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PREFACE

Many distinguished mathematicians and educators, going back at least to
F. Klein and E. H. Moore about 80-90 years ago, have advocated that mathe-
matics should be taught in close connection with its applications and be moti-
vated by them. The critics of the reforms in the United States' secondary
school mathematics curriculum in the 1950s strongly emphasized this view,
but produced very little concrete material for school mathematics showing
how mathematics can be applied. Up to that time the only applications which
were treated in school mathematics were consumers' and shopkeepers'
problems.

In 1963, Professor Paul Rosenbloom, then Director of the Minnesota
School Mathematics and Science Center, produced a first draft of a course on
computer and applied mathematics for the twelfth grade. The mathematical
topics were chosen in accordance with the recommendations of the Com-
mission on Mathematics of the College Entrance Examination Board (C.E.E.B.).
However, the treatment of topics in the course was original, and different
from, for example that of the School Mathematics Study Group; each topic
was motivated by beginning with a concrete application to the natural or
social sciences whose investigations would lead to that topic. A source of
inspiration for the course was the book by Th. von Karman and M. Biot,
Mathematical methods in engineering (McGraw-Hill, New York, 1940).

For several years, beginning in 1963, summer institutes for high school
teachers and students were conducted at the University of Minnesota. The
two groups were taught together so that the teachers could observe the
students learning. Besides the material on applied mathematics, the two
groups were given courses in computer programming and numerical analysis,
and a seminar in problem solving.

During the following school year the participating teachers taught the
material on applied mathematics to their twelfth grade classes. Computer
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manufacturers (Control Data and Univac) in the Twin Cities area provided

these classes with computer time. Mathematicians at the University of
Minnesota met with the participating teachers once a week to discuss the

problems they encountered. For the first two summers only the best high

school applicants were accepted, but thereafter the high school applicants
were selected randomly so that the teachers could observe the reactions of

typical classes to the materials. Professor Rosenbloom started to teach this
material himself to several classes of graduate students in mathematical

education when he moved to Teachers College.

Professor Evyatar has been teaching pre- and in-service courses for mathe-
matics teachers at the Technion, Israel Institute of Technology, for about

20 years, and he has also written textbooks for use at the secondary school
level.

The collaboration of the authors began during the academic year 1976-7

when Professor Evyatar was a Visiting Professor at Teachers College. At that
time the existing material was combined and revised, and much new material

was added. During 1978-9, when Professor Rosenbloom visited the Technion,

the material was again revised and amended. The present version is intended
specifically for the pre- and in-service education of secondary school mathe-

matics teachers.

Our thanks to Rick Troxel for his comments and to the staff of the

Cambridge University Press, particularly Mrs J. Holland, for their efficient

help.
A.E.
P.R.



INTRODUCTION

The mathematical content of this book takes into account the recommen-

dations of the Commission on Mathematics of the College Entrance Examin-
ation Board (C.E.E.B.) as applied to the U.S.A., European countries, and

Japan.

The C.E.E.B. recommends that high schools should provide courses on
elementary functions, probability, statistics, analytical geometry, calculus,

and linear algebra, all of which should be available as one-semester courses.
They also suggest some discussion of limits.

Syllabi for secondary school examinations conducted by the Oxford and

Cambridge School Examination Boards differ from the above list of topics
mainly by the emphasis that is put on limits and calculus, and by the extent

of the knowledge required in probability and statistics. Analytical geometry
and calculus are standard topics in the secondary school curriculum in Israel,

Japan and many European countries.

The following list shows which chapters in this book are related to a specific

mathematical topic:

Polynomials 1

Logarithmic functions 2

Exponential functions 3

Trigonometric functions 7
Limits 3 , 6

Probability and statistics 4

Analytical geometry and calculus 1, 2, 3 , 6 , 8
Linear algebra 8

It is not expected that an average high school teacher will be able to teach
an entire course in applied mathematics until adequate materials are available
for school use. We believe, however, that a teacher who has studied this book
will be able to introduce some of the topics here, where appropriate, to
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motivate and illustrate the courses he is already teaching. We have often indi-

cated how some aspects of these topics can be taught at an even earlier stage.

It is valuable for the secondary or high school teacher to see how elementary
many of the essential ideas are.

There are two fundamental problems in the teaching of applications. One

is that the teacher must learn something about the field to which the
mathematics is applied as well as the mathematics. This difficulty has limited

us to topics in which the non-mathematical material could be explained very

briefly.

The second difficulty is that true applications of mathematics involve

showing how the mathematical formulation arises from a problem in the real
world and how the mathematical results are to be interpreted. The common

practice of merely stating mathematical problems in 'applied' language does

not teach anything valuable about applied mathematics. Sometimes carrying
the analysis far enough to obtain a really applicable result requires mathematics

beyond the scope of this course. In such cases, we have tried to illustrate the
ideas by obtaining at least some non-trivial results with interesting concrete

interpretations.

For the users of this material the main objective is to teach mathematics,

and the applications serve mainly for motivation purposes. We have therefore

tried to show how much of the drill in mathematical techniques can be incor-
porated in a natural way in the course of analyzing the mathematical models

studied. We thus have an amusing inversion of aims: physics, biology, linguis-
tics, etc., are here applied to the teaching of mathematics.

Most of the exercises in the present text are intended to lead the student

to take an active part in the development of the subject. The students' work
should be used as the basis of class discussions and subsequent lessons should

make considerable use of the students' results. We have included compara-
tively few routine exercises, since an adequate supply of such problems is

available in standard texts. The teacher may wish to supplement our exercises

with such material.
The organization of the text is designed to facilitate its use as an actual

textbook or as a random-access reference work for teachers. Each chapter
treats a specific mathematical notion - be it logarithms or vectors or matrices -

at different levels of ability. The main sections are at the secondary school or

high school level, but in most of the chapters there are also curricular units that
can be used by teachers of grades 5-8 (ages 11-14), and sections for more
advanced students. These more difficult sections serve a dual purpose: they
give a view of topics dealt with at the secondary school level from a higher
standpoint, and also provide a text suitable for teaching at the college level.
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Each chapter has an introductory section which explains the content and
level of treatment of each of the subsequent sections. The following table
classifies the different parts of each chapter according to the mathematical
sophistication of their content. 'Elementary' sections can be taught to ages
11-14 (grades 5-8). The 'intermediate' sections are for high school students
(ages 14-18), and 'advanced' sections are beyond the intermediate level.

This is, of course, only our own view of the relative difficulty of the treat-
ment, and every teacher should best judge for himself which material he can
use and at what time.

Table showing mathematical content for each chapter, with level of treatment
by section

Chapter

1

2

3

4
5
6
7

8

Mathematical
content

Computing and
polynomials
Logarithmic
functions
Exponential
functions
Statistics
Optimalization
Limits
Trigonometric
functions
Linear
transformations

Level of treatment

elementary

1.1,1.2

2.4

3.3

4.2
5.1,5.3(part)
6.1
7.1

8.2

intermediate

1.3-1.6

2.1,2.2,2.5

3.1,3.2

4.1,4.3,4.4
5.2,5.3(part),5.4
6.2,6.3
7.2,7.3

8.1

advanced

2.6

3.4

4.5
5.5
6.4
7.4

8.3



Calculators and programming: applications to polynomials

A good deal of primary data in mathematics consists of tables and graphs.
These data make the abstract formulas and equations concrete and down to
earth. They also exhibit phenomena which stimulate investigation. Much of
the theory can be motivated by the desire to explain what is observed, or to
answer natural questions arising out of the data. Most mathematical theories
have originated in the search for answers to specific questions. To present
the theory divorced from the data is to give the students answers to questions
they have never asked.

The data usually require computation. The main purpose of the calculation
is to find which phenomena the data exhibit. The drudgery of the compu-
tation and concern over computational error are distractions from this
purpose. Therefore the students should be encouraged to use computational
aids such as hand or desk calculators. Many schools and colleges also have
computer facilities available. The most common language used in educational
computers is BASIC.

We shall give here an introduction to the use of calculators and to BASIC
programming, to be used in conjunction with the later chapters. There are
minor variations in the versions of BASIC used in different installations, so
that our explanations may have to be modified slightly in some institutions.

1.1 The calculator: learning how to use it
We use the term calculator for any hand-held calculator. Obviously,

in any case, one should first make sure that all students know how to use it.
This entails some care on the part of the instructor, since he should check
that, although different makes or models may be used concurrently, all
students can perform the same operations.

A reasonable procedure would be to go over the following points:
(a) Read the manual of instructions. This explains what operations can
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be performed on the calculator, and how to do them. Make up a list
of the possibilities.
Practice with some simple calculations first, especially problems
whose answers you already know.
How does the calculator handle decimal points? Try problems like
1/10,1/100,...
and see what you get. Does it handle negative numbers? Try
0 - 10, etc.
What about large numbers? Try
10X 100, 10 X 1000,...
How does it round off?
How does it respond to division by zero?
How does it handle parentheses? How do you compute
(2 + 3) X 4 or 2 + (3 X 4)
with your calculator?

After this elementary work, we go over to learning how our calculator
handles functions. It is important to insist on a unified way of writing down
the order of hitting the keys, for instance

(b)

(c)

(d)

00
(f)

1024 B
4096

32

(Keys are denoted by | [; the display is not indicated. The calculator used
here is a T.I. 30.)

We can now solve more complicated problems:
(a) Solve the equation

3.14* + 2.27 = 51 .3x- 79.6.
The solution looks like this:

B 51.3 STO

B B
Explain the starred keys. How would we write this for
ax + b = cx + di
When do we use | +/- |?
Use the calculator for theoretical work. For example, to show the
distributive law as an efficiency device, compute
( 3 X 6 ) + ( 5 X 6 ) + (7X6) .
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The key-hitting series looks like

BE000BEEBE0 0 ,
altogether 12 key-strokes. What happened to the parentheses? An-
other way of obtaining the same result is to compute
(3 4- 5 + 7) X 6

000EI0EI0HE] ,
altogether 9 key-strokes. Why did we insert [ j j between Q j and
| x | ? Do we always save key-strokes by using the distributive
principle?
Consider the problem of computing an, where

(This comes up on p. 28.)
In considering (c), you want to compute an for a given value of n. You

might make tally marks to keep track of when you have reached the given n.
The work could be planned schematically as in fig. 1.1, in which case you

Fig. 1.1

stop
yes

input 3

tally 1

o you have n

no y

x 3

9
i

punch 3 into the calculator, make a tally on your record, and compare with
n. If you are already at n, you stop. If not, you multiply by 3, then go back to
the second step. You repeat until you reach n tally marks, then you stop.

This plan of steps is called a. flow-chart. It is useful to make a flow-chart if
the problem is at all complicated. A flow-chart is also helpful in programming
for a computer.

In the above case, an is, of course, 3n. If your calculator can raise numbers
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to powers you can calculate an in one step and compare results. For large n,
the calculator may round off differently in the two procedures. Try it and see.

1.2 Elementary programming

To program the same problem in BASIC, we would want the com-
puter to do the tallying, so our first step is to give the input n. This will store
the number at a certain place in the memory which is now labeled n. (You can
use any letter of the alphabet as a variable in this way.) Next you want to
insert 3 in the 0-place in the memory.

The simplest way to do the tallying on the computer is to subtract 1 from
n repeatedly until you reach 1. This operation of subtraction can be described
as:

Calculate n — 1 and put the result in the H-place of the memory,

or more simply like this:

n — 1 ->A2.

In BASIC this command is written

LETN = N - 1 ;

the computer will only print capital letters so the variables a and n become
A and N in BASIC. The equality sign here is used differently from the way it
is used ordinarily in mathematics. You may interpret it as a reversed arrow
(<-), and you may describe it as follows:

Put in the w-place (replacing if necessary what is already there) the
number n — 1, calculated from the present state of the memory.

Similarly the next step in making the flow-chart would be, in BASIC, the
command

LET A = A * 3

(* is the multiplication sign in BASIC). The flow-chart for our program is
shown in fig. 1.2. We have added a command to print the answer.

In writing the program, we must number the commands:

10 INPUT N
20 LET A = 3
30 IF N = 1 THEN 70
40 LET A = A * 3
50 LET N = N - 1
60 G0 T0 30
70 PRINT A
80 END .
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Fig. 1.2.

PRINT A

END

rs and programming

YES
4

INPUT N

LET;

ISN

r

\ = 3

r

" I ?

' NO

LETA=A*3

LET N = N - 1

4 1

i

In writing this program, we left the space after 'THEN' in the third command
blank until we reached the 'G0 T0' command. Then we could see that the
alternative should come after command 60, and write '70' in the third line.
The computer usually executes the commands in numerical order. One obvious
exception is a 'G0 T0' command. With an ' I F . . . THEN.. . ' command, if the
answer is 'N0' the computer goes to the next command, but if it is 'YES' then
the computer goes where the 'THEN' tells it.

If you type in this program, and then want to run it, you simply type the
command

RUN

The computer will respond with a question mark:

You then type the value of n. The computer will then print the answer, which
will be an.

If we want the computer to print a table of am for 1 < m < n, we must
modify the above procedure. It is convenient to start with m = 1 and to add
1 repeatedly until we reach n. The flow-chart in fig. 1.3 describes the method.
We can now write the program:

10 INPUT N

20 PRINT "M", "A"
30 LET M = 1
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40
50

60
70
80
90

100

LET A = 3
PRINT M, A

IF M = N THEN 100
LET M = M + 1

LETA=A* 3
G0 T0 50
END .

Note that in command 20 the computer will print exactly what is enclosed in

the quotation marks, namely the letters 'M' and 'A'. The comma in the com-

mand ensures that there will be a reasonable space between them on the print-

out. Command 50 tells the computer to print what is in the m- and ^-places in

Fig. 1.3.

INPUT N

PRINT "M'V'A"

LETM=1

LETA = 3

PRINT M,A

END
YES

IS M = N?

vNO

LET M = M + 1

LET A = A*3
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the memory. Since we have a comma there also, the numbers will be printed
under the proper headings.

As we will want to refer to the results later, we should label them to know
what they represent. This entails adding the following commands:

13 PRINT "TABLE OF A(M)"
16 PRINT "A(M + 1) = 3 * A(M)"
18 PRINT .

In BASIC all symbols are written on a line, with no subscripts, superscripts, or
exponents. Thus we write 'A(M)' for am, 'A(M + 1)' for a(m + ty Since the
computer executes commands in numerical order, it will perform these
between commands 10 and 20. This is why it is advantageous to have an inter-
val between command numbers, so that it will be easy to modify the program.
Command 18 merely leaves an empty line, for appearance's sake. Here is a
typical print-out:

?5
TABLE OF A(M)
A(M+ 1) = 3 * A(M)
M A
1 3
2 9
3 27
4 81
5 243 .

Try it yourself. Incidentally, if you run this program with the input 20, you
will find out how your computer handles roundoff.

1.3 Programming: the next stage
Suppose that you need, in addition to the above print-out, a table of

the values of am for 1 < m < n, when am satisfies the equations

To achieve this you would merely have to replace the '3' by '7' in commands 16,
40, and 80 of the above program.

For this purpose it is not necessary to re-type the whole program. It is
sufficient to type these new commands:

16 PRINT "A(M + 1) = 7 * A(M)"
40 LET A = 7
80 LET A = A * 7.
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The computer will simply replace the old commands with these numbers by

the new commands. You can carry out corrections to your program in the

same way.

If you have made some additions and changes in your program, you may

wish to see what program is now stored in the computer. You need merely

type the command

LIST

and the computer will list the current program with the commands in numerical

order.
Other things being equal, it is better to make your program general in the

first place, so that you can use it for a whole family of problems by simply

changing the inputs. Thus we should prefer to modify the commands as

follows:

10 INPUT N, B
16 PRINT "A(M + 1) = B * A(M)"

19 PRINT "B = "B
40 LET A = B
80 LET A = A * B .

When you run the program and the computer prints '?', you will supply two

numbers, which will be the values of n and b respectively. What happens if
command 19 is given as 'PRINT "B = B"'?

On pp. 48-50, chapter 2, you often need to find m such that

bm<c<bm + \

where b and c are given numbers greater than 1, and then to compute c/bm. A
flow-chart for this computation might be as shown in fig. 1.4. In this figure
we have added steps to print the answer and also the value of the quotient
c/a, which is needed for the next part of the work.

Write a program for this process together with a suitable heading. How
many commands are there in the program?

This problem illustrates the characteristic power of the digital computer.
The loop in the chart in fig. 1.4, which will be expressed by a 'G0 T0' and an
' I F . . . THEN.. . ' command in the program, tells the computer to do certain
operations repeatedly until a certain event occurs. In this way you can make
the computer perform thousands of steps with a short program. For example,
here if b is close to 1, say b = 1.001, and c = 2, then the computer will do
about 1000 multiplications and about 2000 other simple operations. Run the
program and see how long it takes. (Some computers will report the compu-
tation time.)

Typically, in many elementary problems it takes longer to feed the program
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Fig. 1.4.
INPUT B,C

LET A = 1

LET M = 0

LETK = B*A

PRINT "M = "M
YES

—4 IS C < K?
NO

—• 1 LET M = M + 1

PRINT "Q = "C/A LET A = K

END

into the computer and for it to type out the answers than it does for the com-
puter to calculate the answers.

The difference between the loop in this problem and the one in the pre-
vious problem is that here the repetition is carried out until a certain event
(here c < k) occurs, and the number of repetitions is not known in advance,
whereas in the previous problem we want the computer to repeat certain
operations & prescribed number of times (there n times). The latter type of
loop can also be programmed in another way which is often simpler. We can
use instead the program:

30 INPUT N, B
40 PRINT "B = "B
50 PRINT
60 PRINT "M", "A"
70 LET A = B
80 F 0 R M = 1 T 0 N
90 PRINT M, A
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100 LETA = A * B
110 NEXTM
120 END .

In this program, beginning with command 80, the computer sets m = 1,
executes the commands until it reaches the 'NEXT M' command, replaces m
by its next value, goes back to command 90, and repeats until m reaches the
value n. Then the computer goes to the command after the 'NEXT M' com-
mand. In this simple problem the two types of program are about equal in
length. In more complicated problems 'F0R. . . NEXT... ' procedure is often
shorter.

If you want the variable to proceed in steps of some other size than 1, you
can simply use a command of the form

F 0 R M = C T 0 D STEPS.

Then the computer executes the program for m = c, c + s, c + 2s , . . . , until
m reaches or passes d. For example, here is a program for computing a table
of x(t) from the equation

x[(n + \)h] =(l+rh)x(nh)

on p. 59, chapter 3, given the value of x(0):

40 INPUT R, H, A, K
50 PRINT "R = "R, "X(0) = "A
60 PRINT
65 LET B = 1 + R * H
70 PRINT "T", "X"
80 LET X = A
90 F0R T = 0 T0 K STEP H

100 PRINT T, X
110 LETX = B*X
120 NEXT T
130 END .

Try this program with particular values for the inputs.
If you want the variable to decrease in regular steps, you can use the same

type of command with a negative value for s. If the size of s is not specified,
the computer always takes it to be 1.

1.4 Calculators as motivation for theoretical work
As mentioned in section 1.1, it is important to remove drudgery

from computation when teaching mathematics through its applications, as
computation enables us to examine various mathematical models and assess
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their predictions. It is also obvious that, since 'round numbers' are irrelevant
when working with a calculator, we can use realistic data. It is usually assumed
that a calculator helps the understanding of limiting processes. This is in fact
true - but with a slight twist. The characteristics of the calculator interfere
with the limiting process.

Try, for example, to sum the infinite series

£ l

^ n

by means of the computer. An obvious program would be10
20
30
40
50
60

INPUT M
LETS = 0
F0R N = 1
LET S = S H
NEXTN
PRINTS ,

which would give us

m .

n = 1

T0M
Kl/N)

However, beyond a certain value of n the computer will round off \\n to 0,
and the value of sm from that point on will be constant.

This is even more apparent on a calculator. Using some special tricks on a
programmable calculator, Professor D. B. Scott of the University of Sussex
was able to obtain a value of sm (for a certain large m), which was close to 24,
but he did not succeed in reaching 24.

Let us look at the problem a little more closely. Suppose we group the
terms like this:

MWMW+HK-
beginning each group of terms with l/2fc and taking 2k terms in each group.
In the third group, for example, the largest term is the first term, 1/4, and
there are four terms. We infer that

T + 7+r+i<4X7=l.4 5 6 7 4

In the same way we see that the sum of each group after the term 1/1 is less
than 1. We thus obtain
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Thus the sum of the first 2100000° - 1 terms is less than 1 000 000.
Similarly each term in the third group is larger than the first term in the

next group, 1/8. Hence we find that

1 , 1 , 1 , 1 . . v 1 1
4 + 5 + 6 + 7 > 4 X 8 = r

In the same way, we find that the sum of each group is greater than 1/2. This
yields the estimate

1 + 1 + 1+ + L _ >*±I
1 + 2 + 3 + ' " 2 * + 1 - l 2 '

Thus if the values of the terms were computed exactly, we would find that
sm > 24 for m = 2 4 8 - 1. This number is greater than 1014, since 210 > 103

and 28 > 102. If the computer could compute l/n and add it to the previous
sum (command 40 in the above program) in 10~* seconds, it would take the
computer more than 108 seconds to compute sm for this value of m. Estimate
the number of seconds in a year.

Exercises
1. Estimate how long the computer would take to reach a value of 60 in

the above problem. Compare with the estimated age of the Earth.
2. Estimate how many terms are needed in the above problem to reach

a sum greater than 1 000 000.
3. Compute

(3 + hf - 32

h

for h = l/2n
9n = 1,2,3, . . . , using a hand or desk calculator or a

computer. What happens? Why?
We see that the computer has several limitations in the study of limiting

processes:
(a) the roundoff of the computer may disguise what really happens;
(b) an unpractically long time may be needed to reveal the real trend.

Nevertheless, the computer or calculator can be a valuable tool in the investi-
gation of limits. These instruments can often suggest trends and exhibit
phenomena. The theoretical analysis often arises out of concrete numerical
results and can frequently be motivated by them.
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Exercises
4. Letxo= 1 and let

xn + I
 = r z — •

1 "T~ V

Compute xn for n = 1,2,3,..., and also xn(xn + 1). What seems to
happen? What conjectures do your numerical results suggest?

5. Choose any values forx0 andx t . Computexn iom>2 by

xn + 2 =xn+ 1 + *w>

and compute xn + x/xw. What seems to happen? Let

yn=xn+Jxn,

and compute

6. Choose any two positive numbers a and &. Let

x « + 1 " V-̂ MJVWJ2 J ^ / I + 1 ~ \xn "^yn)lz'

Compute xn andj>w for « = 1,2,3,... What seems to happen?
7. Choose any three positive numbers, a, b, and c. Let

= 3
" + 1 llxn + llyn + l/zn >y»+i

and

_ n y n n
zn + l 3 •

Compute xw,.yn, and zw for w = 1,2,3,... What seems to happen?

1.5 Efficiency of programs: computation of polynomials
We have seen above that sometimes it is desirable to give some pre-

liminary thought before engaging in computation or programming. If a certain
process must be repeated many times, one may have to think about the time
required. Even if the computer performs the individual operations very
rapidly, the saving of a few steps in each repetition of the process may save a
significant amount of computer time.

Let us illustrate this with the problem of computing a polynomial:

P(x) = ax2 + bx + c.

We could, in BASIC, give the command

LET Y = (A * X * X) 4- (B * X) + C.
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The computer would perform, for a given value of x, the operations indicated
below:

A * X , ( A * X ) * X , B * X ,
( A * X * X ) + (B*X),
(A * X * X) + (B * X) + C,

in all, five operations - three multiplications and two additions.
There would be no saving if we used the symbol F for exponentiation in

BASIC, for example,

LET Y = A (X F 2) + (B * X) + C,

since the computer would simply compute 'X F 2' by means of the multipli-
cation 'X * X'. If, however, we used the algebraically equivalent command

LET Y = X * ((A * X) + B) + C,

the computer would only perform four operations - two multiplications and
two additions. You can compare these alternatives by choosing values for a,
b, c, and x, and executing the operations with a hand calculator.

If the computer does a multiplication in 4 X 10"6 seconds, then the saving
achieved by the third command is negligible in computing the polynomial
once. But it may be non-trivial if the polynomial must be computed in the
order of 106 times.

For a polynomial of the third degree,

P(x) = ax3 + bx2 +cx + d,

a step can be saved by computing x3 = x • x2 from the previously calculated
value of x2. Thus the direct command

LET Y = (A * (X F 3)) + (B * (X F 2)) + (C * X) + D

means six multiplications and three additions. The alternative
LET Y = X * (X * ((A * X) + B) + C) + D

only requires three multiplications and three additions. Now the saving, if the
polynomial must be computed many times, is more noticeable.

Exercises
8. Compare alternative programs for computing an arbitrary polynomial

of the fourth degree. What is the smallest number of operations
needed?

9. Choose values for the coefficients in exercise 8 and compute the
polynomial, with a hand calculator, using the various procedures
you compared in that exercise. Compare the times for the various
alternatives.
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10. Find out at any nearby computer facility the computer times for a
multiplication and an addition, and the cost of computer time.
Decide what amount of money is significant to you. How many
computations of a fourth degree polynomial would be needed for
your most efficient program to produce a significant saving to you?

11. Work out exercise 8 for fifth degree polynomials. Generalize to
polynomials of degree n.

12. Consider a fifth degree polynomial:

P(x)=xs+AxA + Bx3 + Cx2 + Dx + E.

(For the sake of simplicity we have taken the coefficient of x5 to be
1.) Try to find a9 b, c, d and e such that, if

then

P(x)=y[x(y + c) + d] + e.

If you equate coefficients of like powers of x on both sides, you
obtain a system of five equations in five unknowns. It is easy to
solve for a. The unknowns c and d can be expressed in terms of b by
using the next two equations. If these expressions are used in the
next equation, you obtain a quadratic equation for b. The last
equation is then easy to solve for e. After the values of a, b, c, d,
and e are obtained, how many operations are needed to compute
P(X)1 Compare with the best method you found in exercise 4.

This method of computing a polynomial of the fifth degree was
discovered by the late T. C. Motzkin. He also found a more efficient
method for computing a sixth degree polynomial. The most efficient
method of computing an «th degree polynomial is unknown.

13. Choose values for A, B, C, D, and E, and compute P(x) for several
values of xby Motzkin's method. How many computations are
needed before the total amount of work in Motzkin's method is less
than the amount required by the method of exercise 11?

In many high school texts a method of 'synthetic division' is given for com-
puting the value of a polynomial. The method is based on the remainder
theorem:

If the polynomial P(x) is divided by x - k, then the remainder is P(k).
The proof is very simple. Let the quotient be the polynomial Q(x), and
let the remainder be R. We then have the identity

dividend = (quotient • divisor) + remainder,

0 1 P ( ) = G ( ) (
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Since the degree of the remainder R must be less than the degree of the
divisor x - k, which is 1, the remainder must be a constant. If we set x = k
in the above identity, then we obtain

P(k) = Q(k) -(k-k) + R=R.

The method of synthetic division is an efficient way of arranging the pro-
cess of division. Suppose, for example, thatPfc) = 3x2 + Ax — 2, and k = 5.
We observe that in the division process

3x + 19
x - 5 | 3 x 2 + 4 * - 2

3x2 - 15x
1 9 * - 2
19x - 95

93

the powers of x merely serve as place-holders, and that the essential calcu-
lations involve only the coefficients. We could just as well write only the
coefficients, being careful to write each in its proper place:

3 + 19
l _ 5 | 3

3 - 1 5
19-2
19-95

93
We observe, however, that there are several unnecessary repetitions in the
above arrangement; for example, the 3 occurs in three places. Also the 1 in
the divisor will always be there. Furthermore the subtractions could be
replaced by the additions of the negatives. This leads us to the more economi-
cal arrangement

+ 5 + 4 - 2
+ 15 +95
+ 19 +93

where the quotient = 3x + 19, and the remainder = 93.
Let us consider the more general problem of dividing the polynomial

P(x) = ax2+ bx + c by x - k. The above process leads to the calculation

+ b +c
+ ak + kjak + b)

ak + b k(ak + b) + c

The important point for us just now is that the process yields
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which is exactly what we obtain by our previous method where we put P(x)
in the form

Thus we see that for quadratic polynomials the algorithm for efficient pro-
gramming discussed before coincides exactly with the algorithm of synthetic
division.

Exercises
14. Divide P(x) = 5x3 - Ax + 1 by x - 2, both by the usual method and

by synthetic division. Check that the remainder is P{2).
15. Divide the polynomial P(x) = ax3 + bx2 4- ex + d by x - k, by the

method of synthetic division. What formula does this give for the
remainder?

Polynomials are the simplest type of functions. As we have just seen, they
are easy to compute. Therefore it is often useful to approximate other more
complicated functions by polynomials.

1.6 Numerical solution of algebraic equations

In dealing with practical problems, we often need to solve an algebraic
equation. For a quadratic equation, such as

x* __ ^ _ 2 = 0>

we have a simple algebraic formula

for the solution.
For equations of the third and fourth degree, such as

j t 3 - f i c - l = 0 (1.1)
or

x4 - tx - 1 = 0,

there are algebraic formulas for the solutions, but they are so complicated
that they are usually of no practical value.

For equations of degree greater than four, such as

x5 - f c c - l = 0, (1.2)

there is, in general, no algebraic formula for the solution. In such cases, we are
forced to look for other methods of solving the equations.

If, for instance, we take t = 1 in (1.1) and calculate a table of values for the
polynomialP{x) = x3 - x - 1, we find thatP(l) = -1 ,P(2) = 5. SincePis a
continuous function, P has a root v in the interval 1 < x < 2 (fig. 1.5).



1.6 Numerical solution of algebraic equations 21

One approach for obtaining a better approximation to v is to approximate
the polynomialP in the interval 1 < x < 2 by a linear function. The equation
of the line joining (1, -1 ) to (2, 5) is

If we set^ = 0 and solve for x, we obtain

x = l + | -1 .167

for the x-coordinate of the intersection of the line with the >>-axis. We expect
this to be a fairly good approximation to v. The value of P at this point,

P(1.167) =-0.579,

is a good measure of how good an approximation 1.167 is to v.
We can repeat this process to obtain a better approximation. Since i>( 1.167)

is negative v is between 1.167 and 2, that is, 1.167 < v < 2. We find the
equation of the line joining (1.167, -0.579) to (2,5),

5 - ( -0 .579 )
y + 0.579 = (x- 1.167),

2 - 1.167

and find its intersection with the x-axis by setting >> = 0 and solving for x. We

k (2-1 .167)obtain
x= 1.167 + (0.579)

(5 + 0.579)'

Fig. 1.5.

y ^

(0,0)

(2,5)

(1,-1)
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In general, if Pfci) andP(x2) have opposite signs andxx <x2, then P has
a root v such that x i < v < x2. The equation of the line joining (x u P(x x)) to
(x2,P(x2))is

If we set,y = 0 and solve for* we obtain

as our next approximation. We test this approximation by computing P(x). If
P(x) = 0, then x = v is the desired root. If P(x) has the same sign as P(x x),
that is, P(x)P(x 0 > 0, then we take this as our new x t. lfP(x) and P(x t)
have opposite signs, then we take x as our newx2. This process is often called
the 'method of false position'.

Exercises
16. Calculate the next two approximations to v in the above example, by

the method of equation (1.3).
17. Apply the above process to equation (1.2), with t = 1, and obtain a

good approximation to the positive rootv. How do we know that
there is a unique positive root?

18. In exercises 16 and 17 do you get good lower bounds for the root v?
Do you get good upper bounds? How can you get better upper
bounds?

19. Apply the above process to equation (1.2) with t = 16 and obtain a
good approximation to the unique positive root. Graph the poly-
nomial carefully. How many negative roots are there? Obtain
approximations to them.

If we know numbers a and b such that P(a)P(b) < 0, then we can construct
a flow-chart for the above process. The schematic chart shown in fig. 1.6
is almost good enough. The only trouble is that you will rarely have the good
luck of finding x such that P(x) = 0 exactly. Thus theoretically the process
described by the chart may go on for ever. Also, for practical purposes,
you do not need to find v exactly. Therefore you should decide how close
you wantP(x) to be to zero. If you are satisfied with

\P(x)\< 0.001,

then you should replace the question '\$y = 0?' by

Is |j>|< 0.001?

In the above examples, P(0) = — 1 < 0, and P(x) > 0 for large values of x.
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Hence we can compute P(x) for x = 0,1,2,..., until we come to the first
integer at which P is positive. We may take this as b and b — 1 as a to get
started on the above chart. For more general polynomials there is no good
general method for finding suitable values for a and b. The simplest way to
start is to make a graph or a table of values for the polynomial P. It is often
helpful (for people who know calculus) to examine the derivatives P' and P",
and to find or estimate the points where P has maxima or minima.

Exercises
20. For t = 3 in equation (1.1), find suitable values for a and b. Execute

the above program with a hand calculator. How many steps did you
need?

Fig. 1.6.

Letxl =a
Letx2 =b

Lety2=P(x2)

Letx=xx +

Lety = P(x)

yes
Is y = 0t>

Print "v = "x
yes

—4—

LetxL =x
Letyi =y Lety2 = y
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21. Translate fig. 1.6 into a program for solving equation (1.2), given t,
a, and b. Start numbering your commands with 100.

22. Write a program for finding suitable a and b for equation (1.2), given
t. Combine this with your program for exercise 21.

23. Try to program in exercise 22 for various values of t. What happens
if t is large? If t is close to zero?



The logarithm

In this chapter we show several ways of introducing logarithmic functions.
Napier (1550-1617) invented logarithms originally as an aid to computation,
by a method similar to the one we use in section 2.5. Later on, Briggs showed
that logarithms to base 10 are more suitable for practical computation.
Commercial slide rules exhibit a concrete model of logarithms to base 10.
Since the advent of the computer and the hand calculator, logarithms and
slide rules are no longer important for purposes of computing, but the loga-
rithmic function is still fundamental for most branches of mathematics and
many of its applications.

In sections 2.1-2.3 we give several ways of introducing the logarithmic
function in connection with applications. The study of measuring information
leads naturally to logarithms to base 2. We focus attention on the basic
properties of this function, and especially on how to calculate it using only
simple mathematics. This should remove most of the mystery that surrounds
the numbers in logarithmic tables in the eyes of most students. The usual
texts have an adequate supply of routine problems with which the teacher
may supplement the material given here.

Another purpose of sections 2.1-2.3 is to show how a body of knowledge
can be organized in the form of a deductive science. We try to give some idea
of where postulates come from and how they are related to the real world.
The insights of these sections should also be valuable in the teaching of high
school geometry.

Sections 2.4 and 2.5 illustrate how the logarithmic function can be intro-
duced at a more basic level. We believe that it is valuable for teachers at
more advanced levels to see how simple the fundamental concepts really are.

Section 2.6 gives a treatment suitable for advanced high school or college
students. Here we discuss logarithms to an arbitrary base. Until recently,
logarithms to base 10 have been the most important for practical computation,
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while logarithms to base e (natural logarithms) have been, and continue to
be, the most important for theoretical purposes and more advanced appli-
cations. For work with computers, logarithms to base 2 are nowadays very
widely used.

2.1 Coding

The storage and retrieval problem

Suppose you run into a mathematical problem. Should you try to
solve it yourself, or should you try to find out whether it has been solved, or
at least what work has been done on it? Suppose you want to send in a pro-
posal for a research project to a government agency like the National Science
Foundation. Obviously they will not give you a contract if the answer to that
problem is known. How will you go about finding the information?

You might first dig into the journal Mathematical Reviews, published by
the American Mathematical Society, which gives short reviews of all mathe-
matical articles and books published anywhere in the world. You might start
with the current issue or volume and work back. The index is of some help
if you know the author or the general topic. Under a general topic like
irrational numbers, you might find 20 or 30 papers per year listed, but the
index would not be so detailed as to have a listing under 'the decimal
expression of n\

During the past few years, Mathematical Reviews has published about
15 000 reviews per year. There is, of course, a time lag between publication
of results and publication of the review. You can order a microfilm or
photocopy of any paper from Mathematical Reviews if you know what to
ask for.

Imagine, then, that you have a library or an archive with copies of all
these papers stored away, and you want to locate all those, if any, which
have the information you want. How should the paper be stored or classi-
fied so that you can get the information you want out again at reasonable
cost of time and money? There have been several international conferences
on this problem. A number of libraries have large research grants for applying
mathematics and computers to questions like this.

The same problem arises in other fields. Suppose you find an insect and
you wish to know whether it belongs to a new species or a known species; if
the latter, you will want to identify your insect. How can you search through
the descriptions of the million or so known species to get an answer to your
question? Again, suppose you are managing a technical aid project, and you
ask the National Roster of Scientific and Technical Personnel to locate a civil
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engineer who knows colloquial Tibetan. How can they store their information

about people so as to answer such requests efficiently?

Classification

Let us study the problem of cataloging the mathematical papers as
they are published, in such a way that you can recognize the papers you are
interested in from the cataloging card. One approach is to ask a standard set
of questions in a standard order and record the answers on the card.

Your first question might be 'Is it about algebra, geometry, or probability?'
You might then print A, G, or P at a certain spot on the card. Then you might
ask 'What number system is used - integers, rationals, reals, or complex num-

bers?', and so on. Then, when you want to look something up, you, a clerk,
or a computer could search through the cards for the kind of papers you want.

For the sake of simplicity, we could record each answer with a single sym-
bol at a certain standard spot on the card. However the first question above
would then not be suitable. How would a paper on the solutions of the
equationx2 + y2 = z2 , which also discussed the Pythagorean theorem be
classified? A and G cannot both be printed on the same spot.

So the questions should have mutually exclusive answers. We should only
ask questions which have unique answers. If no question has more than 26
possible answers, we could symbolize the alternatives by letters of the alpha-
bet, as in the familiar multiple-choice tests. If there are never more than ten
possible answers, we could use digits 0 ,1 ,2 , . . . ,9. If we use only yes-no
questions, we could simply punch a hole for 'yes' and not punch for 'no'.

The symbols on the card then contain a certain amount of information: to
which one of a certain number of categories does the paper belong? The more
possible categories there are, the more information the card contains.

If the answer to the first question is A, B, or C, and to the second is A or
B, then a card will have one of the following 'words' printed on it: AA9 AB,

BA,BB, CA, or CB. The number of possible categories is then the same as the
number of different words - in this case six.

Exercises

1. Given three questions with four answers (A,B,C,D) to the first, three
(A, B, C) to the second, and two (A,B) to the third, list all the code
words. How many categories are there?

2. Given ten yes-no questions, how many categories of code word are
there?

3. There are three 10-choice questions. How many categories are there?
4. Which gives more information, three 10-choice questions or ten yes-

no questions?
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5. Which gives more information, five 3-choice questions or eight 2-
choice questions?

6. How many 2-choice questions do you need to identify 1000 cate-
gories?

Combinatorics
Suppose we use only 3-choice questions, so that we can code each

answer with A, B, or C. Each card will have a code word like ABBA C, giving
us a classification of the cards. If there are n questions, then how many cat-
egories are there? This is equivalent to the problem 'How many sequences
of n letters are there, if there are three possible choices for each letter?' Let
an be the number of such sequences. Let A x be the set of all sequences which
begin with A, Bx the set of all which begin with B, and Cx the set of all which
begin with C. Then

where N(A t) is the number of members in the set A x. Any sequence in A x is

obtained by writing^, then a sequence of n — 1 letters, with three possible

choices for each letter. Therefore we have

and similarly

It follows that

and

at=3.

We can now compute an successively for n = 2,3, .

a3 = 3a2 = 3 X 3 2 = 3 3 = 27,

and in general

Exercises

7. With an 'alphabet' of two letters, say the digits 0 and 1, how many
M-letter 'words' are there? List all of them (0000, 0001, etc.) for
n = 4.

8. With a 10-letter alphabet, how many w-letter words are there?
9. The outcome of n rolls of a die can be described by an n-letter word,
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using the 6-letter alphabet {1,2,3,4,5,6}. How many possible out-
comes are there?

10. How many 7-digit telephone numbers are possible? How many
digits would be needed to have a number for every person in the
United States?

11. Which gives more information, three 3-choice questions and four
5-choice questions, or seven 4-choice questions?

2.2 Measuring information

Amounts of information
In 1948 the mathematical engineer Claude Shannon, then with Bell

Laboratories, invented a new branch of mathematics called information theory.
This theory has been applied since then to electrical engineering, psychology,
linguistics, and even to library work.

Shannon was interested in comparing various methods for coding, trans-
mitting, receiving, and decoding information. In order to find out which
methods are most efficient, he needed a way to measure amounts of infor-
mation. We shall study here the simplest case of this problem of measuring
information.

We take as the unit of information the bit, which is the amount of infor-
mation in the answer to a 2-choice question. The question may be whether a
certain digit is 0 or 1, whether a light bulb is on or off, whether a hole is or is
not punched at a certain spot, etc.

Obviously the amount of information obtained from the answer to a 3-
choice question is more than the amount of information in the answer to a
2-choice question, as more possibilities are eliminated. We shall call this
amount 7(3), so

10) > 1(2)
or, since

7(3) > 1 .

Let I(n) be the amount of information we have if we know the correct
answer out of n possibilities. Then, if m < n, the same reasoning as above
shows that

Can one add amounts of information? Suppose that we have answers to a
3-choice question and a 5-choice question. How much do we know altogether?
Since there are three possible answers to the first question and five to the
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second, there are 3 X 5 possible cases altogether. So the answers to the two
questions give us /(15) bits of information, or

7(3) +7(5) = 7(15).

This reasoning shows in general that

Let us group our main results together:

7(2) = 1 . (2.1)

lfm<n,I(m)<I(n). (2.2)

I(mn) = I(m) + /(«). (2.3)

In arriving at these conditions, we have assumed that there is a measure
of amounts of information, and we have simplified the problem by ignoring
the content of questions. In (2.3) we tacitly assumed that the questions under
consideration are independent, that is, the answer to one question has no effect
on the answer to the other. In defining /(«), we have also tacitly assumed that
all the possible answers to the ^-choice question are equally likely. In any
attempt to describe mathematically a situation in the real world, we have to
make simplifications and idealizations like these in order to get started. After
developing a simple theory on the basis of such simplifications, we can then
try to modify it to obtain a more sophisticated, but more realistic theory.
This will usually be at the cost of making the theory more complicated.

Calculating I(n)

Principles (2.1), (2.2), and (2.3) enable you to calculate I(n) as
accurately as you please. For example, let us estimate 7(5). Since

22 < 5 < 23

we have, by (2.2),

7(22)<7(5)<7(23),

but by (2.3) we see that

7(22) = 7(2X2)=7(2)+7(2) = ( )

by (2.1), and

7(23) = 7 ( 2 X 2 X 2 ) = ( ).

Fill in the missing values in these expressions and in the following text. There-
fore we find that

2<7(5)<3,

that is, the answer to a 5-choice question contains between 2 and 3 bits of
information.



2.2 Measuring information 31

We can obtain a more accurate estimate if we compare 52 with the
successive powers of 2:

24 = ( ) , 2 5 = ( ) , 2 6 = ( ) ,27 = ( ),etc.

We find that

so that

One side of this inequality improves our previous estimate.
We obtain a better squeeze on 7(5) by comparing 53 with the successive

powers of 2:

2 ? < 5 3 < 2 ? ,

which yields

and
(

We could proceed in this way. If we find k such that

2*r <5iooo < 2 ^ + 1

then
* < 10007(5) < k + 1,

and
fc/1000 < 7(5) <A;/1000+ 1/1000,

so that 7(5) is determined to within an error of less than 0.001.

Exercises
12. Make a table of powers of 2 up to 220. Calculate 310 and obtain an

estimate of 7(3).
13. Calculate 76 and estimate 7(7).
14. Find n such that

o7\« i i /o7\n + 1

—, < -\ = 1.375<(—,)
11V 23 Vll2/

and estimate 7(11).
15. (a) Which is larger,

(b) Is there an n such that (1.01)" > 2?
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More computations
By now it is quite obvious that

and the next stage is to look for better and quicker ways to compute /(«).
As an example, let us look at 7(5), and set 7(5) = x.

First let us estimate x between consecutive integers. In our previous work,
we found that 2 < x < 3. Then we set

where xx > 1. We obtain

2 = i ,
xx

We try to estimate xx between consecutive integers. Let us compare 7(5)
- 7(4) with 7(2) = 1. We see that

2 [7(5) - 7(4)] = 27(5) - 27(4) =7(52) - 7(42),

which is less than 7(2) if

7(52)< [7(42)+7(2)] =7(42 X 2).

Is this so? What about

3 [7(5) - 7(4)] = 37(5) - 37(4) = 7(53) - 7(43),
and

4 4

We find that

and conclude that

Hence

2.25= ^2 + ^ < x < (2 + j ) = 2-3 3>

so that
7(5) = 2.29 ± 0.04.

If we want to refine this estimate, we put

JC! = 3 + 1
x2

where x2 > 1, and obtain the equation
- /(53)] = 7(5) - /(22). (2.4)
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(Hint; by substituting (3 4- l/x2) for xx in the equation

Xl[i{S)-iW\ = i
we get

3x 2 [ / (5 ) - / (4 ) ] + [7(5)-7(4)] =x a . )

Now we simply continue in the same way.

More properties of I(n)
We can simplify the calculations by defining

for example,

7 l g | ) =7(128)-7(125).

Let us first check that this definition is legitimate. A rational number has
many representations as a fraction:

5 = 1 0 = 1 5 = 500
4 8 12 400 '

This yields the following'values' for7(|):

7(5) - 7(4),7(10) - 7(8), 7(15) - 7(12), etc.

Are all these numbers really equal? Is, for instance, 7(5) — 7(4) equal to 7(15)
- 7(12)? Compare 7(5) + 7(12) with 7(4) 4- 7(15), using (2.3).

Exercises
16. If a, b, c and d are positive integers and a/b = c/d, compute

We define

Does this definition assign a unique value to I(r) when r is rational?
17. Suppose that a, b, c and d are positive integers and a/b < c/d.

(a) What is the sign of be - ad 1
(b) Compute

using the definition in exercise 16. What is the sign of this difference?
(c) Is principle (2.2) valid for rational numbers?



The logarithm 34

18. Suppose 0, b, c9 and d are positive integers, and

(a) Compute 7(r) 4- 7(s) and I(rs).
(b) Does principle (2.3) hold for rational numbers?

19. (a) Compare the successive powers of

j g = 1.024 with | = 1.25,

that is, find an integer n such that

(1.024)" < 1.25 < (1.024)"+1,

and estimate x2 in equation (2.4).
(b) Use this result to estimate xx, then x. What is the difference
between the upper and lower estimates you obtain?

20. Use the method from the text to estimate /(3), 7(7), and /(11).
21. What integers from 2 to 100 have only 2, 3, 5, 7 or 11 as factors?

Use this information to make a rough table of I(n) for 2 < n < 100.
22. Does principle (2.3) work if n = 1? What must 7(1) be? What is the

interpretation of this result?
This section illustrates a typical phenomenon in applied mathematics. Often

a mathematical model for a situatipn in the real world takes on a 'life' of its
own. The analysis of the model often leads us to problems and concepts
which have no obvious concrete interpretation. The introduction of I if) for
rational values of r is an example of this. On the other hand, sometimes
concepts which arise in the mathematical analysis suggest new and useful
concepts in the real world situation. Thus the physical concepts of energy
and temperature originated in the analysis of certain mathematical models
for physical phenomena.

2.3 Comments on models and axioms
In this chapter we have been examining the problem of measuring

information. We started by assuming that there is such a measure, represented
by the function 7(«). By analyzing the properties which we think the measure
ought to have, we were led to conditions (2.1), (2.2), and (2.3). If we take
these as postulates and take the function 7 to be undefined, we obtain an
abstract mathematical system, which we call a mathematical model, for
information theory. This set of postulates, together with their logical conse-
quences, is called ^deductive science. Our intended interpretation is in terms
of information, but there may be other interpretations as well.

In general, when we are faced with a phenomenon in the real world, we
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first try to investigate it by observation and experimentation. After we have

built up a body of knowledge, we try to organize it in such a way that we can
make predictions. Usually this requires that we set up a mathematical model

to describe the situation under consideration. The assumptions and the basic

concepts (the undefined terms) of the mathematical model arise from the
intended concrete interpretation. The theorems will usually be predictions

of the results of further experiments.

The real world is too complicated for our finite human minds to grasp

fully, so the construction of the mathematical model involves simplifications

and idealizations. Thus, in the above model for measuring information, we
assumed that all the answers to a question are equally likely and gave them

equal weight. A more sophisticated, but more complicated, model would
allow the questions to be assigned different weights. For a development of

such a theory see A. Y. Khinchin, Mathematical foundations of information

theory (Dover Publications, New York, 1957). The important point to notice
here is that the choice of the postulates and undefined terms is a human

decision.
Most mathematical systems of interest arose from such attempts to des-

cribe aspects of the real world. Euclidean geometry is a classical example of

this type of applied mathematics.
The historical development of geometry suggests also the best approach to

teaching it. Just as centuries of empirical work in Egypt and Babylonia pre-
ceded the emergence of the deductive approach in the century before Euclid,

so a good deal of observation and measurement of geometric figures should

come before the introduction of postulates. The postulates should arise as
generalizations of the students' experience.

Similarly, the basic concepts such as 'measure of information', 'point', and

'line' are simplifications and idealizations. One should emphasize that one

does not see actual 'points' and 'lines' in the real world. The Danish mathe-
matician Hjelmslev published a system of postulates describing 'points' as

dots of finite size and 'lines' as streaks of finite width, restricted to a finite
piece of paper (J. T. Hjelmslev, 'La geometrie sensible II', Enseignement

Mathematique, 38 (1942), 294-322). This geometry is more realistic than

Euclidean geometry but is much more complicated. The students should be
aware that the assumptions and basic concepts are matters of human choice,

and can be changed.

The theorems can be considered as predictions. When we test such pre-
dictions by further observation, we find out to what extent our model
actually fits the real world it is meant to describe. Thus the theorem that the
medians of a triangle are concurrent is a striking prediction which should be
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tested by actual construction. The Pythagorean theorem should be tested by
measurement.

Unfortunately most school textbooks present the postulates of geometry
as though they are revealed from on high, without any discussion of where
they came from, or of any alternatives. Also, in most school curricula,
students in elementary school and junior high school get inadequate
experience with the empirical facts of geometry. Hence they are not
sufficiently prepared for the formal organization of geometry as a deductive
science in high school. Therefore it is left to teachers to fill in these gaps as
well as they can.

It would be a good exercise for the students to try to formulate a mathe-
matical model for Hjelmslev's geometry of dots and streaks.

2.4 The game o f Info'

Starting the game
The idea of measuring information, and the function /(«), can be

introduced at a more basic level via a variant of the familiar game of 'Twenty
Questions'. We call our game 'Info'.

A set of objects, such as the students in the class or the integers from 1 to
100 inclusive, is agreed upon in advance. Two players play. One player thinks
of an object in the set, writes its name on a slip of paper, and hands it to an
umpire.

The other player must guess the object the first player is thinking of. He
may ask only questions which can be answered by 'yes' or 'no'.

When the second player succeeds, the players interchange roles. The
second player chooses a member of the set and the first player must guess it.
Whoever asks the smallest number of questions wins.

In teaching 'Info', we have found it useful, after some free play, to play
against the class. We think of a number from 1 to 100 and write it on a slip
of paper. As the pupils ask their questions, we write them on the blackboard
together with the answers. When the class has guessed our number, we step
out of the room while the class agrees on a number. They send a messenger to
call us back, and we ask our questions. As before, we write the questions and
answers on the blackboard.

There are several methods we can use. The one which can be used to teach
the most is to ask 'Is the number odd?' If the answer is 'No', we say 'Divide
the number by 2. Is the result odd?' If the answer is 'yes', we say 'Subtract 1,
then divide by 2. Is that result odd?' We repeat the procedure until we have
asked seven questions. Then we name the class's number.
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After we beat the class twice by such a strategy, it becomes obvious that
we have a method which is better than random guessing. The class is then
receptive to a discussion of why some questions are better than others. For
example, it almost always happens that some of their questions are super-
fluous. Also, the question 'Is the number even or odd?' always has the answer
'yes', and therefore gives no information! The question 'Is the number between
10 and 20?' is somewhat ambiguous because it is not quite clear whether 10
and 20 are included or not. One should add either 'inclusively' or 'exclusively'.
These remarks already teach the importance ofsaying what you mean.

The fact that one can predict the answers to some questions from those of
the preceding questions teaches that questions have logical relations. For
example, the answer 'yes' to 'Is the number divisible by 10?' tells you what
the answer to 'Is the number odd?' must be.

One way of showing this clearly is to list, after each of the class's questions
the set of possibilities that remain. Thus, we might have:

(a) Is the number greater than 70? No {1,2,.. . ,70}.
(b) Is the number divisible by 5? Yes {5,10,15,20,25,30,35,40,45,50,55,

60,65,70}.
(c) Is the number even? No {5,15,25,35,45,55,65}.
(d) Is the number greater than 50? No {5,15,25,35,45}, etc.

This procedure now makes it clear when the answer to a question can be
determined from the preceding answers.

At this point it is good teaching strategy to give the pupils, for homework,
the assignment of playing 'Info' with friends and family, and trying to discover
further principles for asking good questions.

Exercises
23. Which is a better first question, 'Is the number 17?' or 'Is the number

greater than 70?' Why?
24. Suppose the answer to question (b) in the textual example above

had been 'no'. List the set of possibilities then remaining after each
question.

25. Is question (b) a good question? Which of the following would be a
better question:

(b') Is the number greater than 35?
(b") Is the number divisible by 10?
(&'") Does the number have two digits?

26. Can any of the other questions in the example be improved? How?
27. How does the method we used work? Try the method on the numbers

from 1 to 8 inclusive. Consider whether 0 is even or odd. What can
our method teach, in addition to logarithms?
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28. Can you devise a simpler method than ours which will also give the
desired number after seven questions?

Analyzing the game

In the second lesson, after the pupils have reported on the discoveries
they have made, you can begin an analysis of what a question does by con-
tinuing to study the above example. Question (a) separates the set of all
possibilities {1,2,. . . , 100} into two subsets, a yes-set {71,72,... ,99,100}
and a no-set {1,2,3,... ,70}. These sets for question (b) are:

yes-set {5,10,15,20,..., 100},
no-set {1,2,3,4,6,7,8,9,... ,94,96,97,98,99}.

The set of all possibilities remaining after the first two questions is what is
common to the no-set of question (a) and the yes-set of question (b)9 that is,
their intersection.

Let us return to question (a). If the answer is 'yes\ how many possibilities
remain? What about if the answer is 'no'? What is the worst that can happen?
What is the maximum risk in asking question (0)?

Would it be better to ask question (b) first? Now what is the worst that
can happen? What is the maximum risk in asking question (b)l As a first
question, which is better, (a) or (&)? Can you think of a better question than
either? Can you think of a question which minimizes the maximum risk? Can
you think of another? Can such a question be improved?

Now can you see why our strategy worked? Return to exercise 28 and try
it again.

Exercises
29. Make a table of n, the number of possibilities in the original set,

versus Q, the number of questions needed in the best strategy:

n 50 100 200 300 400 500 512 513 1000

Q 7

30. For each number Q of questions, what is the largest n for which Q
questions are enough? Make a table:

Q 1 2 3 4 5 6 7 8 9 10
n

We can express the above results in another, more suggestive form. In the
study of information, we take as our unit for measuring amounts of infor-
mation the bit, which is the amount of information in the answer to a 2-choice
(true-or-false) question. We may interpret the result in the second column of
the table in exercise 29 thus:
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To find the correct answer among 100 possibilities,
we need at most 7 bits of information.

We may think of finding the correct number in the set {1,2,. . . , 100} as
finding the answer to the 100-choice question

Is it 1 or 2 or 3 o r . . . or 100?

So we can also express the result in the form

The answer to a 100-choice question contains at most 7 bits
of information.

The seventh column in the table of exercise 30 gives the more precise result

The answer to a 128-choice question contains exactly
7 bits of information.

Multiple-choice questions
Up to now we have worked with yes-or-no questions, that is, 2-choice

questions. Children will be familiar with multiple-choice questions from their
examinations. Typical 3-choice questions might be:

(a) The number is (i) less than 10; (ii) at least 10 but less than 50; (iii) at
least 50.

(b) The number, on division by 5, gives a remainder of (i) 0 or 1; (ii) 2 or 3;
(iii) 4.

Again, each question divides the set of all possibilities into subsets. Suppose
again that the set of all possibilities consists of the integers from 1 to 100; list
the subsets and find the maximum risk for each of these questions (a) and (b).
Which is a better question? For which kind of 3-choice question is the maxi-
mum risk a minimum? Give an example of an optimal 3-choice question.

Make a table of n9 the number of possibilities, and Q, the number of 3-choice
questions needed in the best strategy:

n 50 200 300 400 500 512 729 730 1000

Q

Make a table of the number Q of 3-choice questions versus the largest
number n of possibilities for which Q questions are enough.

Combine these results with those of exercise 29 into one table :

n Number of questions needed

2-choice 3-choice



The logarithm 40

Exercises
31. From the above table you can make some comparisons: five 3-choice

questions give more information than seven 2-choice questions, but
less than eight 2-choice questions. Make similar comparisons for
seven 3-choice questions and twelve 3-choice questions.

32. Complete table 2.1. Where have you seen a table like this before?

Table 2.1

Number of 3-choice
questions

1
2
3
4
5
6
7
8
9

10

2-choice questions

More than Less than

7 8

33. Make a similar comparison between 5-choice and 2-choice questions.
We can express the result of exercise 31 in the form

The answers to five 3-choice questions give between 7 and 8 bits
of information

or
The answer to a 3-choice question contains between \ = 1.4 and
5 = 1.6 bits of information.

Thus we have introduced, in a very basic way, the concept of Iog2(3) and have
obtained an approximation to its value. In section 2.6 we shall discuss this idea
in detail at a more advanced level.

2.5 A class project: the slide rule

Until the development of cheap digital hand calculators, most
engineers and many scientists used a calculating device called a slide rule.
Indeed, one could usually recognize an engineer by the slide rule he carried.

Nowadays the slide rule is obsolete. In fact, the leading manufacturer of
slide rules went out of business a few years ago. Nevertheless, the slide rule
has several advantages for teaching purposes. For the student the hand calcu-
lator is a black box - its mechanism is hidden and there is no way for the user
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to see how the results are obtained. On the other hand, the slide rule is open

to inspection and, with some study, the user can find out exactly how it

works. It can also be used to exhibit a concrete representation of the logar-

ithmic function.

It is a useful and interesting project for a class or a mathematics club to

make their own slide rule. Afterwards, the students may compare their home-

made slide rule with a commercial one, if one is still available. We have even

taught this material to children in grades 5-6, as a vehicle for giving motivated

practice in computation with fractions and inequalities. For older students, it

can be an interesting challenge to try to find explanations for the fascinating

properties of the fractions which arise in the work described below. We shall

not, however, enter into this aspect, but shall focus attention on what is rel-

evant to the study of the logarithmic function.

Scales
We first remind our pupils that a scale is really a one-to-one corres-

pondence between points and numbers. This can be done at a basic level by
passing out rulers to the pupils and asking them to observe that the edge of
the ruler bears a scale.

Then we notice that

• Principle A Equal differences correspond to equal distances.

For example, two points 3 cm apart, such as 1 and 4 or 5 and 8, always cor-
respond to numbers which differ by 3:

4 - 1 = 8 - 5 = 3

This makes it possible to use two rulers to add or subtract numbers. For
example, fig. 2.1 shows how to add or subtract 5. Work out the rules!

Fig. 2.1

0 1 2 3 4 5

I I I I
6 7 8 9 10

0 1 2 3 4 5

We now propose the following problem: can we make a scale, a one-to-one

correspondence between points and numbers, which satisfies principle B?

• Principle B Equal distances correspond to equal ratios.

For example, we might want numbers whose ratio is 2,
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2/1=4/2 = 6/3 = 8/4 = 2,

to be always 1 cm apart.

Fig. 2.2
0 1 2 3 4 5

Old scale I I I I I I

New scale | | | | | |

1 2 4

In fig. 2.2 we have begun to label the points on the new scale. Which num-
bers correspond to the third and fourth points of the old scale? Ask the
students to label the other points opposite the integers on the old scale.

You will, of course, recognize the numbers on the new scale as the powers
of 2. Just as we could use the old scale for addition, so the new scale can be
used to multiply and divide. Note that we are using the laws of exponents
here, but the pupils do not need to know them as such at this point. Fig. 2.3
shows us, for instance, how to multiply or divide by 4. When do you read the

Fig. 2.3

16 32 64

i r
8 16

result upwards? When do you read it downwards? Work out the rules!
Since it is agreed that multiplication and division are 'harder' than addition

and subtraction, we can all appreciate the value of the new scale. The draw-
back, however, is that we have only located some very special numbers on the
new scale. Which point, for example, should be labeled 3?

The 3-point on the new scale
Let us look again at fig. 2.2. The 3-point on the new scale must be

opposite some point between 1 and 2 on the old scale. Let us call its unknown
value on the old scale x, as shown in fig. 2.4. The points 1 and 3 on the new
scale have the ratio 3/1=3, which corresponds to a distance of x cm. By
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Fig. 2.4

43

Old scale

New scale

0
|

1
1

1
1

1
2

X

\ 2

i i

: I
: 4

2x

3 j
1 ;

I :
8 i

4
1

1
16

5
1

1

principle B, a distance of x cm must always correspond to the same ratio of
3 on the new scale.

Therefore, the 2x-point on the old scale, which we get by measuring
another 3 cm along the scale, must correspond to a number whose ratio to 3
is 3. Obviously this number is 9, since 9/3 = 3. As 9 is between 8 and 16, so
2x must lie between 3 and 4.

Measuring off another x cm gives us the point 3 X 9 = 27 on the new
scale, corresponding to 3x. Since 27 is between 16 and 32, 3x is between 4
and 5. Continuing in this way, we obtain the results that are summarized in
table 2.2.

Table 2.2

Name of unknown
point on old scale

X

2x
3x
4x
5x
6x
Ix

Corresponding value
on new scale

3
9

27
81

243
729

2187

Limiting values

on new scale

2 and 4
8 and 16

16 and 32
64 and 128

128 and 256
512 and 1024

2058 and 4116

for point

on old

1 and
3 and
4 and
6 and
7 and
9 and

11 and

scale

2
4
5
7
8

10
12

Inequalities
In table 2.2 the values of nx have been sandwiched between other

numbers. Let us look at these 'sandwiches' more carefully.
If 2x is greater than 3, then* must be greater than 3/2. Similarly, if 2x is

less than 4, then x must be less than 2. So we have

3 / 2 < J C < 2 .

(This is maybe the right moment to introduce the notation '< ' , if the pupils
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do not yet know it.) Looking at the other rows we then get, in succession,

\<x<2
3 / 2 < x < 2
4 / 3 < x < 5 / 3
3 / 2 < x < 7 / 4 .

We notice immediately that some of the inequalities do not tell us any-
thing new. For example, the first line tells us that x is less than 2, so the right-
hand side of the second line does not add any useful information.

It will help us understand better what is going on if we look at the limiting
values obtained for x as points between 1 and 2 on the old scale, as in fig. 2.5.

Fig. 2.5

l
I

The first line of table 2.2 tells us that x lies somewhere in this interval. The

second line restricts the possible interval for x to between 3/2 and 2. In fig.

2.5 the 3/2-point is marked off on the segment between 1 and 2. In fig. 2.6

we have shaded the part of the segment between 1 and 2 that is not relevant

any more. This figure shows that our knowledge about x has improved, since

Fig. 2.6
1 3/2 2

Second line x/////////////////\ I

1 3/2 5/3 2
Third line I// / / / / / / / / / / / / /771 I//////////71

1 3/2 8/5 2

1 11/7 8/5
Seventh line I/

3/2
1

11/7
8/5

1 1
5/3

1
2
1

now the length of the segment in which x can lie is restricted to

2 - 3 / 2 = 1 / 2 .

The third line of the table restricts us to the interval 4/3 to 5/3; 4/3 does
not add to our knowledge, since 4/3 < 3/2. (This might be the place to
remind the students of the use of the common denominator, for 4/3 = 8/6,
whereas 3/2 = 9/6.) So we obtain 3/2 <x < 5/3. This interval is of length

5/3 - 3/2 = 1/6.

You can work with the other lines in the same way. We have marked off
the relevant points of fig. 2.5, and shaded the discarded intervals in fig. 2.6.
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Table 2.3

Interval

Kx
3/2 <JC
3/2 <x
3/2 <x

l l / 7 < x

< 2
< 2
<5/3
<8/5
<8/5

Length

1
1/2
1/6

Work out for yourself the lengths of the successive intervals in table 2.3. Do
you notice anything special about the fractions in the length column?

Compare each new fraction in fig. 2.5 with its two neighbors:

3/2 with 1 and 2
5/3 with 3/2 and 2
8/5 with 3/2 and 5/3
11/7 with 3/2 and 8/5.

Do you notice any relation between these fractions? It is more obvious in the
last two lines. Does it work also for the first two lines? (Write 1/1 for 1, 2/1
for 2.) Can you predict what the next new fraction will be? Test your pre-
dictions by working out further lines in the appropriate tables.

Exercises
34. Let y on the old scale correspond to 5 on the new scale. Work out

estimates for>>, as we did for x.
35. Let z on the old scale correspond to 7 on the new scale. Work out

estimates forz.

In teaching, assign each of these two exercises to half the class.

36. Is there anything special about the lengths of the intervals which
arise in exercises 34 and 35? What about the relation of each new
fraction to its two neighbors? Can this be used to shorten the work?

The slide rule
We now have located several points on the new scale (see fig. 2.7).

Do we really need to calculate where 6 goes on the new scale? We notice that
6/3 = 2, and that the ratio 2 corresponds to 1 cm. Thus the 6-point on the
new scale is 1 cm from the 3-point, or

6 corresponds to x + 1.

In the same way the 10-point is ( ) from the 5-point, so that 10 corres-
ponds to ( ). Fill in the missing values. Thus the next point we have to
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Old scale

SJew scale

Fig.

0
|

1
1

2.7
x y z 2x

1
1

|
2

2
|

I
4

3
|

I
8

2

4
1

—|

16

y

5
1

1
32

6
1

1

7
1

1

8
1

1

5 7 9 25

work out by the long method is the 11-point. What about the 12- and 13-
points? A careful study shows that we only need to locate the points marked

13,17,19,23,29,. . .

on the new scale, and we can figure out the location of all the rest from these.
What is special about the numbers

3,5,7,11,13, 17,19,23,29,. . .?

How are they different from

9,15,21,25,27,. . .?

At this stage we see that it is only necessary to locate prime-numbered
points on the new scale. We can now parcel out the next few primes to groups
of pupils, say three to five pupils for each prime. At the next meeting of the
class we call for group reports and combine the results into a single scale, pro-
ducing in this way a home-made slide rule. Another use of scales is given in
section 2.6.

2.6 The functional equation
There are in fact three main ways to introduce the notion of the

logarithm:

(a) As an inverse to the exponential function: ify = a*, then* =logay.

c dt
(b) As a definite integral loge x = J — •

(c) As a correspondence between additions and multiplications.

The last of these three is historically the first, but it has lately fallen into dis-
favor and is not used any more at the college level. We will develop the
functional equation of the logarithmic function from this point of view, and
show how to compute values of logarithms in this manner without using
calculus.
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The functional equation
Our starting point is the problem of the two scales in section 2.5. For

any number x (x > 1), letL(x) be the number on the top scale in fig. 2.8 which
corresponds to x on the bottom scale. Our basic hypothesis is that

On the L-scale equal distances correspond to equal ratios.

Fig. 2.8

Top scale

Bottom scale

0
1

1
1

1
1

1
2

2
1

1
4

3
1

1
8

4
1

1
16

5
1

1
32

6
1

1
64

7
1

1
128

We can express this symbolically (see also fig. 2.9): let a, b, c, d all be > 1 and

(2.5)

L - scale |

Bottom scale F

1 a b

(on the bottom scale). Then on the L-scale we have

L(b)-L(a)=L(d)-L(c) (2.6)

If we take d = x and c = 1, we have b = ax, and equation (2.6) becomes

or
(2.7)

We should also express the fact that order on the bottom scale agrees with
order on the top scale:

Ifx <y9 thenL(x) <L(y). (2.8)

Equation (2.7) and inequality (2.8) may be compared with the postulates in
the model for information theory (see p. 30).

We need, finally, to express our choice of the ratio which corresponds to
a unit distance:

L ( 2 ) = l . (2.9)
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We can now derive estimates as before. If L(3) = JC, then

L(32) =L(3 X 3) = L(3) + Z,(3) = 2x,

and so on. Therefore L(3n) = nx.
Since L(2n) = n9we can now obtain estimates for x. For example, if we

locate 3100 between two consecutive powers of 2, say

2 m < 3 i o o <2™ + 1,

then we apply (2.8) and obtain

m< 100*<m + 1,
so that

m m + 1
100 100 *

This determines x, and L(3), to within an error of 0.01.
To determine x to within as small an error as we choose, we have to use

larger powers of 3. Therefore we can conclude that conditions (2.7), (2.8)
and (2.9) determine the value ofL(3) exactly. In other words, if both L x and
L2 are functions satisfying (2.7)-(2.9), then

LX(3)=L2(3).

The same reasoning can be applied to any other number instead of 3. So we
arrive at the conclusion that there is at most one function L satisfying con-
ditions (2.7), (2.8), and (2.9).

At this point pause for a moment and consider whether L(l) can be
uniquely defined, and what value should be assigned to it.

Exercises
37. Calculate (use a hand calculator) the appropriate powers of 3,

sandwiching powers of two, relevant exponents, etc., to complete
table 2.4.

Table

n

1
2
3
4
5
6
7
8
9

10

2.4

3n

3
9

2"

2
4

m

1
3

Limiting values of x

1/1 and 2/1
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Remember that if 2m < 3n < 2m + x then

™<x<m±±
n n '

38. Use the same procedure to estimate L (5) andL(7).
39. Suppose you change condition (2.9) to

L(10)=l , (2.9a)

Re-do exercises 37 and 38, on the basis of assumptions (2.7), (2.8),
and (2.9a).

40. Let us compare our best approximations in the above exercises (use
the decimal expressions of the approximations) by completing table
2.5.

Table 2.5

a L (a) using

a (2.9) (2.9a)

2 1
3
5
7

10 1

How can you fill in the blank space in the last row with hardly any
additional work? Does there seem to be any simple relation between
the two columns? If you have a plausible conjecture, calculate a row
corresponding to a = 11 and test your idea.

More efficient ways to compute L (a)
The method we sketched for estimating L (3) works well theoretically.

However, in order to calculate L (3) to within an error of less than 0.01, we
would need to compute 3100, which is a number of 48 decimal digits. Use
your hand calculator to compute the corresponding value of Z,(3). Is the
result you get really within an error of less than 0.01? Why?

There are better ways to compute L (a), and we will now develop one of
them. In chapter 3 we will suggest still more efficient procedures.

We shall outline the new method in a sequence of inequalities:

2 1 < 3 < 2 2 , \<x<2\
l<3/2<2, 0 < j t - l < l ;
(3/2)1 < 2 < (3/2)2, x - 1< 1< 2(x - 1);
l<4/3<3/2, 0<2~x<x-\\
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4/3<3/2<(4/3)2, 2-x<x- K2(2-x);
1< 9/8 < 4/3, 0 < 2x - 3 < 2 - x;
(9/8)2 < 4/3 < (9/8)3, 2(2x - 3) < 2 - x < 3(2x - 3);
1 < 256/243 < 9/8, 0<8-5x<2x-3;
etc.

On the left-hand side in each line, we have an inequality involving powers
of 2 and 3. On the right, we have the inequality obtained from it by using
(2.8), for example,

i[(fj]= 2l(|) = 2 [L(9)-£(8)] = 2(2x - 3).

Exercises
41. Find the value of m in the last line of the above list of inequalities.

You may find a hand calculator useful.
42. What estimate for x do you obtain from 0 < 8 — 5x1 What does the

inequality 8 — 5x < 2x — 3 tell you? How does the work in this
method compare with the work in the previous method (p. 48)?

43. Do exercises 38, 39 by the present method. Compare your results
also with exercise 40.

Suppose L 10()c) is the function determined by conditions (2.7), (2.8), and
(2.9a), andZ,2(x) is the one determined by (2.7)-(2.9). Let

L10(x)
Fix) =

We can easily check that F(x) satisfies (2.7)-(2.9). For example,

F{ax) = - — — = - ^ ——
£10 (2) L10(2)

Ll0(x)

Hence, by our uniqueness result, the function F coincides with L2:

or
L10(x) = L10(2) L2(x) for all JC > 1. (2.10)

Thus if we know the one number L10(2), then we can transform a table of
each of these functions into a table of the other. If we apply (2.10) to x = 10
and use (2.9a), we obtain
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L 1 0 (2)L a (10)=l .

This shows us how to obtain either of the numbers L2(l0) and L 10(2) from
the other.

Remarks on approximations and computations
We attach considerable importance to computations. In fact we con-

stantly use approximations obtained by series of inequalities. Mathematically
speaking, our main tools are Cauchy sequences. (We remind you that a
sequence {xn } in a metric space with metric p is Cauchy if, given e > 0, there
exists an integer N such that p(xp,xq)<e whenever p, q > N.) In a complete
metric space a Cauchy sequence is convergent, so if we work with real num-
bers Cauchy sequences will converge.

Theoretically, therefore, our way of working with series of inequalities
provides the background for introducing the students to the use of e in analy-
sis, to notions of limit and of convergence, and to the properties of real
numbers.

Our approach emphasizes the geometric view of nested intervals, which is
intuitively understandable, and gives the teacher the possibility of suiting the
degree of rigor of his way of handling the material to the level of the class.

It is also important that students be exposed early to the idea that most
numbers, especially those coming from measurements, are not known
exactly, and that we must ordinarily describe them by means of inequalities.
This should be emphasized frequently at every level of school teaching. For
example, one should teach that the statement that a length is 2.34 cm is an
abbreviation for an inequality:

2.335 cm < length < 2.345 cm.

In computations with approximations one should be aware of the magni-
tude of the errors in the result due to the errors in the data. For example, the
area of the rectangle in fig. 2.10 might by anything between 3.630 925 and
3.669 925, so that only the first two decimal places are meaningful at all.

Fig. 2.10

1.56

2.34
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Log and log-log paper
Although the slide rule is now obsolete for practical calculations, the

scale which we constructed in section 2.5 still has important uses. Suppose two
variablesy and* are related by the equation

y = 3 X 5*.

If x increases by an amount h, then the ratio of the new value of y to the
old one is

3X5*+ h

3 X 5 * = 5 '

which is independent of x. Thus equal differences in the values of x corres-
pond to equal ratios in the values of >>. If we graph the above relation, not on
ordinary graph paper but on paper which uses the scale we constructed in
section 2.5, on the .y-axis and the usual scale on the jc-axis, we get a straight
line as in fig. 2.11.

Fig. 2.11
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In fact, if we use the function L which we have just studied, we obtain

Thus we get a line which crosses thej>-axis at the 3-point on the new scale.
Its slope is the coefficient L2(5) of x. An increase of 1 in x corresponds to
an increase of L2(5) in L2(y), which corresponds to an increase by ratio of 5
on the new scale.

Similarly, suppose that>> and* are related by the equation

y = 3x5.
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If we double x, the ratio of the corresponding values of y is

3 X (2x)s

3xs =2 '

which is independent of y. In general, equal ratios in the values of x corres-
pond to equal ratios in the values of y. Thus if we graph this relation on paper
which uses the new scale of section 2.5 on both axes, then we get a straight
line as in fig. 2.12.

Fig. 2.12
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In fact, if we use the function L, we obtain

This is the equation of the straight line which crosses the j>-axis at the 3-point
on the new scale, and which has the slope 5, as measured on the old scale.

Graph paper drawn to the scales used in fig. 2.11 is called log paper, and
graph paper drawn to the scales used in fig. 2.12 is called log-log paper.

Another, maybe simpler, case where it is worth while to use log-log paper
is when x and y are related by the equation

xy=c,

where c is a constant. Indeed, using the function L we get
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and drawn with log-log scales the corresponding graph is a straight line (see

fig. 2.13).

Fig. 2.13

10 000

1000

100

10

0
0 10 100 1000 10 000 x

i

\

\

\

\

\

\

\ •



Exponentials

This chapter centers on the notion of 'rate of change', going from the average
rate to the instantaneous one. This is done by examining different problems
of growth. Our mathematical models lead us to geometric progressions,
exponential functions, difference and differential equations.

We start with two different real-life situations: the struggle for life, and
radioactive decay, both of which lead to the same mathematical model. Both
units are written as texts for students.

In section 3.3 we show how to present geometric and arithmetic pro-
gressions in a meaningful way. Arithmetic progressions of a higher order
are treated at the junior high school level.

Difference equations versus differential equations are considered in section
3.4. We consider the study of this dual approach to mathematical models a
must for college-level mathematics. In our text we examine both points of
view, the relationship between them, and their relationship with exponential,
or logarithmic, functions. We also explain, at some length, how to approach
exact computations, a topic which is hard to find treated in textbooks.
Pointers are given on how to study a differential equation directly. The
chapter ends with some more general remarks on mathematical models.

3.1 The mathematical theory of the struggle for life

Historical note
During World War 1, fishing in the Adriatic Sea (locate this on a

map) was interrupted. After the war, when the Italians resumed fishing they
were surprised to find fewer fish of the kind they had been catching than
there had been before. They thought, of course, that since they had not been
catching these fish for four years there would be many more of them.

One of the executives of the Italian fishing industry was the son-in-law of
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Professor Vito Volterra, one of the greatest of Italian mathematicians. The
executive asked Volterra whether he could find an explanation. He worked
out a mathematical theory of the struggle for life, which you will be able to
read as soon as you learn French and calculus (V. Volterra, Lecons sur la
theorie mathematique de la lutte pour la vie, Gauthier-Villars, Paris, 1931).
We shall try in this chapter and chapter 6 to explain some of his main ideas in
terms of high school algebra.

If you wish to pursue these problems further you may read the book by
Professor A. J. Lotka of Massachusetts Institute of Technology, Elements of
mathematical biology (Dover Publications, New York, 1956). You may also
wish to explore the work of Professor Sewall Wright, of Northwestern
University, on the quantitative theory of evolution ( S. Wright, 'Statistical
genetics and evolution', Bull Am. Math. Soc, 48 (1942), 223-46; S. Wright,
'The genetical structure of populations', Ann. Eugenics, 15 (1951), 323-54).

Growth of a single population: simplest version
Suppose we consider a population of bacteria in a culture dish or in

your blood stream, and count the population every day. Let x(t) be the popu-
lation t days after we begin the experiment, so that JC(O) is the initial popu-
lation, x(1) is the population after one day, and so on.

Suppose we obtain the results shown in table 3.1. The change in the
population during the first day is the population at the end of one day minus
the population at the start, or JC(1) -x (0 ) . Thus we find that the change
during the first day is

*(1) - x(0) = 1 010 000 - 1 000 000 = 10 000.

Similarly, the change during the second day is

x(2) -x(l) = 1 020 100 - 1010000 = 10 100.

Fill out the rest of table 3.1.
During each day any particular bacterium has a certain chance of repro-

ducing and a certain chance of dying. Say that the chance, or probability, of

Table 3.1

x(t) Change in population

10 000
10 100

0
1
2
3
4
5

1
1
1
1
1
1

000 000
010 000
020 100
030 301
040 604
050010
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reproducing during the period of one day is 0.03, that is, on average three
bacteria out of 100 reproduce during one day. Suppose also that the chance
of any particular bacterium dying during this period is 0.02. Then the excess
of births over deaths is 3 — 2 = 1 out of 100 per day. In other words, the
relative rate of growth is 1 per cent, or 0.01 per day.

We could state this result in the following way. The relative rate of growth
during the first day is the proportion of the change in the population to the
whole population:

s ( l ) - * ( 0 ) _ 1010000-1000000
x(0) 1000000

Work out this ratio. What is the relative rate of growth of the population
during the first day?

Exercises
1. Compute the relative rate of growth of the population in table 3.1

for each day.

Day 1 2 3 4 5
Relative rate
of growth

Carry out your computations to two decimal places. What do you
notice?

2. Assuming that the relative rate of growth remains constant, predict
the value of x(6).

3. Solve the equation

x(6)

4. Solve the equation

_x(t)
forx(t + 1) as the unknown.

The difference equation
As a first approach, on the basis of a great deal of experimentation,

we shall assume that the relative rate of growth of the population is a constant.
If this constant is 0.01, then we obtain the following series of equations:

*0>-*(°>-o.oi,
x(0)
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and, in general,

o o l

x(t)
Solve these equations for x(l), .x(2), X(3), . . . , and in general for x(t + 1) in
terms of x{t):

Fill in the missing values in this and all subsequent such expressions. Now you
have an expression forx(2) in terms of x(l), and an expression for JC(1) in
terms of x(0). Obtain a formula for x(2) in terms of x(0):

x(2) = ( )x(0).

In the same way, find expressions for x(3), x(4), and x(5) in terms of JC(O).

Try to guess a formula for x(t) in terms of x(0):

*(*) = ( )x(0).

Our next step is to solve the problem for any relative rate of growth. Let
us assume that this rate of growth is a constant, r. Then we have the equations

_

40)
or

x(t+l)-x(t) = rx(t).

Solve these equations forx(l), x(2),..., x(t + 1), respectively, and obtain
an expression for each day's population in terms of the previous day's popu-
lation:

x(l) = ( )x(0), (3.1)
x(2) = ( ) x ( l ) , . . . , (3.2)

x(t+l) = ( )x(t). (3.3)

As a check, compare with table 3.1, where JC(O) = 1 000 000 and r = 0.01, and
also with the previous results of this section.

Now express x(2)9 x (3) , . . . , x(t) in terms of x(0). Substitute in equation
(3.2) the value of x(l) from equation (3.1). Write down the expression for
x(3) in terms of x(2). Substitute in this equation forx(2) its expression in
terms of JC(O). Guess at a formula for x(f):
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and check by substituting t = 0, t = 1, t = 2, and t = 3.
So far we have imagined that the population is counted every day. We can

also consider what happens if we use a different time interval. Suppose we
count (or estimate) the population every h days. The number h might be 7
(weekly observations), 1/24 (hourly observations), or any other number we
choose. Let us assume that the relative change in population per unit time is
a fixed number r.

Then our observations are made at the times

t = O,h, 2h,3h,...,nh,...,

and the observed populations are

x = x(0), x(h)9 x(2h\ x(3h),..., x(nh),...

The changes in population are

x(h) - x(0), x(2h) - x(h\..., x [{n + l)h] - x(nh\

and the relative changes are

x(h)-x(0) x(2h)-x(h)

xW~' *F)~'
The relative rate of change during the first time interval is

relative change = x(h) — x(0) m 1
length of time interval x(0) h

= x(h)-x(0)
hx(0)

By our assumption, this must be equal to the given constant r:

hx(0)

and we obtain

Write down the equation for each of the other time intervals. In particular,
the equation for the (n + l)th time interval is

x[(n + \)h] -x(nh) = rhx(nh).

Solve these equations to express xQi) in terms of x(Q), x(2h) in terms of
x(h),..., and x [(n + \)h] in terms of x(nh):

x[(n+l)h]=( )x(nh).

Now solve these equations to obtain expressions of x(h), x(2h)9..., x(nh),
in terms of x(0):

x(nh) = ( )i x(0).
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Remember now that t = nh. Solve this equation for n in terms of t, and obtain
the following formula for x(t) in terms of t and x(0):

Give a formula for the constant C in terms of r and h:

Exercises
5. Check your result by computing C when r = 0.01 and h = 1.
6. Complete table 3.2 of the values of C for various values of r and h.

Table 3.2

1
1
1
1
1
0.5
0.5
0.5
0.5

1
0.5
0.1
0.01
0.001
1
0.5
0.1
0.01

0.5
2
2
2
2
2

0.005
1
0.5
0.1
0.01
0.001

7. Let C(r9h) be the value of C for given values of r and h. Compute
|C(1, 0.001)|2, |C(0.5, 0.001)|2 and compare with C(2, 0.001),
C(l, 0.001) respectively.

8. (a) Prove the inequality

(b) Prove that if r > 0 and

(1 + r)n > 1 + nr.

then

( l + r ) " + 1 > 1 + (AZ+ l)r.

(c) Prove that

(1.000001)1000000000>1001.

(d) Find a number w such that

(1.000001)w> 1000000.

Exercise 8 shows that if a population grows according to the law discussed
above then it ultimately becomes larger than any number you may choose.
This, of course, does not in fact happen. Any bacterial population will be
limited in size, either by lack of room or lack of food. This means that our
mathematical model of the growth of a population is not good enough. It
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might be appropriate for a while, but not in the long run. In chapter 6 we
will reconsider the problem and try to find a better model.

3.2 Radioactive decay

The law of decay
Suppose you have a rock containing uranium. If each day you were

to measure the amount of uranium in your sample, you would find the
amount decreasing daily as the uranium changed into lead. Since the decay of
uranium is a slow process, we shall consider instead an artificial element pro-
duced in the laboratory, which obeys the same law of decay as uranium, but
which decays much faster.

A physicist produced a small amount of 52Fe, a radioactive isotope of iron
(Fe), in a one-gram sample of iron, and measured the amount of 52Fe in the
sample every hour.Table 3.3 shows the amount of 52Fe he found at various times
after its manufacture. In the third column we have left space for you to fill

Table 3.3

x
t (mass in units of
(hours) 10~20 grams) A* Ax/x

0
1
2
3
4
5
6

2.50
2.29
2.09
1.93
1.77
1.63
1.48

in the change in the amount of 52Fe from one hour to the next. For example,
during the first hour the change is

new value old value = 2.29 - 2.50 = - 0.21 (X 10"20 grams).

We write this number in the first row of the third column. Similarly, the next
entry in the third column is 2.09 - 2.29 = -0.20. Fill in the rest yourself. The
changes are all negative since the amount of 52Fe is decreasing. It is convenient
to introduce a symbol for the successive changes in x:

Ax = change in x.

A is the Greek letter delta, so Ax may be read as 'delta x\ The head of the
third column of table 3.3 thus means 'change inx'.

It is interesting to know what proportion of the 52Fe disintegrates each
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hour, so we have made a fourth column for Ax/x. Compute these ratios, and
write them in the fourth column. The first entry is

Fill in the rest yourself.

• Definition The value of Ax/x each hour is the relative change ofx
during that hour.

What do you notice about the values of Ax/x! Can you predict the next
few numbers in that column? Can you tell from this what the next number
in the Ax-column will be? How can you use this to predict the next number
in the x-column? Repeat this process and predict the next few lines in the
table. Compare your answers with the experimental results shown in table
3.4. How well do your predictions agree with the experimental results? Can

Table 3.4

Ax Ax/x

1
8
9

10
11
12

1.37
1.25
1.14
1.05
0.97
0.89

you predict when there will be less than 0.01 X 10 20 grams of 52Fe in the
sample? Why do we not find 52Fe in nature?

Table 3.4 agrees, to good approximation, with the following law:

The relative change ofx per hour is constant.

This is another way of saying that the numbers in the last column are con-

stant. We can also state this law in the form of an equation:

Ax

where c is a certain fixed number. We cannot expect such a law to fit the
observed data exactly. Which value of c do you think fits the last column
best?

52Fe illustrates the general law of radioactive decay, which applies to all
radioactive substances:

The relative change in the amount of a substance during time
intervals of a given length is a constant.
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A theory which gives a good explanation of this law is that any particular atom
has a certain definite probability of disintegrating within a given interval of
time. For example, suppose that the probability of any 52Fe atom disinte-
grating during an hour is 0.083. Then in our sample, which contains a very
large number of 52Fe atoms (of the order of 1012), it is almost certain that
about 0.083 of the sample will disintegrate during any one hour. Thus the
decrease of 52Fe during one hour would be about 0.083 of the amount present
at the start of the hour. This would agree well with the data in our table. We
can express the law more concisely in terms of the concept of relative rate of
change.

• Definition The relative rate of change oix is the relative change per
unit time, or relative rate of change of x

_ relative change of x
length of time interval

In our example, the time intervals all have the length of one hour, so that
the numbers in our calculations are left unchanged.

In exercises 9-13 we shall use x(t) to stand for the value of x at the time t9

that is, t hours after the start of the experiment. We read x$ as 6x sub 3'. Be
careful not to confusex3 with*3, which meansx to the third power.

Exercises
9. Take for c the average of the numbers in the fourth column of

table 3.4. Predict the values of x(13), x(14), andx(15). Round off
your results to two decimal places.

10. Make a graph showing the relation between t and* in the table 3.4.
11. Suppose that the measurements were made every half day, but that

the same relative rate of change was observed. Make a table showing
the values of x for t = 0, 0.5, 1, 1.5, 2 , . . . , 5.

12. Make a graph showing the relation in exercise 11.
13. The following table shows the amounts of 103Pd (a radioactive iso-

tope of palladium) on successive days.

r(days) 0 1 2 3 4 5
x (mass in units 2.84 2.79 2.64 2.52 2.41 2.36
of 10"10 grams)

Does the law of radioactivity fit this table approximately? What
value of c fits these data best? Predict the values of x(6) andx(7);
the experimental values were 2.26 and 2.18 respectively. How good
were your predictions?
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Geometric progressions

We now wish to analyze the mathematical model of the law of radio-
active decay. We wish to derive a few consequences; some of these may lead
to the prediction of new experimental results.

It will be convenient in this section to write xOi xx,..., xn for the succes-
sive values of x, so that x(0) = x0, x(l) = xu . . . Thus the change during the
first time interval isxx - x0, and the relative change during this time interval

Suppose, for the sake of simplicity, that we measure x every hour, and
that the relative rate of change is —0.1 per hour. We can express this as

xi — *o _ *2 ~ xi _ = _ Q j

XQ XI

We can solve the equation

Xl'x° =-o.i

for*! in terms ofx0:
*i = ( )x0. (3.4)

Fill in the missing terms in this and any subsequent such expressions. Similarly,
you can solve the second equation

for x2 in terms of x i:

*2 = ( )*i, (3.5)

and so on. Continuing in this way, what do you notice about the ratios

^1 ii fl ?
XQ XI XI

• Definition A sequence of numbers such that the ratio of any two
consecutive numbers in the sequence is a constant is called a geometric
progression. The constant is called the common ratio of the pro-
gression.

Do the numbers Xo, x l 9 . . . , form a geometric progression? If so, what is
the common ratio? Equations (3.4) and (3.5) tell us how to predict one hour
ahead. How can we predict n hours ahead, that is, xn from xol

In equation (3.5) you can substitute the value of xx from equation (3.4).
You obtain
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Express x$ in terms of x0, x$ in terms of x0. Give a formula expressing xn in
terms of x0:

xn=( )x0.

Exercises
14. Suppose that the relative change per day is —0.96, and let x0 = 2.84.

(a) Find the values ofx1lx09x2lx1,x3/x2,X4lx3.
(b) Find a formula for xn in terms of x0.
(c) How well does your formula in (b) fit the data on 103Pd given in
exercise 13?

15. Suppose that the relative rate of change of x is —0.1 per hour, but
that the observations are made every half hour. Let x0, x x, x2,...,
be the successive measurements of x. Thus we have

*LZ iL« / l 0.1,
x0 I 2

and so on.
(a) Find a formula expressing xn in terms of XQ.
(b) Assume x0 = 100 and calculate xi9 x2,.. •, xs using the formula
found in (a).
(c) Suppose now that the observations are only made every hour. Let
x*> x*9 x*,... ,be the successive measurements. Obviously x* = Xo.
Compute x*, x2, x*, and**. Compare x* with the value of x2n from

Solution for any radioactive material

Suppose that we have a sample containing some radioactive material
and measure the amount of the radioactive material every h days, that is, we
measure the amount at the times

t = 0,h,2h,3h9...9nh9...

We find the amounts

X = XQ , X i , X2 , X$ , . . . , Xn, . . .

in the sample. What is the relative change in x during the first h days? What is
the relative rate of change in x per day?

By the law of radioactive decay, this relative rate of change in x per day
must be a constant. In the case of 52Fe this change is about —0.083 per hour,
or -0.083/(1/24) = -1.99 per day, while in the case of 103Pd it is about
—0.04 per day. The constant is negative since the amount is decreasing.

In the general case, the constant can be set equal to -k9 where k is a positive
number. We obtain the equation
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jh = -k, (3.6)

or
Xi — XQ

hx0

If we multiply both sides of this equation by hx0, we obtain
•v v = lrh\-

We can now addx0 to both sides, and factorize the right-hand side. We have
now solved equation (3.6) for^i and have obtained

Xi=(l-kh)x0. (3.7)

Set up the equation describing what happens during the next h days, and
solve this equation forx2 as the unknown. In this equation, substitute the
value of Xi in terms of x09 and thus express x2 in terms of JC0. In general, the
equation

xn + I — xn _
hxn

describes what happens during the (n + l)th time interval of h days. Solve
this equation for xn + x in terms of xn:

xn+i=( )xn.

If you know xn, how can you calculate xn + x ?

Exercises
16. Expressx3 in terms ofx2.
17. Express JC3 in terms of x0.
18. Express x4 in terms of x0.
19. Express xn in terms of x0.
20. Let x(f) denote the amount at the time t. Give a formula of the form

where C is a certain constant expressing x(i) in terms of t. (Hint: we
already have such an expression for x(t) when t = nh in section 3.1.
Can n be eliminated from that expression?)

21. Take k = 0.1. Compute C in exercises 11-13 for/i = 1,0.5,0.1,0.01,
0.001. What do you notice about the values of C?

22. The time T at which half of the radioactive substance has disintegrated
is called the half-life. In other words, the half-life is the solution T of
the equation
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C XQ —• .

Obtain a formula for T in terms of A: and h. (Hint: take logs.)
23. It is sometimes easier to measure T than k. Find a formula expressing

k in terms of Tand/*. For T = 10, compute A: forh = 1, 0.5, 0.1, 0.01,
0.001. What do you notice about the value of fc?

Exercises 21-23 are for students who have studied logarithms.

The exponential function
The function has so far appeared in section 3.1 and this section only

in the exercises; in section 3.4 we will look at the function in its theoretical
aspects. The easiest way to start studying the function at high school level is
by looking at a specific example, for instance

y = 2\

and asking the students to draw the corresponding graph, taking integer values
of x first and then successively finer divisions of the resulting intervals between
integer values of x.

Tables similar to those we made before could successfully be used. Tables
3.5 and 3.6 show how these could be started. The tables can be computed

Table 3.5

X

0
0.5
1

Table

X

y

l
1.4142
2

3.6

y

Ay

0.4142
0.5858

Ay

Ay/y

0.4142
0.4142

Ay/y

0 1
0.25
0.5 1.4142
0.75
1 2

using the square root operation, especially if hand or desk calculators are
available. Questions that should be investigated are:

(a) What is the new constant value of Ay/y and why?



Exponentials 68

(b) From a certain row onwards, the numbers in the columns^ and
Ay are just twice numbers in those columns in a preceding row. Why?

(c) Can you go on with similar procedures and come as close as you
wish to any real positive value of x?

3.3 Mai thus: an elementary view

The birth rate

We can treat some aspects of the exponential function at a more
basic level in connection with a discussion of the famous theory of Malthus
regarding population growth and food supply. Since these are now matters of
considerable public interest, one might encourage the students, for moti-
vation purposes, to bring into class newspaper items concerning the 'popu-
lation explosion' problem of supply of food and other natural resources, and
its effects on the policies of various countries, such as campaigns for family
planning.

Suppose the birth rate of a country is 20 per thousand per year. This
means that for every 1000 people an average of 20 babies will be born during
a year. In other words, the increase of the population will be

a 0 2 2 %

each year, ignoring deaths.
If there are 1 000 000 people in the country at the start of this year, then

the increase during the year will be

0.02 X 1000000 = 20000,

so that the population at the beginning of the next year will be

1 000 000 + 20 000 = 1 020 000.

We can continue this process and make a table of the population P versus
the time t, measured in years from now. Table 3.7 shows that in ten years
the population increases by 218 997, or about 22% of the original population.
We have made a crude extrapolation in table 3.8, which shows that the popu-
lation will be more than double in forty years.

Exercises
24. Divide the class into groups of about five students, and assign to

each a birth rate to investigate. For various initial populations they
should make tables like tables 3.7 and 3.8. For each birth rate,
estimate the time of doubling.
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Table 3.7

Time t Population P Annual increase in P

20 000
20400
20 808
21224
21649
22 082
22 524
22 974
23 434
23 902

0
1 1
2 1
3 1
4 1
5 ]
6 ]
7 1
8 1
9 1
10 ]

I 000 000
I 020 000
1040 400
1061208
[082432
I 104 081
I 126163
I 148 687
171661
195 095
218 997

Table 3.8

Approximate increase
t P in P per decade

220 000
244000
292 800

0
10
20
30

1 000 000
1220 000
1 464 000
1756 800

25. What are some of the ways in which the above model is a simplifi-
cation of reality? For example, what tacit assumption did we make
in calculating the increase during the fourth year? How would the
model be modified if we assumed a birth rate of 50 per thousand
per year and a death rate of 30 per thousand per year? Who has
babies?

The food supply
Malthus also assumed that the food supply increases by a fixed

amount each year. If we assume a supply of 2 000 000 metric tons at the
start and an increase of 30 000 metric tons per year, we can calculate the
increase in food supply, as in table 3.9.

We have combined the population and food supply tables in table 3.10. It
is interesting to add a column for F/P, the food supply per person. We see
that in ten years the food supply per person sinks from 2.0 to less than 1.74
metric tons per person. Estimate F/P at the end of thirty and sixty years.
Suppose that the subsistence level is 0.1 metric tons of food per person per
year. How long will it be before there is a famine?
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Table 3.9

Time t

0
1
2
3
4
5
6
7
8
9
10

Food supply F

2 000 000
2 030 000
2 060 000
2 090 000
2 120 000
2 150 000
2 180 000
2 210000
2 240 000
2 270 000
2 300 000

Table 3.10

F/P

0
1
2
3
4
5
6
7
8
9

10

1 000 000 2 000 000 2.0

1321215 2 300 000 1.74

Exercises
26. Have each group try various initial food supplies and rates of increase.

Let them make comparison tables in each case. Does F/P ever begin
to decrease? When? Does it always become small ultimately? How
does the time it takes for F/P to become small, say less than 0.1,
depend on the initial values and the rates of increase?

27. If F/P becomes lower than the subsistence level, what will happen
to the death rate? Will P continue to increase at a constant ratio?
Can the above model be completely realistic?

The successive values of P in our table have a constant ratio of 1.02:

1020000 1040040
1000000 1020000 = 1.02.
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Such a sequence is called a geometric progression. The number 1.02 is called
the common ratio in this progression. The successive values of F have a
constant difference of 30000:

2 030 000 - 2 000 000 = 2 060 000 - 2 030 000
= 30000.

Such a progression is called an arithmetic progression, and this number
30 000 is called its common difference. It seems from the above calculations
that a geometric progression with ratio greater than 1.0 grows faster than any
arithmetic progression.

Exercises
28. LetP(Y) be the population at time t in the above example, and F(t)

be the food supply at time t. Find formulas for P(t) and F{t) in terms
of t. Generalize to an arbitrary initial population/'(O), common
ratio r, initial food supply F(0), and common difference d.

29. Let R(t) = F(t)/P(t) be the food supply per person. In the above
example, find a good formula for R(t + l)lR(t). When is this ratio
less than 1.0? When is it less than 0.99? Is it ever less than 0.98?

30. Discuss the questions of exercise 28 in the general case.
31. It may be more realistic to assume that the amount of food consumed

each year is proportional to the population, that is,

amount of food consumed = aP,

where a is a certain constant. With a fixed agricultural technology
and amount of farm land, the formula

amount of food produced = bPk

works fairly well where b and k are constants and k is less than 1.0.
This gives us the relation

F{t + 1) - F(t) = change in food supply
= amount produced — amount consumed
= b[P(t)]k-aP(t).

Assume a = 5,k = 0.7, b = 530. Calculate a table of F{t) versus t
using the population figure from our example and F(0) = 2 000 000
as before. Make a table of t, P, F9 and F/P. How does this table com-
pare with the previous table? Now when does F/P begin to decrease?
When does it fall below 0.1? For which populations, if any, does the
food supply decrease?

32. Which is more realistic, the model in exercise 31 or Malthus's model?
Which is more pessimistic? In what ways does this model fail to fit
reality?
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33. Table 3.11 gives the census figures for the United States at ten-year
intervals.

Table 3.11

Year

1800
1810
1820
1830
1840
1850
1860
1870
1880
1890
1900
1910
1920
1930

Population

5 308 483
7 239 881
9 638 453
12 866 020
17 069 453
23 191876
31441321
38558371
50 155 783
62 622 250
75 994 575
91976 266
105 710620
123 203 000

Analyze the data. Does the model we used in exercise 31 give a good
approximation? For the table as a whole? For parts of the table? Why?

Other progressions

We have studied two types of progression, the arithmetic and the
geometric, which can be approached by arithmetic and by elementary algebra.
There is another type of progression which occurs often and which also lends
itself to simple treatment. It is sometimes called an arithmetic progression of
a higher order.

Galileo found an example of this type of progression when he studied a
ball rolling down an inclined plane under the influence of gravity (fig. 3.1).

Fig. 3.1
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He obtained data similar to those in table 3.12 (we are not giving his actual
numbers). During the first second the ball rolled 10 — 0 = 1 0 cm. How far
does it travel during the second, third, and fourth seconds? Compute the
third column in table 3.12, Ax, the change in x. What do you notice about
the sequence in the third column? Is it of a type you have met before? Can
you predict the next number in the third column? Can you predict the next
number in the second column?

Table 3.12

t (seconds) x (centimeters) Ax A(AJC)

0
1
2
3
4
5

0
10
22
36
52

The changes in the successive changes form one of the simplest types of
sequence. We have made a fourth column in table 3.12 for the changes in Ax,
labeled 'A(Ax)\ Calculate the sequence in the fourth column. If all the terms
in the Ax column (A1) were the same, x would be an arithmetic progression.
Here all the terms in the A(A^) column (A2) are the same, so we call this an
arithmetic progression of the second order.

Exercises
34. In table 3.13, which shows the area^l of a square of side 5, calculate

the columns for AA and A(AA). How is your result similar to table
3.12 for the rolling ball?

Table 3.13

s A AA A(AA)

0 0
1 1
2 4
3 9
4
5
6
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35. The previous exercise suggests that if you can find a certain number
k such that j> = x - kt2 then A(Ay) = 0. Find k. What kind of pro-
gression will^ be? Find a formula for y in terms of t. Find a formula
for x in terms of t.

The method of these exercises can often be applied to find a polynomial
which fits a given table of data at least approximately. For this purpose it is
useful to make tables of the various powers of t and the differences. We can
then use these in trying to find a polynomial which fits a given table.

Exercises
36. Calculate a table of t3, where t = 0, 1, 2 , . . . , and calculate differences

as above until you find a column of constant differences. Can you
predict what will happen with a table of fi Check your prediction.

37. Find a polynomial P(i) = at3 + bt2 + ct + d which fits this table:

t 0 1 2 3 4 5 6
x 0 1 5 14 30 55 91

38. Find a polynomial which approximately fits this table;

t 0 1 2 3 4 5 6
x 0 0.97 5.01 13.99 30.00 55.02 91.00

How good a fit can you get?
39. The boiling points of the straight chain hydrocarbons of the form

Cn H2n + 2 are shown in table 3.14. What kind of progression do we
get?

Table 3.14

BP (boiling ABP A(ABP)
point, °C) (A1) (A2)

l l ' l "26.7
46A -4 7
4 L 7 - 5 1
3 6 ' 6 - 4 0
32.6 J-°
29.7 Jf
27 2

1
2
3
4
5
6
7
8
9

10

-161.7
-88.6
-42.2

-0.5
36.1
68.7
98.4

125.6
150.7
174.0

—2 1
1

1 R
23.3
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3.4 Differential and difference equations

The two viewpoints
In the discussions of radioactive decay and of the growth of a popu-

lation, we were dealing with a function x(J) which satisfies the equation

( 3 8 )

where r is a certain constant. This abstract mathematical equation is a common
model of these two apparently unrelated phenomena. We arrived at equation
(3.8) because we interpreted the laws of the phenomena in terms of average
rates of change. The difference quotient on the left is the average rate of
change of JC during the time interval from t to t + h.

Suppose that the changes are occurring continuously. Then the time t
must be considered as a continuous variable, even though we only observed
the quantity x at the discrete times 0,h,2h,3h, etc. As such, equation (3.8)
must be regarded as an approximation. We should really work with the
instantaneous rates of change, which are represented by the limit

inn * ± * > Z £ W , (3.9)
fi->o h

obtained by averaging over ever smaller intervals. We recognize the limit in
(3.9) as the derivative x\t).

Hence we could formulate the mathematical model as

x(i) = rx(t). (3.10)

For small values of h the difference quotient in (3.8) should be close to the
derivative in (3.10), so we would expect the solutions to be close together
for such small values of h.

Equation (3.8) involves the differences x(t + h) — x(t) of the values of the
unknown x at various times, so that equation is called a difference equation.
Equation (3.10) involves the derivative x'(t) of the unknown function, so it
is called a differential equation.

The situation can also be exactly the opposite - the true model being the
difference equation and the approximation being given by a differential
equation. If, for example, x(t) is the amount of money in your bank account
at time t, and you deposit the amount x(0) at the time t = 0, then the changes
only occur at the ends of interest periods. If r is the annual rate of interest
and the bank compounds quarterly, then the model is equation (3.8) with
/i = 1/4. Similarly, if the money is compounded daily, then h = 1/365 in an
ordinary year. (What is h for a leap year?) In this case, equation (3.8) is the
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exact model and, if h is small, the solution of equation (3.10) may be expec-
ted to be a good approximation to the true solution.

Thus we see that sometimes the first of the above equations represents the
true model, and the other an approximation, and sometimes the roles are
reversed. In any particular case, we must be careful to know which situation
occurs.

As we saw in section 3.1, equation (3.8) can be treated by means of
elementary algebra. We found that the solution is

x(t)=x(0)C(hy (3.11)
where

C(h) = (l+rh)1/h (3.12)

On the other hand, equation (3.10) essentially involves calculus, and is
therefore less elementary. But we expect that for small values of h the function
in (3.11) should be close to the exact solution (3.10). This suggests that we
begin by investigating how it behaves as h gets smaller.

Formula (3.11) shows that the behavior of the solution with varying h is
completely determined by the behavior of C(h). For given r this depends on
the variable h, so it is simpler to study than x(t), which also depends on t.

We may let h = 1/2" or 1/10", with n increasing. Even though in the
original biological or physical problem h is positive, it turns out to be useful
to see also how C(h) behaves for small negative values of h, such as — 1/2" or
-1/10" with large «.

Before doing some calculations, we must note that when a computer pro-
gram 'solves' a differential equation, it in fact replaces the equation by a
suitable difference equation, and works out calculations similar to the ones
in the exercises.

So in practice it might sometimes be pointless to replace an easily under-
stood difference equation by a more elegant, continuous, differential equation,
only then to go back to the difference equation we had before when looking
for numerical results.

Exercises
40. Choose a value for r and calculate a table for h and C(h). Try h

= 1/2" with n = 0, 1, 2, 3 , . . . , 10. Repeat with h = -1 /2" . You
might also try h = ± 2/10". Do you notice any trend? Compare
your results with those of your classmates who chose other values
of r. Did they find similar trends? Use your calculator.

41. Compare the formula for C(2h) with the formula for C(h). You will
see that C(2h) =A1/h with A = ( ).
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(a) Is (1 + rhf - A2 positive or negative? If l + 2rh> 0, which is
larger, 1+rh otAl

(b) If h > 0 and (1 4- 2rh) is positive, which is larger, CQi) or C(2/*)?
(c) What about if h is negative?
(d) Does this explain what you found in exercise 40?

42. Compare C(10h) with CQi) in the same way. How does this agree with
your calculations? It might be simpler to consider only the case where
rh is positive.

43. Letan=(l+k)n - 1 - kn.
(a) For n = 1 or 2, is an positive, negative, or zero?
(b) Find a simple formula for an + i — (1 + k)an. Is this difference

positive, negative, or zero?
(c) If 1 + k > 0, can a2 be negative? What about a3 ? Could an be

positive and an + ! negative? Can aw be negative for any nl (Think
about the first value of n for which an is not positive.)

(d) Does this help you with exercise 42?
(e) If 1 + 3rk > - 1 and h > 0, which is larger, C(3h) or C(/*)?

44. If 0 < h < 1, which is larger, CQi) or C(-/0?

The exponential function
For r = 1, exercise 40 gives you the values of /z shown in table 3.15.

You can see that, as h decreases to zero through positive values, CQi) seems

Table 3.

h

1.0
0.5
0.25
0.125

15

(=
(=
(=
(=

(=

1)
1/2)
1/4)
1/8)

1/1024)

C(h) h C(h)

-1.0
-0.5
-0.25
-0.125

to be increasing and as h increases to zero through negative values, CQi)
seems to be decreasing. As h approaches zero from either side, CQi) seems to
be approaching a limit, and it looks as though

\im[CQi)] =2.718 281824459... (3.13)
/l->0

as h approaches zero.
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Exercises 41-43 lead to rigorous proofs of the statements about the
increasing or decreasing behavior of C(h)9 and exercise 44 explains the com-
parison between the values of C(h) for positive h with those for negative h.

This makes it plausible that the limit in (3.13) exists and has the approxi-
mate value given there. This number is one of the two most important special
numbers in mathematics and is denoted by e (after the Swiss mathematician
Euler (1707-77), who discovered some of its most important properties). Our
tables suggest the 'sandwich'

C(h)<e<C(r-h) (3.14)

for positive h, which enables us to estimate e as closely as we wish.
Applying the result (3.13) to equations (3.10) and (3.11), with r = 1, we

see that the solution of the differential equation

x'(t)=x(t) (3.10a)
is

x(f) = *(0)e', (3.15)

Equations (3.11) and (3.12) tell us how to compute this function as accu-
rately as we wish.

More generally, for any given r, the limit

lim C(h) = lim(l + rh)vh = E(r) (3.16)

seems to exist, where E(r) indicates the dependence of the constant E on r.
This would imply that the solution of (3.10) is

x(t)=x(0)E(rY. (3.17)

We encounter here a special type of function, a constant to a variable
power. Such functions are called exponential functions. The particular case
e* [x(0) = 1, r = 1] is called the exponential function. We shall see in a
moment that exponential functions behave quite differently from polynomials
and the other elementary functions studied in school.

Equations (3.11) and (3.12) tell us one way to compute an exponential
function. With a digital computer, it is easier to use the equation

x(f + A) = (1+ /*)*(*), (3.18)

which you obtain by solving (3.8) for x(t + h). This equation is very simple
to program. You take the given value of x(0) as an input, and use equation
(3.18) repeatedly for t = 0, h, 2/z,..., until you reach the value of t in which
you are interested.

With either method, roundoff errors gradually accumulate, so one only
obtains accurate values of x{i) when t is close to zero. For larger values of t
it is more practical to combine these methods with others based on the
properties of exponential functions discussed in later sections.
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Exercises
45. Find a simple formula for C(h)/C(—h). For/? = 1/n, n>2, you can

apply exercise 43 to obtain a lower estimate for this ratio, and
inequality (3.14) gives you an upper estimate. For /z = 2W, as «
increases C(-h) decreases. Use all this to obtain an upper estimate
for C(—h) — C(h), which tells you how good an estimate (3.14) is
in fact.

46. Let us use the notation

to show the dependence of C(h) on r as well as h. Obtain a simple
formula for C(h,r) in terms of C(rh, 1). Use (3.16), and the fact
that E(l) = e, by definition, to obtain a simple formula for E(f).

47. Obtain a simpler formula for x (t) in (3.17).

Direct study of the differential equation
The technique of approximating a differential equation by a difference

equation, which we used in approximating (3.10) by (3.8), can be applied to
many other differential equations. This is often the most practical way to
calculate the solutions. Thus we can approximate the differential equation

jt '(f)=l + f + *(O4 (3-19)
by the difference equation

which may be put in the form

x(t + h) =x(t) + h [1 + 14- x(t)4]. (3.20)

It is easy to program the computation of x(t), given x(0), for t = h,2h,
3h,..., from equation (3.20). If h is small, then the computed values of x(t)
will be close to the values of the exact solution of the differential equation,
at least for t in a certain interval.

While there is a simple formula, namely x(t) = x(0)ert\ for the solution of
(3.10), there is no formula in terms of simple functions for the solution of
(3.19). Equation (3.19) can be taken as the definition of a new function. You
can tabulate it by using (3.20). If you used this function frequently, it would
become as familiar to you as the square root function.

Most differential equations which occur in pure and applied mathematics,
like equation (3.19), cannot be solved in terms of simple formulas involving
already-known functions. When this does happen, it is a lucky accident. When
you have this luck, you should learn to recognize it and know how to take
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advantage of it, but you should also know how to deal with the usual situ-
ation. We shall now discuss how you can learn a great deal about the solution
of (3.10), by direct study of the equation, without solving it. These techniques
can be applied to equations like (3.19) whose solutions are more complicated.

First, we remark that the units used in describing most phenomena have no
natural meaning and are merely matters of human agreement. For example, we
could measure time in seconds, days, years or centuries. It is therefore always
useful to see whether the problem might be simplified by using other units. If
we originally measured time in seconds, and

1 new unit = k seconds,
then

0 new units = kd seconds,

so that the equation expressing our old measure in terms of the new one is

t = kd.
we then have

dx dx dt_ _ ^dx
dd dt dd dt Krx>

if x is a solution of (3.10). Which choice ofk makes this equation as simple
as possible?

Clearly the best choice of k isk= 1/r, and equation (3.10) is reduced to the
special case

%'x. (3.106)

Thus it is sufficient to study the case r = 1. The equation

t = kd=(l/r)d

is equivalent to

6=rt.

If u(6) is a solution of (3.10Z?), then

x(t)=u(rt)

is a solution of (3.10).
Let E(6) be the solution of (3.10Z?) such thatx(O) = 1, so that#(0) is

defined (cf. equation (3.17)) by the equation

tf'(0) =£(0), tf(0)=l, (3.21)

that is, by a differential equation together with an initial condition.
Since #(0) = 1, then for 6 close to zero, E(6) will be close to 1. How soon

can E(6) reach the value 2? Suppose that T is the first point such that E(0)
< 2 for 0 < 6 < T, and E(T) = 2, as in fig. 3.2. By (3.21) for 0 < 6 <T we have
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Fig. 3.2

81

E(d)

(3.22)
so that

[E{6) - 20]' = E\B) - 2 < 0 .

Therefore £*(0) - 20 is decreasing in the interval 0 < 0 < T, and

£ ( 0 ) - 20 <E(Q)- 2 X 0 = 1 .

This yields

£(0) < 1 + 20

in this interval. Let 0 approach T. Then

E(T) = 2 < 1 + IT
so that

Therefore we find that

E(6)<2 (3.23)

for 0 < 0 < 1/2, and #(1/2) < 2. This method can be used to get much more
information about the solution of equation (3.21).

Exercises
48. Why did we not discuss the case r = 0 in (3.10)? Do we need a

special theory in this case?
49. In (3.22), 2 is the derivative of what function of 0? How does this

explain the next step?
50. If x(0) is a solution of (3.106) andx(0) > 0, canx(0) be negative for

any positive value of 0? Let e be any positive number. Discuss the
first point T where x(T) = - e .
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51. If x(0) > 0 and e > 0, what can be the first point T where x(T)
= x (0) + e? For 0 < T < 1, is the inequality x(T) > x(0)/(l - T)
possible? What choice of e would this correspond to?

52. Let.y(0) = 3x(0), which corresponds to a change in the unit for
measuring x. What differential equation doesX0) satisfy? Generalize
to the case y(6) = Oc(0), where C is any constant.

53. Does the substitution of exercise 52 give a simple result when applied
to equation (3.19)?

54. Let z(s) = x(s + c), corresponding to the relation 0 = s 4- c, where c
is any constant. What differential equation does z(s) satisfy? Does
this substitution give a simple result with equation (3.19)?

55. Prove that if x(c) > 0, thenx(c + s) <x(c)l(l - s) for 0 < s < 1,
where x is any solution of (3.10Z?) and c is any constant.

56. Prove that if x(0) > 0 and* satisfies (3.106), thenx(t) < 4x(0) for
0 < t < 1, and x(t) < &c(0) for 0 < t < 3/2. What estimate can you
obtain for x( 10)?

57. If x is a solution of (3.10Z?) andx(0) = 0, what is x(0) for 0 < 0 < 1?
(Hint: see exercises 42 and 43.) What about x(3/2) or x(10)? (See
exercise 56.)

58. If x and X are both solutions of (3.10a) (i.e., X' (f) = X(t))9 and
u(t) = x(t) + X(t), what differential equation does u satisfy?

59. What happens when you apply the method of exercise 58 to equation
(3.19)?

From exercise 50 you can see that if x is a solution of (3.10Z?) andx(0)
> 0, then x(6) > 0 for all 0 > 0. Then

Jc'(0)=x(0)>Ofor0>O,

that is, x is always non-negative. Hence x(6) is a non-decreasing function. In
particular, we must have

x(0) < x(6) < x(T) for 0 < 0 < T. (3.24)

Now, the constant x(0) is the derivative of the function x(O)0, so that

[x(d)-x(0)6]' = x'(d)-x(0)
= x(6)-x(0)
>0.

Therefore, JC(0) - x(0)6 is also non-decreasing, so that

x(6) - x (0) 0 > x(0) - x(0) X 0 = JC(O),

and
JC(0)(1 + 0) <x(0) for 0 < 0. (3.25)

In the same way, we show that
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x(6)<x(0) + x(T)6 for 0 < 0 < T. (3.26)

If we apply this inequality for 0 = T, we find that if 0 < T< 1, then

x(T)^x(O)/(l-T) (3.27)

which we proved in another way in exercise 51. We can continue this process,
step by step, by repeating this reasoning.

The left-hand side of (3.25) is the derivative of what function? You can see
that 2

is a non-decreasing function, so that

g(0)<g(d)
and

x(0) (1 + 6 + Y j < x(6) for d > 0. (3.28)

If you apply the same reasoning to (3.26), you obtain

x(0) <x(0)( l + 0) + x(T)j (3.29)

for 0 < t < T, Then if T2/2 < 1 (i.e., 0 < T< y/2), we obtain from (3.29)

x(T)<x(0)(l + T)j(\ - ?pj . (3.30)

Exercises
60. Equations (3.25) and (3.30) give you a sandwich for estimating x(6)

for 0 < 6 < \ /2 . Apply this to E(B) (E(0) = 1). Estimate the error in
using the left-hand side of (3.25) to approximate E(d). For which
values of S is the errorless than 0.05, 0.005? Estimate the error in
using (3.28) for the same values of 0.

61. Improve (3.28) and (3.30) by the same method. The left-hand side
of (3.28) is the derivative of what function? What about the right-
hand side of (3.29)?

62. Do you see a pattern in (3.24), (3.25), (3.28), and exercise 61? In
(3.24), (3.26), (3.29), and exercise 61? Can you predict the result
using the method once more? Try it, and check your predictions.

63. Predict the approximations fori?(l) = e obtained by applying this
method a few more times. Compute to four decimal places. Compare
with the method on p. 78. Which is more efficient?

64. (a) Obtain some lower estimates for the solution of (3.19) satisfying
the initial condition JC(O) = 0.

(b) Is this solution increasing or decreasing for t > 0?
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(c) Find a lower estimate for the positive solution of x(T) = 1.
(d) Obtain some upper estimates for x(t) for 0 < t < T. How much

do the estimates in this exercise differ from each other?
(e) Is 3t 4- x(t)~3 increasing or decreasing for t > 0? Can a solution

x(t\ such that x(0) > 0, exist in the interval 0 < t < 4/3? (Hint:
compare x(l) with x(4/3).)

The logarithmic function

The differential equation (3.10) can be approached usefully by
studying the inverse function, t as a function of x. If x(0) = 1, then x(t) is
increasing for t > 0. Hence for given x > 1 there is a unique positive t such
that x(t) - x (see fig. 3.3). We can denote this unique value of t by t(x).

Fig. 3.3

(0,0) *(*)

In calculus, one learns the relation between the derivatives of inverse
functions:

dt J6xdr = /dx
dx I dt '

so that equation (3.10) yields

(3.31)
dx x9

and the initial condition x(0) = 1 yields the initial condition

r(l) = 0 (3.32)

that is, t = 0 when x = 1.
The differential equation (3.31) is very special because the unknown

function t does not appear on the right-hand side. The derivative of / is
simply a known function of x. The problem of finding a function with a given
derivative is the basic problem of integration.

It is easy to see that t cannot be a polynomial in x, such as
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Ix* -3x2 + 2 x + 11,

since the derivative of a polynomial is again a polynomial. It is a little less
easy, but still not difficult, to see that t cannot be a rational function of
x, that is, a ratio of two polynomials, such as

7 x 4 - 3 ; c 2 + 2 x + l l

3x5 + 4x3 + 1

(see the exercises below). So the solution of (3.31) is a new function different
from these elementary functions.

Let us call the solution of (3.31) and (3.32) L(x). In calculus, one learns
to represent this solution as a definite integral:

1
i d s . (3.33)

I

Note that the lower limit in the integral is 1, to fit the initial condition (3.32)
Also, we were careful to use different letters for the variable of integration
and the upper limit of the integral, so as to avoid confusion.

We can easily obtain a great deal of information about L(x) from (3.33), as
well as practical methods for computing it. For example, since for 1 < s < x
the function 1/s is decreasing, we see that

i < i < l for 1 < 5 < X .
x s

This yields the estimate

^-^ = f -ds<L(x)< [ I6s=x- 1. (3.34)
x J x *J

1 1

If x is close to 1, this is a very good sandwich for L{x) and enables us to com-
pute it approximately.

We can obtain better estimates if we first subdivide the interval of inte-
gration and then estimate as above. For example, if we divide the interval into
three equal parts as in fig. 3.4, each part has length h = (x — l)/3, and we
obtain

l +fc l +2h l +3h

L(x)= \ - d s + f - d s + f i d s ,
s J s

1 + h 1 + 2h

hence

nh + TTTh+ r ) (
(3.35)
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Fig. 3.4
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(0,0)

If we use three subintervals, but choose the division points so that they
form a geometric progression with common ratio r as in fig. 3.5, then r = x
and we obtain

This gives, by elementary algebra,

3x-»(x» - 1) <L(x) < 3 (r - 1) = 3 ( J C ' - 1). (3.36)

These estimates give better approximation forL(x) than (3.34). If we sub-
divide the interval from 1 to x into even smaller intervals we obtain still better
approximations. The same procedures can be used for estimating integrals of
any continuous function g(s). While there are some ways to improve this
method,basically it is the only general method which works for a quite
general integral.

This method is, however, not very efficient. For the special integral g(s)
= l/s there are methods which give high accuracy with much less work, if
the interval of integration is not too large. A simple but effective method con-
sists of substituting

s= 1 + z
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Fig. 3.5
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(0,0)

in the above integral and using the abbreviation u = x — 1. We obtain

ds = dz

so that

If we apply the elementary algebraic process of long division

1-Z+Z2-Z3

1+zJT
1+z

- z
-z-z2

Z2+Z3

-z3

-Z3-Z*

we obtain

1 + z 1+z '
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This gives us
u

u2 ,u3 w 4 , r z 4

0

In order to estimate the last integral, we note that for 0 < z < u we have

Hence we obtain
U

5 4

Tir)< J \T~zTz
and

U2.U3 W4 W5 ^ j < \ ^ U2,U3 U4.U5 ,>ynn\

" - T + 3 - 4 + 5 T T T 7 ) < Z ' ( j c ) < M - 2 + 3 - 4 + 5-- ( 3 3 7 )

If 0 < u < 0.1, this sandwich gives us an approximation to L(x) with an

error less than

(O.I)5 / 1 \

so that we obtain L(x) correct to six decimal places.

Exercises
65. If 1 <;c < 1.1, how big can the difference be between the two sides

of the sandwich (3.34)? Give an approximation to Z,(1.05) and say
how accurate it is.

66. Calculate L( 1.064) using (3.35) and (3.36). Which equation gives a
better approximation? Compare with what you get using (3.37). You
may use a hand or desk calculator.

67. Generalize (3.35) and (3.36) by using n subintervals. Estimate the
error. If 1 < JC < 1.1, how large must n be to obtain a result correct
to three decimal places?

68. Obtain formulas like (3.37) involving powers of u up to w7 and up to
w8. Estimate their accuracy for 1 < x < 1.5 and for 1 < x < 2. Are
these formulas useful for x = 2.1?

69. (a) Solve the differential equation

x'(t) = x2
9

with the initial condition x(Q) = 1. (Hint: consider t as a function of
x, and use the method of this section.)
(b) Compute the solution of the difference equation

x(t + h)-x(f) = ( v

R X(t) ,

with x(0) = 1, for h = 0.1. Do you get a good approximation to the
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solution of (a) for 0 < t < 0.5? Is the approximation better if you
take h = 0.05? For both values of h compute x( 1.1) for the solution
of the difference equation above. Does this give a good approximation
to the solution of (a) for t~ 1.1? Explain.

Difference equations and differential equations
In studying differential equations, as in many branches of mathe-

matics, there are basic facts and side issues. From our point of view, the basic
point is to emphasize the real situation, and the misleading approach is the
one unfortunately all too common in elementary texts, the cook-book
approach, with its recipes and the disproportionate importance it attaches to
solutions in closed form.

This is why we studied at such length what we can learn about a differ-
ential equation by looking at the corresponding difference equation. After all,
this method is not only used in digital computers in order to find approximate
solutions, but is also the basis of the proof of existence theorems.

Sometimes the rationale given for using difference equations instead of
differential equations for studying the laws of nature is that matter is built up
from atoms, so that if x represents the number of members of a population
(in its general sense), x is really a discrete variable. A more rigorous treatment
would then require that x be considered as a random variable with a proba-
bility distribution varying with time. Then equation (3.10), namely x'(t)
= rx(t), would be exact for the expected value of x at the time t. Such a
probabilistic approach is beyond the scope of this book.

3.5 Models again
We discussed models and their limitations in chapter 2. In this

chapter we have examples of several concrete models which have the same
mathematical structure. This enhances the value of the mathematical model,
since a careful analysis of this one structure will permit us to make predictions
for several concrete problems. The whole idea of 'mathematical abstraction'
has its roots here.

Another facet of the use of mathematical models is the dual approach:
discrete time or continuous time. In our discussion of radioactive decay or
of the struggle for life we started by looking at discrete time intervals, then
set up difference equations, and ended up with a continuous exponential
function, the solution of a differential equation.

The use of hand calculators or of computers has taught us that discrete
time models are often easy to treat computationally, and are therefore useful
for obtaining numerical results or predictions. On the other hand, a con-
tinuous time model, which can be expressed by continuous functions, often
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makes for simplicity in the description of the phenomena and also in their
conceptualization. We express this dual approach graphically in fig. 3.6. The

concrete
problem

discrete
model

i

\

i

continuous
model

=

—

simplicity in
computation

simplicity in
expression

analysis and
prediction

two-way arrow between 'discrete model' and 'continuous model' represents
the dilemma of which one is the 'real' model and which the 'approximation'.

The purely pragmatic approach certainly has some logic to back it up.
After all, the measuring we do and the information we get about a concrete
problem is always of the discrete type. The computing is done on a discrete
basis by the computer. Why then bother to look for a continuous model?
This way of thinking is expressed in fig. 3.7. To illustrate this approach, we
shall set up discrete models for some classical problems in dynamics in a
later chapter.

Fig. 3.7

discrete
data

discrete
model

computer predictions

However, our preceding remarks about the conceptual simplicity of a
continuous model are certainly as valid as those about the discrete model.
Working with continuous models, it will often be much easier for us to
predict phenomena, other results, new laws, and in general make progress in
our theoretical analysis of phenomena.

Discussion problems
70. Suppose one tried to set up a discrete model of a line as consisting

of segments of a certain minimum length. Consider a square whose
sides are such 'discrete' lines. Does the diagonal have a definite
length? Can a plane be isotropic, that is, can it have the same struc-
ture in all directions?

71. Consider the problem of measuring the circumference of a circular
wheel. How could you do it practically? How could you describe
this process mathematically using a discrete model for a line?

72. If space has a discrete 'crystalline' structure, if light travels in straight
lines, and if time is discrete, can the velocity of light be the same in
all directions?
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During the last twenty years statistics has become an integral part of the
mathematics curriculum at all levels. In this chapter we propose various real
and well-based applications that can be taught from primary school onwards.

We start with a discussion of Zipf s law, an empirical law in linguistics
which permits us to show the pupils how to gather and analyze data. Since
this is at secondary school level, we illustrate in section 4.2 that the same
processes of thought can be explained at an early age. After all, children like
to tabulate things and this can be taken advantage of in order to introduce
them to meaningful, although very simple, statistics, while at the same time
encouraging team-work. In section 4.3 codes and code-breaking methods,
using frequency tables, are discussed. The methods we use were practical
before the advent of computers, and are still a necessary introduction to the
subject. In our experience this subject has always elicited an enthusiastic
response. The mathematical knowledge required has been kept to a minimum.

The basic notions of mean, variance, and standard deviation are introduced,
starting from a discussion of average height, in section 4.4.

In section 4.5 we emphasize that statistics is a way to describe obser-
vations, and that probability is a mathematical model to explain the regu-
larities we find in statistical data. We discuss probabilities of events, proba-
bility measure on finite sample spaces, independent events, random variables,
and expectation. We discuss, at a level suitable for advanced high school
students, the law of large numbers, which shows that the probability model
fits the observed data. Finally, in a part suitable for calculus classes, we give a
brief treatment of the connection between probability and integration.

4.1 Zipf s law
George Zipf was a professor at Harvard University who loved to

count. He counted all sorts of things: pictures in mail-order catalogs, numbers
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of cities with various populations, and so on. Among the things he counted
were words in various texts. He discovered a remarkable law about the fre-
quencies of words, which seems to apply to almost any text in almost any
language. You can read about Zipfs law in his book Human behavior and the

principle of least effort (Addison-Wesley, Reading, Mass., 1949). The law had
also been discovered independently by the Swiss linguist Ferdinand de
Saussure (1857-1913). For some years Zipfs law remained a purely empirical
law. Finally, in 1959, the French mathematician Mandelbrot found a theory
which gives a satisfactory explanation of Zipfs law (B. Mandelbrot, 'Statisti-
cal macro-linguistics', Nuovo Gmento, Suppl., 13 (1959), 518-20.)

In this section we will show you how Zipfs law was discovered.

Type, token, and rank
The relative frequencies of words affect many areas of speech

behavior. The more frequently used words are usually shorter than the rarer
words. This can be easily verified, for example, in English, French, German
and Spanish. Zipf even observed that the majority of the commonly used
words in many languages are monosyllables.

The word 'word' is ambiguous in ordinary usage. The sentence 'the dog bit
the man and the man bit the dog back' contains twelve words (one meaning)
and the word 'the' occurs four times in it (another meaning). To keep our
meaning clear it is best to use two different terms. We shall call the individual
words (the first meaning) token, and a word in the second meaning a type.

Thus this sentence contains twelve tokens and only six types. The ratio (here
6/12) of the number of types in a text to the number of tokens is a measure
of the diversity of the text. We call it the type-token ratio.

Let the most frequently occurring word type be given the rank of one, the
second most frequent a rank of two, and so on. Zipf found an interesting
relation between rank and frequency.

Exercises

1. Take two pages of any text and arrange the words in order of fre-
quency. Fill in the table:

Word type Rank Frequency

1
2

Let r be the rank, and/(r) the frequency. Plot/(r) against r on graph
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paper, and compare your results with those of other students in the
class. If you have used ordinary graph paper, the result should look
somewhat like fig. 4.1, resembling part of a rectangular hyperbola. In

Fig. 4.1

fir)

(0,0)

the usual coordinates x andy the equation of such a curve is

xy=c,

where c is a constant.

(4.1)

Using log-log paper
It is easier to discover the relationship between frequency and rank if

you plot your data on log-log paper, which was described in chapter 2. If r
and/satisfy the equation

rf=c,

then their logarithms satisfy

logr + log/= logc.

Thus on log-log paper this will appear as a straight line with slope —1, which
therefore makes an angle of —45° with the positive r-axis (fig. 4.2).

Fig. 4.2

fir)

(1,1)



Descriptive statistics 94

Exercises
2. Add another column to your table in exercise 1 and tabulate there

the product rf. Are the numbers in this column approximately
constant? Graph/versus r on log-log paper. Is the graph fairly close
to a straight line? What angle does it make with the r-axis? Compare
your results with those of your classmates.

Figure 4.3 illustrates the rank-frequency distribution of words. Curve A is
from James Joyce's Ulysses (Bodley Head, London, 1960), which contains
about 4 million word tokens and nearly 30 000 word types. Table 4.1 contains
the data on which curve A is based. Curve B is based on a count of words in

Fig. 4.3
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American newspapers that tallied 43 989 word tokens and some 6 000 types.
The importance of the graph is that, despite the different sources of these

counts, the two curves A and B are very similar.
Deviation from the straight line indicates abnormality in speech behavior.

Line C (which is hypothetical) has a gentler slope and indicates diversification.
It means a larger vocabulary and a lower probability of occurrence of the
most frequent words. Another hypothetical line D has a steeper slope and
indicates a simplification, a tendency to use fewer different words. In this case
a few words are used again and again, and the probability of occurrence of the
most frequent words is greater. Such a trend might occur in children, or
speakers with low education or intelligence. (In both cases slopes refer to the
left ends of lines C and D only.)

Fig. 4.3 shows the likelihood that a certain word will occur on the average.
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Table 4.1 Exerptsfrom a rank-frequency table of James Joyce's
'Ulysses'

95

Rank

10
20
30
40
50
100
200
300
400
500

1000
2 000
3 000
4 000
5 000
10 000
20 000

Frequency

2 653
1311
926
717
556
265
133
84
62
50
26
12
8
6
5
2
1

Product (rf)

26 530
26 220
27 780
28 680
27 800
26 500
26 600
25 200
24 800
25 000
26 000
24 000
24 000
24 000
25 000
20 000
20 000

If we take into account the likelihood of the word's occurring in a specific
context, we do not obtain the curve predicted by rf= c. For example, after
'of the most frequent word is 'the', which occurs ten times as often as any
other word in that position. After 'the', however, almost anything can happen,
as there is a long list of words that are about equally likely. Thus the curve of
words of frequency less than 'of has a steep slope, while the curve of words
of frequency less than 'the' has a gradual slope (fig. 4.4).

Fig. 4.4
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Exercises
3. Test the truth of this argument on the curves of selected words in

passages of your choice.

Zipf s law states that the distribution of word frequencies, calculated from
any ordinary sample of language, always has the same mathematical form. The
data from many unrelated languages and from texts covering thousands of
years of history have been found to conform to this simple equation. Written
as well as spoken language on any subject matter shows this relationship
between frequency and rank. Since the equation depends on the number of
words occurring with every possible frequency, it is not greatly affected by
circumstances that increase the number of words occurring just once; they
affect only a single point on the curve.

Some interpretations of Zipf's law
According to Zipf, human behavior in many spheres is founded on

the principle of least effort. The organism strives to maintain as low an
average level of exertion as possible (e.g., arrangement of typewriter keyboard,
preference of certain syllable structures). Zipf claimed that from the speaker's
point of view, language would be at its simplest if the speaker had only to
utter the same word again and again, or, in other words, if the language con-
sisted of a single word only. With a single-word language, the speaker does not
have to go through a selection process when he needs a specific word. More-
over, this one word is so overlearned that it requires very little effort to pro-
duce. From the listener's point of view, on the other hand, the language would
be most rational and most convenient if every distinctive meaning had its own
word. These two tendencies conflict with each other in language. Zipf s
standard curve can be viewed as the equilibrium between these two tendencies.

Zipf s law is a perfect example of a law that has been observed but for
which no suitable explanation is immediately apparent.

By the very definition of rank, the frequency f(r) must be decreasing as
r increases. This alone gives no indication of the precise relationship. Zipfs
argument makes the relation rf(f) = c plausible, but is still not a very clear
explanation of why the relation should be just this. There exists a good
theoretical explanation given by Mandelbrot, but the level of mathematical
knowledge it requires does not permit us to discuss it here.

4.2 Statistics of language in elementary schools
One of the natural sources of motivated arithmetic for children is

the study of the statistics of their language. As a by-product they also learn
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some interesting aspects of their language and something about statistical
regularities and fluctuations.

The relative frequencies of letters in English are important in the decoding
of cryptograms, which is usually fascinating for children. This study might be
prefaced by reading The gold bug by Edgar Allen Poe, or The case of the
dancing men by Sir Arthur Conan Doyle.

The class might be divided into sections, each responsible for getting data
on two or three letters of the alphabet. Each day for a week, each child could
bring in counts of the numbers and frequencies of letters in, say, two para-
graphs of any text. It is convenient to divide the text counted into groups of
100 letters and to record for each group the frequency of each letter counted.
The counting can be done simply with tally marks.

A pupil's report for one day's count for one letter might look like table 4.2.

Table 4.2. Number of As in each group of 100 letters

Number of group

1
2
3
4
5
6
7
8

Number of As counted

9
6
3
4
9
8

12
7

The pupil might also tabulate the cumulative frequencies, as shown in table
4.3. If the child knows about computation with decimals, he could make a

Table 4.3.

Number of letters counted Number of As (cumulative
frequency)

100 9
200 15(=9 + 6j
300 18 (=15+ 3)
400 22
500 31
600 39
700 51
800 58
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third column in table 4.3 for relative frequencies (0.09, 15/200 = 0.075,
18/300 = 0.06, etc.).

Relative frequencies can be recorded on scales as in table 4.4. We record
there the relative frequencies for the preceding cumulative frequencies. Using
graph paper for the table would of course be convenient.

Table 4.4.

u
a
a*
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e 

j
ul
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|

9 <

8 -

7 -

6 -

5 -
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1 -
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- 14-

- 12-
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- 24 H

- 21 -

- 18 i

- 15 -

- 12-

- 9 -

- 6 -

- 3 -

- 36 -

- 32 -

- 28 -

>• 2 4 -

- 20 -

- 16 -
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- 6 4 -

t <
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- 32-

- 24 -

- 16 -

- 8 -

1 2 3 4 5 6 7 8

hundreds of letters

The individual daily reports can be combined to form a daily report for
each section, and these daily reports can be combined with the results of the
previous days to get cumulative section reports. By the end of the week there
will be enough data to make a class report on the whole alphabet.

The children can observe many interesting phenomena. For example, in
table 4.4 we see both fluctuations and a trend toward about 7.2 As per 100
letters. Will this trend continue as we gather data for 40 hundreds? We also
see that one hundred only had 3 As whereas another had 12 As.
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In this example the relative frequency fluctuated violently at first, but
ultimately settled down to a trend. When we only had a few hundreds, a
hundred with only 3 As or as many as 9 As had a big effect on the total. After
eight hundreds, one group with only a few As or many As will not make such
a big difference. The same phenomenon can be observed by comparing
batting averages at the beginning of a baseball season with those near the end.

Of course, it might be an interesting task to compose as long a text as
possible without a single A, or to write a text with as many As per hundred
letters as one can. The statistics we are gathering, however, concern ordinary
English as it occurs naturally. It is important to sample a variety of texts to
be sure that the data really represent typical usage.

Other interesting questions to investigate are:

the frequencies of words;
the frequency of, say, 3-letter words;
the lengths of sentences;
the frequency of 3-syllable words.

Some literary critics have tried to compare styles of different authors by
such statistics as lengths of sentences or frequencies of words. For example,
they have tried to settle in this way arguments about whether certain parts of
Shakespeare's plays were really written by Shakespeare.

People who want to develop computers to translate, say, from Russian
into English, have tried to analyze English grammar in such a way that it can
be programmed into a computer. One approach which they have tried is to
set up rules for which word can follow a sequence of some given number of
words. For example, they think that if every sequence of five words makes
good sense, then there is a good chance that the whole text will be fairly good
English. The linguist N. Chomsky has published a proof that no such set of
rules can give a complete analysis of English grammar; see, for example, his
book The logical structure of linguistic theory (Plenum Press, New York,
1975).

It is an amusing task to test this type of hypothesis. One hands a roll of
paper tape to the first pupil. He writes a 5-word phrase which makes sense,
cuts off the first word, and passes the roll to the next pupil. He adds one
word after the other four so that the five make sense, cuts off the first, and
passes the roll to the next child. They continue in this way until everyone has
written a word. One then writes the whole text on the blackboard, each child
in order contributing the word he has kept. How much sense does the whole
make? Does it approximate correct English?
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The class might compare the results with those of using 4- or 6-word
sequences. Are the differences very noticeable?

4.3 Cryptography I

Codes
We all have to send messages sometimes that we want to be read by

the addressee only. One of the possible ways to attain this goal is to use a
code. The simplest codes are obtained by replacing each letter of the message
by another letter. We might, for instance, replace each letter by the letter
following it two places further away in the alphabet.

To do the enciphering (writing in code) and the deciphering (returning to
standard language) easily, we write the usual alphabet and the code alphabet
one below the other:

Plain A B C D E . . .
Cipher C D E F G . . .

Suppose the message is

I WILL MEET YOU AT MIDNIGHT.

In code it will look like this:

K YKNN OGGV . . .

Finish the coded message.
With this arrangement, enciphering consists of replacing each letter by the

one below, and deciphering goes exactly the opposite way. Which letters in
our code correspond to Y and Z? Of course, instead of shifting by two places,
we can shift by any amount up to 26, as long as both the sender and the
receiver are using the same number. Any alphabet obtained in this way is
called a 'direct standard alphabet'.

Exercises
4. Decipher the following message:

D ORW RIJRRG LW ZLOO GR BRX.

5. Devise a general method for deciphering any message which has been
encoded in a direct standard alphabet. Did you find a good method?

The usual way to decipher is to choose one word of the message and just
continue the alphabet under every letter until a meaningful word comes up;
if the message were PX PXGM AHFX, we would proceed as follows:
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PX PXGM AHFX
QYHN
RZIO
SAJP
TBKQ
UCLR
VDMS
WENT

How do you continue? Why does this method work?

Scrambled alphabets

It is clear by now that encoding a message in a direct standard alpha-
bet does not ensure any secrecy. It is too easy to break the code. So let us try
a completely scrambled code. We just decide on a random pairing between the
plain alphabet and the cipher alphabet. As we did before, we write one below
the other:

Plain A B C D E F G H I J K L M N O P Q R S T U V W X Y Z

Cipher P D I KWVZOYBAXC F L H Q E N U G J RM S T

The message

VICTORY IS AT HAND

will be encoded as

JYIULES . . .

Finish the coded message.
Trying to decode a message, if you know the code, is best done by first

rewriting the two alphabets in the opposite order, the cipher on top and the
plain below:

Cipher A B C D E F G H I J K L M N O P Q R S T U V W X Y Z
Plain K J M B RNUPCVD OXS H A Q W Y Z T F EL I G

Now again we can easily replace each letter in a message by the letter below,
and decode speedily.

Completely scrambled alphabets are not practical, since they require either
memorizing the complete pairing (instead of just a number for the direct
standard alphabet) or keeping a written copy of the code - not very good for
secrecy.

In general, this problem is solved by using a 'keyword', for instance,
POLITICS, writing first the keyword without repeated letters and then the
remaining letters of the alphabet on successive lines under the keyword:
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POL I TCS
ABDEFGH
J KMNQRU
VWXYZ

Then the letters are used as the cipher alphabet, reading them off column
after column, like this:

Plain A B C D E F G H I J K L M N O P Q R S T U V W X Y Z
Cipher PAJ VOBKWLDMX I EN Y T F Q Z C G R S H U

Exercises

6. Encode the message

WE WILL ARRIVE AT NOON

in a scrambled alphabet with keyword CONSTITUTION.

7. Try to decode the following message, written in a scrambled alphabet:

QNFFH RO VLV ENZ BNNX HNC.

Is there a keyword?
We bet that you only succeeded in solving exercise 7 if you have enough

insight into the psychology of book-writing mathematicians. It is in fact
extremely difficult to decode such a short message, although some tentative
conclusions could be drawn from looking at the message and knowing that it
is in English, reminding ourselves of particularities of this language.

For instance, consider vowels. There are few English words without vowels.
Indeed, looking at the distribution of vowels in any text, for example,

indeed looking at the distribution of vowels

we notice that we rarely have more than two consonants between vowels, that
repeated letters in the middle of a word are often vowels, and so on.

Therefore in exercise 7 we would guess that N stands for one of the vowels.
Since in BNNX, N appears twice, we reasonably guess

Let us insist here that these are speculative deductions only. The word
BNNX might of course be a person's name, but otherwise do you know many
English words of four letters with a repeated consonant in the middle? Make
a list.

This partial analysis shows that decoding is guessing, but educated guessing.
To try to do it right we have to know more about our language.
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Exercises
8. Take a 1000-letter sample of a plain text (e.g., a newspaper) and

make a count of the number of times each letter appears:

A . . E . . I . . M.. Q. . U . . Y. .
B . . F . . J . . N . . R. . V . . Z . .
C G. . K.. O. . S. . W..
D . . H . . L . . P . . T . . X . .

9. We call the number of occurrences of a letter its frequency. Draw up
a bar graph of the frequencies, as in fig. 4.5. Here we have supposed
that A has a frequency 7 and S frequency 6. Fill in the blanks. This
graph is called the monographic frequency distribution.

Fig. 4.5

A B C D E F G H I J K L M N O P Q R S T U V W X Y Z

Frequency distribution

Of course the relative frequencies of the different letters may vary
for different texts, but in the main the differences are small. Fig. 4.6 shows
a typical frequency distribution. There is a definite pattern of highs and lows;

Fig. 4.6

U- =
A B C D E F G H I J K L M N O P Q R S T U V W X Y Z

6 1 3 4 13 3 2 4 7 1 0 4 3 8 7 3 0 8 6 10 3 1 1 0 2 0

A, E, I, O are high, as are the consonants T, N, R, S, while on the other hand
B, J, K, Q, V, W, X, Z are very low.

Studies of the same kind have been made for digraphs and trigraphs (groups
of two or three letters), word beginnings and endings, and so on. The most
frequent initial and final letters, for a count made on 1000 words, are shown
in table 4.5. The ten most frequent digraphs and trigraphs, for a count of
50 000 characters, are given in table 4.6.
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Table 4.5
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Initia

T
A
S
0
I

c

Table

I letter

1634
1126
758
735
576
573

4.6

Digraph

TH
HE
IN
ER
RE
ON
AN
EN
AT
ES

1351
1283
969
898
800
770
760
643
637
573

Final letter

E
S
D
N
T
R

2078
1298
1031
995
992
566

Trigraph

THE
AND
TIO
ATI
FOR
THA
TER
RES
ERE
CON

1073
302
240
180
177
159
145
137
132
129

Let us show how to use all this information on an example:

YAZ EDDKWHN CBYAK YRDZCKWYH P
FCS BDDH RYSKRYHDO UZYE
UZWOCI KY SAHOCI HDMK TDDG CHO
TWXX BD FDXO CS ASACX WH KFD
KFWZO UXYYZ QYHUDZDHQD ZYYE.

We start with a frequency count:

5 3 8 15 3 4 1 10 2 0 8 0 1 1 6 1 2 3 5 2 4 0 6 5 13 8
A B C D E F G H I J K L M N O P Q R S T U V W X Y Z

There are 116 letters altogether. The most frequent are:

D 15
Y 13

H 10

Z, K, C 8
O,W 6

S, X, A 5

Now we look at the distribution of the letters in the message. We notice
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that in this message D and Y appear in the places usually occupied by vowels,
for instance, in BDDH, HDMK, CBYAK, ZYYE, and that H, Z, K and 0 look
like consonants. (Why?)

Since both Y and D appear in groups of two this suggests that

E

D,Y

O

From examining fig. 4.6 we can guess that
T

N

R

S
The distribution of repeated initial and final letters in the coded message is:

Initial U, K (3)
Final O(4);D,H(3)

Taking table 4.5 of initial and final letters into account, we would choose
pairings for D between E and 0 and for K, O and H among T, N, R and S as
follows:

for K, a frequent initial: T;
for H, a frequent final: S or N;
for D, a frequent final: E and not O;
for O, a frequent final: N, D, or S.

Tentatively, therefore, we will try:

Y • O R

D • E Z — • S

K • T N

O

The word KY in the message becomes TO, which looks good. The message
now looks like this:
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R R

0-S -EET^- --0-T 0-ES-T-O^ -

N N

N
-EE^j -0-T-O^ED etc.

S

The fourth word suggests to try ON at the end, so let us try H -> N. Now
the pairings we use are:

Y — • o ^ r D

o

D • E

K • T

H • N Z

We have a word HDMK in the message, which becomes NE-T. This suggests

M-> X, quite in accord with its frequency. So the passage in the message around

this word looks like

TO - N ^ - - NEXT -EE- -N^

This last word would make sense as AND; therefore we try C -• A and O -• D.

We get

TO --NDA- NEXT -EE- AND

E -E-D A- ---A- -N etc.

The last word should be AN, ON, or IN, but in our pairings O and A are
out, so we try W -* I, which gives

TO --NDA- NEXT -EE- AND

-I-- -E -E-D A- ---A- IN etc.

The third from last word must be AT or AN or AS; it can only be AS, so
S -> S. Where are we now?

Y - > 0 K-+T M-*X O-*D S-+S
D + E H-^N C ^ A W->I Z->R

Thus we get

TO --NDA- NEXT -EE- AND
-I-- -E -E-D AS -S-A- IN THE
THIRD --OOR etc.

including a new deduction that F -> H. From here on it becomes a very simple
exercise to complete the message. Can you find the keyword? Which letter
corresponds to the code letter P?
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Exercises
10. Decode the following message and find the keyword:

SO WPYO ZWBZ JPA AFUOGQZBFU ZWO YGOKOULFM
KWBYZOG PF KGJYZPMGBYWJ BDZOG BXX LZ LQ FPZ
ZPP ULDDLKAXZ SOXX LD JPA QAKKOOUOD LF
UOKPULFM ZWLQ IOQQBMO JPA KBFFPZ CO UPLFM
ZPP CBUXJ.

11. This was too easy. To make it more difficult, the encoder would not
leave the message in groups of letters which correspond to words,
but would transmit his message in groups of five letters. Can you
decode this?

LZZVA
JSAVA
ARZVA
AHRQS
QQPZV

BDZAH
UAHGB
ZVBZB
QXRSQ
HBZZV
BLMVZ

MQLGM
HZJAR
ZQEHM
EWUCA
AVQZA
ZQOBK

OERAE
KLUAD
XBHZO
AWADZ
ARECS

OQDOQ
ZQUBJ
AGZRV
QEHKB
BJRZH

ZQILR
ZAHUB
DZVAC
LGQHU
WBGUZ
JR.

It certainly was more difficult. Did you find the relevant keyword?
12. Let us use a completely different way of encoding a message. The

successive stages in the encoding are:
(a) Replace each letter by its numerical value (A = 1, B = 2 , . . . ,

Z = 26).
(b) Add or subtract a constant number from each word (read as

a number).
(c) Group all words together in one long string of digits, separating

two words by the string 0110.
For instance, if our constant is +130071, the message 'we will visit
you at noon' becomes:

stage (a): 235 2391212 22919920 251521 120 14151514
stage (b): 130306 2521283 23049991 381592 130191

14281585
stage(c): 130306011025212830110230499910110381592011-

0130191011014281585.
Is this a good code? Explain, and give examples.

4.4 Means and medians

How to characterize average height
Let S be the set of all living American males. Let h(x) be the height

of male x, measured in centimeters. Then h assigns a definite number to each
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member of S. You can determine h(x) by measuring the individual*, if you
catch him! How much work is needed to obtain the value of h(x) for each*?
Even if you had this information it would not be particularly useful. It is
hard for the unaided human mind to grasp the significance of some 90 000 000
numbers.

Even if you could obtain the height of each*, you would want to summarize
the information in terms of a few numbers whose meanings are easy to under-
stand, such as:

the average height;
the minimum height;
the maximum height;
a measure of the variability of h(x), for instance the percentage

with height <q, for q = 100, 110, 120, 130, . . . , 200.

We would also want methods of estimating such numbers by measuring
only a sample of the whole population S. We would like to know how large a
sample to take to obtain an estimate with a certain reliability. We would like
some way of testing a sample to tell whether it is representative or not.

Let us examine the first question. What does 'average height' mean? There
are many kinds of averages, and each is the most useful for a certain purpose.
For instance, suppose we consider the employees of a corporation with the
following annual salaries:

5 at $4000,
4 at $10000
1 at $200000.

Half the employees have salaries less than $7000, half have larger salaries. The
payroll of the corporation works out to $26 000 per man, yet 90% of the
employees make less than this. For which purpose is each of these two
averages useful?

Let us take a simpler example. Suppose we have five numbers, 5, 7,4, 2,
and 8. What single number* best represents this set of numbers? What should
we mean by 'best'?

The errors in using* to represent this set are, respectively, 5 — *, 7 — *,
4 — *, 2 — *, and 8 — *. If* = 6, then two errors are positive and three are
negative. There is a certain choice of* for which there are as many positive
as negative errors (one will be neither positive nor negative). Which value of
* is it? This is called the median of the set: there are just as many numbers in
the set less than the median as there are greater than the median. If the set has
six members, then any number between the third and fourth, in order of
magnitude, has the above property of the median. It is customary then to
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define the median as halfway between the middle two numbers. Thus the
median of the set {5,7,4,2,8,6 } is 5.5.

The median is a useful average when we wish to avoid giving undue influence
to a few exceptional extreme values. Also, in some tabulations of data the
numbers are not all given. For income tax purposes a corporation might list
its salaries like this:

under $4000 3 employees
$4000 2 employees
$10000 4 employees
$200000 1 employee

It would still be easy to calculate the median from this table.
Alternatively we might choose x so that the total error is zero:

(5 -x) 4- (7 -x) + (4 -x) + (2 -x) + (8 -x) = 0.

If we solve for x, we obtain* = 5.2. This average is called the arithmetic mean
of the given set. It is easy to compute when all the numbers are known, and
algebraic manipulations with the arithmetic mean are convenient. This average
is so commonly used that the word 'mean', unless something else is specified,
is usually interpreted as the arithmetic mean.

Usually we do not mind whether the errors are positive or negative; it is
their numerical values that are important. There are two common ways to
measure the size of an error independent of its sign.

One way is to use the absolute value. We define |JC|, the absolute value of
x, as follows:

Thus, we have

|+3| = | - 3 | = 3,|0| = 0, etc.

One natural approach to defining an average is to try to minimize the sum of
the absolute values of the errors. In our example, we would look for the x for
which

|5 -x\ 4- |7 -x\ + |4 -x\ 4- |2 — JC| + |8 — JC|

is a minimum.
Instead of using absolute values, one could also measure the size of an

error by its square, since (—a)2 = a2. This leads us to try to minimize the sum
of the squares of the errors:

(5 -x)2 + (7 -xf + (4 -x)2 + (2 -x)2 4- (8 -x)2.

This leads to simpler algebra than if we minimize the sum of the absolute
values of the errors.
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In the exercises below we need to count the number of elements of some
sets. We will denote by N(A) the number of elements of the set A.

Exercises

13. Make a graph of the relation

y = |5 _ JC| + |7 — JC| + |4 - J C | + |2 — JC| + |8 -x\

as follows:
(a) If 2 <x < 4, which of the errors are positive and which nega-

tive? Is |2 -x\ = 2 -x or |2 - J C | =x - 2? For* in this interval,
express y without absolute value signs. It is then easy to make a
graph forx in this interval. When* increases in this interval,
doesj> increase or decrease? For which value of x in this inter-
val is y a minimum?

(b) Carry out a similar analysis for each of the intervals 4 <x < 5,
5 <x < 7, 7 <x < 8, and the half-lines* < 2 and 8 <x.

(c) For which value of x isy a minimum? Do you recognize this
value of xl

14. Repeat the previous exercise for the equation

y = |5 _ J C | + |7 — JC| + |4 -x\ + |2 —JC| + |8 — JC| + |6 — JC|.

15. Make a graph of the relation
y = (5 _X)2 + (7 _ x )2 + (4 _xy + ( 2 _ ^ 2 + (g _ ^ 2

as follows:

(a) Express^ in the form

y = ax2 + bx + c,

where a, b, and c are constants.
(b) Make a table of values

x 0 1 - 1 2 - 2 3 . . .

and draw a graph. Can you estimate the value of x for whichy
is a minimum? Can you recognize the curve?

(c) Find constants h and k such that

for all*. (Hint: a(x -hf + k = ax2 - 2ahx + ah2 + k.) Com-
paring with the expression forj> obtained in (a) yields b = ( ),
c = ( ). Fill in the missing values. Solve for h and k.

(d) What is the minimum of (x - h)2l What is the minimum ofj>?
For which value of x is it attained? Do you recognize this value
ofx?
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16. Let.4 = {2,3,10} and£ = {30,31,32,33,34}. Compute the means of
the sets ,4, i?, and A UB. If you already do know
(a) the means of A and B, and
(b)N(A) and N(B),
is there a short cut for computing the mean of A UB1

17. If B is as in exercise 16 and Cis the set of numbers obtained by
subtracting 30 from each member of B, what is the relation between
the means of the sets B and C?

18. ifD = {3.0, 3.1, 3.2, 3.3, 3.4}, and B is obtained by multiplying
each member of D by 10, what is the relation between the means
of the sets B and Z>? (Note: this is the same set B as in exercise 16.)

19. Let a and b be any positive numbers, and let m be the mean of the
set {a,b}. Letting I(n) denote the information function of chapter 2,
can I(m) be smaller than the mean of {l(a), I(b)}7 (Hint: what is the
signof(a+2>)2/4-flZ>?)

20. In exercise 19, which is larger, m2 or the mean of {a2, b2}!
21. In exercise 19, which is larger, m3 or the mean of {a3, &3}?

Calculating the mean

We can summarize the process of calculating the mean height of the
population S by the formula

m e a n o f / i = — £ h(x)

The Greek letter D (capital sigma) stands for 'sum'. The formula says to take
the value of h(x) for each* in S9 sum the results and divide by the number of
members in S. The most common notations for the mean of h are (/*>, h, and
E(k). The first is usually used by physicists, the second by statisticians, and
the third by probability theorists. Sometimes we indicate the population S
over which the mean is taken by (h)s.

Of course, we can use the above notation for means of all sorts of quantities.

Exercises
22. Let S be the set of integers from 1 to n, and let h(x) = 2x - 1 for all

x in S. Compute (h) for n = 2,3,4,5,6. Can you guess at a formula
for any nl

23. Let S be as in exercise 22, and let h(x)=x3 - (x - I)3 for all JC in S.
Compute (h) for n = 2 , . . . , 6. What is the general rule?

24. Let S be as in exercise 22 and let hk(x) = xk. Compute <hk) for
n = 10 and k = 0,1,2,3. Also compute (3h2 — 3/ii 4- ho\ Compare
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this result with 3<h2) — 3(hi) + (h0). Also compare this result with
that of exercise 23. Explain.

25. Using the ideas suggested by exercises 23 and 24, find a formula for
</*3>for any n.

26. (a) Expand [h(x) - t]2 = h(x)2 + ( )th(x) + ( ). Fill in the
missing values.

(b) If t is any number, find a, b, and c such that

Z [h(x)-t]2=at2 + bt + c.
x G5

Find ,4 ,5 , and C such that

(c) For which value of t is ((h - r)2> a minimum? What is the mini-
mum value of this expression?

The minimum of

<(h-t)2)

is a measure of the dispersion, or variability, of h. It is called the variance of A.
denoted by var(A). The square root of the variance,

is called the standard deviation and is also a measure of the dispersion of A.
27. (a) Compute Oh) - 3<ft>, (h + 5> - <A>.

O) Compute var(3/0/var(/0, var(A 4- 5)/var(A).
(c) Compute o(3h)/o(h), o(h +

28. (a) If S= {l ,2,3,4,5}andA(l
A(5) = —c, compute (h), var(A) and o(h).

(ft) If 5= { l ,2 ,3 ,4 ,5}andKl )=-3 ,A(2)
A(5) = - c , compute <A>, var(A), and o(h).

29. If <A> = 5, what is the smallest possible value of var(/i)? When is this
minimum attained? What is the smallest possible value of (h2)!

30. (a) Suppose that (h) = 100, N(S) = 20, and h(x) > 0 for all x in S.
Let A be the set of x in S for which h(x) > 900. What is the
greatest possible value for N(A)1

(b) Suppose that N(S) = 20 and var(A) = 100. Let B be the set of x in
S such that [h(x) - (h)]2 > 900. What is the greatest possible
value for N(B)1

(c) Suppose var(A) =100 but N(S) = n is unknown. Let B be the set
of x in S such that \h(x) — <to| > 30. What is the greatest possible
value for the ratio N(B)/nl
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Properties of the mean

An advantage of the arithmetic mean is that it has simple algebraic
properties. Some of these are suggested by the above exercises.

Let us summarize briefly the general meaning of the mean. We have a set S
with a finite number of members. A function h on S is a way of assigning a
definite number h(x) to each* of S. The operation of finding the mean is a
way of assigning a definite number (h) = E(h) to every function on S. The
following rules describe the process of calculating (h):

(a) Find h(x) for each* in S.
(b) Sum the numbers h(x) for all x in S.
(c) Divide by N(S).

If/and h are functions on S, we can operate on them to produce new
functions in several ways, such as:

/ + h is the function whose value for each x in S is f(x) + h(x),
or briefly

Similarly we can define for each x in S:

(flh)(x)=f(x)/h(x)
If f(x) has the same value for all x in S, we say that/ is a constant. When

there is no danger of ambiguity, we can use the symbol '3 ' for the function
whose constant value is 3, and so on.

A characteristic function XA of a subset A of S is simply a function whose
values are either 0 or 1. The value 0 is given to XA for any element of S which
is not in A. For* £A we have XA(x) = 1.

The variance of h can be described simply by the formula

var(/0 = <(/*-</*>)2>

and the standard deviation by the formula

(see exercise 26).

Exercises
31. If A is a subset of S, compute (XA).
32. Compute the following:

(a) <3> and, more generally, (c) if c denotes a constant function.
(b) var(c) if c is a constant.
(c) (cf> - c(f) if c is a constant.
(d) var(c/)/var(/) and o(cf)/o(f) if c is a constant.
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(e)(f+c) — </> if c is a constant.
( / ) var(/+ c) — var(/) if c is a constant

33. (a) Find a, b, and c such that < ( / - th)2) = at2 + bt + c for all
numbers t.

(b) If/and h are given functions on 5, find the minimum of
< ( / - th)2). For which value of t is the minimum attained?

34. (a) Compute var(/+ h) - var(/) -

(b) Compute

(c) Compute

[<(/+ hf) + <(/- hf)]l[{f2) + (h2)].
(G7) Give a formula for var(A) in terms of (h) and </*2>.

35. (a) Can the minimum in exercise 33(b) be negative?
(b) Given the values of </2> and (h2), what is the greatest possible

value for (fh)2l
(c) Given the values of (f2) and (h2), what is the greatest possible

value for <(f+h)2)?
(d) Given the values of o(f) and a(/i), what is the greatest possible

value for o(f+h)?

4.5 From statistics to probability

Observations and theory
If you toss a die, it may come up 1,2, 3, 4, 5, or 6. You cannot in

general, predict the result. If the die is honest, and you toss it a large number
of times, you will notice some regularities, even though the results of the
individual tosses can be any of the above six outcomes.

One experimenter tossed a die 200 times. In some sequences of 10 tosses,
1 or 2 came up seven times, and in others he never had 1 or 2. The relative
frequency of the event X < 3, where X is the number which comes up, varied
from 0 to 0.7. Then he tossed the die 1000 times. Now the relative frequency
of the event X < 3 in sequences of 50 tosses ranged between 0.20 and 0.48.
When he tossed the die 5000 times, the relative frequency of the event X < 3
in sequences of 250 tosses ranged only from 0.276 to 0.372.

A similar phenomenon occurs with many events whose outcome seems to
depend on chance. For any such event A, the relative frequency F(A) in N
independent trials seems to tend to a definite number as N grows larger. This
suggests a certain lawfulness in mass events, that is, in the outcome of a large
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number of trials, even though we cannot predict the outcome of any one
trial.

This leads one to the idea of developing a theory to describe random out-
comes, by means of which we might predict mass events. Thus we might
predict that on tossing the die 100 000 times, the number of occurrences of
X < 3 will be between 27 000 and 38 000 (we would expect about 33 000,
so this prediction seems quite safe).

We shall give a brief introduction to the theory of probability. It started
about 325 years ago with the work of Pascal and Fermat on games of chance.
Nowadays the theory is fundamental to two large industries - insurance and
gambling. It is a basic tool in physics, biology, and economics, in the design
of agricultural experiments, in business decision-making, and in quality con-
trol in industry.

The mathematical model
Suppose we perform TV trials of tossing the die. On any one trial the

number X which comes up will be one of the six numbers 1, 2, 3, 4, 5, or 6.
We call the events.

X = 1 , X = 2 , . . . , X = 6

the simple events in this experiment. The set S of all simple events is called
the sample space. (The sample space is, to be precise, the collection of all
simple events. Since we plan to consider only experiments with a finite
number of outcomes, we consider the sample space as a set.)

The events

X<3
or

X is even

are compound events (or fust events); they are combinations of simple events.
For example, X < 3 is equivalent to X = 1 or X = 2, X is even is equivalent to
X = 2 or X = 4 or X = 6, and these may be associated with the sets {1,2 } and
{2,4,6} respectively.

The frequency f(A) of the event A is the number of times A occurs in our
N trials, and the relative frequency F(A) is the ratio:

F(A)=f(A)/N.

Since
0<f(A)<N,

then we always have
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It is certain that some simple event will occur, so that

F(S) = 1.

An impossible event, such as X< 1, is associated with the null set (symbolized
by 0), and

since it never occurs.
The event

is impossible as the sets {1,2} and {6} have no common members, so that

f(X< 3 o r X > 5) =f(X< 3) + / ( X > 5)
and

In fact,
F(X< 3) = F(X = 1) + F(X = 2)

and

while
F(X< 3 or X> 5) = F{X= 1) + F(X= 2) + F(X= 6).

In general, if A and 5 are incompatible events, that is, {A and B } = 0, then

We conjecture that as TV-* °°, F(/l) approaches a limit, which we shall
denote by P(A). We call P(/4) the probability of the event A. Then P(>1)
should have the properties

0<P(A)<l9

and
P(A oxB) = P(A) + P(B)if {A

We shall call any function P, which assigns to each event A a number P(A)
and which satisfies these conditions, a probability measure on the set S of all
simple events. Our hypothesis is that the observed data can be explained in
terms of some probability measure.

In the case of our die-tossing experiment, we would guess that all the
simple events are equally probable:

P(X= 1) = P(Z=2) = . . .=P(X=6) .
Since

1=P(S)=P(X= 1 o r Z = 2 o r . . . o r Z = 6 )
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then the common value must be

We might take this as the definition of an honest die. If we toss the die many
times, we would expect the relative frequencies to be close to 1/6 = 0.166.

Of course, in any experiment of this sort, we cannot expect the relative
frequencies to give exactly this result. If, in 30 tosses, we were to find f(A)
= 6, that is, F(A) - 0.2, we would not be very surprised. What about if f(A)
= 60 in 300 tosses, or/(/4) = 600 in 3000 tosses? How big a difference in how
many tosses would be evidence that the die is dishonest? To answer this, we
need to describe the independence of events in our model.

Exercises
36. If Pis a probability measure on the above set S, and the probabilities

of all simple events are equal, what are the probabilities of these
events:
(a)X<3;
(b)X is even;
(c)X<JorXiseven;
(d)X<3 and X is even;
(e)X is not less than 3?
What is the relation between P(A), for any event A, and the number
N(A) of members in the set associated with A!

37. Consider the experiment of tossing a pair of honest dice. Let The
the total of the numbers that come up. Suppose we take the simple
events to be
T=k(k = 2,3,...).

What are the possible values of Tl What would be a plausible value
to guess for P(T = k) for k = 2? For k = 7? For any value of kl What
does this give you forP(ris even)? (Hint: use ordered pairs to denote
simple events.)

Independence
Consider the experiment of tossing our die twice. Let X\ be the out-

come of the first toss and X<i be the outcome of the second. The tosses are
independent; that is, the outcome of either has no influence on the other. So
the events

A:Xi = 2
and

B: X2 is odd

should be independent. How might we test this experimentally?
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We could do TV times the experiment of tossing the die twice. We would
obtain the relative frequencies F(A)9 F(B) and F(A and E). To test the
influence of the event A on the event B9 let us look at the f(A) cases where
A occurred. Among these, the event B occurred f(A and B) times. Thus the
relative frequency of B on the assumption that A occurs is

f(Aw&B)lf(A).
Since

F(A and B) = f(A and B)/N
and

F(A)=f(A)/N,
we have

f(A and B)lf(A) = F(A and £)/F(,4).

Let us denote the relative frequency of B on the assumption that^l occurs by
F(B/A). Then

F(B/A) = F(A and B)/F(A).

If A has no influence on B, then we would expect

F(B/A) =
that is,

at least approximately. The larger TV is, the better we would expect these two
quantities to agree.

This suggests that we define the probability of B on the assumption that A
occurs (the so-called conditional probability) by the equation

P(B/A) = P(A and B)/P(A),
and define A and B as independent if

P(B/A) = P(B),
that is,

The symmetry of this last equation shows that B and A are independent if A
and B are independent.

Exercises
38. Let A' be the event of 'A not occurring'. What is

What is

P(A and B) + P(A' and 5),

where B is any event?

39. Give a formula forP(,4') in terms of P(A).
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40. If A and B are independent, what is P{A' and
41. The events A, B, and C are said to be mutually independent if they

are pairwise independent and

P(A and B and C) = P(A)P(B)P(C).

Are A',B\ C' also mutually independent?

The outcomes Xi and X2 are called random variables because their values
depend on chance. For each k, there is assigned a probability P(X2) = k to the
event X\ = k. For any numbers/ and k the events Xx =/ and X2-k are inde-
pendent, so that

P{Xt =/ and X2 = k) =P(XX = j)P{X2 = k).

We say therefore that Xx and X2 are independent random variables.
We can now obtain information about interesting related events. For

example:

I 1 + I 2 = 4 ^ ( I 2 = 1 andX2 = 3)

or {Xx = 2 and X2 = 2) or (JT3 = 3 and X2 = 1)

{o means 'is equivalent to'.) The three events occurring on the right-hand
side of this equality are mutually exclusive. Hence

= P{XX = l)P(X2 = 3) + P ^ ! = 2)i>(X2 = 2)

If we assume

= *) = P{X2 = k)= 1/6 (k = 1,2,3,4,5,6),

then we obtain

P{XX 4- X2 = 4) = 3/36.

42. Work out the probabilities P{XX +X2 = k) for all possible values of
k, still on the assumption of an honest die. Compare with exercise 37.

43. Let Yj = 1 ifX; = 1, and Yf = 0 if*) =£ 1, for/ = 1,2. What does ^
4- Y2 count? Assuming the die is honest, work out the values of
P{YX + Y2 = k) for all possible values of A:.

44. Suppose you toss an honest coin five times. What is the probability
of the sequence HHTHT (H for heads, T for tails)? Let Z be the
number of heads in the sequence of five tosses. Work out P{Z = 3).

45. Suppose the coin is biased, so that the probability of heads in any one
toss is 0.4 Now what is P{Z = 3)? Work out P{Z = k)forO<k<5.
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Expectation of a random variable

Suppose X is a random variable which can take on only the values
1,2,3,4,5, or 6. Suppose you make TV independent trials, and obtain the values
Xi,X2i... ,XN on these trials. Then the average value of X in this experiment
is

X + X2 + . . . + XN
<JO =

N

Now the number of terms equal to 1 in the numerator is the frequency
f(X = 1) of the event X = 1, and similarly for the other possible values of X.
Therefore we obtain

N

If TV is large, we expect these relative frequencies to be close to the corres-
ponding probabilities. Hence we expect the average value of Xto be close to

1)X 1 + P ( I = 2 ) X 2 + . . . + i ) ( J S r = 6 ) X 6 .

This number E(X) is called the expectation of X. In general, if X is a random
variable which can only take on the values vu . . . , vn and if P(X= vk) - Pk

for 1 < fc < «, then we define E(X) as

E(X)=plvl + ...+pnvn.

Notice that this is a weighted average of the values Vi , . . . , vn with the
weights P i , . . . ,pn (whose sum is 1).

Exercises
46. Suppose that X and Y are independent random variables, and that

Xcan only take on the values 2 or 5, with respective probabilities
Pi and p5 (p2 + Ps = ?), and Y can only take on the values 3, 7, or
11, with respective probabilities q3, q5 and qn. Give formulas for
E(X)9 E(Y)9 and E(XY). Compare the latter with E(X)E(Y).

47. Suppose that X and Y are as in the preceding exercise, except that
X and Y are not necessarily independent. Let pJtk = P(X = j and
Y= k). Express p2 and qs in terms of̂  these joint probabilities.
Compare E{X + Y) with E(X) + E(Y).

48. Give a formula for E(X2) in the last exercise. Compare it with E(X)2.
Try various values for p2 and p5. Guess the general rule. Prove it.
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49. Give a formula foiE(\QX). Compare with \0E(X).

Exercises 46 and 47 illustrate two important general properties of expec-
tations:

(a) If X and Y are any random variables, then

(b) If X and Y are independent random variables, then

E(XY) = E(X)E(Y).

These can be easily proved. The following properties are trivial but also basic:
(c) If X is a random variable and X > 0 (i.e., X can only have non-negative

values), then E(X) > 0.
(d) If X is a random variable and c is a constant, then E(cX) = cE(X).
(e) E(l) = 1. (Here the constant 1 on the left is thought of as the random

variable which always equals 1.)

Exercises
50. Let^4 be any event, and let Ybe the variable defined by the con-

ditions

X- 1 if A occurs,
X = 0 if A does not occur.

What is £(r>?
51. Find a formula for E[(X - t)2], of the form E[(X - tf] =a+bt

+ ct2, where t is a constant. What is the minimum of this, as a
function of tl For which value of t is it attained? Can the minimum
be negative?

52. Let X be a non-negative random variable. Define Y as

F = 0 i fX<100 ,
Y= l i f Z > 1 0 0 .

Can X - 1007 ever be negative? What is E(X - 1007)? Can this
number be negative?

53. Let Y = (X - t)2, where t is given the value for which the minimum
in exercise 51 is attained. Find an estimate for

P(\X-t\> 10)

in terms of E(Y).

The law of large numbers
The reasoning of exercise 51 above leads to some important results.

If X is a random variable, then g(t) - E [(x - t)2] attains its minimum only
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for t = E(X). This minimum is non-negative, and is equal to

E{[X-E(X)]2} = E(X2) -E{X)\

This quantity measures the deviation of the variable X from the constant
E(X). It is called the variance of X, and its square root o(X) is called the
standard deviation ofX:

(see p. 112). These are the most useful measures of the scattering of the values
ofX

Suppose Xis a random variable and c is any positive constant. Let Y be the
variable defined by

Y=Owhen\X-E(X)\<c,

Y=lwhen\X-E(X)\>c.
Then the variable

Z= [X-E(X)]2 -c2Y

is never negative. Its expectation is

and
E(Y) = P[\X-E(X)\>c]

(see exercise 50). Hence we obtain

var(JJf) - c2P [\X - E(X)\ >c]>0,

or

P[\X-E(X)\>c] <var(Z)/c2.

This important result is called Chebyshev's inequality. If c = 10o(X), then

P[\X-E(X)\>l0a(X)] < 1/100.
We see that it is very improbable that X differs from E(X) by an amount which
is large in comparison with o(X).

Let us look again at our die-tossing experiment. Suppose we make 100
tosses. Let Xk be the number which comes up on the fcth toss. Then Xk has
the same probability distribution as the variable X, considered before, which
gives the number that comes up in one toss:

P(Xk =l) = P(X=l), P{Xk = 2) = P(X = 2), etc.

What can we say about the average

Y = (X1+... + Xioo)/100 = 77100,

where T = Xt + X2 + . . . + Zioo? We can apply the properties found above:
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= E(T)/IOO,
E(T)=E(Xi)+...+E(Xlw).

But since Xt,..., X100 all have the same probability distribution as X, their
expectations are all the same, and

E(T)=\00E(X),

This result is some evidence that our probability model is plausible. The
expected value of the average result of many trials agrees with the expectation
of X calculated from its probabilities.

We could now apply Chebyshev's inequality to the variable Y, but first we
need to know its variance. We note that

var(y) = var(r)/1002

(see exercise 54 below). So we need to find a formula for the variance of a
sum of independent random variables.

Let us try a sum of two terms first. Let

Then we have

We see that

E(Z2) = E(X\ + 2XXX2 4- XI)

= E(X\) + E(2X1X2) + E(X2
2)

= E(X\) + 2E(Xt X2) + E(X\).

If Xx and X2 are independent, then

and obtain

var(Z) = E(Xl) + 2E(Xl)E(X2) + E(X\) - [E(Xt) + E(X2)]
2

= E(X\) - E(XX)2 + E(X\) - E(X2)
2

= var(Xi) + var(X2).

To handle a sum of three independent variables, we need only apply this
result twice:

and so on for more terms. We arrive at the general result:

The variance of a sum of independent random variables is
equal to the sum of their variances,
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or

varCX! + . . . + Xn) = varCJTO + . . . + var(Zw).

We thus obtain

var(r) = v a r ^ ) + . . . + var(X100)

= 100var(JSf),

since Xu..., X1Oo all have the same distribution as X. It follows that

var(Y) = var(X)/100.

Now Chebyshev's inequality yields

In the same way, we find that if YN is the average of the outcomes of N
independent trials then

This gives us the famous law of large numbers:

If c is a fixed positive number then for very large N

P[\YN-E(X)\>c]

is very small.

For example, if c = 0.001 and7V>109,

P[\YN - E(X)\>0.001] <var(X)/1000.

Thus it is very unlikely that YN, the average outcome of N independent trials,
will differ from E(X) by as much as 0.001 if TV is very large. This shows that
our theory explains the tendency observed in such long sequences of trials.
It is strong evidence that our probability model fits reality.

The above reasoning applies to the average of any N independent, identi-
cally distributed, random variables. The estimate which we obtained for
P[\YN - E(X)\ > c] is not very good; we can prove that it is much smaller,
but better estimates require much more advanced mathematics.

Exercises
54. Show that, if X is a random variable and c is a constant,

var(cX) = c2var(X), and o(cX) = \c\o(X).
55. If X is the outcome of tossing one honest die, compute E(X)9 var(X),

and o(X). Find anN such that P[\ YN - E(X)\ > 0.01] < 0.05.
Would you trust a man whose die, in this number of trials, gave a
value of 3.49 for the average outcome?
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56. Define the variable Zk by

What is the meaning of

7*100 = Z% + • • • + ^ioo» ^ioo = ^ I

Compute ^(M^xoo) and var(W1Oo) on the assumption of a fair die.

Estimate the probability

P[\Wloo~E(Z1)\>0.03].

Generalize to N trials. For how big an TV would you be suspicious of
the man if WN were as much as 0.2?

Probability and integration

One of the discoveries of the last fifty years is that probability and
integration are essentially two languages for describing the same subject. We
shall illustrate the connection between these two theories by a simple example.

Imagine an ideal 'roulette wheel' (fig. 4.7) with a spinning arrow that
selects a single point on the circle. Assume that the circumference of the

Fig. 4.7
0=1

circle is 1 unit. We imagine that we can spin the arrow freely, and that when
it comes to rest it will aim at some point. The selected point can be labeled
by the arc-length measured from a fixed point, which would be labeled,
equivalently, 0 or 1.

Let X be the outcome of a spin. Then X is a random variable which can
take on any value between 0 and 1. If the spinner is perfectly honest then,
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by the symmetry of the circle, the probabilities

P(0<X<\)miP(\<X<l)

must be equal. More generally, if / = (a, b) and J=(c, d) are intervals con-
tained in [0,1] (the set of x such that 0 <JC < 1), and d - c = b - a, then

P(a<X<b) = P(c<X<d).

The present situation is different from those discussed previously. Before
we discussed random variables which could take on only a finite number of
values, but now X has an infinite number of possible values. We shall approach
this case by assuming that we have concepts of probability and expectation
having the properties listed in the preceding parts of this section (when we
had only a finite number of possible values). We shall also use the equation

E(T)=P(A)9

where Y is defined by

Y= 1 if the events occurs,
7 = 0 if A does not occur.

(Recall exercise 50.) Thus if

Y= 0 otherwise,
then

E(Y)=P(a<X<b).

We shall denote this random variable Y by X(a, b)- Let u s s e e where this
mathematical model of the ideal roulette wheel leads us. Sometimes it will
be convenient for us to cut the circle at 0 and stretch it out flat,

0 1

so that it is then represented by a line segment.
Our whole spaces of simple events now correspond to the half-open inter-

val [0,1), the set of x such that 0 < x < 1. Thus we have

What is

Since

P{\ <X< 1) = P(0<X<\)
we have

but we notice that



4.5 From statistics to probability 127

so that

This yields

or

Exercises
57. Evaluate

for any positive integer n.
58. Evaluate

where a and Z> are any rational numbers such that 0 < a < b < 1.
59. If b = n - 3, then b = 0.141 596 5 .. .GS. Can X[o,z>) - X[o,o.i4) be

negative? What about X[o,o.i5) — X[o,*>)? Use these results to cal-
culate E(x[o,b)) t 0 s*x decimal places. Calculate ^(X[o,z>])»where
[a,Z?] denotes the set of x such that a < JC < b, to six decimal places.

We see that in general

E(xi) = length of/,

where / is any interval contained in [0,1). We can use this result to estimate
other expectations. For example, what is E(X)1 A crude estimate can be
obtained from the sandwich

0 < X < l , (hence 1 -X>0),

which gives

so that

We can get a better estimate by noting that for 0 < X < \ ,

°X[o

and that for |

We can express this by the sandwich

0X[o i) + 5X[*, £
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Reasoning as before, we obtain the improved estimate

OX \ + | X
or

The last estimate was obtained by dividing the interval [0,1) into the equal
subintervals [0,\) and [\, 1). Try three, four and five equal subintervals, and
compare the results.

What we have done here is to estimate X by a random variable of the form

where the coefficients d\,...,an are constants and / t , . . . , / „ are non-over-
lapping intervals. When X is in the interval Ik, all terms in the above sum
except the fcth are equal to zero, so that

S = ak when X is in Ik.

The graph of the sum S as a function of X looks like fig. 4.8. Functions of this

Fig. 4.8

• a3

type, which are constants in the various intervals Ii,... ,In into which [0,1)
has been divided, are called step functions.

Thus we have found various pairs s and S, of step functions, such that

From each such 'sandwich' we obtain a sandwich for E(X):

E(s)<E(X)<E(S).

We can calculate the expectation of a step function explicitly, for example,

E(S) = Oi • length of It) + . . . + (*„• length of/„).

In the same way we can compute

E[f(X)]

for any reasonable function/of X, for example, f(X) = X2 or ex.
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If you examine the numbers E(s) and E(S), where 5 and S are step
functions such that

s<f(X)<S,

you find that they are precisely the Riemann sums for computing the integral
of/. We thus arrive at the conclusion that

1

E[f(X)] = j f(x)dx.
0

This is the simplest case of the general connection between probability and
integration.



Optimal solutions

Mathematics is being applied more and more frequently in the social and in
the political sciences, mainly as a tool for making decisions. This often
implies looking for optimal states and situations. In this chapter we explore
some of the techniques used in optimalization.

The various units in this chapter are of different kinds. In section 5.1 we
discuss zero-sum games, payoff matrices, and pure strategies at a level suited
to grades 6-8. Mathematical models, in this case, help us to arrive at decisions.

In other sections mathematical analysis helps us to solve the problem
completely: in section 5.2 written as a text for students, minimalization
suggests a practical solution to a power-grid problem through graphs, span-
ning trees, and different minimizing algorithms; in section 5.3, the finding of
maxima or minima without calculus, both at an elementary and an inter-
mediate level, leads us also to a complete solution of the given problem.

Section 5.4 discusses the use of the least action principle for reflection and
refraction in optics. The section on 'least squares' discusses 'goodness of fit',
regression lines, and a geometric interpretation of the correlation coefficient.
It ties in well with chapter 4 on statistics. We end this chapter with some
remarks on mathematical models and decisions.

5.1 Games
We describe here an activity which we have found effective with

children in grades 6-8. We start with a game between two players, Tom and
Jerry. Each has a black checker and a red checker. At a signal each puts forward

a closed hand containing a checker. Then they open their hands to show their
choices. The payoffs are given by this array, called the payoff matrix:

Jerry
B R

Tom
0 1

- 1 2
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We play so that whatever one player wins, the other loses. Therefore it is enough
to mention what the payoffs are for one of the players; we opt to write down
Tom's payoffs. The above matrix means that if Tom chooses black and Jerry
chooses red, then Tom wins one point and Jerry loses one. A payoff of —1
means a loss of one point. Thus if Tom chooses red and Jerry chooses black,
then Tom loses one point while Jerry wins one.

After explaining the game, we play against the class. The class plays the
role of Tom and we play the role of Jerry. We step out of the classroom
while the class decides on their choice. An umpire is then told both our
choices and writes them on the blackboard. After about five plays, we switch
roles and play five more times. We usually beat the class, often with both
roles. It becomes clear that we have a strategy.

It is then a good time to analyze the game. What is the best choice for
Tom? In our experience the first thought of the children is to be optimistic.
If Tom chooses red, he has a chance of winning two points, but if he always
chooses red, Jerry will choose black and Tom will lose one point.

We suggest using a pessimist's approach. 'If Tom chooses black, what is
his worst outcome?' Clearly it is 0. 'What about if he chooses red?' Obviously
—1. 'What is the best of these worst outcomes?' Of course, 0. Therefore a
pessimistic Tom will always choose black.

In the same way, we find the following results for Jerry: if Jerry chooses
black his worst outcome will be 0; if he chooses red his worst outcome will
be to lose 2 points. Hence Jerry's best choice is black. So with the best
strategy on both sides the game is a draw. If either player always chooses
black, then the other player cannot do better than also to choose black.

We can conveniently summarize the above analysis as follows:

B

Tom R

column max
min max

Jerry
B

0
- 1

0
0

R

1
2
2

row min

0
- 1

max min

0

Here on the right we have recorded the minimum in each row, which gives
the worst outcome for Tom with each choice. Tom wants this minimum to
be as large as possible, so he is interested in the maximum of the row minima.
On the other hand, the worst that can happen to Jerry for each choice is
the maximum payoff to Tom in each column. Jerry wants to find the
minimum of the column maxima

Both Tom and Jerry based their computations on the worst possible out-
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comes. It is of course easier to remember this as a working rule, instead of
trying to memorize who wants the minimum of the maxima of the rows/
columns.

After this discussion we write the following payoff matrix on the black-
board

Jerry
B R

B
Tom R

1 - 1
0 2

and we play against the class as before. We usually win again. It is then time
to analyze the new game.

If we make our table as before, we obtain

Jerry
B R row min max min

B
Tom R

column max
min max

1
0
1
1

- 1
2
2

- 1
0 0

At first sight it seems as though Tom's best choice is red and Jerry's best
choice is black. But if Jerry always chooses black then Tom can switch to
black and win one point each time. However, if Tom always chooses black,
Jerry can 'punish' him by changing to red. And if Jerry keeps this up, Tom
can switch back to red. After a while Jerry will return to black, and so on.

Thus there is an essential difference between these two types of games.
In the first case, there is a best pure strategy, that is, there is a certain best
choice for each player to make all the time. In the second, the best strategies
are mixed strategies: the players should mix their choices in certain ways. At
this point, we ask the messenger 'What was I doing when you called me back
to the room?' And he reports to the class, 'You were tossing a coin!'

The best mixed strategies consist in choosing the alternatives at random
with certain probabilities. In the above game, the best strategy for Tom is
to choose black and red each with probability \ . The best strategy for Jerry
is to choose black with probability f and red with probability \ . Hence when
we were Tom, we tossed a coin once and chose black or red according to
whether the coin came up heads or tails, but when we were Jerry, we tossed
the coin twice and chose red only when we tossed two tails.

For a first introduction we have not felt it worthwhile to go beyond this
point for young pupils. We have passed around the class such books as
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D. Blackwell and M. A. Girshick, Theory of games and statistical decisions
(Wiley, New York, 1954) or J. D. Williams, The compleat strategyst, being a
primer on games of strategy (McGraw-Hill, New York, 1966); the latter is a
delightful, very elementary introduction to the subject. A little general dis-
cussion of the applications to business, government and military strategy is
also good for motivation.

For older students who have had a little probability and algebra, one may
discuss how one finds the best mixed strategy when there is no best pure
strategy. We shall not enter into this topic here.

The above examples are zero-sum games, that is, whatever one player wins
the other loses. In other games, one must specify the payoffs to both players.
In the following payoff matrix we have specified Tom's payoff first, then
Jerry's:

Jerry
B R

Tom R
(5,5) (-4,6)
(6,-4) ( -3,-3)

Thus if Tom chooses red and Jerry black, Tom wins six points and Jerry loses
four. Another example of a non-zero-sum game is

Tom R

Jerry
B R

(1,2) (-1,-1)
(-1,-1) (2,1)

Games of this sort may be used to simulate various social situations. For
example, in some games cooperative behavior is rewarded while others reward
treachery.

The strategies may be affected by the possibility of the players discussing
their choices beforehand, whether they can be trusted to keep agreements,
whether agreements are binding, whether the games are played only once or
repeatedly, and by the bargaining power of the players.

The children may find it instructive and amusing to discuss the above two
games and also these:

Tom R

Jerry
B R

(0,10)
( -1 , -20 )

(10,0)
(-4, -30)
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Tom

Tom

Tom

B
R

B
R

B
R

Jerry
B

(1,2)
(4,10)

Jerry
B

(1,2)
(0,-20)

Jerry
B

(2,-10)
(4,4)

R

(7,3)
(2,1)

R

(3,1)
(2,-30)

R

(5,3)
(3,2)
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Of course we could also study games with more than two outcomes for
each player to choose from. Games for more than two persons are much more
difficult to analyze.

Exercises
1. Write down any payoff matrix for a zero-sum game. Analyze it. Is

there a best pure strategy?
2. Discuss the above games. (In parts a, b, c, the game is played once

only).
(a) Assume no discussion in advance.
(b) Assume discussion in advance, equal bargaining power, and

binding agreements.
(c) Assume discussion in advance, equal bargaining power, agreements

not necessarily binding.
(d) Assume game played repeatedly.
There is not necessarily one best strategy. There is also disagreement,
even among experts, on the answers.

5.2 Minimizing distances
Suppose that we have to connect a group of new houses to the power

grid, that the local bylaws specify that power lines have to run along roads, and
that we are looking for the most economical way of doing it. How do we
proceed?

First of all we will of course have a look at a map (fig. 5.1) indicating the
placement of houses and roads. The important factor is the distance between
the houses, not the curvature of the roads. Therefore we can replace the map
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Fig. 5.1
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in fig. 5.1 by the systematic representation in fig. 5.2, where the number on
each segment represents the distance between its endpoints. In mathematics
this is called digraph, the points are its nodes, the lines its edges. Note that

Fig.
3
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1
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in a graph there may be isolated nodes. For instance, fig. 5.3 shows a 3-node
graph.

Fig. 5.3

What we have in fig. 5.2 is a 19-node graph. It is immediately clear that if
houses A, B and C are joined as in fig. 5.4 then it is not necessary to close
the triangle for our purpose. Indeed, if we look for the most economical
solution, we want to avoid closed paths entirely.

Fig. 5.4

- • B
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In graph theory a closed path is called a circuit, and a path that has no
circuits a tree. A graph that has no isolated nodes is said to be connected.
Which parts of fig. 5.5 are trees? A tree which joins all the nodes of a given
graph is called a spanning tree. So, the mathematical formulation of our
power-grid problem is

Find a minimal spanning tree for a given connected graph.

Fig. 5.5

V
Exercises

3. Show that in a tree there is a unique path between any two nodes.
4. Try to find a minimal spanning tree for our graph (fig. 5.2), by trial

and error.
5. Let us start with a 3-node graph:

Can you give a general rule for finding a minimal spanning tree in a
3-node graph?

6. How would you go about finding a minimal spanning tree for the
8-node graph in fig. 5.6? Is the solution unique? How many edges
does it have?

Fig. 5.6

3.5
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7. Show that a spanning tree of a connected graph with n nodes has
(n- 1) edges.

A solution to exercise 6 is given in fig. 5.7. We notice that it contains all
the shortest edges (with length one unit). This, together with the theorem of

Fig. 5.7

exercise 7, suggests that we could try to build up a minimal tree by looking at
the edges, selecting the shorter ones, eliminating redundant ones, and going
on until we have the necessary number of edges. For exercise 6 the first steps
in the solution are shown in table 5.1.

Table 5.1

Number of
Step State of graph Description edges

Pick an edge of length one
unit 1

Connect by taking the short-
est available edge. (Explain 2
available)

%

2 I 3 Repeat step 2.

Repeat step 2.

Repeat step 2. Be sure to 5
examine your definition of
available edge.

2.5
Repeat step 2.
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At step 1 and again at step 3 we had to make a choice. Does this choice
influence the solution? What we did in fact was to add, at each stage, an edge
of minimal length which joined a node already considered to one not yet
joined. We could formalize this procedure as follows:

(a) Start with any edge of shortest length.
(b) Call T the set of edges and nodes already joined. Add to T the

shortest edge which joins a node in T to a node not yet in T.
When there is a tie for the shortest edge to be added, any of the
tied edges may be chosen.

(c) Continue doing this until you have (n — 1) edges in T.

A set of rules for how to solve a definite problem in mathematics is called an
algorithm. What we have just explained is called KruskaVs algorithm.

Exercises
8. Prove that Kruskal's algorithm yields a minimal spanning tree. One

way of approaching this problem is to suppose that T= {ei,e2,...,
en _ i} is the tree we obtained, with T\ a minimal spanning tree
which has been chosen to have a maximal number of edges in common
with T, and T ± Tv Let ek be the first edge in T but not in Tt. Say
the edge e^ joins the nodes A and B. Look at the path from A to B
in T\. Can it have edges shorter than e^l Would they be included in
Tl If the path has an edge of length ek, what about a substitution?
What assumption would this contradict?

9. For exercise 6 the steps in a solution could have been those shown
in table 5.2. What were the rules used in this solution? Formalize
them! Will they always lead to a solution? (Hint: avoid circuits.)
This method is called Prim's algorithm.

10. Solve our initial problem of the power grid, using Kruskal's and
Prim's algorithms. Do you get the same solution both ways?

11. A traveling salesman wants to find the shortest path between 4 and
B in the road network in fig. 5.8. It is easy to find just by inspection,
but could you find an algorithm which would work in any connected
graph for any pair of nodes? Start with graphs like fig. 5.9.
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Table 5.2

Step State of graph Description
Number of
edges

Pick up all edges of length 1. 2

Add all edges of length 2. 4

Add edge of length 2.5.

Add only one edge of
• length 3. (Why?)

Add the edge of length 4. 7

Fig. 5.8

12

12
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5.3 Maxima and minima without calculus

Here we consider problems where mathematical analysis permits us
to list the different choices (e.g., the length of one side of a rectangular field),
to predict the outcome for each choice (e.g., the cost of the fence required),
and therefore to choose the best possibility.

The various optimalization problems which appear here are also useful in
other ways: they provide us with good motivated problems for practice in
computation and teach students how to arrange data in an orderly fashion.
The standard calculus texts give many routine problems on maxima and
minima. Our aim in this section is to show how some of these problems can
be treated without calculus, and to show how these problems can be used
advantageously in more elementary teaching.

Maxima and minima at an elementary level

The problem of maximum area for a given length of boundary can
be given a twist which can be used for an interesting lesson at about the level
of grades 5-6. We present the pupils with the following problem:

Farmer Jones wants to fence off a rectangular field with an area of
10 square kilometers on his property (fig. 5.10). He invites com-
petitive bidding for the contract. Fencing costs $10 per km of fence.

Fig. 5.10

y

Whoever can offer to build the cheapest fence gets the job. All the
bidder needs to tell is what the width and length of the rectangle
should be, and how much it will cost. Thus a bidder must tell the
dimensions of the fence he offers to build.
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We assume that the pupils know that

area = length times width,
or

A = xy.

For example, if someone chooses x = 1, then y must be 10. Then the cost c
is in dollars

c= 10(1 + 10+ 1 + 10) = 220.

Can anyone in the class beat that? This should stimulate some bids from the
class. Usually at first the children will only try integral values for* ory. Even
so, they run into calculations with fractions. Quite soon someone will try

x = 3,y = 10/3 = 3 | = 3.33,

c= 10 X 2X 6.33= 126.67.

After the students spend a few minutes trying to beat this value, we could,
if necessary, suggest that they should try fractional values for x. We could
work out a table of values for x,y, and c with them (table 5.3). This will
suggest trying values of x near 3. Calculators should be available so that the

Table 5.3

X

1
2
3
4
5

y

10
5
3*
2\
2

c

220
140
126.67
130
140

pupils may try values such as* = 3.1 or* = 2.9 to see what is the trend. After
some further discussion, we may say 'I think I can beat any bid you make. If
you choose x = 3,1 can beat that with x = 3 | . Check it and see for yourselves.'

In general, if anyone bids values of x and y, we choose our width to be the
average

x+y
2

of the pupil's width and length. We have never run into a class where someone
has suggested x = y/10, which is, of course, the best choice, but usually we do
get to the point where the pupils notice that the fields are getting more and
more square. That is, the better bids have x andy almost equal. Thus we can
end on the note that if we only could make them equal, in other words if x
were a number which, when multiplied by itself, gives 10 then this would be
the best choice.
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We could compare these results with those for the area A being four or 100
square kilometers. In these cases the students can compare the results for*
= 2 orx = 10 with any nearby values and see that these seem really to be the
best choices.

Maximal area and volume

With a given amount of fencing, what is the maximum area that can
be enclosed? With a given amount of wood, what shape of wine barrel will
contain the most wine? These are natural and practical questions. The second
is related to the work of Kepler in 1615 on the solid geometry of wine
barrels, which made important contributions to the development of calculus.
The general problems we have stated are too hard for us to handle at this stage,
but we can get some ideas by studying a few important special cases.

Suppose we only consider fences that enclose rectangular regions (fig. 5.11).

Fig. 5.11

y

The perimeter p (amount of fencing) is

and the area A is

A =xy.

Thus we can formulate this special case of the first problem:
Given x +y =p/2, what is the greatest possible value of A =xyl

To simplify our calculations we denote p/2 by s:

Now we can express^ in terms ofx:

y = s-x.

Then A is expressed in terms of just the one variable x:

A=x(s-x) = sx -x2.

We see immediately that when x is close to zero or close to s then A is
small. Let us graphs as a function of x (fig. 5.12). Here we have chosen
s = 6. It looks as though x increases from 0 to 6, that A at first increases and
then decreases, and that the maximum seems to be about 9, when x = 3. Is
this really the maximum of Al
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Fig. 5.12

A •

A =6x-x2 = x(6-x)

X

0

1

2

3

4

5

6

A

0

5

8

9

8

5

0

3 6

Let us check:

9-A = 9-6x+x2 = (3-x)2.

Now the square of any real number is non-negative, so that 9 — A > 0, or

A<9. (5.1)

Furthermore, (3 — x)2 is positive unless x = 3. Hence the equality holds in
(5.1) only whenx = 3, and then

y = 6-x = 3.

Thus of all rectangles with a perimeter of p = 2s= 12 units, the one with the
maximum area is the 3 X 3 square.

We can also give a geometric comparison. Suppose, for example, that
y > 3. Let d =y - 3, so that

y = 3 + d,x = 6-y = 3-d.

Let us examine fig. 5.13. Here we have

and

Fig. 5.13
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Rectangle III has the same shape as

Hence

The spaces have been left for you to complete.

Exercises
12. Generalize both methods for any positive value of s.
13. Of all rectangles with area of nine square units, which one has

minimum perimeterl

We can express the result of the preceding text in another interesting form.
If s = p/2 is the given sum of x andy, then the square (x =y) would have the
side length

so that the area of the square is (s/2)2. Since this is the maximum, we obtain
for any x and y

(5.2)

and the equality holds only when x =y.
The inequality (5.2) has a very suggestive interpretation. The quantity

(x +j>)/2 is, of course, the arithmetic mean m of x andy. It is the number m
such that the triple

x, m,y

is an arithmetic progression:

m -x=y -m.

The geometric mean g of two numbers x and y is the number such that the
triple

x,g,y

is in geometric progression:

g/x=y/g.

(Here we consider only positive numbers.) We find that

g=( ),
so that (5.2) states that

g<m.

In other words, the geometric mean of two positive numbers is never greater
than their arithmetic mean, and the two means are equal only when the
numbers are equal.
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Exercises
14. The arithmetic mean of n numbers is their sum divided by n. The

geometric mean of n positive numbers is the nth root of their
product. Show that for any four positive numbers g<m. When is
g = ml

15. Show that the same is true for any three positive numbers. (Hint: use
the previous exercise and choose the fourth number in a clever way.)

Our result for rectangles can be expressed in another way: of all rectangles
with a given perimeter, the most symmetrical one (the square) has the largest
area. This formulation suggests analogous problems for other figures, and also
some good guesses as to their solutions:

Of all triangles with a given base and perimeter, which has the largest
area?
Of all triangles with a given perimeter, which has the largest area?
Of all quadrilaterals (of any shape) with given perimeter, which has
the largest area?
Of all closed curves with a given length, which encloses the largest
area?

Another method for attacking maximum and minimum problems was
discovered by Fermat in 1638. This is the basis of the approach in calculus.
Let us illustrate Fermat's method with the above problem.

We wanted to find the number* which makes A = 6x - x2 a maximum.
Suppose that A is a maximum when x = X. Then for x = X + h, the new
value of A cannot be larger. We can describe this relation by the inequality

6{X + h) - (X + hf < 6X - X2,

which is equivalent to

6(X + h) - (X + hf - (6X - X2) < 0.

If we calculate the left-hand side we obtain

Bh + Ch2< 0,
where

B = 6 - 2X.
What is C?

This must be true for all values of h, positive or negative. Fermat's idea is
to consider values of h very close to zero. Ifh is ±0.01 or ±0.000 01, then h2

is much smaller than h, numerically. Therefore, unless B is zero, the term Bh
is the larger term, and the other term will be small in comparison with it. If
B is positive, the inequality is impossible for small positive values of h. ifB is
negative, the left-hand side will be positive for small negative values of h.
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Hence B must be zero, and this yields

X = 3 .

Thus this is the only value of x at which A can assume its maximum.

Exercises
16. How can you tell from the sign of C that x = 3 does give the maximum

value of Al
17. Find the maximum of 3x - x3 for x > 0. Compare with the value

whenx is large and negative. Graphs = 3x - x3 and explain.

Consider the problem of making a cardboard box with square base using
a given amount of material (fig. 5.14). Which dimensions will give a box
enclosing the greatest volume?

Fig. 5.14

The amount of material is essentially proportional to the surface area. The
boundary of the box consists of the top and bottom squares and the four
rectangles on the sides. Thus the area is

A = 2x2 + Axy.

Of course, the volume is

V = x2y.

As before, we reduce the problem to the study of a function of one
variable by solving the first equation foxy and substituting in the second. We
find that

4V = Ax-2x3.

Exercises
18. Finish this problem. What is the shape of the box of maximum

volume?
19. Solve the problem for a box without a lid.

5.4 Fermat's principle in optics

It has been known for a long time that light travels in straight lines
in air, water, or any other homogeneous medium, and also that it is reflected
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(fig. 5.15) by a mirror in such a way that the angle / which the incident ray makes
with the perpendicular to the mirror is equal to the angle r which the reflected ray
makes with that perpendicular. In the 1630s Snell discovered the law of

Fig. 5.15

incident ray reflected ray

mirror

refraction, which describes how a ray of light is bent (fig. 5.16) when it passes
from one medium to another, say from air to water. Snell's law states that

sin i

air

water

refracted ray

where k is a constant which depends only on the two media. Shortly after-
wards, Fermat discovered a unifying principle by means of which he could
explain these phenomena. Since then Fermat's principle has been applied to
solve many other problems in optics.

Fermat (1601-1665) was by profession a lawyer, and for many years was a
judge in Toulouse. He did research in mathematics, and did more in his spare time
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than most other people working full time on research. Fermat's principle is
that light, in traveling from a point A to a point B, takes the path along which
the time of travel is a minimum.

In a homogeneous medium, the velocity v of light is a constant. Hence the
time it takes to travel along a path of length s is s/v. Therefore the light will
travel on a path from A to B whose length s is a minimum. Thus light travels
along straight lines in such a medium because a straight line is the shortest
path joining two points.

Consider now light traveling from a point A to some point C on a mirror,
and then to point i? (fig. 5.17). We assume that the medium through which

Fig. 5.17
Am

the light is traveling is homogeneous. Therefore, by our previous result, the
light will travel on a straight line from A to C and then from C to B. Thus
the time of travel is

f = AC±CB
v

For which point C on the mirror does the broken line ACB have the shortest
length?

We can solve this problem by considering the 'mirror image' B'ofB with
respect to the mirror (fig. 5.18). Then CB = CB\ so that AC + CB = AC + CB\

B'
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Our problem is to locate C so that the length of the broken line ACB' is a
minimum. Clearly the minimum is attained when ACB' is a straight line
(fig. 5.19), and we see, by elementary geometry, that the angle of incidence
equals the angle of reflection.

Fig. 5.19

\

Now let us consider the problem of refraction. Assume that the velocities
of light in air and water are vx and v2 respectively. Choose the surface of the
water as the x-axis (fig. 5.20). Suppose the light travels from A to B, and set

Fig. 5.20

(b.c)bB
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up the j>-axis through A. The light will travel in a straight line from A to some
point C on the surface of the water, and in a straight line from C to B. The time
of travel along this path is

Exercises

20. Express AC and CB in terms of the coordinates, as indicated in the
figure.

21. Calculate dt/dx.

22. What happens at the point C for which the minimum length is attained?
Interpret your result in terms of the trigonometric functions of the
angles i and r.

23. How is k in Snell's law related to the velocities vx and v2?

There is a similar unifying principle in mechanics called the principle of

least action. According to this principle, a mechanical system, in passing from
one state to another, takes the path for which a certain quantity, called the
action, is a minimum.

Minimum principles like these have turned out to be powerful tools in
many branches of physics and engineering. This has led the researchers in
mathematical biology to search for similar principles. Some interesting
principles have been proposed, but so far none has been as successful as have
been the minimum principles in physics.

Long after Fermat formulated his principle, it was discovered that it is not
quite correct as he stated it, but about 80 years ago it was found that the
statement is still correct if the points A andi? are sufficiently close to each other.

5.5 Least squares

Accounting at the Accompany

The ^-company manufactures plastic kitchen utensils which it sells
to groceries, supermarkets, and hardware stores through a large body of sales-
men. Before paying travel expenses to the salesmen, the accountants of the
company check every one of their expense accounts, which entails maintaining
a large staff of accountants.

The chairman of the company turned to a managerial consultant hoping
that a way could be found to economize on the accounting budget. The
consultant noticed that if he plotted the data of expense versus duration of
trips on a graph, he obtained something like fig. 5.21. So his next step was to
look for a straight line which came close to fitting the data (fig. 5.22).
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Fig. 5.21

(0,0) number of days of trip

Fig. 5.22

(0,0) number of days of trip

151
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His advice was that any account which falls between the two parallels a
and b to this best-fitting line should be paid without verification. Other
accounts should be checked. Can you explain this advice? Do you think that
it saved the company money?

The mathematical model

What the company did can be described mathematically in the
following way:

(a) Expense accounts of the past year were plotted on a graph, the
variables used being t, the number of days of each trip, andx,
the cost.

(b) Since the plotted points seemed to cluster around a line, the
'best-fitting' line for these points was found.

(c) It was decided how much an account would be allowed to deviate
from the 'best-fitting' line.

We will now examine (b) in detail. Suppose that the data we have give us the
graph in fig. 5.23. We are looking for the linear relation betweenx and t

Fig. 5.23

(0,0)

which will give us the 'best approximation' to our data. Stated this way, the
problem is not well-defined. We could make our wishes more precise by
stating, for example, that we want the sum of the absolute values of the
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distances from all points to the line to be minimal (see fig. 5.24).

Fig. 5.24

153

(0,0)

Exercises
24. Consider the problem of finding the 'best approximation' to the

following data:

x
y
Choose a direction and find, by inspection, a line in your chosen
direction for which the sum of the absolute values of the distances is
a minimum. For how many lines in this direction is the minimum
attained? Rotate your chosen direction. How does your 'best
approximation' change? Look for a direction in which the approxi-
mation is best.

25. For a line of 'best approximation' in a given direction, how many of
the given points are on each side of the line?

26. Add a fifth point (2,4). How are your answers to the two previous
exercises changed?

27. What happens if you count distances on one side of the line as
positive and distances on the other side as negative?
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The regression line of x on t
In the problem of the salesmen's expense accounts, we want a straight
line
x = at + b (5.3)

which gives the 'best' prediction of the value of x, given the value of t. We
could interpret b as the average cost of putting a salesman on the road, and
a as the average cost per day. Suppose that we are given the points (x/,*y)>
/ = 1,.. . ,«. For the value t = fy, equation (5.3) predicts the value atj + b
for*. Thus the error in this prediction is

e, = (?Cf-at,-b). (5.4)

We want to measure the 'goodness of fit' of the line (5.3) to the data by
means of some function of theindividualerrorse1,e2,--- ,en (fig* 5.25). Of
course, the function should be symmetrical with respect to these numbers.

Fig. 5.25

(0,0)

Also, negative errors should count as much as positive errors. Some of the
possibilities are

F= max |e7-1,
1 < / < n

n

F= Z \e,\.
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n

7 = 1

It turns out that the algebra is the simplest for

F= Ie?= I [Xi-ati-b}\ (5.5)

As an illustration, let us find the best-fitting line thus defined for the three
points ,4(1,1), B(3,4) and C(5,4).

Let x = at + b be the desired line; then the sum of the squares of the
differences [x — (at + b)] for the given points is:

[\ -{a + b))2 + [4 -(3a + b)]2 + [4 -(5a+ b)]2

or
F= 35a2 + 3b2 + ISab - 66a - ISb +33. (5.6)

We can minimize this expression without using calculus (as we did in section
4.4) by considering it as a quadratic polynomial.

First of all, as a polynomial in a, the minimal value of Fis obtained for

181? - 66

(why?), or

70fl+18Z>-66 = 0. (5.7)

This means in fact that, whatever the value of b, the corresponding best value
for a is given by equation (5.7). Using the same reasoning on (5.6), considered
as a polynomial in b, we get

b = ( ). (5.8)

Fill in the blank space here and subsequently. Therefore we have the system

( )*+( )b-66 = 0,
( )* + ( ) 6 - 1 8 = 0,

or
* = ( ) ,* = ( )• (5.10)

The line obtained this way is called the regression line ofx on t. When we
estimate x from t using the regression equation we make the sum of the
squares of the quantities e;- a minimum.
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Exercises
28. Find the regression line ofx on t for the following set of points:

t 1 3 5 7
x 2 5 6 9

29. Try to minimize, for the set of points given in exercise 28,

The regression line of t on JC
We could also have used the data (tJ9xf) in another way, namely to

estimate the length of the trip when we know the cost. To facilitate our com-
putations we would then put t in evidence, and instead of equation (5.3) con-
sider

r = axr+]3 (5.11)

In this case we are interested in minimizing our errors when considering the
quantities

€j = [tt - OQCi - 0] ,

which leads to minimizing the sum

F,= I fo-«,-fl2. (5.12)

We get a result which may be surprising at first glance - the line which
minimizes (5.12) is different from the line which minimizes (5.5). This new
line is the regression line ofton x, and on our graph (fig. 5.26) we minimize
the sum of the squares of the quantities e,- this time.

For the points A (1,1), £(3,4), C(5,4) considered before, this second
regression line is obtained by minimizing 2,- [tt — axt — j3]2, or

[ l _ a _ 0 ] 2 + [ 3 _ 4 a - / } ] 2 + [ 5 - 4 a - 0 ] 2 ,

which is
Fx = 33a2 + 3/32 + 18a0 - 66a - 180 + 35 (5.13)

The two equations in a and 0 are

6 6 a + 1 8 0 - 6 6 = 0
1 8 a + 6 0 - 1 8 = 0.

The solution is a = 1,0 = 0, and the regression line is given by the equation

t = x. (5.15)

Let us draw both lines on the same graph (fig. 5.27). We notice that our
two lines have a common point; it is easy to see that it is the point (3,3). In
fact (3,3) is the centroid of the three given points (i.e., each coordinate is the
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Fig. 5.26
X i i

(0,0)

Fig. 5.27

(0,0)/"
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mean value of the corresponding coordinates). We will come back to this point
a little later.

For students who know calculus, equation (5.9) can be obtained from the
conditions that F be a minimum,

da db '

and similarly equations (5.14) can be obtained from the conditions that Fx

in (5.12) be a minimum.

More points
The same method works for more points. Let the points be (x,-,j>,),

where 1 < i < n, and suppose that we look for the line y - mx + c. We would
then have to consider the sum of squares '

i = 1 1=1 1=1

n n n

+ 2mc X Xi - 2m £ xtyt - 2c £ yt, (5.16)
i= I i= I /= I

and the system of equations to be satisfied is

^ r (5-17)
2nc - 2 £ yt + 2m 2^xt = 0. J

If we divide both sides of these equations by 2n and use the notation of
section 4.4, we obtain

•(5.17a)
m(x)-(y) + c =0.

The solution of this system is

(xy)-(x)(y)
m=

0r>-0c>2

• Theorem The y regression line on x given by y = mx + c, where m
and c are taken from (5.18) and (5.19), passes through the centroid
of the given set of points.

Prove it! Remember that the coordinates of the centroid are (x) and (y).
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Exercises
30. Find the formulas similar to (5.18) and (5.19) for the regression line

of* ony.
31. Prove that this regression line also passes through the centroid of the

given set of points.
32. We could also have solved the above exercise in a different way, using

the results of section 2.6.
(a) For a fixed m, the sum in (5.16) is just like the sum in exercise

26(b), section 4.4. Hence, for a given m, the best choice of c in
(5.16) is

c = (y - mx) = (y) - mix).

(b) For this choice of c, the sum in (5.16) takes the form

which is a function of only one variable m. Find the value of m
which minimizes this sum.

(c) Find the regression line ofx ony by using the method of parts
(a) and (b).

Measuring the correlation
The methods we have discussed for finding regression lines apply to

any set of points in the plane, but clearly in a case like fig. 5.28 no straight

Fig. 5.28

y

(0,0)
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line will fit well. This leads to the problem of measuring how well a given set
of data can be fitted to some straight line.

Our results suggest that the differences JC;- - (x) andjy — (y) arise naturally
in our problem. This is equivalent to shifting the coordinate axes so that the
new origin is at the centroid ((x), (y)) of the given set of points (fig. 5.29).

Fig. 5.29

(0,0)

The units used in measuring x and j> may not be the most natural. If we
measured time in centuries, all the differences tj — it) in our expense account
problem would be very small, and if we measured the cost x in pennies, the
difference Xj — (x> would mostly be large. This suggests that we should look
for some natural choice of units. The formulas (5.18) and (5.19), where the
variance of x appears in the denominator, suggest that standard deviations may
be such a natural choice of unit.

This leads us to introduce the normalized variables

x-ix) Y*~
o(x) ' o(y)

The value of X* tells us by how many standard deviations x differs from its
mean.
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Exercises
33. (a) Show that

o(X*) = o(Y*)= 1.

(b) Suppose that z = x + 5. How is <z> related to <x>? What about the
relation of o(z) to o(x)l How is the normalized variable

Z * -

related
(c) Let w = 3y. How are <w> and o(u) related to (y) and o(y)l How is

a(u)

related to 7*?
34. (a) Find the value of m which minimizes the sum

(Z>)Find the minimum of this sum.

The value of m which you found in exercise 34 is called the correlation
coefficient (between x andj>) and is usually symbolized by p. In terms of the
original variables we can express p by the formula

= <(* - <x)) (y - {y)))

o(x) o(y)

Exercises
35. When is p = +1 or -1? (Hint: use the result of exercise 34(Z?).)
36. Give an example where p = 0.
37. Can | p | be greater than 1?

The correlation coefficient can also be given some kind of a geometric
interpretation. If we denote the slope of the regression line ofy on* by ml9

the slope of the regression line of x on y by m2, and define \2Ls\ = m1m2i

then the following exercises hint at the geometric interpretation.

Exercises
38. Prove that if n points (xh yt), i = 1,.. . ,«, are on a straight line the

value of X is 1.
39. Can you find a set of points for which X = — 1?
40. Can you find a set of points for which X = 0? Be careful!
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41. What can you say about the two regression lines when X is small?
When Xis close to 1?

42. Prove that X= p2.

5.6 Comments on models and decisions
This is the third time we have discussed mathematical models. Pre-

viously models were considered as helping us to make predictions. In this
chapter models have been used to help us to make decisions. The best way to
analyze this changing role is to look carefully at more examples.

Let us look, for instance, at the question of anti-missile missiles. Both the
U.S. and the U.S.S.R. are considering building such a system. The situation is
that if neither of them builds such a system a stalemate exists, yet if both have
it there is stalemate again, neither having gained a strategic advantage. On the
contrary, both would have spent quite a large amount of money to no purpose.
On the other hand, if only one of the countries acquires the system, that
country has a substantial advantage, well worth the building cost.

A payoff matrix can be set up, as in section 5.1, if we put some numerical
values on the different outcomes. Let us put the strategic advantage of being the
the only country possessing the system at 300, the cost of developing such
a system at 150; we then obtain the following matrix where the U.S.S.R.'s
payoff is specified first:

U.S.A.

with without

U.S.S.R. with
without

(_ 150, -150) (4-150, -300)
(-300,4-150) (0,0)

If you wonder what units we are using, call them national interest units.
To be on the safe side we must mention that translating different measures,

such as number of deaths, crippled, or wounded, change in the measure of
independence of a country, cost in money, all into these national interest
units is not a scientific endeavor. These value judgements are political, and
the results of our mathematical analysis will depend on them.

This matrix can now be analyzed, the virtues of collaboration (or SALT
agreements) can be explained, and so can the pitfalls of insufficient enforce-
ment of the agreements. So by forcing us to put a value on the different
alternatives our mathematical model has helped us to reach a decision. This
aspect of the mathematization of our problem, a careful analysis of the diverse
possibilities and their relative values, is certainly a positive one but it is not the
main advantage. The real importance of this model resides in the quasi-auto-
matic reaction of the mathematician, who will look at all possible such payoff
matrices.
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(a,b) (c,d)
(ej) (g,h)

study them, classify the diverse possible strategies, the cost of the various options,
list the criteria that can be used, look at what happens if this is a one-time
decision or one that has to be reconsidered occasionally, and by doing this
make the decision makers aware of some facets of their work they might
have overlooked.

Discussion problem
43. Set up a similar payoff matrix for the armament reduction problem.

Can one cut down on armaments unilaterally? Would there be any
incentive for the other country to do likewise?



Approaches to equilibrium

The main concept studied in this chapter is that of the steady state, or
equilibrium, of a dynamic system. We explore several changing systems and
the corresponding mathematical models. In some cases the system approaches
equilibrium, in others it does not.

Investigating whether a system approaches equilibrium or not is one of
the best motivations for the notions of limit and convergence. Computation
of sequences and observation of their behaviour will often make a subsequent
rigorous discussion of limits more natural.

Our treatment differs from the usual one in two ways. First, we deal with
sequences arising in real problems, not ad hoc exercises. Secondly, we are not
restricted to sequences defined by explicit elementary formulas.

Limits and the calculator are discussed in section 6.2. We point out how
the very limitations of the calculator lead to a need for a mathematical theory.
In section 6.3 we develop a more realistic model of the struggle for life. This
leads to a study of quadratic equations and difference equations. In this
case, as also in the sections on heat conduction (6.1) and chemical reactions
(6.4), the static problem of finding the equilibrium state involves
simpler mathematics than the dynamic problem of whether and how the
system approaches equilibrium. By using difference equations, we can present
many of these problems at an elementary level; for instance, we can discuss
some aspects of heat conduction even as early as grades 5-6.

In many phenomena we encounter a resistance to disturbance of the equi-
librium. With heat conduction there is a restoring velocity proportional to
the deviation from equilibrium. In chapter 7 we will study cases where there
is a restoring acceleration proportional to the deviation from equilibrium.

6.1 Heat conduction I
We give here an equilibrium problem which is suitable for pupils who
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know how to compute with decimals (about grades 5-8), and which gives
motivated practice with such calculations.

If you put a spoon in boiling water (fig. 6.1) the handle will gradually get
warmer, but if you put it in ice-water the handle will get colder. The spoon

Fig. 6.1

boiling water ice-water

conducts heat, and heat flows from warmer places to cooler places. Suppose
you have a thin metal rod with one end in ice-water and the other end in
boiling water (fig. 6.2). Imagine that you keep supplying ice at one end as it

Fig. 6.2
thermometers

ice-water boiling water

melts, and boiling water at the other as it evaporates. There will be a certain
temperature distribution along the rod; after a while it will be cooler near one
end and warmer at the other.

At first the temperature at different places along the rod will clearly be
changing with time. If you leave it in the apparatus long enough, the tem-
peratures will no longer be changing noticeably with time. The rod will
arrive at an equilibrium, or steady state, temperature distribution.

We wish to describe this process mathematically. Imagine the rod with
thermometers placed at equal distances along it (fig. 6.3). The thermometers
at the ends will always read the same: 0 °C in the ice-water, and 100 °C in the
boiling water.

Consider two neighboring thermometers. If it is warmer at 4 than at 3 in
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Fig. 6.3

166

thermometers

ice- L-
water 1

boiling
water

fig. 6.3, then heat will flow from the 4-point to the 3-point. Imagine that this
transfers half the temperature difference from the warmer point to the cooler
in one second. So if the readings are 50 °C and 90 °C at a particular time (fig.
6.4), heat will flow so as to transfer 20 deg. from the warmer point to the
cooler in one second.

Fig. 6.4

I 50° 90°

20 deg

Consider a different example, of three neighboring points with temperatures
70, 50, and 90 °C at one time as shown in fig. 6.5. How will the temperature at
the middle point change during the next second? Heat will flow from the two
warmer points to the middle one, transferring 10 deg. 4- 20 deg. to it, so the

Fig. 6.5

I 70° 50c 90 c

10 deg. 20 deg.

temperature will rise by 30 deg. to 80 °C. If the temperatures were 40, 50,
and 90 °C respectively (fig. 6.6), then 5 deg. would move from the middle to

Fig. 6.6

I 40° 50c 90c

5 deg. 20 deg.

the left neighbor and 20 deg. would come from the right neighbor, so the
temperature of the middle point would be

50 - 5 + 20 = 65 °C

after one second.
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Exercises
1. Use the same values as above for the two outer points (70 and 90 °C,

40 and 90 °C), but try different temperatures at the middle point. What
will be the temperature one second later at the middle point? Does it make
any difference what temperature you assume at first at the middle point?

2. Try different values for the temperatures at one moment at the three
neighboring points. Predict the temperature at the middle point one
second later. Can you discover a simple rule for the prediction?

3. Make a table of the temperatures at the three points (table 6.1). Try
various temperatures at the 2- and 4-points, and predict the
temperatures one second later at the 3-point. Write in the fifth
column the sum of the numbers in columns (a) and (c). Try at least
five pairs of numbers of your own choice. Compare the fourth and
fifth columns in table 6.1. Is there a simple relation between the
numbers in these columns?

Table 6.1

m ,°^ Temperature ( C)Temperature ( C) . ~ . . ,,- 1—i at 3-pomt after
(a) 2-point (b) 3-point (c) 4-point one second (a) + (c)

70 50 90 80 70 + 90=160
40 50 90 65 40 + 90= 130

We can describe the state of the rod at any moment by giving the tem-
peratures at the 0-, 1-, 2 - , . . . , 5-points. Thus if the whole rod is at room
temperature (20 °C) initially, its state would be described by the number 20
at each point. We shall imagine that, at the ends of the rod, the temperature
changes to 0 °C and 100 °C so quickly that we can describe the starting state
by these numbers:

points 0 1 2 3 4 5
temperatures (°C) 0 20 20 20 20 100

In order to tabulate how the state of the rod changes with time (table 6.2),
we need to make a column for the time t measured in seconds from the start
of the experiment. To describe the baths of ice-water and boiling water, we put
the temperatures 0 °C and 100 °C for each time in the columns for the 1- and
5-points.

Now you can begin predicting the states of the rod by using the rule you
discovered in the exercises. Predict the states for the first ten seconds, calcu-
lating to the nearest whole number. Does there seem to be a trend? Calculate
the states for another ten seconds. Does the trend continue? Do your pre-
dictions agree, at least qualitatively, with what is observed?
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Table 6.2

Temperature (°C) at

(time in seconds) 0-point l-point 2-point 3-point 4-point 5-point

0 0 20 20 20 20 100
1 0 100
2 0 100

You may think of this as a proposed mathematical model to describe heat
conduction in the rod. Since the experiment is too difficult for youngsters to
do with enough precision, at this level we can at most try to make the model
plausible by comparing the model qualitatively with the observed phenomenon.
We cannot hope for a good quantitative agreement.

Exercises
4. Do the above calculations a little more exactly, say to one decimal

place. Does the result agree with what you found before? Do you
notice anything that escaped you in the less exact calculation?

5. Try other starting states and make the same prediction. Do you
always seem to get an approach to a steady state? Does the steady
state depend very much on the starting state?

6. Try rods of other lengths, that is, with different numbers of equally
distant points. Do you get similar results? Does there seem to be any
simple rule for guessing the steady state?

7. In the above model we assumed that half the temperature difference
at neighboring points is transferred from the warmer to the cooler
point in one second. Suppose only one-third of the temperature
difference is transferred. Would this represent a metal which conducts
heat better or worse than our original rod? Would you expect the
approach to a steady state to be faster or slower? Try calculations
with the same starting states you used before and compare with
your previous results.

8. Guess what would happen if one-tenth of the temperature difference
is transferred each second. Calculate some rod states, and check your
guess.

6.2 Teaching the limit concept
The concept of limit is difficult to teach for several reasons. The

most important reason is that this is the first essentially infinitary process
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which students encounter. Thus it marks the point of separation between
elementary mathematics, dealing with finite processes of algebra and geometry,
and higher mathematics. A second reason is that the study of limits requires
the use of inequalities. In present curricula students often get inadequate
practice in working with inequalities. In high school the presentation is
usually unmotivated and accompanied by quite artificial exercises. When
limits are introduced in calculus, the teacher is usually pressed for time to
get to the techniques of calculus, and has no time for a digression on inequali-
ties.

Since the most natural use of inequalities is in the study of approximations
and the estimation of errors, it is clear that numerical analysis provides the
best motivation for working with inequalities. That is why, in connection
with each of the simpler functions, we have stressed approximation and
estimation of the errors involved.

It is probably best to begin with problems where the convergence and the
value of the limit are both quite obvious. Then the only problem is to find an
estimate for the error and to determine when the error becomes and remains
less than a prescribed tolerance. Good examples of this type of problem arise
naturally in studying the relative sizes of various common functions of n.

For instance, let us compare the growth of nk with that of d1 as n increases,
where k > 0 and a > 1. Each student can choose values for k and a and compute a
table for some simple functions of n. Table 6.3 gives an example for k - 2,
a = 1.1. The students observe that zn ultimately begins to decrease, and then

Table 6.3

n

0
1
2
3
4

20
21
22

100

xn = n
2

0
1
4
9
16

400
441
484

10 000

^=1.1"

1
1.1
1.21
1.331
1.464

6.727
7.400
8.140

13 780.612

*n = xn/yn

0
0.909
3.306
6.762
10.928

59.457
59.593
59.457

0.726

becomes very small. At which point does zn begin to decrease? From which
point on doeszw become less than 10~6?
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After the experience with actual numbers, it is natural to begin the
theoretical investigation by asking when is zn + 1/zn less than 1? We find that

Clearly this approaches 1/1.1 = 0.909 as n increases, so that ultimately
zn + x\zn < 1 and zn + t <zn, that is,zn is decreasing. Indeed

if

1 + - <(1.1)* = 1.0488,

or
\/n< 0.0488

or
n> 1/0.0488 = 20.5,

which agrees with table 6.3.

Exercises
9. (a) Find a value of TV such that

zn + 1/zn <0.91 forn>N.

(b) Un is greater than N, which is larger, zn or
(c) Find a number M such that zn < 10~6 for n>M.
{d) Find a number M such that zn < 10"10 for n >M.

10. Choose some other values for k and a.
(a) What is

lim

(b) Find an TV such that zn + 1/zn<\ for n>N.
(c) Find an r (0 < r < 1) and an TV such that zn + 1/zn<r for n>N.
(d) Find an M such that zn < 10"6 for n > M.
(e) Check your results in parts (a)-(ct) by computation.

11. Compare the growth of d1 (a > 1) with that of n\.
(a) Choose a value for a and compute a table of

«„=«"/»!.
(Hint: note that un + 1/un = a/(n +1 ) . Thus it is easy to compute
un + 1 from ww. How does this procedure compare with direct
computation of un, in number of steps, overflow of calculator
capacity, and roundoff?)

(b) Find an TV such that un is decreasing for n>N.
(c) Find an M such that un < 10"6 for n >M.
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12. Compare the growth of n\ with that of nn. Let vn = n\/nn.
(a) Try to find a simple formula for vn + \/vn.
(b) Compute a table of vn + i/vn. How does this ratio behave for

large nl
(c) According to your table, is vn + i/vn increasing or decreasing?

What about vnl
(d) What is

lim vn=Ll

Find a k such that nkvn < 1 for all n > 0. Find an N such that
vw<10"6 ioxn>N.

13. Compare the growth of Iog2« = l(n) (chapter 2) with that of nk,
k>0.
(a) Choose a value of fc and compute a table of wn =I(n)/nk. Guess

the value of lim wn.

(b) For any n, let m be the integer defined by

Obtain an estimate of wn in terms of m. Use exercise 10 to find
an N such that wn < 10"6 for n >N.

14. Compare the growth of 2n with 3n. Find an iV such that

(2w/3w)<10'6 .

for n > TV. Check by computation.

It is desirable to build up an intuitive feeling for the sizes of numbers and
the orders of magnitude of the most common functions of n. It is more
important that students know that, for any positive constant k and any con-
stant a > 1, the elementary functions can be arranged in a scale

\ogn<nk<an<n\ <nn

(where f(n) <g(ri) means that f(n)/g(n) approaches zero as n -> °°), than for
them to master the e-6 techniques of the theory of limits. Most of the prob-
lems on limits found in the usual textbooks can be solved by inspection with
the use of this scale.

In the previous exercises we have indicated how the calculator is useful in
comparing the growth of these functions. The students should also look at
other sequences which illustrate what sorts of things can occur. The sequences
{xn} defined by
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exhibit approach to a limit in a fixed direction. The cases

*n = ( - l )w /« oixn = (sin n)/n

illustrate oscillation around the limit. These should be contrasted with
sequences like

{ ( i ) " } or { ( - i y + ( - i / " a -

which diverge in various ways.
The calculator is also useful in studying algorithms for numerical approxi-

mation. It is best to start with concrete problems such as the computation of
\/3 by applying the process of section 1.6 to the polynomial P(x) = x2 — 3.
If we start withx0 = 2,xx = 1, then the algorithm leads to the sequence
defined by

where n > 0, so that

2 (6.2)
XnT L

In this case the quantity 8n = 3 — x2
n gives a good natural measure of the error

in the approximation. The students can compute the numbers xn and 8n for
n < 20. It is very plausible thatxw approaches \/3. A graph makes the con-
vergence almost obvious (fig. 6.7).

Exercises
15. Compute xn and bn for n < 20 and make a table. Does it seem that

xn is converging? Does Sn seem to be approaching zero?
16. What difference does it make in your computations if you use (6.1)

rather than (6.2)? Explain.
17. Choose any x0 and*! such that 0<xt <xo,x\ < 3 <xl, and

compute xn and 8n for n < 20.
18. Use (6.2) to obtain a formula for 8n + i in terms of 8n. If xn > 0,

what is the least that xn + x can be? If xn > 0 and 8n > 0, can 8n + x

be negative? Can Sn + j/5,, be more than \i Find an estimate for 8n

in terms of 5 x. Find an N such that 5W < 10"6 for n>N.
19. LetP(x)=jc3 -x- l.Findxo and*i such that 0 < x i <x o , i > (^i)

< 0<P(xo). Apply the process of section 1.6 to find a sequence
{xn} of approximations to the positive root of P(x) = 0. Compute
xn and P(pcn) for w < 20. Does it seem as though xn is converging
to the desired root? See how the process looks on a graph.
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Fig. 6.7
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y=x2-3

Often we can tell without computation what the possible limits of a
sequence can be. This may tell us what to look for when we compute the
sequences. Thus if the sequence defined by (6.2) above converges,

lim xn =x,

then also
lim

and hence

= 2-
1 , or x2 - 3 = 0.

x + 2

Thus x must be a square root of 3, and bn = 3 — x\ is a natural measure of
the error. Similarly, if

1
xn + l ~ for n > 0, (6.3)

then the only possible limits oixn are the roots of the equation
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x = TT~9 or x2 4- x - 1 =0,
1 +x

and bn = x\ 4- xn — 1 is a good measure of the error.
In problems of this type the limit may depend on the initial values, and

sometimes the dependence is not obvious.

Exercises
20. Try various values of xx in (6.2) above, and compute xn for n < 10.

Can you find values of xx for which xn converges to -<\/3, and values
for which xn diverges? Graph the function

and use this to explain your numerical results.
21. Study the sequences defined by

+|^/2, forii>0.

(a) What are the possible limits of such a sequence?
(b) Choose various values for JC0 and compute xn for n < 10. Does

xn seem to converge? Does the limit depend on the choice of xnl
Can you find an x0 for which the sequence diverges?

(c) Explain your results in part (b) by means of the graph of the
function

(d) Construct a good measure for the error. Compute this measure in
the cases you studied in part (b). Does this agree with your pre-
vious observations on convergence?

(e) Find a formula for the measure of error at the (n + l)th step in
terms of the measure at the nth step. Find an N such that the
measure of error is less than 10"6 for n>N.

22. Study the sequence defined by

(a) What are the possible limits of xnl
(b) Choose various values forx0 and compute xn for n < 10. Does

xn seem to converge? If so, how does the limit depend on the
choice of xol Can you find a value of Xo for which the xn

diverges? How can you explain your observations? In this case, a
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computer may be more useful than a calculator. In a certain sub-
interval of the interval 0 < x < 10 the dependence of behavior onx0

is so delicate that roundoff may produce misleading results.

In the study of sequences like these where the convergence is obvious or
plausible and the limit is obvious or easy to guess, the usual definition of
limits is meaningful. We say that

lim xn =x

if, for every positive e, there is an TV such that

\xn-x\<e for n>N.

The quantity e represents the size of error, or tolerance, which we are willing
to allow, and TV represents how far we must go in the sequence before the
error will remain below the given tolerance. Since TV usually depends on e, we
often write TV(e) to emphasize this. The way TV(e) increases as e decreases
indicates how fast the sequence converges.

In order to apply this definition, we must know or guess the value of x.
Since immature students usually do not appreciate the value of proofs, they
do not see the point of all the fussing with estimates when they are sure of
what x is. As we have suggested, when {xn } arises from a process for com-
puting JC, it does make good practical sense to ask how many steps are needed
to make the error less than a given amount.

In cases where the value of x is not easy to guess, the above definition has
no practical value. Let us look at a few cases of this type.

The sequence xn = (1 + l/n)n for H > 1 arose in section 3.1 (where
xn = C(l, h) for h = l/n), and also in exercise 12 (b) of this section. Com-
putation of xn for moderate values of n suggests that xn is increasing and
approaching a limit. If you compute xn with a calculator, you may obtain
mysterious results for large n. We obtained the results shown in table 6.4
(remember that lim (1 4- l/n)n = 2.718 281 8 . . . ) . Of course, the curious
trend for n - 60 000 and n = 10 000 is due to the roundoff error.

Table 6.4

50 000
60 000
70 000
80 000

2.718 269
2.718 222
2.718 222
2.718 281
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At the high school or junior college level, it is probably sufficient to make
plausible the convergence of xn on the basis of numerical evidence. For a
more rigorous discussion at this level it is easier to deal with the subsequence
defined by

yn
=Xk> where k = 2n,

and it is useful to compare with the sequence

Z"= I
(1 - Il2n)2n

Note thaty,, = C(l,l/2n) and zn = C(1,-1/2W). From the inequality

we obtain, on setting h=l/2n + 1,

and, on setting h = -1/2" + *,
zn + 1 < zn •

Also we see that

so that

yn<zn-
Thus.yn is increasing and zn is decreasing. All the ys are less than all the zs,

for if n <m,then

In particular, we have yn < z x = 4 for n > 1. We now wish to evaluate the
difference

zn-yn=zn 1 >
V zj

and thus need to find lower limits for yn/zn. We use the inequality

(\+h)k>\+kh for h>-l,

which is easy to prove by induction, and thus obtain

yn/zn>\- 22V1 = 1 _ ^ ,

which yields

Thus for n <m,

0<ym-yn<zn-yn<\/2»-2.
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so that all theyn, for large n, agree with each other to within a very small
error; for example,

0<ym-yn<2'20<l0-6

for m>n> 22.
It is now plausible that >>„ is converging to some limits, and thaty22 is an

approximation to>> with an error of less than 10~6. From the practical, or
engineering, point of view this gives a satisfactory way of calculating^ to
within an arbitrarily small error. Of course,^ is the familiar constant e. This
is the significance of the Cauchy criterion for convergence:

Given e > 0, there is an N = N(e) such that \ym - yn \ < e
fox m,n>N.

After experience with the above sequence, the students can probably
guess on the basis of computations, say for n < 20, that the sequence

_ / « w \ 1 / / I _ n
Un\n\) ~

converges, and perhaps even guess at the value of the limit of un.
A very instructive example is to have each student toss a coin and define

the sequence {sn } by

4- °n
sn~sn-l ~^ [ ^ >

where on = +1 if the nth toss is heads, and on = —1 if the nth toss is tails.
Thus each student obtains a different sequence, which he can easily work out
for himself, and each sequence appears to be converging. In this case, it is
impossible to predict the value of s = lim sn, but we see that for m > n

10w + 1 ' " 10m\sm-sn\ =

1 1
,« + l •*• 1 Qm

&=-)

10w + 1 i i
1 - To

< (1/9)10"".

Hence we can predict that each student will certainly obtain a convergent
sequence.
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The sequence {tn} defined similarly by

xn ln-\ ^ ~ »

where on is as before, is also interesting. Each student will obtain a different
sequence, and all will seem to be convergent. For very large n9 both the
calculator and the computer will have trouble with roundoff unless special
tricks are used. Although logically it is possible that tn will diverge, this occurs
only when there is such a large difference between the frequencies of heads
and tails that its occurrence would be a miracle! Most of the values of
t = lim tn lie in the interval \t\ < 1.3, but there is a small positive probability

tha tUI>10 6 .
The Cauchy criterion for convergence should be made intuitively plausible

in an elementary calculus course. At a more advanced level it must be taken
essentially as a postulate, or as part of the definition of the real number
system.

Another criterion for convergence, which does not require knowing or
guessing the value of the limit, is:

If xn is non-decreasing and bounded, that is, xn < x n +1 for all«,
and there is a B such that xn<:B for all«, then lim xn = n exists.

This can also be made intuitively plausible by marking the points on a number
line. There is no constructive proof, and there is no general method for
obtaining an estimate for the error \x-xn\.\t can be proved,by reductio
ad absurdum, using the Cauchy criterion. A rigorous discussion should
certainly be left to an advanced course.

Exercises
23. (a) Compute xn = 21/n for 1 < n < 20. Doesxn seem to be con-

verging? Can you guess the limit?
(b) Use logjcw to obtain an estimate for the error. Find an N such

thatxn differs from the limit by less than 10~10. (Hint: use the
results of chapter 3.)

24. (a) Compute xn = n1/n for 1 < n < 20. Does xn seem to converge?
Guess the limit* = lim xn.

n-
0 ) Find an N such that \xn - x | < 10"10 for n > N.

25. (a) Computexn = (2W + 3n)l/n for 1 < n< 20. Doesxw seem to
converge? Guess the limit x = lim xn.
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(b) Which is larger, 2n or 3"? Why doesxn approach*? Find an N
such that \xn - x | < 10"10 for n > N.

26. (a) Let/(;t) = log(l +x ) . What is

lim /<*>;/(<» ?
h-+o h

Apply this to find the limit of log [(1 + l/n)n] as n -> °°.
(b) Evaluate the integral

J \+ht'
o

Find constants A and B such that

Ah-Bti1 <J(0)-J(h)<Ah.

for /* > 0.
(c) Use the inequality (see chapter 3)

x < e* - 1 < exx

ioix > 1 to obtain an estimate for / (0 ) —J(h) for /z > 0, and
to estimate

(d) What is

Check by computation. How far do you have to go before round-
off is significant?

27. (a) Compute

where

_ 1 X3X 5X. . .X(2/ i + 1)

for 1 < n < 20. Does it make any difference with your calcu-
lator whether you compute yn by calculating numerator and
denominator separately and then divide, or by calculating the
product

Does xn seem to converge? Can you guess the limit?
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(b) Isxw greater or less than the guessed limit? Prove your statement.
(c) What is

How does this help you understand why xn should converge?
Find an N such that

c <io-7

yn

for n >N. Find mM such that xn -c< 10"6 for n >M.
28. (a) How fast does ne~n approach zero as n increases? For k = 0,1,2,

3 , . . . , 10, find the smallest n such that

ne-"<e-k.

Make a table of n as a function of fc, and ofn/k. Does n/k seem
to be approaching a limit?

(b) Make a table of n - k for 0 < k < 10. Can you guess the order of
magnitude of this difference? Compare it with some familiar
functions of k.

(c) Foxy > 1, consider the solution of the equation

x-\ogx=y,

such that x > 1. (Why does the solution exist? What is the sign
of dy/dx for x > 1 ?) Which is larger, x or y ? Which is larger, x
oxy + logj>? Set* =y(l + /*), and use the inequality log(l + h)
< h (chapter 3) to get a good estimate for x in terms of y.

(d) Use the results of part (c) to improve your results in part (b).
29. Use the results of exercise 27(c) to investigate the rate of convergence

of (log ri)jn. (Hint: set x = log n, n = ex.) Find approximately the
smallest n such that

(log«)/«<e-1000000.

30. Consider the series

and
1 , 1 , 1 ,

(a) Toss a coin many times. Let

*o=0 ,

and let
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where tn is the first unused term of sx if the wth toss is heads,
and minus the first unused term of s2 if the nth term is tails. Thus
if your first tosses are HTHTTHHTTT, then

= 1 _ ! ± _ ! _ 1 1 _ 1 _ ! _ J _ _ J _
Xl° 1 2 3 4 6 5 7 8 10 12*

Compute and tabulate xn for n < 20. Does xn seem to be con-
verging? Compare with the results of your classmates. Do you seem
to be getting the same limits?

(b) Note that every sequence you obtain in this way is obtained by
adding the terms in Si - s2 in a certain order. Do different
orderings give noticeably different results?

(c) Give methods of choosing the terms from st and s2 so that xn

approaches 100 or so thatx^ oscillates between —100 and +100
infinitely often.

Intuitively speaking, this exercise shows that the commutative
law of addition does not, in general, hold for infinite series.

31. Choose any positive numbers x0, x t, and x2, and define

xn + 3=3xn+1+4xn fox n>0,

and let

(a) Compute a table of xn and>>„ for n < 20. Doesj^w seem to be
converging?

(A) If

lim yn=y

exists, what musty be? (Hint: express xn + x and xn + 3 in terms
of xn and thej/s.) Use this to devise a good measure of the error
oiyn — y. Compute this measure of error and test your guess
about the convergences.

(c) Does^w seem to be converging in a fixed direction, or is it
oscillating around the limit?

(d) Choose any positive number z0 > 1, and define

2/4 +A fo r n>0-

Compute zn for n < 20. Does zn seem to be converging? How
does its limit seem to be related toj>? Which sequence seems to
be converging faster?
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32. Consider the sequence {xn} defined by (6.2). Let a = \/3. Use the
fact that ±a satisfies the equation

* ~ 2 x + V

to obtain a constant k such that

+a \xn+a)'

(a) Find

km
* - - xn-a

(b) Find

log|xrt — a|
lim

(c) Find

lim —

(d) How do these results explain the exact rate of convergence of xnl
33. Study the sequence {xn} of exercise 21 by the method of exercise 31.

(a) Find

where a is the positive root of the equation

(b) Find

loglXn-al
lim ^ = log k .

(c) Find

Jim^ |xn-a|/A:2n.

6.3 The struggle for life II

A better model
We continue here the study we started in chapter 3 of the mathemati-

cal theory of the struggle for life.
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We concluded that our model was not realistic enough. As in most other
problems in which we try to apply mathematics to the real world, we find
that the real world is too complicated for our poor feeble human minds to
grasp. Hence we try to idealize and simplify the actual situation until we
obtain something easy enough for us to handle. We try to pick out the
most important features of the real problem and incorporate them into a
mathematical model. We often start out with a very simple mathematical
model. After we have studied it thoroughly and can understand this first
approximation to the real world, we then, step by step, introduce new
ideas to make our model more realistic.

This is what we shall do now. Our previous model assumed a certain basic
relative rate of excess of births over deaths, and that this basic rate is constant.
As a first step to improve this, let us assume a correction which takes into
account the rate at which the population uses up its food supply and poisons
its environment. Let us assume that this correction is proportional to the size
of the population.

We can express our assumption in mathematical language. Previously we
assumed that r, the relative rate of change of the population, is constant. Now
we are assuming that r depends on the size x of the population:

r = R -ex.

Here R is the basic rate of excess of births over deaths, and ex is a correction
proportional to the size of the population. We assume that both R and c are
positive constants.

If we observe the population every h days, then the equation expressing
the relation between the populations x (t) and x(t + h) at successive obser-
vations is

x(t + h)-x(t) _ fA
**• — CX(t).i—77\

hx(t)
Solve this equation foxx(t + h) as the unknown, and put your result in the
form

*(* + *) = ( M 0 - ( MO2.
Fill in the missing coefficients. This equation enables you to predict the
population h days from now if you know the population now, at time t.

Before we discuss our theory any further, let us do some numerical
experiments.

Exercises
34. Let/S = O.O1,A= l ,c = 0.000001, and JC(0) = 1 000000. Make a

table showing the population at various times.
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35. Work out tables for the following cases:

R h c x(0)

0.01
0.01
0.01
0.01

1
1
0.5
0.01

0.000 001
0.000 001
0.000 001
0.000 001

1
1

100 100
90 000
000 100
000 100

36. What is the significance of X = R/cl

A graphical process
You have obtained an equation of the form

for predicting the population at time t + h in terms of the population at the
time t, with

Fill in the missing values. We can give a graphical process for calculating the
prediction. First we draw a graph of the equation

y = ax - bx2.

This equation expresses the relation between x =x(t) and>> =x(t + h). Do
you know what kind of curve represents this relation? If you do not remember,
work out the curve in a case with simple numbers like a - 2 and 6 = 1 . This
will surely remind you of this family of curves.

Now if you have the graph of an equation, it is easy to calculate y from x
graphically. We shall illustrate this with the case

which is somewhat different from the equation which you should be working
on.

The graph of our illustrative equation looks like fig. 6.8. We have also
drawn in the line y = x. Now if x is given, we locate the corresponding point
on the x-axis, go vertically to the curve y = Ax - (x3)/3, then horizontally
across to the line y = x, then down to the x-axis again. This new point will
represent the number 4x — (x3)/3. Why?

If you apply this process to the equation

y = ax - bx2

and start withx =x(0), the initial population, you will obtain x(h)9 the popu-
lation h days later. If you repeat the process, you will obtain successively
x(3/0,x(4/0,etc.
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Fig. 6.8
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Exercises
37. For what values of x(t) is it true that x(t + h) = x(t)l Give the

biological and the graphical interpretation.
38. Let E be the non-zero solution of the previous problem. If x(Q) < E,

\sx(h) >x(0) or is xQi) <x(0)l What happens if you iterate the
process? How doesx(t) behave for large tl

39. If x(0) = l/b, what isx(h)l What happens from then on?
40. If l/b <x(0) < a/b, what can you say about x(h)l What happens for

t>hl
41. If x(Q) > a/b, what can you say about x(h)l What is the biological

interpretation? Can you suggest any limitation of our model? How
might it be improved?

42. Let z(i) = E —x(t) be the deviation of the population from equilib-
rium at the time t. Show that z(t + H) is related to z(t) by an
equation of the form

where A and B are constants. Find formulas for A and B in terms of
R, h, and c. Show that ifR and c are given then A > 0 for all
sufficiently small values of h.

43. Show that if \z(f)\ < (1 - A)/B then \z(t + h)\ < \z(t)\.
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One species preying on another
Imagine now that we have a lake containing minnows and pike, and

that the minnows are part of the food supply for the pike. We assume that
these populations are observed every h days, and we denote the populations
of minnows and pike at the time t by x(i) and y(t) respectively. As before, we
express the laws governing the changes of these populations in terms of the
relative rates of change

_x(t + h)-x(t) _y(t + h)-y(i)
Tx hx{f) ' Yy hy(t)

Let us examine rx at a time when the populations are x and y respectively.
We assume that there is a certain basic rate of excess of births over deaths
for the minnows, given by a positive constant a. There is a correction for
the size of the minnow population, which uses up its food supply and poisons
the environment, and we assume that this correction is proportional to* . This
correction contributes a term -bx, where b is a positive constant. Furthermore,
the more pike there are, the more they eat the minnows. If we assume a con-
stant rate of consumption of minnows per pike per day, this gives us a
correction of the form — cy, where c is a positive constant. We thus arrive at
the equation

rx = a - bx - cy

expressing the relative rate of growth of the minnow population when the
minnow and pike populations arex and.y respectively.

Reasoning in the same way, we arrive at the equation

ry=A+Bx-Cy,

where A,B, and C are positive constants. Notice that the more minnows there
are, the more food there is per pike, and the better it is for the pike. This
explains the term Bx with a positive coefficient.

We then set up the equations describing how the populations change from
the time t to the time t + h:

Solve these equations foix(t + h) and>>(/ + h) as unknowns, and express
your results in the form

*(* + *)=*(*)[( ) + ( ) * « + ( )y(t)],

=y(t)[( ) + ( )x(t) + (
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Fill in the blanks with the proper coefficients. Note that some of the
coefficients are negative.

We can now do some numerical experiments. We can assume numerical
values for the coefficients a,b,c,A,B,C, and the time interval h. We can then
see what happens if we start out with different initial states (x(0), y(0)). We
can represent a state of the populations by means of a point (x,y) in the plane.
This enables us to picture the various possibilities.

Exercises
44. Assume the following values:

a = 0.5, b = 0.000 001, c = 0.00002,
A= 0.01,5 = 0.00001, C= 0.0001.

Take h = 1. Work out the changes in the populations if the initial
populations are JC(O) = 16000 andj>(0) = 2000. Tabulate the values
you find for t,x, andy, up to t = 25.

45. In the previous exercise, work out the problem with everything the
same except for h = 0.5. We say that the state (pc(t)9y(t)) is stationary
at x(t) ifx(t + h) =x(t). We define states stationary aty(i) similarly.

46. Show on graph paper the set of states (x,y) at which JC is stationary
in the situation described in exercise 44. Show also, on the same
sheet of graph paper, the states at which y is stationary. What is the
intersection of these two sets of states?

47. In the situation of exercise 44, what is the set of points (x,y) such
thatx > 0,y > 0? If x{t) = JC and y(t) =y, then what is the set of
points (x9y) such that x{t + h)>x(t)l These are the states at which
JC is increasing. What elementary geometric figure is formed by the
points representing these states? What elementary geometric figure
is formed by the set of states (x,y) at which y is increasing?

48. Show on your graph paper the sets of points (x ,y) at which JC > 0 and
y > 0, which represents the following states:
(a) x andy are both increasing;
(b) x is increasing andj is decreasing;
(c) x is decreasing andj> is increasing;
(d) x mdy are both decreasing;
(e) the populations are at equilibrium.

49. Work the above five problems using these values:

Take first h = 1 and then h = 0.5. Take the initial state x = 2 and
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y = 3. If you wish, you may think of x andjy as measured in thousands.
Notice that now the minnows are the main food supply for the pike,
so that if there are not enough minnows, the pike die off. Try also the
case where all the values are as above except .4 = —1.5.

50. Set up the general form of the equations describing the situation where
two species, say pike and mackerel, prey on the minnows. Try at
least one numerical experiment to see what happens if you assume
different rates of excess births over deaths and of eating minnows for
the two species.

51. Set up the general form of the equations describing the situation
where the main food supply of the minnows consists of algae, and the
minnows are the main food supply of the pike. Try at least one
numerical experiment.

52. The situations as we described them are still far from 'real' situations,
and our mathematical models are still too simplistic. To convince
you that this is the case, some data on hares and lynxes in Canada
are shown in table 6.5.

Table 6.5

Year

1882
1883
1884
1885
1886
1887
1888
1889
1890

Number
of hares

15 000
46 000
55 000
137 000
137 000
95 000
37 000
22 000
50 000

Number
of lynxes

30 000
52 000
75 000
80 000
33 000
20 000
13 000
7 000
6 000

6.4 Chemical reactions
Reversible chemical reactions also illustrate the concept of equi-

librium and the process of approaching it.
For example, if hydrochloric acid (HC1) is poured into an aqueous

solution of silver nitrate (AgNO3), a precipitate of silver chloride (AgCl) is
formed, since silver chloride is quite insoluble in water. This is explained in
terms of a reaction between the silver and chloride ions in the solution:

Ag+ + C r 2 AgCl.

We have written two-way arrows here, since a small amount of silver chloride
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is always dissolving in the water and almost immediately dissociates into ions.
The rate at which the reaction takes place from left to right at any given

temperature is, to a very good approximation, proportional to the product of
the concentrations of the silver and the chloride ions:

ra te ( - )=Z[Ag + ][Cr] .

The constant of proportionality L depends on the temperature. The concen-
trations are usually measured in moles per liter. The rate at which the reaction
takes place in the reverse direction is proportional to the concentration of
silver chloride present:

rate (*-)=/?[AgCl].

We assume continual stirring.
At any time t, let x = [AgCl], the concentration of silver chloride, let

y = [Ag+], and let z = [Cl~]. We can express the combined effect of the two
processes by the equation

the first term on the right-hand side representing the rate at which AgCl is
formed, and the second representing the rate at which it dissolves and dis-
sociates.

This equation contains three unknowns. To eliminate y and z, we must use
the fact that the total amounts present of silver and chlorine do not change. If
A is the total concentration of Ag and C the total concentration of Cl, then
x+y=A and x + z = C. From this we obtain

y=A-x,z = C-x, (6.4)
and

ft = L(A - x)(C-x)-Rx = Q(x). (6.5)

These equations must be supplemented by the inequalities

x > 0, y > 0, z > 0, (6.6)

since, obviously, negative amounts are chemically meaningless. Our mathemati-
cal model consists of equations (6.4) and (6.5) together with the inequalities
(6.6).

Our first step is to analyze the quadratic polynomial Q. From (6.6) and
(6.4) we immediately obtain

0<x<A and 0<x<C,
so that
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where m is the smaller of A and C. We note that

G(0) = LAC > 0 and Q(m) = -tf m < 0,

so thit Q(x) has at least one zero in the interval 0 <x < m. Why?
Also Q(x) = Lx2 - [L(A + C) + R]x + Z,y4C, which is positive for large

values of x, so that Q(x) must have another zero greater than m. Since Q(x)
cannot have more than two zeros, these are the only zeros of Q(x). Let E be
the zero in the interval 0 <x < m, and r be the other zero, so that

0 <E<m <r, Q{E) = Q(r) = 0. (6.7)

The factors of Q(x) are then x - E and x - r, so that

e(x) = I ( x - £ ) ( x - r ) . (6.8)

We can sketch roughly the graph of Q(x) (fig. 6.9). The dashed portions of the

Q(x)i

LAC-

(0,0)

-Rm -

Fig. 6.9
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parabola are chemically meaningless. We see that

and

ff=Q(x)>0 for x<E

jjj; =Q(x)<0 for E<x<m.

Thusx is increasing as a function of t whenxKE and x is decreasing as a
function of t w h e n E < x < m .

When x = E, Q(x) = 0, that is, the processes in the two directions exactly
balance each other. The silver chloride is then dissolving just as fast as it is
being formed, so the system is in equilibrium. Indeed, the constant x = E is a
solution of (6.4), (6.5) and (6.6).
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We can obtain a good qualitative idea of what the solutions of (6.4), (6.5)
and (6.6) look like by using the method of direction fields. On graph paper
with t- and x-axes identified we draw through each point (t9x) a small segment
with slope Q(x). We only need to consider t > 0 and 0 < x < m. We obtain a
picture like fig. 6.10, which shows the direction field of the differential
equation (6.5). If we draw smooth curves tangent at each point to the direction
field we obtain a sketch of the solution curves.

X A

s

(0,0)

Fig. 6.10

^ ***—•

^ —* "

t

Let x(0) =x0 be the initial amount of silver chloride present. Our picture
shows that if x0 >E then JC decreases steadily toward E9 whereas if x0 <E
then x increases steadily toward E. Theoretically, according to our model, x
never actually reaches#, but the difference \x - E\ ultimately becomes so
small that we would not be able to detect it with our measuring instruments.

We can easily obtain quantitative results if we try to obtain the inverse
function t = t(x). Since

dt = 1 = __1_
dx dx/dt Q(x) '

we obtain t by integrating the right-hand side. Suppose, for the sake of
definiteness x0 < E, so that x is an increasing function of t (fig. 6.11), and

X A

E ~

(0,0)

Fig. 6.11

^ —

t
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t is an increasing function of x (fig. 6.12). We obtain

Why is the lower limit in the integral equal to x0 ?

Fig. 6.12
t A

(0,0)
- I — •
E x

192

(6.9)

We shall now show how to obtain the most important information about
the solution without evaluating this integral.

The integrand has a bad discontinuity at v = £, since the denominator has
the factor v - E which is zero there. The other factors stay away from zero
throughout the interval of interest 0 < v <E. In fact,

Q(v) = L(r-v)(E-v) (6.9a)
and

0<L(r-E)<L(r-v)<Lr for 0<v<E,
so that

L(r-E)(E- v)<Q(y) <Lr(E - v)
and

J L_ < 1 < 1 1
Lr(E-v) ^Q(y)^L(r-E) E-v '

Thus we may compare the integral in (6.9) with the much simpler integrals:

1 1
1 f 1

— I
Lr J E -

dv < t < 1 f 1

= I
r-E) J E -

dv .

If we make the substitutions

u -E — v, du = —dv,

we obtain

E-x E-x0d- J ^ d " ) = J -u^-
E-x0 E-x



6.4 Chemical reactions 193

We arrive at the estimate

(E -

This tells us that f behaves like a constant multiple of the quantity in (6.10).
That quantity is large when E - x is small, that is, whenx is close to its equi-
librium value. For such values of x, the right-hand side of (6.11) is actually
a good approximation to t.

It is very rare in practical problems that an integral can be evaluated or a
differential equation can be solved explicitly in terms of elementary functions.
It is very useful and important therefore, to know how to get good estimates
and approximations which give the most essential information about the
solutions.

Exercises
53. Try the values Z, = 1, /? = 2, >4 = 2, C = 3 i n equation (6.5). Find E

and r. If E — x0 = 0.5, estimate from (6.11) how long it will take for
E-x to reach the value of 0.05. What a b o u t E - x = 0.005 or
E - x = 0.0005?

54. Take A = 2, C = 3, and let R/L = 5. Find exact formulas for E and r.
Use the approximate formula

to obtain good approximations for E and r when 5 is small.
55. In the problem discussed in the text, work out the results analogous

to(6.9) and(6.11)ifx >E. If/, = 1,/* = 2 ,4 = 2, C = 3, andx0 - E
= 5, how long will it take for x - E to reach 0.05?

56. Solve the equation

(6.12)

for x in terms of t. Assign values to x0, E, and C, and graph x as a
function of t. Compare with figs. 6.10 and 6.11. Also graph (6.12)
for t as a function of x. Is there a short cut for obtaining one graph
from the other? Compare with fig. 6.12.

57. Find constants p and K such that

-L = _£_ + JL.
Q(v) E-v r - v '

where Q is as in (6.9a). Find a formula for t in (6.9). Does your
result agree with (6.11)? Solve for x in terms of t. Is the result
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simple? If necessary, look up the method of partial fractions in any
standard calculus text.

We have discussed a simple chemical reaction of the type

X+Y Z XY

with reaction rate laws of the simple form

rate (->) = constant [X] [Y],
rate (<-) = constant [XY].

A somewhat more complicated reaction is that of the decomposition of
hydrogen iodide:

2HI £ H 2 + I2.

In this case the reaction rates have the form

rate (-»)=/,[HI]2

If at any time t,x = [H2], y = [I2], z = [HI], our mathematical model would
contain the differential equation

To express the fact that the total amount of iodine present is constant, we
must note that each iodine molecule contains two iodine atoms, so that

2y + z = B = constant.

Similarly

2x + z = D = constant.

Again we must use the inequalities

x>0,y>0,z>0.

The mathematical model consists of these three equations together with the
inequalities.

Exercises
58. Eliminate* andz and obtain a differential equation involving only

the unknown function^. Assign positive values to D, B, L and R
and graph the right-hand side as a function of y. Try different
assigned values. What difference does it make whether L, and R
so-called equilibrium constant) is less than or greater than | ?

59. Analyze this type of reaction in the same way as we analyzed the
case of silver chloride.
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In many cases it is suspected that the reaction takes place in several steps.
It may happen that only the initial amounts and final amounts of certain
compounds are accessible to measurement. In such a situation, we may have
to make a theoretical analysis of several hypothetical mechanisms with
unknown reaction rates and find the functional relation between the
measurable quantities. This may help us to decide which hypothetical mecha-
nism fits the observed data best.

By using average rates instead of instantaneous rates, which lead to
difference equations rather than differential equations, we can adapt this
topic to students who have not studied calculus. Equation (6.5) for AgCl
then takes the form

^=Q(x). (6.5a)

If we set At = h and Ax = x(t + h) — x(t) and solve for x(t + h), we obtain

x(t + h) = x(t) + hQ(x(f)) = P(x(i)\ (6.13)

where

is a quadratic polynomial. Equation (6.13) is similar to the equation which
arose in section 6.3 in the study of the growth of a population. We can treat
it in the same way.

The equation

s = P(x)

describes the transition from the state x = x(t) at time t to the state s = x(t + h)
at the time t + h. The line s = x describes equilibrium, that is, the situation
when the concentration of AgCl remains constant. We can graph these two
relations (fig. 6.13). An equilibrium state corresponds to an intersection of
the curve s = P(x) with the line s = x, that is, a point where

Of the two roots E and r of this equation, only E, which satisfies 0<E<m,
is chemically meaningful.

Now the students can do some numerical experiments.

Exercises
60. With Lt R, A, C as in equations (6.4)-(6.6), how does E depend on A

for fixed C, or on C for fixed A1 Assume values for L, R, and C,
solve for E as a function of A, and calculate it for various values of A.
Does E increase or decrease as A increases? Similarly, study the
dependence of E on C. Is your result valid for arbitrary values of L



Approaches to equilibrium
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(0,0)

and Rt The ratio R/L = k is called the solubility product, and is
given in tables of physical constants. Look it up. For a given amount
of silver nitrate, which determines the value of A, how can you
adjust the value of C, which corresponds to the amount of hydro-
chloric acid, so as to increase the amount E of AgCl formed?

61. Study the dynamics of the problem, that is, howx varies with f.
Assume values for L, R, A, C, h, andx(0), and compute x(t) for
t = h,2h,3h,... Doesx(t) approach E or not? If h is chosen too
large, is the model (6.5a) still realistic? Keeping the ratio/?/// = k
constant, how does the speed of the approach to equilibrium depend
on LI Experimentally, equilibrium is attained very rapidly in this
reaction. What does this tell you about the sizes of L and Rl

62. Can you give a theoretical explanation of what you found in your
numerical experiments in exercises 60 and 61? There may be some
advantages in working with the variable u = x - E which describes
the deviation from equilibrium.



Waves

We felt that a correct name for this chapter would be 'Waves: from kinder-
garten to graduate work' - but settled for just 'Waves'. The intention remains,

though, to treat the notion of waves at as many different levels as we can,
while at the same time looking in detail at discrete models of motion and

solutions of differential equations.

The two parts of section 7.1 show how the notion of waves can be taught
at the kindergarten, the primary level and in the upper elementary school

grades. In the first part we use rhythms, patterns, combinations of patterns,
and also develop arithmetic skills for the very young. In the second we dis-

cuss prime numbers, remainders, periodic patterns, and graphs. The exercises

we propose are such that the pupils will make interesting discoveries only if
their computations are correct. This entire section is written for the teacher.

Section 7.2, on the vibrating string, consists mainly of a graduated series

of exercises with a minimal amount of explanation, and leads the reader from
simple deflections to the study of vibrations of an infinite string. This section

should be used as a text for the students.
From there we go over to a discrete mathematical model for harmonic

motion, various improvements of this model, and discuss how it agrees with

the law of conservation of energy. This is not an easy section.

Section 7.4 on trigonometric functions, is squarely written at the college

level. In fact we discuss here differential equations, estimates for their

solutions, inverse functions - everything but trigonometric functions in their
usual form. This unit is also a text for the student.

In this chapter maybe more than in the others we study patterns, their
combinations, and how they arise. Therefore this is the place for a word of
caution. In mathematics, we know exactly what we mean by a pattern. If we
study any phenomenon which seems to obey a certain law, to have a pattern,
we will try to guess the law or pattern, but we will not stop there. We will
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prove (or disprove) our guess. Only at that stage do we establish to our satis-
faction that indeed there is a pattern.

Therefore questions like

What is the next number in the series 1,3, 9, 27 , . . . ?

or in mathematical terms

What is the formula for the nth term of the series 1, 3,9, 2 7 , . . . ?

are the wrong sort of question. They are misleading because the answers

The next number in this series is 2
or

The formula for the «th term of this given series is
In - 1 4- 2{n - 1) (n - 2) + \{n - 1) {n - 2) (n - 3)

are absolutely correct for the questions asked. This example illustrates the
point that in mathematics a series (or a pattern) is never determined by
giving a few examples or the first few cases. This does not mean that the law
must be explicitly stated. Indeed, series or patterns will in most cases be
given by recurrence relations, and it will sometimes be very difficult to
translate these into an explicit formula. So it is a perfectly good question to
ask

In a series every term from the third term on is the sum of the two
preceding ones. The first terms are 1, 3,4, 7 , . . . What is the formula
for the wth term?

Research problems
1. Let us define the 'general term of a series' as the lowest degree poly-

nomial in n which satisfies the data. Is the question

What is the general term of the series al9 a2, a3,... ?

legitimate in that case? Would it give the 'expected' answer for the
series 2, 4, 8 , . . . ? Can we give a good definition of the term 'expec-
ted answer' we just used?

2. What is the maximum number of regions into which n circles divide
the plane?

3. Is n2 - n + 41 prime for all nl

7.1 Waves: an elementary approach

Waves in and before the primary grades
One can profitably teach some valuable concepts related to wave

motion as early as in kindergarten. The appropriate activities also give, as
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by-products, excellent motivated practice in arithmetic skills. You can begin
by calling the children's attention to various repeating patterns which occur
in everyday life, such as

day, night, day, night, . . . ,
breakfast, lunch, dinner, breakfast,...

You can ask the children to suggest others. The rhythm of familiar tunes also
give repeating patterns, for example, the waltz:

oom, pah, pah, oom, pah, pah, . . .
1, 2, 3, 1, 2, 3, . . .

The children can clap or stamp at the 'ooms' while they are counting ' 1 , 2, 3,
1, 2,3, ' etc. They can try march, jig, or reel rhythms as well. If there is a
record of Tchaikovsky's Sixth Symphony available, they might count out the
rhythm of the second movement.

Now you can present this problem: 'Suppose you alternate the desserts
with each of your meals

apple, orange, apple, orange,...,

and start with an apple for breakfast on Monday. How many meals later will
you again have an apple for breakfast?' They can write two lines on the
blackboard

B L D B L D . . .
A O A O A O . . . ,

they can make the two patterns with blocks, or the boys can say breakfast,
lunch, dinner, etc ' while the girls say 'apple, orange, apple, orange, e tc '
Thus they can see and hear the new pattern obtained by combining the two
simpler ones.

They can investigate other combinations of repeating patterns in a similar
way. These exercises give the pupils good practice in counting. Later (say,
first grade) they can learn to record their results. There are some interesting
natural questions:

(a) When you combine two repeating patterns, do you always get a
repeating pattern?

(b) If you combine a pattern of 2 with a pattern of 3, do you
always get a pattern of 6?

They can investigate such questions experimentally.
A little later you can introduce the concept of the period of a pattern - the

number of steps before repetition. Then the pupils can make tables of their
observations:
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Period of Period of Period of

1st pattern 2nd pattern combination

2 3 6

You can raise questions about making predictions.

As the children learn more arithmetic they can notice other repeating

patterns:

0, 0 + 5 = 5, 5 + 5 = 10, 10 + 5 = 15, 15 + 5 = 2 0 , . . .

numbers with last digit 0, 5, 0, 5 , . . .

1 0 - 3 = 7 , 1 0 - 7 = 3 , 1 0 - 3 = 7 , . . .

This last example can be introduced by saying 'Each one pick a number less
than 10. Subtract your number from 10. Subtract your answer from 10.
Subtract that number from 10. Does anybody notice anything?' This should
start a discussion going since each pupil will have a repeating pattern even
though they picked different numbers. Ask questions such as:

Is there something special about the number 10?
What would happen if we used some other number?

Another good example is the following rule:

Pick a number less than 10. Now pick another one. These are your

first two numbers. Add them and subtract the sum from 30. The

answer is your third number. Now add your last two numbers and

subtract the sum from 30. The answer is your fourth number. Add

the two last numbers again and subtract the sum from 30. This is

your fifth number. Go on in the same way. What happens?

Later you can ask whether anyone can make up a similar rule for generating
sequences with period 4, or 5.

If you want to give motivated practice in some operation such as multipli-
cation, you can ask each child to make a table such as table 7.1, and to write
in the jc-column a sequence with period 2, then in the ^-column a sequence
with period 3. Next they should multiply the numbers in each row and write
the answers in the z-column. What happens?

Table 7.1

x y z = xy

3
5
3
5
3
5
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They can experiment with other sequences with the same periods, and
with other combinations of periods. They can record their results in a table:

Period Period Period
of x ofy of z

They can also experiment with other operations. You can adjust the numbers
and the operation involved so as to give any drill you wish.

Waves in upper elementary school grades

We describe here two activities, suitable for upper elementary school
grades, which combine experience with waves and periodic phenomena
together with computational practice.

You can begin by writing in a column on the board the sequence 1, 2,4,
8, 16. You then ask 'What is the rule? Copy this sequence and continue until
you reach 8192' (giving this number serves as a check for the pupils). You
now divide the class into groups, and assign to each group an odd prime
number: 3, 5, 7, 11, etc. You ask the children in each group to divide the
numbers in the sequence by their assigned prime, and to write the remainders
in a second column. The pupils in each group can compare their results as a
check. Thus the work for the 3-group will look like this:

Sequence Remainder

1
2
4
8

16

1
2
1
2
1

It is almost always necessary at the start to remind the children that when
the divisor is larger than the dividend, then the quotient is zero and the
remainder equals the dividend

The various groups should record their results on the blackboard in a single
report (table 7.2). Of course you should ask the pupils what they notice.
They usually get quite excited to discover the periodic patterns in the
columns.

In the group with the prime 11, the divisions will be laborious for most of
the children. (Here calculators cannot be used in any obvious way.) Some of
the pupils may not have time to complete the columns for this and the
larger primes, which should motivate them to look for short cuts. A hint,
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Table 7.2

Sequence

1
2
4
8

16

Remainder

3

1
2
1
2
1

5

1
2
4
3
1

with

7

1
2
4
1
2

prime

11 13

which may be necessary, is to suggest comparing each remainder with the next
one down in any column. Are there any patterns? They will discover that
often the remainder is double the previous one. What happens when this
simple rule fails? How is the prime at the top of the column involved?

When they discover, discuss, and check the short cut, they can then easily
complete the assigned columns. There are now three interesting directions for
further investigations:

(a) Is there also a periodic pattern for other primes, such as 17, 19, 23, etc.?
This can be mini-research for homework. Divide the class into groups,
and assign to each group a prime to investigate.

(b) What is the relation between the prime and the period? The pupils can
make a table:

Prime Period

3 2
5 4
7 3

Is there any pattern or law?
(c) Will something similar happen with the powers of other numbers? The

students may investigate the powers of 3,

1 ,3 ,9 ,27 ,81 , . . . ,

or 4 or 5, etc. The results for the powers of 10 have an interesting
relation to the decimals for the reciprocals of the prime

1/3 = 0.333
1/7 = 0.142 857142 857. . .

This is an appropriate subject for discussion with children who know
about conversion of fractions to decimals.

The pupil can extend the table started in (b) above by adding a column for
the periods for the powers of each number investigated. This larger table will
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help in the search for the relation between the primes and the periods. The
goal should be to predict, ultimately, the results for cases not yet investigated.

This activity involves many interesting results to be discovered, but the
discoveries cannot be made unless one does the computations correctly. Thus
it puts a premium on mastery of skills in multiplication and division.

If the children record the numbers in any column on graph paper, they
obtain patterns like that shown in fig. 7.1 for the 5-column of table 7.2. Such

Fig. 7.1

256

patterns make the wave nature of the phenomenon obvious. The following

activity is appropriate for children who know about the multiplication of
decimals. Each child is asked to make two columns on his sheet of paper like

this

0
1
2
3

Each pupil writes any numbers he wishes in the first two rows of the x-column.

You may on the blackboard illustrate with numbers of your own. To get the
next number in the x-column, multiply the last number by 1.2 and subtract

the one before; round off your answers to one decimal place. Thus if you
chose 1 and 4, respectively, then your next number would be

( 1 . 2 X 4 ) - 1 = 4 . 8 - 1 = 3.8,

and you would write this in the 2-row. The next number would be
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( 1 . 2 X 3 . 8 ) - 4 = 4 . 5 6 - 4 = 0.56,

and you would write 0.6 in the 3-row. The next number would be

(1 .2X0 .6 ) - 3 . 8 = -3 .08 ,

and you would write —3.1 in the 4-row. You can continue your own table,

explaining as each problem comes up the appropriate rule for computing with

signed numbers. Most hand calculators will handle such arithmetic, and if

they are available they should be used.

Each child can now compute his own table. The pupils can also record

their results on graph paper (fig. 7.2). Each child will get a different wave form,

but they will all find that their waves have a period of somewhat more than

six units.

Fig. 7.2
X 4i

- 3 -

The experiment can be done with any fixed multiplier which is numerically
less than 2, instead of 1.2. (With a multiplier greater than 2 one will get more
and more violent oscillations.) One can get any period (greater than 1) that
one wishes by suitable choice of the multiplier. The initial numbers and the
multiplier can be chosen and the number of decimal places used may be
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chosen so as to give motivated drill in addition, subtraction, and multipli-
cation of decimals, as appropriate to the particular class.

More complicated wave forms can be constructed by calculating another
sequence^, using a different multiplier, and then calculatingx + y. One can
also form sums of three or more wave forms. If the computations become
too laborious then calculators should be used.

One motivation can be the synthesis of musical tones. You can show
photographs of sound waves from various musical instruments. If we wish to
imitate the sound of a clarinet, we should first try to analyze the wave of a
clarinet tone into a sum of simple waves. We can then use resonators or
various electronic devices to produce the desired combination of simple
waves. This is the principle of the electronic organ and of the synthesizer.
The above activity shows an elementary way to generate simple wave forms,
and forming sums shows how to combine them to make more complicated
wave forms. It is unfortunately beyond the scope of this book to illustrate
the analysis of wave forms into their simple components.

7.2 A vibrating string

We have often observed that whenever we connect mathematics with
music, it immediately stirs up interest among the students, even with other-
wise indifferent classes. When teaching this unit to children, we usually begin
with questions such as:

Does anyone here play a stringed instrument, a violin or a guitar, for
example? Has anyone seen the inside of a piano? Where are the low
notes on the piano; the high notes? Which notes come from the
short strings; the long strings? How do you play high notes on a
violin or guitar?

If possible, it is good to have an instrument available and to illustrate these
points.

We then say that if there were time we would perform some experiments
first, analyze our observations, and derive a mathematical model from such an
analysis. (This would still be the ideal, especially if one had a cooperative and
competent colleague in physics.) In lieu of this, the best that we can do is to
present a mathematical model without attempting to derive it, and to test its
plausibility by comparing the predictions from the model with our qualitative
observations.

Suppose now that we want to study how a string moves when stretched
tight and clamped at both ends, like a violin string. The best way to make
some observations would be to photograph the moving string at equal time
intervals, for instance every second. To describe the motion mathematically
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we divide the string into, say, 12 equal parts, and keep track of the deflections
at the endpoints of these parts.

Fig. 7.3 shows schematically how the string looks when it is undisturbed.
The endpoints of the parts are labeled 0, 1 , . . . , 12. The string occupies the

Fig. 7.3

10 11
I

12

interval, or line segment, 0 < x < 12. The deflection u(x), the deflection at
any point*, is zero initially.

If the string is deflected, we approximate the real motion by thinking about
u(x) only for* = 0, 1, 2 , . . . , 12. We imagine that the string is straight between
any two of these points. When the string is in the position shown in fig. 7.4

the deflection u(x) is given by this table:

x 0 1 2 3 4 5 6 7 8 9 10 11 12
t / 0 1 2 2 1 0 - 1 - 2 - 2 - 1 0 2 0

Deflections in one direction are counted as positive, and in the opposite
direction as negative. The clamping of the string is described by saying that
the deflections at the endpoints are zero:

Of course, in reality the string will mostly be a rather smooth curve, and we
could obtain a more accurate description by dividing the string into a greater
number of parts.

Imagine that we photograph the string every second. We measure the time
t by the number of seconds after we start the experiment. We can record the
observed deflections in a table 7.3. The clamping of the string is described by
writing zero in the 0-column and the 12-column.
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Table 7.3

t

0
1
2
3
4
5

;t =

0

0
0
0
0
0
0

1

0
1

2

0
2

3

0
2

4

0
1

5

0
0

6

0
- 1

7

0
_2

8

0
_2

9

0
- 1

10

0
0

11

0
2

12

0
0
0
0
0
0

The physical laws of the vibrating string can be described approximately
by the rule that in the table, for any four numbers in cells placed like this

the number at the bottom equals the sum of the two numbers in the previous
row minus the number at the top. Thus the number in the 2-row, 3-column, is

2 + 1 - 0 =?

The rule may also be expressed as

The deflection at any point at any time is the sum of the deflections
at the two neighboring points a second before, minus the deflection
at the same point two seconds before.

By using this rule, we can predict the shape of the string at the time t = 2
from the shape at times 0 and 1, then the shape at time t - 3 from the shape
at times 1 and 2, and so on.

The preceding elementary analysis can be put in mathematical terms as
follows:
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The deflection at the point x = 3 at the time t = 0 (the start) is called
M(3,0). The deflection at the point x = 5 at the time t = 3 (three
seconds after the start) is called w(5,3). So the state of the string at
the start is described by the numbers M(0,0), M(1,0), M(2,0), . . . ,
w(l 1,0), M(12,0). The state one second later is described by the
numbersII(0,1),K(1,1), . . . ,n(l 1,1),K(12,1).

The physical laws of the vibrating string can be described approximately by
the following mathematical equations:

II(2,2) = «(1,1) + M(3,1) - ii(2,0), etc.

The deflection at the time t = 2 at the interior point x = 4 is the sum of the
deflections at the time t = 1 (one second before) at the two neighboring
points,x = 3 and* = 5, minus the deflection at the time t = 0 (two seconds
before) at the same point* = 4.

This law is a good approximation to the actual law of motion. If we divide
the string into smaller parts and make our observations every 1/10 second, we
would obtain a more accurate description. You may later learn how to perform
the experiments which lead us to this law of motion.

In addition to the above law, we need some boundary conditions to tell us
what is happening at the ends of the string. We can describe the clamping of
the string by the equations:

ii(0,2) = i*(12,2) = 0,

and, more generally,

for all t.
Let us do a numerical experiment. We start with our string in an undisturbed

state. We pluck it at x = 3 at the time t = 1 and let go. We show in table 7.4
the states of the string at the times t = 0 and t= 1. In this table the deflection
w(4,2) at the time t = 2 and the place x = 4 is written in the 2-row, 4-column.
According to our law, we must have

=1 + 0 - 0
= 1.

Similarly, we have

=0 +0 - 0
= 0,
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Table 7.4

X =

t 0 1 2 3 4 5 6 7 8 9 10 11 12

0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 0 0 0 1 0 0 0 0 0 0 0 0 0
2 0 0
3 0 0
4 0 0
5 0 0
6 0 0
7 0 0
8 0 0
9 0 0

10 0 0
11 0 0
12 0 0

and
II(2,2) = H(1,1) + K ( 3 , 1 ) - K ( 2 , 0 )

=0 + 1 - 0
= 1.

Work out the rest of the state at the time t = 2.
To predict the state at the time t = 3, we apply the same law. For instance,

we have
M(3,3) = I I ( 2 , 2 ) + I I (4 ,2) -«(3 ,1)

= 1 4- 1 - 1
= 1

We remind you that the zeros in the 0- and the 12-columns tell us that the
string is clamped at both ends.

Exercises
4. Work out the motion of the string with the above states at times

t = 0 and t = 1. You will not see the complete pattern until t = 24,
but you may be able to predict what happens by the time you reach
t=\3.

5. Graph the states of the string as in fig. 7.5. You may graph these
states (up to t = 24) on cards and flip them fast to imitate the
moving picture of the vibrating string.
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Fig. 7.5
t = 0 i i I

t =2

J I I I I I I

6. Work out the motion for these initial states of the clamped string:

X =

t

0
1

(6)

t

0
1

(c)

t

0
1

id)

t

0
1

0

0
0

X

0

0
0

X

0

0
0

X

0

0
0

1

1
2

=

1

1
-4

=

1

1
_ i

=

1

1
-1

2

0
0

2

-2
5

2

-2
3

2

2
0

3

-1
-2

3

3
6

3

0
0

3

-3
1

4

0
0

4

0
0

4

2
-3

4

4
-2

5

1
2

5

-3
-6

5

-1
1

5

-2
1

6

0
0

6

2
-5

6

0
0

6

0
0

7

-1
-2

7

-1
4

7

1
-1

7

2
-1

8

0
0

8

0
0

8

-2
3

8

-4
2

9

1
2

9

1
-4

9

0
0

9

3
-1

10

0
0

10

-2
5

10

2
-3

10

-2
0

11

-1
-2

11

3
6

11

-1
1

11

-1
1

12

0
0

12

0
0

12

0
0

12

0
0

7. Try at least three other experiments of choosing initial states for the
clamped string and seeing what happens. As in exercises 4 and 5, make
'movies' of the vibrating string for at least two of your experiments.

8. Try experiments with more or fewer subdivisions of the string.
9. Try the simplest situation, with only two subdivisions of the clamped

string:



7.2 A vibrating string 211

x =
t

0
1

0

0
0

1 2

0
0

Try any numbers you like for w(l,0) and w(l,l), and work out the
motion. Is the motion periodic? If so, what is the period? Does it
make any difference how you choose the initial states?

10. Investigate the next simplest situation, with three subdivisions of the
clamped string:

x =
t

0
1

0

0
0

1 2 3

0
0

Try any initial states you like, and work out the motion. Is the
motion periodic? If so, what is the period? Can you choose the
initial states so as to obtain a motion with period 3 seconds? Can
you choose the initial states so as to obtain a motion with period
2 seconds?

11. In the same way, investigate four and five subdivisions. Compare.
Do you notice anything that can happen with four subdivisions
that does not happen with two, three, or five subdivisions? What is
the explanation?

12. In exercise 10 work out the motion for any initial states you choose.
Let v(t) be the sum of the deflections at the time t:

= the sum of the numbers in the f-row.

Make a table of v(t). What do you notice? Does the same thing
happen no matter which initial states you choose? Check that

for any time t. Investigate in the same way

= difference of the deflection at x = 2
and the deflection at x = 1 at the time t.

What is the general relation which holds between the three numbers
H<f),H<f+l),andw(f+2)?

13. In exercise 11, in the case of four subdivisions, investigate the
differences
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Is there any general law about the behavior of the sequence a(t)l
Investigate the behavior of the numbers

HO = "0,0 +"(3,0
and

For any motion of the string compute the numbers b{t + 2) + b(i)
and c(t + 2) + c(0, and compare with the numbers b(t + 1) and
c(t + 1). What is the general law?

14. Suppose that the string is 12 units long as in our initial example.
Suppose that the end at x = 12 is clamped, so that M(12,0 = 0 for all
t > 0, but imagine that we wiggle the end at x = 0 back and forth.
What will happen? Take as initial states:

x =

( 0 1 2 3 4 5 6 7 8 9 10 11 12

0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 1 0 0 0 0 0 0 0 0 0 0 0 0

Our boundary conditions are

w(0,0 = alternately 0 and 1, for t > 0,

and

In the interior of the string we apply the same law of wave motion
as before. Is the motion periodic? If so, what is the period?

15. Try the same experiment as in exercise 14 with other lengths of string.
How is the period related to the length?

16. Make 'movies' of your experiments in the last two exercises, as in
exercise 5.

17. Try the experiments of exercises 14 and 16 with different motions
of the end at x = 0. For example, jerk the end every third second:

t/(0,0) = 0, «(0,l) = 0, II(0,2) =1 ,
i/(0,3) = 0, II(0,4) = 0, M(0,5) = 1, etc.

How is the period of the motion of the whole string related to the
period of the motion of the end at x = 0 and the length of the string?

18. Imagine an infinite string. We describe its state at the time t by
means of its deflections

. . . , t/(-4,0, t/(-3,0, "(-2 ,0 , " ( -1 ,0 , "(0,0, "(1,0, • • •
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at the various points x. Of course now we cannot write down all the
deflections at any one time, but we may describe the state by saying
how u(x,t) depends o n * in general. For example, the initial state

w(0,x) = Oforall;c,

is that of an undisturbed string. Plucking the string at x = 0 may be

described by the equations

We can describe these two states roughly by the partial table:

x =

t . . .

0 . . .
1 . . .

- 5

0
0

- 4

0
0

- 3

0
0

- 2

0
0

- 1

0
0

0

0
1

1

0
0

2

0
0

3

0
0

4

0
0

5 . . .

0 . . .
0 . . .

The symbol . . . indicates that the pattern continues.
Work out the motion of this string. Make 'movies' of the motion

as in exercise 5. Of course, you cannot now draw the whole string
on a card. Draw as much as you have room for. How long does it
take the disturbance to reach x = 10, x = —25?

19. Try the experiment of exercise 18 with the initial states

and

Notice how the disturbances produced by this plucking at x = 1 and
x = — 1 interfere with each other.

20. Try the same experiment with the initial states

and

Do the disturbances interfere with or reinforce each other?
21. Try the same experiment with the initial states

"(0,0) = 1 ,

K(jt,l) = O

I I ( 1 , 1 ) = 1 .
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Compare the motion with the one resulting from the initial states

u(xfl) = 0 for* ^ 0, w(0,0) = 1,

and

22. Try experiments with the same state at t = 0 as in exercise 21. Place
the disturbance at the time t = 1 at various places and see what
happens.

23. Try any state you please at time t = 0. Consider the state at time
t=\

H(JC,1) = M ( X - 1,0) for allx.

What happens as time goes on?
24. We have used the law

u(x, t+ 2) = u(x - 1, t+ 1) +w(x + 1, f + l)-u(xft)

to predict the motion from the states at times t = 0 and t = 1. As
you saw in exercise 18, according to this law a disturbance spreads
in both directions at the rate of 1 unit of distance per second. See
what happens if you use the law

w(jt,f+2) = w( jc -2 , f+ l) + w(x: + 2 , f + \)-u(x,i).

Try the experiments of exercises 18 and 21 with this law of motion.
Now how does a disturbance spread?

7.3 Simple harmonic motion

The basic equations of Newtonian mechanics
You have probably heard of Newton's laws of motion. In this chapter

we shall be concerned with the law of Newton which relates the force acting
on a body to its acceleration:

force = mass • acceleration. (7.1)

Let us recall what acceleration is. Suppose that you are driving a car at
40 kilometers per hour and step on the accelerator, and that five seconds
later you are moving at 60 kilometers per hour. Your velocity has changed by
( ) kilometers per hour during a time interval of five seconds (or ( )
hours). So your velocity has changed by ( ) kilometers per hour per second,
or ( ) kilometers per hour per hour. Fill in the missing values. (Incidentally,
how many seconds are there in an hour?) This is your acceleration:

acceleration = rate of change of velocity. (7.2)

Furthermore, you know that
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velocity = rate of change of position. (7.3)

These equations (7.1), (7.2), and (7.3) are basic to Newtonian mechanics.
If we wish to know how a given mechanical system, say the Solar System or a
thrown basketball, will move, we simply write down the above equations for
each particle (or body) in the system. If the forces acting on the bodies in the
system are known, then we can try to solve the equations for the positions of
the bodies at any time.

Exercises
25. Leo dropped a grapefruit from a window of a building. Bruno photo-

graphed the experiment and recorded the height*, in meters, of the
fruit t seconds after Leo dropped it:

t x v (velocity) a (acceleration)

0 69
1 62
2 45
3 18

(a) How far did the grapefruit fall during the first second? What was
the change in x during the first second? What was the (average)
velocity in meters per second, during the first second? (Note
that* decreased, so that the change in* was negative. Velocity,
the rate of change of*, has direction, in contrast to speed, which
does not.) Record this velocity in the v-column.

(b) Calculate the velocity during the second second (i.e., from t = 1
to / = 2), and record your answer in the next row of the v-column.

(c) What was the change in velocity from t = 0 to t = 1? What was the
acceleration, or change in velocity per second, during this time
interval? (Remember that acceleration, like velocity, has direction)
Record your answer in the 0-column.

(d) Fill in the rest of the above table, as indicated in parts (a), (b)9

and (c).
(e) What do you notice about the acceleration of the grapefruit?

The equations for simple harmonic motion
We shall now apply Newton's law to the problem of simple harmonic

motion. Imagine, for example, a spring with a weight attached to it. We set
up an*-axis with the positive direction pointing downwards (fig. 7.6), and
choose the origin, * = 0, at the equilibrium position.
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0 -

If we displace the weight to the position* (fig. 7.7), then, according to
Hooke's law, there will be a restoring force proportional to the displacement.
If x > 0 (stretching) then the restoring force is ( ) - positive or negative?
On the other hand, if x < 0 (compressing) the restoring force is ( ) -
positive or negative? Fill in the blanks here and in the following text.

Fig. 7.7

0 - 0 -

stretching compressing

Therefore the constant of proportionality must be negative, and Hooke's
law takes the form

F=-kx9k>0.

Substitute in this equation the value of Fin terms of a from the previous
equation and solve for a:

* = - ( )JC. (7.4)

Imagine that we measure x every h seconds. We observe the position of the
spring at
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t = 0,h92h,3h,...,nh>...

and observe the positions

x = x(0), xQi), x(2h)9 x(3h),..., x(nh\ ...

As before, x(t) is the value of x at the time t.
What is the (average) velocity during the time from t = 0 to t = hi The

position changes from *(()) to x(k), so that the change in position is ( ) —
( ). This is the change in* during the first time interval of h seconds. The
average velocity during this time interval, which we shall associate with the
midpoint of the interval and call v(h/2), is the change in x per unit time:

v ( / , / 2 ) = change in x
v ' ' change in t v '

In the same way, during the next h seconds, x changes from xQi) to ( ).
The velocity during this time interval is

v(3A/2) = ( ).

More generally, if v(t + h/2) is the velocity in the time interval from t to 14- h,
then

change in x , x
S = 1 1 Sq c\

change in t \'-D)
Thus corresponding to the times 0, h, 2h, etc., we get the velocities

•H-

In the same way we can calculate the accelerations during the various time
intervals. For example, a(h) is the acceleration in the interval from h/2 to
h + h/2. During these h seconds v changes from v(h/2) to v(h + h/2), so that the
change in v is ( ) — ( ). The change in v per unit time is

Aangemv
change in t

More generally, we have

a(t) = ( ).
Let us combine this equation with equation (7.4). It is convenient to intro-
duce the quantity co = (k/m)J so that our equation takes the form

v(t + 3hl2)-v(t + hl2) = i ^ x { t + h l ( 7 . 6 )

Solve equation (7.5) fotx(t + h) as the unknown, and equation (7.6) for
v(t + 3/i/2), and make use of equation (7.5):
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(7.7)
MO

What are the coefficients in these equations?

Exercises
26. (a) Let co = 2, A = 1, x(0) = 3, v(l/2) = 0. Substitute t = 0 in equations

(7.7) and calculate x(l) and v(3/2).
(b) Substitute t = 1 in equations (7.7) and calculate x(2) and v(5/2).
(c) Calculate x(3), v(7/2), x(4), and v(9/2).

27. Let co = 2, x(0) = 3, v(A/2) = 0. Fill in the following table:

t x(t) v(Q

0
h/2
h
3/2/2
2/2

(a) For A = 0.5 calculate as far as t = 4.
(Z?) For A = 0.2 calculate as far as t = 2.
(c) For A = 0.1, here too, go as far as t = 2.

28. Compare the values obtained forx(l), x(2), v(l + A/2), v(2 + A/2)
in exercises 26 and 27. What seems to be happening as A becomes
smaller?

29. Obtain formulas for x(t + 2A) and v{t + 5A/2) in terms of x(t) and

( Mr + A/2).
What are the coefficients?

Since it is inconvenient to work with v(t + A/2), let us change notation
and write

We may describe the motion geometrically in the so-called phase plane. We
take as coordinates V and JC, and plot the points (x, V) corresponding to the
successive values of t. As we take smaller values of A, the points come closer
and closer to a certain curve (fig. 7.8). (Incidentally, physicists usually use
position and momentum (p = momentum = mV= mass X velocity) instead
of position and velocity, JC and V, as the variables in the phase plane.)
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Fig. 7.8
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Exercises
30. Graph the results of exercise 21(a)-(c) in the phase plane.
31. Rewrite the formula obtained in exercise 29 in terms of x and V.

A better choice of variables

As you can see from exercise 31, the formulas for x(t 4- nh) and
V(t + nh) rapidly become more complicated as n increases. The variables x
and V are natural to use from the physicist's point of view, but some other
variables may be more natural from the mathematical point of view. The
mathematician's approach is to look for new variables, instead of x and V, in
terms of which equations (7.7) take on a simpler form. Let us see whether we
can choose the constant a so that the variable

y=x + aV

obeys a simpler law. We shall try to choose a so thatj> obeys the law of a
geometric progression:

h),

where X is some constant.
In this equation we substitute

y(t + h) = x(t + /i)
y(t) =x(t) +

Then we substitute for x(t + h) and V{t + h) their values from equations (7.7):

Multiply out both sides and write each in the form

Ax(t)+BV(f),

where A and B are certain coefficients. This equation will be true for all
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points x(t\ V(t) in the phase plane provided that the coefficients of x(t) and
V(t) on both sides, respectively, are the same:

A = coefficient of x(t) = 1 - aco2h = X 1
J ( }

5 = coefficient of F(f) = ( ) + ( ) .

It may help you to see the general idea better if we first solve equations
(7.8) for the special case oj = 29h=: 0.5. We have ( ) equations (count
them!) and two unknowns, ( ) and ( ). We can solve them by substituting
in the second equation the value for X obtained from the first equation:

( ) + ( ) = [ ( ) - ( ) ] ( )•

Multiply out the right-hand side. This is an equation for a of degree two:

( ) a 2 - ( ) a + l = 0.

Therefore we find two values for a:

<* = ( )or( ).
The corresponding values of X are

X = ( ) o r ( ).

Thus there are two ways in which we can introduce new variables so as to
simplify our equations:

In terms of these new variables the equations take on the form

These are just like the equations for our models in the sections on the struggle
for life and radioactive decay in chapter 3. We obtain

y(t) = ( )V(0),
and

z(f) = ( )?z(0).

To obtain the description of the motion in terms of our original variables
x and V, we solve equations (7.9) for* and V:

* = ( > + ( K
V=( > + ( )z.

We thus express x(t) and V(t) in terms of y(t) and z(f), then z(/) in terms of
y(0) andz(0), and these, in turn, in terms ofx(0) and V(0):
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where the coefficients are:

7(0 = ( ).
6(0 = ( ).

32. Find JC(0 and F(f) if x(0) = 1, K(0) = 0 (keeping co = 2, h = 0.5). Do
the formulas you obtain from (7.11) look as though they give real
numbers for x(t) and V{i) when t = 2, 3, and 4? Check and see
whether they do.

33. Calculate 6(3) and e(4) (still with to = 2,h = 0.5).
34. Define C(i) by

(remember that^(f) is a complex number) and let co = 2, /* = 0.5.
Compare C(f + 1) with C(t). What do you observe?

35. Now take again co = 2, but let h be any positive number. Solve
equations (7.8) in this case and obtain formulas for a and X in terms
of h. (Remember to keep track of which value of X goes with which
value of a.) Define C(i) as in exercise 34 and show that

C(t + h) = vC(t)

where 77 is a certain constant. Does 77 depend on hi
36. What curve is formed by the set of points (x,V) in the phase plane

for which

where C is a constant? What family of curves is represented by this
equation for different values of C?

37. (a) Solve equations (7.8) for a and X when co and h are any positive
numbers. Find formulas foxx(t) and V(f) in terms ofx(0) and

no).
(b) Let

Prove that

where K depends on co and h.



Waves 222

(c) If he*) is sufficiently small, doesK depend on hi What is the
critical value ofhul

38. (Uses de Moivre's theorem.) In exercise 37 obtain the formula for
y(i) in terms ofj;(0) and express in trigonometric form. What about

Conservation of energy

In exercise 37 above, you found that the quantity

is a constant for all t. If you use the relation co2 = k/m9 write V for V(t), and
multiply by the constant k/2, you can put this result in the form

which is constant throughout any motion. Thus this function of the phase
(x9V) does not change during the motion. Such a law for a physical system
is called a conservation law.

In the mathematical model we have constructed in order to describe this
mechanical system, we imagine that we measure the position* every h
seconds. However, the spring is moving continuously; our model is therefore
an approximation, and the approximation would be better if h were smaller.
This suggests that to find out what really happens we should let h approach
zero, but as h approaches zero, V approaches v,x + hV/2 approachesx, and
[1 — (/z2co2)/4] approaches 1. This suggests that the true conservation law is

kx2l2 + mv2/2 = constant = E (7.12a)

throughout any motion.
This is the fundamental law of the conservation of energy. The terms

kx2/2 and mv2/2 are called the potential and kinetic energies respectively,
and their sum E is called the total energy. The law says that during any
motion, the total energy of the system remains constant although there may
be transfer, or conversion, from one form of energy to another.

These considerations suggest that in our model we ought again to interpret
E as the total energy, and the terms k(x + hV/2)2/2 and mV2{\ - /*2co2/4)/2
as the potential and kinetic energies, respectively. Then the law of conser-
vation of energy still holds in our discrete time model in this modified form.

We can interpret the conservation law geometrically in terms of the graph
of (7.12) in the phase plane (fig. 7.9). This graph (if 0 < hco < 2) is an
ellipse, with center at the origin, whose axes are rotated through a small
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Fig. 7.9
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angle 6. For different values of E we get a family of similar and similarly-
placed ellipses. As h approaches zero, 6 also approaches zero. For a given
initial point (x(0), F(0)), E can be calculated from (7.12). As time goes on
the point (x,V) in the phase plane, which represents the state of the system
moves around the ellipse.

Exercises
39. (a) Graph the motions you tabulated in exercise 21(a)-(c). How

does the point move around the ellipse, clockwise or counter-
clockwise?

(b) Using the same values for h and co, try various initial points in the
four quadrants. Calculate a few more points, graph them, and
say how the ellipse is traversed.

40. Suppose we associate the velocities and accelerations with the initial
instant of each time interval. Then the equations take on the apparently
simpler form

x(t + h)-x(t)_
h

= a ; 2

Derive equations of the form

to describe the transition of the state at time t to the state at time
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t + h. Calculate a and X for this new system of equations. Let
C(t) = \y{i) |2. How does C(t + h) compare with C(t)l What happens
to the energy in this model? Calculate a few motions with the same
values of co and h as you used before. What do the paths in the phase
plane look like now? Do you still get the same limiting law as h
approaches zero?

41. State the law of conservation of energy in terms of the variables x
andp (p = mv).

42. Suppose there is a fractional force proportional to the velocity:

F=-Joc-cv,

where c is a positive constant. Set up equations, introduce the new
variables j> and z as before, and find formulas for the two values of
a and X. Prove that if h is sufficiently small then |X| < 1. What
happens to \y(t)\ and \z{i)\ as t grows larger and larger? What does
this imply about the motion of the spring?

Remarks on teaching simple harmonic motion

Simple harmonic motion is usually taught using calculus, as in
section 7.4. In this section we have used average, rather than instantaneous,
velocities and accelerations, which lead us to the difference equations (7.5)
and (7.6). These are approximations to the differential equations

1(7.13)
V = -OJ2X, J

which we will discuss in section 7.4.
As we see, the difference equations can be treated using only high school

mathematics. In the course of this treatment we encounter, in a natural way,
the topics of

linear transformations,
simultaneous equations,
quadratic equations,
complex numbers,
the equation of an ellipse, and
de Moivre's theorem,

all of which occur in the high school curriculum.
The solutions of (7.13) with the initial conditions x(0) = 0, v(0) = 1, are

x = (l/cj)sin(coO, v = cosiest).

Equations (7.7) are easy to program. If the students compute x(t) and
v(t + A/2) for co = 1, h small, andx(0) = 0, vQi/2) = 1, they will obtain good
approximations to the trigonometric functions, which they can compare with
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the standard tables. Actually, when you use a command like

LET A = SIN(B)

in a program, the computer uses a built-in program similar to the one for
equations (7.7). To put a table of sines into the computer would be an
unnecessary burden on its memory.

7.4 Trigonometric functions

Differential equations
The reasoning of section 7.3, formulated in terms of instantaneous

velocities and accelerations, leads to differential equations instead of
difference equations. Now we have

dx

and
F = -kx = ma = m-r,

which yields the system

dx

dp"
dv 2

where co = (k/m)*, of two equations with two unknown functions.
This system resembles the single equation for the exponential function, but

there are some important differences. As before, let us see what we can find
out about the solutions directly from the equations.

The difference equations of section 7.3 can be regarded as approximations
to (7.14), and can be used with small values of h to compute the approximate
solutions. This is easy to program for a computer, and it is one practical way
to calculate the solutions of (7.14).

Let us first approach equations (7.14) qualitatively. We can regard a solution
x = x(t), v = v(f) as a curve in the phase plane x-v. The tangent to this curve
at t = 0 is the line

JC = x(0) + x'(0)X, v = v(0) + v'(0)A, -oo < x < +oo

through the point (xr(O), v(0)) in the direction of the vector (x'(0), v'(0)). If
we calculate these derivatives from (7.14), we find

Oc'(0),v'(0)) = (v(0), -<o2x(0)).

Similarly, at any point (x(to)> v(t0)) of the solution curve the tangent is in the
direction of the vector (v(t0), -co2 x(t0)).
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Fig. 7.10

Let us draw, at several points (x,v) of the phase plane, a small directed line
segment in the direction (v, — coV). This gives us a sketch of the so-called
direction field of the equation (7.14); fig. 7.10 is a sketch of the direction
field with co = 2. Any solution curve of (7.14) must be tangent to this
direction field at any point. Sketch a few solution curves. Clearly the solution
curves must wind around the origin. Unless we make our sketches very care-
fully, it is hard to tell whether we get closed curves or spirals around the
origin. In most practical problems it is not worth while to put in the effort
of making a very accurate drawing to decide such delicate questions.

Exercises
43. Suppose you set t = cr, v = by, where c and b are constants. What

form do equations (7.14) have in terms of the variables r, x, and^?
Can b and c be chosen so as to put the equations in a simpler form?
(This amounts to changing the units of time and velocity.)

44. Sketch the direction field for co = 1. Sketch a few solution curves.
45. Suppose* =x(t) andv =v(t) are solutions of (7.14). Letx =Ax(t),

) , where A is any constant. Compute

46. Let (pcx(t), and (x2(t), v2(t)) both be solutions of (7.14). Let
v2(t)9 and compute
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dX vdV, 2v

d 7 " F ' d 7 + c o X

47. Let (x(t), v(t)) be a solution of (7.14). Let X(t) = x(t + 3), V(t)
= v(t + 3), and compute X\i) - V(t\ V\i) + co2X(t). Can you
generalize the result?

48. Let (pc(f), v(t)) be a solution of (7.14), and let z = Bx2 + v2, where
/? is any constant. Compute

dz
6t'

Which choice of ̂  gives the simplest result?

Estimates of the solution
Let (pc(t)9 v(t)) be a solution of (7.14), and suppose that co = 1.

From exercise 48,

C = x2 + v2 (7.15)

is a constant. Hence the solution curve is a circle with radius \/C. This is the
mathematical expression of the law of conservation of energy for the spring.

Suppose JC(O) = 0, v(0) = 1. Then

* 2 + v 2 = l (7.16)

for all t, so that

I * K 1 , M < 1 (7.17)

for all r.
Starting with (7.17), we can obtain successively better estimates for the

solution. For example, from (7.14) and (7.17), we have

x ' = v < l .

As 1 is the derivative of t we see that

(JC-0'=*'-1<0,

from which it follows that

x — t is non-increasing.

In particular, for t > 0, we have

x(t)-t<x{0)-0 = 0,

so that

x<tfort>0, (7.18)

Substituting this in the other equation of (7.14), we find

v =-x>-tfort>0.
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(What function has the derivative tl). Hence we infer

(v + f2/2)'>0,
and

v + t2\2 is non-decreasing.

This yields

v(f)+ t2/2>v(0) + 02 = 1 for t> 0.

We can combine this with (7.17) to obtain the sandwich

1 - t2\2 <v < 1 for t> 0. (7.19)

We can continue this process, step by step. Combining (7.19) with (7.14),

x' = v > l - * 2 / 2 f o r r > 0 ,

we now look for a function whose derivative is 1 — t2/2. This yields:

x - t + ts/6 is non-decreasing for t > 0,

so that

*(>) _ ^ + f3/6 >x(0) - 0 + 03/6 = 0,
and

t-ts/6<x.

This, together with (7.18), gives the sandwich

t-t3l6<x<t for t>0. (7.20)
Already (7.20) enables us to compute x quite accurately for small values

of t. If we use this sandwich and v = -x, the above reasoning now gives us

l - f 2 / 2 < v < l - f 2 / 2 + f 4 / 2 4 for t>0. (7.21)

This enables us to compute v quite accurately for small values of t. If we con-
tinue with the same method, we can obtain formulas which give us even better
approximations for* andv.

Exercises
49. If x(0) = v(0) = 0, what is C in (7.15)? What are x and v for any

value of ft
50. Suppose (x x(f), v i (t)) is a solution of (7.14) such that x1(0) = x(0)

exercises 45, 46, and 49 to find out what X and V are for any value
of t. What does this tell you about x x (t) and v i(t)l

51. If (pc(t), v(t)) is a solution of (7.14), letX = v, V= -x, and compute
X' - FandK'+Z.

52. If (x,v) is the solution of (7.14) such that x(0) = 0, v(0) = 1, express
in terms of x and v the solution (xx(t), Vi(t)) such that *i(0) = 1,
v1(0) = 0.
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53. If (x,v) and (xl9vi) are the solutions of (7.14) mentioned in exercise
52, let

Determine the constants^ andB so that

X(0) = 2, F(0) = 3.
What do exercises 45, 46 and 50 tell you about (X, F)?

54. Find the smallest positive solution t0 of the equation

What can you say about v(to)9 where (x,v) is the solution of (7.14)
such that

x(0)=0,v(0)= 1?

55. If (x,v) is the solution of (7.14) such thatx(O) = 0, v(0) = 1, can
v(f) be positive in the entire interval 0 < t < \A>? How many
solutions does the equation v(t) = 0 have in this interval? For these
values of t, evaluate x(t).

56. Suppose (x,v) is the solution of (7.14) such thatx(O) = 0, v(0) = 1,
and that c is a number such thatx(c) = 1, v(c) = 0.
(a) Use the principles of exercises 47 and 53 to find simple formulas

for x (t + c) and v(t + c) in terms of x(t) and v(t).
(b) Find formulas for x(t + 2c), v(t + 2c),x(t 4- 4c), v(t + 4c) in

terms of x(t) and v(t).
57. Find a sandwich for the smallest positive c in exercise 56.
58. Obtain an improved sandwich onx from (7.21) above.
59. Obtain a still better sandwich on v.
60. Predict the results of applying the reasoning of the text to improve the

sandwiches in exercises 58 and 59. Check your predictions.
61. In which time interval do the two sides of the sandwich for v in (7.21)

agree to within an error of less than 0.000 05 = 5 X 10"*5? Find
similar intervals for the sandwiches in (7.20) and exercises 58 and 59.
If (JC, v) is the solution of (7.14) such that x(0) = 0, v(0) = 1, let
X(t) = -x(-t), V(f) = v(-t). Compute X' - V and V* + X. Apply
the results of exercise 50.

Separation of variables: the inverse functions
Another approach to the study of the solution of (7.14) such that

x(0) = 0, v(0) = 1 is to apply the method of separation of variables. If we
solve equation (7.16) for v in terms of x (using the fact that, by (7.21), v > 0
for 0 < t < V2) , we obtain

v = (l-x2y for 0<t<\/2.
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We put this information into equation (7.14):

As we did when we studied the exponential function, it is convenient to
work with t as a function of x, that is, the inverse function of x(t). We obtain

dx dx/df ( 1 - x 2 ) * '

in other words, dt/dx is this known function of x. Hence we find that

(TT^dX- (7.22)
0

The various methods which we used for evaluating or estimating integrals can
now be applied. The integrand

is continuous for 0 < X < 1. It has a bad discontinuity at X = 1, and its value
is imaginary for X > 1.

We can use equation (7.22) to calculate t for 0 < x < 1. There are two
devices which we can use to improve the calculation or estimation of the
integral. One approach is to notice that

1/(1 + X)r is a nice continuous function over the whole of the interval
0 < X < 1, so that the trouble at X = 1 comes entirely from the factor 1 — X.
We can immediately obtain the crude estimates

X)^< \Jl for O < X < 1

1 1 . 1
V2 (1 - X)̂  ̂  (1 -

yielding

V2J (1-A)T I (1-X)T

The integral on the right can be evaluated by means of the substitution
u = 1 — X, dM = —dX:

= f „-
1 -X

= 2[l-(l-x)7].
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Thus we obtain the sandwich

( l - * ) * ] . (7.23)

We can improve this result if we subdivide the interval 0 < X < x into
several subintervals, and apply the above method to each of them. For example,
we could start with

c dX p dX n dX « dX

J 2
J (1 - X2)*~ J (1 - X2)* J (1 - X2)* J (1 - X2)*'
0 v ' 0 v ' x/3 V ' 2x/3 V '

If we use a fine subdivision, we shall get greater accuracy. One interesting
conclusion from (7.23) is that the time t0 when x reaches 1 (and v reaches 0)
is between \/2 and 2. If we divide the interval 0 < X < 1 into many small
subintervals, we can estimate t0 as accurately as we wish.

A second approach is to approximate the integrand by polynomials. We
shall illustrate this with a related, but simpler, integral. This integral arises
when we consider the ratio

w=x/v

and the differential equation it satisfies. We find that ifjc(O) = 0, v(0) = 1, then

/ vx' ~xv> v2 + * 2 o
w = " = " = 1 + w ,

v2 v2

and
JC(O) 0

w ( 0 ) = — = - = 0 .
v(0) 1

Hence the inverse function satisfies

At _ 1
dw 1 + w2 '

and

'• J rk-iK (724)

If we divide 1 + X2 into 1 by the usual algorithm, we obtain

1 + X2 1 + \ 2

(7.25)

1 "h X

From these, we obtain

1 - X 2 < ——„ < 1 - X 2 + X4.
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If we use this in (7.24), we get the sandwich

W-j<t<W-j+y. (7.26)

If we were to use more terms in (7.25), we would obtain different sandwiches.
If w is sufficiently small, estimates like (7.26) give us very good approxi-
mations to t.

Exercises
62. Calculate t from (7.22) for x = 0, 0.1, 0.2, 0 . 3 , . . . , 0.9, 1.0, using

the first approach above.
63. For which values of w do the estimates in (7.26) differ by less than

5 X 10~5, so tnat you get t correct to four decimal places?
64. If you use one more term in (7.25) to get an estimate like (7.26), for

which values of w will you obtain t correct to six decimal places?
Will your new sandwich for t be an improvement for w = 1.1?

65. hety = (1 — x)~T. Find a constant c such that

(1-X)y'=cy. (7.27)

Try substituting

y=l-\-ax + bx2 (7.28)

in (7.27), where a and b are constants. Can a and b be chosen so that
this polynomial (7.28) satisfies (7.27) exactly? Can they be chosen
so that the coefficients of x° andx1 on both sides of (7.27) agree?

66. Let Y = 1 + ax + bx2 be the polynomial you obtained in the last
part of exercise 65 and let.y = (1 — x)~T. Calculate

o-«(£)•
Is (Y/y)r positive or negative for 0 < x < 1? Is Y/y greater or less
than 1 for 0 < x < 1? Find a constant k > 0 such that

for 0 < x < 0.5. Find an upper estimate for 1 - Y/y for 0 < x < 0.5.

67. Use the results of exercise 66 to get a good approximation to the
integrand of (7.22) by a fourth degree polynomial in X for sufficiently
small X. Obtain an approximate formula for t. Can you estimate the
error? Compare with your computation in exercise 62.

68. Estimate the time t0 whenx(r0) = 1 from exercise 62. How does
this compare with the estimate obtained in the preceding text?

69. Use the results of exercise 62 to graph the relation* =x(t) for
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0 < f < t0. Use v = (1 -x2)^ to graph v = v(t) for 0 < t < t0.
70. Use the results of exercises 56 and 69 to graph x - x(t) and v = v(t)

for 0 < t < 4^o • What does the continuation for larger values of t
look like?

71. Use the method of exercises 65 and 66 to obtain a third degree
polynomial which almost satisfies (7.27). Estimate the error as in
exercise 66. Use this to improve the result of exercise 67.
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Linear algebra

Abstract algebra is not generally taught by examining its applications. Indeed,
there is even a trend towards avoiding the intuitive and the applied and
insisting on the abstract and axiomatic points of view. This might be right
for mathematics majors, but is certainly wrong for future teachers. We pro-
pose an application-oriented approach in this chapter.

In section 8.1, a step by step, very detailed discussion of changes of
temperature in a thin rod leads us to four-dimensional vectors, linear trans-
formations, bases, eigenvalues and eigenvectors. The exercises are an integral
part of the exposition and should be done very carefully.

The next section is written as a text at the eighth grade level. We stray
here somewhat from our usual procedure, which is to introduce the mathe-
matical notions as they develop while we examine the application. Instead,
the application has been squarely based on the use of matrices. Still, it is an
effective way of teaching matrices since cryptography is such an attractive
subject. Matrix multiplication, inverses, and arithmetic modulo 26 are
discussed at a basic level.

The natural algebra of linear differential operators is studied in section
8.3, up to the mathematical formulation of Heisenberg's uncertainty relation
and the solution of some linear differential equations. Remarks for the
teacher on how to introduce the algebraic aspects of calculus end this section.

8.1 Heat conduction II

The difference equation
We shall start with heat conduction in a thin insulated rod. We

locate a point on the rod by its distance x from the left endpoint. The end-
points are labeled 0 and L, where L is the length of the rod. The temperature
in degrees centigrade, at the time t at the point*, is denoted by u(t,x).
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Let us consider a simple experiment. We start out with the rod at the
(room) temperature of 20 °C. At the beginning of the experiment we plunge
the left endpoint (x = 0) into ice-water and the right endpoint (JC = L) into
a jet of steam. From then on, (t > 0), we keep these endpoints at the
temperatures 0 °C and 100 °C respectively. How will the temperature on the
rod change with time?

We can state the problem in mathematical language. The initial condition,
that is, the temperature distribution at the start, is that

W(0,JC)=20 for 0<x<L.

The boundary conditions, that is, the situations at the endpoints, are that

u{t, 0) = 0 for t>0,
u(t,L)= 100 for t>0.

We still have to state in mathematical language how the temperature at various
times and places are related. Then we shall be ready to predict the value of
u(t, x) for any t > 0 and any x between 0 and L.

As a first approximation, let us imagine that we observe the temperatures
only every h minutes, and we record our measurements at the times t = 0,
h, 2h, 3h, 4h,..., nh,... We measure the temperatures only at certain points.
Suppose also that the rod is 5 cm long (L = 5), and that we observe the
temperatures at the points x = 0, 1, 2, 3, 4, and 5 (fig. 8.1). We can record

Fig. 8.1

our observations in tabular form; in table 8.1, for example, we have taken
h = 1. At the time t= 1, the temperatures at the endpoints of the segment
from points 3 to 4 are M(1,3) and t/(l,4). As a model of the given situation
we could then describe the flow of heat energy from the point* = 4 into the
point JC = 3 by

where k is a constant of proportionality. Of course, we count a flow into
point 3 as positive, and a flow away from point 3 as negative. If the rod is
warmer atx = 4 than at* = 3, that is, if w(l,4) >M(1 ,3 ) , the rate of flow into
point 3 will be ( ) - positive or negative? What is the sign of w(l,4) — w(l,3)
here? We express the rate of flow of heat energy in calories per minute.

Now let us work out the net rate of flow of heat energy into the point
JC = 3 at the time t - 1. This will be the sum of the rates of flow from points
2 to 3 and from points 4 to 5. According to our results so far, this yields
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Table 8.1

r 0 1 2 3 4 5

20 20 20 20 100
100
100

w(3,l) II(3,2) II(3,3) II(3,4) 100
100
100
100
100
100
100
100

net rate of flow of heat energy into x = 3 at time t = 1

=n ' ']

0
1
2
3
4
5
6
7
8
9

10

0
0
0
0
0
0
0
0
0
0
0

Fill in the missing numbers, factorizing out k for the second line of the
expression and simplifying for the third line.

By the definition of specific heat S (look it up in a physics text), the rate
of change of temperature atx = 3 at the time t = 1, that is, the change of
temperature per minute is,

M(2,3) — I / (1 ,3) = change of temperature, in degrees
1 length of time interval, in minutes

= -r- (calories per minute of heat flowing into* = 3)
o

More generally, we have the equation

-^ ^ H-* = j [u(t,x - 1) + u(t,x + 1) - 2u(t,x)],

which expresses the fact that the rate of change of the temperature, at the
time t and the points, is proportional to the net rate of flow of heat energy
into the point x at the time t.

Here k is a positive constant measuring the heat conductivity of the
material of which the rod is made. We shall assume that the rod is isotropic
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(k does not depend on the direction of flow) and homogeneous {k is the same
all along the rod). For most real materials k and S depend on the temperature
u(t,x), but we shall neglect this in our model.

Let us solve the above equation for u{t + h, x):

u(t + *,*) = Cu(t,x - 1) + (1 - 2C)u(t,x) + Cu(t,x + 1), (8.1)
where C is a certain constant which depends on h, k, and S. What is the value
of C in terms of these other quantities? If we assign values to C (or to h, k,
and S) then we can use this equation to predict the temperature at the time
t + h at the point x if we know the state of the rod at the time t. We can
perform numerical experiments, starting with certain initial and boundary
conditions and computing the temperatures at various times and places on
the rod.

Exercises
1. Take k/S = 1/2, and h = 1, and the initial and boundary conditions as:

) = 20,0<x<5,

and
u(t,5)= 100, t>0.

Complete table 8.2 of the values of u(t, x) for 0 < t < 20, 0 <x < 5.

Table 8.2

t

0
1
2
3
4
5

x =

0

0
0
0
0
0
0

1

20
10
10
7.5
12.5
11.25

2

20
20
15
25
22.5
30

3

20
20
40
37.5
47.5
45.625

4

20
60
60
70
68.75
73.75

5

100
100
100
100
100
100

Carry out your calculations to three decimal places. What seems to
be happening to u(t,l) as t increases? What seems to be happening
to the temperature at each fixed point as time goes on? What does
this mean physically?

2. With the same values of k/S and h and the same boundary conditions
as before, but with the initial conditions

w(0,l) = 80, K(0,2) = 60, w(0,3) = 40, K(0,4) = 20,
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compute a table of the values of u(t,x) for 0 < t < 20. Compare
your results with those of the previous exercise.

3. Take the same value of k/S and the same initial and boundary
conditions as in exercise 1. Compute w(l, x) for 0 <x < 5, taking
successively h = l,h = 0.5, and h = 0.1. What seems to be happening
to w(l,2) as ft decreases?

4. Suppose that C = 1/2, u(t,3) < 60, and u(tA) < 80, with the same
boundary conditions as before. What is the greatest possible value
for u(t + h, 4)? Answer the same question if C is any number in the
interval [0, 1].

5. We say that the state of the rod is stationary if u(t + h,x) = u(t, x)
for 0 < x < 5. Suppose that the state is stationary, and that u(t, 0)
= 0, u(t, 5) = 100. What is the temperature distribution on the rod?

Deviations
Let us return to the problem of solving equation (8.1),

u(t + h,x) = Cu(t,x - 1) + (1 - 2C) u(t, x) + Cu(t,x + 1),
for

x= l , 2 , 3 , 4 a n d ? > 0

with the boundary conditions

u(t,0) = 0, u(t, 5) = 100, for t > 0.

In exercises 2 to 5 you found that the only stationary state has the
temperature distribution

You also found in your numerical experiments that, as t grows larger, the
state of the rod seems to approach the stationary state as an equilibrium
state, no matter what the initial state of the rod may be. We should be able
to prove this from our equation (8.1) if our theory is any good.

This suggests that we should describe the state of the rod by means of the
deviation of the temperature distribution from the stationary distribution:

Exercises
6. Prove that U(t,x) satisfies the equation

U(t + h,x) = CU{Ux - 1) + (1 - 2C) U(Ux) + CU(t,x
for
0<x<5,t>0,

and the boundary conditions
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7. Predict the behavior of U(t9x) for large t.

Vectors

The state of the rod at the time t would then be described by the

numbers

U(t9O)9 U(tM U(t92)9 U(t93)9 U(tA\ U(t95)9

but, by the boundary conditions, the first and last of these numbers are

always zero. Therefore it is sufficient to use the four numbers U(t, 1 ) , . . . ,

U(t94) to describe the state of the rod. We see, then, that the state of the

rod at any time can be described by an ordered quadruple of numbers

(Ul9U2,U3iU^

(We are using subscripts merely to label the four numbers, and to help us
remember which one belongs in which place in the quadruple. The '2' in '£/2'

has nothing to do with the value of U2. We read this symbol '(/-sub-two.')

It is convenient for us to use a geometric language to talk about these
states. This language helps us visualize the algebraic relations between the

quadruples of numbers. Just as we can think of an ordered pair of numbers,
such as (2, —3), as describing a vector in two-dimensional space (the plane)

(fig. 8.2), so we can think of the ordered quadruple (1, 2, —3,4) as repre-

senting a vector in four-dimensional space. Of course, we cannot draw a
picture in four dimensions; we can only imagine this vector in four-dimensional

space.

Fig. 8.2

(2,-3)

In our problem we shall call the quadruple

(U(t, l)),U(t,2)9U(t,3)9U(t94))

the state vector of the rod at the time t. Equation (8.1) (see exercise 6) tells
us how to compute the state vector of the rod at the time t + h if we know
the state vector at the time t. Thus equation (8.1) describes the transition of
the state at any time to the state h minutes later.
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Suppose that

(UltUt,U3,UA)

is the state vector at the time t, in other words

U(t,l)=U1,...,U(t,4) = U4,
and, of course, U(t,0) = U(t,5) = 0, by our boundary conditions. Then h
minutes later we find that

U(t + h,l)= CU(t,0) + (1 - 2C) U(t,\) + CU(t,2)
= (l-2C)U1 + CU2,

,2) = ( )Ut + ( )U2 + ( )U3,
,3) = ( )U2 + ( )U3+( )U4,

U(t + h,4) = ( )U3 + ( )U4.
Fill in the missing coefficients.

, V2» V3, F4) is the state vector at the time t + h, then the equations

V2 = CUt + (1 - 2C)U2 + CU3, etc.,

describe how the state at the time t + h can be computed if you know the
state at time t. Write down the equations for V3 and F 4 . We can interpret
these equations in a new way. During a time interval of h minutes, the process
of heat conduction in the rod transforms its state vector (Ui, U2, U3, U4)
into the new state vector (F j , V2, V3, K4), whose components are given by
the above equations.

Exercises
8. Express (Vi9 V2, K3, K4) in terms of (f/j, t/2> &3> ^4) m the special

caseC= 1/2.
9. Take C= 1/2. Calculate (Vl9 V2, V3, V4) for the following choices

of (Ul9U29U3,U4):
(a) ( 1 , 2 , - 3 ,5 ) ;
(ft) (2, 4, - 6 , 10);
(c) (X, 2X, —3X, 5X), where X is any number;
(d) (7 ,6 ,5 ,4) ;
(e ) ( l + 7,2 + 6,( -3) + 5,5 + 4);
(/) (a 4- 7Z>, 2 J + 6b, -3a + 52>, 5^ + 4Z>), where « and b are any

numbers.
10. Take C = 111. Let (Wx, W2, W3, W4) be the state vector at the time

t + 2/z. Give formulas expressing Wi,W2,W3, and W4 in terms of
£/!, £/2, U3, and t/4. If the largest of | Ux \, IU21, | £/31, and | £/41 is
M, what is the greatest possible value of | Wt |, and of | W21? Give an
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example of state vectors (Uu U2,U3, t/4) withM= 1, for which
your estimate of | W21 is attained.

11. Suppose C= 1/2 and

Ux = 1, U2 = 2, U3 = 4X2 -1 ,1 /4 = 8^3 - 4X.

Calculate the state vector (Vi,V2,V3, K4) and the vector

(Vx - \Ul9 V2 - \U2, V3 - \U3, F4 - \U4).

For which values of X is this last vector the zero vector?
12. If we divided the rod into ten segments of equal length, what would

be the dimensionality of the space of the state vectors?
(0) What is the stationary state for the boundary conditions u(t,0)

= 0, u(t,10) = 100, for t > 0? Note that we are now taking L = 10.
(b) Give the equations describing the transition of the state vector

at any time to the state vector h minutes later. How are these
equations simplified if C= 1/2?

Vector algebra

We can understand the meaning of our equations better if we intro-
duce some elementary vector algebra. It will often be convenient for us to
use single letters, such as U, as names for vectors. It will help us remember
things more easily if we use the symbols

UX,U2,U3 and£/4

to stand for the corresponding components of the vector U. In the same way,
the vector V is the vector with the components

In two dimensions we can add vectors by their components (fig. 8.3):

(2, -3 ) + (5,1) = (2 + 5, (-3) + 1) = (7, -2 ) .

Fig. 8.3

(0,0)

(7,-2)

(2,-3)

(5,1)
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This suggests that we define the addition of four-dimensional vectors by the
formula

U + V = (C/1+ VUU2+V2,U3+V39U4+V4).
Thus

( l , 2 , - 3 , 5 ) + (7,6,5,4) = ( , , , ).

Fill in the missing numbers.
We also notice that in two dimensions we can multiply a vector by a

number by components (fig. 8.4):

3(1,2) = (3 X I , 3 X 2 ) = (3,6)

Fig. 8.4

(3,6)

(1,2)

This suggests that we define multiplication of the four-dimensional vector U
by the number s by the equation

Thus
2 ( l , 2 , - 3 , 5 ) = ( , , , ).

Fill in the missing numbers. We can think of 2U as a vector in the same
direction as U but twice as long.

The geometric language helps us to interpret the algebraic relations between
quadruples of numbers. Our geometric intuition from two and three dimensions
suggests what ought to be true in spaces of higher dimension.

Exercises
13. Compute the following vectors:

(a) (8,8,2,9) + (2,-1,0,1).
(b) (7,6,5,4) + (2,-1,0,1).
(c) (1,2,-3,5) + (9,5,5,5).
(</) (7,6,5,4) + (1,2,-3,5).
(e) 4(2,4,-6,10).
(f) 8(1,2,-3,5).
&) (1,2,-3,5) +(-l)(l ,2,-3,5).
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(h) 2(7,6,5,4).
(/) 2(8,8,2,9).
(/) (2,4,-6,10) + (14,12,10,8).
(k) C(U2,U1 + U3,U2 + U4,U3) + (1 - 2C)(UUU2,U3,U4).
(/) 1(1,0,0,0) + 2(0,1,0,0) + (-3)(0,0,l,0) + 5(0,0,0,1).

14. Solve these equations for the unknown vector U:
(a) (1,2,-3,5) + U = (l,2,-3,5).
(b) (1,2,-3,5) + U = (0,0,0,0).
(c) (U2,Ui + U3,U2 + UA,U3) = XU, given that Ut = 1. What are the

possible values of X?
Ul + U* U2 + U4 U3\
~ )

where V = (Vl9 V2, V3, V4) is any given vector.

Linear transformations
According to exercise 8, when C = 1/2 the state vector V at the time

t + h is obtained from the state vector U at the time t by transforming U as
described by the equations

V3=

It is convenient to use a single letter, such as T9 to stand for such a transfor-
mation.

If the transformation T is defined by the above equations, then we can
write

v = ru
to show that V is the result of performing the transformation T on the vector
U. For example,

7(1,2,-3,5) = (1,-1,7/2,-3/2)

(See exercise 9(a)). You could express your answer to exercise 9(d) in the
form

7(7,6,5,4) = ( , , , ).

Fill in the blanks.
The transformation Tis a special kind of transformation. You have

obtained examples of its special properties in exercise 9:
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r[AO,2,-3,5)]=Xr(lA-3,5),
r [ ( l ,2,-3,5) + (7,6,5,4)] = 7(1,2,-3,5) + r(7,6,5,4).

More generally, if X and Y are any four-dimensional vectors and X is any num-
ber then

r(xx) = xrx, (8.2)
and

T(X + Y) = TX + TY. (8.3)

As an illustration, we shall go through the proof of (8.2). If X = (Xi, X2i

X3, X4), then what does XX mean? Of course we have

Fill in the missing values here and in the following text and exercises. T(XX)
is the result of performing the transformation T on the vector XX. The
equations defining T tell us how to obtain each component of TV from the
components of U. For example, the first component of 7TJ is one half of the
second component of U. If U = XX, then U2 = ( ), and therefore the first
component of T(XX) is (1/2) ( ). Proceeding in this way, we see that

In the same way, we can write down the formula for

rx = ( ,\(x\ + x3), , )
and then multiply the result by X. We then must compare JT(XX) with X7"X
and see whether they are the same. Write the formula for

xrx = ( , |(x1 + x3), , ).

Now compare each component of this vector with the corresponding com-
ponent of T(XX). Are they equal?

If a transformation T satisfies conditions (8.2) and (8.3), then we call T a
linear transformation. We have thus seen that, for C= 1/2, the transformation
of the state at time t into the state at time t + h is a linear transformation.

Exercises
15. Prove that T satisfies condition (8.3).
16. Consider the transformation .4 of two-dimensional vectors defined*

by the equations

V=i4U, where
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(a) Calculate AM for the following vectors U:

(b) Prove that A is a linear transformation.
(c) Find a vector U such that AU = (0,1).

(d) Solve the above equations for U in terms of V:

Ut=( ) F t + ( )V2,

U2 = ( ) K t + ( )K2.
Do these equations define a linear transformation of V into U?

17. Let 5 be the transformation of two-dimensional vectors defined by
the equations

(a) Compute the vectors

5(1,0), 5(1,1), 5(1, i).

(ft) Let 4 be the transformation of exercise 16. Compute 4 [5(1,0)]
and 5 [4(1,0)]. For example, A [5(1,0)] is the result of applying
A to the vector 5(1,0) which you have just computed.

(c) If you apply successively the transformations A and 5 to a vector,
does the order of these transformations make any difference?

{d) Find general formulas for A (5U) and 5(4U), where U = (Ut,U2)
is any two-dimensional vector. Call the results CTJ andDU
respectively. Are C and D linear transformations? Prove your
answer.

(e) Find general formulas for the components of EU, where E is
defined by the equation

Is E a linear transformation? Prove your answer.
18. Define the transformation / by the equation /U = U. / is called the

identity transformation. Prove that / is a linear transformation.
19. Define the transformation / by the equation

JV = 3U.

Prove tha t / is a linear transformation. If A is the transformation of
exercise 16, find general formulas for the vectors A (JV) and/(4U).
What do you notice?
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Algebra of linear transformations
We can operate on linear transformations in various ways to obtain

new linear transformations. By using these operations we can create an
algebra of linear transformations.

For example, if A and B are linear transformations, then the sum A+ B
of these transformations is defined by the equation

In exercise 17(c) you found the equations describing (A + Byu for the particu-
lar transformations^ and B which you studied in exercises 16 and 17. You
also proved that A + B is a linear transformation in this special case. It is
easy to prove, in general, that if A and B are linear transformations of four-
dimensional vectors into four-dimensional vectors then so is A + B.

We can also multiply linear transformations. The product AB of the trans-
formations A and B taken in that order is defined by the equation

(AB)U=A(BU).

In other words, AB is the transformation which consists of first performing B
and then applying ̂ 4 to the result. In exercise 17 you found that AB is not
always the same as BA. Multiplication of linear transformations does not, in
general, have the commutative property.

We can also multiply a linear transformation by a number:

For example, 3A means the transformation which consists of first performing
A and then multiplying the resulting vector by 3.

In creating our algebra of linear transformations, we often have to discuss
equality relations between transformations. If A and B are linear transforma-
tions of four-dimensional vectors into four-dimensional vectors, we say that

A=B
if

AU = BU

for every four-dimensional vector U. Thus one transformation is equal to
another if they have the same effect on every vector. It is natural to define
powers of linear transformations like this:

A2 =AA,A3 =AA2,A4 =AA3, etc.
If T is the transformation of the state vector at the time t into the state

vector at the time t + h when C = 1/2 (see exercise 8) then we can describe
the process of heat conduction by the equation

(8-4)
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where U(t) and V(t + h) are the state vectors at the times t and t + h
respectively:

\Kt) = [ tf(U), U(t92),
and

The vector U(0) is the initial state vector.
Compare equation (8.4) with the equation describing a geometric pro-

gression:

xt + I = tXt*

In a geometric progression, each number is obtained from the previous one
by multiplying by a constant number r, the common ratio. In our heat con-
duction problem, each vector is obtained from the previous one by applying
a constant linear transformation.

We can apply equation (8.4) to calculate the states at the times 0, h, 2h,
3 * , . . . :

U(A) = 711(0),

U(2fc) = TU(h)9

U(3A) = 7V(2h), etc.

From the expression of \J(2h) in terms of UQi) and the expression of U(/z)
in terms of U(0), we obtain an expression of U(2A) in terms of U(0):

u(2*) = r[ru(o)] =r2u(o).
In other words, U(2/z) is obtained by applying the transformation T to the
initial state U(0), and then applying T again to the result. In the same way,
we obtain

U(3A) = T( ) = ?

(fill in the missing value), and

U(4/i) = r?U(0), etc.,

What are the missing exponents?
We see that if we wish to know how the state of the rod behaves as time

goes on, we must study the behavior of high powers of the transformation T.

Exercises
In exercises 20-24 below we shall be dealing with linear trans-

formations of two-dimensional vectors into two-dimensional vectors
defined by the following equations:
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A(Ui,U2)
ss(Ul + Ui,U1-Ut),

B(UUU2) = (U2,-U1),

20. Fill in the blanks to obtain true statements:

(b)(AB)(l,0)=A[B(l,0)]=A( , ) = ( , ).
(c)(5Z))(l,O)=5p(l,O)]=5( , ) = ( , ).
(d)(B + A)(l,0) = ( , ).
(e) [D(AB)\ (1,0) =D[(AB)(l,0)]=D( , ) = ( , ).
(f) [(DA)B]( 1,0) = (DA) [5(1,0)] = (DA)( , ) = ( , ).
(g)A\l,0) = ( , ) .

(0

(k)A3(UuU2) = ( , ).
(0 BS(UUU2) = ( , ).
(m)D\UuU2) = ( , ) .

21. Solve the following equations for the unknown vector V:

(b)AU*+ F =

(d) AV + (-1)V = (0,0), where U = (UUU2)
(e) [E(A + B)] (1,0) = (EA) (1,0) + V
(f) [(AB)D] (1,0) = AV
(g) [(A + B)E] (0,1) = (AE) (0,1) + BV.

22. In each of the following find a linear transformation X such that the
equation is true. You may express your answer either in the form

where Vx and V2 are expressions in terms of Ux and U2 such as
+ 3 U2, or in a form such as

or X = some other algebraic combination of the transformations^,
B, D, E, and / (see exercise 18).
(a) A(BD) = XD.

(c) (A
(d)E(A+B)=EA+X.
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(e) (A+B)E =
(f)3(A+B) = 3A+X.
(g) (3 + 4)A=3A+X.
(h)A+X = A.
(0 A + (

(k)XA=I.
(0 DX = I.
(m)(A+B)2=A2+AB+X + B2.

23. In each of the following, find numbers x andj> such that the equation
is true:

(a) A2+xA+yI=0L
(b)B2+xB+yI=0I.
(c) D2+xD+yI=0I.
i

24. In each of the following, find a number x and a non-zero vector U
such that the equation is true:

(a) AU=xU.
(b)BU = xU.
(c)DV=xV.
(d)EU = xU.

Example: If AU =x\J and U = (UUU2) then

(Ux + U2, Ux - U2)=x(Ul9 U2) = (xUuxU2)9

or

Ul + U2=xUuU1-U2=xU2.

By the first equation

and by the second

Ux-{x- \)U^x{x- l)Ul9

or

(x2 -2)Ut =0.

Therefore either Ux = 0 orx2 - 2 = 0.
If Ux = 0, then U2 = (x - l)Ul = 0, so that U is the zero vector.

Therefore we find that

x = ( ) o r x = ( ).

FU1 in the blanks. If x = y/2, then
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We can choose for U\ any non-zero number, for instance Ux = 1, and
compute U2 from this equation. We could give as answers either

x= V2andU = (l , yji- l )orx = ( )andU = ( l , ).

25. Prove that if T is the transformation on p. 243 (C = 1/2) then the
transformation on p. 238 describing the transition of the state
vector at the time t to the state at the time t + h> for general C, is
simply 2CT+(1-2C) / .

26. Give formulas for T2U, T3U, and T4U, where U = (Ul9 U2, U3i J74),
an arbitrary four-dimensional vector.

27. Find numbers x, y, z, and t such that

T4 +xT3 + yT2+zT + tI=OL

28. Find a number x and a non-zero vector U such that

ru=xu,
How many numbers x are there for which this equation has a non-
trivial (i.e., a non-zero) solution for U?

Inverses
As you may see from exercise 22, the algebra of linear transformations

is very much like the ordinary algebra of numbers. We only have to be careful
of two things:

(a) AB is not, in general, the same as BA;
(b) there are transformations, such as D above, which have no inverse with

respect to multiplication.

Since we have to be careful about the order in multiplication, some formulas
are a bit more complicated than in ordinary algebra; for example, we have

(A+B)2 =(A+B)(A +B) = (A + B)A + (A + B)B

= A2+BA+AB + B2.

Only when AB = BA can we simplify this further:

(A +B)2 =A2 +AB +AB + B2 = A2 + 2AB + B2.

The identity transformation / plays the role of the number 1. The trans-
formations of the form cl, where c is a number, correspond to ordinary
numbers. In particular, the transformation 07, which transforms all vectors
into the zero vector, plays the role of the number 0. Where there is no chance
for confusion, we shall often use the symbol '0' to stand for this transformation.
Usually you will be able to tell from the context whether we are referring to
the number zero or the transformation 07.
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As you saw in exercise 22(/), the inverse of a linear transformation A with
respect to addition is (—1)̂ 4, which we may call -A. Subtraction of linear
transformations consists of solving such equations as

A+X = B

for the unknown transformations X. The solution is

X = B~A=B + (-l)A.

We usually denote the inverse of a linear transformation A with respect to
multiplication by *A~l\ For example, you found that if A is the transformation
in exercises 20-24, then^T1 is the transformation defined by

A-\UUU2) = [(Ux + U2)/29 (Ut - U2)/2]

(see exercise 22(e)-(J). Curiously enough, in exercises 20-24 A ~* turns out to
be equal to \A).

It makes no difference whether we define A~l by the equation AX = / or
the equation YA =/ . For example, supposed"1 is defined by the first
equation. Then we have

AA'X=I.

Suppose that Y is a solution of the second equation:

YA=I.

Multiply both sides of this equation, on the right, by A ~*:

(YA)A'l=IA~1.

Now we use the ( ) property of multiplication (which property?) and the
fact that / is the identity with respect to multiplication of linear transfor-
mations:

Y(AA-1)=A~1.

As the factor AA ~* is equal to ( ) we conclude that

r=Yi=A-x.
So if the first equation has a solution X, which we call A - 1 , then the

only possible solution of the second equation is Y = A ~x. It is a little more
difficult to prove that if the first equation has a solution then so does the
second. We shall not discuss this point here.

A linear transformation which has an inverse with respect to multipli-
cation is called non-singular. If A is non-singular then we can divide by A,
but we must be careful about the order. Thus the solution of the equation

AX = B
is
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(check it), but the solution of the equation

YA=B
is

r=( ).
Fill in the missing value.

In our heat conduction problem, we apply the transformation T to the state
vector at the time t to predict the state h minutes in the future. We can apply
the transformation T'1 to find the state h minutes in ihepast.

Exercises
29. Fill in the blanks in the following proof that if A and B are any

linear transformations of two-dimensional vectors into two-dimensional
vectors then

A+B=B + A.

Proof: let U be any two-dimensional vector. Then, by the definition
of A + i?, we have

and

As by the commutative property of addition of vectors

C4U)+( ) = (BU)+( ),

therefore

04+ )U = ( £ + )U

for every two-dimensional vector U. This is, by definition of the
equality of transformations, what we mean by

30. Write out proofs of the theorems that if A, B, and C are any linear
transformations of two-dimensional vectors into two-dimensional
vectors then

(b)(AB)C =

31. Which of the transformations B9 C, D and E in exercises 20-24 have
inverses with respect to multiplication? If the inverse exists, give
equations describing what it does to any two-dimensional vector U.
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32. Suppose that the transformation H is defined by the equation

H(UUU2) = (aUx + 2U2, 3Ut + dU2).

where a and d are numbers. Prove that H is linear, and that H is non-
singular ifadiz6. If ad^ 6, find a formula fox H~\UUU2).

33. What is the condition on the numbers a, b, c and d that the transfor-
mation K defined by

have an inverse with respect to multiplication? If the inverse exists,

find a formula for

K-\UUU2).

34. For which values of the number C is the transformation

2 C T + ( 1 - 2 O / ,

of four-dimensional vectors into four-dimensional vectors, non-singu-
lar? When it is non-singular, find a formula for

[2CT+ (1 - 2C)I] - 1 (Ut,U29U3,U4).

35. Prove that if A is a non-singular transformation of two-dimensional
vectors into two-dimensional vectors, and if AH = (0,0) then U =
(0,0).

Base vectors
As you may have noticed already, it is not easy, in general, to give a

simple formula for the nth power of a given linear transformation. It turns
out that the problem is simpler if we use the proper coordinate system to
describe the vectors and the transformations.

Let us recall briefly the geometric meaning of a coordinate system in the
plane. When we wish to label each point or vector by an ordered pair of real
numbers, we take any pair of perpendicular lines, and then label each point
by its directed distances from these lines (fig. 8.5). We can think of the

Fig. 8.5
n t(4,3)

(0,0)
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resolution of a vector into components as the process of choosing base
vectors (1,0) and (0,1), one base vector in the direction of each coordinate
axis, and then expressing any other vector, say (4,3), as the sum of vectors in
the direction of the base vectors (fig. 8.6):

(4,3) = 4(1,0)+ 3(0,1)..

y k

A

(0,1)

(0,0)

Fig. 8.6

S

(1,0)

4 (1 ,0)

(4

S

,3)

%
*

3 (0, 1)

X

The coordinate system is only a tool for the description of geometric
relations. The relations between geometric figures, such as congruence or
similarity, are independent of the coordinate system. Indeed we may regard
geometry as the study of the properties of geometric figures which are left
unchanged, or invariant, by changes of the coordinate system.

For example, in the situation shown in figs. 8.5 and 8.6 we might choose
two other vectors, say (1,-1) and (—1,2), as base vectors for our coordinate
system. We would then describe any other vector, such as (4,3), as a sum of
vectors in the directions of these base vectors. In fig. 8.7 we have let £(1,—1),
where the Greek letter £ stands for an unknown number, denote the compo-
nent of (4,3) in the direction of the base vector (1,-1). Similarly, we have
indicated the component in the direction of the base vector (—1,2) by T?(— 1,2).
Make a careful geometric construction on graph paper and estimate (or
measure) the values of £ and 17.

We can also find i- and 77 algebraically. We want % and 17 to satisfy

(4,3) = 1(1,-1)+ 7j(-l,2)

We thus obtain the simultaneous equations



8.1 Heat conduction II

Fig. 8.7

255

(-1,2)

-£ + 2x7 = 3,

by equating corresponding components in the base vectors (1,0) and (0,1). On
solving these we find that

? = ( )andr? = ( ).

Fill in the missing values here and subsequently.
More generally, we can pass from our old coordinate system to the new

one by solving the equations

(xfy) = | (1,-1) + r?(-l,2)

for £ and r? in terms of* andjy:

! = ( ) * + ( )y,

By means of these equations and the corresponding ones for* andj> in terms
of | andr?,

we can easily pass back and forth from one coordinate system to the other.
To illustrate how a certain coordinate system may be especially useful in

studying a linear transformation, let us look at the transformation E of
exercises 20-24 which is defined by the equation
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How is this transformation described in our new coordinate system? We can
apply the linearity of E:

by property (8.3). Therefore

by property (8.2). Now we only need to compute

£(1,-1) = ( , )and£(- l ,2) = ( , )

and then express these vectors in our new coordinate system:

£(1,-1) = ( ) ( l , - l ) + ( ) ( - l ,2) ,

£(-1,2) = ( ) ( l , - l ) + ( K-1,2).

We substitute these expressions for £( 1,-1) and £(—1,2) in the above
equation and obtain

We see that in the new coordinate system, E operates on a vector by
multiplying the coefficient of the base vector (1,-1) by ( ) and the
coefficient of the base vector (—1,2) by 3.

Suppose, for the moment, we use the symbol <£,1?> to denote the vector
£(1,-1)+ ^(-1,2), so that

and

would be another way of describing the relationship between the two
coordinate systems. Then in the new coordinate system, we can describe E
by the equation

In which coordinate system is the description of £ simpler?
It is now easy to compute

and in general

£"«,!?> = <( ),( )>.

By using the equations for going from one coordinate system to the other,
we can now obtain a formula for En in the original coordinate system:
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The description in the new coordinate system is still much easier to work with.

Eigenvectors
The explanation of our success in studying E by using the new

coordinate system lies in exercise 24. We used as base vectors in our coordinate
system those vectors U whose direction is not changed by the transformation
E. These vectors are the eigenvectors ofE.

A non-zero vector U is called an eigenvector of the transformation E if ZsU
is a numerical multiple of U. The multiplier is called the eigenvalue which
corresponds to that eigenvector. We also say that U is an eigenvector belonging
to that eigenvalue. For example, (1,-1) is an eigenvector of E belonging to the
eigenvalue 2, since E (1,-1) = 2(1,-1). Similarly, (-1,2) is an eigenvector of
E belonging to the eigenvalue ( ).

One of the most important mathematical tools in modern physics is the
study of linear transformations, their eigenvectors, and their eigenvalues.
Indeed in modern atomic physics we think of the state of a physical system
as represented by a vector, usually in an infinite-dimensional space. Suppose
we want to measure an observable, such as the x-coordinate of the position of
an electron. In order to make a measurement of the observable when the
system is in a given state, we must interact with the system, say by bouncing
a light ray off the system and picking up the reflected ray. This interaction
transforms the state of the system into a new state. Therefore we think of an
observable as represented by a linear transformation acting on the state vector
of the system.

In general, when we measure an observable we may obtain any one of a
certain set of numbers. When the system is in a given state, there is a certain
probability distribution of the possible values of the observable. Only when
the state vector is an eigenvector of the transformation corresponding to the
observable is the result of the measurement a single definite number. In that
case the eigenvalue is the only possible value of the observable. A state whose
state vector is an eigenvector of the observable is often called a pure state.

Exercises
36. (a) Ifn is large, which is larger, 2n or 3"? What happens to their

ratio 2W/3W as n increases?
(b) Give an approximate formula for 3~nEn(x,y) for large n. See

exercises 20-24.
37. (a) Find the eigenvalues of the transformation^ (see exercises 20-24),

and find corresponding eigenvectors.
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(b) Give a formula expressing the vector (x,y) in a coordinate system
whose base vectors are eigenvectors of A.

(c) Give a formula for A(x,y) in terms of this new coordinate system.
38. (a) Calculate B{\,0) and5(3,4), where B is defined as for exercises

20-24, and draw these vectors and the original vectors (1,0) and
(3,4) on graph paper. How does the length of each vector com-
pare with the length of its transform by Bl What is the angle
between any vector and its transform by Bl Describe geometrically
what B does to any vector.

(b) What are the eigenvalues and eigenvectors of Bl (See exercises
20-24.) Represent the eigenvalues of B in the complex plane.
Can you draw the eigenvectors of Bl

(c) Discuss the questions of parts (a) and (b) of this exercise for the
transformation R defined by

R(UUU2)= 0 Ut + |l7a,-|«71 +^

Conjecture a general principle concerning the eigenvalues of this
type of transformation.

39. Find the eigenvalues and corresponding eigenvectors of the transfor-
mation S of three-dimensional vectors defined by

S(UUU29U3) = (2UX -U3,U2,U3).

How many eigenvalues does S have? Describe geometrically the set
of eigenvectors belonging to each eigenvalue.

40. Find the eigenvalues and eigenvectors of the transformation Q defined
by

How many eigenvalues does Q have? Describe geometrically the set
of its eigenvectors. Is there a coordinate system in the plane whose
base vectors are eigenvectors of Ql Give reasons for your answer.

41. Can the vectors (1,0) and (2,0) be the base vectors for a coordinate
system in the plane? Can the vector (0,1) be expressed as a sum of
multiples of these two vectors,

(0,1) = |(l ,0) + T?(2,0)?

When can a pair of vectors be used as base vectors for a coordinate
system in the plane?

8.2 Cryptography II: a class project
As we have seen, the methods used in the previous discussion of

cryptography (section 4.3) are easy to break if one has a large enough sample
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to analyze statistically. This leads to the search for methods which are harder
to break. We still want methods which do not require too much memorizing,
or records, or special equipment like coding and decoding machines which
might be stolen. It is also desirable to use a method which makes it easy to
code or decode with a computer.

Most methods of this sort start by representing the letters of the alphabet
by numbers, for example:

A B C D E F G H I J K L M N O P Q R S T U V W X Y Z
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25

(8.5)
Next we code pairs of letters instead of single letters. If the message has an
odd number of letters, begin by adding any letter, say X, at the end. We may
write the second half of the message in reverse under the first half to obtain
an arrangement of the numbers in pairs.

Thus if the message is

CONVOY LEAVES TUESDAY

We add X since there is an odd number of letters and write

C O N V O Y L E A V
X Y A D S E U T S E

and translate into numbers:

/ 2 , 14,13,21,14,24,11, 4, 0 ,21\
V23,24, 0, 3,18, 4,20,19,18, 4j l ' }

This gives us a sequence of columns (2, 23), (14, 24), (13,0), etc.
We now use the array of numbers

(8.7)

into a new pair according to the following pat

/3 4\/2\ /3
\2 3/V23/ \2

to transform each column into a new pair according to the following pattern:

(3 X 2 + 4 X 23\
\2 X 2 + 3 X 23/

4 + 69
(8.8)

We then divide the resulting numbers by 26, and record the remainders:

V73/ \2lJ-
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The rule in (8.8) is multiply rows by columns. Note that the numbers in
the first row are multiplied by the numbers in the single column, the products
are added, and the sum is in the first row of the result. In the same way, the
result of multiplying the second row by the column goes in the second row
of the transformed column. We give here the transformation of the second
column:

/3 4\/14Wl3«W8\
V2 3j\24j VlOO; \22j-

Exercises

42. (a) Transform the rest of the array in (8.6).

(b) Translate back into letters, and rearrange as before. This is the

coded message.

43. Which letters are repeated in the plain text? Are they repeated in the

coded text? Which letters are repeated in the coded text? What are

the corresponding plain-text letters? Compare the two codings of the

repeated digraph ES.

44. Make up a short message of your own. Encode it by the above

method. Exchange coded messages with a classmate. Can you figure

out how to decode your friend's message?

45. Use the array

to encode the above message or any other message by the above
method.

An array of numbers arranged in a rectangle is called a matrix. The array
(8.6) is called a 2 X 10 matrix, since it has 2 rows and 10 columns. We used
the 2 X 2 matrix in (8.7) to transform (8.6) into the new 2 X 1 0 matrix you
obtained in exercise 42. We can express this relation as follows:

3 4 \ / 2 14 13 21 14 24 11 4 0 2 l \

23 24 0 3 18 4 20 19 18 4 /

138 39 75 114
.73 100 26 51 82

\2 3j\2

: : • ) •

Write in the missing numbers. In the same way, we can write the transfor-
mation of the individual columns, for example, (8.8) above or

G » © •
A column of two numbers may be thought of as a 1 X 2 matrix.
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We see that in order to carry out the multiplication, the first matrix must
have as many columns as the second matrix has rows. Thus we can multiply
a 3 X 2 matrix by a 2 X 4 matrix and obtain a 3 X 4 matrix:

'1 2 \ / l 2 3 4 \ / l l 14 17 20N
3 4 \5 6 7 8/ 23 30 37 44

6/ \35 46 57 68y

We shall work here mostly with multiplying by 2 X 2 matrices.

Exercises
46. Multiply out the following matrices:

(3 4 \
,5 6)<-> G X

< X
< !)(!
«C X !)
«G ?)C 0
(0

« G ?)G a)
«G X ?)

47. Can you generalize the pattern in exercise 46(a) and (b)l Guess the
general law and test your guess.

48. Compare exercise 46(c) and (d). Does the order of factors make a
difference in matrix multiplication? Does the commutative law
AB=BA
hold for matrix multiplication?

49. In the product of the three factors

G X DG ?)
does it make any difference how the factors are grouped? Test the
associative law
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for other choices o f the matrices A , B , and C. Use 2 X 2 matrices.
50 . What is the relation o f the pair o f matrices

a o-c
to the matrix

What is the relation between the answers in exercise 46(rf), (e), and
(g)? Guess at the general law and test your guess with other choices
of three matrices. Compare with the distributive law

for multiplication and addition of numbers.
51. Compare your results in exercise 46(c), ( /) , and (h). Guess at the

general law and test your guess. Compare with the distributive law

(B + C)A=BA + CA.

52. If

(3

K2

and
- G

find a matrix C such that

z = cx.
Try any 2 X 1 matrix and any 2 X 2 matrix for X.

53. Try exercise 44 again using exercise 52.
54. How can you decode messages which were encoded with the matrix

of exercise 45?
55. How can you decode messages which are encoded with the matrix

As you see, the secret of decoding the code discussed in the text is to find
a matrix B such that

131\ 4 \ / I 0 \
3M0 lj-
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KB is the unknown matrix

B-(X y)

then you obtain the equations

3x +
2x +

You can solve

3x-

9x-

This explains

Au

3u

= l,3y + 4v = 0,

= 0,2y + 3v = 1.

these equations like

«

I
X

u

the

2x

= i, :

= 3, :

= 3,

= —2

result of exercise

this:

2y- j

%y-9y

y

V

52.

4

= 1,

= 4,

= -4,

= 3.

Exercises
56. Try exercises 54 and 55 again.
57. How can you decode messages which were encoded with the matrix

G
58. Try decoding the message of the text using the matrix

(3 22\
\24 3)

Does it work? If so, can you explain why?

In the above calculations we discarded multiples of 26, so that we had

/138\ = / 8\
Viooy \22j

because
138 = 8 + (5 X 26),
100 = 22 4- (3 X 26).

This is called calculating modulo 26.
Let us explain calculating modulo 3. We can arrange the whole numbers

in the following way:
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0
3
6
9

12

1
4
7

10
13

2
5
8

11
14

264

etc.

The name of any column is the number at the top.
Add any number in the 1-column to any number in the 2-column. What is

the column of the sum? Does it make any difference which numbers you
choose in those columns? Try the same experiment with any pair of columns.
Does something similar happen? Is

(1 + multiple of 3) + (2 + multiple of 3)

always equal to

(0 +multiple of 3)?

Explain the results of your other experiments in the same way.
Try the same experiments with multiplication instead of addition. For

example, what are the columns of the products

4 X 8 , 7 X 5 , 13X2, 10 X 14?

Incidentally, what is a fast way of finding the column of a number like 140?

Exercises
59. Make tables for addition and multiplication modulo 3:

+
0
1
2

0 1 2

0

X
0
1
2

0 1 2

2

We have recorded

1 + 2 = 0, 1 X 2 = 2 modulo 3,

which expresses the results of the above experiments.
60. How can you use the above addition table to subtract modulo 3? For

example,

1 - 2 = ?modulo3.

61. Make tables for addition and multiplication modulo 26.
62. Why is dividing by 3 modulo 26 the same as multiplying by 9

modulo 26? Can you divide by 2 modulo 26? What about 5? Make
a list of the numbers you can divide by, modulo 26.

63. Make a list of the numbers you can divide by, modulo 3.
64. If you used the matrix
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3 4\

A 6J
to encode messages, could they be decoded? Try the message

CONVOY DEPARTS FRIDAY.

What happens when you transform the columns

corresponding to the pairs of letters 01 and OY? Encode the message

CONVOY DEPARGF SEYQNI

and compare the results.
65. Can you decode messages encoded with the matrix

(3 4 \
\6 V

8.3 Linear algebra in calculus

Differentiation, integration, multiplication
In recent years, authoritative groups such as the Committee on the

Undergraduate Curriculum in Mathematics of the Mathematical Association
of America have recommended that the first two years of the college program
should include a substantial amount of linear algebra. This can be done most
efficiently by connecting it with calculus. We give here some illustrations of
how this can be done.

The set ^ o f polynomials in x (with real coefficients) is a vector space over
the field R of real numbers. It has the following properties:

The operation D of differentiating with respect to x is a linear operator on

iXcP) = cbP.

The operation J defined by
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is also a linear operator on^ . It is a right inverse off):

(8.11)

This equation can be expressed as a relation between linear operators:

DJ = 1, (8.11a)

where 1 stands for the operation of multiplying by 1, and is the identity
operator. In the following text we will not distinguish between 1 and 1, as it
will be clear from the context which is intended. Is J a left inverse off), that
is, does

J D = 1
or

Is this last statement true if P(x) = x 4- 5?

Exercises
66. (a) Does D have any other right inverses? Find a right inverse Ji of

D such that

(b) If A is a right inverse of D, what can Ax be?
67. Can D have any left inverse? If L were a left inverse, and A any right

inverse, calculate

LDA = (LD)A = L(DA)

in two ways.

There is a natural algebra of linear operators. The basic operations on
linear operators L and M are defined by the following equations, where P is
any element of 0* and c is in R:

(L+M)P=(LP) + (M/>), ^

(LM)i>=L(MP), M8.12)

We have already used the product of linear operators in discussing DJ:

IfP(x) = 3thenJDP=0,

but if P(x) = x then JDP = P.

More generally, for any P in ^ , we have

= (JP;) (x) = J P'(t)dt =P(x)-P(0).



8.3 Linear algebra in calculus 267

so that
J D = 1 - 5 O , (8.13)

where 50 is the operator of evaluating at zero,

Equations (8.1 la) and (8.13) show that J and D do not commute. This
multiplication of linear operators is not commutative in general. We can
describe the non-commutativity of J and D more precisely by the equation

D J - J D = 50. (8.14)

The combination

[L,M] =LM-ML (8.15)

of two linear operators L and M is called their commutator; it measures the
extent to which they do not commute. They commute if and only if their
commutator is zero. The operator X of multiplying by x is defined by

(XP)(x)=xP(x). (8.16)

The equation

[D,X] = 1 (8.17)

follows from the rule for differentiating a product.
Equation (8.17) is the mathematical formulation of the Heisenberg

uncertainty relation, which is fundamental in modern physics. Its physical
interpretation is that the position and momentum of an electron cannot be
measured precisely and simultaneously.

Exercises
68. Verify equation (8.17).
69. Do X2 (M2 means MM) and X commute? What is

[D,X2] ?

70. What is 5?,? What is 50X?
71. Compute D(XJ - JX) and DJ2. What is the relation between [X, J]

and!2?
72. Use the idea of exercise 71 to find a simple formula for

X 2 J-2XJX+JX 2 .

Because multiplication of operators is not, in general, commutative, one
must be careful about the order of multiplication. For example, we have

( D - X)(D+ X)= D(D + X ) - X(D + X)

= D2 + DX - XD - X2

= D 2 + 1 - X 2 ,
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by (8.17). Contrast this with the identity

in ordinary algebra.
Everything we have done so far works equally well for the set C°°(IR) of

functions/on R to IR such that/^(x) (the «th derivative of/at x) exists
for all x G R and all«. This is also a vector space, and D, J, and X are also
linear operators on it. We could also work with the vector space C°°[0,l] of
all functions/on the interval [0,1] to R such that/"* (x) exists for all n and
all* in [0,1].

The space C*(R) of functions/on R to R, such that/'(x) exists and is
continuous for all x, is also a vector space over R. The operators J and X are
also linear on this space to itself. The linear operator D is a transformation
from C1 (R) to C(R), the space of continuous real-valued functions on R.

The kernel of D in C1 (R) is the set of/which are transformed into zero:

D/=0 .

We see that the kernel of D is the set of all constant functions. These may be
identified with R itself.

Given g in C(R), to find all/such that

bf=g, (8.18)

we note that if

then

Hence fx - f2 is in the kernel of D. If/0 is one solution of (8.18) then we can
obtain all solutions of (8.18) in the form

/ = / o + *,
where k is an arbitrary element of the kernel of D.

The finite difference operators are also interesting. The simplest one is A,
defined by

( A / ) ( x ) = / ( x + l ) - / ( * ) . (8.19)

For example,

Ax2 = (x + I)2 -x2 = 2x+ 1.

This is a linear operator on all the spaces mentioned above except C°°[0,l].
The function sin(27rx) is in the kernel of A in C(R). The algebra generated by
the operators X and D is a simple example of a non-commutative algebra
which can be treated at the high school level.
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Exercises
73. Compute (D + X)(D - X) and [D + X, D - X].
74. Compute [A,X] and [A,X2].
75. Compute [D2,X] and [A2,X].
76. What is the kernel of D2 in C*(R)?
77. Give at least two functions in the kernel of A.
78. What is the kernel of 50 in C(R)?
79. (a) What is the kernel of J in C(R)?

(b) Given g in C(R), how many solutions does the equation J /= g
have?

80. What is the kernel of X in C(R)? Does X have a right inverse in C(R)?
Does it have a left inverse? What about in 01

81. Let 0Q be the kernel of 60 in 0. Find an operator A, which trans-
forms 0O into 9, such that AX = 1 on 0.

82. Compute [D,X3 - 2X + 5]. If fe C(R), and F denotes the oper-
ation of multiplying by /(*) ,

(hHx)=f(x)g(x),
give a simple formula for [D,F].

Linear differential equations

The differential equation

d2y d>
^ 2 - 3 - + 2 , = * 2 + 6 (8.20)

can be written in the form

( D 2 - 3 D + 2)j;=;c2 + 6.

We can think of this as the problem of finding all functions in C2(R) which are
transformed by the linear operator D2 - 3D + 2 into the function*2 + 6. The
operator D2 — 3D 4- 2 is called a linear differential operator. It is said to be of
second order because it involves the second but no higher derivative.

As in the discussion of (8.18), we note that ify0 axi&y are solutions of
(8.20) then

so that^ - y0 is in the kernel of D2 — 3D + 2. This kernel is the set of
functions k which satisfies the equation

(D 2 -3D+2)A:=0 (8.21)

One way to solve (8.21) is to factorize the operator:
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D2 - 3D + 2 = (D - 2) (D - 1)

= ( D - l ) ( D - 2 ) .

Hence if
(D - l)k = 0 or (D - 2)k = 0

then k satisfies (8.21). The equation

we recognize as the equation for the exponential function. Its solutions are

k(x)=Aex,

where A is an arbitrary constant. Similarly the solutions of

are of the form

k(x) = Be7x,

where B is an arbitrary constant. Hence all functions of the form

k(x)=Aex +Be2x
iA E R,B E R, (8.22)

are in the kernel off)2 - 3D + 2. Are there any other functions in this kernel?
To answer this, let us solve (8.21) in another way. If we set (D — 2)k = u,

then the equation can be written in the form of the system

(D-2)fc = a, }

(6-0.. a } ( 8 - 2 3 )

The solutions of the second equation here are, of course

Hence our problem is reduced to that of solving the first order differential
equation

(D-2)A; = ,4e*. (8.24)

To solve this, we note that again it is sufficient to find one solution, so we
simply add an arbitrary function in the kernel of D — 2.

To find one solution, we note that

( D - 2 ) e * = D e * - 2 e * = - e x .

Since D — 2 is a linear operator, the function

k(x) = -Aex

is a solution of (8.24). Hence the general solution of (8.24) is

If A is also an arbitrary constant, this is the general solution of (8.21). (Note
that if A is an arbitrary constant then so is —A.)
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We can express our result (8.22) in another form. Let kt(x) = e*, k2(x)
= e2*. These are two elements in the kernel off)2 - 3D + 2. Every element
in this kernel is, by (8.22), a linear combination

of these two. If k = 0, then A = B = 0, which means that kx and k2 are
linearly independent. These facts can be summarized in the statement

The kernel of D2 — 3D 4- 2 is a two-dimensional subspace of
C1(R), and kx and k2 constitute a basis for this subspace.

To solve the equation

or

is somewhat more difficult because the factors of D2 + 1 — X2 do not com-
mute (exercise 70). We can still approach it by transforming it into a system
of two first order equations like (8.23). Again, the kernel of the operator is
two-dimensional, but one of the functions in the basis is not an elementary
function.

Exercises
83. If y is a polynomial of degree n9 is

(D2 - 3D + 2)y

a polynomial? If so, of what degree? Can you find a polynomial
solution of (8.20)? If so, of what degree? What is the general
solution of (8.20)?

84. (a) If m G R, compute (D2 - 3D + 2 ) e m \
(b) Find the general solution of

85. (a) If a, b, and m are in R, compute

(D2 - 3D 4- 2) (a cos(mx) + b sin(mx)).

(b) Find the general solution of

(D2 - 3D + 2)y = co<3x) + 5 sin(3x).

86. Find the general solution of

(D2 4- 9)y = 7e*

87. (a) Find the general solution of

( D 3 - 6 D 2 + 1 1 D - 6)^ = 0.
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(b) Find the general solution of

(D3-6D2+llD-6).);=15e*.

88. Suppose we are looking for the solution of (8.20) such thatXO) = 1>

{a) Show that tu — by is a constant. Which constant?
(b) Show that Pu - y is a first degree polynomial. Which poly-

nomial?
(c) Show that (8.20) with the above initial conditions is equivalent

to an integral equation:

where / i s a known function.

Remarks on teaching calculus
In this section we have not attempted to give any applications which

lead directly to the algebraic aspects of calculus. We suggest that it is most
natural to introduce algebraic concepts and terminology in the teaching of
calculus gradually and in connection with mathematical problems.

Thus after studying the concept of differentiation it is natural to discuss
the properties listed under (8.9) and (8.10) above. Even before the general
problem of integration is discussed, it is natural to look for the polynomial
solutions Q of the equation

DQ=P.

We can obtain the general solution from the solution of the special case where
P(x) = xn is a power of x. It is then natural to ask whether there is a linear
operator L on P such that Q = IP is a solution of this equation, that is,

We are thus led to the operator J, and its properties as embodied in (8.11),
(8.1 la), and (8.13).

After the algebra of linear operators is introduced as indicated in (8.12),
commutators of specific linear operators, and then the general concept as in
(8.15), arise naturally out of the algebra.

The algebra generated by the operators X and D is a simple natural example
of a non-commutative algebra. As we have indicated, the algebra generated by
A and X can be introduced at the high school level. In many mathematics
courses from the ninth grade upwards, there is given at the beginning a review
of the properties of the real number system. This is very boring for the students
who remember them from previous years, yet it must be included since there
are always students who forget them or never learned them. A more motivated
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way to accomplish this review is to begin with a new algebra, say complex
numbers, 2 X 2 matrices, or one of the algebras occurring in this section. Then
one can investigate which of the properties of the real number system hold
for the new algebra. As a by-product one obtains the desired review.

The next place where new algebraic ideas come up naturally is in the study
of linear differential equations.

In most of the applications discussed in previous sections, the passage from
the real world to the mathematical model is simple enough and intuitive
enough to be presented in a mathematics class. Quantum physics, however,
deals with phenomena that lead to a conception of the microscopic world
quite different from our experience with the macroscopic world. Since 1956,
it has become more and more customary to introduce these conceptions at
least by the second college year to science and engineering students, and
attempts are being made to present them even at the high school level. If
the students are learning or have learned some quantum physics, then one can
discuss simple cases of the mathematical models involved.

Suppose we consider a particle, say a photon, moving along a line repre-
sented by the x-axis. Then the state of the particle is represented in quantum
mechanics by a function \JJ(X). The values of i//(x) are, in general, complex
numbers. We do not imagine direct relation between the value of i// at a par-
ticular point, say \p(2), and anything observable. But we do associate certain
integrals with experimental results.

For example, imagine that we perform an experiment to find out whether
the particle, when it is in the state ^/, is in the interval (0,3). The probability
of finding a 'yes' answer is given by the integral

= J \\p(x)\26x.

This illustrates a typical difference between the quantum and the classical
points of view. In classical physics we would define the state of the particle
in terms of a pair of numbers (x,p), the position and momentum. We imagine
that these have definite values and can, in principle, be measured as accurately
as we please. In quantum mechanics, however, the state is represented by a
function \p. When we measure the position X for a particle in the state i//, we
do not, in general, obtain a single value. If we perform the experiment
repeatedly, we obtain values with a certain distribution. If the number of
observations is large then the relative frequency with which X occurs in the
interval (0,3) will be close to the above integral.

The expected value of X (see p. 129) is given by the integral
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= J x|i//(jc)|2dx (8.25)

If we repeatedly measure X when the particle is the state i//, the average of
the values of X will be close to this integral.

In general, an observable A is represented by a linear operator A which
transforms states into states. The expected value of A when the system is in
the state \p is given by the integral

- J
where i//(x) is the complex conjugate of i//(x). Thus the position-observable
X is represented by the operator X of multiplying by x, as in equation (8.16),
and its expectation is given by (8.25). In quantum mechanics we consider only
observables whose expectations are real numbers for all possible states. We
usually consider only states i// which are small when A: is large. The momentum
P is represented by the operator

P = - i D ,

so that its expectation is given by the integral

•J

Exercises
89. We assumed that the particle was moving on the line, so that it is

certain that its position will be between —°° and +°°. What is the
operator which corresponds to observing whether the position is in
this interval? What is the expectation of this observable? What
does this imply about the integral

J
for any state \pl

90. Take

i//(—2) = 0, i//(x) continuous for all x, where c is a real constant.
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Check that \p(x) = 0 for |*| > 1. Evaluate E(P). Is its value real?
91. Suppose that \j/ '(x) is continuous in 0 < x < 1, and that I//(JC) = 0

for* < 0 andx > 1. Prove the identities

4-

I

(b) If j dx = c, then c + c = 0.
o

(c) From 0 ) , show that E(P) is real.

If A is an observable, then when the particle is in state ty the standard
deviation o(A) is given by

The general form of the Heisenberg uncertainty principle is that if A, B, and
C are the operators corresponding to observables ̂ 4, B9 C such that

i[A,B] =C
then

E(Q < 2o(A)o(B).

Hence if E(C) is known and different from 0, the standard deviations cannot
both be arbitrarily small. If the observed values of A cluster very closely to its
expectation E(A), then the observed values of B will be scattered.

In particular, if A = P, B = X, we find that C = 1 and E(C) = 1 (see exercise
89). Then

o(P)o(X)>i
which is the usual form of the Heisenberg uncertainty principle. As an exercise,
you may try various state functions i//, and see if you can find a state such that
o(P)o(X) is less than 1/2.

In the standard calculus texts, one usually finds chapters on moments, work,
and pressure. The physical explanations are usually very cursory and give
little real understanding of these concepts. The 'applications' are to the
physics of 100 years ago, and may have little connection with the engineering
of today. The main purpose of such chapters is usually to clothe exercises
on definite integrals in the language of applications, with no effort made to
consider real applications.

If we want to give exercises on definite integrals using applied language,
we may just as well use the language of modern physics, and also exploit the
connections with algebra and probability.



SOLUTIONS TO SELECTED EXERCISES

Chapter
2
3

4

7
8

11
12
17
19

•7
2200 000

For n > 30, the numerator acts like zero;
for n > 300, the denominator acts like zero.
It seems that

lim xn -• 0.618 0.

Forx0= l,yo = 2izo
:=3,xri9yn mdzn ten

8 operations
2/2 operations
7 operations
1.167 3
2.015 3,-0.062 5,-1.984 06

Chapter 2
5
8
9

11
12
13
14

15(6)
19(6)

22
25
34
35
42

256 > 243
10"
6n

33.54>47

1.5 </ (3)< 1.6
2.66 < 7(7) < 2.84
n = 5
H=100
2 . 3 2 1 < J C < 2.322
7(1) = 0
b'
9/4 <y < 5/2
8/3<z<3
11/7<JC<8/5
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Chapter 3
2 1 061 520

7 |C(1,0.001)|2 = 7.398 C(2, 0.001) = 7.374
|C(0.5,0.001)|2 = 2.717 C(l, 0.001) = 2.72

8(d) « = 1012

13 c = 0.04
15 (a) xn = (0.95)w x0

19 xn=(l-khfx0

20 C=(l-kh)l/h

-/slog 2
log(l-^)

23 /i = 0.001, k = 0.069 31
28

29 The ratio is less than 0.99 after 35 years, but never less than 0.98.

41

37 1,3 . 1 , 2 . \ t3i 3t -t- 2r -1- 6t

(c) C(2h)>C(h)
43 (c) an > 0 for all«

46

47 JC(O =

50 There is no such point.
57 x(0) = O f o r O < 0 < l
58 (3.10a) again
60 The error is less than 0.05 for 0 < 0.27 and less than 0.005 for 0 < 0.095.

When using (3.28) the errors, for the same values of 0, are respectively
less than 0.013 and 0.000 48.

69 (a) x = -(t-iy1

Chapter 4
4 A lot of good it will do you.
7 The keyword is POLITICS.

On p. 106 in the text the keyword is CONVERSATION.
10 BOLIVAR
11 BALONEY

13 (a) The minimum occurs at x = 5.
15 (c) h = 5.2, k = 22.8

(d) The minimum of y is 22.8.
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17 (mean of B) = 30 + (mean of C)
18 (mean of B) = 10 • (mean of D)
20 m2 is smaller.
23 <h) = n2

26(6)

(c) <(/* - 02> is minimal for t = - — = 777^ YA(*) =

27(6) var(3/i) = 9var(/i)
(c) a(A + 5) = o(*)
29 The smallest value of var(/i) is 0, and of {h2) is 25.

33 (b) The minimum of <(/ - thf) is obtained for t = 7 ^ and is (Z2 > -

34(6) {fh)
(c) 2
(d) <H2)-<h)2

36 (e) P(X>3) = \
37 P(riseven) = 3
40 P(<4'and J?) =P(B) -P(A andB)
41 Yes.
43 P(Yi + Y2=l)= 10/36
45 fc 0 1 2 3 4 5

P(Z = fc) 0.077 76 0.259 2 0.345 6 0.2304 0.0768 0.01024

47 E(X) + E(Y) = ^(X + r )
51 The minimum occurs where t - <x>.

53

55 var(JT) = 2.916 7, o(x)= 1.707 8.
The minimal TV is 583 340.

59 0.141 593 >E(x [Otb)) > 0.141 592

Chapter 5
15 Choose * 4 = (Xi^Xa)173

17 The maximum is 2.
23 k = vx/v2

29 (a) F = l
(6) F=1.5
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33(6) Z*=X*
(c) U* = Y*

34 W « W

Additional question: how much is 2(AT*)2 ?
35 Look for straight lines.
37 No.

Chapter 6
2 At the middle point we will have the average of the values now at the

outer points.
8 It would take more time to get to the same steady-state temperature

distribution.
9 (a) 2001

(c) 261
(d) 365

(d) k=l,N=16
14 N=34

18 xn+1 > - , ——

19 lim^w = 1.3245

/ lY26 (J) Hm log fl +~J =1/ lY1

fl +~J =

36 It is the equilibrium population.
37 It is true at points where the curve intersects the line y = x; zero

population; equilibrium.
38 For large t, x (t) approaches X = —.

c

57 p = -K,p=l/L(r-E)

58 -— =y2(4L-R)+y(\RB -\RA -4BL)+BL
at
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Chapter 7
1 Yes, it is legitimate.

No, it does not yield the 'expected answer'.
3 No, try n = 42 ,43 . . .
9 The motion is periodic, the period is 4, the initial states do not

matter.
12 w(t) + w(t + 1) + w(t + 2) = 0
25 v = - 7 , - 1 7 , - 2 7

* = -10
26 (a) JC(1) = 3 , V ( 3 / 2 ) = - 1 2

(ft) x(2) = -9,v(5/2) = 24
(c) J C ( 3 ) = 1 3 , V ( 7 / 2 ) = - 3 6

*(4) = -23,v(9/2) = 56
29 v(t + 5/i/2) = (/E3CO4 - 2hco2)x(t) + (1 - 3^2co2 - h4u4)v(t + A/2)
36 Ellipses

46 A g a i n , ^ - - V = ^+co2X =
at at

48 B = co2

49 C=0
65 c = 0

Chapter 8
5 u
8

10

11 V = (1,2X2,4X3 - 2X + 1,2X2 - i )
14(6) U = (-1,-2,3,-5)

(c ) X = ± ( 3 V
2

(i) U = (2(F2 - VteVtf
16 (a) A(2,3) = (5,-1);.4(1 A/2 - 1) = (x/2,2 - y/2); A(\ A) = (1,0)

(c) U = ( | , - i )
(i) This linear transformation is \A.

17(6) A[B(l,0)] =(-1,1), £[^(1,0)] =(1,-1)
(e) £XJ = (C/i + 2f/2-f/2)

21 (a) V=(0,0)



Solutions to selected exercises 281

(b) V = (0,0)
(c) V = (-l,l)
(e) V = (l,4)
CO V = (-l ,-l)
(g) V = (-l,4)

23 (a) x = 0,y = -2
(b) x = 0,j = l
(c) x = -l,y = 0
(d) x = -5,y = 6

24 (b) U = (U),x = i
(c) U = (1,-1),JC = 1

26 T3U = -z(2U2 + U*,2UX + 3U3,3U2 + 2U4;U1+2U3)
O

27 x = 0, y = -3/4 , z = 0, f = 1/16
33 ad^bc

36 (a) Urn 2*/3'l=0

39 eigenvalues eigenvectors

x = 1 (X, X, X)

x = 2 (X,0,0)

41 No.

54 Take the pair of encoded numbers (. I,

W

and the remainders modulo 26 are the original letters.

55 (

J -557 Withith(J
62 1,3, 5,7,9,11,15,17, 19, 21, 23, 25
64 No.

65 Decoder:

67 There is no left inverse.
69 Yes. [D,X2] =2X
71 D[X,J] =DJ 2 =J
74 [ A , X ] = A + 1
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75 [D2,X]=D + D
80 X has both a right and a left inverse.

83 . y = f - + y + "jis a solution to (D2 - 3 D + 2)y=x2 +6.
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absolute value, 109
acceleration, 164, 214
algebra (linear), 234
algebra of linear transformations, 246
algorithms, 137,172
approximations, 51, 75ff, 85ff, 153ff, 228
arithmetic mean, 109,144
arithmetic progression, 71
average, 108

base, 253
basic, 7ff
birth rate, 68,183
boundary condition, 208ff

calculators, 4ff
Cauchy, 177
change of variables, 219
characteristic functions, 113
Chebyshev, 122
Chomsky, 99
circuit, 136
classification, 27ff
codes, lOOff
combinatorics, 28ff
commutative property, 246
commutator, 267
compound event, 115
computation with decimals, 165
conditional probability, 118
conductivity, 236
connected graph, 136
conservation law, 222
convergent sequences, 177
cook-book approach, 89
correlation coefficient, 161
cryptography, lOOff, 258ff
cumulative frequency, 97

decimals, 202
deciphering, lOOff
decisions, 162
de Saussure, 92
difference equations, 57ff, 195, 217, 234
differential equations, 75, 225
differentiation, 265
direct standard alphabet, 100
direct study of differential equations,

79ff, 192ff
direction field, 226
divergence, 172

e, 77, 83,175
edges, 135
efficiency of programs, 16ff
eigenvectors, 257
eigenvalues, 257
enciphering, lOOff
equilibrium, 96,164ff
errors, 154,169
existence theorems, 89
expectation, 120
exponentials, 55, 67, 77

false position, 22
Fermat, 115, 145, 146
fishing, 55
flow-chart, 6 ,12 , 23
four-dimensional space, 239
frequency, 95, 97, 103, 115
frequency distribution, 103
functional equations, 46ff

games, 36ff, 130ff
geometric mean, 144
geometric progression, 64, 70
graph, 135
growth, 56
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half-life, 66
harmonic motion, 214ff
heat conduction, 165ff, 234ff
Heisenberg, 267, 275
Hjelmslev, 35
Hooke, 216
hyperbola, 93

Independence of events, 117
inequalities, 43ff, 169
infinite string, 212
information measure, 29ff
initial conditions, 80
integral equation, 272
integration, 84,125, 265
inverse functions, 84, 230ff
inverse transformations, 250ff

Kepler, 142
kernel, 268, 271
keyword, 101
Khinchin, 35
Kruskal, 137

law of large numbers, 121ff
least effort, 96
least squares, 15Off
limits, 168ff, 175
linear algebra, 334
linear differential equation, 269ff
linear differential operator, 269
linear transformation, 243
logarithmic function, 84
logarithms, 25ff
log-log paper, 52, 93
long division, 87
Lotke, 68

Malthus, 68
Mandelbrot, 92
mathematical models, 34, 75, 89, 152,

162,168, 182
matrix, 260
maximum, 140ff, 155ff
median, 108
minimum, 140ff, 155ff
mixed strategy, 132
modulo, 263
multiple choice questions, 39

Napier, 25
Newton, 214
nodes, 135
non-singular transformation, 251
normalized variables, 160
numerical solution of algebraic equations,

20ff

observable, 257
optics, 146ff

Pascal, 115
patterns, 197ff
payoff matrix, 130
period, 199
phase plane, 218
polynomials, 17, 74
Prim, 138
primes, 198, 202
probability, 91,116
probability measure, 116
programming, 6ff
progression of higher order, 72
pure state, 257
pure strategy, 132
quadratic equation, 220
quadratic polynomial, 155, 189
quantum physics, 273

random variable, 119
rate of change, 55,186
regression lines, 154, 156
relative frequency, 98, 115
relative rate of change, 57ff, 62ff
remainder theorem, 18
Riemann, 129

sample space, 115
scale of limits, 171
scales, 41ff
scrambled alphabet, 101
separation of variables, 229
simple event, 115
slide rule, 40ff
Snell, 147
solubility product, 196
solutions in closed form, 89
spanning tree, 136
square root, 141
standard deviation, 112,122
state vector, 239
stationary state, 187, 238
statistics, 9 Iff
steady state, 165
storage, 26
struggle for life, 55ff, 182ff

tree, 136
trigonometric functions, 225ff

variance, 112,122
vectors, 239ff
velocity, 164
vibrating string, 205ff
Volterra, 56

Waves, 198ff
Wright, 56

Zipf, 91
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