 2002. With permission from Elsevier.)
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infinite length. A similar result was obtained from the analysis of the contact angles 
of 1-alcohols on FC-732 surfaces [26]. The plausible explanation is that very large 
molecules are unlikely to be retained on the solid surface or penetrate it. Thus con-
tact angle hysteresis vanishes.

In conclusion, the following picture emerges with respect to the contact angle 
hysteresis phenomena from the investigation of the contact angles of various liq-
uids with different molecular properties, that is, n-alkanes and liquids with bulky 
molecules, on the surfaces of several fluoropolymers. There are two criteria that 
favor low or near zero contact angle hysteresis: (i) The solid surface is homogene-
ous, extremely smooth and consists of well-ordered and closely packed molecular 
chains. The smoothness of the film diminishes surface retention whereas packing 
of chains eliminates liquid penetration. (ii) The probe liquid possesses very large 
molecules; that is, they are significantly bulkier than the roughness scale on the 
solid surface and distances between molecular chains of semi-crystalline surfaces 
(or the size of pores in films of amorphous solids). From a practical standpoint, 
the latter condition may not be easily satisfied as materials with a high molecu-
lar weight are normally in solid form. The former criterion, on the other hand, 
might be met by selecting a crystalline film-forming material and using a reliable 
technique for surface preparation. This is indeed the case for the hysteresis-free 
surfaces of n-hexatriacontane (C36H74), which is a crystalline n-alkane, and sili-
conized glass that were prepared by Neumann et al. in the 1960s [29]. Thermal 
evaporation under vacuum was employed as the surface coating technique. A slow 
deposition rate apparently allowed the molecules to pack into ordered layers. The 
chains were so well packed that water molecules could not penetrate into the films 
and zero contact angle hysteresis was obtained.

Finally, from the perspective of the Young equation and the thermodynamic 
status of the contact angles in all the systems discussed here, it appears that in 
essence all advancing and receding contact angles are equilibrium contact angles 
on homogeneous and smooth surfaces and are compatible with Young’s equation. 
The key point is that, upon receding, the three phase line leaves behind a solid–
vapor surface that is different from the original dry surface. This newly generated 
surface presumably has been modified by any of the mechanisms introduced above; 
that is, surface retention, liquid penetration into the polymer film and molecular 
re-arrangement of the polymer chains at the surface. All these processes would 
be expected to change γsv, and hence the contact angle. The fact that the receding 
contact angle is always smaller than the advancing angle is also compatible with 
the above mechanisms: All the liquid surface tensions are larger than the solid 
surface tension (cf. Chapter 8) so that liquid retention and penetration processes 
will obviously increase γsv. The energetic effect of polymer chain rearrangement 
is less clear-cut. However, considering the production of these films also suggests 
an effect in the same direction: The polymer films were generated from solution 
by solvent evaporation. Hence the polymer chains have the opportunity to arrange 
themselves such that their free energy will be minimized. It is not conceivable that 
contact with the fairly inert contact angle liquids would cause a further decrease in 
the solid–vapor surface tension.
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7.3.5  rate oF motIon oF the three-Phase contact 
lIne and contact anGle hysteresIs

The influence of the rate of motion of the three-phase line on advancing and reced-
ing contact angles has been studied extensively; nevertheless, there is no general 
consensus among researchers in the surface science community on this issue. 
Following are some examples: Riddiford and coworkers showed that the advanc-
ing contact angles of water on siliconed glass plate and PTFE surfaces increase 
linearly with increasing rate of motion of the three-phase line from 1 to 7 mm/min 
[91,92]. Rate-dependence of advancing angles was argued in terms of disorienta-
tion of water molecules at the drop periphery from the equilibrium state. Outside 
this velocity range, two plateau regions were observed. The contact angles at the 
upper plateau were ascribed to the completion of disorientation, whereas those in 
the lower plateau region were considered the thermodynamic equilibrium angles. 
It was also suggested that after the “impressed drive” is removed from the liquid, 
contact angles relax rapidly back to equilibrium within 2–3 seconds of the cutoff 
time [93]. Johnson et al. investigated the advancing and receding angles of water 
and n-hexadecane on four different surfaces using a Wilhelmy plate technique 
[94]. Contrary to the above findings, this study showed no particular dependence 
of advancing or receding angles on the rate of motion of the three-phase line on 
homogeneous surfaces. No evidence was found in favor of the hypotheses of orienta-
tion/disorientation of water molecules at the three-phase line region or a preferred 
orientation of water molecules on a PTFE surface. It was argued that the velocity 
effect observed by Riddiford et al. is associated with their apparatus (two parallel 
plates confining the liquid drop) and is not caused by the motion of the three-phase 
line per se. Blake reported that advancing angles increase with increasing the rate 
of motion whereas the receding angles show an opposite trend [95]. He suggested 
that the rate- dependence of contact angles is more pronounced for viscous liquids. 
Cain et al. investigated this problem by contact angle measurements with water on 
siliconized glass slides by a capillary rise technique [96]. On smooth surfaces, a 
rate dependence of advancing contact angles below 0.1–0.2 mm/min was reported. 
This was followed by a plateau region for rates up to 0.5 mm/min. At higher rates, 
contact angles started increasing again. The initial increase in the contact angles 
was attributed to diffusion or spreading of liquid into the surface film. It was argued 
that above 0.2 mm/min, the rate of motion of the three-phase line overtakes the rate 
of diffusion such that the contact angles are rate-independent. The contact angles 
in the plateau region were considered the equilibrium advancing angles that can be 
used in the Young equation for the determination of solid surface tensions. Garoff 
and coworkers investigated the effect of inertia on the contact angles by measuring 
the shape of liquid–vapor interfaces within a few microns of the contact line for the 
immersion of a plate in PDMS solutions of different viscosities. The velocity range 
studied was 1–1300 µm/sec [97]. It was suggested that on a microscopic scale, iner-
tia decreases the curvature of the free surface near the contact line, compared to the 
case of  negligible Reynolds number. On a macroscopic scale, this translates into a 
decrease in the apparent contact angles.
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Fluid mechanics theoreticians have also studied this problem. Generally, they 
suggest that the macroscopic advancing contact angles increase with the velocity of 
the three-phase line [95,98–102]. Some researchers proposed that the velocity depen-
dence of the apparent contact angles follow cubic laws [103,104], and that the effect 
is more pronounced at fairly large capillary numbers [99] and for viscous liquids 
[95]. Mostly in these studies, the velocity is in the order of mm/sec to m/sec, which 
is far beyond the values suggested to obtain thermodynamically significant contact 
angles [96].

The short summary above highlights the inconsistencies encountered in the liter-
ature on this subject. Recently, a preliminary study of the contact angles of n-alkanes 
and 1-alcohols on the surfaces of FC-732 fluoropolymer by sessile drop experiments 
at drop front velocities of ~0.1–2.0 mm/min showed that neither advancing nor reced-
ing angles of the liquids depended on the rate of motion of the three-phase line [26]. 
To broaden this finding, advancing and receding contact angle measurements with 
several other probe liquids with a range of surface tension from 18.20 to 72.29 mJ/
m2 and a range of dynamic viscosity from 0.76 to 17.65 cP were performed on films 
of Teflon AF 1600 [105].

The advancing contact angles (θa) of seven different liquids on Teflon AF 1600 
surfaces are presented in Table 7.3. For the first four liquids, that is, o-xylene to 
methyl salicylate, the advancing angles are essentially constant and independent of 
the rate of motion of the three-phase line in the range from ~0.2 to ~5–6 mm/min. 
For distilled water, even a wider range of velocity (i.e., 0.09–10.50 mm/min), was 
studied. Again, the advancing angles at different rates are similar and do not show a 
trend with respect to the velocity of the drop front.

As mentioned above, it has been suggested that the contact angles of viscous 
liquids are influenced more significantly by the velocity of the three-phase line [95]. 
This point was examined by choosing benzyl benzoate and ethylene glycol as probe 
liquids. Benzyl benzoate is about four times more viscous than the most viscous liq-
uid among the first five liquids in Table 7.3 (i.e., methyl salicylate). The viscosity of 
ethylene glycol is about twice that of benzyl benzoate (see Table 7.3). The advancing 
contact angles at different rates of motion are given in Table 7.3. For benzyl benzoate, 
by increasing the rate of motion from 0.21 to 10.50 mm/min, the advancing angles 
show an increase of approximately 0.8°. For ethylene glycol, the advancing contact 
angles show an even more pronounced dependence on the rate of motion. Increasing 
the rate from 0.44 to 10.68 mm/min changes the advancing angles from ~103.8° to 
~105.5°. The increase in the advancing angles of viscous liquids means that the drop 
becomes deformed (the curvature increases) due to hydrodynamic forces and the 
slope of the Laplacian profile at the contact point with the solid increases. Therefore, 
these results indicate that on smooth and homogeneous solid surfaces, the velocity 
dependence of advancing contact angles is an issue only for fairly viscous liquids. 
For liquids with a dynamic viscosity of well below 10 cP, the advancing angles are 
mainly determined by surface forces. As the viscosity of the probe liquid increases 
to µ ≥ ~10 cP, viscous forces significantly affect the contact angles when increas-
ing the rate of motion. Conversely, there is no evidence for a rate dependence at 
 sufficiently low rates.
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table 7.3 
advancing (θa) and receding (θr) Contact angles of test liquids on teflon 
af 1600 surfaces at different rates of motion of the three-phase line

liquid rate (mm/min) θa (°) θr (°) θhyst (°) 

o-Xylene (µ = 0.76 cP)

0.24 71.64 ± 0.04 65.68 ± 0.10 5.96

0.81 71.71 ± 0.25 65.70 ± 0.03 6.01

1.17 71.37 ± 0.29 65.61 ± 0.05 5.76

1.26 71.57 ± 0.25 65.73 ± 0.10 5.84

2.40 71.73 ± 0.19 65.92 ± 0.09 5.81

5.12 71.68 ± 0.17 65.78 ± 0.14 5.90

trans,trans,cis-1,5,9-Cyclododecatriene (µ = N/A) 

0.21 78.66 ± 0.11 71.38 ± 0.40 7.28

0.35 78.50 ± 0.17 71.61 ± 0.05 6.89

0.87 78.86 ± 0.16 71.09 ± 0.07 7.77

1.40 78.67 ± 0.20 71.54 ± 0.06 7.13

3.20 78.86 ± 0.54 71.56 ± 0.09 7.30

3.50 78.96 ± 0.66 71.81 ± 0.14 7.15

5.51 78.74 ± 0.51 71.68 ± 0.17 7.06

OMCTS (µ = 2.05 cP) 

0.18 44.42 ± 0.11 38.51 ± 0.03 5.91

0.39 44.13 ± 0.08 38.75 ± 0.04 5.38

0.72 44.21 ± 0.05 38.91 ± 0.06 5.30

1.50 44.50 ± 0.27 39.02 ± 0.06 5.48

2.46 44.38 ± 0.06 39.04 ± 0.08 5.34

5.52 44.32 ± 0.31 39.04 ± 0.12 5.28

Methyl salicylate (µ = 2.34 cP) 

0.21 85.02 ± 0.10 77.76 ± 0.12 7.26

0.32 84.78 ± 0.07 77.87 ± 0.09 6.91

0.78 84.96 ± 0.12 77.77 ± 0.19 7.19

1.10 84.58 ± 0.12 77.45 ± 0.08 7.13

2.00 84.78 ± 0.28 77.29 ± 0.13 7.49

3.80 84.58 ± 0.14 77.27 ± 0.08 7.31

6.10 84.55 ± 0.11 77.37 ± 0.12 7.18 

Distilled water (µ = 0.91 cP)

0.09 126.54 ± 0.02 113.0 – 111.5 13.54–15.04

0.20 126.56 ± 0.05 111.69 ± 0.14 14.87

1.20 126.70 ± 0.07 114.5 – 112.5 12.20–14.20

2.20 126.84 ± 0.25 115.60 ± 0.22 11.24

5.90 126.82 ± 0.18 115.56 ± 0.51 11.26

9.90 126.33 ± 0.18 116.07 ± 0.47 10.26

10.50 126.44 ± 0.18 115.86 ± 0.71 10.58
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The receding angles of the test liquids at similar rates of motion of the three-
phase line as for the advancing angles together with the corresponding con-
tact angle hysteresis (θa−θr) data are given in the third and fourth columns of 
Table 7.3. For o-xylene, trans,trans,cis-1,5,9-cyclododecatriene, OMCTS, and 
methyl salicylate, the receding angles on Teflon AF 1600 films at different rates 
are similar and do not show a trend with respect to the velocity of the drop front. 
Consequently, identical contact angle hysteresis is obtained at different rates 
of motion. It is noted that for OMCTS at the slow rates of 0.18 and 0.39° mm/
min, the receding angles are slightly smaller (by approximately 0.5°) than those 
obtained at the higher rates (see Table 7.3). It might be that the long solid–liquid 
contact time in these cases, that is, up to approximately 1500 seconds, causes the 
polymer film to be slightly modified due to liquid contact. Hence smaller receding 
angles are obtained.

For water, the receding angles show some variations. At the low rates of motion, 
the receding angles are overall smaller than those at the higher rates. This does 
not translate into a true hydrodynamic rate-dependence for the receding angles. If 
there were such an effect, the receding angles would have to decrease with increas-
ing rate. However, the opposite effect is observed here. Unlike for the high rates of 
motion, the receding angles depend on the contact time between solid and liquid at 
the low rates. This is shown in Figure 7.23 for the contact angles of water at 1.20 

table 7.3 (Continued)
advancing (θa) and receding (θr) Contact angles of test liquids on teflon 
af 1600 surfaces at different rates of motion of the three-phase line

liquid rate (mm/min) θa (°) θr (°) θhyst (°) 

Benzyl benzoate (µ = 9.62 cP)

0.21 89.13 ± 0.21 82.21 ± 0.04 6.92

0.40 89.46 ± 0.33 82.12 ± 0.07 7.34

0.92 89.45 ± 0.53 82.15 ± 0.08 7.30

2.48 89.38 ± 0.28 82.00 ± 0.09 7.38

4.15 89.50 ± 0.51 82.07 ± 0.14 7.43

6.53 89.69 ± 0.45 81.94 ± 0.28 7.75

10.50 89.92 ± 0.55 81.88 ± 0.34 8.04

Ethylene glycol (µ = 17.65 cP)

0.44 103.81 ± 0.41

0.79 103.85 ± 0.51

2.49 104.48 ± 0.54

3.67 104.48 ± 0.47

8.70 105.24 ± 0.43

10.68 105.50 ± 0.78

Note: The 95% confidence limits for the contact angles and the values of contact angle hysteresis 
(θhyst) for each run are also given.
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and 5.90 mm/min. The causes of such effects are now known and were discussed in 
previous sections. At higher rates of motion, receding angles are not time-dependent 
indicating that water molecules do not find the opportunity to modify the polymer 
film significantly. Therefore, larger receding angles and hence smaller contact angle 
hysteresis are obtained. However, it appears that the primary mechanism of hyster-
esis (surface retention), which gives rise to the transition zone from advancing to 
receding angles, is not affected by increasing the rate of motion to values as high 
as ~10 mm/min. It is noted that the first four liquids in Table 7.3 consist of “bulky” 
molecules (molecular diameter from ~0.6 to ~1.0 nm, see Chapter 8), eliminating 
the likelihood of liquid penetration. Hence their receding angles are independent of 
solid–liquid contact time.

The receding angle of the viscous liquid, benzyl benzoate, decreases slightly 
by ~0.3°, as the rate of motion increases from 0.21 to 10.50 mm/min. Due to a 
more significant change of advancing angles within this velocity range, the con-
tact angle hysteresis shows an overall increase of ~1.1°. For ethylene glycol, the 
receding angles were dependent on the solid–liquid contact time (similar to the 
receding angles of water at low rates of motion, i.e., Figure 7.23b), and hence are 
not reported here because they were not useful to study the rate-dependence of 
contact angles.
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fiGure 7.23 Contact angles of water at: (a) 1.20 mm/min, and (b) 5.90 mm/min. At the 
low rate of motion, the receding angles decrease with the solid-liquid contact time, but at the 
high velocity of the drop front, receding angles are fairly constant. (Reprinted from Tavana, 
H. and Neumann, A. W., Colloids and Surfaces A, 282–283, 256, 2006. With permission 
from Elsevier.)
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From the results presented above, it appears that rate-dependence of contact angles 
is an issue only for viscous liquids. In the case of liquids with low viscosity, surface 
forces are dominant and fairly constant contact angles are obtained at different rates 
of motion of the three-phase contact line. For liquids with high viscosity, increasing 
the rate of motion causes the advancing angles to increase and the receding angles to 
decrease, translating into larger contact angle hysteresis.

7.3.6  eFFect oF a thIn lIquId FIlm on contact anGle hysteresIs

In the above discussions of contact angle hysteresis, it was assumed that no sig-
nificant adsorption of liquid or its vapor occurs onto the solid surface. However, it 
should be noted that intermolecular forces might allow formation of a film of a sub-
micrometer thickness extending beyond the macroscopic three-phase contact line 
[20]. A precursor film might be formed due to condensation of the vapor of the liquid 
ahead of the contact line [106], even in the absence of a significant vapor adsorption 
[107,108]. The thermodynamics of a solid–liquid–vapor system in the presence of a 
thin film was discussed above in Section 7.2.6. Below, we shall see how a thin liquid 
film can actually cause contact angle hysteresis. To simplify the analysis, other pos-
sible causes of hysteresis are ignored here.

Thin liquid film effects on contact angle hysteresis have been discussed by 
Churaev [109] and Zorin and Churaev [110]. Basically, contact angle hysteresis is 
considered to be caused by either the contact angle dependence on the capillary 
pressure or by coexistence of two uniform films with different thickness. For the 
latter case, Zorin and Churaev [110] reported an experiment with water films on 
quartz where metastable films were observed. First, a bubble was pressed against 
a quartz plate for 10–15 hours; the liquid–vapor meniscus had a finite contact 
angle in equilibrium with a uniform film of 10 nm thickness. When the meniscus 
was receded, a uniform wetting film with a thickness of about 40 nm was left 
behind. There was a sharp boundary between the two films and the situation did 
not change for several hours. On the thicker wetting film no finite contact angles 
were observed.

Such observations can be rationalized on the basis of the simple model discussed 
in this section. We can see how a thin film may cause the advancing contact angle, 
θa, to be different from the receding contact angle, θr. Replacing the term (Pl − Π) in 
Equation 7.92 by γlvJ gives

 γ θ γ γ γlv lv f slJhcos .= + −  (7.94)

From this relation, we see that the contact angle depends on the Laplace pressure or 
the mean curvature, J, at the meniscus-film intersection, and on the film thickness, h. 
Consider a solid–liquid system of only two immiscible components; that is, solid 
and liquid. The solid–liquid interfacial tension, γsl, is assumed here to be a constant, 
independent of movement of the liquid–vapor meniscus, advancing or receding. At 
constant temperature and constant chemical potential, the Gibbs-Duhem equation 
for a uniform thin film phase yields
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 d hdfγ = Π.  (7.95)

If we consider only the van der Waals interactions, the disjoining pressure has the 
following general form [40]

 Π( ) ,h Ah B= −  (7.96)

where A and B are constant for a given system. Integrating Equation 7.95 and using 
Equation 7.96, we will have

 γ f hd
B

B
h= = −

− +∫ Π Π
1

,  (7.97a)

or, by using Equation 7.91,

 γ f vhd
B

B
hP= = −

− +∫ Π
1

.  (7.97b)

Now Equation 7.94 can be rewritten as

 γ θ γ γlv lv v slJh
B

B
hPcos .= + −

− +
−

1
 (7.98)

Equation 7.98 further shows an explicit dependence of contact angle on the thin film 
thickness: the contact angle, θ, will decrease as the film thickness, h, increases.

Let us denote the wetting film resulting from a receding liquid–vapor meniscus 
as the “receding film,” and the film in front of an advancing liquid–vapor meniscus 
as the “advancing film.” Since we know that θa > θr, we wish to compare the thick-
ness of the receding film with that of the advancing film by using Equation 7.99. By 
cosθa < cosθr and Equation 7.98, we have

 γ γlv a a a v a lv r r r v rJ h
B

B
h P J h

B
B

h P+ −
− +

< + −
− +1 1, , .

Rearranging the above equation yields
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Generally, the mean curvature of the receding meniscus is smaller than that of the 
advancing meniscus (i.e., Jr < Ja). For instance, when the bulk liquid is receded from 
an initial advancing position, due to the viscosity, the three phase contact line may 
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show resistance against moving with the bulk liquid. This usually results in a lower 
curvature of the receding meniscus. Consequently, the lower curvature results in a 
lower equilibrium vapor pressure (i.e., Pv,r < Pv,a). Therefore, the above inequality 
can be further written as

 1
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− +
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Thus,

 1 < <h
h

h hr

a
a ror .  (7.100)

That is, the receding film is thicker than the advancing film, as observed in Zorin’s 
experiment.

7.4  further thermOdynamiC COnsideratiOn 
Of thin film phenOmena

7.4.1  the numBer oF deGrees oF Freedom

It has been shown that there are two degrees of freedom for a two-component solid–
liquid–vapor system with a moderately curved interface [111] (see also Chapter 9). It 
is of interest to establish whether this is true also for a two-component solid–liquid–
vapor system with a moderately curved interface and a flat thin film. Consider the 
sessile drop/thin film system illustrated in Figure 7.13. The solid substrate is consid-
ered an ideal, rigid solid phase with constant properties (independent of the interac-
tion with a liquid drop) at a given temperature. Therefore, the solid phase will not be 
considered for the purpose of counting the number of degrees of freedom. Thus, for 
the system illustrated in Figure 7.13, there are a total of five phases: bulk liquid, bulk 
vapor, liquid–vapor interface, solid–liquid interface, and the thin liquid film. For 
each phase (r + 1) intensive variables are required to describe the equilibrium state 
where r represents the number of components of the system; these variables may be 
chosen as follows:

 Bulk liquid phase Tl, Pl, x1l, x2l, . . . , x(r–1)l

 Bulk vapor phase Tv, Pv, x1v, x2v, . . . , x(r–1)v

 Liquid–vapor interface Tlv, γlv, x1lv, x2lv, . . . , x(r–1)lv (7.101)
 Solid–liquid interface Tsl, γsl, x1sl, x2sl, . . . , x(r–1)sl

 Thin liquid film Tf, γf, Π, x1f, x2f, . . . , x(r–1)f,

where T is the temperature, P is the pressure, γij is the surface tension of the ij inter-
face, γf is the film tension, Π is the disjoining pressure of the film, and xi represents 
the mole fraction of the ith component. When these five coexisting phases are in 
equilibrium, the thermal and chemical equilibrium conditions are given by
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 Tl = Tv = Tlv = Tsl = Tf 4 equations (7.102)

 µil = µiv = µilv = µisl = µif  i = 1, 2,…, r 4r equations (7.103)

and the mechanical equilibrium conditions are given by

 P P Jl v lv− = γ  (7.90)

 Π = Pv  (7.91)

 γ θ γ γlv l f slP hcos ( ) .= − + −Π  (7.92)

Note that Equation 7.90 and Equation 7.92 contain new variables, J and θ, which are 
not in the set listed in Equation 7.101; hence Equations 7.90 and 7.92 do not repre-
sent constraints among γlv, γsl, γf, Π, Pl, and Pv [111]. Only Equation 7.91 provides a 
constraint relation between Π and Pv. Therefore, for such an r component system in 
equilibrium, the total number of constraint equations is

 4 + 4r + 1 = 4(r + 1) + 1. (7.104)

As shown in Equation 7.101, there are a total of 5(r + 1) + 1 variables. Therefore, the 
number of degrees of freedom for such a system is

 f = 5(r + 1) + 1 – 4(r + 1) – 1 = r + 1. (7.105)

If one considers a system of two components, that is, a solid component and a liquid 
component, then r = 2, and the number of degrees of freedom f = 3. This implies that 
there are three independent, intensive variables for a two-component interface/thin 
film system, such as the sessile drop/thin liquid film system illustrated in Figure 7.13. 
If the liquid–vapor surface tension, γlv, the film tension, γf, and the disjoining pres-
sure, Π, or the vapor pressure, Pv (Π = Pv) are chosen to be the three independent 
variables, the solid–liquid surface tension, γsl, can then be expected to be a function 
of γlv, γf, and Pv; that is,

 γsl = f(γlv, γf, Π) or γsl = f(γlv, γf, Pv). (7.106)

Equation 7.106 may be referred to as an equation of state for the interfacial tensions 
and the film tension. A detailed description of an equation of state approach for a 
two-component solid–liquid–vapor system is given in Chapter 9.
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7.4.2  an equatIon oF state aPProach to eValuate FIlm tensIon

In principle, γf and γsl can be determined either by a microscopic approach  involving 
calculations of intermolecular interactions, or by a macroscopic approach using a 
thermodynamic equation of state for the interfacial tensions and the film tension. 
Combining the equation of state in the form of Equation 7.106 with Equation 7.94, 
one will have

 γ θ γ γ γ γlv lv f lv f vJh f Pcos , , ).= + − (  (7.107)

Knowing the values of the measurable quantities (γlv, J, h, θ), γf may be obtained from 
Equation 7.107 and then the solid–liquid interfacial tension, γsl, from either Equation 
7.106 or Equation 7.94. An approximate, explicit functional form of such a thermo-
dynamic equation of state, Equation 7.106, can be derived as follows.

The free energy of adhesion for a unit area of a solid–liquid pair is equal to the 
work required to separate a unit area of solid–liquid interface. In the presence of a thin 
liquid film, the grand canonical free energy of a thin film is given by Equation 7.80. 
The free energy of adhesion now can be written as

 Wsl f sl f adh final initial lv f( ) ( ), (= = − = + −∆Ω Ω Ω γ γ ΠΠh sl) .− γ  (7.108)

Combining Equation 7.108 with Equation 7.94 gives

 W h Jhsl f sl f adh lv lv( ) ( ), ( cos ) .= = + − −∆Ω Πγ θ γ1  (7.109)

In analogy with the Berthelot combining rule for the attractive constant in the 
van der Waals equation of state [112–114], the free energy of adhesion, Wsl( f ), may be 
approximated as the geometric mean of the free energy of cohesion of the liquid pair, 
Wll, and the free energy of cohesion of a pair of the thin liquid films, Wff; that is,

 W W Wsl f ll ff( ) =  (7.110)

 Wll lv= 2γ  (7.111)

 W hff f= −2( ).γ Π  (7.112)

Combining Equations 7.111 and 7.112 with Equation 7.110 yields

 W hsl f lv f( ) ( ).= −2 γ γ Π  (7.113)
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Inserting Equation 7.113 into Equation 7.108, we have

 γ γ γ γ γsl lv f lv fh h= + − − −Π Π2 ( ),

or, in the light of Equation 7.81,

 γ γ γ γ γsl lv f v lv f vP h P h= + − − −2 ( ).  (7.114)

Equation 7.114 is an equation of state for interfacial tensions and film tension. 
Combining Equation 7.114 with Equation 7.94 yields

 γ
γ

γ θf v
lv

lv vP h Jh P h= + + − −[ ]0 25
1

2.
(cos ) .  (7.115)

Clearly, as shown in Equation 7.115, the film tension, γf, can be estimated if Pv, J, h, 
γlv, and θ are known.

Without considering adsorption on solid surfaces, an equation of state for inter-
facial tensions has been developed [112,115,116] (see Chapters 8 and 9). By a phase 
rule approach, it has been shown that there are two degrees of freedom for a two-
component solid–liquid–vapor surface system; hence, there exists an equation of 
state for interfacial tensions in the form of γsl = f(γlv, γsv). Combining such an equation 
of state with the Young equation will yield an equation relating the solid surface ten-
sion, γsv, to the measurable quantities—liquid surface tension, γlv, and contact angle, 
θ. An explicit form of such an equation of state for interfacial tensions has been 
derived as follows [116]:

 γ γ γ γ γ γ γ β γ γ
sl lv sv lv sv lv svf= = + − − −( , ) 2 e ( lv sv ))2 ,  (7.116)

where β = 0.000125 (mJ/m2)–2. Combining Equation 7.116 with the classical Young 
Equation 7.2 produces

 cos ( , ) .θ γ γ γ
γ

β γ γ= = − + − −g lv sv
sv

lv

1 2 e ( )lv sv
2  (7.117)

It is interesting to compare the interpretation of contact angles using the equa-
tion of state of interfacial tensions (see Chapter 8), that is, Equation 7.116, with that 
given by the equation of state of the interfacial tensions and film tension, Equation 
7.114. For this purpose, the contact angles of six liquids on siliconized glass are 
presented in Table 7.4 [117]. It is significant that these data are free of contact angle 
hysteresis. The solid–vapor surface tension, γsv, of siliconized glass without appre-
ciable adsorption is approximately 18.6 mJ/m2 (see Table 7.4). This value is obtained 
from the water and glycerol contact angles on the siliconized glass by Equation 
7.117. However, for the n-alkanes/siliconized glass systems, the adsorption on the 
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solid surface is quite prominent. The measured contact angles for n-hexadecane, 
n- tetradecane, n-dodecane, and n-decane are listed in Table 7.4. Comparing these 
with the contact angle values predicted by the equation of state approach, Equation 
7.117, using γsv = 18.6 mJ/m2 and the corresponding liquid surface tensions, it is seen 
that the measured contact angles are much lower than what they should be if there 
were no adsorption. Then, if we assume that adsorption is in the form of a thin liquid 
film on the siliconized glass, the corresponding film tensions can be calculated using 
Equation 7.115. To calculate γf from Equation 7.115, in addition to γlv and θ, the values 
of Pv, h, and J are needed. The film thickness, h, is generally of the order of 10–9 ~ 
10–8 m. Therefore, in the case of moderate curvature, for example, the radius of cur-
vature of the liquid–vapor interface being in the order of millimeters, the Jh term in 
Equation 7.115 will have a much smaller effect on γf than the other terms, unless the 
radius of curvature is less than a micrometer or so. Thus, for the low curvature case 
the exact value of J will not affect the γf value appreciably. Since these contact angles 
of n-alkanes on siliconized glass were measured by the technique of capillary rise at a 
vertical plate [117], the curvature at the three-phase intersection can be assumed to be 
J = 1000 m–1 in the following calculations. The vapor pressures are as follows [118]: 
for n-hexadecane, Pv = 0.2213 N/m2; for n-tetradecane, Pv = 1.866  N/m2; for n-dode-
cane, Pv = 7.599 N/m2; and for n-decane, Pv = 179.9 N/m2. It seems that, therefore, 
the Pvh terms in Equation 7.115 also have only a minor effect on γf. Without affect-
ing the essential results, we will assume that h = 1 × 10–9 m, approximately. The γf 
values for n-hexadecane, n-tetradecane, n-dodecane, and n-decane on siliconized 
glass are thus calculated and the results are listed in Table 7.4. As seen, the film ten-
sions are larger than the solid–vapor surface tension without significant adsorption 
(γsv = 18.6 mJ/m2), and hence are the cause of the lower contact angles. However, 
there are essentially no differences between the γsv values calculated by Equation 
7.117 and the γf values calculated by Equation 7.115 for the n-alkane/siliconized glass 
systems. However, it may be noted that Equation 7.115 (or Equation 7.114) is derived 
by using the geometric mean combining rule, as shown before, while Equation 7.116 
or Equation 7.117 are derived by using a modified geometric mean combining rule 
[112,116] (see Chapters 8 and 9). Therefore, in order to compare γsv values with γf val-
ues at the same level, a simple form of the equation of state for interfacial tensions, 

table 7.4 
Comparison of the solid–Vapor interfacial tension, γsv(mJ/m2), of siliconized 
Glass with the film tension, γf (mJ/m2), of n-alkanes on siliconized Glass

liquid γlv θmeasured (°) θequation 7.117 (°) γsv, equation 7.117 γf γsv, equation 7.119

Water 72.8 107.2 18.7

Glycerol 63.4 99.2 18.5

n-Hexadecane 27.6 27.2 51.3 24.7 24.6 24.6

n-Tetradecane 26.7 21.4 49.0 24.9 24.9 24.9

n-Dodecane 25.4 19.3 45.4 24.0 24.0 24.0

n-Decane 23.9 14.2 40.7 23.2 23.2 23.2
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derived also by using the geometric mean combining rule in a similar fashion to that 
for Equation 7.114 [112,114]; that is,

 γ γ γsl lv sv= −( ) ,2  (7.118)

should be used. Combining Equation 7.118 with the classical Young Equation 7.2, 
yields

 γ γ θ
sv lv= +





1
2

2
cos

.  (7.119)

The γsv values calculated by Equation 7.119 are listed in the last column in Table 7.4. 
Again, there are no differences between γf and γsv.

It has been shown that the simple form of the equation of state derived by using 
the geometric mean combining rule is not applicable when the difference between 
γlv and γsv is large [112,116]. Therefore, we do not use Equations 7.114 and 7.115 to 
calculate γf for water/siliconized glass and glycerol/siliconized glass systems. For the 
same reason, we do not apply Equations 7.118 and 7.119 to water/siliconized glass 
and glycerol/siliconized glass systems to calculate γsv values.

It should be noted that the results for the film tension are based on a model that 
ignores the transition zone between the liquid–vapor meniscus and the flat thin liq-
uid film, as illustrated in Figure 7.13. Therefore, the reliability of the above predic-
tion depends on the validity of this model. Furthermore, within this model, these 
results are calculated for low curvature cases only. For high curvature situations, 
say, when the curvature of the liquid–vapor meniscus at the three-phase intersec-
tion is J > 1 × 106 m–1, one can expect that the curvature term in Equation 7.94 and 
hence in Equation 7.115 will have a significant effect; γf values in Table 7.4 will be 
different from the corresponding γsv values calculated by Equations 7.117 and 7.119. 
For example, if J = 1 × 107 m–1 while the other parameters are the same, γf will be 
a few mJ/m2 smaller than the γsv values listed in Table 7.4. Nevertheless, it can be 
concluded that the values of solid–vapor surface tension in Chapters 8 and 9 do not 
depend crucially on the validity of the Gibbsian interfacial model.

7.5  stiCk-slip Of the three-phase COntaCt line in 
measurements Of dynamiC COntaCt anGles

Despite their seeming simplicity, contact angles have proven to entail many complexi-
ties both from measurement and interpretation points of view [119]. One such prob-
lem involves solid–liquid systems where the three-phase contact line does not move 
smoothly on the solid surface but shows stick-slip [17,119]: As liquid is pumped into the 
sessile drop and the volume increases, the contact angles increase at a constant contact 
radius; that is, the drop front remains pinned. Then the three-phase line slips abruptly 
on the solid surface as more liquid is supplied. This is accompanied by a sudden 
decrease in the contact angle and by a sudden increase in the contact radius. Supplying 
more liquid, the three-phase line sticks again to the solid surface at a new location and 
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the radius again remains constant. This pattern is repeated as the  measurement contin-
ues. Figure 7.24 shows an example for the contact angles of n-octane on a maleimide 
copolymer surface [17]. In Figure 7.25, two images of an n-octane drop (a) before and 
(b) after slipping are shown, corresponding to points (1) and (2) in Figure 7.24. Due to 
the abrupt slipping, the contact diameter of the drop increases by 0.33 mm in just 0.5 
seconds and the contact angle shows a sudden decrease of ~6.7°. For normal motion 
of the three-phase line (no stick-slip), an increase of 0.33 mm in diameter would take 
more than 60 seconds with a low rate of motion of 0.3 mm/min for the drop front.

Stick-slip of the contact line, which is also referred to as pinning-depinning of the 
contact line, has been observed in different solid–liquid systems [17,20,82,119–122], 
including in microchannels with well-patterned superhydrophobic surfaces [123]. A 
few studies have investigated this phenomenon; however, the underlying mechanism 
is not well understood. Overall, stick-slip has been associated with noninertness of 
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fiGure 7.24 Contact angles, contact radius, drop volume, and surface tension of n-octane 
on a surface of ODMF. Stick-slip of the three-phase line and the abrupt changes in the drop 
radius by increase in the volume are seen. Points (1) and (2) in the contact angle graph cor-
respond to images (a) and (b) in Figure 7.25, respectively. (Reprinted from Tavana, H.,Yang, 
G. C., Yip, C. M., Appelhans, D., Zschoche, S., Grundke, K., Hair, M. L., and Neumann, A. 
W., Langmuir, 22, 628, 2006. With permission from American Chemical Society.)
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the solid surface and existence of defects on the solid surface. Defects might be in 
the form of physical roughness or domains with surface chemical differences from 
the chemistry of the solid matrix. The surface defects give rise to metastable states 
and create energy barriers against the smooth motion of the three-phase line. The 
contact line remains pinned onto the solid surface until the drop front possesses 
enough energy to overcome the energy barriers, resulting in slipping. For sufficiently 
large size of the defects, the three-phase line might also be contoured. It was sug-
gested that the state of the three-phase contact line is determined by a competition 
between two opposing forces: On the one hand pinning forces that result from the 
existence of defects on the solid surface and tend to contour the contact line, and on 
the other restoring elastic forces; that is, surface tension forces, as well as the gravi-
tational force that tend to straighten up the contact line [20,120]. For the strength of 
defects smaller than some limiting value, it was suggested that thermal fluctuations 
and vibrational noise cause the three-phase contact line to average the defects and 
avoid being pinned. In such situations, if defects are in the form of heterogeneous 
patterns, the macroscopic contact angle represents the thermodynamic equilibrium 
and will correspond to the Cassie contact angle. A threshold value of 1 µm was sug-
gested for defect size [20]. It is the purpose of this section to present and discuss, as a 
case study, stick-slip of n-alkanes on the surface of a maleimide copolymer.

Contact angles of a homologous series of n-alkanes were measured on surfaces of 
ODMF, (see Figure 7.16 for the polymer repeat unit). Short-chain n-alkanes; that is, 
n-heptane to n-nonane, showed a stick-slip pattern as described above. From n-decane 
to n-tridecane, only one to two periods of stick-slip were observed at the beginning of 
the measurements, and then the drop front moved smoothly on the solid surface. For 
the last three n-alkanes, the pattern vanished and an even motion of the drop front was 
obtained [17]. The transition from stick-slip to a smooth motion of the three-phase line 
with increasing chain length of the n-alkanes is presented in Figure 7.26, where the 
contact angles of the liquids on the ODMF surfaces are given as a function of time. The 
average advancing contact angle for each liquid is given in this Figure.

It will be shown in Chapter 8 that on the films of a maleimide copolymer, ETMF, 
which has a similar molecular structure to that of ODMF except that it does not 
contain the n-hexadecyl side chain (see Figure 7.16), the three-phase line of all 
n- alkanes yields a smooth motion. This indicates that existence of an additional 

(a)

d = 7.28 mm

θ = 66.31º

(b)

d = 7.61 mm
θ = 59.63º

fiGure 7.25 Images of an n-octane drop: (a) before, and (b) after slipping. As a result, the 
contact angle shows a sudden decrease of ~6.7° and the contact diameter increases abruptly 
by 0.33 mm. (Reprinted from Tavana, H.,Yang, G. C., Yip, C. M., Appelhans, D., Zschoche, 
S., Grundke, K., Hair, M. L., and Neumann, A. W., Langmuir, 22, 628, 2006. With permis-
sion from American Chemical Society.)
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fiGure 7.26 Advancing contact angles of n-alkanes on ODMF surfaces: (a) n-heptane, 
(b) n-octane, (c) n-nonane, (d) n-decane, (e) n-undecane, (f) n-dodecane, (g) n-tridecane, 
(h) n-tetradecane, (i) n-pentadecane, (j) n-hexadecane. The short-chain n-alkanes show a 
regular stick-slip, there is a transition from stick-slip to a smooth motion for the n-alkanes in 
the middle of the series, and the three-phase line of the long-chain n-alkanes moves smoothly. 
(Reprinted from Tavana, H.,Yang, G. C., Yip, C. M., Appelhans, D., Zschoche, S., Grundke, 
K., Hair, M. L., and Neumann, A. W., Langmuir, 22, 628, 2006. With permission from 
American Chemical Society.)
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n-hexadecyl side chain in ODMF compared to ETMF causes a significant difference 
in their surface properties. The morphology of the polymer films and variations in 
the  compositions of ODMF and ETMF films were examined by atomic force micros-
copy (AFM). The measurements were performed through a simultaneous monitor-
ing of both the amplitude and the phase of the oscillating cantilever in the tapping 
mode. Figures 7.27 and 7.28 illustrate the morphology and phase contrast images for 
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fiGure 7.26 (Continued) Advancing contact angles of n-alkanes on ODMF surfaces: 
(a) n-heptane, (b) n-octane, (c) n-nonane, (d) n-decane, (e) n-undecane, (f) n-dodecane, 
(g) n- tridecane, (h) n-tetradecane, (i) n-pentadecane, (j) n-hexadecane. The short-chain 
n- alkanes show a regular stick-slip, there is a transition from stick-slip to a smooth motion 
for the n-alkanes in the middle of the series, and the three-phase line of the long-chain n-al-
kanes moves smoothly. (Reprinted from Tavana, H.,Yang, G. C., Yip, C. M., Appelhans, D., 
Zschoche, S., Grundke, K., Hair, M. L., and Neumann, A. W., Langmuir, 22, 628, 2006. With 
permission from American Chemical Society.)
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fiGure 7.27 (a) Surface morphology, and (b) the corresponding phase contrast AFM 
images of an ETMF film. (Reprinted from Tavana, H.,Yang, G. C., Yip, C. M., Appelhans, D., 
Zschoche, S., Grundke, K., Hair, M. L., and Neumann, A. W., Langmuir, 22, 628, 2006. With 
permission from American Chemical Society.)
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fiGure 7.28 (a) Surface morphology, and (b) the corresponding phase contrast AFM 
images of an ODMF film. (Reprinted from Tavana, H.,Yang, G. C., Yip, C. M., Appelhans, 
D., Zschoche, S., Grundke, K., Hair, M. L., and Neumann, A. W., Langmuir, 22, 628, 2006. 
With permission from American Chemical Society.)
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a scanned domain of 2 × 2 µm2 on ETMF and ODMF films, respectively. From the 
phase contrast images, it is seen that unlike ETMF films, there are domains with 
noncontinuous structures on the ODMF surface film. It was demonstrated that these 
structures correspond to different compositions on the surface [17]. Due to the chem-
ical incompatibility of n-hexadecyl (C16H33) and perfluoroalkyl (C7F15), the two side 
chains of ODMF segregate and give rise to microscale hydrocarbon patches of ~0.2–
0.5 µm distributed over a fluorocarbon matrix. Thus, the ODMF films become heter-
ogeneous in terms of distribution of surface energy. Additional  angle-resolved XPS 
measurements showed that there is a preferential weak phase separation between the 
n-hexadecyl and the perfluoroheptyl side chains at the  surface film of ODMF [69]. 
It will be shown in Chapter 8 that the surface tension of ODMF is 0.7 mJ/m2 larger 
than that of ETMF. Assuming a surface tension of ~20 mJ/m2 for a hydrocarbon 
film, an increase of 0.7 mJ/m2 in the surface tension of ODMF (11.7 mJ/m2) over that 
of ETMF (11.0 mJ/m2) corresponds to a contribution of ~8% hydrocarbons on the 
ODMF film.

7.5.1  connectIon BetWeen stIck-slIP and VaPor 
adsorPtIon onto odmF FIlms

As seen in the plots of Figure 7.26 for the contact angles of n-alkanes, the liquids 
with short-chain molecules show stick-slip on ODMF surfaces. There is a transition 
from stick-slip to a smooth motion for the liquids in the middle of the series. For the 
long-chain n-alkanes, that is, n-pentadecane and n-hexadecane, the patterns vanish 
and the three-phase line moves smoothly on the surface. Similarly, the vapor pres-
sure of n-alkanes decreases significantly from short-chain to long-chain liquids; that 
is, from ~5.5 kPa for n-heptane to ~0.0001 kPa for n-hexadecane. This suggests that 
stick-slip might be connected to vapor pressure of the liquids.

The analysis of the contact angles of short-chain n-alkanes reveals that vapor 
molecules are adsorbed even onto pure fluoropolymer films (see Chapter 8). Bearing 
this in mind, vapor adsorption of short-chain n-alkanes onto the films of ODMF will 
be even more significant both due to the similar chemistry of the vapor molecules 
and the hydrocarbon patches on the surfaces and the fairly high surface tension of 
these patches compared to a pure fluorocarbon surface. It is also expected that vapor 
molecules have a preference for the hydrocarbon patches of the surface, yielding a 
nonuniform adsorption pattern.

The fact that the vapor pressure of n-alkanes decreases significantly with increas-
ing chain length of liquid molecules (by two orders of magnitude from n-heptane to 
n-undecane) suggests that vapor adsorption onto the ODMF surfaces is less extensive 
for the liquids in the middle of the series compared to the first three liquids. This 
and the diminishing stick-slip suggest that the vapor of these liquids cannot reach far 
beyond the periphery of the initial sessile drop; that is, vapor adsorption occurs onto 
the solid surface only close to the drop deposited initially on the surface. The contact 
angles of any of the liquids in the middle of the series confirm this view as well. For 
instance for n-nonane, the contact angles in the “constant contact angle regime” are 
almost the same as the value predicted by Equation 7.117 for γsv = 11.70 mJ/m2, which 
is the ODMF surface tension and is determined in Chapter 8. Knowing that Equation 
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7.117 does not take into account the effect of adsorption-type processes, it would 
have to predict a value different from the measured contact angles if n-nonane vapor 
were adsorbed far from the initial contact line. The possibility of unequal adsorption 
and modification of the solid surface near the contact line due to vapor adsorption 
was also reported in the literature [21].

All the evidence strongly suggests that stick-slip is caused cooperatively by 
vapor adsorption and existence of heterogeneous patches on ODMF films. Neither 
vapor adsorption nor heterogeneity alone can explain stick-slip: Vapor adsorption of 
 short-chain n-alkanes onto homogeneous films of ETMF does not cause stick-slip 
nor do the long-chain n-alkanes (with negligible vapor pressure) show stick-slip on 
the heterogeneous ODMF surfaces. A tentative explanation is proposed below based 
on the analysis of the contact angles in Figure 7.26.

Suppose the sessile drop is in an equilibrium position; that is, the Cassie Equation 
7.5 is satisfied (cosθC = a1cosθe1 + a2cosθe2; a1 and a2 are the fractional surface 
areas of the two types of heterogeneous patches and θe1 and θe2 are the correspond-
ing intrinsic contact angles). It is also assumed that the drop periphery maintains its 
circular shape. To understand why the three-phase line remains pinned as liquid is 
pumped into the sessile drop, it is useful to consider the size of the n-alkane-covered 
hydrocarbon patches and the optical resolution of the microscope-camera arrange-
ment: This resolution is approximately two orders of magnitude below the size of 
the patches (20 µm vs. ~0.2–0.5 µm). This means that there might be a very small 
domain over which the three-phase line could move, but still retain contact with the 
patches, without being detected by the optical system. As the patches cover almost 
10% of the solid surface, they provide, apparently, a sufficiently strong anchor to 
keep the three-phase line pinned. This state of affairs also has a favorable thermo-
dynamic aspect: The three-phase line remaining stationary while the drop volume 
increase causes an increase in the contact angle on the more hydrophobic fluorocar-
bon matrix. This increase in contact angle is accompanied by a decrease in surface 
free energy, tending to a minimum value as the equilibrium contact angle on the 
fluorocarbon matrix is reached. It is significant that this increase in contact angles 
stops at a point where the advancing contact angle corresponds to γsv = 11.0 mJ/m2; 
that is, the surface tension of the fluorocarbon matrix, as obtained from ETMF. 
This limiting value (i.e., θ1), is calculated from Equation 7.117 using γsv = 11.0 mJ/
m2 and is shown by the uppermost dashed line in Figure 7.26b and c for n-octane 
and n-nonane. Because of the presence of the much more hydrophilic hydrocarbon 
patches, there will be an ever increasing force opposing the continuous increase 
of the contact angles. The increasing opposing force caused by the hydrocarbon 
patches becomes predominant as the contact angle approaches the equilibrium 
value for the fluorocarbon matrix. Possibly due to the lubricity of the adsorbed 
film, slipping is initiated. As the three-phase line slips, the contact angles show a 
fast decrease. But, because of the large percentage of fluorocarbon area, slippage 
stops well short of the equilibrium contact angle on the hydrocarbon patches, which 
might be as low as 10–20°. An average contact angle line corresponding to the end 
of the slipping process is given by θ2 in Figure 7.26b and c (lower dashed line). 
The question arises whether this limiting lower contact angle θ2 has also a surface 
thermodynamic cause. The most likely explanation is again that the Cassie equation 
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plays a role. The Cassie angle is given by the weighted average of the two types of 
solid surface; that is, the fluorocarbon matrix (γsv ≈ 11.0 mJ/m2) and the hydrocar-
bon patches (γsv ≈ 20.0 mJ/m2). To explore this venue, an equilibrium contact angle 
θ3, belonging to the hydrocarbon patches was calculated from Equation 7.117, again 
on the assumption that γsv ≈ 20.0 mJ/m2 for the hydrocarbon patches.

Next, the ratio (cosθ2 – cosθ1)/cosθ3 was defined as δ and calculated for each 
liquid. δ varies slightly from one liquid to another, between 5.5 and 9.7%, suggest-
ing that this is the percentage area of the hydrocarbon patches (see Table 7.5). The 
 average value of δ is 7.2%, consistent with the above approximation of 8% as the per-
centage area of hydrocarbons in the surface. It should be stressed that these two find-
ings are independent of each other. The above estimate of 8% is based on systems 
that do not show stick-slip. Overall: It appears that the upper limit of the stick-slip 
pattern is given by the equilibrium contact angle of the fluorocarbon matrix and the 
lower limit by the Cassie contact angle.

These findings are illustrated by the n-nonane results in Figure 7.26: The upper 
limit of sticking is given by the equilibrium contact angle on the fluorocarbon 
patches; that is, the matrix with γsv ≈ 11.0 mJ/m2. The lower limit θ2 is approximately 
equal to the global equilibrium contact angle; that is, the Cassie angle θ2, as given by 
the constant contact angle after cessation of stick-slip. This cessation is likely caused 
by the absence or reduction of adsorption well away from the initial static drop [21].

Thus, the available evidence suggests that stick-slip is caused by processes occur-
ring at the solid-vapor interface, and not, for example, at the solid–liquid interface. 
Processes in addition to adsorption such as liquid penetration may well occur, but 

table 7.5 
analysis of the Contact angles of n-alkanes 
on Odmf surfaces

liquid θ1(º) θ2(º) θ3(º) δ

n-Heptane 62.15 55.75 3.14 9.6

n-Octane 65.80 60.00 22.01 9.8

n-Nonane 68.24 64.26 28.58 7.3

n-Decane 70.09 65.80 32.79 8.3

n-Undecane 71.88 69.20 36.52 5.5

n-Dodecane 73.75 71.14 40.10 5.7

n-Tridecane 74.71 72.14 41.86 5.8

n-Tetradecane 75.63 73.09 43.25 5.9

θ1: Contact angle on a fluoropolymer with γsv = 11.0 mJ/m2

θ2: Contact angle reached at the end of slipping of the drop front
θ3: Contact angle on a hydrocarbon film with γsv = 20.0 mJ/m2

δ = [(cosθ2 – cosθ1)/cosθ3] × 100
δ represents the percentage area of the hydrocarbon patches.
Note: Reprinted from Tavana, H., Amirfazli, A., and Neumann, 

A. W., Langmuir, 22, 628, 2006. With permission from 
American Chemical Society.
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they would be subsequent to adsorption. It appears that it is adsorption on the hydro-
carbon patches that causes stick-slip, in the present systems.

In conclusion, stick-slip in the systems considered above is caused coopera-
tively by surface heterogeneity and vapor adsorption. The phenomenon has been 
observed in many other solid–liquid systems. For example, methyl salicylate and 
p-xylene on EGC-1700 surfaces [71] as well as cis-decalin and 1-bromonaphtha-
lene on films of ODMF [82], diiodomethane on poly(methyl methacrylate/ethyl 
methacrylate) films [124], 3-pyridyl carbinol, ethyl cinnamate, methyl salicylate, 
and diiodomethane on  fluoropolymer FC-725 films [125], and 2,2´-thiodiethanol 
on poly(styrene- alt-(hexyl/10-carboxydecyl(90/10)maleimide)) surfaces [126]. The 
explanation provided above may not be true for these systems because of the low 
vapor pressure of the probe liquids. It appears that elucidating the underlying causes 
in each of these cases would require a thorough investigation of the individual solid-
liquid systems.

7.6  phenOmenOlOGiCal COntaCt anGles: COntaCt 
anGles On superhydrOphObiC surfaCes

It has been demonstrated throughout this chapter that in many situations, experi-
mental contact angles are not the same as the equilibrium contact angle for the 
solid–liquid system under consideration. One further example involves certain 
very rough surfaces on which a liquid drop tends to approach a spherical shape, 
exhibiting extremely large contact angles. Such surfaces are known as “supe-
rhydrophobic surfaces,” and have found widespread interest in recent years. 
Examples of superhydrophobicity were discovered in nature, for example, the 
leaves of plants such as Lotus (Nelumbo nucifera), Taro (Colocasia esculenta), 
and Lady’s mantle (Alchemilla mollis) as well as the wings of some insects (e.g., 
Pflatoda claripennis). On such biological surfaces, a water drop beads off com-
pletely and efficiently removes dirt and debris as it rolls off the surface. This 
“self-cleaning” property, known as the “Lotus effect” [127], is particularly vital 
for marsh and water plants. In aquatic habitats, high humidity and the presence 
of water supports many pathogenic organisms [128,129]. The water-repellent sur-
face of plants eliminates the risk by hindering the adhesion of water needed for 
the germination of pathogens [129,130].

In 1996, Barthlott and Neinhuis studied this phenomenon in detail by examining 
the wettability and surface properties of various plant leaves [127]. It was shown that 
the water-repellent leaves exhibit a static contact angle of about 160°. Furthermore, 
water drops ran off the surface of the leaves very easily at inclination angles of < 5° 
without leaving any residue. Close examination of the surface of Lotus and Taro 
leaves by scanning electron microscopy (SEM) revealed that they consist of textures 
of dual-size roughness: bumps of about 10–20 µm covered with submicrometric wax 
crystals. The low surface energy of the wax and the unique hierarchical topography 
were suggested as the key characteristics of these leaves that make them water-re-
pellent. Concurrent with this work, Onda et al. reported the fabrication of a “super 
water-repellent” fractal surface of alkylketene dimer that yielded a contact angle of 
174° for water [131].
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These studies attracted a great deal of interest mainly due to the potential of 
such surfaces for various applications, for example as waterproof coatings, stain-
 resistant finishes, anti-fog mirrors/lenses, and self-cleaning windshields/window 
panes. Extensive research has been conducted on the subject in the past decade and 
different techniques have been used to fabricate superhydrophobic surfaces: Plasma 
etching [132–135], electrodeposition [136], laser treatment [137], sol-gel processing 
[138], anionic oxidation [139], chemical etching [140–143], catalytic polymerization 
[144], plasma enhanced chemical vapor deposition [145], physical vapor deposition 
[146], micropatterning with templates [147–149], and so on. Superhydrophobic sur-
faces both with random and ordered surface textures have been fabricated as shown 
in Figures 7.29a and 7.29b [146,149].

It is known that roughness of a hydrophobic surface enhances its hydrophobicity 
[4]. For example, the contact angle of water on a smooth surface of a hydrophobic 
material such as those possessing CH3 or CF3 groups is typically of the order of 
100° –130° [29,70], but when the surface is made rough, the contact angle reaches 
values as large as ~170° [146]. Figure 7.30 shows a sessile drop of water on a rough 
surface of n-hexatriacontane (a crystalline n-alkane) [146]. The corresponding con-
tact angle is 171°, whereas on the smooth surface of this material, the contact angle 

(a)

(b)

fiGure 7.29 Two superhydrophobic surfaces with: (a) random, and (b) ordered surface 
textures. (Courtesy of He, B., Patankar, N. A., and Lee, J., Langmuir, 19, 4999, 2003.) 
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of water is only ~105° [29]. Therefore, the superhydrophobic state results from a 
combination of surface roughness on the micrometer and/or nanometer scale and an 
intrinsically hydrophobic material.

The physics underlying superhydrophobicity is simple and well-understood 
[127,131,149–154]. On a superhydrophobic surface, two distinct types of wetting 
behavior might be observed depending on surface morphology and chemistry: 
(i) Wenzel model [4]; or (ii) Cassie model [8]. In the Wenzel regime, the liquid pene-
trates into the troughs of the surface texture and generally yields a large contact angle 
hysteresis (Figure 7.31a). On the other hand in the Cassie regime, the liquid drop sits 
on a composite surface that comprises solid and air pockets (Figure 7.31b). Normally 
a small hysteresis is observed in this regime. The Wenzel model is described by the 
following relation:

 cos cos ,θ θW
r

Yr=  (7.120)

where θW
r is the apparent contact angle on the rough surface (Wenzel angle), θY rep-

resents the intrinsic contact angle of the same material, and r is the roughness ratio; 

θa = 170.9° ± 0.9

fiGure 7.30 An advancing sessile drop of water on a superhydrophobic surface of 
n- hexatriacontane (corresponding to Figure 7.29a). The contact diameter of the drop is 
0.33 cm. (Reprinted from Tavana, H., Amirfazli, A., and Neumann, A. W., Langmuir, 22, 
628, 2006. With permission from American Chemical Society.)

θ° θ°

(b)(a)

fiGure 7.31 Sessile drops on two superhydrophobic surfaces: (a) in the Wenzel regime, 
and (b) in the Cassie regime.
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that is, the ratio of actual to apparent surface area. The Cassie model is described by 
the following equation:

 cosθ θC
r

s Y= − + +1 1Φ ( cos ),  (7.121)

where θC
r  is the apparent contact angle on the rough surface (Cassie angle) and 

Φs is the fraction of solid surface in contact with the liquid. Note that Equations 
7.120 and 7.121 are identical with Equations 7.4 and 7.5, respectively, and are slightly 
rewritten here.

It has been demonstrated that both wetting regimes can be obtained on a super-
hydrophobic surface depending on the geometry of the surface texture [149,154,155]. 
From a thermodynamic viewpoint, however, only one of these regimes corresponds 
to the minimum free energy of the system. Assume that a drop of water is initially in 
the Cassie state; that is, it sits on a composite of solid and air pockets. If external dis-
turbances such as applying pressure on the drop or increasing the internal pressure of 
the drop do not cause water to penetrate into the spaces between protrusions on the 
solid, the Cassie regime is of a lower energy and the drop will remain on the com-
posite solid–air surface. On the other hand, if such external disturbances cause water 
to wet the air-filled spaces, transition occurs from the Cassie regime to the Wenzel 
regime; that is, to a state of lower energy. It is important to note that the surface loses 
its water-repellency as a result of this switch in the wetting regime.

Figure 7.32 illustrates both models of superhydrophobicity, represented by solid 
lines. The dashed line represents the domain where the Cassie regime is metastable 

–1

–1+Φs

cosθY

cosθr

cosθ*–1

Cassie

0

Wenzel

fiGure 7.32 The Wenzel and the Cassie superhydrophobicity models and the threshold 
contact angle (θ*) at which the switch from one regime to the other occurs.
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and given that sufficient energy is provided to overcome the energy barriers, it would 
switch to the Wenzel regime. The switch takes place at a certain threshold contact 
angle (θ*), which is obtained by equating Equations 7.120 and 7.121:

 θ∗ −= −
−







cos
11 Φ

Φ
s

sr
.  (7.122)

It is inferred from Figure 7.32 that the likelihood of such an irreversible transi-
tion can be reduced if the texture is designed such that the corresponding thresh-
old  contact angle is as small as possible. Therefore, the metastability domain of 
the Cassie regime (the length of the dashed line in Figure 7.32) shrinks. Note that 
the Cassie regime stabilizes for θ > θ*. This is particularly important from a  practical 
standpoint since it guarantees that the surface will retain its water-repellency. It is, 
however, not trivial to design and fabricate such a surface.

In conclusion, superhydrophobic surfaces are generally fragile and the surface 
patterns are easily damaged due to contact with an object. The surfaces might also 
be vulnerable to oxidation, heat, and different solvents, depending on what mate-
rial they are made of. Furthermore, the surfaces are prone to contamination that 
adversely affects both contact angle hysteresis and the roll-off angle, diminishing 
their water-repellent property. Such durability problems have hindered the commer-
cialization of superhydrophobic surfaces, and to date only very few products have 
been launched. It still remains a challenge to fabricate long-lasting superhydrophobic 
surfaces with stable wetting characteristics.

7.7  COntaCt anGles in the presenCe 
Of eleCtriC dOuble layers

When an aqueous solution is brought in contact with a charged solid surface, elec-
trostatic charges redistribute at the surface due to interactions between the solid 
and the liquid. The charging of a surface in a liquid occurs due to the ionization 
of surface groups or by the adsorption of ionic species from the liquid phase onto 
the surface, which might initially be uncharged or charged [156]. The surface 
charges attract ions of opposite charge (counterions) from the liquid phase but 
repel the co-ions. As a result, a small region in the vicinity of the solid carries 
higher concentrations of the counterions but lower concentrations of the co-ions 
compared to the bulk liquid. This net excess of counterions is considered to reside 
in two regions near the surface: the Stern (compact) layer, where most ions are 
transiently bound to the surface, and the Gouy-Chapman (diffuse) layer in which 
ions undergo rapid thermal motions close to the surface [156,157]. The two lay-
ers are collectively known as the electric double layer (EDL) whose thickness is 
represented by the Debye length, 1/κ. The EDL thickness depends only on the 
properties of the liquid such as the ionic concentration and can range from less 
than a nanometer up to a micron [156,158]. These two layers are separated by 
a “shear plane.” The electrical potential of the shear plane is referred to as the 
zeta potential (ζ) and can be determined experimentally [159]. Figure 7.33 shows 
the schematic of an EDL and the distribution of the electrical potential (ψ). The 
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electrical potential decreases away from the Stern layer and the bulk liquid is 
assumed to carry no net charge.

The effect of EDL and the zeta potential on contact angles and solid surface ten-
sions was studied by Chai et al. [160]. Films of poly(methyl methacrylate) (PMMA) 
were subjected to a DC pulsed oxygen plasma for various time periods up to 50 sec-
onds. The plasma oxidation of a solid surface is known to introduce charged and 
polar functional groups at the surface and is a popular technique for the binding of 
layered microfluidic devices [161]. Immediately after the plasma treatment, contact 
angles of water were measured on the polymer films. The measurements were per-
formed using ADSA-P. Figure 7.34 illustrates the advancing contact angle as a func-
tion of plasma exposure time. Contact angles decrease rapidly with the treatment 
time in the first 5 seconds. Longer exposure of polymer films to oxygen plasma does 
not change the contact angles significantly. Zeta potentials were also determined 
from the measurements of streaming potential and streaming current. Figure 7.35 
shows the variation of ζ with the plasma treatment time. Zeta potential increases 
sharply within the first 5 seconds, and then the curve flattens out and reaches a value 
of –82.5 mV for 50 seconds of plasma treatment.

The zeta potential is related to the surface charge density (σ) through the  following 
equation, which is obtained by solving the nonlinear Poisson–Boltzmann equation 
[159]

 σ εε κ ζ= 2
2

0K T
e

e
K T

B

B

sinh ,  (7.123)

where ε and ε0 are permittivity of the liquid and vacuum, respectively, KB represents 
the specific bulk conductivity of the liquid, κ is the inverse of the Debye length, 
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fiGure 7.33 Schematic of the electric double layer for a flat surface in contact with an 
aqueous solution and the corresponding electrical potential.
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and T is the absolute temperature. The interfacial charge density increases from 
–0.0089 µC/cm2 for untreated PMMA in contact with water to –0.028 µC/cm2 for 
50  seconds-treated PMMA in contact with water.

The contact angles in Figure 7.34 and the zeta potential in Figure 7.35 as well 
as the calculated surface charge densities follow a similar trend with respect to the 
duration of the plasma treatment and it might be argued that change in the contact 
angle is caused, at least in part, by the increase in the zeta potential and the interfa-
cial charge density and therefore, by a stronger EDL. This point is examined below.

–30

–40

–50

–60

–70

–80

–90
0 10 20 30

Time (sec.)
40 50

Ze
ta

 p
ot

en
tia

l (
m

V)

fiGure 7.35 Variation of the zeta potential with plasma treatment time of PMMA sur-
faces. (Reprinted from Chai, J., Lu, F., Li, B., and Kwok, D. Y., Langmuir, 20, 10919, 2004. 
With permission from American Chemical Society.)
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fiGure 7.34 Contact angles of water on plasma-modified PMMA films. (Reprinted from 
Chai, J., Lu, F., Li, B., and Kwok, D. Y., Langmuir, 20, 10919, 2004. With permission from 
American Chemical Society.)
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When the surface has a zeta potential ζ, a charge density σ builds up in the EDL 
of the liquid phase and causes the solid–liquid interfacial tension (γsl) to be different 
from that without the EDL. Using Lippmann’s equation, a solid–liquid interfacial 
tension due solely to the EDL, γ sl

EDL , is defined as [162]

 γ σ φsl dEDL = ∫ ,  (7.124)

where σ and ϕ are the surface charge density and electrical potential in the EDL, 
respectively. Using the expression for the charge density from Equation 7.123 and 
integrating Equation 7.124 from ϕ = 0 to ϕ = ζ gives the following relation for γ sl

EDL

 γ
κ

ζ
sl

B

B

n K T e

K T
EDL = −





∞8
2

1cosh .  (7.125)

Thus, in the presence of an EDL effect, γsl should be written as

 γ γ γsl sl sl= −0 EDL ,  (7.126)

where γ sl
0  and γ sl

EDL denote the solid–liquid interfacial tensions without and due to the 
EDL effect, respectively. Hence, a modified Young equation can be written as [163]

 γ θ γ γ γlv sv sl slcos ( ).= − −0 EDL  (7.127)

The γ sl
EDL term can be calculated from Equation 7.124 above. To obtain γ sl

0 , the fol-
lowing equation of state for the interfacial tensions can be used (see Chapters 8 and 
9 for details)

 γ γ γ γ γ β γ γ
sl lv sv lv sv e lv sv0 2 2= + − − −( ) ,  (7.128)

where β = 0.000125 (mJ/m2)–2. To determine γ sl
0  from Equation 7.128, γ sv should be 

calculated first. Eliminating the solid–liquid interfacial tension term (γ sl
0 ) from the 

original Young equation (γ θ γ γlv sv slcos = − 0 ) and the above equation of state yields

 cos .θ γ
γ

β γ γ= − + − −1 2 sv

lv

e ( )lv sv
2  (7.129)

For a given pair of γlv and θ (surface tension of water and its contact angle on PMMA 
surfaces in the present case), Equation 7.129 yields the γ sv term. Finally, substituting 
γ sv into the modified Young’s equation (Equation 7.127) gives γ sl

0 .
Table 7.6 lists the calculated values of γ sv, γ sl

EDL, γ sl
0 , and γ sl corresponding to 

PMMA surfaces treated with oxygen plasma for different time periods. For com-
parison, the data for nontreated films are also shown. Note that the surface tension 
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of water is taken as γlv = 72.70 (mJ/m2). It is seen that the values of γ sl
0  and γ sl are 

essentially the same, differing only in the second or third significant digit after 
the decimal point. Thus, the values of γ sl

EDL for surfaces with various plasma treat-
ment times are extremely small. The key conclusion from the above set of data is 
that the contribution of EDL to the solid–liquid interfacial tension, and because 
of Equation 7.127 to the solid–vapor interfacial tension, is insignificant. This vali-
dates the assumption made in deriving the equation of state (Equation 7.128) to 
safely neglect the effect of EDL on the contact angles.

It is inferred that the enhanced hydrophilicity of plasma-treated PMMA surfaces 
is not due to the EDL; rather, it is the change of the overall surface tensions γsv and γsl 
due to the incorporation of polar groups at the surface that makes the surfaces more 
hydrophilic. In this study, PMMA was used as the substrate polymer material. It is 
expected that using polymers other than the substrate material will lead to a similar 
conclusion.

7.8  GlOssary Of COntaCt anGle COnCepts

θ: Contact angle in general: the phenomenological contact angle; that is, any contact 
angle that is observed, is often referred to simply as the contact angle, θ. For practi-
cal purposes, particularly for the study of surface tensions of solids, the validity or 
at least the applicability of Young’s equation is required. This does not mean that 
contact angles, which do not satisfy the Young equation, are of no consequence. The 
phenomenological contact angle governs phenomena in which the Laplace pressure 
plays a role, such as the penetration of a liquid into a capillary.

θES: Equilibrium contact angle of the system: the contact angle corresponding to 
the absolute minimum of the total free energy of the system, irrespective of whether 
the system is homogenous, heterogeneous, smooth, or rough. Thus, the equilibrium 

table 7.6 
Contact angle of Water on pmma surfaces modified by Oxygen 
plasma for different time periods, Corresponding solid–Vapor 
interfacial tension (γsv), and solid–liquid interfacial tensions 
Without (γ0

sl) and due to the edl effect (γsl
edl)

time (sec.) θ (°)  γsv (mJ/m2) γsl
edl (mJ/m2) γ0

sl (mJ/m2) γsl (mJ/m2)

 0 72.5 ± 0.6 40.09 0.0015 18.23 18.23

 1 61.5 ± 0.6 46.85 0.0028 12.16 12.16

 2 54.2 ± 0.7 51.22 0.0072 8.70 8.69

 5 51.5 ± 1.4 52.81 0.0084 7.56 7.55

10 51.2 ± 1.4 52.98 0.0091 7.44 7.43

50 51.0 ± 0.6 53.09 0.0096 7.35 7.34

Note: Chai, J., Lu, F., Li, B., and Kwok, D. Y., Langmuir, 20, 10919, 2004. With permission 
from American Chemical Society.
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angle, θe, the Cassie angle, θC, and the Wenzel angle, θW, are all equilibrium angles, 
θES, under the appropriate circumstances.

θe: Equilibrium contact angle: for a smooth and homogeneous solid surface, the 
equilibrium contact angle is given by Young’s equation. The contact angle θe, is vir-
tually a material property of an ideal solid surface. The conventional Young equation 
is not at all a universal equilibrium condition. For nonsimple systems, such as solids 
covered with a thin liquid film or an elastic liquid–vapor interface, the contact angle 
equilibrium condition will be different in form and content.

θa: Advancing contact angle: the contact angle of the liquid tending to advance 
across a solid surface.

θr: Receding contact angle: the contact angle of the liquid tending to recede over 
a solid surface.

θhyst.: Contact angle hysteresis: the difference between the advancing and receding 
contact angles (i.e., θhyst. = θa – θr).

θdyn: Dynamic contact angle: the contact angle associated with moving 
 solid–liquid–vapor three-phase contact lines, as opposed to a static contact angle; 
at relatively low rates of motion of the three-phase line, static and dynamic contact 
angles tend to be identical on well-prepared solid surfaces (cf. Chapter 6).

θC: The Cassie angle: the equilibrium contact angle determined by the Cassie 
equation for a heterogeneous, but smooth surface. The Cassie angle is not readily 
accessible experimentally. Even if it could be found, it would not be useful for the 
determination of surface energetics, since the ratio of the two different surface com-
ponents of the solid will not normally be known. However, in a simple model of a 
heterogeneous surface, the advancing contact angle, θa, is equal to the equilibrium 
contact angle that would be observed on the smooth homogeneous surface of the 
low energy surface component. Therefore, in such situations, the advancing contact 
angle represents an angle that is meaningful in the context of Young’s equation. It 
may be called a Young contact angle, θY (see below).

θW: Wenzel contact angle: the equilibrium contact angle for a rough surface; it 
is given by the Wenzel equation. For practical purposes, it is similarly inaccessible 
and unsuitable for energetic interpretations as the Cassie angle. Unlike the situation 
of some heterogeneous surfaces, the advancing angle on a rough surface cannot be 
readily interpreted in terms of the solid surface tension. Thus, contact angle hyster-
esis due to roughness precludes an interpretation in terms of solid surface tension, at 
least at the present state of knowledge.

θY: Young contact angle: those contact angles that may be used in conjunction 
with the Young equation. For a smooth and homogeneous solid surface, the Young 
contact angle is just the equilibrium contact angle; for a smooth but heterogeneous 
surface the advancing and/or receding contact angles may represent Young contact 
angles, although they are clearly not equilibrium contact angles.

θM: The macroscopic contact angle: the contact angle observable with the usual 
optical means. In the case of, say, a sessile drop, the three-phase line may be con-
torted on a microscopic scale, causing the contact angle to vary along the three-
phase line on that same scale. The observable, macroscopic contact angle may well 
be constant.
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8.1 intrOduCtiOn

Contact angle phenomena have been the subject of numerous studies in surface 
 science for several decades. Contact angles play a major role in phenomena such 
as wetting and adhesion as well as in a wide range of technological and biological 
systems. For systems involving contact between a liquid phase and a solid phase, 
contact angles are a manifestation of the energetics of the solid surface. Thus, a 
complete understanding of contact angles requires precise information about solid 
surface tensions. Interest has been enhanced by the recent advances in the field of 
micro/nanotechnology and by the ability to fabricate miniaturized devices. Due to 
the large ratio of surface area to volume in such micro/nanodevices, surface forces 
including surface tensions become extremely important and control various pro-
cesses. Examples of such devices are: surface tension-based bubble valves and pumps 
that are being used in microfluidic and nanofluidic systems of inkjet printers, micro 
total analysis systems (µTAS) that facilitate the study of chemical species and living 
cells by fabricating microdrops from a liquid jet under the action of surface tension, 
microfluidic-based flow cytometers utilizing surface tension effects to control the 
flow configuration of a liquid sample containing living cells and chemical species 
in order to detect, sort, and analyze their morphological and biochemical properties, 
and nanoelectromechanical relaxation oscillators made of carbon nanotubes that 
take advantage of surface tension to oscillate droplets back and forth using electric 
current. To properly design such devices, one would certainly require a priori knowl-
edge of the surface tensions of both liquid and solid phases and the corresponding 
solid–liquid interfacial tension.

Direct measurement of surface tension of liquids is straightforward and several 
techniques such as the Wilhelmy plate technique [1–4], the drop weight method 
[2–4], the oscillating jet method [3,4], the capillary wave method [2,3], the spinning 
drop method [2–4], and drop shape techniques [2–3] have been developed for this 
purpose. In contrast, due to the immobility of molecules in a solid phase, it is quite 
difficult to measure solid surface tensions directly. Nevertheless, a few experimental 
techniques have been proposed for this purpose. Cleavage of a crystal is one example 
[5–7]. During the cleavage process, if the material undergoes a reversible isother-
mal process, the solid–vapor interfacial tension (γsv) is approximately given by the 
free energy of cleavage. But, if irreversibilities occur during the process, the solid 
surface tension can no longer be defined as the free energy of cleavage. Thus, this 
conceptually simple treatment is suitable only for crystals with brittle structure, such 
as alkali halides and graphite. Historically, the interpretation of the measurements 
has been associated with ambiguity because cleavage usually involves effects such as 
plastic deformation of the sample as well as adsorption of atmospheric gases, which 
are believed to be responsible for variations of up to two orders of magnitude in the 
reported values for solid surface tensions in the literature [6]. To minimize plastic 
deformation, cleavage should be carried out at low temperatures. To avoid formation 
of adsorption layers from the atmosphere, such experiments will have to be carried 
out in ultra high vacuum.

Due to such uncertainties and difficulties associated with direct techniques for the 
determination of solid surface tensions, several indirect approaches, both experimental 
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and theoretical, are often used. They include contact angle  measurements with 
 different liquids [8–13], direct force measurements [14–20], solidification front tech-
niques [21–26], film flotation [27–30], sedimentation techniques [31–33], capillary 
penetration into columns of particle powder [34–37], gradient theory [38,39], and the 
Lifshitz theory of van der Waals forces [40–42]. Among these methods, the contact 
angle approach is the most broadly applicable one.

Estimating solid surface tensions from contact angles is based on a relation first 
recognized by Young [43]. In principle, the contact angle of a liquid drop on a solid 
surface is determined by the mechanical equilibrium under the action of three inter-
facial tensions, the liquid–vapor surface tension, γlv, the solid–vapor surface tension, 
γsv, and the solid–liquid interfacial tension, γsl. This equilibrium relation is known as 
the Young equation

 γ θ γ γlv sv slcos = − ,  (8.1)

where θ is the Young contact angle. The only measurable quantities in the Young 
equation are γlv and θ. Therefore to obtain γsv and γsl, an additional relation is 
required.

Seeking an explicit relation between the three interfacial tensions is not novel 
and has a long history. Numerous studies have been conducted to meet this need. 
An early attempt is due to Antonow [44] who proposed the following simple relation 
to obtain the interfacial tension between two condensed phases from the interfacial 
tensions of these phases against air, in the present case:

 γ γ γsl lv sv= − .  (8.2)

However, relations relying on this equation have not been able to provide a secure 
basis to estimate solid surface tensions (Chapter 9).

A significant contribution to the field of contact angles was made with the pio-
neering work of Zisman in the 1950s [45,46]. He performed an experimental study 
of contact angles on various low energy surfaces such as polytetrafluoroethylene, 
polystyrene, and polyethylene terephthalate (PET) using a large number of liquids 
of relatively high surface tension (i.e., γlv > γsv). Considering the measurement tech-
niques available at the time, his contact angles were of good quality, having an accu-
racy of ~±2–3°. Zisman was the first to observe that if the cosine of contact angles 
of the liquids is plotted as a function of liquid surface tension (cosθ vs. γlv), the data 
points fall within a linear band. From such patterns, he introduced the critical sur-
face tension of wetting (γc) for a solid surface. Although he stated that γc behaves as 
one would expect γsv to behave, he took great care not to identify γsv with γc. Zisman 
advanced the understanding of contact angles and their interpretation in terms of 
energetics of solid surfaces remarkably. His work was a milestone in this field and 
set the stage for subsequent developments.

There were also studies attempting the determination of solid surface tensions 
using contact angles but involving certain theoretical aspects. Pioneered by Fowkes 
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in the 1960s [9], this approach is known as the surface tension components approach. 
He argued that dispersive forces are always present in a material but other types of 
intermolecular forces may or may not be present depending on the specific chemical 
nature of the material. With this view, he postulated that the total surface tension of 
a material can be divided into two parts, the part due to dispersive forces (γd) and 
the part due to nondispersive forces (γn), and suggested that when two immiscible 
phases are brought into contact, only those intermolecular forces that are common 
to both phases act across the interface. This means that for a solid–liquid system, the 
contact angle not only depends on the total liquid and solid surface tensions (γlv and 
γsv), but also on the specific intermolecular forces. This approach was later extended 
by others including Owens, Wendt, Kaelble, and van Oss to take into account other 
types of intermolecular interactions [11–13,47]. However, it has been shown in detail 
that these approaches are not compatible with experimental data and do not reflect 
physical reality [48]. Furthermore, they do not satisfy the thermodynamic principle 
of the phase rule for capillary systems [49]. Of course, strictly speaking, phase rule 
arguments are not applicable for nonthermodynamic quantities like γd and γn. The 
failure of the surface tension component approaches to predict solid surface tensions 
will be discussed in Chapter 9.

8.2 COntaCt anGle measurements

The success of Zisman’s work was an indication that more significant progress might 
be achieved on the experimental side of the study of contact angles. This was pur-
sued further by Neumann and his coworkers. An important step in this direction was 
to scrutinize the measurement technique and to obtain contact angles with accuracy 
better than that achievable before. 

Over the past two decades, advances of computational tools and numerical 
schemes have allowed for the development of new methodologies for the measure-
ment of surface tension of liquids and contact angles, such as Axisymmetric Drop 
Shape Analysis (ADSA). ADSA determines liquid–fluid interfacial tensions and 
contact angles from the shapes of axisymmetric menisci; that is, sessile and pendant 
drops (Chapter 3). Assuming the experimental drop profile to be axisymmetric and 
Laplacian, ADSA finds the theoretical profile that best matches the profile extracted 
from the image of a real drop. From the best match, several parameters such as 
the liquid–vapor interfacial tension and the contact angle are determined. ADSA 
is a robust technique that yields liquid surface tensions and contact angles with a 
reproducibility of ±0.1 mJ/m2 and ±0.2°, respectively. ADSA was developed in the 
1980s [50] and was optimized and reformulated later in the 1990s [51,52]. A detailed 
account of ADSA is given in Chapters 3–6.

For the purpose of interpretation of contact angles in terms of solid surface ten-
sions, contact angles that are thermodynamically significant and compatible with 
the Young equation have to be used. Experience shows that the measurement of 
such contact angles is not trivial. For example, simply depositing a droplet on a 
solid surface and measuring the corresponding static contact angle using a goniom-
eter technique is not a suitable strategy. Processes such as evaporation of liquid and 
creeping of liquid into the solid can cause the static contact angle to be different from 
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the equilibrium contact angle. Unfortunately, the literature of contact angle research 
contains a large amount of such inaccurate data. It has been argued that equilibrium 
contact angles compatible with the Young equation can be obtained if the three-
phase line is advanced slowly (i.e., below 0.5 mm/min) during the contact angle 
experiment (see Chapter 6). The measurement can be facilitated by forming an initial 
small drop on the surface and then pumping more liquid into the drop from a small 
hole on the surface using a motorized syringe. Thus, drop fronts advancing on the 
solid surface and equilibrium advancing angles are obtained. Figure 8.1 illustrates 
the difference between static and low-rate dynamic contact angles for an experiment 
with distilled water on an FC-722 fluoropolymer surface. It is seen that carefully 
depositing an initial drop from above on the solid surface results in a contact angle 
of ~108°. Addition of a certain amount of liquid is required for the initial drop front 
to start advancing. Increasing the drop volume (V) linearly from 0.18 to 0.22 cm3, by 
a motorized-syringe mechanism, increases the contact angle (θ) from approximately 
108° to 119° at constant three-phase contact radius (R). Further increase in the drop 
volume causes the three-phase line to advance, with essentially constant advancing 
contact angle (θ) as R increases. The rate of motion of the three-phase line in this 
particular example is 0.14 mm/min.
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fiGure 8.1 Low-rate dynamic contact angle θ, drop radius R, and drop volume V of water 
on the fluoropolymer FC-722 surface. (Reprinted from Kwok, D. Y., Lin, R., Mui, M., and 
Neumann, A. W., Colloids and Surfaces A, 116, 63, 1996. With permission from Elsevier.)
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It is noted that if supply of liquid into the sessile drop is stopped, the result-
ing static contact angles will be identical with the low-rate advancing angles. 
Figure 8.2 illustrates this point for a cis-decalin/FC-722 system. This and similar 
experiments indicate that the contact angles are independent of the slow rate of 
advancing, suggesting that the low-rate advancing contact angles and properly 
measured static contact angles are identical and may be used interchangeably. 
Details about the influence of the rate of motion on contact angles are given in 
Chapters 6 and 7.

8.3 General COntaCt anGle patterns

Li et al. employed an experimental protocol similar to that explained above to mea-
sure contact angles of liquids with different properties (polar as well as nonpolar) on 
the films of three different polymers; that is, fluoropolymer FC-721, fluorinated ethyl-
ene propylene (FEP), and PET [53]. In order to follow Young’s equation more closely, 
γlvcosθ was plotted versus γlv for the contact angles of various liquids obtained on one 
and the same polymeric solid surface (i.e., FC-721). It was shown that this procedure 
yields data points that vary systematically with liquid surface tension, regardless of 
properties of the test liquids (Figure 8.3). Using the solid surfaces of FEP and PET 
(and hence changing γsv) shifted the contact angles in a regular manner. From contact 
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fiGure 8.2 Dynamic and static contact angles of cis-decalin on the fluoropolymer 
FC-722 surface. The low-rate contact angles are identical to properly measured static angles. 
(Reprinted from Kwok, D. Y., Lin, R., Mui, M., and Neumann, A. W., Colloids and Surfaces 
A, 116, 63, 1996. With permission from Elsevier.)
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angle results with these three solid surfaces, it was concluded that γlvcosθ depends on 
liquid surface tension (γlv) and solid surface tension (γsv) only.

To ensure the universality of such contact angle patterns, contact angle 
 measurements were extended to numerous other solid–liquid systems. The solid sur-
faces were: (i) fluoropolymer FC-721, (ii) fluoropolymer FC-722, (iii)  fluoropolymer 
FC-725, (iv) Teflon FEP, (v) n-hexatriacontane, (vi) cholesteryl acetate, (vii) poly 
(propene-alt-N-(n-hexyl)maleimide), (viii) poly (n-butyl methacrylate), (ix) poly-
styrene (PS), (x) poly (styrene-alt-(n-hexyl/10-carboxydecyl(90/10)maleimide)), (xi) 
poly (methyl methacrylate/n-butyl methacrylate), (xii) poly (propene-alt-N-(n-propyl)
maleimide), (xiii) poly (methyl methacrylate) (PMMA), and (xiv) poly (propene-alt-
N- methylmaleimide). The contact angle experiments with these solids were conducted 
by an automated axisymmetric drop shape technique or a capillary rise technique at 
low rates of advancing of the three-phase line [48,54]. Both these techniques yield 
highly reproducible contact angles. Table 8.1 summarizes the results. The third col-
umn shows the liquid surface tension values measured by independent pendant drop 
experiments and the fourth column presents the advancing contact angles. The plot 
of γlvcosθ versus γlv was constructed for the contact angle data obtained with differ-
ent liquids on each of the above solid surfaces. Figure 8.4 encompasses the results for 
all the solid surfaces. The contact angles change smoothly and systematically with 
liquid surface tension on each solid. Changing the solid surface shifts the contact 
angles in a regular manner.

Overall, these contact angle patterns suggest that γlvcosθ depends on liquid sur-
face tension and solid surface tension only; that is,

 γ θ γ γlv lv svfcos ( , ),=  (8.3)
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table 8.1
summary of advancing Contact angles of Various liquids on different solid 
surfaces

solid surface/technique liquid γlv (mJ/m2) θ (degree) γsv

FC-721-coated mica/capillary 
rise [103]

Dodecane 25.03 70.4 11.7

2-Octanol 26.00 73.5 11.3

Tetradecane 26.50 73.5 11.6

1-Octanol 27.28 75.1 11.5

Hexadecane 27.31 75.6 11.3

1-Hexadecene 27.75 74.0 12.0

1-Decanol 28.29 76.6 11.5

1-Deodecanol 29.53 79.2 11.3

FC-722-coated mica/ADSA-P 
[104]

Decane 23.88 67.36 11.9

1-Pentanol 26.01 72.95 11.5

trans-Decalin 27.19 73.38 11.9

Hexadecane 27.62 75.94 11.4

1-Decanol 28.99 78.84 11.2

cis-Decanol 32.32 79.56 12.4

Ethyl cinnamate 37.17 86.54 12.2

Dibenzylamine 40.80 90.70 12.2

Dimethyl sulfoxide (DMSO) 42.68 90.95 12.9

1-Bromonaphthalene 44.31 93.81 12.4

Diethylene glycol 44.68 94.22 12.4

Ethylene glycol 47.55 97.87 12.1

Diiodomethane 49.98 101.18 11.7

2,2’-Thiodiethanol 56.26 104.56 12.7

Formamide 59.08 108.49 12.0

Glycerol 65.02 111.73 12.8

Water 72.70 118.69 12.2

FC-722-coated silicon wafer/
ADSA-P [105]

Hexane 18.50 50.83 12.4

2-Octanol 26.42 74.74 11.2

Hexadecane 27.62 75.64 11.5

Glycerol 65.02 111.89 12.7

FC-725-coated silicon wafer/
ADSA-P [106]

Dodecane 25.64 71.02 11.8

Hexadecane 27.62 73.41 12.1

3,3-Thiodipropanol 39.83 90.48 11.9

Diethylene glycol 45.16 94.47 12.5

Ethylene glycol 48.66 100.05 11.6

2,2’-Thiodiethanol 53.77 101.07 13.2

Formamide 59.08 106.89 12.7

Glycerol 63.13 110.21 12.7

Water 72.70 119.31 11.9
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table 8.1 (Continued)
summary of advancing Contact angles of Various liquids on different solid 
surfaces

solid surface/technique liquid γlv (mJ/m2) θ (degree) γsv

Teflon (FEP)/capillary rise 
[103]

Dodecane 25.03 47.8 17.7

2-Octanol 26.00 52.3 17.2

Tetradecane 26.50 52.6 17.5

1-Octanol 27.28 54.4 17.5

Hexadecane 27.31 53.9 17.7

1-Hexadecene 27.75 54.2 17.9

1-Dodecanol 29.53 55.7 18.6

Dimethylformamide 35.21 68.6 17.7

Methyl salicylate 38.85 72.2 18.4

Hexatriacontane/capillary rise 
[89,107]

Ethylene glycol 47.70 79.2 20.3

2,2’-Thiodiethanol 54.00 86.3 20.3

Glycerol 63.40 95.4 20.6

Water 72.80 104.6 20.3

Cholesteryl acetate/capillary 
rise [89,108]

Ethylene glycol 47.70 77.0 21.3

2,2’-Thiodiethanol 54.00 84.3 21.3

Glycerol 63.40 94.0 21.3

Water 72.80 103.3 21.1

Poly(propene-alt-N-(n-hexyl)
maleimide)/ADSA-P 
[109,110]

cis-Decalin 32.32 28.81 28.5

Triacetin 35.52 39.45 28.3

Diethylene glycol 44.68 61.04 26.7

Glycerol 65.02 82.83 28.6

Water 72.70 92.26 27.8

Poly(n-butyl methacrylate)/
ADSA-P [111]

Diethylene glycol 45.16 58.73 28.0

3-Pyridylcarbinol 47.81 60.30 29.2

2,2’-Thiodiethanol 53.77 68.00 29.4

Formamide 59.08 76.41 28.5

Glycerol 65.02 82.11 29.0

Water 72.70 90.73 28.7

Polystyrene/ADSA-P [112] Dimethyl sulfoxide (DMSO) 42.68 50.67 29.7

Diethylene glycol 44.68 52.41 30.5

Ethylene glycol 48.66 61.20 29.3

Formamide 59.08 74.76 29.4

Glycerol 63.11 78.38 30.0

Water 72.70 88.42 30.2

Poly(styrene-alt-(hexyl/10-
carboxydecyl(90/10)
maleimide))/ADSA-P [113]

Diethylene glycol 45.16 51.32 31.3

Ethylene glycol 48.66 59.72 30.2

Formamide 58.45 70.28 31.4

Glycerol 63.13 76.51 31.0

Water 72.70 87.13 31.0

(Continued)
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where f is as yet an unknown function. Combining this relation with the Young equa-
tion yields

 γ γ γsl lv svF= ( , ),  (8.4)

where F is another as yet unknown function. It was concluded that an equation of 
state for the interfacial tensions exists. In view of this, unlike what is claimed by the 
proponents of the surface tension component approaches, intermolecular forces of liq-
uids and solids do not appear to have any independent major effect on contact angles. 
Existence of an equation of state is also supported by a thermodynamic phase rule for 
capillary systems. For a solid–liquid system that is in contact with the vapor of the 
liquid (two-component system), there are only two degrees of freedom; that is, the 
contact angle can be changed by changing either the liquid or the solid (see Chapter 7). 
It is emphasized that the above relationship between γlvcosθ and γlv and γsv may not be 
obtainable from inadequate procedures or methods, such as measurement on static 
drops. The above contact angle patterns can only be inferred from advancing contact 
angles carefully measured at low rates of motion of the three-phase line [48,53].

table 8.1 (Continued)
summary of advancing Contact angles of Various liquids on different solid 
surfaces

solid surface/technique liquid γlv (mJ/m2) θ (degree) γsv

Poly(methyl methacrylate/n-
butyl methacrylate)/ADSA-P 
[114]

1-Iodonaphthalene 42.92 35.67 35.7
3-Pyridylcarbinol 47.81 49.22 34.2
2,2’-Thiodiethanol 53.77 57.84 34.6
Formamide 59.08 66.33 34.0
Glycerol 65.02 74.72 33.3
Water 72.70 81.33 34.6

Poly(propene-alt-N-(n-propyl)
maleimide)/ADSA-P 
[109,110]

1-Iodonaphthalene 42.92 35.19 35.9
1-Bromonaphthalene 44.31 30.75 38.6
1,3’-Diiodopropane 46.51 39.98 37.1
2,2’-Thiodiethanol 53.77 54.04 36.5
Glycerol 65.02 70.67 35.7
Water 72.70 77.51 37.0

Poly(methyl methacrylate)/
ADSA-P [115]

1,3-Diiodopropane 46.51 36.95 38.3
3-Pyridylcarbinol 47.81 39.47 38.4
Diiodomethane 49.98 42.25 39.0
2,2’-Thiodiethanol 53.77 50.35 38.3
Formamide 59.08 57.73 38.6
Glycerol 65.02 66.84 37.9
Water 72.70 73.72 39.3

Poly(propene-alt-N-
methylmaleimide)/ADSA-P 
[105]

Diiodomethane 49.98 30.71 43.7
Glycerol 65.02 60.25 41.7
Water 72.70 69.81 41.8

Note: The γsv values are calculated from Equation 8.6. Reprinted from Kwok, D. Y. and Neumann, A. W., 
Advances in Colloid and Interface Science, 81, 167, 1999. With permission from Elsevier.
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It was shown that the above functional relationship, called an “equation of state 
for interfacial tensions” may be sought in the form (see Chapter 9 for details)

 γ γ γ γ γ β γ γ
sl lv sv lv sv e= + − − −2 ( )lv sv

2 ,  (8.5)

where β is an empirical constant. Combining this relation with the Young equation 
yields

 cos .θ γ
γ

β γ γ= − + − −1 2 sv

lv

e ( )lv sv
2  (8.6)

Calculating the solid surface tension from this equation is straightforward. For a 
given set of γlv and θ for different liquids measured on one and the same type of solid 
surface, the constant β and γsv values can be determined by a multivariable optimi-
zation using a least-squares technique [55]. Starting out with arbitrary values for β 
and γsv, an iterative procedure can be used to identify a pair of β and γsv that provides 
the best fit of Equation 8.6 to the experimental γlv and θ values. The solid lines in 
Figures 8.3 and 8.4 have been obtained by applying this strategy to the experimental 
contact angles [48,53]. The β and γsv values corresponding to each solid surface of 
Figure 8.3 are given in Table 8.2. Since the values of β and γsv did not show any cor-
relation, a weighted average of 0.000125 (mJ/m2)–2 was calculated for β. 
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fiGure 8.4 Plot of γlvcosθ vs. γlv for various solid surfaces. The contact angles measured 
on each solid surface fall on a smooth curve. These patterns suggest that γlvcosθ is only a func-
tion of γlv and γsv. ⚫ FC-721-coated mica; ⚪ FC-722-coated mica and wafer; ▴ FC-725-coated 
wafer; ⬦ Teflon FEP; ⬥ hexatriacontane; ▿ cholesteryl acetate; ▾ poly(propene-alt-N-(n-
hexyl)maleimide); ◽ poly(n-butyl methacrylate); ▹ polystyrene; ▴ poly(styrene-alt-(hexyl/10-
carboxydecyl(90/10)maleimide)); ◃ poly(methyl methacrylate/n-butyl methacrylate); ▵ 
poly(propene-alt-N-(n-propyl)maleimide); ▸ poly(methyl methacrylate); ▿ poly(propene-
alt-N-methylmaleimide). (Reprinted from Kwok, D. Y. and Neumann, A. W., Advances in 
Colloid and Interface Science, 81, 167, 1999. With permission from Elsevier.)
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Using this β the γsv value corresponding to the contact angle of each liquid in 
Table 8.1 was calculated from Equation 8.6 and the results are shown in the last 
column of Table 8.3. For each solid surface, the γsv values are essentially indepen-
dent of the choice of the probe liquid. This large body of data confirms the valid-
ity of the equation of state approach to determine solid surface tensions. A similar 

table 8.2
the Values of γsv and β for three solid 
surfaces Obtained from equation 8.6 using 
a multivariable Optimization technique

solid surface fC-721 fep pet

γsv (mJ/m2) 11.78 17.85 35.22

β (mJ/m2)−2 0.000121 0.000134 0.000111

Note: β has a weighted average of 0.000125 (mJ/m2)–2. 
Reprinted from Li, D. and Neumann, A. W., Journal 
of Colloid and Interface Science, 148, 190, 1992. 
With permission from Academic Press.

table 8.3
γsv and β Values for Various solid surfaces Obtained from equation 8.6 
using a multivariable Optimization technique

solid surface/technique
number 

of system

least-square fit

β γsv

FC-721-coated mica/capillary rise 8 0.000124 11.7

FC-721-coated mica/ADSA-P 17 0.000111 11.8

FC-721-coated silicon wafer/ADSA-P 4 0.000111 11.8

FC-721-coated silicon wafer/ADSA-P 9 0.000114 11.9

Teflon FEP/capillary rise 9 0.000142 18.0

Hexatriacontane/capillary rise 4 0.000124 20.3

Cholesteryl acetate/capillary rise 4 0.000128 21.5

Poly(propene-alt-N-(n-hexyl)maleimide)/ADSA-P 5 0.000122 27.9

Poly(n-butyl methacrylate)/ADSA-P 6 0.000124 28.8

Polystyrene/ADSA-P 6 0.000120 29.7

Poly(styrene-alt-(hexyl/10-carboxydecyl(90/10)
maleimide))/ADSA-P

5 0.000120 30.8

Poly(methyl methacrylate/n-butyl methacrylate)/ADSA-P 6 0.000136 34.7

Poly(propene-alt-N-(n-propyl)maleimide)/ADSA-P 6 0.000133 36.9

Poly(methyl methacrylate)/ADSA-P 7 0.000113 38.3

Poly(propane-alt-N-methylmaleimide)/ADSA-P 3 0.000167 43.4

Note:  Reprinted from Kwok, D. Y. and Neumann, A. W., Advances in Colloid and Interface 
Science, 81, 167, 1999. With permission from Elsevier.
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multivariable optimization can be carried out with the contact angles of different 
liquids on each of the solid surfaces of Figure 8.4. Table 8.3 shows the resulting β 
and γsv values. The value of β ranges from 0.000111 (mJ/m2)–2 to 0.000167 (mJ/m2)–2. 
A statistical analysis based on different β and γsv values again showed no correlation 
between them; that is, β did not change systematically with the solid surface. Thus 
an average value was determined for β as 0.000123 ± 0.000010 (mJ/m2)–2 [53]. This 
β is in excellent agreement with the original β value of 0.000125 (mJ/m2)–2 and such 
small differences in β do not influence the calculated γsv values significantly. This 
will be shown below.

These studies confirmed that the equation of state is compatible with experimen-
tal data and is capable of predicting consistent γsv values. Investigation of the contact 
angles of a large number of solid–liquid systems showed that the choice of probe 
liquids does not affect the results dramatically.

8.4  COntaCt anGle deViatiOns frOm smOOth 
CurVes Of γlvCOsθ Versus γlv

Close scrutiny of the smooth curves of γlvcosθ versus γlv shows that contact angles 
usually do not fall perfectly on the curves and that there is a typical scatter of 
1–3° [48,56]. An example is shown in Figure 8.5 for the contact angles of several 
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liquids on the films of two different polymers. The existence of the deviations 
introduces an element of uncertainty in the determination of solid surface tensions. 
For instance, a deviation of ±3° in the contact angles typically results in an error 
of ~±1.5 mJ/m2 in the calculated value for the solid surface tension (γsv). A number 
of factors have been suggested as possible causes of the scatter [48,57]. Following 
are two examples:

 (i) Adsorption: The equilibrium spreading pressure is given by

 π = γs – γsv, (8.7)

  where γs is the solid surface tension in vacuum. It was argued that for one 
and the same solid surface, γsv is expected to be constant if the vapor pres-
sure of the liquid is negligible. But for liquids of fairly high vapor pressure, 
vapor adsorption onto the solid could cause γsv to be different from the 
surface tension of the bare solid, γs, giving rise to contact angle deviations 
of the type shown in the above figure. An equilibrium spreading pressure of 
~1 mJ/m2 has been suggested as a reasonable estimate for low-energy solid 
surfaces due to vapor adsorption [57].

 (ii) Impurities: The liquids and solids selected for the contact angle experiments 
were usually of high purity, usually > 99%. Nevertheless, minor impurities 
in a solid–liquid system are unavoidable, for example, in the form of swell-
ing of the polymer film. Such minor impurities were speculated to possibly 
account for the contact angle deviations.

To investigate the problem of deviation in contact angles from smooth curves 
and to tighten the determination of solid surface tensions from contact angles 
using the equation of state approach, the remainder of this chapter will focus on 
the question of contact angle deviations. In this context, it is important to explore 
the underlying causes for the contact angle deviations and to find out how solid 
surface tensions can be determined with accuracy better than that achievable so 
far. It is emphasized upfront that the existence of contact angle deviations does not 
weaken the status of the equation of state, as it was shown above that this approach 
yields fairly consistent values for solid surface tensions (Table 8.1) without the 
subsequent considerations.

In the present chapter, a comprehensive examination of contact angles of two 
diverse groups of liquids on the surfaces of four different fluoropolymers will 
be presented to explore the processes underlying contact angle deviations from 
smooth curves of γlvcosθ versus γlv. This analysis will lead to a series of criteria 
that further scrutinize the equation of state for the determination of solid surface 
tensions.

A series of n-alkanes as well as liquids with “bulky” molecules were selected as test 
liquids for contact angle measurements. Table 8.4 lists the test liquids and shows their 
surface tension and purity. The surface tensions of the liquids were determined from 
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table 8.4
surface tension of the test liquids from 
pendant drop experiments at 24 ± 0.5°C and 
purity of each liquid

test liquid γlv (mJ/m2) purity (%)

n-alkanes
n-Hexane 18.32 99 + %
n-Heptane 20.03 99 + %
n-Octane 21.53 99 + %
n-Nonane 22.64 99 + %
n-Decane 23.54 99 + %
n-Undecane 24.47 99 + %
n-Dodecane 25.49 99 + %
n-Tridecane 26.04 99 + %
n-Tetradecane 26.58 99 + %
n-Pentadecane 27.07 99 + %
n-Hexadecane 27.30 99 + %

liquids with bulky molecules
OMTS 16.72 98%
OMCTS 18.20 98%
DMCPS 18.77  ≥ 97%
p-Xylene 27.90 99 + %
o-Xylene 29.30 98%
cis-Decalin 32.16 99%
trans,trans,cis-1,5,9-
Cyclododecatriene

33.88 98%

Tetralin 36.15 99%
Ethyl trans-cinnamate 36.60 99%
Diethyl phthalate 36.67 99.50%
Methyl salicylate 38.71 99 + %
Dibenzylamine 39.70 98%
Benzyl benzoate 41.75 99%
Lepidine 43.20 99%
4-Benzylisothiazole 44.03 98%
2-Pyridyl carbinol 47.55 98%

naphthalene Compounds
1-Fluoronaphthalene 36.12  ≥ 99%
1-Methylnaphthalene 38.10  ≥ 97%
1-Chloronaphthalene 40.65 97%
1-Bromonaphthalene 43.70 98%
1-Iodonaphthalene 46.59 98%
Distilled water 72.29

Note: Reprinted from Tavana, H., et al., Advances in Colloid 
and Interface Science, 132, 1, 2007. With permission 
from Elsevier.
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pendant drop experiments. Four fluoropolymers with distinct molecular structure and 
chemical composition were selected as the coating materials, as listed below:

 a. poly(4,5-difluoro-2,2-bis(trifluoromethyl)-1,3-dioxole-co- tetrafluoroethylene), 
65 mole% dioxole (Teflon AF 1600), a fluoropolymer with a glass transition 
temperature of Tg = 160°C [58].

 b. poly(2,2,3,3,4,4,4-heptafluorobutyl methacrylate) (EGC-1700), a fluori-
nated acrylate polymer with Tg = 30°C [59].

 c. poly(ethene-alt-N-(4-(perfluoroheptylcarbonyl)aminobutyl)maleimide) 
(ETMF), which is a maleimide copolymer possessing a long fluorinated 
side chain and has a Tg of 100°C [60].

 d. poly(octadecene-alt-N-(4-(perfluoroheptylcarbonyl)aminobutyl)maleim-
ide) (ODMF) is also a maleimide copolymer fairly similar to ETMF but 
possesses an additional n-hexadecyl side chain and has a Tg = 65°C [60].

The repeat unit of each polymer is shown in Figure 8.6. The polymer films were 
prepared by spin-coating and dip-coating techniques, as described in Chapter 6. The 
morphology of the polymer surfaces was characterized by atomic force microscopy 
(AFM) in the tapping mode. Figure 8.7 illustrates an example of the morphology of 
Teflon AF 1600 over a scanned area of 4 × 4 µm2. The films are very smooth with 
root-mean-square (RMS) roughness of ~0.4 nm and maximum peak-to-valley dis-
tances of ~2.0 nm. Similar measurements for EGC-1700, ETMF, and ODMF surfaces 
yielded RMS mean roughness of ~1.4 nm, ~0.4 nm, and ~1.3 nm, with corresponding 
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fiGure 8.6 Repeat unit of: (a) Poly(4,5-difluoro-2,2-bis(trifluoromethyl)-1,3-dioxole-
co-tetrafluoroethylene), 65 mole% dioxole (Teflon AF 1600); (b) poly(2,2,3,3,4,4,4-hepta-
fluorobutyl methacrylate) (EGC-1700); (c) poly(ethene-alt-N-(4-(perfluoroheptylcarbonyl)
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maximum peak-to-valley distances of ~8.5 nm, ~3.5 nm, and ~4.0 nm, respectively. 
It is known that roughness on this scale does not influence the contact angles signifi-
cantly [61].

8.5 reprOduCibility Of COntaCt anGle measurements

To address the problem of contact angle deviations from smooth curves of γlvcosθ 
versus γlv in detail, it should be first established whether the contact angles are solely 
a material property or are influenced by other factors such as the thickness of the 
polymeric films and film preparation techniques. Langmuir [62] and then Zisman [63] 
were the first to state that a single monolayer should be sufficient to determine the wet-
ting properties of a solid film. However data in the literature seemingly suggest that 
this is not necessarily the case. Following are two examples: (i) Cho et al. reported 
contact angles of water on different thicknesses of Teflon films produced by spin-
coating and thermal evaporation techniques [64]. On spin-coated films of ~5 nm (pro-
duced by a 0.01% concentration solution), the contact angle of water was 105°. Similar 
values were measured on thermally evaporated films thicker than 3 nm. However, the 
contact angle decreased to as low as 51° when the thickness of a thermally evaporated 
film was reduced to 1.5 nm. (ii) Extrand investigated the contact angles of water and 
ethylene glycol on three different polymer surfaces: natural rubber (NR), polystyrene 
(PS), and poly(methyl methacrylate) (PMMA) [65]. The films were produced by a 
spin-casting technique on both heated silicon wafers and ozone-treated wafers. In 
the case of NR films, the “critical thickness”; that is, thickness above which contact 
angles do not depend on the film thickness, was found to be 9 nm for heated wafers 
and 30 nm for ozone-treated wafers. For both PS and PMMA films spin-cast on heated 
wafers, the critical thickness was as low as 2 nm. In these studies, inhomogeneity of 
thin films below a critical thickness was claimed as the cause for variation of contact 
angles with film thickness. Obviously, for the determination of the surface tension of 
such polymers, films in excess of such low thickness have to be studied.
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fiGure 8.7 Morphology AFM image of a Teflon AF 1600 film for a scanned domain 
of 4 × 4 µm2, a section analysis diagram, and the corresponding data are shown. The 
surface is quite smooth with RMS roughness of ~0.4 nm and maximum peak-to-valley 
distances ~2.0 nm.
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8.5.1 contact anGles and FIlm thIckness

To study the possible effect of coating film thickness on contact angles [66], a spin-
coating technique can be used for film preparation, as described in Chapter 6. In 
this technique, film thickness is primarily influenced by spinning speed and con-
centration of polymeric solution. While increasing spinning rate tends to decrease 
the film thickness, a higher concentration of the coating solution would increase it. 
Different combinations of these two parameters were chosen to produce films of 
different thickness. Teflon AF 1600 was dissolved in FC-75 at volumetric ratios of 
1:1, 1:4, and 1:8 to produce different concentrations of the solution, and spinning 
rates of 1000, 4000, and 8000 rpm were selected for the coating process. Contact 
angles of distilled water were measured on the surfaces of Teflon AF 1600 with dif-
ferent thickness at a slow rate of motion of 0.3–0.4 mm/min. For each thickness at 
least three experiments were performed, each on a freshly prepared solid surface. 
An example is shown in Table 8.5 for contact angles of water on films with a thick-
ness of 420 nm resulting from the 1:1 (v/v) solution and a spinning rate of 1000 rpm 
in the spin-coating process. Since the contact angles were constant for all experi-
ments, they were averaged and yielded a mean value of 127.05 ± 0.08°. 

Similar contact angle measurements were performed with distilled water on 
Teflon AF 1600 films of different thickness prepared by spin-coating and the results 
are summarized in Table 8.6. This table lists the thickness of the coated films as 
determined by ellipsometry measurements and the corresponding combinations of 
the spinning rate and concentration of the polymeric solution. Applying different 
ratios of Teflon AF 1600 and FC-75 and using a range of spinning rates resulted in 
coated films with thicknesses ranging from 27 to 420 nm. It can also be seen that 

table 8.5
advancing Contact angles of Water on 
teflon af 1600 films of 420 nm thickness 
prepared by a 1/1 (v/v) polymer/solvent 
ratio and a spinning rate of 1000 rpm

run
three-phase line 

Velocity (mm/min)
advancing 

Contact angle (°)

a 0.32 126.90 ± 0.08

b 0.35 126.81 ± 0.06

c 0.31 126.87 ± 0.06

d 0.32 127.02 ± 0.08

e 0.37 127.42 ± 0.10

f 0.35 127.00 ± 0.08

g 0.32 127.31 ± 0.11

mean: 127.05 ± 0.08

Note: The three-phase line velocity corresponding to 
each contact angle experiment is also given.
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at fairly low concentrations of the coating solution (1:4 and 1:8), the film thickness 
does not depend on the spinning speed at rates above 4000 rpm. It is suggested that 
concentration of the polymeric solution has a more important effect in producing the 
final thickness of the Teflon AF 1600 layer than the rate of spinning. The number of 
contact angle measurements for each combination of concentration of the solution 
and spinning rate is also given.

The key result of Table 8.6 is that contact angles do not depend on the thickness of 
the Teflon AF 1600 films in the range from 27 to 420 nm. Within the 95% confidence 
limits, the contact angles are the same. These results imply smoothness and homo-
geneity of the polymer films. On such surfaces, except for the very first molecular 
layers, the subsequent layers are not in contact with the substrate, and presumably 
do not interact with it. Therefore the configuration of the polymer molecules at the 
solid–liquid interface is essentially the same for films of different thickness.

8.5.2 contact anGles and FIlm PreParatIon technIques

To find out whether contact angles are somehow influenced by film preparation 
techniques, contact angle measurements were performed with water, n-hexade-
cane, and 1-bromonaphthalene on dip-coated and spin-coated Teflon AF 1600 sur-
faces [66]. The thickness of the polymer film on dip-coated surfaces is 470 nm, 
determined from ellipsometry measurements. The experiments were all performed 
at low rates of advancing of the three-phase line. The mean value of contact angle 
from these experiments and the corresponding number of measurements are given 
in Table 8.7. The mean contact angle of water on the spin-coated surfaces is the 
grand average value from Table 8.6. The contact angles are essentially the same 
on both types of surfaces for each liquid, indicating that for solid surfaces of high 
quality, the coating technique does not have a dramatic effect on advancing con-
tact angles. However, it is interesting that the mean values are consistently slightly 
higher for the dip-coated surfaces than for spin-coated surfaces. If this effect is 

table 8.6
Contact angles of Water on teflon af 1600 films of different 
thickness

teflon af 1600: 
fC-75 (v/v)

spinning 
speed (rpm)

film thickness 
(nm) replications

mean advancing 
angle (°)

1:1 1000 420 7 127.05 ± 0.08

1:4 1000 150 5 127.11 ± 0.11

1:4 4000 72 3 127.04 ± 0.19

1:4 8000 72 3 126.86 ± 0.13

1:8 4000 27 4 127.10 ± 0.23

1:8 8000 27 4 127.07 ± 0.20

mean: 127.04 ± 0.19

Note: The effect of concentration and spinning speed is also illustrated.
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real, it might indicate that, since film formation in the dip-coating technique is 
slower, the polymer chains might be able to assume a surface configuration of 
slightly lower surface tension.

The results presented above assure that contact angles are solely a property of 
the polymer material and do not depend on the film thickness and film production 
techniques. The key remaining issue is the reproducibility of contact angle measure-
ments and whether or not contact angle deviations from smooth curves can be a 
consequence of measurement errors.

8.5.3 reProducIBIlIty oF contact anGles oF n-alkanes

Contact angle measurements were performed with a homologous series of n-al-
kanes on the dip-coated films of Teflon AF 1600 [56]. To ensure reproducibility, 
at least five experiments were carried out for each liquid, each on a fresh solid 
surface. Table 8.8 is a typical example and shows the advancing contact angles of 

table 8.7
Comparison of advancing Contact angles of distilled Water, 
1-bromonaphthalene, and n-hexadecane on teflon af 1600 films 
prepared by dip-Coating and spin-Coating techniques

liquid
dip-Coating 

θ (°) replications
spin-Coating 

θ (°) replications

Water 127.58 ± 0.19 6 127.04 ± 0.19 26

1-Bromonaphthalene 89.90 ± 0.19 4 89.51 ± 0.17 2

n-Hexadecane 69.68 ± 0.11 6 69.48 ± 0.09 2

table 8.8
reproducibility of the advancing 
Contact angles of n-hexadecane from 
five different measurements on fresh 
films of teflon af 1600

run number θ (°)

1 69.45 ± 0.07

2 69.31 ± 0.12

3 69.62 ± 0.08

4 69.65 ± 0.15

5 69.37 ± 0.09

mean: 69.48 ± 0.16

Note: Reprinted from Tavana, H., et al., Advances 
in Colloid and Interface Science, 132, 1, 
2007. With permission from Elsevier.
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n-hexadecane obtained from five measurements. Since contact angles were con-
stant during each run, they were averaged to yield a mean value for the experiment. 
Thus the contact angle of n-hexadecane on Teflon AF 1600 films is 69.48° ± 0.16. 
This procedure was repeated for each n-alkane. The results, presented in Table 8.9, 
are compared with those measured in 2000 by another operator on surfaces pre-
pared similarly. The first column represents the older data and the second column 
shows the contact angles of each liquid from the 2004 work [53]. Comparing each 
pair of contact angles shows that the measurements have been accurately repro-
duced. The average reproducibility (the deviation between the two sets) is just 0.2°, 
which is inside the error limits of ADSA for contact angle measurements. This 
result implies consistency and reproducibility of ADSA. For one and the same 
liquid, carefully measured contact angles by different operators on well-prepared 
solid surfaces are identical.

In conclusion, the thickness of the coating films does not influence the contact 
angles as long as the polymer films are smooth and homogeneous, showing that 
film preparation technique, that is, dip-coating and spin-coating, does not have a 
dramatic effect on advancing contact angles. The comparison of contact angles 
of a series of n-alkanes on surfaces of Teflon AF 1600 by different operators 
at different times assure that contact angle deviations from smooth curves of 
γlvcosθ versus γlv are not experimental errors and must be physically real. This 
calls for an elucidation of the underlying physical causes of the contact angle 
deviations. 

table 8.9
Older and recent advancing Contact angles of 
n-alkanes on teflon af 1600 surfaces

liquid
Contact angle data 

(°) (2000)
Contact angle 
data (°) (2004)

n-Hexane 40.87 ± 0.37 40.31 ± 0.10

n-Heptane 47.49 ± 0.20 47.17 ± 0.10

n-Octane 52.37 ± 0.17 52.45 ± 0.15

n-Nonane 56.26 ± 0.09 56.22 ± 0.14

n-Decane 59.28 ± 0.11 59.29 ± 0.18

n-Undecane 61.78 ± 0.06 61.60 ± 0.22

n-Dodecane 63.59 ± 0.12 63.78 ± 0.32

n-Tridecane 65.30 ± 0.13 65.68 ± 0.05

n-Tetradecane 66.84 ± 0.10 67.15 ± 0.14

n-Pentadecane 68.25 ± 0.17 68.06 ± 0.14

n-Hexadecane 69.33 ± 0.06 69.48 ± 0.16

Note: Reprinted from Tavana, H., Lam, C. N. C., Friedel, P., 
Grundke, K., Kwok, D. Y., Hair, M. L., and Neumann, A. 
W., Journal of Colloid and Interface Science, 279, 493, 
2004. With permission from Elsevier.
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8.6  identifiCatiOn Of the Causes Of COntaCt anGle 
deViatiOns On fluOrOpOlymer surfaCes

8.6.1 GeometrIcal ProPertIes oF lIquId molecules

The need to resolve the problem of deviation in the contact angles from smooth 
curves of γlvcosθ versus γlv became apparent from the observation of different con-
tact angle patterns for liquids with different molecular structures. Liquids consisting 
of chain-like molecules such as n-alkanes on polymer films usually show time-
 dependent receding contact angles; that is, the receding angles keep decreasing as 
the solid–liquid contact time increases (see Figure 8.8a for contact angles of n-tride-
cane on Teflon AF 1600 surface). It was suggested that in such systems phenomena 
such as liquid penetration modify the solid surface (see Chapter 7). Consequently 
the solid surface and the liquid become more alike, causing the contact angles to 
decrease. On the other hand, contact angle measurements with octamethylcyclotet-
rasiloxane (OMCTS), which consists of bulky molecules, yielded time-independent 
receding angles [56], suggesting that such liquids do not appear to modify the solid 
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fiGure 8.8 Contact angles of liquids with different molecular structures on Teflon AF 
1600 films. (a) Liquids with chain-like molecules (e.g., n-tridecane) show time-dependent 
receding angles; (b) Liquids consisting of bulky molecules (e.g., OMCTS) yield constant 
receding angles.
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surface significantly (Figure 8.8b). To test whether: (i) the shape and size of liquid 
molecules indeed affects the contact angles; and (ii) deviations in the contact angles 
from smooth curves are a consequence of sorption-like processes, we selected liquids 
with different geometrical properties for the contact angle measurements: A series of 
n-alkanes that is, n-hexane to n-hexadecane, and liquids with bulky molecules. The 
term bulky refers to molecules that are: (i) fairly round; (ii) rigid due to the presence 
of rings; and (iii) less flexible than n-alkane molecules.

To visualize the shapes of the molecules of the test liquids and to obtain quan-
titative information about geometrical properties of bulky molecules compared 
to the molecules of n-alkanes, all these molecules were modeled using computa-
tional chemistry software HyperChem 7.5 that provides optimized geometries [67]. 
The results are presented in Figure 8.9. Molecules of n-alkanes (e.g., n-hexane and 
n-hexadecane) have a worm-like structure with a mean diameter of only 0.2 nm. On 
the other hand, the mean diameter of the bulky molecules ranges from 0.61 nm for 
cis-decalin to 0.9 nm for OMCTS [68]. Our modeling results are in agreement with 
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fiGure 8.9 Structure of bulky molecules and two n-alkane molecules obtained from 
geometry optimization calculation using computational chemistry software HyperChem 7.5.
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the data available in the literature, for example 0.75 to 1.08 nm for OMCTS [69–71]. 
It is therefore expected that the use of liquids with bulky molecules for contact angle 
measurements reduces the extent of interactions such as liquid sorption by the solid.

8.6.2  InterPretatIon oF contact anGles oF lIquIds 
consIstInG oF Bulky molecules

8.6.2.1 liquids with bulky molecules/teflon af 1600 systems
The contact angle results for liquids with bulky molecules on Teflon AF 1600 sur-
faces are presented in two sections. This distinction is made based upon the different 
contact angle patterns the liquids yielded and also the difference in their molecular 
structures, as explained below. It is noted that the distinction is made for the contact 
angle results with Teflon AF 1600 only.

Tetralin

Lepidine

N

trans, trans, cis-1,5,9-
cyclododecatriene

O

O O

Methyl salicylate 

1-methylnaphthalene 

fiGure 8.9 (Continued) Structure of bulky molecules and two n-alkane molecules 
obtained from geometry optimization calculation using computational chemistry software 
HyperChem 7.5.
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8.6.2.1.1 First Group of Liquids with Bulky Molecules
Advancing contact angles of the liquids from the first group (11 liquids) were mea-
sured on Teflon AF 1600 films and the results are given in Table 8.10 [56,68]. Each 
contact angle in this table is an average value from at least five measurements on fresh 
polymer films. A multivariable optimization was used to determine γsv and β by find-
ing the best fit of Equation 8.6 to the contact angle data. This yielded γsv = 13.61 mJ/
m2 and β = 0.000116 (mJ/m2)–2. The corresponding plot of γlvcosθ versus γlv is shown 
in Figure 8.10. The contact angles of liquids with bulky molecules fall perfectly on 
this curve. The error analysis showed that the deviations are indeed small, averaging 
only ±0.24°. The contact angle deviation (Δθ) from this curve for each liquid is given 
in Table 8.10 (see the footnote of Table 8.10 for calculation of Δθ). The minus sign for 
deviations means that the contact angle point is above the curve, while the plus sign 
shows that the contact angle falls below the curve. The largest deviation is –0.69° for 
OMTS. It is noted that the β value is in good agreement with the literature value of 
β = 0.000125 (mJ/m2)–2, and such a small difference does not affect the γsv calculation 
significantly [61]. This is illustrated in Table 8.10 where the values of γsv calculated 
from each contact angle are given for both β values. Therefore γsv = 13.61 ± 0.07 mJ/m2 
can be taken as the actual surface tension of the Teflon AF 1600 surface.

The consistency of the calculated γsv values from the contact angles of liquids 
with bulky molecules as well as the corresponding advancing and receding contact 
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angle patterns suggest that these liquids do not show significant interaction with 
the polymer film, for example, through liquid penetration. For example, the contact 
angles of cis-decalin and DMCPS are shown in Figure 8.11. Both the advancing and 
receding angles are constant over time, implying that the polymer film is not modi-
fied due to contact with the test liquids. It is concluded that these liquids with bulky 
molecules are “inert” with respect to Teflon AF 1600 film, and therefore are suited 
to characterize its surface tension. Most likely, the special geometry of bulky mol-
ecules is an important factor in making them inert with respect to Teflon AF 1600.

8.6.2.1.2 Second Group of Liquids with Bulky Molecules
If size and shape of the molecules of a liquid were the only parameters affecting 
the contact angle of a solid–liquid system, then contact angles of any liquid with 
bulky molecules would fall perfectly on the γsv = 13.61 mJ/m2 curve in Figure 8.10. 
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fiGure 8.9 (Continued) Structure of bulky molecules and two n-alkane molecules 
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However, this is not the case. Table 8.11 gives the contact angles of six other liquids 
with bulky molecules, labeled as the second group. In the γlvcosθ versus γlv plot for 
Teflon AF 1600, these data deviate somewhat from this curve (see Figure 8.12; the 
circles show the contact angles of the liquids in the first group whereas the diamonds 
represent the liquids from the second group). Table 8.11 gives the deviations in con-
tact angle from the “ideal” curve of Figure 8.12, calculated according to the proce-
dure given in the footnote of Table 8.10. It is seen that the deviations are up to ~3°. 
Taking into account that the shape and size of molecules of these liquids and those 
belonging to the first group are similar, it is suggested that there must be additional 
factors affecting contact angles.

table 8.10
advancing Contact angles of the first Group of liquids with bulky 
molecules on the films of teflon af 1600, Contact angle deviations from 
the smooth Curve of γsv = 13.61 mJ/m2, the γsv Calculated using two 
different β Values, and the Vapor pressure of the liquids

liquid θ (°) Δθ (°) γsv (mJ/m2)a γsv (mJ/m2)b pv (kpa)

OMTS 35.75 ± 0.12 – 0.69 13.75 13.75 0.346

OMCTS 43.68 ± 0.13 + 0.17 13.58 13.58 0.108

DMCPS 45.65 ± 0.15 + 0.10 13.63 13.64 —

p-Xylene 68.65 ± 0.09 0.00 13.61 13.65 1.186

o-Xylene 71.17 ± 0.13 + 0.12 13.57 13.63 0.884

cis-Decalin 75.53 ± 0.22 + 0.01 13.61 13.68 0.091

trans,trans,cis-1,5,9-
Cyclododecatriene

78.29 ± 0.19 + 0.33 13.50 13.58 0.003

Tetralin 81.06 ± 0.20 + 0.09 13.58 13.68 0.042

Methyl salicylate 83.69 ± 0.23 –0.44 13.77 13.90 0.003

Lepidine 89.49 ± 0.44 + 0.30 13.49 13.66 0.001

1-Bromonaphthalene 89.80 ± 0.44 + 0.07 13.58 13.76 0.001

Mean: ± 0.24 13.61 ± 0.07 13.68 ± 0.05

Notes: Procedure to calculate deviation Δθ in the contact angle of a liquid from the smooth curve:
 1.  γsl is calculated from equation of state with γlv of the liquid and γsv = 13.61 mJ/m2 as the surface 

tension of Teflon AF 1600:

γ γ γ γ γ β γ γ
sl lv sv lv sv e lv sv= + − − −2 2( ) .

 2.  θ′ (ideal contact angle that would fall on the smooth curve) is obtained from Young’s equation: 

′ = −





−θ γ γ
γ

cos .1 sv sl

lv

 3.  Contact angle deviation is the difference between actual and ideal contact angles (i.e., Δθ = θ 
– θ′).

 (a) γsv values calculated by β = 0.000116 (mJ/m2)–2.
 (b) γsv values calculated by β = 0.000125 (mJ/m2)–2 (literature value).
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table 8.11
advancing Contact angles of the second Group of 
liquids with bulky molecules on the films of teflon af 
1600 and the Contact angle deviations from the smooth 
Curve of γsv = 13.61 mJ/m2

liquid θ (°) Δθ (°) pv (kpa)

Ethyl trans-cinnamate 84.68 ± 0.14 + 3.13 0.037

Diethylphthalate 84.73 ± 0.27 + 3.09 0.00006

Dibenzylamine 88.25 ± 0.29 + 2.96 0.072

Benzyl benzoate 89.20 ± 0.19 + 1.58 0.133

4-Benzylisothiazole 92.46 ± 0.36 + 2.54 –

2-Pyridyl carbinol 96.70 ± 0.11 + 3.03 –

Note: The plus sign in the deviation Δθ indicates that a data point lies below 
the ideal curve of Figure 8.12.
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fiGure 8.12 γlvcosθ versus γlv for the contact angles of the second group of liquids with 
bulky molecules on Teflon AF 1600 surfaces. The smooth curve is identical with that of 
Figure 8.10 and represents γsv = 13.61 mJ/m2 and β = 0.000116 (mJ/m2)–2. 
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The consideration of Young’s equation, which is assumed to be valid and appli-
cable, is useful to explain the observed deviations. In this equation both γlv and θ are 
correctly measured quantities. Therefore, the contact angle deviations must be con-
nected with processes that affect γsv and/or γsl. Because of the extremely low vapor 
pressure of these liquids (listed in Table 8.11), significant adsorption of their vapor 
onto the solid surface is not likely to take place. Hence, γsv is expected to remain 
constant during the contact angle experiments. Therefore, the reason must be sought 
in the solid–liquid interfacial tension, γsl.

The main difference between the two groups of liquids lies in their chemical 
structure. It is seen in Figure 8.9 that unlike most of the liquids in the first group, all 
liquid molecules in the second group contain exposable nitrogen (N) and/or oxygen 
atoms (O). Due to the fairly high electronegativity of these two atoms, their presence 
in a molecule causes a nonuniform electron density distribution over the molecule 
[68]. As a result, the part of the molecule including these atoms becomes more nega-
tively charged. A similar hypothesis is plausible for the chains of Teflon AF 1600 
due to the existence of CF2 and CF3 moieties. It is speculated that when liquid mol-
ecules approach a Teflon AF 1600 surface, since like charges repel each other, the 
negatively charged parts of the liquid molecules are repelled by the polymer chains, 
whose fluorine atoms are directed outward. This causes liquid molecules to be reori-
ented at the solid–liquid interface with their negatively charged parts directed away 
from the solid. As a result the solid–liquid interfacial tension becomes different from 
that given by the equation of state, Equation 8.5, since this equation does not take 
into account such restructuring effects. Therefore, the corresponding contact angles 
deviate from the γsv = 13.61 mJ/m2 smooth curve. 

It might be argued that reorientation could take place for the polymer chains 
rather than in the liquid molecules because polymer chains are known to be fairly 
mobile. For instance in response to the change in the contacting medium (e.g., 
from air to liquid), polymer chains might be restructured by a disappearance 
of hydrophobic CF2 and CF3 groups from the top layer of the surface [72–76]. 
However, migration of these moieties into the bulk solid phase would decrease the 
solid–liquid interfacial tension. This would yield a contact angle value lower than 
that measured for each of the liquids in the second group, and the experimental 
points would fall above the curve of γsv = 13.61 mJ/m2. Therefore, change in the 
configuration of the Teflon films cannot be the reason for contact angle deviations 
of these liquids.

A second possibility exists for dibenzylamine and 2-pyridyl carbinol that contain 
N–H and O–H bonds, respectively. Because of the higher electronegativity of fluorine 
atoms compared to oxygen and nitrogen atoms, the hydrogen atom from the liquid 
molecules might be attracted to a fluorine atom from the polymer chains, forming 
a hydrogen bond with it. Formation of H-bonds between solid and liquid molecules 
upon their contact has also been reported [77]. If such interactions indeed take place 
at the solid–liquid interface, the solid–liquid interfacial tension (γsl) will be differ-
ent from the value predicted by Equation 8.5, giving rise to contact angle deviations 
from the γsv = 13.61 mJ/m2 curve. This process is less likely to occur than reorienta-
tion of liquid molecules at the surface; however, it cannot be excluded totally.
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8.6.2.2 liquid with bulky molecules/eGC-1700 systems
Similar contact angle measurements were performed with liquids consisting of bulky 
molecules on the films of EGC-1700 [78]. It is a semifluorinated acrylic polymer 
whose molecular structure is shown in Figure 8.6.

Table 8.12 contains the advancing contact angles of liquids with bulky mole-
cules and the solid surface tension values, γsv, calculated from Equation 8.6. Again, 
the contact angles in this table are the average values obtained from at least five 
experiments. It is pointed out that lepidine and methyl salicylate did not yield useful 
contact angle values. Lepidine dissolved the surface film or initiated hydrolyzation 
reactions while the contact line of methyl salicylate showed stick-slip on the solid 
surface.

The results presented in this table differ in certain respects from those presented 
above for Teflon AF 1600 (Table 8.10). The γsv values are not consistent and vary 
from 13.82 mJ/m2 calculated for OMCTS to 16.10 mJ/m2 for 1-bromonaphthalene. 
The immediate question that arises is: what mechanisms are responsible for the dif-
ferent behavior of these liquids on the two polymers (i.e., EGC-1700 and Teflon AF 

table 8.12
advancing Contact angles of liquids with bulky molecules on eGC-1700 
surfaces and the Corresponding 95% Confidence limits, the solid surface 
tension Values Calculated from the Contact angles, and deviation in the 
Contact angle of each liquid from the smooth Curve of γsv = 13.84 mJ/m2 
and β = 0.000125 (mJ/m2)–2

liquid θ (°) γsv (mJ/m2) Δθ (°)

OMCTS 42.33 ± 0.13 13.82 –0.08

DMCPS 44.47 ± 0.11 13.86 + 0.09

p-Xylene 64.78 ± 0.15 14.77 –3.20

o-Xylene 66.35 ± 0.18 15.07 –4.09

cis-Decalin 72.75 ± 0.12 14.56 –2.25

trans,trans,cis-1,5,9-
Dodecatriene

73.70 ± 0.11 15.08 –3.82

Tetralin 76.63 ± 0.10 15.17 –3.96

Diethyl phthalate 75.38 ± 0.14 15.89 –5.52

1-Methylnaphthalene 80.67 ± 0.15 14.62 –2.40

Methyl salicylate (stick-slip)

Dibenzylamine 81.32 ± 0.15 15.12 –3.36

Lepidine (polymer dissolution)

1-Bromonaphthalene 84.04 ± 0.17 16.10 –5.53

Note: Reprinted from Tavana, H., Simon, F., Grundke, K., Kwok, D. Y., Hair, M. L., and Neumann, 
A. W., Journal of Colloid and Interface Science, 291, 497, 2005. With permission from 
Elsevier.
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1600), which were expected to be fairly similar in that they both expose mainly CF3 
groups at the outermost layer of the surface.

This question can be answered by considering the angle-resolved x-ray photo-
electron spectroscopy (XPS) analysis of EGC-1700, its molecular configuration and 
those of the test liquids. The XPS analysis shows that the (F):(C) and (O):(C) elemen-
tal ratios do not depend on the take-off angle and similar values are obtained at 0°, 
60°, and 75° [78]. It is suggested that the bulk of EGC-1700 polymer film has nearly 
the same composition as the top surface layers. This finding implies that the semi-
fluorinated butyl side chains are not able to form an ordered molecular structure 
at the surface film. Furthermore, EGC-1700 has a low glass transition temperature 
(Tg = 30°C), which means that the chains are very flexible. It is therefore quite plau-
sible that groups of a moderate polarity from EGC-1700 chains (e.g., ester groups) 
become accessible to certain test liquids.

If we consider the molecular structure of the liquids listed in Table 8.12, except 
for OMCTS and DMCPS, they all contain unsaturated bonds and/or electronegative 
substituents that are potential interaction sites of the molecule. It is speculated that 
upon advancing of the drop front in the contact angle measurement, some groups 
of the polymer chains less hydrophobic than CF2 and CF3, such as methyl and ester 
groups, come in contact with the liquid molecules so that the solid–liquid interfa-
cial tension is not determined solely by the fluorine-containing moieties. On the 
other hand, OMCTS and DMCPS molecules do not contain unsaturated bonds or 
exposable electronegative atoms (molecular modeling showed that the oxygen atoms 
cannot be exposed). It is suggested that the interactions between these molecules 
and the molecular chains of the polymer must be nonspecific; that is, no significant 
reorientation of polymer chains or liquid molecules at the surface takes place. Hence, 
only OMCTS and DMCPS are inert with respect to EGC-1700 films. Following are 
three pieces of evidence in favor of this explanation.

 (a) Receding contact angle patterns of the probe liquids on EGC-1700 com-
pared to Teflon AF 1600 [78]: As shown above in Figures 8.8 and 8.11, 
the receding contact angles of liquids with bulky molecules on Teflon 
AF 1600 surfaces were independent of the contact time between solid 
and liquid. However, the case is different for EGC-1700. Here it is found 
that except for OMCTS and DMCPS, all the liquids yield time-depen-
dent receding angles. Figure 8.13 shows contact angles of cis-decalin and 
DMCPS on EGC-1700 films. The receding angles of cis-decalin strongly 
depend on liquid-polymer contact time and decrease as the solid–liquid 
contact time increases, but DMCPS receding angles are constant. The 
contact time dependence of receding angles suggests that methyl and/or 
ester groups of the polymer might be exposed to the solid–liquid interface 
upon contact with the liquid and that the extent of the exposure increases 
with the solid–liquid contact time. Consequently, the solid–liquid inter-
facial tension decreases over time. This process is thermodynamically 
favorable. The driving force is the tendency of the system to decrease 
the overall free energy, which is facilitated by a decrease in the solid–
liquid interfacial tension: Appearance of methyl and/or ester groups at 
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the polymer surface would increase the solid surface tension from that of 
the original surface where only CF2 and CF3 groups were present at the 
surface film. Given that liquid surface tension is constant, an increase 
in the solid surface tension translates into a decrease in the solid–liquid 
interfacial tension.

   Change in configuration of polymer surfaces upon contact with a liq-
uid is well established [72–76]. These changes can take place through 
short-range motions of chains such as rotation around the chain axis or 
even long-range motions such as diffusion of specific moieties into the 
bulk. The extent of the perturbation in the configuration of the chains 
depends on the microstructure of the polymer and also the contacting 
liquid.

   It should be mentioned that one cannot simply exclude the possibility of 
sorption-type processes as the cause of time-dependent receding angles. 
However, because of the shape and relatively large size of the molecules of 
the liquids used here, this seems less likely.

 (b) Reproducibility of contact angles on EGC-1700 surfaces compared to 
Teflon AF 1600 films [78]: Advancing contact angles of cis-decalin on fresh 
surfaces of EGC-1700 and Teflon AF 1600 were measured as 72.75 ± 0.12° 
and 75.53 ± 0.22°, respectively. Then both solid samples were blown dry 
with nitrogen and kept under vacuum for 24 hours. The advancing con-
tact angle measurements were repeated with the same probe liquid on both 
films. While the contact angles were accurately reproduced on the Teflon 
AF 1600 surface, the second set of advancing angles on the EGC-1700 
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surface was 66.30 ± 0.09°; that is, 6.45° lower than the first set measured 
on the fresh sample. This implies that unlike Teflon AF 1600, the confor-
mation of EGC-1700 polymer chains changes upon contact with the test 
liquid in a more or less irreversible manner. This conclusion is supported 
by considering the glass transition temperature of the two polymers; that is, 
Tg,Teflon AF 1600 = 160°C versus Tg,EGC-1700 = 30°C.

 (c) Contact angle hysteresis of OMCTS and DMCPS on EGC-1700 films in 
comparison with Teflon AF 1600 surfaces [78]: The receding angles of 
OMCTS and DMCPS were constant on both polymers. Therefore the 
corresponding contact angle hysteresis was simply obtained as the dif-
ference between advancing and receding angles. These data are given 
in Table 8.13. It is seen that hysteresis for OMCTS and DMCPS is essen-
tially the same on the two polymers. Moreover, the γsv values obtained 
from the contact angles of these two liquids for both polymers are very 
close, implying that the same groups from the two polymer surfaces are 
“seen” by the liquid molecules. The values of γsv (see Table 8.12) suggest 
that these groups are mainly CF3. It is inferred that the configurations 
of the polymer chains remain unchanged upon contact with these two 
liquids.

All of the above strongly suggest that OMCTS and DMCPS do not cause any sig-
nificant change in the arrangement of polymer chains and the EGC-1700 film retains 
its original configuration upon contact with these two liquids. Hence the surface ten-
sion of EGC-1700 films can only be inferred from the contact angles of OMCTS and 
DMCPS. The average is γsv = 13.84 mJ/m2.

Figure 8.14 shows the γlvcosθ versus γlv plot for the liquids with bulky molecules 
on EGC-1700 surfaces. The smooth curve corresponds to γsv = 13.84 mJ/m2 and 
β = 0.000125 (mJ/m2)–2. The two points on the curve shown by circles represent 
OMCTS and DMCPS. There are deviations in the contact angles of all other liquids 

table 8.13
Contact angle hysteresis for OmCts and 
dmCps on teflon af1600 and eGC-1700 
films

teflon af 1600 eGC-1700

liquid θhyst (°) θhyst (°)

OMCTS 5.3 5.5

DMCPS 6.2 7.0

Note: Reprinted from Tavana, H., Simon, F., Grundke, 
K., Kwok, D. Y., Hair, M. L., and Neumann, A. 
W., Journal of Colloid and Interface Science, 
291, 497, 2005. With permission from Elsevier.
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from this curve, varying from about –2.3° for cis-decalin to about –5.5° for 1-bro-
monaphthalene, shown in the last column of Table 8.12. (The deviations were calcu-
lated using the procedure in the footnote of Table 8.10, using γsv = 13.84 mJ/m2.) It is 
interesting to note that contact angles of all the liquids fall above the γsv = 13.84 mJ/
m2 curve, implying that the solid–liquid interfacial tension (γsl) is less than the value 
predicted by Equation 8.5. This agrees well with the explanation provided above that 
the molecular chains of EGC-1700 reorient upon contact with “noninert” liquids 
and expose groups less hydrophobic than CF3 and CF2 at the solid–liquid interface, 
resulting in a decrease in γsl.

For the purpose of determination of solid surface tension from contact angles, 
the following picture emerges from the results with EGC-1700: should the poly-
mer chains contain hydrophilic moieties that can be exposed to the solid–liquid 
interface upon contact with the test liquid, the liquid should be completely inert; 
that is, without unsaturated bonds or exposable electronegative substituents. Then, 
the specific interactions of liquid with polymer molecules that is, reorientation/
perturbation of polymer chains, are not stimulated. OMCTS and DMCPS appear 
to be two such liquids. This point seems to be crucial for amorphous polymers 
such as EGC-1700 whose chains can be perturbed easily because of the poor 
packing.
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8.6.2.3 liquids with bulky molecules/etmf systems
To further investigate the problem of contact angle deviations, ETMF (Figure 8.6c) 
was chosen as the next solid surface for contact angle measurements [79]. Although 
the overall structure of this polymer is similar to that of EGC-1700 (Figure 8.6b), 
two major differences should be noted: (a) In addition to the butyl and amide groups, 
ETMF possesses a much longer side chain, perfluoroheptyl compared to the perfluo-
ropropyl side chain in EGC-1700; (b) Unlike EGC-1700, which is an amorphous 
fluorinated acrylate polymer, the H-bonding interactions within the perfluorinated 
amide groups in ETMF support formation of a layered structure in the bulk and in 
the top layer of the surface film. Molecular modeling and wide angle x-ray scat-
tering (WAXS) measurements have confirmed the existence of a layered structure 
for ETMF [60]. Therefore, unlike EGC-1700, a major reorientation/perturbation of 
ETMF chains is less likely to occur. The long side chain in ETMF is also expected 
to shield the hydrophilic maleimide backbone.

Table 8.14 presents the contact angles of liquids with bulky molecules on ETMF 
surfaces. The solid surface tension value calculated from each contact angle is also 
given. The γsv values vary from 10.88 mJ/m2 calculated for OMCTS to 12.94 mJ/
m2 for methyl salicylate. These results are similar to those obtained for EGC-1700 
surfaces in terms of variations in the γsv values, suggesting that the mechanism 
responsible may be similar. Therefore an argument similar to that made in the case 
of EGC-1700 polymer can be used to infer the surface tension of ETMF: Upon 
advancing of the drop front of a noninert liquid on an ETMF film, the aliphatic 

table 8.14
advancing Contact angles of liquids with bulky molecules on etmf surfaces 
and the Corresponding 95% Confidence limits, the solid surface tension 
Values Calculated from the Contact angles, deviation in the Contact angles 
from the smooth Curve of γsv = 11.00 mJ/m2 and β = 0.000125 (mJ/m2)–2, and 
error in the Calculation of solid surface tension due to deviations

liquid θ (°) γsv (mJ/m2) Δθ (°) Δγsv (mJ/m2)

OMCTS 57.70 ± 0.08 10.88 + 0.71 0.12

DMCPS 58.16 ± 0.09 11.11 –0.53 0.11

p-Xylene 75.60 ± 0.23 11.62 –2.17 0.62

o-Xylene 77.50 ± 0.17 11.71 –2.40 0.71

cis-Decalin 80.87 ± 0.29 11.95 –3.04 0.95

Tetralin 84.67 ± 0.12 12.42 –4.21 1.42

Diethyl phthalate 86.04 ± 0.18 12.05 –3.09 1.05

Methyl salicylate 86.38 ± 0.11 12.94 –5.41 1.94

Lepidine 91.36 ± 0.22 12.91 –5.14 1.91

1-Bromonaphthalene 92.05 ± 0.17 12.87 –4.95 1.87

Note: Reprinted from Tavana, H., et al., Colloid and Polymer Science, 284, 497, 2006. With permission 
from Springer-Verlag.
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hydrocarbon segment (butyl) or possibly the amide group of the side chain can be 
exposed toward the liquid phase. This is quite likely considering that the long side 
chains of ETMF are flexible and can fluctuate, exposing groups other than fluorine-
containing moieties. The contribution of butyl or amide groups at the three-phase 
line region causes the actual γsl to be less than the value predicted by Equation 8.5. 
Therefore the measured contact angles deviate from the ideal contact angle pattern 
of γlvcosθ versus γlv. Such interactions appear to be insignificant when OMCTS and 
DMCPS are used as probe liquids due to the inertness of their molecules.

The receding contact angle patterns and contact angle hysteresis of the probe liquids 
support this proposition [79]. Except for OMCTS and DMCPS, the receding angles of 
all the liquids on ETMF films depend on the contact time between solid and liquid. 
This is shown in Figure 8.15 for (a) methyl salicylate, and (b) DMCPS. Change in the 
alignment of the side chain segments, penetration of liquid molecules into the polymer 
matrix, and retention of liquid molecules on the surface might all influence the time-
dependence of the receding angles. The receding angles of these liquids were obtained 
by an extrapolation technique [80], and the results are given in Table 8.15. On the other 
hand, OMCTS and DMCPS show constant receding angles and the corresponding 
contact angle hysteresis was simply obtained as the difference between advancing and 
receding angles (see Table 8.16). The fact that OMCTS and DMCPS yield constant 
receding angles and also a very small contact angle hysteresis indicates that: (i) No 
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significant change in the arrangement of the polymer side chains occurs upon contact 
with these two liquids, (ii) The molecules of these two liquids do not penetrate into the 
polymer film significantly. Thus the surface tension of ETMF can be determined only 
from OMCTS and DMCPS measurements. The average is 11.00 mJ/m2.

Figure 8.16 shows the γlvcosθ versus γlv plot for liquids with bulky molecules/
ETMF systems. The smooth curve corresponds to γsv = 11.00 mJ/m2 and β = 0.000125 
(mJ/m2)–2. The two points on the curve shown by circles represent the OMCTS and 
DMCPS contact angles. The deviations in the contact angles of other liquids from 
this curve range from ~–2.2° for p-xylene to ~–5.4° for methyl salicylate, as given in 
Table 8.14. The minus sign means that the experimental points are located above the 
curve. The error in the calculated solid surface tension values due to the deviations 

table 8.16
receding Contact angles and 
Contact angle hysteresis for 
OmCts and dmCps on etmf films

liquid θr (°) θhyst. (°)

OMCTS 54.70 3.0

DMCPS 54.66 3.5

Note: Reprinted from Tavana, H., et al., 
Colloid and Polymer Science, 284, 497, 
2006. With permission from Springer-
Verlag.

table 8.15
extrapolated receding Contact angles and 
Contact angle hysteresis for those liquids 
with bulky molecules that showed time-
dependent receding angles on etmf surfaces

liquid θ0
r (°) θ0

hyst (°)

p-Xylene 71.5 4.1

o-Xylene 74.0 3.5

cis-Decalin 77.2 3.7

Tetralin 80.0 4.7

Methyl salicylate 76.8 9.4

Lepidine 81.9 9.5

1-Bromonaphthalene 83.0 9.1

Note: Reprinted from Tavana, H., et al., Colloid and Polymer 
Science, 284, 497, 2006. With permission from 
Springer-Verlag.
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is also given in each case. Similar to the results for EGC-1700, contact angles of the 
test liquids fall above the γsv = 11.00 mJ/m2 curve, implying that the solid–liquid 
interfacial tension (γsl) in these systems is less than the ideal value given by Equation 
8.5. This is in agreement with the explanation presented above that the arrangement 
of chains in the polymer film may change due to contact with a noninert liquid. For 
the purpose of determination of the surface tension of polymer films from contact 
angles, this finding necessitates use of inert probe liquids, for example, OMCTS and 
DMCPS, to avoid specific solid–liquid interactions.

8.6.2.4 liquids with bulky molecules/Odmf systems
Contact angles of the probe liquids on ODMF surfaces are given in Table 8.17. Only 
OMCTS and DMCPS yielded useful contact angles. All other liquids either dis-
solved the polymer film or showed stick-slip of the three-phase line [79]. As shown 
in Figure 8.6, ODMF has a molecular structure fairly similar to that of ETMF. In 
addition, ODMF possesses a second n-hexadecyl side chain that contributes to the 
different contact angle response by the two polymer surfaces. Contrary to ETMF, 
the angle-dependent XPS investigations of the annealed ODMF surfaces showed 
that the presence of n-hexadecyl side chains suppresses good self-organization of the 
perfluoroalkyl side chains on the topmost layer of the film [60]. There is only a weak 
self-organization of the perfluoroalkyl side chains in the outermost layer of ODMF 
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films. AFM analysis revealed further information about the surfaces of ETMF and 
ODMF films. The AFM results are shown in Figures 8.17 and 8.18 for ETMF and 
ODMF, respectively. From the phase contrast image in Figure 8.17b, it is seen that 
the ETMF films are quite homogeneous. In contrast, domains with noncontinuous 
structures exist on the ODMF surface film, as shown in the phase contrast image of 
ODMF (Figure 8.18b). It has been shown that these structures correspond to different 
compositions on the surface [81]. Due to the chemical incompatibility of n-hexadecyl 
and perfluoroalkyl, the two side chains of ODMF segregate and give rise to micro-
scale phase-separated fluorocarbon matrix and hydrocarbon islands, causing the 
ODMF films to be chemically heterogeneous.

The contact angle results indicate that the siloxane-based probe liquids, OMCTS and 
DMCPS, do not show specific interactions with the side chains of ODMF. In contrast, 
other liquids that are hydrocarbon derivatives interact with the nonfluorinated parts of 
the film, resulting in stick-slip or dissolution of the ODMF films. This again suggests 
that the surface tension of ODMF films should be calculated from contact angles of 
OMCTS and DMCPS. As a check, the receding contact angles and contact angle hys-
teresis of the two liquids were also investigated. Both liquids yield time-independent 
receding angles and small contact angle hysteresis on the ODMF films (see Table 8.17) 
indicating that they do not penetrate into the polymer film nor do they cause a change in 
the configuration of the polymer chains. Thus, the surface tension of ODMF was deter-
mined as γsv = 11.70 mJ/m2 [79]. The surface tension of ODMF films is 0.7 mJ/m2 larger 
than that of ETMF surfaces, presumably because of the presence of the n-hexadecyl 
side chain in the surface film, in addition to the perfluoroalkyl side chain.

It is important to note that for all the above solid–liquid systems, the contact angle 
deviation of liquids with bulky molecules from the smooth curves of γlvcosθ versus 
γlv can be readily translated into a deviation of the solid–liquid interfacial tension 

table 8.17
advancing Contact angles (θa), receding Contact angles (θr), and 
Contact angle hysteresis (θhyst) of liquids with bulky molecules on 
Odmf surfaces

liquid θa (°) γsv (mJ/m2) θr (°) θhyst (°)

OMCTS 53.60 ± 0.16 11.68 50.20 3.4

DMCPS 55.19 ± 0.08 11.72 51.29 3.9

p-Xylene (polymer dissolution)

o-Xylene (polymer dissolution)

cis-Decalin (stick-slip)

Tetralin (polymer dissolution)

Methyl salicylate (polymer dissolution)

Lepidine (polymer dissolution)

1-Bromonaphthalene (stick-slip)

Note: Reprinted from Tavana, H., et al., Colloid and Polymer Science, 284, 497, 2006. With 
permission from Springer-Verlag.
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fiGure 8.17 (a) Surface morphology and (b) the corresponding phase contrast AFM 
images of an ETMF film. (Reprinted from Tavana, H., Yang, C., Yip, C. Y., Appelhans, D., 
Zschoche, S., Grundke, K., Hair, M. L., and Neumann, A. W., Langmuir, 22, 628, 2006. With 
permission from American Chemical Society.)
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fiGure 8.18 (a) Surface morphology and (b) the corresponding phase contrast AFM 
images of an ODMF film. (Reprinted from Tavana, H., Yang, C., Yip, C. Y., Appelhans, D., 
Zschoche, S., Grundke, K., Hair, M. L., and Neumann, A. W., Langmuir, 22, 628, 2006. With 
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(γsl) from the ideal value given by Equation 8.5; that is, from the value that would be 
operative if the contact angles would fall on the smooth curve. This will be shown in 
the following section that presents the contact angles of n-alkanes.

8.6.3  InterPretatIon oF contact anGles oF a 
homoloGous serIes oF n-alkanes

8.6.3.1 n-alkanes/teflon af 1600 systems
Contact angle measurements were performed with a series of n-alkanes on the 
films of Teflon AF 1600 and the data (θ) are shown in Figure 8.19 [56]. The smooth 
curve is identical with that of Figure 8.10 and corresponds to γsv = 13.61 mJ/m2 and 
β = 0.000116 (mJ/m2)–2. There are significant deviations in the contact angles from 
this curve. The deviation of each n-alkane from this curve (Δθ) was calculated accord-
ing to the procedure given in the footnote of Table 8.10. The results are presented in 
Table 8.18, with the same definition for the sign of the deviations as above. It is seen 
that n-hexane has the largest contact angle deviation with –3.52°. The deviations then 
decrease and the contact angles of n-decane, n-undecane, and n-dodecane fall very 
close to the smooth curve. From n-tridecane to n-hexadecane, the deviations increase 
again up to + 2.07°. The fact that the experimental contact angles for the n-alkanes 
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fall in some cases above the curve and below in others suggests that more than one 
mechanism is operative. Tentative explanations of the complex pattern of the contact 
angle deviations of n-alkanes are given below.

Assuming the validity and applicability of Young’s equation, since γlv and θ are 
correctly measured quantities, the deviation from the smooth curve can only be 
caused by deviations of γsv and/or γsl from their ideal values. The ideal γsv is the 
surface tension of bare Teflon AF 1600 film and is assumed to be indeed the value 
suggested by the contact angles of liquids with bulky molecules (i.e., 13.61 mJ/
m2). Furthermore, two sets of solid–liquid interfacial tension (actual vs. ideal) are 
defined: The first set corresponds to experimental contact angles, θ, and is shown by 
γsl

θ. For each n-alkane/Teflon AF 1600 system, this value is obtained from Young’s 
equation by substituting γlv and γsv = 13.61 mJ/m2 as the surface tension of the bare 
solid, and experimental contact angles, θ. Thus, γsl

θ is the true, operative interfacial 
tension. The second set corresponds to the ideal contact angles, θ′, shown by γsl

θ′. 
It is obtained from Young’s equation by substituting γlv, γsv = 13.61 mJ/m2, and the 
ideal contact angles, θ′, of each n-alkane on Teflon AF 1600. γsl

θ′ represent the val-
ues that would exist if the experimental points would all fall on the smooth curve. 
Clearly, from the above definitions, if there was no deviation in the contact angles of 
n-alkanes from the smooth curve of γsv = 13.61 mJ/m2, that is, θ = θ′, the value of γsl

θ 
would be the same as γsl

θ′ for each given n-alkane/Teflon AF 1600 system. Table 8.18 
contains the two sets of the solid–liquid interfacial tension for each n-alkane/Teflon 

table 8.18
experimental Contact angles (θ) of n-alkanes on teflon af 1600 surfaces, 
ideal Contact angles (θ’), Contact angle deviations (Δθ) from the smooth 
Curve, actual and ideal solid–liquid interfacial tensions (γsl

θ and γsl
θ’), and 

Vapor pressure of the liquids at 23°C

liquid θ (°) θ’ (°) Δθ (°)
γsl

θ 
(mJ/m2)

γsl
θ’ 

(mJ/m2) Pv (kpa)

n-Hexane 40.31 ± 0.10 43.83 –3.52 –0.33 0.42 18.69

n-Heptane 47.17 ± 0.10 49.90 –2.73 0.04 0.75 5.50

n-Octane 52.45 ± 0.15 54.50 –2.05 0.52 1.14 1.68

n-Nonane 56.22 ± 0.14 57.44 –1.22 1.05 1.46 0.52

n-Decane 59.29 ± 0.18 59.63 –0.34 1.62 1.74 0.17

n-Undecane 61.60 ± 0.22 61.74 –0.14 2.00 2.05 0.05

n-Dodecane 63.78 ± 0.32 63.90 –0.12 2.38 2.42 0.015

n-Tridecane 65.68 ± 0.05 65.01 + 0.67 2.92 2.64 0.006

n-Tetradecane 67.15 ± 0.14 66.07 + 1.08 3.32 2.85 0.001

n-Pentadecane 68.06 ± 0.14 66.99 + 1.07 3.53 3.06 0.0003

n-Hexadecane 69.48 ± 0.16 67.41 + 2.07 4.07 3.15 0.0001

Note: Reprinted from Tavana, H., Lam, C. N. C., Friedel, P., Grundke, K., Kwok, D. Y., Hair, M. L., 
and Neumann, A. W., Journal of Colloid and Interface Science, 279, 493, 2004. With permis-
sion from Elsevier.
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AF 1600 system. Using the values of γsl
θ, γsl

θ′, and γsv = 13.61 mJ/m2, the contact 
angle deviations of n-hexane and n-hexadecane, that is, the two liquids that fall fur-
thest above and below the smooth curve, respectively, are explained below.

8.6.3.1.1 Contact Angle Deviation of n-Hexadecane
As implied by Young’s equation, only a γsv and/or γsl different from their ideal val-
ues (described above) can cause deviation in contact angle from the smooth curve. 
The main cause for such a difference in the solid–vapor interfacial tension (γsv) 
is adsorption of vapor onto the solid. Considering the very low vapor pressure of 
n- hexadecane (see Table 8.18), it is not likely that a significant vapor adsorption onto 
the solid surface takes place. Therefore, the reason for deviation in the contact angle 
of n-hexadecane from the smooth curve must be sought in the solid–liquid interfacial 
tension (γsl). In this context, penetration of the liquid into the solid and/or surface 
retention might be thought of as a likely cause (see Chapter 7). It is obvious that this 
process would make the two bulk phases more alike, resulting in a decrease in solid–
liquid interfacial tension. However, as shown in Table 8.18, γsl

θ of n-hexadecane/
Teflon AF 1600 system is larger than γsl

θ′. Therefore sorption of n-hexadecane cannot 
be the mechanism causing the contact angle deviation. The following explanation is 
proposed.

Molecules of n-alkanes consist of two CH3 groups and a number of CH2 groups. 
The higher the percentage of CH2 groups, the higher the surface tension of the liquid. 
Furthermore, it is well-known that n-hexadecane molecules are flexible chains that 
can assume different shapes. The increase in the value of γsl

θ from γsl
θ′ implies that 

n-hexadecane behaves like a liquid with higher surface tension than its actual value. 
This can be interpreted as an interaction between n-hexadecane and the solid surface 
such that n-hexadecane molecules are forced by the substrate to rearrange them-
selves somewhat flat and parallel to the polymer surface at the solid–liquid interface. 
This means a greater contribution of the CH2 groups at the interface, translating into 
a larger solid–liquid interfacial tension.

Evidence can be found in the literature supporting this explanation. Klein et al. 
investigated the structural properties of liquid n-hexadecane films adsorbed on a 
flat metal (Au) surface using a Monte Carlo (MC) method [82]. The solid–liquid 
system was modeled by defining potential functions and parameters for all types 
of interactions such as bond stretching, bond bending, and torsional motion. It was 
found that the interactions between the hydrocarbons and the substrate are stronger 
than those between the hydrocarbons themselves. Consequently, the liquid mole-
cules are forced to rearrange themselves parallel to the solid surface. This results in 
the formation of a “dense” monolayer at the solid–liquid interface. Interestingly, the 
layer density remains independent of the thickness of the liquid above it, confirming 
that the liquid molecules-substrate interactions are stronger than the intermolecular 
interactions of the liquid. Landman et al. performed a molecular dynamics study of 
interfacial n-alkane films on solid substrates [83]. It was shown that molecular chains 
of n- hexadecane close to the interface orient themselves parallel to the substrate and 
that a steady-state boundary layer of n-hexadecane is formed. Overney et al. com-
pared the friction force between two silicon surfaces, where the gap between them 
was filled with n-hexadecane as well as with OMCTS [84]. A smaller friction force 
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was measured with n-hexadecane as the lubricant. It was concluded that superior 
lubricity of this liquid is a result of interfacial liquid structuring; that is, a substrate-
induced parallel orientation of liquid molecules in close vicinity to the substrate. 
This result is quite plausible considering that OMCTS consists of nonflexible bulky 
molecules that do not allow the substrate to restructure them significantly, as con-
firmed by the contact angle results of liquids with bulky molecules. Israelachvili et 
al. performed a series of experiments to measure the surface forces of n-alkanes 
between mica surfaces [85]. Oscillatory force profiles were obtained as a function 
of surface separation, implying a layering of the chains of liquid molecules under 
confinement parallel to the substrate.

All of the above agrees well with our postulate that a substrate-induced parallel 
reorientation of n-hexadecane molecules close to the surface occurs, making the 
solid–liquid interfacial tension larger than the ideal value predicted by Equation 8.5 
and giving rise to a deviation in the contact angle of n-hexadecane from the γlvcosθ 
versus γlv smooth curve.

8.6.3.1.2 Contact Angle Deviation of n-Hexane
As seen from Table 8.18, the value of γsl

θ for n-hexane/Teflon AF 1600 is negative. It 
has been previously argued that a negative solid–liquid interfacial tension is not pos-
sible and zero is the minimum possible value. Considering that γlv and θ are correctly 
measured quantities, Young’s equation suggests that only an incorrect γsv value can 
lead to a negative γsl

θ. Therefore the value of γsv = 13.61 mJ/m2 cannot be correct for 
the n-hexane/Teflon AF 1600 system and must be higher to produce a positive (or 
zero) γsl

θ. A higher γsv in turn suggests that once a drop of n-hexane is formed on the 
solid surface, its vapor is adsorbed onto the surface, resulting in an increase in the 
solid–vapor interfacial tension (γsv) from that of the bare polymer film. This means 
that the contact angle is measured on a surface that has been modified by the vapor 
of the test liquid, and therefore deviates from the curve that represents the surface 
tension of the original polymer film. Vapor adsorption onto Teflon AF 1600 films is 
quite plausible considering that: (i) n-hexane has a large vapor pressure (18.69 kPa); 
and (ii) the polymer consists of 65% bulky dioxole rings in its backbone that give rise 
to microvoids in the structure of the polymer [91], promoting the adsorption of vapor 
molecules of short-chain n-alkanes onto the polymer film. This finding can be con-
firmed as follows: Suppose γsl

θ has its minimum possible value (i.e., zero). Solving 
Young’s equation for γsv with known γlv and θ of n-hexane gives γsv = 13.97 mJ/m2. 
Since this is a higher value than the surface tension of Teflon AF 1600 film (13.61 
mJ/m2), it can be concluded that vapor adsorption indeed takes place and modifies 
the solid surface.

With the existence of adsorption of vapor of n-hexane onto the Teflon AF 1600 
surface, the equilibrium spreading pressure can be determined. Using the values of 
γs = 13.61 mJ/m2 (surface tension of the polymer film) and γlv = 18.15 mJ/m2 (surface 
tension of n-hexane), Equation 8.5 yields a value of γsl = 0.39 mJ/m2 as the solid–
liquid interfacial tension of the n-hexane/Teflon system. Substituting this value and 
θ = 40.3° (experimental contact angle of n-hexane on Teflon AF 1600 surface) into 
Young’s equation, a value of 14.23 mJ/m2 is obtained for γsv. This leads to Π = 0.62 
mJ/m2 as the equilibrium spreading pressure. This calculation assumes that γsl = 0.39 
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mJ/m2 is indeed the ideal value; that is, there are no additional interactions such as 
swelling of the solid by the liquid, penetration of liquid into the solid surface, or 
substrate-induced alignment of liquid molecules in close vicinity of the solid. In the 
case of swelling of solid and penetration of liquid into the solid, one would expect 
a γsl smaller than the corresponding ideal value (γsl

θ′), whereas in the case of parallel 
alignment process a value larger than γsl

θ′ would be expected.
It should be noted that the deviations in contact angles of the liquids in the middle 

of the n-alkane series, that is, n-decane, n-undecane, and n-dodecane, are inside 
the error limits of ADSA and these data fall close to the smooth curve of γsv = 13.61 
mJ/m2. This could result from a combination of effects responsible for deviations in 
contact angles of short-chain and long-chain n-alkanes.

8.6.3.2 n-alkanes/eGC-1700 systems
The contact angles of the series of n-alkanes on EGC-1700 surfaces are shown in 
Figure 8.20. The smooth curve is identical with the one in Figure 8.14 and corre-
sponds to the surface tension of EGC-1700 that was determined above (γsv = 13.84 
mJ/m2) [78]. Short-chain n-alkanes deviate above the curve and the long-chain 
ones below it. This indicates that the mechanisms of vapor adsorption onto the sur-
face prior to advancing of the drop and the parallel alignment of liquid molecules 
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fiGure 8.20 γlvcosθ versus γlv for the contact angles of n-alkanes measured on EGC-1700 
surfaces. The smooth curve is identical to that of Figure 8.14, which represents γsv = 13.84 mJ/
m2 and β = 0.000125 (mJ/m2)–2. (Reprinted from Tavana, H., Simon, F., Grundke, K., Kwok, 
D. Y., Hair, M. L., and Neumann, A. W., Journal of Colloid and Interface Science, 291, 497, 
2005. With permission from Elsevier.)
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in the vicinity of the solid surface are operative here as well. In Table 8.19, the 
measured contact angles (θ) and the ideal contact angles (θ′), that is, the angle that 
would fall on the γsv = 13.84 mJ/m2 curve, are given. The difference between θ and 
θ′ gives the contact angle deviation for each liquid. The longest-chain n-alkane; 
that is, n-hexadecane shows the largest deviations with +2.56°. Moving from the 
longest to the shortest chains, the deviations decrease, change sign, and increase 
again.

Comparison of the contact angle deviations of the n-alkanes/Teflon AF 1600 with 
those of the n-alkanes/EGC-1700 systems; that is, Figures 8.19 and 8.20 reveals 
that in the former systems, the contact angles of more liquids fall above the curve 
(minus sign) and in the latter systems, more below it. This suggests that the relative 
importance of the two mechanisms differs for the two polymers: vapor adsorption is 
more pronounced on Teflon AF 1600 while the effect of parallel alignment of liquid 
molecules for the long-chain n-alkanes seems to be more dominant in the case of 
EGC-1700. For instance, the deviation for n-hexane is over 2° smaller on EGC-1700 
than on Teflon AF 1600. The less extensive vapor adsorption on EGC-1700 is most 
probably due to the absence of any bulky groups in its backbone (in contrast to Teflon 
AF 1600). The larger contact angle deviations for the long-chain n-alkanes on EGC-
1700 compared to Teflon AF 1600 is probably due to the same differences in their 
structural properties.

table 8.19
actual and ideal advancing Contact angles of 
n-alkanes/eGC-1700 systems and the deviations in 
the Contact angle of each liquid from the smooth 
Curve of γsv = 13.84 mJ/m2 and β = 0.000125 (mJ/m2)–2

liquid θ (°) θ’ (°) Δθ (°)

n-Hexane 41.68 ± 0.11 42.75 –1.07

n-Heptane 48.70 ± 0.07 49.08 –0.37

n-Octane 53.37 ± 0.12 53.67 –0.29

n-Nonane 57.03 ± 0.09 56.64 +0.38

n-Decane 59.84 ± 0.14 58.88 +0.96

n-Undecane 62.10 ± 0.11 61.02 +1.08

n-Dodecane 63.99 ± 0.08 63.21 +0.78

n-Tridecane 65.63 ± 0.12 64.34 +1.29

n-Pentadecane 68.33 ± 0.16 66.43 +1.90

n-Hexadecane 69.33 ± 0.14 66.77 +2.56

Note: Reprinted from Tavana, H., Lam, C. N. C., Friedel, P., Grundke, 
K., Kwok, D. Y., Hair, M. L., and Neumann, A. W., Journal of 
Colloid and Interface Science, 279, 493, 2004. With permission 
from Elsevier.
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8.6.3.3 n-alkanes/etmf systems
Contact angle measurements were also performed with the series of n-alkanes on 
the films of ETMF [80], just as for Teflon AF 1600 and EGC-1700. The results are 
shown in the plot of γlvcosθ versus γlv in Figure 8.21. The smooth curve is identi-
cal with the one in Figure 8.16 and corresponds to the surface tension of ETMF 
that was determined from OMCTS and DMCPS contact angles (γsv = 11.00 mJ/
m2). The contact angle points show an overall shift with respect to the smooth 
curve, compared to results obtained with the Teflon AF 1600 and EGC-1700 poly-
mers. This indicates that the extent of the two mechanisms of vapor adsorption and 
parallel alignment of liquid molecules at the surface are different for ETMF. To 
quantify this point, the actual contact angles (θ), ideal contact angles (θ′), and the 
contact angle deviations from the γsv = 11.00 mJ/m2 curve are given in Table 8.20 
for each n-alkane. The deviation is up to about –2° for the short-chain n-alkanes 
and decreases toward the end of the series. The contact angle deviation of short-
chain n-alkanes suggests that the process of vapor adsorption onto the solid is still 
operative. However the contact angles of the long-chain n-alkanes fall very close 
to this curve, suggesting that no significant parallel alignment of liquid molecules 
occurs near the surface.

n-hexadecane

n-pentadecane

n-tetradecane

n-tridecane 
n-dodecane 

n-undecane 

n-decane

n-nonane

n-octane

n-heptane

282624222018

10

9

8

7

6

γlv (mJ/m2)

γ l
vc

os
θ 

(m
J/m

2 )

fiGure 8.21 γlvcosθ versus γlv for the contact angles of n-alkanes measured on ETMF 
surfaces. The smooth curve is identical to that of Figure 8.16, which represents γsv = 11.00 mJ/
m2 and β = 0.000125 (mJ/m2)–2. (Reprinted from Tavana, H., Yang, C., Yip, C. Y., Appelhans, 
D., Zschoche, S., Grundke, K., Hair, M. L., and Neumann, A. W., Langmuir, 22, 628, 2006. 
With permission from American Chemical Society.)
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8.6.3.4 n-alkanes/Odmf systems
It was shown in Chapter 7 that not all n-alkanes yield useful contact angles on 
ODMF surfaces. The short-chain n-alkanes (e.g., n-heptane) show a stick-slip pat-
tern. This pattern diminishes for those liquids in the middle of the series. For the last 
three n-alkanes, stick-slip almost vanishes and an even motion of the drop front is 
obtained. Due to stick-slip, the contact angles should be excluded from interpreta-
tion in terms of solid surface tensions. A more complete discussion of stick-slip was 
given in Chapter 7.

8.6.4  contact anGle deVIatIons due to stronG molecular 
InteractIons at the solId–lIquId InterFace

It was shown that the deviations in the contact angles from smooth curves of γlvcosθ 
versus γlv are due to specific interactions at solid–vapor and/or solid–liquid interfaces 
that are not taken into account by the equation of state. The use of short-chain n-al-
kanes as probe liquids causes the polymer film to be modified due to vapor adsorp-
tion so that γsv becomes different from the ideal value for the solid–liquid system 
under consideration. On the other hand, the extremely low vapor pressure of long-
chain n-alkanes and liquids with bulky molecules eliminates the likelihood of vapor 
adsorption onto the solid surface. The contact angle deviations from smooth curves 
in systems involving such liquids are caused by interactions between liquid and solid 

table 8.20
actual and ideal Contact angles of n-alkanes on 
etmf films and the Corresponding deviations in 
the actual Contact angles from the smooth Curve 
of γsv = 11.00 mJ/m2 and β = 0.000125 (mJ/m2)–2

liquid θ (°) θ’ (°) Δθ (°)

n-Heptane 60.30 ± 0.29 62.25 –1.95

n-Octane 64.01 ± 0.24 65.90 –1.89

n-Nonane 66.63 ± 0.19 68.24 –1.61

n-Decane 68.82 ± 0.21 70.09 –1.27

n-Undecane 70.67 ± 0.22 71.88 –1.21

n-Dodecane 72.15 ± 0.07 73.75 –1.60

n-Tridecane 73.36 ± 0.12 74.71 –1.35

n-Tetradecane 74.44 ± 0.18 75.62 –1.18

n-Pentadecane 75.70 ± 0.25 76.44 –0.74

n-Hexadecane 76.87 ± 0.14 76.81 +0.06

Note: Reprinted from Tavana, H., Yang, C., Yip, C. Y., Appelhans, 
D., Zschoche, S., Grundke, K., Hair, M. L., and Neumann, 
A. W., Langmuir, 22, 628, 2006. With permission from 
American Chemical Society.
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molecules at the solid–liquid interface; that is, γsl becomes different from the ideal 
value [56,78,79]. The discussion presented so far reflects the fact that the processes 
affecting γsl are indeed very complicated. To understand such processes more fully 
and in more depth, solid–liquid systems with strong molecular interactions will be 
examined in detail below. It will be shown how such interactions actually cause 
contact angle deviations.

Contact angle measurements with two liquids consisting of bulky molecules, that 
is, 1-methylnaphthalene and 1-bromonaphthalene, on EGC-1700 surfaces yielded 
deviations from the γsv = 13.84 mJ/m2 smooth curve (surface tension of the EGC-1700 
polymer). The deviations are –2.40° and –5.53°, respectively (see Table 8.12) [78]. 
The two liquids have similar molecular structures but the methyl group of the former 
is replaced by a bromine atom in 1-bromonaphthalene. This result suggests that the 
larger deviation for 1-bromonaphthalene might be due to electronegativity effects 
associated with the molecules, causing stronger interactions with the  EGC-1700 
chains. To test this proposition, a homologous series of naphthalene compounds that 
contain halogen moieties with different electronegativities were selected as test liq-
uids for contact angle measurements on EGC-1700 surfaces (the liquids are listed 
in Table 8.4). If the above proposition is indeed correct, one should expect a larger 
contact angle deviation for the liquids with stronger electronegativity. The results of 
contact angle measurements on Teflon AF 1600 surfaces, which are inert with respect 
to many liquids, are reported for comparison with the results for EGC-1700 [87].

Table 8.21 presents the contact angles of the above liquids on Teflon AF 1600 
films. The corresponding plot of γlvcosθ versus γlv is shown in Figure 8.22. The 
smooth curve is identical to that of Figure 8.10; that is, γsv = 13.61 mJ/m2 and 
β = 0.000116 (mJ/m2)–2. The contact angles of liquids with bulky molecules are 
shown by circles in Figure 8.22. The contact angles of the naphthalene compounds 
(triangles), that is, 1-fluoronaphthalene to 1-iodonaphthalene and 1-methylnaphtha-
lene, all fall on the smooth curve and the corresponding deviations from this curve 

table 8.21
the Contact angles (θ) of a series of naphthalene Compounds on 
teflon af 1600 surfaces and the Calculated Values of solid 
surface tension (γsv) from each Contact angle

liquid θ (°) γsv (mJ/m2) Δθ (°) Δγsv (mJ/m2)

1-Fluoronaphthalene 80.49 ± 0.28 13.86 –0.73 0.25

1-Chloronaphthalene 86.70 ± 0.17 13.64 –0.23 0.03

1-Bromonaphthalene 89.80 ± 0.19 13.75 –0.37 0.14

1-Iodonaphthalene 93.00 ± 0.22 13.71 –0.22 0.10

1-Methylnaphthalene 83.62 ± 0.24 13.65 –0.11 0.04

Source: Reprinted from Tavana, H., Hair, M. L., and Neumann, A. W., Journal of Physical 
Chemistry B, 110, 1294, 2006. With permission from American Chemical Society.

Note: The contact angle deviations (Δθ) from the smooth curve of γsv = 13.61 mJ/m2 and 
the corresponding error in the solid surface tension values (Δγsv) are also given.
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are small, averaging only –0.33° (Table 8.21). Therefore, the contact angles can 
be used to determine the surface tension (γsv) of Teflon AF 1600 films, as given in 
Table 8.21. The γsv values are fairly constant and the variations (Δγsv) are negligible. 
It is suggested that Teflon AF 1600 is inert with respect to these liquids and does 
not interact specifically with the liquid molecules; that is, there is no significant 
change in the configuration of molecules of the test liquids or the polymer chains 
upon solid–liquid contact.

Contact angles of the naphthalene compounds on EGC-1700 films are given in 
Table 8.22. The corresponding γlvcosθ versus γlv smooth curve (γsv = 13.84 mJ/m2), 
which is identical to that of Figure 8.14, is shown in Figure 8.23. The circles repre-
sent OMCTS and DMCPS results. The contact angles of the naphthalene compounds 
show considerable deviations (Δθ) from this curve, as given in Table 8.22. 1-Meth-
ylnaphthalene yields the smallest deviation (–2.40°). Deviations for the compounds 
containing halogen atoms increase from –5.27° for 1-iodonaphthalene to –7.29° for 
1-fluoronaphthalene. This would correspond to an error of ~1–3 mJ/m2 in the calcula-
tion of solid surface tension (γsv). These results and the fact that electronegativity of 
halogens also increases from iodine to fluorine confirms the proposition that specific 
solid–liquid interactions due to electronegativity effects correlate with the contact 
angle deviations. This point is illustrated in Table 8.22 where the Pauling electrone-
gativities (EN) of the elements are given [88].
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fiGure 8.22 γlvcosθ versus γlv for liquids with bulky molecules (circles) and naphtha-
lene compounds (triangles), on Teflon AF 1600 films. The smooth curve is identical to that 
in Figure 8.10. (Reprinted from Tavana, H., Hair, M. L., and Neumann, A. W., Journal of 
Physical Chemistry B, 110, 1294, 2006. With permission from American Chemical Society.)
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For the naphthalene compounds/EGC-1700 systems, the actual and ideal solid–
liquid interfacial tensions were calculated. The ideal values were obtained by sub-
stituting γlv of each liquid and the actual solid surface tension of EGC-1700; that is, 
γsv = 13.84 mJ/m2, into Equation 8.5. The actual values were calculated from the 
equilibrium condition, that is, Young’s equation, using γlv and θ of each liquid and 
γsv = 13.84 mJ/m2. The actual and ideal solid–liquid interfacial tensions (γsl

θ and γsl
θ′) 

for each system are given in Table 8.22. In all cases the actual value is less than the 
corresponding ideal value. The 1-fluoronaphthalene/EGC-1700 system shows the 
most significant difference while the smallest difference occurs for the 1-methyl-
naphthalene/EGC-1700 system, in agreement with the corresponding contact angle 
deviations. The most likely explanation for the difference in the solid–liquid inter-
facial tensions from corresponding ideal values is that the polymer chains are reor-
ganized at the uppermost layer of the film due to contact with the liquid molecules 
and expose groups less hydrophobic than CF2 and CF3 toward the liquid phase. This 
phenomenon was discussed in detail above.

The electronegativities shown in Table 8.22 are atomic properties. It can be 
shown that electronegativity correlates with the electronic properties of the cor-
responding molecule such as electrostatic potential, dipole moment, and electronic 
polarizability. For example, 1-fluoronaphthalene has the largest dipole moment and 
the most negative electrostatic potential. These properties were calculated using 
computational chemistry software, HyperChem 7.5 [67]. Thus, dipole–dipole and 
dipole-induced dipole interaction energies between liquid molecules and polymer 

table 8.22
Contact angles (θ) of a series of naphthalene Compounds on eGC-1700 
surfaces, Contact angle deviations (Δθ) from the smooth Curve of 
γsv = 13.84 mJ/m2, electronegativity (en) of the elements from the pauling 
scale, actual (γsl

θ) and ideal (γsl
θ’) solid–liquid interfacial tensions, and 

the percentage difference between the actual and ideal γsl Values

liquid θ (°) Δθ (°) en
γsl

θa 
(mJ/m2)

γsl
θ’a 

(mJ/m2) %δγsl
b

1-Fluoronaphthalene 73.29 ± 0.15 –7.29 3.98 3.5 7.9 56

1-Chloronaphthalene 80.09 ± 0.21 –6.23 3.16 6.8 11.1 39

1-Bromonaphthalene 84.04 ± 0.12 –5.53 2.96 9.3 13.5 31

1-Iodonaphthalene 87.38 ± 0.17 –5.27 2.66 11.7 16.0 27

1-Methylnaphthalene 80.67 ± 0.10 –2.40 — 7.7 9.3 17

a γsl
θ’ is obtained from Equation 8.12 by substituting the liquid surface tension (γlv) and the actual 

surface tension of the polymer surface (γsv = 13.84 mJ/m2). γsl
θ is calculated from Young’s equation 

by substituting the actual surface tension of the polymer film (γsv = 13.84 mJ/m2), the liquid surface 
tension (γlv), and the corresponding contact angle (θ).

b %δγsl = (γsl
θ’–γsl

θ)/γsl
θ’

Note: Reprinted from Tavana, H., Hair, M. L., and Neumann, A. W., Journal of Physical Chemistry 
B, 110, 1294, 2006. With permission from American Chemical Society.
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chains were calculated. The results showed that, overall, contact angle deviations 
correlate with solid–liquid intermolecular interactions [87]. This is illustrated in 
Figure 8.24 where contact angle deviations are plotted versus the total interaction 
energy (i.e., the summation of dipole-dipole and dipole-induced dipole energies) 
for both Teflon AF 1600 and EGC-1700. In the case of Teflon AF 1600, the inter-
action energies are very small, regardless of dipole moment and polarizability of 
the liquid molecules. This is because the Teflon chains have a fairly symmetric 
and circular cross-section with a small dipole moment. On the other hand the 
large dipole moment of the perturbed molecular chains of EGC-1700 causes much 
stronger interactions with the molecules of the probe liquids. The interaction ener-
gies increase significantly from 1-methylnaphthalene to 1-fluoronaphthalene, in 
agreement with the corresponding contact angle deviations. Details of this study 
can be found elsewhere [87].

8.6.5 Inertness oF ProBe lIquIds WIth resPect to a solId

An important picture emerges from contact angles of the naphthalene compounds on 
Teflon AF 1600 and EGC-1700 surfaces. Although both are fluoropolymers, Teflon 
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fiGure 8.23 γlvcosθ versus γlv for contact angles of naphthalene compounds containing 
halogen atoms (triangles) and 1-methylnaphthalene (square) on EGC-1700 films. The smooth 
curve is identical to that in Figure 8.14 obtained from OMCTS and DMCPS contact angles 
(circles). (Reprinted from Tavana, H., Hair, M. L., and Neumann, A. W., Journal of Physical 
Chemistry B, 110, 1294, 2006. With permission from American Chemical Society.)
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AF 1600 and EGC-1700 exhibit very different behavior when exposed to one and 
the same liquid. Teflon AF 1600 has stiff and nonflexible chains of molecules that 
do not reorganize upon contact with a liquid. On the other hand, EGC-1700 consists 
of very flexible chains of molecules that are easily perturbed due to contact with 
a noninert liquid. As the degree of inertness of the liquid decreases, for example, 
from 1-methylnaphthalene to 1-fluoronaphthalene, the interactions with EGC-1700 
chains become stronger. Therefore, it is crucial to select appropriate probe liquids for 
contact angle measurements on a given polymer film. If the polymer is amorphous 
and possesses chains that are flexible and mobile with a nonsymmetrical electronic 
structure, then the probe liquid must be completely inert so that the strong interac-
tions at the solid–liquid interface are eliminated.

If the solid surface were highly crystalline, that is, with chains packing in an 
orderly fashion, and possessing a uniform electron cloud over the constituent chains, 
then almost any liquid might be used for contact angle measurement to determine 
the solid surface tension. Such a situation has been reported with n-hexatriacontane 
surfaces [89]. The surfaces were of high quality with the chains so well packed that 
no contact angle hysteresis was observed. The contact angles of a number of liq-
uids with different properties on n-hexatriacontane surfaces are given in Table 8.23. 
These data are shown in the γlvcosθ versus γlv plot in Figure 8.25. The contact angles 
conform well to the smooth curve of γsv = 20.60 mJ/m2 and β = 0.000129 (mJ/m2)–2, 
which result from the application of multivariable optimization to the experimental 
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fiGure 8.24 Deviations in the contact angles of naphthalene compounds measured on 
Teflon AF 1600 and EGC-1700 surfaces as a function of the corresponding energy of dipole-
dipole and dipole-induced dipole interactions (J)(e-20). The crossed and open symbols rep-
resent data for Teflon AF 1600 and EGC-1700, respectively. (Reprinted from Tavana, H., 
Hair, M. L., and Neumann, A. W., Journal of Physical Chemistry B, 110, 1294, 2006. With 
permission from American Chemical Society.)
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contact angles obtained on n-hexatriacontane surfaces. To determine the extent of 
the contact angle deviations from this curve, the ideal contact angle (θ′) for each 
liquid was also calculated, as given in Table 8.23. The deviations for n-alkanes are 
larger than the rest of the liquids. It is pointed out that the contact angles of the last 
four liquids in this table are from Neumann’s work [89] and were measured with 
capillary rise, which is known as a reliable technique. The contact angles fall on the 
smooth curve, indicating that even these highly polar liquids do not show specific 
molecular interactions with n-hexatriacontane molecular chains. On the other hand, 
the n-alkanes data are taken from Zisman’s work [8]. Due to the error associated with 
the measurement technique, these data have an error limit of at least ±2°. Most likely, 
the corresponding deviations reflect experimental errors rather than any physical 
phenomena. Since the scatter in the contact angles does not follow a trend, it is prob-
able that the molecules of long-chain n-alkanes do not experience interfacial struc-
turing at the n-hexatriacontane surface. In view of this, the contact angles of almost 
any of these liquids could be used to determine n-hexatriacontane surface tension 
(see Table 8.23). If the contact angles of n-alkanes on n-hexatriacontane films were 
of the accuracy obtainable with capillary rise or sessile drop techniques, they would 
not be expected to deviate significantly from the γsv = 20.60 mJ/m2 smooth curve.

The importance of molecular chain configuration of a solid surface in the contact 
angle deviations context becomes more evident by comparing the contact angles 
of water/Teflon AF 1600 and water/n-hexatriacontane systems. Our preliminary 

table 8.23
Contact angles of liquids with different properties on 
n-hexatriacontane surfaces 

liquid θ (°) θ’ (°) Δθ (°) γsv (mJ/m2)

n-Nonane 25 26.4  + 1.4 20.8

n-Decane 28 31.3  + 3.3 21.2

n-Dodecane 38 37.3 –0.7 20.4

n-Tetradecane 41 41.5  + 0.5 20.7

n-Hexadecane 46 44.2 –1.8 20.1

Ethylene glycol 79.2 78.7 –0.5 20.4

Thiodiglycol 86.3 86.0 –0.3 20.4

Glycerol 95.4 95.7  + 0.2 20.7

Water 104.6 104.5 –0.1 20.6

Source: Reprinted from Tavana, H., et al., Advances in Colloid and Interface Science, 
132, 1, 2007. With permission from Elsevier.

Note: n-Alkanes data are from Zisman, W. A., Advances in Chemistry, American 
Chemical Society, Washington, DC, 1964; the last four liquids are from Neumann, 
A. W., Advances in Colloid and Interface Science, 4, 105, 1974. The ideal contact 
angle of each liquid, the contact angle deviations from the smooth curve of 
γsv = 20.60 mJ/m2 and β = 0.000129 (mJ/m2)–2, and the solid surface tensions cal-
culated from surface tension and contact angle of each liquid (both from literature) 
with β = 0.000129 (mJ/m2)–2 using Equation 8.6 are also given. 
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measurements with water yielded a deviation of ~7° from the γsv = 13.61 mJ/m2 curve 
for Teflon AF 1600 [66]. It was shown above that Teflon AF 1600 is the most inert 
polymer used in this study in the sense that the interactions between many liquids 
and Teflon films are not specific. Nevertheless, the relatively large contact angle 
deviation of water indicates that even Teflon AF 1600 films are not inert with respect 
to water and strong interactions are operative between water molecules and Teflon 
films. The precise mechanisms responsible for the deviations are not known as yet. 
Possibly the anomalous interfacial properties of water are involved [90]. On the other 
hand, the negligible deviation of water contact angles from the smooth curve of 
n-hexatriacontane (see Table 8.23) implies that the close packing of the constituent 
chains plays an important role in eliminating specific molecular interactions even 
with water molecules.

8.7  COntaCt anGle deViatiOns On self-
assembled mOnOlayers (sams)

The preceding discussions of contact angles and their interpretation were essentially 
all based on contact angle measurements on films of a thickness well in excess of that 
of molecular dimensions. However, contact angles have also been studied extensively 
on monolayers, especially on self-assembled monolayers (SAMs), in particular of 
octadecanethiol [91–96]. Partly for historical reasons, these measurements were per-
formed with methods and protocols not necessarily compatible with the strategy of 
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fiGure 8.25 γlvcosθ versus γlv for the contact angles of different liquids measured on the 
surfaces of n-hexatriacontane represents γsv = 20.60 mJ/m2 and β = 0.000129 (mJ/m2)–2.
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contact angle measurement on the slowly advancing drop front, as discussed in pre-
vious chapters. Therefore Kwok et al. [97] performed a series of measurements with 
octadecanethiol adsorbed onto wafers coated with gold, using ADSA in conjunction 
with a slowly moving advancing drop front. The gold layers had been produced by a 
sputtering technique. Advancing and receding contact angles for five liquids includ-
ing water are given in columns 3 and 4 of Table 8.24. Plotting these data in the usual 
fashion as γlvcosθ versus γlv provides a plot with considerable scatter, of the same 
magnitude as the scatter with the thick polymeric films, as discussed above. The con-
tact angle of water is 119° (i.e., extremely large). As the actual surface of the SAM 
is expected to consist essentially of CH3 groups, one would expect a similar value of 
the contact angle as that on a hexatriacontane film formed by slow vapor deposition 
in vacuum. The contact angle on such a film against water was found to be 105°, see 
Table 8.23. It should be noted that the contact angle hysteresis in the measurements 
for the SAMs in Table 8.24 was considerable, much larger than that for the polymeric 
films considered above.

To investigate the source of these discrepancies, Kwok et al. [97] investigated 
further the possible effect of different structures of the gold film on which the SAMs 
are formed. As it is known that thermally evaporated gold yields smoother and better 
polycrystalline structures than those obtained by sputtering [98,99], the gold sur-
faces were annealed prior to SAM formation. The advancing and receding contact 
angles are also given in Table 8.24.

Obviously, the contact angles are quite different due to annealing. The advanc-
ing angles now provide γsv values that are virtually independent of the liquid used. 
To illustrate this fact, the advancing contact angles on the annealed gold surfaces 
as substrate are plotted in Figure 8.26, together with the literature values for con-
tact angles on hexatriacontane. There are two immediate conclusions to be drawn 

table 8.24
experimental advancing and receding Contact angles on sams of 
Octadecanethiol Ch3(Ch2)17sh adsorbed onto evaporated 
(nonannealed) and annealed Gold

nonannealed annealed

liquid γlv θa (deg.) θr (deg.) θa (deg.) θr (deg.)

Water 72.7 119.1 ± 0.8 100.2 ± 0.7 106.9 ± 0.5 92.3 ± 0.9

Formamide 59.1 88.7 ± 0.8 63.0 ± 1.4 92.4 ± 1.5 69.2 ± 1.9

Ethylene glycol 47.6 81.5 ± 0.6 66.4 ± 1.1 81.6 ± 2.4 68.2 ± 1.6

Bromonaphthalene 44.3 67.2 ± 0.8 44.1 ± 0.8 76.1 ± 0.9 64.3 ± 1.3

Decanol 28.9 50.7 ± 0.5 38.2 ± 1.1 53.2 ± 0.9 45.1 ± 1.3

Hexadecane 27.6 45.4 ± 0.4  < 20.0 45.7 ± 0.8 35.4 ± 2.2

Note: Error bars are the 95% confidence limits. Reprinted from Yang, J., Han, J., Isaacson, K., 
and Kwok, D. Y., Langmuir, 19, 9231, 2003. With permission from American Chemical 
Society.
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from this figure [89]. One, the data points for the SAM surfaces merge perfectly 
with those for hexatriacontane, in agreement with the expectation that both types 
of surfaces are composed of closely packed CH3 groups. And both sets of data fall 
on a continuous smooth line in a pattern identical with that discussed for polymeric 
surfaces above. The contact angle hysteresis on the SAMs with annealed gold sub-
strate is also affected. Generally, the hysteresis is smaller in the case of the annealed 
substrates, although the very low values of the contact angle hysteresis in the case of 
the polymeric surfaces discussed above are not reached. This suggests that retention 
of the liquid in the case of the SAMs is more extensive than in the case of polymeric 
surfaces. A detailed Infrared Reflectance (IR) and ellipsometric study [97] indeed 
showed clearly that the two types of SAMs had different structure. 

Independent AFM images shown in Figure 8.27 suggest that the annealed Au has 
larger terraces (as much as 200 nm), while the nonannealed Au has much smaller 
steps. From the interpretation of the IR and AFM results, a model was constructed in 
Figure 8.28 that illustrates a possible arrangement of octadecanethiol adsorbed onto 
nonannealed and annealed Au. From the schematic, it is expected that there are more 
methylenes per unit projected area on the nonannealed Au than on the annealed Au, 
in general agreement with the IR results. (The slightly larger errors for the contact 
angle data of octadecanethiol adsorbed onto annealed Au were presumably due to 
the variability of the annealing procedures.) 

A definitive explanation of the different contact angle patterns on the nonan-
nealed surfaces is not obvious. It is apparent from Table 8.24 that the contact angle 
hysteresis H = θa – θr is indeed smaller for the annealed Au surfaces suggesting 
better surface quality. From the surface energetics and Young’s equation standpoint, 
a key point is that for the annealed SAM, the water contact angle of 107° yields a 
γsv value in accordance with other contact angle measurements on solid surfaces 
consisting predominately of CH3-groups, in the neighborhood of 20 mJ/m2. A con-
tact angle of 119° would imply a solid surface tension of approximately 12 mJ/m2, 
which seems impossible for any hydrocarbon surface. A stipulation that in the case 
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fiGure 8.26 γlvcosθ versus the liquid–vapor surface tension γlv for hexatriacontane (♢) 
and SAMs of octadecanethiol CH3(CH2)17SH adsorbed onto thermally annealed Au ( ). 
(Reprinted from Yang, J., Han, J., Isaacson, K., and Kwok, D. Y., Langmuir, 19, 9231, 2003. 
With permission from American Chemical Society.)
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of the nonannealed gold substrates the SAMs might exhibit a certain fraction of CH2 
groups on the surface would increase the solid surface tension above that of the pure 
CH3 surface and hence would cause a smaller contact angle, not the larger observed 
value. All these facts and stipulations strongly suggest that the contact angle of water 
on SAMs with nonannealed substrates is not a Young contact angle and hence cannot 
be used for the determination of solid surface tension. Considerations common in 
matters of ultrahydrophobicity in Chapter 7 may provide further insight.

Nonannealed Au

Annealed Au

fiGure 8.28 Schematic illustration of SAM assembly on two different Au substrates. The 
upper  Figure illustrates SAM assembly of octadecanethiol adsorbed onto nonannealed Au with 
smaller gold steps. The lower Figure illustrates SAM assembly of octadecanethiol adsorbed 
onto annealed Au with larger terraces. (Reprinted from Yang, J., Han, J., Isaacson, K., and 
Kwok, D. Y., Langmuir, 19, 9231, 2003. With permission from American Chemical Society.)
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fiGure 8.27 AFM images of (a) annealed Au (b) nonannealed Au for a scan size of 1 µm. 
(Reprinted from Yang, J., Han, J., Isaacson, K., and Kwok, D. Y., Langmuir, 19, 9231, 2003. 
With permission from American Chemical Society.)
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8.8  impaCt Of reCent WOrk On appliCability 
Of the equatiOn Of state

The efficacy of the equation of state to estimate solid surface tensions was estab-
lished in recent decades. Using this approach, surface tensions with an accuracy of 
~1–2 mJ/m2 could be obtained for polymer films. Nevertheless there were deviations 
in the contact angles from the smooth curves of γlvcosθ versus γlv that were not well 
understood. The deviations were disregarded in the past. Because the contact angle 
points deviated both above and below the curve, the application of the multivariable 
optimization technique to these data averaged out the effect of processes such as 
vapor adsorption and parallel alignment of liquid molecules. Thus, reasonable values 
for the solid surface tension (γsv) and the constant β (Equation 8.6) were obtained.

In the major case study on fluorinated polymers of this chapter, the contact 
angle deviations were rigorously investigated and several causes were identified. 
Furthermore, the equation of state was evaluated to determine how large the errors in 
the calculation of solid surface tensions can be. The maximum error found from the 
extensive study of many S-L systems is ~2.6 mJ/m2, which corresponds to the 1-fluor-
onaphthalene/EGC-1700 system, and is caused by strong intermolecular interactions.

It should be noted that the existence of the deviations does not weaken the status 
of the equation of state. To illustrate this point, the contact angles of all probe liquids; 
that is, first and second group of liquids with bulky molecules, n-alkanes, and naph-
thalene compounds, on Teflon AF 1600 surfaces are plotted in Figure 8.29. If the 
solid surface tension (γsv) is calculated from the contact angle of each liquid and the 
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fiGure 8.29 γlvcosθ versus γlv for the contact angles of all probe liquids on Teflon AF 1600 
films. The smooth curve represents γsv = 13.61 mJ/m2 and β = 0.000116 (mJ/m2)–2.
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results are then averaged, a value of γsv = 12.95 mJ/m2 is obtained. This value is close 
to γsv = 13.61 mJ/m2, which was obtained from our scrutiny of the contact angles of 
these liquids. It is suggested that simply averaging the solid surface tension values 
obtained from contact angles of all the probe liquids using Equation 8.6 gives a fairly 
accurate value for the solid surface tension. This is because the effects of different 
processes that cause the contact angle deviations (e.g., vapor adsorption, alignment 
of liquid molecules at the solid surface, etc.) are averaged out. Using the averaging 
strategy, reasonable solid surface tension values were obtained for a large number of 
solid surfaces with different molecular properties [48].

The above highlights the fact that the equation of state approach is indeed a reliable 
formulation to predict the surface tension of solids. In particular for fluoropolymer 
surfaces, surface tension values with an accuracy of ~±0.2 mJ/m2 can be obtained 
if OMCTS and DMCPS are used as probe liquids for contact angle measurements. 
This is because these two liquids do not provoke specific interactions with fluoropo-
lymers. The extremely low vapor pressure of these liquids and their special molecu-
lar structure eliminate the processes associated with n-alkanes as well as the specific 
intermolecular interactions at the S–L interface.

8.9  summary Of the physiCal Causes Of 
deViatiOns frOm the smOOth CurVes

By accurately reproducing the contact angles of a series of n-alkanes on the surfaces 
of Teflon AF 1600 (average reproducibility was ±0.2°), it was established that the 
contact angle deviations from smooth curves are not experimental errors but have 
physical causes. Therefore a systematic study of the contact angles of a large number 
of liquids on the surfaces of four different fluoropolymers was conducted to identify 
the causes of the deviations.

It was shown that specific interactions at solid–vapor (S–V) and/or solid–liquid 
(S–L) interfaces are responsible for the contact angle deviations. Vapor adsorption is 
the only obvious process that can affect the S–V interface. With respect to the S–L 
interface, specific interactions take place in different forms: parallel alignment of 
liquid molecules at the solid surface, reorganization of liquid molecules at the S–L 
interface, change in the configuration of polymer chains at the surface layer due to 
contact with the test liquids, and strong intermolecular interactions between solid and 
liquid. The mechanisms causing the contact angle deviations are summarized below.

 1. Vapor adsorption onto the solid surface: The analysis of the contact angles 
of short-chain n-alkanes (e.g., n-hexane) showed that vapor of the test liq-
uid is adsorbed onto the solid surface once an initial sessile drop is formed 
on the solid. Given that the liquid has a larger surface tension than the 
fluoropolymer films, vapor adsorption makes the solid surface tension (γsv) 
larger than that of the bare polymer film. Therefore the measured contact 
angles represent a modified surface, and hence deviate from the curve that 
represents the surface tension of the original polymer film.

 2. Parallel alignment of liquid molecules at the solid–liquid interface: 
A detailed study of the contact angles of long-chain n-alkanes (e.g., 
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n-hexadecane) revealed that liquid molecules are aligned parallel to the 
solid surface at the S–L interface. Such substrate-induced reorientation of 
liquid molecules is also reported in the literature, for example, in studies of 
friction between two surfaces with n-hexadecane as the lubricant between 
them and in the measurements of forces between surfaces with n-alkanes 
as the intervening medium. Due to the interfacial structuring of liquid mol-
ecules, the S-L interfacial tension (γsl) is not a precise function of γlv and γsv, 
as given by the equation of state. Parallel alignment of n-alkane molecules 
causes γsl to be somewhat larger than the value predicted by the equation of 
state. These effects are manifested by deviations of the experimental con-
tact angles from the ideal contact angle pattern.

 3. Reorientation of liquid molecules at the solid–liquid interface: 
Interpretation of the contact angles of liquids with exposable oxygen and 
nitrogen moieties (noninert liquids) on the films of a fluoropolymer that 
comprises inflexible molecular chains (e.g., Teflon AF 1600) led to the 
conclusion that liquid molecules can undergo a reorientation at the S–L 
interface. The presence of oxygen and nitrogen atoms causes a nonuniform 
electron density distribution over the liquid molecules. Such a nonuniform 
charge density is likely for the polymer chains that contain CF2 and CF3 
groups. Based on the physical law that like charges repel each other, it was 
speculated that the negatively charged parts of the liquid molecules are 
repelled by the polymer chains. Such a reorientation of liquid molecules 
makes the S-L interfacial tension (γsl) larger than the value predicted by 
the equation of state. Therefore the measured contact angles fall below the 
smooth curve.

 4. Reorientation of polymer chains due to contact with probe liquids: It was 
shown that if a fluoropolymer film consists of flexible and mobile chains of 
molecules (e.g., EGC-1700), the configuration of polymer chains changes 
upon contact with a noninert liquid (a liquid with exposable oxygen and 
nitrogen atoms). Due to the reorganization of polymer chains, groups less 
hydrophobic than CF2 and CF3 are exposed to the S–L interface. This causes 
the S–L interfacial tension (γsl) to become less than the value given by the 
equation of state. As a result, the corresponding contact angles fall above 
the γlvcosθ versus γlv curve. This process is thermodynamically favorable. 
A decrease in the solid–liquid interfacial tension is expected to cause the 
overall free energy of the system to decrease.

 5. Intermolecular interactions at the solid–liquid interface: The investigation 
of contact angles of a series of naphthalene compounds on EGC-1700 sur-
faces showed that contact angle deviations correlate with the electronic prop-
erties of liquid molecules. The results suggest that a larger dipole moment 
of liquid molecules and hence stronger dipolar interactions between solid 
and liquid causes a significant perturbation of the polymer chains. Due to 
the exposure of nonfluorinated moieties to the surface, the S–L interfacial 
tension (γsl) becomes less than the value predicted by the equation of state. 
As a result, the measured contact angles fall well above the smooth curve.
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 6. Contact angles on self-assembled monolayers (SAMs): The findings above 
are all connected with physicochemical interactions between liquid and 
smooth polymer surfaces. In the case of SAMs on gold, on the other hand, 
the morphology of the gold surface is significant. The indications are that 
on sputtered, nonannealed surfaces the contact angles may be affected by 
roughness and hence not be compatible with Young’s equation. On the other 
hand, SAMs on annealed gold surfaces yield contact angles that do not cor-
respond specifically with any chemical or structural feature of the liquid, 
very much like highly crystalline hexatriacontane; that is, all contact angles 
fall on the smooth curve.

8.10  the thermOdynamiC status Of experimental 
COntaCt anGles and appliCability 
Of the equatiOn Of state

The applicability of the equation of state depends on the applicability of Young’s 
equation, as a necessary condition. Contact angles on rough surfaces, such as the 
SAMs on nonannealed sputtered gold surfaces are an obvious example where 
Young’s equation is not satisfied. But validity of Young’s equation does not guaran-
tee the applicability of the equation of state, or at least not strictly. Examples are the 
deviations due to vapor adsorption, orientation of liquid molecules at the solid–liquid 
interface and reorientation of polymer chains due to contact with the liquid. The con-
sequence of such processes at the solid–liquid interface is change in γsl from the ideal 
value that corresponds to the smooth curve in the standard contact angle curve. 

Pure liquids should be used for contact angle measurements. The contact angles 
of mixtures of liquids and surfactant solutions are expected to involve more com-
plexities. It has been found that contact angles of mixtures on one and the same solid 
surface do not follow smooth patterns [100]. Thermodynamically, such systems have 
more than two degrees of freedom [49,101,102] due to the additional liquid compo-
nents. There is no reason to think that contact angles measured with a two-compo-
nent liquid should satisfy the Young equation any less than one component liquids 
on the same smooth and homogenous surface. However, there is no independent way 
of establishing the applicability of the Young equation for any given solid surface-
liquid system. Thus, the applicability of the Young equation had to be assumed a 
priori for all the smooth solid surfaces considered in this chapter. Fortunately, the 
fairly large array of results and conclusions presented strongly suggests that under 
these circumstances the Young equation is indeed applicable. The exceptions are the 
contact angles of SAMs on nonannealed gold surfaces. It is readily apparent that in 
this case, Young’s equation is at variance with known physical facts.

referenCes

 1. L. Wilhelmy. Annals of Physics 119 (1863): 177.
 2. S. Hartland. In Surface and Interfacial Tension: Measurement, Theory, and Applications. 

Dekker, New York, 2004.



486 Hossein Tavana and A. Wilhelm Neumann

 3. A. W. Adamson. In Physical Chemistry of Surfaces. 5th ed. John Wiley & Sons Inc., 
New York, 1990.

 4. A. I. Rusanov and V. A. Prokhorov. In Interfacial Tensiometry. Edited by D. Möbius and 
R. Miller. Elsevier, Amsterdam, 1996.

 5. J. C. Eriksson. Surface Science 14 (1969): 221.
 6. J. J. Gilman. Journal of Applied Physics 31 (1960): 2208.
 7. A. I. Rusanov. Surface Science Reports 23 (1996): 173.
 8. W. A. Zisman. In Advances in Chemistry. American Chemical Society, Washington, DC, 

1964.
 9. F. M. Fowkes. Industrial & Engineering Chemistry 12 (1964): 40.
 10. O. Driedger, A. W. Neumann, and P. J. Sell. Kolloid-Z. Z. Polym. 201 (1965): 52.
 11. D. K. Owens and R. C. Wendt. Journal of Applied Polymer Science 13 (1969): 1741.
 12. C. J. van Oss, M. K. Chaudhury, and R. J. Good. Chemical Reviews 88 (1988): 927.
 13. R. J. Good and C. J. van Oss. In Modern Approaches to Wettability: Theory and 

Applications. Edited by M. Schrader and G. Leob. Plenum Press, New York, 1992.
 14. B. V. Derjaguin, V. M. Muller, and Y. P. Toporov. Journal of Colloid and Interface 

Science 73 (1980): 293.
 15. K. L. Johnson, K. Kendall, and A. D. Roberts. Proceedings of the Royal Society of 

London A324 (1971): 301.
 16. A. Fogden and L. R. White. Journal of Colloid and Interface Science 138 (1990): 414.
 17. H. K. Christenson. Journal of Physical Chemistry 90 (1986): 4.
 18. P. M. Claesson, C. E. Blom, P. C. Horn, and B. W. Ninham. Journal of Colloid and 

Interface Science 114 (1986): 234.
 19. P. M. Pashley, P. M. McGuiggan, and R. M. Pashley. Colloids and Surfaces 27 (1987): 

277.
 20. R. M. Pashley, P. M. McGuiggan, B. W. Ninham, and D. F. Evans. Science 229 (1985): 

1088.
 21. S. N. Omenyi and A. W. Neumann. Journal of Applied Physics 47 (1976): 3956.
 22. A. E. Corte. Journal of Geophysical Research 67 (1962): 1085.
 23. P. Hoekstra and R. D. Miller. Journal of Colloid and Interface Science 25 (1967): 166.
 24. J. Cissé and G. F. Bolling. Journal of Crystal Growth 10 (1971): 67.
 25. J. Cissé and G. F. Bolling. Journal of Crystal Growth 11 (1971): 25.
 26. K. H. Chen and W. R. Wilcox. Journal of Crystal Growth 40 (1977): 214.
 27. D. W. Fuerstenau and M. C. Williams. Colloids and Surfaces 22 (1987): 87.
 28. D. W. Fuerstenau and M. C. Williams. Particle Characterization 4 (1987): 7.
 29. D. W. Fuerstenau and M. C. Williams. Journal of Mineral Processing 20 (1987): 153.
 30. D. W. Fuerstenau, J. Diao, and J. Hanson. Energy Fuels 4 (1990): 34.
 31. E. I. Vargha-Butler, T. K. Zubovits, D. R. Absolom, and A. W. Neumann. Journal of 

Dispersion Science and Technology 6 (1985): 357.
 32. E. I. Vargha-Butler, E. Moy, and A. W. Neumann. Colloids and Surfaces 24 

(1987): 315.
 33. E. I. Vargha-Butler, T. K. Zubovits, D. R. Absolom, and A. W. Neumann. Chemical 

Engineering Communications 33 (1985): 25.
 34. H. G. Bruil. Colloid and Polymer Science 252 (1974): 32.
 35. G. D. Cheever. Journal of Coatings Technology 55 (1983): 53.
 36. H. W. Kilau. Colloids and Surfaces 26 (1983): 217.
 37. K. Grundke, T. Bogumil, T. Gietzelt, H.-J. Jacobasch, D. Y. Kwok, and A. W. Neumann. 

Progress in Colloid and Polymer Science 101 (1996): 58.
 38. S. J. Hemingway, J. R. Henderson, and J. R. Rowlinson. Faraday Symposia of the 

Chemical Society 16 (1981): 33.
 39. R. Guermeur, F. Biquard, and C. Jacolin. Journal of Chemical Physics 82 (1985): 

2040.



Interpretation of Contact Angles 487

 40. H. C. Hamaker. Physica 4 (1937): 1058.
 41. J. N. Israelachvili. Proceedings of the Royal Society of London A331 (1972): 39.
 42. A. E. v. Giessen, D. J. Bukman, and B. Widom. Journal of Colloid and Interface Science 

192 (1997): 257.
 43. T. Young. Philosophical Transactions of the Royal Society of London 95 (1805): 65.
 44. G. Antonow. Journal of Chemical Physics 5 (1907): 372.
 45. H. W. Fox and W. A. Zisman. Journal of Colloid and Interface Science 5 (1950): 514.
 46. H. W. Fox and W. A. Zisman. Journal of Colloid and Interface Science 7 (1952): 

428.
 47. D. H. Kaelble. Journal of Adhesion 2 (1970): 66.
 48. D. Y. Kwok and A. W. Neumann. Advances in Colloid and Interface Science 81 

(1999): 167.
 49. D. Li, J. Gaydos, and A. W. Neumann. Langmuir 5 (1989): 1133.
 50. Y. Rotenberg, L. Boruvka, and A. W. Neumann. Journal of Colloid and Interface Science 

93 (1983): 169.
 51. P. Cheng, D. Li, L. Boruvka, Y. Rotenberg, and A. W. Neumann. Colloids and Surfaces 

43 (1990): 151.
 52. O. I. del Río. On The Generalization of Axisymmetric Drop Shape Analysis. M.A.Sc. 

Thesis, University of Toronto, 1993.
 53. D. Li and A. W. Neumann. Journal of Colloid and Interface Science 148 (1992): 190.
 54. D. Y. Kwok. Contact Angles and Surface Energetics. PhD Thesis, University of Toronto, 

1998.
 55. J. Adin Mann, Jr. In Surface and Colloid Science. Edited by E. Matijevic and R. J. Good, 

213. Plenum Press, New York, 1984.
 56. H. Tavana, C. N. C. Lam, P. Friedel, K. Grundke, D. Y. Kwok, M. L. Hair, and 

A. W. Neumann. Journal of Colloid and Interface Science 279 (2004): 493.
 57. J. K. Spelt, D. R. Absolom, and A. W. Neumann. Langmuir 2 (1986): 620.
 58. W. H. Buck and P. R. Resnick. In 183rd Meeting of the Electrochemical Society. 

Honolulu, HI, 1993.
 59. 3M Inc. In Product Information, 3M Novec Electronic Coating EGC-1700. Printed in 

U.S.A., 2003.
 60. D. Appelhans, Z.-G. Wang, S. Zschoche, R.-C. Zhuang, L. Häussler, P. Friedel, F. Simon, 

et al. Macromolecules 38 (2005): 1655.
 61. K. Grundke. In Molecular Interfacial Phenomena of Polymers and Biopolymers. Edited 

by P. Chen, 323. CRC Press LLC, Florida, 2005.
 62. I. Langmuir. Transactions of the Faraday Society 15 (1920): 62.
 63. W. C. Bigelow, D. L. Pickett, and W. A. Zisman. Journal of Colloid and Interface 

Science 1 (1946): 513.
 64. C.-C. Cho, R. M. Wallace, and L. A. Files-Sesler. Journal of Electronic Materials 23 

(1994): 827.
 65. C. W. Extrand. Langmuir 9 (1993): 475.
 66. H. Tavana, N. Petong, A. Hennig, K. Grundke, and A. W. Neumann. Journal of Adhesion 

81 (2005): 29.
 67. Hypercube Inc. In HyperChem Release 7.0 for Windows Reference Manual. Gainesville, 

FL, 2002.
 68. H. Tavana, R. Gitiafroz, M. L. Hair, and A. W. Neumann. Journal of Adhesion 80 

(2004): 705.
 69. R. G. Horn and J. Israelachvili. Journal of Chemical Physics 75 (1981): 1400.
 70. J. N. Israelachvili, P. M. McGuiggan, and A. M. Homola. Science 240 (1988): 189.
 71. M. L. Gee, P. M. McGuiggan, and J. N. Israelachvili. Journal of Chemical Physics 93 

(1990): 1895.
 72. L. Lavielle and J. Schultz. Journal of Colloid and Interface Science 106 (1985): 438.



488 Hossein Tavana and A. Wilhelm Neumann

 73. S. R. Holmes-Farley, R. H. Reamey, R. Nuzzo, T. J. McCarthy, and G. M. Whitesides. 
Langmuir 3 (1987): 799.

 74. T. Yasuda, M. Miyama, and H. Yasuda. Langmuir 8 (1992): 1425.
 75. T. Yasuda, M. Miyama, and H. Yasuda. Langmuir 10 (1994): 583.
 76. J.-H. Wang, P. M. Claesson, J. L. Parker, and H. Yasuda. Langmuir 10 (1994): 3897.
 77. S. H. Lee and P. J. Rossky. Journal of Chemical Physics 100 (1994): 3334.
 78. H. Tavana, F. Simon, K. Grundke, D. Y. Kwok, M. L. Hair, and A. W. Neumann. Journal 

of Colloid and Interface Science 291 (2005): 497.
 79. H. Tavana, D. Appelhans, R.-C. Zhuang, S. Zschoche, K. Grundke, M. L. Hair, and 

A. W. Neumann. Colloid and Polymer Science 291 (2005): 497.
 80. C. N. C. Lam, N. Kim, D. Hui, D. Y. Kwok, M. L. Hair, and A. W. Neumann. Colloids 

and Surfaces A: Physicochemical and Engineering Aspects 189 (2001): 265.
 81. H. Tavana, C. Yang, C. Y. Yip, D. Appelhans, S. Zschoche, K. Grundke, M. L. Hair, and 

A. W. Neumann. Langmuir 22 (2006): 628.
 82. S. Balasubramanian, M. L. Klein, and J. I. Siepmann. Journal of Chemical Physics 103 

(1995): 3184.
 83. U. Landman, T. Xia, J. Ouyang, and M. W. Ribarsky. Physical Review Letters 69 

(1992): 1967.
 84. M. He, A. S. Blum, G. Overney, and R. Overney. Physical Review Letters 88 (2002): 

154302.
 85. H. K. Christenson, D. W. R. Gruen, R. G. Horn, and J. N. Israelachvili. Journal of 

Chemical Physics 87 (1989): 1834.
 86. T. C. Merkel, V. Bondar, K. Nagai, B. D. Freeman, and Y. P. Yampolskii. Macromolecules 

32 (1999): 8427.
 87. H. Tavana, M. L. Hair, and A. W. Neumann. Journal of Physical Chemistry B 110 

(2006): 1294.
 88. N. N. Greenwood and A. Earnshaw. In Chemistry of the Elements. 2nd ed. Oxford, 

Boston, 2005.
 89. A. W. Neumann. Advances in Colloid and Interface Science 4 (1974): 105.
 90. J. Israelachvili. Intermolecular and Surface Forces. 2nd ed. Academic Press Ltd, 

San Diego, CA, 1992.
 91. R. Bhatia and B. J. Garrison. Langmuir 13 (1997): 765.
 92. A. T. Lusk and G. K. Jennings. Langmuir 17 (2001): 7830.
 93. A. N. Parikh and D. L. Allara. Journal of Chemical Physics 96 (1992): 927.
 94. M. H. Schoenfischand and J. E. Pemberton. Journal of the American Chemical Society 

120 (1998): 4502.
 95. A. Ulman. In An Introduction to Ultrathin Organic Films: From Langmuir-Blodgett to 

Self-Assembly. Academic Press, Boston, 1991.
 96. F. P. Zamborini and R. M. Crooks. Langmuir 14 (1998): 3279.
 97. J. Yang, J. Han, K. Isaacson, and D. Y. Kwok. Langmuir 19 (2003): 9231.
 98. W. Guo and G. K. Jennings. Langmuir 18 (2002): 3123.
 99. R. G. Nuzzo, F. A. Fusco, and D. L. Allara. Journal of the American Chemical Society 

109 (1987): 2358.
 100. D. Li, C. Ng, and A. W. Neumann. Journal of Adhesion Science and Technology 6 

(1992): 601.
 101. R. Defay. Etude Thermodynamique de la Tension Superficielle. Gauthier Villars, Paris, 

1934.
 102. D. Li and A. W. Neumann. Advances in Colloid and Interface Science 49 (1994): 147.
 103. D. Y. Kwok, C. J. Budziak, and A. W. Neumann. Journal of Colloid and Interface 

Science 173 (1995): 143.
 104. D. Y. Kwok, R. Lin, M. Mui, and A. W. Neumann. Colloids and Surfaces 

A-Physicochemical and Engineering Aspects 116 (1996): 63.



Interpretation of Contact Angles 489

 105. O. I. del Río, D. Y. Kwok, R. Wu, J. M. Alvarez, and A. W. Neumann. Colloids and 
Surfaces A: Physicochemical and Engineering Aspects 143 (1998): 197.

 106. D. Y. Kwok, C. N. C. Lam, A. Li, A. Leung, R. Wu, E. Mok, and A. W. Neumann. 
Colloids and Surfaces A-Physicochemical and Engineering Aspects 142 (1998): 219.

 107. G. H. E. Hellwig and A. W. Neumann. In 5th International Congress on Surface Activity, 
Section B. 1968.

 108. G. H. E. Hellwig and A. W. Neumann. Kolloid-Z. Z. Polym. 40 (1969): 229.
 109. D. Y. Kwok, T. Gietzelt, K. Grundke, H.-J. Jacobasch, and A. W. Neumann. Langmuir 

13 (1997): 2880.
 110. D. Y. Kwok, C. N. C. Lam, A. Li, A. Leung, and A. W. Neumann. Langmuir 14 (1998).
 111. D. Y. Kwok, A. Leung, A. Li, C. N. C. Lam, R. Wu, and A. W. Neumann. Colloid and 

Polymer Science 276 (1998): 459.
 112. D. Y. Kwok, C. N. C. Lam, A. Li, K. Zhu, R. Wu, and A. W. Neumann. Polymer 

Engineering and Science 38 (1998): 1675.
 113. D. Y. Kwok, A. Li, C. N. C. Lam, R. Wu, S. Zschoche, K. Poschel, T. Gietzelt, 

K. Grundke, H.-J. Jacobasch, and A. W. Neumann. Macromolecular Chemistry and 
Physics 200 (1999): 1121.

 114. D. Y. Kwok, C. N. C. Lam, A. Li, and A. W. Neumann. Journal of Adhesion 69 
(1998): 229.

 115. D. Y. Kwok, A. Leung, C. N. C. Lam, A. Li, R. Wu, and A. W. Neumann. Journal of 
Colloid and Interface Science 206 (1998): 44.

 116. H. Tavana and A. W. Neumann. Advances in Colloid and Interface Science 132 (2007): 
1–32.

 117. H. Tavana, D. Appelhans, R.-C. Zhuang, S. Zschoche, K. Grundke, M. L. Hair, and 
A. W. Neumann. Colloid and Polymer Science 284 (2006): 497–505.





491

9 Contact Angles and 
Solid Surface Tensions

Robert David, Jan Spelt, 
Junfeng Zhang, and Daniel Kwok

COntents

9.1 Introduction  ................................................................................................. 492
9.1.1 Zisman  ............................................................................................. 492

9.2 Surface Tension Component Approaches  .................................................... 493
9.2.1 Fowkes  ............................................................................................. 493
9.2.2 van Oss ............................................................................................. 494

9.3 Existence of an Equation of State  ................................................................ 497
9.3.1 Introduction  ..................................................................................... 497
9.3.2 Good’s Interaction Parameter  .......................................................... 497
9.3.3 Contact Angle Data  ......................................................................... 499
9.3.4 Interfacial Gibbs-Duhem Equations  ................................................502
9.3.5 Phase Rule for Interfacial Systems  .................................................. 503

9.4 Formulation of an Equation of State  ............................................................506
9.4.1 Role of Adsorption  ...........................................................................506
9.4.2 Equation of State: Original Formulation  .........................................508
9.4.3 Equation of State: Alternate Formulation  ........................................ 512
9.4.4 The Possibility of Negative Solid–Liquid Interfacial Tensions  ....... 518

9.5 Experimental Data  ....................................................................................... 522
9.5.1 Direct Force Measurements  ............................................................. 522
9.5.2 Solidification Fronts  ......................................................................... 524
9.5.3 Sedimentation Volumes  ................................................................... 527
9.5.4 Particle Suspension Layer Stability  ................................................. 529
9.5.5 Temperature Dependence of Contact Angles ................................... 530
9.5.6 Consistency of Solid Surface Tensions  ............................................ 533
9.5.7 Contact Angles of Polar and Nonpolar Liquids ................................ 537

9.6 Intermolecular Theory  ................................................................................. 542
9.6.1 Calculation of Interfacial Tensions and Contact Angles  ................. 542
9.6.2 Combining Rules for Solid–Liquid Interfacial Tensions  .................544
9.6.3 Calculated Adhesion and Contact Angle Patterns  ........................... 547
9.6.4 Lifshitz Theory ................................................................................. 550

References .............................................................................................................. 551



492 Robert David, Jan Spelt, Junfeng Zhang, and Daniel Kwok

9.1 intrOduCtiOn

The contact angle of a liquid drop on an ideal solid surface is determined by the 
mechanical equilibrium of the drop under the action of three interfacial tensions: 
solid–vapor (γsv), solid–liquid (γsl), and liquid–vapor (γlv). This equilibrium relation is 
known as Young’s equation [1]:

 γ θ γ γlv Y sv slcos ,= −  (9.1)

where θY is the Young contact angle; that is, a contact angle that can be inserted into 
Young’s equation (see Chapter 7).

Young’s equation contains only two measurable quantities, the contact 
angle θ and the liquid–vapor surface tension, γlv. In order to determine γsv and 
γsl, an additional relation between these quantities must be sought. Nevertheless, 
Equation 9.1 suggests that the observation of the equilibrium contact angles 
of  liquids on solids may be a starting point for investigating the solid surface 
 tensions, γsv and γsl.

The determination of solid–vapor and solid–liquid interfacial tensions is of impor-
tance in a wide range of problems in pure and applied science. For example, the pro-
cess of particle adhesion is dependent on the sign of the net free-energy change ΔFadh 
of the system during the adhesion process, which depends explicitly on the solid 
(particle) surface tensions. Other applications include sedimentation of particles [2] 
and film flotation [3].

Fundamentally, liquid (γlv) and solid (γsv) surface tensions reflect the strength of 
molecular interactions within the bulk materials. It is therefore reasonable to expect 
that the solid–liquid interfacial tension γsl, reflecting cross-interactions between 
the two phases, may be derivable in terms of γlv and γsv. Such a relation—i.e., 
γsl = f(γlv,γsv)—together with Young’s equation (Equation 9.1), would indeed allow 
determination of γsv and γsl from measurements of γlv and θ.

This chapter presents a historical review of certain attempts to formulate such a 
relationship. These attempts fall into three broad categories: macroscopic approaches 
in which the only information needed to characterize the liquid and solid phases is γlv 
and γsv (i.e., equations of state); macroscopic approaches for which further informa-
tion characterizing the phases is required (i.e., surface tension components (STCs)); 
and approaches that attempt to calculate surface and interfacial tensions directly 
from knowledge of molecular properties.

9.1.1 zIsman

Historically, the interpretation of contact angles in terms of solid surface energetics 
started with the pioneering work of Zisman [4]. While contact angles and contact 
angle measurements prior to the work of Zisman were somewhat suspect, particu-
larly among physical chemists, they have since gained respectability to the extent 
that whole symposia are dedicated to contact angle phenomena. Zisman conducted 
numerous studies of contact angles on low-energy solid surfaces, such as Teflon, 
with liquids of relatively high surface tension (we know that this corresponds to 
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γlv > γsv). The key observation made by Zisman was that for a given solid, the mea-
sured contact angles did not vary randomly as the liquid was varied; rather, he found 
that for a homologous series of liquids, say alkanes, and a given solid, say Teflon, 
cosθ changed smoothly with γlv in a fashion that suggested a straight-line relation-
ship. The extrapolation of this straight line to the point where cosθ = 1 yielded “the 
critical surface tension γc”—the surface tension of a liquid that would just wet the 
solid surface completely. While Zisman stated that γc behaved as one would expect 
the surface tension of the solid, γsv, to behave, he took great care not to identify γc 
with γsv. When other types of liquids, say a homologous series of alcohols, were 
used instead, the contact angles changed with the liquid surface tension in a similar 
manner but did not superimpose completely on the alkane data. Such observations 
have been discussed in terms of a band in which all experimental points fall; or 
alternatively, in terms of different straight-line fits for different homologous series 
and hence different values of γc for one and the same solid depending on the types 
of liquids [4].

Subsequent to Zisman’s work two schools of thought arose: surface tension com-
ponents and equation of state.

9.2 surfaCe tensiOn COmpOnent apprOaChes 

9.2.1 FoWkes

The STC approach was pioneered by Fowkes [5], who proposed that surface tension 
can be expressed as a sum of surface tension components, each due to a particular 
type of intermolecular force:

 γ γ γ γ= + + +d di h …,  (9.2)

where γ is the total surface tension, and γ d, γ di, and γ h are the STCs due to dispersion, 
dipole–dipole interactions, and hydrogen bonding, respectively. These components 
may vary according to the nature of the material. Such surface tension components 
lie outside the realm of thermodynamics (see the discussion of the phase rule in 
Section 9.3.5).

In practice, Equation 9.2 is often rearranged into the following form:

 γ γ γ= +d n.  (9.3)

That is, the total surface tension γ is the sum of dispersive (γ d) and nondispersive 
(γ n) STCs. They are often said to be the apolar and polar STCs, respectively.

Within the framework of the Fowkes model, only dispersive cross-interface inter-
actions are considered. It is therefore applicable only when at least one of the two 
phases is purely (or effectively) dispersive. For example, at a water-Teflon interface, 
since only dispersion forces are present in the Teflon, the large polar and hydrogen-
bonding forces in the water are assumed not to act across the interface to affect 
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the interfacial tension directly. Thus, a solid–liquid interfacial tension γsl can be 
expressed by means of a geometric mean relationship as 

 γ γ γ γ γsl s l s
d

l
d= + − 2 .  (9.4)

Assuming that the solid phase is completely dispersive (γs = γs
d), Equation 9.4 

reduces to 

 γ γ γ γ γsl s l s l
d= + − 2 .  (9.5)

It is this form of the Fowkes equation that is often used in conjunction with Young’s 
equation for the determination of solid surface tensions of dispersive solids.

9.2.2 Van oss 

Following the same line of thought as Fowkes, van Oss and coworkers [6] divided the 
surface tension into different components—the Lifshitz-van der Waals (LW), acid 
(+), and base (–) components—such that the total surface tension γ was proposed as 

 γ γ γ γ= + + −LW 2 ,  (9.6)

for either a solid or a liquid phase. The interfacial tensions of the approach were 
postulated, based on an intuition of a new combining rule for the acid and base 
components, as 

 γ γ γ γ γ γ γ12 1 2
2

1 2 1 22= −( ) + −( ) −( )+ + − −LW LW .  (9.7)

Combining Equations 9.6 and 9.7 yields 

 γ γ γ γ γ γ γ γ γ12 1 2 1 2 1 2 1 22 2 2= + − − −+ − − +LW LW .  (9.8)

Equation 9.8 is applicable to both liquid–solid and liquid–liquid systems. Since 
this approach endows the system with more degrees of freedom than provided for by 
the phase rule (see Section 9.3.5), like the Fowkes theory, it lies outside of thermody-
namics. Table 9.1 summarizes the STCs of various commonly used liquids.

Experimental tests of the surface tension components approaches and the equa-
tion of state approach (Sections 9.3–9.4) are mainly discussed in Section 9.5; how-
ever, additional observations regarding the van Oss theory will be mentioned here. 
One concern with surface tension component theories has been discussed extensively 
in Chapter 8. It was shown that contact angles of different liquids on the same solid 
generally follow a single smooth curve. The minor deviations from this curve are 
caused by a variety of specific interactions between the solid and the liquid and can-
not be attributed simply to the liquid or the solid. A test of Equation 9.8 for calculat-
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ing solid STCs makes use of experimental contact angles through Young’s equation 
(Equation 9.1). Combining Equation 9.8 with Young’s equation yields: 

 γ θ γ γ γ γ γ γl Y l
LW

s
LW

l s l s1 2 2 2+( ) = + ++ − − +cos .  (9.9)

Since the above equation contains three unknowns (γs
LW, γs

+ , and γs
–) of a solid, it 

was suggested to use contact angle measurements of at least three different liquids 
(with known liquid STCs) on the same solid, and solve three simultaneous equa-
tions [7,8]. While these procedures imply the applicability of Young’s equation and 
constancy of solid surface tension from one liquid to the next, this has sometimes 
been overlooked. For example, contact angle measurements on gels were used to 
determine solid STCs from Equation 9.9 [9]; such results may be misleading, since 
Young’s equation may not be applicable on nonrigid surfaces. Water contact angles 
on noninert surfaces, such as films of human serum albumin [10], have been used in 
Equation 9.9. Water may dissolve such films upon contact, making the solid and/or 
liquid phases different from the original ones: if the operative solid surface tension 
is not constant from one liquid to the next due to such physical/chemical reactions, 
simultaneous solution of different equations (from contact angles of different liquids) 
will not be appropriate.

Kwok et al. [11] provided extensive tests of Equation 9.9, using experimental con-
tact angles of triplets of polar and nonpolar liquids on inert solid surfaces, together 
with liquid STCs from the literature [7,8]. For an  FC-721-coated mica surface, cal-
culated γs values varied from −30.0 to 107.0 mJ/m2, strongly dependent on the choice 

table 9.1
surface tensions and Components (mJ/m2)

liquid γ γlW γ + γ–

Water 72.8 21.8 25.5 25.5

Glycerol 64 34 3.92 57.4

Formamide 58 39 2.28 39.6

Ethylene glycol 48.0 29 1.92 47.0

Dimethyl sulfoxide 44 36 0.5 32

Diiodomethane 50.8 50.8 0 0

1-Bromonaphthalene 44.4 44.4 0 0

Hexadecane 27.5 27.5 0 0

Tetradecane 26.6 26.6 0 0

Dodecane 25.4 25.4 0 0

Decane 23.8 23.8 0 0

Pentane 16.1 16.1 0 0

Note: From Good, R. J. and van Oss, C. J., Modern Approaches to Wettability: 
Theory and Applications, 1–27. Plenum Press, New York, 1992; van 
Oss, C. J., Good, R. J., and Chaudhury, M. K., Journal of Colloid and 
Interface Science, 111, 378, 1986; and Costanzo, P. M., Wu, W., Giese, 
Jr., R. F., and van Oss, C. J., Langmuir, 11, 1827, 1995.
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of the liquid triplets [11]. Results for solid surface tension components also varied by 
a very large margin. Performing the calculations with a proposed alternate method 
[12] based on Equation 9.9 with one nonpolar liquid in each triplet again resulted 
in inconsistent γs values, varying from −35.6 to 9.5 mJ/ m2 [11]. Similarly scattered 
results were also obtained for Teflon FEP and polyethylene terephthalate (PET) [11], 
and in another study for polystyrene (PS) and polymethyl methacrylate (PMMA) 
[13] surfaces.

In response, it has been argued that such results are a consequence of ill-con-
ditioning of the simultaneous set of three equations (Equation 9.9), due to choices 
of liquid triplets with STCs that are too similar (from liquid to liquid) [14,15]. 
Appropriate choices must include one nonpolar liquid with high surface tension 
(i.e., high γLW), preferably diiodomethane; one liquid with high basicity (γ + ), of 
which water is the only known example; and one polar liquid (high γ–), such as 
formamide, glycerol, or ethylene glycol [16]. Nevertheless, the extreme sensitivity 
of the approach to the liquids employed is of some concern; its practicality is also 
limited, with for example water-soluble surfaces excluded.

A further contentious issue with respect to the van Oss and other wetting theo-
ries has been the thermodynamic equivalence or nonequivalence of liquid–solid and 
liquid–liquid systems. Several investigators [17–19] have suggested that approaches 
for liquid–solid capillary systems must also be applicable to liquid–liquid systems. 
However, Young’s equation itself runs counter to this assertion, being a special case 
of the Neumann triangle when a flat and rigid (i.e., solid) phase is present. In much 
the same way, while a comprehensive wetting theory that covers liquid–liquid systems 
(such as the STCs approach) should include liquid–solid systems as a special case, a 
more specialized theory (such as the equation of state approach) that applies only to 
liquid–solid systems need not be valid for liquid–liquid systems. In thermodynamic 
terms, the liquid–liquid interface has an extra degree of freedom relative to a liquid–
solid interface, as detailed in Section 9.3.5.

In addition to solid–liquid systems, the van Oss STCs approach has also been 
evaluated for liquid–liquid systems. Interfacial tensions of a number of liquid– 
liquid pairs were measured [20] and compared with calculated values based on the 
STCs specified by van Oss et al. [7] (in Table 9.1). For liquid pairs that were immis-
cible, the predicted interfacial tensions ranged from 34% lower to 112% higher 
than the experimental values. Several liquid pairs were found to be miscible. The 
interfacial tensions of these systems should be zero or negative [7]. Equation 9.8, 
however, predicted these interfacial tensions to be all positive, varying from 2.0 to 
7.0 mJ/m2 [20]. This was ascribed by Della Volpe et al. [14] to inaccuracy in the 
suggested STCs.

The above tests make use of liquid STCs recommended in the literature. However, 
a number of different sets of these components have been proposed since 1986 [13]. 
The difficulty of measuring these quantities, postulated by Fowkes as unique mate-
rial properties, is a drawback of the theory. Only after a set of liquid STCs is final-
ized can absolute testing be possible.

These and other issues regarding the validity of the acid–base theory and of the 
suggested STCs have been debated extensively in the literature by a number of other 
researchers [21–27].
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9.3 existenCe Of an equatiOn Of state

9.3.1 IntroductIon

The calculation of solid surface tension γsv from the contact angle θ of a liquid of sur-
face tension γlv starts with Young’s equation (Equation 9.1). Of the four quantities in 
Young’s equation, only γlv and θ are readily measurable. Thus, in order to determine 
γsv, further information is necessary. Conceptually, an obvious approach is to seek 
one more relation among the variables of Equation 9.1, such as an equation of state, 
possibly of the form

 γ γ γsl sv lvf= ( ), .  (9.10)

The simultaneous solution of Equations 9.1 and 9.10 would solve the problem. 
Note that if the commonly used assumption of negligible liquid vapor adsorption is 
applied, then Equations 9.1 and 9.10 may be written in terms of γl and γs, rather than 
γlv and γsv. 

9.3.2 Good’s InteractIon Parameter

One simple equation of state that appears in the literature from time to time, despite 
never being derived, is Antonow’s Rule

 γ γ γsl l s= − .  (9.11)

Another old equation of state for solid–liquid interfacial tensions is that due to 
Rayleigh and later Good et al. (reviewed by Spelt [28]) 

 γ γ γ γ γsl s l s l= + − 2 .  (9.12)

Combining Equation 9.12 with Young’s equation (Equation 9.1) gives

 γ γ θs l= +( )1
4

1
2

cos .  (9.13)

It is this equation that then allows the determination of solid surface tension γs 
from a pair of experimental liquid surface tension γl and contact angle θ values. The 
γsl value can then be determined either from Equation 9.1 or 9.12 once γs is known.

Early investigations by Good [29] showed that Equation 9.13 yields consistent 
values of γs when γs and γl are both relatively small (e.g., liquid alkanes on Teflon or 
paraffin wax). Contact angle data for liquids of higher surface tension, however, lead 
to values of solid surface tension that become progressively smaller as the liquid sur-
face tension increases. The fourth column of Table 9.2 illustrates this for the contact 
angles of a wide range of liquids on solid hexatriacontane. On the assumption that 
the surface tension of the hexatriacontane should be approximately constant for all 
these liquids, it is evident that Equation 9.12 is inadequate as an equation of state.
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Good [29] proposed that Equation 9.12 could be modified so that it yields constant 
values of γs for all γl values by incorporating an adjustable parameter, Φ, the “Good 
interaction parameter.” Equation 9.12 is then written as 

 γ γ γ γ γsl s l s l= + − 2Φ ,  (9.14)

and Equation 9.13 becomes 

 γ γ
γ

θs
l

l

= +( )1
4

1
2

2

2

Φ
cos ,  (9.15)

with the understanding (from experimental observation) that Φ approaches 1 when-
ever γs and γl are both relatively small. However, it should be noted that Good [29] 
believed that it is not the magnitudes of the solid and liquid surface tensions that 
govern the condition Φ = 1, but rather the similarity in the types of intermolecular 
forces in the solid and liquid. These two points of view are often coincidental, since 
as surface tension decreases below, say, 30 mJ/m2, it is generally found that London 
dispersion forces are predominant in both solids and liquids.

At this point, three options present themselves for the further development of 
Equations 9.12 or 9.14. 

 1. Attempts can be made to calculate Φ using statistical mechanics, which is 
the very complex path followed by Good [29].

 2. As described previously, Fowkes’s approach starts with the conviction that 
the total surface tension can be decomposed into STCs:

table 9.2 
solid surface tension (mJ/m2) of 
n-hexatriacontane at 20°C

liquid γlv θ γs γs
EQS

Water 72.8 104.6 10.2 19.8

Glycerol 63.4 95.4 13.0 20.0

Thiodiglycol 54.0 86.3 15.3 19.8

Ethylene glycol 47.7 79.2 16.8 19.8

Hexadecane 27.6 46 19.8 20.1

Tetradecane 26.7 41 20.6 20.7

Dodecane 25.4 38 20.3 20.4

Decane 23.9 28 21.2 21.2

Nonane 22.9 25 20.8 20.8

Note: γs calculated using Equation 9.13 and γs
EQS calcu-

lated using Equation 9.46. Contact angle data 
(degrees) from Neumann, A. W., Advances in 
Colloid and Interface Science, 4, 105, 1974.
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 γ γ γ= + +d h …,  (9.16)

  where γd and γh are considered unique physical properties, called dispersion 
and hydrogen-bonding components of surface tension. 

   In the context of Equation 9.12, this latter approach interprets the 
decrease in γs with increasing γl (cf. Table 9.2) as a reflection of the 
decrease in the relative importance of dispersion forces in the higher-
surface- tension liquids found in Table 9.2. Equation 9.12 is thus thought to 
be deficient because it does not take into account the nature of the inter-
molecular forces present in these various liquids. This reasoning led to the 
Fowkes equation (Equation 9.4). Equation 9.4 is supposed to be valid only 
for cases where at least one phase is completely dispersive. With respect 
to Table 9.2, this would mean, for example, that in the case of water where 
γl

d < γl, γsl would be larger than the value obtained from Equation 9.12; 
hence, in view of Young’s equation, γsv would also be larger, potentially 
equal to the values obtained with low-surface tension liquids, i.e., the liq-
uids having only  dispersion forces. Combining Equation 9.4 with Young’s 
equation (Equation 9.1) yields 

 γ γ
γ

θs
d l

l
d

= +( )1
4

1
2 2

cos .  (9.17)

  Thus, within the context of the STCs approach, γs
d can be determined from 

the liquid surface tension γl, its dispersive component γl
d and the contact 

angle θ. 
 3. The approach of Neumann et al. [30] begins with the observation that 

Equation 9.10 implies that in Equation 9.14, Φ must in fact be a function of 
the other variables. That an equation of the form of Equation 9.10 must exist 
is demonstrated thermodynamically in two ways in the following sections. 
The original formulation of the equation of state was based on the curve-
fitting of contact angle data to 

 Φ Φ= ( )γ sl .  (9.18)

  The use of Φ as a correlating variable was essentially arbitrary and a more 
recent formulation of the equation of state presented below does not use it 
at all.

9.3.3 contact anGle data

Historically, the equation of state approach for interfacial tensions may be seen as 
a development based on the pioneering work of Zisman [4]. The equation of state 
approach started out by asking if the cosθ versus γlv relation as obtained by Zisman 
might not be more or less universal, and whether the deviations of the experimental 
points from a smooth curve could not have causes that are different from a lack 
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of uniqueness of γc. A universal pattern would imply that θ = f(γsv,γlv), which is 
equivalent to an equation of state (i.e., a second relationship among the variables 
in Young’s equation). To test this hypothesis, Figure 9.1 shows a plot of contact 
angle data for Teflon in cosθ versus γlv. In this plot, a solid line calculated from 
the equation of state by Neumann (see below) for γsv = 20 mJ/m2 was drawn. Two 
lines corresponding to γsv = 19 mJ/m2 and 21 mJ/m2 were drawn as well. One can 
readily see that nearly all experimental points fall within the band defined by these 
two lines. Thus, at least in this case, it appears that the deviations from a unique 
value for γsv are less than 1 mJ/m2, and the question that should be considered is 
whether such deviations could have reasons different from lack of universality of 
Equation 9.10. There are a number of factors that could account for the scatter of 
the points in Figure 9.1. Some of the more important ones are discussed below (see 
also Chapter 8).

 1. Adsorption. The equilibrium spreading pressure π is given by the equation

 π γ γ= −s sv ,  (9.19)

  where γs is the solid surface tension in a vacuum. This issue has been 
studied by Spelt et al. [31], and is discussed more fully in Section 9.4.1. 
Although there is no general consensus on the magnitude of the equilib-
rium spreading pressure, it would seem that a value of the order of 1 mJ/m2 
is not too high an estimate. Since the equilibrium spreading pressure will 
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fiGure 9.1 Contact angle data for Teflon. Least-squares straight line through Johnson’s 
data; curved lines calculated from equation of state for γsv = 19, 20, 21 mJ/m2. (From Li, D., 
Moy, E., and Neumann, A. W., Langmuir, 6, 885, 1990; Data from Fox, H. W., and Zisman, W. 
A., Journal of Colloid Science, 5, 514, 1950 and Johnson, R.E., and Dettre, R.H., Langmuir, 
5, 293, 1989.)
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depend inter alia on vapor pressure, it will vary from liquid to liquid within 
a homologous series, as well as from one type of liquid to the next. Thus, 
a variety of patterns of experimental points is possible, without conflicting 
with the idea of a unique equation of state. Scatter due to this cause would 
not interfere with the possibility of calculating γsv from individual pairs of 
(γlv,θ) data: Changes of γsv with changes of liquid and liquid surface ten-
sion would simply reflect changes in the equilibrium spreading pressure and 
might be used to determine the latter. 

 2. Contact angle measurement. In Fox and Zisman’s contact angle measure-
ments [32,33], the sessile drop was formed by depositing the liquid from 
above onto the solid surface, and the contact angle was measured by a goni-
ometer. In this procedure, certain vibrations or oscillations of the drop are 
inevitable. This may produce a value of contact angle θ between the true 
advancing contact angle θa and the receding contact angle θr. Furthermore, 
the error of the contact angles measured by a goniometer may be as large as 
±3°; but a 3° difference in contact angle at γlv = 27 mJ/m2 and θ = 50° leads 
to, approximately, a 1 mJ/m2 difference in γsv.

 3. Another possible error in contact angle measurements can arise from the 
drop-size dependence of contact angles, a possibility that has not yet been 
considered adequately. The dependence of contact angles on drop size may 
be caused by line tension [34]. There are a number of studies of contact 
angle drop-size dependence. As examples, several investigations [34] have 
reported that the contact angle changed by approximately 3°–5° while the 
radius of the three-phase contact circle increased from 1 to 5 mm (see 
Chapter 13). 

Only after clarification of these points will we know whether, experimentally, 
Equation 9.10 is unique or universal. While it may not be possible to anticipate the 
answers to all these questions, our experience has shown that the more careful the 
experimentation (including the preparation of the solid surface), the closer do the 
experimental points fall to a smooth curve. An example is given in Figure 9.2, where 
two γlv cosθ versus γlv curves are reproduced for hexatriacontane [35] and cholesteryl 
acetate [36] surfaces. Both surfaces were so smooth and homogeneous that contact 
angle hysteresis with water was zero. The measurements were made dynamically 
with the method of capillary rise at a vertical plate at very low rate of advance of 
the three-phase line. Figure 9.2 suggests that, in these cases, the equation of state 
is indeed universal, the contact angles are meaningful, and the equilibrium spread-
ing pressure is negligible. Clearly, more high-quality contact angle data are sorely 
needed.

The ability to determine γsv and γsl from a single contact angle measurement 
depends on having an equation of state of the form of Equation 9.10. While Figures 
9.1 and 9.2 display experimental evidence of the existence of such an equation, exis-
tence can also be demonstrated based on thermodynamic principles. This is done in 
two ways in the following sections. The explicit formulation of an empirical equation 
of state is then discussed in Section 9.4.
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9.3.4 InterFacIal GIBBs–duhem equatIons 

Following the approach of Ward and Neumann [37], consider the system shown in 
Figure 9.3, where three phases are in equilibrium under the following conditions.

 1. The surface of the solid is smooth and homogeneous. 
 2. There is no dissolution of the solid nor is there any absorption by the solid 

of the components of the liquid or gaseous phases. 
 3. The solid is assumed sufficiently rigid so that its state of strain is unaffected 

by movements of the three-phase line. 

For simplicity, consider the case in which the liquid is pure and the gas is just the 
vapor phase of the liquid. The three interfacial Gibbs–Duhem equations are then 

 d s dT dsv
sv svγ µ= − −( ) ( )1 2 1 2Γ  (9.20a)

 d s dT dsl
sl slγ µ= − −( ) ( )1 2 1 2Γ  (9.20b)

 d s dT dlv
lv lvγ µ= − − Γ2 2,  (9.20c)

where the subscript 2 indicates the liquid component and the subscript (1) refers to 
the definition of the Gibbs dividing surface chosen to eliminate adsorption of the 
solid component at the particular interface. The surface entropy of the solid–vapor 
interface is ssv

(1), T is the absolute temperature, Γsv
2(1) is the surface excess concentra-

tion of component 2 (the liquid) at the solid–vapor interface, and µ2 is the chemical 
potential of the liquid component. Similarly, Γsl

2(1) is the surface excess concentration 
of component 2 at the solid–liquid interface, and Γlv

2 is the surface excess concentra-
tion of component 2 at the liquid–vapor interface. The surface entropies at the solid–
liquid and liquid–vapor interfaces are, respectively, ssl

(1) and slv. 
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fiGure 9.2 Contact angles of different liquids on the same solid lie on smooth curves. 
Curve (a), hexatriacontane; curve (b), cholesteryl acetate.
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Equations 9.20 indicate that each of the surface tensions is a function of T and 
µ2; that is, 

 γ γ µsv sv T= ( ), 2  (9.21a)

 γ γ µsl sl T= ( ), 2  (9.21b)

 γ γ µlv lv T= ( ), .2  (9.21c)

Thus, there are three equations in terms of the two variables T and µ2, imply-
ing that any one of the Equations 9.21 may be expressed as a linear combination of 
the other two. In other words, there must exist an equation of the form of Equation 
9.10.

9.3.5 Phase rule For InterFacIal systems

The existence of an equation of state for interfacial tensions has also been proven 
[39] by determining the number of degrees of freedom in the equilibrium state of the 
system shown in Figure 9.3.

The Gibbs phase rule 

 f r M= + −2 ,  (9.22) 

gives the number of degrees of freedom f in a system of r independent chemical 
components and M phases under the following restrictions.

 1. The system must have negligible boundary effects and all boundaries 
between phases must be thermally conducting, deformable, and permeable 
to all components.

 2. No chemical reactions occur.
 3. Volume is the only work coordinate; that is, PdV work is the only mode of 

work.

These conditions are not satisfied by the system of Figure 9.3, and a different form 
of the phase rule must be used to determine the number of independent intensive 
variables or degrees of freedom.

Vapor

Liquid

Solid

fiGure 9.3 Ideal solid–liquid–vapor system.



504 Robert David, Jan Spelt, Junfeng Zhang, and Daniel Kwok

The required phase rule for surface systems may be derived by subtracting the 
number of equilibrium constraint equations from the number of variables required to 
describe the system. For a surface system of M phases (bulk and surface), each with r 
independent components, each bulk phase, α, may be described by the variables Tα , 
Pα, xα

1, xα
2, ..., xα

r−1, where Tα and Pα are, respectively, the temperature and pressure of 
phase α, and xα

i (i = 1, 2, …, r–1) is the mole fraction of the ith component in phase 
α. The surface phases in the system may be described by a similar set of independent 
variables, only replacing Pα by γαβ, the interfacial tension between adjacent bulk 
phases α and β. Thus, the total number of intensive variables describing the surface 
system is M(r + 1).

Considering the number of constraint equations, the equilibrium of the surface 
system is defined by the following conditions.

Thermal equilibrium conditions:

 T T T MMα β= = = −… ( )1 equations.  (9.23)

Chemical equilibrium conditions:

 µ µ µα β
i i i

M r M= = −… ( )1 equations,  (9.24)

where i = 1, 2, ... , r.

Mechanical equilibrium conditions of three possible types:

 1. Laplace equations,

 P P Jα β
αβ

αβγ− = ,  (9.25)

  where α and β represent adjacent bulk phases separated by a curved liquid-
fluid interface and Jαβ is the mean curvature of the αβ interface. If this inter-
face is planar, then Jαβ equals zero and Equation 9.25 reduces to Pα = Pβ, 
which is the mechanical equilibrium condition used in the derivation of the 
Gibbs phase rule, Equation 9.22.

 2. Young equations, Equation 9.1.
 3. Neumann triangle relations,

 2 12 23 12
2

23
2

13
2γ γ θ γ γ γcos ,= ( ) − ( ) − ( )  (9.26)

 where the phases are defined as in Figure 9.4a, and θ is the angle within 
phase 3 between the 1–3 and 2–3 interfaces.

It should be emphasized that Equations 9.1, 9.25, and 9.26 do not, in general, serve 
as constraint equations since neither Jαβ nor θ are members of the set of intensive 
variables describing the state of the surface system. For example, Equation 9.25 can 
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always be satisfied by adjusting Jαβ while the values of the pressures and the surface 
tension in Equation 9.25 can be assigned freely. Also, in the Young equation and 
the Neumann triangle relation, the presence of the contact angle θ introduces a new 
unknown variable. Therefore, it is not possible to use these equations to calculate one 
of the interfacial tensions from knowledge of the other two; that is, these are not con-
straint equations for the set of independent intensive variables. It is only when Jαβ = 0 
(a planar interface) and, hence, Pα = Pβ, that a mechanical constraint is imposed by 
any of the Equations 9.1, 9.25, and 9.26. With this in mind, let N be the number of 
distinct Pα = Pβ type relations among the mechanical equilibrium conditions; then, 
for a surface system with M phases and r independent chemical components, the 
total number of constraint equations is given by

(M − 1) + r(M − 1) + N
Thermal Chemical Mechanical

Equilibrium equilibrium equilibrium

Remembering that the number of intensive variables of the system is M(r + 1), the 
degrees of freedom f are given by 

 f M r M r M N r N= +( ) − −( ) + −( ) +[ ] = + −1 1 1 1 ,  (9.27)

where r is the number of independent chemical components in each phase of the 
system, and N is the number of Pα = Pβ relations among the mechanical equilibrium 
conditions; that is, the number of distinct planar interfaces between adjacent bulk 
phases. Equation 9.27 is the phase rule for surface systems.

Consider now the application of Equation 9.27 to the two component (solid and liq-
uid–vapor) surface system shown in Figure 9.3, which has three bulk phases and three 
surface phases. Note that such a system is typically called a two- component, three-
phase system. Assuming that the solid phase is isotropic and may be characterized 

Fluid 1 

Liquid 3 

Liquid 2 

(a)

(b) Fluid 1 

Liquid 3 

Liquid 2 

fiGure 9.4 (a) Liquid–liquid–fluid system, (b) liquid–liquid–fluid system with a planar 
interface.
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by a single hydrostatic pressure, PS (see Münster [38] for a discussion of other cases), 
one of the mechanical equilibrium conditions is Pα = Pβ and Equation 9.27 gives 
f = 2 indicating that any two of the intensive variables describing the system may be 
independently varied. Any of the other variables is then a function of these two arbi-
trarily chosen independent ones. Thus if we choose γsv and γlv as the two independent 
variables out of the complete set of M(r + 1) variables, then γsl may be expressed as a 
function of these variables; that is, Equation 9.10.

The inclusion of linear phases in the development of the phase rule for surface 
systems does not affect this result [39].

It is also important to note that for a system composed of three bulk fluid phases, 
since, in general, all of the interfaces are curved, there are no mechanical equilibrium 
constraints of the type Pα = Pβ and therefore N = 0. For a two-component liquid-lens 
system as shown in Figure 9.4a, Equation 9.27 predicts three degrees of freedom 
and no equation of state relation can exist among the three interfacial tensions. Such 
a relation can be formed only if one of the interfaces is planar (Figure 9.4b) so that 
N = 1 and Equation 9.27 gives f = 2.

We have thus demonstrated thermodynamically that an equation of state must 
exist relating γsl, γsv, and γlv in the system of Figure 9.3 comprising a pure liquid, its 
vapor, and a rigid, insoluble solid on which there is no liquid or vapor absorption or 
adsorption, and which is smooth and homogeneous. While such an equation would 
strictly be applicable to just one system as it experienced different values of, for 
example, temperature and pressure, we expect a single equation to in fact describe 
a large class of systems, as is found with, for example, the Ideal Gas Law or equa-
tions of state for bulk liquids. Assuming that the presence of air may be ignored, 
the explicit form of such a relation has been determined empirically by curve-fitting 
large sets of contact angle data [30,40].

9.4 fOrmulatiOn Of an equatiOn Of state 

In the previous sections, the existence of an equation of state of the form of Equation 
9.10 was proven in two different ways. The explicit formulation of Equation 9.10 can 
be done empirically through the interpretation and curve fitting of contact angle data 
[30] or, in principle, through statistical mechanics, although at present this remains 
beyond our capabilities. This section will examine two equivalent empirical methods 
that have been used to explicitly formulate the equation of state for interfacial ten-
sions [30].

9.4.1 role oF adsorPtIon

In order to obtain an explicit formulation of γsl = f(γlv,γsv), it is desirable to keep one 
of the three variables γsl, γlv, and γsv constant, to subject a second one to a known 
change, and to register the effect of this change on the third variable. Of these three 
quantities, only γlv can be readily measured and serve as the independent variable; 
γsl will change with γlv, and γsv remains unchanged if the adsorption of the liquid’s 
vapor on the solid–vapor interface can be neglected. The validity of this assumption 
is demonstrated as follows.
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Consider a solid of surface tension γs against vacuum and liquid of surface tension 
γlv. Let us assume that the vapor of the liquid is initially prevented from contacting 
the solid surface so that the vapor pressure near the solid surface is equal to zero; 
then, the vapor of vapor pressure Pv is allowed to contact the solid surface. In order to 
obtain an expression for the resulting solid–vapor interfacial tension γsv, we perform 
a Taylor series expansion and retain only the first-order term 

 γ γ γ
sv s

sv

v T
vP

P= + ∂
∂







∆ ,  (9.28)

which, since the original vapor pressure was equal to zero, can be written as 

 γ γ γ
sv s

sv

v T
vP

P= + ∂
∂







.  (9.29)

From the Gibbs–Duhem equation for the solid–vapor interface, Equation 9.20a, 
we will have 
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Assuming for simplicity that the vapor is an ideal gas, we have 

 µ µ2 2
0= ( ) +T RT Pvln ,  (9.32)

so that 
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It follows that 
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Γ2 1( ) ,  (9.34)

and 

 γ γsv s
svRT= − Γ2 1( ).  (9.35)

Since Γsv
2(1) > 0, we infer from Equation 9.35 that adsorption will decrease γs. On 

the other hand, if we only consider systems for which γs < γlv, the adsorption of the 
vapor of the liquid would increase the solid surface tension. Since this would contra-
dict Equation 9.35, it may be expected that adsorption will not play a major role for 
systems having γs < γlv.
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Adsorption from the vapor has also been investigated experimentally. The few 
experimental data available at present [41,42] seem to indicate that the equilibrium 
spreading pressure is normally less than approximately 1 mJ/m2 if the contact angle 
is not too low, for instance, greater than 20 or 30°.

Based on the above arguments, the solid–vapor surface tension γsv will be consid-
ered as a constant, independent of the wetting liquid. For a discussion of the implica-
tions for an equation of state when adsorption is significant enough to produce a thin 
liquid film coating the solid surface, see Chapter 7.

9.4.2 equatIon oF state: orIGInal FormulatIon

An equation of state relation γsl = f(γlv,γsv) can be formulated from contact angle data on 
low-energy solids. Such a formulation was first attempted in the 1960s [43,44] and con-
tinued in the 1970s, using extensive contact angle data on eight polymeric solids [30]. 
In Figure 9.5, the data for the eight solids are plotted in terms of γlvcosθY versus γlv. As 
seen in these diagrams, all experimental points fall reasonably close to smooth curves, 
which have, moreover, the same general shape in all cases. In view of the Young equa-
tion (Equation 9.1), these continuous curves are consistent with the hypothesis that 
for any constant γsv, γsl is a unique function of γlv. It should be noted that the contact 
angles of Figure 9.5 are advancing contact angles that were measured on carefully pre-
pared solid surfaces with pure liquids. Such contact angles are denoted “Young con-
tact angles” θY because they are thermodynamically significant and satisfy the Young 
equation for a given solid and liquid. The measurement of a Young contact angle is 
complicated by the influence of surface roughness, vapor adsorption, and liquid impu-
rities [45]. Two general conclusions can be drawn from the plots in Figure 9.5. 

 1. As γlv decreases γlvcosθY increases and, by the Young equation, since γsv is 
assumed constant, γsl decreases.

 2. The slope

 
d

d
lv

lv

γ θ
γ
cos

,
( )

 is equal to zero at θY = 0.
This second point was demonstrated quantitatively by computer curve-fitting the 

experimental data to a second-order polynomial in each case:

 γ θ γ γlv Y lv lva b ccos .= + +2  (9.36)

The 45° line

 γ θ γlv Y lvcos ,=  (9.37) 

that is, the limiting condition θY = 0, is also shown in each case. The intercept of the 
computed curve (Equation 9.36) with the 45° line is given by

 a b clv lvγ γ2 1 0+ −( ) + = .  (9.38) 
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The intercepts and the limiting slopes at the intercepts are given in Table 9.3. The 
average limiting angle of inclination, calculated from the average limiting slope 
given, is 0.1 ± 4.2°. Thus, it is reasonable to conclude that

 lim
cos

.
θ

γ θ
γY

d

d
lv Y

lv
→

( ) =
0

0  (9.39)
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fiGure 9.5 Plot of γlvcosθ as a function of the surface tension, γlv, of various liquids. 
1, Methacrylic polymer A with fluorinated side chain (3M, Inc.); 2, methacrylic polymer 
S with fluorinated side chain (3M, Inc.); 3, 17-(perfluoropropyl)-heptadecanoic acid; 4, 
17-(perfluoroethyl)-heptadecanoic acid; 5, polytetrafluoroethylene; 6, 80–20 copolymer of tet-
rafluoroethylene and chlorotrifluoroethylene; 7, 60–40 copolymer of tetrafluoroethylene and 
chlorotrifluoroethylene; and 8, 50–50 copolymer of tetrafluoroethylene and polyethylene.
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From the above fact that γsl decreases as γlv cosθ increases, and from Equation 9.39, 
we conclude that γsl has its minimum value when θ = 0.

From our knowledge of liquid–liquid interfaces, zero is the lower limit for the 
interfacial tension between two liquid phases at equilibrium. It would then be very 
difficult to understand this if arbitrarily small solid–liquid interfacial free energies 
were not possible. Therefore, the minimum value of the solid–liquid interfacial ten-
sion is zero as the contact angle approaches zero; that is,

 lim .
θ

γ γ
Y

sl sl→
∗= =

0
0  (9.40)

This will be discussed further in Section 9.4.4, where the possibility of negative 
interfacial tensions will be considered. 

The formulation of the equation of state is essentially an empirical curve-fit to con-
tact angle data. As such, there are a variety of ways of proceeding and in this instance 
[30] it was decided to correlate the data in terms of Good’s interaction parameter

 Φ = + −γ γ γ
γ γ

sv lv sl

lv sv2
.  (9.41)

This can be done as follows: 

 1. Assuming γsv is a constant and γsl
* = 0, determine γsv graphically from 

Figure 9.5 using 

 γ γ γ
θsv lv lv

Y

= =
→

∗lim .
0

 (9.42)

 2. Using this constant γsv and experimental values of γlv and cosθY, obtain γsl as 
a function of θY from the Young equation (Equation 9.1).

 3. Using the values of γsv and γsl as obtained in steps 1 and 2, compute Φ using 
Equation 9.41.

table 9.3
limiting slopes and intercepts for the eight systems in figure 9.5

no. solid slope intercept

1 3M, Inc. methacrylic polymer A with fluorinated side chain 0.0611 11.66

2 3M, Inc. methacrylic polymer S with fluorinated side chain 0.0089 12.44

3 17-(Perfluoropropyl)-heptadecanoic acid 0.1714 15.87

4 17-(Perfluoroethyl)-heptadecanoic acid –0.0520 17.38

5 Polytetrafluoroethylene –0.1759 20.23

6 80–20 copolymer of tetrafluoroethylene and 
chlorotrifluoroethylene

–0.0207 20.93

7 60–40 copolymer of tetrafluoroethylene and 
chlorotrifluoroethylene

0.0379 24.63

8 50–50 copolymer of tetrafluoroethylene and ethylene –0.0443 26.90



Contact Angles and Solid Surface Tensions 511

Figure 9.6 shows graphs of Φ versus γsl, for the eight systems given in Figure 9.5. 
Clearly, the fit of the data to straight lines is satisfactory and we conclude that:

 1. As a good approximation, Φ is a linear function of γsl for a particular solid 
with a series of liquids. The straight lines shown in Figure 9.6 are least-
square fits.

 2. All data points of all eight systems can be fitted to a single straight line

 Φ = +αγ βsl .  (9.43)

 From this, one may conclude that the same relationship Φ = f(γsl) holds for 
all low-energy surfaces.
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fiGure 9.6 Interaction parameter, Φ, as a function of γsl for the eight systems given in 
Figure 9.5.
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The values of the two constants α and β in Equation 9.43 were found by best fit to 
the experimental data [30]:

 α
γ

β= = − =d
d sl

Φ
0 0075 1 000. . .m mJ2  (9.44)

Combining Equation 9.41 with Equations 9.43 and 9.44, an explicit form of the 
equation of state can be obtained as 

 γ
γ γ

γ γsl
lv sv

lv sv

=
−( )

−

2

1 0 015.
.  (9.45)

Combining this equation of state with the Young equation, we have 

 cos
. .

.
θ

γ γ γ γ
γ γ γY

sv lv sv lv

lv lv

=
−( ) +0 015 2 00

0 015 ssv −( )1
.  (9.46)

Notice that difficulties may arise for liquids with relatively large surface tensions 
γlv since the denominator of Equation 9.45 can become zero. This limitation of the 
equation of state formulation is due to the use of Good’s interaction parameter Φ 
and is purely mathematical. Physical reasoning was used to “mend” Equation 9.45 
and, in practice, Equation 9.45 is implemented as a computer program [30] or a set 
of tables [46].

However, as was mentioned above, the use of Good’s interaction parameter Φ is 
not the only way to find an explicit expression for the equation of state. In the next 
section, we present a different formulation of the equation of state [40], giving the 
same results but being free of the shortcomings of the above development. This 
work of Li and Neumann [40] used the contact angle data of Neumann et al. [30]. 
Contact angle data of greater accuracy were used shortly thereafter [47] to refine the 
formulation.

9.4.3 equatIon oF state: alternate FormulatIon 

The solid–liquid free energy of adhesion is equal to the work required to separate a 
unit area of the solid–liquid interface [48]; that is,

 Wsl lv sv sl= + −γ γ γ .  (9.47)

Usually, in analogy with the Berthelot combining rule for the attractive constants 
in the van der Waals equation of state, the free energy of adhesion, Wsl, is taken 
as the geometric mean of the free energy of cohesion of the solid Wss and the free 
energy of cohesion of the liquid Wll [49]; that is,

 W W Wsl ll ss= .  (9.48)
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By the definitions Wll = 2γlv and Wss = 2γsv, Equation 9.48 becomes

 Wsl lv sv= 2 γ γ .  (9.49)

Therefore, combining Equation 9.47 with Equation 9.49, the solid–liquid interfa-
cial tension γsl can be written as

 γ γ γ γ γ γ γsl lv sv lv sv lv sv= + − = −( )2
2
.  (9.50)

Note that this is the same as Equation 9.12. As previously discussed, it has been 
found that this simple equation of state works only for situations where γlv values 
are close to the values of γsv. This is because the geometric mean combining rule 
Equation 9.48 is valid only for Wll ≈ Wss. To modify the geometric mean combining 
rule, Girifalco and Good [49] introduced the above-mentioned interaction parameter 
Φ as the ratio of the free energy of adhesion between two phases to the geometric 
mean of the free energies of cohesion of these two phases; that is,

 W W Wsl ll ss= Φ .  (9.51)

An alternative form of the interaction parameter, Φ, is given in Equation 9.41, which 
was derived by combining Equation 9.51 with Equation 9.47. It was found that [30] 

 Φ ≤ 1.  (9.52)

In other words, the geometric mean combining rule, Equation 9.48, generally 
overestimates the value of Wsl.

Actually, the above pattern holds generally for bulk systems, too. In the theory of 
intermolecular interactions and the theory of mixtures, the combining rule is used 
to evaluate the parameters of unlike-pair interactions in terms of those of like-pair 
interactions. It should be pointed out that, as for many other combining rules, the 
Berthelot rule, that is, the geometric mean combining rule, 

 ε ε εij ii jj= ,  (9.53)

where εij is the energy parameter for unlike-pair interactions and εii, εjj are the 
energy parameters for like-pair interactions, is only a useful approximation and 
does not provide a secure basis for the understanding of the unlike-pair interactions. 
Finding better combining rules to characterize unlike-pair interactions in terms of 
like ones has been the subject of much research related to equations of state of liq-
uid mixtures. Reviews on this subject can be found elsewhere [50,51]. An important 
question is how far the interactions of unlike molecules can be expressed in terms 
of the two like interactions, as in the Berthelot rule, Equation 9.53. By London’s 
theory of dispersion forces, it has been shown [50] that the geometric mean com-
bining rule Equation 9.53 is applicable only for similar molecules, because implicit 
in this rule is the condition that the two energy parameters of like-pair interac-
tions must be very close to each other; that is, εii ≈ εjj. However, for the interactions 
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between two very dissimilar molecules or materials, where there is an apparent dif-
ference between εii and εjj, it has been demonstrated [52,53] that the geometric mean 
combining rule generally overestimates the strength of the unlike-pair interactions. 
This is the case even for the interactions between similar molecules [50], although 
the extent of the overestimation is smaller than that between dissimilar molecules. 
Similar conclusions may be expected to hold in the context of interactions across 
surfaces.

In the study of mixtures, it has become common practice to introduce a factor 
(1 − Kij) to the geometric mean combining rule:

 ε ε εij ij ii jjK= −( )1 ,  (9.54)

where Kij is an empirical parameter quantifying deviations from the geometric mean 
combining rule. Since the geometric mean combining rule overestimates the strength 
of the unlike-pair interactions, the modifying factor (1 − Kij) should decrease with 
the difference (εii – εjj) and be equal to unity when the difference (εii – εjj) is zero. 
Based on this thought, we may consider a modified combining rule of the form 

 ε ε ε α ε ε
ij ii jj e ii jj= − −( )2

,  (9.55)

where α is an empirical constant. The square of the difference (εii – εjj) rather than 
the difference itself reflects the symmetry of this combining rule, and hence the 
anticipated symmetry of the equation of state [54].

Correspondingly, for the cases of large differences ⎥Wll – Wss⎥ or ⎥ γlv – γsv⎥, the com-
bining rule for the free energy of adhesion of a solid–liquid pair can be written as

 W W W esl ll ss
W Wll ss= − −( )α 2

,  (9.56)

or, more explicitly, by using Wll = 2γlv and Wss = 2γsv,

 W esl lv sv
lv sv= − −( )2

2

γ γ β γ γ .  (9.57)

In the above equations, α and β are as yet unknown constants. Clearly, when the 
values of γlv and γsv are close to each other, Equation 9.57 will revert to Equation 9.49, 
the geometric mean combining rule. Coupling Equation 9.57 with Equation 9.47, an 
equation of state for interfacial tensions can be written as

 γ γ γ γ γ β γ γ
sl lv sv lv sv e lv sv= + − − −( )2

2

.  (9.58)

Obviously, Equation 9.58 will not have the difficulty of a singularity as Equation 9.45 
does. Combining Equation 9.58 with the Young equation (Equation 9.1) will yield

 cos ,θ γ
γ

β γ γ= − + − −( )1 2
2sv

lv

e lv sv  (9.59)

where θ is understood to be the Young contact angle θY.
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By fitting Equation 9.59 to the experimental data [30] used for deriving the orig-
inal equation of state (Equation 9.45), the constant β in Equations 9.58 and 9.59 
was obtained as β = 0.000115 (m2/mJ)2 [40]. A more accurate value of β has been 
obtained using newer contact angle data [47], as discussed below. It is apparent that 
Equation 9.59 has three variables, γlv, θ, and γsv, and thus will enable us to determine 
the solid surface tension γsv when we have experimental data for the liquid surface 
tension γlv and the contact angle θ. Solutions of Equation 9.59 with a handheld calcu-
lator [40] and with a FORTRAN program [55] are available in the literature.

Equation 9.46 was compared with Equation 9.59 by calculating the solid surface 
tension γsv with hypothetical values of liquid surface tension γlv and contact angle 
θ. Examples of these results are given in Table 9.4. It is evident that Equation 9.59 
yields essentially the same results as those of Equation 9.46. The larger discrepancies 

table 9.4 
Comparison between the equations of state 
(equations 9.46 and 9.59)

γsv (mJ/m2)

γlv (mJ/m2) θ (degrees) equation 9.46 equation 9.59

70.0 20.0 66.0 66.1

70.0 30.0 61.7 61.9

70.0 40.0 56.5 56.8

70.0 50.0 50.8 51.2

70.0 60.0 45.5 45.3

70.0 70.0 39.1 39.2

70.0 80.0 33.2 33.0

70.0 90.0 27.1 26.9

70.0 100.0 21.1 20.8

70.0 110.0 15.2 15.1

50.0 20.0 47.1 47.1

50.0 30.0 44.0 43.9

50.0 40.0 40.0 39.9

50.0 50.0 35.5 35.4

50.0 60.0 30.7 30.7

50.0 70.0 25.7 25.8

50.0 80.0 20.9 20.9

50.0 90.0 16.2 16.2

50.0 100.0 11.9 11.9

30.0 20.0 28.2 28.2

30.0 30.0 26.2 26.2

30.0 40.0 23.6 23.6

30.0 50.0 20.6 20.7

30.0 60.0 17.5 17.5

30.0 70.0 14.3 14.3

30.0 80.0 11.3 11.2
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at high values of γlv occur due to the linear interpolation used to overcome the math-
ematical difficulty associated with Equation 9.46. We suspect that, if extreme accu-
racy matters, the results of Equation 9.59 are more reliable than those of Equation 
9.46, particularly if β is obtained from more recently published contact angle data 
[47] as described below.

The accuracy of either Equation 9.59 or Equation 9.46 is, of course, limited by the 
accuracy of the contact angle data used to determine the equation parameters. Three 
sets of contact angle data were produced with a wide range of liquids on very smooth, 
homogeneous solid surfaces of PET, fluorinated ethylene propylene (FEP), and mica 
coated with the fluoropolymer FC-721 (3M, Inc.) [47,56]. The contact angles were 
measured using Axisymmetric Drop Shape Analysis-Profile (ADSA-P, Chapter 6) 
and are thus more accurate than the goniometer contact angle measurements used to 
formulate Equation 9.46 and to give β = 0.000115 (m2/mJ)2 in Equation 9.59. These 
data are listed in Tables 9.5 through 9.7 and are plotted in Figure 9.7. Since all three 
curves are smooth, it can be concluded that the adsorption on these surfaces is indeed 
negligible [37], and hence the assumption that γsv is approximately constant is valid. 
This represents a confirmation of the analysis of Section 9.4.1.

table 9.5 
liquid surface tensions and Contact angles 
measured on fC-721/mica surface

liquid γlv (mJ/m2) θ (°) γsv (mJ/m2)

Decane 23.43 65.97 11.98

Dodecane 25.44 69.82 12.02

Tetradecane 26.55 73.31 11.61

Hexadecane 27.76 75.32 11.62

trans-Decalin 29.50 76.71 12.02

cis-Decalin 31.65 79.87 12.02

Tetralin 35.96 83.14 12.84

Ethylcinnamate 38.37 88.20 12.08

Dibenzylamine 40.63 92.06 11.60

DMSO 43.58 94.47 11.84

1-Bromonaphthalene 44.01 95.29 11.70

Diethylene glycol 45.04 96.84 11.50

Ethylene glycol 47.99 99.03 11.75

Thiodiglycol 54.13 103.73 12.11

Formamide 57.49 107.32 11.80

Glycerol 63.11 111.38 12.04

Water 72.75 119.05 11.88

Source: Li, D. and Neumann, A. W., Journal of Colloid and 
Interface Science, 148, 190, 1992.

Note: Solid surface tension calculated with Equation 9.59 using 
β = 0.0001247 (m2/mJ)2.



Contact Angles and Solid Surface Tensions 517

table 9.6 
liquid surface tensions and Contact angles 
measured on fep surface

liquid γlv (mJ/m2) θ (°) γsv (mJ/m2)

Decane 23.43 43.70 17.54

Dodecane 25.44 47.96 17.97

Tetradecane 26.55 52.51 17.52

Hexadecane 27.76 53.75 17.99

trans-Decalin 29.50 58.14 17.80

cis-Decalin 31.65 62.60 17.69

Dimethylformamide 35.57 66.84 18.76

Tetralin 35.96 68.52 17.91

Ethylcinnamate 38.37 72.61 17.92

Dibenzylamine 40.63 75.99 17.80

DMSO 43.58 80.35 17.53

1-Bromonaphthalene 44.01 79.70 18.03

Diethylene glycol 45.04 81.48 17.79

Ethylene glycol 47.99 85.56 17.48

Formamide 57.49 95.38 17.45

Glycerol 63.11 100.63 17.45

Water 72.75 111.59 15.96

Source: Li, D. and Neumann, A. W., Journal of Colloid and 
Interface Science, 148, 190, 1992.

Note: Solid surface tension calculated with Equation 9.59 using 
β = 0.0001247 (m2/mJ)2.

table 9.7 
liquid surface tensions and Contact angles 
measured on pet surface

liquid γlv (mJ/m2) θ (°) γsv (mJ/m2)

Diethylene glycol 45.04 41.19 35.58

Ethylene glycol 47.99 47.52 35.07

Thiodiglycol 54.13 55.57 35.95

Formamide 57.49 61.50 35.35

Glycerol 63.11 68.10 35.72

Water 72.75 79.09 35.86

Source: Li, D. and Neumann, A. W., Journal of Colloid and 
Interface Science, 148, 190, 1992.

Note: Solid surface tension calculated with Equation 9.59 using 
β = 0.0001247 (m2/mJ)2.
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The contact angles and liquid surface tensions listed in each of Tables 9.5 through 
9.7 were fitted separately using a nonlinear least-square technique to give three val-
ues for β, the weighted average of which is β = 0.0001247 (m2/mJ)2 [47]. Figure 9.8 
shows a comparison between Equation 9.59 with β = 0.0001247 (m2/mJ)2 and the 
original equation of state Equation 9.46. In most cases, the differences in γsv are 
small. The larger discrepancies at higher values of γlv are due to the linear interpo-
lation used to overcome the singularity associated with Equation 9.45. Tables 9.5 
through 9.7 also list the consistent values of γsv obtained from each individual contact 
angle measurement using β = 0.0001247 (m2/mJ)2.

9.4.4 the PossIBIlIty oF neGatIVe solId–lIquId InterFacIal tensIons

As shown in Section 9.4.2, the formulation of the equation of state (Equations 9.45 or 
9.58) is based on the assumption that the minimum value of solid–liquid interfacial 
tension γsl is zero (equivalently, ϕ ≤ 1). In this section, the possibility of negative sol-
id–liquid interfacial tensions will be discussed. For this purpose, the experimental 
data obtained from a variety of essentially independent methodologies are examined 
in conjunction with the equation of state approach for calculating interfacial ten-
sions. Contact angle measurements, liquid–liquid interfacial tensions, and advancing 
solidification front/particle interactions are employed to demonstrate that zero is the 
lower limit of solid–liquid interfacial tensions [58].
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fiGure 9.7 A plot of γlcosθ versus γl for three well-prepared solid surfaces, FC-721 dip-
coated on mica, Teflon (FEP) heat-pressed against mica, and polyethylene terephthalate 
(PET). Note that polar and nonpolar liquids lie on the same smooth curve.  FC-721 (Li, D. 
and Neumann, A. W., Journal of Colloid and Interface Science, 148, 190, 1992);  FC-721 
(Li, D., Xie, M., and Neumann, A. W., Colloid and Polymer Science 271, 573, 1993);  FEP 
(Li, D. and Neumann, A. W., Journal of Colloid and Interface Science, 148, 190, 1992);  
PET (Li, D. and Neumann, A. W., Journal of Colloid and Interface Science, 148, 190, 1992.)
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In order to study this question in more detail, let us consider the plots in Figure 9.9. 
For a given set of contact angle data on a given solid, three hypothetical γsv values 
were selected. The middle one (γsv = 26.9 mJ/m2) corresponds to the assumption 
that the lowest possible value of γsl is zero. The others correspond to nonzero lower 
limits for γsl. For each γsv, the corresponding hypothetical γsl and the Good interac-
tion parameter Φ were calculated from the Young equation and the definition of Φ, 
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fiGure 9.9 Copolymer (50-50) of tetrafluoroethylene and ethylene; plot of Φ as a function of 
γsl for different estimates of γsv. , γsv = 21.9 mJ/m2; , γsv = 26.9 mJ/m2; , γsv = 31.9 mJ/m2.
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Equation 9.41, respectively. It was found that, in each case, there was a  linear rela-
tion between the hypothetical Φ and γsl values, as shown in Figure 9.9. The problem 
of determining the correct γsv value was thus reduced to determining the correct 
straight line from such a family of curves. It has been argued [30] that the only pos-
sible choice was the straight line that intersects the Φ-axis at Φ = 1, when γsl = 0. 
This argument was, however, partially based on the assumption that γsl could not 
be negative and the approach taken considered only situations of nonzero contact 
angles; that is, it excluded spreading situations throughout. 

Regarding this aspect of the problem, let us consider pairs of polymer melts that 
are all mutually insoluble to a degree comparable with that of polymeric solids and 
low-molecular-weight liquids. In Figure 9.10, we reproduce a plot of Φ versus γ12, the 
interfacial tension between pairs of polymer melts. In some cases, the free energy 
of spreading is negative while in others it is positive, so that conditions conducive to 
negative interfacial tensions should exist in some of these cases. However, it is clear 
from Figure 9.10 that, independent of spreading or nonspreading, all points fall close 
to a straight line, giving Φ as a function of γ12 with a limiting value of Φ = 1.0 at 
γ12 = 0, in agreement with our choice for the solid–liquid case in Figure 9.9. 

At this point, it is worth repeating that the use of Φ in the explicit (empirical) 
formulation of the equation of state is essentially arbitrary. As was noted in Section 
9.4.2, since Φ was used as a correlating parameter in the original equation of state 
formulation, it is convenient to refer to it in the present context. 

As a second test of the validity of a particular Φ versus γsl relation in Figure 9.9, 
consider the interaction of small particles embedded in a liquid with an advancing 
solidification front. Whether a particle, when encountered by the solidification front, 
is engulfed or swept along by the solidification front, is expected to depend on the 
sign of the free energy of adhesion
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fiGure 9.10 Polyethylene melt in contact with various polymer melts; plot of Φ as a func-
tion of the polymer–polymer interfacial tension, γ12. All interfacial tensions in this case are 
readily measurable.
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 ∆Fadh
ps pl sl= − −γ γ γ ,  (9.60)

or, alternatively, the free energy of engulfment

 ∆Feng
ps pl= −γ γ ,  (9.61)

where γps is the particle-solid interfacial tension and γpl is the particle-liquid inter-
facial tension. At low rates of solidification, for ΔFadh < 0 or ΔFeng < 0 engulfment 
is predicted, whereas for ΔFadh > 0 or  ΔFeng > 0 particle rejection should occur. 
Thus, the equation of state approach and its choice of Φ that allows the prediction of 
interfacial tensions can be verified experimentally through observations of particle 
behavior at solidification fronts [59]. To do so, the surface tension of the melt γlv and 
the contact angles on the solid matrix materials as well as the contact angles on the 
particle materials were measured. From the contact angle data, the surface tension 
of the solid matrix γsv was calculated by the equation of state. In a second step, the 
required interfacial tensions in Equations 9.60 and 9.61 were calculated.

The various straight lines in Figure 9.9, which correspond to different lower limits 
for γsl, may be represented by

 Φ = ′ −β αγ sl .  (9.62)

In the equation of state approach [30], the constants were chosen to be β′ = 1.00 
and α = 0.0075 m2/mJ. Solidification front observations can then be used to test 
the validity of choices other than the straight line with the limiting value γsl = 0 at 
Φ = 1.00. The results of comparisons of such calculations with experimental obser-
vations for several matrix-polymer systems are listed in Tables 9.8 and 9.9 [58]. 
Overall, it can be seen that for β′ > 1.00, particle rejection is predicted in a number 
of cases where the microscopic observation is engulfment; for β′ < 1.00, particle 
engulfment is predicted where the microscopic observation is rejection; only when 
α = 0.0075 m2/mJ and β′ = 1.00 are the predictions confirmed by the experimental 

table 9.8 
testing for possible Values of α ≥ 0.0075 m2/mJ and β΄ ≥ 1.00 against 
freezing-front Observations

α = 0.0075
β′ = 1.00

α = 0.0075
β′ = 1.05

α = 0.0085
β′ = 1.05

system ΔF adh ΔF eng ΔF adh ΔF eng ΔF adh ΔF eng Observationa

Naphthalene/
polystyrene

–1.46 –0.02 1.36 0.30 2.83 0.77 E

Biphenyl/polystyrene –0.68 –0.10 2.45 0.15 3.94 0.57 E

Benzophenone/PMMA –0.39 –0.01 5.08 0.55 7.01 1.07 E

Predictiona E E R R R R

a E, particle engulfment; R, particle rejection.
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observations. For over 60 cases, β′ = 1.00 has yielded agreement between experi-
mental observations and thermodynamic predictions, with very few exceptions 
where  ΔFadh was very close to zero so that experimental error could not be ruled out 
[59]. Thus, β′ = 1.00 corresponding to a minimum γsl = 0 produces the best agree-
ment with these experiments. Further details on solidification front experiments can 
be found in Chapter 12.

Overall, it can be concluded that, considering a variety of systems and situations 
(including situations of spreading and nonspreading), there is no evidence for nega-
tive solid–liquid interfacial tensions. Instead, there is considerable evidence that zero 
is the lower limit of all solid–liquid interfacial tensions.

9.5 experimental data 

For many years, a persistent problem in surface science has been the direct mea-
surement of interfacial tensions involving a solid phase. The many uncertainties 
associated with such measurements have dissuaded most authors from seeking inde-
pendent, direct experimental support for their predictions of γsv and γsl obtained indi-
rectly, for example, from contact angles. In this section, we will consider a number 
of experimental observations that serve to verify the γsv and γsl predictions of the 
equation of state (Equation 9.58) from contact angles. The data will also be consid-
ered in the light of two earlier equations of state—Antonow’s Rule (Equation 9.11) 
and the unmodified Good equation (Equation 9.12)—as well as the surface tension 
components approach.

9.5.1 dIrect Force measurements

The surface force apparatus of Israelachvili is capable of directly measuring the 
intermolecular forces between solid substrates separated by gases or liquids [60]. 
If such forces are recorded as a function of the separation distance, it is possible 
to integrate to obtain the energy of surface interaction (Wss or Wsl), and thereby 
calculate the surface tensions (γsv or γsl). Results for direct force measurements for 

table 9.9 
testing for possible Values of α ≤ 0.0075 m2/mJ and 
β′ ≤ 1.00 against freezing-front Observations

α = 0.0075
β′ = 1.00

α = 0.0065
β′ = 0.95

system ΔF adh ΔF eng ΔF adh ΔF eng Observationa

Thymol/nylon-6,10 0.088 0.11 –0.98 –7.08 R

Predictiona R R E E

a E, particle engulfment; R, particle rejection.
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 surfactant-coated mica sheets in different liquids have been published [61–64]. The 
surfactants used were hexadecyltrimethylammonium bromide (HTAB), a single-
chain alkylammonium surfactant; and dimethyldioctadecylammonium bromide 
(DDOAB) and dihexadecyldimethylammonium acetate (DHDDA), two double-
chained surfactants. The reported results for both HTAB and DDOAB are for force 
measurements performed in water [63,64] and in octamethylcyclotetrasiloxane 
(OMCTS), a nonpolar liquid [62]. For DHDDA surfaces, only results for interactions 
in water are available [61].

Contact angle data, from measurements with water on the surfactant monolayers, 
are also reported in the same publications. These values of contact angles can be 
used to calculate the solid surface tension γsv and the solid–liquid interfacial tensions 
γsl from either the equation of state or the Fowkes equation. The Fowkes equation in 
conjunction with the Young equation, as given by Equation 9.17, provides only the 
means to evaluate the dispersion component of γsv and the total solid surface tension 
remains unknown. However, all surfaces used in these studies can be considered to 
be purely dispersive so that γsv = γsv

d. The dispersion component of the surface tension 
of water is γlv

d = 21.8 mJ/m2 [66], and the total surface tension is γlv = 72.8 mJ/m2. 
The  calculated values of γsv and γsl can be compared with the values obtained from 
direct force measurements, thereby providing a means of independently evaluating 
the accuracy of the equation of state and the Fowkes equation.

The contact angle of water on DDOAB monolayers was found to be 94° [63] and 
93 ± 2° [62], in very good agreement. The reported contact angles of water on HTAB 
monolayers are, however, very different. Christenson [62] reports a value of 60 ± 2° 
while, in a later publication, Pashley et al. [64] give a value of 95°. The value of 
contact angles of water on DHDDA surfaces was 95° [61]. Moy [67] reported water 
contact angles on HTAB and DDOAB surfaces of 93 ± 1° and 94 ± 1°, respectively. 
These two values, together with the 95° water contact angle for DHDDA, were used 
in calculations of γsv and γsl. The equation of state estimate of the solid–liquid inter-
facial tension for OMCTS was obtained using the solid surface tension calculated 
with the water contact angle. 

The calculated values for γsv and γsl obtained from the equation of state and from 
Equation 9.17, along with values obtained from direct force measurements, are given 
in Table 9.10. The direct force measurements are in much better agreement with the 
values calculated from the equation of state.

The equation of state predicts γsl values equally well for systems involving polar 
and nonpolar liquids, with the exception of HTAB-water. The discrepancy between 
the results for HTAB-water is puzzling since the measured contact angle is known 
to be accurate. A possible explanation for the differences, according to Pashley et al. 
[66], may be contamination of the sample of HTAB used for the force measurements. 
The differences between the values for interactions across OMCTS are most likely 
caused by the uncertainties in the measured forces. Another possible reason may be 
the limitations of the original semiempirical formulation of the equation of state, but 
not of the approach itself. Section 9.4.3 describes a new formulation that should be 
more accurate in cases of low interfacial tension.

The lack of agreement between the calculated values of γsv from the Fowkes 
equation and from direct force measurements results from the inherent assumption 
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in the Fowkes theory that intermolecular forces of different origin do not cross-
interact. By ignoring these cross-interactions, the Fowkes equation overestimates 
both the solid and solid–liquid interfacial tensions for systems involving a nondis-
persive material. The very existence of these cross-interaction terms indicates that 
it is not possible to obtain the so-called dispersion component of surface tension 
from contact angle data unless both the solid and the liquid are purely dispersive. 
Thus, in order to be complete, the Fowkes approach should include the explicit 
formulations for the various types of cross-interactions that, at the present time, are 
not known.

9.5.2 solIdIFIcatIon Fronts

The behavior of microscopic solid particles at advancing liquid solidification fronts 
can be explained in terms of interfacial free energy changes [68]. This fact was used 
by Omenyi and colleagues [59,69] to provide an independent test of predictions of 
solid and solid–liquid interfacial tensions determined by the equation of state from 
contact angle measurements. Chapter 12 provides a detailed discussion of solidifica-
tion front experiments.

When a microscopic particle initially embedded in the liquid phase of a matrix 
material is approached by the solid–liquid interface of the solidifying matrix, its 
subsequent behavior is governed largely by the free energy of adhesion of the par-
ticle and the contacting interface. Particle engulfment must be preceded by adhe-
sion, and particle rejection by repulsion. Thus, the initial rejection or engulfment 
of the particle may be predicted by the free energy of adhesion, given by Equation 
9.60. If ΔFadh is positive, the adhesion of the particle is thermodynamically unfavor-
able because of the predicted increase of the system’s free energy. Particle adhesion 
is favored if ΔFadh is negative, thereby resulting in a decrease in the overall system 
free energy. Therefore, knowledge of the three relevant interfacial tensions can be 
used to calculate ΔFadh and predict the outcome of a particle-engulfing experiment. 
The accuracy of such predictions can, in turn, be used to judge the accuracy of the 

table 9.10 
solid (γsv) and solid–liquid (γsl) surface tensions Calculated with the 
equation of state and the fowkes equation: Comparison with direct force 
measurements

γsv (mJ/m2) γsl (mJ/m2)

surfactant 
monolayer liquid

equation 
of state fowkes

direct 
measurement

equation 
of state fowkes

direct 
measurement

HTAB Water 26.9 54.6 25 [64] 30.7 58.4 11 [64]

OMCTS — — — 1.2 9.6 0.5 [62]

DDOAB Water 26.2 52.6 27 [63] 31.0 57.7 34 [63]

OMCTS — — — 0.9 8.8 0.4 [62]

DHDDA Water 26.0 50.6 32 [65] 32.3 57.0 28 [61]
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method used to obtain γps, γpl, and γsl. This can be the basis of a test of the equation 
of state.

Solid surface tensions γsv and γpv were determined from contact angles with liq-
uids of known surface tension, using the equation of state. The data were obtained at 
different temperatures thereby allowing the calculation of dγsv/dT and dγpv/dT, which 
then could be used to find γsv and γpv at the melting points of the various matrix 
materials. The surface tension of each matrix liquid phase was measured with the 
Wilhelmy plate technique. Finally, in order to calculate the solid–solid interfacial 
tension γps, it was necessary to treat the equation of state as a “generic” equation of 
the form

 γ γ γ12 1 2= ( )f v v, .  (9.63)

This represents an extrapolation to two solid phases because the explicit form of 
the equation of state was derived empirically from contact angles of liquids on sol-
ids. Although this lacks a rigorous justification, the fact that this approach does, in 
fact, accurately predict particle engulfing behavior, lends confidence to this generic 
usage of the equation of state. 

As seen in Chapter 12, predictions of particle engulfing or rejection by the equa-
tion of state were observed to be accurate in almost all cases. Considering only those 
experiments in which ⎥ΔFadh⎥ ≥ 0.2 mJ/m2 to be representative of the most clear-cut 
predictions (unambiguous pushing or rejection), the equation of state correctly pre-
dicted 29 out of 31 cases (94%).

Other methods can also be used to predict particle engulfment or rejection by cal-
culating ΔFadh. Predictions using the Fowkes approach for interfacial tensions were 
found to contradict experimental data in most cases [70]. Predictions were also gen-
erated using Lifshitz theory (see Chapter 10), for cases in which the matrix material 
was dispersive. Lifshitz theory accounts for only dispersive forces. Its predictions 
also proved inaccurate, indicating that nondispersive interactions must be significant 
between a dispersive and a nondispersive material. This runs contrary to an underly-
ing assumption of the STCs approaches [71].

The free energy of adhesion can also be calculated using other equations of state, 
such as Equations 9.11 and 9.12. For a hypothetical matrix material with γsv = 35 
mJ/ m2 and γlv = 40 mJ/m2, curves of ΔFadh as a function of particle surface tension γpv 
are plotted in Figure 9.11. With Equations 9.12 and 9.58, ΔFadh is negative at low γpv 
and becomes positive with increasing γpv when γpv = γlv. These characteristics of the 
curves imply that there is a transition from particle engulfment to particle rejection 
(pushing) when γpv = γlv. On the other hand, with Equation 9.11, ΔFadh reaches zero at 
the same point as the curves from Equations 9.50 and 9.58, but remains zero. Thus, 
ΔFadh never becomes positive, so that pushing of the particles would not be observed 
under any circumstances, in contradiction with the overwhelming experimental evi-
dence to the contrary. 

In Table 9.11, the results of relevant microscopic observations are listed for several 
types of polymer particles and two matrix materials: benzophenone and bibenzyl. 
Also, the surface tensions γpv are calculated from the contact angle measurements on 
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smooth surfaces of the same polymeric materials using Equation 9.58. Equation 9.12 
could not be used because it does not yield a consistent γpv value across the liquids 
with which the contact angles were measured. Table 9.11, in conjunction with the 
curves for Equations 9.58 and 9.12 in Figure 9.11, indicates that the surface tensions 
of Teflon, nylon-6,12, nylon-6,10, and PMMA are lower than 39.9 mJ/m2 (γlv of ben-
zophenone at its melting point) and the γpv of all the other polymer particles is greater 
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fiGure 9.11 Free energy of adhesion calculated using three equations of state type 
relations.

table 9.11 
Observation of particle pushing or engulfment in the melt 
materials benzophenone and bibenzyl

benzophenone
γlv = 39.9 mJ/m2

bibenzyl
γlv = 24.9 mJ/m2

particle material γpv (mJ/m2) Observation γpv (mJ/m2) Observation

Acetal 44.5 pushed 44.3 pushed

Nylon-6 43.7 pushed 43.4 pushed

Nylon-6,6 43.1 pushed 42.8 pushed

Nylon-12 40.8 pushed 40.6 pushed

Nylon-6,10 38.2 engulfed 37.8 pushed

PMMA 37.2 engulfed 36.8 pushed

Nylon-6,12 34.3 engulfed 34.0 pushed

Teflon 18.1 engulfed 17.8 engulfed

Note: The surface tensions are at the respective melting points of the matrix materials, 48°C 
for benzophenone and 52°C for bibenzyl.
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than 39.9 mJ/m2. From the observations with bibenzyl, we conclude similarly that 
the surface tension of Teflon is lower than 24.9 mJ/m2 and that of all other polymer 
particles is greater than 24.9 mJ/m2.

It is apparent that, given a sufficiently large number of matrix materials, one could 
put narrow limits on the surface tension of each particle, thus effectively determin-
ing these surface tensions. It is also clear that these results would not be a unique 
consequence of Equation 9.58. While Equation 9.11 is at variance with experimental 
observations of particle rejection, the above inferences can be made on the basis of 
Equation 9.12 as well as Equation 9.58. The surface tensions γpv as calculated from 
contact angles using Equation 9.58 are in complete agreement with the implications 
of both Equation 9.58 and Equation 9.12 with respect to the observations of engulf-
ment and rejection.

9.5.3 sedImentatIon Volumes 

Sedimentation experiments are a well-established technique to study the stability of 
powder dispersions in liquids. The behavior of such systems is governed largely by 
van der Waals and electrostatic interactions, although a complete model has yet to be 
developed. In this section, we shall consider sedimentation volume data that indicate 
the role of van der Waals forces as reflected by the relevant interfacial tensions of the 
solid particles suspended in a liquid. Chapter 11 provides further information on the 
sedimentation volume technique. 

The relationship between van der Waals interactions and surface thermodynam-
ics is evident when one realizes that the free energy of adhesion between two solids 
p and s in a liquid l is just the integral of the van der Waals forces from infinity to 
the equilibrium separation distance at adhesion, and is also equal to γps – γpl – γsl. The 
free energy of cohesion for like particles p in a liquid is therefore

 ∆Fplp
coh

pl= −2γ .  (9.64)

which is maximum when γpl = 0 corresponding to γpv = γlv. In other words, for a given 
level of electrostatic repulsion, the degree of particle attraction and hence sedimen-
tation volume will be a function of the surface tension of the suspending liquid γlv, 
reaching a minimum when γlv = γpv. In fact, depending on whether the sedimenta-
tion mechanism involves particle agglomeration, the condition γlv = γpv may result in 
either a maximum or a minimum in the sedimentation volume (see Chapter 11 for 
details). In either case, this provides another method of independently measuring a 
solid surface tension γpv, and comparing it with a value obtained from contact angles 
and the equation of state.

Sedimentation volumes have been recorded for a number of polymer powders in 
both pure liquids and binary liquid mixtures of various surface tensions [2,72,73]. 
As detailed in Chapter 11, the equation-of-state contact angle predictions of γpv are 
in good agreement (average difference  <3%) with those inferred independently 
from the thermodynamic model of sedimentation. Because the latter did not, in any 
way, involve the explicit form of the equation of state and depended only on liquid 
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 surface tension measurements, these data constitute another piece of evidence that 
the equation of state approach is correct.

The results can also be interpreted using alternative equations of state, Equation 
9.11 and Equation 9.12. Figure 9.12 shows the free energy of cohesion ΔFcoh ver-
sus the liquid surface tension γlv for hypothetical particles having a surface tension 
γpv = 20 mJ/m2. All three equations produce a minimum at γlv = γpv, suggesting that 
in a sedimentation experiment one should observe an extremum (presumably a mini-
mum) in the sedimentation volumes at that point. 

Thus, Equations 9.58, 9.12, and 9.11 yield identical results for the prediction of 
sedimentation volumes, suggesting that all three equations have common features. 
By inspection, we find that for all three equations

 γ γ γ γ γ12 1 2 2 1= ( ) = ( )f fv v v v, , ,  (9.65)

and

 γ γ γ γ γ12 1 2 1 20= ( ) = =f v v v v, .when  (9.66)

In other words, all three equations are symmetric in γlv and γsv, and all three pre-
dict zero interfacial tension when γlv = γsv.

The sedimentation experiments may be interpreted by referring only to the 
basic characteristics that are common to the three equations of state, Equations 
9.58, 9.12, and 9.11. By Equation 9.66, when γlv = γpv then γpl = 0 and ΔFcoh is a 
maximum. In fact, condition Equation 9.66 may be relaxed slightly. It can be 
shown that as long as γ12 is a minimum when γ1v = γ2v, and the minimum may not 
necessarily be zero, the minima for the free energy of cohesion ΔFcoh in Figure 
9.12 and the extrema of the sedimentation volumes will occur at the same liquid 
surface tension. Hence, the predictions of the above three equations of state will 
remain the same.
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9.5.4 PartIcle susPensIon layer staBIlIty 

When a dilute suspension of small particles in a liquid is carefully layered on a 
dense liquid as, for example, in zone electrophoresis, centrifugation, or isoelectric 
focusing, the suspension often forms a zone or layer of finite thickness with a well 
defined interface between the suspension layer and the supporting liquid. For a 
stable suspension layer, the suspension-layer/liquid-cushion interface is planar and 
“sharp.” When the suspension layer becomes unstable, droplets of suspension form 
at the interface and fall through into the liquid cushion. This instability is gener-
ally referred to as “streaming” or “droplet sedimentation,” and is affected by the 
initial particle concentration, the diffusion of solutes, particle charge, and van der 
Waals attractive forces [74]. The latter two factors were the focus of a study of sus-
pension layer stability of fixed erythrocytes on a D2O cushion, which is described 
below [74]. 

Under the hypothesis that colloidal stability theory was applicable to suspensions 
of biological cells, the total energy of interaction between like cells was modeled 
as the sum of a repulsive component due to electrostatic charge, and an attrac-
tive component due to van der Waals forces. It has been shown that the Hamaker 
coefficients, which give the van der Waals potential energy of attraction, may be 
expressed in terms of the surface tensions of the solid particle (the cell) and the 
suspending liquid [75,76]. The Hamaker coefficients for the cells in the liquid reach 
their minimum value of zero when the cell surface tension equals that of the sus-
pending liquid. At this point, the attractive van der Waals forces are reduced to zero 
and the repulsive action of the electrostatic charge is maximized. This serves to pre-
vent cell agglomeration and subsequent droplet sedimentation. In other words, the 
model predicts that the cell suspension is most stable when the cell surface tension 
γcv equals the liquid surface tension γlv. Thus, we can again measure a solid surface 
tension, by determining the liquid surface tension that gives maximum particle sus-
pension stability.

The model was tested using five species (human, horse, chicken, canine, and tur-
key) of glutaraldehyde-fixed erythrocytes (i.e., red blood cells, treated to render the 
cells rigid). Because of their uniformity of size and shape, fixed erythrocytes make 
an excellent model particle in many physical studies. The cells were suspended in a 
saline solution and then layered onto a cushion of D2O. Stability was recorded as the 
time required for the onset of droplet sedimentation as indicated by the distortion of 
the D2O-suspension interface. The surface tension of the saline was varied by adding 
dimethylsulfoxide (DMSO), which had a relatively small effect on the cell surface 
charge potential as measured electrophoretically. It was therefore possible to regulate 
the van der Waals attraction forces while leaving the electrostatic repulsive forces 
relatively constant. Table 9.12 lists the surface tensions of the suspending liquids 
that produced greatest stability, as measured by the elapsed time before the inter-
face became distorted. According to the model, this liquid surface tension should be 
equal to that of the cells.

So far, we have not made reference to the equation of state for interfacial ten-
sion. Unfortunately, it is not possible to measure contact angles on layers of fixed 
erythrocytes as it is with, say, platelets or bacteria [77]. However, the cell surface 
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tensions could be compared with earlier values obtained with the solidification front 
technique (Section 9.5.2), which is itself based on the equation of state [78,79]. These 
values of cell surface tension, which are also listed in Table 9.12, are in remarkably 
good agreement with those obtained from suspension stabilities. Thus, we have fur-
ther reassurance that the equation of state, which was used to develop and calibrate 
the solidification front technique, is indeed reliable. 

9.5.5 temPerature dePendence oF contact anGles

The equation of state can be used to calculate solid surface entropies from measure-
ments of the temperature dependence of equilibrium contact angles. As a short aside, 
we first describe how heats of immersion can be used to verify that measured contact 
angles are in fact equilibrium values.

Harkins and Jura [80] were the first to point out that the heat of wetting, ΔHw, may 
be obtained directly from the temperature dependence of contact angles. The heat of 
wetting is defined as

 ∆H T
d
dT

T
d
dTw sl

sl
sv

sv= −





− −





γ γ γ γ
,  (9.67)

or, using Young’s equation (Equation 9.1),

 ∆H T
d

dTw lv
lv= − − ( )





γ θ
γ θ

cos
cos

.  (9.68)

Thus, the only quantities to be determined experimentally are the surface tension, 
γlv, and the contact angle, θ, both as a function of temperature. Since calorimetric 
heats of immersion are available for polytetrafluoroethylene in contact with several 
n-alkanes [41], it is of interest to compare these calorimetric heats with those calcu-
lated from the temperature dependence of contact angles.

table 9.12 
Comparison of the surface tension of erythrocytes 
Obtained Via two independent methods

technique

erythrocyte species
droplet sedimentation 

(mJ/m2)
freezing front 

(mJ/m2)

Turkey 65.7 65.4

Chicken 65.2 65.1

Canine 64.4 64.2

Horse 65.4 64.5

Human 64.3 64.1
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Temperature-dependent contact angles were recorded [81] with seven n-alkanes 
against Teflon (PTFE). Advancing contact angles between PTFE and the n-alkanes 
from decane to hexadecane were measured for temperatures from ambient to 70°C. 
From these data and the literature values [82] of the temperature dependence of 
γlv, the heats of wetting were calculated using Equation 9.68. These are shown in 
Figure 9.13 (filled symbols) together with the values calculated from n-heptane and 
n-nonane contact angles [83]. The calorimetric results of Whalen and Wade [41] 
are also given (open symbols). The agreement between the two types of results is 
remarkable. It appears that the rise of the heats of wetting (solid symbols) from 
n-decane to n-dodecane is real. Since the reproducibility of the calorimetric heats of 
immersion is somewhat poorer [41], it cannot be decided whether or not the calori-
metric results show a similar behavior.

The agreement between the calorimetric heats of immersion and the contact angle 
heats of wetting indicates that the observed contact angles must be Young angles. We 
then cannot only expect to obtain the correct solid surface free energies γsv, but also 
the solid surface entropies –dγsv/dT [mJ/m2⋅K] from the temperature dependence of 
the contact angles and the equation of state. 

Indeed, from measurements of the temperature dependence of contact angles on 
Teflon, the average surface entropy of Teflon obtained from a series of n-alkane test 
liquids was 0.064 mJ/m2⋅K [81]. This value is in excellent agreement with literature 
data for Teflon melt [84]. There was a slight systematic change of the –dγsv/dT data 
with the chain length of the liquids, presumably due to sorption of the vapor of the 
shorter chain length n-alkanes.

Surface entropies were also obtained for surfaces of two low molecular weight 
substances, cholesteryl acetate and hexatriacontane. Cholesteryl acetate undergoes 
an allotropic phase change at about 40°C. The measured surface entropies of the 
two solid phases of the cholesteryl acetate were 0.085 mJ/m2⋅K for the low tem-
perature modification and 0.055 mJ/m2⋅K for the high temperature modification. It 
is interesting to note that this latter value is close to the value observed for liquid 
cholesteryl acetate, 0.048 mJ/m2⋅K [85]. The surface entropy of even the low tem-
perature modification of hexatriacontane was 0.14 mJ/m2⋅K; that is, considerably 
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higher. This result is in line with the rather low value of the surface tension. As 
was pointed out by Fowkes [86], the low value of the surface tension γsv is due to 
the fact that the long chains are aligned in parallel array and the methyl end groups 
are exposed at the surface. We therefore expect surface tension and surface entropy 
of the hexatriacontane in the solid state to be closer to the values for short-chain 
alkanes in the liquid state (> 0.1 mJ/m2⋅K) than to those for the longer-chain alkanes 
in the liquid state.

The surface tensions of siliconized glass as a function of temperature were meas-
ured and are plotted in Figures 9.14 and 9.15. The plot for the γsv values obtained 
from the water contact angles is perfectly straight with very little scatter below 
40°C; above 40°C, the data points tend to fall above this straight line due to conden-
sation of water vapor. The γsv value for 20°C is 18.3 mJ/m2, in good agreement with 
a measurement performed with glycerol at 20°C, which yielded 18.1 mJ/ m2 [81]. 
Such a relatively small value is to be expected in view of the discussion given for the 
hexatriacontane surface. Chemisorption of the silicone oil on the siliconized glass 
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surface leads to a surface consisting of methyl groups. The large surface entropy 
of 0.126 mJ/m2⋅K obtained from the water contact angles below 40°C corroborates 
this expectation.

The γsv values at 20°C obtained from the alkane contact angles are neither con-
stant, nor consistent with the values obtained from the water and the glycerol data. 
Since condensation and hence adsorption become quite prominent in the measure-
ments with water above 40°C, it is to be expected that adsorption plays an even 
more important role in the measurements with the alkanes. It is therefore reasonable 
to expect that the relatively high values of γsv in these cases are due to adsorption 
of the vapors of the measuring liquids. This conclusion would imply that the con-
tact angle measurements were not performed on a surface consisting exclusively of 
methyl groups, but rather one that consisted to a considerable degree of CH2 groups. 
This supposition is again corroborated by the surface entropies, which were rather 
small (0.068–0.084 mJ/m2⋅K). They are in fact somewhat smaller than the surface 
entropies of the liquid alkanes. But even this is not surprising, since the chains of, 
say, decane when adsorbed on a solid surface will produce a surface of a larger ratio 
of CH2 to CH3 groups than when they are in a more or less randomly oriented three-
dimensional liquid phase.

In summary, surface entropies measured for four solid surfaces (Teflon, chol-
esteryl acetate, hexatriacontane, and siliconized glass) with the aid of the equation 
of state turn out to be of the expected magnitudes based on surface chemistry and 
independent literature data, lending further support to the validity of the equation 
of state.

9.5.6 consIstency oF solId surFace tensIons 

There is one immediate criterion that the results obtained with any approach for 
measuring solid surface tensions must satisfy. When measuring contact angles 
with a number of liquids on a low-energy solid, the surface tension γsv is expected 
to be constant, independent of the liquid surface tension γlv. This expectation is 
based on the fact that the equilibrium spreading pressure in such situations is gen-
erally low, of the order of 1 mJ/m2 or less [42]. In this case, θ and γlv of the mea-
suring liquid are the only two inputs into any of the approaches, and γsv and γsl are 
outputs.

Before we consider a series of contact angle experiments, it is appropriate to note 
the considerable care that must be taken to obtain good-quality contact angles. The 
measurement of contact angles is subject to many sources of error that are often 
overlooked. This lack of appreciation of the subtleties involved has caused many 
investigators to be misled by spurious data. Particularly important are the effects of 
surface roughness and the necessity of establishing a truly advancing contact angle. 
Scratches less than 0.5 µm deep can cause an advancing liquid drop to “hinge” at 
the scratch, rendering the contact angle essentially meaningless [28,87]. Surface 
roughness and homogeneity should always be assessed by measurement of both the 
advancing and receding contact angles to give the contact angle hysteresis. It should 
be noted, as well, that the common practice of adding liquid to an existing drop by 
touching it momentarily with a pendant drop suspended from a platinum wire or the 
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tip of a pipet may be incorrect. Although the additional liquid indeed causes the drop 
to grow, the contact angle is often not the maximum advancing angle because of the 
vibration caused by the sudden addition of the pendant drop. It has been observed 
many times that this effect can produce intermediate, metastable contact angles as 
much as 7° below the advancing angle [28]. If a pipet or syringe is used to add liq-
uid to a sessile drop, it must penetrate the interface and not be withdrawn prior to 
observation. 

Combining Fowkes’s equation (Equation 9.4) with the Young equation and assum-
ing that vapor adsorption is negligible (i.e., γsv = γs), the dispersive component of a 
solid surface tension γs

d can be determined by contact angle measurements from

 γ γ
γ

θs
d l

l
d

= +( )1
4

1
2 2

cos .  (9.69)

Tables 9.5 through 9.6 list experimental contact angle data for both dispersive 
and nondispersive liquids on two dispersive solids, and Table 9.7 lists contact angle 
data for nondispersive liquids on a nondispersive solid. Employing these data (and 
data for a few other liquids from Li et al. [57]) in Equation 9.69, γs

d values were 
determined and are shown in Table 9.13. In the case of dispersive solids, γs = γs

d; 
for dispersive liquids, γl = γl

d; while for nondispersive liquids, γl
d values were taken 

from Fowkes and colleagues [88,89], if available. As can be seen in Table 9.13, the 
γs values from contact angle measurements of dispersive liquids on FC-721 and FEP 
surfaces tend to decrease with increasing γl. In the case of FC-721, γs values vary by 
approximately 25%. From the contact angle data of nondispersive liquids on each 
surface, non-constant, γs and γs

d values also arise, especially for water. In addition, 
consistent values of γs are not obtained between the groups of dispersive and nondis-
persive liquids. 

When vapor adsorption is negligible, it is expected that the values of γs and 
γs

d should be approximately constant and independent of the liquids used, but the 
results obtained from the Fowkes approach do not bear this out. In order to bring 
the γs value from water on FC-721 in line with the other values, say the γs value from 
decane, the γl

d value for water would have to be 30.2 mJ/m2. This, however, would 
disagree with Fowkes’s γl

d value for water of about 21 mJ/m2. The same calculation 
can be performed for FEP, using for example, the γs value from cis-decalin. The 
required γl

d value for water would be 31.3 mJ/m2.
In contrast, the values for γs calculated from the equation of state (Equation 9.58) 

are consistent across the different liquids tested (see Tables 9.5 through 9.7). Many 
other solid surfaces have been used to test the equation of state, one example being 
hexatriacontane deposited by vacuum sublimation on clean glass [35]. These sur-
faces were so smooth and homogeneous that no contact angle hysteresis (difference 
between advancing and receding angles) was observed, even though the measure-
ment technique was capillary rise at a vertical plate, which has a precision of about 
0.1° (better than this if used with digital image analysis; see Chapter 6). It is signifi-
cant that, regardless of the relative magnitudes of the various intermolecular forces 
within the different liquids, the equation of state, using only the measured contact 
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angle and the total liquid surface tension, correctly predicts a constant solid surface 
tension γsv (Table 9.14).

Either of the other equations of state considered—i.e., Equations 9.11 and 9.12—in 
conjunction with the Young equation (Equation 9.1), can be used to calculate values 
for the solid surface tensions γsv from the same contact angles. The results obtained 
with these equations are also given in Table 9.14. Only Equation 9.58 gives results 
that are essentially independent of γlv, suggesting that Equations 9.11 and 9.12 are 
deficient. The fact that all three equations predict γsv values near 20 mJ/m2 as the 
contact angle decreases reflects the fact that all three equations imply γsl → 0 as 
θ → 0.

Given this last observation, the analysis can be reversed by using the common 
value of γsv calculated from any of the equations of state for an almost-wetting liq-
uid to predict contact angles of other liquids on the same solid surface. Results are 
shown in Figure 9.16 for a surface of Teflon AF 1600 [90] (see also Chapter 8), using 

table 9.13 
solid surface tensions and surface tension Components of fC-721, fep, and 
pet Obtained from Contact angle measurements of dispersive (d) and 
nondispersive (nd) liquids using the fowkes approach

type liquid γl (mJ/m2) γl
d (mJ/m2)

fC-721, γs = γs
d 

(mJ/m2)
fep, γs = γs

d 
(mJ/m2)

pet, γs
d 

(mJ/m2)

D Pentane 15.65 15.65 12.37 — —

Hexane 18.13 18.13 12.14 — —

Decane 23.43 23.43 11.60 17.39 —

Dodecane 25.44 25.44 11.50 17.73 —

Tetradecane 26.55 26.55 11.00 17.18 —

Hexadecane 27.76 27.76 10.90 17.57 —

cis-Decalin 31.65 31.65 10.94 16.87 —

1-Bromonaphthalene 44.01 44.01a 9.07 15.29 —

ND Methanol 22.30 17.4b 15.3 — —

Dimethylformamide 35.57 30.2b — 19.55 —

DMSO 43.58 29.0b 13.91 22.32 —

Diethylene glycol 45.04 32.3b 12.18 20.70 48.22

Ethylene glycol 47.99 29.3c 13.97 22.81 55.15

Formamide 57.49 28.0b 14.55 24.24 64.39

Glycerol 63.11 36c 11.17 18.40 52.14

Water 72.75 21.1b 16.59 25.05 88.69

a Value obtained from van Oss, C. J., Good, R. J., and Chaudhury, M. K., Journal of Colloid and Interface 
Science, 111, 378, 1986.

b Value obtained from Fowkes, F. M., Riddle, Jr., F. L., Pastore, W. E., and Weber, A. A., Colloids and 
Surfaces, 43, 367, 1990.

c Value obtained from Israelachvili, J. N., Proceedings of the Royal Society of London A, 331, 39, 1972.
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the equations of state (Equations 9.50 and 9.12). It is seen that Equation 9.58 is far 
more accurate.

The consistency of solid surface tensions calculated by the equation of state 
(Equation 9.58) has been further examined using extensive contact angle data on low 
energy surfaces (mainly polymers). Liquid surface tensions have spanned the range 
from 19 to 73 mJ/m2. Data for 15 different solid surfaces are collected in the review 
by Kwok and Neumann [55]. Measured solid surface tensions γsv are in all cases 

table 9.14 
solid surface tensions of hexatriacontane at 20°C

γsv (mJ/m2)

liquid equation 9.11 equation 9.12 equation 9.58

Water 27.2 10.2 19.8

Glycerol 28.7 13.0 20.0

Thiodiglycol 28.7 15.3 19.8

Ethylene glycol 28.3 16.8 19.7

Hexadecane 23.3 19.8 20.0

Tetradecane 23.4 20.6 20.7

Dodecane 22.7 20.3 20.4

Decane 21.3 19.1 21.2

Nonane 21.8 20.8 20.8

Note: Liquid surface tensions and contact angles are given in Table 9.2.
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fiGure 9.16 Contact angles for a series of liquids with bulky molecules on Teflon AF 
1600. (From Tavana, H. and Neumann, A. W., Advances in Colloid and Interface Science, 
132, 1, 2007.) Lines are the contact angle predictions using three approaches and the com-
mon γsv of 13.6 mJ/m2 found for the low surface tension liquids. The line for Lifshitz theory is 
slightly below the line for Berthelot’s rule (i.e., Equation 9.12).
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consistent across different probe liquids. Similarly consistent fits of the equation of 
state were found for contact angles measured decades earlier by Zisman and cowork-
ers on 34 different solid surfaces [55].

The ability of the equation of state to correlate a wide range of measured θ – γlv 
data with a single γsv is a fundamental test of both the equation of state concept 
[that γsl = f(γlv,γsv)] and the explicit formulation of the equation.

9.5.7 contact anGles oF Polar and nonPolar lIquIds

Perhaps the most explicit test of the equation of state concept is to compare the 
measured contact angles of polar and nonpolar liquids on the same solid surface 
[31]. Consider two different pure liquids that are chosen to have equal overall sur-
face tensions. These same liquids are, however, also selected to have widely dispa-
rate compositions of intermolecular forces. In other words, one liquid may be an 
alkane (a liquid that has only dispersion forces) while another may be character-
ized by a large dipole moment. According to the theory of STCs, the contact angles 
of these two liquids on a single solid surface should differ in proportion to the 
differences in the makeup of the intermolecular forces. In contrast, the equation 
of state approach predicts that the contact angles will be equal since both the total 
liquid and solid surface tensions are constant. This simple experiment provides 
a direct test of the basic premise of each of the two theories, and, moreover, it is 
independent of the specific form of any Fowkes-type equation or of any particular 
equation of state.

Liquids used in such an experiment are listed in Table 9.15. In order to mini-
mize the potential for vapor adsorption, the seven liquids were chosen to have rela-
tively high boiling points, the lowest being that of heptaldehyde at 153°C. The first 
three liquids in Table 9.15 were selected to be significantly more dispersive than the 
remaining four liquids, which are characterized by much larger dipole moments and 
by relatively smaller dispersion components of the solubility parameters. In addition, 
the prediction of the Burrell hydrogen-bonding classification [91], which is another 
empirical aid for the prediction of solubility, is “moderate” for the last four liquids 
and “poor” for the rest. This is not meant to imply the actual existence of hydrogen 
bonding in our systems, but in the present context serves to indicate that independent 
experimental observation has established significant differences in the character of 
the intermolecular forces. 

Furthermore, Beerbower [92] has developed a correlation between liquid surface 
tension and the dispersion, polar, and hydrogen-bonding components of the solubil-
ity parameter. The last column of Table 9.15 lists the percentage of the total predicted 
surface tension that is due to the dispersion component of the solubility parameter. 
It should be noted that, as Beerbower himself did [92], this dispersive fraction bears 
no relation to the dispersion component of surface tension from the Fowkes theory. 
Taken together, the information in Table 9.15 indicates that, relative to the last four 
liquids, dispersion forces in pentadecane, dibenzylamine, and 1-methylnaphthalene 
are responsible for a significantly larger fraction of the total intermolecular binding 
energy. For the purpose of the present investigation, the exact magnitudes of such 
differences are unimportant.
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Finally, the predominance of dispersion forces may also be inferred from 
the Lifshitz theory using data for the refractive index n and the dielectric con-
stant (static permittivity) ε0 [93]. It is known that for electrically symmetric mol-
ecules, ε0 is approximately equal to n2. Permanent dipoles and hydrogen bonding 
tend to increase the static permittivity so that in the case of water, for example, 
ε0 = 78.4 while n2 = 1.77. Literature values for permittivity were found for only 
three of the present liquids [98]: dibenzylamine, ε0 = 3.6, n2 = 2.47; benzaldehyde, 
ε0 = 17.8, n2 = 2.39; methyl salicylate, ε0 = 9.72, n2 = 2.36. As expected, the relative 
importance of nondispersive interactions is significantly greater for the latter two 
liquids.

Contact angle measurements were performed on two surfaces. The first was 
heat-pressed Teflon (FEP; Dupont), a surface that is exceptionally smooth and 
homogeneous, with measured contact angle hysteresis of only 3° [28,95]. Two FEP 
samples (designated A and B) were employed, each having been prepared in a 
different way and each having a unique thermal history. The latter fact caused 
the surface tensions of the samples to be slightly different. A second solid sur-
face, which was used for only one pair of liquids, was siliconized glass (details of 
dimethyldichlorosilane treatment given by Neumann [81]). The advancing contact 
angle on this surface with water was 105° while the receding angle was between 

table 9.15 
liquid properties

liquid
dipole momenta 

(debye)
surface tensionb 

(mJ/m2) δd/δT × 100c γdisp/γ × 100d

Pentadecane 0.0 28.93 – 0.08531T 100 100

Dibenzylamine 0.97 42.14 – 0.1054T 71 94

1-Methylnaphthalene 0.23 41.82 – 0.1188T 79 97

Benzaldehyde 2.77 43.24 – 0.1195T 60 76

Ethyl caprylate 1.68 29.12 – 0.1018T 50 58

Heptaldehyde 2.58 28.50 – 0.0766T 47 56

Methyl salicylate 2.23 41.84 – 0.1201T 44 56

a From McClellan, A. L., Tables of Experimental Dipole Moments, W. H. Freeman, San Francisco, 1963.
b Measured by the Wilhelmy plate technique (From Spelt, J. K., Solid Surface Tension: The Equation of 

State Approach and the Theory of Surface Tension Components, PhD Thesis, University of Toronto, 
1985.) with an uncertainty of ±0.15 mJ/m2. T = temperature in °C.

c Percentage of total solubility parameter (δT) attributed to dispersion forces at 25°C. Calculated using the 
solubility parameters (From Barton, A. F. M., CRC Handbook of Solubility Parameters and Other 
Cohesion Parameters, CRC Press, Boca Raton, FL, 1983) and correlations (From Barton, A. F. M., 
Chemical Reviews, 75, 731, 1975). For details see Spelt, J. K., Solid Surface Tension: The Equation of 
State Approach and the Theory of Surface Tension Components, PhD Thesis, University of Toronto, 
1985.

d Percentage of total predicted surface tension due to the dispersion component of the solubility param-
eter. (From Beerbower, A., Journal of Colloid and Interface Science, 35, 126, 1971.) 
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95 and 100°. Sessile drop contact angles were measured using Axisymmetric Drop 
Shape Analysis (ADSA) [96]. Chapter 3 gives a complete description of ADSA in 
its latest form.

Table 9.15 lists the measured surface-tension/temperature relation for each of the 
seven liquids. By controlling the temperature of the contact angle experiment, it was 
possible to match more exactly the total surface tensions of the various liquids. All 
of the experiments were therefore performed in a temperature-controlled chamber. 
Further experimental details are available in Spelt et al. [31].

The results of the contact angle experiments are reported in Tables 9.16 
through 9.18 for the solid substrates Teflon (FEP) sample A, Teflon (FEP) sample 
B, and siliconized glass, respectively. The data are grouped in pairs according to 
the matched surface tensions of the liquids used. The first liquid in each pair is 
the one that is completely or overwhelmingly exhibits London dispersion forces. 
The fourth column in these tables shows the contact angle of the first liquid 
minus that of the second liquid. The average of the eight contact angle differ-
ences is +0.4°.

The Fowkes equation for solid–liquid interfacial tensions,

 γ γ γ γ γsl s l s
d

l
d= + − 2 ,  (9.70)

is strictly applicable only to situations in which at least one phase is a saturated 
hydrocarbon (n-alkane, paraffin wax, etc.) since this ensures that only dispersion 

table 9.16
advancing Contact angles on substrate teflon (fep) a

liquids
liquid surface 
tension (mJ/ m2)

Contact angle 
(°)

Contact 
angle 

difference

expt. 
temp. 
(°C)

γl
d/γl for 

liquid 2a

1-Methylnaphthalene 39.0 72.6 ± 1.4
–0.2 24 0.97

Methyl salicylate 39.0 72.8 ± 0.7

Dibenzylamine 41.8 75.4 ± 0.6
+2.0 3 1.02

Benzaldehyde 42.9 73.4 ± 0.4

Dibenzylamine 41.8 75.4 ± 0.6
+2.5 3 1.00

Methyl salicylate 41.5 72.9 ± 0.6

Pentadecane 25.6 52.4 ± 0.7
–0.8 39 0.98

Heptaldehyde 25.5 53.2 ± 0.3

Pentadecane 27.7 53.6 ± 0.3
+0.6 14 1.01

Ethyl caprylate 27.7 53.0 ± 0.4

a Dispersive fraction of liquid 2 from Equation 9.72.
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forces are operative within that phase. Equation 9.70 predicts that if γs and γl are 
fixed, then γsl will vary inversely with γl

d. With respect to the contact angle experi-
ments, the dispersive liquid in each pair should therefore have the smaller contact 
angle on a surface that is interacting only through dispersion forces. As was men-
tioned above, however, the average contact angle difference for the eight liquid pairs 
was +0.4°, indicating that the opposite trend was more prevalent. Considering the 
four cases where the contact angle difference exceeds the error limits, in two of these 
the difference is positive (contrary to Equation 9.70), while in the other two cases it 
is indeed negative. 

Equation 9.70 may be combined with the Young equation (Equation 9.1) to yield 

 2 1γ γ
γ

γ θs
d l

l
d l= +( )cos .  (9.71)

For a given pair of liquids (denoted “1” and “2”) on a single substrate, the left-
hand side of Equation 9.71 is constant so that
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table 9.17
advancing Contact angles on substrate teflon (fep) b

liquids

liquid surface 
tension 
(mJ/ m2)

Contact angle 
(°)

Contact 
angle 

difference
expt. 

temp. (°C)
γl

d/γl for 
liquid 2a

Dibenzylamine 41.8 72.4 ± 3.2
 + 3.1 3 1.01

Methyl salicylate 41.5 69.3 ± 0.6

Pentadecane 25.6 49.1 ± 0.5
–1.2 39 0.98

Heptaldehyde 25.5 50.3 ± 0.4

a Dispersive fraction of liquid 2 from Equation 9.72.

table 9.18 
advancing Contact angles on siliconized Glass

liquids

liquid surface 
tension 
(mJ/ m2)

Contact angle 
(°)

Contact 
angle 

difference
expt. 

temp. (°C)
γl

d/γl for 
liquid 2a

1-Methylnaphthalene 39.0 58.3 ± 1.1
–2.7 24 0.92

Methyl salicylate 39.0 61.0 ± 0.3

a Dispersive fraction of liquid 2 from Equation 9.72.
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Considering liquid “1” to be the dispersive liquid (the first liquid listed in each 
pair in Tables 9.16 through 9.18) and assuming for these liquids that the dispersion 
fraction is that listed in the last column of Table 9.15 (from the Beerbower correlation 
at 25°C), Equation 9.72 may be used to calculate the implied dispersion fraction of 
liquid “2” (the left-hand side of Equation 9.72). Note that Equation 9.72 can also be 
used to give the ratio of the dispersive fractions of liquids “1” and “2” without regard 
to the Beerbower correlation. 

The last column of Tables 9.16 through 9.18 shows the results of these calcula-
tions; that is, the prediction of Fowkes theory for the dispersive fraction of the “2” 
liquid (the nondispersive one) within each liquid pair. In all cases, this dispersive 
fraction is very close to 1.00, indicating that Equation 9.70 predicts that the “2” 
liquids are just as dispersive as the “1” liquids. This contradicts the predictions of 
the Beerbower correlation and, in general, to the expectations based on solubility 
parameters, molecular structure, and molecular properties. 

Since the total liquid surface tensions are constant within a given pair of liquids, 
the contact angles are predicted (by an equation of state) to be equal on a single solid 
substrate. This does appear to be largely the case, although explanations must be 
found for the small, but nonzero, contact angle differences that persist. One possibil-
ity is vapor adsorption.

The equation of state can be used to estimate the equilibrium spreading pressure 
required to make the contact angles equal in each liquid pair. As shown in Spelt et al. 
[31], in all eight cases this pressure was less than or equal to 1.4 mJ/m2. As demon-
strated by Good [44], it is not unreasonable to assume that such spreading pressures 
can occur on surfaces of Teflon (FEP) and siliconized glass. The contact angle data 
are thus seen to be consistent with the predictions of the equation of state approach 
and provide an experimental verification of this theory. 

A related argument [97] based on liquid properties has been used to examine 
the Fowkes approach for interfacial tensions. By combining Equation 9.70 with the 
Young equation (Equation 9.1), and assuming that adsorption is negligible, it is evi-
dent that the Fowkes approach implies that γlcosθ depends, in general, on four vari-
ables: γl, γs, γl

d, and γs
d. The equation of state approach, however, predicts that γlcosθ 

is only a function of γl and γs. This discrepancy between the two approaches can be 
tested by plotting γlcosθ versus γl for a wide range of liquids on different solid sur-
faces; if smooth curves of similar shape emerge for a number of solid surfaces, one 
can conclude that γlcosθ depends only on γl and γs and not on the STCs, which are 
varying randomly from liquid to liquid.

In fact, as already shown in Figure 9.7, curves describing the contact angles of 
different liquids on the same solid surfaces are so smooth and similar that one has 
to conclude that γlcosθ indeed depends only on γl and γs. If the Fowkes hypothesis 
was correct (i.e., γlcosθ was also dependent on γl

d and γs
d) then the variations in the 

dispersive character of each liquid would lead to contact angles that were arbitrarily 
scattered in Figure 9.7. 

It is instructive to focus on the experimental contact angle data of hexane, metha-
nol, and decane on FC-721 in Figure 9.7. The surface tension of methanol is inter-
mediate between the surface tensions of hexane and decane, and methanol is polar 
while the alkanes are nonpolar. Because of the difference in polarity or nondispersive 
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property, the Fowkes approach implies a contact angle for methanol that should be 
significantly different from those of hexane and decane. Within the framework of the 
Fowkes model, it stands to reason that for purely dispersive liquids such as alkanes, 
the contact angle changes smoothly as the liquid surface tension changes. By inter-
polation between hexane and decane, it can be established what the contact angle 
for a purely dispersive liquid of the same surface tension as methanol (i.e., γl = 22.3 
mJ/m2) would be. The interpolated contact angle is found to be θ = 62.67°, in good 
agreement with the experimental results for methanol (θ = 62.39 ± 0.25°). The fact 
that methanol has the same contact angle as a nonpolar liquid of the same surface 
tension indicates that the Fowkes approach is not tenable. Similar calculations can be 
performed for other sets of liquids, with similar results [97].

It is apparent, and in principle obvious from Figure 9.7 that the surface tensions 
γs and γl determine the contact angle completely. Clearly, this does not mean that 
intermolecular forces are irrelevant; they determine the primary surface tensions, 
γlv and γsv. But intermolecular forces do not have an additional, independent effect 
on contact angles. There is therefore no obvious way to use interfacial tensions and 
contact angles to determine the intermolecular forces.

The overall conclusion that emerges from the experimental data presented in the 
last seven sections is that of all the approaches examined, only the equation of state 
given by Equation 9.58 consistently matches observations. Nevertheless, it is inter-
esting to note that most of the indirect techniques are not sensitive to the exact form 
of the equation of state used.

The theories discussed in this chapter up to this point are semiempirical, top-
down approaches to understanding contact angles. In the final section, we consider a 
bottom-up approach based on intermolecular forces.

9.6 intermOleCular theOry

9.6.1 calculatIon oF InterFacIal tensIons and contact anGles 

From the theory of intermolecular forces, the surface tension of a given liquid or 
solid can be numerically estimated given the strength of molecular interactions. 
Similar calculations can also be performed to estimate interfacial tensions but a spe-
cific solid–liquid interaction is required and can be obtained by means of established 
combining rules. When the three surface and interfacial tensions are calculated, 
the anticipated Young contact angles can then be obtained from Young’s equation, 
allowing direct comparison with those obtained from experiments. 

A mean-field approximation has been employed [98,99] to numerically calcu-
late surface and interfacial tensions from molecular interactions. In a simple van 
der Waals model, the fluid molecules are idealized as hard spheres interacting with 
each other through a potential ϕff(r), where r is the distance between two interacting 
molecules. A Carnahan-Starling model [98,100,101] was adopted as the hard sphere 
reference system. For a planar interface formed by a liquid and its vapor, each of 
which occupies a semi-infinite space, z > 0 and z < 0 respectively, the surface tension 
is given by [98,102]
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where the minimum is taken over all possible density profiles ρ(z). The excess free 
energy density F(ρ) can be found from the equation of state of the fluid, and φ ff  
represents the interaction potential that has been integrated over the whole x′y′ 
plane. 

For the solid–fluid (i.e., solid–liquid or solid–vapor) interface, the solid can be 
modeled as a semi-infinite impenetrable wall occupying the domain of z < 0 and 
exerting an attraction potential V(z) on the fluid molecule at a distance z from the 
solid surface. The interfacial tension of such an interface can be obtained from 

 

γ γ ρ ρ

ρ

ρsf s dz F z z V z

z d

= + ( )[ ]+ ( ) ( ){

+ ( ) ′

+∞

∫min
0

1
2

zz z z z z z dz zff ffφ ρ ρ ρ φ′ −( ) ′( ) − ( )[ ]− ( ) ′ ′
+∞

∫0

21
2

−−( )
−∞∫ z

0

,

 (9.74)

where γs is the solid–vacuum surface tension, a constant that exists in the calcula-
tions of both γsv and γsl. This constant (γs) will be canceled out in the calculations of 
the contact angles via Young’s equation (Equation 9.1); for the purpose of contact 
angle determination, it has no impact on the final results since we are concerned only 
with the difference between γsv and γsl. 

To carry out the calculations of interfacial tensions and hence the contact 
angles, an interaction potential is required. Here we assume a (12:6) Lennard-Jones 
potential model and consider only the attraction part. The Lennard-Jones potential 
function requires knowledge of two parameters: the potential strength ε and the 
collision diameter σ. The potential strength εsf for ϕsf(r) is obtained from the fluid 
εff and solid εss potential strengths via a combining rule, as discussed in the next 
section. 

For the calculation of liquid surface tension γlv, the two parameters εff and σf can 
be related to the critical temperature Tc and pressure Pc of the liquid via the following 
expressions for the Carnahan-Starling model [98,100] 

 
kT

P

c f

c f

=

=

0 18016

0 01611

3

6

. /

. / ,

α σ

α σ
 (9.75)

where k is the Boltzmann constant and α is the van der Waals parameter, given by

 α φ= − ∫1
2 ff r dr( ) .  (9.76)
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The densities of the liquid ρl and vapor ρv were obtained by requiring the liquid 
and vapor to be in coexistence at a given temperature T [98,100]. In the calculations, 
30 liquids of different molecular structures were selected and the following param-
eters were assumed: T = 21°C, σs = 10 Å, and ρs = 1027 molecules/m3 for the solid 
surface.

Each liquid is modeled by the parameters εll and σl. The solid is modeled by its 
potential parameter εss, density ρs, and collision diameter σs. For the solid–vapor and 
solid–liquid interfacial tensions (γsv and γsl), in addition to the parameters of fluid and 
solid, a combining rule g(σl /σs) was also required. Thus the three interfacial tensions 
γlv, γsv, and γsl at a given temperature T could be expressed as 

 

γ γ ε σ

γ γ ε σ ε ρ σ

lv lv ll l

sv sv ll l ss s s

T

g

= ( )
=

, ,

, , , , , ,TT

g Tsl sl ll l ss s s

( )
= ( )γ γ ε σ ε ρ σ, , , , , , .

 (9.77)

For a given solid surface at a given temperature with a selected combining rule g 
and different fluids, εss, ρs, σs, T and the function g(σl /σs) are fixed, so that 

 

γ γ ε σ

γ γ ε σ

γ γ ε σ

lv lv ll l
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sl sl ll l
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= ( )
=

,

,

,(( ).
 (9.78)

The above theoretical framework can be utilized to determine interfacial tensions 
and hence the contact angle/adhesion patterns [99]. Table 9.19 lists the liquid–vapor 
interfacial tensions for 30 different liquids as calculated from the generalized van 
der Waals molecular theory described above together with the experimental values. 
In most cases, differences between the calculated and experimental liquid–vapor 
surface tensions are less than 20%. The largest discrepancy comes from water with 
a calculated γlv value of 93 mJ/m2 instead of an experimental value of 72.8 mJ/m2. 
Considering the simplified fluid model, larger deviations for hydrogen-bonding liq-
uids are indeed expected as the Lennard-Jones potential should not completely reflect 
the complicated interactions of, for example, water. Once γlv and γsv are calculated 
from the above van der Waals theory, the determination of γsl, however, requires the 
value of a solid–liquid energy parameter that can be related to the individual solid 
and liquid energy parameters through a combining rule.

9.6.2 comBInInG rules For solId–lIquId InterFacIal tensIons

In the theory of molecular interactions and mixtures, combining rules are often used 
to evaluate the parameters of unlike-pair interactions in terms of those of the like 
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interactions [51,100,102,109]. As with many other combining rules, the Berthelot 
rule [115]

 ε ε εij ii jj= ,  (9.79)

is a useful approximation, but does not provide a secure basis for the understand-
ing of unlike-pair interactions; εij is the potential energy parameter (well depth) of 
unlike-pair interactions, and εii and εjj are for like-pair interactions.

Historically, from the London theory of dispersion forces, the attraction potential 
ϕij between a pair of unlike molecules i and j is given by

 φ
α α

ij
i j

i j

i jI I

I I r
= −

+
3
2 6

,  (9.80)

where I is the ionization potential, α is the polarizability and r is the distance between 
the pair of unlike molecules. For like molecules Equation 9.80 becomes

table 9.19
Comparison between the Calculated (γlv

cal ) and experimental (γlv
exp) liquid–

Vapor surface tensions

liquid γlv
exp (mJ/m2) γlv

cal (mJ/m2) liquid γlv
exp (mJ/m2) γlv

cal (mJ/m2)

CH3Cl 16.20a 13.72 Hexadecane 27.76 17.68

Pentane 16.65 13.07 CH2Cl2 27.84a 24.69

Hexane 18.13 15.00 Benzene 28.88a 26.04

Methylamine 19.89a 16.98 trans-Decalin 29.50 26.15

Methanol 22.30 29.28 cis-Decalin 31.65 26.77

Decane 23.43 17.83 CS2 32.32a 33.44

Ethyl acetate 23.97a 18.85 Chlorobenzene 33.59a 30.95

Acetone 24.02a 20.14 Bromobenzene 35.82a 34.15

Ethyl methyl ketone 24.52a 21.29 Iodobenzene 39.27a 38.38

Methyl acetate 25.10 19.98 Aniline 42.67a 38.55

Dodecane 25.44 18.08 Diethylene glycol 45.04 36.01

Tetradecane 26.55 16.82 Ethylene glycol 47.99 45.72

CCl4 27.04a 24.29 Glycerol 63.11 50.32

Fluorobenzene 27.26a 24.59 Hydrazine 67.60a 71.81

CHCl3 27.32a 25.01 Water 72.75 92.92

Note: Experimental values were obtained from Kwok, D. Y. and Neumann, A. W., Advances in 
Colloid and Interface Science, 81, 167, 1999, at 21°C. (Reprinted from Zhang, J. and 
Kwok, D. Y., J. Phys. Chem. B 106, 12594, 2002. With permission from American Chemical 
Society.)

a From Jasper, J. J., Journal of Physical Chemistry Reference Data, 1, 841, 1972, measured at 20°C.
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 φ α
ij

i iI
r

= − 3
4

2

6
.  (9.81)

The total intermolecular potential V(r) expressed by the (12:6) Lennard-Jones 
potential is in the form

 V r r rii i i( ) = ( ) − ( )



4

12 6ε σ σ ,  (9.82)

where σ is the collision diameter. The attractive potentials in Equations 9.81 and 9.82 
can be equated to give

 
3
4

42 6Ii i ii iα ε σ= .  (9.83)

Equation 9.83 can be used to derive αi and αj; substituting these quantities into 
Equation 9.80 yields

 φ
σ σ

ε εij
i j
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i j
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6
.  (9.84)

If we write ϕij in the form –4εijσij
6/r6 such that σij = (σi + σj)/2, the energy param-

eter for two unlike molecules can be expressed as 

 ε
σ σ
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ε εij

i j
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2 4

1
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3
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The above expression for εij can be simplified: when Ii = Ij, the first term of 
Equation 9.85 becomes unity; when σi = σj the second factor becomes unity. When 
both conditions are met, we obtain the well-known Berthelot rule; that is, Equation 
9.79. 

For the interactions between two very dissimilar types of molecules or mate-
rials where there is an apparent difference between εii and εjj, it is clear that the 
Berthelot rule cannot describe the behavior adequately. It has been demonstrated 
[50,52,53] that the Berthelot geometric mean combining rule generally overesti-
mates the strength of the unlike-pair interactions. In general, the differences in 
the ionization potential are not large, that is, Ii ≈ Ij; thus the most serious error 
comes from the difference in the collision diameters σ for unlike molecular 
interactions. 

The minimum of the solid–liquid interaction potential εsl is often expressed in the 
following manner [102,103,106]

 ε σ σ ε εsl l s ss llg= ( ) .  (9.86)
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Several functional forms of g(σl/ σs) have been suggested. For example, by compar-
ing εsl with the minimum in the (9:3) Lennard-Jones potential, one obtains, the (9:3) 
combining rule:

 ε σ
σ

ε εsl
l

s
ss ll= +





1
8

1
3

.  (9.87)

An alternative function has been investigated by Steele [111] and others [112]:

 ε σ
σ

ε εsl
l

s
ss ll= +





1
4

1
2

.  (9.88)

Further, from the (12:6) Lennard-Jones potential, Equation 9.85 implies a (12:6) 
combining rule of

 ε σ σ
σ σ

ε εsl
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2

3

.  (9.89)

These equations are attempts for a better representation of solid–liquid interac-
tions from solid–solid and liquid–liquid interactions. In general, these functions 
are normalized such that g(σl/σs) = 1 when σl = σs; in other words, they revert to the 
Berthelot geometric mean combining rule Equation 9.79 when σl = σs. Each of the 
combining rules given above was employed as to determine interfacial tensions and 
adhesion/contact angle patterns from the generalized van der Waals model.

9.6.3 calculated adhesIon and contact anGle Patterns

For comparison with computed values, experimental adhesion and contact angle pat-
terns are available for a large number of polar and nonpolar liquids on a variety 
of carefully prepared low-energy solid surfaces [55,113,114]. Figure 9.17a illustrates 
that, for a given solid surface, the experimental solid–liquid work of adhesion Wsl 
increases up to a maximum value as γlv increases. Further increase in γlv causes Wsl 
to decrease from its maximum. The trend described here appears to shift systemati-
cally to the upper right for a more hydrophilic surface (such as PMMA) and to the 
lower left for a more hydrophobic surface.

Figure 9.17b shows the experimental contact angle patterns in cosθ versus γlv. 
For a given solid surface, as γlv decreases, the cosine of the contact angle (cosθ) 
increases, intercepting at cosθ = 1 with a limiting γlv value. As γlv decreases beyond 
this limiting value, contact angles become more or less zero (cosθ ≈ 1), representing 
the case of complete wetting. The trend described here appears to change systemati-
cally to the right for a more hydrophilic surface (such as PMMA) and to the left for 
a relatively more hydrophobic surface (such as fluorocarbon). 

The 30 polar and nonpolar liquids from Table 9.19 were used to calculate the 
solid–vapor and solid–liquid surface tensions for the adhesion patterns using the 



548 Robert David, Jan Spelt, Junfeng Zhang, and Daniel Kwok

above van der Waals theory together with the Berthelot, (9:3), Steele, and (12:6) 
combining rules [99] (Figure 9.18). The calculation results suggested that Berthelot’s 
rule (Figure 9.18a) does not follow the general behavior of the other combining rules 
considered here. In fact, a larger discrepancy is seen as Berthelot’s rule predicts the 
cosine of the contact angle to increase with larger γlv, contrary to the experimental 
patterns.

The calculated adhesion and contact angle patterns from the other combining 
rules generally predicted the trend of the patterns well. The Steele combining rule 
produced the least scatter; the (12:6) combining rule correctly predicted the local 
maximum in the solid–liquid work of adhesion that was observed in Figure 9.17a.

The question arises as to whether or not a more accurate combining rule could 
have been deduced by means of the experimental patterns. For this reason, a new 
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fiGure 9.17 (a) The solid–liquid work of adhesion Wsl versus the liquid–vapor surface 
tension γlv; and (b) cosine of the contact angle cosθ versus the liquid–vapor surface tension 
γlv for a fluorocarbon FC-722 ( ), hexatriacontane ( ), cholesteryl acetate ( ), poly(n-butyl 
methacrylate) ( ), poly(methyl methacrylate/n-butyl methacrylate) ( ), and poly(methyl 
methacrylate) ( ) surfaces. (Reprinted from Zhang, J. and Kwok, D. Y., Langmuir, 19, 4666, 
2003. With permission from American Chemical Society.)
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fiGure 9.18 Solid–liquid work of adhesion Wsl versus the liquid–vapor surface tension 
γlv and cosine of the contact angle cosθ versus γlv calculated from (a) Berthelot’s rule, (b) the 
(9:3) combining rule, (c) Steele’s rule, and (d) the (12:6) combining rule. The symbols are cal-
culated data, and the curves are the general trends of the data points. (Reprinted from Zhang, 
J. and Kwok, D. Y., Langmuir, 19, 4666, 2003. With permission from American Chemical 
Society.)
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combining rule has been formulated and was shown to generate a much smoother 
trend of cosθ versus γlv curve, similar to the experimental trend observed [113].

Intermolecular theory based on the above generalized van der Waals description 
of intermolecular forces allows direct calculations of reasonable interfacial tensions 
and hence adhesion/contact angle patterns when accurate combining rules are used. 
As seen above, the same adhesion patterns can be described thermodynamically by 
an equation of state. While intermolecular forces obviously determine the interfacial 
tensions and hence the contact angle, a link between the two approaches has yet to 
be established.

9.6.4 lIFshItz theory

The equation of state, in either of its forms Equation 9.45 or Equation 9.58, contains 
one constant that is fit to experimental data. Since both forms are essentially equiva-
lent, we restrict our attention in this closing note to Equation 9.58. In order to under-
stand the physical origin of this equation of state, an explanation must be derived for 
the constant β = 0.000125 (m2/mJ)2.

Molecular origins of contact angle patterns and interfacial tensions were 
explored in the previous sections in terms of density functional theory (Equations 
9.73 and 9.74). Contact angles and interfacial tensions have also been studied using 
Lifshitz theory [115] (see Chapter 10). This theory accounts for only van der Waals 
forces.

Under certain approximations, the surface tension of a liquid or solid can be 
expressed in Lifshitz theory as [115]

 γ
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ω ε
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24
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,  (9.90)

where d is the molecular separation, ħ is Planck’s constant divided by 2π, ω is the 
dominant UV absorption frequency of the material, and ε0 is its static dielectric 
constant.

Assuming d = 0.165 nm and ω = 1.9 × 1016 rad/s to be relatively constant from 
one material to another [115], the work of adhesion between a solid and a liquid 
(subscripts 1 and 2) is
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As discussed above, the Berthelot or geometric mean combining rule is an 
approximation for intermolecular forces between unlike molecules. It corresponds 
to the equation of state 9.12. The exponential term in the equation of state 9.58 can 
be regarded as a correction to this combining rule. Equations 9.90 and 9.91 also devi-
ate from the geometric mean combining rule. Making use of Equation 9.57 to equate 
these two corrections,
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Starting with any liquid and solid surface tensions, Equation 9.90 can be used 
to estimate values for the respective dielectric constants, which can then be substi-
tuted into Equation 9.92 to find a value for β. For various pairs of liquid and solid 
surface tensions in the range 10–70 mJ/m2, the resulting β is typically about 2 × 10–6 
(m2/mJ)2, or around 60 times smaller than the experimental value (see also Figure 
9.16, which shows predicted contact angles from Equation 9.91). Hence, the observed 
value of β cannot be understood solely in terms of the Lifshitz theory of van der 
Waals forces (subject to common approximations).
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10 Theoretical Approaches 
for Estimating Solid–
Liquid Interfacial 
Tensions

Elio Moy, Robert David, and A. Wilhelm Neumann

10.1 intrOduCtiOn

Solid–liquid interfacial tensions, γsl, play an important role in a wide range of 
problems in the fields of pure and applied science. Interfacial phenomena are 
responsible for the behavior and properties of commonly used materials, for 
example paints, adhesives, detergents, and lubricants. Also, the general patterns 
of the adhesion exhibited by biological cells to materials such as glass, metals, 
and polymers cannot be attributed to specific chemical interactions; rather, they 
are related to the change in the overall free energy for the process of adhesion, 
which, in turn, is dependent on the surface and interfacial tensions relevant to 
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the process. Thus, it is not surprising to find that thermodynamic models based 
on interfacial tensions have been used to explain many phenomena such as cell 
adhesion [1,2], sedimentation [3], and the behavior of particles at solidification 
fronts [4].

In the field of materials science, the interfacial tension between a solid and its 
melt dictates to a large extent the temperatures at which solids nucleate from their 
liquids [5,6]. The solid–melt interfacial tension is often important in the determina-
tion of the morphology of growth, and may also lead to solidification taking place 
in preferred crystallographic orientations [7]. When liquid metals migrate to surface 
cracks in solids, γsl replaces the solid surface tension, γsv, as the effective energy 
of cohesion for the solid. The value of γsl will usually be considerably lower than 
γsv so that the strength of the solid is drastically reduced, thereby causing surface 
embrittlement [8].

Unlike liquid–fluid interfacial tensions, interfacial tensions involving a solid 
phase are difficult to measure directly. The most common approach for estimat-
ing these tensions involves the interpretation of contact angle data [9], which 
has been discussed in detail in Chapters 8 and 9. The approaches favored by 
materials science groups involve the direct or indirect application of the so-
called Gibbs–Thomson equation [10]. These two approaches are unfortunately 
in considerable disagreement, as will be shown in Section 10.3. The values of 
γsl obtained by the two approaches, for the same systems, differ by almost two 
orders of magnitude.

The central purpose of this chapter is to determine what approach—contact angle 
interpretation or implementation of the Gibbs–Thomson equation—provides the 
best estimates of solid–liquid interfacial tensions. In order to do so, two indepen-
dent theoretical approaches for estimating γsl are investigated: gradient theory and 
Lifshitz theory.

10.2 COntaCt anGle interpretatiOn

The attractiveness of using contact angle data to estimate γsl and γsv arises from the 
fact that contact angles can be measured with relative ease on suitably prepared 
surfaces. In order to use contact angle data to estimate γsl and γsv, in addition to the 
Young equation

 γ γ γ θsv sl lv− = cos ,  (10.1)

an equation involving the three interfacial tensions (γsl, γsv, and γlv) is required.
The numerous interfacial tension equations that are found in the literature can be 

divided into two groups: (i) those based on the surface tension components approach; 
and (ii) those based on the equation of state approach. The existence of an equation 
of state for interfacial tensions and the validity of the surface tension components 
approach were discussed in detail in Chapters 8 and 9. While the differences in the 
calculated values of γsl and γsv from the two approaches may be as large as 100%, 
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they are small compared with the differences between results from contact angle 
interpretation and from Gibbs–Thomson equation considerations, which are orders 
of magnitude.

In Chapters 8 and 9, it has been shown that the equation of state approach is supe-
rior for interpreting contact angle data on solid sufaces. Therefore, in this chapter, the 
equation of state, Equation 10.2, will be used to calculate γsl and γsv from contact angle 
considerations. Whenever possible, the values that are obtained from the surface ten-
sion components approach will also be included for comparative purposes. The equa-
tion of state for interfacial tensions can be written as (cf. Chapter 9)

 γ γ γ γ γ β γ γ
sl lv sv lv sv e lv sv= + − − −( )2

2

,  (10.2)

where β = 0.000125 (m2/mJ)2.

10.3 Gibbs–thOmsOn equatiOn

The Gibbs–Thomson equation is widely used in the field of materials science for 
estimating solid–melt interfacial tensions. It is a relative of the Kelvin equation for 
liquid–vapor interfaces that links droplet curvature to vapor pressure.

The Gibbs–Thomson equation gives the relation between the change in equi-
librium temperature and the curvature of the interface, for pure substances, at a 
constant external pressure. It shows that, for a given external pressure, the equi-
librium temperature of a liquid droplet decreases with decreasing drop size. The 
Gibbs–Thomson equation can be used to explain the phenomenon of supercooling 
of a saturated vapor and of a saturated liquid. The extent of supercooling of a satu-
rated liquid is the basis for obtaining γsl from nucleation experiments, which will be 
discussed later in this section.

The Gibbs–Thomson equation is deduced by combining the Laplace equation of 
capillarity and the condition of chemical equilibrium through the Gibbs–Duhem 
relations. The Gibbs–Thomson equation was originally developed for liquid–fluid 
systems and later applied to solid–liquid systems. The complete derivation of the 
original Gibbs–Thomson equation can be found in the book by Defay and Prigogine 
[11]. The simplified version of this equation, which is the one widely used in the field 
of materials science, is

 ∆
∆

T
r

T
H

sl s

f

= 2 0γ ν
,  (10.3)

where ΔT = T0 – T represents the degree of undercooling, νs is the molar volume of 
the solid, r is the radius of curvature, and ΔHf is the latent heat of fusion.

In the remainder of this section, the use of Equation 10.3 to determine γsl, directly 
and indirectly, will be described.
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10.3.1  IndIrect aPProaches: homoGeneous 
nucleatIon and meltInG In Pores

Most of the older published values of solid–melt interfacial tensions of pure metals 
were obtained by means of homogeneous nucleation experiments first performed by 
Turnbull and coworkers [12,13]. In these experiments, the homogeneous nucleation 
rate, J, is measured as a function of the degree of undercooling ΔT = T0 – T.

The parameters J and ΔT are related via Boltzmann statistics and the Gibbs–
Thomson equation (Equation 10.3) by

 J K
T

T
H Tv
sl s

f

= −






exp ,
16
3

3
0
2 2

2

π
κ

γ ν
∆ ∆

 (10.4)

where Kv is an experimentally obtained constant, and κ is Boltzmann’s constant. 
A plot of lnJ versus 1/TΔT2 allows the determination of γsl from the slope of the 
straight line. Experimentally, the principal difficulty of the method is ensuring that 
true homogeneous nucleation occurs. Theoretically, the expected degree of under-
cooling can be several hundred degrees [14]; however, experimentally, undercool-
ing of more than a few degrees is rarely attained, indicating that heterogeneous 
nucleation is taking place. The major difference between homogeneous and hetero-
geneous nucleation is that in the former the nucleus is formed via the aggregation 
of a number of molecules of the pure substance from the melt, while in the latter 
the formation of the nucleus is induced by a foreign material that is in contact with 
the melt.

The major difficulty in interpreting the data from nucleation experiments 
results from applying macroscopic thermodynamics to systems that are typically 
1 nm in size and contain only a few hundred molecules [10,15]. Also, in situations 
where true homogeneous nucleation is apparently observed, the estimates of γsl 
are obtained at temperatures that are as much as 200 K below T0. In order to relate 
these values to those expected at T0, the temperature coefficient of γsl is necessary. 
These coefficients are, however, as yet unknown. Values of γsl for various mate-
rials, obtained by the homogeneous nucleation method, are given in Table 10.1. 
Typical results from nucleation experiments are those for n-alkanes by Uhlmann 
et al. [16].

A second indirect approach for determining γsl from Equation 10.3 is by calo-
rimetric measurement of ΔHf and T0 for liquids confined in porous solids. From 
data for solids of different pore radii, γsl can be found via the slope of a plot of 
ΔT versus 1/r. Using this method, Jackson and McKenna [17] measured values of 
γsl for seven organic liquids confined in controlled pore glass. Their values were 
smaller than those from other methods based on the Gibbs–Thomson equation 
(their result for naphthalene is included in Table 10.1). Uncertainties in their results 
were mainly due to lack of knowledge of the liquid/solid structure within the pores, 
and whether bulk modeling concepts were valid at a scale of tens of nanometers. 
For example, the authors found significant changes in the enthalpy of fusion ΔHf 
in smaller pores.
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10.3.2  dIrect aPProaches: skaPskI’s method 
and analysIs oF GraIn Boundary GrooVes

The direct evaluation of γsl via the Gibbs–Thomson equation (Equation 10.3) entails 
equilibrium experiments. These experiments involve the analysis of the equilibrium 
shape of the solid–liquid interface for a system whose temperature is maintained at a 
value below the normal melting  temperature, T0.

The first successful attempts at measuring γsl directly from the Gibbs–Thomson 
equation were due to Skapski and coworkers [18–20]. A schematic of the apparatus 
used by Skapski et al. is shown in Figure 10.1. The experiments were performed at 
temperatures of 0.02–0.8 ± 0.002 K below the melting temperature of the materials. 
A wedge geometry was used to achieve equilibrium conditions and to observe the 
interfacial curvatures in transparent systems.

The equilibrium position of the solid–liquid interface for a given degree of under-
cooling is given by the Gibbs–Thomson equation, now modified to account for the 
nonspherical geometry of the interface:

 ∆
∆

T
T
H r r

sl s

f

= +





γ ν0

1 2

1 1
,  (10.5)

where r1 and r2 are the principal radii of curvature. For the geometry depicted in 
Figure 10.1, r1 = h/2 and r2 = ∞. Thus, by knowing the position of the solid–liquid 
interface, it is possible to obtain γsl directly from Equation 10.5. This method was 

table 10.1 
Comparison of solid-melt interfacial tensions (mJ/m2) Obtained by 
Gibbs–thomson equation approaches and by Contact angle 
Considerations

Gibbs–thomson approaches
Contact angle 
approaches

system nucleation
melting 
in pores skapski

Grain 
boundary

equation 
of state

fowkes’ 
equation

Ice water 26.1 — 120 ± 10 [19] 29.1 ± 0.8 0.38 [27] —

Naphthalene  > 27.2 8.2 [17] — 61 ± 11 1.44 [26] 0.10

Biphenyl  > 24.0 — — 50 ± 10 0.67 [26] 0.01

n-Dodecane 12.1 [14] — — — 0.15 [28] 0.09

n-Hexadecane 15.2 [14] — — — 0.89 [28] 0.57

Note: Values for Gibbs–Thomson approaches were obtained from Jones, D. R. H., Journal of Materials 
Science 9, 1, 1974 unless otherwise stated. Skapski’s result was incorrectly listed in Jones’ 
reference.
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used to study various transparent materials. The result for ice-water is given in 
Table 10.1.

The most attractive method of measuring γsl directly, for macroscopic systems, 
involves the observation of equilibrium shapes of grooves formed by the intersec-
tion of planar grain boundaries with an otherwise planar solid–liquid interface in a 
system that is subjected to a temperature gradient. The advantage of this method over 
the Skapski approach is that the whole grain boundary groove is used in the determi-
nation of γsl whereas in the latter, only the wedge thickness is used in the calculation 
of γsl via Equation 10.5.

The required geometry of the grain boundary groove is shown in Figure 10.2. Far 
from the groove, the solid–liquid interface is planar and is therefore in equilibrium at 
the normal melting temperature, T0. Closer to the root of the groove, the curvature of 
the interface will increase steadily so as to compensate for the decreasing interfacial 
temperature imposed by the temperature gradient, according to Equation 10.5. At 
each point on the interface, the local curvature is l/r1, where r1 is the principal radius 
of curvature in the x-y plane (Figure 10.2) since it is assumed that the interface is 
invariant in the z-direction (r2 = ∞).

LiquidSolid

Metal block 

h
Glass slide 

fiGure 10.1 Schematic of Skapski’s experimental setup for the determination of solid–
melt interfacial tensions.

Interface o

Cold isotherm T < To

  y

  x

Grain boundary 

Solid

Melt
T = To

  z

 Hot isotherm T > To

fiGure 10.2 Schematic diagram of the profile of a solid–liquid interface that is inter-
sected by a grain boundary groove.
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The Gibbs–Thomson equation, for the geometry depicted in Fig. 10.2, has been 
solved analytically by Bolling and Tiller [7] by rewriting Equation 10.5 as a differ-
ential equation and assuming a linear temperature gradient. For a linear temperature 
gradient, G, along the y-axis, ΔT = Gy and Equation 10.5 can be rewritten as

 y
T

G H
y ysl s

f

=






′′ + ′( )−γ ν0

2

2 3 2
1

∆
/

,  (10.6)

where the primes denote differentiation with respect to x. 
The assumption of a linear temperature gradient applies strictly to systems 

where the thermal conductivities of the solid and the melt are the same. A numeri-
cal solution to Equation 10.5 for situations where the thermal conductivities are 
different has been developed by Nash and Glicksman [21]. The grain boundary 
groove shape analysis technique has been applied to a variety of transparent mate-
rials [22,23]. A series of more recent measurements has also been published (see, 
e.g., Akbulut et al. [24]). Some results obtained by this technique are given in 
Table 10.1.

10.3.3  comParIson oF solId–lIquId InterFacIal tensIon Values

In Table 10.1, the estimated values of γsl, obtained from contact angle consider-
ations and from the application of the Gibbs–Thomson equation, are compared. 
Because the contact angle approach is limited to low-energy systems (γ < 100 
mJ/m2) and the approaches based on the Gibbs–Thomson equation are limited to 
solid–melt systems, there are only a few cases for which the values of γsl can be 
compared.

The use of the term “contact angle” is slightly misleading in the context of solid–
melt systems. While contact angles of the melts on the solids of the same materials 
are, in principle, measurable if γlv is larger than γsv, they are not essential in the deter-
mination of γsl for solid–melt systems. Experimentally, the simplest way of calculat-
ing γsl for such systems is to determine γlv and γsv independently and to use Equation 
10.2 to determine γsl (cf. Chapter 9).

The value of γlv can be measured directly by the Wilhelmy plate method [25] 
or by means of Axisymmetric Drop Shape Analysis-Profile (ADSA-P, Chapter 3), 
at different temperatures so that γlv at the melting temperature can be obtained by 
extrapolation. The value of γsv can be obtained by measuring contact angles (of liq-
uids other than the melt) as a function of temperature, allowing the estimation of 
γsv at the melting point, also by extrapolation. The values shown in Table 10.1 were 
obtained in this fashion by Omenyi et al. [26].

From the values of γsl shown in Table 10.1, it is readily apparent that the Gibbs–
Thomson and contact angle approaches are in considerable disagreement. The values 
from contact angle considerations are about two orders of magnitude smaller than 
those from Gibbs–Thomson considerations. The differences in γsl values obtained 
from the application of the Fowkes equation and from the equation of state are rela-
tively small when compared with those from the Gibbs–Thomson approaches.
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The question that arises from Table 10.1 is what approach correctly estimates 
solid–liquid interfacial tensions. In the next sections, independent approaches for 
estimating γsl will be discussed: gradient theory and Lifshitz theory. It will be shown 
that the two independent approaches estimate γsl values that are consistent with those 
from contact angle considerations.

At this point, some physical implications of the values presented in Table 10.1 can 
be discussed. The γsl values for naphthalene and biphenyl, as obtained by the grain 
boundary groove method, are numerically larger than the corresponding γlv values. 
This is physically unrealistic. Interfacial tensions are manifestations of intermolecu-
lar interactions between bulk phases separated by an interface. The more different 
the two bulk phases are, the higher the interfacial tension should be; thus, a value 
of γsl that is larger than γlv implies that, improbably, there is a greater difference 
between the interactions in two condensed phases of the same material (solid and 
liquid) than there is between a condensed (liquid) and a vapor phase. While phase 
changes bring about surface tension changes, these changes should not be as drastic 
as the results from the grain boundary groove method seem to suggest.

10.4  theOretiCal estimatiOns Of sOlid–
liquid interfaCial tensiOns

10.4.1 mIcroscoPIc aPProach to InterFaces: GradIent theory

A system consisting of two fluids in contact, for example, a liquid and its vapor, must 
be described in terms of three regions: two bulk phases corresponding to the liquid 
and vapor, and a region between the bulk phases whose properties are different from 
either phase. These properties must, however, become equal to those of the bulk 
phases at the extremities of the interface layer. There are two ways in which to define 
the interfacial layer: (i) the macroscopic approach originally proposed by Gibbs [29], 
which replaces the interfacial region by a two-dimensional layer of zero thickness 
and of uniform properties; or (ii) a microscopic approach where the interfacial region 
is treated as having a finite volume and where the properties are continuously vary-
ing throughout the thickness. The common feature of both approaches is that surface 
quantities such as surface tension, internal energy, and entropy are definable. The 
macroscopic approach for interfaces, the generalized theory of capillarity, was the 
topic of Chapter 1. In this section, the microscopic approach will be discussed using 
the concepts of the gradient theory of van der Waals, and Cahn and Hilliard [30]. 
Gradient theory has been used by other workers to determine the density profile and 
surface tension of liquid drops [31–33], to study wetting transitions [34], and to study 
the structure of the solid–liquid–gas contact region [35]. In this section, gradient 
theory analysis will be used to calculate solid–liquid interfacial tensions.

From a molecular point of view, the interfacial region between two contiguous 
bulk phases in equilibrium is a zone of finite thickness (approximately 1 nm). Within 
this region, the density, composition, and pressure tensor vary rapidly from the 
characteristics of one bulk phase to the characteristics of the other phase. It will be 
assumed that gravity will have negligible effects on the bulk and interfacial regions, 
other than ordering the phases according to their density.
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A microscopic formulation of the surface tension, from a mechanical point of 
view, can be obtained by means of the varying pressure tensor in the interfacial 
region as proposed by Kirkwood and Buff [36]. In order to clarify this concept, the 
equation of hydrostatics is used. This equation can be obtained from the momentum 
Equation 10.7, written using the Einstein summation convention:

 ρ ρ ρ
∂
∂

+
∂
∂

= −
∂
∂

+
u

t
u

u

u

P

x
fj

k
j

k

ij

i
j ,  (10.7)

where ρ is the density, uj are the components of the velocity vector, Pij are the ele-
ments of the pressure tensor, and fj are the components of body forces per unit mass. 
For a static system, the velocity vector u is equal to zero, resulting in the equation 
of hydrostatics:

 −
∂
∂

+ =
P

x
fij

i
jρ 0.  (10.8)

For a horizontal interface between two isotropic fluid bulk phases, the lighter 
phase will be on top because of gravity. Thus, Equation 10.8, in the absence of exter-
nal forces other than gravity, reduces to

 
∂
∂

=
P

x
ij

i

0.  (10.9)

For a planar geometry, the fluid density and pressure tensor in the interfacial 
region depend only on the distance x perpendicular to the flat interface. The equation 
of hydrostatics can therefore be expressed as

 
dP
dx

x y zxν ν= =0, , , .  (10.10)

Equation 10.10 implies that Pxx, Pxy, and Pxz are constant in a planar system. Far 
below and above the interface, the fluids are homogeneous and isotropic such that 
the pressure tensor is simply P = PBI where PB is the bulk equilibrium thermody-
namic pressure and I is the unit tensor. Thus, Equation 10.10 leads to the conclusion 
that Pxx = PB and Pxy = Pxz = 0; that is, the pressure tensor component normal to the 
interface is equal to the thermodynamic bulk pressure, PB, and remains constant 
throughout the whole interfacial region.

The condition of symmetry of the pressure tensor at equilibrium implies that 
Pyx = Pzx = 0. Also, assuming that the interfacial region is isotropic and homogeneous 
in the transverse y-z direction, the fluid is isotropic in every layer parallel to the inter-
face, and the final restrictions on the pressure tensor are obtained: Pyz = Pzy = 0, and 
Pyy = Pzz.
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Thus, the planar interface has two distinct principal pressures: a normal one, 
PN = Pxx; and a transverse one, PT = Pyy = Pzz. The normal component remains 
constant throughout the interfacial region and is equal to the bulk thermody-
namic pressure, PB, and the transverse pressure can vary throughout the interfa-
cial region but can only be a function of x. The pressure tensor can therefore be 
written as

 P P= ( ) = ( )
( )

















x

P

P x

P x

N

T

T

0 0

0 0

0 0

.  (10.11)

Because P = PBI above and below the interfacial region, it follows that PT = PN 
outside of the interfacial region.

The pressure deficit in the interfacial layer (PN – PT) manifests itself as the surface 
tension, γ. The relation between γ and the pressure deficit is

 γ = −( )
−∞

+∞

∫ P P dxN T .  (10.12)

The limits of integration of Equation 10.12 are ±∞, instead of the thickness of the 
interfacial region, for the simple reason that the integrand is zero outside the interfa-
cial region since PN = PT in the bulk phases.

Thus, from a microscopic point of view, if the variation of the pressure tensor, P, 
across the interfacial region is known, then the interfacial tension can be determined 
from Equation 10.12. The gradient theory model of the interface will be used to 
determine the pressure tensor, P(x), within the interfacial region. Gradient theory 
will first be developed for fluid–fluid systems with flat interfaces without any exter-
nal potentials. In gradient theory, the symbol used for density is n, which represents 
the number of molecules per unit volume, as opposed to the conventional symbol ρ, 
which represents the number of moles per unit volume.

The pressure tensor P, as will be shown below, is a function of the equilibrium 
density profile of the fluid across the interface. It is to be expected that if a solid wall 
is introduced to a fluid–fluid system, the equilibrium density profile for the new sys-
tem will change. The wall will attract liquid molecules thereby increasing the liquid 
density above that of the bulk, near the solid–fluid interface. However, far away from 
the wall, the density of the fluid should not be affected. The difference between the 
equilibrium densities of the fluid–fluid system with and without the wall gives rise 
to solid–liquid interfacial tension. Therefore, in gradient theory, extension to solid–
liquid (from fluid–fluid) systems is done by simply adding to the fluid–fluid system 
an external potential to model the solid–fluid interaction.

The pressure tensor, P, in the interfacial region depends not only on the local 
density but also on the density distribution in the vicinity of r. In gradient theory, 
it is assumed that the local pressure tensor is a function of the local density plus a 
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finite number of local derivatives of the density. That is, the pressure tensor, P, is of 
the form

 P P= ∇ ∇∇( )n n n, , , .…  (10.13)

It has been shown [37] that interfacial properties can be estimated accurately by keep-
ing only the first two derivatives of n. A Taylor expansion of P about ∇n = ∇∇n = 0 
yields, through second order in ∇,

 P r I I I( ) = + ∇ + ∇∇ + ∇( ) + ∇ ∇P l n l n l n l n n0 11
2

12 21
2

22 ,  (10.14)

where P0(n) is the homogeneous pressure of the fluid at density n, and lij are functions 
of the local density and are related to the correlation functions of the homogeneous 
fluids [38]. For a planar interface, the number density n is a function of x, the direc-
tion normal to the interface. The normal and transverse pressures for such interfaces 
are, from Equation 10.14,

 P P n l l
d n
dx

l l
dn
dxN = ( ) + +( ) + +( )



0 11 12

2

2 21 22 
2

,  (10.15)

and

 P P n l
d n
dx

l
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dxT = ( ) + + 
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2 21

2

.  (10.16)

Computing the interfacial tension from Equation 10.12 using Equations 10.15 and 
10.16 results in

 γ = + 















−∞

+∞

∫ l
d n
dx

l
dn
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dx12

2

2 22

2

.  (10.17)

Integrating Equation 10.17 by parts, and knowing that the density gradients van-
ish as x → ±∞ (i.e., outside the interface),

 γ = 



−∞

+∞

∫ c
dn
dx

dx
2

,  (10.18)
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where the influence parameter c [38] is defined as

 c l
l
n

= − ∂
∂22

12 .  (10.19)

Equation 10.18, first obtained by van der Waals, shows that the smaller the density 
gradient between the phases, the lower the interfacial tension. Thus, fluids near the 
critical point, where the density difference between the liquid and vapor phases is 
small, will have lower surface tensions. The parameter c is obtainable from proper-
ties of the homogeneous fluid [38], as will be discussed later.

In order to calculate the interfacial tension via Equation 10.18, it is necessary to 
determine the equilibrium density profile, n(x), and the influence parameter, c, for the 
system. So far, only mechanical equations for the interfacial region have been dis-
cussed. Surface tension, from Equation 10.12, has been defined in terms of mechani-
cal quantities apart from any thermodynamic considerations. Thermodynamic laws 
provide the criteria for determining the equilibrium density profile. In gradient the-
ory, it is assumed that the entropy function exists for interfacial regions and that 
the Second Law of Thermodynamics is the same regardless of whether the system 
is homogeneous or nonhomogeneous. That is, for any system in equilibrium, the 
entropy must be a maximum.

For a system in thermal equilibrium subject to the constraint of a fixed number 
of molecules in the interfacial region, the determination of the equilibrium density 
profile is best formulated in terms of the grand canonical potential. For a homoge-
neous bulk phase, the grand canonical potential, or free energy, is defined as

 Ω = − − = −U TS N F NE Eµ µ ,  (10.20)

where the definition of the Helmholtz potential, F = U – TS, has been used, and µE is 
the constant equilibrium chemical potential (Lagrange multiplier) resulting from the 
constraint of a fixed number of molecules in the interfacial region. For the nonhomo-
geneous region, the free energy for a three-dimensional system will be given by the 
definite integral of the local specific free energy, ω:

 Ω = ( )∫ ω r d r
V

3 ,  (10.21)

or, in terms of the specific Helmholtz potential f,

 Ω = ( ) − ( )[ ]∫ f n d rE
V

r rµ 3 .  (10.22)

Equation 10.22 is the form of the free energy equation that will be used since the 
gradient approximation to the specific Helmholtz potential, f(r), has been derived inde-
pendently by Cahn and Hilliard [30], Davis and Scriven [38], and Yang et al. [39].
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Analogously to what was done for the pressure tensor, the function f(r) in the 
interfacial region is obtained by assuming that f(r) is a function of the local density, 
n(r), and the local derivatives of n(r). Expanding about the homogeneous state, the 
Cahn-Hilliard form of the local Helmholtz potential, which is correct to third order 
in gradients [30], is given by

 f n f n c nr( )( ) = ( ) + ∇( )0
21

2
,  (10.23)

where f0(n) is the specific Helmholtz function at density n, and c is the influence 
parameter that also appears in Equations 10.18 and 10.19 and is also a function of the 
density n. The first- and third-order terms in gradients vanish because of the isotropy 
of the homogeneous fluid. Thus, the free energy, Ω, can be expressed as

 Ω = ( ) + ∇( ) −



∫ f n c n n d rE

V
0

2 31
2

µ .  (10.24)

For the special case of a planar interface, the number density, n, is only a function 
of x; that is, n = n(x). For a system of cross-sectional area A, Equation 10.24 becomes

 Ω = ( ) + 





−










∫A f n c

dn
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n dxE
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b

0

2
1
2

µ ,  (10.25)

where a and b are the boundaries of the interfacial region. The equilibrium density 
profile for a flat interface will be such that the integral in Equation 10.25 is mini-
mized. The minimization of Equation 10.25 is a problem of the calculus of varia-
tions. Therefore, the equilibrium density profile must be such that it is a solution of 
the Euler–Lagrange equation [40]
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,0  (10.26)

where I represents the integrand in Equation 10.25. Evaluation of Equation 10.26 
yields

 µ µ0
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− − = ,  (10.27)

where µ0 is given by

 µ0
0= ∂

∂
f
n

,  (10.28)
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and represents the chemical potential of a homogeneous fluid at density n. Equation 
10.27 is the statement that the chemical potential throughout the interfacial region, 
given by the first three terms of Equation 10.27, remains constant and equal to the 
equilibrium chemical potential, µE. The derivative terms in Equation 10.27 give the 
corrections to the local chemical potential, µ0, to account for the nonhomogeneous 
nature of the interface and to ensure that the chemical potential at any point within 
the interface remains constant. Note that Equation 10.27 is equally applicable in 
the bulk phases since the homogeneous nature of the fluids ensures that the density 
gradients are equal to zero in the bulk phases.

Solution of Equation 10.27 gives the equilibrium density profile, n(x), which, in 
turn, can be used to calculate the surface tension from Equation 10.18. The bound-
ary conditions for Equation 10.27 are n(–∞) = nL and n( + ∞) = nB; that is, outside the 
interfacial region the density of the fluid corresponds to that of the bulk phases.

The interfacial tension equation can also be obtained from Equation 10.25. First, 
Equation 10.27 must be rearranged. Multiplying Equation 10.27 by dn/dx the follow-
ing is obtained:

 µ µ0

2 21
2

n
dn
dx

dn
dx

c
n

dn
dx

c
d n
dxE( ) −[ ] = ∂

∂






+
22












.  (10.29)

Both sides of Equation 10.29 can be integrated by parts resulting in

 f n n K c
dn
dxE0

2
1
2

( ) − + = 





µ ,  (10.30)

where K is a constant of integration. From the definition of the homogeneous specific 
free energy, ω = f0(n) – µEn and, by definition, ω = –P, the thermodynamic pressure. 
The constant of integration can be evaluated at x = a, the lower boundary of the 
interface. At a, the pressure P = PN and dn/dx = 0, implying that K = PN. Substituting 
Equation 10.30 in Equation 10.25 results in

 Ω = − + 



∫P V A c

dn
dx

dxN
a

b 2

.  (10.31)

The interfacial tension is the difference, or excess, per unit area between Equation 
10.31 and the free energy if the system were composed of a homogeneous phase. 
Since Ω = –PV for a homogeneous phase, the interfacial tension is just the second 
term of Equation 10.31 divided by A, the cross-sectional area of the interface. This 
integral part of Equation 10.31 is identical to what was obtained from mechanical 
considerations (Equation 10.18).

In summary, for systems with no external forces other than gravity, solution of 
Equation 10.27, subject to the appropriate boundary conditions, provides the equilib-
rium density profile n(x) that, in turn, allows the determination of interfacial tensions 
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from Equation 10.18. Before solving Equation 10.27, however, an explicit formula-
tion of µ0(n), the chemical potential for a homogeneous fluid at density n, is neces-
sary and can be obtained from any of the numerous equations of state for fluids that 
are available in the literature.

Equation 10.31 provides the definition of the interfacial tension from thermody-
namic considerations. The interfacial tension is seen as the energy in excess of that 
for a system composed only of a homogeneous phase. Thus, the concept of the excess 
energy associated with the Gibbs dividing surface of zero thickness is maintained 
in the gradient theory treatment of interfaces, even though the interfacial region is 
considered to have a finite thickness.

So far, the effects of external potentials have been neglected. The effects of grav-
ity were considered negligible since the distances involved in the interfacial regions 
were so small that the hydrostatic pressure of the bulk fluids adjacent to the interface 
remained constant. If external potentials other than gravity exist, then the equilib-
rium density profile must reflect such effects. The treatment that follows is for the 
one-dimensional density profile. 

Consider an external potential energy function φ(x). The one-dimensional equa-
tion of hydrostatics for systems in the presence of external forces can be obtained 
from Equation 10.8

 
dP
dx

n
d
dx

N = − ϕ
,  (10.32)

where the definition of the external body force, f = –dφ/dx, has been employed.
The expression for the free energy of a planar interface of cross-sectional area A, 

in the presence of the external potential, can be obtained by extension of Equation 
10.25 to include body forces:

 Ω = ( ) + 
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where nφ(x) represents the energy potential density function. The solution of the 
Euler–Lagrange equation (Equation 10.26) results in
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The implication of Equation 10.34 is that for systems under the influence of 
external potential fields, the chemical potential µ is not constant but is instead 
dependent on the location. This is true for both the homogeneous bulk phases and 
for the interfacial region. Solution of Equation 10.34 allows the determination 
of the equilibrium density profile for systems under the influence of an external 
potential.
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Because the normal pressure is not constant but is a function of x, the equation 
for the interfacial tension is more complex and involves more than just the density 
gradients, as is the case in Equation 10.18 or in the integral from Equation 10.31. 
For systems in an external field, it is simpler to use the excess free energy concept to 
express the interfacial tension. Recalling that the interfacial tension is the difference, 
per unit area, between the free energy of a system that has an interfacial region and 
a system that does not, the following is obtained

 γ µ ϕ= ( ) + 





− + +
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2
1
2

xx,  (10.35)

where –P represents, again, the specific free energy, Ω/V, for a homogeneous system. 
Outside the interfacial region, the integrand in Equation 10.35 is identically zero and 
the integration limits can be extended to ±∞ without loss of generality. The correct 
boundary conditions for the solid–fluid systems are n(0) = 0 and n(∞) = nL, corre-
sponding, respectively, to the assumption of no liquid adsorption on the surface of 
the wall and to the fact that the external potential has no effect on the bulk liquid far 
away from the wall.

In summary, the effects of an external potential on the equilibrium density pro-
file have been examined and are given by Equation 10.34. Also, the interfacial ten-
sion Equation 10.35 for systems in an external potential field has been derived from 
excess free energy considerations.

An external potential will be used to model the interaction between a solid wall 
and a liquid molecule. The interfacial tension calculated from Equation 10.35 will, 
therefore, correspond to the solid–liquid interfacial tension, γsl. The interaction 
potential between a solid and a liquid molecule is modeled by a Lennard-Jones 6–12 
potential, which, after integration for a semi-infinite wall, results in

 ϕ πε σ σ σ
x n
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,  (10.36)

where ε represents the depth of the interaction potential well and σ represents the 
collision diameter. The parameter ε is related to the Hamaker constant, a bulk prop-
erty of the system, via

 A n nsl s l= 4 2 6π εσ ,  (10.37)

where Asl is the solid–liquid Hamaker constant, and ns and nl are the number densi-
ties of the solid wall and of the bulk fluid, respectively. The collision diameter, on 
the other hand, cannot be obtained from the bulk properties of either the solid or 
the liquid. Its determination must be done empirically, as will be shown later in this 
section.
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Before calculations of γsl from gradient theory considerations can proceed, it is 
necessary to specify the influence parameter c, and the equation of state for homo-
geneous fluids. The equation of state used to model the liquids is the Peng–Robinson 
[41] equation 10.38. Similar to the van der Waals equation of state, the Peng–Robinson 
(PR) equation is a two-parameter equation. The major difference between the two 
equations is that the attractive pressure term in the PR equation has been modified 
to generate more accurate density values of the liquid phase. The PR equation is of 
the form

 P
n T

nb

n a T

nb nb
=

−
− ( )

+ −( )
κ

1 1 2

2

,  (10.38)

where b and a are material properties, and κ is the Boltzmann constant. The constant 
b accounts for the excluded volume of the molecules, and a(T) is the energy-related 
temperature function that accounts for the attraction between molecules. The two 
constants are defined as

 a T a T T Tc c( ) = ( ) ( )α ω/ , ,  (10.39)

 b T b T
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where
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and

 α ω ω= + + −( ) −( )1 0 37464 1 54226 0 26992 12. . . / .T Tc  (10.42)

In Equations 10.39 through 10.42, Pc and Tc represent the critical pressure and 
temperature, respectively, and ω represents the acentric factor. All the required 
parameters for the PR equation are available from the literature, such as in Reid et 
al. [42]. For room temperature, the PR equation is excellent at predicting densities, 
especially for nonpolar materials [41]. It should be stressed that any other equation 
of state for fluids, such as the Benedict–Webb–Rubin equation [43] or the Redlich–
Kwong equation [44], can be used in the gradient theory analysis.

The specific Helmholtz potential, f0, and the chemical potential, µ0, can be 
obtained, from thermodynamic considerations, by Equation 10.38. They are
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and
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where the functions f0(T) and µ0(T) represent the temperature-dependent parts of the 
Helmholtz potential and the chemical potential, respectively.

Equations 10.38, 10.43, and 10.44 are the necessary equations for gradient theory 
analysis. These equations represent, respectively, the pressure, the Helmholtz poten-
tial, and the chemical potential of a homogeneous fluid of density n.

The influence parameter, c, will affect the calculated γsl to a great extent, as can 
be seen from Equation 10.35. Carey et al. [33] calculated c from the homogeneous 
properties of fluids. They found that c is not strongly dependent on the density, n, 
of the fluid and can therefore be taken as a constant, obtained from the following 
empirical equation

 c ab= + × −0 27 2 102 3 67. ./ Jm5  (10.45)

The value of c is very small because it represents the influence parameter per 
molecule (as do the parameters a and b).

The assumption that c is not strongly dependent on the density, n, greatly simpli-
fies the differential Equation 10.34 that needs to be solved to obtain the equilibrium 
density profile. Also, the pressure component equations for the interfacial region are 
simplified to a great extent.

It is convenient to introduce nondimensional variables to simplify the pertinent 
equations. These dimensionless variables are
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The parameter (c/a)1/2 represents the diameter of the fluid molecule. Therefore, in 
dimensionless variables, distances are measured in terms of molecular diameter. In 
terms of dimensionless variables, Equation 10.34, with the assumption of constant 
c, becomes
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In Equation 10.49, W and d are defined as

 W b n as= 4 3π ε σ / ,  (10.50)

and

 d c a= ( )σ / / .
/1 2

 (10.51)

Using Equation 10.37, the W parameter, Equation 10.50, can be written in terms 
of Hamaker constants as

 W
b A
an

sl

l

=
2

3π σ*
. (10.52)

The appropriate boundary conditions for Equation 10.47 are n* = 0 at x* = 0, 
and n* = nl* at x* = ∞. That is, there is no adsorption of liquid molecules on the 
solid wall (x* = 0), and the density of the fluid approaches that of the bulk liq-
uid far from the wall (x* = ∞). Equation 10.47 was solved numerically using a 
finite difference approach [45] in conjunction with a nonlinear equation solver. 
The finite difference technique was chosen over more complex finite element tech-
niques, such as the Galerkin method [46], because of its simplicity and ease of 
implementation.

All required nondimensional equations have now been defined. The solid–liquid 
interaction potential, φ*, is given by Equation 10.49, and the equation of state for the 
fluids is given by Equation 10.48. However, as was mentioned above, the collision 
diameter, σ, cannot be obtained from the bulk properties of either the liquid or the 
solid. Its determination must therefore be made empirically. For the determination 
of σ, the solid–liquid interfacial tensions of various n-alkanes on Teflon (polytetra-
fluoroethylene) (PTFE) were used.
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The solid surface tension, γsv, of PTFE has been obtained by various techniques, 
the sedimentation volume method among them [3]. The estimated value of γsv is 
approximately 20 mJ/m2. The choice of PTFE as the “calibrating” solid was moti-
vated by three factors: (i) PTFE is considered to be purely dispersive, so that the 
Lennard-Jones potential (Equation 10.36) is a good model for the solid–liquid inter-
actions; (ii) there are accurate dispersion data that are required to calculate the solid–
liquid Hamaker constants [47]; and (iii) contact angle data for n-alkanes on PTFE 
are also available from the literature [48].

Using a value of 20 mJ/m2 for γsv and using literature values for γlv and θ, it is 
possible to obtain the required solid–liquid interfacial tensions, γsl, by using Young’s 
equation (Equation 10.1). These values are, in turn, used to determine the average 
collision diameter, σ. In Table 10.2, the contact angles of the n-alkanes on PTFE, the 
solid–liquid Hamaker constants, Asl, the solid–liquid interfacial tensions, γsl, and the 
calculated σ values are given.

The collision diameters, σ, vary between 0.121 and 0.113 nm, the larger value 
corresponding to n-octane and the smaller value to n-hexadecane, with a mean value 
of 0.117 nm. Because the parameter σ is material dependent, exact values of the 
solid–liquid interfacial tensions for the other solid–melt pairs could not be obtained. 
Instead, assuming that the values of σ obtained for n-alkane/PTFE systems were 
representative of the range of values of σ for most materials, a range of solid–liquid 
interfacial tensions was determined for each system.

Solid–liquid interfacial tensions, γsl, were calculated from gradient theory con-
siderations for four solid–melt systems: naphthalene, biphenyl, n-dodecane, and 
n- hexadecane. The calculated γsl values for the range of σ, as given in Table 10.2, for 
each system are shown in Table 10.4 of Section 10.4.3.

10.4.2 lIFshItz theory oF Van der Waals Forces

There is an interaction force between any two macroscopic bodies in a medium or 
in vacuum. This interaction between the bodies is of a much longer range than the 

table 10.2 
determination of Collision diameters, σ, from Contact angle data for 
n-alkanes on teflon (ptfe)

liquid

surface 
tension, γlv 

(mJ/m2)
Contact 

angle, θ (deg)

hamaker 
Constant, Asl 

(× 10–20 J)

solid–
liquid 

interfacial 
tension, γsl 

(mJ/m2)

Collision 
diameter, σ 

(nm)

n-Octane 21.62 26 4.11 0.57 0.121

n-Decane 23.83 35 4.40 0.80 0.118

n-Dodecane 25.35 42 4.55 1.16 0.115

n-Hexadecane 27.47 46 5.02 1.24 0.113

Mean 0.117
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interaction between two molecules. The interaction between two particles can be 
divided into long-range and short-range forces. The short-range forces will not be 
discussed here. The long-range forces are:

 1. The electric double-layer force that results from the electrostatic interaction 
among the charges on the surfaces of the solids, screened by the intervening 
medium.

 2. The van der Waals force that results from the electrodynamic interaction 
among the molecules of the solid and of the intervening medium.

It is important to stress that van der Waals forces are always present between 
all particles, regardless of the properties of the constituent molecules. The electric 
double-layer force, on the other hand, only occurs when charges are present.

This section deals with the van der Waals forces between macroscopic bod-
ies. The concept of Hamaker constants, which have been used in gradient theory 
analysis, and how these parameters are obtained, represents the bulk of this sec-
tion. An approach for estimating solid–liquid interfacial tensions based on Lifshitz 
theory considerations will be developed. The attractiveness of using Lifshitz theory 
for calculating such values is that bulk properties such as refractive index data and 
dielectric constants, which are easily measured in principle, are the only required 
information.

The relationship between dispersion interactions and interfacial tensions will be 
discussed in terms of Hamaker constants. Hamaker constants will then be used to 
determine the solid–melt interfacial tensions of the four systems that were also stud-
ied in the previous section. The use of Hamaker constants in this manner represents 
a novel way of estimating solid–liquid interfacial tensions. It is surprising to find that 
Lifshitz theory and Hamaker constants, although they are intimately related to sur-
face and interfacial tensions, have not been used to estimate solid–liquid interfacial 
tensions. The reverse process, that is, using surface and interfacial tension data to 
obtain Hamaker constants, has been used by Omenyi [49] to show that repulsive van 
der Waals forces between macroscopic bodies can, and do, exist.

The interaction between macroscopic bodies can be written in terms of two 
parameters—the first to represent the geometry of the bodies and the second to rep-
resent the material properties of the interacting bodies. This second parameter is the 
Hamaker constant [50]. The major use of the Hamaker constant is to explain the sta-
bility of colloidal particles dispersed in liquid media in conjunction with the DLVO 
theory—Derjaguin-Landau-Verwey-Overbeek [51].

Since van der Waals interactions exist between neutral molecules, a force must also 
exist between macroscopic bodies. The calculation of this force can be  accomplished 
by taking into account the interactions between all the molecules of the macroscopic 
bodies. This microscopic approach was first introduced by Hamaker [50]. Hamaker 
considered only the dispersion component of van der Waals interactions since, except 
for highly polar molecules, the dispersion term dominates. Hamaker also assumed 
pairwise additivity of the intermolecular dispersion interactions. That is, when a 
number of molecules are present, the total dispersion energy consists of the sum of 
the interaction energies between each pair of molecules.
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The interaction energy, per unit area, for two half-spaces with molecular densities 
n1 and n2, respectively, and a separation distance, l, is given by

 E
A

l
= −

12 2π
.  (10.53)

The Hamaker constant, A, is defined as

 A n n C= π2
1 2 12,  (10.54)

where C12 is a measure of the strength of the molecular interaction between a mol-
ecule of type 1 and one of type 2. The corresponding van der Waals force can be 
obtained by differentiation of the interaction energy equation. For the two half-
spaces, the force per unit area is given by

 F
A
l

=
6 3π

.  (10.55)

It is inherently assumed in Hamaker’s approach that the energy of interaction 
of body 1 with the intervening medium is unaffected by the presence or absence 
of body 2. While this assumption may be valid for two bodies interacting across 
a vacuum, it will not be correct for two bodies separated by a medium. Thus, the 
method of pairwise summations cannot be used to calculate the interactions between 
two bodies separated by a condensed medium unless corrections for three-body and 
many-body effects are included.

The problem of additivity is completely avoided in Lifshitz theory, where the 
molecular structure of the bodies is ignored and the interactions between large bod-
ies, now treated as continuous media, are derived in terms of bulk properties such as 
dielectric constants and indices of refraction. The interaction between the bodies is 
then considered to take place through a fluctuating electromagnetic field. However, it 
should be pointed out that the expression for the interaction energy between two half-
spaces, Equation 10.53, as obtained by Hamaker, is still valid within the framework 
of Lifshitz theory. The only difference is the way in which the Hamaker constant, 
A, is calculated.

Within all media, the electrons are in continuous motion. This motion gives 
rise to a fluctuating electromagnetic field that still exists at absolute zero. At abso-
lute zero, these fluctuations are of a purely quantum mechanical nature due to the 
random excitation of the electrons. At nonzero temperatures, there are additional 
contributions due to thermal excitation of the molecules [52]. On a macroscopic 
scale, the fluctuating electromagnetic field can be pictured as comprising oscil-
latory waves that act within the body but also extend beyond its boundaries. For 
two macroscopic bodies, the fields at a point in body 1 and a point in body 2 are at 
least partially in phase over distances of the order of magnitude of the absorption 
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wavelengths. It is this phase correlation that gives rise to van der Waals interac-
tions. Van der Waals interactions can be seen as being the change in the energy of 
the electromagnetic field due to the fluctuations of the field caused by the presence 
of condensed phases. The total interaction results from contributions from all the 
electromagnetic fluctuations whose wavelengths are large compared with intermo-
lecular separations; however, the major contributions come from wavelengths that 
are of the same order of magnitude as the separation distance between the macro-
scopic bodies [53].

The first general macroscopic theory of van der Waals interactions is due to 
Lifshitz [54] who derived the van der Waals force between two nonmagnetic 
dielectric half-spaces separated by a vacuum. Later, Dzyaloshinskii et al. [53] 
extended Lifshitz theory to two half-spaces separated by a third medium. The 
mathematical difficulties involved in the solution of the Maxwell equations are 
formidable when the fluctuating magnetic fields are introduced. In this section, 
only the final result from the analysis of Dzyaloshinskii et al. and further sim-
plifications are included. The interaction energy, at finite temperatures, for two 
parallel plates is given by
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where the prime on the summation symbol in Equation 10.56 indicates that the term 
n = 0 is given half weight, εj represents the dielectric response of the jth medium as 
a function of imaginary frequencies iξn, κ is Boltzmann’s constant, T is the tempera-
ture, and h is Planck’s constant.

Fortunately, some simplifications of Equation 10.57 are possible, making it more 
tractable, and, as will be shown below, an unretarded Hamaker constant can be cal-
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culated when the separation distance, l, becomes small (l < 5 nm). The simplification 
results in
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where a change of variable to x = pξn/ξs was performed. Thus, the interaction energy 
for two slabs, 1 and 2, separated by a medium, 3, for the unretarded case, can be 
obtained from Equation 10.56 where Equation 10.59 replaces Equation 10.57 as the 
summand.

For the unretarded case, the interaction energy for two half-spaces, 1 and 2, sepa-
rated by a medium, 3, of thickness l can be written in the form obtained by Hamaker, 
Equation 10.53; that is,

 E l
A

l132
132

212
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,  (10.60)

which, when compared to Equation 10.56, defines the Hamaker constant, A132, as
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and ξn is as defined above.
The major difference between the Hamaker constant as defined by Equation 10.54 

and by Equation 10.61 is that the former is calculated from a microscopic quantity 
(the intermolecular pair potential), whereas the latter is calculated from a bulk prop-
erty of the condensed phase (the dielectric response).

In Equation 10.61, the term Δ13Δ23e–x is always less than 1, so that the integration 
may be performed by expanding the logarithmic term in a power series and integrat-
ing term-by-term. Bearing in mind that Δkj is not a function of x, one obtains
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Equation 10.63 allows the calculation of the unretarded Hamaker constant, from 
Lifshitz theory considerations, which can be used in the interaction energy equations 
that were derived from a microscopic approach. It must be stressed that Equation 
10.63 can only apply for situations where the separation distance, l, is smaller than 
5 nm. For larger separations, the Hamaker constant becomes a function of the sepa-
ration distance; that is, A = A(l).

The need to know the dielectric permittivity function, ε(ω), for all frequencies 
seems to be an obstacle to the application of the equations given in the previ-
ous section, because the complete data on the absorption spectra are not avail-
able for most materials of interest. Fortunately, however, only partial knowledge 
of the functions ε(ω) is sufficient to determine the force and energy of interaction 
between bodies [55].

The dielectric permittivity function, ε(ω), of a material at frequency ω represents 
the change in the strength of the electromagnetic field of the material due to an exter-
nally applied field of frequency ω. This external field, for the case of van der Waals 
interactions, arises from the presence of another condensed phase in the vicinity of 
a macroscopic body. The function ε(ω) is a complex function of the frequency, ω, 
which is itself complex. The function ε(ω) is usually written as

 ε ω ε ω ε ω( ) = ′( ) + ′′( )i ,  (10.64)

where ω = ωR + iξ represents the complex frequency. For the calculation of dis-
persion interactions, only the values of ε on the imaginary frequency axis, ε(iξ), 
are required. The real part of the dielectric response, ε′, because of its relation-
ship to the refractive index, gives a measure of the transmission properties of the 
material [47]. The imaginary part of the dielectric response, ε″, as a function of 
the frequency, ω, represents the absorption spectrum of the material. At certain 
frequencies, the function ε″(ω) has a zero value, meaning that the material does 
not absorb any energy at those frequencies; the material is said to be transparent to 
electromagnetic energy of those frequencies. In the frequency range where ε″(ω) is 
zero, the total dielectric response is real and is related to the refractive index, n(ω), 
of the medium via [56]

 ε ω ε ω ω ε ω( ) = ′( ) = ( ) ′′( ) =[ ]n2 0 .  (10.65)

The real part, ε′(ω), and imaginary part, ε″(ω), of the dielectric response are not 
independent but are related via the Kramers–Kronig relation
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where P is the polarization density (see Hough and White [47] for details). The 
dielectric response along the imaginary frequency axis, ε(iξ), is also related to the 
absorption spectrum via a second Kramers–Kronig relation [47]
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Equations 10.66 and 10.67 mean that if the absorption spectrum, ε″(ω), for all fre-
quencies is known, then the function ε′(ω) can be reconstructed. The function ε″(ω) 
can be represented by a discrete set of delta functions representing the absorption 
peaks at various frequencies, ωj:

 ′′( ) = −( )
=

∑ε ω δ ω ωf j j

j

N

1

,  (10.68)

where fj represents the height of the absorption peak at the absorption frequency ωj.
As was mentioned previously, for the calculation of the van der Waals interac-

tions, only the dielectric permittivity function evaluated along the imaginary fre-
quency axis is required; that is, ε = ε(iξ). Also, for most materials of interest, the 
complete absorption spectrum, ε″(ω), is not available. Therefore, an approximation 
to the function ε(iξ) is required. The most common approximation used is that due 
to Ninham and Parsegian [55,57], which can be obtained by substituting Equation 
10.68 into Equation 10.67:
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where ωmv and ωj represent the resonance frequencies, and the constants Cmv and Cj 
represent the oscillator strengths. The parameters Cj and fj are related by
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f

j
j

j

= 2
π ω

.  (10.70)

The first term in Equation 10.69 models the function in the microwave frequen-
cies and the second term models the function in the infrared through ultraviolet 
frequencies.

From Equation 10.69, it is clear that the dispersion interaction is determined 
solely by the oscillator strengths, C, and absorption frequencies, ω, of the compo-
nent materials. Equation 10.69 is the so-called Ninham–Parsegian approximation of 
the dielectric response function in terms of experimentally accessible quantities. The 
importance of the Ninham–Parsegian approximation cannot be overstated: it allows 
the determination of dispersion interactions, via Lifshitz theory, in systems where 
only partial absorption data are available.

It should be pointed out that the major contribution to the calculation of unre-
tarded Hamaker constants, from Equation 10.63, comes from the ultraviolet region. 
The reason for this is that the frequencies ξn occur at equally spaced intervals of 
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about 3 × 1014 rad/s, at T ≈ 300 K. In the microwave frequencies (≈1011 rad/s) and in 
the infrared frequencies (≈1014 rad/s), there are very few sampling points. For exam-
ple, in the frequency region ξ < 1016 rad/s there are only 30 sampling points whereas 
in the ultraviolet region 1016 < ξ < 1017 rad/s there are about 300 terms. There are, 
however, materials for which contributions from the lower frequencies cannot be 
ignored. A good example is water; the dielectric response of water decreases from a 
value of 80 at zero frequency to approximately 4 at the infrared frequencies. For dis-
persive systems, the contributions from the microwave region are nonexistent since 
microwave absorption exists only for polar molecules [58].

For condensed phases, the errors introduced by using the Ninham–Parsegian 
approximation in the calculation of Hamaker constants are minimized because only 
the difference in the dielectric responses (Equation 10.63), at a given frequency, con-
tributes to the calculated unretarded Hamaker constants. The errors in the Hamaker 
constants are slightly higher when the intervening medium, 3, is a vacuum, since for 
this case ε3 = 1 for all frequencies.

For systems that are predominantly dispersive, only the ultraviolet oscillator 
strength, Cuv, and absorption frequency, ωuv, need to be determined in order to obtain 
good estimates of Hamaker constants from Lifshitz theory. Thus, the Ninham–
Parsegian construction, Equation 10.69, simplifies to

 ε ξ
ξ ω
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2
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.  (10.71)

The value of the ultraviolet absorption frequency, ωuv, and of the oscillator 
strength, Cuv, can be obtained from refractive index data by means of so-called 
Cauchy plots [47]. The relation (simplified) between the refractive index, n, and the 
parameters ωuv and Cuv, in the visible region, can be obtained from Equation 10.65 
and by substituting Equation 10.68 into Equation 10.66:
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Rearranging Equation 10.72, the following is obtained

 n n C
uv

uv
2 2

2

2
1 1ω ω ω

ω
( ) − = ( ) −[ ] + .  (10.73)

Therefore, a plot of [n2(ω) – 1] versus [n2(ω) – 1]ω2 should yield a straight line 
of slope l/ωuv

2 and intercept Cuv. This is known as the Cauchy plot. Experimentally, 
it is relatively easy to measure the refractive index as a function of the wavelength 
λ ( = 2πc/ω) in the visible region, and this information is usually available in the 
literature for most common substances.
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In summary, from the refractive index data in the visible region, it is possible to 
approximate the dielectric response function along the imaginary axis, ε(iξ). For 
most materials, except in the cases of highly polar materials, the simple Ninham–
Parsegian representation for ε(iξ), as given by Equation 10.71, with a single oscillator 
function corresponding to the ultraviolet region, is sufficient to compute Hamaker 
constants of the materials accurately. Once the Hamaker constants are known, sur-
face and interfacial tensions can be estimated, as described below.

Consider two liquid half-spaces originally at infinite separation where the inter-
vening medium is air, as shown in Figure 10.3a. The two half-spaces are now brought 
together to some separation distance such that the interfacial region is indistinguish-
able from the bulk phase, as in Figure 10.3b. The change in free energy of the system 
is given by the grand canonical potential for surfaces. For the situation depicted in 
Figure 10.3, the change in free energy of adhesion, per unit area, is

 ∆ω γadh
lv= −2  (10.74)

since two liquid–air interfaces are destroyed and the “new” surface created is indis-
tinguishable from the bulk phases. This change in free energy must be related some-
how to the interaction energy as given by Equation 10.60.

Equation 10.60 diverges as the separation distance, l, approaches zero. This diver-
gence does not reflect physical reality; rather, it is the result of treating the molecules as 
point-polarizable entities; thus, at zero separation distance, molecules would be over-
lapping. In reality, constituent molecules have a finite size and, therefore, macroscopic 
bodies cannot approach to l = 0. Thus, a cutoff distance, d0, which is related to the col-
lision diameter, σ, is often used to relate the interaction energy, as given by Equation 
10.60, to the thermodynamic free energy, Equation 10.74. When two macroscopic bod-
ies are at a distance d0, they are considered to be in molecular contact, thus eliminating 
the divergence in Equation 10.60. Combining Equations 10.74 and 10.60 yields

l

do

(a) (b)

fiGure 10.3 Schematic of two half-spaces, (a) initially at infinity that are then brought 
into contact (b).
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where All represents the liquid–air–liquid Hamaker constant (it is an accepted con-
vention to not assign a symbol to represent the intervening medium if it happens 
to be air). Equation 10.75 establishes the relationship between surface tensions and 
Hamaker constants when the concept of cutoff distances is employed. While such an 
approach is simplistic, the computed surface tensions for saturated hydrocarbon liq-
uids, using Equation 10.75, agree very well with experimentally obtained values [59], 
so that such an agreement cannot be regarded as fortuitous.

The relationship between surface tensions and interaction energy is not restricted 
to either macroscopic bodies of the same material or systems where the intervening 
medium is air. If, in Figure 10.3, the two half-spaces were solid and the intervening 
medium were liquid, the following relationship would be obtained

 γ
πsl
slsA
d

=
24 0

2
,  (10.76)

which relates the solid–liquid–solid Hamaker constant to the solid–liquid interfacial 
tension, γsl.

Solid–melt interfacial tensions, γsl, for the identical systems studied using 
gradient theory will now be calculated. The necessary dielectric response func-
tions, ε(iξ), are approximated using the Ninham-Parsegian approach. The value 
used for the cutoff distance d0 is 0.134 nm, which is related to the average col-
lision diameter, σ, obtained from gradient theory considerations, as shown in 
Table 10.2. Before proceeding with the calculations, some questions regarding 
the limiting value for solid–liquid interfacial tensions, γsl, can be investigated by 
using Equation 10.76 as the starting point. In the development of the equation of 
state for interfacial tensions, described in Chapter 9, two assumptions were made 
regarding the possible range of values for γsl: the first assumption was that γsl 
would have a limiting value of zero, which would only occur when γlv = γsv; the 
second that γsl would always have a positive value. The first assumption has been 
criticized by Johnson and Dettre [60]. Equation 10.76 provides an answer to the 
controversy, at least in the case of purely dispersive solid–liquid systems, if it 
is assumed that the value of the cutoff distance, d0, is universal. Equation 10.76 
indicates that γsl is directly related to the Hamaker constant, Asls. Thus, for the 
two assumptions to be valid, Asls must always be greater than or equal to zero. 
However, Asls is calculated from Equation 10.63, which, for two surfaces of the 
same material (1 = 2), is given by
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where the function
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.  (10.78)

In Equation 10.77, the function Δsl to the power of 2s will always be positive; 
therefore, it is obvious from Equation 10.77 that the Hamaker constant for a solid–
liquid–solid system is always positive, implying a positive solid–liquid interfacial 
tension, γsl. Also, for the special case where the dielectric response of the liquid 
medium, εl(iξ), is similar to that of the solid, εs(iξ), the Hamaker constant is equal to 
zero and the corresponding value for γsl, from Equation 10.76, is zero. The special 
case of equal dielectric responses for the liquid and solid results in All = Ass, which, 
according to Equation 10.75, corresponds to the special case of γlv = γsv. Thus, the 
assumptions made in the development of the equation of state are in perfect agree-
ment with Lifshitz theory considerations, at least in systems where Lifshitz theory is 
applicable, and assuming a constant value of d0.

Cauchy plots for the solid and liquid phases of biphenyl and naphthalene were 
produced from refractive index data available from the literature [61–63], and are 
shown in Figures 10.4 and 10.5, respectively. For the n-alkanes, the Cauchy plots 
were obtained from Hough and White [47] for the liquid phase.

The Hamaker constant, Asls, like the surface tension, has a temperature depen-
dence. This temperature dependence comes about in two ways: the tempera-
ture, T, appears explicitly in Equation 10.63, and implicitly since the refractive 
index is also temperature dependent. Where possible, the temperature depen-
dence of the refractive index, dn/dT, which is linear, was obtained for the differ-
ent wavelengths from the available temperature data. Otherwise, a value of dn/
dT = –0.0005°C–1 was used; the value chosen is typical for most nonpolar organic 
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fiGure 10.4 Cauchy plot for solid and liquid biphenyl at the melting temperature.
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materials at all wavelengths [64]. The values of ωuv and Cuv obtained from the 
Cauchy plots are given in Table 10.3. In the case of the n-alkanes, no refractive 
index data are available for the solid phase so that Cauchy plots cannot be used 
to calculate the required parameters. However, the static dielectric constants, 
ε0, for both solid n-dodecane and n-hexadecane at the freezing temperatures are 
known [65,66]. From these data, it is possible to estimate the oscillator strength, 
Cuv. From Equation 10.71, evaluated at zero frequency, the following is obtained

 ε0 1= + Cuv ,  (10.79)

table 10.3 
Oscillator strengths, Cuv, and absorption frequencies, ωuv, for the solid and 
liquid phases of the Various materials at their melting temperatures

material

melting 
temperature 

(k)

phase
hamaker 
Constant, 

Asls 
(×10–22 J)

solid liquid

Cuv

ωuv

(×1016 rad/s) Cuv

ωuv

(×1016 rad/s)

Naphthalene 353.5 1.40 1.26 1.41 1.15 2.22

Biphenyl 342.4 1.37 1.38 1.42 1.15 7.40

n-Dodecane 263.4 1.10 1.89 1.03 1.89 1.55

n-Hexadecane 291.2 1.13 1.89 1.02 1.82 5.11
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fiGure 10.5 Cauchy plot for solid and liquid naphthalene at the melting temperature.
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where, for the reasons stated above, the oscillator strengths for infrared and micro-
wave regions have been ignored. The values obtained from Equation 10.79 are given 
in Table 10.3. For the absorption frequency a value of ωuv = 1.89 × 1016 rad/s, which 
is typical for long-chained hydrocarbon crystals [67], was used.

The data given in Table 10.3 are sufficient for the determination of the solid–
melt–solid Hamaker constants, Asls, which, in turn, allow the calculation of the 
interfacial tensions, γsl, from Equation 10.76; Asls values were calculated from 
Equation 10.63 using a computer program [28]. The calculated values of γsl are 
given in Table 10.4.

10.4.3 results and dIscussIon

The results shown in Table 10.4 indicate that both gradient theory and Lifshitz the-
ory calculate solid–melt interfacial tension, γsl, values that are consistent with those 
from contact angle interpretation.

The accuracy of the values of γsl from gradient theory for n-dodecane may not 
be very high since the melting temperature of n-dodecane is well below room tem-
perature and the PR equation of state may not describe the fluid behavior at such low 
temperatures. Nevertheless, gradient theory still predicts a γsl value that is in agree-
ment with the value from contact angle considerations.

The values of γsl from the application of the Gibbs–Thomson equation are still 
about one order of magnitude larger than those calculated from gradient theory. 
While it is seen that the calculated γsl depends on the value chosen for σ, the 
range of γsl is still of the same order of magnitude as the values obtained from 
contact angle considerations. For the gradient theory results to agree with those 
from Gibbs–Thomson equation methods, the collision diameters would have to 
be much larger than those used in the present calculations. For example, for the 
gradient theory results for naphthalene to agree with that from the grain boundary 
groove measurement, a σ-value of 0.7 nm would be required. It is, however, not 
expected that the collision diameter could be larger than the diameter of the liquid 
molecule.

table 10.4 
solid–melt interfacial tensions Calculated from Gradient and lifshitz 
theories

solid–melt interfacial tensions, γsl (mJ/m2), from:

material
lifshitz 
theory

Gradient 
theory

equation 
of state

fowkes’ 
equation

Gibbs–thomson 
equation

Naphthalene 0.17 0.8–4.6 1.44 0.10 61

Biphenyl 0.55 0.7–3.7 0.67 0.01 50

n-Dodecane 0.11 <2.0 0.15 0.09 12.1

n-Hexadecane 0.38 <0.4 0.89 0.57 15.2
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The values obtained from Lifshitz theory are within the range of values that were 
obtained from gradient theory considerations. The Lifshitz theory values, however, 
tend to be somewhat smaller than those from contact angle/equation of state consid-
erations. Nevertheless, it is obvious from Table 10.4 that, among the four approaches, 
only the values obtained from the Gibbs–Thomson equation method are in any con-
siderable disagreement.

The differences between Lifshitz theory results and those from equation of state 
considerations may be due to two possible reasons. First, the errors might be due to 
the need to use an approximate dielectric response function ε(iξ), instead of the full 
absorption spectrum. However, as was mentioned before, the errors introduced by 
the approximations tend to cancel out if the intervening medium is also a condensed 
phase, as is the case in a solid–liquid–solid system. Second, the need to introduce 
ad hoc cutoff distances d0, to eliminate the divergence of the interaction energy as 
the separation distance approaches zero, is likely a cause of the discrepancy between 
Lifshitz theory and contact angle/equation of state approaches. At the present time, 
it is not possible to obtain the cutoff distance or collision diameter from the bulk 
properties of either the solid or the liquid.

Without more information regarding minimum separation distances, Equation 
10.75 should be viewed as an empirical relationship between the surface or inter-
facial tension, γ, and the Hamaker constant, A, with d0 being the adjustable param-
eter whose value is in the range of 0.1–0.2 nm. If the values of γsl obtained from 
techniques based on the Gibbs–Thomson equation were correct, then the value of 
d0 would be in the range of 0.005–0.01 nm; that is, one to two orders of magnitude 
smaller than the commonly accepted values. It should be noted that most of the 
d0 values available in the literature result from the correlation between the liquid 
surface tension, γlv, and the Hamaker constant, All. Also, γlv and All can be measured 
and calculated respectively, with a high degree of accuracy; thus, values of d0 that 
are one to two orders of magnitude smaller than those obtained from liquid surface 
tension data can be considered to be incorrect. For the γsl values from Lifshitz theory 
to be comparable with those from contact angle interpretation, the d0 values would 
range from 0.04 to 0.13 nm. The smaller value of d0 corresponds to naphthalene and 
is smaller than the accepted values; however, the larger value of d0 is certainly within 
the acceptable range.

In conclusion, the results from gradient theory and from Lifshitz theory are in 
good agreement with those from contact angle considerations. These results give 
further indication that the methods based on the Gibbs–Thomson equation cannot 
give correct estimates, not even in the order of magnitude, of solid–liquid interfacial 
tensions. The deficiencies of the Gibbs–Thomson equation will be discussed in the 
next section.

10.5 defiCienCies Of the Gibbs–thOmsOn equatiOn

The main conclusion from the results of Section 10.4 is that the contact angle inter-
pretation approach provides the best estimates of solid–melt interfacial tensions for 
low-surface-energy systems. The estimated solid–melt interfacial tensions for vari-
ous systems, from both gradient theory and Lifshitz theory considerations, are in 
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good agreement with those from the contact angle/equation of state approach. As 
was mentioned previously, approaches based on the Gibbs–Thomson equation give 
estimates of solid–melt interfacial tensions, γsl, which are almost two orders of mag-
nitude larger than those obtained from contact angle interpretation. Results from 
both gradient and Lifshitz theories support the notion that the magnitudes of the γsl 
values for the various systems, as calculated by the contact angle/equation of state 
approach, are correct.

Because solid–liquid interfacial tensions cannot be measured directly, discrepan-
cies between γsl values, as obtained by various independent approaches, are expected 
due to the assumptions and approximations inherent in any of the approaches dis-
cussed. Thus, it is not surprising that neither gradient theory nor Lifshitz theory 
provide γsl values that are in perfect agreement with those obtained from equation 
of state considerations. Nevertheless, it is still expected that the various indepen-
dent approaches would estimate γsl values that are at least of the same order of 
magnitude.

There are many possible explanations for the lack of agreement between the 
Gibbs–Thomson equation approaches and the other approaches discussed in the 
previous section. Experimental difficulties, such as ensuring true homogeneous 
nucleation in the nucleation rate experiments, might give rise to such discrepan-
cies. A more likely reason for the observed discrepancies is the assumption that 
the Gibbs–Thomson equation, developed originally for liquid–vapor systems, can be 
applied to solid–liquid systems in all situations.

This section examines the possible reasons for the failure of the Gibbs–Thomson 
equation to predict solid–melt interfacial tensions, γsl, correctly. The difficulties in 
using the Gibbs–Thomson equation to interpret data from nucleation experiments 
and melting in pores have already been discussed in Section 10.3. These difficulties 
are due to the small size of the solid that contains no more than a few molecules. 
For such small solids, it is not possible to ignore the dependence of surface tension 
on the curvature of the interface. Also, the approximation that the interface has zero 
thickness, when compared with the size of the bulk phase, is no longer valid for such 
small systems. The major portion of this section deals with the problems in using the 
Gibbs–Thomson equation to analyze the shapes of grain boundary grooves.

10.5.1 surFace stress and surFace tensIon

The discrepancies in the calculated solid–melt interfacial tensions result in large part 
from the confusion between the quantities “surface tension” and “surface stress.” 
Surface tension, γ, a scalar quantity, represents the work required by any reversible 
process to form a unit area of new surface. Surface stress, on the other hand, rep-
resents the work required to increase a unit area of surface by stretching. Surface 
stress, fij, is generally a tensor quantity. Much of the confusion between the two 
quantities arises from the fact that most of the earlier work on surfaces dealt only 
with fluid–fluid interfaces where the distinction between surface stresses and tension 
may often be irrelevant. If the surface of a fluid is distorted, then because it has no 
long-range order, there is no barrier that prevents molecules from entering or leaving 
the surface region. Thus, a new state of equilibrium can always be reached in which 
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every one of the surface molecules occupies the same area as in the original undis-
torted surface. The process of stretching the surface is identical to creating more of 
the same surface, since, while the number of molecules in the surface changes, the 
area per surface molecule does not. In a solid crystal, on the other hand, there is a 
long-range correlation in atomic or molecular positions. Thus, a distortion of the 
surface represents a change in the surface area that cannot be accommodated by the 
migration of molecules to and from the surface. In the case of stretching a solid sur-
face, the number of molecules in the surface remains constant but the area occupied 
by each of the molecules differs from the undistorted state. If the stress distorting the 
surface is removed, the surface area per molecule returns to the undistorted state.

The distinction between surface tension and surface stresses was originally 
pointed out by Gibbs [29], who argued that when solids are involved, “there is no 
such equivalence between stretching of the surface and the forming of new surface.” 
Herring [68] also pointed out that, in a solid, the number of surface molecules and 
the state of strain of the surface are unrelated. Some authors [69–73] classify surface 
tension as the work required to strain the surface plastically, because the surface area 
occupied by the surface molecules remains constant; and surface stress as the work 
required to strain the surface elastically, because the number of surface molecules 
remains constant. The distinction between solid surface tension and surface stress, 
and measurement methods for both, were reviewed by Butt and Raiteri [74].

For normal pure liquids, only plastic deformation is possible and the total work in 
deforming the surface is just γ. For solids, on the other hand, both plastic and elastic 
deformations are possible. Herring [68] and Shuttleworth [75] have derived the rela-
tionship between surface stress, f, and surface tension, γ. This relation is given by

 fij ij
ij

= + ∂
∂

γδ γ
ε

,  (10.80)

where εij is the surface strain tensor and δij is the Kronecker delta. 
Makkonen has objected to Equation 10.80 by redefining γ to include elastic sur-

face distortions [76]. He did, however, concur on the main point, which is the distinc-
tion between surface tension and surface stresses (“external stresses”).

From Equation 10.80, it can be seen that surface stress and surface tension will be 
numerically equal only if γ is unaffected by deformation. As was explained above, 
this is evidently true in the case of pure liquids where molecules can move freely to 
and from the surface. The surface stress for liquids is isotropic with zero shear com-
ponents so that it can be characterized by a single quantity, f, where

 f = γ .  (10.81)

On the other hand, for solids, because of the low mobility of molecules, it is not 
possible to keep constant the local configuration around any particular molecule 
in the surface region where the deformation of the surface area is performed. 
Thus, for solids, γ will be altered; that is, ∂γ/∂εij ≠ 0. This contribution to fij can 
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also be seen as the result of the surface molecular configuration and/or molecular 
density being different from that which minimizes the free energy of the surface. 
It should also be pointed out that, even at elevated temperatures where the mobil-
ity of the molecules in solids is greater, it is expected that ∂γ/∂εij ≠ 0 so that the 
surface tension and surface stresses will, generally, not be numerically equal in 
solids [77].

There are, nevertheless, situations in which the shape of the crystal will be deter-
mined solely by the surface tension of the solid rather than the surface stresses. An 
example is the shape of crystals growing from their melt. The process of crystal 
growth from its melt or solution can be viewed as a build-up of monolayers of mol-
ecules from the liquid phase onto the crystal surfaces. These monolayers are added 
to the existing surfaces such that each subsequent surface remains parallel during 
growth. The liquid molecules will deposit preferentially onto the solid surfaces such 
that the overall free energy of the crystal is minimized. Because the molecules of 
the liquid phase can freely adhere to the solid surface, the process of crystal growth 
represents the creation of new solid surface, and not the stretching or deformation of 
the existing surface; therefore, the representative work term in the process of crystal 
growth is γ and not f. 

The equilibrium shape of the crystal will be such that the free energy of the 
system is minimized. In the case of fluid–fluid systems, where the surface tension 
is isotropic, the equilibrium shape for a liquid drop is a sphere. For crystals, on the 
other hand, surface tension will usually depend on the crystallographic orientation 
of the surface. A Laplace-type equation (Equation 10.82) of capillarity for solids can 
be derived from the minimization of the free energy of the system, provided that 
the state of stress within the solid reduces to the isotropic pressure, Ps. Only under a 
state of isotropic pressure is it possible to define a chemical potential, µ, for the solid 
phase. The definability of a chemical potential for the solid phase is essential in the 
derivation of the Gibbs–Thomson equation. The equilibrium equation

 P Ps l
sl
i

i
− = 2

γ
λ

,  (10.82)

is very similar to the Laplace equation of capillarity for a liquid drop in equilibrium 
with its vapor. In Equation 10.82, Ps – Pl will be constant for the system in equilib-
rium so that the right-hand side of the equation can be rewritten as

 γ λ γ λ γ λsl sl sl
i i1 1 2 2/ / /= = = =… constant,  (10.83)

where λi denotes the length normal to the ith face extended into the crystal cen-
ter (refer to Figure 10.6). Equation 10.83 represents the Gibbs–Wulff theorem [78], 
which states that the surfaces with the higher interfacial tensions will be the ones 
that are furthest away from the center of the crystal.

In summary, the existence of a Laplace-type equation of capillarity for solids 
requires that the stresses within the bulk be isotropic so that a thermodynamic pres-
sure, P, can be defined for the solid. The shape of the crystal will then satisfy the 
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Gibbs–Wulff theorem, Equation 10.83, such that the solid–melt interfaces are planar. 
Also, and most importantly, it is necessary that the process of crystal growth be 
dictated solely by the interfacial tensions, γsl 

i (no elastic deformations of the surface 
are allowed). The implication of Equation 10.83 is that while surface tension, γ, plays 
an important role in the determination of the equilibrium shape of crystals growing 
from a melt, it cannot change the shape of the solid–melt interface from that of a 
plane. That is, growth of a crystal surface is accomplished by the addition of layers 
of molecules that are parallel to the original surface. If the planar surface of a crystal 
were to become curved, such a process would involve the deformation of the surface, 
which would inevitably introduce surface stresses so that Equation 10.83 would no 
longer be applicable.

The derivation of the Gibbs–Thomson equation inherently assumes that the 
Laplace equation of capillarity is applicable to solid–liquid systems. As was shown 
above, a Laplace-type equation does exist for solids and, therefore, the Gibbs–
Thomson equation is correct for solids; however, its applicability is restricted to 
crystals whose bulk pressure is isotropic and whose shape satisfies the Gibbs–Wulff 
relation. In other situations, such as the case of a grain boundary intersecting with 
a surface in a temperature gradient, shown schematically in Figure 10.7, the profile 
of the solid surface near the grain boundary is not “Laplacian” (in the liquid–solid 
sense) and the Gibbs–Thomson equation cannot be used to describe the shape of the 
interface. Thus, the technique of grain boundary groove profile analysis to deter-
mine solid–melt interfacial tensions, γsl, is incorrect. Because equilibrium shapes 
of crystals involve only planar interfaces, the observed shape of the grain boundary 
grooves is most likely the result of stresses in the solid–melt interfaces due to the 
presence of the grain boundaries.

10.5.2 GraIn Boundary enerGy and solId–melt InterFacIal tensIons

It is assumed that, when a grain boundary intersects a free solid–melt interface, the 
interface will be distorted so as to balance the grain boundary interfacial energy 
[14]. This balancing of interfacial energies is similar to what is observed when a 
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λ2 λ1 λ6
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fiGure 10.6 Geometrical variables defining the size and shape of a crystal. Terms Ai and 
λi represent the surface area and distance from the center of face i, respectively.
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liquid drop is placed on a solid substrate. The contact angle formed by the liquid drop 
on the surface is related to the pertinent interfacial tensions via the Young equation 
(Equation 10.1). The equation for the energy balance for the system shown schemati-
cally in Figure 10.7 is expressed by

 γ γ ϕgb sl= ( )2 2cos / ,  (10.84)

where γgb represents the grain boundary interfacial tension and φ is the dihedral 
angle defining the groove. In Equation 10.84, it is assumed that the surface tension 
of the solid is independent of orientation (isotropic) so that the shape of the groove is 
symmetric about the grain boundary. The presence of a temperature gradient, as is 
the case in grain boundary groove shape analysis experiments, can distort the shape 
of the groove, but at the intersection point between the grain boundary and the solid–
melt interface, Equation 10.84 must still be satisfied [14].

The term γgb requires closer examination. The grain boundary region has often 
been treated as a thin layer of subcooled liquid separating two crystals and having 
a thickness of more than 10 atomic spacings [79]. Using this model, the associated 
grain boundary energy would be γgb = 2γsl. However, a grain boundary should be 
viewed as an interface where two crystals of different orientation contact, and where 
the thickness of the interface is much less than 10 atomic spacings [8]. Therefore, γgb 
should simply reflect the interfacial tension between two solids that have different 
solid surface tensions, γsv. It is often assumed that, near the melting point, the surface 
tension anisotropy of the crystal is minimal [8]; thus, as was discussed in Section 
10.4.2, the interfacial tension between two solids that have the same surface tension, 
γsv, should be equal to zero; that is, γgb = 0 for this special case. Under these circum-
stances, for Equation 10.84 to be satisfied, the dihedral angle, φ, should have a value 
of 180° and the solid–liquid interface would be planar, as shown in Figure 10.8. 
Again, the effects of the solid–melt interfacial tension on the shape of the interface 
would not be noticeable under such circumstances.

More correct models for describing grain boundaries are the so-called dislocation 
models. In these models, the grain boundary is viewed as a transition lattice formed 

γgb

γsl γsl

Solid grain A Solid grain B

Liquid

ϕ

fiGure 10.7 Schematic of a solid–liquid interface that is intersected by a grain 
boundary.
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by an array of dislocations [80]. Dislocations are defects in crystals that result from 
the misfit between atomic layers. The crystal lattice is distorted by the presence of 
dislocations. Dislocations are therefore a source of internal stresses and it is no lon-
ger possible to define a thermodynamic pressure, P, in crystals that have dislocations 
present. The presence of stresses also makes it difficult to define a chemical potential 
for the solid phase. Under these conditions, it is not possible to apply Equation 10.83 
to describe the shape of the solid–melt interface. The energy associated with a grain 
boundary can be obtained from the work of Read and Shockley [81], who found that 
the energy of a low-angle dislocation grain boundary is given by

 γ gb E A= −( )0 0Θ Θln ,  (10.85)

where E0 is dependent on the elastic constants of the material and A0 is related to 
the core energy of a dislocation; Θ represents the misorientation angle between the 
contacting crystals. It is obvious from Equation 10.85 that the quantity defined as 
grain boundary energy is not related in any way to surface tension. As was explained 
in Section 10.4.2, in terms of van der Waals interactions, surface tensions for disper-
sive systems arise from the fluctuating electromagnetic fields that extend beyond the 
boundaries of macroscopic bodies. Surface tension can be calculated from macro-
scopic quantities such as the refractive index and the dielectric constant of the material. 
The quantity that is calculated from Equation 10.85 depends on the elastic properties 
of the material and is therefore more related to the state of stress of the solid, due to the 
presence of defects, than to surface tensions. While the interfacial tension of a grain 
boundary in isotropic systems would be equal to zero, the grain boundary energy, as 
calculated from Equation 10.85, would certainly not be equal to zero.

It has been argued to the contrary [82] that surface stresses cannot be active in 
grain boundary groove experiments since new molecules are freely added to the 
existing solid surface. However, due to the long range order that characterizes solids, 
it should be expected that the configuration of new molecules solidifying near the 
grain boundary will be affected by any stress already developed in the pre-existing 
material.

Liquid
ϕ = 180°

Solid grain BSolid grain A

γsl

γgb = 0 

γsl

fiGure 10.8 Energy balance at a grain boundary for the special case where the solid sur-
face tensions, γsv, of both grains are identical.
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In summary, the equilibrium profile of a solid–melt interface that is intersected by 
a grain boundary is not determined by the solid–melt interfacial tension. The effect 
of surface tension on the equilibrium profile would be to maintain the interface flat. 
On the other hand, if surface stresses are involved then the equilibrium profile of 
the groove may take any shape so as to maintain the system in mechanical equilib-
rium. Therefore, the profile of the grain boundary groove cannot be described by the 
Gibbs–Thomson equation, which is a function of surface tension and not of surface 
stresses. 

Surface stresses in solids can be significantly different from surface tension val-
ues. Flueli and Solliard [83] calculated the surface stress in gold particles by deter-
mining the change in lattice parameter with particle size. Values of f = 3.9 J/m2 and 
4.4 J/m2 (for different crystal orientations) were obtained for surface stress, which 
are about two times larger than the surface tension of gold: γ = 1.7–2 J/m2.

10.6 COnClusiOns

In this chapter, independent approaches were used to calculate solid–liquid interfa-
cial tensions for the special case of a solid-melt system. The results from the inde-
pendent approaches—the Lifshitz and gradient theories—are in relatively good 
agreement with those from the contact angle/equation of state approach. The relative 
agreement in the calculated γsl values among the three approaches suggests that the 
methods based on the Gibbs–Thomson equation are incorrect.

The results from the methods based on the Gibbs–Thomson equation are one 
to two orders of magnitude larger than those from the other methods discussed in 
this chapter. Such discrepancies are most likely the result of the interdependence of 
surface tension and surface stresses in the case of solids, which is not considered in 
the usual application of this equation. Also, the applicability of the Gibbs–Thomson 
equation to a solid–melt interface that is intersected by a grain boundary is question-
able in view of the fact that the equation can only be used in crystals that obey the 
Gibbs–Wulff theorem.
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11 Wettability and Surface 
Tension of Particles

Yi Zuo, Dongqing Li, and A. Wilhelm Neumann

11.1 intrOduCtiOn

The interfacial energetics and wettability of small particles are of technological 
interest in many areas of applied science. Areas where such phenomena are impor-
tant include the preparation of stable suspensions of particles (e.g., color pigments 
in paints), the adhesion of particles to solid surfaces in various scenarios (e.g., 
lubrication), the dispersion of particles into a liquid or melt of a polymer, and the 
modification of particle surface properties through the adsorption of polymeric 
macromolecules or surfactants. The successful manipulation of the process being 
considered is largely determined by the physicochemical surface properties of the 
interacting surface components, and particularly the wettability and the surface 
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 tension of the particles. The general complexities of contact angle phenomena and 
solid surface tension measurements have been discussed in Chapters 6 and 9.

Compared to bulk materials, the measurement of surface properties, such as wet-
tability and surface tension, of small particles is an even more difficult problem. It 
becomes even more complex for particles that are highly heterogeneous with respect 
to size and shape. The main surface properties are surface tension and surface charge 
density of the interacting components. It is not the intent of this chapter to discuss the 
methods available to measure surface charge. Those methods, which generally rely 
on the determination of the electrophoretic mobility of particles when suspended in 
liquid, were extensively reviewed elsewhere [1,2]. The purpose of this chapter is to 
describe the behavior of particles at liquid–vapor interfaces and the various strate-
gies used for measuring particle wettability. These methods can be broadly divided 
into two categories: qualitative and quantitative approaches. This distinction is based 
on whether or not the technique is capable of characterizing wettability in terms of 
the contact angle and/or the solid surface tension. The major emphasis in this chapter 
will be on the quantitative approaches; however, for the sake of completeness, a brief 
review of several qualitative approaches will also be given. 

A general review of contact angles and contact angle measurement techniques has 
been given in Chapters 6–8, and by Neumann [3]. In some cases, contact angle mea-
surements on small particles can be performed by the modification of methods used 
for the study of extended surfaces. A typical example is small fibers below 10 µm 
in diameter, the wettability of which can be studied by means of the Wilhelmy plate 
method [4] (see Chapter 6). While this method will not be discussed further in this 
chapter, it should be pointed out that surface tensions and contact angles on fibers 
can also be measured by some of the indirect methods described in this chapter.

11.2 qualitatiVe apprOaChes

All of the qualitative techniques suffer from the disadvantage that they are not 
able to express the wettability in terms of the contact angle and/or the surface 
tension of the particles. Generally, they are relative in the sense that they provide 
information as to whether one population of particles is more or less wettable than 
another. In view of their widespread use, it is still worthwhile to discuss them 
here briefly. It should also be pointed out that many of these techniques have been 
developed by researchers in the biological sciences, which illustrates the wide-
spread and diverse interest in characterizing the wettability of small particles. 
There is no a priori reason why these techniques could not be adapted to study 
nonbiological particles.

11.2.1 lIquId–lIquId contact anGle measurement

This technique requires the use of two immiscible liquids having different densities. 
Typically, eight solutions of polyethylene glycol (PEG) 6,000 and dextran t-500 are 
formed by dissolving the appropriate mass of the polymers in tissue culture media 
(e.g., RPMI 1640 or Hanks Balanced Salt Solution). Equal volumes of these two solu-
tions are mixed together and then allowed to phase separate. The less dense upper 



Wettability and Surface Tension of Particles 601

phase is PEG-rich and the more dense lower phase is dextran rich. Layers of cells 
or bacteria are then deposited on some substrate material (e.g., anisotropic cellulose 
acetate membrane) by ultrafiltration, or through adhesion to siliconized glass slides 
(or tissue-culture plastic). The cell layers are then immersed in a bath of PEG-rich 
liquid and a drop of fixed volume (≈ 2 µl) of the dextran-rich phase is deposited on 
the surface of interest. The contact angle that this droplet makes with the surface 
may be recorded by using a stereomicroscope attached to a camera. Initially the 
contact angle is close to 180°, as expected; however, as contact is made and the dex-
tran droplet begins to interact with the cellular material, the contact angle is reduced 
considerably. After approximately 5 minutes, the observed contact angles reach a 
stable plateau value that is taken as the effective contact angle of the specimen. In 
many respects, this technique is similar to the well-known two-phase partition tech-
nique developed many years ago [5]. At this time, it is still not possible to interpret 
and quantify the solid–liquid–liquid contact angle in terms of the interfacial ten-
sions involved. The best that can be done is to rank materials in terms of increasing 
or decreasing contact angle. Liquid–vapor contact angle measurements (Chapter 6), 
on the other hand, can be used to derive quantitative information about the surface 
tension of various substrates.

Despite this disadvantage, the two-phase technique has been employed to doc-
ument major differences in the surface properties of various biological cell lines, 
including platelets, granulocytes, lymphocytes, macrophages [6,7], vascular endothe-
lium [6], and various strains of bacteria [8,9]. The major advantage of this technique 
is its extraordinary sensitivity to even small differences in cellular surface properties 
that are manifested as large changes in the observed contact angles.

11.2.2 tWo-Phase PartItIon methods

The partition of particles between a hydrophobic liquid and water was utilized first 
for the (qualitative) classification of bacterial surfaces according to their hydropho-
bicity, in the pioneering efforts of Mudd and Mudd [10]. All of these partitioning 
techniques suffer from the drawback that they cannot be used to provide quantitative 
information about the surface properties of the particles being investigated. 

Albertsson [5] introduced the use of immiscible aqueous dextran and PEG solu-
tions in partition separation. The extent to which the particles of interest partition 
into the hydrophobic PEG phase is taken as a relative measure of their hydrophobic-
ity. Stendahl et al. [11] used this method to demonstrate that the more hydrophobic 
bacteria are the ones that become phagocytized to the greatest extent. Using the 
same strains of bacteria, these results were later correlated with the quantitative con-
tact angle method by Cunningham et al. [12]. This method has the advantage that it 
is very sensitive to even small changes in surface properties. The sensitivity of the 
technique can be considerably enhanced through the use of either dextran or PEG 
polymers in which various chemical groups have been substituted. 

Rosenberg et al. [13–16] have introduced a novel approach for measuring particle 
hydrophobicity. The technique has been employed primarily for the characterization 
of bacteria but can, in principle, be applied to other particles as well. The technique 
relies on quantifying the extent of Particle adhesion to hydrocarbon (PATH). This 
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technique may be briefly summarized as follows. To a fixed volume of aqueous sus-
pension, at a standard particle concentration, various volumes of hydrocarbon (e.g., 
n-hexadecane, n-octane, or p-xylene) are added. After incubation at 30°C for 10 min-
utes, the binary system is vortexed for 2 minutes to ensure complete mixing. This 
system is then allowed to phase separate, the aqueous phase is carefully removed, 
and its turbidity is measured through light absorbance at 400 nm. When hydrophobic 
particles are tested, they attach to the hydrocarbon droplets and rise with these less 
dense drops following mixing. The adherent cells are therefore removed from the 
aqueous phase. The proportion of adherent cells is then determined by comparing 
the decrease in light absorbance (following PATH) with the absorbance of the aque-
ous suspension (prior to PATH) of known particle concentration. This technique 
permits the ranking of bacterial hydrophobicity but it does not allow a quantitative 
assessment of surface tension.

11.2.3 hydroPhoBIc InteractIon chromatoGraPhy

The chromatographic interaction of particles with various matrix materials (e.g., 
phenyl- and octyl-sepharose) originally developed for protein separation has found 
widespread use in many studies of bacterial hydrophobicity [17–19]. In this tech-
nique, aqueous suspensions of sepharose beads with covalently bound hydrophobic 
moieties (e.g., phenyl or octyl groups) are usually packed into small columns, and 
the bacterial suspension is subsequently applied. Retention may be determined by 
various means, such as turbidimetric readings, colony-forming units, or radiotracer 
techniques. In many cases, salting-out agents are added to promote adhesion to the 
gel. In some cases, adherent cells can be desorbed by lowering the ionic strength of 
the eluent, or by adding detergent. The retention time can be correlated with data 
obtained by other qualitative as well as quantitative methods.

11.2.4 saltInG-out aGGreGatIon test

This technique is based on the premise that the same laws governing the precipita-
tion of protein molecules from aqueous solution hold true for the aggregation of 
particles; that is, the more hydrophobic the particle, the greater its tendency to pre-
cipitate out of the solution (i.e., through particle–particle interactions) at a lower 
concentration of salting-out agents [20]. In the original report on the use of this 
method with particles, bacterial cells were suspended in dilute phosphate buffer, and 
ammonium sulfate was added until aggregation occurred. This technique appears to 
correlate well with other methods in most, but not all, instances [21]. Configurational 
changes of cell surface structures due to the high salt concentrations may introduce 
errors in measurement.

11.3 quantitatiVe apprOaChes

Many methods have been developed to quantitatively determine the wettability 
of different particles, such as polymer powders, coal powders, fibers, micropo-
rous membranes, self-assembled nanoparticles, liposomes, and biological cells. 
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One category of these methods relies on direct contact angle measurement on the 
compressed pellets of the particles. Once the contact angle is known, the solid 
surface tension of the particles, γsv, can be determined from Young’s equation, for 
example in combination with the equation of state approach (Chapter 9). As will be 
discussed later, however, direct contact angle measurement may not be applicable 
for some particles and may introduce serious errors due to inappropriate surface 
preparation. To overcome these problems, many indirect methods have been devel-
oped for measuring contact angle and/or surface tension of particles. Four of these 
methods will be introduced following the direct contact angle method. They are: 
heat of immersion, film flotation, sedimentation volume, and capillary penetration 
methods. Focus will be given to the last two methods that determine the surface 
tension of particles, γsv, without requiring knowledge of the contact angle. Another 
novel approach, known as the solidification front technique, will be covered in 
Chapter 12.

11.3.1 dIrect contact anGle measurements

The theoretical aspects of contact angles have been discussed in Chapters 1 and 9. It 
was shown that the values of the solid–vapor surface tension, γsv, and the solid–liquid 
interfacial tension, γsl, can be determined by interpreting contact angle data in terms 
of Young’s equation

 γlv cos θ = γsv – γsl, (11.1)

and an equation of state for interfacial tensions

 γsl = f (γlv, γsv). (11.2)

Therefore, direct contact angle measurement represents an important method in the 
quantitative approaches.

A general review of the techniques for contact angle measurement has been given 
in Chapter 6. The choice of method for measuring contact angles depends directly 
on the geometry of the system. For example, the sessile drop is the most conve-
nient method for measuring contact angle on a smooth plane surface. However, this 
method is not applicable on the inner surface of a capillary tube, or for fine textile 
fibers and powders. For these systems, the direct observational problems, the optics, 
the mechanics of manipulation, and the manner in which the Laplace equation of 
capillarity is involved in the measurement, all vary widely. 

Several approaches are available for measuring contact angles on layers of 
particles. The success of these methods appears to depend on the nature of the 
particles themselves. If the particles are reasonably pliable, then it is fairly easy 
to measure accurate and reproducible contact angles on layers of these particles. 
For example, contact angles have been measured successfully on a wide variety 
of biological and other highly hydrated materials. If, however, the particles are 
rigid, success generally has not been achieved due to the inevitable difficulty with 
surface roughness.
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In all cases, the equipment required for direct contact angle measurements is a 
horizontally leveled surface on which the material of interest (i.e., layers of the par-
ticles) is placed. A liquid drop is deposited on the particle layer with a micropipette. 
It may be desirable that the pipet should remain in contact with the drop during the 
measurement process. This allows fluid to be slowly added to the drop, thereby creat-
ing a slowly advancing three-phase line. The advancing contact angle determined in 
this way is the correct value for use in Young’s equation (see Chapter 7 for detailed 
explanation), provided that the measured angle is not affected by surface roughness. 
In all cases, both sides of the droplet should be measured in order to check the sym-
metry of the drop. If the drop is not symmetrical, the observed readings might have 
to be disregarded. The volume of the drop is then slowly increased by adding more 
liquid and the contact angles on both sides of the drop are again determined. Several 
techniques are available for measuring the contact angle of the sessile drop, such as 
the use of a telescope with a goniometer eyepiece, and Axisymmetric Drop Shape 
Analysis (ADSA) either from the side view or top view of the drop [22–24] (see 
Chapters 3, 4 and 6 for details of ADSA).

Preparing an appropriate surface of the test particles is the key to the direct 
contact angle measurements. Only a measurement on a carefully prepared, flat, 
smooth, homogeneous, rigid, and insoluble solid surface reveals the Young contact 
angle, thus permitting the determination of solid surface tension. For biological 
and other highly hydrated particles, layers of these particles may be prepared by 
deposition from suspension onto a hydrophobic surface, such as siliconized glass, 
or by ultrafiltration on anisotropic cellulose acetate membranes. More rigid par-
ticles can be processed to form flat smooth surfaces suitable for contact angle 
measurements. Methods for this purpose include heat pressing, solvent casting, 
vapor deposition, and compressing powder cakes. Clearly, such techniques should 
ensure that the prepared flat surface has the same surface properties as the par-
ticles themselves. Details of these and other surface preparation techniques are 
given in Chapter 6. 

It should be noted that preparing an ideal surface of solid particles for Young con-
tact angle measurement is not a trivial task and sometimes not even possible. Even 
closely packed polymer beds or pellets are usually rough and porous. It is well-known 
that serious problems arise when contact angles of sessile drops are measured on such 
surfaces of porous materials. Surface roughness, heterogeneity, and the penetration of 
the liquid drop into the porous material may affect the measured contact angles, caus-
ing meaningless results in the surface energetic interpretation of these contact angle 
data [3]. Under these circumstances, indirect methods as follows should be used.

11.3.2 heat oF ImmersIon

Immersion of a solid in a liquid is usually accompanied by the release of heat, called 
the heat of immersion (ΔHi). The heat of immersion is defined as the heat liberated 
per square centimeter of the particles immersed in the liquid, and is related to the 
contact angle of the particles [25,26]. Therefore it is possible to characterize the 
wettability of particles by measuring the heat of immersion. The principles of this 
method are briefly given as follows.
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The free energy of immersion (ΔFi) of the particles is

 ∆Fi sl sv= −γ γ ,  (11.3)

where γsl and γsv are the solid–liquid and solid–vapor surface tensions of the particles, 
respectively.

Combining Young’s equation (Equation 11.1) with Equation 11.3 gives

 ∆Fi lv= −γ θcos .  (11.4)

The enthalpy of immersion (ΔHi), that is, the heat of immersion, at a constant 
temperature and volume, is related to ΔFi by

 ∆ ∆ ∆ ∆ ∆
H F T S F T

d F
dTi i i

i= + = − ,   (11.5)

where S is the entropy, and T is the absolute temperature. Substituting Equation 11.4 
into Equation 11.5 gives

 ∆H T
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Equation 11.6 can be rewritten to
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Equation 11.7 can be solved numerically to determine the contact angle from 
the heat of immersion, ΔHi, measured using a calorimeter. However, the heat of 
immersion method involves several serious complications: first, the specific surface 
area of the particles/powder must be known [e.g., from Brunauer-Emmett-Teller 
(BET) measurements]. Second, one needs to ensure that the experimental heat of 
immersion is indeed the heat of wetting, and that there are no contributions from 
the partial dissolution of the particles. Third, the heat of wetting (an enthalpy) is 
not only related to the contact angle (a free-energy type of quantity), but also to the 
temperature dependence of the contact angle (see Equation 11.7). Strictly speaking, 
one will not normally have information on the temperature dependence of contact 
angles without already knowing the contact angle as well. According to Young’s 
equation, d lv( cos )γ θ /dT in Equation 11.7 can be approximated by the temperature 
dependence of solid surface tension; that is, d svγ /dT. It is known that d svγ /dT can 
span a large range from –0.04 to –0.13 across different solid surfaces [27]. Thus, the 
heat of immersion method will normally only provide relative and semiquantitative 
information.



606 Yi Zuo, Dongqing Li, and A. Wilhelm Neumann

11.3.3 FIlm FlotatIon

It is a well-known fact that small particles can float on a liquid surface even if 
their density is greater than that of the liquid. The prerequisite for this flotation 
is a relatively large contact angle. For cylindrical and spherical particles, math-
ematical solutions are available to relate the depth of immersion of such particles 
to the contact angle [28–30](see also Chapter 7). For irregularly shaped particles, 
such an analysis is not possible. Nevertheless, some qualitative information can be 
obtained from the floatability of small particles. The simplest strategy is to dust 
the powder onto the liquid surface and record the time required until the powder 
sinks. This may be possible even in situations where the contact angle is not large. 
If the contact angle is large, the powder may not sink at all. In this case, one can 
compare the mobility of different powders sprinkled on the liquid surface when 
a stream of air is directed obliquely at the surface. The larger the contact angle, 
the larger the mobility will be, since with large contact angles the particles will 
be immersed less deeply [31]. Based on the floatability of particles, a technique 
called film flotation [32–42] has been developed by Fuerstenau and coworkers to 
characterize the wettability of solid particles.

Generally speaking, film flotation is an experimental technique designed to find 
the surface tension of a liquid that will just wet a solid particle; that is, the so-called 
critical surface tension of wetting. In a film flotation experiment, closely sized par-
ticles are sprinkled onto the surface of the wetting liquid (such as an aqueous metha-
nol solution) and the fraction of particles that sink into the liquid is determined. 
Depending on the wetting characteristics of the material and the surface tension of 
the test liquid, the particles either remain at the liquid–vapor interface or are imme-
diately engulfed into the liquid. At a particular surface tension, those particles that 
do not sink into the wetting liquid are considered to be hydrophobic, while those 
that are imbibed into the liquid are considered to be hydrophilic. After performing 
a film flotation test, the hydrophobic and hydrophilic fractions are recovered, dried, 
and weighed. The percentage by weight of the hydrophobic fraction of the particles 
for each solution is plotted as a function of the surface tension of the solution. From 
this curve, four parameters for defining the wetting characteristics of the particulate 
samples may be determined: the mean critical wetting surface tension, the minimum 
and the maximum wetting surface tensions, and the standard deviation of the wetting 
surface tension [36,43].

Recently, this method has been employed to measure the critical wetting sur-
face tensions of particles of sulfur, silver iodide, methylated glass beads, quartz, 
paraffin-wax-coated coal, and surfactant-coated pyrite. Generally, Fuerstenau and 
coworkers [32–42] found that the film flotation technique is sensitive to the surface 
hydrophobicity and the heterogeneity of the particles. It was also found that par-
ticle size, particle shape, particle density, film flotation time, and the nature of the 
wetting liquids have negligible effects on the results of film flotation. Moreover, 
the liquid and the solid particles used in the experiments must not have any chemi-
cal interactions.
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11.3.4 sedImentatIon Volume

11.3.4.1 theory
Sedimentation experiments are a well-established technique to study the stability 
of dispersions of powders in liquids [44–46]. While, in many cases, the behavior of 
such systems is governed by van der Waals and electrostatic interactions, it is to be 
expected that for polymer particles, particularly in nonaqueous media, the effect of 
the electrostatic interactions may be considered negligible. It is also of importance to 
note that van der Waals interactions can be related to surface tensions [47–49]. The 
van der Waals interaction between two parallel, infinitely extended flat surfaces in a 
liquid medium was first calculated by Hamaker [48]. For the work done by the van 
der Waals force in bringing these surfaces from infinity to a distance d0, Hamaker 
obtained

 W
A

d
= − 132

0
212π

,  (11.8)

where the coefficient A132 has subsequently been called the “Hamaker coefficient.” 
The indices 1, 2, and 3 refer, respectively, to the solid (1), solid (2), and liquid (3). 
If we assume that d0 is so small that we, in fact, have contact between the two solid 
phases, this work is the thermodynamic free energy of adhesion

 ∆Fadh = − −γ γ γ12 13 23,  (11.9)

where γ denotes interfacial tensions.
It has been shown that the free energy of adhesion can be positive, negative, or 

zero, implying that van der Waals interactions can be attractive as well as repulsive 
[47,50,51] (see Chapter 12 for an example of repulsive van der Waals interactions). 
While in the above, Equation 11.8 can, strictly speaking, be expected to hold only 
for systems that interact by means of dispersion forces only, there are no restrictions 
on Equation 11.9. Since Equation 11.9 describes fundamental patterns of the behav-
ior of particles, including macromolecules, independent of the type of molecular 
interactions present, it was found to be convenient to define an “effective Hamaker 
coefficient” that reflects the free energy of adhesion [47].

While van der Waals interactions between unlike solids in a third medium may be 
attractive as well as repulsive, it is clear from the underlying thermodynamics [50,52] 
that like particles can only attract each other, with zero interaction in the limiting 
case. For interaction between particles of the same kind embedded in a liquid, this 
interaction is governed by the free energy of cohesion

 ∆Fcoh
sl= −2γ .  (11.10)
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Because solid–liquid interfacial tensions are always positive, or zero as a limiting 
case, it follows that ΔFcoh ≤ 0; implying that, in the absence of electrostatic forces, 
there will always be an attraction between like particles suspended in a liquid (with 
no interaction, as a limiting case, at γsl = 0).

It can be expected that the sedimentation volume (Vsed) of particles will show 
extrema in the special case of zero driving force; that is, ΔFcoh = 0. There are at least 
two possible patterns of behavior, depending on whether or not agglomeration of the 
particles at the early stages of sedimentation is possible.

 1. If there is no agglomeration at nonzero values of the free energy of cohesion, 
then, for zero free energy of cohesion, least close packing of the sediment 
and, hence, a maximum in the sedimentation volume Vsed is expected.

 2. If there is agglomeration at nonzero values of the van der Waals attrac-
tion in the early stages of sedimentation, then this agglomeration would 
cease when the van der Waals attraction approaches zero. Since the irreg-
ularly shaped aggregates resulting from agglomeration do not pack well, 
one would expect minimum sedimentation volume at zero van der Waals 
attraction.

For systems of solid particles in a single component liquid, the solid–liquid inter-
facial tension, γsl, is a function of the liquid–vapor surface tension, γlv, and the solid–
vapor surface tension, γsv; that is, γsl = f(γlv, γsv), as predicted by the equation of state (see 
Chapters 8 and 9). A basic feature of the equation of state is that γsl = 0 when γlv = γsv. 
In turn, this will result in a maximum value for ΔFcoh; that is, ΔFcoh = 0 when γlv = γsv. 
To illustrate this point, Figure 11.1 shows a plot of the free energy of cohesion, ΔFcoh, 
against the liquid surface tension, γlv, for hypothetical particles having a surface tension 
γsv = 20 mJ/m2. It is apparent that ΔFcoh = 0 occurs at γlv = γsv = 20 mJ/m2. In view of the 
possibility that the sedimentation volume of the particles may show extrema when 
ΔFcoh = 0, such an extremum in the sedimentation volume may  provide a means to 
determine the solid–vapor surface tension of the particles. The solid–vapor surface 
tension, γsv, of particles would be equal to γlv, the surface tension of the suspending 
liquid at which the sedimentation volume extremum occurs.

Therefore, to determine the particle surface tension by using the sedimentation 
volume technique, the required basic procedures in the experiments may be sum-
marized as follows:

 1. Prepare a series of liquids with a surface tension range covering the surface 
tension of the particles of interest in suitable graduated cylinders.

 2. Put an equal amount of the particles into each liquid.
 3. Determine the liquid surface tension, γlv*, at which an extremum in the 

sedimentation volume occurs.

The surface tension of the particles can then be determined as γsv = γlv*.
In practice, sedimentation volume experiments are performed with binary liquid 

mixtures as the suspending liquids, in order to have a sufficiently large range of sur-
face tension and to be able to adjust the liquid surface tension to any specific value. 
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However, it should be noted that the equation of state, γsl = f(γlv, γsv), is applicable 
only to single-component liquid systems, for the reasons discussed in Chapter 9. 
Nevertheless, the sedimentation volume technique has been found experimentally to 
be insensitive to the use of either single component liquids or binary liquid mixtures 
(detailed later). Therefore, it will become apparent that sedimentation volume is a 
simple and reliable method to determine particle surface tensions, and by implica-
tion, the wettability of particles.

11.3.4.2 sedimentation of polymer particles in binary liquid mixtures
Sedimentation experiments were performed [44] with the following polymer pow-
ders: (1) polytetrafluoroethylene (Teflon), PTFE [two samples with different particle 
size were used: Grade 1 (Polyscience Inc.) and No. 6 (DuPont)]; (2) polyvinylidene-
fluoride, PVDF (Polyscience Inc.); (3) polyvinylfluoride, PVF (Polyscience Inc.); 
(4) high-density polyethylene, HDPE (DuPont); (5) polyhexamethylene adipamide 
(nylon 6,6), PA 66 (Commercial Plastics); and (6) polysulfone, PSF (Union Carbide 
Corp.).

The sedimentation volume, Vsed, of the polymer powders was determined in mix-
tures of pairs of nonpolar as well as polar liquids. The liquid combinations were 
chosen such that the surface tension, γ l v1

, of one liquid was lower, and that of the 
second one, γ l v2

, was higher than that of the polymer particles, γsv.
There are several requirements that the suspending liquids must satisfy in order 

to be used for the sedimentation experiments: (1) they should be chemically inert 
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with the solid particles; (2) the boiling temperature should be reasonably high to 
minimize evaporation; (3) the density of the liquid should be less than that of the 
particles; (4) liquids with zero or nearly zero dipole moment as well as those with 
higher dipole moment should be used in order to cover a wide polarity range; (5) 
the liquid components should be miscible in all ratios with each other; and (6) 
the surface tensions, γlv, of the mixtures should cover the surface tension of the 
particles, γsv.

The liquids selected according to the above criteria, together with their relevant 
boiling points [53,54], density [53], dipole moments [53,55,56], and surface tensions 
[56,57], are summarized in Table 11.1.

For the sedimentation experiments, the following seven pairs of liquids were cho-
sen from the 10 liquids listed in Table 11.1: (1) n-hexane/n-hexadecane; (2) n-octane/
tetralin (1,2,3,4-tetrahydronaphthalene); (3) diethyl ether/tetralin; (4) diethyl ether/
n-hexanol; (5) diethyl ether/ethylene glycol (1,2-ethanediol); (6) n-propanol/cyclo-
hexanone; and (7) n-propanol/2,2’-thiodiethanol. These liquids were Aldrich, Baker, 
and/or Fluka reagents (certified laboratory grade).

The liquid–vapor surface tension, γlv, of the different liquid mixtures, as well 
as that of the pure solvents, was determined by means of the modified Wilhelmy 
method [58] at 20°C prior to the sedimentation measurements. 

Prior to the actual sedimentation experiments, the polymer powders were thor-
oughly agitated in the appropriate liquids in order to break up any aggregates and 
to displace air bubbles. For this purpose, a fixed amount of a given polymer powder 
was placed into small polyethylene microcentrifuge tubes with well-fitting lids. 
The amount of polymer powder used varied from 0.05 to 0.20 g, depending on the 
density and/or the particle size of the powder. To be specific, 0.20 g was used for 
both PTFE samples, 0.05 g for PVF, and 0.10 g for all other polymers. The powder 
was weighed with analytical accuracy. The powders in the centrifuge tubes were 
then suspended with approximately 0.1–0.2 ml of liquid by agitating the samples 
for at least 5 minutes using a test-tube mixer. In order to achieve complete displace-
ment of air, the samples were left for at least 2 hours and then agitated again for 
another 5 minutes.

For the actual sedimentation experiments, graduated micro(test)tubes (100 mm 
high with an inner diameter of 3 mm) were used. The total volume, 1.00 ml, of these 
tubes is divided into 100 graduations, and the sedimentation volume was read (or 
estimated) to 0.1 of a graduation; that is, to 0.001 ml.

Each of the dispersions prepared in the centrifuge tubes was then transferred 
into a microtube using Pasteur micropipets. The selected liquid mixture was used as 
rinsing liquid in each case, so that the microtubes were filled up to 1.00 ml with the 
liquid mixture. Then, the graduated microtubes were sealed and shaken for approxi-
mately 5 minutes so that the polymer powder was totally and homogeneously sus-
pended in the liquid medium. The reading of the sedimentation volume, Vsed, of the 
polymer powder was taken every day for three days to one week, depending on the 
sample, until no further change in Vsed occurred.

Plots of the sedimentation volume of PTFE (Grade 1) powder suspended in liquid 
pairs of n-hexane/n-hexadecane, diethyl ether/tetralin and diethyl ether/n-hexanol 
are shown in Figures 11.2 and 11.3. Since these experiments are time consuming, 
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reproducibility testing was limited to performing two independent experiments for 
one and the same system—Teflon/n-hexane/n-hexadecane—as shown in Figure 11.2. 
While the two curves do not coincide, they show the common relevant feature; that is, 
a minimum at γlv = 20 mJ/m2 in each case. The sedimentation volumes as a  function 
of the surface tension of the suspending liquids are given in Figures 11.4 through 11.8 
for the other six polymers investigated in various liquid combinations.

It is apparent that the final sedimentation volume, Vsed, changes with composition 
and hence surface tension, γlv, of the liquid mixtures, such that it shows an extre-
mum at a certain liquid surface tension. It turns out that these extrema are minima 
in the case of nonpolar and slightly polar liquid combinations such as n-hexane/
n- hexadecane, or diethyl ether/tetralin. In the case of more polar liquids, such as 
mixtures of diethyl ether/n-hexanol and n-propanol/ethylene glycol, the extrema are 
maxima. The types of extrema of the sedimentation volume, Vsed, obtained for the 
seven polymers in the various liquid combinations are given in Table 11.2, together 
with the surface tension and dipole moment range of the liquid pairs.

The surface tensions, γlv, of the liquid mixtures at which the extrema occur are 
summarized in Table 11.3 for the various polymers. The contact angles with water, 
obtained for the various polymers (measured on smooth, homogenous, flat surfaces 
of the polymers), and the polymer surface tensions, γsv, calculated from these contact 
angles using the equation of state approach (Chapter 9), are listed in Table 11.4. The 
agreement between these data and those from the sedimentation volume extrema is 
so striking that it seems justifiable to suggest that the sedimentation technique might 
be considered as a means to determine the surface tension of solids in powder form, 
or for that matter, of any particles, including biological cells.

15

0.25

0.24

0.23

0.22

0.21

20

20.0

Surface tension, γlv, of suspending liquid (mJ/m2)

Se
di

m
en

ta
tio

n 
vo

lu
m

e, 
V s

ed
 (m

l)

25

Experiment 1
Experiment 2

n-Hexane/n-Hexadecane

Polytetrafluoroethylene PTFE grade 1

fiGure 11.2 Reproducibility of the sedimentation volume measurements; results from 
two separate experiments with Grade 1 Teflon (PTFE) in n-hexane/n-hexadecane. Minima 
at γlv = 20.0 mJ/m2.
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The fact that we have maxima in some cases and minima in others might suggest 
that both of the possible mechanisms predicted in the theory of the sedimentation 
volume method (Section 11.3.4.1) are operative. This suggestion is further corrobo-
rated by the fact that it is far easier to resuspend the systems where we had observed 
maxima, than those where we had minima. This observation is in keeping with the 
hypothesis of a correspondence between an absence of aggregation and a maximum 
in the sedimentation volume at γsv = γlv. This question will require further study by 
such means as sedimentation kinetics or direct observation of aggregation.

One further unanswered question is related to adsorption of the liquid compo-
nents at the liquid–air interface as well as the solid–liquid interface. In the case of 
a single-component liquid in contact with a polymer particle, γsv = γlv implies zero 
polymer-liquid interfacial tension, γsl. It is not guaranteed a priori that this is also 
true for binary liquid mixtures. However, it is interesting to note that the experimen-
tal results, as shown by the two bottom curves in Figure 11.3, one for a combination 
of nonpolar liquids and the other for polar liquids, also support the validity of this 
approach. In these experiments, significant preferential adsorption of one component 
in mixtures of n-hexane and n-hexadecane is not to be expected, because of the simi-
larity of these two liquids. However, it is conceivable that this could be very different 
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fiGure 11.3 Sedimentation volume, Vsed, as a function of the surface tension, γlv, of the 
suspending liquid for PTFE (No. 6).
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in the diethyl ether/tetralin system. Nevertheless, the two curves for the dependence 
of sedimentation volume on liquid–vapor surface tension are very similar, and the 
position of the minima is, within the experimental error, indistinguishable. This sug-
gests that preferential adsorption of one component at the liquid–air interface, if it 
occurs, is mimicked by similar adsorption at the solid–liquid interface. More discus-
sion of this matter will be given in the following section.

11.3.4.3  sedimentation behavior in single-Component 
liquids and in binary liquid mixtures

In all the above sedimentation experiments, binary liquid mixtures were used as the 
suspending media. This is because the use of binary liquid mixtures allows a close 
control of the surface tension, γlv, of the suspending liquid, thus making the sedimen-
tation technique a simple, inexpensive yet accurate method of determining the solid 
surface tension, γsv, of particulate matter. In the case of a single-component liquid in 
contact with a particle, γlv = γsv implies zero γsl. However, as mentioned above, it is 
not guaranteed a priori that the same is also true for binary liquid mixtures. For this 
purpose, it is necessary to compare the sedimentation behavior of particles in both 
single-component liquids and binary liquid mixtures.

An experimental investigation was performed on nonpolar particles (different 
Teflon powders and a coal powder) using a series of nonpolar single-component 
liquids (n-alkanes) and also a series of nonpolar binary liquid mixtures [45]. The 
three polymer powders used in the experiment were Grade 1 Teflon; Aldrich Teflon 
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(PTFE); and DuPont fluorocarbon micropowder, DLX-6000, of unknown composi-
tion. The experiments were also performed with bituminous coal powder (Pittsburgh 
No. 8 coal). In dry form, the agglomerated size of the polymer powders varied from 
150 µm (DLX-6000) to 600 µm (for the Teflon powders). The individual particle 
diameter for the Teflon powders was less than 60 µm. The particle diameter for 

table 11.3 
extrema of sedimentation Volumes for polymers in different liquid 
Combinations

γlv of liquid mixtures at 20°C at vsed extrema

ptfe

pVdf pVf hdpe pa66 psfliquid Combinations
Grade 

1
number 

6

n-Hexane n-Hexadecane 20.0 20.0

n-Octane Tetralin 27.1 29.0 29.2

Diethyl ether Tetralin 20.1 19.6 28.4

Diethyl ether n-Hexanol 20.2 19.4

n-Propanol Ethylene 
glycol

27.8 28.6 38.5 42.2

n-Propanol Cyclohexanone 30.5

n-Propanol Thiodiethanol 39.6 44.0

table 11.4 
Comparison of the surface tension of polymers Obtained from Contact 
angles, θ, and from sedimentation Volumes, vsed

polymer

polymer surface tension, γsv 

(mJ/ m2) from:

θh2O (deg) reference Contact angle sedimentation

PTFE
Grade 1 20.2

No.6 104.0± 2.0 49 20.0 ± 1.3 19.7

PVDF 94.8 ± 2.0 44 25.5 ± 1.3 27.5

PVF 88.6 ± 2.5 44 29.4 ± 1.7 28.8

HDPE 87.1 ± 2.0 44 30.3 ± 1.3 29.4

PA66 70.0 ± 3.0 44 41.1 ± 1.8 39.1

PSF 66.0 ± 2.0 44 43.1 ± 1.1 43.1
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Pittsburgh No. 8 coal was less than 37 µm. The liquid combinations were n-hexane/
n-hexadecane, n-hexane/decalin, and n-octane/tetralin. The single-component liquid 
series (n-alkanes) was chosen such that the surface tension of the liquids, γlv, spanned 
a range that included the surface tension of the particles, γsv.

The sedimentation volumes, Vsed, of the three polymer powders (Grade 1 Teflon, 
Aldrich Teflon, and DLX-6000) as a function of the surface tension, γlv, of the sus-
pending liquids are plotted in Figures 11.9 through 11.11. The plot for Pittsburgh 
No. 8 coal is given in Figure 11.12. From these figures, it can be seen that the final 
sedimentation volume, Vsed, changes with varying liquid surface tension, γlv, such 
that Vsed exhibits a minimum both for single-component liquids and for binary liquid 
mixtures. The surface tensions, γlv, of the liquids at which the extrema occur are 
summarized in Table 11.5.

It is interesting to note that the sedimentation curves of each powder, obtained 
from different liquid series, are not superimposable. In the case of polymer powders, 
the curves from binary liquid mixtures have a higher final volume than the curves 
from the single-liquid series. In the case of the coal powder, the opposite is true. The 
differences are not understood at the present time.

The results in Table 11.5 show that, for one and the same powder, the liquid surface 
tension, γlv, at which the minimum in the sedimentation volume occurs is very similar 
for both the single-component liquids and the binary liquid mixtures. Better agreement 
in the position of the minima cannot be expected since, in the case of the homologous 
alkanes (single-component liquids), we are limited to a small number of points that 
are up to 2 mJ/m2 apart. It should also be noted that the reproducibility of the posi-
tion of the minima, identifying the particle surface tension,  compares very  favorably 
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fiGure 11.9 Sedimentation volume, Vsed, as a function of the surface tension, γlv, of the 
one-component (n-alkanes) and of the two-component (n-hexane/n-hexadecane) suspending 
liquids for Grade 1 Teflon (PTFE) powder.
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to the reproducibility of γsv values obtained from contact angle measurements with 
different liquids on a smooth polymer surface.

Independent γsv values for the powders used in these experiments are not avail-
able, so that a direct comparison to the solid surface tensions determined by the 
sedimentation volume method is not possible. Contact angle measurements per-
formed on smooth Teflon films give a value of γsv of approximately 20 mJ/m2, 
which compares very well to the results given in Table 11.5 for the Teflon powders. 
Freezing front experiments (see Chapter 12) performed with various bituminous coal 
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fiGure 11.10 Sedimentation volume, Vsed, as a function of the surface tension, γlv, of the 
one-component (n-alkanes) and of the two-component (n-hexane/n-hexadecane) suspending 
liquids for Aldrich Teflon (PTFE) powder.
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fiGure 11.11 Sedimentation volume, Vsed, as a function of the surface tension, γlv, of the 
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liquids for a fluorinated Teflon (PTFE) micropowder (DLX-6000).
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powders [59–61] give γsv values that are comparable to those reported in Table 11.5 
for Pittsburgh No. 8 coal.

It appears that the position of the minimum in the sedimentation volume is deter-
mined by the surface tension of the liquid, be it binary or single component. These 
findings give further credence to the identification of the position of the sedimenta-
tion volume extremum as the particle surface tension.
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fiGure 11.12 Sedimentation volume, Vsed, as a function of the surface tension, γlv, of the 
one-component (n-alkanes) and of the two-component (n-hexane/n-hexadecane) suspending 
liquids for the—400 mesh fraction of Pittsburgh No. 8 coal powder.

table 11.5 
extrema of sedimentation Volumes for polymer and Coal 
powders in One- and two-Component liquid media

surface tension, γlv, of liquid medium at which 
minimum Occurs (mJ/m2)

teflon Coal

dispersion medium Grade 1 aldrich dlx-6000
pittsburgh

no. 8

One-component liquids

 n-Alkanes 20.8 20.4 22.1 28.8

Two-component liquids

 n-Hexane/n-hexadecane 20.0 20.0 — —

 n-Hexane/decalin — 19.4 21.2 28.2

 n-Octane/tetralin — — — 29.3
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As an application, the sedimentation behavior of coal particles has received much 
attention in recent years. A peculiar pattern of the interaction of coal with the sus-
pending liquids has been found [62,63]. Under the same experimental conditions, 
inert materials, such as certain polymer particles, exhibit a unique surface tension 
regardless of the nature of the suspending liquids; but, the effective surface tension 
of coal seems to vary depending on the liquid medium with which it is in contact. In 
essence, coal is relatively hydrophobic in organic liquids, with a surface tension typi-
cally in the range of 30–45 mJ/m2 whereas it is hydrophilic in water or in aqueous 
media, having a surface tension near 70 mJ/m2. The duality of response to organic 
and aqueous liquids has an immediate bearing on practical aspects of coal process-
ing and utilization. Therefore, the sedimentation behavior of coal fines was studied 
[46] to examine the effect of the polarity of the suspending liquids on the type of 
extremum in sedimentation volume, as well as on the resultant surface tension of 
coal particles. Particle-size dependence and the duality of the coal surface were also 
examined. Details of these studies can be found elsewhere [46,62–68].

11.3.5 caPIllary PenetratIon

11.3.5.1 theory
The method of capillary penetration is based on wicking of liquid into a porous 
material. It has attracted increasing interest in recent years for measuring wettability 
of solid particles. Quite often, the purpose of studying contact angles on particles/
powders is to predict and control the penetration of a liquid into a powder bed or, 
conversely, the dispersion of the powder in the liquid. Rather than attempting contact 
angle measurements on the compressed powder, it may be better to consider the pro-
cess of capillary penetration of the liquid into a suitably prepared powder bed. There 
is one important point to keep in mind. While a contact angle measured on a rough 
surface will normally not be meaningful in conjunction with Young’s equation (i.e., 
it will not be possible to use it to determine the solid surface tension, γsv), it is indeed 
this phenomenological contact angle that will, together with the liquid surface ten-
sion, determine the Laplace pressure (ΔP) of the meniscus in a capillary, and hence 
capillary penetration [69]. One method, therefore, is to measure the pressure neces-
sary to just balance the Laplace pressure, which drives liquid into a capillary; that is, 
the limiting pressure necessary to prevent further capillary penetration:

 ∆P
r

lv= 2γ θcos
,  (11.11)

where r is the radius of the capillary.
Washburn [70] first established the correlation between the Laplace pressure and 

the drop of the hydrostatic pressure as the liquid column travels in the capillary. The 
velocity (v) of the liquid–air meniscus along the capillary is predicted by the Hagen-
Poiseuille equation for laminar flow, 

 v
dh
dt

r P
h

= =
2

8
∆
η

,  (11.12)
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where h is the height of the liquid front, that is, the distance travelled along the tube 
by the meniscus in time t, and η is the dynamic viscosity of the liquid. Assuming 
that the driving pressure is solely the capillary pressure, one can combine Equations 
11.11 and 11.12 to yield

 
dh
dt

r
h

lv= γ θ
η
cos

.
4

 (11.13)

After integration one obtains Washburn’s equation,

 h
rt

lv
2

2
=

η
γ θcos .  (11.14)

Washburn’s equation is valid with the following assumptions: (1) laminar flow 
predominates in the pore spaces; (2) gravity can be neglected; and (3) the geometry 
of the capillary (i.e., r) is constant.

Given the fact that it is much easier and more accurate to experimentally deter-
mine the weight of the imbibed liquid than the penetration velocity of the liquid, 
Washburn’s equation can be further modified by replacing h with the weight M of the 
liquid that penetrates into the capillary:

 M V hA= =ρ ρ ,  (11.15)

where A is the cross-sectional area of the capillary and ρ is the density of the liquid. 
It follows that

 
M

A
rt

lv

2

2 2 2ρ η
γ θ= cos ,   (11.16)

and by rearranging

 γ θ η
ρlv A r

M
t

cos ,= 

















2
2 2

2

  (11.17)

where [2/A2r] is a factor representing the geometry of the capillary, [η/ρ2] reflects the 
physical properties of the test liquid and [M 2/t] is determined in the experiment.

In the case of powder packings or other porous solids, such as membranes, the 
geometry of the capillary system is not known. The value of [2/A2r] in Equation 11.17 
is therefore replaced by an unknown factor 1/K; that is,

 γ θ η
ρlv K

M
t

cos ,= 











1
2

2

 (11.18)
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or

 K
M
tlvγ θ η

ρ
cos ,= 









2

2

 (11.19)

where K is an unknown parameter that depends on the geometry of the porous 
material.

In practice, the quantity [M 2/t] can be determined by measuring the weight M of 
a penetrating liquid into a porous solid as a function of time using an electrobalance. 

If M is plotted versus t  the experimental quantity [M 2/t] can be obtained by deter-
mining the slope of the linear part of these plots.

Washburn’s equation has been used to characterize the wettability of porous mate-
rials, such as polymer packings, in which polymer powders uniformly packed into a 
tube are modeled as a bundle of capillary tubes [71–73]. The geometric factor, K, or 
the average equivalent radius, r , of the capillaries are determined using a liquid that 
completely wets the powder packing (i.e., by enforcing cosθ = 1). Then, for the same 
packing, values of cosθ for other liquids can be determined. Subsequently, the solid 
surface tension of the porous materials, γsv, can be determined from the contact angle 
value. However, this procedure is questionable due to the concern that the contact 
angles determined directly from Washburn’s equation are apparent contact angles 
that are affected by the geometry (roughness and porosity) of the porous materials, 
as for example the local inclination angles of the capillary walls. Only in a cylindri-
cal capillary with smooth and homogeneous walls does the calculated θ coincide 
with the intrinsic Young contact angle. This is, however, obviously not the case of 
porous materials such as polymer packings, in which complicated pore geometry, 
varying cross-sectional areas, and rough surfaces are expected. In general, it has 
been found that capillary penetration experiments tend to overestimate the contact 
angles compared to directly measured contact angles on smooth surfaces of the same 
material [74–76]. For example, the contact angle of hexadecane was calculated to 
be θ = 88° for a polytetrafluoroethylene (PTFE) powder using Washburn’s equation 
[76]. On a flat and smooth PTFE surface, however, this contact angle is well known 
to be 46°. Obviously, the former value only reflects the contact angle of hexadecane 
on “rough” PTFE powder, which is meaningless for energetics calculations in con-
junction with Young’s equation. Thus, it can be concluded that the contact angles of 
porous materials determined directly from Washburn’s equation do not reflect mate-
rial properties of the surfaces; rather, they reflect morphological ones. In addition, 
if the rate of motion of the three-phase line is relatively high it cannot be excluded 
that the “dynamic” contact angles calculated from capillary penetration experiments 
differ from static advancing contact angles. It is well-known that they can be quite 
different at higher velocities of the moving meniscus.

To circumvent the difficulties associated with the contact angle measurement, 
Grundke et al. [76] have developed a novel approach that allows characterization of 
the solid surface tension, γsv, directly from capillary penetration experiments without 
knowledge of contact angle and geometric factors of the porous materials. The prin-
ciples of this approach are as follows. Experimental results obtained for powders, 
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liposomes, and membranes, consisting of hydrophobic and hydrophilic materials 
show that there exists a maximum when the values Kγlvcosθ are plotted against the 
surface tension of the penetrating liquids, γlv [76–81]. This maximum occurs when 
the surface tension of the liquid, γlv, is equal to the surface tension of the solid parti-
cles; that is, at γlv* = γsv. This phenomenon can be explained by the schematic shown 
in Figure 11.13, which plots γlvcosθ as a function of γlv for a hypothetical solid surface 
under ideal conditions. It is found that a maximum exists in the plot.

 1. To the left of the maximum, that is, at γlv < γlv* = γsv, the liquids wet the solid 
completely, which leads to a zero contact angle and thus γlvcosθ = γlv. 

 2. To the right of the maximum, that is, at γlv > γlv* = γsv, the liquids only par-
tially wet the surface, which results in a nonzero contact angle (i.e., θ > 0) 
and thus γlvcosθ < γlv The curve of γlvcosθ versus γlv at γlv > γsv follows a 
smooth path for a given solid as predicted by the equation of state for inter-
facial tensions (see Chapters 8 and 9).

When Kγlvcosθ, instead of γlvcosθ, is plotted against γlv, the curve can be distorted 
from the ideal shape as shown in Figure 11.13 [76]. However, as will be shown later, 
this distortion only affects the shape of the curve but not the location of the maxi-
mum. Therefore, based on the plot of Kγlvcosθ versus γlv, it is possible to directly 
determine the solid surface tension, γsv, using the capillary penetration method, with-
out the necessity of knowing the contact angle (θ) and the geometric factor (K) of the 
system. There are two basic requirements for the test liquids used in these experi-
ments: (1) they should be chemically inert with respect to the porous material of 
interest; and (2) the range of the surface tensions, γlv, of the test liquids should cover 
the anticipated surface tension of the solid particles, γsv.

Complete wetting Partial wetting

θ =
 0

θ > 0

45°
γlv* = γsv

 γlv

γ lv
 co

s θ

θ

fiGure 11.13 A schematic contact angle plot for an ideal solid surface. Along the 45° 
straight line, at γlv < γsv, θ = 0 and hence γlv cosθ = γlv. As γlv increases beyond γsv, θ becomes 
nonzero and hence γlv cosθ < γlv.
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11.3.5.2 experiments
Figure 11.14 shows the experimental setup for the capillary penetration measure-
ments. The powder is packed in a glass tube of which the lower end is closed with 
a glass filter. Considerable care is necessary to obtain a constant and homogeneous 
powder packing. A precisely weighed quantity of the powder has to fill up to the 
same height in the glass tube by manually tapping the powder. The filled columns 
are attached to an electrobalance and brought into contact with several test liquids. 
Their penetration velocities are determined by measuring the weight gain with the 
electrobalance as a function of time. The physical properties of the liquids used for 
the capillary penetration measurements are given in Table 11.6.

It is found that the main source of error of the measurement is the geometry of 
the porous system (K). It is difficult to reproduce K for each measurement due to (1) 
variations in the packing preparation; and (2) variations in the penetration of differ-
ent liquids. Consequently, the shape of the curve Kγlvcosθ versus γlv may vary in an 
unpredictable way for each experiment. However, from experiments with micropo-
rous expanded PTFE membranes of different pore geometries it could be concluded 
that information about the geometric constant K is not needed. The position of the 
maximum, which is expected to reflect the solid surface tension γsv of the porous 
material, was not affected by the different geometries of the membranes [77].

Figure 11.15 shows a typical result of capillary penetration for a PTFE (Teflon 
807-N) powder. The maximum occurs at γlv* = 20.4 mJ/m2. Thus, the γsv value of 
the PTFE particles would be 20.4 mJ/m2. When this γsv value and γlv = 72.5 mJ/m2 

Electrobalance Computer

Video monitor

Glass tube (inner diameter: 8 mm)

Powder

Liquid front

Glass filter

Lab jack

8 mm-scale

Beaker containing test liquid

fiGure 11.14 Schematic of the experimental setup for capillary penetration.
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for water are used in conjunction with the equation of state approach for interfacial 
tensions, a water contact angle of 104° can be predicted. Remarkably, this is exactly 
what one would observe on a smooth Teflon surface. 

Although the packed powder bed certainly does not represent a flat and smooth 
solid surface, the derived value for γsv is that obtained by direct contact angle 

table 11.6 
physical properties of the liquids used for the Capillary penetration 
measurements
liquids γlv (mJ/m2)a η (mpa sec)b ρ (g/cm3)
Perfluoropolyether 14.31 1.427 1.720

Isopentan 17.13 0.223 0.624

Hexane 18.30 0.308 0.659

Heptane 20.50 0.413 0.683

Octane 21.42 0.546 0.702

Decane 23.22 0.907 0.730

Dodecane 24.69 1.383 0.751

Tetradecane 26.40 2.128 0.761

Hexadecane 27.90 3.032 0.775

Tetralin 34.54 2.020 0.976

Benzylalcohol 39.00 5.474 1.044

1-Bromonaphthalene 44.53 4.520 1.483

Ethylene glycol 48.00 19.900 1.113

Formamide 58.20 3.300 1.133

Water 72.50 1.001 0.998

a Measured by the ring method at room temperature.
b Tabulated values from the literature of Lide, D. R., CRC Handbook of Chemistry and 

Physics, CRC Press, Boca Raton.

12
0.0
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0.2
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0.4

15 18
γlv (mJ/m2)

Kγ
lv

 co
s θ

21 24 27 30

fiGure 11.15 A plot of Kγlvcosθ versus γlv using nine liquids obtained from capillary pen-
etration experiments for PTFE (Teflon 807-N) powder.
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measurements on a flat and smooth surface. It is well known that even a highly com-
pacted hydrophobic powder, presenting a seemingly flat and smooth solid surface, 
does not yield the same contact angle as truly smooth and coherent solid surfaces. It 
appears that an indirect method, such as the capillary penetration, can provide much 
more relevant information concerning the solid surface energetics than direct contact 
angle measurements on imperfect solid surfaces.

Table 11.7 shows the comparison of solid surface tensions, γsv, of three hydrophobic 
polymers (polypropylene, polyethylene, and polystyrene), determined using the capil-
lary penetration approach and direct contact angle measurements on smooth surfaces 
of these polymers [78]. Perfect agreement is found between these two methods. Also 
shown in Table 11.7 are the contact angles of benzylalcohol and 1-bromonaphthalene 
directly determined from Washburn’s equation (Equation 11.19), in which the geomet-
ric factor K was estimated using liquids that wet the solid completely. This procedure 
has been used by many workers [71–73]. As can be seen, the contact angles determined 
from Washburn’s equation are distinctly higher than those directly measured on the 
smooth polymer surfaces. This can result in an erroneously low solid surface tension 
by about 15 mJ/m2. Obviously, these calculated contact angles do not reflect the sur-
face energetics of the powdered material but rather its morphological properties.

Figure 11.16 shows that the above described approach is not only applicable to 
hydrophobic surfaces but also to very hydrophilic surfaces, such as cellulose mem-
branes [76]. Similar to the case of the PTFE powder (Figure 11.15) we obtain curves 
with a maximum when Kγ

lv
cosθ versus γ

lv
 of the test liquids is plotted. It can be seen 

that the unmodified cellulose fiber shows the highest γ
sv

 value (i.e., 48 mJ/m2) whereas 
the modified types have a lower γ

sv
; that is, they are less hydrophilic surfaces. Using 

Young’s equation, with γ
sv
 = 48 mJ/m2 and γ

lv
 = 72.5 mJ/m2 for water, a water contact 

angle of 59° can be predicted on an ideally smooth unmodified cellulose hollow 
fiber cuprophan. It has to be considered that processing agents are applied during the 
manufacture of the cuprophan fibers, which can be expected to influence even the 

0.30

0.20

0.10

K 
γ lv

 co
sθ

0.00
3020 40

γlv (mJ/m2)
50 60 70 80

fiGure 11.16 A plot of Kγlvcosθ versus γlv using 11 liquids for three different cellulose hol-
low fibers:  unmodified cellulose cuprophan;  chemically modified cellulose M1;  chemi-
cally modified cellulose M2.
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surface properties of the unmodified cellulose material. By chemical modification 
of the cellulose, the γsv could be decreased to 35 mJ/m2, as can be seen from Figure 
11.16; a water contact angle of 80° can be predicted for this modified cellulose mate-
rial from Young’s equation.
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12 Behavior of Particles at 
Solidification Fronts

Dongqing Li, Yi Zuo, and A. Wilhelm Neumann

12.1 intrOduCtiOn

The behavior of insoluble particles at the solid–liquid interface of an advancing 
solidification front is a multifaceted phenomenon. Consider a channel containing an 
insoluble particle in a liquid. The channel is cooled at one end to a temperature below 
the melting point of the liquid. As schematically illustrated in Figure 12.1, the liquid 
at the cooling end will freeze and a solidification front will advance along the tem-
perature gradient; that is, moving from the cold right end to the warm left end in the 
case of Figure 12.1. The rate of the advancing solidification front depends on the heat 
extraction from the cooling end for a given liquid–solid system. When the solidifi-
cation front approaches the foreign particle (Figure 12.1a), one of three phenomena 
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may occur depending on the velocity of the solidification front [1,2]. (1) The particle 
can be rejected and pushed ahead of the solidification front (Figure 12.1b) if the rate 
of the front is below a critical velocity Vc. (2) At intermediate rates, the particle can 
be pushed for a distance before being engulfed (Figure 12.1c). (3) The particle can 
be engulfed instantly by the solidification front (Figure 12.1d) if the front moves suf-
ficiently rapidly; that is, at a rate beyond Vc. Vc is dependent on the particle geometry, 
and thermophysical and surface properties of both the particle and the matrix mate-
rial, as detailed in the next section.

The study of particle behavior at solidification fronts is of practical importance in 
metallurgy, material, soil, food and biological sciences; for example, in the fabrica-
tion of composite materials [3,4], casting of alloys [5], crystal growth [6], freezing of 
soils [7], phagocytosis [8,9], cryogenic preservation of cells, tissues and perishable 
foods [10,11], behavior of vegetation in permafrost and cold regions [12], and separa-
tion of solid particles by particle chromatography [13,14]. Some of these applications 

(a)

t = t0

(d)

t = t1

(b)

t = t1

P
SL

P
SL

P
SL

Cooling

Solidification front

V > Vc
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P
SL

V ~~ Vc

fiGure 12.1 Schematic of the behavior of a particle at a solidification front moving from 
right to left. (a) At t = t0; the solidification front approaches the particle. (b) At t = t1 (t1 > t0); 
the particle is rejected by the solidification front; that is, pushed ahead of the front, if the front 
moves with a rate lower than a critical velocity (Vc). (c) At t = t1; the particle is pushed ahead 
for a short distance and then engulfed by the solidification front, if the front moves with a rate 
close to Vc. (d) At t = t1; the particle is instantly engulfed by the solidification front, if the front 
moves with a rate greater than Vc.
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require the particles to be engulfed by the solidification fronts, thus resulting in a 
uniform distribution of the particles in the matrix material, while the other applica-
tions need the particles to be selectively rejected by the solidification fronts.

As a further example, in the processing of molten steel, deoxidizers are usually 
added to the melt prior to solidification. The deoxidation products tend to form par-
ticles in the 5–50 µm range. When steel is solidified in the form of an ingot or as a 
continuous cast product, the physical properties of the materi als are dependent on 
whether these deoxidation products are engulfed, and are thus incorporated in the 
cast metal, or whether they are rejected. In other cases of materials processing, it is 
either necessary to purify the solid phase and to keep it free of second-phase inclu-
sions, or it may be desirable to achieve a controlled incorporation of particles (e.g., 
ceramic), thus yielding better mechanical or electrical properties of the solid matrix.

Another important example may be the study of phagocytosis (ingestion) of bacte-
ria by single white blood cells (neutrophils or macrophages). While no solidification 
front is present, the situation may be treated in a similar thermodynamic fashion. 
In many cases, the bacteria will be destroyed if engulfed by the white blood cells 
due to chemical reactions. Phagocytosis thus plays an important role in the ability 
of the human body to combat pathogenic microorganisms such as bacteria. Another 
biological application is the behavior of the advancing freezing front of aqueous salt 
solutions during the cryopreservation of biological cell suspensions [15–17].

The remainder of this chapter will be organized as follows. Section 12.2 reviews 
the existing theoretical models for studying the interactions between particles and 
solidification fronts. Section 12.3 presents the experimental data for the behavior 
of particles at solidification fronts with a variety of particle-matrix material com-
binations. Section 12.4 describes qualitatively the thermodynamic interpretation of 
these experimental observations. In Section 12.5, the critical velocities (Vc) of dif-
ferent particle-matrix material combinations are experimentally determined and the 
quantitative correlation between Vc and the surface free energy of adhesion (ΔFadh) is 
established through dimensional analysis. Based on the Vc − ΔFadh correlation estab-
lished in Section 12.5, Section 12.6 introduces a novel method of determining solid 
surface tensions using the solidification front technique. In Section 12.7, this solidifi-
cation front technique is applied to measure the surface tensions of fibers, biological 
cells, and coal particles as examples. Finally, Section 12.8 is dedicated to theoretical 
interpretation of the particle-front interactions in terms of the repulsive force that 
arises from van der Waals interactions within the particle-liquid–solid system. The 
critical repulsive forces in different systems are experimentally determined using 
solidification experiments on inclines. From these experimental data, new insight 
into the critical separation distance for particle engulfment is gained. 

12.2 reVieW Of theOretiCal mOdels

12.2.1 crItIcal VelocIty For PartIcle enGulFment

In the study of behavior of particles at solidification fronts, the particles can refer to 
solid particles [1,2,7,18], liquid droplets [19], or gas bubbles [20,21]. The solidification 
fronts can grow in either the vertical [22–27] or horizontal [1,2,8,12,28–31] direction. 
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It is generally accepted that the behavior of particles at solidification fronts is largely 
determined by the balance of forces acting on the particles, mainly between the 
attractive viscous drag force and the repulsive particle-front intermolecular force. 
Practically, the microscopic force balance is reflected by a critical velocity (Vc) at 
which engulfment may result, as indicated in Figure 12.1. Consequently, the study of 
the particle-front interactions can be converted to the characterization of Vc. Once Vc 
is defined for a particle-matrix material system, the behavior of the particles at the 
solidification fronts of the matrix material can be qualitatively predicted. In general, 
Vc is a function of the particle geometry (such as size, shape, and roughness), the ther-
mophysical properties of the particles and the matrix material (such as the thermal 
conductivities of the particles and the matrix material), and the surface free ener-
gies of the liquid-particle, solid-particle, and solid–liquid interfaces [32]. In addition, 
when the solidification fronts grow in vertical directions, Vc can be affected by buoy-
ancy forces. In the case of droplets or bubbles, surface tension driven drop/bubble 
migration, caused by the thermocapillary effect or uneven distribution of surfactants, 
can also play a role in altering Vc. Qualitative effects of these influencing factors on 
Vc are listed below. Detailed review of the existing theoretical models and the math-
ematical descriptions of these influencing factors can be found in Section 12.2.2.

 1. Vc decreases with increasing particle size [1,2,12,22–30,33].
 2. Vc depends upon the particle shape and roughness [22]. For spherical par-

ticles, Vc is inversely proportional to the particle diameter; while for par-
ticles in a disc shape, Vc is inversely proportional to the cube of the particle 
diameter [32]. The effect of increasing particle roughness appears to be 
equivalent to reducing the effective diameter compared to a smooth sphere, 
thus resulting in an increased Vc [24,25,28].

 3. Vc decreases with increasing liquid matrix viscosity [1,2,12,28].
 4. Vc depends upon the temperature gradient [24] and the relative thermal con-

ductivities of the particles and matrix materials. Generally, Vc decreases 
with increasing thermal conductivity of the particles [26,34].

 5. Vc depends upon the surface tensions (i.e., surface free energies) of the solid 
and liquid matrix material and the particles [1,2,28–30,33]. When the sur-
face tension of the liquid is between that of the solid matrix material and 
that of the particle, the free energy of adhesion is positive and the particle 
is pushed. When the free energy of adhesion is negative, the particle is 
engulfed. Vc has been observed to increase with increasing free energy of 
adhesion. For organic matrix materials, where the surface tension of the 
solid is less than that of the liquid matrix, Vc has been observed to increase 
with increasing particle surface tension.

 6. Vc may depend upon the body forces acting on the particle [27,28]. For 
example, in the case of countergravity solidification (i.e., solidification 
fronts moving upward), buoyancy forces will either favor engulfment (i.e., 
decreasing Vc) or impede engulfment (i.e., increasing Vc), depending on 
whether the density of the particles is larger or smaller than the density of 
the liquid phase. The effect of buoyancy forces tends to be negligible for 
fine particles and when the density differences are small [32].
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 7. Differently from solid particles, Vc of droplets or bubbles can be affected 
by surface tension driven drop/bubble migration due to the thermocapillary 
effect or uneven distribution of surfactants at the interfaces [19–21,35]. The 
thermocapillary effect refers to drop/bubble motion caused by the tempera-
ture gradient across the drop/bubble. The thermocapillary effect is espe-
cially pronounced for bubbles in which the surface tension of the air–water 
interface can be significantly affected by temperature. Being unevenly 
heated or cooled, a bubble tends to move toward the direction of decreasing 
its surface free energy; that is, the warmer end of the bubble. The thermo-
capillary migration will therefore impede engulfment of the bubble by the 
solidification fronts [19,20]. Surface tension driven migration can also be 
induced by surfactants unevenly distributed at the drop/bubble surface [35]. 
Its effects on Vc are dependent on the gradient of surfactant concentration 
along the drop/bubble.

12.2.2 aVaIlaBle theoretIcal models

A number of theoretical models have been developed to study the interaction between 
particles and advancing solidification fronts. Uhlmann et al. [12] investigated, theo-
retically, the pushing of a particle ahead of an advancing solidification front. In order 
for the particle to be pushed, there must be a force acting on it and preventing its 
engulfment by the solid, and there must be mass transfer of the liquid matrix mate-
rial to the region between the particle and the solid so that the solidification front can 
advance. Engulfment occurs when the mass cannot be transferred rapidly enough for 
the solidification front to advance at a uniform rate, and its shape therefore becomes 
unstable.

The shape of the solid–liquid interface in the region near the particle must allow 
sufficient mass transfer by diffusion for the solidification front to advance uniformly. 
This was determined [12] from the variation of the surface free energy with separa-
tion distance. The shape was found [12] to be dependent upon the velocity of the 
solidification front. The stability of the shape of the solid–liquid interface was then 
investigated using a modified form of the Gibbs–Thomson relation to determine an 
equilibrium condition for the shape of the solid–liquid interface. It was found that 
there was a maximum or critical velocity above which the shape of the solid–liquid 
interface was unstable. For velocities above this critical value, the particle would be 
engulfed by the advancing solid.

For smooth spherical particles of radius R0, the critical velocity was found [12] 
to vary as 1 0

2/ R . Generally, particles are not ideally smooth, but are rough. For a 
rough particle of radius R0 with irregularities of radius R, the critical velocity was 
determined to be:
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where L is the latent heat of fusion of the liquid, a0 is a constant of the order of one 
molecular diameter, µ is the liquid viscosity, v0 is the atomic volume of the liquid, 
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D is the diffusion coefficient of the liquid, k is the Boltzmann constant, T is the tem-
perature, n is the exponent of the variation of the surface free energy with separation 
distance, d1 is the minimum separation distance between the particle and the solid 
(assumed to be two molecular diameters), ds is the minimum separation distance for 
fluid flow (assumed to be 10 molecular diameters), and h is the penetration depth 
of the particle into the solid (assumed to be 10 molecular diameters). Assuming the 
radius of the irregularities to be independent of the particle radius, R0, the critical 
velocity varies as 1/R0 for small particles and as 1 0/ R  for large particles.

The expression for the critical velocity, Vc, however, does not contain the free energy 
of adhesion, which is defined [12] as ΔFadh = γps – γpl – γsl, where γps, γpl, and γsl are 
the surface free energies (or the surface tensions) of the particle-solid, particle-liquid, 
and solid–liquid interfaces, respectively. The critical velocity is therefore predicted 
to depend only upon the properties of the matrix material and to be independent of 
the properties of the particle. This result, obtained using the Gibbs–Thomson rela-
tion, is not consistent with the experimental observations that the critical velocity is 
dependent upon the properties (such as surface tension) of the particle [1,2,29,30,33]. 
It is also not consistent with the initial assumption that there must be a repulsive force 
between the particle and the solid in order for pushing to occur.

The reason that the predicted critical velocity was independent of ΔFadh, and 
therefore of the properties of the particle, is that the critical velocity was determined 
only from the stability of the solid–liquid interface. The model of Uhlmann et al. 
[12] is not adequate for the determination of the critical velocity since it does not 
consider the balance of forces acting on the particle and therefore predicts that the 
critical velocity is independent of the properties of the particle. However, several 
important contributions were made to the understanding of the pushing of particles 
by an advancing solidification front:

 1. There must be a force acting on the particle and preventing its engulfment, 
and this force must be related to the free energy of adhesion.

 2. Engulfment occurs when the liquid cannot be transferred rapidly enough to 
the region between the particle and the solid for the solidification front to 
advance at a uniform rate.

 3. The drag force acting on a spherical particle being pushed by a planar solid-
ification front was correctly determined.

 4. Generally, particles are not ideally smooth, but are rough; and the critical 
velocity for a rough particle differs from that for a smooth particle.

The pushing of a particle by an advancing solidification front was also investi-
gated by Bolling and Cissé [36]. The critical velocity for a smooth particle of radius 
R was determined from the stability of the solid–liquid interface in a manner similar 
to that of Uhlmann et al. [12]. Again, their expression for the critical velocity is a 
function of the properties of the matrix material only, and is independent of the 
properties of the particle. This is also a consequence of considering only the stability 
of the solid–liquid interface in the determination of the critical velocity. The balance 
of forces acting on the particle, or even the presence of a repulsive force prevent-
ing engulfment, was not considered. However, Bolling and Cissé also make several 
 contributions to the solution of this problem:
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 1. The drag force acting on a spherical particle being pushed by a concave 
solidification front was correctly determined.

 2. The effects of thermal conductivity and temperature gradient on the shape 
of the solid–liquid interface were qualitatively investigated. When the ther-
mal conductivity of the particle is equal to that of the matrix material, the 
heat flow is unidirectional. However, when the thermal conductivity of the 
particle is greater than that of the matrix material, the heat flow is not uni-
directional since the heat is more easily conducted through the particle than 
through the matrix. This causes the solid–liquid interface to become concave 
near the particle. Similarly, when the thermal conductivity of the particle is 
less than that of the matrix material, the solid–liquid interface is convex. The 
greater the temperature gradient in the matrix material, the greater the heat 
flow, and the more concave or convex the interface becomes.

In the investigation of Chernov and coworkers [37–40], the equilibrium condi-
tions for both the particle and the shape of the solid–liquid interface were used to 
determine an expression for the critical velocity of the particle. There must be a 
balance of forces acting on the particle in order for it to be continuously pushed by 
the advancing solidification front. Two forces were assumed to act on the particle: 
a viscous drag force that tends to push the particle toward the solid, and a repulsive 
force between the particle and the solid. This repulsive force was considered to be an 
unretarded van der Waals interaction, which was related to the disjoining pressure 
between the particle and the solid.

Assuming that the solid–liquid interface was a paraboloid in the region near the 
particle, the repulsive interaction force for a spherical particle of radius R was

 F
B R
v hR =

−
3

0
2

π
( )1

, (12.2)

where h0 is the minimum separation distance between the particle and the solid, v is 
the ratio of the particle-radius to the radius of curvature of the concave solid–liquid 
interface, and B3 is related to the Hamaker coefficient by

 B
Apls

3 = −
6π

 (12.3)

In order for this force to be repulsive, B3 must be greater than zero (or Apls must be 
less than zero). This corresponds to a positive free energy of adhesion that has to be 
overcome during the porcess of particle engulfment. The drag force was the same as 
determined by Bolling and Cissé [36] and is given by

 F
VR
v hD = 6

−

2πµ
(1 )2

0

, (12.4)

where µ is the liquid viscosity and V is the velocity of the solidification front.
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For continuous pushing of the particle these forces must be equal, and the velocity 
was therefore given by

 V
B v

Rh
= 1−

6 0

3( )
µ

.  (12.5)

This expression does not give the critical growth rate since the minimum separa-
tion distance, h0, and the relative curvature of the solid–liquid interface, v, have not 
been determined. They were determined from the second equilibrium condition, 
the stability of the shape of the solid–liquid interface. The shape of the solid–liquid 
interface was assumed to be determined by three factors:

 1. the disjoining pressure that tends to increase the curvature of the solid–
liquid interface;

 2. the Gibbs-Thomson effect that tends to decrease the curvature of the inter-
face; and

 3. the temperature gradient in the matrix material that also tends to decrease 
the curvature of the interface.

The solid–liquid interface was assumed to be a paraboloid in the region near the 
particle and a plane away from the particle. The shape of the solid–liquid interface 
was then determined from the relation

 Ω Ω ∆γ 1 +
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where Ω is the specific molecular volume of the liquid, γ is the solid–liquid interfa-
cial tension, R1 and R2 are the principal radii of curvature of the interface, Δs is the 
entropy of melting, G is the temperature gradient, and H is the distance from the 
center of the spherical particle to the planar solid–liquid interface.

The critical velocity was determined from the stability of the shape of the solid–
liquid interface. Two characteristic lengths, l and λ, were introduced:
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For small particles, R < λ2/l, only the first two terms in Equation 12.6 are significant, 
and the critical velocity was determined to be
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For large particles, R > λ2/l, only the last two terms in Equation 12.6 are significant, 
and the critical velocity was determined to be

 V
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0 15 3
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 (12.9)

The critical velocity was found to vary as R–4/3 for small particles and as R–1 for large 
particles. It was also found to vary inversely with the liquid viscosity, in agreement 
with the predictions of Uhlmann et al. [12] and Bolling and Cissé [36]. However, 
unlike the previous models, the critical velocity was also found to be dependent upon 
the properties of the particle material. For both large and small particles, the critical 
velocity was determined to be dependent upon B3, which is related to the Hamaker 
coefficient, Apls, which, in turn, is a function of the surface tensions of the solid 
and liquid matrix material and of the particle. These expressions for the critical 
velocity are therefore consistent with the experimental observations that the critical 
velocity is dependent upon the properties of the particle, such as its surface tension 
[1,2,30,33].

For large particles, the critical velocity was found to vary with the temperature 
gradient in the form

 V Gc ∝ 1/4.   (12.10)

The predicted variation of the minimum separation distance, h, with the particle 
radius is as follows. For small particles, this minimum separation distance was 
given by

 h
B R= 1.3
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For large particles, the minimum separation distance was found to be independent of 
the particle size, but dependent upon the temperature gradient: 

 h
B
Gs

= 





3Ω
1 4/

.   (12.12)

The minimum separation distance was therefore predicted to increase with increas-
ing particle radius for small particles until it reached a maximum value determined 
by the temperature gradient.

The shape of the solid–liquid interface was predicted by Bolling and Cissé [36] 
to be dependent upon the relative values of the thermal conductivities of the particle 
and the matrix material. As shown in Equation 12.5, the critical velocity was pre-
dicted by Chernov and coworkers [37–40] to be dependent upon the curvature of the 
solid–liquid interface and therefore must also be dependent upon the relative thermal 
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conductivities. Chernov and coworkers [37–40] found that for large particles, those 
for which the temperature gradient was important, the critical velocity varied with 
the thermal conductivity in the form

 V
k
k
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where kL is the liquid thermal conductivity and kp is the particle thermal 
conductivity.

The critical velocity was therefore predicted to decrease with increasing particle ther-
mal conductivity. This occurs since the solid–liquid interface becomes more concave 
when the thermal conductivity of the particle is greater than that of the liquid, resulting 
in a lower critical velocity. When the thermal conductivity of the particle is less than that 
of the liquid, the interface is convex and the critical velocity is therefore larger.

The critical velocity predicted by Equation 12.8 can be compared with the experi-
mental observations of Omenyi et al. [1,2,29,30,33] since all the parameters in this 
equation have been determined. Omenyi et al. measured the critical velocity of 
irregularly shaped polymer particles in organic matrix materials. For acetal particles 
in naphthalene [1,2], B3 = 1.73 × 10–19 mJ, µ = 9.67 × 10–4 kg/s∙m, and γ = 1.44 mJ/
m2. For a particle with a radius of 50 µm, Equation 12.8 predicts a critical velocity 
of 0.03 µm/s. This is three orders of magnitude smaller than the observed veloc-
ity of 40 µm/s.

Chernov and Temkin [37] made the most complete investigation of the critical 
velocity for smooth spherical particles. The effects of particle thermal conductivity, 
impurities, and viscosity fluctuations on the critical velocity were investigated. The 
expressions that were derived for the critical velocity were in good qualitative agree-
ment with experimental observations. However, since the effect of particle shape 
and roughness were not investigated, the predicted critical velocity did not agree 
quantitatively with experimental results for real particles, which are generally nei-
ther smooth nor spherical.

Gilpin [41] used an approach similar to that of Chernov and Temkin [37]. He 
considered both the equilibrium conditions for the particle and the shape of the 
 solid–liquid interface in the determination of the critical velocity of the particle. The 
repulsive force between the particle and the solid was related to the chemical poten-
tial of the liquid layer between them. The chemical potential, µl, was given by

 µ µl lb g h= − ( ),  (12.14)

where g(h) is some function and µlb is the bulk chemical potential. Two relations 
determined empirically from measurements of pressure- and temperature-gradient-
induced regelation for ice-water were used for g(h). They were

 g h a
L
T

h
ha

1
1

2

( ) = 





−

 (12.15)



Behavior of Particles at Solidification Fronts 643

 g h a
L
T

h h
a

2( ) exp[ ( )],= − −β 1  (12.16)

where L is the latent heat of fusion, a is a constant equal to 1, Ta is the absolute 
temperature, h is the liquid layer thickness, and h1 and β are empirically determined 
quantities.

The values of β and h1 were assumed to be constants for the matrix material, 
water, and independent of the particle material. As a result, the critical veloc-
ity was found to vary with particle density for vertical motion only and would 
be independent of the particle material for horizontal motion. Furthermore, this 
model predicted that particles of all materials would be pushed by the advanc-
ing solidification front. This is not consistent with experimental observations 
[1,2,29,30,33].

The independence of the critical velocity from the properties of the particle is a 
result of the relationship used for g(h). If the repulsive force between the particle and 
the solid is assumed to be due to an unretarded van der Waals interaction, then g(h) 
would be given by

 g h
A v

h
pls l( ) ,=

6 3π
 (12.17)

where Apls is the Hamaker coefficient and vl is the specific volume of the liquid. Using 
this expression, Equation 12.17, instead of Equations 12.15 or 12.16, for g(h), and fol-
lowing Gilpin’s method, an approximate analytical expression can be obtained for 
the critical velocity. Assuming that the solid and liquid specific volumes are equal, 
the critical velocity for a spherical particle of radius R is given by
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This result is approximately 50% greater than that determined by Chernov and 
Temkin [37], Equation 12.8, for the same circumstances. The difference results from 
the determination of the shape of the solid–liquid interface.

Gilpin’s contribution to the solution of this problem was the determination of the 
shape of the solid–liquid interface [41]; the equilibrium condition for the liquid layer 
thickness, h, was given by

 − − + − =∆vp LT T v k g hlh a s
ˆ / ( )γ 0,  (12.19)

where Δv is the specific volume difference vs – vl, plh is the pressure at the solid–liq-
uid interface, T̂  is the temperature difference from the bulk fusion temperature, and 
k  is the mean curvature of the solid–liquid interface. By dividing the solid–liquid 
interface into three regions—inner, transition, and outer—and solving the equation 
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for the shape of the interface for each region separately, Gilpin was able to  determine 
numerically the shape of the solid–liquid interface, as opposed to the arbitrary sur-
face chosen by Chernov and Temkin [37] consisting of a paraboloid for the inner 
region and a planar surface for the outer region. Similar numerical calculations of the 
shape of the solid–liquid interface have also been made by Aubourg [28].

In summary, the behavior of particles at solidification fronts; that is, engulfment 
or rejection, generally depends on the fluid mechanics and thermophysics of the 
solidification process. However, if the rate of solidification is low, as in the case 
of studying critical velocity (Vc), thermodynamic effects may dominate, as will be 
discussed in the remainder of this chapter. Readers who are interested in the fluid 
mechanics and heat transfer aspects of this study may refer to recent research papers 
[7,20,34,42–45].

12.3 experimental

12.3.1 exPerImental setuP

An experimental apparatus to study the behavior of small inert particles at solidi-
fication fronts is illustrated in Figure 12.2 [2,46]. The particles and matrix mate-
rial are contained in a small horizontal copper channel and are covered with a glass 
microscope slide. A temperature gradient is imposed on the matrix material by main-
taining a temperature gradient in the copper. The solidification front is caused to 
move by lowering the temperature of the copper, and therefore the temperature of 
the matrix material. The particles and the solidification front are observed by reflec-
tion microscopy.

The copper cell is 78 mm long, 30 mm wide, and 5 mm high; the groove in the 
cell is 5 mm wide and 0.6 mm deep. The temperature of the copper, and therefore the 
matrix material, is varied by heating or cooling by means of thermoelectric devices 

Microscope

Solidification
cell

Heating
transformer

Temperature
programmer

Thermostat

fiGure 12.2 An experimental apparatus to study the behavior of small particles at 
 solidification fronts.
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at each end of the copper channel. The temperature at each end is  measured by a 
 thermistor and is independently controlled by a feedback controller. The  measured 
value of each temperature is compared with its programed value, the difference deter-
mining the electric current provided by a bipolar controller (Cambion  809-3020-09). 
The rate of heat transfer by the thermoelectric device (Cambion 801-3958-01) to or 
from the copper channel is determined by this current. A water-cooled heat sink is 
used to cool the thermoelectric devices.

The apparatus is designed to operate in the temperature range from 0 to 100°C. 
The maximum temperature is limited by the maximum operating temperature of the 
thermoelectric devices. This apparatus is suitable for critical velocity experiments 
using matrix materials with a melting point between 20°C and 80°C, such as naph-
thalene, biphenyl, and thymol. The horizontal temperature gradient of the matrix 
material is regulated by controlling the temperature difference between each end of 
the copper channel using a temperature programmer.

The solidification channel is mounted on the moving stage of a Leitz Orthomat-
Orthoplan photomicroscope so that particle interaction with the solidification front 
can be viewed. Two overall magnifications (through the eyepiece) of 64 × and 
128 × with reflected light are used. The microscope can be used with a video camera, 
allowing the experiment to be recorded for analysis at a later time.

12.3.2 matrIx materIals

The requirements for the matrix materials to be used in the solidification experi-
ments generally include the following:

 1. The matrix materials should not react chemically with the particle 
materials.

 2. The design of the experimental cell requires that melting temperatures of 
the matrix materials should be below 100°C. In the case where water is 
used as a thermostating liquid to regulate and control the temperature of 
the solid–liquid interface, the melting point of the matrix should not be 
below 30°C. However, if lower-melting-point matrix materials are used, the 
thermostating liquid can be replaced with a mixture of water and ethylene 
glycol and a temperature of about –60°C can be attained.

 3. The matrix materials should be transparent in order to allow direct observa-
tion of particle interactions with the solidification fronts.

 4. The matrix materials should not be toxic since the nature of the cell makes 
it possible for the vapor to escape into the environment.

 5. The availability of the physical and thermal properties of the matrix materi-
als is an important criterion for material selection.

 6. Most importantly, the matrix materials should be able to form plane solid–
liquid interfaces. Without a smooth interface, particle behavior at solidi-
fication fronts cannot be studied. The presence of dendritic growth leads 
to immediate entrapment of foreign particles, so this will not provide the 
desired results. One of the important factors for forming a plane solid–
liquid interface is the purity of the matrix materials.
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Finally, as the thermodynamic prediction of particle behavior at the solidification 
fronts will require the use of the equation of state for interfacial tensions, which is 
valid for low-energy solids, the materials of the particles and matrix should be low 
energy. 

Tables 12.1 and 12.2 list the physical properties of several matrix materials that 
were found to meet essentially all the requirements.

12.3.3 exPerIments

In the experiment, the cell groove is polished with alumina polishing powders. The 
polishing powders are then washed away with distilled water, and the cell is rinsed 
with toluene. A few of the desired particles are sprinkled into the cell groove and 
then covered completely with the matrix material powder. A clean glass slide is 
placed on top of the matrix material. The cell is then connected to the heater and 

table 12.2 
thermal and physical properties of Organic matrix melts

substance

density 
ρl 

(kg/m3)

Viscosity 
μ × 103 
(pa s)

specific 
heat cl 
(J/g ºC)

thermal 
Conductivity 
kl (W/m k)

latent 
heat l 
(J/g)

diffusion 
Coefficient 

Dl × 106 (cm2/s)

Naphthalene 978 0.967 1.683 0.226 146.74 7.20

Biphenyl 992 1.490 1.842 0.142 109.20 4.30

Thymol 925 2.369 0.130 114.98 6.98

Salol 1200 0.746 1.637 0.084 89.07 7.50

table 12.1
physical and Chemical properties of the matrix materials

matrix material
Chemical 
formula

melting 
temperature 

tmp (ºC)
mol. 

Weight source

Naphthalene C10H8 80 128 Fisher Scientific (F.S.)

Biphenyl (phenyl benzene) C12H10 70 154 F.S.

Thymol (2-hydroxy-1-
isopropyl-4-methyl benzene)

C10H14O 51.5 150 Eastman Kodak (E.K.)

Salol (phenyl salicylate) C13H10O3 43 214 E.K.

o-Terphenyl (1,2-diphenyl 
benzene)

C18H14 58 230 E.K.

Pinacol (tetramethyl ethylene 
glycol)

C6H14O2 43.5 118 E.K.

2-phenyl phenol (2-hydroxy 
biphenyl)

C12H10O 59 170 E.K.
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the copper cooling coil as shown in Figure 12.2. With the thermostat turned off, the 
heater is turned on until all the matrix melts and the glass slide falls into place on 
the glass cell, thereby trapping the melt in the cell groove. Some melt may spread 
on top of the glass slide and may be drained off. When all the matrix material has 
melted, the temperature of the thermostating water is reduced at a very low rate 
until slow solidification is initiated. Using the temperature programmer, different 
solidification rates can be attained, and the interface can be advanced or retracted as 
desired, enabling a given particle to be studied in detail. The heating current to be 
supplied depends on the matrix being studied and the correct setting is obtained on 
a trial-and-error basis.

As the interface advances, the particle–interface interactions can be observed 
through the micrometer eyepiece of the microscope at a chosen magnification. When 
contact is made between particle and interface, if the particle is not pushed, a smaller 
interface speed is reinitiated and used to study the interaction. If, at a very low speed, 
say 2 µm/s or less, the particle is still not pushed, one may conclude that particle 
engulfment has occurred. In case of doubt, the melting front should be made to recede, 
and the process of solidification may be reinitiated, possibly at a lower rate. This pro-
cedure is of critical importance, as all particles, irrespective of thermodynamic prop-
erties of the system, will be engulfed at relatively large rates of solidification.

In the experiments, parts of the interface could be seen to be very sharp, some 
straight, and others ragged. It is important to ensure that the particle considered is 
positioned on a plane part of the interface.

The particle may float or lie on the cell floor, depending on whether the particle 
is lighter or heavier than the melt. By properly adjusting the focus of the lenses, the 
particles can be studied. Graticules are incorporated into the micrometer eyepiece 
for determining particle size and the advancing distance. The sizes of the squares 
of the graticules are 19 × 19 µm for the 128 × magnification and 38 × 38 µm for the 
64 × overall magnification through the eyepiece. The graticules are precalibrated by 
matching the squares against a standard scale.

As mentioned earlier, not all the interfaces are smooth. Naphthalene, biphenyl, 
and thymol exhibit straight interfaces at low advancing rates whereas the rest of the 
matrix materials in Table 12.1 show different types of ragged interfaces. For a saw-
tooth interface, the particle is considered only if it is located on a plane part of the 
interface and observed in such a way that it is moving in a direction perpendicular 
to the interface.

Some large particles may be observed to rotate or jerk as they move forward. 
This could possibly be due to some contact with the cell floor. Most small particles, 
however, will not rotate or jerk, suggesting that no contact with the cell floor occurs. 
It has been shown that friction with the cell floor has no significant effect on the 
outcome of the engulfing experiments [1,46,47].

Some particles, when being pushed, are seemingly partially embedded in the 
solid phase. The explanation for such observations is that the solidification front may 
not be a vertical plane, due to a slight temperature difference between the bottom 
and the top of the cell. With the present setup it is not possible to see the gap between 
the particle and the interface as the particle is being pushed. Generally, a liquid 
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film must exist between the particle and the interface for the particle to be pushed, 
and it is the properties of this liquid film that determine whether a particle should 
be engulfed or not. This separation distance will be discussed later in this chapter 
(Section 12.8.2) and more details can be found elsewhere [46,47].

Sometimes, the particles in the melt are hardly visible due to a similarity in the 
refractive index of the particle material and the melts; for example, nylon particles in 
the melts of thymol, pinacol, o-terphenyl, and 2-phenyl phenol are in this category. 
This difficulty may be overcome by using polarized light. Some typical results of 
particle pushing/engulfing experiments [1] are summarized in Table 12.3. The par-
ticle sizes and the speeds at which a variety of materials were pushed or engulfed are 
listed for the seven matrix materials of Tables 12.1 and 12.2.

12.4 thermOdynamiC interpretatiOn

Particle engulfment and rejection may, in general, depend on the fluid mechanics 
of the solidification process; on thermodynamic properties such as interfacial ten-
sions, temperature, and concentration; and also on the supersaturation or supercool-
ing of the crystallizing liquid. If the rate of solidification is low and the solid-melt 
interface is smooth, thermodynamic effects may dominate.

Thermodynamically, the process of particle engulfment by the advancing solidi-
fication front (see Figure 12.3) can be modeled by the net free-energy change of 
the system during the engulfing process. As illustrated in Figure 12.3, the net free-
energy change per unit surface area for the engulfment process is given by

 ∆Feng
ps pl= −γ γ ,  (12.20)

where γps and γpl are the particle-solid and particle-liquid interfacial tensions, respec-
tively. Equation 12.20 reflects the fact that, for a particle of unit surface area, 1 cm2 
of particle-solid interface is generated and 1 cm2 of particle-liquid interface is anni-
hilated, as a result of particle engulfment.

The condition for particle engulfment is that the net change in the free energy of 
the system, ΔFeng, is negative; that is,

 ∆Feng < 0.  (12.21)

If ΔFeng is positive, that is,

 ∆Feng > 0,  (12.22)

there will be particle rejection. An intermediate step in the process of particle engulf-
ment is particle adhesion. For a square particle, the associated free-energy change, 
the free energy of adhesion, is given by:

 ∆Fadh
ps pl sl= − −γ γ γ .  (12.23)
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table 12.3
microscopic Observations of particle pushing and engulfing

system
particle 

diameter (μm) remarks
Velocity 
(μm/s)

Naphthalene/acetal 47 Pushed 40.0

 Nylon-6 63 Pushed 28.7

 Nylon-6,6 78 Pushed 19.3

 Nylon-12 60 Pushed 15.6

 Nylon-6,10 59 Pushed 7.7

 Nylon-6,12 32 Pushed 17.0

 Polystyrene 51 Engulfed 3.2

 Teflon 79 Engulfed 2.7

 Siliconized glass 67 Engulfed 2.1

Biphenyl/acetal 31 Pushed 29.0

 Nylon-6 59 Pushed 14.3

 Nylon-6,6 70 Pushed 11.4

 Nylon-12 51 Pushed 8.6

 Nylon-6,10 88 Pushed 4.1

 Nylon-6,12 69 Pushed 5.3

 Polystyrene 43 Engulfed 1.2

 Teflon 31 Engulfed 0.9

 Siliconized glass 56 Engulfed 1.1

2-phenyl phenol/acetal 12 Pushed 0.20

 Nylon-6 Could not be 
observed

Could not be observed Could not be 
observed

 Nylon-6,6 Could not be 
observed

Could not be observed Could not be 
observed

 Nylon-12 76 Reoriented and engulfed 0.56

 Nylon-6,10 38 Reoriented and engulfed 0.90

 Nylon-6,12 76 Reoriented and engulfed 0.30

 Polystyrene 20 Engulfed 0.33

 Teflon 57 Engulfed 0.93

 Siliconized glass 51 Engulfed 0.70

Pinacol/acetal 50 Pushed 0.80

 Nylon-6 10 Reoriented and engulfed 0.34

 Nylon-6,6 8 Reoriented and engulfed 0.30

 Nylon-12 8 Pushed 0.20

 Nylon-6,10 10 Pushed 0.20

 Nylon-6,12 47 Engulfed 0.40

 Polystyrene 4 Pushed 0.41

 Teflon 10 Pushed 0.39

 Siliconized glass 56 Engulfed 0.40

Thymol/acetal 60 Pushed 9.60

 Nylon-6 38 Pushed 0.75

(Continued)
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The process of particle adhesion (see Figure 12.3) involves generation of particle-
solid interface and annihilation of particle-liquid interface as well as solid–liquid 
interface. It is not clear a priori which of the two free energies, ΔFeng or ΔFadh, should 
be used to study the interaction between a particle and a solidification front. A dis-
cussion of this point will be given later. Fortunately, γsl is usually quite small, so that 
there will not normally be a large difference between ΔFeng and ΔFadh.

The interfacial tensions involved in Equation 12.23 must be known in order to cal-
culate the net free energy change. For a solid–liquid–vapor system, the solid-vapor 
and solid–liquid interfacial tensions can be determined from the experimental data for 
liquid surface tensions and contact angles by an equation of state approach [48–52]. In 
this approach, an equation of state for interfacial tensions is given by

 γ γ γ γ γ β γ γ
sl lv sv lv sv e lv sv= + − − −2 2( ) .  (12.24)

table 12.3 (Continued)
microscopic Observations of particle pushing and engulfing

system
particle 

diameter (μm) remarks
Velocity 
(μm/s)

 Nylon-6,6 57 Pushed 1.20

 Nylon-12 95 Pushed 1.35

 Nylon-6,10 95 Pushed 1.00

 Nylon-6,12 57 Pushed 1.00

 Polystyrene 25 Pushed 2.00

 Teflon 13 Reoriented and engulfed 0.30

 Siliconized glass 20 Engulfed 0.90

o-Terphenyl/acetal 25 Pushed 1.70

 Nylon-6 57 Pushed 0.70

 Nylon-6,6 57 Pushed 0.48

 Nylon-12 28 Pushed 0.42

 Nylon-6,10 57 Pushed 0.50

 Nylon-6,12 76 Pushed 0.42

 Polystyrene 54 Engulfed 0.61

 Teflon 72 Engulfed 0.50

 Siliconized glass 13 Engulfed 0.80

Salol/acetal 50 Pushed 1.30

 Nylon-6 38 Pushed 0.30

 Nylon-6,6 25 Reoriented and engulfed 0.30

 Nylon-12 19 Pushed 0.90

 Nylon-6,10 19 Pushed 0.82

 Nylon-6,12 13 Reoriented and engulfed 0.20

 Polystyrene 28 Engulfed 0.90

 Teflon 48 Engulfed 0.30

 Siliconized glass 51 Engulfed 0.80
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The constant β in Equation 12.24 is obtained as β = 0.0001247 (m2/mJ)2. Combining 
this equation with Young’s equation

 γ θ γ γlv sv slcos ,= −  (12.25)

will yield

 cos .( )θ γ
γ

β γ γ= − + − −1 2 2sv

lv

e lv sv   (12.26)

It is apparent that Equation 12.26 has three variables, the liquid–vapor surface ten-
sion, γlv, the contact angle, θ, and the solid-vapor surface tension, γsv, and thus will 
enable us to determine solid surface tension, γsv, when we have experimental data γlv 
and θ. Finally, the solid–liquid interfacial tension, γsl, can be determined from either 
Young’s equation, Equation 12.25, or the equation of state, Equation 12.24. Detailed 
description and recent progress in determining solid surface tensions using the equa-
tion of state approach can be found in Chapters 8 and 9.

The particle–liquid interfacial tension, γpl, in Equation 12.23 can be obtained by 
using the above equation of state approach, if contact angle information for the parti-
cle material is available. For instance, it may be possible to produce a smooth surface 
out of polymer particles by heat pressing (see Chapter 11 for details). However, for 
the particle-solid interfacial tension, γps, one has to take Equation 12.24 as a generic 
correlation among the three interfacial tensions, γ12, γ13, and γ23; that is,

 γ γ γ12 13 23= f ( , ).  (12.27)

Then, γps may be obtained from γpv and γsv, both of which can be determined by 
the contact angle/equation of state method. While not justified explicitly within the 

∆F eng = γps – γpl

∆Fadh = γps – γpl – γslP

P

P
L
S

fiGure 12.3 Free-energy changes during particle-solid adhesion and particle  engulfment 
processes.
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equation of state approach, this strategy has been found to be successful in  predicting 
the engulfment or rejection of particles by solidification fronts [2,29,33,53].

Since particle engulfment and rejection occur at the melting temperature of the 
matrix material, the various interfacial tensions must refer to the melting tempera-
ture. However, measurements of γlv and θ at the melting point are not practical, so that 
measurements of the temperature dependence of these quantities and extrapolation 
to the melting point are called for.

In such studies [2,29,33], the temperature-dependent surface tensions of melts of 
the matrix materials were determined using the Wilhelmy plate technique [54], both 
on heating and on cooling. The surface tension at the melting point was obtained by 
extrapolation.

All matrix materials were zone refined and the purity was checked qualitatively by 
differential scanning calorimetry prior to final measurements and engulfing experi-
ments. The polymeric particles were commercial products that were used as received. 
Flat and smooth surfaces of the matrix and particle materials were prepared for con-
tact angle measurements by film casting on glass slides from solutions of the mate-
rials in suitable solvents. For Teflon and acetal, the surfaces were prepared by heat 
pressing of the polymer between clean glass slides. Siliconized glass slides as well 
as siliconized glass powder were prepared by heating clean glass spheres in silicone 
oil to 150°C for 2 hours. They were then allowed to cool to room temperature in the 
silicone oil. Eventually, the excess oil not bonded to the glass surface was rinsed off 
with toluene. Preliminary contact angles of water and glycerol were measured using 
the conventional sessile-drop technique to check the quality of the solid surfaces.

In order to determine γsv and γpv values; that is, the surface tension of the matrix 
and the particle materials, contact angles as a function of temperature were measured 
on all matrix and all particle materials. Temperature-dependent contact angles were 
obtained using the method of capillary rise at a vertical plate [55] (see Chapter 6).

The solid surface tensions, γsv, of the matrix materials at their respective melting 
points were calculated from the temperature dependence of the contact angles, using 
the equation of state relations. The solid surface tension, γpv, for each particle mate-
rial was similarly calculated for the various temperatures of the matrix materials. 
The relevant interfacial tensions, γsl, γpl, and γps, for the melting point of the matrix 
material were also calculated from the equation of state relations. As examples, some 
of these data are listed in Tables 12.4 and 12.5. The net free-energy changes for 
particle engulfment, ΔFeng, and the free energy of adhesion, ΔFadh, can then be cal-
culated from these data.

Table 12.6 shows the comparison between the thermodynamic predictions of 
ΔFeng and the results of actual engulfing experiments. In Table 12.6, the letter R des-
ignates rejection; the letter E, engulfing; and (E), conditional engulfing, for example, 
a slight reorientation of the particle prior to engulfment, but definitely not a transport 
of the particle by the solidification front. As clearly seen, there is very good agree-
ment between thermodynamic prediction and microscopic observation.

The largest discrepancy between clear-cut observation (i.e., E or R) and thermo-
dynamic predictions is for the two systems nylon-6,12/pinacol and Teflon/pinacol, 
with ΔFeng values of + 0.03 mJ/m2 and –0.05 mJ/m2, respectively. A detailed analysis 
[1] showed that errors of the magnitude of these data can easily arise from errors 
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in γlv alone. Errors due to errors in γsv might easily be larger, for example, 0.1–0.2 
mJ/m2, owing to errors in the contact angles and the fact that the equation of state 
relations used in interpreting the data, in turn, rely on experimental contact angles. 
Apart from these two cases, all other doubtful results are connected with the obser-
vations of particle reorientation and engulfment (E), which in itself might well be 
understood as being indicative of a small absolute value of ΔFeng. Interpreting the 
observation (E) as engulfing, the largest discrepancy occurs for nylon-6,6/salol with 
ΔFeng = + 0.18 mJ/m2; and interpreting it as rejection, the largest discrepancy would 
occur for Teflon/thymol with ΔFeng = –0.19 mJ/m2. The sign of either of these could 
be due to slight errors in γlv, γsv, and γsl. It was shown [1] that friction of the particles 
on the floor of the cell is not a major influence on the behavior of the particles. 
Overall, it can be concluded that particle engulfment by solidification fronts at low 
rates of solidification can be described by surface thermodynamic properties.

12.5 CritiCal VelOCity and dimensiOnal analysis

As an experimental fact, particle engulfment depends on the rate of the advanc-
ing solidification front. Therefore, it is necessary to study rate-dependent phenom-
ena. It was shown [2] that, at even the lowest rates, Teflon particles and siliconized 
glass spheres were engulfed by the advancing solid–liquid interfaces of biphenyl and 
naphthalene melts, while nylon and acetal particles were pushed. Polystyrene latex 
spheres were just reoriented without being pushed. As a result of these observations, 
nylon and acetal particles were chosen for rate studies. Rates of solidification were 
measured by timing the progress of the solidification front over distances measured 

table 12.4 
surface tensions (in mJ/m2) of particle materials, γpv, and solid matrix 
materials, γsv, at the melting points of the Corresponding matrix materials

salol pinacol thymol
o- 

terphenyl
2-phenyl 
phenol biphenyl naphthalene

Matrix materials 
(γsv)

34.5 28.0 29.4 30.4 38.6 25.6 22.9

Particle 
materials (γpv)

 Acetal 44.9 44.9 44.3 43.8 43.8 43 42.2

 Nylon-6 44.2 44.1 43.4 42.9 42.8 41.8 40

 Nylon-6,6 43.5 43.4 42.8 42.3 42.2 41.3 40.5

 Nylon-12 41.2 41.2 40.6 40.1 40.0 39.2 38.5

 Nylon-6,10 38.6 38.5 37.8 37.3 37.2 36.3 35.4

 Nylon-6,12 34.7 34.6 34.0 33.5 33.4 32.6 31.8

 Polystyrene 30.4 30.4 29.8 39.3 29.2 28.4 27.7

 Teflon 18.4 18.4 17.8 17.3 17.2 16.4 15.7

  Siliconized
  glass

16.0 15.9 14.9 14.1 14.0 12.6 11.3
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table 12.5
solid–liquid (γsl), particle–liquid (γpl), and particle–solid (γps) 
interfacial tensions at the melting points of matrix materials 

system γsl (mJ/m2) γpl (mJ/m2) γps (mJ/m2)

Naphthalene/naphthalene 1.44

Naphthalene/acetal 1.17 5.23

Naphthalene/nylon-6 0.87 4.56

Naphthalene/nylon-6,6 0.79 4.37

Naphthalene/nylon-12 0.43 3.45

Naphthalene/nylon-6,10 0.09 2.27

Naphthalene/nylon-6,12 0.01 1.17

Naphthalene/polystyrene 0.38 0.36

Naphthalene/Teflon 4.64 0.94

Naphthalene/siliconized glass 7.81 2.84

Biphenyl/biphenyl 0.67

Biphenyl/acetal 1.46 4.12

Biphenyl/nylon-6 1.15 3.59

Biphenyl/nylon-6,6 1.04 3.59

Biphenyl/nylon-12 0.60 2.56

Biphenyl/nylon-6,10 0.20 1.59

Biphenyl/nylon/6,12 0.00 0.69

Biphenyl/polystyrene 0.23 0.13

Biphenyl/Teflon 4.03 1.46

Biphenyl/siliconized glass 6.56 3.12

Thymol/thymol 0.00

Thymol/acetal 2.76 2.90

Thymol/nylon-6 2.44 2.63

Thymol/nylon-6,6 2.22 2.40

Thymol/nylon-12 1.52 1.67

Thymol/nylon-6,10 0.85 0.96

Thymol/nylon-6,12 0.23 0.29

Thymol/polystyrene 0.00 0.00

Thymol/Teflon 2.39 2.20

Thymol/siliconized glass 3.78 3.55

o-Terphenyl/o-terphenyl 0.33

o-Terphenyl/acetal 0.95 2.40

o-Terphenyl/nylon-6 0.74 2.07

o-Terphenyl/nylon-6,6 0.63 1.88

o-Terphenyl/nylon-12 0.30 1.26

o-Terphenyl/nylon-6,10 0.05 0.64

o-Terphenyl/nylon-6,12 0.04 0.13

o-Terphenyl/polystyrene 0.49 0.02

o-Terphenyl/Teflon 4.89 2.70

o-Terphenyl/siliconized glass 7.09 4.40
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with a micrometer eyepiece graticule. With the aid of a temperature programmer, it 
was possible to adjust the velocity of the interface at will.

Conventionally, such experiments were performed with the aim of determining 
what is called the critical velocity, Vc; that is, the velocity that separates pushing 
and engulfing of particles. However, from experimental observations, the transition 
from pushing to engulfing is not sharp so that three modes of particle behavior may 
be defined. As illustrated in Figure 12.1, at relatively high rates of solidification, the 
particles are engulfed instantly on contact with the solidification front (mode 1). At 
intermediate rates, the particles are pushed through various distances before being 
engulfed (mode 2). At relatively low rates of solidification, steady-state pushing of 
any individual particle can be observed without engulfment (mode 3). Typical exam-
ples of these three modes of engulfing and pushing for various particle diameters are 
represented in Figures 12.4 and 12.5.

table 12.5 (Continued)
solid–liquid (γsl), particle–liquid (γpl), and particle–solid (γps) 
interfacial tensions at the melting points of matrix materials 

system γsl (mJ/m2) γpl (mJ/m2) γps (mJ/m2)

Salol/salol 0.01

Salol/acetal 1.20 1.42

Salol/nylon-6 1.03 1.23

Salol/nylon-6,6 0.87 1.05

Salol/nylon-12 0.45 0.59

Salol/nylon-6,10 0.14 0.22

Salol/nylon-6,12 0.01 0.00

Salol/polystyrene 0.33 0.22

Salol/Teflon 4.25 3.86

Salol/siliconized glass 5.74 5.29

2-Phenyl phenol/2-phenyl phenol 0.00

2-Phenyl phenol/acetal 0.33 0.34

2-Phenyl phenol/nylon-6 0.21 0.22

2-Phenyl phenol/nylon-6,6 0.16 0.17

2-Phenyl phenol/nylon-12 0.02 0.03

2-Phenyl phenol/nylon-6,10 0.03 0.02

2-Phenyl phenol/nylon-6,12 0.37 0.35

2-Phenyl phenol/polystyrene 1.21 1.18

2-Phenyl phenol/Teflon 6.81 6.75

2-Phenyl phenol/siliconized glass 9.39 9.31

Pinacol/pinacol 0.00

Pinacol/acetal 3.77 3.85

Pinacol/nylon-6 3.44 3.52

Pinacol/nylon-6,6 3.15 3.22

Pinacol/nylon-12 2.29 2.35
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The three modes of particle pushing are clearly shown in both figures. The area 
between the broken lines in each figure represents mode 2. These transition velocities 
are clearly particle size dependent. This was to be expected, since dynamic effects 
(e.g., viscous drag, wall friction, etc.) retard particle motion more strongly the larger 
the particles. For both matrix materials, the transition velocities are higher for acetal 
particles than for nylon particles of the same size. Figures 12.4 and 12.5 show that 
the transition velocities are higher for naphthalene than for biphenyl, whereas the 
thermodynamic driving forces would predict the opposite behavior. This finding is 
therefore probably due to fluid mechanic effects. According to the experimental data 
(Figures 12.4 and 12.5), the critical velocity, Vc, is defined as the central line through 
the area representing mode 2.

The critical velocity of engulfing, Vc, can be understood as follows. If the free 
energy of adhesion between the solidification front and the solid particle is positive, 
then repulsion occurs, and the particle will be pushed along at low rates of solidi-
fication. This motion, however, sets up a viscous drag force acting on the particle 
and opposing the thermodynamic or van der Waals type of repulsion. As the rate of 
solidification increases, the viscous drag will increase and finally overpower the van 
der Waals type of repulsion; engulfment will take place, and the corresponding rate 

table 12.6 
theoretical predictions (ΔFeng in mJ/m2) and microscopic Observations of 
particle behavior at solidification fronts

naphthalene biphenyl thymol
o- 

terphenyl salol
2-phenyl 
phenol pinacol

Acetal  + 4.06  + 2.66  + 0.20  + 1.45  + 0.22  + 0.01  + 0.08

Ra R R R R R R

Nylon-6  + 3.69  + 2.44  + 0.19  + 1.33  + 0.20  + 0.01  + 0.08

R R R R R — (E)

Nylon-6,6  + 3.58  + 2.35  + 0.18  + 1.25  + 0.18  + 0.01  + 0.07

R R R R (E) — (E)

Nylon-12  + 3.02  + 1.96  + 0.15  + 0.96  + 0.14  + 0.01  + 0.06

R R R R R (E) R

Nylon-6,10  + 2.18  + 1.39  + 0.11  + 0.59  + 0.08 –0.01  + 0.05

R R R R R (E) R

Nylon-6,12  + 1.16  + 0.69  + 0.06  + 0.09 –0.01 –0.02  + 0.03

R R R R (E) (E) E

Polystyrene –0.02 –0.10  + 0.00 –0.47 –0.11 –0.03  + 0.01

E E R E E E R

Teflon –3.70 –2.57 –0.19 –2.19 –0.39 –0.06 –0.05

E E (E) E E E R

Siliconized 
glass

–4.97 –3.44 –0.23 –2.69 –0.45 –0.08 –0.06

E E E E E E E

a R, rejection; E, engulfing; (E), reorientation and engulfing.
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of solidification is the critical velocity, Vc. The latter is thus a measure of the balance 
between van der Waals repulsion and viscous drag. Thus, in essence, measuring the 
critical velocity of engulfing Vc and knowing the viscous drag on the particle would 
allow one to determine the van der Waals interaction of the particle with the solidi-
fication front, and hence the free energy of adhesion, ΔFadh, and other interfacial 
free-energy quantities, such as the solid-melt interfacial tension.

Unfortunately, even the description of viscous drag acting on a spherical par-
ticle near a flat and smooth solid is a complicated matter. Generally, particles used 
in the engulfment experiments are not spherical, but are irregularly shaped, and 
are therefore only characterized by a mean diameter. Furthermore, the solidifica-
tion front is not necessarily smooth and flat. In addition, due to different thermal 
conductivities of solid, melt, and particle material, the particle itself may modify 
the shape of the solid-melt interface. It is in view of these complications that a 
scheme of dimensional analysis was developed [30] for the description of pushing 
and engulfing of particles by a solidification front. This analysis provides a cor-
relation between the critical velocity, the related material properties, and the free 
energy of adhesion.
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658 Dongqing Li, Yi Zuo, and A. Wilhelm Neumann

As discussed above, the driving forces for particle pushing are provided by the 
interfacial free energies whereas the main retarding force is hydrodynamic drag. The 
various particle and matrix properties that appear in the expressions for the retarding 
and driving forces can thus be combined by the method of dimensional analysis. In 
engulfing experiments, the particles are wholly in the melt as they are being pushed, 
so that apart from the free-energy change at the interface, only melt and particle 
properties will be taken into account. Through a more complete physical analysis of 
the process, the following can be concluded [30]:

 1. The shape of the interface behind the particles is a determining factor for 
particle engulfment; the shape is affected by the relative thermal conduc-
tivities of the particle and the melt (and, to a lesser extent, those of the 
solid phase). This means that thermal transfer governs the shape formation 
and that a relevant dimensionless parameter should be the ratio, F, of the 
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interfacial free energy per unit area to the heat content of the particle per 
unit surface area of the particle, since this ratio compares the two potential 
energies of the problem:

 F
F
c DT

adh

p p

= ∆
ρ

,  (12.28)

  where T is the interface absolute temperature, ΔFadh is the free energy of 
adhesion per unit area, and D, ρp, and cp are the mean diameter, density, and 
specific heat of the particle, respectively.

 2. The solidification front proceeds by mass diffusion: the diffusion sequence 
may not be adequately described from the point of view of a continuous 
fluid flow since the gap between solidification front and particle is very 
small; that is, of molecular dimension; but if one refers to kinetic theory, 
a solution is given by the Stokes–Einstein relation for spherical molecules 
diffusing very slowly in a stationary fluid, and the self-diffusion coefficient 
can be calculated. The appropriate dimensionless parameter is the Lewis 
number of the melt, which is the ratio between mass and heat diffusion; 
that is,

 Le
Dl

l

=
α

,  (12.29)

  where Dl is the self-diffusion coefficient of the liquid phase, and αl is the 
thermal diffusivity of the melt, αl = kl/(ρlcl), with kl, pl, and cl represent-
ing the thermal conductivity, the density, and the specific heat of the melt, 
respectively.

 3. The various work terms that act on the particle are proportional to the fol-
lowing quantities: (a) the work done against the interface ΔFadhD2; (b) the 
thermal energy exchanged (mainly through conduction since convection 
effects are improbable), kpTD2/Vc; (c) the work done by viscosity, µVcD2; 
and (d) the work of the inertia force, ρpVc

2D3. 
   Conceptually, this analysis leads to three independent dimensionless 

parameters containing the above work terms, and it is convenient to intro-
duce these as the Reynolds number,

 Re V Dl c= ρ µ/ ,  (12.30)

  the “capillary number,”

 ∆F Vadh
c/ ,µ  (12.31)

  and the ratio of the free energy of adhesion to the conducted heat, 

 V F k Tc
adh

p∆ / .  (12.32)
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On the basis of the above dimensional reasoning, the following general relationship 
holds:

 φ µ( , , , / , 0.F Le Re F V V F k Tadh
c c

adh
p∆ ∆ / ) =  (12.33)

Correlation of the experimental data can therefore be sought in the form [30]

 Re hF Le F V V F k Tl n adh
c

p
c

adh
p

q= ( ) ( )∆ ∆/ / .µ  (12.34)

Experimental determination of the four exponents, l, n, p, and q would involve 
four independent sets of measurements, but only three are easily accessible; that is, 
changes in the particle materials, in particle diameter, and in the matrix material. 
Therefore, a further hypothesis is necessary and it was decided arbitrarily to group 
two parameters (assuming implicitly that their exponents are equal) by replacing the 
two last ones by their geometric mean:

 Q
F
V

V F
k T

F

k T

adh

c

c
adh

p

adh

p

=








 =

( )
∆ ∆ ∆
µ µ

1 2

1

/

/22
, (12.35)

which reduces Equation 12.34 to

 Re hF Q Lel m n= .  (12.36)

For computing these exponents, one must notice that the Lewis number depends 
on the properties of the melt only, and that D appears only in Re and F. Then, the 
determination of the four constants, h, l, m, and n can be based on the following 
strategy:

 1. For given matrix and particle materials, all the variables will remain con-
stant except Vc and D, so that

 Re Fl∝ ,  (12.37)

  and l can be determined from the slope of a plot of log Re versus log F .
 2. For a given matrix material and fixed particle diameter (but different par-

ticle materials), only Q varies, and

 Re F Ql m⋅ ∝− ,  (12.38)

  which gives m.
 3. For a fixed particle material and fixed particle size, Vc and the melt proper-

ties will change, hence
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 Re F Q hLel m n⋅ =− − ,  (12.39)

  and the constants h and n can be deduced from a logarithmic plot of

ReF Q Lel m− − versus .

Based on the above strategy and a large number of experimental data, 
Equation 12.36 finally becomes [30]:

 Re F Q= × − −1 29 10 3 0 52 1 70. ,. .   (12.40)

for D < 100 µm; and

 Re F QRe= × − − − −3 98 10 29 3 15 1 10 11 12. ,. . log .   (12.41)

for D > 100 µm.
The formulation of Equation 12.36 assumes implicitly that the exponents l, m, and 

n are constants. The determination of l from the experimental data showed that l is 
not unique, but depends on particle size. While l is constant for small particles up to 
approximately 100 µm diameter, it depends on Re for larger particles. If one wishes 
to maintain a formulation with constant exponents, l may be rewritten in the follow-
ing form: l = –a – b log Re with a = 0.52, b = 0 for D < 100 µm and a = 3.15, b = 1.10 
for D > 100 µm. Equation 12.36 may then be written as

 Re hF Q Leb F a m n1+ −=log .   (12.42)

Although the formulation of Equation 12.42 makes all of the exponents con-
stant, it must be realized that the existence of the two different particle-size 
regimes has not been included in the physical analysis used as a guide for the 
dimensional analysis. A possible explanation is that for small particles, surface 
effects are predominant; whereas for larger particles, volume effects start playing 
a significant role.

12.6  determinatiOn Of partiCle Or sOlid surfaCe 
tensiOns frOm the CritiCal VelOCity

As discussed in the previous sections, at the critical velocity, Vc, the repulsive force, 
due to a positive ΔFadh, and the retarding forces acting on the particle are equal, 
and hence engulfment results from any small disturbance. Through the dimen-
sional analysis, the critical velocity, Vc, and the free energy of adhesion, ΔFadh, are 
related through Equation 12.40 or Equation 12.41. Because the physical properties 
(involved in Equation 12.40 or Equation 12.41) of the various matrix materials are 
known or can be determined experimentally, it is thus possible, using Vc data, to 
calculate ΔFadh by Equation 12.40 or Equation 12.41. Having thus obtained a value 
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for ΔFadh, one can, through the equation of state approach, obtain the various rel-
evant interfacial tensions and in this manner determine the surface tension of small 
particles, γpv. Thus, the sequence of steps required to obtain, for example, γpv may 
be summarized as follows:

 Vc → Dimensional analysis → ΔFadh → Equation of state for → γpv

 (by Equation 12.40 or interfacial tensions
 Equation 12.41)

In such a procedure, the γlv values can be obtained experimentally by conventional 
methods such as the Wilhelmy plate technique or a drop shape method (see Chapter 3). 
The solid surface tension γsv of the respective matrix materials may be determined 
through the contact angle/equation of state approach as described in Section 12.4 
(see also Chapters 8 and 9 for details). Because contact angle  measurements at the 
melting point of the matrix material are not feasible, these measurements must be 
performed as a function of temperature at temperatures below the melting point, 
with the data at the melting point obtained by extrapolation. A suitable method for 
such temperature-dependent contact angle measurements is the technique of capil-
lary rise at a vertical plate (see Chapter 6).

To illustrate this approach, let us consider particle-thymol systems with polym-
ethyl methacrylate (PMMA) and polyvinyl chloride (PVC) particles as an example. 
As discussed before, the solid-vapor and liquid-vapor interfacial tensions of thymol 
have to be determined first. As literature data on the viscosity of thymol are not 
available, this quantity was measured with an Ostwald viscometer placed in a liquid 
bath at the melting point of the matrix material. The liquid–vapor surface tension, 
γlv, for thymol at its melting point was determined from temperature-dependent sur-
face tension measurements at and above the melting point, using the Wilhelmy plate 
method [54]. These data are given in Figure 12.6. The surface tension at the melting 
point of thymol was taken from the curve fit of the data in Figure 12.6 using lin-
ear regression. The results of these viscosity and surface tension measurements are 
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fiGure 12.6 Temperature dependence of the liquid-vapor surface tension for thymol at 
and above its melting point, 51.5ºC.
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given in Table 12.7 with the liquid density and the melting temperature as obtained 
from the literature; this information is also given for three additional matrix materi-
als: benzophenone, bibenzyl, and naphthalene.

The solid-vapor surface tension, γsv, of thymol at the melting point was obtained 
from the extrapolation of temperature-dependent contact angles measured with glyc-
erol on thymol in the solid state. Smooth surfaces of thymol were prepared by solvent 
casting [1]. Contact angles were measured using the capillary rise at a vertical plate 
method [55,56] and then converted to solid surface tensions via the equation of state 
approach. A line fit to the data using linear regression was extrapolated to obtain the γsv 
value at the melting point. The measurements of capillary rise, h, for thymol-glycerol 
are given in Figure 12.7, together with the resulting contact angles and γsv values. The 
γsv values at the melting point are given for all four matrix materials in Table 12.7.

Having measured the required physical properties for thymol, it is now possible to 
determine particle surface tensions, γpv, from critical velocity measurements using thy-
mol as the matrix. To illustrate the procedure for determining γpv from freezing front 
experiments, critical velocity measurements with PVC and PMMA particles in thymol 
will be used to calculate the surface tensions of these two particles. These surface ten-
sions will then be compared with values obtained from contact angle measurements.

Solidification front experiments with PVC and PMMA particles must first be 
performed in order to obtain Vc data. Figure 12.8 shows the experimental observa-
tions of pushing, engulfment, and transition; that is, momentary pushing followed 
by engulfment for PVC particles in thymol [2]. The critical velocity curve for this 
system is then obtained from the center line of the band between the broken lines in 
Figure 12.8, as before. Critical velocity curves produced in this manner for PVC and 
PMMA in thymol are given in Figure 12.9. Points on each curve for a range of diam-
eters were selected and ΔFadh was calculated from the physical properties of PVC and 
PMMA given in Table 12.8. The particle surface tension, γpv, was calculated for each 
diameter ΔFadh using the previously determined values of γlv and γsv for thymol (see 
Table 12.7). The results are summarized in Table 12.9. The slight variation in γpv for 
the different diameters is thought to be due to experimental error. An average value 
of γpv for the various particle sizes was calculated.

As a check on the γpv values obtained from Vc measurements, the surface tensions 
of PVC and PMMA were determined from contact angle measurements [1]. Since 
these measurements were performed at 20°C, a value of (dγpv)/(dT) = –0.075 mJ/m2 ºC 

table 12.7
physical properties of matrix materials: density, ρl, Viscosity, μ, 
surface tensions, γlv, γsv, and melting temperature, Tmp

matrix material ρl (kg/m3) Tmp (ºC)
μ × 103

(pa s) γsv (mJ/m2) γlv (mJ/m2)

Thymol 925 51.5 3.97 29.4 29.9

Benzophenone 1140 48.0 5.15 34.5 39.9

Bibenzyl 958 52.0 2.46 20.8 24.9

Naphthalene 978 80.0 0.967 22.9 32.8
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was assumed [1] for both PVC and PMMA in order to obtain surface tension values at 
51.5ºC. These results are also given in Table 12.9. It is apparent that there is good agree-
ment between the two experimental strategies, supporting our contention that the freez-
ing front technique is a valid tool to characterize surface properties of small particles.

In the foregoing discussions, particle-vapor interfacial tensions were obtained from 
Vc in situations where the matrix properties γlv and γsv were known. It stands to reason 
that it should be possible to determine the surface tension of the matrix material in 
the solid state, γsv, if its surface tension in the liquid state, γlv, as well as the surface 
tension of the particles, γpv, are known. This possibility may be of practical interest 
as it may be easier to perform freezing front experiments than precise temperature-
dependent contact angle measurements. The procedure is illustrated below.

Surface tensions of the melt of benzophenone and bibenzyl as well as viscosities 
were determined as described above. Freezing front experiments were performed 
with particles of acetal and nylon, the surface tensions of which are known [29]. 
The results for acetal particles in benzophenone are shown in Figure 12.10. Again, 
the center line of the “transition” band was established as the critical velocity, Vc, 
and plotted in Figure 12.11, together with the corresponding curves obtained from 
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fiGure 12.7 Temperature dependence of the contact angle, θ, of glycerol on solid thymol, 
determined from the capillary rise, h, on a flat vertical surface, and the temperature depen-
dence of the resulting surface tension, γsv, of thymol in the solid state. 



Behavior of Particles at Solidification Fronts 665

Engulfment
1.25

1.0

0.75

0.5

0.25

0 20 40 60
Particle diameter D (µm)

So
lid

ifi
ca

tio
n 

fro
nt

 ve
lo

ci
ty

 V
 (µ

m
/s

ec
)

80 100

Transition
Rejection

fiGure 12.8 Solidification front velocity of thymol as a function of particle diameter for 
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measurements with nylon particles. Corresponding curves for bibenzyl were simi-
larly obtained and are given in Figure 12.12. The values of ΔFadh for each particle-
matrix system were then calculated as before, using the data in Tables 12.7 and 12.8. 
Table 12.10 shows the results of these calculations for particles in benzophenone. In 
the case of bibenzyl, only average ΔFadh values are reported (see Table 12.11).

Finally, to obtain γsv for these materials, it is necessary to use the equation of state 
approach in conjunction with the known values of γpv, γlv, and ΔFadh. The surface ten-
sion values, γsv, obtained from the measurements with each type of polymer particle 
are given in Tables 12.11 and 12.12, respectively. Final average γsv values are also 
given. The consistency of the results obtained for the different particle materials is 
remarkable.

In order to test the accuracy and reliability of these results, contact angles that a 
liquid of known surface tension (i.e., glycerol with γlv = 63.4 mJ/m2) would form on 
benzophenone and bibenzyl were predicted and compared with actual contact angle 
measurements. In order to avoid the complexities of the capillary rise measurements 
at elevated temperatures, contact angle measurements on solid benzophenone and 

table 12.8
physical properties of particle materials: densities, 
ρp, specific heats, Cp, and thermal Conductivities, kp

particle material ρp (kg/m3) Cp (J/kg k) kp (W/m k)

PVC 1400 1250 0.163

PMMA 1250 1380 0.188

Acetal 1430 1520 0.260

Nylon-6 1090 1600 0.260

Nylon-6,6 1080 1590 0.260

Nylon-12 1060 1590 0.260

Nylon-6,12 1040 1590 0.260

table 12.9
particle surface tension, γpv, determined from Critical Velocity 
measurements in thymol and Compared with γpv Values Obtained 
from direct Contact angle measurements. γpv Given for 51.5ºC

particle 
material

diameter 
D (μm) vc (μm/s) γpv (mJ/m2)

γpv 
(average) 
(mJ/m2)

γpv (from θ 
measurements) 

(mJ/m2)

PVC

20 1.10 33.2

40 0.60 32.5 32.7 31.8

60 0.45 32.3

PMMA

20 2.20 36.4

40 1.10 34.8 35.3 36.8

60 0.80 34.8
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bibenzyl were simply performed at room temperature. However, the γsv values in 
Tables 12.11 and 12.12 refer to the respective melting points of the two matrix mate-
rials. Therefore, the γsv values for 20°C were calculated by assuming, as before, a 
temperature coefficient (dγsv)/(dT) = –0.075 mJ/m2 ºC. Contact angles that glycerol 
would form on surfaces of benzophenone and bibenzyl were then predicted from 
the equation of state approach. Next, contact angles were measured with glycerol 
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fiGure 12.10 Solidification front velocity of benzophenone as a function of particle diam-
eter for acetal particles.
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fiGure 12.12 Critical velocity of bibenzyl solidification front as a function of particle 
diameter obtained from the mean of the band of plots of the type given in Figure 12.10. 

table 12.10 
free energy of adhesion, ΔFadh, for particles in 
benzophenone determined from Critical Velocity, vc, 
measurements

particle 
material

diameter 
D (μm) vc (μm/s) ΔFadh (mJ/m2)

ΔFadh 
(average) 
(mJ/m2)

Acetal 30 14.0 0.684

60 9.5 0.652 0.655

90 7.3 0.628

Nylon-6 30 8.5 0.488

60 6.3 0.507 0.496

90 5.0 0.492

Nylon-6,6 30 8.1 0.477

60 5.9 0.484 0.475

90 4.6 0.463

Nylon-12 10 2.9 0.130

20 2.2 0.135 0.131

30 1.7 0.129
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on layers of benzophenone and bibenzyl obtained by solvent casting. Clean glass 
slides were dipped in a bath containing a 1% solution of benzophenone or bibenzyl 
dissolved in a suitable solvent. These glass slides were then stored in an evacuated 
desiccator for at least 4 hours to remove excess solvent. Contact angle measurements 
were performed using the vertical plate method [55,56]. The results of these mea-
surements, together with the predictions from the critical velocity measurements, 
are given in Table 12.13. The agreement is excellent, indicating that the solid surface 

table 12.11 
solid-Vapor surface tension, γsv, for bibenzyl at 52ºC, Calculated 
from ΔFadh Obtained from vc measurements and known Values 
of the particle-Vapor surface tension, γpv, and the liquid-Vapor 
surface tension, γlv (γlv = 24.9 mJ/m2 at the melting point)

particle material γpv (mJ/m2) ΔFadh (mJ/m2) γsv (mJ/m2) γsl (mJ/m2)

Acetal 44.3 2.59 20.3 0.345

Nylon-12 40.6 1.54 21.5 0.191

Nylon-6,12 34.0 1.14 20.7 0.294

Average values 20.8 0.280

table 12.12
solid-Vapor surface tension, γsv, for benzophenone at 48ºC, 
Calculated from ΔFadh Obtained from vc measurements and known 
Values of the particle-Vapor surface tension, γpv, and the liquid-
Vapor surface tension, γlv (γlv = 39.9 mJ/m2 at the melting point)

particle material γpv (mJ/m2) ΔFadh (mJ/m2) γsv (mJ/m2) γsl (mJ/m2)

Acetal 44.5 0.655 34.5 0.381

Nylon-6 43.7 0.496 34.9 0.326

Nylon-6,6 43.1 0.475 34.3 0.410

Nylon-12 40.8 0.131 34.3 0.410

Average values 34.5 0.381

table 12.13 
Contact angle, θ, of Glycerol (γlv = 63.4 mJ/m2) on 
solid matrix materials at 20ºC

matrix material
θ from vc 

measurements (deg)
θ from direct 

measurements (deg)

Benzophenone 64.0 64.9

Bibenzyl 88.3 86.5
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tensions, γsv, obtained for benzophenone and bibenzyl from freezing front experi-
ments are reliable.

12.7  appliCatiOns Of sOlidifiCatiOn frOnt teChnique 
tO determine partiCle surfaCe tensiOns

12.7.1 surFace tensIons oF FIBers

The wettability of reinforcing fibers is of interest since this property has an effect 
on the fiber-resin bond strength in composite materials. The overall strength of a 
reinforced material depends heavily on how strong this bond is. Good adhesion 
is essential for the transfer of stresses, thus strengthening the composite material, 
while poor adhesion means a decrease in the composite tensile or compression 
strength or the lack of ability of the material to maintain its normal strength on 
exposure to water under adverse conditions. An important condition for achieving a 
good adhesive bond between the fiber and matrix resin is that the liquid has to wet 
the surface of the fiber to obtain complete and intimate contact. For a liquid resin 
to wet or spread on a fiber completely, the surface tension of the liquid resin must 
be less than that of the fiber itself. Therefore, in order to optimize the reinforcement 
of the composite material, it is necessary to know the surface tension of the liquid 
resin and the solid surface tension of the fiber. The fibers used for the study were 
a high-strength, high-modulus carbon fiber (Thornel 300 carbon fiber from Union 
Carbide Corp.) and an aromatic polyamide fiber (Kevlar, from DuPont de Nemours 
& Co.).

In the solidification front experiments, the fibers were first chopped into small 
segments from 10 to 300 µm in length before being put into the solidification cell. 
At low solidification front velocities, the fibers always lined up with the front and 
were then pushed further along. Such observations were considered to be rejec-
tion. Sometimes, after being pushed for a small distance (less than, approximately, 
30 µm) they were engulfed by the advancing front. Since it was not certain whether 
these cases were engulfments or rejections, they were recorded as “transitions.” If 
the fiber was engulfed immediately after it had lined up with the front, it was taken 
as an “engulfment.” From the plots of the solidification front velocity versus the fiber 
particle length, the upper limit of the critical velocity was taken as the line above 
which all the fiber particles were engulfed and the lower limit was taken as that 
below which all the fiber particles were rejected. The average between these two 
limits was taken as the mean critical velocity, as before.

For interpreting the results of solidification front measurements, the effective 
“particle diameter” of the fiber was taken as the diameter of a sphere with equiv-
alent projected area. The physical properties of the matrix materials are given in 
Table 12.7. From the measured mean critical velocity values, the average fiber sur-
face tensions, γpv, were calculated [57] using the procedure described in Section 12.6. 
It was found [57] that the surface tensions of the fibers do not depend on the fiber 
length, and the average surface tensions over all matrix materials are 41.8 mJ/m2 for 
carbon fiber and 46.4 mJ/m2 for Kevlar, respectively, at 24°C. An error analysis was 
performed [57] by taking into account the errors in critical velocity. It was found 
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that the error limits for the results where thymol was used as a matrix material were 
approximately ±1.5 mJ/m2 while for those results with matrix materials other than 
thymol, the errors were substantially lower, between 0.1 and 0.7 mJ/m2. Once the 
surface tensions of the fibers and the liquid melt are known, the corresponding con-
tact angles can be calculated using the equation of state approach.

The solid surface tensions of the fibers measured from the solidification front 
technique were compared with those measured from the contact angle/equation of 
state approach [57]. The contact angles were determined from the Wilhelmy plate 
technique [58,59] (see also Chapter 6 for details). Briefly, due to capillary effects, 
when a vertical solid plate is partially immersed into a liquid, the liquid will either 
rise or be depressed along the vertical wall, thus exerting a force on the solid. The 
magnitude of the force, F, exerted on the plate by the liquid is given by

 F p lv= γ θcos ,  (12.43)

where p is the perimeter of the solid, γlv is the liquid surface tension, and θ is the 
contact angle between the solid and the liquid. Therefore, if the perimeter of the 
immersed fiber and the surface tension of the liquid are known, the contact angle 
between the fiber and the liquid matrix can be calculated by measuring the pulling 
force, F, using an electrobalance.

To calculate the contact angle accurately, the precise value for the perimeter of 
the fiber must be known. The perimeter of the fiber was obtained by first dipping the 
fiber into a liquid that was known to wet the fiber completely. Under the complete 
wetting condition, cosθ in Equation 12.43 is equal to 1; thus, the perimeter, p, is 
determined by

 p
F

lv

=
γ

.   (12.44)

Since the two fibers, Thornel 300 and Kevlar, were expected to have surface proper-
ties close to common polymers, a liquid with low surface tension should wet the fibers 
completely. Toluene, which has a surface tension of 28.4 mJ/m2 at 24ºC, was chosen. 
It was found that the diameters of the carbon fibers were rather uniform from one fiber 
to another, ranging from 6.8 to 8.0 µm. The diameters of the Kevlar, which ranged 
from 10.8 to 13.4 µm, seemed to have a wider variation between fibers. The fiber 
diameter was further checked by using a digital image analysis system (Bausch & 
Lomb Omnicon 3000).

The gravimetric results obtained from the Wilhelmy plate method were used to 
calculate the contact angles of three different liquids on the fibers. The results are 
listed in Table 12.14. Using the equation of state for interfacial tensions, at 24ºC, the 
average surface tension of the carbon fiber was found to be 42.4 mJ/m2 and that for 
Kevlar was 43.7 mJ/m2, as summarized in Table 12.14. The error limits in Table 12.14 
include the errors in the electrobalance output, the liquid surface tensions, and the 
fiber perimeter measurements.
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A comparison of the results obtained from the Wilhelmy plate technique and the 
solidification front technique is shown in Table 12.15. The contact angles and surface 
tensions determined by these two techniques for the carbon fibers are essentially 
the same. For the Kevlar fibers there is a somewhat larger discrepancy in the results 
obtained by the two techniques. Overall, the comparison of the results illustrates 
that both techniques will produce reliable surface tension and contact angle data for 
small-diameter fibers.

It should be noted that, in the Wilhelmy plate experiment, it is not possible to 
measure the fiber diameter and the contact angle simultaneously; also, finding the 
correct perimeter of a less uniform fiber might be difficult. The fiber geometry is also 
very important; for example, a convoluted cross section would generate a wicking 
effect and thus give incorrect balance readings. Furthermore, a rough fiber surface 
would result in a large contact angle hysteresis, entailing the possibility of obtain-
ing an incorrect contact angle measurement. Since the Kevlar fibers used in this 
investigation have a rougher surface than the carbon fibers, it may be expected that 
the solidification front experiments will give more reliable results than the Wilhelmy 

table 12.14 
the static advancing Contact angle, θa, of Various liquids on 
Carbon and kevlar fibers and the surface tension, γpv, of the 
fibers, as Obtained from Wilhelmy plate measurements

fiber liquid θa (deg) γpv (mJ/m2)

Carbon Ethylene glycol 31.2 ± 8.8 41.6 ± 3.2

Carbon Glycerol 55.7 ± 3.6 42.2 ± 1.6

Carbon Water 66.0 ± 2.6 43.3 ± 1.5

Kevlar Ethylene glycol 27.8 ± 5.7 42.8 ± 2.0

Kevlar Glycerol 52.8 ± 2.7 43.8 ± 1.6

Kevlar Water 63.8 ± 1.5 44.6 ± 0.9

table 12.15 
summary of the Contact angles, θ, and surface tension, γpv, of 
Carbon and kevlar fibers Obtained by the Wilhelmy plate 
technique and the solidification front technique

Wilhelmy plate technique solidification front technique

θ (deg) θ (deg)

fiber
With 
Water

With 
Glycerol γpv (mJ/m2)

With 
Water

With 
Glycerol γpv (mJ/m2)

Carbon 68.4 50.8 42.4 68.9 51.2 41.8

Kevlar 66.2 49.0 43.7 61.2 45.1 46.4
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plate method, as far as γpv is concerned. As for the solidification front method, there 
are fewer limitations. Also, the consistency and reproducibility shown in different 
matrix systems provide credence to the technique.

12.7.2 surFace tensIons oF BIoloGIcal cells

The solidification front technique has been applied to biological cells. Generally, 
the free energy of adhesion for the process of a cell coming into contact with a solid 
surface is given by

 ∆Fadh
cs cl sl= − −γ γ γ .  (12.45)

Here γcs is the interfacial tension of a cell-solid interface, while γcl and γsl are, respec-
tively, the surface tensions between the cell and the suspending liquid and between 
the solid and the suspending liquid. If ΔFadh is negative, the adhesion process is 
favored because it results in a net reduction of the free energy of the system. If ΔFadh 
is positive, the adhesion of the cell to the substrate increases the system’s free energy 
and is thus not favored. The validity of this type of analysis has been well estab-
lished through adhesion studies with granulocytes [60] and platelets [61,62], as well 
as through experiments pertaining to the engulfment of bacteria of differing surface 
tensions by human granulocytes [63].

In order to compute the free energy of adhesion as illustrated in Equation 12.45, 
it is necessary to obtain the surface tension of the cell along with the surface ten-
sions of the other interacting materials: for example, the suspending liquid and solid 
substrate. The surface tensions in Equation 12.45 can be calculated by means of the 
equation of state for interfacial tensions (see Section 12.4). In this way, Equation 
12.45 may be rewritten as

 ∆F f f fadh
cs cl sl cv sv cv lv= − − = − −γ γ γ γ γ γ γ γ( , ) ( , ) ( ssv lv, ),γ  (12.46)

where f(γ1v, γ2v) is an equation of state. The liquid surface tension, γlv, is usually 
easy to measure, for example, by the Wilhelmy plate method or the pendant drop 
method. The cell and solid substrate surface tensions, γcv and γsv, respectively, may 
be obtained by a variety of means including the freezing front technique. In the past, 
the surface tensions of biological cells have been determined using the equation of 
state approach, with contact angle measurements of drops of saline on monolay-
ers of cells such as granulocytes, lymphocytes, and platelets [63–66]. This tech-
nique, however, cannot easily be employed with the more rigid types of cells, such 
as glutaraldehyde-fixed erythrocytes, which do not readily adhere to a substrate to 
form a relatively regular monolayer of cells on which to perform the contact angle 
measurement [64,67].

In view of these limitations, the solidification front technique was used to measure 
the surface tension of biological cells such as fresh human lymphocytes and granulo-
cytes, as well as glutaraldehyde-fixed human erythrocytes [68,69]. The surface ten-
sions of these cells have been measured previously using other methods [60,64,70,71] 
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and thus it is also possible to compare the accuracy and suitability of the freezing 
front technique. The experimental procedures in these studies are essentially the 
same as explained for the determination of the critical velocity of engulfment in the 
previous sections. Once Vc is known, the mathematical procedures required to obtain 
the surface tension of the engulfed particles are also the same as given previously. In 
the cases where γcv is known, this scheme may be used to determine γsv.

The freezing front technique has been used previously only with organic matrix 
materials. With biological cells it is necessary, for physiological reasons, to use an 
aqueous matrix [64]. For this reason, as a first step, it was necessary to determine 
the surface tension of ice (i.e., γsv). Some preliminary results on the characterization 
of water as the matrix material have been previously reported by Shiffman [72]. For 
this purpose, it was necessary to obtain the critical velocity of a particle of known 
surface tension, γcv, in the water-ice matrix system. Then, the surface tension of bio-
logical cells may be determined from the critical velocities of these cells in a water-
ice matrix system. Procedures of this study are as follows:

 1. The surface tension of calibration cells (γcv) was determined with a matrix 
material of known γsv. The cells used for this purpose were glutaraldehyde-
fixed human erythrocytes and the matrix material was thymol.

 2. The critical velocity of engulfment (Vc) of these cells in a water-ice matrix 
system could then be established, after which the surface tension of ice (γsv) 
could be calculated.

 3. Vc of the biological cells of interest in the water-ice system was deter-
mined and used together with the γsv of ice, determined in Step 2, to 
obtain the γcv of these cells. Fresh human granulocytes and lympho-
cytes were  investigated. Details of the material preparation can be found 
elsewhere [69].

From a study [70,71] of the stability of cells suspended in various liquids (droplet 
sedimentation technique, Chapter 11), a value for the surface tension of glutaralde-
hyde-fixed human erythrocytes was obtained: γcv = 65.0 mJ/m2 at 25°C. In order to 
check this value, the critical velocity of engulfment of glutaraldehyde-fixed human 
erythrocytes was determined in thymol [69], an organic matrix material that had 
been extensively zone refined. Then, human erythrocytes from the same preparation 
batch were used to determine Vc in the water-ice system. By analyzing the experi-
mental results [69], the average critical velocity of erythrocytes in thymol at 51.5ºC 
(the solidification temperature of this matrix) was found to be 18 µm/s. The diam-
eter, D, of the erythrocytes was chosen as D = 4.94 µm; that is, the diameter of 
an idealized “spherical” erythrocyte of the same projected surface area as the real, 
disk-shaped one with its 8 µm diameter and 2.4 µm thickness. Using these values 
together with various matrix material and cell properties, the free energy of adhesion 
was calculated to be ΔFadh = 0.458 mJ/m2.

Since the solid-vapor (γsv = 29.4 mJ/m2) and the liquid-vapor (γlv = 29.9 mJ/m2) 
interfacial tensions of thymol are known [73,74], it is possible to calculate, using 
the equation of state for interfacial tensions, the surface tension, γcv, of the fixed 
 erythrocytes at 51.5ºC to be 61.9 mJ/m2.
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It is reasonable to assume a surface tension temperature dependence of –0.1 mJ/
m2 ºC [75], yielding a value of 67.1 mJ/m2 at 0°C, and 64.6 mJ/m2 at 25ºC, in excel-
lent agreement with the reported value [70,71]; that is, 65.0 mJ/m2 at 25°C. Having 
thus established the surface tension of the fixed erythrocytes, these cells were then 
used in a similar manner to determine the surface tension, γsv, of ice. It was found 
that fixed erythrocytes in water had a much higher critical velocity of 88 µm/s [69]. 
The corresponding free energy of adhesion is ΔFadh = 1.77 mJ/m2.

The surface tension of water (γlv) at 0°C is known to be 75.6 mJ/m2 [76]. Together 
with the γcv of erythrocytes measured above; that is, 67.1 mJ/m2 at 0°C, it is possible 
to obtain the surface tension (γsv) of ice: γsv

ice = 80.2 mJ/m2. This value is in reason-
able agreement with the results obtained from similar freezing front experiments by 
Shiffman [72]. More discussions about this value for the surface tension of ice can 
be found elsewhere [69].

Having obtained a value for the surface tension of ice, it was possible to use this 
value to obtain the surface tension of human granulocytes and lymphocytes from 
the critical velocities. The average critical velocities in water for fresh human lym-
phocytes and granulocytes were 13.5 and 31.0 µm/s, respectively. Using the same 
physical parameters as employed previously for the fixed erythrocytes, and using 
a measured average diameter of 11 µm for lymphocytes and 13 µm for granulo-
cytes, the free energies were found to be: ΔFadh = 0.531 mJ/m2 for lymphocytes and 
ΔFadh = 1.000 mJ/m2 for granulocytes.

Using the surface tensions of ice and water at 0°C (described above) with these 
free energies, the equation of state yields: γcv = 72.8 mJ/m2 for lymphocytes at 0°C 
and γcv = 70.5 mJ/m2 for granulocytes at 0°C. Correcting these values to 22ºC, assum-
ing, as before, a surface tension temperature dependence of –0.1 mJ/m2 ºC, results in: 
γcv = 70.6 mJ/m2 for lymphocytes and γcv = 68.3 mJ/m2 for granulocytes. To illustrate 
the relative behavior of the three types of cells in the water-ice matrix, the percentage 
rejection histograms for each cell have been plotted on a common velocity axis in 
Figure 12.13. The large differences in critical velocity reflect the tremendous sensitivity 
of the freezing front technique to small differences in the surface tension of the cells.

The average cell surface tension values determined by the freezing front tech-
nique agree well with the results obtained via alternative techniques, as indicated 
in Table 12.16. This suggests that the technique does indeed provide an alternate 
and valid method for the determination of cellular surface tensions. The outstand-
ing feature of the freezing front technique is its sensitivity. A difference of only 
2.3 mJ/m2 in the surface tensions of lymphocytes and granulocytes produces a dif-
ference of 18 µm/s in the critical velocity. This pronounced sensitivity lends great 
promise to the method for detecting the small surface tension differences that have 
been reported to exist between healthy, normal cells, and pathological cells [77,78], 
and between normal and activated cells [79] or virus-transformed cells [80]. It is 
also possible that the freezing front technique may be able to discriminate between 
cell subpopulations, for example, between T and B lymphocytes. Phase partition 
chromatography [81] has been employed to determine qualitative differences in the 
hydrophobicity of various species of cells [82–85]. An advantage of the freezing 
front technique is that it is able to supply quantitative information about the surface 
tension of the cells studied.
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fiGure 12.13 Critical velocity rejection histograms of human erythrocytes, granulocytes, 
and lymphocytes in water. 

table 12.16 
Comparison of Cell surface tensions at 22ºC, Obtained by 
Various techniques

Cell type technique
surface tension at 22ºC 

(mJ/m2)

Granulocytes Contact angle 69.1

Freezing front 68.3

Lymphocytes Contact angle 70.1, 70.4

Freezing front 70.6

Fixed human erythrocytes Droplet sedimentation 65.0

Freezing front 64.9
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12.7.3 surFace tensIons oF coal PartIcles

The solidification front technique has been applied to study coal particles [86,87] 
in order to provide information relevant to coal processing, such as flotation. The 
matrix materials include thymol, biphenyl, and naphthalene. Figure 12.14 is a set 
of photomicrographs illustrating the process of engulfment of coal particles by an 
advancing solidification front of thymol.

The results indicate some small dependence of coal particle surface tensions 
on the matrix material and on particle size [86,87]. The dependence on the matrix 
material is believed to be due to the complexities of coal composition [86–89]. The 
dependence on particle size can be explained in terms of a decreasing percentage 
of inorganic matter in the coal of smaller particle size [86,88,89]. Surface tension 
values for a number of different coals are given in Table 12.17 for 60 µm diameter 
particles at 20°C.

When the solidification front experiments were performed with water as the 
matrix material, the surface tensions of coal particles were found to be much 
greater than those obtained using organic matrix materials. That is, in the pres-
ence of water, the coal is significantly more hydrophilic, with a surface tension 

1 2

43

fiGure 12.14 Photomicrographs illustrating an engulfing process of coal particles by an 
advancing solidification front of thymol.
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near that of water. This striking difference suggests that the same coal sample 
may have two effective surface tensions, or even a range of surface tensions, 
depending on the suspending liquid. It is likely that there is significant sorption 
of water by the coal particles so that they are perceived by other phases present 
as essentially “black water particles”. The fact that the particle size dependence 
exhibited in organic matrix materials vanishes in the case of water matrix sup-
ports this contention.

12.8  miCrOsCOpiC interpretatiOn Of 
partiCle-frOnt interaCtiOns

12.8.1 PartIcle-Front BehaVIor In VIeW oF Van der Waals InteractIons

As discussed in the previous sections, the thermodynamic predictions were found 
to be in excellent agreement with the microscopic observations of particle engulf-
ing and rejection by a solidification front. The observations of particle engulfment 
or rejection by a solidification front may also be understood on the basis of van 
der Waals interactions between the particles and the solidification front [90,91]. 
Integration of the van der Waals force between the interacting bodies from infinity 
to the equilibrium separation should yield the thermodynamic free energy of adhe-
sion [90,91]. Material parameters in the theories of van der Waals interactions, such 
as the macroscopic Lifshitz theory, should therefore be deducible from interfacial 
tensions and contact angles. It is desirable to know how well the predictions of the 
van der Waals interactions agree, or at least are consistent, with those of the free-
energy approach and the observed particle behavior at the solidification fronts. For 
this purpose, the systems chosen in these studies are largely nonpolar so that dipole 
orientation effects, which may play a considerable role at small separations [92], can 
be neglected.

table 12.17
particle surface tensions, γpv, from solidification 
front experiments in Organic matrix materials for 
Various bituminous Coal samples; γpv are Given 
for 60 μm particle size

Coal sample matrix material γpv at 20ºC (mJ/m2)

No. 2 Thymol 40.8 ± 1.1

Biphenyl 39.0 ± 0.3

Naphthalene 39.4 ± 0.4

Devco Thymol 39.7 ± 1.0

Minto Thymol 39.8 ± 1.1

B.C. Thymol 41.5 ± 1.4

Cardinal River Thymol 42.0 ± 1.9
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It has been shown [90,91] that the free energy of adhesion between a particle and 
a solidification front can be represented by an interaction potential energy between 
two semi-infinite slabs (i.e., the particle and the solidification front) in the presence 
of a third medium (i.e., the liquid):

 ∆F d
A

dpls
adh pls

pls

( ) ,0
0
212

= −
π

 (12.47)

where Apls is the combined Hamaker coefficient for the particle (p), liquid (l), and 
solid (s). Apls has energy units. d0pls is the minimum separation distance in a third 
medium (i.e., the liquid phase) at the point of particle-front adhesion. It is generally 
accepted that d0pls is close to the molecular distance and is usually given a  general 
value of 2 Å. This extremely small separation distance lays the foundation for the 
geometrical assumption of two infinite slabs used in deriving Equation 12.47. At 
larger separation distances, however, the interactions between a particle and a solid-
ification front should be more analogous to interactions between a sphere with a 
known radius and a semi-infinite slab.

It is known that the sign of the free energy change, ΔFeng in Equation 12.20, 
determines whether engulfment or rejection of the solid particles should occur. As 
adhesion of the particle to the solidification front is a necessary intermediate step in 
the process of engulfing, the sign considerations should in principle apply similarly 
to the free energy of adhesion, ΔFadh in Equation 12.23. In view of Equation 12.47, 
this means that for

 Apls > 0 (12.48)

particle engulfment is expected, and for

 Apls < 0, (12.49)

particle rejection should occur. Therefore, particle engulfment and rejection can be 
predicted in terms of Hamaker coefficients.

In order to predict particle engulfment and rejection according to Equations 12.48 
and 12.49, the value of the Hamaker coefficient, Apls, must be known. Generally, 
Apls can be calculated from the values of Hamaker coefficients, Aij (i, j = p, l, s) as 
discussed below.

In the derivation of Equation 12.47, it is assumed that only dispersion forces are 
operative. If the minimum separation distance is d0, and if Equation 12.47 is still 
applicable at such a small separation, then the Hamaker coefficient becomes, by 
combining Equation 12.47 with Equation 12.23,

 A dpls pls ps pl sl= − − −12 0
2π γ γ γ( ).  (12.50)
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Equation 12.23 yields, when written generally for two substances, i and j, and the 
vapor phase, v:

 ∆Fij
adh

ij iv jv= − −γ γ γ ,  (12.51)

so that

 γ γ γij ij
adh

iv jvF= + +∆ .  (12.52)

Substituting Equation 12.52 in Equation 12.50 yields

 A d F F F Fpls pls ps
adh

ll
coh

pl
adh

s= − + − −12 0
2π (∆ ∆ ∆ ∆ ll

adh),  (12.53)

where the cohesion energy ∆Fll
coh

lv= −2γ .

From Equation 12.47, the adhesion energy of two surfaces in a vacuum or a gas 
phase, ΔFij

adh, can be written as

 ∆F
A

dij
adh ij

ij

= −
12 0

2π
.  (12.54)

Substituting Equation 12.54 into Equation 12.53 yields

 A
d

d
A A A Apls

pls
ps ll pl sl= + − −( )0

2

0
2

,  (12.55)

where the assumption has been made that d0ps ≈ d0pl ≈ d0sl ≈ d0ll = d0. Equation 12.55 
is similar to the one first derived by Haymaker [93]

 Apls = Aps + All – Apl – Asl.  (12.56)

Obviously, Equation 12.55 will reduce to Equation 12.56 if the equilibrium separa-
tion distance between solidification front and particle in the liquid phase (d0pls) is the 
same as the equilibrium separation distance in a vacuum or a gas phase (d0). While 
there is evidence [1] that for practical purposes the equilibrium separation distances 
for two-phase systems are the same, no information on d0pls is available. The value of 
Apls calculated from Equation 12.56 was found to be lower than the results obtained 
by the more accurate macroscopic approach of Lifshitz and coworkers [94,95]. The 
latter approach yields

 A wpls pls= 3
4π
 ,  (12.57)
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where  is Planck’s constant divided by 2π, and wpls is the average frequency obtained 
from the optical properties of the phases p, l, and s. Visser [96] therefore proposed 
that Equation 12.56 should be modified to

 A C A A A Apls ps ll pl sl= + − −( ).  (12.58)

By using the Aii values obtained from the Lifshitz theory, Visser calculated the Aij 
values from the geometric mean combining rule,

 A A Aij ii jj= ( )1 2/
,  (12.59)

and then calculated Apls from Equation 12.58. Visser compared this value of Apls with 
that obtained directly from Equation 12.57 and deduced that for water, polystyrene, 
and gold, each as a third medium, C = 1.6, 1.7, and 3.1, respectively. Visser defined C 
as a correction for the transmission of a force through a third medium.

Returning to Equation 12.56, we note that two different approaches can be used 
to determine the Aij values required to calculate Apls. First, Aij can be calculated 
from the free energy of adhesion by combining Equation 12.54 with Equation 12.51. 
Second, Aij can be calculated from the free energy of cohesion using the following 
equations:

 ∆ ∆F F
A
dii

coh
iv ii

coh ii

ii

= − = −
2

12 0
2

γ
π

and ,  (12.60)

in conjunction with the geometric mean combining rule, Equation 12.59. The Hamaker 
coefficients obtained from the free energy of adhesion are designated Aij

a and those 
from the free energy of cohesion, Aij

c. In these calculations, the interfacial tensions, γpv, 
γsv, γpl, γsl, and γps, are determined by means of the equation of state for interfacial ten-
sions (see Section 12.4) and are listed in Tables 12.4 and 12.5. Furthermore, in order to 
calculate Hamaker coefficients, Aij, from relations of the type of Equation 12.54, one 
must have an explicit value of the equilibrium separation, d0, to which the free energy 
data presumably apply. In the absence of adequate direct information, one has two 
options. Either one uses lattice and atomic size considerations, or else one considers 
calibration systems for which Hamaker coefficients, surface tension, and free energy 
data are available so that one can calculate d0 from Equation 12.54. As it was desired 
to establish a connection between surface thermodynamics and theories of van der 
Waals interactions, the second alternative was chosen. To do so, the following materi-
als of known interfacial tensions and Hamaker coefficients were used to determine 
d0: polystyrene, Teflon, nylon-6,6, polymethyl methacrylate PMMA, n-decane, poly-
ethylene, polyvinyl acetate (PVA), and polyhexafluoropropylene (PHFP). The surface 
tension information for these materials is summarized in Table 12.18. The work of 
cohesion was determined from Equation 12.60 and Hamaker coefficients, Aii, were 
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then calculated for a range of hypothetical values of d0. These hypothetical Hamaker 
coefficients were compared, in each case, with the average of the literature values as 
compiled by Visser [96]. Agreement between the literature value and a specific hypo-
thetical value identified the correct equilibrium separation, d0 (see Table 12.19). These 
d0 values are very similar in all cases; the mean value is d0 = 1.82 Å. While it has been 
argued [97] on the basis of lattice and molecular size considerations that this separa-
tion distance should be approximately 4 Å, from the point of view of the macroscopic 
theory [90], implying a continuum model, an equilibrium separation of approximately 
2 Å is reasonable. Moreover, Israelachvili [98] has argued that d0 should not be com-
parable to lattice parameters, but rather to the separation between centers of polariza-
tion of the outermost atoms. His model calculations for a number of systems indeed 
show that d0 is very close to 2 Å in all cases. Finally, Table 12.20 shows the resulting 
Hamaker coefficients obtained for a variety of particle materials in naphthalene.

The three-phase Hamaker coefficients, Apls, are needed in order to predict  adhesion 
(engulfment) or rejection of the particles in the experiments mentioned above. These 
coefficients, Apls, were calculated using the two sets of Aij data: Aij

a and Aij
c, as explained 

previously. This resulted in two types of coefficients: Apls
a  and Apls

c , respectively, which 
are summarized in Table 12.21; they do not agree particularly well. Dividing Apls

a  by 
Apls

c  yields a correction factor, C, similar to that introduced in Equation 12.58. This 
factor, also given in Table 12.21, ranges from 1.49 to 2.0, well within the range of C 
values reported by Visser [96]. The average value is C = 1.8. It should be noted that 
the predictions of “attraction” and “repulsion” are identical for both calculations: 
the Hamaker coefficients for nylon-6,12, polystyrene, Teflon, and siliconized glass 
are positive, so that the theoretical prediction for these four systems is attraction 
(engulfment); for the other five materials, a negative Hamaker coefficient and hence 
repulsion is predicted.

Regarding the average value, C = 1.8, it has become apparent that [90] there is a 
fallacy in Visser’s arguments. Generally speaking, the modifying factor, C, is inti-
mately connected with the fact that the geometric mean combining rule, Equation 
12.59, is only an approximation. As a result, the Apls values obtained through the 
use of Equations 12.51 and 12.54 are always larger by a factor of 1.5–2.0 than those 
obtained using Equation 12.59. Therefore, the discrepancy between results from 
Lifshitz theory and Hamaker’s microscopic theory (Equation 12.56) is solely due 
to the inadequacies of the geometric mean combining rule. If more refined work in 
the future should show that a discrepancy remains between these two theories, then 

table 12.18 
surface tensions of Calibration systems

polystyrene teflon
nylon-

6,6 pmma n-decane polyethylene pVa phfp

γsv (or γlv) 
(mJ/m2)

33.0 20.0 46.0 39.0 23.9 31.0 41.0 17.0
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a factor C as in Equation 12.58 might have to be reintroduced and interpreted as a 
difference between d0pls and d0 (see Equation 12.55).

The microscopic observations of Table 12.6 are repeated in Table 12.22, together 
with the results for ΔFadh and the Hamaker coefficients, Apls. It is to be noted that the 
predictions of engulfment and rejection have to be the same as in Table 12.6, except 
in those cases where ΔFadh and ΔFeng have different signs. Comparing Equation 12.20 
with Equation 12.23, it is clear that ΔFeng > 0 and ΔFadh < 0 can indeed occur in 
some cases. In these cases, it is not clear a priori what should occur in the engulfing 
experiment. It is conceivable that the particle, after establishing an initial adhesive 
bond with the solidification front, becomes engulfed, although the later steps in the 
engulfing process are not favored thermodynamically, because the adhesive bond 
may be too strong to be broken. On the other hand, it is also conceivable that the ini-
tial adhesive bond, being fairly small, may be overcome by thermal motion or fluid 
flow (convection), possibly because of the unfavorable change in the surface free 
energy involved. In the case of nylon-6,12 in naphthalene, ΔFeng > 0 and ΔFadh < 0, 
which would support the second possibility, in view of the fact that the particles are 
rejected. In these borderline cases, the microscopic observations of “engulfment” 
and “rejection” might no longer reflect “attraction” and “repulsion” precisely.

Notwithstanding one special and explicable borderline case, it can be concluded 
that Hamaker coefficients derived from surface thermodynamics are consistent 
with those obtained by other means, as well as being self-consistent. There is gen-
eral agreement between the sign of the Hamaker coefficients, Apls (i.e., attraction 
and repulsion), and the microscopically observed behavior of the various types of 
particles at the solidification front of naphthalene. As seen from Table 12.22, Apls 
can be positive as well as negative (the positive value implies engulfment and the 
negative value indicates repulsion). It is therefore clear that although van der Waals 
interactions between objects made of the same material are always attractive (in a 
medium or under vacuum), repulsive van der Waals interactions can exist between 
objects made of different materials (i.e., different surface free energies) separated in 
a medium, as in these experiments involving particles at the solidification fronts.

12.8.2  determInatIon oF rePulsIVe Forces and crItIcal 
seParatIon dIstances For PartIcle enGulFment

This section will discuss the relationship between the free energy of adhesion, ΔFadh, 
of a particle at an advancing solidification front and the repulsive force, FR, acting 
between the particle and the front in cases where the particle is pushed by the front. As 
shown in Section 12.4, a thermodynamic approach to calculate ΔFadh using an equa-
tion of state for interfacial tensions has been employed to predict cases where par-
ticle pushing occurs [2,29,30,33]. There is good agreement between thermodynamic 
predictions and experimental observations based on pushing or engulfment criteria. 
A more rigorous examination, however, in cases where particle pushing occurs, is to 
see whether there is a correlation between ΔFadh and FR. This test becomes feasible 
as the direct measurement of FR is possible using solidification experiments on an 
incline; that is, by bringing gravity into play.
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Generally, the experiment to measure FR involves the observation of particles 
being pushed up an incline by a solidification front. With increasing angle of tilt, 
an increasing fraction of the weight of the particle will oppose the repulsive force 
between particle and solidification front. If the particle material is denser than the 
liquid melt, there is a limiting or critical angle of inclination at which these two 
forces are equal, and the particles will be engulfed. From the angle of this incline 
and the density difference of the particle and the liquid melt, the value of FR can be 
determined, as explained later.

The expectation of FR to increase as ΔFadh increases is based on the following 
theoretical expression [46,47]

 F r F
d
hR

adh= 





2 0
2

π ∆ ,  (12.61)

where r is the radius of the particle, d0 is the distance of adhesion; that is, approxi-
mately the atomic distance (2 Å) [90], and h is the particle-solid melt separation 
distance while the particle is being pushed. Equation 12.61 is obtained by combining 
Hamaker’s equation [93] for h « r,

 F
A r

hR
pls= −

6 2
,   (12.62)

with the change in free-energy expression for bringing the particle into contact with 
the solid melt [46]

 ∆F
A

d
adh pls= −

12 0
2π

,  (12.63)

where Apls is the Hamaker coefficient for the interaction of the particle with the solid 
phase through the melt.

The new aspect of this investigation is the experimental determination of FR in 
particle-melt systems where ΔFadh is known. The ΔFadh values are taken from previ-
ous work [2,29,30,33,47]. Once FR is experimentally measured in systems where 
ΔFadh is known, the relationship between these quantities is established and hence 
can be compared with the theoretical expectation (Equation 12.61). It will also be 
possible, from such a relationship, to calculate the separation distance, h, at the point 
of particle engulfment. The magnitude of this separation distance is new information 
and may help in understanding the behavior of a particle at a solidification front.

In a horizontal solidification cell, the forces affecting the particle are the repul-
sive force, FR, between the particle and the solidification front, and the viscous drag 
force, FD, of the liquid melt acting on the particle as it is pushed through this phase. 
Particle pushing will continue on the horizontal as long as FR > FD. However, if the 
solidification front velocity, V, and hence FD increases to a point where FR < FD, then 
a particle that was pushed at lower solidification rates will become engulfed. At this 
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critical velocity of engulfment, Vc, there is a balance between the forces favorable 
and those opposed to particle pushing. As the net force on the particle is zero at this 
point, the particle is no longer pushed and the solid melt grows around the particle, 
resulting in particle engulfment. However, this result does not allow for the deter-
mination of the magnitude of the repulsive force and other unknowns such as the 
separation distance between the particle and the solidification front when the force 
balance is achieved. In order to be able to determine FR, it is desired to introduce a 
force whose influence can be easily manipulated, such as the force of gravity. This is 
done by performing solidification front experiments on an incline.

The solidification front experiment on an incline involves the observation, under a 
microscope, of a particle being pushed up an incline by the advancing solidification 
front. As the particle is pushed, three forces, Fg, FD, and FR, are acting on it. The force 
Fg is a component of the gravitational force:

 F v g wg = ∆ρ sin ,  (12.64)

where v is the volume of the particle, Δρ is the density difference between the par-
ticle and the liquid melt, g is the acceleration due to gravity, and w is the angle of 
inclination. Force FD = FD (V) is the viscous drag acting on the particle, which is a 
function of the velocity, V, at which the particle is pushed (see Section 12.2); FR is the 
repulsive force between the particle and the solidification front.

The force balance on the particle is

 FR = FD + Fg. (12.65)

Particle engulfment occurs when (FD + Fg) ≥ FR.
For a given angle of inclination, w, there is a critical velocity, Vc, which is the 

minimum solidification front velocity at which engulfment occurs; that is,

 F V F F wD c R g( ) ( ).= −  (12.66)

Increasing w will increase Fg. As FR will be unchanged by changes in w, Vc, and thus 
FD required to cause the transition from pushing to engulfment will decrease as the 
angle of inclination, w, increases. By increasing w to a critical angle of inclination, 
wc, Vc will be zero and

 F F wR g c= ( ).  (12.67)

Thus, the magnitude of FR can be obtained by determining Fg(wc).
Solidification front experiments on an incline were carried out to measure FR 

in three particle matrix systems [47]. Acetal particles were used with benzophe-
none, biphenyl, and salol as melt materials. These particle-melt systems were 
selected because ΔFadh was available from previous work [2,29,30,33,47] (see 
Table 12.23).
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An apparatus suitable for determining the critical velocity of small particles in 
organic matrix materials, both on the horizontal and at positive and negative angles 
of inclination was designed to meet the requirements of this investigation [47]. The 
main elements of this apparatus are the same as described in Section 12.3; however, 
this apparatus is mounted on a tilting stage on which the microscope and the cop-
per cell are placed. In the design of this stage, the frame on which the microscope 
is mounted is hung from a rotating axle. This axle is connected to a hand crank by 
means of a worm-and-spur gear. Rotating this axle changes the tilting angle of the 
microscope stage and thus that of the solidification cell. This arrangement provides 
angles of tilt from –90º to +90º.

Experiments were performed for a selection of inclination angles. For each angle 
there will be a different critical velocity, Vc, for particle engulfing. Theoretically, Vc 
should decrease as the angle of inclination, w, increases. If the density of the par-
ticle material is sufficiently large compared with that of the liquid melt, there will 
be a minimum angle, wc, at which particle pushing will not occur; that is, Vc = 0. At 
this wc, FR = Fg(wc). Thus, the task of determining FR is now to determine wc and 
hence Fg(wc). Because experimentally it is not possible, with the present equipment, 
to measure solidification front velocities below 1 µm/s, determining the angle wc at 
which Vc = 0 was not possible directly. Instead, Vc was determined for a selection of 
inclination angles less than wc. The results of these experiments were extrapolated to 
find the angle wc at which Vc = 0.

A typical experiment involved looking at a large number of acetal particles and 
their interaction with the solidification front. These particles, though not spheri-
cal, were sized according to their effective diameter. This diameter was computed 
from the average of the maximum and minimum cross-sectional dimensions of the 
 particle. The solidification rate was varied over the course of an experiment, allowing 
the interaction of particles of various sizes and the solidification front to be observed 
at different velocities.

Plotting of the experimental observations—engulfment, pushing, and transition—
for each solidification front velocity and particle diameter was used to determine the 
critical velocity, Vc, as discussed previously. As examples, plots of these data for 
acetal particles in benzophenone, at various inclinations, are shown in Figures 12.15 
and 12.16. A positive inclination angle designates pushing the particle uphill.

table 12.23
the free energy of adhesion, ΔF adh, and the 
density differences, Δρ, between acetal 
particle and three different melt materials

matrix material ΔF adh (mJ/m2) Δρ (kg/m3)

Salol 0.21 230

Benzophenone 0.66 290

Biphenyl 1.99 438
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fiGure 12.15 Behavior of acetal particles of diameter D at a solidification front advancing 
on an incline of –5º at a velocity V in benzophenone. 
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fiGure 12.16 Behavior of acetal particles of diameter D at a solidification front advancing 
on an incline of 10º at a velocity V in benzophenone. 
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fiGure 12.17 Critical velocity of acetal particles in benzophenone, at various angles of 
inclination, obtained from the mean of the band of the plots similar to those shown in Figures 
12.15 and 12.16.
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fiGure 12.18 Critical velocity of acetal particles in biphenyl, at various angles of inclina-
tion, obtained from the mean of the band of the plots similar to those shown in Figures 12.15 
and 12.16.
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Critical velocities for acetal particles in benzophenone, biphenyl, and salol for 
various inclination angles were obtained and are presented in Figures 12.17 through 
12.19. For biphenyl and salol at high angles of inclination, only particles in the size 
range around 20 µm diameter were observed to be pushed. Thus, data for 20 µm par-
ticles were used for comparing the behavior of particles in the three different melts.

The Vc data for the 20 µm acetal particle as a function of the angle of inclination 
were fitted to a straight line using linear regression. Coefficients obtained for a curve 
of the form

 V A w Bc = +sin ,  (12.68)

table 12.24
parameters of the straight line fit, vc = A sin w + B, for a particle 
diameter of 20 µm and the Component of the Gravitational force per 
unit Volume, Fg(wc)/v, at the Critical inclination angle, wc

matrix 
material

slope A 
(μm/s)

Constant B 
(μm/s)

Correlation 
Coefficient wc (deg) Fg(wc)/v (n/m3)

Salol −16.2 1.71 0.992 6.1 ± 1.1 237 ± 43

Benzophenone −34.6 14.7 0.979 25.3 ± 4.8 1216 ± 216

Biphenyl −47.9 38.9 0.993 54.3 ± 6.8 3473 ± 294
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fiGure 12.19 Critical velocity of acetal particles in salol, at various angles of inclination, 
obtained from the mean of the band of the plots similar to those shown in Figures 12.15 and 
12.16.
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for each data set are given in Table 12.24. The correlation coefficient obtained was in 
every case 0.979 or better, signifying that the straight line is a good fit for the data.

From these curves, the critical angle of inclination, wc, that is, that value of w for 
which Vc becomes zero, was computed. This angle for 20 µm acetal particles is given 
for all three matrix materials, as shown in Table 12.24. The error limits associated 
with this angle are 95% confidence limits, and the errors may result from the uncer-
tainty in determining Vc. The error associated with Vc is taken as half the band width 
of the transition zone, on plots of the type given in Figures 12.15 and 12.16; that is, half 
the distance from the top line to the bottom line of these plots at a given particle size.

The different values of wc for the three melt materials are a result of the different 
repulsive forces between the solidification front and the acetal particles in the three 
matrix materials. Values of ΔFadh presented in Table 12.23 predict that the largest 
repulsive force will be between acetal and biphenyl while acetal and salol will have 
the smallest FR. Taking wc from Table 12.24 and Δρ from Table 12.23, values for the 
quantity Δρg sin wc were calculated. This is the gravitational force per unit particle 
volume, Fg/v (see Equation 12.64). Since the acetal particles were irregularly shaped, 
their exact volume is not known. However, particles from the same source were used in 
all experiments and should thus be similar in volume. Therefore, Fg/v provides an unbi-
ased comparison of the repulsive force in the three particle-melt systems. The values 
of Fg/v computed from wc are also given in Table 12.24. The errors associated with the 
Fg/v values are 95% confidence limits and follow from the errors associated with wc.

Relating ΔFadh to [Fg(wc)]/v is achieved by plotting the data of Table 12.24, as 
shown in Figure 12.20. A line was fitted to the three data points using linear regres-
sion and the following result was obtained:

 ∆F
F w

v
adh g c= × +−5 57 10 0 0394.

( )
. ,  (12.69)
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fiGure 12.20 Free energy of adhesion, ΔFadh, versus the forces of gravity, determined 
from solidification front experiments on an incline in benzophenone, bibenzyl, and salol.
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with a correlation coefficient of 0.999.
The expectation of a linear relationship between ΔFadh and FR assumes that the 

separation distance, h, at the point of engulfment is the same in all three particle-
matrix systems (see Equation 12.61). This can be checked by rearranging Equation 
12.61 and evaluating h for the known values of ΔFadh and FR:

 h
r F d

F

adh

R

= 





2 0
2 1 2π ∆ /

.   (12.70)

In order to calculate FR values from the results of [Fg(wc)]/v, the particle volume, 
v, has to be estimated. It will be assumed that the particles are spheres of 20 µm 
diameter. As discussed above, this assumption will introduce a common error into 
the results for all three matrix materials. The FR and h values thus obtained for acetal 
particles in salol, benzophenone, and biphenyl, are given in Table 12.25. Considering 
the influence of experimental errors, the separation distance, h, for acetal particles 
in all three matrix materials is essentially the same: approximately 20 nm. Such a 
constant h value for all these particle-matrix systems means a linear relationship 
between ΔFadh and FR, as expected.

The relationship given by Equation 12.61, an equation based on Hamaker’s 
equation and thermodynamics, also predicts that ΔFadh will be zero when FR is 
zero. However, it may be noted that, from the empirical equation, Equation 12.69, 
ΔFadh = 0.039 mJ/m2 when FR = 0. This small deviation of the experimental results 
from the theory may be ignored if one realizes that Equation 12.69 contains: (1) errors 
from calculated ΔFadh values, which include errors of contact angle measurements; 
and (2) errors from determination of wc, which, as explained earlier, is obtained by 
extrapolation. Therefore, the agreement between the experimental results and the 
theory is acceptable.

In summary, the solidification front technique presented here is a direct force 
measurement method for the repulsive force between a particle and a solidification 
front. The relationship between ΔFadh and FR was found to be linear, in agreement 
with theory. Values for FR were measured directly, as described in this section. The 
ΔFadh values, taken from previous work, were calculated from temperature-dependent 
contact angle measurements using the equation of state for interfacial tensions. The 

table 12.25 
the magnitude of the repulsive force and the minimum separation 
distance between acetal particles in three matrix materials
matrix 
material

particle 
diameter (µm)

repulsive force 
FR (nn)

minimum separation 
distance h (nm)

Salol 20 0.0010 22

Benzophenone 20 0.0051 18

Biphenyl 20 0.0145 19
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fact that the theoretically expected relationship between ΔFadh and FR was achieved 
experimentally provides strong support for the thermodynamics approach and mea-
surement techniques used to obtain these ΔFadh values.

Good agreement with theory also provides confidence in the solidification front 
on an incline technique for studying the interaction forces in the particle/solidifica-
tion front system. Although the experimental relationships obtained cannot be con-
sidered universal, based on only three sets of data, they do provide some insight into 
the interactions between a particle and a solidification front.

Results presented in Table 12.25 give estimates of the magnitude of the repulsive 
force, FR, and the particle/solidification front separation distance, h, at the time of 
engulfment. Because the acetal particles used were not spherical, but irregular in 
shape, these results provide only estimates. Still, by considering these separation 
distance results, one sees that the processes that lead to engulfment begin at approxi-
mately 20 nm, a point when there is still liquid melt between the particle and the 
solid phase. This large separation distance at the point of engulfment would, accord-
ing to theory [46], suggest that the interactions between particle and solid involve 
several molecular layers beyond the surface.

referenCes

 1. S. N. Omenyi. Attraction and Repulsion of Particles by Solidifying Melts. PhD Thesis, 
University of Toronto, 1978.

 2. S. N. Omenyi and A. W. Neumann. Journal of Applied Physics 47 (1976): 3956.
 3. D. Shangguan, S. Ahuja, and D. M. Stefanescu. Metallurgical Transactions A 23 

(1992): 669.
 4. G. Kaptay. Metallurgical and Materials Transactions A 32 (2001): 993.
 5. M. C. Flemings. Solidification Processing. McGraw-Hill, New York, 1974.
 6. W. Kurz and D. J. Fisher. Fundamentals of Solidification. Trans Tech Publications, 

Aedermannsdorf, Switzerland, 1989.
 7. S. S. L. Peppin, J. A. W. Elliott, and M. G. Worster. Journal of Fluid Mechanics 554 

(2006): 147.
 8. A. W. Neumann, C. J. van Oss, and J. Szekely. Kolloid-Z, Z. Polymer. 251 (1973): 415.
 9. S. Torza and S. G. Mason. Science 162 (1969): 813.
 10. C. Korber. Quarterly Reviews of Biophysics 21 (1988): 229.
 11. J. W. Garvin, L. Mao, and H. S. Udaykumar. American Society of Mechanical Engineers, 

Heat Transfer Division 372 (2002): 219.
 12. D. R. Uhlmann, B. Chalmers, and K. A. Jackson. Journal of Applied Physics 35 (1964): 

2986.
 13. V. H. S. Kuo and W. R. Wilcox. Separation Science and Technology 8 (1973): 375.
 14. V. H. S. Kuo and W. R. Wilcox. Industrial & Engineering Chemistry Process Design 

and Development 12 (1973): 376.
 15. V. L. Bronstein. Journal of Crystal Growth 52 (1981): 345.
 16. W. E. Brower, M. J. Freund, M. D. Baudino, and C. Ringwald. Cryobiology 18 

(1981): 277.
 17. Ch. Körber and G. Rau. Journal of Crystal Growth 72 (1985): 649. 
 18. A. W. Rempel and M. G. Worster. Journal of Crystal Growth 205 (1999): 427.
 19. F. Nota, R. Savino, and S. Fico. Acta Astronautica 59 (2006): 20.
 20. M. S. Park, A. A. Golovin, and S. H. Davis. Journal of Fluid Mechanics 560 

(2006): 415. 



698 Dongqing Li, Yi Zuo, and A. Wilhelm Neumann

 21. L. Hadji. Physical Review E 75 (2007): 04260. 
 22. A. E. Corte. Journal of Geophysical Research 67 (1962): 1085.
 23. P. Hoekstra and R. D. Miller. Journal of Colloid and Interface Science 25 (1967): 166.
 24. J. Cissé and G. F. Bolling. Journal of Crystal Growth 10 (1971): 67.
 25. J. Cissé and G. F. Bolling. Journal of Crystal Growth 11 (1971): 25.
 26. A. M. Zubko, V. G. Lobonov, and V. V. Nikonova. Soviet Physics and Crystallography 

18 (1973): 239.
 27. K. H. Chen and W. R. Wilcox. Journal of Crystal Growth 40 (1977): 214.
 28. P. F. Aubourg. Interaction of Second-Phase Particles with a Crystal Growing from the 

Melt. PhD Thesis, Massachusetts Institute of Technology, 1978.
 29. S. N. Omenyi, A. W. Neumann, and C. J. van Oss. Journal of Applied Physics 52 

(1981): 789.
 30. S. N. Omenyi, A. W. Neumann, W. W. Martin, G. M. Lespinard, and R. P. Smith. Journal 

of Applied Physics 52 (1981): 796.
 31. A. W. Neumann, J. Szekely, and E. J. Rabenda. Journal of Colloid and Interface Science 

43 (1973): 727.
 32. R. Asthana and S. N. Tewari. Journal of Materials Science 28 (1993): 5414. 
 33. S. N. Omenyi, R. P. Smith, and A. W. Neumann. Journal of Colloid and Interface Science 

75 (1980): 117.
 34. M. A. Azouni and P. Casses. Advances in Colloid and Interface Science 75 (1998): 83. 
 35. Z. Wang, K. Mukai, and I. J. Lee. ISIJ International 39 (1999): 553. 
 36. G. F. Bolling and J. Cissé. Journal of Crystal Growth 10 (1971): 56.
 37. A. A. Chernov and D. E. Temkin. In 1976 Crystal Growth and Materials. Edited by 

E. Kaldis and H. J. Scheel, 3. North-Holland, Amsterdam, 1977.
 38. A. A. Chernov, D. E. Temkin, and A. M. Mel’nikova. Soviet Physics and Crystallography 

21 (1976): 369.
 39. A. A. Chernov, D. E. Temkin, and A. M. Mel’nikova. Soviet Physics and Crystallography 

22 (1977): 13.
 40. A. A. Chernov, D. E. Temkin, and A. M. Mel’nikova. Soviet Physics and Crystallography 

22 (1977): 656.
 41. R. R. Gilpin. Journal of Colloid and Interface Science 74 (1980): 44.
 42. D. M. Stefanescu, F. R. Juretzko, B. K. Dhindaw, A. Catalina, S. Sen, and P. A. Curreri. 

Metallurgical and Materials Transactions A 29 (1998): 1697. 
 43. A. V. Catalina, S. Mukherjee, and D. M. Stefanescu. Metallurgical and Materials 

Transactions A 31 (2000): 2559. 
 44. J. W. Garvin, Y. Yang, and H. S. Udaykumar. International Journal of Heat Mass 

Transfer 50 (2007): 2952. 
 45. J. W. Garvin, Y. Yang, and H. S. Udaykumar. International Journal of Heat Mass 

Transfer 50 (2007): 2969. 
 46. D. W. Francis. Interfacial Tensions and van der Waals Interactions of Small Particles at 

Solid-Liquid Interfaces. Ph.D. Thesis, University of Toronto, 1983.
 47. R. P. Smith. Applied Surface Thermodynamics for the Interaction of Small Particles with 

an Advancing Solidification Front. Ph.D. Thesis, University of Toronto, 1984.
 48. A. W. Neumann, R. J. Good, C. J. Hope, and M. Sejpal. Journal of Colloid and Interface 

Science 49 (1974): 291.
 49. C. A. Ward and A. W. Neumann. Journal of Colloid and Interface Science 49 

(1974): 286.
 50. D. Li, J. Gaydos, and A. W. Neumann. Langmuir 5 (1989): 1133.
 51. D. Li and A. W. Neumann. Journal of Colloid and Interface Science 137 (1990): 

304.
 52. D. Li and A. W. Neumann. Journal of Colloid and Interface Science 148 (1992): 

190.



Behavior of Particles at Solidification Fronts 699

 53. R. P. Smith, S. N. Omenyi, and A. W. Neumann. Physiochemical Aspects of Polymer 
Surfaces. Edited by K. L. Mittal, Vol. 1, 155–71. Plenum Press, New York, 1983.

 54. A. W. Neumann, R. J. Good, P. Ehrlich, K. Basu, and G. J. Johnston. Journal of 
Macromolecular Science-Physics 37 (1973): 525.

 55. A. W. Neumann. Zeitschrift fur Physikalische Chemie 41 (1964): 339.
 56. A. W. Neumann and W. Tanner. Journal of Colloid and Interface Science 34 (1970): 1.
 57. S. K. Li, R. P. Smith, and A. W. Neumann. Journal of Adhesion 17 (1984): 105.
 58. A. W. Neumann and W. Tanner. “Continuous Measurement of the Time Dependence of 

Contact Angles between Individual Fibres and Surfactant Solutions.” 5th International 
Congress of Surface Activity, Vol. 2, 727. Barcelona, Spain, 1968.

 59. A. W. Neumann and R. J. Good. In Surface and Colloid Science. Edited by R. J. Good 
and R. R. Stromberg, Vol. 11, 31. Plenum Press, New York, 1979.

 60. A. W. Neumann, D. R. Absolom, W. Zingg, and C. J. van Oss. Cell Biophysics 1 
(1979): 79.

 61. S. K. Chang, O. S. Hum, M. A. Moscarello, A. W. Neumann, W. Zingg, M. Leutheusser, 
and B. Ruegsegger. Medical Progress Through Technology 5 (1977): 57.

 62. W. Zingg, A. W. Neumann, A. B. Strong, O. S. Hum, and D. R. Absolom. Biomaterials 
2 (1981): 156.

 63. A. W. Neumann, D. R. Absolom, D. W. Francis, C. J. van Oss, and W. Zingg. Cell 
Biophysics 4 (1982): 285.

 64. C. J. van Oss, C. F. Gillman, and A. W. Neumann. Phagocytic Engulfment and Cell 
Adhesiveness as Surface Phenomena. Marcel Dekker, New York, 1975.

 65. D. F. Gerson. Biochimica et Biophysica Acta 602 (1980): 269.
 66. J. F. Boyce, S. Schurch, and D. J. McIver. Atherosclerosis 37 (1980): 361.
 67. C. J. van Oss. Annual Review of Microbiology 32 (1978): 19.
 68. J. K. Spelt. Surface Tension Measurements of Biological Cells Using the Freezing Front 

Technique. M.A.Sc. Thesis, University of Toronto, 1980.
 69. J. K. Spelt, D. R. Absolom, W. Zingg, C. J. van Oss, and A. W. Neumann. Cell Biophysics 

4 (1982): 117.
 70. S. N. Omenyi, R. S. Snyder, and C. J. van Oss. “Effects of Zero van der Waals and 

Zero Electrostatic Forces on Droplet Sedimentation.” 54th Colloid and Surface Science 
Symposium. ACS Lehigh, 1980, Abstract No. 163.

 71. S. N. Omenyi, R. S. Snyder, C. J. van Oss, D. R. Absolom, and A. W. Neumann. Journal 
of Colloid and Interface Science 81 (1981): 402.

 72. H. Shiffman. A Preliminary Investigation of Principles Relating to Biological Cell 
Separation Using Solidifying Melts of Aqueous Solutions. M.A.Sc. Thesis, University of 
Toronto, 1978.

 73. S. N. Omenyi, A. W. Neumann, W. W. Martin, G. M. Lespinard, and R. P. Smith. Journal 
of Applied Physics 52 (1981): 796.

 74. R. P. Smith. The Development of a Technique to Determine Interfacial Tensions from 
Particle Behaviour at a Solid-Liquid Melt Interface. M.A.Sc. Thesis, University of 
Toronto, 1981.

 75. A. W. Neumann. Advances in Colloid and Interface Science 4 (1974): 105.
 76. R. C. West, ed. Handbook of Chemistry and Physics. 51st ed., F5. Chemical Rubber 

Company, Ohio, 1970.
 77. L. J. Cianciolo, R. J. Genco, M. R. Patters, J. McKenna, and C. J. van Oss. Nature 265 

(1977): 445.
 78. C. J. van Oss, J. M. Berstein, B. H. Park, L. J. Cianciolo, and R. J. Genco. International 

Convocation on Immunology 6 (1979): 311.
 79. T. G. Thrasher, T. Yoshida, C. J. van Oss, S. Cohen and N. Rose. Journal of Immunology 

110 (1973): 321.
 80. G. Adam and C. Schumann. Progress in Colloid and Polymer Science 65 (1978): 200.



700 Dongqing Li, Yi Zuo, and A. Wilhelm Neumann

 81. P. A. Albertsson. Partition of Cells, Particles and Macromolecules. Wiley Interscience, 
New York, 1971.

 82. K. E. Magnusson, O. Stendahl, C. Tagesson, L. Edebo, and G. Johansson. Acta 
Pathologica et Microbiologica Scandinavica 85 (1977): 212.

 83. O. Stendahl, K. E. Magnusson, C. Tagesson, R. Cunningham, and L. Edebo. Infection 
and Immunity 7 (1973): 573.

 84. O. Stendahl, C. Tagesson, K. E. Magnusson, and L. Edebo. Immunology 32 (1977): 11.
 85. D. F. Gerson and J. Akit. Biochimica et Biophysica Acta 602 (1980): 281.
 86. M. R. Soulard, E. I. Vargha-Butler, H. A. Hamza, and A. W. Neumann. Chemical 

Engineering Communications 21 (1983): 329.
 87. A. W. Neumann, E. I. Vargha-Butler, H. A. Hamza, and D. R. Absolom. Colloids and 

Surfaces 17 (1986): 131.
 88. E. I. Vargha-Butler, D. R. Absolom, H. A. Hamza, and A. W. Neumann. In Interfacial 

Phenomena in Coal Technology. Vol. 32, 33. Edited by G. D. Botsaris and Y. M. Glazman, 
33. Marcel Dekker, New York, 1988.

 89. E. I. Vargha-Butler, T. K. Zubovits, R. P. Smith, I. H. L. Tsim, H. A. Hamza, and 
A. W. Neumann. Colloids and Surfaces 8 (1984): 231.

 90. A. W. Neumann, S. N. Omenyi, and C. J. van Oss. Colloid and Polymer Science 257 
(1979): 413.

 91. A. W. Neumann, S. N. Omenyi, and C. J. van Oss. Journal of Physical Chemistry 86 
(1982): 1267.

 92. S. Nir. Progress in Surface and Membrane Science 8 (1976): 1.
 93. H. C. Hamaker. Physica 4 (1937): 1058.
 94. E. M. Lifshitz. Soviet Physics–JETP 2 (1956): 73.
 95. I. E. Dzyaloshinskii, E. M. Lifshitz, and L. P. Pitaevskii. Advanced Physics 10 

(1961): 165.
 96. J. Visser. Advances in Colloid and Interface Science 3 (1972): 331.
 97. F. M. Fowkes. S.C.I. Monograph No. 25. 3. Society of Chemical Industry, London, 

1967.
 98. J. N. Israelachvili. Journal of the Chemical Society-Faraday Transactions 269 (1973): 

1929.



701

13 Line Tension and the 
Drop Size Dependence 
of Contact Angles

Robert David and A. Wilhelm Neumann

13.1 intrOduCtiOn

Line tension was introduced in Chapter 1 as part of the generalized theory of capil-
larity. Line tension is the work of formation (or excess energy) of a unit length of 
line phase, much as surface tension is the work of formation of a unit area of surface 
phase. The line phase considered is usually a three-phase line such as the circular 
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edge around the base of an axisymmetric sessile liquid drop on a solid substrate. At 
this line the solid, liquid, and vapor phases meet.

The molecules near a three-phase line experience a different environment than 
those in the middle of a surface, or those in the interior of a bulk phase. The differing 
energetic state of the molecules near the three-phase line is the fundamental source 
of line tension. Line tension may be thought of as a correction to the surface tensions 
near a discontinuity (the edges of the surfaces), just as surface tension is a correction 
to bulk pressures at an interface (see Chapter 10).

For interfacial tension, a negative value would by definition cause spontaneous 
miscibility of the two adjacent phases and the disappearance of the interface. Such a 
negative tension is therefore impossible in equilibrium (see Chapter 9 for further dis-
cussion). However, a three-phase line is not a barrier separating two different phases, 
and so line tension can theoretically be either positive or negative.

A positive line tension signifies that energy is expended in creating line phase. 
Therefore, a system with a positive line tension tends to minimize the length of line 
phase; for a sessile drop, this corresponds to a constriction of the three-phase line 
and a consequent increase in the contact angle. A negative line tension signifies that 
energy is gained in creating line phase, and it therefore has the opposite influence.

The term “line tension” has also been used to describe tension between coexisting 
surface phases on a two-dimensional surface, especially domains in lipid membranes 
[1]. Another two-dimensional line tension is found around a drop that nearly wets a 
solid substrate, where a microscopically thin prewetting line advances ahead of the 
drop front and coexists with the dry surface; however, in this case the tension is usu-
ally called boundary tension [2]. The two-dimensional type of line tension must be 
positive to keep the domains separate. Despite sharing a name, the two line tension 
phenomena are fundamentally different, and this chapter will be restricted to line 
tension in three-dimensional systems.

With line phases of moderate curvature, the line energy in a thermodynamic system 
should scale as the total length of line phase present. As a system’s dimensions shrink, 
the line energy becomes relatively more significant due to increasing line-to-surface 
and line-to-volume ratios. The relevant length scale is σ/γ, where σ is line tension and 
γ is surface tension (typically ~0.05 J/m2). Thus, a line tension of ~10–12 J/m would 
have a very minor effect at the micrometer level, and would become important only at 
an atomic length scale (at which line tension has no meaning anyway), whereas a line 
tension of ~10–6 J/m would be discernible at the millimeter level, and dominate at the 
micrometer level and below. Due to extremely wide-ranging results in the experimental 
literature, it is still debated which of these two cases is closer to reality [3]. Therefore, the 
breadth of practical applications in which line tension plays a role is as yet uncertain.

13.1.1 aPPlIcatIons

The most obvious potential application for line tension is in microfluidic systems 
[4]. In these systems, tiny amounts of liquid are manipulated through submillimeter 
sized channels and reservoirs with the goal of miniaturizing and parallelizing bio-
chemical analysis. Three-phase lines may occur, for example, between solid, liquid, 
and vapor, or between liquid and two different solid phases on a micropatterned 
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surface. Line tension may become a consideration through its effect on wettability; 
control of wettability (e.g., via electrowetting or thermocapillary flow) is often used 
to actuate drops in microfluidic circuits [5].

As another example, the process of nucleation involves three-phase lines with 
very high curvature. For instance, line tension is a significant parameter in simula-
tions of freezing [6]. A similar situation exists in heat transfer involving condensa-
tion or evaporation of small drops, as in heat pipes [7] or dropwise condensation 
[8,9]. In both cases, the efficiency of heat transfer is connected with the wettability 
of the condenser or wall surface, and so might be affected by line tension. 

Another potential application of line tension is froth flotation in mineral pro-
cessing, in which hydrophobic particles are removed from an aqueous solution by 
attachment to rising bubbles. Attachment requires the formation of a three-phase 
line between solid, liquid, and vapor. The expansion of such a line would be opposed 
by a positive line tension [10].

The opposite suggestion has been made for the case of ultrafine particles that 
penetrate cell membranes after being inhaled into the lungs. Here, other forces might 
induce expansion of the three-phase line beyond the equator of a spherical particle, 
at which point a positive line tension would favor complete immersion. This has been 
proposed to explain observations of greater immersion of small particles, compared 
to large particles, in the surfactant film on trachea walls [11].

A similar situation occurs when solid particles are used to stabilize emulsions and 
foams. In an emulsion, line tension may affect the ability of the particles to adsorb 
at the oil/water interface. In addition, the type of emulsion formed—oil in water or 
water in oil—depends on the contact angle formed at the three-phase line between 
oil, water, and solid, which may be affected by line tension [12]. Line tension has 
also been invoked at three-phase lines of oil, water, and air to explain the behavior 
of oil-based antifoams [13].

Finally, it has been suggested that line tension may affect cell adhesion, again due 
to the very small area of contact made by a filopodium of ~100 nm diameter [14]. 
In the analogous scenario of adhesion between very small areas of solids, the JKR 
theory [15] balances surface and elastic forces, but the possible influence of line ten-
sion appears to be unexplored as yet.

Thus, the value of line tension is of interest not only theoretically, but in a number 
of practical applications as well.

13.1.2 sIze dePendence oF contact anGles

In Chapter 1, the equilibrium condition at the contact line of a sessile drop, called 
the modified Young equation, was derived (Equation 1.65). It includes the effect of 
line tension σ as follows:

 γ θ γ γ σκlv sv slcos ,= − −  (13.1)

where γlv is the liquid–vapor interfacial tension, γsv is the solid–vapor interfacial ten-
sion, γsl is the solid–liquid interfacial tension, θ is the contact angle, and κ is the 
geodesic curvature of the line. In the usual situation of an axisymmetric drop, κ is 
the reciprocal of the drop radius r. Therefore, as expected from the line-to-surface 
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ratio, the line tension term becomes insignificant as r → ∞. If θ∞ is defined as the 
contact angle in this limit, then

 cos cos .θ θ σ
γ

= −∞
lvr

 (13.2)

Thus, line tension causes the contact angle to be a function of the drop size.
Equation 13.2 provides a method for measuring line tension. The contact angles 

of drops of different sizes are measured, and the line tension is obtained from the 
slope of a plot of cosθ against 1/r. However, this method is controversial because 
other factors may also cause size dependence of the contact angle, which has led 
some researchers to denote such measured values as pseudo-line tensions [16]. 

In Section 13.2, theoretical estimates for the value of line tension (based on its 
definition as the excess energy of a three-phase line) will be reviewed. Section 13.3 
will cover experimental measurements of line tension, mostly based on the drop 
size dependence of contact angles. The uncertain relationship between theory and 
experiment for line tension will be discussed in Section 13.4.

13.2 theOry

While the generalization of Gibbs’s theory of capillarity provides a method for 
experimental measurement of line tension via the modified Young equation (Equation 
13.1), it does not allow a theoretical estimate. Theoretical estimates are based on 
more detailed modeling of the region near the three-phase line, in some cases even 
at the molecular level. For simplicity, a two-dimensional model is often considered, 
in which a drop of liquid is replaced by a wedge with a straight contact line, with all 
quantities invariant along the contact line. Much of the theoretical work has focused 
on the value of line tension approaching wetting (i.e., as θ → 0). 

In the following three sections, the three major approaches for modeling line 
tension will be described. They are: mean field or density functional theory (DFT)
(Section 13.2.1), the more phenomenological interface displacement model (Section 
13.2.2), and the computational method of molecular dynamics (Section 13.2.3). 

13.2.1 densIty FunctIonal theory

In DFT, the thermodynamic properties of each bulk phase are considered as function-
als of the particle density (itself a function of space). For the study of line tension, the 
most important of these thermodynamic properties is the free energy. The modeling of 
the free energy in DFT as a smoothly varying field (as opposed to a sum of pairwise or 
higher order interactions between molecules) is called a mean field approximation.

DFT reduces the complete description of a phase to the determination of the 
correct density distribution. This approach greatly reduces the number of variables 
compared to a rigorous description, which would require molecule-by-molecule cal-
culation (see Section 13.2.3). However, as a continuum theory, DFT must break down 
below a certain length scale. DFT is widely used in condensed matter physics beyond 
the particular application described here [17]. A one-dimensional DFT called gradi-
ent theory was used in Chapter 10 to estimate solid–liquid interfacial tensions.
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In early work applying DFT to the estimation of line tension, Kerins and Widom 
[18] formulated three models for the contact line region, two of which will be men-
tioned here. In the first, crude model, they postulated the spatial variation of the free 
energy (not the particle density), and argued that line tension σ is of order γa, with 
γ an interfacial tension and a the width of an interface. This corresponded to σ of 
order 10–11 J/m. They also argued from this model that σ is more likely negative than 
positive. 

In their second model, Kerins and Widom postulated the free energy Ω as a func-
tional of the particle density ρ. The free energy contains contributions from the vol-
ume, surface, and lines phases (see Chapter 1). After subtracting the volume (–PV) 
and surface (γA) contributions, the remainder (σL) gives the line tension. For a two-
component system, the Ω functional had the form

 Ω ρ ρ ρ ρ ρ ρ1 2 1 2

1

2

, , ,
,

( ) = ( ) + ∇ ⋅∇( )
=

∑F mij i j

i j

 (13.3)

where F achieved minima in the densities corresponding to each bulk phase. In this 
and subsequent papers, the weights mij have generally been taken to be zero for i ≠ j 
and one for i = j, thus serving to penalize rapid spatial changes in density. After 
assuming a general parameterized form for the density ρ, the authors numerically 
found the parameter values that minimized Ω( ρ), and calculated the resulting line 
tension σ to be of order 10–12 J/m.

Later work focused on the behavior of σ approaching wetting. Widom and 
Clarke [2] employed the first, simpler model of Kerins and Widom and found that σ 
approached zero in proportion to the contact angle θ near wetting. However, using 
a more complex version of the second model, Szleifer and Widom [19] found that 
σ changed sign from negative to positive as wetting was approached, with a pos-
sibly infinite value at wetting. The authors believed that the results in this work 
best reflected the normally observed first-order wetting transition. Their conclusions 
were confirmed later in more accurate calculations [20].

One limitation of the models of Widom and coworkers is that, due to assumed sym-
metry between the phases, they could not be applied to systems with a solid phase. 
However, Perković et al. [21] adapted the second model for just such a system. They also 
found the density ρ that minimized the free energy Ω without making any assumptions 
about the form of ρ. Their results were consistent with those of Koga and Widom [20].

A second limitation of the models of Widom and coworkers is that only local 
interactions are considered, as Ω depends only on ρ and its gradients (Equation 
13.3). This has been addressed in the research of Dietrich’s group. Compared to 
Widom and coworkers, Dietrich and his coworkers have used a simpler fluid density 
ρ and a more complex (physically motivated) free energy Ω.

This work culminated in an article by Bauer and Dietrich [22] that considered 
liquid drops or films on solid surfaces and corrected numerical problems present 
in earlier papers. The interactions of fluid molecules (both liquid and gas) with 
each other and with the solid substrate were modeled by Lennard-Jones potentials. 
The pairwise interactions were integrated over the density of the entire system to 
include nonlocal effects. The density distribution that minimized the free energy 
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thus obtained was found numerically. Only sharp-kink density distributions were 
considered, meaning that the liquid and gaseous phases each had uniform density 
right up to their boundaries. The authors found line tension somewhat smaller than 
ε/d, with ε the well depth and d (often called σ) the molecular separation in the 
Lennard-Jones potential. This corresponds to line tension of order 10–12 J/m. Bauer 
and Dietrich also compared results from local and nonlocal calculations, and found 
only minor differences [22].

In the simplest DFT models, both the density distribution and the free energy 
functional are postulated and the line tension is calculated without any minimiza-
tion. In early work, Tarazona and Navascués [23] took this approach and calculated σ 
of order –10–11 J/m using the properties of a number of dispersive, cryogenic liquids 
and dispersive solid substrates. (Dispersive molecules are nonpolar and interact only 
via London forces.) More recently, Qu and Li [24] estimated the line tension in sev-
eral alkane–water–air systems. They assumed a linearized form for the density ρ in 
the three-phase region and calculated the resulting free energy using equations of 
state for liquids. They found positive line tensions of order 10–10 J/m.

Finally, Marmur [25] estimated line tension by considering only the excess liquid–
solid interfacial energy near a contact line. (Liquid–liquid and solid–solid interactions, 
although just as significant, were neglected.) He calculated σ as the  difference between 
the van der Waals interaction energy of a semi-infinite substrate with a drop shaped 
as a spherical cap; and a semi-infinite substract with a drop shaped as a semi-infinite 
cylinder with the same base radius as the spherical cap. He concluded that measured 
line tensions should not exceed 5 × 10–9 J/m in absolute value.

In Table 13.1, theoretical results for the magnitude of line tension from DFT (and 
other methods described below) are listed. The DFT approach to studying line ten-
sion is complex and all but the most simplified versions require lengthy numerical 
calculations. It is therefore notable that many of the essential results of DFT have 
also been demonstrated with a stripped-down approach called the interface displace-
ment model.

table 13.1
theoretical estimates of the magnitude of line tension

authors year(s) method |σ| (J/m) ref.

Widom and coworkers 1982–2007 density functional 10–12 18–21

Bauer and Dietrich 1999 density functional 10–12 22

Tarazona and Navascués 1981 density functional 10–11 23

Qu and Li 1999 density functional 10–10 24

Solomentsev and White 1999 interface displacement 10–11 32

Dobbs 1999 interface displacement 10–12 33

Checco et al. 2003 interface displacement 10–12 34

Bresme and Quirke 1998–1999 molecular dynamics 10–11 35,36

Werder et al. 2003 molecular dynamics 10–10 37

Hirvi and Pakkanen 2006 molecular dynamics 10–12 38

Schneemilch and Quirke 2007 molecular dynamics 10–11 39
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13.2.2 InterFace dIsPlacement model

The interface displacement model focuses only on the shape of the liquid–vapor 
interface in the transition region between a macroscopic sessile drop on a solid sub-
strate, and a surrounding thin film (Figure 13.1). The characterization of the liquid–
vapor interface by only its thickness, with no density details preserved, is similar to 
the sharp-kink approximation used by Dietrich and coworkers with DFT (see the 
previous section). In keeping with the presence of the thin film surrounding the drop, 
small angle approximations are often used for the contact angle θ. While the early 
development of the theory was conducted by various researchers [26,27], we will 
follow the later presentation of Indekeu [28], who brought the interface displacement 
model into harmony with the results of DFT.

Suppose the profile of a two-dimensional drop in the transition region is l(x), 
Figure 13.1. The free energy (i.e., the grand canonical potential, see Chapter 1) is 
given by a functional of the profile:

 Ω l x V l x
dl
dxlv( )[ ] = ( )[ ]+ + 





−












 γ 1 1

2








− ( )

−∞

∞

∫ dx xΩ0 .  (13.4)

The first term in the integral is the interface potential V, which gives the total surface 
energy of a system in which a horizontal liquid–vapor interface and a horizontal 
solid–liquid interface are separated by a distance l. The limiting values of V are 
γsv for the thin film l = l1 (at x = –∞) and γsl + γlv for the macroscopic drop l = ∞ (at 
x = ∞). For convenience, V is often shifted by –γsv so that the thin film is the zero 
energy reference. In between the x = ±∞ limits, V models the interaction between 
the two interfaces when they are close enough to affect each other. The interacting 
surfaces concept was historically introduced by Derjaguin as the disjoining pressure 
π [29], where

 π l
dV
dl

( ) = − .  (13.5)

l(x)

x = –∞ x = ∞

l1 l0(x)

fiGure 13.1 Liquid–vapor profile l(x) in the transition region (solid line), and asymptotic 
profile l0(x), dotted line. The profiles do not change in the direction perpendicular to the 
page.
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The second term in the integral in Equation 13.4 accounts for nonflatness of the 
liquid–vapor interface; the expression inside the parentheses is the difference between 
the arc length of the actual profile and its shorter arc length had it been piecewise hori-
zontal. The square root is sometimes expanded to first order to obtain the so-called 
gradient-squared approximation. Finally, subtraction of the last term Ω0 ensures that Ω 
is not infinite; Ω0 is the free energy of the asymptotic profile l0(x) shown in Figure 13.1. 
This step eliminates surface energy from Ω, leaving just the excess line energy.

Gravitational energy can also be included in the free energy expression [30], but 
it has been omitted because it is negligible in the tiny dimensions of a typical transi-
tion region.

The liquid–vapor profile in the transition region will adopt the shape l(x) that 
minimizes the free energy Ω; this minimum value of Ω is the line tension σ. The 
solution can be found using the calculus of variations [31]:

 σ γ= − − 
∞

∫2
1

lv
l

V l S dl( ) ,  (13.6)

where S is the spreading coefficient, defined as γsv – γsl – γlv. Equation 13.6 allows 
calculation of the line tension from an assumed interface potential V. This is in con-
trast with the much more detailed input required to estimate line tension by DFT. 
An example of a form for V is shown in Figure 13.2; the shape of V depends on the 
assumed intermolecular forces.

Indekeu [28] showed that for first-order wetting with short-range forces, the inter-
face displacement model predicted a negative value for σ that changed sign and 
became positive and finite at wetting. The result was the same for long-range (van der 
Waals) forces except that line tension was infinite at wetting. These findings matched 
DFT calculations by other researchers [20–22].

Quantitative calculations using the interface displacement model were carried out 
by Solomentsev and White, who considered a dispersive liquid on a solid substrate 
and estimated that σ was of order 10–11 J/m [32]. Dobbs [33] calculated the line ten-
sion for alkane lenses on water, finding σ of order 10–12 J/m. Checco et al. [34] also 

l1

V(l)

–S

∞

fiGure 13.2 Example of an interface potential for partial wetting. The local minimum 
(l = ∞) is for a macroscopic drop and the global minimum (l = l1) is for a thin film.
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used the model to calculate line tension for dodecane on a methylated solid surface, 
obtaining a value of –2 × 10–12 J/m. 

We now turn to direct, computationally intensive estimates of line tension.

13.2.3 molecular dynamIcs

Computational estimates of line tension from first principles have been carried out 
using the method of molecular dynamics. In a molecular dynamics simulation, a large 
number of virtual particles, representing molecules of liquid, solid, and/or vapor, are 
confined in a three-dimensional virtual box. Interaction potentials between pairs of 
particles are defined and the system, beginning from some initial state, is allowed to 
relax to equilibrium by repeated application of Newton’s Second Law in time incre-
ments of order 1 fs. The temperature and number of particles are selected such that 
the equilibrium state includes a three-phase line, eventually allowing evaluation of 
line tension (see below). With the computational power currently available, typical 
studies involve ~104 particles in boxes with side lengths of a few nanometers.

The system evolves with the number of particles, the volume, and the temperature 
held constant; that is, in the canonical (NVT) ensemble. This means that the Helmholtz 
free energy is minimized rather than the grand canonical free energy Ω. The final 
equilibrium is the same in either case; use of the Helmholtz potential only causes 
the search for equilibrium to include states with nonuniform chemical potential, even 
though none of these can ultimately be the equilibrium state (see chapter 1).

Early publications on line tension estimation via molecular dynamics were by 
Bresme and Quirke. They simulated a nanometer-sized solid particle at a liquid–
vapor [35] and a liquid–liquid [36] interface. Because of uncertainty in measured 
contact angles, the authors chose not to calculate line tension from the modified 
Young equation (Equation 13.1), but to find it from the dependence of the system’s 
free energy on the particle radius. Since only van der Waals forces were modeled, 
Bresme and Quirke interpreted their results for liquid argon, finding both positive 
and negative line tensions of order 10–12 or 10–11 J/m.

Werder et al. [37] simulated water drops on a graphite surface. Water–water inter-
actions were modelled using point partial charges and water–graphite interactions 
using the Lennard-Jones potential. Positive line tension of order 10–10 J/m was found, 
with higher values in cases where the water–graphite interaction was strengthened.

Water drops were also studied by Hirvi and Pakkanen [38]. The drops were on 
simulated amorphous and crystalline polymer surfaces. In some cases the authors 
found no discernible line tension, and in other cases positive line tension up to order 
10–11 J/m. Finally, Schneemilch and Quirke [39] simulated a similar system of water 
drops on hydrophobic PDMS (polydimethylsiloxane) surfaces. These authors also 
simulated partially oxidized PDMS surfaces, in which surface CH3 groups were 
replaced by OH groups. Nonzero line tension was found only on the oxidized sur-
faces; it was of order + 10–11 J/m.

The results from this sample of molecular dynamics studies are included in 
Table 13.1, with the other theoretical results discussed above. The table shows 
that according to all three theoretical approaches, the magnitude of line tension is 
between 10–10 and 10–12 J/m. Dispersive systems (with weak intermolecular forces) as 
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well as aqueous systems (with strong intermolecular forces) have been studied. In all 
cases, the magnitude of line tension is of the order of a surface tension multiplied by 
an interface thickness. This is unsurprising since line tension is modeled by consid-
ering the same intermolecular forces that give rise to interfacial tensions.

13.3 measurement

Unlike liquid–fluid surface tension, line tension is not amenable to direct measure-
ment as a force. Instead, it is usually measured from the drop size dependence of 
contact angles described by the modified Young equation (Equation 13.1). Various 
other methods have been used as well, although most of them amount to an indirect 
measurement of the contact angle, and are therefore also based on Equations 13.1 
and 13.2.

Measurements can be divided into those in which a solid phase is present and 
those in which one is not. If a solid phase is present, a wider variety of experimental 
methods are feasible, but possible complications arise due to solid surface roughness 
and heterogeneity.

Both with and without solid phases, measurements have been made at different 
length scales, using different, suitable experimental techniques. The techniques used 
to observe contact angles can generally be grouped into three categories: (i) optical 
microscopy at the millimeter scale; (ii) interferometry at the scale of tens of microm-
eters; and (iii) atomic force microscopy (AFM) at the submicrometer scale. With 
optical microscopy, drops are usually viewed from the side and a single cross-section 
of the liquid–vapor interface is obtained. With the other two methods, drops are 
viewed from above, and the entire three-dimensional liquid–vapor interface can be 
mapped.

In the following sections, experimental results from the literature will be reviewed, 
starting with those that do not involve a solid surface (Section 13.3.1), followed by those 
that do (Section 13.3.2). Within each section, the results will be arranged by length 
scale. Section 13.3.3 will discuss a distinct method using patterned solid surfaces that 
involves intricate mathematical analysis, but gives a comparatively sensitive measure-
ment of line tension. The interpretation of these data as a whole, and their connection 
to the theory of line tension discussed above, will be the subject of Section 13.4.

13.3.1 lIquId–lIquId systems

Early measurements of line tension with no solid phase present included, among 
others, an analysis of the shapes of 3-singlets (merged droplets) in an emulsion [40], 
and a series of measurements by two groups using Newton black films [41–43]. 
These difficult measurements were plagued with uncertainty, and we will therefore 
focus on more recent results.

Recent line tension measurements with no solid phase have all used liquid lenses, 
that is, drops of one liquid floating on an immiscible second liquid. In this setting, 
Young’s equation is replaced by the more general Neumann triangle relation, and 
hence the modified Young equation becomes a quadrilateral relation [44], depicted 
in Figure 13.3 (see also Chapter 2).
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Lenses with diameters of a few millimeters have been studied in a series of experi-
ments. It is possible to show [45] that with knowledge of all three interfacial tensions, 
plus two angles, the force balance in Figure 13.3 can be solved, allowing the length 
of the σκ vector to be found. Thus, a value of σ can be calculated for each lens, 
whereas in drop size dependence measurements using the modified Young equation 
(Equation 13.2), several drops of different diameters collectively produce one value 
of σ. Observing alkane lenses on water [45,46], Chen et al. measured line tensions 
of the order –10–6 J/m.

This experiment was later repeated for just dodecane lenses with updated tech-
nique [47]. Improvements included interfacial tension measurements with well-
 deformed drops (Chapter 3), and contact angle measurements using TIFA-AI 
(Chapter 5) rather than polynomial fitting. Negative line tension between 10–7 and 
10–6 J/m was found. The results were statistically different from zero line tension 
based on the scatter in measured contact angles; as well, repeat experiments with 
purified dodecane showed that errors in interfacial tension values could not be 
responsible for the nonzero line tension result. Finally, a size dependence of the line 
tension was detected, with σ becoming more negative as lens diameter increased.

Three experiments have been reported that used lenses of ~0.1 mm diameter 
imaged from above via interferometry. Dussaud and Vignes-Adler measured line 
tension for octane lenses on saline [48]. Using the size dependence of contact angles, 
they obtained positive values of order 10–10 J/m. The octane lenses were near wetting 
and were created by the break-up of one much larger lens. The influence of the salt on 
the spreading of octane complicated the system and was not completely understood. 
It is unclear how the salt may have affected the value of the line tension.

In the second experiment using interferometry, Aveyard et al. [49] studied lenses 
of dodecane on water. Dodecanol was added to the dodecane in order to reduce 
the lens dihedral angle to a value allowing interferometric imaging. Line tension 
was found to be positive, of order 10–11 J/m, and independent of the dodecanol 
concentration.

In the third experiment, Takata et al. measured line tension using lenses of hexa-
decane on an aqueous surfactant solution [50]. The line tension was found as a func-
tion of the surfactant concentration, and was of order 10–11 J/m. Above a certain 
concentration, the line tension changed sign from positive to negative. This was 

Liquid 1 
σκ

Liquid 2 

Air

γ12

γ1

γ2

fiGure 13.3 Quadrilateral relation, or vector balance, for a liquid lens. The line tension 
vector is drawn positive and greatly magnified compared to its typical length.
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believed to be associated with a transition of the hexadecane from partial to pseudo-
partial wetting (i.e., from a lens to a lens in contact with a film).

Optical microscopy has also been used to measure line tension in liquid–liquid 
systems at a relatively small scale. Wallace and Schürch published two studies in 
which line tension was measured for drops of dibutyl phthalate on a liquid fluoro-
carbon surface. The surrounding medium was not air, but saline, and a surfactant 
was spread on the interfaces between the saline and each of the other liquids. Due 
to the high density of the lower (fluorocarbon) phase, it remained nearly flat and 
Wallace and Schürch used the modified Young equation (Equation 13.1) to fit their 
data. In their first study, the authors found line tension of about +10–8 J/m for drop 
sizes of order 0.1 mm [51]. In their second study, with drops about 10 times smaller, 
the line tension was smaller but still of the same sign and order of magnitude [52].

Finally, in the smallest scale liquid lens experiment, Stöckelhuber et al. used 
interferometry to measure line tension from the shape of a single water lens on a sur-
face of dodecane [53]. They found σ = +5.4 × 10–9 J/m for a lens with a three-phase 
line diameter of 2.4 µm.

The line tension measurements with liquid lenses are summarized in Table 13.2. 
Unfortunately, four out of the seven experiments featured the presence of a surfact-
ant or solute, possibly hindering meaningful comparison of the results. The reason 
for the differing signs of line tension is unclear (see Section 13.4.2). Regarding the 
magnitude of line tension, the majority of measurements produced results well out 
of the range of theoretical predictions.

The main purpose of studying liquid–liquid systems as opposed to liquid–solid 
systems is the elimination of the influence of surface imperfections. Indeed, contact 
angle hysteresis, commonly used to measure surface quality, was reported for some 
liquid lenses and was typically ≤ 1° [47,51], several times lower than in carefully 
prepared liquid–solid systems. Yet, as seen below, the general pattern of results in 
liquid–solid systems is identical to that in liquid–liquid systems. 

The size dependence of line tension observed by David et al. [47] may empiric-
ally reconcile the discrepancy between the large magnitudes measured by Chen et 
al. and the smaller magnitudes measured by other researchers. This size dependence 

table 13.2 
measurements of line tension using liquid lenses

authors year(s) materials diameter (m) σ (J/m) ref.

Chen et al. 1997–1998 alkanes/water/air 10–3 –10–6 45,46

David et al. 2009 dodecane/water/air 10–3 –10–7 47

Dussaud et al. 1997 octane/saline/air 10–4 +10–10 48

Aveyard et al. 1999 dodecane/water/air 10–4 +10–11 49

Takata et al. 2005 hexadecane/aqueous 
surfactant solution/air

10–4 ±10–11 50

Wallace and 
Schürch

1988–1990 dibutyl phthalate/
fluorocarbon/saline

10–5–10–4 +10–8 51,52

Stöckelhuber et al. 1999 water/dodecane/air 10–6 +10–8 53
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is unexpected for a thermodynamic line tension and will be further discussed in 
Section 13.4. Finally, it is notable that the three smallest line tension magnitudes in 
Table 13.2 arose from the three experiments that examined systems near wetting. A 
decrease in line tension approaching wetting has also been observed in some liquid–
solid systems, as seen below.

13.3.2 lIquId–solId systems

To date, a few dozen papers have been published reporting measurements of drop 
size dependence of contact angles on solids, with inferred values of line tension from 
the modified Young equation (Equation 13.2). In some cases, rough or heterogeneous 
substrates were used; these results will be discussed in Section 13.4.1. In this section, 
we will focus on recent results on smooth, homogeneous substrates, omitting older 
data (e.g., [15]) and some newer data for which solid surface quality was question-
able. At the end of this section, solid surface methods other than drop size depend-
ence will be discussed.

13.3.2.1 millimeter scale
At the millimeter scale, extensive data have been collected for the drop size depend-
ence of contact angles measured by Axisymmetric Drop Shape Analysis (ADSA, 
Chapter 6). The first study, in 1987, was by Gaydos and Neumann [54], who used 
solid substrates of Teflon FEP. The surfaces were carefully prepared, with contact 
angle hysteresis of 2–6° for water and hexadecane. For a series of alkane liquids, 
as the drop diameters increased from about 2 to about 8 mm, the contact angle was 
observed to decrease by about 5°, resulting in calculated line tensions of approxi-
mately +3 × 10–6 J/m.

In similar experiments using different liquids and solids, and improved experi-
mental technique, Li and Neumann [55] and Duncan et al. [56] found similar values 
for line tension. Amirfazli and coworkers then continued this line of research with 
measurements on self-assembled monolayers (SAMs) that presented methyl (CH3) 
groups to the liquids. The measured values of line tension remained positive and of 
order 10–6 J/m [57].

A correlation between line tension and solid–liquid interfacial tension was noted 
by Duncan et al. [56]. Since in a liquid–solid–vapor capillary system there are two 
thermodynamic degrees of freedom (see Chapter 9), only two among the set {γlv, γsv, 
γsl, σ} should be independent. Amirfazli and coworkers tested the empirical relation-
ship between σ and γsl by making measurements in one system with very high inter-
facial tension and in another with low interfacial tension (i.e., a system near wetting). 
For the high energy system, the drop size dependence of contact angles of liquid tin 
on silica was measured at 900°C. An unmistakable contact angle variation of 20° was 
observed, corresponding to an extremely large line tension of +1.55 × 10–4 J/m [58]. 
For the low energy system, Amirfazli et al. measured contact angles of alkanes near 
wetting on methyl-terminated SAMs by imaging from above (ADSA-D, Chapter 6). 
In these systems, the line tension was as usual positive but smaller than the values that 
had been obtained farther from wetting, falling between 10–7 and 10–6 J/m [59]. Thus, 
the results of both experiments bore out the empirical correlation between σ and γsl.
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Other researchers have used different approaches to measure line tension at the 
millimetre scale. Gu et al. [60] dipped fluorocarbon-coated solid cones into baths 
of liquid alkanes and measured the meniscus contact angles. As each cone became 
more submerged, the contact line radius increased (its curvature decreased), produ-
cing a varying contact angle according to Equation 13.1. In fact, in this geometry, 
line tension does not act in the same direction as solid–liquid interfacial tension, 
requiring a cosine correction in Equation 13.1. The remarkable consistency of the 
results of Gu et al. with those of Li and Neumann [55] and Duncan et al. [56] using 
very similar materials served to confirm the direction in which line tension acts.

In an experiment with the inverted geometry, Jensen and Li [61] allowed liquids 
to rise in the interiors of hollow conical solids. After correction of their results for 
gravity [62], good agreement was obtained with previous data [55,56,60], with line 
tension of order +10–6 J/m.

Finally, in a liquid–solid–liquid system, Gu [63] used ADSA to measure contact 
angles of oil drops on a fluorocarbon-coated solid substrate immersed in water. He 
found line tension of +8.2 × 10–7 J/m.

The data reviewed in this section and those following are gathered in Table 13.3. 
Based on the results discussed so far, at the millimeter scale in systems with 
smooth, homogeneous solid substrates, and single component liquids with moder-
ate interfacial tensions, line tension is large and positive with order of magnitude 
10–6 J/m.

However, two exceptions, in which line tension in such systems was measured to 
be significantly smaller, have been reported. Line tensions of order + 10–7 J/m have 
recently been measured for a variety of liquids on films of Teflon AF 1600 and EGC-
1700, two highly inert fluoropolymers [64]. The second exception is from earlier 
work by Drelich and will be covered in the following section.

13.3.2.2 submillimeter scale
In the 1990s, Drelich and coworkers including Whitesides and Good published a 
series of papers reporting line tension measurements principally at the 0.1 mm scale. 
Measuring the contact angles of air bubbles in water on polyethylene and oil drops 
in water on quartz [65], Drelich et al. found a nonlinear dependence of cosθ on 1/r; 
that is, a dependence not conforming to the modified Young equation (Equation 
13.2). By fitting lines to sections of their data, Drelich and Miller calculated line ten-
sion of order 10–6 J/m at the millimeter level and no measurable line tension at the 
submillimeter level. They assigned negative signs to values for which the line tension 
vector pointed away from the aqueous phase; however, as the line tension pointed 
into the bubbles or oil drops it acted to decrease the length of the three-phase line 
and was therefore positive.

In subsequent research, Drelich et al. found similar nonlinear results for air bub-
bles in water or buffer on SAMs presenting methyl and carboxyl (COOH) groups 
[66]. However, in other experiments on like systems, Drelich et al. found no meas-
urable line tension at any scale [67–69], and concluded that this was due to better 
surface quality [69].

Much of the data of Drelich et al. should be viewed with caution because in their 
dynamic bubble technique, the principal one used, intermediate contact angles 
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(between advancing and receding) were measured, while it is the advancing angle 
that should be used in Equation 13.2 (see Chapter 7).

For observation of drops with diameters in the tens of micrometers, other optical 
techniques have been employed. Sundberg et al. [70] used both interferometry and 
confocal microscopy to image water drops of this size. Their results conflicted, with 

table 13.3
measurements of line tension from size (or Curvature) dependence of 
Contact angles on smooth, homogeneous solid surfaces

authors year(s) materials
diameter 

(m) σ (J/m) ref.

Gaydos and 
Neumann

1987 alkanes/Teflon/air 10–3 +10–6 54

Li and Neumann 1990 various/various/air 10–3 +10–6 55

Duncan et al. 1995 various/FC-721/air 10–3 +10–6 56

Amirfazli et al. 1998 various/CH3/air 10–3 +10–6 57

Amirfazli et al. 1998 tin/silica/vacuum 10–3 +10–4 58

Amirfazli et al. 2003 alkanes/SAMs/air 10–3 +10–7 59

Gu et al. 1996 alkanes/FC-725/air 10–3 +10–6 60

Jensen et al. 1999–2003 alkanes/FC-721/air 10–3 +10–6 61,62

Gu 2001 silicone oil/FC-725/
water

10–3 +10–6 63

David et al. 2009 various/Teflon/air 10–3 +10–7 64

Drelich et al. 1993–1994 various 10–3

10–4

+10–6

≤10–7

65,66

Drelich et al. 1994–1996 various 10–4–10–3 ≤10–8 67,69

Sundberg et al. 2007 water/various/air 10–5 ±10–8 70

Stöckelhuber et al. 1999 water/mica/air 10–5 +10–8 53

Wang et al. 2001 various/CH3/air 10–5 ±10–10 71

Aronov et al. 2007 water/various/vacuum 10–6 ±10–9 72

Pompe and 
Herminghaus

2000–2002 various/various/air 10–6 ±10–10 73,74

Mugele et al. 2002 hexaethylene glycol/
phenyl/air

10–3

10–5

+10–6

≤10–10

75

Checco et al. 2003 alkanes/CH3/air 10–6 –10–10 33

Seemann et al. 2001 polystyrene/various/air 10–6 ≤10–11 76

Rieutord and 
Salmeron

1998 sulphuric acid/mica/air 10–6 –10–10 77

Xu and Salmeron 1998 glycerol/mica/air 10–6–10–5 –10–11 78

Yang et al. 2003 CO2/CH3/water 10–6 –10–10 79

Zhang and Ducker 2008 decane/CH3/aqueous 
solution

10–7 +10–10 81

Note: Cases where no line tension was measurable are listed as ≤ x, where x was the approximate reso-
lution. The FC coatings were formerly products of 3M.



716 Robert David and A. Wilhelm Neumann

σ of order 10–7 J/m using the first method, and 10–8 J/m using the second. Volatile 
liquids at these volumes evaporate quickly, and it is unlikely that advancing angles 
were measured. The authors also found no measurable line tension at the millimeter 
scale using conventional imaging, but contact angle resolution was not stated, and 
was likely poor due to the use of ellipses to fit Laplacian drop shapes.

Stöckelhuber et al. [53] imaged similarly sized water drops on mica interfero-
metrically, and measured positive line tension of 7.6 × 10–9 J/m. There appears to 
have been virtually no contact angle hysteresis.

Wang et al. [71] used the same imaging method to examine drops of octane and 
octene on methyl-terminated SAMs. They measured line tension as a function of tem-
perature just below the wetting transition temperature of each liquid. In both cases, they 
found line tension of order 10–10 J/m, changing sign from negative to positive as wetting 
was approached, in qualitative agreement with theory (see Sections 13.2.1 and 13.2.2).

Experimental results at the submillimeter level for the magnitude of line tension 
are thus significantly lower than those at the millimeter level, but still often much 
higher than theoretical predictions.

13.3.2.3 micrometer scale
Different techniques are necessary to observe drops of a size comparable to the 
wavelength of visible light. Aronov et al. [72] studied drops of water on SiO2 
using environmental scanning electron microscopy. This technique allowed three-
dimensional imaging, and the authors measured contact angles as a function of drop 
radius, and also as a function of contact line curvature for nonaxisymmetric drops. 
They found σ of order 10–9 J/m, although the relationship between cosθ and 1/r 
was slightly nonlinear. The line tension was negative on a hydrophobized surface 
and positive on a hydrophilic surface, matching the sign change observed by Wang 
et al. [71] (and predicted by theory) on approach to wetting.

The remainder of studies at the micrometer level used AFM. AFM-based 
measurement of line tension was pioneered by Pompe and coworkers. Pompe and 
Herminghaus [73] measured three-dimensional drop shapes on microfabricated sur-
faces with stripes of alternating wettability. They calculated line tension from the 
relationship between the contact angle and the local curvature of the contact line 
(Equation 13.1), and also by inserting the measured microscopic drop profile into 
the interface displacement model (Section 13.2.2). Results from the two methods 
coincided, with line tensions of order 10–10 J/m. In another publication, Pompe [74] 
used the second method and found σ of the same order, changing sign from negative 
to positive on approach to wetting.

From the same group, Mugele et al. [75] measured line tension at both the millim-
eter and micrometer scales. While they measured σ = +9 × 10–7 J/m for millimeter-
sized drops, the authors disavowed these results, citing uncertainties in the optical 
setup and fitting procedure. Their microscopic measurements produced only an 
upper bound for |σ| of 10–10 J/m.

Checco et al. used noncontact AFM to measure line tension from the drop size 
dependence of contact angles of alkanes on methyl-terminated SAMs [33]. They 
found a nonlinear relationship between cosθ and 1/r best fit by a negative line tension 
of order 10–10 J/m. They viewed this result as arising from surface heterogeneity.
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Seemann et al. [76] formed micrometer-sized drops of polystyrene on coated 
silicon wafers and, using AFM, measured negative line tension of order 10–11 J/m. 
However, the contact angles were receding and the nonzero value for σ appears to 
rely mainly on a single data point.

Rieutord and Salmeron [77] used AFM to measure the contact angles of drops 
of sulphuric acid on mica. The authors employed an unconventional definition of 
the contact angle (measuring at the inflection point of the profile) and likely meas-
ured receding angles. Their data correspond to a negative line tension of order 10–10 
J/m. In a second paper, Xu and Salmeron [78] studied microscopic glycerol drops 
of widely ranging sizes, with corresponding negative line tension about three times 
smaller. They modelled their results with an exponential interface potential.

Yang et al. [79] studied CO2 bubbles formed at solid substrates in water, and 
measured σ = –3 × 10–10 J/m. However, Zhang et al. [80] argued that contact angles 
could not be measured with sufficient accuracy in such systems to calculate line 
tension. Both groups found much higher contact angles for the microscopic bub-
bles (measured through the liquid phase) than for macroscopic drops. In a later 
paper, Zhang and Ducker [81] used tapping-mode AFM to image decane drops on a 
methyl-terminated SAM immersed in diluted ethanol, and found σ = +8 × 10–11 J/m. 
However, the drops were deformed by the AFM tip and receding contact angles 
were likely measured. In this system, macroscopic and microscopic contact angles 
were similar.

In summary, at the micrometer scale, there is broad consensus in a number of drop 
size dependence studies using AFM that line tension, whether positive or negative, 
is of order 10–10 J/m. The results are reasonably close to theoretical predictions, but 
generally higher. In some cases, confirmation of specific theoretical predictions was 
possible: the sign change of line tension near wetting, and the shape of the liquid–
vapor profile in the transition region. Thus, AFM studies have been much more suc-
cessful at validating the theory of line tension than studies at larger length scales.

The disagreement between experiments at the macroscale and the microscale, as 
seen in Table 13.3, increases as the systems become larger, reaching, incredibly, a 
factor of 104 at the millimeter level.

13.3.2.4 alternative methods
Some line tension measurements that are based on alternative methods to drop size 
dependence of contact angles have been attempted.

Nguyen, Stechemesser, and coworkers measured line tension from the dynam-
ics of expanding three-phase lines. They found σ of order +10–6 J/m for submillim-
eter sized methylated glass spheres penetrating a water–air interface [82], and for 
expanding air bubbles on methylated quartz substrates [83]. The motion of the con-
tact line was modeled by a molecular-kinetic theory. In the first study, the axisym-
metry of the three-phase line was not verified. In the second, the surface tension 
of the water used was lower than the accepted value. Consequently, adsorption of 
impurities to the solid–gas interface during three-phase line expansion may have 
been a problem [83].

A small particle on a solid surface may be picked up (engulfed) by a liquid pen-
dant drop that is lowered into contact with it. A positive line tension would oppose 
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this, the more so for smaller particles. This idea was the basis of a measurement of 
line tension by Aveyard et al. [84]. The authors picked up fluorinated, submillimeter 
diameter particles with drops of dodecane and concluded that line tension was at 
most 10–7 J/m.

Vinke et al. [85] analyzed the adhesion of layers of particles to gas bubbles using 
a complicated model. In conjunction with experimental measurements, they calcu-
lated the dependence of the contact angles on the radii of the particles, obtaining 
very scattered positive line tensions of orders 10–12, 10–11, and 10–9 J/m for different 
particle coatings. The three-phase lines had diameters in the micrometer range.

Some researchers have attempted to measure line tension from heterogeneous 
nucleation data. Line tension strongly affects the condensation of extremely small 
liquid drops from supersaturated atmospheres. Alexandrov et al. [86] interpreted 
discrepancy between their data and classical nucleation theory in terms of a negative 
line tension of order 10–10 J/m. (The system they studied was actually liquid–liquid–
vapor but is included here for convenience.) In liquid–solid–vapor systems, Hienola 
et al. [87] also found negative line tension of order 10–10 J/m.

Finally, in the most unusual approach, Teschke and de Souza [88] measured the 
force experienced by AFM tips on approach to millimeter-sized air bubbles in water 
on rough Teflon surfaces. They calculated the electric energy at the water–air inter-
face and found a dependence on the solid surface roughness. They attributed this 
dependence to the effect of a positive three-phase line tension of order 10–8 J/m act-
ing in contact line corrugations of ~10 nm radius of curvature.

In general, the alternative methods for line tension measurement are less dir-
ect than the drop size dependence of contact angles method and involve additional, 
sometimes complex theory, with attendant assumptions. While there is therefore 
more uncertainty associated with the results, the alternative methods are import-
ant because of the controversy surrounding the drop size dependence method. The 
results of the alternative methods are summarized in Table 13.4. They are relatively 
similar to the results reported for drop size dependence, with the largest magnitudes 
of σ found in the largest systems.

13.3.3 strIPed surFaces

A different strategy for measuring line tension, using striped heterogeneous surfaces, 
has been proposed. The measurement is made in a nonaxisymmetric system consisting 
of a liquid in contact with a chemically heterogeneous wall. Ideally, the surface of the 
solid wall is smooth, rigid, planar, and composed of two different materials that do not 
chemically react with the liquid. The two materials are arranged as alternating stripes 
(Figure 13.4). The liquid has a different contact angle on each material, resulting in a 
wavy, periodic contact line, as it tries to advance further on the more wetting stripes.

The shape of the contact line (mainly its amplitude) depends on the value of 
solid–liquid–vapor line tension. Relative to zero line tension, positive line tension 
reduces the amplitude of the waves due to the added energetic cost of forming the 
contact line. In the extreme case, infinite line tension would minimize the length of 
the contact line by flattening it to a straight line. Hence, it is in principle possible 
to determine the operative value of line tension in such a system by comparing the 
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table 13.4 
measurements of line tension using alternative methods

authors year(s) method diameter (m) σ (J/m) ref.

Gaydos 1992 striped surface 10–3 +10–6 94

Nguyen et al. 1997–1998 contact line 
dynamics

10–4 +10–6 82,83

Aveyard et al. 1996 particle pick-up 10–4 ≤ 10–7 84

Vinke et al. 1991 particle-to-bubble 
adhesion

10–6 +10–10 85

Alexandrov 
et al.

1993 heterogeneous 
nucleation (liquid)

10–8 –10–10 86

Hienola et al. 2007 heterogeneous 
nucleation (solid)

10–8 –10–10 87

Teschke and 
de Souza

2007 electric field at 
interface

10–8 +10–8 88

Note: Cases where no line tension was measurable are listed as ≤ x, where x was the approximate 
resolution.

a1

a2

a1

Wall

Meniscus

y

z
x

fiGure 13.4 Artist’s conception of a liquid meniscus in contact with a heterogeneous 
striped wall, and the coordinate system used in the analysis. (Reprinted from Boruvka, L., 
and Neumann, A. W., Journal of Colloid and Interface Science, 65, 315, 1978. With permis-
sion from Elsevier.)
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experimental contact line with a series of theoretical contact lines, each of which is 
calculated assuming a different value of line tension.

Generating the theoretical contact lines for this approach involves a significant 
mathematical and computational effort [89–92]. Some preliminary considerations 
follow.

Two assumptions about the line tension are made. Firstly, in order to make the prob-
lem mathematically tractable, the line tensions on the two materials are assumed to be 
identical. The agreement (or lack thereof) between theoretical and experimental con-
tact lines is expected to verify whether this assumption is good. Secondly, line tension 
is assumed positive. Experimentally, a negative line tension would cause the amplitude 
of the three-phase wave-like line to be in excess of that for the zero line tension case.

A further assumption is made about gravity. If the maximum stripe width is 
denoted by a, it is assumed that a is much less than the capillary length, defined 
as (γ/ρg)1/2, where γ is the liquid surface tension, ρ its density, and g is gravitational 
acceleration. This allows gravity to be neglected; the liquid–vapor interface at a dis-
tance of several a away from the wall may then be approximated by a planar surface 
called the Cassie plane. Nearer the wall, the liquid–vapor interface is described by 
the Laplace equation that, with no gravity, is

 
∆P

R Rγ
= + =1 1

0
1 2

,  (13.7)

where ΔP is the pressure difference across the liquid–vapor interface, and R1 and 
R2 are its principal radii of curvature. A surface for which the sum of the principal 
curvatures equals zero everywhere is known as a minimal surface. If the liquid–
vapor interface is represented by the function z(x, y), using the coordinate system 
shown in Figure 13.4, then Equation 13.7 is

 1 2 1 02 2+( ) − + +( ) =z z z z z z zy xx x y xy x yy ,  (13.8)

where subscripts denote partial derivatives. Whereas Equation 13.8 describes the 
liquid–vapor interface away from the wall, on the contact line the modified Young 
equation (Equation 13.2) holds.

The next two sections review the mathematics that have been used to generate the 
shape of the contact line for the cases of zero, small, and large line tension. For the 
zero line tension case, conformal mapping was used to integrate the Laplace equa-
tion analytically and obtain the exact theoretical shape of the liquid surface and the 
contact line. The small line tension case was solved numerically as a perturbation 
away from the zero line tension case. The large line tension case was solved num-
erically as a perturbation away from the infinite line tension case (flat contact line). 
Following the theory, the limited available experimental data will be reviewed.

13.3.3.1 zero line tension
The method of characteristics was used to express the minimal surface equation 
(Equation 13.8) in the standard canonical form [89]
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using the coordinate transformation
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The two new variables, α and β, which replace x and y, have a straightforward physical 
interpretation. A plane that is parallel to the wall and in front of it cuts the liquid sur-
face in a periodic curve. The amplitude of this curve increases as the cutting plane 
approaches the wall. A tangent line to the periodic curve, drawn in the cutting plane, 
makes an angle with the horizontal that, measured counter-clockwise, is α. Thus, 
we may describe α as the local turning angle of the liquid surface. It varies between 
±π/2. The other new variable β is related to the local contact angle θ as follows:

 β θ= − 





ln tan .
2

 (13.11)

θ is defined at points away from the wall as the angle (measured through the liquid) 
between the tangent plane to the liquid–vapor interface and the wall. β achieves a 
minimum value on the contact line of the low energy stripe (the one with higher con-
tact angle), and a maximum value on the contact line of the high energy stripe (the 
one with lower contact angle).

Figure 13.5a shows the α-β domain. The boundary of the rectangle represents 
the contact line in these coordinates. When the line tension is zero, the contact angle 
on each stripe is constant (see Equation 13.2); thus, β must vary only along the four-
phase contact line formed by the two solids and the liquid–vapor meniscus (see 
Figure 13.5b).

Two consecutive mappings are applied in order to move the problem from the rect-
angular α-β domain where the solution is unknown to one of a standard number of 
domains in which a solution is easier to obtain. First, a Schwarz–Christoffel trans-
formation (mapping polygons to half-planes or vice versa) maps the rectangular α-β 
domain into the complex upper ξ-half-plane. A subsequent bilinear transformation 
maps the upper ξ-half-plane onto the interior of a unit circle in the w-plane. The net 
result of the two mappings is that every point on the perimeter of the α-β rectangle is 
mapped to a corresponding point on the circumference of the circle, and every point in 
the interior of the rectangle is mapped into the interior of the circle. Once the solution 
is obtained in the w-plane the transformations can be undone via reverse mappings.

The solution in the α-β domain is shown in Figure 13.5a. The closed curves 
inside the rectangle correspond to points on the liquid surface away from the wall. 
The more interior curves correspond to greater distances from the wall, with the 
Cassie plane mapped onto the point at the center of the rectangle. Using the result 
in the α-β domain, Equation 13.10 was integrated numerically to return the solution 
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to the original x-y domain (see Boruvka and Neumann [89] for details). Figure 13.5b 
shows the result in the x-y domain.

With the aid of Figures 13.5a and b the shapes of the liquid–vapor interface (at 
different distances away from the wall) in the α-β and x-y coordinates can be cor-
related. Beginning with the point S on the lower energy (higher contact angle) stripe 
where the turning angle α is zero, we proceed to the point S′. At S′ the contact angle 
is still identical to that at S (as long as line tension is zero) so β remains unchanged, 

N

S

N

Sx

y

N´

S´

S´

N´
β = β2

(a)

(b)

β = β0

β = β1

α 
= 

+ 
 π 2

α 
= 

– 
 π 2

fiGure 13.5 (a) Schematic of the position of the contact line after mapping to the α-β 
domain. The rectangular boundary is the three-phase contact line. The closed curves shown 
inside the rectangle correspond to points on the liquid–vapor interface at different fixed dis-
tances from the wall. (b) Schematic view of a liquid–vapor interface in contact with an equal 
width striped wall. The three-phase contact line is indicated by a heavy line labeled SS′N′N 
while the thinner lines represent the liquid–vapor surface at various positions out from the 
wall (z > 0). (Reprinted from Boruvka, L., Gaydos, J., and Neumann, A. W., Colloids and 
Surfaces, 43, 307, 1990. With permission from Elsevier.)
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but α has changed from zero to π/2. Along the vertical section of the contact line 
that follows the solid–solid boundary, α remains fixed at π/2 while β changes from 
its lower constant value on one stripe to its higher constant value on the adjacent 
stripe. As the contact line leaves the solid–solid boundary at N′, β now remains fixed 
while the turning angle α decreases in value from π/2 to zero at point N. Tracing the 
curve from N to smaller values of the coordinate y yields the remaining half of the 
rectangular boundary in the α-β domain. 

It is notable that at points S′ and N′ of Figure 13.5b, the contact line experiences 
infinite curvature. Although the presence of these infinite curvature points does not 
violate either the classical Laplace or Young equations of capillarity, it does violate 
the assumption of moderate curvature upon which Gibbs’ derivation of the theory of 
capillarity is based. To remove this difficulty, the effect of nonzero line tension was 
considered, beginning with line tension close to zero.

13.3.3.2 nonzero line tension
In comparison with the zero line tension case, a positive line tension is expected to 
reduce the amplitude of the liquid surface waves, and shorten the portion of the con-
tact line that follows the solid–solid boundary. Moreover, from Equation 13.2, the 
contact angle is no longer constant on each stripe, meaning that the contact line no 
longer follows a rectangular path in the α-β domain. The unknown shape of the con-
tact line in the α-β domain prevents an analytical solution via conformal mapping.

Instead, a series of Fourier coefficients can be introduced to approximate the 
shape of the contact line numerically [90]. The mapping between the α-β domain 
and the unit circle in the w-plane is performed directly by a complex power series:

 α ρ φ β β ρ φ= ( ) − = − ( )
=

∞

=

∞

∑ ∑x k x kk
k

k

k
k

k

sin , cos ,
1

0

1

 (13.12)

where β0 is the value of β for the Cassie plane, and (ρ, φ) are polar coordinates in the 
w-plane. The Fourier coefficients xk need to be determined from three contact line 
boundary conditions, which in the w-plane lie along the perimeter of the unit circle 
(i.e., for ρ = 1). Two of these boundary conditions are the modified Young equation 
(Equation 13.2) for the contact line on each stripe, and the third is α = π/2 on the 
four-phase boundary between the stripes. If the stripes have equal widths given by a, 
then it is found that the line tension σ enters the problem only in the form σ/γa. More 
details are available elsewhere [90].

The solution for the contact line was obtained using the Newton-Raphson method 
with incremental loading. The initial set of Fourier coefficients, corresponding to the 
zero line tension case, was found by minimizing the difference between the numer-
ical solution and the analytical solution (outlined above). These Fourier coefficients 
were then used as a springboard to other adjacent coefficients that represented con-
tact line shapes with small, nonzero line tensions [90].

The case of large line tension was handled in a similar way [91]. In this case, 
the contact line crosses the solid–solid boundary at only one point. In the α-β 
domain, this means that the solution is completely detached from the rectangular 
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boundary representing the zero line tension solution. The absence of the four-
phase section of the contact line reduces the number of boundary conditions used 
for finding the Fourier coefficients from three to two. The solution is now found 
starting from the infinite line tension solution (flat contact line) in terms of small 
values of a parameter inversely proportional to the line tension σ. It was shown 
that for intermediate values of σ, the small and large line tension solutions were 
in close agreement [91].

Later work [92] addressed two technical problems still present in the numerical 
solutions for nonzero line tension: the program assumed that the contact angles on 
the respective stripes added to 180° (i.e., the Cassie plane was horizontal), and it did 
not converge when either contact angle was below 11°. The first issue was fixed, and 
the second circumvented by extrapolating solutions from those for contact angles 
above 11°. An example solution is shown in Figure 13.6.

0.3
θ1 = 80° θ2 = 40°

A

B

C

σ = 0
σ = 10–6 (J/m)

σ = ∞ (Curve C)

(Curve A)
(Curve B)

Y

0.2

0.1

0.0

–0.1

–0.2
–0.3 –0.2 –0.1 0.0 0.1 0.2 0.3

X

fiGure 13.6 Computational solutions for the contact line on a striped wall with contact 
angles of 80° and 40°, for three different values of line tension. The stripes have equal widths, 
and both axes are normalized by twice this width. (Reprinted from Hoorfar, M., Amirfazli, A., 
Gaydos, J. A., and Neumann, A. W., Advances in Colloid and Interface Science, 114–115, 
103, 2005. With permission from Elsevier.)
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The solutions for contact lines on striped surfaces have been used to argue that 
positive line tension may reduce the magnitude of contact angle hysteresis on real 
surfaces, by minimizing corrugation of the contact line as it crosses high energy 
impurities on a low energy surface [91].

The problem of the shape of a contact line on a striped, heterogeneous surface 
has also been tackled using the finite element method [93]. Results were obtained for 
finite-sized drops, including the cases of gradual transition of wettability between 
the stripes, and varying line tension between the stripes. The qualitative features 
of the results were similar to those using the mapping method, but no quantitative 
comparison has been made.

Experimental measurements on striped surfaces have lagged behind theoretical 
and computational progress. One experiment has been performed with ethylene gly-
col on a surface of alternating stripes of silicon oxide and a CF3-terminated SAM 
[94]. Positive line tension of order 10–6 J/m was found with stripes of order 1 mm 
width. More recent, preliminary observations have indicated a much smaller line ten-
sion for hexadecane on a heterogeneous CH3/COOH-terminated SAM with 12.5 µm 
wide stripes [95].

13.4 disCussiOn

Theory and experiment for line tension are summarized in Tables 13.1 through 13.4. 
Beyond the remarkably wide variation of experimental results, two observations may 
be made from these tables: (i) measured line tensions appear to be more or less 
proportional to the length of the contact line; and (ii) as noted earlier, it is the line 
tensions measured at the micrometer level that are generally in closer agreement 
with theory.

The first observation is made more explicit in Figure 13.7, which shows line 
tension data from the literature of 1987–2007. The dependence of line tension on 
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fiGure 13.7 Line tension data from the literature, plotted against the typical size of the 
drops used in the measurement. Each symbol represents a single measurement, with some-
times several per paper. (Modified from David R., and Neumann, A. W., Langmuir, 23, 11999, 
2007, American Chemical Society. With permission.)
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the spreading coefficient S = γlv(cosθ – 1) is also noticeable. Earlier, a correlation 
between σ and γsl was found (Section 13.3.2.1); both γsl and S vanish on approach to 
wetting.

Considering measurements of σ phenomenologically as d(cosθ)/d(1/r), the trend 
in Figure 13.7 implies that cosθ does not vary linearly with 1/r as in the modified 
Young equation (Equation 13.2), but rather

 cos
( )

ln ,θ
γ

= − c S r
rlv

0  (13.13)

where c is found empirically to be roughly proportional to S (but independent of r), and 
r0 depends on the liquid and solid [96]. Equation 13.13 predicts a nonlinear relation-
ship between cosθ and 1/r in individual experiments. This has in fact been observed by 
researchers who have measured contact angles over a wide enough range of drop radii 
in a single experiment [47,63,65,67,77]. Values of c (for moderate S) calculated from 
individual nonlinear plots of cosθ versus 1/r were consistent with the value calculated 
from a plot similar to Figure 13.7 [96].

Figure 13.7, and Equation 13.13 that describes it, contradict the intuitive expecta-
tion that the energy of a contact line scales with the length of the line, producing a line 
tension independent of drop size. Using the interface displacement model, Indekeu 
[31] has explicitly shown that this expectation is true for intermolecular potentials 
decaying faster than d–5, where d is intermolecular separation. Nonretarded van der 
Waals forces, which are the most common type of intermolecular force and that 
include dispersive forces, decay as d–6. In many systems studied, these are assumed 
to be the only forces active. Therefore, the length dependence of measured line ten-
sions contradicts not just intuition but also theory.

Assuming that line tension is in fact independent of drop size, according to 
Equation 13.2 the large values (~10–6 J/m) measured at the millimeter scale would 
preclude the formation of three-phase contact lines with diameters below about 
10 µm. This, of course, is not the case. Thus, a line tension of 10–6 J/m cannot be a 
constant energy per unit length of line phase.

In sum, the quantity measured as line tension bears little resemblance to the 
theoretical concept of line tension. It has therefore been repeatedly suggested in 
the literature that the measurements above the micrometer level are flawed in 
some way.

Nevertheless, the supposition of experimental error is also not supported by 
Figure 13.7, in which a relatively consistent pattern is seen to emerge from a variety 
of experimental methods at different length scales, with different geometries and 
materials, performed in different labs. This suggests that the quantity measured is a 
real physical phenomenon. Still, it is clear that the physical basis of this phenomenon, 
even if it is associated with the three-phase line, cannot be the same intermolecular 
forces that are considered in theoretical studies of line tension.

One commonality of nearly all measurements of line tension is that they have been 
based on Equations 13.1 and 13.2. Thus, any deviation from Young’s equation that 
can be appropriately linearized may be interpreted as an experimental measurement 
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of line tension. Doubts about this interpretation, especially for large line tension 
measurements on solid surfaces, have led to these data being referred to as pseudo-
line tension in the literature [16,65]. Pseudo-line tension has been attributed to solid 
surface heterogeneity (as opposed to excess energy at the three-phase line, the source 
of true line tension). Other proposed explanations for large line tension measure-
ments, such as gravity, viscosity, solid surface deformation, and vapor adsorption, 
have been rejected [97,98].

In the next section, the evidence for solid surface heterogeneity as a cause of the 
drop size dependence of contact angles will be examined. Following that, in Section 
13.4.2 the separate issue of the sign of line tension will be briefly discussed, and 
finally in Section 13.4.3 some conclusions will be drawn.

13.4.1 solId surFace heteroGeneIty

To begin, this section will focus on experiments on solid surfaces at the millimeter 
scale, which have produced the largest magnitudes for line tension. Good and Koo 
[16] measured large, negative values of line tension on solid surfaces and proposed 
that they arose from corrugation of the three-phase line. They reasoned qualitatively 
that the shape of the liquid–vapor interface would be more affected by corrugations 
for small drops, resulting in smaller measured contact angles and a negative pseudo-
line tension.

Simple mathematical models of drops with corrugated contact lines, based on 
the modified Young equation (Equation 13.1), were developed by Li et al. [99] and 
by Drelich and Miller [97]. Similar considerations apply whether the corrugation 
is caused by roughness or chemical heterogeneity. Li et al. calculated that a large 
drop size dependence of contact angles could be caused by heterogeneity. However, 
in later work, Amirfazli et al. [98] used the same model to make the opposite argu-
ment. Their calculations were based on model parameter values for high quality 
solid surfaces (SAMs on glass slides). Mugele et al. [75] also concluded that contact 
line corrugations on a high quality solid surface were too small to explain the large 
drop size dependence of contact angles that they observed.

On the experimental side, Drelich and coworkers manufactured homogeneous 
surfaces with low line tension, and showed that strong dependences of contact angles 
on drop size could be obtained for a variety of rough and heterogeneous surfaces, 
including partially methylated quartz [67], surfaces roughened with polishing paper 
[68], and partial monolayers of oleate [100]. Corrugated contact lines were observed 
by Drelich and coworkers on their heterogeneous surfaces, indicating heterogeneity 
at the submillimeter level. They concluded that line tension was near zero on high 
quality solid surfaces.

In contrast, Amirfazli and coworkers measured line tension on both homogeneous 
(CH3-terminated) and heterogeneous (CH3/COOH-terminated) SAMs and found 
similar, large values for line tension on each [57,98]. These surfaces were believed 
to be heterogeneous only at the molecular level, with the contact line observed to be 
smooth at the micrometer scale.

Values of contact angle hysteresis, an indicator of surface quality, were measured 
in many of these experiments. While some homogeneous surfaces of Drelich et al. 
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[70] had ~45° hysteresis and line tension of 10–8 J/m at the millimeter scale, a var-
iety of surfaces have been produced by others with ~5° hysteresis and line  tension 
of 10–6 J/m at the millimeter scale [54–56]. It is also notable that line tensions of 
order 10–6 J/m [45–47] have been measured on liquid surfaces with virtually zero 
hysteresis.

Thus, while there is convincing evidence that contact line corrugations on low 
quality (or intentionally rough or heterogeneous) solid surfaces can produce a large 
pseudo-line tension, similar measurements on high quality surfaces (and liquid sur-
faces) remain unexplained. Both large and relatively small values of line tension 
have been measured on high quality surfaces, and the line tension appears to vary 
independently of the contact angle hysteresis (Figure 13.8).

Finally, in nanoscale experiments, Checco et al. [102] have measured line ten-
sion of order 10–10 J/m, larger than the theoretical prediction for their system of 10–12 
J/m, and have likewise attributed the difference to solid surface heterogeneity. They 
postulated that their drops, which were formed by condensation, had a tendency to 
nucleate on high energy sites, causing lower contact angles for the smaller drops. For 
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fiGure 13.8 No correlation is seen between the magnitude of measured line tension and 
the contact angle hysteresis in literature data (From Checco, A., Guenoun, P., and Daillant, J., 
Physical Review Letters, 91, 186101, 2003; Chen, P., Susnar, S. S., Mak, C., Amirfazli, A., and 
Neumann, A. W., Colloids and Surfaces A, 45, 129–130, 1997; Wallace J. A., and Schürch. 
S., Journal of Colloid and Interface Science, 124, 452, 1988; Gaydos J., and Neumann. A. 
W., Journal of Colloid and Interface Science 120, 76, 1987; Li D., and Neumann. A. W., 
Colloids and Surfaces 43, 195, 1990; Duncan, D., Li, D., Gaydos, J., and Neumann. A. W., 
Journal of Colloid and Interface Science 169, 256, 1995; Amirfazli, A., Kwok, D. Y., Gaydos, 
J., and Neumann. A. W., Journal of Colloid and Interface Science 205, 1, 1998; Gu, Y., Li, 
D., and Cheng. P., Journal of Colloid and Interface Science 180, 212, 1996; Gu. Y., Colloids 
and Surfaces A 181, 215, 2001; Drelich, J., Miller, J. D., Kumar, A., and Whitesides. G. M., 
Colloids and Surfaces A 93, 1, 1994; Drelich, J., Wilbur, J. L., Miller, J. D., and Whitesides. 
G. M., Langmuir 12, 1913, 1996; Wang, J. Y., Betelu, S., and Law. B. M., Physical Review E 
63, 031601, 2001; Pompe T., and Herminghaus. S., Physical Review Letters 85, 1930, 2000; 
Yang, J., Duan, J., Fornasiero, D., and Ralston. J., Journal of Physical Chemistry B 107, 6139, 
2003; Amirfazli, A., Hänig, S., Müller, A., and Neumann. A. W., Langmuir 16, 2024, 2000; 
Checco, A., Schollmeyer, H., Daillant, J., Guenoun, P., and Boukherroub. R., Langmuir 22, 
116, 2006). Each point represents a different solid or liquid substrate.
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drops of this size (10–6 m), even high quality solid surfaces may be heterogeneous at 
or near the drop length scale.

13.4.2 sIGn oF lIne tensIon

As mentioned earlier, there is no theoretical restriction on the sign of line tension. 
Theoretical predictions of a sign change for line tension near wetting have been 
discussed above (Section 13.2), as well as qualitatively similar experimental find-
ings at the microscale (Section 13.3). Macroscale experiments have mostly produced 
positive line tensions, as seen in Tables 13.2 through 13.4. Of course, in light of the 
discussion in the preceding sections, the measured values at the microscale and the 
macroscale may or may not be the same physical quantity. As little as is understood 
about the magnitude of line tension, the sign of line tension has often taken a back 
seat to it and is thus even less clear.

It may be questioned whether a negative line tension would result in corrugation 
of a contact line becoming energetically favorable. For a sessile drop, the energy 
gained from an increased length of line phase would be offset by the energy cost of 
creating more liquid–vapor surface. Starting with the assumption that the equilib-
rium shape of a sessile drop three-phase line is in fact circular, a thermodynamic 
argument has been made that line tension must therefore be positive [102]. However, 
thermodynamic arguments do not apply below a certain length scale, and the most 
recent study of this issue that included consideration of the interface potential has 
shown that negative line tensions would not result in contact line corrugation, and 
are therefore plausible [103].

13.4.3 conclusIons

The subject of line tension and the drop size dependence of contact angles remains 
murky, with many questions still open. The theoretical, thermodynamic concept of 
line tension is well-defined and has a logical place in the theory of capillarity [104], 
but uncertainties appear as soon as it is applied to real systems.

Surface tensions of dispersive liquids are well understood in terms of van der 
Waals forces between molecules [105]. (For nondispersive liquids, the understand-
ing is more qualitative.) Modeling line tension in a similar way inevitably results in a 
line tension magnitude approximately equal to a surface tension times an interfacial 
width; that is, about 10–11 J/m. This line tension cannot be the cause of any significant 
drop size dependence of contact angles above the micrometer scale.

Based on the large amount of data in the literature, and consistent results between 
different experimental methods, it can nevertheless be concluded that the large meas-
ured drop size dependence is a real effect. The wide variety of systems examined in 
earlier measurements at the millimeter scale suggested a universality of the effect, 
at least for low energy surfaces. However, the increasing number of measurements 
of smaller line tensions at this scale [64,67–69] now suggests a less fundamental 
source for the phenomenon. Efforts to identify this source as surface imperfections 
are unconvincing for high quality (or liquid) substrates, and yet no better alternative 
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explanation is currently available. Even on intentionally rough and heterogeneous 
substrates, the drop size dependence of contact angles has never been quantitatively 
explained.

We are left with the possibility that three intrinsically different phenomena may 
induce corrections to the classical Young equation: a three-phase line excess energy, 
analogous to surface tension, called line tension; an irregular effect produced by 
grossly rough and heterogeneous substrates, called pseudo-line tension; and a more 
subtle effect present even in liquid–liquid systems that has no name.
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Index

a

Acetal, properties, 666
Acid-base theory, 494–496
Adhesion, free energy, 512, 582–583

for sedimentation, 607
for solidification fronts, 520–521, 

648–651, 688
ADSA, 107–174
ADSA-CB, see Captive bubbles
ADSA-CD (Contact Diameter), 300–302; 

See also ADSA-D
ADSA-D (Diameter), 299–306

comparison with ADSA-P, 303–304
objective function, 301
setup, 302–303

ADSA-EF (Electric Field), 233–265
initial value finding, 256–257
overall algorithm, 235–236

ADSA-IP (Imperfect Profile), 170
ADSA-MD (Maximum Diameter), 300–302; 

See also ADSA-D
ADSA-NA (No Apex), 293
ADSA-P (Profile), 114–174

for contact angle measurement, 290–299
experimental setup, 132–135, 207–209
general procedure, 120
inputs and outputs, 114
objective function, 122–124
optimization parameters, 121
optimization procedure, 124–125

Adsorption, see also Films
effect on contact angles, 436, 467–470, 

500–501, 533, 541
liquid, 613–616
and stick-slip, 404–407
theory, 506–508

Adsorption clicks, 214–216
Adsorption kinetics, 213–216
Advancing contact angles, 294–297, 366–393

definition, 331, 416
thermodynamic importance, 311

AFM
for drop imaging, 716–718
for surface characterization, 

402–404, 438–439
Agglomeration, 608, 613
ALFI, 125–127
ALFI-EF, 246
ALFI-S, 182–183, 188–189, 192, 195–196

Alkanes
contact angle hysteresis, 383–385
contact angles, 442–443, 464–471
sedimentation, 616–621
stick-slip, 400–407
surface tension, 436–437
time-dependent receding angles, 368–378

Amirfazli, A., 713–715, 727
Amorphous polymers, 372–376
Annealing, of SAMs, 479–481
Antonow’s rule, 425, 497
APF, 258–262, 277, 306–310
Atomic force microscopy, see AFM
Automated Polynomial Fitting, see APF
Axisymmetric Drop Shape Analysis, 

see ADSA
Axisymmetric Liquid-Fluid Interfaces, 

see ALFI

b

Bacteria, contact angles on, 320
Bashforth and Adams, 112–113
Beerbower correlation, 537–538
Benzaldehyde, properties, 538
Benzophenone, 521, 525–526, 663–670, 691–697
Benzylalcohol, properties, 627
Benzyl benzoate

structure, 447
surface tension, 437
viscosity, 389

4-Benzylisothiazole
structure, 447
surface tension, 437

Berthelot’s rule, 512–513, 545–549, 681–682
Bibenzyl, 525–527, 663–670
Bikerman, J.J., 67
Biphenyl, 521, 646–657, 686–687, 691–697

solid-melt interfacial tension, 559, 584–586
BLES, 157–159, 213–218, 221–223
Bolling and Cissé, 638–639
Bond number, and shape parameter, 160–161
Boundary tension, 702
Bounding walls, 14–15
Bovine Lipid Extract Surfactant, see BLES
Bragg’s law, 372
1-Bromonaphthalene

properties, 627
structure, 448
surface tension, 162, 430, 437, 516
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Bulky molecules, liquids with
contact angle hysteresis, 378–383
contact angles, 446–464

Burrell hydrogen-bonding 
classification, 537

C

Cahn-Hilliard potential, 567
Calibration grids

in ADSA, 141, 183–184, 188–190
in TIFA, 268–269

Camera resolution, in ADSA, 137–138
Canny edge detector

in ADSA, 142–143, 195–196
in ADSA-EF, 248
in APF, 307
setting parameters, 180–187

Capillary penetration, 622–630
Capillary rise, 287–288, 310, 312; See also 

Vertical plate model
Capillary wave method, 110–111
Captive bubbles

in contact angle measurement, 286
image analysis, 179–196
in lung surfactant research, 209, 

211–212, 216–223
Carbon fibers, 670–672
Carnahan-Starling model, 543
β-casein, 226–231
Cassie contact angles, 332, 400, 

405–406, 416
Cassie equation, 332

for superhydrophobic surfaces, 410
Cassie plane, 720–724
Cassie regime, 409–411
Catharanthus roseus, 321
Cathetometers, 288, 310
Cauchy plots, 581–585
Cells, see also Erythrocytes

contact angles on, 305–306, 320–321
surface tensions, 673–676

Cellulose, 628–630
Chemical heterogeneity, see 

Heterogeneous surfaces
Chemical potential, definition, 3
Chernov, A.A., 639–642
1-Chloronaphthalene

structure, 448
surface tension, 437

Cholesteryl acetate
contact angles, 429–434, 501–502, 548
surface entropies, 531

Cleavage, of crystal, 424
Coal powders, 616–622, 677–678
Coatings, thickness, 440–441
Coaxial capillaries, 224–225

Collision diameters, 570–574, 582–587
Combining rules, 544–550; See also 

Berthelot’s rule
Component labelling, 193–196
Composite materials, 670
Compressible systems, 87–102
Conformal mappings, 721–723
Constrained sessile drops, 168

in electric field, 236–240, 258–265
to study lung surfactant, 209, 212–213, 218

Contact angle hysteresis, 311, 331–333, 
366–393, 416

and contact line velocity, 386–391
on horizontally striped surfaces, 338–342
and line tension, 725–728
on patchwise heterogeneous surfaces, 344
on sawtooth rough surfaces, 350
on superhydrophobic surfaces, 409
with thin liquid film, 391–393

Contact angles
definition, 330
measurement, 283–327, 533–534
rate dependence, 296–298
reproducibility, 439–443
small, 298–299
time dependence, 297–298

Contact points, between solid and liquid, 
239, 290–291

Contortions, of three-phase line, 344, 727
Cosine rule expression, 19
Critical micelle concentration, 230–231
Critical surface tension of wetting, 425, 493, 

606
Crystal growth, 590–591
Cubic splines

in ADSA, 139–140
in ADSA-EF, 247–248
in TIFA, 271

Cusps, in liquid lenses, 81–87
Cut-off levels, see Contact points
trans,trans,cis-1,5,9-cyclododecatriene

structure, 446
surface tension, 437
viscosity, 388

Cyclohexane, surface tension, 134
Cyclohexanone, properties, 611

d

DDOAB, 523–524
Debye length, 411–414
cis-Decalin

structure, 445
surface tension, 162, 431, 437, 516

trans-Decalin, surface tension, 162, 430, 516
Decane

interfacial tension, 164
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properties, 574, 627, 682–683
surface tension, 162, 397, 430, 437, 498, 516

Decanol, surface tension, 261–262
1-Decanol, surface tension, 430
cis-Decanol, surface tension, 430
Degrees of freedom, 496, 713; 

See also Phase rule
Density functional theory, 704–706
Derivative operators, in edge detection, 177–178
Derjaguin, 360
DF13, 309
DF55, 309
DHDDA, 523–524
Dibenzylamine

properties, 538
structure, 447
surface tension, 162, 430, 437, 516

Dielectric constant, 538
Dielectric permittivity, 252, 579–587
Diethyl ether, properties, 611
Diethyl phthalate

structure, 447
surface tension, 151, 437

Diethylene glycol, surface tension, 
162, 294, 430, 516

Dietrich, S., 705–706
Differential geometric surfaces, 15
Diiodomethane, surface tension, 432
1,3′-Diiodopropane, surface tension, 432
Dilation, in image analysis, 197–200
Dimensional analysis, 653–661
Dimethyldichlorosilane, 317, 321
Dimethylformamide, surface tension, 517
Dip coating, 315, 441–442
Dipole interactions, 474–476
Direct force (SFA) measurements, 522–524
Dislocations, 592–593
Dispersion, see London forces
Disjoining pressure, 360–366, 392, 707; 

See also Films
Dividing surfaces, 5–6

shifting, 41–44
DMCPS

structure, 445
surface tension, 437

DMPC, 232–233
DMSO, surface tension, 162, 430, 516
Dodecane

properties, 574, 585, 627
solid-melt interfacial tension, 559, 586
surface tension, 162, 397, 430, 437, 498, 516

1-Dodecanol, surface tension, 430
Drelich, J., 714–715, 727
Drop shape methods, 111–118
Drop size dependence of contact angles, 

294–295, 501, 701–733
nonlinear, 726

Drop weight method, 109
Du Nouy ring, 109
Dynamic contact angles, 294–297, 416
Dynamic cycling contact angles, 376–378

e

Edge detection
in ADSA-D, 199
in ADSA-P, 139–143, 180–181

Edge smoothing, in ADSA-P, 181–183
EGC-1700 

alkanes, 468–469
contact angle hysteresis, 378–383, 456
liquids with bulky molecules, 453–457
naphthalene compounds, 471–476
receding angles, 371–376
structure, 371, 438

Electric double layers, 411–415, 575
Electric field, see ADSA-EF
Electrical pressure, 234–235, 252
Electronegativity, 452, 471–475
Electropolishing, 318
Electrostriction, 263
Engulfment, free energy, 521, 648–651, 688
Equation of state

alternate formulation, 512–519
from Berthelot’s rule, 397–398, 497, 513
deviations from, 423–489
existence, 497–506
Neumann, 514
original formulation, 508–512
thin liquid film, 395–398

Equilibrium contact angles, 331, 415–416
Equipotential area, 239
Erosion, in image analysis, 197–200
Erythrocytes, 529–530, 674–676
Ethyl caprylate, properties, 538
Ethyl cinnamate, surface tension, 

162, 430, 516
Ethylene glycol

properties, 611, 627
surface tension, 162, 294, 430, 498, 516
viscosity, 389

Ethyl trans-cinnamate
structure, 447
surface tension, 437

ETMF
AFM, 462–463
alkanes, 470–471
contact angle hysteresis, 378–383
liquids with bulky molecules, 458–461
receding angles, 371–376
stick-slip, 400–404
structure, 371, 438

Euler characteristic, 15
Excess properties, definition, 6
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f

FC-721 
contact angles, 162, 294–295, 303–304, 

312–314, 428–434, 516–518
surface tension components, 

495–496, 534–535
FC-722

contact angles, 427–434, 548
receding angles, 367

FC-725, contact angles, 429–434
FC-732

contact angle hysteresis, 384–385
dynamic cycling contact angles, 376–378
receding angles, 368–371

FEP
contact angles, 312–314, 428–434, 

516–518, 538–541
surface tension components, 534–535

Fibers, surface tension, 670–673
Film balances, 165–167, 224–233
Film collapse, 217–218
Film compressibility, 216–218
Film flotation, 606
Film leakage, 210–212, 218
Film stability, 216–218
Film tension, 362–366, 395–398
Films, solid, see Coatings
Films, thin liquid, 359–366, 391–398
Finite difference method, 241–244
Finite element method, 244–252, 725
First Law of Thermodynamics, 2
Flotation, see also Film flotation

cylindrical particles, 351–359
spherical particles, 358–359

Fluorinated ethylene propylene, see FEP
1-Fluoronaphthalene

structure, 448
surface tension, 437

Focus, in ADSA, 135
Formamide

properties, 627
surface tension, 162, 260, 294, 430, 516

Fourier coefficients, 723–724
Fowkes equation, 494, 499, 523–524, 534
Fowkes, F.M., 493–494
Free energy, see Thermodynamic potentials
Free energy barriers, see Metastable 

equilibrium states
Freezing fronts, see Solidification fronts

G

Gas transfer, through interfacial films, 218–223
Gauss-Bonnet theorem, 22
Gauss-Newton method, 255–257
Gaussian curvature, definition, 8

Generalized theory of capillarity, 1–48
Geometric mean combining rule, see 

Berthelot’s rule
Gibbs-Duhem relations, 27

sessile drop, 502–503
thin liquid film, 362

Gibbs free energy, 24
Gibbs-Thomson equation, 557, 586–594
Gibbs-Wulff theorem, 590–591
Gilpin, R.R., 642–644
Glass, siliconized, see Siliconized glass
Glass transition temperatures, 315, 371–376
Glow discharge polymerization, 317
Glycerol, surface tension, 151, 162, 294, 

397, 430, 498, 516
Gold, surface tension, 594
Goniometers, 285
Good’s interaction parameter, 

497–499, 510–513
Gradient images

in ADSA, 290
in TIFA, 267

Gradient theory, 562–574, 586–587
Grain boundary grooves, 560–561, 591–594
Grand canonical potential, 24

thin liquid film, 363
Granulocytes, 675–676
Gravitational potentials, 54–55
Gravity

in flotation of cylindrical particles, 355–356
for inclined vertical plate, 348
in solidification fronts, 688–697
in vertical plate model, 337

Guoy-Chapman layers, 411

h

Hamaker coefficients, 570, 575–587, 607, 
639–643, 679–689

Heat pressing, 315
Heats of wetting, 530–531, 604–605
Helicobacter mustelae, 197–200
Helmholtz free energy, 23–24
h-ε method, for contact angle measurement, 286
Heptaldehyde, properties, 538
Heptane

properties, 627
surface tension, 437

Heptanol, surface tension, 261–262
Heterogeneous nucleation, 718
Heterogeneous surfaces, 299–300, 

311–314, 329–421
drop size dependence of contact 

angles, 727–729
horizontally striped, see Horizontally 

striped surfaces



Index 739

patchwise, see Patchwise 
heterogeneous surfaces

vertically striped, see Vertically 
striped surfaces

Hexadecane
properties, 574, 585, 611, 627
solid-melt interfacial tension, 559, 586
structure, 448
surface tension, 151, 162, 397, 430, 437, 

498, 516
1-Hexadecene, surface tension, 430
Hexane

properties, 611, 627
structure, 448
surface tension, 430, 437

Hexanol
properties, 611
surface tension, 261–262

Hexatriacontane, 385, 479–480
contact angles, 429–434, 476–478, 

497–502, 548
superhydrophobic, 408–409
surface entropies, 531–532
surface tension, 536

Holders, in ADSA, 148–151
Homogeneous nucleation, 558–559
Horizontally striped surfaces, 338–342
HTAB, 523–524
Humidity, in captive bubbles, 212
Hydrogels, 321–323
Hydrogen bonding, 452
Hydrolysis, interfacial, 231–233
Hydrophobic interaction chromatography, 602
Hydrostatic approach to capillarity, 32–41
Hydrostatics, equation of, 37–38, 563, 569
Hysteresis

contact angle, see Contact angle hysteresis
in film compression, 217

i

Ice, surface tension, 675
Image analysis

in ADSA-D, 195–202
in ADSA-P, 180–195
automation, 190–192

Impurities, 436
Incline, solidification front, 688–697
Indekeu, J.O., 707–708
Index of refraction, see Refractive index
Influence parameter, 565–572
Interaction parameter, see Good’s 

interaction parameter
Interface displacement model, 707–709
Interfacial tensions

definition, 7
grain boundary, 592–593

possibility of negative solid-liquid, 
518–522, 583–584

theoretical estimation, 555–597
ultralow, 163–165

Interference microscopy, for contact 
angle measurement, 286

Interferometry, for drop imaging, 715–716
Internal energy, 2
Intestinal segments, 306–307
Involutory transformations, 26
1-Iodonaphthalene

structure, 448
surface tension, 432, 437

Irreversible cycles, in film compression, 217
Isopentane, properties, 627

J

Johnson and Dettre, 333, 500

k

Kevlar fibers, 670–672
Knudsen furnaces, 317
Kramers-Kronig relations, 579–580

l

Langmuir-Blodgett films, 316
Laplace equation, 235, 240
Laplace equation of capillarity, 112

axisymmetric system, 118–120, 292
compressible system, 93
crystal, 590
cylindrical bubble, 28
in electric field, 234, 251–254
generalized, 16–17, 26–32, 38–41
integration, 121–122
nonzero surface mass, 97–98
spherical bubble, 28
thin liquid film, 365
zero gravity, 720

Laplacian of Gaussian (LoG) edge 
detector, 142–143, 307–308

Lateral smoothing, of edges in ADSA, 139–141
Legendre transformations, 23–24
Lennard-Jones potential, 543–546, 570
Lens apertures, in ADSA, 136–137
Lepidine

structure, 446
surface tension, 437

Leveling, of pedestals, 239
Lewis number, 659
Lifshitz theory, 550–551, 574–587, 680–682
Light sources, in ADSA, 135–136
Line free energy, compressible system, 95
Line phases, 10–13
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Line tension, 10–12, 294, 701–733
compressible system, 101–102
definition, 12, 701
sign, 729

Liposomes, contact angles on, 321
Liquid bridges, 273–275
Liquid lenses, 72–87, 275–277, 710–713
Liquid-liquid contact angles, for particle 

wettability, 600–601
London forces, 545; See also van der 

Waals interactions
Lotus effect, see Superhydrophobic surfaces
Lung surfactant, 206–223; See also BLES
Lymphocytes, 675–676

m

Macroscopic contact angles, 349–351, 416
Mean curvature, definition, 8
Mean field approximation, 704
Mechanical equilibrium conditions, 13–19

thin liquid films, 363–366
Median filters, in image analysis, 199–200
Melting in pores, 558–559
Meshes, in finite element method, 247–251
Metastable equilibrium states, 340–342, 

349–351, 366–367, 400
Methacrylic polymer A, 509–511
Methacrylic polymer S, 509–511
1-Methylnaphthalene

properties, 538
structure, 446
surface tension, 437

Methyl salicylate
properties, 538
structure, 446
surface tension, 431, 437
viscosity, 388

Mica, smoothness, 312–314
Minimal surfaces, 21, 720
Minimum principles, 3, 51
Mixtures, liquid, 485, 513–514, 609–622
Mobility, of polymer side chains, 

see Reorientation
Moderately curved boundaries, 65
Molecular dynamics, 709–710

n

Naphthalene, 521, 646–658, 682–687
properties, 585, 663
solid-melt interfacial tension, 559, 586

Naphthalene compounds
contact angles, 471–476
surface tension, 437

Necking, of liquid in flotation, 357
Nelder-Mead method, 271

Neumann triangle/quadrilateral relation, 
16–19, 72–87, 710–711

nonzero surface mass, 99
Newton’s method, 124–125, 301
Ninham-Parsegian approximation, 580–582
Noise, in image analysis, 179
Nonane, surface tension, 437, 498
Nonanol, surface tension, 261–262
Number of edge points, used in ADSA, 

184–185, 188–190
Nylon 12, properties, 666
Nylon 6, properties, 666
Nylon 6,12, properties, 666
Nylon 6,6

properties, 666, 682–683
sedimentation, 609–618

O

Octadecanethiol, 478–481
Octadecanol, 166–167
Octadecyltriethoxysilane, 316
Octane

properties, 574, 611, 627
surface tension, 437

Octanol, surface tension, 261–262
1-Octanol, surface tension, 430
2-Octanol, surface tension, 430
ODMF

AFM, 462–463
alkanes, 471
contact angle hysteresis, 378–383, 462
liquids with bulky molecules, 461–464
receding angles, 371–376
stick-slip, 399–407
structure, 371, 438
XPS, 461

Oil recovery, 163
OMCTS

structure, 445
surface tension, 437
viscosity, 388

OMTS
structure, 445
surface tension, 437

Optical distortion, see Calibration grids
Orientation, of water molecules, 386
Oscillating jet method, 109–110

p

Pairwise summation, 575–576
Parallel realignment, of alkane 

molecules, 466–470
Particle suspensions, 529–530
Particles, 599–700
Patchwise heterogeneous surfaces, 343–344
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PATH (Particle Adhesion to 
Hydrocarbon), 601–602

Pauling electronegativities, 473–474
PDMS, 386
Pendant drops, in study of lung 

surfactant, 209–211, 213–216
Penetration of liquid, into solid, 368–378, 

383–385, 390
Peng-Robinson equation of state, 571
Pentadecane

properties, 538
surface tension, 437

Pentanol, surface tension, 261–262
1-Pentanol, surface tension, 430
17-Perfluoroethyl heptadecanoic acid, 509–511
17-Perfluoropropyl heptadecanoic acid, 509–511
17-Perfluoroheptyl heptadecanoic acid, 383
Perfluoropolyether, properties, 627
Permittivity, see Dielectric permittivity
PET

contact angles, 294, 428–434, 516–518
surface tension components, 534–535

Phase rule, 503–506
thin liquid film, 393–394

Phase transitions, allotropic, 288–289
Phenomenological contact angles, 331, 415
2-Phenyl phenol, 646–656, 686–687
Pinacol, 646–656, 686–687
Pinning-depinning, see Stick-slip
Plasma oxidation, 412–415
Plumb lines, in ADSA, 141
PMMA

biological substrate, 321–322
contact angles, 308–309, 429–434, 548
electric double layer, 412–415
properties, 666, 682–683

Point phases, 13
Polishing, 317–318
Polyacrylamide gels, 322
Polyamide, see Kevlar
Polydimethylsiloxane, see PDMS
Polyethylene

contact angles, 312–314
properties, 682–683
sedimentation, 609–618
surface tension, 628–629

Polyethylene terephthalate, see PET
Polyhexafluoropropylene (PHFP), 

properties, 682–683
Polyimide, 378
Polymeric hydrogels, 322
Polymer melts, 167–169, 520
Polymethyl methylacrylate, see PMMA
Poly(methyl methacrylate/n-butyl 

methacrylate), 429–434, 548
Poly(n-butyl methacrylate), 429–434, 548
Poly(propene-alt-N-methylmaleimide), 429–434

Poly(propene-alt-N-(n-hexyl) maleimide), 
298, 429–435

Poly(propene-alt-N-(n-propyl) maleimide), 
297–298, 429–435

Polypropylene, 628–629
Polystyrene

contact angles, 429–434
properties, 168, 682–683 
surface tension, 628–629

Poly(styrene-alt-(n-hexyl/10-carboxydecyl(90/10)
maleimide)), 429–434

Polysulfone, 609–618
Polytetrafluoroethylene, see PTFE
Polyvinyl acetate (PVA), 682–683
Polyvinylfluoride (PVF), 609–618
Polyvinylidenefluoride (PVDF), 609–618
Pompe, T., 716
Porcine pancreatic phospholipase (PLA2), 

231–233
Porous materials, see Capillary penetration
Powders, 318–319; See also Particles; 

Sedimentation
Pressure

definition, 3
effect on interfacial tension, 161–163
tensor, 32–41, 563–565

Pressure–area isotherms, 225–230
Prewitt edge detector, 142–143, 307
Propanol, properties, 611
Propylene carbonate, surface tension, 260
Proteins, contact angles on, 321
Pseudo-line tension, 704, 727–730
PTFE, 288–289, 317, 386

capillary penetration, 624–627
contact angles, 509–511, 574
heats of wetting, 531
sedimentation, 609–618

Pulmonary surfactant, see Lung surfactant
PVC (polyvinylchloride), properties, 666
2-Pyridylcarbinol

structure, 447
surface tension, 437

3-Pyridylcarbinol, surface tension, 431

q

Quartz glass
smoothness, 312–314
thin liquid film, 391

Quirke, N., 709

r

Radius of curvature, definition, 61
Receding contact angles, 294–297, 331, 

366–393, 416
time dependence, 367–383, 390, 454–455



742 Index

Red blood cells, see Erythrocytes
Reflection method, for contact angle 

measurement, 285
Refractive indices, 538, 579–585
Region growing, in image analysis, 199–201
Reorientation, see also Parallel realignment

of liquid molecules, 452
of polymer chains, 382–383, 454–461

Respiratory Distress Syndrome (RDS), 207
Retention, of liquid molecules on solid, 

368–376, 382–385, 390
Reversible cycles, in film compression, 217
Reynolds number, 659
Roberts edge detector, 142–143
Rough surfaces, 299–300, 311–314, 329–421

with sawtooth pattern, 344–351
Runge-Kutta method, 254

s

Saline, 320
Salol, 646–656, 686–687, 691–697
Salting-out aggregation test, 602
SAMs, see Self-assembled monolayers
Second Law of Thermodynamics, 

see Minimum principles
Sedimentation, 527–528, 607–622
Self-assembled monolayers, 316, 478–481
Sessile drops, 50–71

ADSA-EF, 237–238
ADSA-P, 293–294

Shape parameters
for ADSA-P, 143–154, 159–161
for ADSA-CSD, 154–159

Siliconized glass, 317, 321
contact angle hysteresis, 385
contact angles, 304, 310, 312–313, 386, 

396–398, 538–541
surface entropies, 532–533

Skapski’s method, 559–560
Skin, contact angles on, 319
Sobel edge detector

ADSA, 139–143, 178–180
APF, 307
TIFA, 267

Sodium dodecyl sulfate (SDS), 164
Solidification fronts, 520–522, 524–527, 

530, 633–700
experimental setup, 644–645

Solid-liquid-fluid systems, see Sessile drops
Solid-liquid-liquid-fluid systems, 

see Liquid lenses
Solid surfaces

cleaning and handling, 323
preparation, 311–323

Solid surface tensions, 423–554
from capillary penetration, 622–630

from sedimentation, 607–622
from solidification fronts, 661–678

Solvent casting, 315
Spin coating, 440–442
Spinning drop method, 111
Spreading coefficient, 708, 725–726
Spreading pressure, 359, 436, 500–501, 541
Sputtering, radio frequency, 317
Staphylococcus epidermidis, 305–306
State of a system, 13
Static contact angles, 293–294
Stern layers, 411–412
Stick-slip, of contact lines, 298, 398–407
Stress tensor, see Pressure tensor
Subphase exchange, 224–233
Subpixel resolution, in ADSA, 139–140
Superhydrophobic surfaces, 407–411
Surface entropies, 531–533
Surface force apparatus (SFA), 522–524
Surface free energy

compressible system, 95
relation to surface tension, 26, 66, 69

Surface of tension, 41–42, 67
Surface pressure, 165–167, 225–233
Surface stress (in solids), 588–591, 594
Surface tension–area isotherms, 216–217
Surface tension components, 426, 493–496

table, 495
Surface tension measurement, 

dynamic effects, 152–154

t

Tangentometers, 285
Teeth, contact angles on, 319
Teflon, see also PTFE

ADSA-EF, 234, 238–240
properties, 682–683
sedimentation, 616–621

Teflon AF 1600
AFM, 439
alkanes, 464–468
contact angle hysteresis, 378–383, 

387–391, 456
contact angles, 295–296, 309
liquids with bulky molecules, 446–452
naphthalene compounds, 471–476
preparation, 441–442
receding angles, 371–376, 444
reproducibility, 442–443
structure, 371, 438
thickness, 440–441
water, 477–478

Teflon FEP, see FEP
Temperature

definition, 2
effect on contact angles, 310, 530–533
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o-Terphenyl, 646–656, 686–687
Tetradecane

film, 226–229
properties, 627
surface tension, 162, 397, 430, 437, 498, 516

Tetralin
properties, 611, 627
structure, 446
surface tension, 437, 516

Theoretical Image Fitting Analysis, see TIFA
Thermodynamic potentials, 23–26
Thiobacillus ferrooxidans, 305–306
Thiobacillus thiooxidans, 305–306
2,2′-Thiodiethanol

properties, 611
surface tension, 430

3,3-Thiodipropanol, surface tension, 430
Thiodiglycol, surface tension, 162, 294, 498, 516
Thresholding, 176–177, 193–196, 199–200
Thymol, 522, 646–656, 662–665, 674, 686–687
TIFA, 265–277

comparison with ADSA, 266
objective function, 268

TIFA-AI (Axisymmetric Interfaces), 272–275, 293
TIFA-PD (Pendant Drop), 271–273
TIFA-LL (Liquid Lenses), 275–277
Tilting plate method, 286
Tissue surface tensions, 169–170
Triacetin, surface tension, 431
Tridecane, surface tension, 437
Tween 20, 229–231
Two-phase partition, 601–602

u

Uhlmann, D.R., 637–638
Undecane, surface tension, 437
Undecanol, surface tension, 261–262
Unmodified Good equation, see Equation of 

state from Berthelot’s rule

V

van der Waals interactions, 574–586, 607, 
678–697; See also London forces

repulsive, 688
van der Waals model, 542–544
van Oss, C.J., 494–496
Vapor adsorption, see Adsorption
Vapor deposition, 316–317
Vapor pressures, see also Adsorption

alkanes, 465
liquids with bulky molecules, 449, 451

Variable angle spectroscopic ellipsometry, 378
Vertically striped surfaces, 342–344, 

716, 718–725
Vertical plate model, 334–338

Virtual work, see Mechanical equilibrium 
conditions

Viscosity, effect on dynamic contact 
angles, 387–391

W

Washburn’s equation, 623
Water

film balance, 166–167, 227–229
gas transfer, 221–223
interfacial tension, 164
properties, 627
solidification front, 677–678
solid-melt interfacial tension, 559
surface tension, 162, 189, 294, 397, 430, 

437, 498, 516
surface tension in electric field, 259–262
thin liquid film, 391
viscosity, 388

Wenzel contact angle, 332, 351, 416
Wenzel equation, 332
Wenzel regime, 409–411
Wide angle x-ray scattering, see X-ray diffraction
Widom, B., 705–706
Wilhelmy plates, 108–109

for contact angle measurement, 
286–288, 671–672

for polymer melts, 167

x

X-ray diffraction, 372–375
X-ray photoelectron spectroscopy, 374, 404, 454
o-Xylene

structure, 445
surface tension, 437
viscosity, 388

p-Xylene
structure, 445
surface tension, 437

y

Young contact angles, 311, 416
Young’s equation, 425

assumptions, 331
compressible system, 93
electric double layer, 414
generalized, 17
modified, 703
nonzero surface mass, 98–99
thin liquid film, 365

z

Zeta potentials, 411–414
Zisman, W.A., 425, 492–493, 499–501
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