Interdisciplinary Contributions to Archaeology

The
Archaeologist

Laboratoryé—

W

B
@ EX 3—%
The Analysis of Kg;
o :'.r_::ua °_§_~
Archaeological Data
st sdf
® = 5 —i_
E. B. Banning Eof
= & S
Layer Number — E |
Excavation Unit ( et
<—|Site Number ____ o 8
Soil Colour A P
Soil Texture A > 83
Layer Above A Bl
Layer Below A 8
Volume N o :E
Artifact Number E: O—E
Layer Number =
; ; Site Number e
Comments T Artifact Type A e ?E
Raw Material A Lr = 5
Retouched? B = 3
Length/Width N IR
Length (mm) N B
Comments T - j




The
Archaeologist’s
Laboratory

The Analysis of

Archaeological
Data



INTERDISCIPLINARY CONTRIBUTIONS TO ARCHAEOLOGY

Series Editor: Michael A. Jochim, University of California at Santa Barbara
Founding Editor: Roy S. Dickens, Jr., Late of University of North Carolina, Chapel Hill

Current Volumes in This Series:

THE ARCHAEOLOGIST’S LABORATORY
The Analysis of Archaeological Data
E. B. Banning

AURIGNACIAN LITHIC ECONOMY
Ecological Perspectives from Southwestern France
Brooke S. Blades

CASE STUDIES IN ENVIRONMENTAL ARCHAEOLOGY
Edited by Elizabeth J. Reitz, Lee A. Newsom, and Sylvia J. Scudder

DARWINIAN ARCHAEOLOGIES
Edited by Herbert Donald Graham Maschner

EARLIEST ITALY
An Overview of the Italian Paleolithic and Mesolithic
Margherita Mussi

FAUNAL EXTINCTION IN AN ISLAND SOCIETY
Pygmy Hippopotamus Hunters of Cyprus
Alan H. Simmons and Associates

HUMANS AT THE END OF THE ICE AGE

The Archaeology of the Pleistocene—Holocene Transition

Edited by Lawrence Guy Straus, Berit Valentin Eriksen, Jon M. Erlandson,
and David R. Yesner

A HUNTER-GATHERER LANDSCAPE
Southwest Germany in the Late Paleolithic and Mesolithic
Michael A. Jochim

HUNTERS BETWEEN EAST AND WEST
The Paleolithic of Moravia
Jiff Svoboda, Vojen LoZek, and Emanuel Vi¢ek

MISSISSIPPIAN POLITICAL ECONOMY
Jon Muller

PROJECTILE TECHNOLOGY
Edited by Heidi Knecht

STATISTICS FOR ARCHAEOLOGISTS
A Commonsense Approach
Robert D. Drennan

VILLAGERS OF THE MAROS
A Portrait of an Early Bronze Age Society
John M. O’Shea

A Chronological Listing of Volumes in this series appears at the back of this volume.

A Continuation Order Plan is available for this series. A continuation order will bring delivery of each new volume
immediately upon publication. Volumes are billed only upon actual shipment. For further information please contact
the publisher.



The
Archaeologist’s
Laboratory

The Analysis of
Archaeological
Data

E. B. Banning

University of Toronto
Toronto, Canada

KLUWER ACADEMIC PUBLISHERS
NEW YORK, BOSTON, DORDRECHT, LONDON, MOSCOW



eBook ISBN: 0-306-47654-1
Print ISBN: 0-306-46369-5

©2002 Kluwer Academic Publishers
New York, Boston, Dordrecht, London, Moscow

Print ©2000 Kluwer Academic/Plenum Publishers
New York

All rights reserved

No part of this eBook may be reproduced or transmitted in any form or by any means, electronic,
mechanical, recording, or otherwise, without written consent from the Publisher

Created in the United States of America

Visit Kluwer Online at: http://kluweronline.com
and Kluwer's eBookstore at: hitp://ebooks kluweronline.com


http://kluweronline.com
http://ebooks.kluweronline.com

For Cindy



This page intentionally left blank



Preface

The purpose of this book is to introduce stu-
dents to basic laboratory and analytical tech-
niquesin archaeology. Itisnot a text on statistics
or archaecometry, although it does contain some
statistics and is applicable to archacometric prob-
lems. Although it will familiarize students with
awide range of analytical techniques, the details
of most of them are beyond its scope. Only
methods that we could reasonably expect un-
dergraduate students to carry out in class are
considered in detail. Some more advanced meth-
ods are only mentioned for the sake of complete-
ness or to familiarize students with terms they
will encounter elsewhere.

I decided to write this book after years of
tryingto find areference thatstudents canuse to
learn how to analyse archaeological data. Some
books cover excavation methods, others statis-
tics, classification, faunal analysis,
palaeoethnobotany, or archaeometry, while still
others deal with spatial analysis or computer
applications, but none with the common threads
that tie all these things to a core of archaelogical
practice. In addition, there is often a gulf be-
tween method and theory, when, in fact, no
method is useful unless itis informed by theory.
This is not an encyclopedic manual for any of
these subjects, but an attempt to pull together
the common threads of archaeological analyti-
cal concepts. Rather than provide a statistics text
with archaeological examples, my purpose is to
emphasize how archaeological data are formed
and recorded, how they are classified or grouped
together for analysis, and some relatively sim-
ple but important ways these data can be ma-
nipulated, compared, examined, or presented
to extract information from them and to com-
municate it to an audience. Whether readers
intend to specialize in stratigraphy, phytolith

analysis, lithics, archacozoology, or archaeo-
logical architecture, I hope that they can find
something of value in this book.

This book is primarily intended for third- or
fourth-year undergraduates who already have
some background in archaeology, such as an
introductory course in world prehistory or a
course in field methods. Students will also find
it helpful to have had at least a basic course in
statistics, although any statistical concepts used
here are briefly reviewed. Some good introduc-
tions to statistics for archaeologists include
Drennan (1996), Fletcher and Lock (1991), Orton
(1980), and Shennan (1988), each with its own
emphases. Sections of this book that are a little
more advanced may be considered optional,
and will be identified as such in the first para-
graph. It is not a manual to teach how to carry
out statistical tests, which we would now do
with computers rather than manually. Where 1
provide a practical example, however, I recom-
mend that readers try to work their way through
it, simply to have a better understanding of how
or why something works. Although I have writ-
ten the book with undergraduates in mind,
graduate students may also find it useful as a
reference, particularly the bibliographies and
the introductions to measurement theory, use of
graphs, database design, and sampling. Formost
of the remainder, such as lithics analysis and the
like, graduate students will find it more useful
to consult the more specialized literature cited
here.

Since I wrote the first draft of this book,
Sutton and Arkush (1998) published Archaeo-
logical Laboratory Methods. Their book introduces
the analyses of materials such as lithics, pottery,
animal bones, and plant remains, generally at a
less advanced level than here, and includes some
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topics, such as glass, textiles, and historical arti-
facts, that are not specifically treated here. It
may be appropriate for first- or second-year
archaeological students who are not yet pre-
pared to tackle some of the readings in this book.
Itis also more focussed on American archaeol-
ogy and does not cover the more theoretical or
quantitative topics.

A few words are in order about my own
interests, influences and theoretical perspective,
which, although I do try to present alternative
views, clearly guide the direction of this book.
My early archaeological training shaped me
into some version of a “processual” archaeolo-
gist, with the view that archaeology could ben-
efit from the methods of science. My early interest
in archaeometry also contributed to this view.
Atthe same time, my university training bridged
the Anthropology and Near Eastern Studies
departments at University of Toronto, and I was
also influenced by classicists and historians.
Consequently, I had a greater appreciation than
many processual archaeologists at the time for
the methodology of history, and I knew that
history was not the unsophisticated chronicling
of events that some processual archaeologists
suggested it was. Historians had also long been
aware that our interpretation of the past was
colored by our own experiences and culture, as
well as those of texts’ authors, a view that did
not have wide currency in anthropological ar-
chaeology until the 1980s. This background made
me receptive to aspects of the “post-processual”
program. I still felt that plausible archaeological
analysis and interpretation should have some
scientific rigor, in the sense that arguments
should be logical and consistent both internally
and with our observations, but I found thatpost-
processual relativism was not diametrically op-
posed toscience (cf. VanPool and VanPool 1999).
Indeed, philosophers of science, even a century
ago, were aware thatscientific observations were
affected by the preconceptions—the theoretical
baggage — of the scientist. Furthermore, even
the most vocal post-processualists make use of
measurements and data — see, for example,
Shanks and Tilley’s (1987) analysis of attributes
of beer cans — and are particularly concerned
with meaning in data. I agree with Orton (1988)
that measurement and quantitative methods

are not unique to processual archaeology. I em-
phasize the point that we as archaeologists create
the measures, categories, and concepts that we
use to observe, organize, and interpret the evi-
dence of the past. That does not mean that these
creations are notvalid or that one set of concepts
is as good as any other. Whatitdoes mean is that
the concepts appropriate for one program of
research may not be as useful for another, and
that we should think very carefully about the
concepts we use when we are designing our
research, rather than simply copying the catego-
ries and measures of someone else’s research
uncritically. Another pointI make throughoutis
that it is very easy to mislead others, and our-
selves, about the significance of ourresults if we
do not take into account that the observations
we make are prone to various kinds of errors
and are usually on imperfect samples rather
than on the whole in which we are interested.
Finally, I stress that the set of concepts we use
makes an integrated whole, so that it does not
make sense to segregate archaeological theory
into zooarchaeological theory, lithics theory, and
so on. All analysis in archaeology, even though
there are some unique problems, shares a large
number of basic theoretical and methodological
concerns.

My writing has had other major influences
as well. My way of viewing probability, inferen-
tial statistics, and research design has been in-
fluenced by Bayesian analysis, and particularly
the work of Buck, Cavanagh, and Litton (1996).
Their work and that of others who have applied
Bayesian analysis to archaeological problems
especially influenced chapters 4 and 15. Al-
though most of the statistics presented here are
not particularly Bayesian, I consider it essential
that students are at least aware of this important
approach. My views on systematics are most
heavily influenced by the work of Dunnell (1971;
1986), as is fairly obvious in chapter 3,butT have
found that I agree with many views of Adams
and Adams (1991), even though our use of ter-
minology differs and I, like Dunnell, make the
distinction between classification and group-
ing. Another major influence on my views on
archaeological data and analysis is Clive Orton,
and especially his papers on quantification cited
in chapter 5.



Preface

ix

Although I have aimed at a reasonable bal-
ance of views in the book, it is clear that these
influences have had a strong effect on the out-
come, and thatI feel strongly about some issues,
such as measurement error and the futility of
complete “objectivity” in analysis. While I do
not expect all archaeologists to agree with my
own use of terminology or presentation of con-
cepts, I believe it is important for all archaeolo-
gists to be clear what they mean by the terms and
concepts they use. While I agree with Adams
and Adams (1991) that archaeological practice
often does not consciously adhere to some theo-
retical program, that there has been a large gap
between practice and theory, and that much
everyday work is largely intuitive, I still believe
that it is useful to be able to recognize the types
of concepts and tools that archaeologists are
using, whether intuitively or consciously. Some
parts of this book are an attempt to make stu-
dents and others aware of the conceptual struc-
ture that lies behind everyday archaeological
laboratory practice.

The Organization of the Book

The various aspects of archaeological research
are so interrelated that it is difficult to discuss
one without reference to the others. Conse-
quently, some topics, such as sampling, are de-
layed until after the reader has covered some
basic concepts in the definition and recording of
data, and some of the more challenging aspects
of data compilations are left for the end of chap-
ter 3. Although the book is designed as a course
text, with chapters often building on concepts
presented in previous ones, readers and instruc-
tors may want to reorder the chapters to suit
themselves or use only parts of chapters. For
example, some instructors may want to cover
databases (chapter 3) with lithics (chapter 8),
quantification (chapter 5) in the context of oste-
ology (chapter 10), or systematics (chapter 3)
along with pottery (chapter 9). I consciously
decided not to omit more difficult material,
partly to avoid “talking down” to students and
partly so that it would be available for future
reference. Instuctors may suggest that students
skip the equations or more difficult passages if
they might prove an impediment.

In addition to general theoretical and meth-
odological issues, the text provides basic intro-
ductions to some common kinds of
archaeological analyses by focussing on lithics,
pottery, animal bones, and plant remains, as
well as other laboratory skills, such as illustra-
tion and conservation. I make no claim to be an
expert in any of these specializations, although
as an archaeologist who runs a lab in Toronto
and a field project in Jordan I must deal with
them at some level on a regular basis. It is
important to remember that these chapters are
not exhaustive treatments, but only introduc-
tions to what is, after all, a vast literature on
these subjects. To keep the volume from getting
unwieldy, I also had to make the painful deci-
sion to omit some topics, such as human re-
mains, spatial analysis, and microrefuse.

In general, the chapters begin with concepts,
terms, and a selection of basic measurements
commonly found in some kinds of current re-
search, followed by brief discussion of several
kinds of laboratory research involving those
materials, such as stylistic analysis of lithics or
inferring seasonality from faunal remains. These
are not intended to instruct students how to do
stylistic analysis or measure growth increments
on shell, for example, but only to familiarize
them with the range of research in that field and
some of the measurement and analytical prob-
lems they entail.

Throughout the book, words shown in bold
refer to significant concepts and terms. My own
definitions for these, which may differ from
others’ definitions, appear in the glossary and
usually also when they are first mentioned in
the text.

My web site provides sample laboratory
exercises that include suggestions as to how an
instructor may implement them. They are based
on my own experiences of teaching laboratory
methods to third- and fourth-year undergradu-
ates at University of Toronto over a period of
seven years, and are intended to illustrate spe-
cific concepts in the book, such as the effect of
sample size on standard error, as well as to
expose students to different kinds of archaeo-
logical materials. I fully expect that instructors
who choose to use the book as a text would want
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to modify the exercises (and I have sometimes
suggested directions such modifications might
take), to add others and to make omissions and
substitutions. Some instructors, I know, already
have long-standing courses in laboratory meth-
ods and their own time-tested sets of exercises.
The manual is a guide that will, I hope, help
those instructors who need some ideas about
how to turn some of the book’s concepts into a
hands-on experience for students. Its URL is:
http://www.chass.utoronto.ca/~banning/
manual

This book has benefitted from the comments
of many colleagues and students in its several
iterations over the last five or six years. Many
thanks to the anonymous reviewers as well as
JamesBarrett, Roelph Beukens, Mark Blackham,
Bill Cavanagh, Michael Chazan,James Conolly,
Max Friesen, Andrew Garrard, Alicia Hawkins,
David Lasby, Bob Laxton, Susan Maltby, Louise
Martin, Steve Monckton, Clive Orton, Larry
Pavlish, Rula Shafiq, Cindy Shobbrook, Julian
Siggers, Joe Stewart, Karen Wright, and several
classes of students for corrections and helpful
suggestions on various parts of this book. Barb
Leskovec and Jacqueline Stagen helped with the
index. Of course I take responsibility for the
remaining errors. Thanks also to Eliot Werner
for his interest in the project.

E.B.Banning

Toronto, Canada
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Many books introduce and develop the con-
cepts and methods archaeologists use in their
fieldwork, and especially in excavation. The
subject matter of this book, by contrast, is the set
of activities, concepts and intellectual products
that follow these excavations and archaeologi-
cal surveys, with emphasis on the concepts and
methods archaeologists use to describe and ana-
lyse their observations. It is important to point
out that fieldwork and analysis are inextricably
linked — we return to this point in discussion of
research design in chapter 4 — but the former
tends to receive much more attention than the
latter. Here I attempt to redress some of this
imbalance.

Ibegin with an overview of what archaeolo-
gists actually do. Jean-Claude Gardin (1980)
distinguishes between several very broad cat-
egories of archaeological activities or intellec-
tual processes. These processes are linked to
form a chain from the basic acquisition of data,
through constructions of propositions or theo-
ries, to publication, and the chain folds back on
itself to link up with data acquisition again. This
happens because our collection of data is never
random or “objective”; it is always directed by
our theories, past experience, and preconcep-
tions. Many North American, and especially
processual, archaeologists have likened this
chain orcycle to thehypothetico-deductive form
of reasoning — we will return to this point in
chapters 4 and 6 — but similar phenomena
occur in post-processual or interpretive
archaeologies, and especially those that make
reference to hermeneutics. Gardin’s three basic
processes in this chain are data acquisition, analy-
sis (fromarchaeological remains topublication),
and observation strategies. Each of these proc-
esses he subdivides to consider the details of
how archaeologists work.

Introduction

Analysis and observation strategies are the
focus of most of this book. Observation strate-
gies have to do with how we conceive of and
perceive phenomena, and how we select the
phenomena, or “data,” toobserve. Chapters2.4,
and 6 deal with aspects of observation strate-
gies. Gardin (1980) suggests that archaeological
analysis includes such basic activities as cata-
loguing and describing archaeological evidence,
such as artifacts. But usually archaeologists are
not content with mere inventories or catalogues,
and one of the activities that makes important
demands on their time involves ordering the
evidence into some kind of structure: groups,
classifications, and typologies. We tend to think
of these structures as applying to portable arti-
facts, but they are just as applicable to sites,
chronologies, phytoliths, economic systems, or
“cultures.” The methods that we use to create
such structures, or systematics, form an impor-
tant part of this book (chapter 3). Systematics are
aprerequisite formore interesting kinds of analy-
sis, and Gardin (1980) describes these as “pat-
tern recognition” and “historical inference.”
Groups, categories, classes, or types of phenom-
ena form the building-blocks of our analyses.
Then we can begin to compare them, to look for
interesting interrelationships or contrasts be-
tween types or variables, unusual groupings in
space or time, or other patterns. The patterns, in
turn, allow us either to make inferences or to test
hypotheses about changes in human behavior
over time, about similarities and differences
between groups of people in the past, about the
factors thatinfluencehumanbehaviors, orabout
ways our predecessors have contributed to
modern people’s ways of life. What Gardin
(1980) calls “historical inference” is, in essence,
explanation of events, changes, functions, and
differences in past human cultures.
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Coombs (1964:5) describes analysis as the
detection of relations, order, and structure in
data. For example, we might detect a relation-
ship between settlement pattern and food-pro-
duction strategy or between resource scarcity
and intensity of lithic reduction.

Processes should have products, and Gardin
(1980) classifies the products of archaeological
processes as either “compilations” or “explana-
tions.” The former involves simply collecting
and presenting data. The latter involves work
meant to draw out information about technol-
ogy, symbols, social organization, and other
aspects of culture that are not inherent in the
“raw” data or the artifacts themselves.

Compilations

Compilations are arguably the most visible re-
sult of archaeological work. Gardin (1980: 28)
defines a compilation as a systematized set of
interrelated propositions that describe material
remains to facilitate the study of ancient people.
Compilations are often symbolic constructions,
with a system or language of representation:
computer coding, technical drawings, maps, and
digitized representations, for example, are all
symbolic representations, and simplifications,
of reality. To make compilationsuseful, we usu-
ally resort to something other than natural lan-
guage to describe and organize the data, an
“Information Language.” This simply supplies
the symbols used to describe such elements as
artifacts and attributes, and the rules used to
describe their interrelationships. We will dis-
cuss information languages in more detail in
chapter 3. Information language requires a sys-
tematic way of describing or measuring ele-
ments and their associations. We will deal with
these aspects in the first part of chapter 2.

One of the advantages of information lan-
guage is that it allows us to manage huge vol-
umes of data with computers. We will discuss
the design of archaeological databases in chap-
ter 3 and outline some of the basic processes
involved in electronically manipulating data.

One kind of information language that most

archaeologists do not typically recognize as a
language at all is graphic. The technical draw-

ings and maps that archaeologists use to publish
archaeological results orillustrate compilations
arerarely realistic depictions of artifacts or sites.
In fact, they are coded representations designed
to convey particular kinds of information to
other archaeologists, while omitting details that
might obscure the point that an archaeological
author is trying to make. We will deal briefly
with the language of archaeological technical
drawings in chapter 2, and return to it in chapter
16.

Commonly, archaeological materials make
life difficult for archaeologists in that they are
fragmentary or their quantity does not have an
obvious meaning. Before we can create mean-
ingful compilations of pottery or faunal remains,
for example, we need to decide what unit or
units of analysis we will use. Will we simply
count potsherds or bone fragments, or try to
estimate the number of pots or animals? Will we
instead try to estimate how much food the pots
contained or how much meat the animals pro-
vided? Are we interested in the absolute number
of pots or animals, or only in the proportion of
pots or animals in a particular category? These
are questions that go beyond basic measure-
ment theory to problems of quantification that
are sometimes unique to archaeology. We will
deal with these problems in chapter 5.

Some kinds of compilations, especially when
cost constrains publication, summarize data
rather than describing each element (artifact,
site, etc.) in detail. In chapter 2 we will deal in
some detail with graphic methods for summa-
rizing data, and briefly review descriptive sta-
tistics. The former, when used properly, allow
us to visualize patterns in large quantitites of
data — to see the forest rather than the trees —
and in that sense can be highly effective tools of
analysis. The latter allow us to reduce a whole
table of observations to a few numerical sum-
maries that can prove useful later on in our
attempts to explain patterns in the data.

Explanations

According to Gardin (1980), an archaeological
explanation is meant to reconstruct past events
or ways of life through the properties of material
evidence and any other information available.
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Most archaeologists would consider Gardin’s
definition too narrow, and would consider ar-
chaeological explanations to include account-
ing for long-term processes of change and
stability, such as evolution and adaptation, for
similarities and differences between groups of
people in the past, and the reasons for those
people adopting the strategies they did for sur-
viving, interacting with others, and satisfying
their physical and psychological needs, among
other goals. The important thing about explana-
tory constructions, as opposed to mere compila-
tions, is that they go beyond the intrinsic
properties of the artifacts, “ecofacts,” and other
items of evidence that archaeologists employ to
reconstruct or find the causes of phenomena
thatarenot directly observable. We candescribe
the chemical composition of an artifact and offer
no explanation; the chemical data would form
part of a compilation. By contrast, we can use
that chemical composition in combination with
other datato inferthe source of the artifact’sraw
material, the place where the artifact was made,
the technology used to make it, or interregional
trade routes. These would all be explanatory
constructions. Many of these explanations are
ones a philosopher would describe as
“ampliative.” Thatis, the final proposition con-
tains information that is not inherent in the
initial premises (Salmon, 1982:33). We will re-
turn to this property of certain explanations
when we discuss inference and deduction in
chapter 6.

Explanation or understanding is the goal of
analysis. Much of the book consequently deals
with approaches to pattern recognition, hypoth-
esis testing, and analysis that allow us to con-
struct and evaluate explanations. Some, but not
all, of these are statistical methods. As Gardin
suggests, these methods involve the interplay
between data that are intrinsic to the artifacts
and sites in our compilations and “extrinsic”
data (context) that typically concern space, time,
function, and what we might call social and
psychological contexts. The classes of extrinsic
information that particular archaeologists choose
as their focus depend on their theoretical per-
spectives: materialist, idealist, functionalist,
structuralist, evolutionary, engendered, Marx-
ist, and so on. I will try in what follows to draw

examples of explanations from at least a few of
these perspectives.

Analytical Strategies

In many sciences, research designs are based on
experiment. The experiment may attempt to
hold several factors constant, and vary one, to
see what, if any, effect that factor may have on
some variable of interest. Most archaeological
analyis cannot proceed in this fashion because
we cannot control or manipulate things that
happened in the past. Only in experimental
archaeology, which typically involves attempt-
ing to replicate or simulate some past process,
such as flint-knapping or use wear on tool edges,
can we impose and vary experimental controls.
For example, if we hope to discover the factors
that cause variations in the microscopic polish
and scratches on tool edges during use, we may
make a number of chert flakes from identical
material and with closely similar edges, and use
them to incise or carve identical wood material,
holding asbestwe can all factors constantexcept
motion of use. Once we appear to have isolated
the variations in edge wear that are associated
with motion of use, we may hold this constant
also, but vary the contact material, substituting
bone, hide, and other things for wood, thus
determining the effect of contact material on the
use wear.

Most archaeological analysis, however, con-
sists of the examination and explication of phe-
nomena that resulted from “experiments” over
which we had no control, and which took place
centuries ago. Archaeologists are not alone in
having to deal with this problem. Epidemiolo-
gists, for example, often must try to discover the
causes of a disease or determine the effective-
ness of a medical treatment by analysing case
histories in a “retrospective” manner (Streiner
and Norman, 1996). Clearly it would be unethi-
cal for these researchers to design experiments
thatintentionally exposed some individuals to a
potentially dangerous pathogen, or that with-
held a life-saving drug from some individuals,
just to serve as experimental controls. Instead
they may simply have to search for patterns in
the relationship between prevalence of a disease
and various factors to which people both with
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and without the disease were exposed in the
past, or between mortality rate and use of com-
peting treatments.

As a substitute for controlling key factors,
retrospective analysis, including archaeology,
may involve selecting a sample from a popula-
tion thought to be fairly homogeneous in many
respects, but varying in at least one respect that
we think may be an important influence on
some variable of interest. For example, McGhee
(1977) hypothesizes that Thule people in the
Canadian arctic associated ivory and the sea
with women and winter, but antler and the land
with men and summer. He sees this as a set of
ideological constructs in Thule culture. We can-
not take a Thule site and vary its seasonality
from summer to winter and back again, or tweak
the proportion of women among its inhabitants
up or down to see how seasonality or gender
might affect the relative abundance of antler or
ivory artifacts. However, we can divide the popu-
lation of Thule sites into two groups, inland sites
and coastal sites, and then see how the evidence
for seasonality and the ratio of antler to ivory
may vary between these two groups.

Unfortunately, there may be other factors
correlated with seasonality or location that may
confound any association we might see. For
example, maybe the activities that Thule people
carried out inland or in summer were function-
ally very different from those they carried out at
coastal winter sites, and required tools made
from different materials, or perhaps some mate-
rials were simply more easily available inland
than at coastal locations. For McGhee’s hypoth-
esis to succeed, he has to demonstrate that these
competing, functional hypotheses do not ac-
count for the patterns he recognizes in his analy-
sis of the data. As ithappens, they do not, so his
preferred hypothesis remains more plausible.
Comparing competing hypotheses with respect
to their ability to account for the variations we
see is an important aspect of analysis.

Much archaeological research depends on
the analysis of comparisons of different types of
sites, of sites in different types of location or
occupied in different seasons, of assemblages
involved in differentkinds of economy or formed
atdifferent points intime. As discussed inchap-

ter 3, such analysis depends on the meaningful
grouping of sites or assemblages, or their classi-
fication into “types.” We may then try to iden-
tify the variables that differ meaningfully among
these types. By this we mean that there should
be some plausible theory to account for the
inter-type differences; without such a theory, it
is possible that the differences are just coinci-
dental or due to random variations.

Yet because archaeology has the advantage
of being able to recognize changes that occurred
over very long periods of time, much archaeo-
logical analysis focusses instead on relation-
ships between variables over time. Again, we
usually cannot design an experiment that tracks
changes over time in one variable as we increase
or decrease another. Instead, we retrospectively
search for relationships between the variables
across sets of well-dated assemblages. Conse-
quently, archaeological analysis typically de-
votes considerable attention to chronology.
Unlike a physicist or epidemiologist, we cannot
just use a clock or calendar to track these rela-
tionships, so we have to use less certain tools to
date our observations. Chapters 13, 14 and 15
deal with the use of some of these dating instru-
ments and interpretation of their results.

As with the comparisons of assemblages or
types, we should also have a theory to account
for any relationships we see. Even though our
inability to come up with a convincing theory
does not rule out the possibility that someone
may find one eventually, we must keep in mind
that, if we search any body of data long enough,
we can always find relationships, some of which
make no sense at all. For example, there is a
correlation between changes in the diameter of
the stems of smoking pipes in the United States
(Heighten and Deagan, 1971) and the price of
wheat in Miinich (Kellenbenz et al., 1977218)
over the period from 1688 to 1775 (correlation
coefficient, r= 0.85, figure 1.1). Surely there is no
causal relationship between these two variables,
and we would describe itas a “spurious correla-
tion.” Nor should we expect a causal relation-
ship between the pipestem figures and the
percentage of silver in Japanese chogin coins
(JCDA, 1975) of the same date, even though the
correlation coefficient is -0.75.
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Making meaningful comparisons or identi-
fying change over time also requires valid scales
of measurement and some way to account for
errors in the measures, in the instruments used
to make measurements, and in our selection of
things to compare. These are topics that the
following chapter will consider in some detail.
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This chapter will consider what constitutes ar-
chaeological data and how they are measured
and presented. Here we will use ‘“measure-
ment” in a very broad sense of the term, includ-
ing anykind of observation that an archaeologist
canmake. The description of color, forexample,
is ameasurement and archaeologists often use a
standardized scale to measure it. Measurement
theory provides a way of describing things and
making them comparable to one another. Later
parts of the chapter will deal with summarizing
and displaying data.

From the initial collection of data through
their analysis and publication, there is always a
selection of data from a theoretically infinite
numberofpossibleobservations (Coombs, 1964).
Although some archaeologists try to argue that
you can collect “objectively,” as in all sciences,
we only see something if we are prepared to see
it.

The novel, Zen and the Art ofMotorcycle Main-
tenance makes this point quite well:

According to the doctrine of 'objectivity,
.... We should keep our mind a blank tablet
which nature fills for us, and then reason
disinterestedly from the facts we observe.

But when we stop and think about it
disinterestedly, .... Where are those facts?
What are we going to observe disinterestedly?
... The right facts, the ones we really need, are

What Are Data?
Archaeological Measurements

not only passive, they are damned elusive,
and we’re not going to just sit back and
“observe” them. We’re going to have to be in
therelookingforthem...(Pirsig, 1974:274-75).

Dataarenotobjects, suchasprojectile points
or potsherds (cf. Sullivan, 1978:189; Thomas,
1976:7). They are observations and measure-
ments you make on these objects and on their
contexts. In some sense, we do not even merely
select facts from an infinite sea of data, but
construct them by deciding how we will “see”
them, and how we will categorize them. Data
are theory-laden.

Datain archaeology can include the name or
category of an artifact (e.g., “Clovis point™), the
density of potsherds on the surface of a site (10
sherds per square meter), the average distance
between a site and its nearest contemporary
neighbouring site, the invasiveness of retouch
on a stone tool, the order of design motives on a
pot, orthedate ofa wooden artifactinyears B.C.
It can include the spatial provenience of a flake
on XYZ coordinates or the stratigraphic context
ofasherd (layer6in square4). Itcanalsoinclude
practical or methodological information, such
as the mesh size of screens used in excavation,
the volume of earth excavated, the number of
person-hours per hectare of fields surveyed by
walking crews (survey intensity), or evidence of
such processes as erosion and deposition on a
site. All these measures are ones dicatated by the
questions archaeologists are trying to answer,
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such as, “whatis the age ofthis site?” “who were
the people who lived here?” or “what is the
social meaning of this design?”

But how do we decide whether or not to
measure these things? Some people argue that
our perceptive abilities, our interests, our social,
economic, and cultural backgrounds, and our
unique historical contexts so pervade our choice
of questions, and our ways of obtaining an-
swers, that no two archaeologists will ever form
the same interpretations of archaeological phe-
nomena. Instead, each archaeologist’s interpre-
tation simply makes a target for other
archaeologists to reevaluate and perhaps reject.
Over time we may come closer to ones that
many people, but not all, find broadly accept-
able, but the reevaluation process will also en-
courage the search fornew kinds of data that no
one considered before. In some cases this will
lead to radically new kinds of data and new
ways to interpret them.

At the same time, even though we as indi-
viduals may not perceive the world in exactly
the same way, we as archaeologists operate
within a community of archaeologists who can
agree about some things at some times. Whether
Lewis Binford tells me that a particular pipe
stem has a diameter of 3 mm, or Ian Hodder tells
me that a particular bone was found in the ditch
of a Bronze Age hillfort, I am inclined to accept
such information with a rather high level of
confidence, or low uncertainty, and with a small
margin for error. There are other kinds of re-
ported observations that I am inclined to accept
as perfectly reasonable observations, but with
somewhat more uncertainty. There are still oth-
ers I am sure I would have seen differently. I do
not have to assume that I would have perceived
the evidence in exactly the same way as Dr.
Binford or Dr. Hodder to accept them as plausi-
ble measurements. This chapter and chapter 4
present some ways we can evaluate these
plausibilities.

Some authors suggest an opposition between
a “scientific” archaeology that gives primacy to
facts and measurements, which are supposed to
be neutral or objective (e.g., Shanks, 1992: 26),
and other archaeologies in which we suppose
facts and measurements to have little or no

place. This is a false dichotomy. Even in “hard”
sciences, such as physics, data are theory-laden
and the kinds of data collected are influenced by
the kinds of instruments available. And even in
post-processual or “interpretive” archaeology,
data provide the basis for interpretations, for
discerning meaning in “facts” ranging from the
order and orientation of incised chevron bands
on pottery (Shanks and Tilley, 1987:160) to the
spatial organization of houses and settlements
(Hodder, 1990).

Having decided what kinds of “facts” we
want, how dowe measure them? Atwhatlevel of
detail do we stop measuring? We are always
sampling and deciding what kinds of data to
collect or ignore. We have to make a conscious
decision what kinds of data are important for
our purposes or those purposes we can reason-
ably expect our colleagues and successors to
have. Whether or not your research strategy
specifically outlines the search for particular
kinds of data, it is important to stress that all
data are “filtered” through the investigator’s
senses and instruments. We have to “measure”
data with our eyes, measuring tapes, calipers,
transits, Munsell soil charts, artifact typologies
and other instruments.

Measurement consists of comparison. You
make an observation by comparing an archaeo-
logical object or feature with a scale— whether
measuring tape, Munsell chart or some classifi-
cation or typology. Measurement is a process
whereby we assign an abstract symbol — a
number, colour, name, icon — to represent the
object or the value or magnitude of one of its
attributes, or qualities. And we can make this
assignment by reference to one of several differ-
ent kinds of scales of measurement.

SCALES OF MEASUREMENT

Measurement scales can be characterized in a
number of ways. A common distinction is be-
tween qualitative scales, with which we can as-
sign observations to categories, and quantitative
ones, which represent magnitudes. One scale of
scales that is quite useful employs four main
categories. These are the nominal, ordinal, inter-
val and ratio scales of measurement.
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A nominal scale consists simply of catego-
ries, such as kinds of pottery decoration, that are
unordered and of equal weight. The simplest
kind of nominal scale is the dichotomous scale,
with only two categories, such as male and
female, or present and absent. Nominal scales
are important in archaeology because archae-
ologists make so much use of classification and
typology (see chapter 3), which employ nominal
scales. It is possible to count observations in
each category of a nominal scale, but it is inap-
propriate to apply most mathematical opera-
tions to such a scale. Consequently the kinds of
statistical methods that we can apply to nominal
data are limited.

One of the most common types of analysis is
to count how many objects we assign to each
class in a nominal scale. This is a process called
enumeration. For example, for a particular ar-
chaeological feature, such as a pit, we might
count how many sherds are decorated and how
many plain, or how many charred seeds are
attributable to maize, chenopods, fleshy fruit,
and so on. Enumeration is the first step for
several other kinds of measures, and particu-
larly for measuring proportions or percentages.

An ordinal scale consists of categories that
are ordered. Ordinal scales allow you to make
the deduction, for example, that if class A is
greater than class B and class B is greater than
class C, then class A is greater than class C.
Archaeologists frequently use ordinal scales to
characterize artifacts or sites by their sizes (large,
medium and small), for example, but the most
common use of ordinal scales in archaeology is
in chronology. Archaeological time periods, such
as “Archaic,” “Middle Woodland,” “Neolithic,”
or “Early Bronze Age,” are all categories on
ordinal scales. Stratigraphic units also belong to
ordinal scales, and archaeological seriation is a
method used to create ranked ordinal scales. A
rank scale is a special case of an ordinal scale in
which each class contains only one member
(exceptin the case of exact ties), and each obser-
vation normally has its own class, as opposed to
other ordinal scales that have a small number of
classes, each containing many observations. An
example of the former would be a ranking of all
sites in a region from smallest to largest, while

an example of the latter would be characteriza-
tion of all the sites as small, medium or large, or
as camps, hamlets, villages and towns.

Some people would consider both nominal
and ordinal scales to be, simply, “qualitative”
scales of measurement because, even if we as-
sign numbers to represent each class, these num-
bers are only labels and it is not appropriate to
apply most arithmetic functions to them. For
example, on a ranked scale, we could say that
the site ranked 6 was larger than the one ranked
5, but it would be incorrect to conclude that the
siteranked 6 was twice as large as the site ranked
3. Furthermore, it would be wrong to conclude
that the difference in size between the sites
ranked 6 and 5 was the same as that between
sites ranked 3 and 2. Ordinal scales contain no
information about the magnitude of such differ-
ences in ways that we would normally express
in units (e.g., meters, hectares, or degrees). An-
other characteristic of these scales is that, if they
have been constructed propetly, no observation
could possibly belong to two categories of the
same scale simultaneously. This property of
being unambiguous is necessary. It would cre-
ate problems if an artifact were red and black
simultaneously, or an artifact belonged to both
layer 5 and layer 6. As we will see in chapter 3,
which deals with the construction of nominal
scales (“classification”), there are unambiguous
ways to deal with artifacts that are black over
one part of their surface and red over another.

The interval and ratio scales are ones that
many would describe as “quantitative.” While
interval scales, like ordinal ones, contain an
inherent order, there are also consistent inter-
vals between points on the scale. That is to say,
it is possible to infer that the distance between 3
and 5 is identical to the distance between 6 and
8 or 7 and 9. This makes the operations of addi-
tion and subtraction possible, but is insufficient
to allow multiplication or division. Ratio scales
contain all the characteristics of the interval
scale but, in addition, have zero points that are
non-arbitrary and representan absolute absence
of some quantity. The Celsius scale of tempera-
ture is an interval scale because it is possible to
say that the difference between 0° and 10° is the
same as that between 30° and 40° but, because
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the zero is arbitrary (the freezing point of water)
and does not represent an absence of tempera-
ture, it makes no sense to say that 40° is twice as
hot as 20°. Consequently it is not a ratio scale.
The length of a flint blade, by contrast, can be
measured on a ratio scale, and we could appro-
priately say that, within measurement errors,
one blade was twice as long as another, so it is
appropriate to apply multiplication and divi-
sion to this kind of measurement.

Measurement Errors and Uncertainty

Nominal and ordinal scales are always discon-
tinuous, or discrete, scales because there are
theoretically no “grey areas” between catego-
ries where you may make observations (as we
will see in chapter 3, this can be a problem for
typology). Interval and ratio scales, by contrast,
frequently are continuous. This means that be-
tween any two numbers on the scale you can
always find other numbers. In fact, you can find
an infinity of them. The practical consequence of
this propertyis thatyou can never have absolute
accuracy on a continuous scale. Even if you
measure the length of a projectile point to the
nearest 0.00001 mm, you have to accept that the
“true” length of the projectile point lies some-
where within 0.00001 mm of your measure-
ment, but is not exactly equal to your
measurement. It is possible, however, to have
discretemeasures on the interval and ratioscales
as well. Integers make a discrete ratio scale that
is appropriate for counting objects and other
situations where a fractional observation would
not make sense. A flint flake might show scars
from one, two, or three previous flake removals,
forexample, butitwillneverhave 2.3 or 1.6 scars
because rake is a discrete event (see chapter 8).

Because our senses and instruments are never
perfect, measurements always have errors. Fur-
thermore, as we have seen, even a “perfect”
instrument could never have absolute accuracy
on a continuous scale, because itis always theo-
retically possible to “magnify” the observation
and record it more precisely. Since some degree
of error is inevitable, it is important to know the
magnitude of error in the measurements. Con-
sequently, in reporting our research, we should
always do our best to estimate the size of these
errors and report them to our colleagues. If we

do not, we make it extremely difficult for others
to evaluate the precision and accuracy of our
observations or to compare observations. If the
measure of the proportion of deer bones at one
site is different from that at another, for exam-
ple, itis impossible for us to tell if the difference
is meaningful — are the bone assemblages re-
ally different? — unless those reporting on the
faunal remains from the sites provide estimates
of error in those proportions. Estimating meas-
urement error is not particularly mysterious,
and is a basic aspect of scholarly reporting.

A simple way to visualize the problem of
measurement errors on continuous scales is to
consider the smallest interval you used to dis-
tinguish your observations. If you have meas-
ured a projectile point with a 12-inch ruler that
has no intervals smaller than a quarter-inch, for
example, are you justified in reporting that the
point is 6-1/16 inches long? Probably only 6
inches +1/4 inches is reasonable in this case.
Now assume that you had a metric ruler and
measured the point to the nearest millimeter.
Here you might arrive at 152 mm + 1 mm. Now
ifyou measured five more projectile points with
electronic calipers accurate within 0.01 mm, and
wanted to pool your data with the earlier 152
mm one and take an average, would it be rea-
sonable to report a resulting mean of 71.24 mm
+ 0.01? Since, in principle, your 152 mm meas-
urement could represent a “true” length any-
where from slightly over 151 mm to slightly less
than 153 mm, it would not. It would be best to re-
measure the first artifact with the more precise
calipers before calculating the mean if you
consider precision to 0.01 mm to be important.
Alternatively, round the mean offto 71 mm. We
will return to the issue of rounding off measure-
ments shortly.

In many of the scales that archaeologists use
it is not as simple to conceptualize error. As we
will see in chapter 3, assessing measurement
error in discrete measurements is a little less
obvious, dealing as it does with the problem of
misclassification. But when the measurement
is of something less tangible than artifact length
or mass, perhaps of social inequality, of motiva-
tion, or of the distribution of gender roles, it is
perhaps easier to think of uncertainty. In these
cases, rather than talk about error in terms of



Data and Measurement

11

some hypothetical difference between our meas-
urement and a “true” value, we may simply talk
about how confident we are in our measure-
ment and interpretations based on it. Although
uncertainty in this sense seems rather subjec-
tive, it can still be quite useful (see chapter 4).

Accuracy, Precision, and Reliability

It is important to recognize the difference be-
tween Accuracy and Precision.

Accuracy concerns the degree of bias in
measurement — i.e., systematically recording
observations that are higher or lower on an
ordinal or interval scale than they should be, or
systematically classifying objects in the wrong
category of a nominal one. If, for example, you
measured some stone tools with calipers that
were improperly made, or had been filed down,
or measured the size of a feature with a tape that
had been stretched, you would not get accurate
measurements. Consequently, you might con-
sistently underestimate lengths, and the extent
of this underestimate would be the bias. Simi-
larly, tending to make the error of classifying
Type A pots as Type B, but rarely or never the
reverse, would also result in bias.

Precision concerns the range of results you
getif you repeat the measurement several times
— the “spread” in a set of repeated measure-
ments. If a measurement is precise, you would
expect to get a very closely similar measurement
if you or someone else re-measured it. A precise
measurement, however, will not necessarily be
accurate.

Reliability meanwhile, is the extent to which
a measurement gives the same result in different
situations, such as when made by different re-
searchers. It is the proportion of the total vari-
ability in the measurement that is due to the
actual variability in what we are measuring. The
remainder is variability due to such things as
inter-observerdifferences.

For example, when the Black Mesa project
(Plog, 1986:4248; Plog et al., 1978:414) had five
crews independently measure site size and ce-
ramic density during an archaeological survey
in northeastern Arizona, the crews disagreed
substantially in their measurements (table 2.1).
Presumably these measurements hovered

b

Figure 2.1. The three triangles in a indicate three
arrows shot precisely, but not very accurately, while
the three in b are fairly accurate, but less precise.

Table 2.1. Variability between crews in estimates of
site size and artifact density on Black Mesa, Arizona
(after Plog et al., 1978:414)

Mean Mean Percentage

Crew Site Size Ceramics Sie Areas
Mumber (m*) per m? < 100 m?

1 803 1.2 281

2 507 1.7 442

3 838 1.6 48.1

4 464 0.9 42.9
Mean B53+195 1.4+04 #1183
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around the actual site sizes and densities, and so
the average of the measurements would prob-
ably be reasonably accurate estimates, but the
substantial variation in measurement (here
measured by the standard deviation after the +)
indicates that they were not very precise or
reliable. Below we will consider why this may
have happened, butin general itis important to
remember that observations oncontinuous scales
are always approximations. Ideally, these are
reasonably accurate and precise, as well as ap-
propriate to the questions we are asking (valid).

A useful analogy to help you remember the
difference between accuracy and precision is a
an archery target (figure 2.1). If you shoot three
arrows, and they cluster very tightly, your aim
is precise but, unless the arrows hit near the
bull’s eye, not very accurate. If your shots result
in three arrows scattered in the vicinity of the
bull’s eye, but not very close together, they are
reasonably accurate, but not very precise. Of
course the ideal is to be both precise and accu-
rate, with all three arrows hitting in or very close
to the bull’s eye.

When there are several sources of error, they
can be compensating or cumulative errors. If
you want to measure the area of a site by over-
laying a map with graph paper and counting
squares, for example, you can count squares
that appear more than half within the site
boundaries and exclude ones that appear half
out. In this case your errors tend to cancel out, or
compensate, and the results are fairly accurate,

but not necessarily precise. You can also count
only those squares that are completely within
the site boundaries. In this case you may get a
very precise measurement, but you would un-
derestimate the site size, because the errors
would be cumulative, or non-compensating. A
common source of this kind of bias occurrs
when people doing archaeological survey
crudely measure site size by multiplying length
times width, which is fine so long as the site is
rectangular, but substantially overestimates the
size of elliptical and irregularly shaped sites.
Again, the errors are non-compensating, lead-
ing to substantial bias in the estimate of site size.

If we have been careful and used appropri-
ate measurements, the errors are reasonably
small and the observations are accurate enough
for our purposes. Sometimes we are forced to
use other people’s data with unrecorded but
possibly large errors, and a useful skill is to be
able to assess the reliability of these data.

Significant Digits

This brings us to the issue of significant digits.
Many students of archaeology abdicate respon-
sibility for the number of digits to their elec-
tronic calculators. Just because your calculator
displays a result to 6 decimal places, however,
does not mean that it is appropriate to display
your results that way.

The problem with such statements as, “the
mean blade length is 71.327496 mm” is that it

Table 2.2. Examples of measurements and their significant digits

Measurement Scientific Motation  Significant Digits
26.01 cm 2.601 x 10° 4
26010 g 2.601 x 10° 4
0.0026 kg 2.6 x 10° 2
14 artifacts/m? 1.4 x 10 2
14.00 cm 1.400 x 10° 4
140.0 mm 1.400 x 102 4
101 °C 1.01 %107 3
100 dn 1 x10° 1
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implies a level of precision that is dishonest. In
essence, reporting 71.327496 mm constitutes the
claim that the “true” mean length has a large
probability of being between 71.327495 and
71.327497. In fact the actual standard error on
this mean (see below, p. 21) is probably many
times larger than +0.000001. It also implies that
you actually measured artifacts to this level of
precision, which seems highly unlikely. If your
actual measurements were all made only to the
nearest 0.5 mm, then do not report your meas-
urements, or statistical summaries based on
them, in such a way as to imply greater precision
than that. Simply put, never end up with more
significant digits than you started with.

But significant digits are not equivalent to
the number of decimal places either. Decimal
places are too dependent on the units used to
make yourmeasurement. Forexample, 2.1 kmis
a measure with two significant digits, meaning
essentially that the distance we are trying to
represent is somewhere between 2.0 and 2.2 km,
but probably close to 2.1. The measure, 5.6 mm
also has two significant digits. Both 2.1 km and
5.6 mm are distances measured to one decimal
place and two significant digits, but they have
substantially different units. If we convert 2.1
km into mm, the resulting measure, 2,100,000
mm, now has no decimal places but it still has
two significant digits. The zeroes following the
digit, 1, are only there to tell you where the
decimal place would go, or the “order of magni-
tude” of the measurement. Similarly, we could
represent 5.6 mm in km. But 0.0000056 km,
although it has seven decimal places, still has
only twosignificantdigits. Essentially the meas-
ure tells you that the actual distance is some-
where between 0.0000055kmand 0.0000057km.
If you find this confusing, or are unsure how to
decide how many significant digits a measure-
menthas, convertitinto scientificnotation. This
is the notation thatuses powers of 10 to indicate
the order of magnitude of the measure. In scien-
tific notation, 2.1 kmis 2.1 x 10°* m, while 5.6 mm
is 5.6 x 10*m.Meanwhile, 5.60 x 10*mhas three
significant digits, because the trailing zeroisnot
marking the position of the decimal place, but
telling us that the “true” measure is somewhere
between 5.59 x 10°m and 5.61 x 10*m.Scientific
notation makes it easy to see how many signifi-

cant digits there are because everything in front
of the multiplication sign is significant. Table 2.1
provides examples that may help to clarify this.

One way to define significant digits is that
they consist of all the certain digits plus the first
uncertain one.

Other Sources of Error

We should not assume that the measuring de-
vice, such as a ruler, tape, or caliper, is the only
source of error in their measurement and that,
consequently, it is appropriate to cite measure-
ments to the smallest increment on that device.
This leads to a false sense of accuracy and preci-
sion. Suppose, for example, that you are in-
volved in an archaeological survey, like the one
thatPlog and his colleagues carried out on Black
Mesa, and two of your measures are the length
and width of each site you encounter. Suppose
that you have really well crafted steel tapes and
that you can control for the effects of tempera-
ture on the steel, so that you can measure even
long distances within 1 cm. Would it be appro-
priate or useful to claim that a site was 93.16 m
in length? Here the degree of precision lies, not
in the tape, but in our ability to determine con-
sistently where the edge of the site lies. Most
archaeological sites have very indistinct edges,
such as a gradual diminishmentin the density of
scattered artifacts, and no two archaeologists
arelikely to agree on the exactlocation of a site’s
boundary or on the orientation of its long axis.
Another archaeologist making the same meas-
urement with the same tape might arrive at
106.05 m, or 88.70 m, depending on his or her
interpretation of where that boundary lies and
what constitutes the long axis, just as the Black
Mesa survey teams arrived at different results.
Even though the measuring device, the tape, is
very precise, there are other factors that would
not lead us to expect very precise results.

In cases like this, it is important to ask your-
self how much measurement precision is war-
ranted. Will it really alter our intepretation of
the site if our measurement of its size is out by
3%, by 5%, or by 10%? Will our ultimate use of
the data involve lumping sites into ordinal cat-
egories? In most cases, we will find that round-
ing off such field measurements to only a couple
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of significant digits is more honest than imply-
ing high degrees of precision and accuracy that
are in fact quite meaningless.

You should also be aware that combining
measurements that have errors, as when you
multiply a length by a width, actually adds a
little more error. We will return to this adjust-
ment in the section on descriptive statistics.

Outliers

Sometimes in a set of data we encounter one or
a few measurements that are very surprising, so
different from the rest of the data that we find it
hard to believe that they could be correct. Some-
times it is fairly obvious that they result from
human error, such as an error in copying data
from a recording sheet into a computer record,
or failure to read calipers correctly. When we
can plausibly interpret the outliers in this way,
we may simply omit them from the data set, or
remeasure something to check on the surprising
readings.

In other cases, however, it is not so obvious
that the outlier has simply resulted from human
error. As we will see below and in chapters4 and
6, even in well-behaved data we can expect
extreme values to occur from time to time, in
which case the surprising values are not really
outliers at all. In other cases, the outliers may be
the result of contamination: they are measure-
ments or observations pertaining to something
that does not really belong in the group (or
population) we are analysing (Barnettand Lewis,
1994). In archaeology this is quite common. For
example, we might be trying to date a particular
layer in a Middle Woodland site in Ohio, per-
haps by radiocarbon dates on pieces of charcoal
(see chapter 15). Perhaps most of the dates that
result are fairly close to 1600 B.P., but one date,
surprisingly, is 2700 £ 70 B.P. Statistically it is
highly improbable that a piece of charcoal from
wood that was cut around 1600 B.P. would
produce such a date, and the more likely sce-
nario is that the outlier belongs to charcoal that
was residual in the sediment (see chapter 12).
That is, the charcoal had already been on the site
for a long time, perhaps the remnant of some
ancient forest fire, when Middle Woodland peo-

ple began to occupy the site and cut some trees
for fuel orbuilding material. Of course contami-
nation is usually only noticeable when it shows
surprising values, as in this example. If a re-
sidual piece of charcoal yielded a radiocarbon
date fairly close to the other dates, it would
usually be accepted quite happily, because we
would have no way of knowing that it did not
belong in the data set. Fortunately, in that case,
it at least does not seriously affect our interpre-
tations.

Direct and Indirect Measurement

Not only do we need to consider the scale,
precision and accuracy of archaeological meas-
ures, we need to consider what they really mean.
Are we measuring what we are interested in
measuring?

Direct measurement involves straightfor-
ward measurements such as length, where we
can directly compare an object of interest with a
standard scale. For example, we can measure
the length of a projectile point by reference to a
ruler or calipers. A quantity can be measured
directly only if it can be measured without meas-
uring some other quantity (Kyburg 1984: 90-
112).

Indirect measurementinvolves measuring
one phenomenon as a way of deriving a meas-
ure of some other concept. It is an extremely
common type of measurement in some fields,
such as social anthropology, but crops up fre-
quently in archaeology as well. Even measure-
ments of speed and temperature are indirect,
being based on measurements of distance and
time in the former and the length of a column of
mercury in the latter case (Kyburg, 1984:100,
11342).

The simplest and most straightforward in-
direct measures are ratios. For example, we
generally do not measure sherd or lithic density
on a site directly, instead you usually count the
sherds (enumeration), and also measure the
area where we collected the sherds (usually by
measuring directly the lengths and widths of a
rectangle or the radius of a circle). We then
divide the number sherds by area and create a
new measure, “sherds per square meter.”
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Often ratios make no reference to any units,
because they cancel out during division. So the
ratio of the frequencies of lithic blades to flakes
(e.g., 1:14) ortheproportion of Deverel-Rimbury
pottery in a ceramic assemblage (e.g., 0.29 or
29%) is aunitless indirect measure (“percent” is
not a unit, but simply shows that you have
multiplied a proportion by 100).

Systematic inaccuracies (biases) in direct
measures are compounded by arithmetic opera-
tions such as division and multiplication, so that
the accuracy and precision in youroriginal meas-
urements are doubly important when you con-
vert them into ratios.

In addition to ratios, there are conceptually
indirect measures, which are sometimes called
proxy or surrogate measures. The following
measurements, all tobe found in archaeological
literature, are impossible for prehistorians to
measure directly, and so they instead measure a
proxy that they think might be associated with
the phenomenon of interest:

B Number of people who inhabited an
Anasazi pueblo

B Wealth of a Bronze Age household

M Social status of the occupant of a grave or
tomb

B Degree of interaction between neighbour-
ing settlements

B Volume of traffic in an obsidian exchange
system

B Amount of deer meat in a prehistoric diet

B Variation in the magnitude of prehistoric
rainfalls

W Conservatism in pottery decoration

To measure prehistoric population sizes, for
example, archaeologists have proposed many
differentindirect measures based on such direct
and indirect measures as site area, roofed floor
area, number of hearths, number of burials per
unit of time, length of longhouse, and even
average volume of cooking pots multiplied by
number of hearths (Hassan, 1984). Each of these
measures is supposed to have some predictable
relationship with the site’s population size. For
example, you would have to account for aver-
age life expectancy, whether all or only some

people were buried, and the duration of a site’s
occupation to base population on the number of
burials in a cemetery. Alternatively, you might
multiply house area by a mean floor area per
person in an ethnographic sample. We would
expectall these measures tohave relativelylarge,
but quite different, sources of error.

Even if we could measure site size very
precisely and accurately, for example, estimates
of population based on site size would have
errors introduced by the following:

B Theremaybealarge degree of variationin
the ethnographic examples used as a basis
of the estimate

M There may be errors in the selection of
ethnographic examples. You may have
inappropriate analogues for prehistoric
settlement or a biased sample of them

M Possibly not all of the site was occupied
simultaneously, leading you to overesti-
mate the ancient population size

B Possibly not all of site was used for domes-
tic settlement. There may have been spe-
cial industrial areas, gardens, etc., so that
you overestimate population size

M Possibly the site we have measured is
simply not very typical. Itis an outlier that
does not obey whatever equation we have
for calculating population size

B The correlation between site size and the
number of people occupying sites is not
very strong, or other factors, such as the
length of time people anticipate they will
occupy the site (“anticipated mobility”)
may be more strongly correlated (Kent,
1991:39).

In some archaeological jargon, measuring
things we cannot observe directly is met with
“operational definitions” that simply use easily
measurable or observable criteria. For example,
some archaeologists who have adopted “deci-
sion theory” or “optimal foraging theory” to
help them understand the behavior of prehis-
toric hunter-gatherers, being unable to measure
the total “cost” or “benefit” of acquired game,
instead estimate the amount of energy used to
capture it or contained in its meat. Finding it
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equally difficult to measure “taste,” they in-
stead measure the amount of fatin the meat. The
operational definitions are proxies, different
from, but related to, the thing that interests us.
Energy is not all there is to the cost and benefits
of game, and fat content is only one aspect of
taste, but we expect these to be reasonable sub-
stitutes.

The extent to which an indirect or proxy
measurement is a good approximation of the
measurement of interest is its validity. We have
“face validity” if we simply have widespread
agreement among researchers that a measure is
valid, not a very strong indication of validity.
“Content validity” occurs if the measure ap-
pears to contain all the important concepts and
behaviors we would expect to find in the phe-
nomenon of interest. This is rather difficult to
assess, so content validity is also a somewhat
weak measure of validity. “Criterion validity,”
by contrast, involves comparison of the meas-
ure with a standard or testing its ability to pre-
dict. For example, we can test a measure of
populationbased onroofed floor area by apply-
ing it to ethnographic cases where we already
know the number of inhabitants.

Even in cases where the indirect measure
may be appropriate or “valid,” you should not
forget to consider errors intrinsic to it. For exam-
ple, many people like to use Narroll’s (1962)
constant of 10 m? ofroofed floor area per person
to estimate the number of people that occupied
a house or a settlement. But the relationship
between roofed floor area and number of peo-
ple, even in Narroll’s original data, is not very
“tight”—the points are scattered widely around
the regression line — so that the 10 m? constant
allows us to estimate population size only with
alarge margin oferror (see figure 2.12). Archae-
ologists who have adopted Narroll’s formula or
similar ones do not always cite errors for the
population estimates that result, although this
should be routine.

Uncertainty in estimating the wealth or sta-
tus of a prehistoric family, or the proportion of
its subsistence produced by women’s labor,
would be even greater. As indirect measures of
wealth or status, for example, we might look at
the number or quality of grave goods, the size

and cost of houses, or osteological evidence for
nutrition, none of which, by itself, is a com-
pletely valid measure of wealth or status. It is
not difficult to find in modern cultures many
cases of wealthy people having simple burials,
the occupants of mansions falling on hard times,
or people whose nutrition and general health in
no way reflect their wealth or status. Further-
more, some archaeologists argue that material
culture, and particularly burial practice, can
often be used as a social strategy to contradict or
deny social reality. For example, a very egalitar-
ian ethic in burial practices could be meant to
obscure or deny in death extreme wealth differ-
ences that existed in life. In spite of such difficul-
ties, however, we make the most we can of
indirect measures, combining different ones
where possible, because they often help us to
understand some of the most interesting aspects
of past cultures.

LestI seem to putindirect measurementin a
bad light, it is worth mentioning that there are
many examples where indirect measurement is
even to be preferred to direct measurement.
Quite often we can measure more easily or more
precisely with indirect measurement. For exam-
ple, even though we can measure area directly,
perhaps by tiling the area with unit rectangles or
triangles and counting them, for many geomet-
ric shapes, and especially rectangles, we find it
more convenient instead to measure length and
width. Even length is measured indirectly when
we want to be very precise: we measure tem-
perature to calibrate a steel tape or we measure
the time it takes for a laser beam to reflect off a
target. Theoretically, we could measure tem-
perature directly, but we can do so much more
precisely indirectly, by measuring the length of
amercury column (Kyburg, 1984:141).

Possibly you are wondering why 1 stress
these basic measurement concepts. First, you
should never begin research without clearly
thinking about how you will measure the vari-
ables that are important to your research goals.
Later, if you do statistical tests (see chapter 6)
and cannot reject the hypothesis that patterns in
the data are due only to measurement error, you
have a serious problem. Second, too many peo-
ple do not think about what different research-
ers’ measures really mean when they pool data
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for regional synthesis or comparative analysis.
They may be “comparing apples with oranges.”
For example, perhaps project A measured site
population size by multiplying the number of
pueblo rooms they found by a constant, project
B measured site population by multiplying the
number of hearths by a constant, and project C
measured it by multiplying site area and a con-
stant. If a researcher uses data from all three
projects to infer population change over time or
differences in population density between re-
gions, itis possible —in fact quite likely — that
any differences this researcher sees are simply
due to variations in the measurement methods,
and not in actual population sizes. Third, too
few archaeological publications describe meas-
urement methods in detail or provide estimates
of measurement errors. This makes it virtually
impossible for us to evaluate the reliability or
validity of the results or to tell whether differ-
ences in the measurements are statistically or
intellectually significant.

A final aspect of data collection that archae-
ologists need to consider is, how many and what
kinds of measurements (data) are relevant to
their research problems. This is a matter of re-
search design, and we will return to it in chapter
4.

Descriptive Statistics

Inevitably, archaeologists want to summarize
their data, if only because the number of indi-
vidual artifacts orobservationsis fartoolargeto
show them all in a publication, or even too large
for us to recognize any patterns in the data.
There are several major ways we can produce
such summaries, some of which will be the
subject of subsequent chapters. Broadly speak-
ing, we can summarize data verbally, numeri-
cally, or graphically.

Verbal summaries are common in archaeo-
logical reports and once constituted the bulk of
archaeological reporting. In a verbal summary,
anarchaeologistsimplydescribes “typical” data,
such as the most common kinds of pottery in a
site, as well as noteworthy anomalies that give
the reader some impression of variation in the
data.Sometimesverbal summariescanbericher,
and usually they are more interesting, than nu-

merical summaries, and they have the advan-
tage that they can convey some of the research-
er’s thought processes and goals (Hodder, 1989),
but they are not amenable to accurate compari-
son of data sets and it is virtually impossible to
apply statistical tests to them. They have an
important place in archaeology, but should not
be the exclusive means of archaeological report-
ing.

Numeric summaries of interval orratio-scale
data are what archaeologists usually mean by
descriptive statistics. These are measures in-
tended to sum up, in only one or two numbers,
the “typical” or “central” characteristics of the
data, or the amount of “spread” in the data.
They include such common numerical summa-
ries as the meanor “average,” as well as other
measures of central tendency, and measures of
spread in the data, such as the range.We often
summarize nominal-scale data with measures
of relative abundance such as percentages, but
we are more limited in how we can show central
tendency or “spread” in nominal data. Although
descriptive statistics may seem somewhat tedi-
ous, it is necessary to review them here.

Measures of central tendency, indicate the
position along a scale about which the data tend
to be centred. Measures of dispersion, mean-
while, refer to the amount of variation, or spread,
around this location.

The most common measure of central ten-
dency in interval and ratio scales is the average,
or arithmetic mean . We use this statistic in all
kinds of everyday applications, such as when
werefer tomean annual rainfall in mm, average
income in dollars, or average fuel consumption
in miles per gallon. The mean is easy to calcu-
late, as we only have to sum the values of all our
observations and then divide by the total number
of observations. For a population (the totality
from which we may have taken a sample), the
statistical expression for this simple process is,

_3X
F=N

where |1 is the population mean (average), =X is

the sum (Z) of all the data (X) values in the

population and N is the number of observations
or measurements in the population. For sam-
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ples that we can expect to have characteristics
similar to the population (see chapter 4), a good
estimate of p is the sample mean, X:

where 2x, is the sum of all the data values in the
sample, and n is the number of observations in
the sample.

The mean turns out to be something like a
“centre of gravity” for the distribution. Conse-
quently, the values to either side of it “cancel
out” or sum to zero when expressed as differ-
ences from the mean. For example, if our data
consist of the nine numbers 25,32,45,22,28,38,
5, 12 and 18, their mean is 25. The deviations
from the mean turn out to be:

25-25=0
32-25=17
45-25=20
22-25=-3
28-25=3
38-25=13
5-25=-20
12-25=-13
18-25=-7,

When our data are not measured at the
interval or ratio scales, or when the data are
distributed very unevenly, we need to use a
different measure of central tendency. The sim-
plest alternative is the mode, which is simply
the value of the highest peak in a frequency
distribution. For data measured at the nominal
or ordinal scale, the mode is the most common
category, or the category with the greatest
number of observations. The median, on the
other hand, is the value that divides the total
number of observations so that half of the obser-
vations are greater, and half are less than the
median. On a frequency distribution, then, the
median is the point on the x-axis that has equal
numbers of observations to its left and right. The
median is only applicable to ordinal, interval
and ratio scales because you cannot have higher
or lower values on a nominal scale. When you
have an even number of observations, the me-
dian is the average of the central two values;
when you have an odd number of observations,
it is equal to the middle value.

=0

Length (mm)

Figure 2.2. The effect of symmetry and skew on
measures of central tendency.

Even when you have interval or ratio meas-
urements, the mean is not always the best meas-
ure of central tendency, because it is much
affectedby extreme values andby the symmetry
of the distribution of observations. In a perfectly
symmetrical distribution peaked in the middle
(figure 2.2), the mean, median and mode are all
equal. This happens in the normal distribution
or “bell curve,” to which we will return in chap-
ter 6. If, instead, the distribution has some ex-
treme values toward the right, thatis, itis skewed
to the right or positively skewed, the mean will
be greater, sometimes much greater, than the
median, which will itself be greater than the
mode. If it is negatively skewed, with extreme
values to the left, the mean will be less than the
median, which in turn is less than the mode. In
these cases, since the values in the skewed “tail”
of the distribution pull the mean away from the
main part of the distribution, the mean no longer
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Central Tendaency for Grouped Data
Sormetimes when we want to measure cen-
tral tendency, we have to use someane else’s
data that have been published only in graphic
or tabular sumnmaries. We can still calculate a
mean (ar mean centre, in the case ofchoropleth
maps) quite easily. We take advantage of the

fact that we know the frequency of cbserva-
tions that fall within sach interval, that the
sum of all these observations is equal ton, and
that within each interval the average of all the
observations should be close to the midpoint
of that interval. For the simple histogram in
figure 2.3, for example, where x = the value of
the midpoint of a bar, and f = the frequency

=1 observation

10

20 30 40 50mm

(height) of each bar:

N =

Sx;f, _ SH2*15)+H3*25)+(2*35)+45 _ 5

Figure 2.3, A histogram showing
fengthe to be used [ticks on fop of

F 1+243+2+1

bars) in calculating a mean from

grouped data.

23 = 9%
- 24

gives us a very good idea of where most of the
data tend to be clumped. Social scientists will
typically use median income, rather than mean
income, as a measure of central tendency in
income distributions because only a few cases of
enormous incomes can pull the mean far to the
right. In extremely irregular distributions, the
mode may be more useful than either mean or
median, while some distributions may be bimo-
dal or even multi-modal, requiring us to record
more than one mode.

So far we have looked at measures of central
tendency in one dimension, but it is also possi-
ble to measure central tendency in two or more
dimensions simultaneously. In the case of two
dimensions, the mean, for example, will be at
the coordinates (X, y), where x is the mean along
the x-axis andy the mean along the y-axis. When
we find these coordinates on amap, the measure
of spatial central tendency that results is called
the mean centre. It is even more analagous to a
centre of gravity, as it is the location on a map
where all the distances away from it sum to zero
when divided into positive and negative halves,

or the point where a map would balance when
all the data points on it have equal weight. The
areal median is difficult to define, and can only
be approximated with a tedious process of trial
and error. The areal mode, meanwhile, is quite
easy to determine. Once amap has been divided
up into units similar to the bar widths on a
histogram (but in two dimensions instead of
one), as happens whenever we put a grid on a
map, we can make a “stepped statistical sur-
face,” the heightor colour of each quadratcorre-
sponding, perhaps, to the number of sites or
artifacts found in that quadrat (see figure 2.15).
The areal mode is the grid quadrat with the
highest frequency.

Measuring Dispersion

If we are going to represent a large body of data
with a single statistical summary, such as the
mean, then we are going to have a rather poor
idea of how the data are distributed unless we
also include some measure of how they are
spread out. This is where measures of disper-
sion come in.
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The simplest measure of dispersion is the
range, which is simply the difference between
the highest and lowest values in the distribu-
tion. Because it is based on only two values, and
these values are extremes, the range does not
give a very good impression of how “clumped”
the data are, and so is not very useful except in
cases where extreme values are very important.
For example, therange in annual rainfall is very
important in marginal environments because a
large range may make agriculture very risky
and unreliable.

A better measure of where the data are
clumped is the interquartile range, This is the
range that includes the middle 50% of the data
values. It is found by taking the median and
upper and lower quartiles (25th percentile and
75th percentile), that divide the data into four
equalnumbers of observations (lower25%,next
25%, next 25% and upper 25%).

One measure of spread in data that may
seem obvious would be an average deviation
from the mean. But because all the deviations
from the mean sum to zero, this doesn’t work.
We could take the absolute values of all the
deviations from the mean (simply removing the
minus-signs) to solve this problem, but the re-
sult is a measure that turns out to have poor
statisticalusefulness.

A better way to get rid of the minus-signs is
to square the deviations from the mean and sum
them. This results in a useful measure of disper-
sion called variance. Algebraically, we usually
represent variance as o (for populations) or s*
(for samples), and indicate that it is the sum of
the squared differences from the mean divided
by number of observations or sample size:

2 =
(2. P 20
N n-1

Note that for samples we divide by n-1 instead
of n.

Howeyver, the units of variance are not the
same as those of the mean. For example, if the
mean is measured in meters, the variance would
be in square meters. Fortunately, it is easy to
compensate for this simply by using the square
root of variance. We call the measure of disper-
sion that results the standard deviation, repre-

(&)

sented as either o or s (for samples):

Z(p-X;
o={o? = -—-——-(HN i and

§= VS_ = Z(i-xi)z

n-1

Youmay find ituseful to think ofit as something
like an average deviation, with the minus signs
removed by squaring, but the standard devia-
tion retains the useful statistical properties of
the variance (see chapter 6).

For interval data that we would summarize
with a mean, the standard deviation is an ex-
tremely useful measure of dispersion. In many
applications, however, we will use instead a
similar measure that is essentially a standard
deviation that takes sample size into account.
This measure is known as the standard error,
and, as we will see later, is extremely important
when we want to make predictions on the basis
of samples.

The standard error of the mean is simply the
ratio of the standard deviation to the square root
of the sample size (n). Consequently we can

represent it algebraically as

=0
SE v

butin samples, since we can only estimate ¢, we
must estimate SE as,

=5
SE v

Finally, itisimportant to mention that when,
as often happens in archaeology, we are inter-
ested in densities, such as the number of lithics
per square meter, or the number of radiocarbon
decays per five minutes, the standard deviation
isratherdifferent. We will return to this pointin
discussion of the Poisson distribution in chapter
6 and radiocarbon dates in chapter 15. Fornow
I will simply mention that in these cases the
standard deviation is simply the square root of
the mean. To remind you ofthis difference, I will
refer to the mean of counts per unit area or unit
time as A, instead of u, and to its standard
deviation as VA.
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Accumulating Errors

Now that we have seen some basic measures of
dispersion, we can return briefly to the problem
of carrying out arithmetic operations on meas-
urements thathave errors. We should expect the
error on the result of adding, subtracting or
multiplying two measurements to be a little
larger than the errors on the original measure-
ments, because there is a chance that the two
errors will be cumulative. An estimate of the
total error on the sum of two measurements is
the square root of the sum the squares of the
individual errors. For example, for the opera-
tion, 100 + 5.0 mm, if both measurements had
estimated errors of +0.5 mm, we would estimate
the error of the sum as V(0.5 + 0.5%) = V(0.25 +
0.25) = 0.7. Consequently, we should report the
sum as 150 + 0.7 mm. For multiplication and
ratios, we sum the squares of the relative or
proportional errors before taking the square
root. For an artifact density, for example, we
might count 100 + 10 artifacts in an area of 20 +
1 m? That makes relative errors of 10% and 5%,
respectively. The density, then, would be 100/
20 or 5.0 artifacts/m? with a relative error of
A (0.1)?% + (0.05)2 =40.01 + 0.0025 = 0.112.
Consequently we could report the density as 5.0
+0.6 artifacts/m?.Estimatingcumulative errors
for more than two measurements simultane-
ously is somewhat more complicated.

GRAPHIC SUMMARIES OF DATA

Graphics reveal data. Indeed graphics can be

more precise and revealing than conventional

statistical computations (Tufte, 1983:13,italics

in original).
Graphics allow us to display data visually. If
used effectively, graphs can help us to commu-
nicate complex information easily, in ways that
the viewer can interpret accurately. If used inap-
propriately, however, graphs can also be con-
fusing ordownright misleading. There are many
kinds of graphs that have archaeological appli-
cations and it is important to select the right
graph for the kind of data you have and the
point you are trying to make. Many of the com-
puter graphing packages typically designed for
business applications make it very easy to gen-

erate inappropriate and sometimes very mis-
leading graphs. Remember that sales and mar-
keting people have very different goals than
archaeologists, and communicating accurately
is not necessarily one of them!

Among the criteria that you should use to
help you select the correct kind of graph are the
following:

B What scale or scales of measurement have
you used in your data?

B Are the data continuous or discrete?

B How many dimensions (scales) must you
show on a single graph? Most graphs are
only appropriate for showing one or two
dimensions.

B Who will use the graph? Is it for publication
of your final results, or to help you planyour
own research strategy for analysis of the
data?

B How will viewers want to use the graph?
Will they want to be able to extract detailed
information from it, perhaps to use in a
statistical test, or just compare it with an-
other graph? Will they need to know what
proportion of the data lies within a particu-
lar range of values, or just get an impression
of how the data are distributed?

Tables

Sometimes all you really need to display some
data is a simple table. When you are only show-
ing afew values for a small number of attributes,
a table can be a very effective way to make a
point. The rows and columns in the table should
be labelled in such a way that viewers can inter-
pret it easily, and you can always put the values
to which you would like to draw particular
attention in bold type, or perhaps in color.

One thing you should not do, unless you
want to lose your viewers, is to present a huge
table with a sea of numbers that no one can
interpret without considerable time and effort.
Largedatatables havetheirplace, principally in
storing large quantities of information (see chap-
ter 3), but they are not very useful for dissemi-
natingcomplexinformationclearly and quickly.
Inthese cases it is advisable to substitute a graph
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of one of the types described below. Alterna-
tively you could make several small tables with
excerpts or summaries of the data that empha-
size the points you want to make.

Box-and-Dot Plots and Stem-and-Leaf
Plots

For comparing batches of data quickly and with-
out losing detail in the data, a box-and-dot plot
or stem-and-leaf plot can be very useful. Both
are often used as tools in “exploratory
analysis”(Tukey, 1977) because they can help
you visualize your data in ways that might help
you plan a research design.

Both kinds of plot are used for data along a
single dimension, measured on an interval scale.

The stem-and-leaf plot is appropriate if you
have a small body of interval data and you want
a quick way to tally it manually, with pencil and
paper, that does not lose any of the original
measurements. The plot begins with a scale
ranging from just below the lowest measure-
ment to just above the highest one, consisting of
a list of values at ten- or five-unit increments,
and omitting the last significant digit (figure
2.4). You then build up the plot by recording the
last significant digit of each measurement next
to its appropriate interval. For example, in fig-
ure 24, there are two artifacts with recorded
lengths of 127 mm, and those are each indicated
by a “7”’ nextto the upper “12” on the plot. There
are also two artifacts measuring 128 mm, and
those are represented by the two “8”snext to the
upper “12.” An artifact measuring 124 mm and
another two measuring 122 mm are represented
by the “4” and two “2”’s next to the lower “12.”
Meanwhile, alarge artifact with a recorded length
of 207 mm is represented by a “7”” next to the
“20” at the top of the graph. The result is some-
thing like a tally or a histogram, but it preserves
all of the original measurements.

A box-and-dot plot summarizes the data
more completely, so that you lose the individual
measured values but retain a fairly good im-
pression of how the data are distributed (figure
2.5). Now we see only the position of the highest
25% of values, the lowest 25% of values, the
upper quartile, median and lower quartile. The
box encloses the middle 50% of values (i.e., it is

bounded by the upper and lower quartiles), and
the line segment subdividing the box marks the
median. This kind of plot is useful both in ex-
ploratory analysis and for some kinds of ar-
chaeological presentations, such as when you
want to compare the size distributions of houses
from several sites (figure 2.5) and the number of
houses from each is small or may not be nor-
mally distributed.

Bar Graphs

Archaeologists sometimes confuse bar graphs,
intended for discrete (usually nominal) data,
with histograms, which are intended for con-
tinuousdata. Bargraphscanbeeffective graphic
replacements for small tables of data because
they visually present the numbers or propor-
tions of observations, or both, in a number of
categories. Most computer spreadsheets and sta-
tistics packages, as well as dedicated graphing
software, will generate a bewildering array of
bar graphs, often incorrectly labelled as histo-
grams. You should avoid selecting bar graphs
that are too complicated or with too many em-
bellishments that will distract your viewers.

A bar graph shows you how observations
are distributed across a number of categories or
discrete intervals, so it is a kind of frequency
distribution. The bars are separated from each
other to signal that the observations are discrete,
not continuous. The height of each bar is propor-
tional to both the number and proportion of
observations for the category or value that the
bar is intended to represent. At least one scale,
usually on the left side, allows users to measure
the heights of bars to infer the number of obser-
vations represented. It is possible to use two
scales, however. Where the viewer will find it
useful, youmay wanttohave ascale fornumber
of observations on the left and proportion or
percentage of observations on the right. Since
this may make your graph somewhat “busy,”
use an extra scale only if it has a purpose.

The y-axisis usually alinear scale, butcould
be logarithmic, square-root, or something else.
Make sure that the label on the scale and title
make this clearif itis notalinearscale. Below we
will discuss cases where ‘“transforming” the
data with a non-linear scale may be useful.
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Figure 2.4. Comparison of a stem-and-leaf plot (left)
with a simple tally (right). The former includes all the
raw data that were measured, while the latter, like a
histogram, only tells you how many observations fell
within each interval.

Sometimes it is tempting to put too many
kinds of observations on a single bar graph. This
usually only confuses the viewer and makes it
difficult to compare data in meaningful ways.
Eachbar graph should really only show a single
dimension. If you need to show several dimen-
sions, it is usually better to draw several bar
graphs to the same scale than to put bars with
different colours or hatching on a single bar
graph. Think carefully about what kinds of
comparisons viewers will probably want to
make and set up your graph or graphs to facili-
tate those comparisons (figure 2.6). Most view-
ers will want to compare bar heights, so putbars
that are likely to be compared on the same
horizontal axis, rather than offsetting them with
a“3-D” look thatis popularinbusiness graphics
packages. If you have several groups of data to
compare in the same graphic, divide them into
meaningful sub-graphs and arrange them in
ways that facilitate comparison, ratherthan shuf-
fling all the data into a single bar graph.

One of the more common archaeological
variations on the bar graph is the “battleship
plot” used in seriation (figure 2.7). This is really
a series of bar graphs rotated 90° and reflected
about the x-axis so that each bar is actually
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Figure 2.5. Box-and-dot plots of house lengths at
seven lroquoian sites of varying ages (after Warrick,
1996: 18). Note how the chronological relationships
of the box-and-dot plots are portrayed.

shown twice. Arguably this reflection is visually
appealing, but it is also redundant, and makes the
graph take up nearly twice as much space on a
page as is necessary. It could easily be omitted
(figure 2.8). The rotation is a useful device, how-
ever, as it allows us to communicate visually that
some categories are older (lower or deeper) than
others.

Histograms

Histograms are an appropriate means for display-
ing the frequency distributions of continuous data
in a single dimension on an interval or ratio scale.
Although they look much like bar graphs, one of
the importantcharacteristics of histograms is that
their bars are adjacent to one another to signal to
the viewer that the data are continuous, rather
than having separate bars (figure 2.9-2.10). An-
other extremely important characteristic is that
the frequencies of observations are indicated by
area on the graph, and not height of the bars. This
is easy to overlook, which can lead to substantial
misinterpretation of data.

In a histogram, the horizontal x-axis is a
continous interval or ratio scale, and if you were to
construct one manually, rather than with a com-
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Figure 2.6. Four separate bar graphs are used here
to compare the distributions of items measured on
nominal scales.

puter, you would have to group your data much
as you would to create abar graph. Because the
data are continuous, however, you havetomake
an arbitrary decision of what interval to use to
group your data. The procedure is as follows.

B Select an interval. Generally you will want
an interval that is narrow enough to give
you anidea of variation in the data, butlarge
enough to create peaks and valleys. You
may have to try several different intervals
before you get one that presents your data
effectively, but you might start with an in-
terval that will give you 10 or 12 bars from
the lowest to highest value among your
observations.

B Uniquely define the groups. For example, it
does not help to say that your intervals will
have values of 0-5, 5-10, 10-15, and so on,
because some of your recorded observa-
tions may lie exactly on the boundaries (at
the level of precision you used), creating
ambiguity. Instead defineyourintervalsina
way that will separate your data even at the
greatest number of significant digits you
recorded. For example, you might have in-
tervals of 0-4.9,5.0-9.9,10.0-14.9, and so on.

B Tally up the number of observations in each
interval by simply counting them.

W Draw the histogram so that the area of each
bar is proportional to the number of obser-
vations in eachinterval. Of coursethe easiest
way to do this is to measure the heights and
keep the widths of the intervals constant
but, as we will see below, it is not always
appropriate for the widths to be constant.
Make sure that the bars are contiguous, to
signal that the data are continuous. Techni-
cally the height of the bar is measured in
units of observations per interval.

M Drawarectangle somewhereinablank area
of the graph that has an area proportional to
one unit, or ten units, or the like, to indicate
the scale of the areas on the graph. Most
archaeologists would instead show the scale
as increments along the vertical y-axis, but
this assumes that the heights of the bars are
proportional to the number of observations
that they represent, which is not always the
case. If you must indicate magnitude on the
y-axis, show it in “observations per inter-
val” units to account for the effect of bar
width. For example, you might have
“number of artifacts per 5 mm interval.”
You can indicate the scale in numbers of
observations, proportions, or both. Tell the
viewer how many observations were used
to make the graph with an indication like the
“n=22" on the graph in figure 2.9.

B As with all graphs, make sure that the scales
are labelled, including their units, where
appropriate, and give the graph a title. Do
not clutter the x-axis with too many labelled
increments. Three or four labels at regular
intervalsare usually sufficient forthereader
to appreciate the scale of measurement.

Because histograms express frequency by
area, youwill probably getinto troubleifyoutry
to use a non-linear scale for any of your meas-
urements. If you want to use transformations
(see below), you should express them on a histo-
gram with transformed units, so that the pro-
portionality of area will be preserved.

As 1 have already hinted, there are cases
when it does not make sense for the intervals
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Figure 2.7. Vertical bar graphs with symmetrical
bars used in a seriation of headstones from
New England (after Deetz, 1967).

along the x-axis to be equal. This has also led to
some grievous errors in histograms published
in archaeological reports. Two kinds of situa-
tions in which this often occurs involve chrono-
logical scales and grain-size distributions.

Commonly, archaeologists want to show
change is some variable, such as settlement in-
tensity, over time but we are often forced to
assign observations to intervals of time that are
not equal in length. Let us say, for example, that
we want to show how the number of sites (our
indirect measure of human population perhaps)
varies over a period of many centuries, but we
can date the sites much more precisely in recent
times than we can in more ancient ones, and this
is reflected in our grouping of sites into “peri-
ods” or “phases” of varying numbers of years
(an interval scale). If we display the data in a
histogram with bars of equal width, as in figure
2.9a, we will give the incorrect impression that
human population was actually greater in the
earlier (longer) periods than in the more recent
(shorter) ones. If we correct for the interval
widths, but indicate number of sites by bar
height instead of area, we will still give mislead-
ing impression of changes in the intensity of
settlement (figure 2.9b). In figure 2.9¢, the inter-

T
1800 1850

Figure 2.8. The same data rotated 90° and shown, without
the symmetry, as a histogramto reflect the fact that the dates
along the x-axis, in this case, are actually on a continuous
scale.

vals are shown correctly and the area of each
bar, not its height, is used to indicate the number
of sites in each period.

Similarly, if we want to make a histogram
showing the distribution of soil particles, or the
like, sorted by size, typically we would pass the
soil through a series of screens of gradually
decreasing aperture. Even if we have an im-
pressive collection of screens, the increment in
screen aperture will notbe constant. In fact, itis
likely that we would consider a difference be-
tween 1.0 mm and 14 mm to be much more
significantthan the difference between 10.0mm
and 104 mm, and so would not want to make all
the increments equal even were this possible.
For this reason soil scientists regularly use spe-
cial non-linear particle-size scales instead of
scales in mm (see chapter 11). Butif we showed
the abundance of soil caught on each screen
with bars of equal width in mm on a histogram,
it would give the impression that large particles
(which typically are captured by screens with
larger increments in aperture) are much more
common than small ones, when in fact the re-
verse may be the case.

Most of the commercial computer packages
do not give you the option of having unequal
intervals. If we need to draw a histogram with
unequal intervals manually, the procedure is
the same as before but with a small complica-
tion. We need to transform the data into a ratio
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measurement, such as “sites per year” for the
first example or “soil mass per mm” for the
second. This will give us the heights we need to
preserve the proportionality of area when the
bars’ widths are made proportional to the
number of years of each period or the size incre-
mentbetweenscreens. Youthenneedto““stretch”
eachbartothe appropriatewidth,usingagraph-
ics program. If, however, all of our increments
are equal exceptfor one or two, we can simplify
the process. If, for example, one interval is twice
the width of all the others, we simply halve its
height so that the area of a bar with twice the
width will still have the correct area.

Before leaving histograms, it is necessary to
mention how the arbitrary selection of interval
width and boundary of intervals affects overall
histogram shape. Even a small change in one or
both of these can sometimes make a bimodal
(two-peak) distribution seem unimodal, or
change the location of the modes dramatically
(cf.Whallon,1987:144-47).Giventhis,you should
be wary of making too much ofhistogram shape,
especially if sample size is small or the intervals
are very small or large relative to dispersion in
the data. For example, it might be ill advised to
use three modes in ahistogram of data in a small
pilotsampletodefine the ordinal categories you
will use for a much larger project unless those
modes are fairly reproducible in several changes
ofinterval width. At the same time, this depend-
ence of histogram shape on interval placement
and width does not prevent the histogram from
being a very useful graphic device. It is an
excellent way to display general trends in con-
tinuous data, as long as you view the graphs
with a critical eye, and also has close similarity
to the probability distributions we will see in
chapter 6. In cases whereiitis critical to avoid this
flaw inhistograms, one should instead consider
using an ogive or cumulative frequency distri-
bution (below).

Line Graphs

Line graphs are correctly used in cases where
we want to show changes over a continuous
scale. In some ways they are similar to histo-
grams, but they are not frequency distributions.
That is, rather than showing how many or how
much of some item occurs in each interval along
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Figure 2.9. The histogram in a is misleading because
the time intervals are of equal width, the time scale is
in reverse order, and site number is given by height,
rather than area. In b the interval width is corrected
butthe graph stillmisrepresents changes in settlement
intensity by using heights. The graph in ¢ gives a
more realisticindication of relative settlement intensity
through proportionality of area.

the scale, it shows how a particular statistic
(such as population size, proportion of deco-
rated pottery, or mean temperature or house
size) varies up and down as we vary the value of
the x-axis, and, in archaeology, usually the x-
axis represents time. In that case, the line graph
can be called a “time-series.” Another differ-
ence between line graphs and histograms, which
stems from the fact that they are not frequency
distributions, is that it is the height of any point
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along the line, as measured by the y-axis, that
determines its value, and not the area under the
line. Usually you can get away with showing
two or even three different measurements on the
same line graph without making it too confus-
ing, as long as each line is clearly labelled or
coded with a key.

Often, it is impossible for us to make con-
tinuous measurements along this x-axis, and
instead we have a sample of measurements made
at different times and have to interpolate be-
tween them. A typical, non-archaeological ex-
ample might be measurements of outdoor
temperature at noon over a period of several
months, but made not quite daily. We would
simply mark points at the coordinates appropri-
ate for each combination of x- and y-values (date
and temperature), then join the points with line
segments to show how noon temperature varies
over the period in question.

Appropriate uses of line graphs are not as
common in archaeology as those of other graph
types. We could use a line graph to indicate, for
example, changes in population over time (fig-
ure 2.10). The fact that we are usually unable to
measure population (or one of its proxies) at a
single point in time, however, makes it difficult
or impossible for us to know where each point
on the graph should lie, and we should show
error bars on the points. These are line segments
thatextend out from the point to show the size of
the estimated error. The graph in figure 2.10 has
bars to show the estimated error in population
size, but not in date.

Cumulative Frequency Graphs (Ogives)

The cumulative frequency graph, or ogive, is
very useful if you want to know what percent-
age or proportion of your data lie above or below
a certain value, or what proportion lies between
two values. It is also very useful when it is
important to know whether a particular distri-
bution is relatively even or uneven, and for
comparing distributions.

The graph has at least an ordinal, and usu-
ally a continuous interval scale along the x-axis
and a measure of relative abundance (propor-
tion or percentage) along the y-axis. It works
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Figure 2.10. A Line graph showing changes in
estimated human population over time (after Warrick,
1996:17).

much like a histogram except that the values
accumulate, rather than going up and down.
This characteristic is described as “monotonic”
(one-way) “increasing.” The graph is relatively
easy to draw. You go through most of the proce-
dure you would follow for a histogram, except
you make a y-axis ranging from 0 to 1.0 or from
0% to 100% and you add each new value, going
from left to right across the x-axis, to the previ-
ous ones so that the line gradually rises from
near 0 at the bottom left corner of the graph, to
100% at upper right (figure 2.11).

One of the important applications of this
kind of graph is in a non-parametric statistical
test, the Kolmogorov-Smirnov test (Shemnan,
1988:53-61) that is useful for many archaeologi-
cal problems that involve comparing two distri-
butions of observations on the ordinal, interval
or ratio scale. In fact, the reason that the cumu-
lative frequency graph became popular with
lithic analysts was that you could put two or
more cumulative step-lines (one for each assem-
blage) on a single graph and use the maximum
vertical difference between the two lines as a
measure ofhow different the assemblages were.

A more common use of such a graph is to
allow viewers easily to see what proportion of
houses were greater than 30 m? for example, or
what percentage of graves had less than three
grave goods. In the former case, we might find
the place along the x-axis corresponding to 30
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Figure 2.11. Anogive, orcumulative frequency graph,
for the diameters of the rims and bases of pot sherds
(after Orton, 1980:171).

m?, draw aline vertically until it meets the step-
line, and then horizontally from that point to the
y-axis, where we might read off 80%. This would
tell us that 100-80 or 20% of houses were bigger
than 30 m? In the latter case, a line drawn
upwards from 3 on the x-axis and then across to
the y-axis might give 65%, telling us that 65% of
the graves had less than three grave goods.

Clive Orton (1980) shows a good example of
how a cumulative frequency graph, with rim
and base diameter on the x-axis, can help us to
compare differences in the proportions of size
classes in pottery assemblages (figure 2.11).
Orton makes the somewhat bold attempt to
figure out what bases go with what rims by
arguing that, if X% of rims are smaller than 6
inches and x% ofbases are smaller than 3 inches,
then probably the 6-inch rims belong to the same
vessels as the 3-inch bases. The shapes of the
cumulative frequency plots would be very dif-
ferent if this theory for associating bases with
rims was far off, while close similarity between
the two step-lines would lend it some support.

In non-archaeological applications, social
scientists often use this type of graph to show
income distributions. A fairly straightline would
show that income varies fairly evenly, with rela-
tively equal numbers of poor, middle-income
and rich people or families, a concave distribu-
tion would indicate that there were very many
poor families, and a convex distribution would

indicate that there was an abundance of middle-
income or rich families. Social scientists often
then use something called the Gini coefficient to
measure the degree of convexity or concavity in
the distribution. Some archaeologists have used
the Gini coefficient in a similar way to measure
the degree of inequality in grave goods in a
cemetery (e.g., Morris, 1987:14143).

Cumulative frequency graphs have often
been used to publish distributions in lithic as-
semblages since Francois Bordes popularized
his approach in the 1960s. This is actually an
inappropriate use of them (Thomas, 1976: 52)
because the x-axis on the graph is only an arbi-
trarily ordered list of artifact types. If you
changed the ordering of the type-categories, the
shape of the cumulative frequency graph could
change dramatically.

Scatterplots

Scatterplots are the most appropriate means for
showing data along two, or occasionally three,
dimensions on an interval or ratio scale. They
are particularly useful in exploratory analysis,
when we are attempting to group data or find
relationships between dimensions.

Usually a scatter plot has two axes, both
with continuous interval orratio scales. The plot
then consists of a number of points, or dots, at
the intersections of all the (X, y) combinations.
For example, following an analysis of the trace
elements in a number of obsidian artifacts, we
might plot the abundance of zirconium in parts
per million (ppm) in each along the x-axis and
the abundance of barium, also in ppm, along the
y-axis. Each point on the graph represents the
particular combination of zirconium and barium
foreach artifact, and we can search the graph for
signs that points tend to cluster into groups
(figure 3.7). We can show errors of the measure-
ments by small bars (error bars) extending out
from the dots. We can also add a third dimen-
sion, usually on a nominal scale, by using differ-
entsymbols for the points toindicate the category
to which each belongs, such as the site it came
from or the source of the obsidian, if known. If
we are very lucky, points with the same symbol
might fall into the same cluster on the graph,
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while points with different symbols fall in dif-
ferent groups. This is a useful exploratory way
to see what pairs of characteristics (in this case
pairs ofelemental abundances) mighthelp us to
define meaningful groups (see “grouping” in
chapter 3).

Scatterplots are especially useful when we
want to look for meaningful relationships be-
tween two dimensions. For example, if we plot
flake width along the x-axis and flake length
along the y-axis and the result is a group of
points stretched roughly along a diagonal line,
stretching upward from left to right, we would
conclude that all of the flakes are fairly constant
in shape (or at least width/length ratio), and
simply vary in size. This kind of relationship is
linear association, or correlation, and the extent
to which two variables are correlated can be
described with a descriptive statistic called the
correlation coefficient, represented by the letter
r.

One famous example of the use of a
scatterplot in archaeology involves the attempt
to find arelationship between the roofed areaof
dwellings and the number of people who inhab-
ited them (figure 2.12, Narroll, 1962). The plot
shows a fairly linear relationship between these
two measures, and allowed Narroll to extractan
equation for the line that fits the data observa-
tions with the minimum squared error. This
equation predicts that there will be one inhabit-
ant roughly for each 10 m? of roofed area. This
fitting of a “best fit” line to the data in a scatter
of points to extract an equation for predicting y
when x is known is called regression. Note,
incidentally, that the points are scattered rather
widely around the y = 10x line, indicating that
the correlation is not especially good, and we
would expectafairly large degree of error in this
particular indirect measure of human popula-
tion size (LeBlanc, 1971; cf. Read, 1987:162).

Pie Charts (Circle Graphs)

Pie charts are a popular way to show propor-
tions of things measured on a nominal scale.
They are now easy, perhaps too easy, to gener-
ate with computers. They are constructed by
radiating a number of line segments from the
center of a circle, with the angles between radii

proportional to the proportion of each category.
They are particularly common todisplay faunal
datain the archaeological literature (figure2.13).

The trouble with pie charts is that, although
the relative areas of the pie slices are propor-
tional to the proportion of each category repre-
sented, justas the area of bars on a bar graph, the
human eye finds it much easier to estimate and
compare the areas of rectangles than circles or
wedges (Tufte, 1983:55). Consequently,piecharts
are usually not as easy to interpret accurately as
bar graphs and are easily replaced by them in
most cases. Often, users of pie charts try to
compensate for this deficiency by putting labels
on each wedge, showing the proportions nu-
merically. This, however, makes the graph re-
dundant, and begs the question of why the
author did not simply use a table. In addition,
the frequency of this type of graph in the popu-
lar media probably has more to do with the
editors’ low opinion of readers’ sophistication
than with the graphs’ effectiveness (note espe-
cially theinsulting “slice of yourtax dollar” type
of graph). In most cases, I would suggest that
you use bar graphs instead of pie charts.

One exception is when you want to show
how the abundance and distribution of items
varies atanumber of sites on amap. Assume, for
example, that you have four pottery types that
occur at ten sites in a region. You can draw a
circle at the location of each site on the map such
that the area of the circle is proportional to the
total number of sherds in your sample from that
site. Then you can divide each circle into four
wedges, coloured or hatched to indicate which
type each wedge represents and proportional to
that type’s abundance in the site assemblage.
When used sparingly, this can sometimes be an
effective way topresent complex dataand allow
the viewer quickly to compare the distributions
of artifact types across space.

Windflowers and Rose Plots

Windflowers arenamed for theiruse toindicate
prevailing wind directions. They are essentially
radial bar graphs, each bar radiating out from
the center and with its height proportional to the
amount of time the wind blew from a particular
direction. Of course the direction in which the
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Figure 2.12. Scatterplot to display a relationship
between roofed area and numer of people in an
ethnographic sample, with the regression line for
y=10x (after Narroll, 1962). Note that both axes have
logarithmic scales in this example.

bar radiates is analogous to the wind direction
itself, so the windflower is appealing in that it
conveys the idea of wind direction better than a
standard bar graph would, even though it con-
tainsexactly the sameinformationasabargraph.

Some archaeologists have used windflowers
and similar graphs called rose plots to show, for
example, the distribution of orientations of the
long axis in houses, the entry ways in temples or
houses, and the head position in graves. When
excavators have recorded the individual
orientations of lithics on surfaces, they can also
be used to show the orientations or dip angles of
the distal ends of flakes and blades (figure 2.14).
Their attraction over a bar graph is that they
convey the actual directionality of the patterns
quite well.

Spatial Histograms and Isopleth Maps

Many kinds of archaeological data have an ex-
plicitly spatial component, and so it is often
useful to combine the concept of a probability
distribution with thatof a map. Instead of show-
ing variation in artifact size, for example, by
using the usual histogram, we may want to
show their distribution across a house floor we
have excavated according to some kind of grid.

Owvi-Caprids

Figure 2.13. Example of a pie chart used to illustrate
proportions of faunal bones.

These maps, which we might call spatial
histograms or stepped statistical surfaces, show
variations in the density of artifacts or other
materials across the grid. We can think of the
density of artifacts across the surface as continu-
ous, even though the actual artifacts themselves
are discontinuous, and, as with a histogram, on
each axis of the grid we decide on an interval
(often we must select the interval in the field),
and count the number of artifacts in each square.
We could then represent this number by a bar
that extends upward from the square, as in a
three-dimensional bar graph, or simply shade
or color each square according to a key to indi-
cate the abundance of artifacts in each (figure
2.15). Note that, as with regular histograms, if
the spatial units are not of equal size, weneed to
ensure that the data are shown as densities - -
numbers of artifacts per unit of area or volume
— to avoid giving an inflated impression of
abundance for the larger spatial units.

An alternative that is better at capturing the
feeling of continuity in the data, where that is
appropriate, is to use an isopleth map. This
looks much like a contour map used to illustrate
topographic variation except that the contour
lines represent, not equal heights above sea
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Figure 2.14. A type of rose plot used to indicate the
angles of inclination (dip) of lithics in an Upper
Paleolithic site (after Petraglia, 1993:102). The radial
increments are 2%.

level, butequal densities of artifacts, orisopleths.
This type of map is appropriate in cases where
an archaeological site-formation process has
resulted in reasonably continuous changes in
artifact density over space, so that we can rea-
sonably interpolate artifact densities even in
places where we did not actually do any meas-
urements. What this means is that our measure-
ments of artifactdensity across the surface must,
of necessity, be discontinuous — normally we
would count the number of artifacts in some
unit of area at several places across the surface
either systematically or opportunistically—but
we then interpolate between our discontinuous
measurements to estimate the densities in the
space between them. This will only work in
cases where we would expect fairly even fall-off
in artifact density away, for example, from an
activity area. In many archaeological cases the
distributions are in reality very discontinuous.
As with histograms, a small shift in the place-
ment or interval of observations can have sub-
stantial effect on the form of the resulting
“surface.” In these cases, creating an isopleth
map requires artificial, mathematical “smooth-
ing” methods if we are to avoid misleading
results.

Figure 2.15. Spatial histogram or “stepped statistical
surface” of potsherd densities at the entrance to
grave 9 at Fjédlkinge (Shanks and Tilley 1987:166).

General Principles in Creating Graphs

This summary does not exhaust the graphing
methods you could use to display archaeologi-
cal data, but does present principles for the use
of the graph types most commonly encountered
in the archaeological literature.

In addition to using the right kind of graph
foryour particularapplication, you should think
about some general principles. It is easy to make
even the correct kind of graph confusing, mis-
leading, or downright dishonest.

An excellent guide for improving the effec-
tiveness of graphs is Edward Tufte (1983; 1990).
He emphasizes that graphs are to communicate
information, and that they should do so clearly,
precisely and efficiently. They should make large
bodies of data accessible and coherent in a small
space, balance fine detail with overall pattern,
and encourage people to draw comparisons or
identify patterns. They should have a clear pur-
pose and should be integrated with the statisti-
cal and textual presentations with which they
are associated. They certainly should not distort
the data or mislead the viewer, and should
encourage viewers to think about the data’s
substance rather than about the graph itself
(Tufte, 1983:13).
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Amongthe aspects of graphs thataffecttheir
effectiveness, in his view, are the “data-ink”
ratio and graphical integrity (Tufte, 1983:53-77,
91-106).

When he criticizes graphs for having a low
data-ink ratio, what he means is that the graph
is far too cluttered with lines, labels, or anything
else thatreally is not necessary for communicat-
ing information. In practice, this may involve
labelling too many increments on the x- and y-
axes, addingbilateral symmetry to a graph (asin
seriation’s “battleship curves”), making bar
graphs too decorative by making them appear
three-dimensional, adding many and sometimes
jarring combinations of color or hatching, or
adding grid lines that are not really necessary.
When graphs are decorative in the extreme,
Tufte (1983:107-121) refers to them as
“chartjunk.” Unfortunately, commercial
graphing software, whose primary market is the
business community makes it is all too easy for
chartjunk to dominate. All this does is distract
viewers from the information that the graph is
intended to convey. Keep it simple.

On the other hand, it is also a mistake to
remove so much labelling that the viewer has to
search through a lengthy caption to interpret the
graph. Include enough increment labels on your
axes that what the axis is measuring, its scale,
and its units are clear. Give your graph a title,
and show other pertinent information, includ-
ing, where relevant, a key, a scaling icon, or one
or two descriptive statistics (such as n [sample
size] or median).

One of the greatest threats to graphical in-
tegrity results from scaling the data in mislead-
ing ways. There are several ways in which
presenters of data can mislead us. One is to hide
the baseline of abar graph or histogram so that,
not only is zero not at the bottom of the graph’s
y-axis, butit is not very clear where zero is. This
technique canbe used both to inflate the impres-
sion of differences between bars (i.e., only show-
ing the top part of the bars and truncating the
bottom), and in an attempt to hide important
differences and giving the graph a greater im-
pression of stability (Tufte, 1983:54). In an hon-
est bar graph, the height of the bars is
proportional to the magnitude of the measure-

ments they indicate. In aline graph with interval
rather than ratio data, however, it may not be
necessary to show the zero value, as it is not a
“real” zero anyway. For example, in aline graph
displaying changes in temperature over time,
0°F and 0°C are only conventional temperatures
and need not be shown if they are outside the
range of observations. Similarly, a time scale
across an x-axis need notinclude A.D.1 (thereis
no such year as A.D. 0) or 0 B.P. unless it is
included in the time range of interest.

Another threat to graphical integrity is to
distort the graph by removing the proportional-
ity of area. As we have seen already, in our
discussion of histograms, it is the area of a
portion of the histogram (not the height) that
should be proportional to the number of obser-
vations in a particular interval. As it happens,
most people find it easier to compare lengths
and rectangular areas than to compare curves,
circles, and angles, and systematically tend to
underestimate growth in a circle’s area (Tufte,
1983:55). Some of the computer graphic pack-
ages offer the option of making graphs look
three-dimensional. Unless you are actually dis-
playing three-dimensional data, however, this
distorts the proportionality of area on the graph,
and sometimes also offsets bars so that you
cannot even compare heights properly. It is
inadvisable to use such an option unless, as in
spatial data, the third dimension actually con-
tributes to the viewer’s understanding.

Tufte suggests two basic principles to pre-
serve graphical integrity. First, the representa-
tion of numerical quantities should be directly
proportional to those quantities. Second, the
axes and units on the graphs should be clearly
labelled, with labels on the graph itself, rather
than only in a caption or key, and important
“events” in the data, such as modes and sudden
changes of slope, should also be labelled, to call
the viewer’s attention to whatis important (Tufte,
1983:55-56).

Many of the options that modern computer
graphics software offers, including perspective
views with foreshortening, distort the area of
bars considerably, or automatically shift the
zero (origin) of the graph out of view. You
should ensure that you overrule such distor-
tions.
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Transformations and Problems of Scale

Sometimes it is difficult to make a single graph
display a set of data effectively because some of
the observations are many orders of magnitude
larger than others. If we follow Tufte’s advice
not to distort the scale of the y-axis on a bar- or
line-graph, in these cases, either the large obser-
vations are lost off the top of the graph, or the
small observations become nearly invisible.

A common way to resolve this problem is to
put abreak in the y-axis, indicated by ajagged or
wavy line. Although this would violate Tufte’s
principal of proportionality, the jagged line sig-
nals to viewers that part of the scale has been
removed.

Another way to handle the problem is to
transform the data. A data transformation typi-
cally involves using the square root or the loga-
rithm of your measurements, either of which
has the effect of “pulling in” the high values and
“stretching up” the low values. Other kinds of
transformations may also be desirable. Essen-
tially, transformation is like expressing your
data in different units. The logarithmic scale,
however, has no zero (it increments in powers of
ten), and consequently cannot be used in cases
where you need to display zero values (see
figure 2.12). In order to make it clear to the
viewer that youhave transformed the data, and
that the heights displayed on the graph are
consequently not proportional to the linear val-
ues of the measurements, you should label the
axis and the graph accordingly. Sometimes pat-
terns that are not clear in the raw data become
much clearer or easier to interpret after data
transformation, as in cases where an exponen-
tial relationship appears linearaftertransforma-
tion.

In addition, there may be more substantive
reasons for transforming data than making the
data fit the graph. Some relationships between
two or more variables can form extremely clear
patterns only when they are transformed. In an
attempt to discover pattern in many linear meas-
urements made on a number of artifacts, for
example, we may find that the untransformed
data suggest groupings by size categories, while
a simple transformation results in data that sug-

gest groupings by shape. Data transformation is
astandard procedure in some kinds of analysis,
such as principal components analysis (chapter
3).
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As we have seen, compilations are the result of
collecting, compiling, cataloguing, or organiz-
ing data into arrangements. Compilations can
be simple lists, indexed lists, or computer
databases. Alternatively, they can be tables,
graphs, collections of pictures, or statistical sum-
maries. Compilations can be used simply to
record and summarize information, or to organ-
ize that information in either arbitrary or mean-
ingful ways.

To summarize data we can use any one or a
combination of the following tools. Lists are the
simplest kind of compilation; they have no par-
ticular order, and so are difficult to use either to
manage data or to seek patterns in data unless
we use high-speed computers to sift through
them. Whether computerized or not, lists are
much easier to use when they are indexed. Key-
words or some other symbolic devices, such as
color codes, can be used to “look up” informa-
tion that is arranged in alphabetical or numeri-
cal order, for example. Often data are presented
in the form of tables. These impose order and
dimensions on the data and sometimes empha-
size particular kinds of data over others. Graphs,
meanwhile, simplify and make visual large quan-
tities of data that we would otherwise have to
present as virtually unmanageable lists or tables
of numerical information. Further simplifica-
tion results in statistical summaries, such as
averages, medians, and proportions or percent-
ages, and other ratios, which replace the lists of
many numbers with only a few that characterize
trends, “central tendencies,” or typical distribu-
tions in the data.

But any kind of useful compilation more
complex than a simple list must have units with

Systematics, Compilations, and
Database Design

which to order data and find similarities and
differences. The ways to formulate and struc-
ture such units constitute the methods of sys-
tematics. Archaeologists typically describe most
or all of these methods as “classification” or
“typology,” almost interchangeably, but they
can also result in non-classificatory arrange-
ments — groups or clusters. As Dunnell (1971)
emphasizes, classificationasanintellectual proc-
ess is quite distinct from grouping, and the
distinction is worth preserving. In addition, it is
useful to distinguish classifications generally
fromparticularkinds ofclassificationsthatIwill
call typologies.

This chapter introduces a classification of
the tools archaeologists use to order their data,
through systematics. It also introduces the is-
sues they must address when they use compu-
ter databases to record and manipulate their
data. The latter section deals with databases in
the abstract rather than attempting to describe
any particular database management system.

SYSTEMATICS

Systematics operates on the nominal scale of
measurement. Our need for systematics stems
from the factthat everything on which we would
like to make observations is unique: it has its
own particular combination of values on an
infinite number of characteristics or attributes.
When we try to carry out an analysis, however,
itisnot veryuseful to treateach object as unique
or to clump everything into a single group that
comprises the whole population or sample. Cat-
egories or classes, and groups with members
that share some attributes or are similar in some
way, help us to make sense out of data, not to
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mention saving publication costs. Being able to
group observations or assign them to categories
is anecessary step in making comparisons. If we
literally treated every artifact, burial, or site asa
unique observation, we would have no way to
find commonalities between artifact assem-
blages. There simply would be none. At the
same time, to say that two artifacts belong to the
same class, group, or type does not mean that
they are identical in all respects, only that they
share certain characteristics that we deem im-
portant.

One of the characteristics of systematics is
that it is, philosophically speaking, completely
arbitrary. Thatis not to deny that we have good
reasons for organizing data the way we do, but
torecognize that the number of possible ways to
define categories or group information is infi-
nite. Our research goals may guide us to design
systematics in particular ways — for example,
the goal of elucidating evolutionary relation-
ships leads us to use a taxonomic classification
of living things that at least mimics their evolu-
tionary histories — but in principal, no one
arrangement is any better or more valid than
any other. Only our theoretical orientations,
research goals, and methods lead us to select
one arrangement over another. Quite often ar-
chaeologists change their arrangement of data
as their research progresses or interests change.

As I noted in the introduction, archaeolo-
gists tend to describe the products of systemat-
ics as classifications or typologies, using both
terms somewhat indiscriminately. Even math-
ematicians are far from consistent in theiruse of
terms for systematics. [ preferto follow Dunnell
(1971) in distinguishing classification from
grouping and I attempt to expand on Gardin’s
(1980) distinctions by treating typologies as spe-
cial cases of classificationsand groupings. While
other ways of describing and distinguishing
archaeological units of analysis are certainly
possible (e.g., Adams and Adams, 1991), I think
it is useful to encourage a clear and consistent
use ofterms, and Dunnell’s (1971) Systematics in
Prehistory provides one possible basis for this
consistency.

Classification is the intellectual process
whereby we assign items, either real or imag-

ined, to categories in a pre-arranged system, or
classification, much as though we were putting
the items intoboxes or trays. Adams and Adams
(1991) would call this process “sorting” when it
involves classifying actual things, such as arti-
facts. Hand (1997) would call it “supervised
classification.” For each category, there is arule
or set of rules to determine whether any item
belongs or does notbelong to that category and,
if the rules are defined carefully, there is no
ambiguity about the category to which a par-
ticular item should be assigned. The rules state
the conditions that are necessary for a particular
item or concept to qualify for membership in the
class: failure to meet even one condition would
disqualifyit. Furthermore, satisfying those con-
ditions is sufficient for membership in the class:
as long as the item meets the necessary condi-
tions, no other conditions have any bearing on
its membership. To begin with a simple exam-
ple, we could have a set of boxes, each labelled
“flint,” “pottery,” “bone,” or “other,” and as-
sign artifacts from an excavation to these boxes
according to the material from which they are
made. A classification is an abstract arrange-
ment with which we conceptualize the catego-
ries, or classes, to which we are assigning items,
that is, with which we create the units of a
nominal scale.

Grouping on the other hand, is a different
kind of intellectual process. Here there is no pre-
arranged system for ordering the phenomena of
interest independent of the phenomena them-
selves, even though individual researchers will
have preconceived ideas about how to proceed.
It may involve something as simple as deposit-
ing a collection of artifacts onto a table and
moving them around into piles in such a way
that items in the same pile seem more similar to
each other than they are to items in other piles.
The important thing, philosophically, is that the
starting-point is not an abstract model ofhow to
conceptualize the items, but rather an actual
collection of items. You can have classifications
that have no members (although that would be
aratherunproductive excercise!) because classi-
fications are abstract, but you could never have
groups without members. Hand (1997) would
describe grouping as “unsupervised classifica-
tion” or “pattern recognition.”
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Figure 3.1. A taxonomic classification of arrangements.

Both classification and grouping belong to
what Dunnell (1971:43) would call more gener-
ally, arrangement: a procedure that orders data
into units, an organizing device. It is important
to remember that arrangements are completely
arbitrary; just as the number of attributes with
which we might describe a particular object is
infinite, the number of possible ways we may
constructarrangementsis alsoinfinite. Although
we routinely have some theoretical justification
for preferring one arrangment over another,
from the formal standpoint one arrangement is
just as real and as valid as any other.

Even if it is not immediately apparent, the
difference between classification and grouping
is important because it affects our research de-
signs from the beginning. If our research design
calls for us to anticipate the kinds of data we will
collect and how we will collect them, as it often
does, we would typically employ classification,
the only means at our disposal for precisely
anticipating categories of information. If we are
conducting exploratory analysis of a pre-exist-
ing collection of artifacts, then we might use
grouping methods to get some insights into the
collection that might lead to the formation of
new hypotheses. Typically, archaeologists use
both at various stages of their research. For
example, they maybegin anew projectby group-
ing artifacts that seem intuitively similar, or
whose characteristics seem to vary by context,
then examine the groups to identify the attributes
that seem to contribute the greatest similarities
within and differences between groups. Then

they can use these attributes to construct a new
classification, apply it to the original artifacts as
well as to others they may collect, and test the
classification’s usefulness for a particular pur-
pose, such as chronology.

Let us examine the differences between
grouping and classification in more detail.

Classifications, as wehave seen, are abstract.
A classification consists of a number of catego-
ries, or classes, each defined by one or more
criteria. In terms of the measurement theory we
examined in chapter 2, a classification allows
measurement on a nominal scale. To measure a
particular object on this scale, we simply com-
pare it with the criteria for each class until we
find the class to which it belongs, that is, where
there is a match between the class’s defining
criteria and the object’s attributes. Consequently,
we can say that classification is a matter of
redundancy, in that two objects can be said to
belong to the same class if they both meet all the
criteria.

More formally, the class definition states the
conditions that are both necessary and sufficient
for membership in the class. No item can be a
member unless it meets all the criteria, and no
item can be omitted as long as it meets those
criteria. For classifications to work properly,
definitions need to be formulated in a way that
makes the classes mutually exclusive: no one
artifact should meet the definitions for two dif-
ferent classes simultaneously, nor should there
be any ambiguity about the class to which it
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belongs. Because classes have definitions (i.e.,
rules for membership), we can also say that
classification is definitive. One important char-
acteristic of classifications is that they are inde-
pendent of the things they classify. Whether or
not there are any artifacts that belong to a par-
ticular class, whether you add artifacts or take
some away, the rules defining that class remain
the same.

Grouping methods, by contrast, start with
things. These things could be real orimaginary.
Instead of being definitive, as in classification,
grouping is descriptive, as it simply describes
particular groups, or clusters, of things. We can
describe these groups by enumerating their
members, by stating their boundaries in space
or time, or by summarizing the characteristics of
each group statistically. As an example of de-
scriptionby enumeration, a group of people can
be described simply by listing their names and
addresses. A common way in which archaeo-
logical groups are described by stating their
boundaries is when artifacts are grouped by the
stratigraphic levels or excavation areas in which
they were found. A simple example of a statisti-
cal description might be a group composed of
lithics that tend tobe from 3cmto 5 cminlength,
that have length/width ratios close to 1.7, and
edge angles around 18°. The thing to note here
is that, unlike the definitions for classes, the
measures here are “tendencies.” Just because
the average length for the group mightbe 3.3 cm
doesn’t mean that there are no members with
lengths of 2.9 or 5.2 cm, only that the majority of
group members cluster around that average.
One ofthe majorways inwhich grouping differs
from classification is that groups cannot exist
independently of their members and, if you
change the membership of a group, the group’s
definition also changes. For example, if one of
the defining characteristics of a group is an
average length of 33 mm, and you add a new
member that is 37 mm long, the average length,
and thus the group definition, will be different.
Consequently, group descriptions are restricted
to the set of phenomena with which the groups
were originally constituted, and any addition or
subtraction ofinformation always changes these
descriptions (Dunnell, 1971:89). Thatis notnec-

essarily a problem, but requires caution when
we wantto compare assemblages of artifacts, for
example, that were not grouped by the same
descriptions.

The distinction between classification and
grouping does not always appear clear-cut. For
example, in everyday practice we classify things
along a scale of color, with values such as “red,”
and “brown.” Yet our description of a particular
object, perhaps a pottery sherd, as either red or
brown may be far from unambiguous. It may
seem “reddish-brown” or different researchers
may assign it to different classes. This may stem
inpart from human differences in perception, in
part to our failure to define the boundaries
between classes carefully enough, butitis also a
very real aspect of archaeology that our catego-
ries are often somewhat “fuzzy.” We may only
be able to assign a sherd to a particular class with
aparticular probability, and the definition ofthe
class may begin to look like the statistical defini-
tion of a group. This is a problem that we can
approach either through the concept of meas-
urementerror (chapter?2),in whichcase werefer
to misclassification, or through something called
*fuzzysets’ (Kempton, 1978;Zadeh, 1965). Fuzzy
sets deserve more attention in archaeology, as
they may describe some aspects of real
archaelogicalclassifications (Adamsand Adams,
1991:72). The theory behind fuzzy sets, how-
ever, is beyond the scope of this book. The basic
distinction between classification and group-
ing, however, remains a useful one.

As there are many possible ways to go about
designing classifications or grouping phenom-
ena, it should come as no surprise that we can
make a classification of these methods. Dunnell
(1971:44) describes two major classes of classifi-
cations and two major classes of grouping meth-
ods. Of course other ways to classify
classifications and grouping methods are possi-
ble (e.g., Adams and Adams, 1991:216-28), but
Dunnell’s classification provides a useful start-
ing-point. The classification that follows is in-
evitably arbitrary, especially in the way I have
subdivided some of the statistical grouping tech-
niques, but I hope that the classification reveals
some of the common elements of these tech-
niques without need to describe them in detail.
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Paradigmatic Classification

Paradigms operate by the intersection of nomi-
nal or ordinal scales that we can describe as
dimensions because the classes on each scale are
mutually exclusive: no item could belong to
more than one category on each scale. The inter-
sections of a number of these dimensions define
classes in the same way as X, Y, and Z measure-
ments (Cartesian coordinates) can define any
portion of space. Readers who have studied
languages will be familiar with paradigms be-
cause they are used, for example, to classify
verbs. One dimension could be “tense,” with
classes for “past,” “present,” and “future.” An-
other dimension could be “gender,” with classes
for “feminine,” “masculine,” and “neuter.” A
third could be “number,” with classes for “sin-
gular,” “plural,” and, perhaps, “dual.” Yet an-
other could be “person,” with “first person” (“T”’
or “we”), “second person” (“you”), and “third
person” (“he,” “she,” “it,” or “they”). By inter-
secting these dimensions we get classes to which
we can assign such items as “he said” (third-
person singular, masculine, past) or “we will
g0” (second-person plural, neuter, future). Inan
archaeological case, we mightcreate aparadigm
for measuring pottery relative to the dimen-
sions, “exterior surf ace color,” “temper,” “deco-
ration,” “hardness,” and others. Itis worthnoting
that the nominal scales of measurement that we
use to measure attributes, even ones used in
non-classificatory arrangements, are usually
paradigms, and often one-dimensional ones.

Paradigms have some important character-
istics. Paradigmaticclassifications,because they
are dimensional, are non-hierarchical and
unweighted. All dimensions contribute equally
to the classification. In addition, itis possible, in
fact quite likely, that a paradigmatic classifica-
tion will contain many “empty” classes; that is,
some combinations of criteria on the various
dimensions will define objects that we are un-
likely to encounter or even that could not possi-
bly exist. In this sense, paradigms are not as
efficient as some other kinds of arrangements,
and consequently they are rarely used for com-
plex typologies intended for large collections of
material.
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Figure 3.2. Example of a simple, two-dimensional
paradigmatic classification of pottery with four
possible classes (after Watson et al., 1971:128-
130).

Taxonomy

Taxonomic classification is the kind of classifi-
cation that Linnaeus used to categorize plants
and animals and that botanists and zoologists
still use to classify life. Rather than employing
intersecting dimensions, taxonomies work by a
series of distinctions or dichotomies, resulting
in major categories, smaller categories, sub-cat-
egories and sub-sub-categories. They are hierar-
chical and assignment to a particular class is like
running through a program from the top of the
hierarchy on down.

An example will illustrate this point. One
possible taxonomy for lithics could begin at the
top with a distinction between tools and waste
products. For a tool, at the next level down we
may need to distinguish between core tools and
flake tools. For flake tools we may further distin-
guish flakes with retouch on the dorsal side,
ventral side, or both. For flake tools withbifacial
retouch, we may distinguish ones with one re-
touched edge, two retouched edges, and more
than two retouched edges. And so on, until we
have assigned the flake to its proper category. At
each level in the hierarchy, the classifier must
make some distinction, on anominal (and some-
times dichotomous) scale, such as “lithic” or
“not lithic,” or “small,” “medium,” or “large,”
and the final class to which an item is assigned
is arrived at by winding through a sequence of
such distinctions.

Among the characteristics of taxonomies are
the following. Taxonomies are inherently hier-
archical, with weighted criteria for assignment
to classes. That is, defining criteria near the top
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Figure 3.3. Example of a taxonomic classification for Owasco pottery from New York State (after Whallon,
1972: 17). Note that the distinctions made in the left side of the "tree" are quite different from those on the
right. The taxonomy could easily be simplified by removing redundant “others.” For example, there is no
reason why “punctate on collar” could not move up to the same level as “incised neck.”

of the hierarchy have much more influence over
the class to which an item will be assigned than
ones near the bottom. Taxonomies are rarely
symmetrical; all the “branches” are independ-
ent of one another and need not employ the
same or even similar criteria for making finer
distinctions. In a lithics taxonomy, we would
not expect the criteria for sub-dividing debitage
to be the same as those for subdividing tools,
while in a pottery taxonomy, we would not
expect the sub-categories of rim sherds to be the
same as those for handles or bases. Taxonomies
need have no “empty” classes; we simply would
notuse any distinctions that would create classes
for items we would never expect to encounter,
however rarely.

Grouping

Dunnell (1971) also recognizes two basic classes
of grouping methods, or “non-classificatory ar-
rangements,” which he calls “numerical tax-
onomy” and “statistical clustering.”
Superficially, the formerlookslike a taxonomy,
but, in fact, quite different procedures are in-
volved in its construction. The latter actually

begins with a paradigmatic classification. To
limit ourselves to these two classes, however,
omits some of the richness of grouping meth-
ods, among them even those based on archaeo-
logical context or on intuition that archaeologists
use everyday. Consequently I propose the modi-
fied terminology that follows (see also figure
3.1), distinguishing grouping methods based on
boundaries from those based on central ten-
dency and attribute association.

Bounded Grouping

The simplest grouping method, which archae-
ologists use unconsciously all the time, is simply
to group things by some boundary, typically a
contextual (or extrinsic) boundary in space or
time. By extrinsic we simply mean attributes
that lie outside the objects being grouped or
classified, such as their date of manufacture,
while intrinsic attributes are ones inherent in

those objects, such as their length or color. This
is such a routine and critical kind of grouping,
the backbone of any archaeological recording
system, that we tend to take it for granted. It is
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also important in that, consciously or not, most
archaeologists begin a new artifact typology by
grouping artifacts by context and searching for
within-group similarities and between-group
differences. Once recognized, these similarities
and differences can serve as the basis for amore
formal classification, such as a taxonomy, or for
another kind of grouping.

I label this type of grouping as bounded
grouping because membership of the group is
described by the boundaries of some unit, typi-
cally the two-dimensional or three-dimensional
spatial boundaries of some part of a layer, fea-
ture, excavation unit, site, or survey unit. We
will return to this aspect later in the chapter in
connection with computer databases. The
boundaries can be non-spatial, however, as when
we group together artifacts of the 17th century
(chronological boundaries). It is also possible
forthe boundaries to lie in some intrinsic dimen-
sions. An example of this is grouping archaeo-
logical sites by partitioning a site-size
distribution. In this case, as with interval widths
in histograms, the arbitrary selection of bound-
ary placement can have a significant effect
(above, p. 26 and Whallon, 1987:144-47). Con-
tainment by the boundaries is anecessary condi-
tion for membership in the group, but not a
sufficient one: many items included within the
boundaries may be excluded from the group for
reasons ranging from being suspected intrusive
artifacts to being unhelpful for the purposes of
the typology (cf. Adams and Adams, 1991:100-
102). As with any type of grouping, the descrip-
tion of groups can change if new information is
added. For example, we may continue to exca-
vatein the same context and find more artifacts,
decide that two groups from adjacent excava-
tion squares should be considered as a single
group, or add new sites to a site-size group by
further survey. We often try to place boundaries
where we perceive “natural” discontinuities,
such as a change in color or texture of sediment,
but the exact placement of boundaries can be
somewhat uncertain. In some cases, the bounda-
ries can be described with reasonably small
error. In others, however, the boundaries can be
rather fuzzy (Adams and Adams, 1991:71-72),
tending to lead us into the nextclass of grouping
method.

Central-Tendency Methods

This class of grouping methods places less em-
phasis on boundaries of groups and more on
central tendency, and is typically based on in-
trinsic attributes of group members rather than
contextual (or extrinsic) ones. It includes a large
range of variation, from intuitive groupings
based on an archaeologist’s mental image of a
“type” through more explicit statistical descrip-
tions of typical group members to complex com-
puter-generated groupings based on distance
measures. In some cases it may involve keeping
a collection of “ideal” type members — a type
collection — with which artifacts can be com-
pared. Type collections are particularly com-
mon for assigning pottery sherds to fabric types,
in part because the detailed analysis of pottery
fabrics is time-consuming and requires special
training (see chapter 8), while pottery collec-
tions are often much too large to allow such
detail. The more formal central-tendency meth-
ods have features that make them seem very
similar to classifications: there can (but need
not) be pre-arranged (one is almost tempted to
say “abstract”) types to which new artifacts are
matched much as we would match them with
the definitions of categories in anominal scale of
measurement. There are, however, important
differences that make it appropriate to classify
these methods, at least formally, among group-
ing rather than classification.

The characteristics of central-tendencymeth-
ods that determine their membership in a class
of grouping methods include, mostimportantly,
the way types are “defined.” Unlike the defini-
tions in true classification, the criteria for assign-
ment to one of these types are not both necessary
and sufficient for membership in the class. They
are only tendencies. A certain type of pottery
may usually, but not always, have a red slip; it
may tend to have an inverted neck, but with
exceptions; it may typically have a rim diameter
of about 15 cm, but some examples could be less
than 12 or more than 20 cm in diameter; and so
on. In part these rather fuzzy “definitions” are
forced on us by the nature of the material, which
is usually so fragmentary that we cannot expect
all the attributes that might help define a class
even to be observable. Yet, in part, it has to do
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with our uncertainty about where boundaries
lie and our willingness to modify our typologies
as new specimens turn up. The “definitions” are
really descriptions, sometimes explicitly statis-
tical descriptions, that summarize the character-
istics of the most “typical” exemplars of the type
while recognizing that members vary in each of
their attributes. It is tempting to treat the type
description as a Platonic ideal, or a prehistoric
culture’s “mental template,” to which each real
artifact is an approximation. Really it is just a
statistical summary, like a multidimensional
mean and standard deviation or mode and range.

The central-tendency methods have other
characteristics that plant them squarely in the
realm of grouping methods. Even when they are
structured to appear as pre-arranged systems,
they begin with actual things, such as bone
tools, ceramic pots, or archaeological sites, that
provide the initial exemplars to which we will
compare later finds. Consequently, the types are
not abstract classes, and you would never have
a type for which you would expect no members.
Further, while class definitions are immutable
within a given classification, type descriptions
are constantly refined as new exemplars are
found and examined. For example, the type
whose description includes “usually red-
slipped”” may come to be described as “usually
red- or black-slipped” as more and more black-
slipped exemplars are found or, alternatively,
be split into two groups with different slips.

Statistical types and type-variety typologies:
Many of the typologies that archaeologists have
used for a long time are based on descriptions,
sometimes statistical ones, of the modal charac-
teristics of the type, with the expectation that
actual examples will vary somewhat around
this mode. In some cases, as with pottery fabrics,
we may keep a collection exhibiting the range of
variation we would expect within each type,
and use it to match up un-typed specimens. In
other cases, we may just publish descriptions of
each ware type (e.g., Goren, 1992; Kenyon and
Holland, 1982). We might also use a set of pic-
tures exhibiting the modal shape for each type
and the range of expected variation in shape to
assign artifacts to morphological types. In much
Old World archaeology, forexample, large num-

bers of inked drawings of pottery profiles often
serve to show exemplars of these modal types,
and archaeologists routinely refer to the draw-
ings published by their colleagues in their at-
tempt to group their own artifacts with others’
types, and also to group sites with similar as-
semblages (contra Adams and Adams, 1991:237).
Unfortunately the “rules” for using these illus-
trated types and information on variability
around the mode are usually missing, and ad-
mittedly much ink has been used to illustrate
every single “diagnostic” sherd in some cases.
Alternatively, we would match the statistical
summaries for the type with the measurements
recorded for individual specimens. Most of the
attributes emphasized in these typologies are
ones we can measure on an ordinal, interval, or
ratio scale, simply because these are the scalesin
which we can most easily express central ten-
dency and dispersion (see chapter 2). Quite of-
ten these typologies are hierarchical, with some
types considered more similar to one another
than they are to other types at a higher level in
the hierarchy.

Some cases of grouping entities by the modes
in amultimodal distribution arguably belong to
this group. For example, when there is a clearly
multimodal distribution of site sizes, we might,
failing better evidence, have grounds for label-
ling sites falling close to each mode as “‘camps,”
“farms,” “hamlets,” “villages,” and so on.

Polythetic descriptions: David Clarke
(1968:189-90) introduced to archaeological sys-
tematics the concept of “polythetic definition,”
to describe a kind of grouping that archaeolo-
gists had been doing for many decades. The key
feature of polythetic descriptions is that they are
based on a set of conditions or attributes, none of
which is necessary or sufficient for attribution of
any item to the group. Instead, we only expect
each member ofthe group to share a large number
ofthese attributes and each attribute to be shared
by a large number of the group’s members.

A classic early use of what we would now
call polytheticdescriptions is V. Gordon Childe’s
definition of an archaeological ‘“culture”. He
formally defined it as a complex or assemblage
of regularly associated types thatillustrate more
than one aspect of human behavior (Childe,
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1929:v-vi; 1956:16, 33). Yethe recognized that it
was unrealistic to expect every archaeological
site of a given culture to exhibitall theimportant
characteristics of that culture (Childe, 1956:33).
For example, you might expect to find certain
kinds of artifacts at a farming village, such as
grinding stones, that you would not expect to
find at other kinds of sites, such as hunting
camps, used by the same people. Childe viewed
an archaeological culture as a whole that exhib-
ited a constellation of attributes, only some of
which would appear at each individual site, but
each of which would occur at at least two sites
belonging to that culture and be represented by
more than one example.

Polythetic groupings are conceptually simi-
lar to the statistical types just mentioned in that
the description of each type, with respect to a
numberofattributes,isratherflexible. The main
difference is that polythetic typologies use at-
tributes measured on a nominal scale, so that we
can record each attribute as either present or
absent. Members of the same group are similar
to one another in the sense, not that they vary
only slightly from the mode or mean in each
attribute, but that they are identical (on some
nominal scale) with respect to some large but
unspecified number of attributes, while differ-
ing in others. Even when attributes were meas-
ured on an ordinal orratio scale, they arereduced
to a nominal (often dichotomous) scale for the
purposes of polythetic definition. Polythetic
grouping involves a clustering of nominal at-
tributes; statistical grouping involves a cluster-
ing of the attribute’s values, as measured on at
least an ordinal scale, around some mode.

One of the problems with polythetic de-
scription is simply an exaggerated version of a
problem common to most grouping methods.
Because the criteria for membership in a group,
unlike the definitions in a classification, are
quite flexible, there is no way to predictin what
way any two members of a group may be similar
or different. For example, items A, B, and C
could constitute a group with attributes abcdef,
cdefgh, and efghijf, each sharing two-thirds of its
attributes with at least one other member of the
group, and the attributes ¢, d, ¢, f;, g, and h
occurring in two-thirds of the group’s members.

Yetthe ways in which A is similar to B are quite
different from the ways in which B is similar to
C, and A and C have only two attributes in
common.

In spite of this problem, many archaeolo-
gists would argue that polythetic descriptions
come very close to the kinds of type “defini-
tions” that archaeologists routinely use, both
consciously and unconsciously (Adams and
Adams, 1991:226; Williams et al., 1973).

Distance methods: The class of grouping meth-
ods commonly called “clustering” or “cluster
analysis” in the literature, and which Sokal and
Sneath (1963) call “numerical taxonomy,” has as
its distinguishing feature the grouping of items
by “distance.” In this case, distance refers to
dissimilarities between items in a multi-dimen-
sional space, rather than distances in the every-
day geometrical sense. Central tendency foreach
group is achieved by finding the solution that
minimizes the “distances” between pairs of
group members. In essence, these methods are
mathematical attempts to capture the kind of
within-group similarity found in the intuitive
and statistical variants of the statistical/type-
variety methods and in polythetic descriptions.
Common sub-classes of distance-based cluster-
inginclude hierarchical clustering, optimal par-
titioning (including the k-means technique),
density seeking, and multidimensional scaling
(Aldenderfer and Blashfield, 1984; Everitt, 1974;
Sokal and Sneath, 1963). These involve math-
ematical operations well beyond the scope of
this book, and that we would never carry out
manually, but hierarchical clustering in its sim-
plest form serves as an illustration of their basic
principles.

The essence of hierarchical clustering is that
a set of objects or other phenomena are com-
pared with respect to a large number of at-
tributes, and those that are most similar to one
another are grouped together, while very dis-
similar ones are put into different groups. Such
comparisons are only practical with the use of
computers, and the design of the computer da-
tabase is critical to the result (see below). The
product of hierarchical clustering is presented
as a tree-like and hierarchical diagram, thus
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lending superficial similarity to taxonomic clas-
sifications. Here, however, we start with real or
imagined objects, rather than class definitions
oraprogramme of hierarchical distinctions, and
the grouping of items within “branches” of the
tree is based on the relative distances (or dis-
similarities) between them.

The following description of procedures is
simply intended to give an idea of how a very
simple form of hierarchical clustering works,
not to encourage you to attempt it manually. It
is worthwhile to read throughit, butnotto focus
too much on methodological details. More de-
tailed discussion can be found in Shennan
(1988:190-240).

Typically, hierarchical clustering begins with
a long list of attributes measured on a dichoto-
mous scale, such as “present”/“absent” (table
3.1). Items are compared by means of a coeffi-
cient of similarity or dissimilarity, such as the
ratio of the number of “agreements” between
each pair of items to the total number of at-
tributes on which they were compared. For ex-
ample, we might compare ceramic rim sherds
with the list of attributes in table 3.1 and, foreach
sherd, score a “1” if the attribute is present on the
sherd and “0” if it is not. If two sherds are both
scored “1” on 15 attributes, both scored “0” on
another 15, but show different scores on another
70 attributes, we would calculate a similarity
coefficient of ([15 + 15)/[15+15+70]) = 0.3. Hav-
ing done this for a number of sherds, we can
then construct a matrix with the artifact num-
bers arranged along two axes (table 3.2). Each
cell in the matrix can be used to record the
similarity coefficientforthepairofsherdsrepre-
sented by its combination of row and column
but, because the matrix is diagonally symmetri-
cal, we actually only have to compute this coef-
ficient for the cells in one half and, of course, the
cells in the diagonal (where the cells show the
comparison of eachitem with itself), the similar-
ity is always a perfect 1.0 or 100%.

Another way to look at the result is to use
dissimilarity coefficients — these are simply the
difference between 1 and the similarity coeffi-
cient— because the degree of dissimilarity is a
kind of distance between items. In fact, with a
small number of items we might be able to plot

the items as points separated by these distances
but, in a typical case, it would not be possible to
represent all the points on a piece of paper
because the “space” in which the points lie is
multi-dimensional.

Where we go after calculating a similarity
(ordissimilarity) coefficient depends on exactly
what criterion for grouping we use. All the
methods are based generally on the principle
that pairs of items with high similarity coeffi-
cients should be grouped together, but things
can be more complicated when we try to group
more than two items. What if we already have a
group consisting of two very similar clay pipes,
for example, and want to add a third that has a
high similarity coefficient with one member of
the pair, but not the other?

The simplest, although not very practical,
method is called single-link clustering, an ag-
glomerative, hierarchical type of numerical clus-
tering that serves to demonstrate how the
similarity coefficients can result in groups. We
begin by searching the matrix for the highest
similarity coefficients that are not on the diago-
nal. In table 3.2, this would be 0.95 for the pair (5,
6). Wethen groupartifacts 5 and 6 together atthe
similarity level of 0.95, as in figure 3.4a. We then
search for the next-highest values and find a pair
with a coefficient of 0.90, (1, 2), so we add these
to the graph as in figure 3.4b. The next-highest
coefficient is 0.85 for the pair (2, 3), but should
we add sherd 3 to the group already containing
sherds 1 and 2? In single-link cluster analysis,
we only have to find a high degree of similarity
with at least one member of an existing group
for an item to qualify for membership in that
group. So we do, even though the pair (1, 3) has
a similarity coefficient of only 0.80, and sherd 3
is added to the graphin figure 3.4c ata similarity
level of 0.85. We continue the process until all
items are linked up at some level of similarity,
and the resultis a tree-like graph, ordendrogram,
that represents a hierarchy of similarity. We
then arbitrarily decide what level of similarity
we will use as the “cut-off” for distinguishing
groups, represented by the horizontal, dashed
line on the graph in figure 3.4f, or decide on the
basis of disjunctions orjumps in similarity how
many groups we should have and where the
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breaks should be. Then the branch segments of
the dendrogram above the cut-off (representing
the highestlevels of similarity) or the disjunctions
are placed in the same group. In figure 3.4f, we
have selected a similarity level of 0.75 as our cut-
off and, as the dashed line intersects three
branches, three groups result, with artifacts 1,2
and 3 in one group, 5, 6 and 7 in another, and 4
standing on its own.

As with polythetic descriptions, single-link
clustering produces groups whose members
shared characteristics, and dissimilarities, are
individually quite unpredictable. Justbecause a
particular item is sufficiently similar to, in this
case, a single member of an existing group to
qualify for membership in that group, does not
mean that it is very similar at all to other mem-
bers of the group. To return to the hypothetical
artifacts, A, B, and C, that illustrated this prob-
lem in polythetic descriptions, in single-link
clustering it can be quite exaggerated because it
is based on sharing attributes with only one
other member of the group. For example, we
could add a fourth member, D, with the at-
tributes ghijk/; this would also share two-thirds
of its attributes with one other member, C, but
would share absolutely no attributes with A and
be only one-third similar to B. This problem is
sometimes known as chaining, because you can
have a series of items linked by similarity, but
items at either end of the chain that are not
similar at all.

This is why analysts turned to other agglom-
erative methods, such as , double-link, total-
link, or average-link cluster analysis, or “Ward’s
method.” These versions of the method are more
restrictive, requiring that each new member of a
group have at least some minimum level of
similarity with at least two, or with all previous
members of the group, or that membership is
based on the average of all the similarity coeffi-
cients of all possible pairs in the group. Ward’s
method agglomerates clusters in such a way as
tominimize the increase in intra-group variabil-
ity (or “sum of squares”) when items are added
to the group. The extra restrictions make it less
likely that an added item will have nothing in
common with some other members of that group,
but do not guarantee that any two members will
be greatly similar to each other, either. The

Table 3.1. Example of a matrix to record the
presence (Y) and absence (N) of various attributes

on six pottery sherds
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Table 3.2. Example of a similarity matrix for seven
artifacts (after Orton, 1980:48-49). The rectangle
marks the highest similarity score

Artifact Mumber
1 2 3 4 5 [ 7

1.0 90 B0 BS540 40 a0

ha =

10 85 B0 40 0 A0
3 10 50 25 25 20
4 1.0 ™ 60 55
5 10 80
6 10 80

1.0

calculations for these methods are more tedious
than for single-link clustering, but modern com-
puter software makes it easy to carry out this
type of grouping.

One of the characteristics of numerical clus-
tering, as with polythetic sets, is that, although
each member of a group has a certain level of
similarity with other members of the group, the
way it which it is similar to one member can be
completely different from the way it is similar to
another. To return once again to the primitive
example above, item B is similar to A inthatboth
have attributes cdef, but B is similar to C by
sharing, not cdef, but efgh, and to D only in that
both have gh. In other words, although all mem-
bers of the group share a certain number of
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Figure 3.4. Steps in single-link cluster grouping using the data in table 3.2 (after Orton, 1980:48-49).
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characteristics with other members of the group,
they are notnecessarily the same characteristics
in each case. There is no way to predict in what
ways any two members will be similar, although
in groups formed by Ward’s method or average-
link clustering this will be less of a problem.
Consequently, the groups formed by numerical
clustering also have polythetic descriptions and
constitute polythetic sets, even though different
methods were used to form them.

The most serious objections to average-link
clustering and similar hierarchical agglomera-
tive methods is that a small change to one of the
coefficients could result in a substantial change
to the whole dendrogram, and not just to one or
two branches (Jardine et al., 1967). If there is
some uncertainty in the calculation of the coef-
ficients (resulting from missing data and the
selection of attributes), this is an undesirable
characteristic, making many archaeologists re-
luctant to use numerical clustering for anything
butexploratory analysis. Others, however, note
that many objections to clustering are really
objections to poor applications of it, and often
specifically topoorchoices of clustering method
(Aldenderfer, 1987:24).

A common problem you should try to avoid
ifyou donumerical clustering goes rightback to
your definition of attributes. You should define
these very carefully and try to avoid redun-
dancy and interdependence of attributes (Read,
1982). For example, if one of your attributes is
“collar present” and another is “collar absent,”
you are really measuring the same thing twice
and the two attributes are not independent of
one another. A “Y” on one of these attributes
must be matched by a “N” on the other. Simi-
larly, if one of your attributes is “collar” and
another is “punctates on collar,” a “N”” for the
former must always be accompanied by a “N”
on the latter, so they are not independent. This is
a problem you can find in table 3.1. You should
also try to avoid very rare attributes that would
resultin a score of “N” in almostevery case. This
can sometimes lead to artifacts being grouped
together just because they all get “N” scores for
lacking the same very unusual features. Those
who have applied cluster analysis to character-
ize pottery by their chemical compositions have
recognized the problem of highly correlated

data for a long time, but it does not always get
sufficient attention in other applications.

As a result of problems with this kind of
cluster analysis, archaeologists interested in
grouping artifacts turned to other methods that
were not based only on pairs of items, and
Hodson (1970) introduced the k-means tech-
nique to archaeology. This method, also known
as “locational clustering” (Kintigh 1990) parti-
tions the items into a specified number (K) of
clustersin such away as to minimize the squared
distance (dissimilarity) between each item and
the centre of its group in “space.” As ithappens,
two items that are members of the same group
when there are, say, three groups (k=3) mightbe
in different groups when there are four (k=4).
You must decide what value of k seems reason-
able, or repeat the method with different values
of K. Then you can create a graph that shows
how the relative error of fit (the average squared
distance of the objects from the group centres as
a percentage of their average squared distances
from the centre of all the objects) is affected by
increasing the number of groups, k (figure 3.5).
The “best” number of groups is usually where
we find a sharp bend, or “elbow,” in the graph,
indicating that there has been a marked im-
provement in fit over lower values of K, but that
increasing K further results in relatively little
improvement in fit.

Multidimensional scaling is another alter-
native among the distance-based methods. It
moreliterally takesadvantage of the factthat we
can treat the dissimilarities between artifacts as
distancesin a multidimensional space. Unfortu-
nately, we cannot accurately illustrate these dis-
tances by showing points on a map-like graph,
because maps are only two-dimensional. But if
we are willing to accept some distortion, much
asweroutinely distort Earth’s geography tofita
spherical surface onto two-dimensional maps,
we can try to illustrate these distances at least
crudely. For example, we might allow a distor-
tion so long as it correctly represented the rank-
order of the distances (Orton, 1980: 55).
Sometimes we must distort the map still further
to make points representing the artifacts fiton it
(figure 3.6). The technique requires use of a
computer, even to group modest numbers of
artifacts.
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Figure 3.5. Plotting the error of fit in the k-means technique to find the best number of clusters. At left the
elbow occurs at 2 clusters (k=2), while at right there are two elbows and, arguably, the best number of

elbows is 3 (after Orton, 1980:53).

Generally speaking, the mathematical dis-
tance methods for grouping items have disap-
pointed archaeologists who had hoped that they
would provide an “objective” systematics. The
results are far too sensitive to our initial deci-
sions about what attributes to measure, how
many to measure and how to measure them, to
small errors in measurement, and to small
changes in the population of items to which we
apply the methods, forus to yield the consistent
and “objective” results that some archaeologists
expected. However, that does not mean that
they are of no use at all, and they continue to be
used, for example, in chemical characterization
of artifacts, where there is greater agreement
over the selection of attributes and identifica-
tion of those that may be correlated.

A number of archaeological and non-ar-
chaeological works (e.g., Aldenderfer and
Blashfield, 1984; Baxter, 1994) provide good in-
troductions to other numerical clustering meth-
ods that are not as familiar to most archaeologists
but in some cases deserve serious archaeologi-
cal attention. Some are based, for example, on
partitioning or density searching rather than
hierarchical agglomeration or division, yet they
share the characteristic that individual objects
are treated as points in amultidimensional space,
and the idea is to form groups in that space such
that distances are minimized among group mem-
bers, and are longer between members of differ-
ent groups.

Attribute Association

The other major class of grouping methods
Dunnell (1971:9598) calls statistical clustering,
but we will include it among attribute association
to avoid, T hope, confusion with numerical clus-
tering.

In attribute association, the key to the recog-
nition of groups is associations between at-
tributes. This is an extension of archaeologists’
intuitive feeling that an artifact “type” can be
defined or described by some recurring combi-
nation of attributes (as is the case with paradig-
matic classifications and polythetic sets). For
example, inclassical archaeology one basicmor-
phological type is the amphora, which has a
narrow neck, two handles, one on either side of
the neck, a body considerably wider than the
neck, tapering to a pointed base or a knob at the
bottom. We could define an amphora
paradigmatically by acombination of attributes
based on neck/body ratios, number of handles
and so on. Attribute clustering is instead based
on the idea that if we took a collection of Greek
pottery we would find a large number of pots
that showed a particular set of statistical rela-
tionships between neck width and body width,
neck height and total height, and other sets of
attributes, and that all the pots in this group
wouldbe amphorae. We expecttheretobeenough
redundancy in the attributes of a type that we
could use our knowledge of some of the at-
tributes to predict the values of other attributes.
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Figure 3.6. Two-dimensional “map” to illustrate the
dissimilarities (distances) between 21 artifacts
(after Hodson et al., 1966).

Among the common informal applications
of this approachis the attempt to group artifacts
by associations between concentrations of ele-
ments or isotopes in their raw materials by the
visual inspection of graphs. Here we look for
distinct clusters in the ratios between various
elements or isotopes that appear to be “finger-
prints” for a particular source of raw materials.
Theclassicexample of this approach, asin figure
3.7, was the fingerprinting of obsidian sources,
the first step both in studies of prehistoric ex-
change of obsidian and in obsidian hydration
dating (Dixon et al., 1968). What makes the
clusters important for our purposes is that sam-
ples taken from known sources consistently fall
within distinct clusters or show similar ratios. If
we have done a good job of sampling all possible
sources, and if these sources are fairly homoge-
neous in their trace-element compositions, we
can then be fairly confident that archaeological
samples that fall into the same cluster as one of
the “known” samples also had the same source.
In other words, we can predict the value of an
extrinsic attribute (source of material) as long as
we know the values of the other interrelated,
intrinsic attributes. As a result of this kind of
clustering, archaeologists have had consider-
able success atidentifying the mostlikely sources
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Figure 3.7. Relative concentrations of barium and
zirconium in obsidians known to come from Lipari,
Pontellaria, Melos, and Giali help to define clusters
that can then be used to infer the sources of
archaeological obsidians in the Mediterranean
region (after Dixon et al., 1968).

for artifacts made of obsidian, silver, lead, bronze,
pottery, and other materials.

Examples such as these demonstrate what
the results of attribute association have in com-
mon with the central-tendency methods. It is
often true that the distances between points
grouped together in the “space” of the graph, as
in figure 3.7, are small relative to the distances
between points in different groups. The differ-
ence lies in the way we arrive at the groupings.
In the central-tendency methods we concen-
trated on those distances (or on their opposites,
similarities), while in attribute association we
instead concentrate on the interplay between
dimension. Attribute association, like paradig-
matic classification, is dimensional. Having used
this interplay in an exploratory way, however,
many archaeometrists attempting to group
artifacts by their trace-element chemistry would
go on to employ either one of the hierarchical
cluster methods already mentioned or one of the
following methods.

Principal Components Analysis (PCA): This is
amore formal multivariate technique based on
attribute associations, which works well with
data, such as the chemical compositions of pot-
tery fabrics, that tend to show a lot of
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intercorrelation or covariance. Its principle is to
transform the data linearly and orthogonally
into a set of new dimensions, or components,
such that these are uncorrelated and that the
first component’s variance is maximized, the
second component has the second-highest pos-
sible variance, subjecttobeinguncorrelated with
the firstcomponent, and so on. This canhave the
result that the first few components account for
most of the variance in the data, and these canbe
plotted on graphs much like the original
scatterplot. Because the axes of the graph are
now oriented along the axes of maximum vari-
ance, it is sometimes the case that “natural”
groupings in the data are better separated
(Baxter, 1994:48-99; Shennan, 1988:245-70). Be-
cause it is more often used in seriation than in
grouping, we will return to this method in chap-
ter 14.

Correspondence Analysis (CA): Although
sometimes described as a technique competing
with PCA, correspondence analysis is in fact a
kind of PCA that is appropriate for non-nega-
tive, discrete data, such as artifact counts (see
Baxter1994:100-107; Shennan 1988: 283-86). The
method is quite popular among archaeologists
in continental Europe, but only beginning to
make inroads in Anglo-American archaeology.

Factor Analysis: This is another multivariate
technique that works well on data tables con-
taining considerable intercorrelation or
covariance (Lawley and Maxwell, 1971). Like
PCA, factor analysis expresses the data by new
dimensions but, unlike PCA or CA, it does so by
reducing the large number of dimensions of
variationbetween the artifacts to a few compos-
ite dimensions, or “factors,” that are something
like summaries of several covarying or corre-
lated attributes at once (for detailed discusion,
see Shennan, 1988:271-80). When two dimen-
sions are highly correlated (either negatively or
positively), this implies the possibility that they
are merely aspects of some other dimension. For
example, if length and width of a group of
artifacts are positively correlated, this implies
that the artifacts differ from one another in size,
butnotmuch in shape. Length and width, in that
case, are aspects of the component, size. In other
cases, the exact nature of the component may be
less obvious with some dimensions, perhaps,

negatively correlated with others in the same
component. The chemical compositions of arti-
facts such as pottery can be expected to show
correlations between some elements simply be-
cause those elements combine in a constant ratio
in one of the minerals the pottery contains. In
addition, when, as with chemical analyses, the
data consist of proportions (amounts in percent
or parts per million), increase of one element is
necessarily associated with a decrease in an-
other. None of the data, in this sense, are inde-
pendent of one another, and this is another
reason to expect correlations in the data.

Configurationist typology: Some archaeolo-
gists have advocated using a particular version
of attribute association, with data at the nomi-
nal, or even dichotomous, scale, in the hope of
discovering “natural” types. The founding pro-
ponent of this approach is Albert Spaulding ,
who argues that “a pronounced association of
two attributes is the minimum requirement” to
demonstrate that a type exists (1953:306). Here a
typeis “a group of artifacts exhibiting a consist-
ent assemblage of attributes whose combined
properties give a characteristic pattern”
(Spaulding, 1953:305).

This method begins with a paradigmatic
classification, often with only dichotomous scales
in each dimension, and in a sense itis a test of the
paradigm. Following classification of a collec-
tion of artifacts from a single assemblage with
this paradigm, one proceeds to analyze the re-
sulting groups (members of each class) for sta-
tistically significant associations between
attributes. While attributes may be arbitrary in
the sense that they are selected from an infinity
of possibilities, adherents of the Spaulding
method argue that statistical tests will show
whether “valid types” exist in the classification
(Watson et al., 1971:126-132). According to this
view, a type only exists if there is a non-random
relationship between those attributes. This
means that, if we know the value of an artifact’s
measurement in one dimension, we can predict
its value in another dimension.

For example, in figure 3.8, the paradigm at
top, with the number of sherds that fall into each
class shown, has no non-random relationship
between the two dimensions. If we know that a
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particular sherd is shell-tempered, we cannot
predict whether or not it has black-on-red deco-
ration with much better than a 50% success rate;
in other words, we can only guess, and would
conclude that the paradigm provides no “valid
types.” In the lower paradigm, the class mem-
berships are quite different. Here we could pre-
dict, with a high degree of success, that any
shell-tempered sherd will have black-on-red
decoration, and that any sherd that lacks black-
on-red decoration will probably not be shell-
tempered. “Black-on-red, shell-tempered,” in
this case, is a valid type, and the typology is
verified. The statistical test that can be used to
test the validity of the paradigm is the chi-
square test, but we will not pursue that here (see
Drennan, 1996:187-92; Shennan, 1988:65-76).

Those who follow Spaulding’s approach do
not accept that archaeological typologies are
only arbitrary classifications or abitrary sets of
groups, designed for archaeologists’ own pur-
poses. Instead, they assert that systematics is a
“process of discovery of combinations of at-
tributes ... not an arbitrary procedure of the
classifier” (Spaulding, 1953: 305), and that the
statistical approach just described tests the va-
lidity of these types. Some archaeologists have
interpreted this as meaning that the method
discovers “emic” categories of the prehistoric
makers and users of the artifacts. Emic catego-
ries are ones that native (in this case prehistoric)
informants would accept as valid or true, as
opposed to etic categories, constructed by the
(outside) observer, that can be validated ana-
lytically or scientifically. The terms (Pike, 1954)
come from the linguistic distinction between
phonemics (a native speaker’s perception of
distinct sounds) and phonetics (a linguist’s sys-
tem of distinct sounds). As attribute association
is itself a scientific method constructed by out-
side analysts without information from native
informants, however, its products are actually
etic, even in the somewhat unlikely event that
they approximate categories that a prehistoric
person would recognize.

We can highlight some problems with this
approachby turning tointerval scales instead of
the nominal ones that its users favor. Spaulding
was looking for association between dimen-

sions. If he encountered data with a good corre-
lation, as in figure 3.9a, presumably he would
conclude that there were two valid types, long,
wide projectiles and short, narrow ones. The
data in figure 3.9b would lead him to the same
conclusion, but here, unlike the previous case,
we at least see two distinct clusters, much as we
did with the data on trace elements in obsidian
(figure 3.7), and it is relatively easy to decide
how to partition the data. In figure 3.9c, how-
ever, we have two distinct clusters again, but
with data reduced to nominal scale, as usually
happens, we would not recognize any types,
because there are approximately equal numbers
of observations in each quarter of the graph.
Even at the interval scale, the correlation coeffi-
cient for this case would not be very high be-
cause there are two distinct relationships
between the two dimensions that would be
“blended” by asimple correlation. Furthermore,
itis questionable if even the data in figures 3.9a
and b make good types. What we may have is a
good example of autocorrelation. Length and
width are correlated not necessarily because
makers of the projectile points thought of the
particular length and width combination as a
distinct kind of projectile point, but because
these are really “sub-dimensions” of a third
dimension, size, as in Factor Analysis. So there
are big projectiles and small ones, and they all
have about the same width/length ratio, but
there is nothing in this correlation to lead us to
define two types — long-wide and short-nar-
row — rather than one, as there is a contiuum
from small to large. Not all pairs of attributes
that show good correlations result in useful, or
even common-sensical, types.

In addition, some typologies that are intui-
tively appealing and have explanatory utility
fail to show the kinds of associations that the
Spaulding approach requires. Hodson (1982)
draws our attention to a cross-culturally useful
classification of human social roles that the
Spaulding approach would not verify. Here, a
fairly typical sample of people, and a paradigm
with the dimensions of sex and age, would lead
to their distribution among the categories, “men”,
“women,” “girls,” and “boys” in a way that is
not statistically distinguishable from a random
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distribution. Consequently, we would have to
conclude that our everyday classification of peo-
ple by these four categories is not a valid typol-
ogy and does not reflect the emic categories of
Western cultures. Only if our sample of people
came from a context in which such issues as
sexual division of labour and child-rearing per-
haps gave us a rather unusual distribution of
peoplewouldwefind any statistically verifiable
associations between sex and age. We will re-
turn to this issue of “natural” and arbitrary
types in the next section.

Grouping methods, with their more flexible
yet less precise criteria for membership, often
serve either as useful exploratory methods to
help us construct the rules for a classification, or
toprovide amore practical alternative to formal
classification (cf. Adams and Adams, 1991). Most
archaeologist’s work on systematics is iterative,
or dialectical. That s, there is a back-and-forth
interplay between conceptual categories or mo-
dal types and archaeological data, as units are
abandoned or refined. We might start out with
a number of groups of artifacts, perhaps initially
based on stratigraphic context, and then try to
ascertain what attributes most members of each
group share, and that seem to distinguish them
from other groups. We could subsequently use
patterns in these attributes to construct the rules
for a classification that we can apply to other
artifacts that were not members of the original
groups. It is possible and even likely that, dur-
ing this process, we will find some members of
some groups that lack characteristics that most
ofthe other group members share. Consequently
theseitems donotqualify formembership in the
same class as other group members. This is an
important aspect of the differences between
grouping and classification. Alternatively, we
might eschew formal classification in favor of
more carefully described groups. It is even nec-
essary to admit that some typologies defy the
classification just presented by combining clas-
sification principles at higher levels in a hierar-
chy with grouping principles (such as central
tendency) at lower levels. In some cases, how-
ever, we require a nominal scale thatis as unam-
biguous as possible and that is not altered by
new observations, as in defining fields in
databases, when only classification principles
will suffice.
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Figure 3.8. Paradigmatic classification with the
same dimensions as in figure 3.2 but two different
sets of members. At top (after Watson et al.,
1971:128), there is no predictable relationship
between shell tempering and painted decoration.
At bottom, shell-tempered pots are more likely to
have black-on-red decoration, leading to the
definition of two “types” (circled).

Types or Classes?

In the last section, I began to use the terms
“typology” and “type” without distinguishing
them from “classification” or “grouping” and
“class” or “group.” Indeed, that is what most
archaeologists do. Here, however, I would like
to offer a narrower definition of typology that,
perhaps, gets us out of the dilemma of what
makes a “valid type.” It differs from other defi-
nitions in the archaeological literature (e.g.,
Adams and Adams, 1991:91).

If classification and grouping are arbitrary,
how do we decide on the definition of useful
types for an archaeological systematics?

For many years some archaeologists have
assumed or maintained that archaeological types
have inherent meaning that we need only dis-
cover. This is the position of configurationist
typologists, some of those employing statistical
clustering methods, and others. V. Gordon
Childe (1956:9), for example, claimed that “types
are just creations of individuals that have been
approved, adopted, and objectified by some
society,” expressing a normative definition of
type that was common at the time, and associ-
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Figure 3.9. Three different relationships
between the length and width of fictitious
projectile points, with dashed lines dividing the
field up into four quarters analogous to the
cells in a paradigm with dichotomous
dimensions.

ated types with a cultural group, such as ethnic
group. Even then, however, there were authors
who maintained that types were abstractions that
we, as archaeologists, constructed for our own
purposes, such as chronology or determining func-
tion (e.g., Steward, 1954). Some archaeologists as-
sume that there is inherent or natural meaning in
the types, but still focus on particular kinds of
meaning. Forexample, Read (1974:217) argues that
the data should be partitioned in such a way as to
group artifacts that were used in particular activi-
ties. Atpresentthereislittle agreementabout what
consititues a type or typology.

I propose that a typology should be defined as
a classification or grouping that has explanatory (or
meaningful) relationships with attributes that are not
intrinsic to the classification or grouping itself. A typol-
ogy is an explanationin Gardin’s (1980) sense of the
word, and not merely the structure for a compila-
tion. To create one archaeologists use relevant ex-
trinsic attributes of spatial, chronological, social,
economic, functional, and symbolic context (cf.
Adams and Adams, 1991: 175-76). Non-random
associations with one or more of these dimensions
tend to verify the typology. My usage of “typol-
ogy” is reminiscent of Adams and Adams’
(1991:157-68) recognition that archaeological
typologies are used for particular purposes, such as
chronology, and that the classes have relevance
and meaning with respect to those purposes
(1991:35-38). Howeyver, they use the term, “typol-
ogy,” to refer to the sorting of artifacts into classes
(1991:47), or the partitioning of artifacts into cat-
egories that are mutually exclusive and non-hierar-
chical (1991:78-80; 91-92, 214). That is not the usage
here. In fact, theirusage resembles measurement of
artifacts with anominal scale.

What makes a typology explanatory is that
there are non-random associations, not between
the intrinsic attributes, but between its classes and
one ormore extrinsic attributes thathave to do with
context.

When we say that a type “works,” or serves a
purpose, wenearly always mean that it co-occurs
or co-varies with something that is external to
itself. A pottery type is found only during a
certain time period, or a presumed ritual object is
found only in certain locations, or a tool type
only occurs in association with certain other tool
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types. The more consistently this is true, the

more clearly it indicates that there is

“something going on”; i.e. that there is an

inherent order in the data that has not simply

been imposed by us (Adams and Adams,

1991: 68).

For example, what makes the groupings in
figure 3.7useful is not any statistical association
between levels of barium and zirconium, but
that obsidians from the same source all show
very similar ratios of barium to zirconium, while
differing from obsidians from other sources in
this ratio. Thus there is a non-random associa-
tion between the barium/zirconium ratio and
the spatial context of the raw material source. If
the four clusters in figure 3.7 each contained a
mixture of obsidians from various sources, the
groupings would be useless because it would
not allow us to predict the sources of
unprovenienced obsidians. They would have
no meaning, or atleastnone that we have discov-
ered.

The same is true of the examples that
Spaulding (1953) and Watson et al. (1971; 1984)
cite. A statistical association between the intrin-
sic attributes of a collection of artifacts does not
verify a typology, but a statistical association
between the categories of a typology and the
spatial, chronological, social, functional, or ideo-
logical context of the categories’ members would
indicate that the typology was useful in our
attempt to construct explanations or discover
meaning. Even Spaulding hinted at, or at least
allowed, this when he recognized that
provenience could be considered an attribute
that might be relevant to type definition:

Thus a site might yield two kinds of vessels

[that] differed only in the presence or absence

of a single physical attribute, say a lip flange

on one. If nothing but physical [intrinsic]

properties were considered, bothkinds would

be included in one pottery type.... But if the

flanged lip appeared only on vessels found in

graves and the plain lip was confined to village
debris, it would be obvious that the potters
had in mind two types with different

functional connotations (Spaulding, 1953:311).

To gobackto the example in figure 3.8, if we
were to add a third dimension, but this time an
extrinsic one, we might conceivably obtain the
distribution in figure 3.10. Here we assume that

the collection is from two assemblages instead
of one, from stratigraphic layers called Stratum
I and Stratum II. The exact same distribution of
pottery as in the top of figure 3.8 now takes on
some interesting properties. Now almost all of
the black-on-red, shell-tempered sherds and
most of the sherds that are neither black-on-red
nor shell-tempered come from Stratum I, while
Stratum II shows the opposite pattern. Here 1
have constructed anextreme distribution to make
the point, but the important thing is that what
makes this particular classification a typology is
that it helps us identify change over time. If we
know the combination of tempering and deco-
ration on a sherd, we can predict with a high
degree of confidence to which stratum it be-
longs. We can explain the distribution of sherds
across the categoriesby referencetostratigraphic
context and, indirectly, time (cf. Adams and
Adams, 1991:179-80).

Other typologies are explanatory because
they show non-random associations between
groups or classes and the functions for which
tools were designed, the uses to which they
were put, the age, class, gender, or ethnicity of
their makers or users, the technology used to
make them, the mechanisms that led to their
deposition, and so on.

Archaeologists have recognized this for a
long time in their use of “types of types,” such as
morphological types, historical-index types,
functional types, and chronological types (e.g.,
Childe, 1956:14-15; Ford, 1954; Steward, 1954). It
is important to remember that the goal-oriented
construction of these typologies involves inten-
tional bias. Typologies that are designed to have
chronological usefulness, for example, stress
discontinuities over time and tend to omit or
gloss over attributes that might show continu-
ity.

Post-processual archaeologists, who are
critical of positivist, science-based approaches
to archaeology, have not spared typology. One
criticism pertains specifically to chronological
typologies, which, according to Shanks and Tilley
(1987:10-11), involve a “commodified time” that
obscures meaningful differences between things
and suggest that the mere assigning of artifacts
to some distant period is a satisfying explana-
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tioninitself. Certainly all systematics reduce the
complexity of the real world to a simple repre-
sentation, as treating every observation asunique
would make it impossible for us to compare
assemblages or even count things. The other
criticismisratherout-of-date. AlthoughIwould
classify chronological typologies as explanatory
only on the grounds that they have meaning in
terms of extrinsic dimensions, most modern
archaeologists would consider this only a first
step toward more interesting explanations, such
as explaining why social or economic circum-
stances changed over time. A more serious criti-
cism by the post-processualists focusses on those
assertions that it is possible to “discover” types
or discern their meaning. Rather than define
types that are assumed to reproduce the single,
emic, past meaning of objects, post-processualists
describe multi-dimensional variability, the
“type” varying with context. A single artifact
can have quite different meanings depending
on this context, a concept they call multivocality.
Forexample, aparticularartifactmayhavebeen
a “stylish serving bowl” to its first user 7000
years ago, a “gift” to its second user, “rubbish”
tothe sameuser some yearslater,“Yarmoukian,
herring-bone incised” to a modern archaeolo-
gist, a curiosity or even ash-tray to a modern
pot-hunter, an “art object” toa museum curator,
and an investment to an art dealer. Some archae-
ologists have exploited possible changes in
meaning to explain artifact distributions and the
introduction of new types (Bradley, 1984:70-73).
Few archaeologists today would maintain that
any singleartifact typologyisuniversally valid,
let alone that it captures the emic categories of
prehistoric makers or users of the artifacts. At
the same time, this does not mean that we can-
not construct typologies that are meaningful in
that they help us to recognize and understand
patterns in data, observed in the present, that
are relevant to the past.

Practical Considerations in Typology

Before moving on, it is also important to recog-
nize the practical dimension of archaeological
typology. Whether we use them to order data
about sites, artifacts, cultures, concepts, or fea-
tures, our typologies must be usable as well as
useful.
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Figure 3.10. The same distribution of pottery as in
figure 3.8 has a different significance when we add
the stratigraphic dimension.

Among the things we need to consider is
how easily we can recognize or measure the
attributes that are important in defining or de-
scribing types. Some attributes that would be
very useful are only rarely preserved on indi-
vidual (and often fragmentary) specimens. Of-
ten it is helpful to have attributes that are
regularly observable on almost every specimen,
to avoid overuse of the “unknown” category. In
addition, an attribute that would otherwise serve
our typology’s purpose quite well might be
quite useless if only a handful of highly-trained
specialists was capable of distinguishing it, or if
its measurement was very time-consuming or
expensive (cf. Adams and Adams, 1991:237).
For example, we are rarely able to do chemical
analyses on all our artifacts, making chemical
composition impractical as an attribute for any
but the smallest collections.
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Another consideration is redundancy. Even
if chemical analyses are possible, there would be
no point in conducting expensive or time-con-
suming analyses if the resulting data contrib-
uted nothing to the typology but confirm
groupings already well established by other
attributes (Adams and Adams, 1991:236). We
need to consider carefully how many attributes
are really necessary to define or describe a use-
ful set of types.

Further, itisimpractical toelaborate a typol-
ogy until there are thousands of types. Each type
should have a purpose (Adams and Adams,
1991:242). For classifications we may prefer sets
of categories to which we can expect to assign
reasonably large numbers of items, rather than
having many “empty” classes. However, our
initial exploration of the data often requires
making observations of many attributes, and
defining or describing many categories or types,
that later on turn out to contribute little to our
typology’s purpose. Because it is impossible to
determine this until after we have tested the
typology with real data, real archaeological
databases, as we will see later in the chapter,
often include categories that are partly conven-
tional. We use certain categories to record infor-
mationbecause other archaeologists have found
them useful for a particular purpose and we
may, or may not, find them so.

A further factor is distinctiveness, with re-
spectto the typology’s purpose. We prefer types
and attributes that allow us to be confident and
precise about their meaning. For example, for a
chronological typology we would prefer types
that only occurred over very short periods of
time to ones that changed little or not at all over
very long periods. Archaeologists sometimes
call the former types, “highly diagnostic” (or
even “type fossils™).

We might also prefer attributes whose
boundaries are reasonably sharp and reproduc-
ible, from observer to observer, to ones whose
boundaries are fuzzy or ambiguous as long as
those attributes are just as useful with respect to
our typology’s purpose. Hand (1997:99, 109-
115) would describe the desirable characteristic
of having easily distinguishable categories as
separability. Separabilityishighwhen categories

are perfectly separated, as happens when cer-
tain attributes are uniquely associated with one
class in a classification, as I define it in this
chapter. Grouping methods, because they are
polythetic, or have overlapping sets of attributes,
can result in low separability. Clearly it is desir-
able to select attributes that result in reasonably
high separability.

We will want to consider whether touse our
typology to sort all our evidence, or only some of
it. Projects that only have a few hundred arti-
facts to deal with may not need to worry about
this, but some archaeological excavations result
in tens of thousands of artifacts that could not
practically be sorted in great detail.

Still other considerations are consistency and
accuracy. Although we would like all the people
working in the 1aboratory to type material in the
same way, we must expect some error and in-
consistency. We need to decide just how much
error is tolerable, and find ways to keep errors
from exceeding this limit (e.g., Prentiss, 1998;
Whittaker et al., 1998). For example, having the
same artifacts typed by several analysts will
serve as a check on consistency. At the same
time, we do not need to waste resources on
reducing the degree of error below that limit.
For example, William Adams found that 90%
agreement between sorters was sufficient for
him to use his chronological typology of Nubian
pottery effectively (Adams and Adams,
1991:238). However, you should still reportyour
estimates of measurement and typological er-
ror, as emphasized in chapter 2. For errors of
misclassification, we may referto the errorrate,
which is simply the proportion of
misassignments. The approach treats the error
of misclassifying a Combed Beaker as a Corded
Beaker, for example, as equivalent to the error of
misclassifying a Corded Beaker as a Combed
Beaker. All misclassifications are assumed to be
equally serious (see also Nance, 1987:258-67).
More sophisticated measures of misclassification
may account for the fact that somekinds of error
are more serious than others. For example, to
misclassify a Corded Beaker as “unknown” may
beless serious than misclassifying itas aCombed
Beaker. In such cases, misclassification error
may refer to the expected costs or risks of differ-
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entkinds of misclassifications,and may employ
a“confusion matrix” for the classification rules
(Hand, 1997).

Another practical aspect concerns the sec-
ond half of this chapter. [f we require categories
either for whole archaeological entities or for
their attributes that have unambiguous and
unchanging definitions, as happens when we
construct computer databases, we need system-
atics based on classification, or at least groups
with standardized descriptions and very high
separability. Even if grouping might seem to
express the nuances of a type more effectively,
in a given context, it simply would not do to
have database fields with definitions that
changed from one season of excavation to the
next. The usefulness of the whole database for
making comparisons and detecting patterns
depends on reasonable consistency of definition
for its fields. These definitions should be re-
corded in a data dictionary (see below).

Finally, we even need to consider whether
typologyis the most effective tool with which to
achieve our goal. For example, although we
might be able to sort sites or layers within a site
chronologically with a typology, in principle it
is possible that a series of radiocarbon dates and
careful stratigraphic analysis might accomplish
thejob more cheaply ormore effectively (Adams
and Adams, 1991: 234).

COMPILATIONS: DATABASE DESIGN

Now that we have considered the systematics
that are used to order compilations, we can turn
to the ways modern compilations are structured
and manipulated. Although compilations can
be very simple, such as a collection of file cards
each showing the picture of an artifact along
witha fewidentifyinglabels and measurements,
most archaeological compilations require some
sophistication. Modern archaeological compila-
tions arefrequently computerdatabases,butthe
same principles are involved in other kinds of
indexed compilations.

The purpose of this section is not to give
instruction in the use of any particular type of
computer hardware or database software —
these change far too quickly — butto introduce

some important principles that guide the effec-
tive use of these tools in archaeological applica-
tions.

Information Language

Compilations often require us to construct an
information language for the consistent and ef-
ficientrecording of relevant observations, while
measurement in thebroad sense consists of com-
paring the item to be measured with a standard
scale and representing the comparison symboli-
cally. Natural language is generally too ambigu-
ous, too inconsistent or too wordy for many
analytical purposes, although it has its strengths
as well.

For archaeologists, an information language
is simply a system of representation. Although
archaeologists have used various information
languages almost since the inception of the dis-
cipline, it was the application of computers to
archaeological work that caused some archae-
ologists to think about information languages
more explicitly. Especially in the early years of
archaeological computing, when computers
were primitive by today’s standards and ar-
chaeologists had to describe sites or artifacts
with codes of no more than 80 characters, it was
necessary to devote considerable attention to
systems for reducing a theoretically infinite
number of observations to a small set of num-
bers or letters that could be manipulated elec-
tronically. Today, although modern computers
allow us to make these observations with some-
thing much nearer to natural language, efficient
and meaningful analyses still require a consist-
ent information language, even if it sometimes
bears considerable resemblance to English or
some other natural language.

Graphical Information Languages

Archaeologists have used graphical methods
for simplifyingthedescription ofarchaeological
objects and making these descriptions consist-
ent for more than a century. Maps and technical
drawings are always simplifications of reality,
because they omit details that are not relevant to
their makers’ orusers’ purposes, while they also
typically depict information that would not be
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Figure 3.11. Example of a technical drawing of lithics (drawings by J. Pfaff).

apparent in a photograph. Archaeologists’ maps
and section drawings all employ information
language in this way, but their drawings of
artifacts are perhaps the most obvious examples
of graphical information language.

Takelithic drawings, for example. Archae-
ologists have had the option of publishing pho-
tographs of lithics for more than a century, but
have almost always decided instead to publish
drawings in which certain important attributes
are encoded (figure 3.11). First, lithic analysts
use strictconventions or rules about the orienta-
tion of lithics, and so drawings of flakes typi-
cally show one ventral and one dorsal view, side
by side, both oriented with the proximal end
(the end nearest the striking platform) at the
bottom. Where itis relevant, theymay also show
one or more edges, oriented so as to match up
with the dorsal or ventral view. On each draw-
ing, they typically show the edges of flake scars
as solid lines and use series of curved, tapering
lines to simulate the rippling that occurs on
knapped flint as the result of shock waves trav-

elling through the material during manufac-
ture, and to indicate the direction of flake re-
moval. Theymayusestipplingtoindicatecortex,
and will have other conventions to represent
some materials, such as basalt or quartz, as well
as damage or polish on the artifact’s surface.
Finally, there maybe special symbolstoindicate
something of how the tools were made. The
most common example is a small arrow to indi-
cate the position and direction of spall removal
on burins and other tools for which production
involved the burin technique. Some of the best
lithic drawings may seem like beautiful works
of art or bear remarkable resemblance to real
tools, butin facteven these both simplify reality
and emphasize aspects thought to be particu-
larly relevant to lithic researchers (see chapters
7 and 17).

Pottery drawings also provide excellent ex-
amples of graphical information language. Par-
ticularlyinmodernarchaeologicalpublications,
ceramic illustrations usually bear very little re-
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Figure 3.12. Example of drawing conventions for pottery from Pella, Jordan (from Smith, 1973). Note how
the drawings show the exterior, interior and a vertical section through the pot, and encode information

about surface finish and color.

semblance to the fragments of vessels on which
they are based. First, ceramic illustrators typi-
cally use information from the curvature of a
sherd (fragment) to estimate the diameter of the
vessel from which the sherd was originally a
part, and then to reconstruct a view of the whole
pot over as much of the profile (in the vertical
axis) as is preserved (figure 3.12). Furthermore,
this reconstructed view is conventional and
highly stylized, with a cutaway allowing us to
see the exterior, interior, and section of the pot
simultaneously. European publications typically
put this cutaway on the left, while American
ones typically put it on the right. The illustrator
also has conventions for showing surface treat-
ments (e.g., paint, burnish, patterned slip),
carinations, decoration, damage, and uncertain
reconstructions. Typically handles are shown
with sections in a different axis than the cuta-
way, to indicate whether they are strap-like,
tubular, or some other shape, and some special
features may warrant close-ups or additional

views, as for mat-impressed bases or decorated
rims. Some information languages also show
symbols on the drawing itself that encode infor-
mation on fabric, colour, firing, and so on (e.g.,
Smith, 1973; figure 3.12).

It may seem at first glance that these are
simply drawings, but they are in fact coded
representations oflithics and pottery. If they did
not display more of the information that is im-
portant to us than would a simple photograph
of a flake or sherd, we would not be using them.
That the technical drawings show information
that a photograph cannot has even led some
archaeologists to show the drawing and photo-
graph side-by-side in publication (e.g., Rast,
1978).

Digital Information Languages

While the graphical information languages are
excellent at depicting and storing information
about the shapes of artifacts, they donot offer a
very efficient way for us to sort and retrieve
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particular kinds of artifacts. If  wanted to find
examples of a particular rim profile in a graphi-
cal database of pottery, I would have to sift
through each and every drawing to identify
ones that fit my criteria for that profile, or use
relatively cumbersome and complex pattern-
recognition software that would probably be
even slower than me. In data processing, we
ideally want to make retrieval of information
justas easy as storage, and thatis why electronic
databases have come into their own in archaeol-

ogy.

In data processing, an information language
can be used either for reducing complex objects
toaconventional representationina database or
for amplifying a simple query into alternative
forms that may represent it in the database
(Gardin, 1980). The former makes it easier to
store large quantities of information; the latter,
the ability to ask questions of the database, is
essential for retrieval of information.

The tactics of information language may
involve not only some kind of vocabulary or
lexical units (geometrical shapes, edges, brush
swirls, etc.), but also orientation rules to lay
down a standard position for the objects being
studied, segmentation rules , which account for
the conventional division of an object into sepa-
rate parts (e.g., pottery segments, figure 3.13),
and differentiation rules that determine the
kinds of the distinctions we will record for each
segment (Gardin, 1980). It is worth noting what
these concepts mean in terms of systematics.
Lexicalunits are the symbolic representations of
attributes and categories or types, differentia-
tion rules are related to the definition of catego-
ries, and rules for orientation and segmentation
ensure reasonable consistency in the way we
measure attributes. You will note that the usual
assumption here is that we are using classifica-
tion, not grouping: the rules are definitions in-
tended to make classes that are mutually exclusive
andunambigous, where atall possible. Although
it is possible to have database queries that are
more forgiving — for example, ones that would
show you artifacts that are similar to the specific
type you asked for—most databases will notdo
this, and even a simple spelling error in a type
name will lead to the omission of data. We have
already seen some of these rules being used in
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Figure 3.13. One possible way to divide a pot into
segments (after Skibo, 1992:114). The definitions
for these segments would constitute the
segmentation rules for an information language
used to describe pots.

graphical information languages. Now let us
turn to examples of their use in electronic
databases.

Pottery can be described by an infinity of
attributes, many of which are discussed in chap-
ter 8. For now, let us consider some very basic
lexical units, orientation rules, segmentation
rules, and differentiation rules we might con-
sider in creating an information language for
describing pottery. Typically, analysts consider
vessels to consist of a number of segments, such
as “rim,” “neck,” “shoulder,” “body,” “base,”
and “handle,” although many more or some-
what fewer segments may be necessary for a
particular ceramic assemblage, and the defini-
tions vary. Differentiation rules define how each
sherd should be assigned to a segment, just as
other differentiation rules assign it to a chrono-
logical or functional type. For example, you
would need a rule to allow you to assign, say, a
sherd with portions of both rim and handle to a
particular segment category in a consistent, un-
ambiguous way. Orientation rules for pottery
areusuallyfairly simple, requiring that the sherd
be “stanced” in the position itwould have when
it was part of a whole pot, standing vertically,
but also with conventional definitions of inte-
rior and exterior and orientation of decoration.
The lexicon would usually include some sym-
bolic representation of the different categories
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Figure 3.14. One possible set of differentiation rules for pottery decoration that includes primary and

secondary decorative elements (after Plog, 1980:51).
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Figure 3.15. Possible segmentation rules for the
description of house plans at the Samarran site of
Tell as-Sawwan, Iraq (Banning, 1997).

for such things as rim shape, form of decoration,
or non-plastic inclusions in the fabric, as well as
the labels for the various segments and axes of
orientation. Differentiation rules — essentially
classification rules — help analysts assign a
particular sherd to a particular category unam-
biguously by defining that category in a careful
way. Often this involves a step-by-step, hierar-
chical procedure that results in a taxonomic
classification, but paradigmatic classificationis
also common, particularly as computers can
categorize materials by many attributes simul-
taneously.

For lithic materials information language
works in much the same way. Lithic analysts
typically employ such segments as “‘dorsal” and
“ventral” sides, and will have explicit orienta-
tion rules that define the axes of length and
width and the position of retouch. The lexicon
will include the terms for segments and orienta-
tion as well as labels for categories of retouch,
angles, raw material, platform shape, and so on
(see chapter 7).

Decoration on pottery, basketry and other
materials poses special problems, and archae-
ologists have found many ways to deal with it.
Often the orientation and segmentation rules
for decoration have to be very complicated in
order to make the kinds of distinctions that the
analystthinks will be important (figure 3.14); in
other cases, analysts constructa simple, yetrather
lengthy lexicon that corresponds with a nomi-
nal classification for whole decorative patterns,
rather than taking tiny segments of decoration
separately. Although the same principles are
relevant to decoration on other materials, and
even tatoos, we will deal with decoration in
more detail in the chapter on pottery (chapter 8).

Ancient Mesopotamian cylinder seals pro-
vide one of the most ambitious examples of
archaeologists’ attempts to apply an informa-
tion language. Digard et al.(1975) created alarge
lexicon for the symbols, figures, and other ob-
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jects depicted on the seals, along with detailed
segmentation rules for distinguishing elements
depicted on different parts of each seal, and a
complex grammar that actually allows us to
distinguish how the different lexical elements
are related to each other. For example, on cylin-
der seals showing a king, a god, a throne, and a
star, we can tell whether the king or the god is on
the throne, whether the king is to the left or right
of the god, is kneeling or standing, and how the
star is positioned relative to the other elements.

Information language can be just as impor-
tant in describing architecture. In buildingup a
database of structures or building plans, we
would want orientation rules to distingish be-
tween the long axis, short axis, front, sides, and
back of each building or each room, as well as
eachbuilding’s compass orientation. We would
need lexical units with which to label various
rooms, features, post arrangements, doorways,
and so on (figure 3.15). We might want ways to
describe the relationships between rooms much
as Digard et al. (1975) described the relationship
between images on cylinder seals, or to describe
the “depth” of each room relative to the outside
of the building or to other rooms (Hillier and
Hanson, 1984). Other lexical items might in-
clude room size, building area, building shape,
wall material, construction method, and so on.

Database Design

A database is a reservoir of information that
supplies users with the data from which they
make decisions, inferences, interpretations, ex-
plore patterns, or test hypotheses. A database
can be something like a telephone book or index
card file — that is, it can be synonymous with
what we have been calling, following Gardin
(1980), a compilation. But nowadays the term
database most oftenrefers to anintegratedbody
of data accessible through automated process-
ing. An integrated database is a collection of
interrelated data stored together with control-
led redundancy to serve one or more applica-
tionsindependent of programs thatuse the data.

Most databases share some basic kinds of
input and output. Users will want to make in-
quiries, add or modify data (transactions), or
add or modify the database itself, all of which
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Figure 3.16. Depiction of a "Sites" file, with a
number of fields to describe the attributes of each
site in a survey. The fields above the dashed line
are "key attributes,” used to identify each record
uniquely. The bolded letters indicate whether fields
are alphanumeric, numeric, date, boolean, or text
fields.

are kinds of input. The output consists of re-
sponses to the inquiries, transaction logs (records
of changes to the database) orupdated data, and
an updated database. For example, an archae-
ologist’s input to a database might consist of
typing the description of a pit feature in the
“fields” of a “record,” resulting in an updated
database. Lateranotherarchaeologistmay make
a query of the database (input) by asking which
pit features in the database were found to have
contained charred plant remains, and the out-
put would be a list of those pit features that the
computer generates.

Too often archaeologists planning to set up
an archaeological database begin by sitting in
front of a computer and defining fields. The
result is often a database that requires many
revisions before it is even minimally acceptable
and leads tomuch frustration for the database’s
users.

Just as with research design and systemat-
ics, the design of a good database requires that
we first consider our objectives and expecta-
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tions. To what use will we put the database?
Who will the users be? Will it be used only a
short time, for a single project, or do we expect
it to serve a number of uses over a long period?
If the latter, who will maintain it? Whatkinds of
research questions will we want to ask of it? Are
the data types typically available in a commer-
cial database product sufficient for our pur-
poses? Or will we have to define our own data
types? Are we presented with an existing data-
base that is still useful or are we beginning a new
database from the ground up? If the former,
what is the current system like and what are its
limitations?

Whether you are the principal or only user
of a new database that you are designing, or are
working with others, you should begin to create
a logical design for your database before you
even begin to think about its physical character-
istics. In other words, you should carefully lay
out how you expect the database to work and
how it should be structured to facilitate your
future use ofitbefore you even think about what
kind of hard drive or processor you may need.

Database Structure

Databases canbe very simple, flat-file databases,
similarto acollection of file cards, or canbe very
complex, relational databases in which differ-
ent files automatically communicate with one
another.

All databases consist of one or more files,
each of which has a number of fields and con-
tains a number of records. A field is used to
contain information on a particular attribute, or
characteristic, of a particular item. A record is
analagous to a single file card in a card cata-
logue: it describes a single site, artifact, or some
other phenomenon by displaying the contents
of several fields. For example, a file for describ-
ing “Sites” may contain 100 records for 100
different sites discovered during an archaeo-
logical survey, while each record may describe
a single site by reference to fields for “Site
Number,” “Site Size,” “Map Coordinates,” “El-
evation,” and so on (figure 3.16). A file for
“Lithics,” meanwhile, might have fields for
“Artifact Number,” “Invasiveness of Retouch,”
“Number of Used or Retouched Edges,” “Loca-

tion of Polish,” “Platform Shape,” and so on
(figure3.17).

For large archaeological projects, a simple
flat-file database is unlikely to be very satisfac-
tory. Instead we use relational databases (Date,
1986; Weinberg, 1992) in which controlled re-
dundancy allows us to make use of the relation-
ships between different classes of data, including
spatial and stratigraphic context, in an efficient,
hierarchical manner.

To illustrate how this works, refer to the
structure diagram in figure 3.17. If we are inter-
ested in including information about
stratigraphic context and lithics in our database,
we could just mix all of this information into a
single big file, but this would be extremely inef-
ficient. The main reason for this is that many of
the lithics will have virtually identical contex-
tual information; in other words, there will be
extreme redundancy. For example, part of the
contextmight involve using a field labelled “soil
colour.” All of the lithics found in the same
sediment layer will have the same information
entered in this field, and so attaching this infor-
mation soliterally to each lithic record would be
extremely wasteful. Inaddition, it doesnot make
a lot of sense to record sediment attributes in a
file on lithics. Instead we make two separate
files, one for lithics, the other for the characteris-
tics of their contexts, and make a relation be-
tween them.

The relation simply tells the computer where
to go and look up the sediment characteristics
for whatever lithic record we are currently ex-
amining. The computer knows which record in
the file we’ve called “Contexts” is appropriate
because an attribute pointer (a special field for
recording these relations) in the Lithics file,
“Layer Number,” matches a key attribute (a
field used to index the records in a file) in the
Contexts file. Every record in a file should have
a unique entry in its key attribute field, while it
is quite common for many records in a file to
have duplicate entries in the attribute pointer
fields. That is simply because it is common for
there to be many different lithics from the same
sediment layer, or many layers in a single Exca-
vation Unit, or many Excavation Units in a
single site. In order to help us keep straight
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which file is pointing where in a particular rela-
tion, we connect the two files on a diagram with
an arrow drawn from the attribute pointerin the
“Many” file to the key attribute of the “One” file
(figure 3.17). Remember thisbyreminding your-
self that there are many contexts in one site, or
many sites in one survey area.

When we draw a diagram to represent the
database structure, as in figure 3.17, we are
making what is known as a structure chart.
Conventionally, the files are each represented
by rectangles with the file name at the top,
separated from the rest of the rectangle by aline
segment. Below we list the names of fields,
beginning with the key attribute, with attribute
pointers next and then, below another dashed or
dotted line segment, the rest of the fields. Often
we show an abbreviation to indicate what kind
of data (the data type) each field represents.

In any database, each record describes some-
thing withinformationcontainedin anumber of
fields. Today’s commercial database manage-
ment systems (DBMS) make quite a number of
different data types available for these fields,
but these do not always correspond exactly with
the scales of measurement discussed in chapter
2,and arenotalways archaeologically appropri-
ate, either. Let us look at some of the data types
thatare typically availablein the better databases
and then consider some data types that we
would expecttofind in archaeological databases
of the future.

Probably the most common types of field
that you will find in databases have the alpha-
numeric, numeric, and boolean data types.

An alphanumeric (or “character”) field al-
lows the input of any characters typically avail-
able on a computer’s keyboard, including
numbers, but input is usually limited to a speci-
fied number of characters. If you have defined a
particular alphanumeric field as having eight
characters, the computer will store eight charac-
ters for each record even if no one has input any
data. Consequently you should give careful
thought to how many characters you will need
unless you can afford to be cavalier with disk
space. The more sophisticated databases allow
you to place “filters” on alphanumeric fields,
that prevent certain kinds of data entry errors,
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Figure 3.17. A Structure Chart depicting a relation
between a “Lithics” file and a “Contexts” file for an
archaeological excavation. Only some of the fields
are shown. A: alphanumeric fields; B: boolean
fields; N: numeric fields; and T: text fields.

such as inconsistent spelling, or allow standard
entries to be selected from a list or menu, rather
than spelled out.

A numeric field only allows users to input
numerals. Many databases will specify this data
type more closely, with integer or real (“float”)
data types. Integer numeric fields are useful for
discrete data, and in most commercial databases
we must select the “real” data type if we wanta
continuous scale. Both allow negative, as well as
positive numbers, but the databases do nothave
separate categories for interval and ratio data. In
other words, the computer has no way of distin-
guishing “real” zeroes from arbitrary ones un-
less you write a special program (or “procedure”)
to make the distinction yourself.

In the old days, people used to “code” nomi-
nal scale data with numbers instead of using
their alphanumeric labels, because the codes
took less storage space. Today’s computers typi-
cally have so much more disk space that this is
not necessary, but some people still prefer it.
Unfortunately, the commercial database man-
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agement systems will treat these codes just the
same as any integers if you enter them into
numeric fields, which could lead to some really
embarrassing statistical errors if you are not
careful. Consequently you should make abso-
lutely sure that even numeric codes, including
site numbers, layer numbers, and square num-
bers, are entered with the alphanumeric data

type.

One aspect of numeric fields that can be
important to archaeologists is that we can use
software to record ratio-scale measurements
directly from electronic calipers, electronic bal-
ances, and similar measuring devices. This has
the advantage of eliminating one step in the
recording process — typing the data from a
keyboard — and makes recording errors less
frequent. Typically a “serial” interface like the
one you would use with a modem connects the
computer to the calipers or balance.

Boolean fields are for what we would call
dichotomous scales. As far as the computer is
concerned, a boolean field is like a switch: it can
only register true or false (ie, 1 or 0). In our
applications, however, we can use it for such
dichotomous scales as yes/no, female/male,
above/below, present/absent, left/right. The
boolean data type is very useful for such pur-
poses, but it is extremely important that you be
sure that a dichotomous scale is really what you
want if you plan to use it. If there is any chance
that you should be anticipating “grey areas,”
such as “probably female,” or might need to add
a third option, you do not want to choose this
data type because, unfortunately, it is not an
easy matter to change your data type after the
fact. Changing a dichotomous scale into a nomi-
nal one with three or four categories may sound
simple enough, but in your database this would
require that you write a small program (a “script”
or “procedure”) that transforms all your exist-
ing dichotomous data into the new three-cat-
egory scale and saves it in a new field. And, in
practice, you could end up with some errors.

Another data type that is commonly avail-
able is text or comment. This is a field that is
alphanumeric but does not have alphanumer-
ic’s limitation on number of characters. Itisideal
for situations where you might expect some

records to have little orno information to record
on a particular attribute, but others to require
several pages of information. Typically itis used
for a “comments” area or a log area on each
record, where users are free to write as much
text as they like, ornone at all, or where they can
make notes on such things as when or why they
modified a record. One of the advantages of text
fields is that they only take up as much storage
space on disk as the actual text they contain —
empty text fields don’t “cost” us anything—in
contrast to alphanumeric fields, which store all
the characters that have been assigned to them,
even ifthey are empty. Text fields, then, allow us
the freedom to write richer, more nuanced prose
about our observations when that is desirable
(cf. Hodder, 1989).

The kinds of operations that you can apply
to data depend on data type. For numeric fields
you can apply all the usual arithmetical and
appropriate (and sometimes inappropriate) sta-
tistical functions, including such operators as
“greater than,” “sum,” “product,” “square root,”
“average,” and so on. For alphanumeric and text
fields you can use such operators as “contains”
and “does not contain.” For example, you could
ask the computer to show you all the records in
which the field, “Site Name,” contains the string
(sequence of characters), ‘“Koster Site,” but whose
field, “Flotation Results,” contains “” (i.e., is
empty). This is called a search. The computer
would return all the records from the Koster Site
for which the flotation results had not yet been
entered, making it easier for you to begin enter-
ing where you left off, perhaps, or simply to
identify how many flotation results were miss-
ing. Anothercommon operationis tosortrecords
by one or more attributes in a particular order.

But many of the kinds of data that archaeolo-
gists use and the operations that they can be
expected to make on them are not simple arith-
metic or text-string ones (Ryan, 1992). For exam-
ple, a lot of archaeological data specifically
involve the concept of time as measured in
radiocarbon years, calendar years, stratigraphic
order, or cultural periods. Ifinformation such as
“Neolithic” is simply entered as nominal infor-
mation in an alphanumeric field or “layer 6” is
just entered as a 6 in an integer field, our options
willbeextremely limited. If, forexample, we ask
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the computer to sort stratigraphically or chrono-
logically, it has no way of knowing whether the
Neolithic should come before or after the
Paleolithic, while the stratigraphic order of sev-
eral layers is often quite different from the inte-
ger order of the numbers used to label those
layers. Consequently, in these examples we could
not ask the computer to show us all the records
that are older than the Neolithic or more recent
than layer 6. Chronological data are extremely
important in archaeology, but the sort would
simply put the time periods into alphabetical
order and layers in numerical order. How do we
get around this problem? The solution is what
we can call an abstract data type (ADT).

Commercial DBMS now routinely have date
fields, one of the most common ADTS. These
allow you to enter data in day/month/year or
month/day/year or year/month/day formats
and the computer can respond to such operators
as “earlier than” or “contemporary with” to tell
you, for example, which records were last modi-
fied after 10 September 1996 or which records
describe layers that were excavated in 1992. The
former would be an example of a transaction
time (the time when someone entered or modi-
fied a record, usually measured by the compu-
ter’s internal clock); the latter is an example of a
valid time. While many current DBMS support
date fields capable of measuring time in this
way, archaeologists also need user-defined time
to handle such things as radiocarbon dates and
such “fuzzy” dates as “Archaic,” or “Late
Chalcolithic.” We also need special temporal
operators that go beyond “earlier than” to in-
clude “overlap,” and “extend” (for temporal
databases and ADTs that they involve, see
Cheetham and Haigh, 1992). Ideally, archaeolo-
gists should be able to search their databases to
find, for example, all the records with radiocar-
bon dates within one standard deviation of 5000
bp, requiring what Cheetham and Haigh
(1992:12) would call a “statistical date type.”
Since this is not available commercially, archae-
ologists must instead write procedures or scripts
(small programs) to accomplish this.

Today’s DBMS do typically offer ADTs for
date fields that are useful for transaction times
and some kinds of valid times, as well as for

archaeologically less useful time fields (which
allow you to enter hours/minutes/seconds),
money fields, and telephone numbers. Some
also have picture fields that allow you to insert
an illustration into a record, but not to use
characteristics of the picture as search operators.
For example, commercially available DBMS will
notallow you to search a database to find all the
records with pictures showing pots with han-
dles. If you might want to search for the records
of pots with handles, you will need another
field, probably alphanumeric, that records this
information. Ryan (1992)pointsoutthatarchae-
ologists require other ADTs that would be use-
ful, for example, to record the kinds of spatial
data archaeologists use, including site coordi-
nates and the shapes of objects. He calls for
archaeological databasesthatincorporate many
of the functions currently found in Geographic
Information Systems (GIS), and that would au-
tomate many of the tasks that concern spatial
provenience.

Such a query might ask for all drawings
covering an area of the site within five meters
of the centre of a context. If the bounding
volume of a photograph is recorded it would
be possible to request all photographs
including a chosen point, and taken within so
many days of the context excavation date

(Ryan, 1992:5).

Unfortunately, commercially available da-
tabase management systems were designed for
use by the commercial sector, where money is
available to pay for software development, and
not to meet the somewhat unusual demands of
archaeologists or other researchers with data
that are not as well-behaved as payroll records
(Cheetham and Haigh, 1992: 7). Because the
market for dedicated archaeological software is
much smaller than the business sector, in the
immediate future the only way for us to acquire
database structures that are more suitable for
archaeological applications is to design them
ourselves, or in collaboration with sympathetic
programmers. For the moment, most of us will
go on adapting the commercial software to our
needs, and fortunately the more sophisticated
packages do allow considerable customization.
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Figure 3.18. An example of part of a Data Flow Diagram (DFD) to sketch out what happens when you sort
data on artifacts by their stratigraphic context. The ARTIFACTS file would contain information describing
each artifact along with some attribute pointer that matches a key attribute in the CONTEXT file. The
CONTEXT file would also have information on how the individual contexts should be ordered
stratigraphically. By a matching process, the process SORT BY STRATIGRAPHY would cause the data
on the artifacts to flow into different groups on the basis of this stratigraphic information.

Data Flow Diagrams

Data Flow Diagrams (DFDs) are the basic tools
of Structured Analysis and Structured Design in
computer science (Weinberg, 1992). The DFD
provides a logical model of an information sys-
tem, irrespective of its physical form, and de-
picts its logical processes and the flows of data
between processes. It is quite possible to use a
DFD to model the activities and even flows of
artifacts (and not just abstract data) in an exca-
vation project, for example, but it is especially
useful to use it to model how you or others will
makeuse of datainyourdatabasein theplanning
stage, to ensure that you setup your database in
a way that will facilitate, rather than frustrate,
you and other users. It is very tempting to sit
down in front of a computer and begin to design
a database without planning it ahead of time on
paper, but you should avoid this temptation. A
DFD is a very useful tool to help you think about
how you will need to make use of data, so that
you will design it with these purposes in mind.

The DFD is made up of processes (the activi-
ties that you will carry out with or on the data),
flows (the movement of data between processes
or from files to processes and back to files or
other entities), and such data-storage entities as
files and reports. Quite simply, you can use a
labelled arrow to represent the flow of data, a
labelled circle to represent a process, and usu-
ally a labelled rectangle (as in the structure
chart) to represent a file or data storage device
(e.g., figure 3.18).

At this stage, do not worry too much about
how to make a complex DFD, but simply treat it
as a way to sketch out the kinds of things you
would like to do with your data, perhaps begin-
ning with some fairly simple parts, and building
itup afterward. Forexample, will youneed tobe
able to retrieve information on the characteris-
tics of the sediments in which each artifact was
embedded? Will you need a quick way to locate
field photos that might help you relate the arti-
facts to their contexts? Will youneed some proc-
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Figure 3.19. Two examples of pages from a hypothetical data dictionary, with a data element definition for
the composite attribute, "temper type" and a data flow definition for the "look-up" of stratigraphic context.
Note that not all data dictionaries will look like this. Especially note that most data elements are simpler
than this compound attribute (made up by stringing together several smaller fields for the three most
common kinds of inclusions, each with its particular average size and frequency).

esses or procedures that allow you to mimic an
abstract data type, such as overlapping dates or
stratigraphic order? A process as seemingly sim-
ple as “Sort in Stratigraphic Order” could re-
quire some tricky programming in cases where
Stratigraphic order is in fact quite different from
the numerical order of 1abels assigned to layers!
Fortunately this is one area where someone has
written software that is helpful (see chapter 13).
The DFD can make it easier for you to recognize
where problems might occur before you waste
too much time designing the database structure
or, even worse, entering large amounts of data.
It is always a lot more difficult and costly to fix
a database that is not working the way you
would like than it is to design it properly in the
first place.

Data Dictionaries

No matter how well you have designed your
database, if you have not documented it prop-
erly it may be impossible for others to use,
especially without your assistance. In fact, if
your database is at all sophisticated, you your-
self may forget how it is structured or how
various attributes were defined. A data diction-
ary is simply documentation of your database’s
informationlanguage; itrecords thelexical units
(e.g., files, attributes, values, data flows) and
database structure (relations, indices, attribute
pointers) and all other aspects of the database
that are relevant to its design, use, and mainte-
nance.
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Although no particular system for docu-
menting your database is universally valid, at a
minimum you should document your database
“entities”—the files and fields —and would be
wise to document the data flows and logical
processes in the database. The data dictionary
should tell the reader where these can be found,
where they are typically used, what they are
used for, how often they are likely to be used,
and how they are structured. For entities that
are fields, that includes the attribute’s scale of
measurement, the number of characters it takes
up, whether these are alphanumeric or some-
thing else, and what limitations, if any, there
may be on the kinds of values it can take (e.g.,
figure3.19).

Hypermedia and Hypertext

Hypermedia is a kind of computerized compila-
tion that has mushroomed in its application
during the last decade, in part because of its use
in CD-ROMs and on the internet.

“Hypertext” is a non-sequential system for
reading and writing information that links dif-
ferentnodes in the text. In its more recent mani-
festations, hypermedia also allow non-sequential
links of graphics, sounds, animation, and exter-
nal applications. Hypermediabegan tobe widely
available following Apple’s introduction of
HyperCard™ in 1987, and HyperCard began to
incorporate hypertext capability—the ability to
link keywords in the text to other nodes — in
1990. Later, similar products became available
on other platforms and are used, especially, on
CD-ROM disks. Then the demand for
hypermedia on the World Wide Web led to the
widespread use of HTML software, another kind
of hypermedia.

Attheir simplest, hypermedia and hypertext
employ concepts and techniques that closely
parallel the kinds of things that authors and
librarians have done for decades. Inahypertext,
the author links a word or paragraph in one
page of a file to some other related information
on a different page or in a different file, much as
some printed media use indexing techniques
and references. Adapting this concept to com-
puterized media essentially increases the speed
and ease of making the connections. Rather than

being linear and sequential, a good hypertext
system encourages readers to browse and search
for information. Modern hypermedia works go
a step further than hypertext, allowing authors
to link text, data, graphics, video, animation,
simulations, and sound. Most hypermedia works
allow users to navigate through information
with the aid of a “hypermedia map” (a visual
metaphor that organizes the information) and
graphic icons or “buttons.” Users of the system
use a mouse to select graphics or text or to click
buttons that will reformat data in ways users
specify or will bring up, almost instantly, new,
related information that users request. Anyone
who has “surfed the Web” will be familiar with
these concepts. The archaeological use of
hypermedia to publish results is growing rap-
idly (Banning, 1991; 1993; Barcel6, 1992; Rahtz et
al., 1992), and some field projects now make
their results and even field diaries available
rapidly on the World Wide Web (for example,
the Catal Hiiyiik web site at http://
catal.arch.cam.ac.uk/). There are also other ap-
plications (e.g., Boast and Chapman, 1991).

The software, such as HyperCard, used to
make hypermedia is what software engineers
call an authoring tool, which helps users write
applications themselves, without the special-
ized knowledge that would be required to pro-
gramme them in one of the usual programming
languages.

Hypermedia and Relational Databases

When they were first introduced, because
hypermedia works are so difficult to describe,
they were compared to flat-file and relational
databases. The card-file metaphor, in addition
to the use of fields on hypermedia “cards” or
“pages” encourages this comparison. In other
ways, however, hypermedia are different, mak-
ing them less useful than database applications
in some contexts, and more useful in others.

One difference lies in the way hypermedia
and databases store individual pieces of infor-
mation. In databases, data in fields are stored,
essentially, as lists. While the software may
provide an entry template that looks somewhat
like a hypermedia card, the data are, in fact,
quite separate from this template, while in



70

The Archaeologist’s Laboratory

hypermedia mostdataareintegral to each “card”
or web page and almost all attributes are linked
either to them or their backgrounds. This means
that databases canbe more efficient, less hungry
for storage space, or more flexible. Forexample,
most databases allow you to design a custom-
ized report that displays a selection of fields in
the data base, and omits others, while in
hypermedia users are largely confined to the
display formats that their authors have designed
for them.

Another lies in the way the two share data
betweenfiles. Relational databases partitiondata
in distinct files (e.g., one file for lithic data,
another for ceramics), and provide sophisti-
cated ‘lookup’ or indexing functions that allow
users to access data in one file while working in
another. In hypermedia, by contrast, a card or
web page that needs to incorporate data from
another file in fact stores a duplicate of that
information rather than doing a “lookup” in the
other file, or else simply sends you to the other
web page rather than showing you an excerpt
from it. On the one hand this has the advantage
that corruption of data or accidental deletion in
one place has no effect on the duplicate data
elsewhere. On the other, however, relational
databases have the advantage that editing or
updating information in one file causes that
information to be updated throughout the data-
base, and not only locally.

For publications that their authors do not
expect users to edit or update, however,
hypermedia provide a distinct advantage over
relational databases, as well as over traditional
forms of archaeological publication (Banning,
1991; 1993). Databases impose a rather rigid
structure of formally defined fields, sometimes
with fixed lengths and data types. Relations in
these databases are generally possible only be-
tween like fields, and sometimes only in one
direction. In hypermedia, by contrast, it is pos-
sible for authors to establish any links they
please, even if the links are arbitrary. This means
that they can easily provide links that anticipate
where users might want to look at a map of the
site they have highlighted in a text field, look at
the lithics associated with the stratigraphic level
they are currently viewing, or look at the distri-
bution of animal bones from the same context as

aparticular stone tool. That is one of the reasons
that HTML has become so popular on the World
Wide Web. In arelational database, these kinds
of links are only possible if its designer has
expended a great deal of effort to build them
into the database structure.

It is still possible for hypermedia to read
data from atraditional database or graphics file,
making some combination of hypermedia and
external files an attractive strategy where the
volumes of data are particularly large. The de-
tails of such a combination, however, are be-
yond the scope of this introduction.

Hypermedia and Multimedia

What has made the web very popular is that
hypermedia can incorporate, not just the text,
data fields, and computer graphics discussed
above, but color photographs, video, sound,
and animation. “Multimedia” are simply works
that incorporate this mix of media, but
hypermedia software allows us to add the non-
sequential aspect that is missing from normal
video. Software external to the hypermedia it-
self but linked by a button can run animated
sequences or display video. The thing that dis-
tinguishes hypermedia from ordinary multime-
dia, films, or videotapes is that they are
interactive instead of linear; viewers choose what
they want to see and in any order they desire.
This has made hypermedia a very popular vehi-
cle for business and classroom presentations
and for educational workstations, but also has
implications for the publication of research in
disciplines, such as archaeology, that rely heav-
ily on images. Software such as QuickTime™,
for example, allows you to view the color photo-
graph of an artifact in a window, and rotate it
360°.

Conclusion

Compilations of data are the cornerstone of
archaeological analysis, but are often large and
complex. Ensuring that our data are in a form
that is suitable for our use and are organized in
a way that facilitates analysis requires careful
consideration of the lexical units we will use to
categorize data (Systematics) and the kinds of
relationships we will wantto explore in the data.
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Database design principles help us ensure that
our compilation is useful and easy to maintain.

Systematics involves a wide array of classi-
fication and grouping methods that either de-
fine abstract nominal scales or attempt to detect
patterns in the similarities and differences be-
tween actual things. Classifications or group-
ings that have meaning and relevance with
respect to phenomena of interest that lie outside
the class definitions or group descriptions (i.e.,
context), can be described as typologies.

Databases can be graphical or digital, and
simple or relational. Relational databases, with
their controlled redundancy, have many advan-
tages but can become very complex and difficult
to maintain. Itis critical to plan out the abstract
structure of a database before setting up its
physical structure, to give adequate attention to
the definition of useful fields and relations, and
the processes with which you are likely to ma-
nipulate the data. Itis also extremely important
to document all aspects of the database with a
Data Dictionary, as otherwise it may become
confusing oreven useless to you and others. The
wide array of database management software
currently available gives you many options to
create a database with the level of complexity
you need, but typically these are designed for
business applications and are not ideal for ar-
chaeological ones. Spending the time to learn
how to adapt a more sophisticated software
package, by writing small programs or “scripts,”
is usually worthwhile.
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